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Abstract

The desire for realistic patient specific dosimetry estimates of internally distributed

radioactivity are realised by using Monte Carlo simulations of voxelised phantoms.

The purpose of this thesis was to validate the GATE Monte Carlo package as a

dosimetry tool and to investigate the accurate application of model and patient

specific voxelised phantoms.

Validation of the GATE Monte Carlo package was performed by simulating the

absorbed fractions of simple geometric spheres of uniform radioactivity compared

to accepted values from Stabin and Konijnenberg [1]. Voxelised spheres have also

been simulated and it was found that the GATE Low Energy physics package was

the most suitable for simulations of voxelised phantoms.

The simulation of the scalable XCAT voxelised phantom has been performed to

evaluate the effect of voxel size and patient organ mass on the calculation of dose

factors. It was found that for organ self irradiation significantly small voxels are

required to ensure that insufficient voxel sampling does not effect the absorbed dose

calculation. A retrospective absorbed dose calculation of true patient images was

then performed with a correction for insufficient voxel sampling. In this work the

scalable XCAT phantom has also been used to show that a voxel size of 2 mm or

less is suitable for accurate calculations of organ cross dose.

By comparing the scaled XCAT phantoms with patient and traditional phantoms

it was concluded that considerable care is required when adapting model-based
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phantom results to individual patients. As differences in patient anatomy contribute

significant variability to the dosimetry calculation, it is therefore recommended that

where available individual patient specific dosimetry should be calculated using direct

Monte Carlo simulation in favor of organ mass scaling.
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Chapter 1

Introduction

The use of radionuclides in medicine is well established in both the diagnostic and

therapeutic fields. In these fields radiopharmaceuticals are exploited for their bio-

distribution. Exposure to ionising radiation is associated with some risks and as such

needs to be reliably estimated for its acceptable use in both clinical and research

applications. All exposure to ionising radiation must be justified such that the

benefits to either the patient or grater community far outweigh any associated risks.

1.1 Problem Statement

Molecular Imaging has been shown to be useful in assessing the effectiveness of

new pharmaceuticals and provides added benefits in accelerating development from

pre-clinical discovery to Phase III clinical trials through in vivo imaging [2]. Approval

by regulatory authorities to undertake clinical trials in humans, require a number of

ethical and safety issues to be assessed. If Molecular Imaging is used in addition to

standard clinical care then one such safety issue is an internal radiation dosimetry

assessment. Even though the exposure is justified and will provide a net benefit to the

community, imaging studies additional to standard clinical care are not guaranteed to

deliver any benefits to the patient participating in the trial. It is therefore important
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1.1. PROBLEM STATEMENT

that radiation dosimetry assessments are as accurate as possible.

Molecular Imaging is a unique modality that images tracers that chemically react

within a biological system and therefore respond to molecular changes. This is a

notable difference compared to X-ray Computed Tomography (CT) which measures

differences in linear attenuation. Molecular Imaging may increase the probability

for early diagnosis of disease as changes in function may occur before observable

anatomical changes. Research activities into novel radiopharmaceuticals is therefore

well developed, as a large spectrum of tracers to target specific disease or metabolic

function is possible.

Radiation dosimetry assessments for clinically used radiopharmaceuticals can

be obtained by reviewing publications that report the radiation dose in units of

“dose per injected activity”. Examples of such publications include [3, 4, 5], where

radiation dosimetry is defined as the calculation, assessment or estimation of the

energy absorbed by ionization of atoms in tissue from the emission of energetic

radiation. Radiation dosimetry is based on the key quantity of absorbed dose.

Absorbed dose is defined as the mean energy of ionizing radiation absorbed per

unit mass of an absorbing medium. Absorbed dose is usually indicative of 1 the

probability of harmful biological effects [6].

The development of novel radiopharmaceuticals are governed by the same reg-

ulatory and ethical approval required by any new drug. In the case of a new

radiopharmaceutical a simple review of previous published literature is by no means

adequate. A radiation dosimetry assessment of a new radiopharmaceutical must

therefore be calculated using a model based approach. At the Phase I stage in

the clinical development of a new radiopharmaceutical, dosimetry assessment may

involve analytical and modeling based techniques or data obtained from preclinical

animal scans. Results of a dosimetry estimate will therefore only be as good as the

1Absorbed dose alone (see section 2.1) is insufficient to predict the effects of radiation. Radiation
and tissue weighting factors (see section 2.2) are also required to evaluate the effective dose.
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1.2. AIM AND SCOPE

standardised models of human anatomy and physiology. Further dose assessment

can then be undertaken on results from the Phase I trial.

Novel radiopharmaceuticals may have both diagnostic and therapeutic applica-

tions. Accurate dosimetry of diagnostic procedures is important for making judgments

on the diagnostic benefits to the patient compared to the associated radiation risks.

In diagnostic applications relatively small amounts of radioactivity are used in com-

parison to therapeutic procedures. However the number of procedures over the entire

population is much higher. Dosimetry of diagnostic radiopharmaceuticals is therefore

primarily concerned with the dosimetry of a total population or group. The absorbed

dose from internally distributed radioactivity used in diagnostic procedures is usually

only calculated using models based on reference individuals and not specific patients.

The model based approach may be appropriate for diagnostic radiopharmaceuti-

cals however a more patient specific approach is required for radionuclide therapy

where the aim is to deliver a therapeutic dose of radiation to malignant tissue.

Accurate calculations of the absorbed dose in malignant tissues and surrounding

organs from radionuclide therapy will directly affect the outcomes of the treatment.

1.2 Aim and Scope

In recent times considerable development has been made in model and patient specific

dosimetry estimations. A key area of work has been the application of detailed

computer models of patient anatomy. In the past simple geometric shapes like

spheres, cubes, cylinders, etc. have been used to describe patient anatomy [7]. This

approach as a first approximation for calculating radiation doses, is useful to combat

limitations in computational methods at the time of the models development. These

models do however lack realism.

Improvements to model based dosimetry assessment are achieved by using vox-

elized phantoms. A voxelized phantom is made up of a group of small volume
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elements (a voxel) that together are used to define a complex geometry. Standard

voxelized human phantoms include those described by Zubal [8] and Segars [9].

Definitions of activity distribution may also be described using a voxelized approach.

The desire for patient specific dosimetry estimates has also become more practical

with hybrid imaging technologies like PET/CT or SPECT/CT. In this case the

CT image is used as the voxelized phantom and the PET or SPECT image as the

voxelized source.

For simple geometric shapes it may be possible to solve for the absorbed dose

analytically, however as the geometry becomes more complex the ability to analytically

solve for the absorbed dose becomes less likely. The Monte Carlo method can be

used to simulate the interaction of radiation through matter and is usefully applied

to this problem. One publicly available software framework for this calculation is

Geant4 [10] and its Application to Tomography Emission (GATE) [11]. GATE has

the ability to realistically model the physics processes involved in Molecular Imaging

and dosimetry applications.

It was proposed that a validation of the GATE toolkit for internal dosimetry

applications be undertaken, with particular attention to the calculation of absorbed

dose fractions. The following validation steps have be investigated;

• use GATE to calculate absorbed doses in simple geometric models that can be

compared with analytical determined values.

• comparison of GATE results to previous literature, simple calculated values or

other available Monte Carlo codes and

• investigate the possible sources of error involved with using voxelised models

in GATE.

Following validation the use and appropriateness of the Extended Cardiac Torso

(XCAT) [12] phantom in GATE was investigated. Estimations of the absorbed dose
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to large organs have therefore been provide as a model based dosimetry estimate. A

concluding goal of this work was to use GATE in a retrospective dosimetry assessment

of an individual patient who has undergone a Molecular Imaging examination. This

retrospective assessment illustrates the differences in model vs patient specific ab-

sorbed dose calculations and demonstrates the possibility of patient specific dosimetry

estimates as opposed to nominal standard phantom calculations.

1.3 Research Approach

To achieve the aims above, chapter 2 introduces background information about

dosimetry methods, concluding with a short review of studies already completed.

Chapter 3 provides methods for simulating simple dosimetry problems in GATE,

as well as setting out a method for benchmarking and validating GATE results.

Chapter 3 concludes with describing the processes required for performing realistic

dosimetry calculations in GATE. Chapter 4 outlines the results of validating GATE

against the well known values for simple geometric spheres containing uniformly

distributed activity. Chapter 5 shows results of validating voxelised phantoms

in GATE for simple source and target regions. Chapter 6 provides results for a

dosimetry assessment of the XCAT voxelised phantom and concludes by investigating

a retrospective dosimetry assessment of a patient who received a fluorodeoxyglucose

(18F-FDG) PET/CT examination. Finally chapter 7 discusses further work that may

be undertaken and concludes on the previous chapters.
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Chapter 2

Background

2.1 Kerma and Absorbed Dose

Energy transfer from ionizing radiation may involve both direct ionization and

indirect forms of kinetic energy transfer. The International Commission on Radiation

Units and Measurements (ICRU) introduced the term Kinetic Energy Released in a

medium (kerma) to describe the kinetic energy (∆Etr) transferred from photons to

electrons in a mass (∆m) [13]. Kerma is defined as;

kerma (J · kg−1); K =
∆Etr
∆m

(2.1)

The closely linked term absorbed dose was introduced in section 1.1 and is

the mean energy (∆Eab) of ionizing radiation absorbed per unit mass (∆m) of an

absorbing medium. Absorbed dose is defined as;

Absorbed dose (J · kg−1); D =
∆Eab

∆m
(2.2)

It should be noted that for practical measurement purposes the increment of mass,

∆m, should be small enough so that the absorbed dose is defined to a point, but not
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A

B

C

Ea

e−

Eb

e−

Ec

e−

∆m

Absorbed Dose = Eb+Ec

dm

kerma = Ea+Eb

dm

Figure 2.1: The difference between kerma and absorbed dose. (Adapted from [15])

so small that statistical fluctuations in the energy deposited are significant. Equations

2.1 and 2.2 have the SI units of J· kg−1. The SI units for kerma and absorbed dose is

given the name gray (Gy) after Louis Harold Gray for his contributions to radiation

dosimetry and notably the Bragg-Gray Principle [14].

The difference in the two terms kerma and absorbed dose are illustrated in figure

2.1. Photons impart kinetic energy to electrons both in (point A and B) and out

(point C) of the region of interest. The kinetic energies of the electrons are also

absorbed both in the reagion (energies Eb and Ec) and out (enregy Ea) of the region.

Therefore the kerma is dependent on where the photon imparted its kinetic energy,

and the absorbed dose is dependent on where the energy (in this case the secondary

electron) was absorbed.

2.2 Equivalent and Effective Dose

From the point of view of radiation biology, the absorbed dose alone is insufficient to

predict the effects of radiation. Biological damage due to radiation is reliant on not

only the average energy deposited but also the spatial variations of energy deposition
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2.2. EQUIVALENT AND EFFECTIVE DOSE

at the microscopic level [15].

For example an experiment may make measurements at different biological end

points or vary the kinds of radiation used. These experimental differences may result

in a different absorbed dose required to produce the same effect. For radiation types

with a high linear energy transfer (LET) (e.g. alpha particles or heavy ions) this is

particularly apparent.

To address this the International Commission on Radiological Protection (ICRP)

introduced the terms equivalent dose HT and radiation weighting factor wR. Using

the notation given in the ICRP report 103 [16] the equivalent dose is;

Equivalent dose (J · kg−1); HT =
∑
R

wRDT,R (2.3)

Where; DT,R is the absorbed dose in a tissue T from a radiation of type R. The

radiation weighting factor for different radiation types are shown in table 2.1 [16].

The sum is applied over all types of radiation involved. The SI unit for equivalent

dose is given the name sievert (Sv) after Rolf Sievert to avoid problems resulting

from the use of two quantities with the same dimensions [17].

Table 2.1: Radiation weighting factors recommended
by ICRP publication 103

Radiation type
Radiation weighting

factor, wR
Photons 1
Electronsa and muons 1
Protons and charged pions 2
Alpha particles, heavy ions 20
Neutronsb 1-20
a excludes Auger electrons.
b a continuous function of neutron energy.

Previously the term quality factor, Q was used instead of the radiation weighting

factor. Q is only a function of LET for different radiation types [18], where the wR is

based on the relative biological effectiveness (RBE) and the increasing probability of
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radiation damage with increasing dose (stochastic effects). In the field of radiobiology

the RBE is defined as the ratio of the absorbed doses of two types of radiation

producing the same biological effect in identical systems.

The introduction of equivalent dose leads onto the definition of effective dose and

is defined by the weighted sum of tissue equivalent doses. That is;

Effective dose; E =
∑
T

wTHT =
∑
T

wT
∑
R

wRDT,R (2.4)

Here wT is the tissue weighting factor. The sum is performed over all organs and

tissues in the human body. Values for the tissue weighting factor are shown in table

2.2. These values are derived from the contributions of individual organs and tissues

to the overall radiation harm from stochastic effects.

Table 2.2: Tissue weighting factors recommended by ICRP publication 103 [16]

Tissue wT
Bone–marrow (red), Colon, Lung, Stomach, Breast, Remainder tissuesa 0.12
Gonads 0.08
Bladder, Oesophagus, Liver, Thyroid 0.04
Bone surface, Brain, Salivary glands, Skin 0.01
a Remainder tissues: Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys,

Lymphatic nodes, Muscle Oral mucosa, Pancreas, Prostate (♂), Small intestine, Spleen,
Thymus, Uterus/cervix (♀)

Further details on the fundamental units used in radiation dosimetry can be

found in [16, 19, 20].

2.3 MIRD

Calculation of absorbed dose to an organ from an internally distributed radionuclide

has been described by The Medical Internal Radiation Dose (MIRD) Committee of

the American Society for Nuclear Medicine (SNM). The publication of a number of

pamphlets by the committee have been accepted by the Nuclear Medicine community
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as the standard approach for dosimetry calculation of diagnostic radiopharmaceuti-

cals.

In its most simplest form the MIRD method for absorbed dose calculations

requires; the total number of nuclear transitions that have occurred over a given time

and the amount of energy deposited per nuclear transition per unit mass of the target

organ. Ultimately however appropriate information or in most cases assumptions on

the following is required;

• the administered radiopharmaceutical activity,

• the rate of radionuclide decay (physical half life),

• the fraction of energy/type per decay (spectrum information),

• the fraction of administered activity that is located in each source organ (time

activity function and uptake),

• the length of time the activity is in the source organ (effective half life),

• the total number of decays in the source organ (cumulated activity),

• the fraction of energy absorbed in the target organ from the source organ

(absorbed fractions), and

• the mass of each organ.

The absorbed dose from a source organ rh to a target organ rk in the MIRD

method is;

Drk =
∑
h

ÃhS(rk ← rh) (2.5)

The absorbed dose in the target organ is summed over all source organs. Ãh is the

cumulated activity in the source organ ’h’ where S(rk ← rh) is the mean absorbed

dose per unit of cumulated activity (or S value). The cumulated activity is reliant on
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both physical decay (λp) of the radiopharmaceutical and its biologic removal (figure

2.2). The effective decay constant (λeff ) is given by the addition of the physical and

biological decay constants. In the original MIRD system the residence time τh was

used to define the average time that the administered activity spends in an organ.

The cumulated activity can therefore be written as;

Ãh = A0 · τh =
∫ ∞

0
A0e

−λeff
h
·t dt (2.6)

The function representing the uptake and clearance may be modelled by the sum

of exponential functions, that include terms for the fractional uptake (f1...fn) and

its biologic removal (λ1...λn). Equation 2.7 therefore can also be used to describe

cumulated activity.

Ãh = A0

∫ ∞
0

n∑
i=0

fie
−(λi+λp)t dt (2.7)

The S value is a function of the mass of the target region mrk , the mean energy

emitted per unit cumulated activity (∆i) for radiation of type i and the absorbed

fraction φi. Where the absorbed fraction is the ratio of the energy absorbed in the

target region (k) by the energy emitted from the source organ (h). The S value is

therefore written as;

S(rk ← rh) =
∑
i

∆i
φi(rk ← rh)

mrk

(2.8)

where i is for the i-type radiation.

The absorbed fraction φi is a useful quantity that has been calculated for a

number of different shapes and isotopes. The absorbed fraction is a term that is

dependent on the penetration of the ionising source and attenuation characteristics

of the medium as well as the medium geometry. The MIRD committee produced

two relevant reports on this topic for different shapes with activity emitting different

energy photons. These were MIRD pamphlets 3 and 8 [21, 22]. The pamphlets have
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Figure 2.2: Illustration of cumulated activity, residence time, uptake and effective
decay.

been recalculated by Stabin and Konijnenberg [1] and can be given the suitable title

as the “gold standard” for absorbed fraction values in simple geometric regions.

Also of note is the fact that S-values are not limited to an organ scale. In fact

nothing prohibits the use of the MIRD schema to smaller organ regions, small-

scale tissue regions or even a cellular level. The MIRD committee has released

documentation on S-values at a cellular level [23, 24] and also at a voxel based level

[25].

In voxel based dosimetry, tomographic images are used for activity quantification

and the absorbed dose may be calculated on a voxel-wise basis using direct Monte

Carlo simulation (section 2.10). The MIRD schema defines the absorbed dose in a

target voxel k from N surrounding source voxels h as equation 2.9.

Dvoxk =
N∑
h=0

Ãvoxh · S(voxk ← voxh) (2.9)
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Where Ãvoxh is the cumulated activity in the source voxel h and S is defined

as the mean absorbed dose to a target voxel per radioactive decay in the source

voxel h. When h = 0 the self absorption in the target voxel k is considered. Voxel

based dosimetry is useful in calculating isodose contours and dose volume histograms

within tissue regions with non-uniform activity uptake and is therefore applicable to

radionuclide therapy. Although computationally intensive, voxels may be grouped to

define whole organs in which tissue weighting factors may be applied to calculate

the effective dose.

2.4 Decay Data

Equation 2.8 has many forms. An extension to this equation is the definition of the

mean energy emitted per unit of cumulated activity, ∆i. An accepted expression for

∆i is shown in equation 2.10.

∆i = yi × Ei (2.10)

Where, y is the number of radiations with energy E emitted per nuclear transition.

E is the energy per radiation (MeV) and i is the radiation type. Decay data for

radionuclides used for medical purposes are found in a variety of sources including

the RADAR website [26] or other published sources [27]. Figure 2.3 shows an extract

from the Brookhaven National Laboratory website [28] which report isotopes in

the MIRD format. Figure 2.4 shows the traditional decay diagram for 18F to 18O

decay via electron capture and positron emission[29]. Fluorine-18 is shown due to its

relevance to PET imaging.
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Figure 2.3: Extract from the Brookhaven National Laboratory web site [28].

Figure 2.4: Physical decay scheme for Fluorine-18 reproduced from [29].

2.5 Anthropomorphic Phantoms

A number of anthropomorphic phantoms have been defined and used for dosimetry

problems over time. The phantoms can be split into two different groups, Math-

ematical and Voxelised phantoms. Mathematical phantoms are defined by using

geometric volumes and planes, to represent a variety of organs in a highly stylised

way. Mathematical phantoms of note include the MIRD phantom [30] of the standard
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man, ADAM (standard man) and EVA (standard woman) [31] and the Cristy and

Eckerman pediatric phantoms [7]. Figure 2.5 shows the components of a Female

adult mathematical phantom built from the geant4 class G4PhantomBuilder [32]

which is the geant4 implementation of the Oak Ridge National Laboratory phantoms

[7].

Figure 2.5: Geometric phantom of an adult female [32].

As an example of the mathematic phantom the following equation 2.11 represents

the Liver of the MIRD phantom which is defined by an elliptical cylinder cut by a

plane and defined between 27 ≤ z ≤ 43. Another organ example are the Kidneys,

which are defined by ellipsoids also cut by a plane.

(
x

16.5

)2

+
(
y

8

)2

≤ 1,
x

35
+

y

45
− z

43
≤ −1 (2.11)

Page 17
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A number of tomographic voxelised phantoms of human anatomy have been

published in peer review papers. Models are available of adult males [8, 33, 34],

adult females [35, 36] (including pregnant subjects [37]), children [38, 39] and babies

[40, 41]. Models have been reported for Caucasian and Asian [42, 43] subjects.

Organ segmentation has been completed from CT and MRI images with varying

voxel sizes. Colour photographs of the Visible Human Project [44, 45] have also been

used for segmentation. It is considered that voxelised phantoms are more realistic

representations of human anatomy compared to traditional mathematical based

phantoms [9], however minor assumptions are made about the density composition

of the phantom.

Zankl et al. [46] have used the Voxelman [8] and the GSF1 family of voxel

phantoms [36] to calculate specific absorbed fractions for Monoenergetic photon

energies. Table 2.3 shows the image characteristics of the voxelised phantoms used

by Zankl et al. and includes the subjects height, weight and body region. The

differences in the specific absorbed fractions for each of the voxelised phantoms and

the Cristy, Eckerman Oak Ridge National Laboratory (ORNL) adult mathematical

phantoms are shown in figure 2.6. Since the simulation framework (Monte Carlo

physics assumptions) is the same for all of these phantoms, differences in the specific

absorbed fraction are a result of geometry. The notable differences for each phantom

demonstrates that the use of reference phantoms for internal dose estimates may

not necessarily be accurate to patient specific situations. In fact an insufficient

representation of a real patient gives rise to large changes in the specific absorbed

fraction. The magnitude of this change is dependent on the physical differences

between the reference phantom compared to the patient.

1German National Research Center for Environment and Health
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2.5. ANTHROPOMORPHIC PHANTOMS

(a) Specific Absorbed Fractions for organ self-absorption Φ(thyroid ← thyroid)

(b) Specific Absorbed Fractions for organ cross dose Φ(stomach ← adrenal glands)

Figure 2.6: Specific absorbed fractions for monoenergetic photons for seven adult
voxelised phantoms compared to the Cristy, Eckerman adult mathematical phantoms
reproduced from Zankl et al. [46].
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Table 2.3: Characteristics of voxelised phantoms used by Zankl et al. [46].

Model
Height
(cm)

Weight
(kg)

Body region
Voxel
width
(mm)

Voxel
depth
(mm)

Voxel
height
(mm)

Array shape

Frank - -
Head and

trunk
0.74 0.74 5 512x512x193

Golem 176 69 Whole body 2.08 2.08 8 256x256x220
Visible
Human

180 103 Head to knee 0.91 0.94 5 512x512x250

Voxelman 178 70 Head to thigh 3.75 3.75 4 128x128x236
Donna 176 79 Whole body 1.875 1.875 10 256x256x179
Helga 170 81 Head to thigh 0.98 0.98 10 512x512x114
Irene 163 51 Whole body 1.875 1.875 5 256x256x348

Organ segmentation is a time consuming process which when performed manually

may also suffer from operator subjective error [47]. Significant research is currently

being undertaken for automated organ segmentation. Current methods are however

limited to larger organs such as the Liver [48], Spleen [49], the Lungs [50] and the

Kidneys [51]. Segmentation of contrast enhanced CT [52] and MRI [53] images have

also been used.

These voxel based phantoms are of patient data sets and are therefore dependent

on the resolution of the imaging equipment. The data sets have fixed voxel sizes and

if different voxel sizes are required, then interpolation would have to be performed.

Interpolation is both time consuming and may introduce errors since organ shapes

are not analytically defined [54]. It should be noted that scaling of geometric

phantoms is not difficult, however these simple representations lack realism. One of

the more useful phantoms for this work are the NURBS Cardiac Torso (NCAT) [9]

and Extended Cardiac Torso (XCAT) [12] series of phantoms. These are based on

an extension to the 4-D Mathematical Cardiactorso (MCAT) [55] phantom using

non-uniform rational b-splines (NURBS) surfaces [56]. The use of parametric surfaces

overcome limitations in scaling the NCAT/XCAT data sets for different voxel sizes.

The NCAT and XCAT phantoms have been designed to account for respiratory
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and cardiac motion. Myocardial SPECT studies were the first application of the

NCAT phantom, with the cardiac model being developed by tagged MRI datasets of

a normal healthy patient [9]. CT data sets of the Visible Human Project were used

to construct the remainder of the torso [57]. The XCAT phantom is an extension of

the NCAT phantom that includes the head and neck region as well as organs in the

lower abdomen.

Segars states that ‘an ideal computer phantom would combine the realism of a

patient-based pixelized phantom with the flexibility of a geometrical or mathematical

phantom’ [9]. It is therefore considered that the XCAT phantom (figure 2.7) is

currently a powerful realistic model of human anatomy that is ideal for model based

internal radiation dosimetry calculations.

