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Abstract 

The focus of this thesis is to develop computer vision algorithms for visual speech 

recognition. Potential applications of such a system include the lip-reading mobile 

phones, human computer interface (HCI) for mobility-impaired users, in-vehicle systems, 

robotics, surveillance, improvement of speech based computer control in a noisy 

environment and for the rehabilitation of the persons who have undergone a 

laryngectomy surgery, or older citizens who require extensive effort to speak, but can 

move mouth easily rather than actually pronouncing. 

In the literature, there are several models and algorithms available for visual feature 

extraction to enhance the performance of existing acoustic speech recognition systems. 

These features are extracted from static mouth images and characterized as appearance 

and shape based features. However, these underlying methods rarely incorporate the time 

dependent information of mouth motion and dynamics. Nevertheless, there are no 

commercially available visual speech recognition systems. This reflects the need to 

further address the research challenges. 

This dissertation presents two optical flow based approaches of visual feature extraction, 

which capture the dynamics of mouth motions in a video during speaking. These 

dynamics of mouth motion are used to classify and identify the visemes in a video. The 

motivation for using motion features is, because the human perception of lip-reading is 

concerned with the temporal dynamics of mouth motion. The majority of existing speech 

recognition systems is based on audio-visual signals and has been developed for speech 

enhancement and is prone to acoustic noise. Considering this problem, the main focus of 

this research is to investigate and develop a visual only speech recognition system which 

should be suitable for noisy environments. 

The first approach is based on extraction of features from the optical flow vertical 

component. Preliminary experiments have revealed that the salient speech features are 

available in the vertical component of optical flow, whereas the horizontal features have a 

smaller contribution in normal speech. The optical flow vertical component is 
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decomposed into multiple non-overlapping fixed scale blocks and statistical features of 

each block are computed for successive video frames of an utterance. A common 

problem with existing systems is their high error rates due to the variation in speed of 

speech and the style of people to speak, especially across national and cultural 

boundaries, making them very subject dependent. To overcome this issue, the proposed 

system is made robust to the speed of speech by normalizing each utterance to a fixed 

number of features. 

In the second approach, four directional motion templates based on optical flow are 

developed, each representing the consolidated motion information in an utterance in four 

directions (i.e.,up, down, left and right). This approach is an evolution of a view based 

approach known as motion history image (MHI) which implicitly encodes the spatio-

temporal components of an image sequence into a grey scale scalar valued MHI. One of 

the main issues with the MHI method is its motion overwriting problem because of self-

occlusion which happens when the motion is repeated in the same location at different 

times within the utterance. DMHIs seem to solve this issue of overwriting, that technique 

consists of four directional motion history images, rather than a single image as used in 

the MHI technique. Two types of image descriptors, Zernike moments and Hu moments 

are used to represent each image of DMHIs. A support vector machine (SVM) was used 

to classify the features obtained from the optical flow vertical component, Zernike and 

Hu moments separately. For identification of visemes, a multiclass SVM approach was 

employed. 

A video speech corpus of seven subjects was used for evaluating the efficiency of the 

proposed methods for lip-reading. The experimental results demonstrate the promising 

performance of the optical flow based mouth movement representations. The advantages 

and limitations of both the techniques for visual speech recognition were identified and 

validated through experiments. Performance comparison between DMHI and MHI based 

on Zernike moments, shows that the DMHI technique outperforms the MHI technique. 

A video based adhoc temporal segmentation method is proposed in the thesis for isolated 

utterances. It has been used to detect the start and the end frame of an utterance from an 
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image sequence. The technique is based on a pair-wise pixel comparison method. The 

efficiency of the proposed technique was tested on the available data set with short 

pauses between each utterance. 
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Chapter 1  

Introduction 

Researchers have always aimed to develop a sophisticated machine that can perform 

tasks like human beings. The motivation for this effort is from the practical need of 

intellectual tasks to be accomplished in an efficient way. These intellectual tasks are 

based on realization, evaluation and interpretation of information from sensors. This can 

be resembled to perception. Perception is the process in human beings of attaining  

knowledge about the environment, processing it and reacting to it accordingly [1]. It 

depends on complex functions of the nervous system, but is performed effortlessly. It is 

nearly impossible to know the exact intrinsic mechanism of perception. However, 

scientists have been attempting to develop computer algorithms that replicate human 

intelligence and the field is commonly known as artificial intelligence. Pattern 

recognition is the core area of artificial intelligence that enables machines to accept 

external inputs and react accordingly. Due to the unknowns behind such understanding, 

the pattern recognition field provides the facility to exploit the abstract mathematical 

model of perception. 

A human‟s ability to lip-read by perceiving the lips, teeth and tongue is a hook of the 

chain of perception. It provides useful visual information about speech. Around four 

decades ago the studies by Hazard [2] and Jeffers and Barley [3, 4] demonstrated that a 

human listener always gets advantages from visual cues, such as lip and tongue 

movements and also from facial expressions and hand gestures to increase the level of 

speech intelligibility in noisy conditions. The process of using visual only modality is 

often referred to as lip-reading or speech reading, that is to perceive what someone is 

saying by watching his lip movements. Motivated by this ability in humans, researchers 

have aimed to develop an audio-visual speech recognition (AVSR) system. 

The most natural and easy way of communication between humans is speech. Due to its 

naturalness, much research has been conducted to develop speech based human computer 
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interfaces (HCIs) [5-7], where speech is the basic mode of interaction with machines. 

While these systems have shown promising success in well defined applications such as 

call centres, dictations or call routing in reasonably noiseless environments, they are yet 

to attain the target where these systems can be deployed anywhere and everywhere. The 

major reason behind this is the susceptibility to noise, which degrades the performance of 

audio speech recognition systems. Noise robust algorithms such as, feature compensation 

[8], implementations of microphone arrays [9], nonlocal means denoising method [10], 

variable frame rate analysis [11] or noise adaptation algorithms [9, 12, 13] have presented 

significant improvement in speech recognition under noisy environment, however, such 

algorithms are not exactly prone to noise due to the difficulty in modelling the random 

characteristic of non-stationary noise. 

In recent years, an alternative method to overcome the limitations of audio speech 

recognition has gained more interest. This is by the use of a multimodal conversational 

system. Besides speech input, multimodal conversational systems also support inputs 

from other modalities such as visual [14] and facial muscle activity [15] to identify the 

utterances. Compared to the conventional speech-only interfaces in spoken dialog 

systems, multimodal conversational interfaces provide better interpretation of user input 

due to mutual disambiguation among complementary modalities [16]. However, sensor 

based systems have an obvious disadvantage in that they require the user to place the 

sensors on to the face. One of the limitations of the muscle monitoring approaches is its 

low reliability low reliability. Visual modality based systems are non intrusive and users 

are not require to place the sensors on face and hence have emerged as more desirable 

options. 

Visual speech information is being used to increase the robustness of speech recognition. 

Much research has been conducted where visual signals are fused with existing audio-

only speech recognition systems (ASR) to augment the audio recognition [14, 17-22]. 

The McGurk effect [23] demonstrates that inconsistency between audio and visual 

information can result in perceptual confusion. Visual information plays an important 

role especially in noisy environments. AVSR systems are useful for many applications. 

However, such systems are not suitable for people with hearing and speech impairments. 
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Contribution of audio features in speech recognition systems still plays an important role 

than visual features. However, in some cases, it is hard to extract pertinent information 

from the acoustic signal. There are many applications in which it is essential to identify 

the desired speech signal under extremely adverse acoustic environments such as 

detecting a person‟s speech through a glass window, from a distance or a person speaking 

in a very noisy crowd or in a factory. In addition, if there is no assisting sign language for 

a TV broadcast or speeches, visual information is the only source of information for 

hearing impaired people. In such applications, the performance of traditional speech 

recognition is very limited. 

There are a few works focusing on lip movement representations for speech recognition 

solely with visual information [24-27]. This is known as visual speech recognition 

(VSR). This research is an incremental effort in the field of VSR. Generally, VSR 

systems are comprised of several pattern recognition stages; among them the most 

important step deals with the computation of the visual features that are extracted in order 

to produce a compact representation that describes either the visual appearance or the 

shape of the lips in each image. The result of the feature extraction is used to generate 

feasible visual speech models that represent the lip motions during the speech process. 

Hence the main focus of this research is visual feature extraction. 

1.1 Pattern Recognition 

Pattern recognition deals with the assignment of some label to a given input value 

through their observable information, such as intensity values of an image, frequency 

components available in an EMG signal. Generally pattern recognition system is divided 

into three main components, as shown in Figure 1.1. A sensor (camera in this research) 

transforms the observable information such as images or sounds into signals that can be 

analysed by a computer system. A feature extraction component computes the signal 

properties/ features suitable for classification. Finally the extracted features are assigned 

to a classifier to sense the class of the signal based on certain types of measures, such as 

distance, likelihood and Bayesian. 
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1.1.1 Feature Extraction 

The main objective of the feature extractor is to transform the input signals into a set of 

properties which are very similar to the signals of same category and are very distinctive 

to the signals of different category. This leads to the idea of obtaining the robust features 

that are invariant to irrelevant transformation such as rotation and scaling of the input 

signal. In this research, the rotation and scale invariant features are obtained to 

compensate the varying view angle orientation and distance of camera from the subject. 

Sensor Classification

Input
Feature

Extraction

Recognition

Pattern Recognition
 

Figure 1.1: A general pattern recognition procedure 

1.1.2 Classification 

The task of a classifier is to assign an input feature vector to one of the existing classes, 

based on specific classification measures. Conventional classification measures include 

distance (Mahalanobis or Euclidean distance), likelihood and Bayesian a posterior 

probability. The decision boundaries generated by these measures are linear and hence 

are known as linear classifier. However, such type of classifiers are limited to solve the 

linearly separable data and are unable to handle complex non-linear decision boundaries 

and have little computational flexibility. Support vector machine (SVM) is a classifier 

with non-linear formulation, developed with the idea of classification which afford dot-

products can be computed efficiently in higher dimensional feature space [28]. Classes 

which are non-linear and inseparable in the original space can be linearly separated by 

mapping them to a new higher dimensional feature spaces. SVM can handle the classes 

with complex non-linear decision boundaries because of this advantage SVM is the 

choice of this research as a visual speech classifier. 
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1.2 Motivation 

Studies of human speech production and perception have shown that the visual 

movement of the speaker‟s lips and face are an important factor in human 

communication. Hearing impaired persons extensively use the visual cues and some 

individuals perform lip-reading to the level which enables almost perfect speech 

perception [29]. Normal hearing subjects also get the benefit of visual information to 

improve their speech perception, especially in noisy environments [30]. This is the 

motivation behind visual speech recognition. Reisberg et al. [31] have shown that 

normal-hearing subjects who see the talker‟s face perceive speech more accurately, even 

in noise free environments. Motivated by these psychological studies, several researchers 

[14, 18, 22, 32-34] have developed speech reading systems, mainly to demonstrate the 

potential use of visual information to improve the robustness of acoustic speech 

recognition systems in noise. While these systems have validated the benefit of visual 

speech information, there is still much discussion require about determining which visual 

features are important for visual only speech reading, how to extract them and how to 

represent them automatically in a robust manner. 

1.3 Scope of Thesis 

Obtaining robust visual speech features is a difficult task due to the varying appearance 

of different persons and due to appearance variability during speech production. Varying 

illumination and orientation of the face cause further difficulties in feature extraction. For 

real world applications, whether it is an office, factory or a railway station the 

environmental noise creates additional problems. Whereas the extraction of acoustic 

speech features is fairly established, important visual speech features for lip reading are 

relatively unknown and the investigation of different feature extraction methods is still 

subject to ongoing research. In an attempt to solve this problem, the work in this thesis 

has solely concentrated on a visual only signal and to avoid environmental noise, the 

acoustic signal is not used. The work has focused on researching and developing methods 

of robust visual feature extraction. 
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Considering the above facts, the scope of this thesis was to investigate the important 

visual features of speech, resembling to human perception. The motion based optical flow 

estimation method was adopted, which gives the motion estimation between consecutive 

images, analogous to human perception. The emphasis of the method is to provide robust 

features which perform well for different subjects without the use of artificial markers 

and sensors on the face of a subject. 

1.4 Aims and Objectives of the Research 

Inspired by the human perception of lip-reading, the general objective of this research can 

be defined as: 

“To design a visual only speech recognition system based on robust motion features that 

can recognize a limited vocabulary dataset at viseme level” 

One common difficulty with AVSR systems is their high error rates due to the large 

variation in the way people speak, especially across national and cultural boundaries [35], 

making them very subject dependent and therefore unsuitable for multiple subject 

applications. There is also the difference between the speeds of speaking of a subject 

when repeating an utterance. To overcome this issue, the proposed system is made robust 

to the speed of speech by normalizing each utterance to a fixed number of features. The 

other concern with these systems is their lack of robustness against variations in lighting 

conditions plus the angle and distance of the camera along with their sensitivity to 

variations in the colour and texture of the speaker‟s skin. Both of these problems will 

prevent the wide deployment of these systems. Techniques previously reported in the 

literature exhibit both of these problems [26]. Further, the majority of video based 

techniques reported to date are based on multimodal configuration and have been 

developed for speech enhancement, not as stand-alone visual speech recognition systems 

[34, 36, 37]. 

In this research, two novel methods of feature extraction are proposed that overcome the 

above shortcomings. These methods depend solely on visual features so that acoustic 

noise will not affect the system. The proposed techniques use optical flow estimation that 
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measure the movement of a mouth in consecutive images and which are insensitive to 

background and lighting conditions. In the first approach it is concluded that the optical 

flow vertical component retains most of the speech information compared to the 

horizontal component. Hence, the optical flow vertical component has been divided into 

blocks that represent different sections of the mouth. The average directionality of each 

block of optical flow has been used as the feature to represent the movement. 

In the second approach, optical flow based four directional templates are developed, each 

representing the consolidated motion information of an utterance in a particular direction 

(up, down, left and right). This approach is an enhanced technique of a view based 

approach known as motion history image (MHI) which implicitly encodes the temporal 

component of an image sequence into a scalar valued motion template. One of the key 

constraints of the MHI method is its motion overwriting problem due to self-occlusion 

which happens when the motion is repeated in the same location at different times within 

the utterance. DMHIs seem to solve this issue of overwriting, that technique consists of   

four directional motion history images, rather than a single image as used in the MHI 

technique. Two types of image descriptors, Zernike moments and Hu moments, are used 

to represent each image of DMHIs. The selection of these features is based on their 

robustness to the rotation and scaling invariance which helps in varying view angle and 

distance of camera from subject. 