Figure 2.7: Male XCAT phantom. [12]

Variations in human anatomy have also been studied using the NCAT phantom
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by Marine et al. [58] and the companion paper by Clark et al. [59]. Individual

organ sizes can vary significantly between patients, Marine et al. review relevant

literature of organ mass values for Adult Males and Adult Females with particular

attention to the 10th, 25th, 50th, 75th and 90th percentiles. It was found that for

organ self-dose the specific absorbed fraction varies from 15% to 30% and for organ

cross-irradiation the specific absorbed fraction varies from 8% to 33%. Clark et

al. measures differences in moderately and severely obese adults where the organs

remained the same size as the 50th percentile but only surrounded by increasing

volumes of visceral adipose tissue. Clark et al. finds that between these two groups

depending on the irradiating organs little change in the specific absorbed fraction is

observed compared to the 50th percentile.

2.6 Scaling Organ Masses

It is considered that the use of reference phantoms for internal dose estimates may

not necessarily be accurate to patient specific situations. In an attempt to address

this issue the MIRD pamphlet 11 [60] provided some guidance on how scaling of

reference S-values for both the photon and electron components of the emission

spectrum should be approached.

For photon absorption the absorbed fraction and specific absorbed fraction is

scaled as in equation 2.12, assuming that the photon path length is large relative to

the diameter of the organ.

φpt = φref

(
mpt

mref

)1/3

Φpt = Φref

(
mref

mpt

)2/3

(2.12)

Where φpt is the patient absorbed fraction and φref is the reference phantom absorbed

fraction. For target organs that are some distance from the source organ the photon

absorbed fraction varies directly with the organ mass. Therefore scaling the target
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organ mass for the photon specific absorbed fraction for organ cross-irradiation is

not required [61]. This has been confirmed by Petoussi-Henss et al. [62].

For non-penetrating radiation, self absorption is the dominate process and there-

fore the absorbed fraction has traditionally been set to 1.0 for organs that are much

larger then the mean-free-path of the radiation [63]. This leads to the specific

absorbed fraction being inversely proportional to the mass of the source organ. If

the source and the target are the same organ then the reference S-Value may also

be scaled by the organ mass for the non-penetrating component of the emission

spectrum [64]. The MIRD perspective [65] scales the patient S-values by equation

2.13. By assuming that the 1/m2/3 correction from equation 2.12 for the gamma

component of the emission spectrum is negligible as a first order correction (as the

majority of photons are not absorbed) then equation 2.13 holds [66].

Sh←h(pt) = Sh←h(ref)× mh(ref)

mh(pt)
(2.13)

For the organk ←organh cross-irradiation case the target mass is not corrected,

however the source organ mass is. If it is assumed that for non-penetrating radiation

all of the energy is deposited in the source organ then only the gamma component

of the emission spectrum will contribute to the absorbed fraction in the target organ

(which follows equation 2.12). The computer program OLINDA\EXM [61] (see

section 2.9) corrects for different source organ masses by equation 2.14.

Sk←h(pt) = Sk←h(ref)×
(
mh(ref)

mh(pt)

) 2
3

(2.14)

Scaling of reference phantoms and organs have typically been applied when

patient organs are significantly smaller or larger then the reference organs. Organ

mass scaling seems to be used more exclusively for radionuclide therapy situations

where a more patient specific dose calculation is required. This is supported in the
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literature [67, 68].

2.7 Uncertainties in Dosimetry Calculations

A systematic analysis of the uncertainties in radiopharmaceutical dosimetry calcu-

lations using a MIRD based approach has been documented previously by Stabin

[69].

The absorbed dose equation 2.5 used in the MIRD system may be split into

terms used to describe either biokinetic processes (Ãh) or physical / model terms

(S(rk ← rh)).

From equations 2.6 and 2.7 the physical decay constant and initial administered

activity provide a relatively small uncertainty in diagnostic procedures compared to

applying standardised fitting parameters for fractional uptake and biologic removal.

The physical decay constants for medical radioisotopes are well known and have an

uncertainty often less then 0.01% [70]. Wood and Collins [71] for example report the

half-life of Tc-99m as 0.250281 ± 0.000022 days. The initial administered activity

is limited to the accuracy of the initial activity measurement performed by a dose

calibrator. For dose calibrators, current regulations state a required measurement

error of less then 10%, however an error of less then 5% is more common [72].

Applying standardised fitting parameters for fractional uptake and biological

removal to a population will introduce additional uncertainties. Differences in uptake

curves between patients can be considerable. Figure 2.8 shows results from Koole

et al. [73] and demonstrates this variation for six patients administered 18F-GE067,

which is a radioligand for in vivo brain amyloid imaging. The percentage injected

dose is shown for both the gallbladder (figure 2.8a) and the Urinary bladder (figure

2.8b). The major source of these differences are explained by biokinetic differences

between individual patients however other sources of error may be introduced such

as incorrectly defining the region of interest.
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(a)

(b)

Figure 2.8: Time activity curves for six patients administered 18F-GE067, for both
the gallbladder (a) and urinary bladder (b). (reproduced from Koole et al. [73])
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The absolute uncertainty in the calculation of the S-values for standardised

anthropomorphic phantoms may be limited to approximately 5% [69]. From equation

2.8, ∆i provides the least uncertainty and is comparable to the low uncertainties

of the decay constant. For example Helmer and Van der Leun [74] reports the

γ1-ray energy for Tc-99m as 140.511 ± 0.001 keV. The uncertainty in the specific

absorbed fractions can be minimised by performing a large number of radiation

transport histories (sections 2.10, 2.11). It should however be noted that S-values for

standardised anthropomorphic phantoms represent a median value for only a small

reference group of patients. In clinical practice these standardised individuals are

accurate for only small percentages of the population. Therefore the largest errors

are introduced by applying reference S-values to individual patients that significantly

differ in size, shape or weight from the standardised phantoms. Figure 2.6b shows

that the specific absorbed fraction and therefore the S-value may vary greatly from

one phantom geometry to another.

2.8 Standardised Uptake Value (SUV)

The Standardised Uptake Value is a dimensionless semi-quantitative unit used for

uptake normalisation of PET scans and is often used as an aid for standardised

visual image interpretation. SUV is defined as the ratio of activity concentration

in a structure to the average concentration in the entire body [75]. Authors have

normalised to both body weight [76] and body surface area [77]. Equation 2.15

defines SUV body weight.

SUVBW =
C(t) · 2t/t 12
D/Mbody

(2.15)

where C(t) is the voxel radioactivity concentration (kBq/mL) at time t after

injection. t 1
2

is the isotope decay half-life, D is the injected dose (MBq), and Mbody
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(kg) is the mass of the subject.

From a practical point of view SUV is obtained by calibrating the PET scanner to

convert counts per voxel into radioactivity concentration, it is therefore plausible to

determine the activity at time t per gram by scaling the image voxels by D
Mbody

·2−t/t 12 .

Some have been critical of the clinical application of SUV [78, 79], however it has

been used successfully by a number of authors in defining organ time-activity curves

of dosimetry calculations [73, 80].

2.9 MIRDOSE and OLINDA\EXM

The most widely accepted values for S-Values for nuclear medicine applicable ra-

dionuclide are from the original MIRD pamphlet 11 [60] and the Internal dosimetry

software MIRDOSE [81] which has been superseded by OLINDA\EXM (Organ

Level INternal Dose Assessment \EXponential Modeling)[61]. These two software

programs are the most widely used method for calculating absorbed doses from

radiopharmaceuticals. OLINDA\EXM has also been accepted by the US Food and

Drug Administration after concerns were raised regarding the use of MIRDOSE as a

“medical device” [82, 83].

Calculation methods for MIRDOSE and OLINDA\EXM are similar with only

slight differences. MIRDOSE exclusively used the methods set out in the MIRD

primer [84], where OLINDA\EXM uses information provided electronically by the

RADAR (RAdiation Dose Assessment Resource) group [26].

Absorbed fractions for penetrating radiation are calculated using Monte Carlo

methods in both the MIRDOSE and OLINDA\EXM programs. Calculations for

non-penetrating radiation for MIDOSE are based on the MIRD 11 methodology

where for the self absorption case, the absorbed fraction equals 1. When the source

and target organ are separated by any distance the absorbed fraction then equals

0. MIRD 11 also assumes that the absorbed fraction at the surface of an organ
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containing non-penetrating radioactivity will be 1
2
. This approach may however not

be accurate for small organs or when the energy of the so-called non-penetrating

radiation is high. Therefore OLINDA\EXM applies a correction for loss of electron

energy if the organ mass is less then 1 kg and has an energy greater then 0.1 MeV.

The correction is an interpolation of the tables developed by Stabin and Konijnenberg

[1].

Both the MIRDOSE and OLINDA\EXM programs provide use of the Cristy and

Eckerman anthropomorphic phantoms [7]. The isotope database was also increased

in OLINDA\EXM to over 800 radionuclides compared to 223 different radionuclides

in MIRDOSE3.

2.9.1 Dose factor and S-values

OLINDA\EXM uses equation 2.16 to express absorbed dose, which is ultimately the

same as equation 2.5. Where N (Bq · s) is the number of disintegrations that occur

in the source organ and DF
(
Gy
Bq·s

)
is the dose factor.

D = N ×DF (2.16)

It has been stated that the residence time has led to some confusion in the MIRDOSE

program and that N be used to replace A0 · τ [61]. The dose factor is mathematically

equivalent to the S-value and therefore may be referred to interchangeably with the

S-value in some texts. Stabin and Siegel [85] have also suggested that equation 2.16

replace those used in the MIRD or ICRP [86] systems. Hence the DF will be referred

to throughout this thesis and not the S-value.
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2.10 The Monte Carlo Method

Monte Carlo (MC) methods are based on random variable sampling from a known

distribution to numerically solve problems foe which an analytical solution does not

exist [87]. MC methods are made up of the following components;

• a probability distribution that describes the system being analysed,

• generation of a (pseudo) random number,

• a rule used to sample the probability distribution from the generated random

number, typically based on the underling dynamics or physics of the system

under investigation.

• variance reduction techniques to reduce computational time, and

• a history (or scoring) of the interested quantities.

The tracking of individual photons and electrons is a suitably complex problem

that can be divided into a number of independently smaller problems where each

smaller problem may be solved using a MC approach. For example a particle may

travel a random distance in a material before it undergoes some interaction where,

the event may then describe a random energy change in the original particle. This

example describes three random processes that will each follow an independently

known (or approximated) distribution. A detailed example of a photon specific

Monte Carlo code is discussed in Appendix C.

Sources of error when using a MC approach are dominated by statistical uncer-

tainty due to sampling variations and the uses of an adequate mathematical models

to represent the true physical processes involved. Statistical uncertainty can always

be reduced by increasing the number of events tracked, however this will also increase

computational costs. This limitation is still however less important than making

appropriate assumptions about the physical model.
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For example, a model representing the energy absorbed in a region of interest from

incoming photons that undergo Compton or photoelectric interaction may assume

that the energy is absorbed at the point of energy transfer (i.e. kerma = absorbed

dose). By assuming that the photon energy is deposited locally (i.e. zero interaction

length) the computational burden is reduced as no electron tracking is required.

Therefore, for a given duration of computation, more photons can be tracked thus

reducing statistical uncertainty. This assumption will work for the region of interest

if it is large and the interaction point did not occur near the region boundary. Of

course if the region is small (about the size of the mean electron range) then there

is some probability that the electron will escape the region. In this case the zero

interaction length assumption will cause an overestimate of energy deposited in the

source organ and an underestimate in the electron energy absorbed in neighbouring

organs.

2.11 Monte Carlo Codes

A number of highly validated general-purpose radiation transport codes are available

in the public domain. Each code was originally developed for different applications

however over time they have become more and more general. Public domain codes of

note include; Monte Carlo N-Particle (MCNP) [88], Electron Gamma Shower (EGS)

[89] and GEometry ANd Tracking (Geant) [10].

MCNP has a long and interesting history with various name changes and an

origin in the 1940s. Its major application has traditionally been neutron transport

where it has been described to have no competitor [90]. MCNP added electron

transport and as such its applicability has increased. For example MCNP has been

used by Yoriyaz et al. [91] for absorbed dose calculations for internal emitters used

in radioimmunotherapy using the Zubal [8] phantom. Where Ferrari, Sohrabpour

and Miro [92, 93, 94] have used MCNP for external dosimetry calculations. It should
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also be noted that the current version MCNP5 is written in FORTRAN90 and C.

EGS was first developed at the Stanford Linear Accelerator Center for simulation

of high-energy electromagnetic cascades. At the outset it was almost exclusively used

in high-energy accelerator projects, however improvements in low energy photon and

electron transport changed this [95]. Nowadays EGS [89] has become the dominant

code for medical physics applications and some have referred to it as the de facto

gold standard for clinical radiation dosimetry [96]. EGS uses MORTRAN which is a

preprocessor for FORTRAN77 but also has C/C++ class libraries that are linked to

the EGS code.

Geant was developed at CERN for high energy physics problems and was originally

written in FORTRAN, until its current version Geant4 which is a total rewrite in

C++. Particular attention was originally paid to improving geometry definitions for

multi-detector simulations. Like MCNP and EGS, Geant has included low energy

packages making it more useful for medical applications. These packages are referred

to as standard, low energy and PENELOPE. The standard package tracks photons

and electrons down to 1 keV, where the low energy package tracks photons and

electrons down to 250 eV. The low energy package is based on the Livermore libraries

[97]. PENELOPE [98] itself is a MC code that has been designed specifically for

coupled electron-photon transport. The PENELOPE code will also track electrons

and photons down to 250 eV. The physics packages of PENELOPE were re-engineered

and validated in Geant4 by the creators of the PENELOPE code [97, 99]. This

further increases the usefulness of Geant4 to dosimetry problems of internal emitting

radiopharmaceuticals.
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2.12 GATE

The use of Monte Carlo methods has become increasingly popular in medical imaging,

especially since the developments of dedicated simulation toolkits for Emission

Tomography, most notably Geant4 Application for Tomographic Emission (GATE)

[100] and Simulation System for Emission Tomography (simSET) [101]. The preferred

choice is quickly becoming GATE since it is built on the well-validated Geant4 code

with a stable and flexible geometry manager.

GATE uses underlying C++ classes so that the input does not rely on any C++

programming by the GATE user. GATE has a layered structure that consists of a

developer, core, application and user layers (figure 2.9).

User Layer

Application Layer

Core Layer

Geant4

Figure 2.9: Structure of GATE. Where the core layer defines basic mechanisms
available in GATE, the application layer extends base classes for specific modeling
and the user layer initiates the simulation by using scripts.

The core layer represents base classes that explain the construction of geometry,

the interaction physics, visualisation and time management. The application layer

extends on these base classes at the core layer to model specific objects or processes.

For example the base class for volumes is at the core layer, where the application

layer defines the specific volume types like a box or a sphere and how they can be

translated. The user layer allows the running of the simulation in an interactive
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mode or by executing a macro script. Generally the macro script will consist of the

Geometry definition (the Scanner and Phantom), the source distribution, physics

processes and time management.

A particular novel approach used by GATE is its Activity definition. By using

the Geant4 General Particle Source class, GATE defines the source properties such as

activity, its particle type (radionuclide, gamma, positrons, etc.), energy distribution,

half life, position and direction. One interesting thing about GATE is the use of

a virtual clock. At random time intervals δt, events that occur are sampled from

equation 2.17 which is the probability of the source activity at time t, where A(t)

is the source activity at time t. This allows for modelling of dynamic systems (e.g.

respiratory motion).

P (δt) = A(t) · e−A(t)δt (2.17)

The Geant4 code allows accurate modeling of particles and their interactions in

GATE. These include modeling of; Photons, Electrons, electron-positron annihila-

tion, Bremsstrahlung, Photoelectric effect, Compton scattering, Rayleigh scattering,

Ionisation and Møller scattering. For positron emission two modules are used. The

first module randomly generates the positron energy from the measured β+ spectra,

making use of the Neumann algorithm [100]. The speed of the simulation is increased

here because it bypasses the decay of radionuclide process used by Geant4. The β+

spectra of 11C, 15O and 18F have been parameterised in GATE. The second module

takes into account annihilation photon acollinearity i.e. the angular deviation of the

annihilation photons from 180.00◦. To reproduce results found experimentally by

Iwata et al. [102] a Gaussian blur with a FWHM of 0.58◦ is applied.

Since the release of GATE version 6 [103] significant work has been made to

implement the three electromagnetic packages standard, Low energy and PENELOPE.

In each of these libraries the energy loss of photons is due to discrete interactions only.
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The electron energy loss is tracked through continuous energy loss and secondary

electron production. It should be noted that the multiple scattering algorithms used

in the PENELOPE code are not yet implemented in GATE.

One of the largest criticisms of GATE has been its relatively long simulation

times compared to other Monte Carlo packages such as EGS4 [104]. To increase the

efficiency of GATE a number of authors have applied different techniques to reduce

simulation times including cluster computing and variance reduction techniques.

De Beenhouwer et al. [105] have developed software to split GATE macros for

implementation on a computer cluster. Other authors have used similar macro

splitting approaches to reduce simulation times such as Staelens et al. [106] and Jan

et al. [107].

The classic variance reduction technique of particle splitting and Russian roulette

have also been introduced into GATE version 6. When a particle has a relatively

high probability of depositing its energy the particle is split into n particles each

having the same characteristics as the original except each is weighted by the fraction

1/n. If the particle has a relatively low probability of depositing its energy then the

Russian roulette scheme may kill the particle.

Taschereau and Chatziioannou [108] have also applied a compressed voxel strategy

to reduced simulation time. The method fuses adjacent voxels together that have

identical physical properties in an aim to reduce the memory and CPU requirements

on the Monte Carlo simulation.

2.13 Applications of GATE

In the main, GATE has been used to assess molecular scanner performance compared

to protocols such as the National Electrical Manufacturers Association (NEMA)

standards [109, 110, 111]. GATE has been shown to be useful in the continuing

development of not only PET and SPECT optimisation but also preclinical small
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animal scanners [112, 113]. There have been a number of dedicated PET systems

validated in GATE. These include the ECAT EXACT HR+ (CPS Innovations)

[107, 114], the PET components of the PET/CT scanners like the Allegro/GEMINI

PET scanner (Philips Medical systems) [115], the Biograph 6 PET scanner (Siemens

medical systems) [114, 116] and the Advance/Discovery LS PET scanner (GE

Healthcare) [117]. One point of interest is a trend in the literature to see improved

spatial resolution in all simulations compared with experimental values. Karakatsanis,

Lamare and Schmidtlein [114, 115, 117] go on to comment that this is likely to be

due to the inability of GATE to model the inherent limitations of the resolution

of Photomultiplier tubes (PMTs) and the modeling of light sharing, and light

scatter between PMTs. By adding an analytical Gaussian blurring function these

underestimates can be accounted for [114, 117]. Commercially available SPECT

scanners such as the DST-XLi, Millennium VG Hawk-Eye (both GE Healthcare)

[118] and the Axis/Irix (Philips Medical systems) [119, 120] SPECT scanners have

also been modelled in GATE. Particular attention is paid to collimator design and

septal penetration in the evaluation of these models, as well as matching the modelled

and measured energy spectrum.

The application of GATE to image reconstruction optimisation in both SPECT

[121] and PET [122] has also been shown to be useful. For example He et al. [123]

investigated correction for respiratory motion using GATE and list mode driven data

reconstruction.

Dosimetry applications of GATE have been investigated by a number of authors

[104, 124, 125, 126]. Visvikis et al. [104] was one of the first to compare GATE to

other codes such as MCNP and EGSnrc. By using Geant low-energy electromagnetic

library they benchmarked GATE using the method proposed by Rogers et al. [127].

Two separate beams of 18 MeV photons and 20 MeV electrons were tracked through

slabs of different materials (water, aluminum, lung and water). The overall dose

uncertainty in results between MCNP and GATE were similar. Benchmarking did
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show that GATE was 18 times slower then EGSnrc. This is due to the large number

of variance reduction techniques used in EGSnrc. Visvikis used a version of GATE

pre-2006 and since this time additional variance reduction techniques have been

added to GATE which include photon splitting.

Validation of the standard electron transport algorithm in Geant4 (version 4.8.1)

for use with GATE was conducted by Ferrer et al. [124]. They found that by

calculating dose point kernels, the standard electron package was in agreement with

MCNPX (a variant of MCNP) and other published values for electron energies greater

then 50 keV. At 10 keV, the result accuracy became questionable. They also found

that when scoring very thin regions (∼1 µm) results again did not agree with the

MCNPX values. For imaging systems this is not of high importance as the range of 10

keV electrons in water ( 2.5 µm) is much less then the spatial resolution of a SPECT

or PET scanner. Ferrer et al. also state that this is unlikely to impact significantly

on dose calculations performed at the organ scale for conventional nuclear medicine

isotope dosimetry. It should however be noted that the Geant4 low energy and

PENELOPE packages were not tested, and are more suitable for dosimetry at lower

energies. The effect of the standard low energy package on conventional nuclear

medicine will be assessed in chapters 4 and 5.

The low energy package was however compared with the standard package in

the GATE platform by Thiam et al. [125]. The authors used GATE to model

the low energy photons from Iodine-125 used in brachytherapy. They compared

values in GATE to results from the AAPM Task Group Report Number 43 [128] and

found that the maximum relative difference between the AAPM report and the low

energy package was 1% where the standard package was 7%. Currently no published

data compares the Geant4 PENELOPE modules to the other low energy packages

under the GATE platform, however this has been extensively compared in Geant4

[129]. It has been shown that the Fortran version of PENELOPE is the equal of

EGSnrc [130, 131] and as mentioned above, the PENELOPE code was re-engineered
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and validated in Geant4 by the creators of PENELOPE [97, 99]. Taschereau and

Chatziioannou [126] have applied GATE and the PENELOPE package to absorbed

dose calculations in a mouse phantom for 18F-FDG, 18F-FLT and 18F− (Fluoride

ions).

2.14 Chapter Summary

This chapter has introduced background information on internal radiation dosimetry.

Particular attention has been paid to aspects of the MIRD schema related to accurate

absorbed dose calculations. The influence of the MIRD committee on the topic is

demonstrated by the numerous relevant pamphlets produced and the popularity of

the MIRDOSE and OLINDA\EXM dosimetry codes.

The Monte Carlo method has also been introduced for its ability to track the

absorption of energetic radiation. Publicly available well documented Monte Carlo

codes such as EGS, MCNP and Geant4 have also been introduced. Evidence from

the literature has been provided to suggest that the use of Geant4 Application for

Tomographic Emission (GATE) to internal dosimetry problems is plausible.
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Method

The main objective of this chapter is to establish a method for validating GATE and

defining the methodologies used for investigating dosimetry of model and patient

based voxelised phantoms in the GATE toolkit.

Patient specific Monte Carlo based dosimetric methodologies can potentially in-

corporate minimal assumptions compared to scaling model based dosimetry methods.

The use of GATE as a dosimetry tool was introduced within the review of GATE

related literature in section 2.13. A full understanding of the application of GATE to

specific situations is required in order to establish the necessary level of confidence

in the simulation results. This chapter provides a methodology for both the rigorous

assessment of GATE and its application to patient specific dosimetry calculations.

Section 3.1 describes the processes involved in running GATE simulations in this

work. Sections 3.2 through 3.5 establish the methodology used to simulate the MIRD

[22] spheres using both mathematical and voxelised defined spheres. By comparing

these to the original MIRD values, other Monte Carlo codes or published literature,

a decision as to which of the three Geant4 electromagnetic physics packages is most

suitable is made. The implementation of voxelised phantoms that define different

source and target regions are discussed in section 3.6. The reasons for simulating

different voxel sizes will be discussed. The methods used in the preparation of XCAT
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and patient data sets are described in sections 3.7 through 3.9. Section 3.10 provides

details for the calculation of DFs for the XCAT and patient simulated results.

3.1 Simulations in GATE

The following describes the processes involved in running the GATE simulations in

this work. Simulations in GATE versions 3.1.2 and 6.0p01 have been investigated.

Table 3.1 shows the version numbers of required libraries and software that have

been used.

Table 3.1: GATE and GATE related soft-
ware versions

geant clhepa root
GATE v3.1.2 4.9.1p02 2.0.3.2 5.20
GATE v6.0p01 4.9.2p02 2.0.4.2 5.20
a Class Library for High Energy Physics

Simulations were submitted to the Victorian Partnership for Advanced Computing

(VPAC) computer cluster “Tango” [132]. At the time of simulation Tango was fitted

with 111 compute nodes. Each node was fitted with 2 AMD 2356 Quad Core Opteron

processors [133], giving a total of 888 cores. Tango runs a Linux operating system

(CentOS 5 64-bit) and job scheduling is controlled by the Portable Batch System

software OpenPBS.

A macro language is used to pass commands on geometry, physics, etc. to the

GATE environment. Macro files are ASCII files with the extension “.mac” and can

be executed from the GATE command interpreter, from within another GATE macro

file or using the macro file as an argument of the GATE command line executable.

In the case of this work all GATE simulations were executed from the command line

or more specifically in the cluster environment through a bash script submitted to

the job scheduler. An example of this PBS script is shown in Appendix A.1.
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3.2 The MIRD Benchmark of GATE

An approach to initial validation is to investigate historical benchmarks that have not

previously been reported in GATE. The MIRD scheme for internal dose calculations

was introduced in section 2.3. Benchmarking GATE against methods documented in

the MIRD pamphlets [21, 22] will give not only testable results for GATE, but also

insight into where original values in the MIRD pamphlets have evolved. Specifically a

key benchmark would be the performance of GATE in calculating absorbed fractions

for the “MIRD spheres”. Comparisons to the MIRD spheres are not limited to GATE

but can be compared against published data using different Monte Carlo codes.

Absorbed fractions for simple geometric shapes containing photon-emitting ra-

dioactivity are described in the MIRD pamphlets 3 and 8 [21, 22]. The pamphlets

calculate absorbed fractions of uniformly distributed sources and point sources lo-

cated centrally in homogeneous spheres, ellipsoids and cylinders. The two pamphlets

differ in the size of these simple geometries. For example, sphere masses in pamphlet

3 range from 0.3 kg to 6.0 kg. Where pamphlet 8 calculates spheres of mass ranging

from 1 g to 100 g.

Although a large variation of shapes and sizes were originally calculated, it is

realistic for this benchmark to concentrate on values obtained from pamphlet 8.

In particular, unit density spheres of uniformly distributed radioactivity emitting

photon energies ranging between 0.03 MeV and 2.75 MeV. Spheres were chosen due

to the availability of additional literature, namely Stabin and Konijnenberg [1] and

can be compared with analytically determined values. Spheres were also compared to

a simple Monte Carlo code created for this work (Appendix C). Values for ellipsoids

have not been calculated as more complex geometries are calculated in following

chapters.

Uniformly distributed radioactivity has been chosen over point sources. In

comparison to point sources, pamphlet 8 states that there is a small increase in
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error for uniformly distributed sources of radioactivity. Round off errors are cited

for the resulting increased uncertainty. The error occurs in the calculations made

for the absorbed fraction compared to the specific absorbed fraction [22]. From the

literature [104, 124, 125] differences in the most accepted Monte Carlo codes are

largest at small volumes and low energies. The likely reason is due to the different

implementation of the physics in the codes themselves and particularly the boundary

crossing models for electron transport simulations as well as multiple scattering

algorithms. Therefore, to further validate GATE, unit density spheres of a mass

ranging from 1 g to 100 g have been chosen over the larger spheres with a wide range

of energies.

In this methodology the MIRD spheres are regions of interest in a homogeneous

tissue-analog medium. This again allows for simple benchmarking in GATE. The

composition of the tissue medium is shown in Table 3.2. This composition is used for

comparison to the MIRD values for any simulation involving a homogeneous set-up.

Table 3.2: Tissue composition
used in the MIRD pamphlets[21]

Element Fraction of mass %
Oxygen 71.39
Carbon 14.89
Hydrogen 10.00
Nitrogen 3.47
Sodium 0.15
Chlorine 0.10

3.3 MIRD Spheres in GATE Version 3.1.2

Mathematically defined spheres using the Geant4 geometry manager were simulated

for Spheres of mass ranging from 1 g to 100 g (the parameterized macro shown

in Appendix A.2.1.) As the macro was parameterized, the sphere radius, initial

photon energy and length of scan time could be entered from the command line. For
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example:

Gate -a radius 0.620350 -a energy 0.14 -a time 15.0 spheres.mac

The physics library used in these simulations was the “standard” library. Photoelectric

and Compton interactions are modelled for photons, however Rayleigh scattering is

not. Secondary electrons were tracked to a distance of 30 cm which is much greater

then the size of the spheres. X-rays generated from secondary processes were also

modelled.

The output of this simulation is two ASCII files one containing the total number

of events generated (“[name]Run.dat”) the second containing a history of events

(“[name]Hit.dat”) that interact within the region of interest. The absorbed fraction

is calculated separately using the two generated ASCII files and the simple python

script sum energy.py (Appendix A.2.2).

3.4 MIRD Spheres in GATE Version 6.0

The mathematically defined MIRD spheres have also been simulated in version 6.0p01

of GATE. The macro has only slight differences compared to the 3.1.2 version. A key

difference however, is in the physics definitions. The three physics packages have been

compared in GATE to find which is the most suitable to use in following applications.

The results of the three physics packages compared to the gold standard for the

MIRD absorbed fractions (presented by Stabin and Konijnenberg [1]) is shown in

section 4.4. Appendix A.2.3 shows examples of implementing the different physics

packages into GATE.

To assist with batch processing two additional scripts were written (Appendix

A.2.4). The ASCII output files were processed using the same method described in

section 3.3.
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Furthermore a minimalistic speed benchmark to find how using a different physics

package would effect the overall simulation time was completed in GATE version 6.0.

The 100 g MIRD sphere was simulated with uniformly distributed activity of 140

keV photons. The simulation time for 10 runs of each physics package was completed.

A total of 106 photons were generated in each run which was deemed to be sufficient

for the purpose of evaluating the simulation speed.

3.5 Voxelised Phantom Validation

It is considered that voxelised phantoms are more useful for defining realistic human

anatomy compared to traditional mathematical phantoms [25]. To extend the

complexity of the GATE validation, the MIRD spheres are again simulated in GATE,

however the spheres will be defined by voxels. Self absorption in the MIRD spheres

is evaluated for spheres of mass ranging from 1 g to 100 g. Uniformly distributed

activity is simulated for a photon energy of 140 keV. The three physics packages are

again investigated individually in GATE version 6.0p01. From this data a choice

as to which of the physics packages is the most appropriate for the simulation of

voxelised phantoms will be made (section 5.2.2).

The influence of different voxel sizes to the calculated absorbed fractions are

investigated by simulating each sphere mass with spheres being defined by individual

voxels sizes ranging from 6.00 mm down to 0.25 mm. This broad range of voxel

sizes are chosen to represent the current range of voxel sizes used in typical medical

images and to investigate simulation accuracy dependence on voxel size.

The voxelised phantoms are converted into interfile format for implementation into

GATE. Appendix A.3.1 shows the appropriate python code to create this voxelised

phantom in interfile format. The center slice of each of the 60 g voxelised phantoms

is shown in figure 3.1. It can be seen that as the voxel size decreases a more accurate

representation is obtained for the sphere.
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Figure 3.1: Center slice of voxelised sphere phantom for various voxel sizes.

Again a simple simulation speed benchmark (As defined in section 3.4) is com-

pleted for the 100 g sphere and 140 keV photons. A total of 106 photons where

generated in each run. A voxel phantom with dimensions of 0.25 mm x 0.25 mm

x 0.25 mm (referred to as 0.25 mm voxels) is used. 0.25 mm voxels were chosen as

they increase the likelihood of differences in simulation speed being seen due to voxel

to voxel boundary crossing.
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3.6 Voxelised Source to Target

The absorbed dose in a neighbouring organ from a source organ makes an important

contribution to the overall internal dosimetry assessment. The performance of

voxelised phantoms have therefore been investigated for source to target regions in

both homogeneous and heterogeneous medium.

3.6.1 Homogeneous voxelised simulation

A spherical source with a radius of 10 mm was embedded into a homogeneous medium

20 mm away from a second spherical target organ. The source and target regions

were chosen to be voxelised spheres. Spheres have been used as square voxels are

more likely to misrepresent a spherical volume. The homogeneous material was

chosen to be water as compared to the MIRD tissue analogue (see Table 3.2).

A total of 108 events were simulated for 6 voxel phantoms with a voxel size

ranging between 8.0 mm down to 0.25 mm. For each of these phantoms both 140

and 511 keV photons were simulated separately. The low energy physics package

was also used. This decision arises from the results obtained in section 5.2.2. The

center slice of the voxel phantoms are shown in figure 3.2, where the grey region is

the source and the white region is the target. An incorrect volume definition of the

spheres using square voxels is particularly obvious for a voxel size grater then 2.0

mm.

The output of each voxel simulation is a dose distribution in cGy with the same

dimensions as the original input phantom. The absorbed dose was calculated by

using a simple class presented in Appendix A.3.2. Put simply, the value of each voxel

was converted to Gy, multiplied by its mass and then converted from Joules to MeV.

The total energy in the region was then summed and the absorbed fraction found.

From the Mean energy emitted per unit cumulated activity (∆) the DF is also found.
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For comparison, a geometric phantom and source of the same setup was simulated

and the absorbed fraction found. Figure 3.3 shows visualisation output from GATE

using OpenGL. It shows the geometric source region (red sphere) with gamma-ray

photons (green line) and the geometric target region (blue sphere).

Figure 3.2: Center slice of voxelised source to target phantom for various voxel
sizes

3.6.2 Heterogeneous voxelised simulation

A similar voxel approach is also described for a heterogeneous phantom. Again the

source and target regions are spheres with a radius of 10 mm. The spheres are

separated by two 10 mm thick slabs. Figure 3.4 shows a visualisation output from

GATE using OpenGL. In this figure the red sphere is the source region and it is

set to be a kidney analog. The blue sphere is the target region, where the material

is set to be a liver analog. The magenta slab is a analog of lung tissue where the
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Figure 3.3: OpenGL illustration produced from GATE of the source and target
spheres in a homogeneous medium. It shows the geometric source region (red sphere)
with gamma-ray photons (green line) and the geometric target region (blue sphere).

yellow slab is an adipose (Fat) analog. These regions are surrounded by air. The

composition of each material is shown in Table 3.3.

Table 3.3: Element compositions of the material used in the heterogeneous phantom.

Material Density Percentage of Element Mass
g·cm−3 H C N O Na P S Cl K Ca Ar

Lung 0.26 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2
Adipose 0.92 12.0 64.0 0.8 22.9 0.2 0.1
Kidney 1.05 10.3 13.2 3.0 72.4 0.2 0.2 0.2 0.2 0.2 0.1
Liver 1.06 10.2 13.9 3.0 71.6 0.2 0.3 0.3 0.2 0.3
Aira 1.29b 0.0 75.5 23.2 1.3

a Values are rounded to 1 decimal place
b Density 1.29 mg·cm−3

A total of 108 events are simulated for 6 voxel phantoms with a voxel size ranging

between 8.0 mm down to 0.25 mm. For each of these phantoms both 140 and 511

keV photons are simulated. The low energy physics package was again used.
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Figure 3.4: OpenGL illustration produced from GATE of the source and target
spheres in a heterogeneous medium. The red sphere is the source region and it is set
to be a kidney analog. The blue sphere is the target region, where the material is set
to be a liver analog. The magenta slab is an analog of lung tissue where the yellow
slab is an adipose (Fat) analog.

3.7 Realistic Dosimetry Situations

The previous sections of this chapter have established a methodology to validate

GATE and in particular the choice of electromagnetic physics package. Methods for

extending the use of GATE in potentially more clinically relevant situations, using

both a standardised model of human anatomy and true patient data are described in

the remainder of this chapter. Preparation of the XCAT phantom and true patient

data are described in sections 3.8 and 3.9.

3.8 XCAT Phantom Preparation

The XCAT phantoms were created by using the program dncat bin with small

variations to the sample male input parameters included with the XCAT distribution

(male.smap.par). The phantom height was not changed from 175 cm, while the

phantom weight was varied by scaling both organ masses and total body fat content
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to produce three different patients weighing 95.051 kg, 69 kg and 51 kg. This is

equivalent to a standardised model of 3 male patients with a body mass index of

31.0 kg·m−2 (large), 22.5 kg·m−2 (average) and 16.7 kg·m−2 (small).

The activity definitions in the dncat bin input file are changed so that the variables,

’kidney activity’ = 500 and ’liver activity’ = 100. All remaining activity related

parameters are then set to 0. These values are chosen for ease of organ identification

for not only defining the voxelised source in GATE but also for use as a voxel mask

for the absorbed dose calculations. Unlike sections 3.1 to 3.6 where only photons

had been simulated the realistic dosimetry models have been simulated using a

Fluorine-18 source. The implementation of this source into GATE is shown in figure

3.5.

The ion source type in GATE is used to simulate any ion by
defining its atomic number (Z = 9), atomic weight (A = 18),
ionic charge in units of energy (Q = 0), and its excitation
energy in keV (E = 0). This definition incorporates both the
radioactive decay and atomic de-excitation. This is the most
‘realistic’ way of simulating a radio-nuclide in GATE.

/gate/source/voxel_ncat/gps/particle ion

/gate/source/voxel_ncat/gps/ion 9 18 0 0

/gate/source/voxel_ncat/gps/monoenergy 0. keV

/gate/source/voxel_ncat/setForcedUnstableFlag true

/gate/source/voxel_ncat/setForcedHalfLife 6586 s

Figure 3.5: GATE code to implement a Fluorine-18 source.

Finally for each of the XCAT phantoms the voxel size is also varied. Table 3.4

shows the varied parameters concerning the XCAT dimensions. The output obtained

for dncat bin was two 32-bit floating point images (attenuation and activity maps)

and a log file. The center coronal slice of the 95.05 kg XCAT phantom is shown in

figure 3.6 for the different voxel sizes 1 mm to 16 mm voxels. XCAT phantoms with

1This is the weight of the visible male from the visible human project[57] and also the default
weight in the male.smap.par file distributed with XCAT
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voxel sizes of 0.6 mm and 0.4 mm are also investigated for voxel sampling of self

dose in the kidneys. At such small voxel sizes (i.e. 0.6 mm and 0.4 mm) it was not

possible to investigate organ cross dose due to computational limitations.

Table 3.4: Voxel and array dimensions of the XCAT phantom.

pixel width
(mm)

slice width
(mm)

array size start slice end slice

0.4 0.4 560 3040 3400
0.6 0.6 374 2027 2267
1.0 1.0 400 1121 1520
2.0 2.0 200 561 760
4.0 4.0 100 281 380
8.0 8.0 50 141 190
16 16 25 71 95

Each image is converted into 16-bit unsigned integer format for implementation

into GATE. The attenuation map is scaled so that the value that defines the skull

bone is equal to 32768. The value 32768 was chosen to assist with file conversion. The

maximum pixel value possible for a 16-bit signed integer (215-1) is 32767, which in

the CT image corresponds to the material with the highest linear attenuation. GATE

however requires 16-bit unsigned integer format, which allows for a maximum value

of 65535 (216 1). As skull bone is expected to have the highest linear attenuation this

is set to one over the maximum value allowed for a signed integer therefore making

any error in the data type conversion visible. From the log file an appropriate interfile

header is also created. The activity and material range tables used in GATE for the

converted images are shown in figure 3.7. The GATE toolkit reads the interfile image

and uses the material range table to allocate pixel values to the relevant material.

3.9 Preparation of Patient Data

A routine clinically acquired 18F-FDG PET/CT scan has been used as a basis for a

retrospective calculation of the mean absorbed dose per unit of cumulated activity.
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(a) 16 mm voxels (b) 8 mm voxels

(c) 4 mm voxels (d) 2 mm voxels

(e) 1 mm voxels

Figure 3.6: Centre slice of the 95.05 kg XCAT phantom with varying voxel sizes.
In units of density g·cm−3

Page 51



3.9. PREPARATION OF PATIENT DATA

Activity Range Table:

2

20 105 0.0

105 501 1.0

Materials Range Table:

12

0 3065 Air false 0.0 0.0 0.0 1.0

3065 13011 Lung false 0.0 0.0 0.0 1.0

13011 20566 Adipose false 0.0 0.0 0.0 1.0

20566 21525 Body false 0.0 0.0 0.0 1.0

21525 21819 Intestine false 0.0 0.0 0.0 1.0

21819 22048 Pancreas false 0.0 0.0 0.0 1.0

22048 22177 Muscle false 0.0 0.0 0.0 1.0

22177 22292 Kidney false 0.0 0.0 0.0 1.0

22292 22736 Liver false 0.0 0.0 0.0 1.0

22736 24154 Cartilage false 0.0 0.0 0.0 1.0

24154 27562 SpineBone false 0.0 0.0 0.0 1.0

27562 31336 RibBone false 0.0 0.0 0.0 1.0

31336 32768 SkullBone false 0.0 0.0 0.0 1.0

Figure 3.7: Activity and Materials range tables used in GATE for the XCAT
phantoms

The patient was a 75 year old male who was administered 365.75 MBq of 18F-FDG

70 minutes before the acquisition of the PET scan. The patient weighed 69 Kg and

was 165 cm tall.

Images were acquired using the Phillips Gemini PET/CT scanner. A total of

seven emission bed positions were acquired with three minutes per bed position giving

a total scan time of 21 min. PET images were then reconstructed with a 3D Row

Action Maximum Likelihood Algorithm (3D-RAMLA [134]), the PET reconstructed

voxel size was 4 mm x 4 mm x 4 mm. The Gemini scanner has the ability of using

137Cs attenuation correction however only CT attenuation correction was used. The

helical CT attenuation scan had scan parameters of 60 mA, 30 sec exposure time,

pitch of 1.5 and 140 kVp. The reconstructed CT voxel size was 1.17 mm x 1.17
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mm x 6.5 mm. The PET and CT images are inherently co-registered with identical

patient positioning and coordinate system. Regular quality control of the Gemini

PET/CT ensures co-registration between the PET and CT gantries. PET images

were obtained in ugm (a vendor specific file format used by the Philips Allegro PET

Scanner) format while CT images were obtained in dicom format.

3.9.1 Manual organ segmentation

In the XCAT phantoms the liver and kidney regions are well defined by using the

activity file. For patient data it is required to segment regions or organs of interest.

The approach used in this thesis was to draw manual regions of interest. A number

of automated and semi-automated (seed function) approaches have been applied to

organ segmentation by a number of authors [47, 135, 136, 137, 138], however these

methods are often limited by the resolution of the modality i.e. CT and MRI.

Organ regions were drawn manually by the author using an in-house, medical

image quantitative analysis and visualisation package called Wasabi (written in Java)

[137]. Regions were drawn on the CT image and then transferred to the PET image.

The defined regions were then used to define a mask with the same dimensions as

the original PET and CT files. Figure 3.7 shows examples of the regions drawn, it

shows that windowing of the images was used to assist with highlighting a defined

organ boundary.
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(a) Example of the liver region shown in green on the CT image. The pixel
values have been windowed to a range of -90 to 260, this helps with drawing the
region. Regions are drawn along each slice for both the kidneys and the liver.

(b) Example of the kidneys are shown inside the red regions on the PET image.
The pixel values have been windowed to a range of .06 to 5.89, this helps
with defining the edges of the organ. Regions have not been filled so that the
non-uniform activity distribution is clearly seen.

Figure 3.8: Regions of interest of the patient phantom using Wasabi
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3.9.2 Voxel attenuation map

The voxel attenuation map was converted from dicom format to interfile format.

Dicom formatted CT images are 16-bit signed integer representation of Hounsfield

units. As GATE requires images in 16-bit unsigned integer format each pixel is

added by 1000 so that Air is represented by 0 in the interfile. The range table was

then set directly from the interfile and is a direct representation of the density of

each material.

3.9.3 Voxel source distribution

The voxelised source is created from the PET data which is in units of SUVbw.

As identified in chapter 2 quantifying the actual activity in each voxel or organ is

difficult, however some assumptions can be made to approach this problem. The

actual cumulated activity in the GATE simulation will be the total number of events

generated, therefore it is important to ensure that the source is a true representation

of both its distribution and activity. The process used to obtain the voxelised source

distribution follows a number of steps.

• The kidneys are segmented by applying the organ mask defined in Wasabi.

• Since the PET data file is in units of SUVbw the activity per gram is found by

scaling the standardised uptake value by A0

M
· 2−t/t1/2 .

• The activity per voxel (in MBq) is then found by multiplying each voxel by

the density of the voxel (g·cm−3) and the voxel volume (cm3).

• Finally the source distribution is converted to Bq per voxel and saved in interfile

format (16 bit unsigned integer).

An activity range table that increases linearly with pixel value is therefore applied

for GATE implementation. It should be noted that the activity per voxel is converted
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to Bq to maintain the distribution from the original floating point number format to

an unsigned integer. As a result, no scaling (i.e. maximum pixel value scaled to a

value of 32768) of the pixel values is required. Although GATE has the ability to set

time activity curves to individual voxels this feature was not used, since the PET

data is effectively a ‘snapshot’ in time and therefore biological clearance was not

modeled.

3.10 Calculating the DFs

The procedure for calculating the absorbed fractions or DFs from a voxel phantom

in GATE is the same regardless of complexity of the voxel data. Using the interfile

method for dose calculation in GATE the resulting output file is a dose histogram

with the same dimensions as the entered interfile, with units of cGy.

The first step is the creation of a voxel map that represents the mass distribution

of the phantom. This is created by using the volume of the voxel multiplied by the

density of the material that the voxel represents. Multiplying the mass of each voxel

by the dose matrix gives the energy deposited in each voxel. A mask of the region

of interest is applied to both the energy and mass matrix arrays where the sum

represents the energy deposited in the region and the mass of the region.

Using the total energy emitted by the source, the mass of the region and the

energy deposited in the region, the specific absorbed fraction is easily calculated.

The total energy emitted by the source is known from the source definition. Also

known from the source definition is the mean energy emitted per decay (∆). From

∆ the DF is also easily calculated. The calculation of the DF is a simple extension

of the calculation method explained in section 3.6.1.
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3.11 Chapter Summary

This chapter has defined a clear approach for validating GATE as a dosimetry tool.

It proposes a simple benchmark of GATE using the MIRD spheres. A clear and

objective way of choosing the most practical physics package used in GATE version

6.0 is also defined.

The XCAT phantom has been introduced as a powerful dosimetry tool that can

be used to investigate the effects of changing organ mass sizes. By using the protocol

defined for preparing patient data from a PET/CT data set, a method for calculating

patient specific dosimetry calculations is possible in GATE.

The following chapters 4, 5 and 6 present the results of this method. They also

discuss the relevance of the results.
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Chapter 4

GATE: MIRD Spheres

4.1 Introduction

This chapter will describe results for calculating the absorbed fractions in the MIRD

spheres, the likely accuracy of the original values for the MIRD spheres and finally

some concluding remarks on the accuracy of the GATE simulated values with respect

to EGS and MNCP (Stabin and Konijnenberg [1] refer to section 2.3) which are used

as the gold standard.

4.2 Validation Results

Results of calculating the absorbed fractions in the MIRD spheres using GATE are

shown in this section. These results are discussed and the suitability of GATE as a

framework for calculating absorbed fractions is validated.
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4.2.1 GATE version 3.1.2

The absorbed fractions for spheres of different mass with uniformly distributed

radioactivity are shown graphically in figure 4.1. Values for this figure are also

presented to 3 decimal places in table B.1, Appendix B.

4.2.2 GATE version 6.0 comparison of physics packages

Using GATE version 6.0p01 the three physics packages have been used to find the

absorbed fractions in the MIRD spheres. Results for photon energies ranging from

0.03 MeV to 2.75 MeV and sphere masses ranging from 1 g to 100 g are presented

in table B.1 to 3 decimal places. Figures 4.2 to 4.4 show the three GATE version 6

physics packages compared to the GATE version 3 package for photon energies of

0.03 MeV, 0.10 MeV and 2.27 MeV as a function of sphere mass. From these figures

and table B.1 it can be seen that the differences between the packages are only very

small above 60 keV (< 2%) and still reasonable below 60 keV (5%).

Additionally a comparison of the simulation speed for the different physics

packages using a geometric sphere definition was completed. Table 4.1 shows results

of the speed benchmark test described in section 3.4. A simple mean and standard

deviation of the run times suggests that for a geometric phantom definition in GATE

the standard physics package is significantly faster executing in about 50% of the

time of the other packages. The difference between the PENELOPE and low energy

package were smaller at 5–10%.

4.3 Accuracy of the MIRD Spheres

Since the release of MIRD pamphlet 8 in 1972, there have been a number of changes

in modern Monte Carlo codes that may have affected the accuracy of the original
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(a) Absorbed fractions as a function of sphere mass, GATE version 3.

(b) Absorbed fractions as a function of photon energy, GATE version 3.