Support Vector Machine (SVM), a state-of-the-art classifier, has been used to classify the 

features of visemes obtained from the optical flow vertical component, Zernike and Hu 

moments separately and for identification a multi-class SVM approach has been 

employed. 

Another shortcoming with automatic analysis of video data is the need for manual 

intervention due to the need for segmentation of the video. While audio assisted video 

speech analysis uses the audio cues for segmentation, this is not possible in video only 

speech recognition. One achievement of this work is that automatic segmentation of the 

visual speech data has been achieved solely based on video signals. The automatic 
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segmentation of the video data is based on a pair-wise pixel comparison method [38] to 

identify the start and end frame of each utterance.  

1.5 Outline of Thesis 

This thesis has mainly focused on feature extraction and temporal segmentation 

algorithms and then classification of the extracted features has performed. The outline of 

the thesis is as follows: 

Chapter 2 reviews the literature of speech recognition, including non-audio speech 

modalities and audio-visual speech recognition, detailing its history and progression. This 

chapter also contains the physiological and linguistic aspects of speech production and 

visual speech perception of humans. This chapter describes the basic components of a 

visual speech recognition system and finally a brief description of the proposed VSR 

system is presented. 

Chapter 3 is concerned with image and video pre-processing to make the videos suitable 

for visual feature extraction. It gives a brief introduction of visual front end processing 

including a literature review of face and region of interest (ROI) extraction, and provides 

a description of the dataset used in this study. It also describes a new adhoc method for 

detection of the start and end frame of an utterance for the used dataset. 

Chapter 4 presents one of the main contributions of this research. Generally, the visual 

features for lip-reading are extracted from static mouth images and characterized as 

appearance and shape based features. As opposed to shape and appearance based features 

that describe the underlying static shapes of mouth. Time-based motion features directly 

represent the dynamics of mouth movement across the video frames which are analogous 

to human perception. The optical flow based motion features are extracted, based on 

these features a novel block based approach to represent the mouth motion is presented. 

Variations in speed of speech between inter and intra subject can give rise to inexact 

viseme recognition, this variation is normalized by two phase approach. 
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Chapter 5 presents a further contribution of this research and describes the basic theory 

of motion history image. This leads to the development of optical flow based directional 

motion history images (DMHIs) which is a novel approach to represent the mouth 

movement by four directional motion templates. Advantages and disadvantages of the 

proposed technique are then discussed. 

Chapter 6 provides a review of the visual feature extraction techniques for VSR, it 

describes two important rotation and scale invariant image descriptors, Zernike and Hu 

moments, which were used to extract the important features of DMHIs. Finally the 

classification of visual speech is broached, with a detailed description and justification of 

Support vector machine (SVM) classifier as a choice. 

Chapter 7 reports on the experimental setup and methodology for classification. This 

chapter also evaluates the performance of the proposed motion templates computed by 

the optical flow vertical component and the directional motion history images. In 

addition, the results of proposed DMHI technique are compared with the underlying MHI 

technique, the results indicated that the performance of DMHI was better than MHI. 

Chapter 8 concludes the thesis and provides the future directions in this research topic. 

1.6 Publications Resulting from this Research 
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1. A. A. Shaikh, D. K. Kumar, & J. Gubbi, “Visual Speech Recognition Using 

Optical Flow and Support Vector Machines”. International Journal of 
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2. Ayaz A. Shaikh, D. K. Kumar, & J. Gubbi “Automatic Visual Speech 

Segmentation and Recognition Using Directional Motion History Images and 

Zernike Moments”, Submitted to The Visual Computer, (ERA-B). 
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Palaniswami, “Robust motion features for visual speech recognition”, Poster 
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Chapter 2  

An Overview of AVSR Systems 

Audio visual speech recognition (AVSR) is a combination of diverse research fields such 

as linguistic, physiology of human speech production, and psychology of human 

perception. In addition to this, pattern recognition, video processing and computer vision 

fields are also incorporated in the development of AVSR systems. It is important for 

researchers in the field of AVSR to have some basic knowledge of linguistic, human 

speech production and of human perception. They should have a sound knowledge about 

the key elements of the other fields mentioned is a necessity, so that computer based 

visual speech recognition can be optimized up to maximum possible level of human 

visual speech perception. 

This chapter provides a complete overview of the AVSR and VSR systems, before 

discussing the AVSR brief overview of speech recognition by non speech modalities is 

presented. The chapter then focuses on human speech production and linguistics of visual 

speech, followed by the human visual speech perception. Pertinent regions of the face 

that contain most important visual cues are also discussed. Finally the chapter highlights 

the basic components of the general visual speech recognition system and it is followed 

by a brief review of the proposed visual speech recognition system. 

2.1 Introduction 

Human speech perception is greatly improved by observing a speaker‟s lip movements as 

distinct from listening to the voice [39]. Mainstream automatic speech recognition (ASR) 

systems have focused exclusively on the latter: the acoustic signal. Recent advances have 

led to purely acoustic-based ASR systems yielding excellent results in quiet or noiseless 

environments [40]. As a result, these systems have been used for a variety of 

applications, such as in call centres, car navigation systems, audio based phone dialling, 
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dictation and translation assistance, and including applications from speech and language 

technologies to applications in intelligence and military services. In the real world 

however, their performance drops dramatically due to the presence of noise such as: 

 in a typical office environment: human conversations;  

 in industry: the noise of machinery;  

 on the road: the noise of traffic; 

 at a railway station: the noise of trains as well as the announcements of train 

arrivals and departures. 

Noise robust algorithms such as, feature compensation[8], feature-normalization 

algorithms [13], variable frame rate analysis [11], microphone arrays [9] and other 

approaches [12] have demonstrated limited success in this regard. 

To overcome this limitation, non-audio speech modalities have been considered, such as 

visual information [41], facial plethysmograms measuring intra-oral pressure and surface 

electromyography (sEMG) signals of a speaker‟s facial muscles[42, 43], to augment 

acoustic information [14]. These systems require sensors to be placed on the face of the 

speaker and are thus intrusive and impractical in most situations, whereas audio-visual 

systems are not suitable for people who are unable to produce sound due to speech 

impairments. In such situations visual only speech recognition systems are the solution. 

Visual speech recognition is the core focus of this dissertation. In past decades a lot of 

research effort has been applied to the development of visual based speech recognition 

systems. Systems that recognize speech from the shape and movement of the speech 

articulators such as the lips, tongue and teeth of the speaker have been considered, to 

overcome the shortcomings of other speech recognition modalities [26]. 

2.2 Non-Audio Speech Modalities 

A number of options with non-audio speech modalities have been proposed to overcome 

the shortcomings of speech recognition systems and represented as the silent speech 

interface (SSI) [44]. A brief review of these SSIs is given below: 
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 Electromagnetic Articulography (EMA) is a sensor based movement capturing 

technique which captures the movement of fixed points on the articulators. The 

shape of the vocal tract is an important part of speech production. Various 

researchers have considered monitoring the movement of a set of fixed points 

within the vocal tract by implanting the coil sensors. Fagan et al. [45] investigated 

a system in which the magnetic sensors were pasted inside the mouth of a subject 

on the tongue, lips and teeth, and a set of six dual axis magnetic sensors were 

fixed on a pair of spectacles. In order to measure the performance of the system, 

the subject was asked to repeat a set of 9 words and 13 phonemes, each ten times. 

A 90% recognition rate was achieved under laboratory conditions. 

 The most important articulator of the speech production system is the tongue, 

which is almost invisible while speaking. In the Ouisper project [46], an 

ultrasound imaging technique was used to capture the movement of the tongue 

during speaking. Ultrasound imagery is a non invasive and clinically safe 

procedure. An ultrasonic probe placed under the chin can provide a partial view of 

the tongue surface in the mid-sagittal plane. In their work the ultrasound imaging 

system combined with a standard video camera focused on the speaker‟s lips is 

used. Visual features from these two modalities are used to drive a speech 

synthesizer, known as a “silent vocoder”, as illustrated in Figure 2.1. 

Video 

Camera

Ultrasound 

probe

Silent

Vocoder

Speech

Silent/ Laryngectomized 

Speaker

 

Figure 2.1: Ultrasound and video camera based speech recognition system 

 NAM (Non-Audible Murmur) systems are based on a special acoustic sensor 

(microphone) attached to the speaker‟s skin, just behind and below the ear (see 
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Figure 2.2) over the soft tissue in the orofacial region. It senses the low amplitude 

sounds produced by laryngeal airflow noise and its resonance in the vocal tract 

[47, 48]. The sensor is capable of sensing the low amplitude sounds that can 

hardly be perceived by nearby listeners, and is insensitive to environmental noise. 

Insensitivity to noise has motivated researchers in the speech recognition area to 

use NAM sensors as one of the solutions for robust speech recognition in noisy 

environments [49-52]. 

 

Figure 2.2: Placement of NAM microphone for silent communication. Vibration of the 

vocal-tract resonance is captured from the tissues, generated by airflow noise in the 

constricted laryngeal airflow. 

 Use of a glottal activity sensor is another approach to solve the problem of de-

noising speech signals corrupted by background noise. Glottal waveforms, usually 

obtained from the throat, forehead or crown of the head and ear can be used in 

conjunction with the acoustic signal received from a standard close talk 

microphone to augment the acoustic speech signal and improve speech quality 

[53]. A variety of vibration and electromagnetic sensors have been introduced 

such as  

o Physiological Microphone 

o Bone Microphone 

o Throat Microphone 

o In ear Microphone 
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The electroglottograph (EGG) [54-56], is a non-invasive measurement device 

designed to detect changes in electrical impedance during voice production. It is 

based on two gold-plated electrodes being applied on the surface of the neck on 

either side of the larynx. Typically, changes in electrical impedance are produced 

by vibrating vocal folds. When the vocal folds are closed, the electric impedance 

decreases, however larger impedance is produce when they are open. Glottal 

vibration in this way induces a signal of some 1V RMS on a 2–3MHz carrier, 

which is quite readily detectable. A drawback of the technique is its sensitivity to 

the exact positioning of the electrodes. 

 Electromyography (EMG) is the process of recording electrical muscle activity 

using surface electrodes. When a muscle fibre is activated by the central nervous 

system, small electrical currents in the form of ion flows are generated. These 

electrical currents move through the body tissue, encountering a resistance which 

creates an electrical field. The resulting potential difference can be measured 

between certain regions on the body surface at the skin. The amplified electrical 

signal obtained from measuring these voltages over time can be fed directly into 

electronic devices for further processing. EMG signals have been used for many 

clinical applications including identifying neuromuscular diseases, diagnosis of 

low back pain and measuring motor control disorders, to control of prosthetic 

devices such as hands and arms. Whereas a lot of research has been conducting 

since 1985 in the area of speech recognition, surface EMG based methods have 

received attention more recently. Surface EMG signals associated with the speech 

muscles record the activity of the human articulation and thus allow one to trace 

back a speech signal even if it is unspoken [42, 43]. Recently, researchers have 

focused on overcoming the limitations of sEMG based speech recognition 

systems. Schultz and Wand [15] used alternative articulatory phonetic features to 

improve the classification results, whilst Walliczek et al. [57] and Schultz and 

Wand [15] used smaller acoustic units than words, enabling large vocabulary 

recognition by concatenating these smaller units. 
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 Electroencephalography (EEG) is the measure of potential difference (voltage) 

corresponding to different neuronal activities in the brain, recorded by attaching 

multiple electrodes on the scalp. Besides tremendous clinical applications, 

researchers have proved that EEG signals are useful for voiceless communication. 

Brain Computer Interface (BCI) based on EEG signals is current area of research 

in the biomedical and pattern recognition field. Suppes et al. [58] developed the 

first EEG and MEG (magneto encephalography) based isolated word recognition 

system. Wester and Schultz [59] investigated a new approach which directly 

recognizes “unspoken speech” in brain activity measured by EEG signals. 

Unspoken speech refers to the process in which a user imagines speaking a given 

word without actually producing any sound, indeed without performing any 

movement of the articulatory muscles. 

All of the technologies presented above have shown encouraging results in the form of 

non acoustic modalities and to certain extent have resolved the issue of background noise. 

However, the sensor-based approaches are intrusive, impractical in most scenarios and 

have common challenges. Users need to fix electrodes around the face, neck and even 

inside the mouth. The sensors used must be very precisely positioned to obtain the 

optimal results. 

Speech recognition based on a visual speech signal is the least intrusive [14], does not 

require sensors to be attached to the head and scalp, and is non-constraining and noise 

robust. Other benefits of VSR system are in cases, where persons have had 

Laryngectomy surgery and for weak or aged persons who can speak only with much 

effort. These people can move their lips easily rather than speaking. At the same time the 

attendance of an important call at any location can be a very useful service. A non-

invasive visual speech recognition system built into a mobile phone can resolve these 

issues by communicating speechlessly. The hardware for such a system can be as simple 

as a webcam or a camera built into a mobile phone. 

How do humans lip-read exactly and perceive audio visual speech? This is still a question 

to be answered. However, it is essential to look at the physiological and psychological 
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aspects of human speech production and perception in order to acquire the necessary 

information for replication of speech recognition by machines. In the following sections a 

review of AVSR is given. This is followed by a brief review of human speech production 

and perception in the context of physiological processes. 

2.3 The Review of AVSR and VSR 

This section presents a review of some related research on AVSR and VSR systems. 

AVSR involves the process of interpreting the audio-visual information contained in a 

video in order to extract the information necessary to establish the communication at 

perceptual level between humans and computers, whereas VSR systems are solely based 

on visual speech processing. In a noisy environment, although voice signal is not 

understandable, the associated mouth movements create sufficient visual cues that are 

able to be exploited, to develop VSR systems. Engineers have continued research into 

recognizing speech in a noisy environment since the 1890s [60]. This interest of 

researchers increased during the war years of the 1940s and 1950s, when engineers 

working in this field were attempting to develop a system that could establish a 

communication between pilots and air traffic controllers [61]. The first known work on 

audio-visual speech recognition was published by Sumby and Pollack in 1954 [30]. After 

three decades of Sumby and Pollack publication, in 1984 Petajan [41] presented the first 

AVSR system. In this system Petajan extracted the shape based features such as mouth 

height, width perimeter and area from the black and white images of the speaker‟s mouth. 