Figure 4.1: Absorbed fractions in the MIRD spheres using GATE version 3.
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Figure 4.2: Comparison of the absorbed fractions simulated by the different GATE
packages for 0.03 MeV photons as a function of sphere mass.

Figure 4.3: Comparison of the absorbed fractions simulated by the different GATE
packages for 0.1 MeV photons as a function of sphere mass.
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Figure 4.4: Comparison of the absorbed fractions simulated by the different GATE
packages for 2.75 MeV photons as a function of sphere mass.

calculated values. Most notably are the effects of electron transport, increased

accuracy of cross section data and to a lesser extent increased computational power.

The original method for calculation of the absorbed fractions are explained briefly in

MIRD 8 and in more detail in a review article by the same authors [139].

To assist in comparing the MIRD values with values simulated in GATE it is

useful to pinpoint possible sources of error in the original MIRD values. The approach

adopted was to write a Monte Carlo application that is very similar to that explained

in the review article by Ellett et al. [139]. This very simple code was written in

the python programming language [140] and will from this point be referred to as

track.py (additional details are found in Appendix C).

Homogeneous unit density spheres with a mass range of between 1 g to 100 g were

modelled with track.py. An energy range of between 0.03 MeV and 0.662 MeV of

uniformly distributed radioactivity was also modelled. Figure 4.5 shows a comparison

of the absorbed fractions as a function of mass between the MIRD pamphlets and
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Table 4.1: Speed benchmarking of a geometric phantom for GATE
version 6 physics packages

Run no. standard (s) low energy (s) PENELOPE (s)
1 50.6 108.9 101.5
2 50.8 111.3 102.1
3 50.4 109.0 103.0
4 50.8 110.3 101.0
5 50.0 109.3 100.3
6 50.4 108.8 100.8
7 51.3 107.8 100.2
8 49.8 108.6 99.9
9 50.4 108.9 102.7
10 51.0 109.3 102.0

mean 50.5 109.2 101.4
standard deviation 0.5 1.0 1.1

the simple code, where figure 4.6 is a function of energy.

When figures 4.5a and 4.5b are specifically compared, there is a discontinuous

change in the slope of the log-log plot in the original MIRD values for a sphere

mass of 40 g to 100 g (figure 4.5a). This rise brings the MIRD values into better

agreement with track.py for example for a photon energy of 0.03 MeV and sphere

mass of 100 g the MIRD and track.py values are 0.306 and 0.319 respectively. Where

at a sphere mass of 40 g the absorbed fractions for MIRD and track.py are 0.174

and 0.239 respectively. This trend is not as obvious when comparing figures 4.6a

and 4.6b which plots mass as a function of energy. However when comparing the 1 g

sphere on these figures it can be suggested that the original MIRD code must have

introduced an underestimating bias for sphere mass of less then 40 g.

It should also be noted that for photon energies between 0.06 MeV and 0.662

MeV in figure 4.5a values unexpectedly cross. The reason for this is likely due to the

fact that the published MIRD values are to three decimal places and some rounding

errors will have been introduced in the presented figure. The Python programming

language however uses the 64-bit IEEE 754 number standard to represent floating

type numbers, this gives the track.py values higher precision (52 bits of space for the
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(a) Absorbed fractions from the MIRD pamphlet as a function of mass

(b) Absorbed fractions from track.py as a function of mass

Figure 4.5: Comparison of Absorbed Fractions as a function of mass between the
MIRD pamphlets and a simple python based Monte Carlo code.

Page 64



4.3. ACCURACY OF THE MIRD SPHERES

(a) Absorbed fractions from the MIRD pamphlet as a function of energy

(b) Absorbed fractions from track.py as a function of energy

Figure 4.6: Comparison of Absorbed Fractions as a function of energy between the
MIRD pamphlets and a simple python based Monte Carlo code.
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mantissa, or around 16 decimal digits) and therefore the small rounding errors are

not visible on the figures.

Since track.py and the MIRD values do not take into account electron transport

the following section (section 4.3.1) discuss possible reasons for these differences

further.

4.3.1 Negating electron transport

Both the MIRD and track.py Monte Carlo approaches do not account for the effect

of electron transport on the Absorbed Fractions. To gain further information on the

accuracy of the MIRD values figure 4.7 compares MIRD8, track.py and GATEv3.1.2.

When comparing the three approaches it is encouraging to see that results simulated

in GATE can be reasonably predicted by the recalculated track.py approach especially

in the low energy region. Where this trend is not observed for the MIRD8 values.

Looking more closely, figure 4.7a shows that as the photon energy increases, the

absorbed fractions for the MIRD8 and python based approaches seem to diverge

from the trend exhibited in GATE. The most likely explanation for this is the explicit

treatment of electron transport in GATE. It is reasonable to assume that as the

photon energy increases some of the kinetic energy transfered through Compton

scattering is not being absorbed in the region of interest. For example in GATE,

electrons are tracked through a path of continuous discrete energy loss. This differs

from the MIRD8 calculations which assumes that the kinetic energy of secondary

electrons (i.e. recoil electrons produced by Compton effect) are absorbed into

the medium at the point of interaction. If the electron escapes the region without

depositing its kinetic energy the MIRD8 calculation will vary slightly and should

over estimate the absorbed fraction (i.e. kerma approximation). This is indeed true

for the track.py calculations however this is not seen in the MIRD8 values. In fact

the MIRD8 values underestimate the absorbed fraction for spheres with a mass less
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(a) Absorbed fractions for a 20 g unit density sphere with varying photon energies.

(b) Absorbed fractions for 140 keV photons in unit density spheres.

Figure 4.7: Comparison of Absorbed Fractions between the MIRD pamphlet 8, a
simple python based Monte Carlo code and GATE
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then 80 g. There is no plausible explanation for this underestimation except that

the actual Monte Carlo code itself introduced this bias.

Higher energy secondary electrons will also have some probability of producing

bremsstrahlung, which may also escape the region without being re-absorbed. It

should however be noted that the probability of this is extremely low. This is because

recoil electrons produced from Compton interactions with an initial photon energy

of less then 2 MeV will have a very low radiation yield, where the radiation yield is

the fraction of initial kinetic energy emitted as bremsstrahlung through continuous

energy loss of a charged particle in a medium [141]. Figure 4.8 was produced from

the ESTAR database [142] and shows the radiation yield for electrons in the MIRD -

soft tissue composition. It can be seen from figure 4.8, that electrons with a kinetic

energy of approximately 0.2 MeV results in a radiation yield of 0.1%, therefore by

neglecting this process less than 0.1% of the absorbed dose is not being accounted

for.

Figure 4.8: Radiation yield for electrons in the MIRD - soft tissue composition.

It has also been confirmed (see figure 4.7b) that the linear trend (note the log-log

graph) seen in the python based approach is consistent with the trend seen in the

Page 68



4.4. COMPARISON OF GATE TO THE GOLD STANDARD

GATE results. Where sphere size increases this trend is not observed for the MIRD8

values.

4.4 Comparison of GATE to the Gold Standard

From the results presented in figures 4.2 to 4.4 no judgment on the accuracy of

GATE can be given without comparison to the current “gold standard”. As stated

in section 2.3 this thesis uses the re-evaluation of absorbed fractions of photons in

various sphere sizes as completed by Stabin and Konijnenberg (reference values) [1]

as its gold standard for absorbed fractions.

Table B.1 includes the reference values calculated by Stabin and Konijnenberg

which are the average values from using the Monte Carlo codes EGS4 and MCNP4B.

For a more accurate comparison all values have been normalised to our gold standard

(i.e. GATE simulation value divided by the reference value from Stabin). As a

comparison figures 4.9 through 4.11 shows the normalised values for different photon

energies as a function of sphere mass. Photon energies of 0.040 MeV, 0.140 MeV

and 0.662 MeV have been shown. Table B.2 presents the full range of normalised

values to two decimal places. It also shows values for EGS4 divided by the MCNP

values from Stabin and Konijnenberg [1].

From figures 4.9 through 4.11 it can be seen that a basic trend in all of the

GATE simulation approaches are very similar. As the photon energy is reduced the

differences between the standard physics packages used in version 3 and 6 become

more noticeable compared to the low energy and PENELOPE packages. Overall

from table B.2 it can be seen that absorbed fraction simulated in GATE do not

differ from the reference values by more then 12% for the standard packages and

10% for the low energy and PENELOPE packages. It is however also appropriate

to recognise that the differences in the EGS4 and MCNP values are as high as

13%. These differences are therefore more likely to represent commonly encountered

Page 69



4.4. COMPARISON OF GATE TO THE GOLD STANDARD

Figure 4.9: Normalised absorbed fractions for 0.040 MeV photons against the gold
standard.

Figure 4.10: Normalised absorbed fractions for 0.140 MeV photons against the
gold standard.
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Figure 4.11: Normalised absorbed fractions for 0.662 MeV photons against the
gold standard.

differences in the modeling software itself.

One question however still remains, is there sufficient evidence to suggest which

of the GATE physics packages are the most suitable for dosimetry applications in

an energy range of 0.03 MeV to 2.75 MeV? Hypothesis testing of the four GATE

methods (GATE v3.1.2, GATE v6 standard, GATE v6 low energy and GATE v6

PENELOPE ) was performed by comparing the ratio of each method to the reference

values by Stabin and Konijnenberg (see table B.2). It should be noted that if the

GATE method is comparable to the reference values then the ratio of the absorbed

fractions will equal 1.00, therefore this statistical test will assume a hypothesis that

µ0 = 1 (i.e . null hypothesis, H0 : µ0 = 1 and the alternative hypothesis, Ha :

µ0 6= 1).

For each of the four methods compared to the values obtained by Stabin a total

of n = 110 different combinations of photon energy and sphere masses are simulated.
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As the sample size is suitably large the Z-score 1 is calculated for each method and

compared to a rejection region based on a 99% confidence interval.

From table 4.2 it can be concluded that both the low energy or PENELOPE

libraries are comparable to the other Monte Carlo codes used by Stabin and Konij-

nenberg, whereas there is a noticeable difference between GATE version 3 and the

standard package compared to the reference values. Due to the similarity between

GATE version 3 and the standard physics library it is not necessary to investigate

GATE version 3 any further. The remainder of this thesis will therefore only use

GATE version 6. The physics libraries will again be compared in chapter 5 with

respect to voxelised sources and phantoms.

Table 4.2: Hypothesis Testing of the GATE physics libraries

GATE v3
GATE v6
standard

GATE v6
low energy

GATE v6
PENE-
LOPE

µ0 1.00 1.00 1.00 1.00
α 0.01 0.01 0.01 0.01
X̄ 0.984 0.981 0.999 1.001
σX̄ 0.030 0.030 0.034 0.035
n 110 110 110 110

Z-score -5.52 -6.58 -0.33 0.20
Rejection regiona 2.58 2.58 2.58 2.58
a Two tail rejection region i.e. if | Z | >rejection region, then rejected the null

hypothesis

4.5 Chapter Summary

The use of the MIRD spheres as a benchmark for Monte Carlo transport codes

has been discussed in this chapter. The limitations of the original MIRD spheres

have been discussed and the GATE package was compared to the alternative gold

standard presented by Stabin and Konijnenberg. By using the MIRD spheres as

1As the sample size is large (i.e. >30) the assumption is made that the deviation from µ = 1.00 in
the normalised values is normally distributed with the true standard deviation being approximated
by the sample standard deviation.
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a benchmark, evidence has been provided to suggest that for simple geometric

phantoms GATE provides an appropriate level of accuracy. It is also concluded that

GATE version 6 will be adopted for further dosimetry simulations since the GATE

version 3 and GATE version 6 standard packages are comparable. The accuracy and

use of voxelised phantoms in GATE will be addressed in chapter 5.
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Chapter 5

Voxelised phantom validation

5.1 Introduction

It was stated in section 2.5 that voxelised phantoms are more useful for defining

realistic human anatomy compared to traditional mathematical phantoms. The

validation results of the previous chapter only addressed sources and phantoms

defined using simple geometric shapes, it is therefore important to investigate the

accuracy of voxelised phantoms and in particular the effect of individual voxel

size. Inaccurate or insufficient voxel sampling of regions may introduce errors into

calculations of the absorbed fraction or specific absorbed fractions.

To extend on the work completed in the previous chapter the MIRD spheres are

again simulated in GATE, however the spheres will be defined as a voxelised phantom

and source. The computational issues associated with simulating increasingly smaller

voxel sizes are also investigated through a speed benchmark. From this data a

choice as to which of the physics packages is the most appropriate and what spatial

sampling for the simulation of voxelised phantoms will be made. Another important

extension from the previous chapter is the investigation of source to target regions.

The absorbed dose in a neighbouring organ from a source organ makes an important

contribution to the overall internal dosimetry assessment. The performance of
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voxelised phantoms will therefore be investigated for source to target regions in both

homogeneous and heterogeneous media.

5.2 Absorbed Fractions

Using values from table B.1 the absorbed fractions are again normalised to the

reference values by Stabin and Konijnenberg [1].

Figures 5.1 through 5.3 show the normalised absorbed fractions for 140 keV

photons and different sphere masses. It can be seen that there are substantial

differences for large voxel sizes and that as the voxel size decreases below 1 mm

(standard) and <2 mm (low energy, PENELOPE ) the simulated absorbed fractions

do not differ from the reference values by more than 5%. It can also be seen that

for each of the physics packages the overall trend of each plot is similar. This

highlights the importance of correctly setting the voxel size for accurate absorbed

dose calculations. By referring back to figure 3.1 the 60 g sphere represented by 6.0,

4.0 and 2.0 mm voxels have masses of 55.51, 61.95 and 59.98 g respectively. This

is also reflected in figures 5.1 through 5.3 were it can be seen that for a voxel size

of less than 2 mm the absorbed fraction begins to converge. Table 5.1 shows the

absorbed fractions for 140 keV photons using a voxel size of 0.25 mm.

5.2.1 Speed benchmark

A speed benchmark for the 100 g sphere and 140 keV photons is shown in table 5.2.

A total of 106 photons were generated in each run for a voxel size of 0.25 mm. It can

be seen from the mean and standard deviation that the standard physics package is

much quicker than both the low energy and PENELOPE packages. From the results

previously presented in table 4.1 this result is expected, however the low energy

package is faster for voxel phantoms than the PENELOPE packages.
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Figure 5.1: Normalised absorbed fractions for 140 keV photons in voxelised sphere
phantoms with different masses, using the standard physics package.

Figure 5.2: Normalised absorbed fractions for 140 keV photons in voxelised sphere
phantoms with different masses, using the low energy physics package.

Page 76



5.2. ABSORBED FRACTIONS

Figure 5.3: Normalised absorbed fractions for 140 keV photons in voxelised sphere
phantoms with different masses, using the PENELOPE physics package.

5.2.2 Choice of physics packages

Normalising the values in table 5.1 to the reference values for the 140 keV photons,

the three physics packages can be compared. Table 5.3 shows the ratio of the GATE

values to the reference values. This suggests that by choosing a suitably small voxel

size the absorbed fractions are suitably approximated.

Using the values in table 5.3, a small sample hypothesis test1 is used to compare

the absorbed fractions for the different physics packages. The null hypothesis, H0 is

that the expected mean µ0 = 1 and the alternative hypothesis, Ha is µ0 6= 1. For a

95% confidence interval the null hypothesis is rejected for the standard library in

favor of the alternative hypothesis. For the low energy and PENELOPE physics

libraries the null hypothesis can not be rejected. Therefore as with section 4.4 the

1Since the sample size is small i.e. n=11, deviation from µ = 1.00 is assumed to follow the t
distribution.
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Table 5.1: The absorbed fractions in the MIRD
spheres for 140 keV photons. Values are presented
to four decimal places for each of the different
physics packages using voxelised phantoms.

Mass (g) standard low energy PENELOPE
1 0.0126 0.0130 0.0131
2 0.0160 0.0164 0.0165
4 0.0202 0.0208 0.0208
6 0.0232 0.0238 0.0239
8 0.0257 0.0263 0.0263
10 0.0277 0.0283 0.0284
20 0.0351 0.0358 0.0358
40 0.0444 0.0451 0.0452
60 0.0508 0.0516 0.0516
80 0.0559 0.0566 0.0567
100 0.0600 0.0608 0.0607

low energy and PENELOPE libraries are suitably comparable to the reference values.

Therefore a decision on the most suitable package to use will either be the low energy

or PENELOPE package and will depend on the speed of the simulation.

By comparing table 4.1 for the geometric phantom against table 5.2 of the

voxelised phantom, it can be seen that the standard physics package is the fastest

and the low energy and PENELOPE speed is dependent on the type of phantom

being used. It can be seen that by using the geometric phantom the simulation

speed is significantly faster than when using a voxelised phantom. A large portion of

the simulation time is spent calculating and updating paths of particles in voxelised

phantoms [143]. This is a reflection of the differences in between the calculations

using the low energy and PENELOPE libraries.

As voxelised phantoms are the preferred method for creating phantoms of patient

anatomy it is considered that the low energy physics package is the more useful

library for any future applications in this thesis.
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Table 5.2: Speed benchmarking of a voxelised phantom for GATE
version 6 physics packages with a voxel size of 0.25 mm (Time in seconds)

Run no. standard (s) low energy (s) PENELOPE (s)
1.0 149.2 214.1 225.9
2.0 149.6 217.3 226.0
3.0 151.2 215.7 225.1
4.0 149.8 215.8 226.2
5.0 149.9 215.5 224.8
6.0 150.4 214.4 226.2
7.0 151.2 216.0 225.1
8.0 149.0 215.8 225.7
9.0 150.2 214.9 226.9
10.0 149.6 214.6 224.4

mean 150.0 215.4 225.6
standard deviation 0.8 0.9 0.8

Table 5.3: The t-statistic is used for hypothesis testing of
the GATE physics libraries using voxelised sources.

Mass (g)
GATE v6
standard

GATE v6
low energy

GATE v6
PENE-
LOPE

1 0.968 1.002 1.006
2 0.998 1.027 1.032
4 0.962 0.989 0.992
6 0.969 0.994 0.995
8 0.988 1.013 1.013
10 0.990 1.010 1.013
20 0.976 0.995 0.994
40 0.966 0.980 0.983
60 0.959 0.973 0.973
80 0.964 0.976 0.977
100 0.952 0.965 0.964

µ0 1.000 1.000 1.000
α 0.05 0.05 0.05
X̄ 0.972 0.993 0.995
SX̄ 0.014 0.019 0.020
n 11 11 11

T-score -6.44 -1.18 -0.86
Rejection regiona 2.63 2.63 2.63
a Two tail rejection region i.e. if | t | >rejection region, then reject

the null hypothesis
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5.3 Source to Target

In all of the dosimetric studies discussed so far the source and target region have

been the same region. This is adequate for determining the self absorption of organs

or tissue that contain radioactivity, however in the majority of cases the absorbed

dose resulting from radioactivity in one organ to a target organ is required. This

section investigates that situation for very simple homogeneous and heterogeneous

phantoms.

5.3.1 Homogeneous voxelised simulation

The absorbed fractions calculated with different voxel sizes are summarised for a

homogeneous medium in table 5.4. The values are also normalised to the geometric

simulations for both 140 keV and 511 keV energy photons. The geometric simulation

value is equivalent to a voxel size of zero. It can be seen that as the voxel size is

smaller than 2 mm the absorbed fraction is within 10% agreement with the geometric

phantom.

Table 5.4: Absorbed Fractions for a simple source to target region
in a homogeneous medium for 140 and 511 keV photons.

Voxel size
(mm)

Absorbed
Fraction
140 keV

Absorbed
Fraction
511 keV

Voxel /
Geometric
140 keV

Voxel /
Geometric
511 keV

8 7.69E-05 7.89E-05 0.120 0.120
4 2.58E-04 2.67E-04 0.404 0.407
2 5.88E-04 6.11E-04 0.921 0.928
1 6.27E-04 6.51E-04 0.982 0.989

0.5 6.33E-04 6.57E-04 0.992 0.999
0.25 6.32E-04 6.58E-04 0.990 1.000

Geometric 6.39E-04 6.58E-04 1.000 1.000

To calculate the mean absorbed dose per unit of cumulated activity (DF) both

the region mass and the mean energy emitted per decay (∆) is required. For a source
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emitting only 140 keV photons ∆ = 2.24 x 1014 J, where for a source emitting only

511 keV photons ∆ = 8.19 x 1014 J. For each of the voxelised phantoms the sphere

mass is calculated on a ’voxel-wise’ basis i.e. each individual voxel that makes up

the region has a known volume and a known density. The calculated DFs are shown

in table 5.5, also shown is the calculated sphere mass and the voxel DFs divided by

the geometric DF.

Table 5.5: DFs for a simple source to target region in a homogeneous medium
for 140 and 511 keV photons.

Voxel size
(mm)

Mass (g)
DF ( Gy

Bq·sec)
140 Kev

DF ( Gy
Bq·sec)

511 Kev

Voxel /
Geometric
140 keV

Voxel /
Geometric
511 keV

8 0.51 3.37E-15 1.26E-14 0.984 0.981
4 1.73 3.35E-15 1.27E-14 0.980 0.986
2 3.88 3.40E-15 1.29E-14 0.994 1.002
1 4.14 3.40E-15 1.29E-14 0.994 1.001

0.5 4.17 3.41E-15 1.29E-14 0.996 1.003
0.25 4.18 3.39E-15 1.29E-14 0.991 1.002

Geometric 4.19 3.42E-15 1.29E-14 1.000 1.000

Figure 5.4 shows the advantages of using a voxelised phantom simulation, clearly

showing localised areas of increased absorbed dose. An absorbed dose plot of the

homogeneous phantom with a voxel size of 0.25 mm from 511 keV photons is shown

in figure 5.4a. It can be seen that from a histogram (figure 5.4b) of the energy

deposited in each voxel that for a spherical source a hot spot is seen in the centre

of the source as a result of self absorption. A typical exponential decay trend is

observed in the deposited energy as the voxels are placed further away from the

source. This also demonstrates scatter out of the source region.

5.3.2 Heterogeneous voxelised simulation

A heterogeneous voxelised phantom was simulated with two 10 mm thick slabs of

lung and fat separating a spherical source (kidney) and target (liver) region each
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(a) Absorbed dose plot of a homogeneous phan-
tom with a voxel size of 0.25 mm.

(b) Deposited energy histogram of values along
the centre slice of the phantom.

Figure 5.4: Dosimetry plots for a homogeneous phantom with a voxel size of 0.25
mm.

with a radius of 10 mm. This phantom was placed in a world volume with the

composition of air. An absorbed dose distribution of the hetrogeneous phantom is

shown in figure 5.5a. It shows a voxel size of 0.25 mm from 511 keV photons. A

histogram of the energy deposited in each voxel is also shown in figure 5.5b. Figure

5.5c shows the density of the phantom overlaid by a contour plot of the intensity of

the energy deposited in each voxel. The contour plot is smoothed by a median filter.

It can be clearly seen from figures 5.5b and 5.5c that the highest intensity is in the

centre of the spherical source. The deposited energy decreases to less than 0.5% of

the maximum intensity in the air region. The intensity of energy deposited in the

lung and fat regions are below 3% of the maximum. The target region decreases to

below 2% of the maximum intensity.

The calculated absorbed fractions for the heterogeneous voxelised phantom are

shown in table 5.6. Values are compared to the absorbed fraction calculated with the

geometric phantom definition. It is found that for both photon energies the absorbed

fraction falls within 10% of the values determined from the geometric phantom for

voxel sizes less than 2 mm. Where table 5.7 shows the calculated DFs using the

voxel and geometric phantoms. For a voxel size of less than 2 mm the agreement
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(a) Absorbed dose plot of a heterogeneous phan-
tom with a voxel size of 0.25 mm.

(b) Deposited energy histogram of values along
the centre slice of the phantom.

(c) Parentage of maximum energy deposited as a contour plot.

Figure 5.5: Dosimetry plots for a heterogeneous phantom with a voxel size of 0.25
mm.
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Table 5.6: Absorbed Fractions for a simple source to target region
in a heterogeneous medium for 140 and 511 keV photons.

Voxel size
(mm)

Absorbed
Fraction
140 keV

Absorbed
Fraction
511 keV

Voxel /
Geometric
140 keV

Voxel /
Geometric
511 keV

8 3.31E-05 4.09E-05 0.094 0.096
4 1.33E-04 1.62E-04 0.378 0.381
2 3.22E-04 3.92E-04 0.917 0.922
1 3.44E-04 4.17E-04 0.978 0.982

0.5 3.48E-04 4.23E-04 0.990 0.995
0.25 3.50E-04 4.23E-04 0.996 0.996

Geometric 3.51E-04 4.25E-04 1.000 1.000

Table 5.7: DFs for a simple source to target region in a heterogeneous medium
for 140 and 511 keV photons.