The next major advance in AVSR research was a decade later when Bregler and Koing 

[62] published their work using eigenlips. In the same year Duchnowski et al. [63] 

extended the technique of eigenlips using linear discriminant analysis (LDA) for the 

visual speech features. In 1997 Adjoundari and Benoit [64] focused on the problem of 

audio-visual feature fusion. 

AVSR is a technology generally based on pre-recorded audio-visual dataset. IBM has 

recorded a high quality audio-visual dataset, because of that the major progress in the 

field is based on the work conducted by IBM. That work was led by Gerasimos 

Potamianos and his fellows, but the dataset however, was not publically available. In 
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addition to large vocabulary experiments, Potamianos et al. in 2003 conducted AVSR 

experiments in challenging environments, where data was captured in office and in car 

scenarios [65]. They demonstrated that the performance measure is considerably 

degraded in both modalities in the challenging environments. In 2004, IBM developed an 

AVSR system, in which they used a special wearable headset containing infra-red based 

audio visual system [66] which constantly focus on the speaker‟s mouth. The motivation 

behind this work was to develop a real time system, which reduces the computational 

burden of pre-processing such as face and lip localization and also to reduce the effects 

due to visual variability such as face orientation, lighting effects and background. In this 

work they found that their approach achieved results comparable to normal AVSR 

systems. This is the motivation behind this work, the proposed system is based on the 

dataset recorded by a fixed camera focusing on the user‟s mouth in an office 

environment. 

Potamianos et al. [14, 67] have presented a detailed analysis of Audio-visual speech 

recognition approaches, their progresses and challenges. Generally, the systems reported 

in the literature are concerned with advancing theoretical solutions to various subtasks 

associated with the development of AVSR systems. There are very few papers that have 

considered the complete system. Generally the development of AVSR can be divided into 

the following categories: audio feature extraction, visual feature extraction, temporal 

segmentation, audiovisual feature fusion and classification of the features to identify the 

utterance. The proposed visual only system does not have any audio data and hence audio 

feature extraction and its‟ fusion with visual features is not related to this work. 

The visual feature extraction techniques that have been applied in the development of 

VSR systems can be categorized into the following: shape-based (geometric), 

intensity/image-based and a combination of both. The description of these categories is 

detailed in Chapter 6. Sagheer et al [68] compared their appearance based Hyper Column 

Model (HCM) with the image transform based Fast Discrete Cosine Transform (FDCT) 

on two different datasets comprising Arabic and Japanese language elements. They 

demonstrated that the appearance based HCM technique outperformed the image 

transform technique in visual speech recognition by 6.25% overall in each of the datasets. 
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Recently Zhao et al. (2009) [69] introduced local spatio-temporal descriptors, instead of 

global parameters, to recognize isolated spoken phrases based solely on visual input, 

obtaining a speaker independent recognition rate of approximately 62% and a speaker 

dependent result of around 70%. 

The appearance based approaches have proved to be inappropriate when the data set 

contains non constant illumination conditions. To cope with this problem, the statistical 

model of both shape and appearance are considered in literature. Active Shape Model 

(ASM), Active Appearance Model (AAM) and Multiscale Spatial Analysis (MSA) have 

found wide applications in visual speech recognition. These approaches were all 

proposed by Matthews et al [24] to extract visual features. Continuing their work on 

visual feature extraction, Papandreou et al [17] focused on multimodal fusion scenarios, 

using audiovisual speech recognition as an example. They demonstrated that their visemic 

AAM (based on digits 0-9) with six texture coefficients outperforms their PCA-based 

technique with 18 texture coefficients, achieving a word accuracy rates of 83% and 71% 

respectively. However, these techniques are computationally expensive and require 

manual intervention for complex sets of land-marking on face to define the shape of an 

object or the face. In general the performance of the intensity based methods is better 

than that achieved by the shape-based VSR techniques [35]. In addition to this intensity-

based approaches do not require a priori statistical lips models and this fact allows the 

development of computationally efficient VSR systems [24]. 

Feature extraction methods have utilized motion analysis of image sequences 

representing dynamics of the lips while uttering speech. In comparison to shape based 

features, the global intensity and motion based features are independent from the 

speaker‟s mouth shape. Yau et al [26] have described a lip reading system based on 

dynamic visual speech features using an approach called motion history image (MHI) or 

Spatio-Temporal Templates (STT). MHI is a grey scale image whic shows the temporal 

and spatial location of the movements of speech articulators occurring in the image 

sequence. The advantage of spatio-temporal template based methods is that the 

continuous video frames are compressed into a single grey scale image such that 

dominant motion information is retained. The MHI method is less expensive to compute, 
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by keeping a history of temporal changes at each pixel location [70]. However, MHI has 

a problem of limited memory due to which the older motion history is soon over-written 

by new data [71],
 
resulting in inaccurate lip motion description and therefore leading to 

low accuracies in viseme recognition. In order to cope with this problem, this research 

proposes an enhanced version of MHI. In this technique, rather than a single grey scale 

image four directional motion history images (DMHIs) are proposed to overcome the 

issue of motion overwriting and shown to have outperformed the MHI. A detailed 

description of the proposed technique is presented in chapter 5. Iwano et al
 
[34] and Mase 

et al [72] reported their lip-reading systems for recognizing connected English digits 

using an optical flow (OF) analysis. Iwano et al [34] adopted a hybrid approach in which 

the shape and dynamic visual speech features are considered together, lip contour 

geometric features (LCGFs) and lip motion velocity features (LMVFs) of the side-face 

images are calculated. Optical flow based, two LMVFs (the horizontal and the vertical 

variances of flow-vector components) are calculated for each frame and normalized to the 

maximum values in each utterance. The technique achieved digit recognition errors of 

24% using a visual-only method with LCGF, 21.9% with LMVF and 26% with LCGF 

and LMVF combined. 

2.4 Anatomy of the Human Speech Production System 

In human speech production, the mouth is analogous to an audio filter where a variation 

in the shape of the mouth cavity and lip movement produces different sounds. The shape 

of the vocal tract is an important physiological aspect of the human speech production 

system. The main speech producing organs are the lungs, laryngeal pharynx (beneath the 

epiglottis), oral pharynx (behind the tongue, between the epiglottis and velum), oral 

cavity (forward of the velum and bounded by the lips, tongue, and palate), nasal pharynx 

(above the velum, rear end of nasal cavity), and the nasal cavity (above the palate and 

extending from the pharynx to the nostrils). 

An acoustic wave is produced when inhaled air is exhaled from the lungs and passes by 

the bronchi and trachea through the vocal folds. This source of excitation can be 

characterized as voiced and unvoiced which is based on the tightened or relaxed 
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conditions of the vocal folds. If the vocal cord muscles are tightened then airflow is 

modulated by the vocal folds and causes vibration, phonated excitation occurring. 

Correspondingly, if the vocal folds are relaxed, air pressure does not produce vibration 

and whispered excitation is produced. Speech produced by phonated excitation is called 

voiced, and that produced by whispered excitation is called unvoiced. The main 

articulators of speech production are the vocal cords, tongue, teeth, velum, jaw and lips. 

Figure 2.3 shows the human speech production system. The lips are the only articulator 

that is fully visible whereas the tongue and teeth are partially visible from the frontal 

view of the face. The movement of other speech articulators such as the velum and glottis 

is invisible. The visual information that can be extracted from a sequence of images 

encompasses lips, tongue and teeth. Important information about the invisible articulators 

such as complete movement of tongue and vocal cord vibration can be extracted by the 

sensor based methods briefly explained in Section 2.2. 
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Figure 2.3: Human speech production system 

The information contained in visual features is not sufficient for complete classification 

because phonemes such as dental, palatal and fricative consonants involve the tongue, 

palate and teeth which are not fully visible, and cause error in classification. One way to 

improve recognition rates is by incorporating contextual information as a post processing 
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step. However, as humans have clearly adapted to make use of this visual information, as 

will be shown later in this chapter, the study of how visible speech is related to acoustic 

speech is important. 

2.5 Linguistics of Visual Speech 

A phoneme is the smallest basic unit of audible speech that distinguishes one word sound 

from another. For example the word „cat‟ and „rat‟, the phone /c/ and /r/ have distinct 

sounds. Just like a phoneme, a viseme is the basic visual unit of speech. All of the 

phonemes are not completely represented by visible articulators. Commonly each viseme 

represents many linguistically distinct phonemes because visual speech is only partially 

visible [73]. For example the phonemes /p/, /b/ and /m/ are phonetically different but are 

represented as the same viseme class. Correspondingly, there are some phonemes that are 

acoustically indistinct but distinct in the visual domain [74] such as /n/ and /m/, as 

depicted in Figure 2.4. The typical number of phonemes defined in audio speech 

recognition is from 40 to 50 [75]. The set of English visemes can be determined by 

applying statistical methods to cluster the phonemes to represent a viseme [14, 76, 77]. 

(a) (b)

 

Figure 2.4: Different visemes but same phonemes. Image (a) shows viseme /m/ and 

image (b) shows /n/ while these are acoustically similar phonemes. 

Generally, the range of visemes used in visual speech recognition is in the range of 12 to 

20 [36, 75] as compared to 50 phonemes in English. The number of English visemes 

varies mainly with respect to the accent guided by the geographical location, education 
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and age of the speaker. It is difficult to define a standard and a universal set of visemes 

suitable for all speakers [78] from different geographical locations whereas it is required 

to define a standard and universal set of optimized visemes for English language at least. 

2.6 Visual Speech Perception by Humans 

The first widely recognised work on visual contribution to speech recognition in noisy 

environments was published half a century ago by Sumby and Pollack [30] in (1954). In 

their experiments they observed the effects of noise on human perception, considering the 

visual information available to the listener. From their experiments it has been 

conclusively proved that the audio signal is the basic modality for speech 

communication. Listeners utilize their ability of perception in noisy environments, 

however by using visual information in the recognition and comprehension of speech. In 

1987, Reisberg et al. [31] showed that listeners with normal hearing ability also take 

advantage of visual cues in speech recognition even when clear audible speech is spoken. 

This makes it obvious that visual speech signals contain a significant amount of 

information. The significance of visual cues is also obvious in the lip-reading ability of 

hearing impaired people to lip read. Human speech perception is bimodal. That was 

proved by McGurk and Macdonald in 1976 [23]. They demonstrated that when a person 

is presented with a video with a different audio recorded over it, a third sound can be 

perceived rather than either of the two actually presented to the person in either modality. 

This is known as McGurk effect [23]. The most commonly presented example in this 

literature is of a person watching a video of a speaker‟s face pronouncing /ga/ but hearing 

/ba/ simultaneously. The person perceives the hearing sound /da/, differently from either 

of the two actually presented to him. The reason for this is the visual /ga/ is more alike to 

visual /da/ than to visual /ba/. Correspondingly, hearing /ba/ is more alike to hearing /da/ 

in comparison to hearing /ga/. Thus the human audio visual sensory information is 

naturally synchronized. 

Summerfield [60] demonstrated the advantages of human speech perception in lip-

reading. Once the listener receives the acoustic signal that helps in localizing the speaker 

while the speaker continues to talk, the listener can further localize the articulators of 
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speech and can get the complimentary visual information to augment the acoustic signal. 

Summerfield [60] also demonstrated that many of the indistinct phonemes have distinct 

visemes that can be easily recognized by viewing the speakers lips. Contrary to this he 

also showed that the phonemes corresponding to a particular viseme can be acoustically 

quite different but visually the same, such as the phones /t/ and /d/ having completely 

different sounds whereas they have the same viseme. 

Moreover, interpretation of a speech signal can be amplified by the perception of facial 

gestures. Not only speech, but paralinguistic information of the speaker‟s emotional state 

can be obtained from facial gestures [79]. Especially where the acoustic signal is unclear, 

because of background noise, watching the facial gestures can enhance speech 

intelligibility. 

2.7 Speech Reading Proficiency 

Recent research has shown motivation towards human speech recognition that can be 

more accurate. The most proficient lip-readers observed to date have been hearing 

impaired persons, who are only able to rely on speech reading (not sign language) for 

communication. For these people, the accuracy level for word perception on a set of 

isolated pre-recorded sentences was approximately 65 to 85% [80]. Although adults with 

normal hearing are generally less accurate lip-readers, their accuracy levels can also be 

moderately high [80-82]. 

2.8 Significance of Facial Parts in Lip-reading 

Various researchers have focused on identifying the pertinent regions of the face that 

contain the most important features for speech perception. It has been accepted that the 

most informative region of the face is around the lips [39]. Benoit et al [83] demonstrated 

that the lips contain on average two thirds of the speech information. The rest of the 

information is spread over the speaker‟s face. In their research it was concluded that the 

addition of the region of the jaw along with the lips increases the human perception of 

visual information. It was also conclude that the frontal view of a speaker provides more 
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information as compared to the side view. McGrath et al. [84] explored that the lips 

contain more than half the visual information revealed on the face of an English speaker. 

This validates the focus on the area of the lips as the Region of Interest (ROI) in all 

audiovisual speech recognition systems. In the study of Brooke and Summerfield [85] it 

was demonstrated that for the efficient recognition of vowels the visible articulators such 

as the tongue and teeth play an important role. Finn [86] found that for recognition of 

consonants, size and shape of the lips are the pertinent features. Lip rounding and the 

areas around the lips hold significant features for vowel recognition Montgomery and 

Jackson [87]. They also verified that there is significant variability in style of speaking 

between speakers, and their way of moving lips and tongue in speaking. 

2.9 Basic Components of Visual Speech Recognition System 

This section describes the basic components of a visual speech recognition system. In 

general, a VSR system consists of the following parts: 

 Image capturing devices  

 Pre-processing  

o Noise filtering 

o Face identification  

o Lip localization 

o Temporal segmentation 

 Feature extraction 

 Dimensionality reduction of features 

 Classification and recognition of speech  

The general block diagram of a VSR system is shown in Figure 2.5. The image capturing 

devices are the video cameras. Most of the research in the area of AVSR and VSR is 

based on pre recorded datasets, with the intention to develop the real time system. After 

getting the desired dataset, the next step is noise filtering; it is to make the dataset 

suitable for further processing. In the pre-processing section face detection is performed 

followed by lip localization. In lip localization the area around the lips commonly known 
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as region of interest (ROI) is extracted from each frame of a video sequence. In this 

research pre-segmented dataset, which contains only ROI is used. An important step in 

VSR system is the automatic temporal segmentation, it is to locate the start and end frame 

of an utterance from a sequence of images containing multiple utterances. 

Preprocessing

Feature

Extraction

Dimensionality 

Reduction

Classification and 

Recognition

Video Camera

 

Figure 2.5: Basic Components of a VSR system. 