Voxel size
(mm)

Mass (g)
DF ( Gy

Bq·sec)
140 Kev

DF ( Gy
Bq·sec)

511 Kev

Voxel /
Geometric
140 keV

Voxel /
Geometric
511 keV

8 0.54 1.37E-15 6.17E-15 0.772 0.788
4 1.83 1.62E-15 7.23E-15 0.915 0.923
2 4.11 1.76E-15 7.80E-15 0.990 0.996
1 4.39 1.76E-15 7.78E-15 0.990 0.994

0.5 4.42 1.76E-15 7.82E-15 0.995 0.999
0.25 4.43 1.77E-15 7.81E-15 0.997 0.998

Geometric 4.44 1.77E-15 7.83E-15 1.000 1.000

between the geometric and voxel phantoms is to within 1%.

5.4 Using Voxelised Phantoms

Overall there is agreement in the absorbed fractions calculated with voxelised phan-

toms compared to geometric phantoms. In both the homogeneous and heterogeneous

cases the voxelised phantom method gave an agreement to within 10% of the geo-

metric value for a voxel size of 2 mm or less. This result suggests that the use of

voxelised phantoms in GATE can be highly accurate, provided that the voxelised
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phantom is a reasonable representation of the true geometry being simulated. For

voxelised phantoms with a voxel size of 2 mm or less, there is very good agreement

with the reference values in the MIRD spheres for the three physics libraries used.

This agreement is to within 5%.

5.4.1 Absorbed fraction compared to the DF

When the DF’s are calculated, the difference between the Voxel and Geometric results

give improved agreement for all voxel sizes compared to calculating the absorbed

fractions. The reason for this is explained by recapping how DF (k ← h) is calculated.

DF (k ← h) =
∑
i

∆i
φi(k ← h)

mk

(5.1)

In equation 5.1 the absorbed fraction is scaled to the mass of the target region and

therefore compensates for inaccuracies in the absorbed fraction. When only the voxel

size is varied ∆i is effectively a constant and therefore only the absorbed fraction

and target region mass will have any effect on the DF. It should also be noted that

the probability that energy is deposited in the target region is dependent on the

region’s geometry, therefore if the choice in voxel size affects both the target mass and

geometry then the absorbed fraction will also be affected. In other words for larger

voxels the geometric approximation of the target region is inadequate and results

in significantly smaller target mass then reality. This leads to an underestimation

of the absorbed fraction. The dose fraction is less affected because it is the energy

deposited per unit mass of the modeled target region and the model mass matches it

volume.

This is best demonstrated in comparing tables 5.6 and 5.7. For example table 5.6

shows that for a voxel size of 4 mm and 511 keV photons the simulated absorbed

fraction was 62% less then the geometric case. Where table 5.7 shows that the under

sampled voxelised sphere had a mass of 1.83 g compared to the geometric sphere
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mass of 4.44 g (an underestimation of 59%), however when the DF is calculated only

a 8% difference is seen between the geometric sphere and the sphere defined by 4

mm voxels.

From tables 5.5 and 5.7 a voxel size of 2 mm or less provides an error of less then

1% compared to the geometric case. From the results the evidence suggests that

accurate calculation of the absorbed fractions requires a voxel size of 2 mm or less to

achieve convergence. It is therefore considered that as a rule of thumb a voxel size of

2 mm or less provides convergence for calculating DFs. Further investigation on the

effect of voxel size is presented in chapter 6.

5.5 Chapter Summary

The use of voxelised phantoms in GATE has been investigated in this chapter. By

simulating the MIRD spheres as a voxelised phantom it has been decided that the low

energy physics package is the most useful of the three packages for further dosimetry

simulations in this thesis. This decision takes into account the overall accuracy and

simulation speed of very simple voxelised sources and phantoms.

It was also found that calculating the DFs provides a higher level of accuracy

than calculating the absorbed fraction in voxelised phantoms. Initial evidence has

also been presented to suggest that a voxel size of 2 mm or less provides acceptable

volume sampling. This chapter has therefore validated the accuracy of voxelised

phantoms in GATE.
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Chapter 6

Kidney to Liver Dose Factor

6.1 Introduction

It was recognised in the literature review that the absorbed fraction and organ mass

contribute a high uncertainty in an internal dose calculation of patients and that now

absorbed fractions are almost exclusively calculated using Monte Carlo approaches.

Particular attention has been paid to the accuracy of GATE for calculating absorbed

fractions, in chapters 4 and 5. This chapter will make use of GATE in a potentially

more clinically relevant situation, using both a standardised model of human anatomy

and true patient data. The chapter will calculate organ DFs in the XCAT phantom

and a retrospective calculation from patient PET/CT data. Both uniformly and

non-uniformly distributed activity in the kidneys will be used to calculate the kidney

to kidney DF and kidney to liver DF. As the XCAT phantom is easily scalable, three

phantoms with different body mass indexes will also be investigated.

6.2 XCAT Phantom

The resulting dose histogram from the simulation of a number of different XCAT

phantom sizes is analysed using the method described in section 3.10. For uniformly
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distributed activity in the kidneys the DF for self absorption are summarised in

table 6.1. It can be seen that as the phantom mass is increased so does the absorbed

fraction, where the kidney to kidney DF decreases as the phantom mass increases.

A steady increase in the DF is also seen as the voxel size decreases.

Table 6.2 summarises the absorbed dose in the liver from F-18 uniformly dis-

tributed throughout the kidneys for the XCAT phantom. Again as the phantom

mass increases the DF decreases and the absorbed fraction increases. The voxel size

affects the DF differently for the kidney to liver situation compared to the kidney to

kidney situation. A steady decrease in the DF is seen as the voxel size decreases.

6.2.1 Distribution of energy

Iso contours of the deposited energy in the Large XCAT phantom are shown in figure

6.1. The intensity of the deposited energy is shown as a percentage of the maximum

energy deposited.

The distribution of the deposited energy from uniform activity inside the kidneys

of the XCAT phantom propagates radially from its maximum intensity. The intensity

drops sharply at the kidney wall, where the activity is contained. An inverse square

propagation can also be seen throughout the liver as the overall intensity drops from

5% to 0.5% of the maximum. The 0.5% contour line maps almost directly around

the border of the heart and lung regions. Due to the low density of the Lung regions

very little energy is deposited.

6.3 Patient

Using the phantom preparation method described in section 3.9 the kidney to kidney

DF is 1.55 x 10−13 Gy·Bq−1·s−1, where the kidney to liver DF is 2.43 x 10−15 Gy·Bq−1·s−1.
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Table 6.1: Kidney DFs of the XCAT phantom of different masses for
F-18 distributed uniformly in the kidneys.a

Voxel Size
(mm)

kidney
Mass (kg)

φ Φ (kg−1)
DF

(Gy·Bq−1·s−1)

DF(kidney ← kidney), Small Phantom (51 kg)
16 0.116 0.07 0.62 1.23E-13
8 0.158 0.14 0.88 1.73E-13
4 0.175 0.19 1.07 2.11E-13
2 0.182 0.22 1.20 2.36E-13
1 0.185 0.24 1.27 2.51E-13

0.6 0.186 0.24 1.30 2.56E-13
0.4 0.187 0.25 1.32 2.61E-13

DF(kidney ← kidney), Average Phantom (69 kg)
16 0.168 0.09 0.54 1.06E-13
8 0.220 0.15 0.70 1.37E-13
4 0.238 0.20 0.84 1.65E-13
2 0.247 0.23 0.92 1.82E-13
1 0.251 0.24 0.97 1.91E-13

0.6 0.252 0.25 0.99 1.95E-13
0.4 0.253 0.25 1.01 1.98E-13

DF(kidney ← kidney), Large Phantom (95 kg)
16 0.189 0.09 0.46 9.13E-14
8 0.248 0.16 0.64 1.26E-13
4 0.269 0.20 0.76 1.49E-13
2 0.278 0.23 0.83 1.64E-13
1 0.282 0.25 0.87 1.72E-13

0.6 0.284 0.25 0.89 1.75E-13
0.4 0.285 0.26 0.90 1.78E-13

aValues are rounded

Page 89



6.3. PATIENT

Table 6.2: Kidney to liver DFs of the XCAT phantom of different masses
for F-18 distributed uniformly in the kidneys.a

Voxel Size
(mm)

liver Mass
(kg)

φ Φ (kg−1)
DF

(Gy·Bq−1·s−1)

DF(liver ← kidney), Small Phantom (51 kg)
16 0.738 0.013 0.018 3.54E-15
8 0.954 0.016 0.017 3.33E-15
4 1.030 0.017 0.016 3.25E-15
2 1.055 0.017 0.016 3.21E-15
1 1.067 0.017 0.016 3.21E-15

DF(liver ← kidney), Average Phantom (69 kg)
16 1.120 0.017 0.016 3.07E-15
8 1.335 0.019 0.014 2.77E-15
4 1.415 0.020 0.014 2.74E-15
2 1.448 0.020 0.014 2.73E-15
1 1.463 0.020 0.014 2.72E-15

DF(liver ← kidney), Large Phantom (95 kg)
16 1.281 0.018 0.014 2.78E-15
8 1.515 0.020 0.013 2.56E-15
4 1.599 0.020 0.013 2.53E-15
2 1.636 0.021 0.013 2.51E-15
1 1.653 0.021 0.013 2.51E-15

aValues are rounded
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Figure 6.1: Energy distribution of uniform activity in both kidneys of the XCAT
phantom (Slice 110, Large).
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The absorbed fractions, kidney and liver masses and specific absorbed fractions are

also presented in table 6.3.

The absorbed dose on a voxel-wise level is shown for the kidney and liver in

figures 6.2 and 6.3 respectively. The dose histogram is fused over the CT image to

simplify organ location. The dose histogram is the result of 100 MBq·s cumulated

activity with a bio-distribution resulting from 18F-FDG at 70 minutes post injection.

Table 6.3: Kidney and liver DFs from both kidneys of a Average patient
administered 18F-FDG.

Organ
Organ

Mass (kg)
φ Φ (kg−1)

DF
(Gy·Bq−1·s−1)

kidney 0.264 0.208 0.787 1.55E-13
liver 1.599 0.020 0.012 2.43E-15

6.4 Result Analysis

A number of different variables will affect the accuracy of calculating DFs in voxelised

phantoms. Corrections should be applied to ensure that for patient-specific dosimetry

the absorbed dose is not underestimated. Voxel volume for the scaled XCAT phantom

is used in the following section for estimating the corrections required.

The organ mass is also a key contributor to this correction and the effect of

scaling the organ mass of model based phantoms is also discussed. The possible

contribution of non-uniform radioactivity will also be highlighted.

6.4.1 Fitting data to different voxel sizes.

It can be seen from table 6.1 that a significantly small voxel size is required to achieve

convergence for the organ self dose. Simulating small voxel sizes corrects this spatial

sampling issue however this is limited to the computational and memory limitations
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(a) Slice: 280 (b) Slice: 300

(c) Slice: 310 (d) Slice: 320

(e) Slice: 330 (f) Slice: 340

Figure 6.2: Dose distribution of non-uniform activity in both kidneys, overlaid
with the patients low dose CT.
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(a) Slice: 240 (b) Slice: 260

(c) Slice: 280 (d) Slice: 300

(e) Slice: 320 (f) Slice: 340

Figure 6.3: Dose distribution in the liver resulting from non-uniform activity in
both kidneys, overlaid with the patients low dose CT.
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of the computer hardware/software combination. These limitations are not only

limited to the Mote Carlo process but also reduce the ability to accurately subsample

patient data. In the kidney self-irradiation case the DFs only begin to converge as

the voxel size decreases below the current limits of medical imaging equipment. A

logical step to resolve this issue of inadequate voxel sampling is to consider fitting

the DFs for the XCAT phantom. This is contrary to the results found in section 5.2

where convergence was achieved at 2 mm voxels (figure 5.1 through 5.3).

The DF for uniform activity distributed throughout the kidneys for different

voxel volumes are fitted to an equation of the form y = a − b · xn for the three

XCAT phantoms. Where y is the DF in units of 10−13·Gy·Bq−1·s−1 and x is the

voxel volume in cm3. Table 6.4 summarises the fitting parameters for the three

phantom sizes as well as the coefficient of determination r2. Figure 6.4a shows the

fitted function for each phantom. Also shown for comparison is the kidney to kidney

DF of the Average patient. As the voxel volume approaches zero (i.e. the geometric

case) the DF becomes a× 10−13 ·Gy ·Bq−1 · s−1, from the fitted parameters. The

required correction is most significant for organ self dose

Table 6.4: Fitting parameters for different
voxel volumes in the XCAT phantom for the
kidneys to kidneys DF. Values are fitted to
the equation y = a− b · xn. Where y is the
DF in units of 10−13·Gy·Bq−1·s−1 and x is
the voxel volume in cm3

Phantom a b n r2

Small 2.788 1.181 0.201 0.9990
Average 2.117 0.813 0.194 0.9971
Large 1.861 0.691 0.228 0.9996

Even though table 6.1 shows that the kidney to liver DF converges for a voxel size

2 mm or less, values are also fitted to the equation of the form y = a− b · xn. The

fitting parameters for figure 6.4b are shown in table 6.5, where a×10−15 ·Gy ·Bq−1 ·s−1
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(a) Kidney to kidney DF for the XCAT phantom of different phantoms sizes.

(b) Kidney to liver DF for the XCAT phantom of different phantoms sizes.

Figure 6.4: Fitting DF to voxelised phantoms of different voxel size.
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Table 6.5: Fitting parameters for different
voxel volumes in the XCAT phantom for the
kidneys to liver DF. Values are fitted to the
equation y = a− b · xn. Where y is the DF
in units of 10−15·Gy·Bq−1·s−1 and x is the
voxel volume in cm3

Phantom a b n r2

Small 3.198 -0.179 0.460 0.9990
Average 2.727 -0.086 0.980 0.9988
Large 2.512 -0.087 0.799 0.9981

is the kidney to liver DF. This trend was also seen in the previous chapter for the

simple heterogeneous source to target situation (table 5.7).

From the results of chapter 5 and fitting the XCAT data it is suggested that as a

rule of thumb a voxel size of 2 mm or less provides convergence for calculating organ

cross doses, where for organ self dose a significantly smaller voxel size is required or

must be corrected for.

6.4.2 Scaling patient DF for voxel volume

Using figure 6.4a the patient specific kidney to kidney DF can be scaled to account

for voxel volume. The most obvious approach to achieve this scaling is to take

the ratio of the DF reference phantom at a voxel volume of zero by the reference

phantom DF at a voxel volume of x. Where x is the voxel volume of the patient dose

histogram. Using the fitting parameters from the above section this can be written

mathematically as equation 6.1.

DFpat(0) ≈ DFpat(x) ·
(

a

a− b · xn
)

(6.1)

Referring to table 6.1 and 6.2, it is decided to normalise the patient DF to the

Large XCAT phantom as compared to the Average phantom. This is because the

patient and Large XCAT kidney masses are more closely matched. Even though the
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total body mass for the Average phantom matches the patient mass the mass of the

kidneys is approximately 17 g less then the patient kidney (see following section).

Therefore the patient specific kidney to kidney DF becomes 1.76 ×10−13·Gy·Bq−1·s−1

scaled up from 1.55×10−13 · Gy · Bq−1 · s−1. If normalisation was based on total

body weight then the average phantom would have been used to obtain a DF of 1.82

×10−13 ·Gy ·Bq−1 · s−1.

From the results obtained the kidney to liver DF converges for larger voxel

volumes compared to the kidney to kidney case. Therefore it is not necessary to scale

the patient specific kidney to liver DF. It should however be noted that equation 6.1

still holds for this case as a
a−b·xn is equal to 1.

6.4.3 Organ masses

The organ masses for the XCAT and patient data sets are found by multiplying the

total volume of the voxels used to define the organ by the organ density (detailed in

section 3.10). Using a similar approach adopted above, the organ mass represented

by a voxel volume that approaches zero is obtained by fitting the organ masses in

table 6.1 to an equation of the form y = α− βxκ. The constants α, β and κ are used

so that no confusion arises between the constants a, b and n in the previous section.

The constant α represents the organ mass of the XCAT phantom when voxel

volume equals zero, where the patient organ mass is found by adopting equation 6.1.

Where the correction factor CFmass is defined by equation 6.2.

CFmass ≡
α

α− β · xκ
(6.2)

Table 6.6 shows the fitting constants, the mass correction factor and the corrected

patient organ mass. The patient kidney and liver mass is therefore 0.269 and 1.619

kg respectively. The coefficient of determination for all of the fitted organ masses is
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r2 =0.999 or better.

An additional point of note from table 6.6 is that the organ masses of the XCAT

phantom are relatively small compared to the ICRP reference mass organs. For

example the male reference kidney mass is reported as 0.310 kg [144]. From the

log file of the underweight, normal and obese XCAT phantoms the kidneys mass is

reported as 0.192 kg, 0.258 kg and 0.290 kg respectively. These values match well to

the calculated kidney mass for the XCAT phantoms namely 0.187 kg, 0.252 kg and

0.283 kg. The slight differences are introduced in the phantom preparation process

i.e. converting surface representations of an organ into a voxel representation.

Table 6.6: Organ mass corrections for voxel volume. For the kidney and
liver of the XCAT and kidney data sets.

Organ, Phantom
weight

α β κ CFmass
†

Corrected
Patient Organ

Mass (kg)
kidney, Small 0.187 0.0386 0.4305 1.025 0.270

kidney, Average 0.252 0.0448 0.4468 1.020 0.269
kidney, Large 0.283 0.0491 0.4631 1.028 0.268

liver, Small 1.071 0.1640 0.5021 1.013 1.619
liver, Average 1.470 0.1841 0.4540 1.013 1.620
liver, Large 1.659 0.1990 0.4548 1.013 1.619

†Where patient voxel volume is x = 0.5× 0.117× 0.117cm3.

6.5 Agreement to MIRD and OLINDA\EXM

The most widely accepted values for DFs (or S-Values) for nuclear medicine applicable

radionuclide are the original MIRD pamphlet 11 [60] and the internal dosimetry

software MIRDOSE [81] which has been superseded by OLINDA\EXM [61]. These

accepted values have been discussed previously in section 2.9. For self dose in the

kidneys pamphlet 11 and RADAR quote a DF of 1.65 x 10−13 Gy
Bq·s and 1.68 x 10−13

Gy
Bq·s respectively. Table 6.7 provides a summary of the calculated DFs for the kidney

self dose.
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Table 6.7: Summary of calculated DFs, with organ mass scaling to
Reference Man (kidney ← kidney).

Phantom
Organ

mass (kg)

DF
(10−13 Gy

Bq·s)
Mass scaled DF

(10−13 Gy
Bq·s)

Small XCAT 0.187 2.79 1.68
Average XCAT 0.252 2.12 1.72
Large XCAT 0.283 1.86 1.70

MIRD 11 0.284 1.65 1.51
OLINDA\EXM 0.299 1.68 1.62

patient 0.269 1.78 1.54

When comparing the values in table 6.7 the DFs for each of the three voxelised

XCAT phantoms are notably higher compared to the geometrically defined MIRD 11

and OLINDA\EXM values. It has been shown in the previous chapter that voxelised

phantoms using suitably small voxel sizes will match geometric phantom results.

Therefore any difference between the geometric and voxelised phantom results are

due to the differences in individual organ shape and size. The three XCAT phantoms

have a significantly smaller kidney mass when compared to not only the geometric

phantoms but also reference man, thus resulting in a higher DF. These differences

again highlight the reliance on the phantom used to obtain the organ DFs.

As an additional attempt to compare the DFs for the model based phantoms

it will be assumed that equation 2.13 is a reasonable correction for the kidney to

kidney case. Assumptions related to this correction are discussed in section 2.6.

Table 6.7 shows results of scaling the kidney self dose DFs to an organ mass of 310 g

i.e. reference man. Differences in the scaled DF can be explained by three key points.

These are as follows:

• differences in organ shapes

• methodology for calculating absorbed energy

• equation 2.13 is only an approximation

Differences in organ shape may be significant enough to effect the scaled DF, for
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example the kidneys in the mathematical phantom defined by two ellipsoids cut by

a plane which are not as realistic as using the XCAT surface method. This effect on

the DF is seen in the differences between the XCAT and OLINDA\EXM results.

The second explanation for differences in the DFs is from the differences in the

Monte Carlo approaches used. In particular the contribution of non-penetrating

radiation. The methodologies for handling non-penetrating radiation for MIRD

pamphlet 11 and OLINDA\EXM are explained in section 2.9 and are by their nature

are an approximation. Whereas GATE used a more physically rigorous model in the

direct Monte Carlo simulation.

Finally when the scaled DFs for the three XCAT phantoms are compared to each

other the differences are not due to differences in methodology, or organ shape. Some

small differences may have been introduced by the scaling performed to create the

data sets, however this is considered minimal since NURBS surfaces have been used.

This comparison leads to the conclusion that organ mass scaling is only a crude

approximation. From the results obtained it is suggested that adapting phantom

results to individual patients through mass scaling is not necessarily appropriate.

The scaled patient specific kidney to kidney DF (shown in table 6.7) adds additional

evidence for this.

The patient specific kidney to kidney DF is calculated by direct Monte Carlo

simulation which takes into account not only the patient’s organ size and shape

but also its non-uniform activity distribution. As a direct comparison, the patient

kidneys have a mass (0.269 kg) between the Average (0.252 kg) and Large (0.283 kg)

XCAT phantoms. However the calculated patient specific DF of 1.78 x 10−13 Gy
Bq·s

is lower then the Average (2.12 x 10−13 Gy
Bq·s) and Large (1.86 x 10−13 Gy

Bq·s) XCAT

phantoms. If only the organ mass is considered then the patient specific DF should

have fallen between the Average and Large XCAT values, however this is not the

case and is caused by the non-uniform activity distribution.
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In the kidney to liver DF case, pamphlet 11 and RADAR quote DFs of 2.18 x

10−15 Gy
Bq·s and 2.06 x 10−15 Gy

Bq·s respectively. For each phantom model the kidney to

liver DF is also scaled against the source organ mass by equation 2.14. Table 6.8 is a

summary of the DFs.

Table 6.8: Summary of calculated DFs (liver ← kidney).

Phantom
Target
Organ

mass (kg)

DF
(10−15 Gy

Bq·s)
Mass scaled DF

(10−15 Gy
Bq·s)

Small XCAT 1.07 3.20 2.28
Average XCAT 1.47 2.73 2.38
Large XCAT 1.66 2.51 2.36

MIRD 11 1.81 2.18 2.06
OLINDA\EXM 1.91 2.06 2.01

patient 1.62 2.43 2.21

Again when comparing the source to target DFs for all phantoms and reference

values the DF are significantly different compared to each other. For the phantoms

that have a mass scaled to the reference kidney mass of 310 g the DF(liver← kidney)

has a range of 2.01 x 10−15 Gy
Bq·s to 2.38 x 10−15 Gy

Bq·s . Again this evidence suggests that

considerable care is required when adapting phantom results to individual patients.

6.6 Variations in Human Anatomy

The dose factors calculated in this thesis have solely concentrated on the kidneys and

liver of the XCAT phantom and an individual patient. Both the XCAT phantom

and the patient have organs defined that are individual to either the standardised

phantom or individual patient. It is however important to recognise that the

significant variability between individual patient organ shapes and sizes have not

been taken into account. This variability between patients is particularly true for the

liver that may vary significantly in not only mass but also shape and will undoubtedly

lead to a change in the dose factors calculated.

Page 102



6.7. CHAPTER SUMMARY

6.7 Chapter Summary

This chapter has made use of GATE as a tool for calculating organ doses from uniform

and non-uniformly distributed F-18 in both a standardised model of human anatomy

and actual patient data. It has been shown that the creation of dose histograms

and iso dose contours of the energy deposited from the distributed activity is easily

calculated in GATE.

The XCAT phantom has been used to investigate the effect of voxel size on

the DF. It was found that significantly small voxel sizes are required to achieve

convergence for the organ self dose. This spatial sampling issue in the patient specific

DF was corrected for by using fitted XCAT data. From the results of chapter 5 and

fitting the XCAT data it is suggested that as a rule of thumb a voxel size of 2 mm

or less provides convergence for calculating organ cross doses.

A comparison to the highly accepted OLINDA\EXM dosimetry code has also

been completed. It can be concluded that differences in patient organ masses

contribute to significant variability in the calculated DFs. These results suggests that

considerable care is required when adapting phantom results to individual patients.

It can therefore also be recommended that where available individual patient specific

dosimetry should be calculated using direct Monte Carlo simulation in favor of organ

mass scaling.
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Chapter 7

Conclusions and Future work

It has been the objective of this thesis to assess the use of patient specific dosimetry

calculations using the GATE Monte Carlo package. After validating GATE, the

Monte Carlo package was used to demonstrate the significant variability of model

based phantoms of different sizes compared to an individual patient. It was shown

that organ mass scaling of model based phantoms to individual phantoms is not

necessarily suitable and where available individual patient specific dosimetry should

be calculated using direct Monte Carlo simulation.

This chapter provides a brief summary of work completed to achieve that objec-

tive. It also proposes future work to continue accurate patient specific dosimetry

calculations.

7.1 Validating GATE

A validation of GATE against a simple benchmark such as geometric and voxelised

spheres of uniformly distributed radioactivity, promotes confidence in the absorbed

dose calculations from GATE. The use of the MIRD spheres as a benchmark for

Monte Carlo transport codes have been discussed and possible errors within the

original values calculated in MIRD pamphlet 8 have been shown.
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A comparison of the standard, low energy and PENELOPE physics packages have

been made and all show excellent agreement to the gold standard for self absorption

in unit density spheres. This agreement is not only limited to geometrically defined

phantoms but also voxelised phantoms. From the evidence gathered from the

comparison it was decided to use the low energy physics package since it provided

the most suitable balance between simulation accuracy and voxelised simulation time

for internal dosimetry applications.

It was shown in section 5.4 that for voxelised phantoms, the specific absorbed

fraction is a more accurate dosimetric quantity for voxelized phantoms compared to

the absorbed fraction alone. This finding also leads to the useful rule of thumb that

for a source to target regions the specific absorbed fraction requires a voxel size of 2

mm to achieve an appropriate level of accuracy.

The validation of GATE provided in chapters 4 and 5 of this thesis increases the

likelihood of the software becoming more accepted in a clinical setting.

7.2 Patient and Model Based Absorbed Dose Cal-

culations

Realistic models of human anatomy such as the XCAT phantom will soon replace

traditional stylised phantoms for internal dosimetry calculations. The practical

application of using both model and patient specific voxelised phantoms in the GATE

Monte Carlo package have been shown in this thesis. The reliance of voxel size on

accurate calculations of DFs was investigated using the XCAT phantom.

For organ self-irradiation voxel sizes smaller than currently available from diag-

nostic imaging modalities are required therefore using voxelised phantoms acquired

from true patient images may require a correction for insufficient voxel sampling.

A correction for the patient kidney self dose has been calculated using the XCAT
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phantom and applied to a patient specific situation. In this work the scalable XCAT

phantom has also been used to show that a voxel size of 2 mm or less is suitable for

accurate calculations of organ cross dose.

Model based phantoms are designed to represent reference individuals. By

comparing the scaled XCAT phantoms with patient and traditional phantoms it has

been shown that differences in organ shape, mass, and activity distribution all affect

the calculated DF. To achieve a relative comparison the calculated DFs for each of

these phantoms were scaled to an organ mass comparable to reference man. It was

concluded from the mass scaled DFs that considerable care is required when adapting

model based phantom results to individual patients. As differences in patient organ

masses contribute significant variability to the dosimetry calculation it was therefore

recommended that where available individual patient specific dosimetry should be

calculated using direct Monte Carlo simulation in favor of organ mass scaling.

7.3 Future work

7.3.1 Automation

At present patient specific dosimetry for internal radionuclide’s is a labour intensive

and time consuming process. To further increase the ease of dosimetry calculations

from PET/CT data, much of the process should be fully automated.

One challenging aspect of this is automated organ segmentation. Automated

organ segmentation would remove the human judgement from defining the boundaries

of patient organs. It may be easiest to automatically segment the CT image then

overlay the co-registered PET image to assist with the PET segmentation. Better

segmentation of radiosensitive organs including red bone marrow would also increase

the likelihood of the effective dose being correctly calculated.

Investigations into the simulation speed and additional variance reduction tech-
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niques will also move the methods described in this thesis out of the research domain

and into clinical nuclear medicine.

7.3.2 Calculation of additional organs

With the increased development and use of voxelised phantoms equation 6.1 has

been proposed to calculate the organ dose factor at a voxel volume of zero from the

DF at a voxel volume of x. The fitting parameters a, b and n have been derived

from the XCAT phantom using the kidneys as the source organ. The dependence of

these parameters on the source and target organ requires additional investigation

for other organs in the body. This should include larger source organs including the

brain, lungs, and liver as well as smaller organs such as the Gallbladder, Thymus

and Thyroid.

7.3.3 Dynamic patient activity distribution

The prime objective of this thesis has been the calculation of static absorbed doses

and so has not concentrated on the evaluation of the kinetic properties of radio-

pharmaceuticals. Continuing investigation into the simulation of dynamic activity

distribution will increase the accuracy of patient specific dosimetry evaluations. In

section 6.3 dose histograms were shown for a patient injected with 18F-FDG. The

calculated DFs are accurate for the time interval of 70 min after the injection of

18F-FDG, i.e. the standard duration of a whole body PET scan.

Frame or list mode dynamic acquisitions are one such method for obtaining

time activity curves of individual organs. Time activity curves may then be applied

to the Monte Carlo calculation. An example of such an application would be

the uptake of a new radiopharmaceutical or abnormal activity uptake in patients

receiving therapeutic nuclear medicine procedures. A dynamic acquisition is useful for

calculating time activity curves of radiopharmaceuticals with relatively short effective
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half-lives. This is true of diagnostic radiopharmaceuticals however individual patient

dose estimates are rarely needed for these short effective half-lives. As discussed

previously individual patient dose estimates are becoming essential for therapeutic

applications, where the effective half-life is relatively long and may be several days.

Obtaining time activity curves for long effective half-lives may also be associated

with errors as it may only be possible to obtain three to five time points. An error

in calculating the time activity curve will undoubtedly effect the calculation of the

cumulative activities

7.4 Final concluding remarks

The desire for patient specific dosimetry estimates of internally distributed radioac-

tivity is realised by using Monte Carlo simulations of voxelised phantoms. Individual

organ mass scaling of traditional stylised phantoms will therefore soon be replaced

by voxelised phantoms such as XCAT. This thesis has shown that the GATE toolkit

provides suitable accuracy to perform Monte Carlo simulations of voxelised phantoms.

By using the validated GATE toolkit it has been shown that the application of these

phantoms must make some considerations for voxel size. Changes in patient organ

mass greatly affect dosimetry calculations and therefore where available direct Monte

Carlo simulations of individual patients should be considered.k
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Gate Macros

This appendix contains a number of GATE, python and bash scripts used for the

simulation completed in the sections above.

A.1 PBS Script Example

#!/bin/bash

# File Name: pbs-script.sh

# Usage: qsub pbs-script.sh

# Sets the job name

#PBS -N gate_job

# Recuests a single CPU to be used for this job

#PBS -l nodes=1

# Sets the maximum time the job will take (2h 30min)

#PBS -l walltime=02:30:00

# Changes directory to your execution directory

cd $PBS_O_WORKDIR

# Set all required GATE variables

source /home/some_path/env_gate.sh

# Run GATE
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Gate my_macro.mac

A.2 MIRD Spheres

The following are scripts used to simmulate the MIRD spheres in GATE.

A.2.1 GATEv3.1.2 MIRD

# A parameterized macro for the

# absorbed fraction in a sphere.

#

# usage: Gate -a radius 0.620350 -a energy 0.14 -a time 15.0 spheres.mac

#

# note radius in cm, energy in Mev, time in sec.

# V I S U A L I S A T I O N

#/control/execute visu.mac

# W O R L D

/gate/world/geometry/setXLength 0.1 m

/gate/world/geometry/setYLength 0.1 m

/gate/world/geometry/setZLength 0.1 m

/gate/world/setMaterial MirdSoftTissue

# D E T E C T O R

/gate/world/daughters/name scanner

/gate/world/daughters/insert sphere

/gate/world/setMaterial MirdSoftTissue

/gate/scanner/geometry/setRmax {radius} cm

/gate/scanner/vis/setColor cyan

/gate/scanner/daughters/name l1

/gate/scanner/daughters/insert sphere

/gate/world/setMaterial MirdSoftTissue

/gate/l1/geometry/setRmax {radius} cm

/gate/l1/vis/setColor red

/gate/systems/scanner/level1/attach l1

/gate/l1/attachCrystalSD

# P H Y S I C S

/gate/physics/gamma/selectRayleigh inactive

/gate/physics/gamma/selectPhotoelectric standard
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/gate/physics/gamma/selectCompton standard

# I N A C T I V E S E C O N D A R Y E L E C T R O N S

/gate/physics/setElectronCut 30.01 cm

# I N A C T I V E X - R A Y S

/gate/physics/setXRayCut 1. GeV

/gate/physics/setDeltaRayCut 1. GeV

/gate/physics/verbose 1

# I N I T I A L I Z E

/gate/geometry/enableAutoUpdate

/run/initialize

# S O U R C E

/gate/source/addSource lineS

/gate/source/lineS/setActivity 1200000 Bq

/gate/source/lineS/gps/type Volume

/gate/source/lineS/gps/shape Sphere

/gate/source/lineS/gps/radius {radius} cm

/gate/source/lineS/gps/particle gamma

/gate/source/lineS/gps/energytype Mono

/gate/source/lineS/gps/monoenergy {energy} MeV

# O U T P U T

/gate/output/verbose 1

/gate/output/ascii/setFileName {energy}_{radius}_abfrac

/gate/output/ascii/setOutFileHitsFlag 1

/gate/output/ascii/setOutFileSinglesFlag 0

/gate/output/root/disable

# S T A R T

/gate/application/setTimeSlice {time} s

/gate/application/setTimeStart 0. s

/gate/application/setTimeStop {time} s

/gate/application/startDAQ

A.2.2 Calculate absorbed fractions

#!/usr/bin/python

# filename: sum_energy.py

# sum energy deposited by hit from gateHits.dat

# Usage: python sum_energy.py hits.dat run.dat

import sys

def main(energy, iname = ’gateHits.dat’, runname = ’gateRun.dat’) :
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f = open(iname, ’r’)

var11 = []

total = 0

while True :

line = f.readline()

if not line : break

if len(line) == 0 : continue

args = line.split()

var11.append(float(args[11]))

total = total + float(args[11])

f.close()

f = open(runname, ’r’)

line = f.readline()

emit = float(line.split()[0]) * energy

f.close()

print "%s %s %s" % (str(total), str(emit), str(total / emit))

if __name__ == ’__main__’ :

arg = sys.argv

if len(arg) =! 3: sys.exit("Usage: python hits.dat run.dat")

main(float(arg[1][:5]), iname = arg[1], runname = arg[2])

A.2.3 GATEv6.0 physics

#

# Physics Example Standard proceses

#

/gate/physics/addProcess PhotoElectric

/gate/physics/addProcess Compton

/gate/physics/addProcess GammaConversion

/gate/physics/addProcess ElectronIonisation

/gate/physics/processes/ElectronIonisation/setStepFunction e+ 0.01 0.1 mm

/gate/physics/processes/ElectronIonisation/setStepFunction e- 0.01 0.1 mm

/gate/physics/addProcess Bremsstrahlung

/gate/physics/addProcess PositronAnnihilation

/gate/physics/addProcess MultipleScattering e+

/gate/physics/addProcess MultipleScattering e-

/gate/physics/processes/MultipleScattering/

setGeometricalStepLimiterType e- distanceToBoundary

/gate/physics/processes/MultipleScattering/

setGeometricalStepLimiterType e+ distanceToBoundary
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/gate/physics/setEMin 0.1 keV

/gate/physics/setEMax 10 GeV

/gate/physics/setDEDXBinning 77

/gate/physics/setLambdaBinning 77

#

# Physics Example LowEnergy library

#

/gate/physics/addProcess LowEnergyPhotoElectric

/gate/physics/addProcess LowEnergyCompton

/gate/physics/addProcess LowEnergyGammaConversion

/gate/physics/addProcess LowEnergyRayleighScattering

/gate/physics/addProcess LowEnergyBremsstrahlung e-

/gate/physics/addProcess LowEnergyElectronIonisation e-

/gate/physics/addProcess ElectronIonisation e+

/gate/physics/addProcess Bremsstrahlung e+

/gate/physics/addProcess PositronAnnihilation e+

/gate/physics/addProcess MultipleScattering e+

/gate/physics/addProcess MultipleScattering e-

/gate/physics/processes/MultipleScattering/

setGeometricalStepLimiterType e- distanceToBoundary

/gate/physics/processes/MultipleScattering/

setGeometricalStepLimiterType e+ distanceToBoundary

/gate/physics/setEMin 0.1 keV

/gate/physics/setEMax 10 GeV

/gate/physics/setDEDXBinning 77

/gate/physics/setLambdaBinning 77

#

# Physics Example Penelope Library

#

/gate/physics/addProcess PenelopePhotoElectric

/gate/physics/addProcess PenelopeCompton

/gate/physics/addProcess PenelopeGammaConversion

/gate/physics/addProcess PenelopeRayleighScattering

/gate/physics/addProcess PenelopeBremsstrahlung e-

/gate/physics/addProcess PenelopeElectronIonisation e-

/gate/physics/addProcess PenelopeElectronIonisation e+

/gate/physics/addProcess PenelopeBremsstrahlung e+

/gate/physics/addProcess PenelopePositronAnnihilation e+

/gate/physics/addProcess MultipleScattering e+
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/gate/physics/addProcess MultipleScattering e-

/gate/physics/processes/MultipleScattering/

setGeometricalStepLimiterType e- distanceToBoundary

/gate/physics/processes/MultipleScattering/

setGeometricalStepLimiterType e+ distanceToBoundary

/gate/physics/setEMin 0.1 keV

/gate/physics/setEMax 10 GeV

/gate/physics/setDEDXBinning 77

/gate/physics/setLambdaBinning 77

A.2.4 Gate version 6 MIRD simulation

import sys

import os

import optparse

__email__ = "kevin.hickson@petnm.unimelb.edu.au"

def macro(radius, energy, N, phys):

f = open(’sphere_py.mac’, ’w’)

if phys == ’std’: ex = ’ egammaStandardPhys.mac’

elif phys == ’low’: ex = ’ egammaLowEPhys.mac’

elif phys == ’pen’: ex = ’ egammaPenPhys.mac’

else: sys.exit(’Fail to set physics’)

oname = "%s_%s_%s" % (energy, radius, phys)

string = """#Macro from mkmacro.py Gate6 compatable ... KJH Aug 2010

/gate/geometry/setMaterialDatabase ./GateMaterials.db

/gate/world/geometry/setXLength 6 cm

/gate/world/geometry/setYLength 6 cm

/gate/world/geometry/setZLength 6 cm

/gate/world/setMaterial MirdSoftTissue

/gate/world/daughters/name scanner

/gate/world/daughters/insert sphere

#/gate/scanner/setMaterial MirdSoftTissue

/gate/scanner/setMaterial Vacuum

/gate/scanner/geometry/setRmin 0.0 cm

/gate/scanner/geometry/setRmax """ + str(radius) + """ cm

/gate/scanner/daughters/name l1

/gate/scanner/daughters/insert sphere

/gate/l1/setMaterial MirdSoftTissue

/gate/l1/geometry/setRmin 0.0 cm
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/gate/l1/geometry/setRmax """ + str(radius) + """ cm

/gate/systems/scanner/level1/attach l1

/gate/l1/attachCrystalSD

/control/execute""" + ex + """

/gate/run/initialize

/gate/source/addSource lineS

/gate/source/lineS/setActivity 1000000 Bq

/gate/source/lineS/gps/type Volume

/gate/source/lineS/gps/shape Sphere

/gate/source/lineS/gps/radius """ + str(radius) + """ cm

/gate/source/lineS/gps/particle gamma

/gate/source/lineS/gps/energytype Mono

/gate/source/lineS/gps/monoenergy """ + str(energy) + """ MeV

/gate/output/verbose 1

/gate/output/ascii/enable

/gate/output/ascii/setFileName """ + oname + """

/gate/output/ascii/setOutFileHitsFlag 1

/gate/output/ascii/setOutFileSinglesFlag 0

/gate/application/setTotalNumberOfPrimaries """ + str(N) + """

/gate/application/start

"""

f.write(string)

if __name__ == ’__main__’:

parser = optparse.OptionParser(usage = \

’%prog [options]’,

epilog = \

(’Problems to: %s\n’ % __email__))

parser.add_option(’-r’, #’--radius’,

dest= ’radius’,

default = ’0.62’,

action = ’store’,

help = ’’’set radius of sphere in cm’’’)

parser.add_option(’-e’, #’--energy’,

dest= ’energy’,

default = ’0.140’,

action = ’store’,

help = \

’’’set initial photon energy in MeV’’’)

parser.add_option(’-N’, #’--number’,

dest= ’number’,

default = ’10’,

action = ’store’,

help = \

’’’set number of events to simulate’’’)
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parser.add_option(’-p’, #’--phys’,

dest= ’phys’,

default = ’std’,

action = ’store’,

help = ’’’set physics prosesses to use’’’)

(options, args) = parser.parse_args()

p = options.phys

if p != ’std’ and p != ’low’ and p != ’pen’:

print "%s not available use;" % options.phys

print "’std’ for standard processes"

print "’low’ for lowenergy livermore processes"

print "’pen’ for Penelope processes"

sys.exit(1)

macro(options.radius, options.energy, options.number, options.phys)

#!/bin/bash

# File Name: pbs-script.sh

# Usage: qsub pbs-script.sh

#PBS -N gate_job

#PBS -l nodes=1

#PBS -l walltime=02:30:00

cd $PBS_O_WORKDIR

# Set all required GATE variables

source /home/some_path/env_gate.sh

ln -s /home/some_path/GateMaterials.db

energy="0.140"

number="100000"

phys="std

low

pen"

radii="0.620350490899

0.781592641797

0.984745021843

1.12725165179

1.2407009818

1.33650461757

1.68389030096

2.12156883589

2.42859006301

2.67300923514
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2.87941191148

"

for i in $phys; do

for j in $energy; do

for k in $radii; do

python mkmacro.py -N "$number" -r "$k" -e "$j" -p "$i"

echo python mkmacro.py -N "$number" -r "$k" -e "$j" -p "$i"

Gate sphere_py.mac

abf="$j"_"$k"_"$i"

run_ver="$abf"Hits.dat "$abf"Run.dat

result_ver=results_"$i"_"$j".txt

echo python sum_energy_diposited.py "$run_ver" to "$result_ver

python sum_energy_diposited.py "$run_ver" >>"$result_ver"

rm -f "$abf"*.dat

echo Have removed "$abf" dat files.

done

done

done

A.3 Voxel Phantoms

A.3.1 Interfile creation

class createInterfile:

"""Create an voxel map in interfile format"""

def __init__(self, oname, radius, pixsize, imgsize, verbose=False,

xmedcon = False, mix = False):

self.verbose = verbose

self.oname = oname

self.radius = float(radius) * 10. #convert to mm.

self.xmedcon = xmedcon

self.pixsize = float(pixsize)

self.imgsize = int(imgsize)

string = "\nVerbose has been set to TRUE \n\n"\

" Header file will be saved as: %s.h33\n"\

" Image file will be saved as: %s.i33\n"\

" Radius of sphere set to: %s mm\n"\

% (self.oname, self.oname, self.radius)

self.v_print(string)

if mix == False: self.create()

Page 117



A.3. VOXEL PHANTOMS

else: pass

def create(self):

self.get_scaling_factor()

self.create_image()

self.create_header()

self.vox_sphere()

if self.xmedcon: self.openxmedcon()

def get_scaling_factor(self):

self.voxelsize = self.imgsize / self.pixsize

def create_image(self):

"""Use 16 bit unsigned integer if this is to run in Gate"""

datatype = numpy.uint16

self.image = numpy.zeros(self.voxelsize**3, datatype).reshape(\

self.voxelsize, self.voxelsize, self.voxelsize)

self.v_print(’Created image with dtype %s’ % datatype)

def openxmedcon(self):

os.system(’xmedcon %s.h33’ % self.oname)

def set(self, i, j, k):

if ((i - (self.voxelsize/2.)) * self.pixsize)**2 + \

((j - (self.voxelsize/2.)) * self.pixsize)**2 + \

((k - (self.voxelsize/2.)) * self.pixsize)**2 < self.radius**2:

self.image[i][j][k] = 1

def vox_sphere(self):

self.v_print("Start image ...")

p = 0.1

for i in range(self.voxelsize):

if i / (p*self.voxelsize) >= p:

self.v_print(’ %s percent done.’ % (p * 100))

p = p + 0.1

for j in range(self.voxelsize):

for k in range(self.voxelsize):

self.set(i,j,k)

self.v_print(’ Saveing %s.i33’ % self.oname)

od = open(’%s.i33’ % self.oname, ’wb’)

od.write(self.image)

od.close()

self.v_print(’ All done.\n’)

def get_gate_trans(self):
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return (self.pixsize * self.voxelsize) / 2.0

def get_trans(self):

return self.imagesize / 2.0

def create_header(self):

"""Create a header that will work with GATE"""

self.v_print(’Saving header file %s.h33’ % self.oname)

oh = open(’%s.h33’ % self.oname, ’wb’)

oh.write(’!INTERFILE :=\n’)

oh.write(’!imaging modality := nucmed\n’)

oh.write(’!originating system := greetings\n’)

oh.write(’!version of keys := 3.3\n’)

oh.write(’date of keys := 1996:09:24\n’)

oh.write(’conversion program := python\n’)

oh.write(’program author := KJH\n’)

oh.write(’program version := 0.01\n’)

oh.write(’program date := 2009:09:17\n’)

oh.write(’;\n’)

oh.write(’!GENERAL DATA :=\n’)

oh.write(’!data offset in bytes := 0\n’)

oh.write(’!name of data file := %s.i33\n’ % self.oname)

oh.write(’patient name := gate\n’)

oh.write(’!patient ID := gate\n’)

oh.write(’patient dob := 1985:11:01\n’)

oh.write(’patient sex := Unknown\n’)

oh.write(’!study ID := brain\n’)

oh.write(’exam type := 2D study\n’)

oh.write(’data compression := none\n’)

oh.write(’data encode := none\n’)

oh.write(’;\n’)

oh.write(’!GENERAL IMAGE DATA :=\n’)

oh.write(’!type of data := Tomographic\n’)

oh.write(’!total number of images := %d\n’ % self.voxelsize)

oh.write(’study date := 2009:09:17\n’)

oh.write(’study time := 00:00:00\n’)

oh.write(’imagedata byte order := LITTLEENDIAN\n’)

oh.write(’;\n’)

oh.write(’number of energy windows := 1\n’)

oh.write(’;\n’)

oh.write(’energy window [1] :=\n’)

oh.write(’energy window lower level [1] :=\n’)

oh.write(’energy window upper level [1] :=\n’)

oh.write(’flood corrected := N\n’)

oh.write(’decay corrected := N\n’)

oh.write(’;\n’)

oh.write(’!number of images/energy window := %d \n’ \

% self.voxelsize)
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oh.write(’!process status := Reconstructed\n’)

oh.write(’!matrix size [1] := %d \n’ % self.voxelsize)

oh.write(’!matrix size [2] := %d \n’ % self.voxelsize)

oh.write(’!number format := unsigned integer\n’)

oh.write(’!number of bytes per pixel := 2\n’)

oh.write(’scaling factor (mm/pixel) [1] := %s\n’ % self.pixsize)

oh.write(’scaling factor (mm/pixel) [2] := %s\n’ % self.pixsize)

oh.write(’!number of projections := %d\n’ % self.voxelsize)

oh.write(’!extent of rotation :=\n’)

oh.write(’!time per projection (sec) := 0\n’)

oh.write(’study duration (sec) := 0\n’)

oh.write(’!maximum pixel count := +1.632600e+04\n’)

oh.write(’patient orientation := head_in\n’)

oh.write(’patient rotation := supine\n’)

oh.write(’;\n’)

oh.write(’!SPECT STUDY (reconstructed data) :=\n’)

oh.write(’method of reconstruction := Unknown\n’)

oh.write(’!number of slices := %d\n’ % self.voxelsize)

oh.write(’number of reference frame := 1\n’)

oh.write(’slice orientation := Transverse\n’)

oh.write(’slice thickness (pixels) := %s\n’ % self.pixsize)

#oh.write(’slice thickness (pixels) := 1.000\n’)

oh.write(’centre-centre slice separation (pixels) := %s\n’ \

% self.pixsize)