Once the temporal window of an utterance is identified, the next step is to find the 

significant visual features that represent the dynamics of the mouth movements 

efficiently either by the visual appearance or by the shape of the lips in each frame of a 

video. To produce a compact representation of extracted features suitable for the 

statistical classifiers, generally some feature reduction techniques are applied. The last 
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step in the VSR system is to train the classifier in order to develop a model and finally 

testing the model with unseen data. 

2.10 Brief Description of Proposed VSR System 

An overview of the proposed visual speech recognition system is presented, with the flow 

diagram depicted in Figure 2.6. The proposed system consists of pre-processing, motion 

tracking, feature extraction and finally the classification. 

 Pre-processing 

Illumination and colour variation induced by the video recording system can 

create a problem in motion estimation by optical flow. A global illumination 

normalization technique, Gaussian smoothing [88] is adopted to normalize the 

sequence of images. Following by noise filtering, the temporal segmentation of 

the isolated uttered visemes in an image sequence is performed. The main purpose 

of temporal segmentation is to segment the individual utterances from video data 

containing multiple utterances in order to locate the start and the end frame. Pair 

wise pixel comparison method [38] is used to find the start and an end frame of an 

utterance from a series of isolated utterances. Detailed description of pre-

processing is given in Chapter 3. A variety of face detection [89] and lip 

localization algorithms [90, 91] are available in the literature and hence are not 

the focus of this work. 

 Motion Tracking 

In order to represent the lip movements efficiently, robust visual features are 

desired. In this work lip movements are represented by features derived from 

optical flow estimates. The optical flow is defined as the distribution of apparent 

velocities of movement of brightness pattern in an image [92]. The features 

computed by optical flow analysis give real motion information. A complete 

probabilistic model of optical flow based on statistical learning for both 

brightness constancy error and spatial properties was adopted. Elaborate 

discussion of optical flow technique is presented in Chapter 4. 
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Figure 2.6: A block diagram of the proposed Visual Speech Recognition system. 
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 Feature Extraction 

The image resolution of the acquired data set is 240320 pixels per frame. The 

optical flow computation provides horizontal and vertical velocity components of 

the same size of image, so that the feature vector size would be 

2403202=153600 for every pair of image frame. The feature vector size 

impacts the classification in terms of computation and accuracy. In this research, 

in order to produce compact representation of the computed optical flow, two 

novel approaches are proposed. These compact representations of the lip motions 

during speech are used to generate a feasible visual speech template for each 

utterance, so that the obvious inter and intra speech variation in the speed of 

speaking is compensated. The first approach is block based. In this approach only 

the vertical component of optical flow is used. The optical flow horizontal 

component is ignored due to negligible contribution in the viseme classification. 

The optical flow vertical component is segmented into non overlapping blocks. 

Each block‟s mean value is computed and used as feature to the classifier. In 

second approach four directional motion history images are computed from the 

optical flow (vertical and horizontal components). Each image represents the 

consolidated lip movements of an utterance in a particular direction i.e., up, down, 

left and right for the complete time window of an utterance. Furthermore two 

rotation and scale invariant features Zernike moments and Hu moments are 

computed for each image representing an utterance. Detail discussion of each 

approach is presented in Chapters 4 and 5. 

 Visemes Classification 

In the final stage, training and testing of the features extracted in the previous 

phase is carried out using binary class and multi class SVM. Another novelty of 

the work is the use of multiclass classification, used in visual speech recognition 

for the first time and resulting in an improved performance measure of the 

proposed VSR system. In addition to this for the performance measure, results are 

shown not only in traditional accuracy or word error rate (WER) measure, but 

sensitivity and specificity are used as the performance measures and have 

increased the credibility of the proposed classification technique. Details of 
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classification methodology are given in Chapter 6. Experimental Results are 

presented in Chapter 7. 

2.11 Summary 

In this chapter a detailed review of AVSR and VSR systems is presented. In addition, a 

brief review of non speech modalities such as EMA, combined features from ultrasound 

imagery and standard camera imagery, NAM, EGG, EMG and EEG are also described. 

These techniques have performed well in many clinical and biomedical applications as 

well as in voiceless speech recognition. From this review it is concluded that speech 

recognition systems based on visual cues are more suitable for real time systems when 

compared to sensor based systems, referred to as silent speech interfaces [44]. Sensor 

based systems are intrusive and impractical in most scenarios, the visual feature based 

systems which are non intrusive are shown to be preferred methods. Both persons of 

normal hearing as well as speech impaired persons use facial movements to augment 

speech intelligibility [23, 30]. The hardware required for a visual speech recognition 

system can be a simple hand held mobile phone with built in video camera which are 

commonly available. One of the interesting phenomena described is the McGurk effect, 

which proves the bimodality of speech perception i.e., audio-visual. The basic 

mechanism of human speech production, perception as well as the linguistics associated 

with the audio and visual modalities is then described. It is also accepted that the main 

pertinent area for visual speech perception and recognition is the lower part of the face 

(the mouth and jaw) [60, 83, 86, 87]. At the end of the chapter a brief review of general 

and proposed visual speech recognition systems is presented. 
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Chapter 3  

Image and Video Preprocessing 

This chapter presents a basic review of a visual front end of the visual speech recognition 

(VSR) system and provides a description of the dataset used in this study. The main result 

of this chapter is a new temporal segmentation method that detects the start and end 

frame of an utterance, and is presented in Section 3.3. The building blocks of VSR 

system were presented in Chapter 2. The first block of a VSR system following the video 

capturing device is pre-processing. The key component of the pre-processing block is the 

visual front end. For an automatic visual speech recognition system, the visual front end 

has to be able to localize the visible speech articulators, this process of the mouth 

localization is known as the spatial segmentation. It is widely accepted that the pertinent 

area of visible speech is the region around a speaker‟s mouth, known as the region of 

interest (ROI). The visual front end of a VSR system is responsible for localizing the 

speaker‟s face, and then locating and keeping track of the ROI. If the spatial 

segmentation of the ROI is not performed accurately, then erroneous features will be 

extracted and the overall performance of the system will be degraded. There are some 

other factors which can affect the performance of a VSR systems such as pose, occlusion 

and illumination [61]. These are discussed in the following sections. 

Much research has been conducted on face detection and ROI localization. Hence this 

study has not considered these aspects in this work. Furthermore, the dataset used in this 

research only contains the ROI, so there is no need for ROI localization. 

3.1 Visual Front End 

Generally, the visual front end is based on three hierarchical processes. Starting with a 

speaker‟s face detection, the essential features such as mouth corners, nose and eyes are 
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then located. In the third step, based on these features, the location of the ROI is 

estimated. After successful estimation of the ROI, further image pre-processing can be 

employed on the ROI to minimize the effects of variable lighting conditions on optical 

flow computation, using techniques such as histogram flattening, Gaussian smoothing 

and balancing of the left-to-right brightness distribution. 

Face orientation is an important factor in VSR systems. Typically, image sequences are 

recorded in frontal or side profile models. However, frontal profiles have shown better 

performance than side profile [83]. According to the survey paper of Ming-Hsuan et al. 

[93], the challenges associated with face detection can be attributed to the following 

factors: 

 Pose. The images of a face vary due to the relative camera-face pose (frontal, 45 

degree, profile, upside down), and some facial features such as an eye or the nose 

may become partially or wholly occluded. 

 Presence or absence of structural components. Facial features such as beards, 

moustaches, or glasses may or may not be present and there is a great deal of 

variability among these components including shape, colour, and size. 

 Facial expression. The appearance of faces is directly affected by a person‟s 

facial expression. 

 Occlusion. Faces may be partially occluded by other objects. In an image with a 

group of people, some faces may partially occlude other faces. 

 Image orientation. Face images directly vary for different rotations about the 

camera‟s optical axis. 

 Imaging conditions. When the image is formed, factors such as lighting (spectra, 

source distribution and intensity) and camera characteristics (sensor response, 

lenses) affect the appearance of a face. 

Although the factors above show that the task of face detection is quite complex, some 

efficient algorithms which provide sufficient accuracy in a controlled environment are 

available and are discussed below. 
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3.1.1 Face Detection 

In recent years, the demand for face detection algorithms has increased heavily. This is 

because of their use in several automated systems that take images of the human face as 

an input. Examples include visual speech recognition, video-based surveillance systems, 

human face/body tracking systems, fully automatic face recognition systems and 

perceptual human computer interfaces. Typically, these face detection algorithms are 

based on the classifiers which estimate the presence of a face given in a particular 

window of the image. 

Most face detection algorithms are either appearance based or feature based. In recent 

years, appearance based face detection algorithms that exploit statistical estimation and 

machine learning methods have shown excellent results among all existing face detection 

methods. Ming-Hsuan et al. [93] have classified the single image face detection methods 

into the following four categories. 

 Knowledge based methods 

These rule-based methods encode human knowledge of what constitutes a typical 

face. Usually, the rules capture the relationships between facial features. These 

methods are designed mainly for face localization. 

 Feature invariant approaches 

These algorithms aim to find structural features that exist even when the pose, 

viewpoint, or lighting conditions vary, and then use these to locate faces. These 

methods are designed mainly for face localization. 

 Template matching methods 

Several standard patterns of a face are stored to describe the face as a whole or the 

facial features separately. The correlations between an input image and the stored 

patterns are computed for detection. These methods have been used for both face 

localization and detection. 

 Appearance based methods 

In contrast to template matching, the models (or templates) are learned from a set 

of training images which should capture the representative variability of facial 
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appearance. These learned models are then used for detection. These methods are 

designed mainly for face detection. 

Appearance based face detection techniques include the AdaBoost algorithm [94, 95], the 

S-AdaBoost algorithm [96], the FloatBoost algorithm [97], Hidden Markov Models 

(HMM) [98], neural networks [99, 100], Bayes classifier [101] and Support Vector 

Machines (SVM) [102, 103]. Viola and Jones [94, 95] developed a robust AdaBoost face 

detection algorithm, which is computationally efficient and detects faces robustly with 

high accuracy. The Float-Boost algorithm proposed by Li et al. [97] is an improved 

version of the AdaBoost algorithm, for learning a boosted classifier with minimum error 

rate. However this method is computationally more demanding than the AdaBoost 

algorithm. Readers are directed to the paper [89] which contains a survey about recent 

advancements in face detection. 

3.1.1  Spatial Segmentation 

The term spatial segmentation is referred to as the finding the ROI in 2D space. Lip 

segmentation is an important part of the visual front end of an automatic visual speech 

recognition system. In such a system, the ROI that is area around the lips must be 

detected in each frame of a video sequence to be processed for the speech recognition. 

This procedure is normally carried out by fitting a range of colour models to the image 

and is followed by face detection and extraction of the ROI surrounding the lips. 

Early VSR systems performed the lip segmentation in conjunction with the application of 

artificial markers (lipstick) on the lips [104]. The application of lipstick enables the 

system to precisely detect the lips in the image data, but this procedure is inappropriate 

since it is uncomfortable for users and such VSR systems can be operated only in a 

constrained environment. Thus, the main research efforts have been concentrated in the 

development of vision-based lip segmentation algorithms. Many studies have shown that 

colour information can be successfully applied to identify the skin or face in digital 

images [105]. The main idea behind this approach is to transform the RGB signal into a 

new representation where the mouth is clearly visible, so that it can be easily segmented. 
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To this end, a large number of colour representations have been proposed. Coinaize et al 

[106] used the hue component of the HSV representation to highlight the red colours 

which are assumed to be associated with the lips in the image. Later, the HSV colour 

space was further used by Zhang and Measereau [107] for lip detection. They used 

prominent peaks in the hue signal as an indicator to locate the position of the lips, then 

based on the identified lip area, the interior and exterior lip boundaries were extracted 

using both colour and spatial edge information using a Markov Random Field (MRF) 

framework. Other approaches carried out the lip detection task in the YCrCb colour space 

since the facial skin covers a small area of the CrCb subspace [108, 109]. 

In 2001, Eveno et al [105] proposed a new colour mixture and chromatic transformation 

for lip segmentation. In their approach, a new transformation of the RGB colour space 

and a chromatic map was applied to increase the discrimination between the lips and 

facial skin. They demonstrated that the proposed approach is able to achieve robust lip 

detection under non-uniform lighting conditions. Later, Eveno et al [110] introduced a 

different method where a pseudo-hue [111] was applied for accurate lip segmentation that 

has been embedded in an active contour framework. They applied the proposed algorithm 

for visual speech recognition and the results show significant improvement in terms of 

accuracy in lip modelling. 

Another method for mouth segmentation was proposed by Liew [112] in 2003. In this 

approach, the colour image is transformed into the CIE-Lab and CIE-Luv colour spaces, 

and then a lip membership map is computed using a spatial fuzzy clustering algorithm. 

After morphological filtering, the ROI around the mouth can be identified from the face 

area. 

In 2006, Guan [113] improved the contrast between the lip and other face regions using 

the Discrete Hartley Transform (DHT). In this paper, lips are extracted by applying 

wavelet multi-scale edge detection across the C3 component of the DHT which takes 

both the colour information and the geometric characteristics into account. 
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Most recently in 2011, Akdemir and Ciloglu [32] proposed a lip localization method in 

which they use 12 blue markers on the face of a subject. Eight of these markers were 

marked on the lips and used to extract the shape and position of the lips. Three of them 

were located on the nose and cheeks to compensate the head movements by aligning 

them in straight lines. The last mark was on the chin and used to capture the syllabic 

oscillation of the jaw. A chroma key approach and Auction algorithm were used to locate 

the position of the blue markers and to track each blue marker through the consecutive 

images. 

Because of the availability of such face and lip detection algorithms and the nature of the 

dataset used, this research has not considered ROI detection. The following section 

describes the choice of data set used in this research. 

3.2 Choice of Utterances 

Visemes are the smallest visually distinguishable facial movements when articulating a 

phoneme and can be concatenated to form words and sentences, thus providing the 

flexibility to extend the vocabulary. This is the basic motivation for choosing visemes as 

the recognition unit. The total number of visemes is less than the English phonemes 

because different phonemes may have common visible movement [73]. The video of a 

speaker‟s face while uttering a phoneme shows the movement of the lips and jaw, 

whereas the movements of other articulators such as vocal cord and tongue are often not 

visible. Hence, each viseme can correspond to more than one phoneme, resulting in 

many-to-one mapping of phonemes to visemes. 

3.2.1 Dataset Exploited for this Study 

The dataset used in this study was recorded by Yau et al. [75] in a typical office 

environment. Their aim was to collect a dataset that can be used to evaluate the 

performance of the visual speech recognition system in a real world environment. 

Publically available audio-visual speech data sets such as M2VTS [114], XM2VTS 

[115], Tulips 1 database [116] , CUAVE database [117] and GRID database [118] were 

collected in ideal studio environments with controlled lighting. Image sequences are more 
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affected by illumination noise in an office environment in comparison to an ideal studio 

environment [75]. The dataset used in this study consists of simultaneous audio and 

visual recordings of 14 discrete English phonemes/visemes by 7 subjects. Table 3.1 

shows the 14 visemes and corresponding phonemes. The visemes of phonemes used in 

this research are highlighted in bold fonts. Table 3.1 also shows the example words that 

can be produce by the visemes used in this research. These visemes are originally defined 

in the MPEG-4 standard and consists of five vowels and nine consonants. A simple 

webcam was used to capture the videos, in order to analyse the low resolution videos for 

visual speech recognition. Audio signals were recorded by the inbuilt microphone in the 

webcam. However the audio signals are not included in this study. The subjects were 

asked to speak in front of a fixed camera. The distance between the camera and face was 

kept constant to at 10 cm. The camera was focused on the mouth region of the speaker 

and was kept stationary throughout the recordings and the frontal profile of the ROI was 

recorded. 

Table 3.1: Fourteen visemes defined in MPEG-4 and the average number of frames for 

each viseme of the used dataset. 

 Visemes and 

Corresponding 

phonemes 

Vowel/Consonant Example words Average Number 

of frames 

1  /a/ Vowel j/a/r 33 

2  /ch/,/j/,/sh/ Consonant /ch/ain, /j/oin, /sh/iraz 30 

3  /e/ Vowel /e/gg 35 

4  /g/,/k/ Consonant /g/reat, /k/ing 28 

5  /th/,/D/ Consonant /th/row ,/th/an 33 

6  /i/ Vowel /i/nk 35 

7  /p/,/b/,/m/ Consonant /p/late, /b/ed, /m/an 33 

8  /n/,/l/ Consonant /n/est, /l/ight 38 

9  /o/ Vowel t/o/ne 35 

10  /r/ Consonant /r/ain 37 

11  /s/,/z/ Consonant /s/un, /z/oo 34 

12  /t/,/d/ Consonant /t/icket, /d/oor 24 

13  /u/ Vowel p/u/t 35 

14  /f/,/v/ Consonant /f/an, /v/an 40 

General Description of the Dataset: 

 Number of subjects: 7 (4 male, 3 female) 

 Speech data: 14 isolated visemes given in Table 3.1 

 Repetitions: 10 epochs of each viseme in a single video 
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 Total uttered visemes: 980 visemes 

 Image resolution: 240  320 pixels 

 Colour: RGB 

 Video sampling rate: 30 frames/second 

 Average number of frames per viseme: 33.6 frames 

Factors such as window size (240320 pixels), viewing angle of the camera, background 

and illumination were kept constant throughout the experiments. Figure 3.1 shows 

example images of all the subjects used in this study with different skin colours. 

   

   

 

Figure 3.1: Example images of seven subjects with different skin tones. 
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3.3 Temporal Segmentation 

It is important for any end-to-end visual speech recognition system, based either on 

continuous or discrete speech, to find the start and end frame of the basic unit of visual 

speech from consecutive image sequence, so that specific features corresponding to that 

unit are extracted separately. It is difficult to visually segment the continuous speech into 

basic visemes. However, a recent experimental study by Sell and Kaschak [119] at 

Florida State University demonstrated that the presence of visual speech information 

alone is sufficient to allow the learners to segment words from a fluent speech stream. 

The dataset used in this research consists of discrete utterances, i.e., deliberate little 

pauses were inserted between the utterances while recording, so that individual utterances 

can be segmented from the video data. The aim of temporal segmentation is to find the 

start and end frames of an utterance automatically from an image sequence. The 

importance of temporal segmentation can be obviated from the data sets such as 

TULIPS1 and CUAVE. These data sets have been manually segmented and are the basis 

for most of the current research. However, for real time implementation of these systems, 

it is important to perform automatic segmentation without human intervention. The 

earlier works where automatic segmentation was performed have typically considered the 

combination of the audio and visual data and thus the temporal speech segmentation in 

AVSR systems is based on audio signals [120]. The amplitude of audio signals provides 

sufficient cues about the speech and silence. 

Temporal segmentation based on a visual signal only is necessary for VSR where the 

audio signal is not available, or is highly affected by environmental noise. To segment the 

sequential utterances, this research proposes an adhoc but effective mechanism to detect 

the start and end frames of non-overlapping utterances. A pair-wise pixel comparison 

[38] is used for temporal segmentation. It evaluates the differences in intensity of 

corresponding pixels in two successive frames throughout the video sequence. A little 

pause is present between every consecutive utterance. This pause period provides 

important information for visual segmentation from mouth images. 
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As a first step, the colour images are transformed to gray scale images. Then the average 

difference square (ADS) of consecutive image frames which represents the magnitude of 

mouth movement is computed to get the absolute and prominent values using Equation 

(3.1): 
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   (3.1) 

The pause periods consist of minimal mouth movement and are represented as low 

magnitude values, whereas the pronunciation of utterances is represented as 

comparatively large magnitude values. In the consecutive image sequence there are 

similar subsequent images which provide the zero energy difference even when 

utterances are pronounced. The basic reason for similar subsequent images in the video 

data is the frame rate (30 frames/second) at which the videos are recorded. Higher the 

frame rate, the more number of similar subsequent images. To avoid these zero 

magnitudes in an utterance, the resulting energy signal is smoothed using a moving 

average window and further smoothed using Gaussian filtering. Selecting an appropriate 

threshold leads to the required temporal segmentation. 

The steps of the adhoc automatic temporal segmentation are shown in Figure 3.2. Figure 

3.2 (a) indicates the squared mean difference of intensities of corresponding pixels in 

accumulative frames (for clarity, only three visemes are shown). The results of average 

moving window smoothing and further Gaussian smoothing are shown in Figures. 3.2 (b) 

and 3.2 (c). Finally the result of segmentation (as unit step-pulse-shaped representations) 

is shown in Figure. 3(d). Each utterance is represented by two unit step-pulses, each 

representing the opening and closing motion of the mouth while uttering a viseme. It is 

clear from the figure that the adhoc scheme followed is highly effective in viseme 

segmentation. The results of successful segmentation for 14 visemes of a single user are 

shown in Figure 3.3. Table 3.2 presents comparative results between manual 

segmentation and the proposed automatic temporal segmentation. From Table 3.2, it is 

observed that the overall results are similar for manual and automatic temporal 
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segmentation and there is no significant loss of information, resulting in no difference in 

the classification. 

Table 3.2: Results of temporal segmentation for 14 visemes (three epochs) 

  Epoch 1 Epoch 2 Epoch 3 

Start 

frame 

End 

frame 

Start 

frame 

End 

frame 

Start 

frame 

End 

frame 

/a/ 
Manual 24 56 76 107 128 158 

Auto 27 56 75 107 128 158 

/ch/ 
Manual 19 53 70 101 123 157 

Auto 19 53 70 102 122 155 

/e/ 
Manual 49 78 102 133 171 211 

Auto 48 76 102 134 170 209 

/g/ 
Manual 43 86 100 144 165 199 

Auto 43 83 100 142 163 198 

/th/ 
Manual 1 33 58 95 120 155 

Auto 1 34 60 95 119 155 

/i/ 
Manual 22 55 74 107 130 161 

Auto 24 54 73 107 129 161 

/m/ 
Manual 21 55 86 120 154 188 

Auto 22 56 86 119 153 186 

/n/ 
Manual 80 116 136 173 203 241 

Auto 79 116 136 175 204 240 

/o/ 
Manual 26 58 76 114 134 169 

Auto 26 57 75 115 133 167 

/r/ 
Manual 16 58 79 119 142 182 

Auto 19 57 81 118 147 182 

/s/ 
Manual 22 59 80 120 143 181 

Auto 22 58 78 119 146 184 

/t/ 
Manual 16 35 64 85 107 131 

Auto 15 34 63 83 108 132 

/u/ 
Manual 64 101 122 160 180 214 

Auto 63 101 121 159 179 215 

/v/ 
Manual 11 49 61 105 113 153 

Auto 11 48 62 101 113 152 
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Figure 3.2: Results of Temporal Segmentation (a) Squared mean difference of 

accumulative frames intensities (b) Result of smoothing data by moving average window 

(c) Result of further smoothing by Gaussian filtering (d)Segmented data (blue blocks 

indicate starting and ending points) 
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Figure 3.3: Results of Temporal Segmentation of all 14 visemes for a single user using 

the proposed method. 

The results of other subjects were very similar, and the results from all the subjects and 

all the visemes in terms of starting frame error rate (SFER) and end frame error rate 

(EFER) have been calculated by Equation (3.2) and (3.3) which are tabulated in Table 3.3 

and Table 3.4. From Table 3.3 and Table 3.4, the average error between automatic and 

manual segmentation for all subjects and all utterances is 2.98 frames/utterance. That is 

around 1.5 frames on either side of an utterance. It can be seen from Table 3.3 and that 

subjects 6 and 7 have a comparatively higher frame error rate. By manual observation it 

was found that both subjects had comparatively larger head movements in the videos 

during an utterance and had darker skin tones. 
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Figure 3.3: Continued 

 Table 3.3: Average Frame Error Rate of 10 Epochs at Start of an Utterance 

Start Frame 
       

 
subject1 subject2 subject3 subject4 subject5 subject6 subject7 Average 

/a/ 1.3 0.3 0.7 1 1.3 1.3 2 1.13 

/ch/ 0.3 0.7 0.3 1.7 1 7.7 4.7 2.34 

/e/ 0.7 2 0.7 0.3 1 1.7 1 1.06 

/g/ 0.7 1.7 1 0.7 1 2 3.3 1.49 

/th/ 1 0.7 1 1 1.7 5.7 3.3 2.06 

/i/ 1 0.7 1.3 1.7 0 3.3 3.3 1.61 

/m/ 0.7 0.3 1 2.7 0.7 3 1.3 1.39 

/n/ 0.7 1 1 0.7 1 3 0.7 1.16 

/o/ 0.7 0.3 0.7 1 0.7 2 5.7 1.59 

/r/ 3.3 1.7 0.3 1.3 1 5.7 3.7 2.43 

/s/ 1.7 0.3 0.3 2 1.7 0.3 2 1.19 

/t/ 1 1.3 1 0.7 7 1 3.3 2.19 

/u/ 1 1.7 0.7 1.3 4 1 1 1.53 

/v/ 0.3 0.3 0.3 1 1 1 3.3 1.03 

Average 1.03 0.93 0.74 1.22 1.65 2.77 2.76 
 

 
Average error of start frame for all subjects, all visemes 1.48 



45 
 

 

10

_ _
1

1
_ _

10
manual i auto i

i

SFER Start Frame Start Frame


   (3.2) 

 
10

_ _
1

1
_ _

10
manual i auto i

i

EFER End Frame End Frame


   (3.3) 

Table 3.4: Average Frame Error Rate of 10 Epochs at End of an Utterance. 

End Frame 
       

 
subject1 subject2 subject3 subject4 subject5 subject6 subject7 Average 

/a/ 1 2 0.3 0.7 2.3 1 2.3 1.37 

/ch/ 1 0.7 0.3 1.3 2 0.7 4.3 1.47 

/e/ 1.7 1.7 2.7 1 1.3 0.3 1 1.39 

/g/ 2 0.3 1.3 1.3 0.3 0.7 2.3 1.17 

/th/ 0.3 0.7 1 0.7 2 1.7 3 1.34 

/i/ 0.3 2.3 1 0.7 0.7 1.7 2.7 1.34 

/m/ 1.3 1.7 1.3 1 1.3 1 1 1.23 

/n/ 1 2 0.3 1 1.3 2.7 2 1.47 

/o/ 1.3 0.3 0.7 1.3 0.7 3.3 3 1.51 

/r/ 0.7 2.3 1 2.3 0.3 0.7 3 1.47 

/s/ 1.7 1 1 1.3 1 2.3 2.3 1.51 

/t/ 1.3 0.3 0 0.7 0.3 1 2.3 0.84 

/u/ 0.7 1.3 1 1.7 0.7 3.7 1 1.44 

/v/ 2 1 0.7 2 1.3 1.7 4.3 1.86 

Average 1.16 1.26 0.9 1.21 1.11 1.61 2.46 
 

 
Average error of end frame for all subjects, all visemes 1.29 

One of the major limitations in using the proposed temporal segmentation technique is 

that it depends on the mouth motion signal, and each utterance is represented as two 

peaks. The first peak of an utterance represents the opening movement of the mouth. The 

second peak corresponds to the closing movement of the mouth, as can be seen in Figure 

3.2 (d). It is difficult to differentiate between the start and the end of the utterance. If the 

start of an utterance has been missed due to the presence of noise in the signals, these 

segmentation errors will propagate to all the remaining frames in the image sequence. 

Another limitation of the proposed segmentation technique is that it requires a short 

pause period between two consecutive utterances to identify the desired frames. Hence 

we used the term adhoc temporal segmentation. Such a visual only temporal 
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segmentation technique is well suited for isolated utterances, where image sequences 

consist of multiple utterances separated by short pauses. However, there is a need for 

robust automatic temporal segmentation that should be able to separate the words and 

then from words the basic visual speech units, so that robust visual speech recognition 

can be performed on unknown words. 

3.4 Image Noise Reduction 

Once the temporal segmentation procedure has captured the start and end frame of an 

utterance, the corresponding image sequence is further processed for image de-noising. 

The degradation of an image can be caused by many factors such as movement during 

image capturing, atmospheric changes and varying illumination conditions. This 

degradation of an image can affect the optical flow computation. To reduce these effects 

of noise, the input image sequences are smoothed using Gaussian smoothing [88]. This 

technique is used in the pre-processing stage in a variety of computer vision applications 

in order to reduce the noise of images. Gaussian smoothing is performed by convolving 

each pixel in the input image with a Gaussian kernel, and is then summed up to produce 

the output smoothed image. 

3.5 Issues that Need to be Considered for the Development of Visual 

Speech Recognition 

Visual speech recognition basically depends on the efficient representation of lip 

movement. There are several issues that need to be considered for the development of a 

visual speech recognition system. 