#oh.write(’centre-centre slice separation (pixels) := 1.000\n’)

oh.write(’filter name := Unknown\n’)

oh.write(’filter parameters := Cutoff\n’)

oh.write(’method of attenuation correction := measured\n’)

oh.write(’scatter corrected := N\n’)

oh.write(’oblique reconstruction := N\n’)

oh.write(’!END OF INTERFILE :=\n’)

oh.close()

self.v_print(’saved.’)

def v_print(self, string):

"""Print if verbose is true"""

if self.verbose: print str(string)

A.3.2 Processing voxel dose

class Dose:

def __init__(self, interfileHeader, DoseFile, GateRun, energy, density,

quiet = False, xmedI = False, batch = False):

self.interfileHeader = interfileHeader

self.DoseFile = DoseFile
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self.GateRun =GateRun

self.quiet = quiet

self.energy = float(energy)

self.rho = float(density)

self.batch = batch

if xmedI:

subprocess.call(’xmedcon %s’ % interfileHeader, shell=True)

sys.exit(0)

self.read_run()

self.readInterfile()

# change shape

new = numpy.zeros_like(self.ds.image)

int = numpy.where((self.ds.image == 2))

new[int] = 1

self.ds.image = new

#

self.readBinfile()

self.give_results()

def read_run(self):

f = open(self.GateRun)

self.number = float(f.readline())

f.close()

def readInterfile(self):

self.ds = Interfile.Read(self.interfileHeader)

self.getCorrectFile()

self.ds.get_image()

def getCorrectFile(self):

"""Get the correct file path from the interfile"""

i33_a = self.ds.header[’!nameofdatafile’][0]

if os.path.isfile(i33_a):

pass

else:

i33 = os.path.join(os.path.dirname(self.interfileHeader), i33_a)

if os.path.isfile(i33):

self.ds.header[’!nameofdatafile’] = [i33]

if self.quiet == False: warnings.warn(\

’Found file under: \n%s\nUseing it as the image file!’\

% i33)

else:

raise IOError(’No File %s, The header file is incorrect!’\
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% i33_a)

sys.exit(1)

def readBinfile(self):

datatype = numpy.float32

shape = self.ds.image.shape

size = 1

for i in range(len(shape)): size = size * shape[i]

try:

fd = open(self.DoseFile)

self.DoseImg = \

numpy.fromfile(fd, datatype, size).reshape(shape)

fd.close()

except ValueError:

msg = ’The Interfile and Dose.bin file are not the same!\n’\

’Are you sure the Dose file was generated by this’\

’interfile?’

raise ValueError(msg)

def give_results(self):

self.sum_dose()

self.delta()

self.Energy()

self.absorbfraction()

self.S_value()

if self.batch:

result = ’%s %s %s %s %s %s’ % \

(self.interfileHeader, self.ds.image.shape, self.total_dose,

self.eng, (self.number * self.energy), self.abfrac)

else:

result = ’=========================================\n’\

’ Shape: %s \n’\

’ iname: %s \n\n’\

’ Absorb Fraction: %s \n’\

’ Delta: %s (kg.Gy / Bq.s)\n’\

’ S-Value: %s (Gy)\n\n’\

’ Total Dose: %s (Gy)\n’\

’ Total eng: %s (MeV)\n’\

’=========================================\n’\

% (self.ds.image.shape, self.interfileHeader, self.abfrac,\

self.delta, self.s, self.total_dose, self.eng)

print result

def VOX_mass(self):

self.pix_size = \

float(self.ds.header[’scalingfactor(mm/pixel)[1]’][0]) * 0.1 #cm
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#print ’self.pix_size’, self.pix_size

self.vox_mass = self.pix_size**3 * self.rho * 0.001 #kg

#print ’self.vox_mass’, self.vox_mass

def Energy(self):

self.j2MeV = 6.24150636e12

self.VOX_mass()

# cGy Kg MeV / j

self.eng = (self.DoseImg * 0.01) * self.vox_mass * self.j2MeV #MeV

self.eng = numpy.sum(self.eng * self.ds.image) #MeV

def absorbfraction(self):

self.abfrac = self.eng / (self.number * self.energy)

def delta(self):

self.delta = 1 * self.energy * 1.60217646e-13 #kg.Gy / Bq.s

def vox_mass_sphere(self):

self.sphere_mass = numpy.sum((self.vox_mass * self.ds.image)) #kg

def specific_ab_frac(self):

self.vox_mass_sphere()

self.specAbFrac = self.abfrac / self.sphere_mass #1/kg

def S_value(self):

self.specific_ab_frac()

self.s = self.delta * self.specAbFrac #Gy

def sum_dose(self):

self.total_dose = \

numpy.sum(self.DoseImg * self.ds.image) * 0.01 #Gy
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Absorbed Fractions

B.1 Simulated Values

Table B.1: Values for the absorbed fractions simulated in GATE.

Sphere
mass (g)

Sphere
radius
(cm)

Gate
v3.1.2

Gate v6
standard

Gate v6
Low

energy

Gate v6
Penelope

Stabin

Energy: 0.03 MeV
2 0.782 0.083 0.082 0.089 0.089 0.083
4 0.985 0.105 0.104 0.112 0.115 0.105
6 1.127 0.120 0.122 0.127 0.130 0.120
8 1.241 0.132 0.134 0.139 0.142 0.132
10 1.337 0.142 0.143 0.151 0.153 0.143
20 1.684 0.177 0.176 0.190 0.191 0.179
40 2.122 0.219 0.219 0.232 0.235 0.224
60 2.429 0.245 0.245 0.261 0.264 0.253
80 2.673 0.265 0.265 0.284 0.285 0.276
100 2.879 0.281 0.281 0.299 0.301 0.294

Energy: 0.04 MeV
1 0.620 0.031 0.031 0.032 0.032 0.031
2 0.782 0.040 0.040 0.042 0.041 0.040
4 0.985 0.051 0.051 0.053 0.053 0.051

continued on next page
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continued from previous page, Table B.1

Sphere
mass (g)

Sphere
radius
(cm)

Gate
v3.1.2

Gate v6
standard

Gate v6
Low

energy

Gate v6
Penelope

Stabin

6 1.127 0.058 0.058 0.062 0.062 0.059
8 1.241 0.065 0.065 0.068 0.068 0.065
10 1.337 0.070 0.070 0.074 0.074 0.071
20 1.684 0.089 0.089 0.094 0.094 0.091
40 2.122 0.113 0.113 0.119 0.118 0.117
60 2.429 0.129 0.129 0.136 0.135 0.136
80 2.673 0.141 0.141 0.148 0.148 0.150
100 2.879 0.151 0.150 0.159 0.158 0.162

Energy: 0.06 MeV
1 0.620 0.015 0.015 0.015 0.015 0.015
2 0.782 0.019 0.019 0.020 0.020 0.019
4 0.985 0.025 0.024 0.025 0.025 0.025
6 1.127 0.029 0.028 0.029 0.029 0.029
8 1.241 0.032 0.031 0.032 0.032 0.032
10 1.337 0.034 0.034 0.035 0.035 0.035
20 1.684 0.044 0.044 0.045 0.045 0.045
40 2.122 0.056 0.056 0.057 0.057 0.059
60 2.429 0.064 0.064 0.066 0.066 0.069
80 2.673 0.071 0.070 0.073 0.073 0.077
100 2.879 0.076 0.075 0.078 0.078 0.084

Energy: 0.08 MeV
1 0.620 0.012 0.012 0.012 0.012 0.012
2 0.782 0.016 0.015 0.016 0.016 0.016
4 0.985 0.020 0.020 0.020 0.020 0.020
6 1.127 0.023 0.023 0.023 0.023 0.023
8 1.241 0.026 0.025 0.026 0.026 0.026
10 1.337 0.028 0.027 0.028 0.028 0.028
20 1.684 0.035 0.035 0.036 0.036 0.037
40 2.122 0.045 0.045 0.046 0.046 0.047
60 2.429 0.051 0.051 0.052 0.052 0.055
80 2.673 0.057 0.056 0.058 0.058 0.061
100 2.879 0.061 0.061 0.062 0.062 0.067

Energy: 0.10 MeV
1 0.620 0.012 0.012 0.012 0.012 0.012
2 0.782 0.015 0.015 0.015 0.015 0.015
4 0.985 0.019 0.019 0.019 0.020 0.020

continued on next page
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continued from previous page, Table B.1

Sphere
mass (g)

Sphere
radius
(cm)

Gate
v3.1.2

Gate v6
standard

Gate v6
Low

energy

Gate v6
Penelope

Stabin

6 1.127 0.022 0.022 0.022 0.023 0.023
8 1.241 0.025 0.025 0.025 0.025 0.025
10 1.337 0.027 0.026 0.027 0.027 0.027
20 1.684 0.034 0.034 0.034 0.034 0.035
40 2.122 0.043 0.043 0.043 0.044 0.045
60 2.429 0.049 0.049 0.050 0.050 0.052
80 2.673 0.054 0.054 0.055 0.055 0.058
100 2.879 0.058 0.058 0.059 0.059 0.063

Energy: 0.14 MeV
1 0.620 0.013 0.013 0.013 0.013 0.013
2 0.782 0.016 0.016 0.016 0.016 0.016
4 0.985 0.020 0.020 0.021 0.020 0.021
6 1.127 0.023 0.023 0.024 0.023 0.024
8 1.241 0.026 0.026 0.026 0.026 0.026
10 1.337 0.028 0.028 0.028 0.028 0.028
20 1.684 0.035 0.035 0.035 0.035 0.036
40 2.122 0.044 0.044 0.045 0.045 0.046
60 2.429 0.051 0.050 0.051 0.051 0.053
80 2.673 0.056 0.055 0.056 0.056 0.058
100 2.879 0.060 0.059 0.060 0.060 0.063

Energy: 0.364 MeV
1 0.620 0.015 0.015 0.015 0.015 0.015
2 0.782 0.018 0.019 0.019 0.018 0.019
4 0.985 0.024 0.023 0.023 0.023 0.023
6 1.127 0.027 0.027 0.027 0.027 0.027
8 1.241 0.030 0.030 0.030 0.030 0.029
10 1.337 0.032 0.032 0.032 0.032 0.032
20 1.684 0.040 0.040 0.040 0.040 0.040
40 2.122 0.051 0.051 0.051 0.051 0.051
60 2.429 0.058 0.058 0.058 0.058 0.058
80 2.673 0.064 0.063 0.063 0.064 0.064
100 2.879 0.068 0.068 0.068 0.068 0.069

Energy: 0.662 MeV
1 0.620 0.014 0.014 0.014 0.014 0.014
2 0.782 0.018 0.018 0.018 0.018 0.018
4 0.985 0.023 0.023 0.023 0.022 0.022

continued on next page
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Sphere
mass (g)

Sphere
radius
(cm)

Gate
v3.1.2

Gate v6
standard

Gate v6
Low

energy

Gate v6
Penelope

Stabin

6 1.127 0.026 0.026 0.026 0.026 0.026
8 1.241 0.029 0.029 0.029 0.029 0.028
10 1.337 0.031 0.031 0.031 0.031 0.031
20 1.684 0.039 0.039 0.039 0.039 0.039
40 2.122 0.050 0.049 0.049 0.049 0.049
60 2.429 0.057 0.057 0.056 0.056 0.056
80 2.673 0.062 0.062 0.062 0.062 0.062
100 2.879 0.067 0.067 0.067 0.067 0.067

Energy: 1.460 MeV
1 0.620 0.009 0.009 0.009 0.009 0.009
2 0.782 0.013 0.012 0.012 0.012 0.012
4 0.985 0.017 0.017 0.017 0.016 0.017
6 1.127 0.020 0.020 0.019 0.019 0.020
8 1.241 0.022 0.022 0.022 0.022 0.022
10 1.337 0.024 0.024 0.024 0.024 0.024
20 1.684 0.031 0.031 0.031 0.031 0.031
40 2.122 0.040 0.040 0.040 0.040 0.040
60 2.429 0.046 0.046 0.046 0.046 0.046
80 2.673 0.052 0.052 0.051 0.051 0.051
100 2.879 0.056 0.055 0.055 0.055 0.055

Energy: 2.750 MeV
1 0.620 0.004 0.004 0.004 0.004 0.004
2 0.782 0.007 0.007 0.007 0.007 0.007
4 0.985 0.010 0.010 0.010 0.010 0.010
6 1.127 0.012 0.012 0.012 0.012 0.012
8 1.241 0.014 0.014 0.014 0.014 0.014
10 1.337 0.015 0.015 0.015 0.015 0.016
20 1.684 0.021 0.021 0.021 0.021 0.021
40 2.122 0.028 0.028 0.028 0.028 0.028
60 2.429 0.033 0.033 0.033 0.033 0.034
80 2.673 0.037 0.037 0.037 0.037 0.037
100 2.879 0.041 0.041 0.041 0.041 0.041
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B.2 Normalised Values

Table B.2: Normalised values for the absorbed fractions simulated in GATE.
Columns 3 to 6 are normalised to recommended values from Stabin. Column 7 are
results from Stabin

Sphere
mass (g)

Sphere
radius
(cm)

Gate3/
Stabin

Gate6
std/

Stabin

Gate6
low/

Stabin

Gate6
pen/

Stabin

EGS4/
MCNP

Energy: 0.03 MeV
1 0.62 1.00 0.98 1.09 1.08 1.12
2 0.78 1.00 0.99 1.07 1.07 1.11
4 0.99 1.00 0.99 1.06 1.10 1.10
6 1.13 1.00 1.01 1.06 1.09 1.10
8 1.24 1.00 1.01 1.06 1.08 1.10
10 1.34 0.99 1.00 1.05 1.07 1.09
20 1.68 0.99 0.99 1.06 1.07 1.09
40 2.12 0.98 0.98 1.03 1.05 1.08
60 2.43 0.97 0.97 1.03 1.04 1.09
80 2.67 0.96 0.96 1.03 1.03 1.09
100 2.88 0.96 0.96 1.02 1.02 1.09

Energy: 0.04 MeV
1 0.62 1.00 1.00 1.05 1.04 1.11
2 0.78 1.00 0.99 1.04 1.04 1.08
4 0.99 0.99 0.99 1.05 1.05 1.10
6 1.13 0.99 0.99 1.05 1.05 1.09
8 1.24 0.99 1.00 1.05 1.05 1.10
10 1.34 0.99 0.99 1.04 1.04 1.10
20 1.68 0.98 0.98 1.03 1.03 1.10
40 2.12 0.97 0.97 1.02 1.01 1.10
60 2.43 0.95 0.95 1.00 0.99 1.10
80 2.67 0.94 0.94 0.99 0.99 1.10
100 2.88 0.93 0.93 0.98 0.98 1.11

Energy: 0.06 MeV
1 0.62 1.00 0.99 1.02 1.02 1.08
2 0.78 1.01 1.00 1.04 1.03 1.04
4 0.99 0.98 0.98 1.01 1.00 1.07
6 1.13 0.98 0.97 1.01 1.00 1.08

continued on next page
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continued from previous page, Table B.2

Sphere
mass (g)

Sphere
radius
(cm)

Gate3/
Stabin

Gate6
std/

Stabin

Gate6
low/

Stabin

Gate6
pen/

Stabin

EGS4/
MCNP

8 1.24 0.99 0.98 1.01 1.01 1.09
10 1.34 0.98 0.97 1.00 1.00 1.08
20 1.68 0.97 0.97 0.99 1.01 1.09
40 2.12 0.95 0.95 0.97 0.97 1.09
60 2.43 0.93 0.93 0.96 0.96 1.11
80 2.67 0.92 0.92 0.94 0.94 1.12
100 2.88 0.90 0.90 0.93 0.93 1.13

Energy: 0.08 MeV
1 0.62 1.03 1.01 1.04 1.03 1.05
2 0.78 0.98 0.97 0.99 0.99 1.02
4 0.99 1.00 0.99 1.01 1.01 1.04
6 1.13 1.00 1.00 1.02 1.01 1.04
8 1.24 0.98 0.97 1.00 1.00 1.04
10 1.34 0.99 0.98 1.00 1.00 1.05
20 1.68 0.95 0.95 0.97 0.97 1.06
40 2.12 0.96 0.95 0.97 0.97 1.07
60 2.43 0.94 0.93 0.95 0.95 1.08
80 2.67 0.93 0.93 0.94 0.95 1.09
100 2.88 0.91 0.90 0.92 0.92 1.10

Energy: 0.10 MeV
1 0.62 0.99 0.99 1.00 1.01 1.04
2 0.78 1.01 1.00 1.02 1.03 1.03
4 0.99 0.97 0.96 0.97 0.98 1.04
6 1.13 0.97 0.97 0.98 0.98 1.03
8 1.24 0.99 0.98 0.99 1.00 1.05
10 1.34 0.99 0.98 0.99 1.00 1.03
20 1.68 0.97 0.97 0.98 0.98 1.05
40 2.12 0.95 0.95 0.96 0.97 1.06
60 2.43 0.94 0.94 0.96 0.96 1.07
80 2.67 0.93 0.92 0.94 0.94 1.08
100 2.88 0.92 0.91 0.93 0.93 1.08

Energy: 0.14 MeV
1 0.62 0.96 0.97 0.98 0.98 1.01
2 0.78 0.99 1.00 1.02 1.01 1.02
4 0.99 0.96 0.96 0.98 0.97 1.03
6 1.13 0.97 0.97 0.98 0.98 1.03

continued on next page
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continued from previous page, Table B.2

Sphere
mass (g)

Sphere
radius
(cm)

Gate3/
Stabin

Gate6
std/

Stabin

Gate6
low/

Stabin

Gate6
pen/

Stabin

EGS4/
MCNP

8 1.24 0.99 0.99 1.00 0.99 1.03
10 1.34 0.99 0.99 1.00 1.00 1.03
20 1.68 0.97 0.97 0.98 0.98 1.04
40 2.12 0.96 0.96 0.97 0.98 1.04
60 2.43 0.95 0.95 0.97 0.96 1.04
80 2.67 0.96 0.95 0.97 0.97 1.05
100 2.88 0.95 0.94 0.96 0.96 1.05

Energy: 0.364 MeV
1 0.62 0.97 0.99 0.98 0.97 1.02
2 0.78 0.97 0.98 0.98 0.97 1.01
4 0.99 1.03 1.02 1.01 1.02 1.02
6 1.13 1.00 1.00 0.99 1.00 1.03
8 1.24 1.03 1.02 1.02 1.02 1.02
10 1.34 1.00 1.00 1.00 0.99 1.02
20 1.68 1.01 1.01 1.01 1.01 1.02
40 2.12 1.00 0.99 1.00 0.99 1.03
60 2.43 1.00 0.99 1.00 0.99 1.02
80 2.67 0.99 0.99 0.99 0.99 1.02
100 2.88 0.99 0.98 0.99 0.99 1.03

Energy: 0.662 MeV
1 0.62 0.98 0.99 0.98 0.98 1.01
2 0.78 0.98 0.98 0.98 0.98 1.02
4 0.99 1.02 1.03 1.02 1.01 1.02
6 1.13 1.00 1.00 0.99 1.00 1.02
8 1.24 1.03 1.02 1.02 1.02 1.02
10 1.34 1.00 1.00 0.99 0.99 1.03
20 1.68 1.01 1.00 1.00 1.00 1.02
40 2.12 1.01 1.01 1.00 1.01 1.02
60 2.43 1.01 1.01 1.01 1.01 1.01
80 2.67 1.00 1.00 1.01 1.00 1.03
100 2.88 1.00 1.00 0.99 1.00 1.02

Energy: 1.460 MeV
1 0.62 1.02 1.02 1.01 1.02 1.04
2 0.78 1.05 1.04 1.03 1.03 1.05
4 0.99 0.98 0.98 0.97 0.97 1.04
6 1.13 0.98 0.98 0.97 0.97 1.03

continued on next page
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continued from previous page, Table B.2

Sphere
mass (g)

Sphere
radius
(cm)

Gate3/
Stabin

Gate6
std/

Stabin

Gate6
low/

Stabin

Gate6
pen/

Stabin

EGS4/
MCNP

8 1.24 1.00 0.99 0.98 0.99 1.03
10 1.34 1.00 0.99 0.98 0.99 1.03
20 1.68 1.00 1.01 0.99 1.00 1.05
40 2.12 1.00 1.00 1.00 0.99 1.03
60 2.43 1.01 1.01 1.00 0.99 1.01
80 2.67 1.01 1.01 1.00 1.00 1.02
100 2.88 1.01 1.01 1.00 1.00 1.01

Energy: 2.750 MeV
1 0.62 1.11 1.12 1.09 1.10 1.09
2 0.78 0.96 0.95 0.94 0.95 1.04
4 0.99 0.98 0.97 0.97 0.97 1.05
6 1.13 1.01 1.00 1.00 1.01 0.98
8 1.24 0.99 0.98 0.98 0.99 1.05
10 1.34 0.96 0.95 0.94 0.96 1.03
20 1.68 1.00 0.99 1.00 1.00 1.01
40 2.12 1.02 1.01 1.00 1.01 1.02
60 2.43 0.98 0.97 0.98 0.98 1.02
80 2.67 1.01 1.01 1.01 1.01 1.01
100 2.88 1.00 0.99 0.99 1.00 1.01
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Appendix C

Monte Carlo

C.1 Introduction

The following section describes the implementation of a very simple Monte Carlo

approach that was developed to calculate absorbed dose fractions in the Medical

Internal Radiation Dosimetry, spheres [22]. The accuracy of the code can not be

compared to general Monte Carlo codes available as it makes a number of large

assumptions. The aim of the development was not to reinvent the wheel but to

investigate what possible problems the original values for the MIRD spheres have.

The Monte Carlo program was written in python. Python is a general purpose

high level programing code that is useful in rapid development projects. It has a

large number of libraries and modules that are available. One problem with python

compared to other high level object orientated programing languages such a C++ is

it’s lack of speed. The availability of high performance numerical libraries such as

numpy and scipy do however reduce this limitation.
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C.2 Application Assumptions

This code is applicable to a homogeneous medium for the transport of photon energies

between 10 keV to 1.020 MeV. These energies have been chosen so that only Compton

and photoelectric interactions are taken into account. The use of a homogeneous

medium (in this case tissue) has also been chosen to simplify simulation so that a

boundary cross algorithm is not required.

A 10 keV finite energy cut for Compton interaction has been chosen due to the

amount of energy lost from Compton scattering at such a low energy. The results of

this assumption do not significantly effect the results of the simulation due to the

large increase in probability of photoelectric absorption at low energies. This increase

in probability is shown in Table C.2 where the ratio of photoelectric to incoherent

scattering cross sections increases at low energies. To prove that no increased bias is

introduced into the calculations, a simulation of a point source in a semi infinite 1

tissue medium was performed with a cut value of 1 keV. An initial photon energy of

100 keV was used with 105 photons being generated. A histogram of the energy of

the initial photon prior to interaction with the medium is shown in Figure C.1. It

can be seen that the number of photons that undergo Compton scattering below 10

keV is negligible.

An additional assumption used is that coherent scatter is not modelled. From

Table C.3 it can be seen that the effect of coherent scattering is non-negligible at

around 30 keV. At higher and lower energies the incoherent and photoelectric cross

sections are dominant. Figure C.1 shows that 95% of all photons are absorbed before

they fall below 30 keV. Therefore the overall effect of negating coherent scattering

may introduce a very small bias towards an increase in the total absorbed fraction.

The final assumption used was that energy is absorbed to a point i.e. when a

photon transfers kinetic energy to an electron the energy is assumed to be absorbed

1The medium size is a total of 12 mean free path lengths. For the MIRD tissue this is
approximately 74 cm for 100 keV photons.
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Figure C.1: Histogram of scattered radiation in a semi infinite tissue medium using
the python Monte Carlo code.

at that point. In reality however energy is absorbed in a region not a point. The size

of this energy absorption region is about the mean free path of the electron. For the

MIRD tissue this is approximately 0.12 mm for electrons with a kinetic energy of 1

MeV [89]. For a very simple approach this assumption is by far the most important,

however this advantage may introduce an additional bias. On one hand calculations

are simplified by not simulating electron transport. Where on the other hand the
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accuracy is effected by not simulating electrons escaping the region or the production

of bremsstrahlung.

C.3 Description

A flow chart diagram of the code is shown in Figure C.2. A gamma photon of some

initial energy Eγ is generated at a point with the original cartesian coordinates of

X=Y=Z=0. The photon is tracked to a point where the type of interaction is found.

The process is repeated until the photon is completely absorbed, or has fallen below

an energy cut off in which it is absorbed or leaves the world volume.