 Variation in illumination and colour induced by the video acquisition system 

(camera) and environmental cause image noise these distortions present in the 

image can affect the optical flow computation results. This unwanted distortion 

can be avoided by implementing some global illumination normalization 

techniques before applying feature extraction techniques. In this work a simple 
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Gaussian smoothing technique [88] is applied to reduce the illumination 

variations on ROI before optical flow computation.  

 It has been commonly observed and has been demonstrated by [4], that there is 

always inter and intra subject variation in speaking. Repeated utterances of a 

number, letter or word by the same subject may vary even when all factors are 

kept constant. These variations in inter speaker affect the performance of lip-

reading systems in speaker independent scenarios [121]. To a very great extent, 

this problem is addressed within the purview of the thesis by proposing robust 

feature and classification methods. Moreover, the proposed methods are 

compared using blind testing. 

 In the development of a real time visual only speech recognition system, 

automatic recognition of the start and the end (frame) of an utterance is a 

challenging task. In continuous speech it is even more difficult to find the visual 

cues for the start and end frames of a single word or of a unit (viseme). In this 

work, an adhoc scheme for temporal segmentation is proposed and shown to work 

on the dataset under consideration. 

  Similar utterances can be of different temporal durations. Different utterances 

may have significantly different temporal durations. Hence, temporal 

normalization is required. 

 Occlusion and self-occlusion of lips during utterance affects the motion templates 

based method (MHI). Use of DMHI in this work seems to have considerably 

overcome this issue.  

 The projection of movement trajectories of lips depends on the observation view 

point (Frontal or Profile). In our work, only frontal views are considered. 

 The distance between the camera and the subject and the view angle of the camera 

affect image-based measurements such as orientation, size and position, due to the 

projection of the utterance on a 2D plane. In this research, by using the Zernike 

and Hu moments which are the rotation and scale invariant features these issues 

are fairly addressed. 
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3.6 Summary 

In this chapter the components of the pre-processing block have been reviewed with the 

main focus on temporal segmentation. A general review of face localization and then lip 

localization is presented. This chapter has presented information about the data set used 

in this research. The dataset is based on 14 visemes which can be concatenated to develop 

the words and sentences and hence are selected for this research. 

An adhoc temporal segmentation technique of isolated utterances based on pair-wise 

pixel comparison has been proposed and demonstrated. This method computes the mouth 

motion across the entire image sequence. The mouth motion is described using average 

energy features computed by a pair-wise difference of images. The mouth motion is 

represented by a one-dimensional motion signal, where high amplitude values represent 

the speaking signal and the low amplitude values represent a non speaking signal. The 

experimental results demonstrate the validity of the proposed approach. Finally, 

important issues relevant to the development of visual speech recognition are discussed. 

In the next chapter, a novel feature extraction technique based on non overlapping blocks 

of the vertical component of optical flow is described. 
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Chapter 4  

Mouth Movement Representation Using 

Optical Flow Based Motion Template 

Motion of the object in a video (sequence of images) provides sufficient information to 

separate the object from the static background [122]. Motion capturing from the sequence 

of images and its processing for a variety of applications is a newly emerging technology. 

Using cutting edge technologies along with motion capturing, cross disciplinary 

applications can be developed. Some pertinent image processing techniques for motion 

representation are image differencing, optical flow analysis and background subtraction. 

As discussed in Chapter 2, the pertinent area for visual speech recognition is the area 

around the lips. In this region the main component of interest is the motion or movements 

of the lips. An efficient motion capturing technique is required for robust mouth 

movement representation. There are three different scenarios causing motion in a given 

scene: 

 the camera is fixed and objects in the scene are moving  

 the objects are more or less fixed whereas the camera is moving  

 both camera and object are moving 

The selection of motion capturing method is based on the static or dynamic background 

and its‟ performance varies accordingly. If the background is static, i.e., there is no 

movement in the background, it is easy to eliminate the background and find the region 

of interest (ROI). Based on the above mentioned three scenarios, the parameters related 

to video recording such as distance of the camera and subject, viewing angle of the 

camera and lighting conditions are important. If these parameters are kept constant, only 
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the object (mouth) motion is need to be recovered. The dataset used in this research has 

fixed parameters.  

Motion segmentation techniques have been applied on a sequence of images for a variety 

of applications to separate the ROI from the image sequences. The ROI for the visual 

speech recognition system is an area around the lips that contains a significant amount of 

motion during speech.  In a real scenario the 3-D mouth movement is represented as 2-D 

motion on the image sequence recorded by a video system. This apparent motion on a 2D 

plane has to be recovered from the pixel values of an accumulative image sequence for 

efficient mouth representation. By identifying this motion of the lips, the stationary parts 

of the video data which is redundant can be detected. The static elements of the video 

data can be thus avoided for feature estimation in the subsequent classification stage. This 

allows for a compact and computationally efficient representation of mouth movement. 

The visual speech features can be classified into appearance based and shape-based. The 

shape-based features are concerned with the representation of the mouth in terms of 

geometrical shape and dimensions of the lips such as width and height. To ease the 

extraction of lip contours artificial markers are applied on the face of a speaker [64]. In 

other approaches 2D or 3D model of the lip contour is used. However, use of artificial 

markers is not practical for real time system, and model based methods are often 

computationally demanding and require exact tracking of the lip movements. Another 

drawback of such approaches is that these require manual annotations on the training 

samples to develop the lip models. The annotation on the lip contours is sensitive to the 

facial skin colour and hairs on the face [78]. 

Appearance-based features are concerned with the low level features. These techniques 

use the information from the complete pixel values available in ROI. In this approach, the 

transform coefficients of the image pixels or the direct pixel values are used as 

appearance based features [14]. 

Contrary to appearance and shape-based features which describes the static shapes of 

mouth, motion-based features directly represent the lip motions in an image sequence 



51 
 

[72]. Motion tracking techniques [123-126] describe the facial expressions and human 

motion more efficiently than the underlying static poses techniques. Goldschen et al. 

[127]  demonstrated that motion features for lip-reading are more discriminative when 

compared to static features. 

This chapter describes a novel set of features for lip-reading that identifies visemes from 

visual data. The technique is based on a robust optical flow analysis that measures the lip 

movement while speaking. Optical flow is a technique representing the apparent 

movement in a sequence of images. Only the vertical component of the optical flow is 

used to extract the features. The vertical component of optical flow is decomposed into 

multiple non-overlapping fixed scale vertical and rectangular blocks and the statistical 

features of the each block are computed for the successive video frames of an utterance. 

A fixed sized temporal motion template of each utterance is developed for classification. 

4.1 Introduction 

A visual speech recognition technique that identifies visemes from image sequences is 

presented. The technique is based on lip movements measured by an optical flow 

analysis. Twenty years ago Mase and Pentland [72] used an optical flow analysis in their 

automatic lip-reading system to recognize connected English digits. However, due to the 

computational complexity of the optical flow and less efficient algorithms, it was not a 

popular method. Recently, the successful development of powerful CPUs and graphics 

processing units (GPUs) has made its implementation easy in real time systems [128]. 

The optical flow is defined as the distribution of apparent velocities of brightness pattern 

movements in an image [92]. The Optical flow technique is insensitive to background 

noise and lighting conditions and it can be evaluated without prior knowledge of the 

shape of the object. Therefore, the optical-flow analysis can detect robust visual features 

without extracting exact lip locations and contours. Other advantages of using optical 

flow for visual speech recognition are that lip motion features are more logical than the 

lip shape features, and visual features are independent from the speaker‟s mouth shape 

and other attributes of face [129]. 
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This study has explored the contribution of the vertical and horizontal components of 

optical flow in lip-reading. Preliminary experiments have revealed that the salient motion 

features are available in the vertical component whereas horizontal features have a much 

lower contribution in viseme utterance. Hence, optical flow horizontal component is not 

included in this method. This reduces the number of features and reduces the overall 

computational burden of the system. The optical flow vertical component is decomposed 

into multiple non-overlapping fixed scale blocks and statistical features of each block are 

computed for successive video frames of an utterance. The extracted features from the 

vertical component are classified using support vector machine (SVM) classifier. 

The experiments were conducted on a database (described in Chapter 3) of 14 visemes 

taken from seven subjects and the accuracy was tested using 5 and 10 fold cross 

validation for binary and multiclass SVM respectively to determine the impact of subject 

variations. Unlike other systems in the literature, the proposed method is more robust for 

inter-subject variations, with high sensitivity and specificity for 12 out of 14 visemes as 

indicated by the results. The overall viseme classification accuracy of 98.5%, with 

specificity of 99.6% and sensitivity of 84.2% have been achieved with one-vs-rest SVM 

classifier. Detailed experimental results and the definitions of the terms sensitivity, 

specificity and accuracy are given in Chapter 7.  

4.2 Development of Optical Flow Based Motion Templates 

Motion estimation is the process of finding a displacement (motion) vector of a pixel 

between two video frames. Motion description between two consecutive images at each 

pixel is known as an optical flow field. It is evident from the Middlebury optical flow 

benchmark [130] that the optical flow estimation methods are achieving steady progress 

by increasing the accuracy of underlying methods. These underlying methods have 

achieved a considerable level of reliability and accuracy from continuous research for 

three decades [131-133] and also because of the ever increasing computational ability. 

Computation of the optical flow motion estimation is presented in the following section. 

Reviews and evaluation of existing optical flow methods can be found in [134-137] and 

on the Middlebury optical flow benchmark website [130]. 



53 
 

4.2.1 Optical Flow Motion Estimation 

Optical flow is a measure of visually apparent motion of objects between two images and 

measures the spatio-temporal variations of video data. The word apparent implies that the 

optical flow does not consider the movement of the objects in the real 3D space, but the 

motion in the image space. Most techniques use two constraint equations to solve the 

optical flow: brightness constancy and spatial smoothness. The brightness or intensity 

constancy constraint (data term) implies that a displacement does not affect the intensity 

values of a point and hence the intensity value of that point remains the same although its 

position changes [138]. The spatial smoothness constraint (spatial term) comes from the 

basic idea of Lucas and Kanade [139]. It assumes that neighbouring pixels generally 

belong to the same surface, so that neighbouring pixels have a spatially constant image 

motion. Assuming a brightness constancy for optical flow estimation between two image 

frames which are taken at times t and t+t, a pixel at location P(x,y,t) with intensity 

I(x,y,t) will have moved by δx, δy in δt between the two image frames, so that:  

    , , , ,I x y t I x x y y t t       (4.1) 

where ( , )x y  is the spatial displacement during the time period t  and shows that a 

pixel maintains its intensity value during motion, and corresponding pixels in consecutive 

frames have the same brightness. 

4.2.2 Gradient Based Approach 

A differential approximation of the brightness constancy constraint, Equation (4.1), gives 

the gradient constraint equation. By simplifying the right side of Equation (4.1) using a 

Taylor series the equation becomes: 

  , , ( , , ) . .
I x I y I t

I x x y y t t I x y t H OT
x t y t t t

  
  

  

  
       

  
 (4.2) 

where Higher Order Terms (H.O.T) are negligible and can be ignored, so that the above 

equation will become: 
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where u and v are the x (horizontal) and y (vertical) components of the velocity 

corresponding to the optical flow of the image intensity ),,( tyxI . 

xI  / , yI  / and tI  / are the partial derivatives of the image at ),,( tyxP  in the 

corresponding directions. And these partial derivatives can be represented as 
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The above equation is commonly referred to as the gradient constraint equation, where 

  ,V u v  and ( , )x yI I I  represents the spatial gradients of I (intensity). This is a 

linear equation with two unknown variables so that it cannot be solved independently. It 

is essential to obtain another equation to compute the unknowns. This problem is known 

as the aperture problem. To solve this problem, researchers exploited the rigidity of 

surfaces in the scene in various ways. Generally the strategies employed are categorized 

into two major types: global and local methods. 

4.2.3 Global Methods 

Horn and Schunk [92] introduced brightness constancy and spatial smoothness constraint 

for a solution to optical flow estimation. They proposed an iterative gradient-based 

method combining Equation (4.5) with a global smoothness constraint. Optical flow can 

be estimated by minimising: 
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 2 2 2. ( ) ,t

D

I V I u v dx      (4.6) 

where D is the domain of interest, and λ represents the influence of the smoothness 

constraint, defined as the sum of the square of the Laplacians of u and v. 

Global techniques however, are not robust to outliers due to motion boundaries, reflection 

and occlusion. Black and Anandan [138] attempted to resolve the issue of such outliers 

but could not obtain a true brightness constancy errors and flow derivatives.  

These techniques have another problem in that they implicitly assume a single motion in 

the scene. Various researchers such as Weickert and Chnorr [140], and Brox et al. [141] 

have extended the Horn and Schunck [92] algorithm in an attempt to overcome these 

issues. All are computationally intensive for real-time applications on existing computer 

hardware. 

4.2.4 Local Methods 

To solve the two unknowns in the gradient constraint equation, Lucas and Kanade [139] 

proposed a spatially local method, using a least squares estimator as: 

 
2

( ) ( )[ . ]t

x

E V W x I V I    (4.7) 

where W(x) denotes a weighted spatial window function. This weighting is generally 

used to increase the influence of the neighbourhood. 

The computation of V can be achieved by minimizing E(V) with respect to the 

parameters of   ,V u v , 
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0
E V

u





 (4.8) 
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In matrix form this linear system may be defined as 

 MV b  (4.10) 
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From this local optical flow V  can be computed. 

Comparatively, local methods achieve better accuracy than global methods [134]. Whilst, 

the local technique can be affected at motion boundaries by breakdown of local flow 

models. However, these effects occur only on local regions and do not influence 

surrounding optical flow vector estimations. The removal of global regularization of the 

flow field also improves the efficiency of local methods. In addition, local methods 

compute the flow across small windows of the surface and do not try to compute the flow 

across an entire surface. This approach for local methods provides more flexibility. In 

2005, Bruhn et al.[142] proposed that integrating local velocity constraints with global 

regularization improved the accuracy of dense optical flow. However, this hybrid 

approach increases the computational burden significantly. 
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4.2.5 Optical Flow Computation Used in this Research 

A robust optical flow method and a robust way of feature representation provide a better 

performance which can be seen from the results.  Based on above discussed trade-offs of 

optical flow techniques, in this research a sophisticated regularization method of optical 

flow proposed by Sun et al. [143] was adopted. This is based on statistical learning of 

both the brightness constancy error and the spatial properties of optical flow and provide 

a complete probabilistic model of optical flow. Sun et al. proposed an estimation of the 

optical flow between two input images I1 and I2 where probabilistic assumption and 

decomposition of the a posterior probability density of the flow field (u,v) is computed. 

Equivalently, its negative logarithm is minimized: 

 1 2 2 1 1( , , ; ) ( , , ,; ). ( , ; )D Sp u v I I p I u v I p u v I     (4.13) 

where ΩD and ΩS are the parameters of the model: 

 ( , ) ( , ) ( , ).D SE u v E u v E u v   (4.14) 

In Equation (4.14), ED is the negative logarithm (i.e., energy) of the data term, ES is the 

negative log of the spatial term (the normalization constant is omitted in each case) and λ 

is a regularization parameter. 

Generally, the optimization of such energies is difficult, due to many local optima and 

also non-convexity. The non-convexity in this approach stems from the fact that the 

learned potentials are non-convex and also from the warping-based data term used here 

and in other competitive methods [141]. To limit the influence of false local optima, a 

series of energy functions is constructed: 

 ( , , ) ( , ) (1 ) ( , )C QE u v E u v E u v      (4.15) 

where EQ is a quadratic, convex, formulation of E that replaces the potential functions of 

E by a quadratic form and uses a different λ. Note that EQ amounts to a Gaussian Markov 

Random Field (MRF) formulation. The control parameter α  [0, 1] varies the convexity 
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of the compound objective and allows a smoother transition from 1 to 0. The combined 

energy function in Equation (3.10) changes from the quadratic formulation to the 

proposed non-convex one [144]. During the process, as soon as the solution at a previous 

convexification stage is computed, the system uses this solution as initialization for the 

current stage. In practice, it is observed that the use of three stages produces reasonable 

results. A simple local minimization of the energy was performed at each stage. At a 

local minimum, it holds that: 

 ( , , ) 0u CE u v   and ( , , ) 0.v CE u v    (4.16) 

Since the energy induced by the proposed MRF formulation is spatially discrete, the 

gradient expressions can be derived. Setting these to zero and linearizing them, the results 

are rearranged into a system of linear equations, which can be solved by a standard 

technique. The main difficulty in deriving the linearized gradient expressions is the 

linearization of the warping step. For this the approach of Brox et al. [141] has been 

followed, using the derivative filters [142]. 

Large displacements may be caused by sudden movement during fast speech. Standard 

optical flow techniques are unable to capture such large displacements due to the 

temporal resolution limitation. To overcome this limitation, image warping technique 

based on incremental multi-resolution analysis was incorporated [142, 143]. In this 

approach the optical flow estimated at a coarser level is used to warp the second image 

toward the first at the next finer level and the flow increment is calculated between the 

first image and the warped second image. The final result combines all flow increments. 

At the first stage where α = 1, a 4-level pyramid with a down-sampling factor of 0.5 is 

used. At other stages, only a 2-level pyramid with a down-sampling factor of 0.8 is used, 

to fully utilize the solution at the previous convexification stage. As identified by Horn 

and Schunck [92] classical optical flow methods suffer drawbacks such as requiring 

brightness constancy and spatial smoothness. Other limitations include outliers in the 

image due to the edges of the frame. Sun et al. [143] developed a probabilistic model 

integrated with the optical flow technique developed by Black and Anandan [138]. This 

approach overcomes the limitations of requiring spatial smoothness and constant 



59 
 

brightness and hence has been used in our proposed method. Barron et al. [134] have 

demonstrated that the optical flow estimation is more accurate using colour information, 

so that the optical flow was obtained for each of the three colour components of the 

image to reduce the optical flow estimation errors caused by illumination variations 

[145]. An example of optical flow estimation is shown in Figure 4.1. Arrows shows the 

direction of motion between two images. 

Optical 

Flow

 

Figure 4.1: Example of optical flow computation using two consecutive images. 

4.2.6 Non Overlapping Block Based Approach 

In this section, the data-processing performed to develop the feature vector template 

suitable for the training and testing of SVM classifier is discussed. Once the temporal 

segmentation of isolated utterances is performed, the cropped video containing a viseme 

is fed to the system for optical flow computation. As discussed earlier the dataset used in 

this study contains only the mouth region, resulting in there being no need for the 

localization of the mouth (ROI). From the computed optical flow field we extracted a set 

of robust features that represent the amount of vertical movement in the ROI in uttering a 

viseme. A pilot study was conducted on the collected data to determine the appropriate 

features which were subsequently used. The results shown in Table 4.1 indicate the 

average vertical and horizontal movement of an utterance. It can be observed from the 

table that the horizontal movement of the lips during viseme utterance was insignificant 

in comparison with the vertical movement and has not contributed significantly in the 
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performance of the classification of visemes. Therefore, the optical flow corresponding to 

the horizontal motion was ignored, and only the vertical component of optical flow was 

considered in this technique. This resulted in a significant reduction in computation 

complexity during real time implementation. 

Table 4.1: Average vertical and horizontal movement for an utterance. 

 
Horizontal 

Movement 

Vertical 

movement 

Average 0.97 3.12 

Standard 

deviation 
0.43 1.33 

Unlike the approaches of [72, 129], in which they extracted the features of each frame 

globally, in this research the optical flow vertical component field is divided into non-

overlapping blocks (vertical and rectangular blocks) to retain the salient features. 

Therefore, this method defines a set of regions around the ROI, and from each region 

global statistical measures of the optical flow are computed. This approach provides a 

better representation of motion estimation as compared to global approach. The reason 

behind the better performance of the block based approach is that visual speech is bi-

directional, and each lip always moves in an opposite direction. Thus the vertical 

component in certain parts of the mouth is cancelled out by averaging, and hence the 

global features of the complete ROI are not suitable for lip reading, even though the 

global features of the optical flow can be valuable in some applications. Figure 4.2 shows 

the system flow diagram of the non-overlapping block based approach. Once, temporal 

segmentation of an isolated utterance is performed. The corresponding segmented video 

of 30 frames/sec with a resolution of 240320 pixels that contains a viseme were given as 

the input to the visual speech recognition system. Similar subsequent frames which result 

in zero energy difference between frames are filtered out using the mean square error 

(MSE) given in Equation (4.17) to reduce the inter and intra subject variation in the speed 

of speaking. 

    
2

1 2

1 1

1
, , , ,

m n

x y

MSE I x y t I x y t
m n  

   
  (4.17) 
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Removing similar subsequent images has an additional advantage of reducing the 

computational burden while calculating optical flow. The system computes the optical 

flow between consecutive images. The optical flow computation provides the vertical and 

horizontal components separately. Each vertical component frame is divided into 8 non 

overlapping fixed size blocks of size 24040 pixels as can be seen in Figure 4.3. Each 

block‟s statistical property (average intensity) is computed, so that each frame is 

represented as 8 values in a row. To develop the motion template of corresponding 

utterance, each row of with 8 values was stacked to develop a matrix of n8. There are 

large inter and intra subject variations in the speed of an utterance and this results in a 

difference in the number of frames (i.e., rows) for each utterance. The number of frames 

for each utterance was normalized such that the template size for each of the utterances 

was the same. This normalization was achieved using a linear interpolation to obtain a 

constant 10 frames for each utterance. Finally this 108 size template i.e., an 80 

dimensional feature vector represented a viseme and was used for training and testing of 

the classifier. The results are presented in Chapter 7 Section 7.1.1. 

Feature Extraction/Reduction

Non-overlapping Block Based Approach 
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Figure 4.2: System flow diagram of non-overlapping block based approach. 

However it was shown that this approach of division into vertical columns does not 

provide the best results. Further division of ROI into rectangular blocks was performed 

with the block size being optimized iteratively. 
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Figure 4.3: Vertical block based approach 

4.2.6.1 Block Optimization 

The ultimate intention of any simulation based work is to lead towards a real time system, 

which therefore requires data to be reduced to a minimum. For this purpose, experiments 

were conducted to optimize the size of the blocks that could be used (Figure 4.4). After 

experimenting with 7 different block sizes (4032, 3232, 4840, 2420, 3040, 3020, 

24040 pixels) (see Table 4.2), a block size of 4840 pixels was chosen for all of our 

experiments as it represents a good compromise between sensitivity, accuracy and the 

number of features. As a result, each image is divided into blocks of size 4840 pixels, 

resulting in 40 blocks (5 rows  8 columns) per optical flow frame as shown in Figure 

4.4. 

Table 4.2: Average classification results of seven different block sizes. 

 

 
Block Size 

pixels 

Specificity 

% 

Sensitivity 

% 

Accuracy 

% 

No: of 

Features/ 

Viseme 

1 48x40 99.6 84.2 98.5 400 

2 30x40 99.7 83.7 98.6 640 

3 40x32 99.7 84.2 98.6 600 

4 30x20 99.8 79.5 98.4 1280 

5 32x32 99.8 81.1 98.4 1000 

6 24x20 99.8 81.1 98.4 600 

7 240x40 98.1 66.4 95.9 80 
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Figure 4.4: Direction of movement of each muscle and the block arrangement used for 

optical flow feature extraction. 

To develop the template for each viseme, each optical flow frame was represented by the 

average of each block which resulted in an array of 5 rows and 8 columns, in total 40 

features per frame (one feature representing each block). Each matrix of 40 elements is 

converted to a row vector. Rows of subsequent optical flow were stacked to develop the 

template matrix. To overcome the difference in the speed of speaking, each utterance was 

normalized (temporally) to 10 frames using a linear interpolation. This resulted in a final 

feature vector of size 400 (1040). 

4.2.7 Normalization of speed of speech 

The speeds of speech between inter and intra subjects vary for each repetition of a 

phoneme. This variation in the speed of an utterance results in variation in overall 

duration of an utterance. In videos this variation results in a varying number of frames so 

that a varying number of visual features will be obtained. It is difficult to model a 

classifier with large variations in the number of features per utterance. A simple two 

phase approach to normalize the overall duration of an utterance is adopted.  In first 

phase at the time of the optical flow computation, similar subsequent frames containing 
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the zero level energy differences are eliminated for optical flow computation. In the 

second phase each optical flow template with varying number of frames was normalized 

to 10 frames using linear interpolation so that the no precision is lost. 

4.3 Summary 

This chapter has provided a novel set of features computed from the optical flow vertical 

component. A novel block based approach has shown significant improvement when 

compared to the proposed DMHI approach. A detailed discussion of the results is 

presented in the Chapter 7. In this chapter detailed description of the optical flow 

estimation has been given. In addition, the optimal size and number of blocks for feature 

extraction is discussed. It is concluded that a suitable size of block is required for 

optimization of the system. Vertical components‟ vertical blocks have shown less 

accuracy in comparison to small rectangular blocks. Because the values in the vertical 

blocks represent both the upper and lower lip motions at the same time, the 

corresponding positive and negative values cancel each other during the computation of 

the mean value of the block. The rectangular block size which giving the best results is 

approximately segmenting the mouth from the centre of the mouth, which separates the 

upper and lower lip motions. 
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Chapter 5  

Mouth Movement Representation Using 

Directional Motion History Images 

In any video sequence, the change in the consecutive images can be detected by 

subtracting pixel values of consecutive images that provide the regions with movements. 

Jain [146] has proposed the Accumulative Difference Picture (ADP) for change detection 

in dynamic scene analysis. The main goal of motion segmentation in this study is to 

capture the mouth movement that occurs in a desired temporally segmented image 

sequence. This chapter discusses another novel and robust mouth motion representation 

technique. This technique consists of four mouth motion patterns obtained from the 

vertical and horizontal components of the optical flow rather than from the structural 

information of movement or the underlying difference of image technique. This method 

represent the entire space-time dimensions of mouth motion of an utterance by four 2D 

gray scale images, with each image retaining the essence and temporal structure of the 

directional movement that is up, down, left and right. This technique is known as the 

directional motion history images (DMHIs). It is an evolution of the traditional motion 

history image (MHI) [147]. The MHI is an appearance based technique that preserves the 

entire space-time dimensions of motion in an image sequence in a single 2D gray scale 

temporal template that retain pertinent motion information available in video frames. 

The gray levels of each directional motion history image describe the measure of motion 

in respect to time. Thus the intensity value of each pixel of each directional motion 

history image corresponds to a function which represents the temporal history of motion 

at particular pixel location in their respective directions. This approach recognizes the 
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directional motion by computing the apparent motion velocities by the robust optical flow 

method. 

The following section describes the general MHI technique, followed by the development 

of DMHIs based on optical flow analysis. The experiments compared the performance of 

the proposed DMHI method with the MHI, computing the Zernike moments from each 

image. 

5.1 Motion Representation Theory 

Computer vision based on motion analysis has many applications, including region of 

interest (ROI) segmentation, object tracking (e.g vehicle or human) and human action 

recognition, as well as lip-reading from an image sequence. For motion segmentation, 

frame to frame differencing [148-152] methods have been commonly used. These 

temporal differencing methods which employ two [149, 151, 152] or three consecutive 

frames [148, 150] are suitable for dynamic environments, although in general poor 

relevant features are acheived. To generate the motion history image (MHI) and the 

motion energy image (MEI), temporal differencing methods are employed [153]. 

However the optical flow computation around the ROI represented as an alternative to 

the temporal differencing method to generate the MHIs. Because it directly describes the 

actual movement in the ROI (mouth), the proposed DMHIs method based on optical flow 

has outperformed the traditional MHI method.  

5.1.1 Basics of Motion History Image (MHI) 

Motion History Image (MHI) is an appearance based method used to describe the 

direction of motion in image sequence. The intensity of each pixel in an image sequence 

is a function of motion density at that location, and therefore the temporal difference of 

these pixel values results in MHI, being a temporal template. One of the advantages of 

the MHI representation is that a range of image frames in several seconds of times may 

be encoded in a single gray scale image frame and in this way MHI can span the time 

scale of human visual speech. The resulting single scalar-valued image contains brighter 

pixels where there is recent movement and darker where the movements are older [154, 
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155]. Bobick and Davis [156] first proposed a spatiotemporal model for human action 

representation and recognition by using motion history and energy images (MHI/MEI). 

The MEI represents a binary motion image that describes where a motion is in an image 

sequence. The MHI ( ,  ,  )H x y t  can be obtained from an update function ( ,  ,  )x y t , which 

represents the brighter pixels where there is recent movement and darker where the 

movements are older: 
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,  , 
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if x y t
H x y t
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 (5.1) 

where update function ( ,  ,  )x y t  signals the presence of object (or motion) in the current 

video image, x, y and t show the position and time,  decides the temporal duration of 

MHI, and  is the decay parameter. To define ( ,  ,  )x y t  image differencing, optical flow 

and background subtraction techniques can be used. Figure 5.1 shows the development of 

two MHI images for the utterances /a/ and /m/. Usually, MHI is developed from a 

binarized image, computed from frame subtraction [26], using a predefined threshold 

value,to obtain a motion or no motion classification: 
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otherwise


  


 (5.2) 

where ( , , )Diff x y t  with difference distance  is as follows: 

    , , , , ( , , )Diff x y t I x y t I x y t     (5.3) 

where, I(x,y,t) is the intensity value of pixel located at coordinate (x,y) in the t
th

  frame of 

the image sequence.  