C.3.1 Random numbers

One very important consideration when using a Monte Carlo method is the generation

of random numbers. In reality the numbers used are not exactly random and will

after some time repeat. This application uses the pseudo-random number module

random which is included with the standard python code distribution. The module

uses the Mersenne Twister as the core generator. The module is suitable for this

Monte Carlo application as it has a large number generation before the sequence

is repeated. For the 32 bit variant the Mersenne Twister has a prime period of

219937 − 1 [145].

The total number of random numbers generated to track a single photon varies,

but in general each sequence has a fixed amount. When the process begins three

random numbers are generated. Of these, two indicate the initial direction (0 ≤ α ≤ π

and 0 ≤ β ≤ 2π) and the third is used to find the path length (Section C.3.3). Each

time the path length is sampled a new random number is generated. A forth is

generated to find the interaction type i.e. Compton or photoelectric. If a Compton

event is simulated a minimum of four random numbers are generated. The sampling

Page 135



C.3. DESCRIPTION

S
ta

rt
X

=
Y

=
Z

=
0

;
E
γ

=
E
o

S
el

ec
t

ra
n
d
om

in
it

ia
l

d
ir

ec
ti

on
.

0
≤

α
≤

π
0
≤
β
≤

2π

S
el

ec
t

ra
n
d
om

n
u
m

b
er

.
0
≤
p i
<

1

F
in

d
th

e
p
at

h
-

le
n
gt

h
S

=
ln

(p
i
)

µ
t

Is
X
′ ,
Y
′ ,
Z
′

in
th

e
w

or
ld

?

Is
E
o
>

10
k
eV

?

T
ru

e

W
h
ic

h
in

te
ra

ct
io

n
ty

p
e?

p i
>

µ
p
h
o
to

µ
t

T
ru

e
C

om
p
to

n
ev

en
t

S
am

p
le

K
le

in
-N

is
h
in

a,
R

et
u
rn
E

1
,θ

U
p

d
at

e
H

is
to

ry
,

∆
E

=
E
γ
−
E

1

at
X
′ ,
Y
′ ,
Z
′

C
al

cu
la

te
n
ew

va
lu

es
,
α
′ ,
β
′

G
et
µ

fr
om

lo
ok

u
p

ta
b
le

P
h
ot

o
el

ec
tr

ic
ev

en
t,

U
p

d
at

e
H

is
to

ry
,

∆
E

=
E
γ

at
X
′ ,
Y
′ ,
Z
′

T
ru

e

R
et

u
rn

to
S
ta

rt

F
al

se

F
al

se

F
ig

u
re

C
.2

:
D

ia
gr

am
fo

r
a

p
y
th

on
b

as
ed

M
on

te
C

ar
lo

co
d

e
fo

r
ga

m
m

a
p

h
ot

on
s.

T
h

e
fu

n
ct

io
n

u
se

d
an

d
w

h
at

it
re

tu
rn

s
is

lo
ca

te
d

b
el

ow
th

e
d
es

cr
ip

ti
on

st
ep

s.

Page 136



C.3. DESCRIPTION

Table C.1: Tissue composition
used in the MIRD pamphlets[21]

Element Fraction of mass %
Oxygen 71.39
Carbon 14.89
Hydrogen 10.00
Nitrogen 3.47
Sodium 0.15
Chlorine 0.10

of the Klein-Nishina formula is explained in Section C.3.5.

C.3.2 Tissue cross sections

In the MIRD pamphlets 3 and 8, absorbed fractions are calculated for a composition

of tissue shown in Table C.1. This definition for tissue is different from that described

by the ICRU report No. 44 [146]. Stabin and Konijnenberg [1] do state however that

this composition and those used by others should not provide much of a difference

to the absorbed fraction result.

Cross section values were obtained from the NIST:XCOM Database [147]. Values

were placed into an array for lookup when necessary. Table C.2 shows selected values

for the photoelectric (τ), coherent (σcoh) and incoherent (σicoh) cross sections as well

as the ratio of photoelectric to incoherent scattering cross sections. Table C.3 shows

the total cross section with and with out coherent scattering. The ratios are also

shown for comparison.

C.3.3 Path length

The path length is found by sampling the probability function for photon interaction

(equation C.1).

p(x) = µT e
−µT x (C.1)
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Table C.2: Cross-sections obtained from the XCOM database for the
tissue composition used in the MIRD pamphlets.

Energy Coherent Incoherent Photoelectric (τ) Ratio
Scatter (σcoh) Scatter (σicoh)

τ
τ+σicoh

keV cm2/g cm2/g cm2/g
10 2.18E-01 1.53E-01 4.49E+00 0.968
30 4.45E-02 1.81E-01 1.32E-01 0.422
60 1.32E-02 1.75E-01 1.35E-02 0.071
100 5.06E-03 1.61E-01 2.50E-03 0.015
200 1.31E-03 1.34E-01 2.62E-04 0.002
500 2.12E-04 9.56E-02 1.71E-05 0.000

Table C.3: Total cross-sections obtained from the XCOM database for
the tissue composition used in the MIRD pamphlets.

Energy With Coherent Scatter Without Coherent Scatter Ratio
keV cm2/g cm2/g
10 4.86E+00 4.64E+00 0.955
30 3.58E-01 3.13E-01 0.874
60 2.02E-01 1.89E-01 0.936
100 1.68E-01 1.63E-01 0.970
200 1.35E-01 1.34E-01 0.993
500 9.58E-02 9.56E-02 0.998
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Here the value µT is the total attenuation coefficient and is provided from a lookup

table created from the XCOM database [147]. Compton and photoelectric cross

sections are also obtained from the look up table when the total attenuation coefficient

is found. The probability that the photon will travel a distance S or less is then

given by equation C.2. If the probability p(x) is substituted to be a random number

pi then the distance traveled is found by the following.

S =
1

µT
ln(pi) (C.2)

C.3.4 Interaction type

As stated in Section C.2, only Compton and photoelectric photon interactions are

taken into account. The type of interaction is found by the ratio of the photoelectric

cross-section over the addition of the photoelectric and Compton cross-sections. A

random number is generated and if this value is less then the ratio, a photoelectric

event is chosen. Values for this ratio in the MIRD tissue are shown in Table C.2.

For example in this application a photon with an energy of 30 keV has a 42.2%

probability of a photoelectric event occurring.

C.3.5 Sampling the Klein-Nishina distribution

Once a Compton event is found to occur the direction and energy of the scattered

photon is required. This is found by using a combined composition and rejection

approach [148]. With some work the Compton cross section may be written as

a suitable probability density function (PDF) [149] of the ratio of the initial (E0)

and final (E1) photon energies such that ε = E1

E0
(This value is sometimes called

the wavelength, however the value is dimensionless). For any photon the minimum

scattered photon energy will occur from backscatter and is written in equation C.3.

For sampling the energy the respective PDF is given by equation C.4. Equation C.4,
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is also used in the standard Geant4 electromagnetic physics package [150]. Other

methods for sampling from the Klein-Nishina distribution are discussed by Horowitz

et. al.[151], Blomquist and Gelbard [152] and Kahn (discussed in [149]).

ε0 =
mec

2

mec2 + 2E0

(C.3)

PDF = f(ε) · g(ε) = [α1f1(ε) + α2f2(ε)] · g(ε) (C.4)

where, the PDFs f1 and f2 are defined on the interval [ε0, 1]:

f1(ε) =
1

α1ε
; α1 = ln(

1

ε0
) (C.5)

f2(ε) =
ε

α2

; α2 =
1− ε20

2
(C.6)

and where g(ε) is the rejection function;

g(ε) = [1− ε

1 + ε2
sin2θ] (C.7)

The application of these equations is shown in the flow diagram C.3. Here the

back scatter ratio (Equation C.3) is calculated with it’s respective positive constants

α1 and α2. From the ratio of α1

α1+α2
a test variate for ε is sampled from f1 or f2 using

the cumulative distribution method for continuous variables [153]. The associated

test value for the scattering angle θ is then found by the Compton equation. Finally

g(ε) is calculated and using the rejection method [153] the test value ε is accepted or

rejected.
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Calculate the minimum
possible photon energy.

i.e. backscatter εo

Select random numbers.
P1, P2, P3 ; between [0,1]

α1 =

ln
(

1
εo

)
;α2 =

(1−ε2o)
2

P1 <
α1

α1+α2

f1 ; ε = εP2
o

f2 ; ε =√
ε2
o + P2(1− ε2

o)

sin2θ = t(2 − t)

t = mec2(1−ε)
E0·ε

g(ε) ≥ P3

Accept ε and θ

True False

False

True

Figure C.3: A Logic diagram for direction and energy change from Compton
scattering

Page 141



C.4. CODE

C.4 Code

The following are the user classes (track.py) for the Monte Carlo application described

above and a command line application for the MIRD spheres.

C.4.1 User classes

#!/usr/bin/python

"""

Name: track.py

Description:

The following is a group of user classes for the implementation

of a very simple Monte Carlo approach to calculate absorbed

dose fraction in the Medical Internal Radiation Dosimetry,

spheres.

Aim:

The aim of the development was not to reinvent the wheel but to

investigate what possible problems the original values have.

Limitations:

a lack of speed,

homogeneous medium only,

photon energies between 1.020 MeV to 10 keV,

Compton and photoelectric interactions only, and

electron transport is not simulated.

KJH, June - 2010

"""

__author__ = "Kevin J Hickson"

__email__ = "kevin.hickson@petnm.unimelb.edu.au"

__version__ = 0.01

import sys

import math

import random

random.seed()

import numpy
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import pylab

try:

#The psyco module attempts to pre-compile the code

#i.e. reducing simulation time, but not by much!

import psyco

psyco.full()

except ImportError:

print """

Psyco not installed program may run slow.

"""

class geometry:

"""This class handles the world geometry, including

the geometry of the sphere source. A voxel map is implemented

but not used or tested.

"""

def __init__(self):

"""__init__ is passed with no effect"""

pass

def new_world(self, world_size_x, world_size_y, world_size_z):

"""Create a new voxel world for absorbed dose scoring.

[Not used]"""

self.world_size = (world_size_x, world_size_y, world_size_z)

self.the_world = the_world = self.world((world_size_x,

world_size_y, world_size_z))

self.world_centre = (world_size_x/2., world_size_y/2.,

world_size_z/2.)

return the_world

def world(self, world_size):

"""Called in geometry.new_world [Not used]"""

size = world_size[0] * world_size[1] * world_size[2]

array = numpy.zeros(size, dtype = numpy.float32)

return array.reshape(world_size)

def cart2sph(self, x, y, z):

"""From Cartesian to Spherical coordinates"""

#input must be float

r = math.sqrt(x**2 + y**2 + z**2)

theta = math.acos(z / r)

phi = math.atan2(y, x)

return r, theta, phi

def sph2cart(self, r, theta, phi):
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"""From Spherical to Cartesian coordinates"""

# r >= 0

# 0 <= theta <= pi

# 0 <= phi < 2pi

x = r * math.sin(theta) * math.cos(phi)

y = r * math.sin(theta) * math.sin(phi)

z = r * math.cos(theta)

return x, y, z

def sphere_source(self, r):

"""Get a random point (Cartesian cords.)

in a sphere source. """

R = random.uniform(0, r)

theta = random.uniform(0, math.pi)

phi = random.uniform(0, 2 * math.pi)

return self.sph2cart(R, theta, phi)

class attenuation_data:

"""Read and use attenuation data from NIST"""

def __init__(self, numpy_attn_file):

"""

File columns are as follows.

Photon Coherent Incoher. Photoel. Tot. w/ Tot. wo/

Energy Scatter. Scatter. Absorb. Coherent Coherent

Mev cm^2/g cm^2/g cm^2/g cm^2/g cm^2/g

"""

#Load numpy binary file.

self.attn_file = numpy.load(numpy_attn_file)

def material_names(self):

"""Return the names of each material in

the numpy attenuation file."""

return self.attn_file.files

def get_attn_data(self, name):

"""Return the lookup table for a given material name."""

return numpy.array(self.attn_file[name],

dtype = numpy.float32)

def get_water(self):

"""Used for testing, returns the water lookup table."""

self.h2o_attn = h2o_attn = self.get_attn_data(’h2o’)

#since density = 1.00 g/cm^3 column [1:] is
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#also in units of cm^-1.

#however for anything other then p = 1.00 g/cm^3

#p needs to be taken into account.

return h2o_attn

def lookup(self, atn_data, energy):

"""Returns the energy, coherent, incoherent, photo and

total cross sections from the table atn_data by looking

up the energy."""

#use to get closest value

bool = atn_data[0] == round(energy,3)

i = numpy.where(bool)

#Used to check that one and only one energy value has

#been found, If this is incorrect then there is a problem

#with the numpy attenuation table.

if len(i[0]) != 1:

print ’Debug attn Library, E:%s, i:%s’ % (energy,i)

values = atn_data[0][i][0], atn_data[1][i][0], \

atn_data[2][i][0], atn_data[3][i][0], \

atn_data[4][i][0]

#energy, coherent, incoherent, photo, total

return values

class histories:

"""Store interaction histories in a way that will make them

easy to save"""

def __init__(self, base_name):

"""Opens a history text file. and starts a numpy array

to keep energy values but not location or type."""

self.hist = open(base_name, ’w’)

self.abfrac = numpy.array([])

def write(self, string):

"""Write to the history file."""

self.hist.write(string + ’\n’)

def absorbed_fraction(self, energy):

"""Append energy to the numpy array."""

self.abfrac = numpy.append(self.abfrac, energy)

class event:

"""Simulate a single event"""

def __init__(self, event_number, histories, energy0,\
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x0, y0, z0, world_size, mu_data,\

material_name, vox = False, savehits=False):

"""Set initial location and energy values and follow event

until it is terminated

note: mu in terms of mu = (mu_total, mu_photo, mu_compton)

"""

self.energy0 = energy0 #MeV

self.x0 = x0 #cm

self.y0 = y0 #cm

self.z0 = z0 #cm

self.mu_data = mu_data

self.world = world_size

self.savehits = savehits #True or False

self.electron_rest_mass = 0.511 #MeV / c^2

#Start Main

self.main(histories, event_number, material_name, vox = vox)

def initial_random_numbers(self):

"""Create the initial random direction in spherical

coordinates

0 <= alpha <= pi

0 <= beta <= 2pi

"""

#So 1.0 is possible random.uniform is used.

self.alpha = math.pi * random.uniform(0.0, 1.0)

self.beta = 2 * math.pi * random.uniform(0.0, 1.0)

def get_flight_distance(self, mu_total):

"""sampling the probability function for photon interaction

and return a random distance before interaction"""

p = random.uniform(0., 1.0)

return -math.log(p) * (1.0 / mu_total) #unit =f mu

def test_event_type(self, mu):

"""Find the event at the interaction location.

Return Compton or photoelectric only."""

p = random.uniform(0,1)

if p < (mu[3]/(mu[3] + mu[2])):return "photoelectric"

else: return "compton"

#with coherent scatter the test would look like this.

"""

if p < (mu[3]/mu[4]):return "photoelectric"
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elif p < ((mu[3] + mu[2]) / mu[4]): return "compton"

elif p < ((mu[3] + mu[2] + mu[1]) / mu[4]):

return "coherent"

else: return "pair_production ’What the!!!!’"

"""

def new_position(self, S, alpha, beta):

"""Return the new photon location after finding the

flight distance. Note: Spherical coordinates in,

Cartesian coordinate out.

"""

x1, y1, z1 = geometry().sph2cart(S, alpha, beta)

X = self.x0 + x1

Y = self.y0 + y1

Z = self.z0 + z1

return X, Y, Z

def g4_sample(self):

"""This is g4’s combined composition and rejection method

to sample the energy of a scattered photon.

It takes a lot of work to recast the Compton cross section

as a function of E0 and E1 into a sutable

PDF(e) = f(e).g(e) = [alpha1*f1(e) + alpha2*f2(e)].g(e)

where e = E1/E0.

Based on Nelson et al. 1985 (EGS4)

"""

epsilon_0 = self.electron_rest_mass /

(self.electron_rest_mass\

+ (2 * self.energy0))

#Where epsilon_0 is the minimum possible photon energy

#i.e. back scatter

john_west = True #It’s the fish that john west rejects

#that makes john west the best.

while john_west:

p = random.uniform(0.0, 1.0)

p1 = random.uniform(0.0, 1.0)

p2 = random.uniform(0.0, 1.0)

alpha_1 = math.log(1/epsilon_0)

alpha_2 = 0.5 * (1- (epsilon_0**2))
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if p < (alpha_1 /(alpha_1 + alpha_2)):

#sample f1(e)

epsilon = epsilon_0 ** p1

else:

#sample f2(e)

epsilon = \

math.sqrt( epsilon_0**2 + p1 * \

(1 - epsilon_0**2))

#From Compton formula

t = self.electron_rest_mass * (1 - epsilon) / \

(self.energy0*epsilon)

sin2 = t*(2-t)

if 1 - ((epsilon / (1 + epsilon**2))*sin2) >= p2:

#Accept epsilon

john_west = False

else:

john_west = True

E1 = self.energy0 * epsilon

angle = math.acos((1 + \

(self.electron_rest_mass/self.energy0) \

- (self.electron_rest_mass/E1)))

return (E1, angle)

def alpha_beta_new(self):

"""Return the new photon direction from the Compton

scattering angle and a random Azimuth angle.

"""

self.alpha = alpha = self.scaterAngle

self.beta = beta = 2 * math.pi * random.uniform(0.0, 1.0)

return alpha, beta

def main(self, histories, event_number, material_name,

vox = False):

"""Track a photon until it is absorbed, falls below cut

off or leaves the world.

"""

savehits = self.savehits

material = self.mu_data.get_attn_data(material_name)

h = histories

self.initial_random_numbers()

event = True

while event:
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mu = self.mu_data.lookup(material, self.energy0)

S = self.get_flight_distance(mu[2]+ mu[3])

self.x1, self.y1, self.z1 = \

self.new_position(S, self.alpha, self.beta)

#Test if the event is in the world.

#Note the world is a sphere.

if (self.x1 **2 + self.y1 **2 + self.z1 **2) > \

self.world**2:

#event out of world

event = False

else:

#Test for the cut off value (This case is 10 keV).

if self.energy0 < 0.010:

if savehits:

#Write event to file if asked.

string = str(\

’%s %s %s %s %s %s %s %s %s photoelectric’%\

(event_number, self.energy0, self.energy0,\

self.x0, self.y0, self.z0, self.x1, \

self.y1, self.z1))

h.write(string)

else:

#else append to the numpy array

h.absorbed_fraction(self.energy0)

event = False #Stop the event.

else:

test = self.test_event_type(mu)

if test == ’photoelectric’:

#Do the scoring for the photoelectric event.

if savehits:

string = str(\

’%s %s %s %s %s %s %s %s %s photoelectric’\

% (event_number, self.energy0,\

self.energy0,\

self.x0, self.y0, self.z0, self.x1, \

self.y1, self.z1))

h.write(string)

else:

h.absorbed_fraction(self.energy0)

event = False #Stop event

elif test == ’compton’:

#Get scatter angle and energy.

self.energy1, self.scaterAngle = \

self.g4_sample()
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#Do the scoring.

if savehits:

string = str(\

’%s %s %s %s %s %s %s %s %s compton %s’\

% (event_number, self.energy0, \

self.energy0 - self.energy1, self.x0,\

self.y0, self.z0, self.x1, self.y1,\

self.z1, self.scaterAngle))

h.write(string)

else:

h.absorbed_fraction(\

self.energy0 - self.energy1)

#Set new "initial values"...

self.alpha, self.beta = self.alpha_beta_new()

self.energy0 = self.energy1

self.x0 = self.x1

self.y0 = self.y1

self.z0 = self.z1

else:

#Catch any error in the events.

event = False

print ’Opps! What is this event??’

def get_vox(self):

"""Return the voxel dose map [Not Used]"""

g = self.g

return g
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C.4.2 Command line parser

#!/usr/bin/python

"""

Name: absorbed_fractions.py

Usage: absorbed_fractions.py [options] sphere_radius i_energy(MeV)

Options:

-h, --help show this help message and exit

-d, --debug set debug option true.

-a ATTN A file containing cross section data.

Default: attn_data.npz

-m MATERIAL_NAME Choose the world material.

Default: h2o

-o ONAME Set the output histories name.

Default: testHits.dat

-e TOTAL_EVENTS Set the number of events to track.

Default: 10

-s, --save Write hits to a file

Description:

Use the classes defined in track.py to obtain absorbed fraction for

the MIRD spheres.

This is ultimately a option parser program for my application.

The output file is of the form.

Line 1 (Header):

sphere_radius(cm), initial_photon_energy(Mev),

no._events, materal_name.

Line 2 -> (Data):

arg[0] ; Event ID,

arg[1] ; Incident photon energy(MeV)

arg[2] ; Deposited energy(Mev)

arg[3] - arg[5]; Photon origin X, Y, Z

arg[6] - arg[8]; Energy Deposited at X, Y, Z

arg[9] ; Type of interaction.

KJH - June 2010

"""

__author__ = "Kevin J Hickson"

__email__ = "kevin.hickson@petnm.unimelb.edu.au"

__version__ = 0.01
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import sys

import os

import optparse

import numpy

import track

def main(sphere_radius, initial_energy, number_of_events,

oname, attn_file, material_name, savehits):

"""Begin the main application"""

#Call __init__ on the histories class.

#Sets scoring output.

histories = track.histories(oname)

if savehits:

#Write a header for the output file.

header = ’sphere_radius: %s initial_energy:’ \

’%s number_of_events:’\

’%s material_name: %s’\

% (sphere_radius, initial_energy, number_of_events,

material_name)

histories.write(header)

#Set the cross section lookup table

xsection_data_file = track.attenuation_data(attn_file)

event_number = 1

world_size = sphere_radius

while event_number <= number_of_events:

Ox, Oy, Oz = track.geometry().sphere_source(sphere_radius)

#Randomly get a point in the sphere to set

#the org. photon points. Ox, Oy, Oz

track.event(event_number, histories, initial_energy,\

Ox, Oy, Oz,

world_size, xsection_data_file, material_name,

savehits)

#Calles an event, and follows it until

#The event is False.

event_number = event_number + 1
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if savehits == False:

#If no output file is selected,

#absorbed energies have been binned

#in a Numpy array. Useful for a large number of generated

#photons.

print ’Absorbed Fraction:%s, No. int%s, r:%s, e:%s’ % \

((numpy.sum(histories.abfrac) / \

(initial_energy*number_of_events)), \

len(histories.abfrac),\

sphere_radius, initial_energy)

if __name__ == ’__main__’:

#The parser for command line use.

parser = optparse.OptionParser(usage = \

’%prog [options] sphere_radius initial_energy(MeV)’,

epilog = (’Problems to: %s\n’ % __email__))

#Add parser options.

parser.add_option(’-d’, ’--debug’,

dest= ’debug’,

default = False,

action = ’store_true’,

help = ’’’set debug option true.’’’)

parser.add_option(’-a’, #’--attenuation_data’,

dest= ’attn’,

default = ’attn_data.npz’,

action = ’store’,

help=\

’’’A file containing cross section data.\

Default: attn_data.npz’’’)

parser.add_option(’-m’, #’--material_name’,

dest= ’material_name’,

default = ’h2o’,

action = ’store’,

help = ’’’Choose the world material.\

Default: h2o’’’)

parser.add_option(’-o’, #’--output_name’,

dest= ’oname’,

default = ’testHits.dat’,

action = ’store’,

help = \
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’’’Set the output histories name.\

Default: testHits.dat’’’)

parser.add_option(’-e’, #’--number of events’,

dest= ’total_events’,

default = ’10’,

action = ’store’,

help = \

’’’Set the number of events to track.\

Default: 10’’’)

parser.add_option(’-s’, ’--save’,

dest= ’save_events’,

default = False,

action = ’store_true’,

help = ’’’Write hits to a file’’’)

(options, args) = parser.parse_args()

#Check arguments

if len(args) != 2:

print "Incorrect number of arguments\n"

parser.print_help()

sys.exit(1)

#The track.py script is limited to an energy of less

#then 1.022 MeV.

#Check this is true.

if float(args[1]) >= 1.022:

print "Sorry photon energy can not be equal"

print "to or above 1.022 MeV."

sys.exit(1)

#We don’t won’t to save over the hits file, Check it.

if options.save_events:

if os.access(options.oname, os.F_OK):

print ’%s already exists\nUse option: -o output_name’ \

% options.oname

sys.exit(1)

main(float(args[0]), float(args[1]), int(options.total_events),

options.oname, options.attn, options.material_name,

options.save_events)
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