Motion energy image (MEI) is the binary representation of the motion in an image 

sequence that shows where a motion has occurred in a specific video. In comparison to 
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MHI, the moving object cleans a particular region of the image and this form can be 

useful for the determination of motion occurrence [124] in MEI.  

Viseme First Frame Middle Frame Last Frame 

/a/ 

   

MHI of 
/a/ 

 
Motion History Image 

 

Motion History Image 

 

MEI of 
/a/ 

 
Motion Energy Image 

 

Motion Energy Image 

 

/m/ 

   

MHI of 
/m/ 

 
Motion History Image 

 

Motion History Image 

 

MEI of 
/m/ 

 
Motion Energy Image 

 

Motion Energy Image 

 

Figure 5.1: Development of MHI images for two utterances /a/ and /m/. 

The MEI ( ,  ,  )E x y t  can be represented as: 

 
1
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   (5.4) 
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The MEI can be extracted from the MHI by thresholding the MHI above zero [154]. 
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if H x y t
H x y t

otherwise






 


 (5.5) 

As can be seen from Figure 5.1, the gray-scale MHIs are sensitive to direction whereas 

MEIs do not provide information regarding the direction of motion, and thus the MHI is 

more suitable for discriminating the motion in opposite directions [157]. However, both 

the MHI and the MEI images together may provide better discrimination than either of 

the alone [154], depending on the application. In the following section, procedure for the 

development of DMHI is described. This method employs the probabilistic model of 

optical flow, described in chapter 4. 

5.1.2 Development of Directional Motion History Images (DMHIs) 

Optical flow methods [92, 135, 139, 158-161] can be used for the motion segmentation as 

well as for MHI development for various applications. Instead of the traditional frame 

subtraction or background subtraction method used to calculate the update function 

presented in Equation (5.1), this method employs the probabilistic model of optical flow 

developed by Sun et al [143] to compute the DMHIs. Computing quality optical flow 

from an image sequence is a challenging task, considering the conclusion regarding lower 

accuracies of optical flow presented  by Gray et al [162] that non optimized thresholding 

provides very sparse optical flow fields. To obtain better results in presence of motion 

and its direction, the probabilistic model of optical flow [143] is employed to reduce 

outliers, although the optical flow method is computationally expensive and sensitive to 

noise but performs well in presence of camera motion [163]. The DMHIs constructed by 

these refined optical flow vectors provide a clearer picture of the presence of motion and 

its direction (i.e up, down, left and right). Moreover, from a real time perspective, the 

implementation of optical flow algorithms on FPGAs [128], and the successful 

development of powerful CPUs makes its implementation easy.  
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To produce the four DMHIs (up, down, left and right), the optical flow is computed 

between two consecutive frames and separated into four channels as shown in Figure 5.2. 

Detailed description of Optical flow computation is given in Section 4.2.5. With 

reference to the proposed visual speech recognition system presented in section 2.10 and 

depicted in Figure 2.6 the pre-processing and the temporal segmentation blocks that 

perform the illumination effect reduction and the temporal segmentation of discrete 

utterances i.e., to determine the start and end frames of the utterances, are described in 

the Chapter 3 Sections 3.3 and 3.4. 

It has observed that there is inter and intra subject variation in the speed of speech. This 

variation in speed can give rise to different perceptual impression and can cause inexact 

viseme recognition. To compensate for the variation in speed of speaking, the mean 

square error (MSE) given in Equation (5.6) between two subsequent frames was 

computed and only those frames with nonzero differences were used to compute the 

optical flow. Removing similar sequential images has the additional advantage of 

reducing the computational load. 
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  (5.6) 

The optical flow vectors obtained from an image sequence (denoted by  , ,x y t ) are 

first divided into two scalar fields corresponding to the horizontal and vertical 

components of the flow,  and x y  . These components are then half-wave rectified into 

four non-negative separate channels , , ,and x y x y

       constrained such that:  

         x x x

     (5.7) 

 and   y y y

     (5.8) 

Figure 5.2 depicts the flow diagram of the four flow vector computations. Based on each 

of the four directions, each optical flow image is normalized according to the threshold  
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value, where  is computed according to Otsu‟s [164] global threshold method. Based on 

these normalized image sequences, four separate optical flow based motion history 

templates are developed after deriving the four optical flow components. 

Framex Framex+1

Optical Flow Computation

Vertical(y)Horizontal(x)

Up(
y)down(

y)Right(
x)Left(

x)

Half wave rectification

 

Figure 5.2: Conceptual framework of optical flow vector separation into four directions. 
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 (5.9) 

For positive and negative horizontal directions,  ,  , xH x y t


and  ,  , xH x y t


 are set 

up as motion history templates, whereas  ,  , yH x y t


and  ,  , yH x y t


 represent the 
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positive and negative vertical directions (up and down). In this motion separation method, 

four motion history templates that approximate the directions of the motion vectors are 

developed. 

In DMHI computation of various utterances by multiple subjects results in different 

number of frames for different utterances; even the same viseme repeated by the same 

subject has some variation in the number of frames. This can be seen in Table 3.1. Thus, 

the effect of parameter τ in DMHI computation is crucial, the reason being that if an 

utterance takes 30 frames (i.e., τ =30) by one subject, then the maximum value in the 

produced DMHIs will be 30 (because τ = 30), whereas, if the same utterance is uttered a 

little slowly either by the same or by a different subject, and tacking 38 frames (i.e., τ 

=38) then the maximum value for the developed DMHIs will be 38. This intensity 

variation might produce slightly more isolation in the same utterances. Therefore, this 

unwanted variation in similar utterances can be mitigated by incorporating intensity 

normalization in computing the DMHI templates. Consequently, a simple normalization 

method was employed for different utterances, uttered by multiple subjects with a 

varying number of frames. The [τmin, τmax] values were transformed into the range of 

[0,1]. Based on this normalization approach, the produced DMHI images were converted 

into the range of [0,1] for each of the utterance. 
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DMHI Vertical UpDMHI Vertical Down

DMHI Horizontal Left DMHI Horizontal Right

(a)  

DMHI Vertical UpDMHI Vertical Down

DMHI Horizontal LeftDMHI Horizontal Right

(b)  

Figure 5.3: (a) Four directional motion history images (DMHIs) of first three frames of 

an utterance /a/, (b) Complete DMHIs of an image sequence of an utterance /a/. 
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Figure 5.3 (a) depicts an example of four directional motion history images of the first 

three frames of an image sequence of an utterance /a/, where more recent movement of 

pixels is brighter and older pixel movement is darker. It can be seen from the DMHI 

vertical down image that in the utterance /a/, the lower lip moves down so that most of 

the lower portion of that image is brighter (white), whereas other grey level pixels show 

the older movement in the downward direction. Similarly, in the vertical up image the 

upper part is brighter which shows that the upper lip moves up in uttering /a/ in the initial 

frames. However, optical flow computation is a global pixel based technique, and the 

dataset used in this research contains only ROI and there is no static background which 

separates the static and dynamic portions in an image sequence. In such a type of dataset 

where all pixels are somehow moving, it is hard to describe such motion history images. 

Pixel movement would be apparent where there is a static background and objects are 

moving such as that of human or vehicles in videos with a static background. Figure 5.3 

(b) shows an example of four directional motion history images of a complete video of an 

utterance /a/, where brighter pixels show more recent movement, and vice versa in 

corresponding directions.  Feature vectors are computed from these four history templates 

by employing Zernike and Hu moments for classification and recognition. Detailed 

description of feature extraction and classification techniques is given in Chapter 6. 

5.2 Advantages and Disadvantages of Directional Motion History 

Images 

One of the major issues with the generic MHI method is motion occlusion caused by 

other objects, or self occlusion resulting in motion overwriting. Example are human 

motions such as sitting and standing or in visual speech, long motion sequences such as 

repeated opening and closing of the mouth. Human actions such as sittting down and 

standing up at a fixed location have opposite directions. As described earlier, the MHI is 

based on scalar values, where more recent pixel movement is described brightly and older 

motion is darker. If a person sits down, the MHI of that action shows the brighter pixels 

in the lower part of the image. In the same image sequence, if the person stands up the 

final MHI image contains the brighter pixels in the upper part of the image and 
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overwrites the previous sit down action so that only the stand up motion is represented in 

the final MHI. Similarly, in opening and closing of the mouth, the upper and lower lips 

have opposite actions at their reference points and this causes overwriting in the MHI. 

Several methods have been developed to solve the issue of overwriting, in order to 

represent the multi-directional activities in the form of MHI efficiently. Multilevel 

MHI(MMHI) [165-167] and Hierarchical Motion History Histogram (HMHH) [71] 

approaches are proposed to overcome the issue of overwriting. The aim of MMHI is to 

overcome the problem of motion self occlusion in specified video sequence by obtaining 

multiple MHIs. In effect, all the MHIs should have a fixed number of history levels n, for 

that each video is sampled to (n+1) frames. 

The MMHI is represented as follows: 
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where the intensity step between two history levels is s=(255/n). 

 ,  ,  0tMMHI x y t  for t<= 0. 

From each of these motion templates final multilevel-MHI is computed by iteratively 

combining all the short term motion templates t= 1,…, n+1. This method encodes motion 

which takes place at different time instances on the same location, such that it is uniquely 

decoded. A simple bit-wise coding scheme is used. If a motion occurs at time t at pixel 

location (x, y), it adds 2
t-1

 to the old motion value of the MMHI as follows: 

       1,  ,  , , 1 ,  ,  .2tMMHI x y t MMHI x y t x y t     (5.11) 

The proposed MMHI system was demonstrated for the automatic detection of facial 

actions that show expressions. Due to the bitwise coding scheme, multiple actions 

occurring at the same position [166] can be separated. This system requires a sensitive 

registration system, and all the image sequences must have same scale or size and faces 
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in the video frames should be at the same position. Consequently, MMHI has not clearly 

demonstrated any superiority when compared to basic MHI. Ahad et al. [168] showed 

that MMHI and HMHH are not efficient when compared to DMHI, by implementing the 

MMHI with two different datasets. It has also been demonstrated by Ahad et al. [168] 

that the difficulty of self occlusion or motion overwriting in the MHI method can be 

considerably resolved by using DMHI method. Another possible solution to motion 

occlusion is proposed by Yau [75] by increasing the single camera views to multi-camera 

views. However, this is not suitable for real time system and furthermore, the fusing and 

processing of video inputs from multiple cameras is a complex task. 

One of the important features of the motion template based visual speech recognition 

system is the ability of MT to preserve the short duration dynamic elements (mouth 

movements) of the image sequence while discarding the static elements [153, 169]. 

In visual speech recognition the movements of the lips retain important features. The 

benefit of the proposed directional motion templates based approach is that it represents 

the entire space-time dimensions of mouth motion by four 2D gray scale images, with 

each image retaining the essence and temporal structure of the directional movement (up, 

down, left and right).  

The major drawback of all the motion template based systems is the motion overwriting 

or self occlusion, especially in visual speech when speech is continuous or when long 

motion sequences are considered. The movements of lips are based on one centre point 

and repeated with respect to time, but this repetition of lip movement while uttering 

words can cause overwriting. The proposed DMHI technique has successfully solved this 

issue of overwriting, but for long motion sequences it has been only partially solved. To 

resolve this limitation for continuous speech, it is proposed to segment the continuous 

speech into basic visual units (visemes), where continuous speech can be recognized by 

concatenating respective visual units. 
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5.3 Summary 

This chapter has given insights into the segmentation of mouth movement from video 

data by general motion history and by energy images technique. In addition to the MHI 

and MEI, the main focus is on DMHI, the robust method to overcome the self occlusion 

problem in MHI. The MHI and MEI methods reduce the dimension of the input video 

from 3D to a 2D template consisting of greyscale and binary images respectively. These 

greyscale and binary images show how and where the motion occurs in the video data. 

The development of optical flow based DMHI is also presented. Rather than a single 

motion template, DMHIs present the four directional motion images, which contain the 

information regarding the lip motion in a particular direction i.e., up, down, left and right. 

This chapter also discusses the advantages and disadvantages of the proposed DMHI 

technique, elaborating that the DMHI technique is prone to overwriting or self occlusion.  

Generally, the size of ROI image is fairly large so that all the pixel values of the 

generated templates are not suitable to use as feature vector to represent the mouth 

movement. To represent the MHI or DMHIs with reduced feature set, suitable image 

descriptors are needed. Chapter 6 describes the feature extraction and classification 

techniques in visual speech recognition systems used in this work. Further, the issues 

related to the development of visual speech recognition system are discussed. 
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Chapter 6  

Visual Speech Feature Extraction and 

Classification 

In pattern recognition, features are the representation of the given data that provide 

sufficient variability between two different patterns. Feature extraction is the process of 

finding the correct representation which will aid in correct classification. The visual 

features for visual speech recognition are the representation of the given video signals 

that provide discrimination between the various visemes (visual speech units) whilst 

providing invariance to similar visemes. The purpose of the feature extraction step in a 

visual speech recognition system is to yield the robust features which make the task of 

the classifier trivial (linear if possible). However, due to the various variations in the ROI 

such as illumination changes, viewing angle of the camera, variation in dimensionality of 

the ROI and in style of speaking, it is extremely difficult to find a robust set of features 

which provide accurate discrimination between visemes. Visual speech features should 

have the following characteristics [170]: 

 Robust to environmental variations such as lighting condition, scale and rotation 

reducing intra-class variation 

 Contain the maximum information about the patterns of interest increasing inter-

class variation  

 Low dimensionality and compact representation allowing real time system 

implementation 

A variety of feature extraction methods have been proposed in literature for video 

analysis of a mouth while speaking. Generally these features can be broadly categorized 
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into three types: shape based (contour based), appearance based (global features) and a 

combination of both. In this Chapter a brief review of these features is presented. 

Appearance based features have been preferred by many researchers because of their 

simplicity and analogy to human perception and does not require exact localization and 

tracking of the mouth. In Section 6.2 of this Chapter, proposed feature extraction methods 

are explored and finally the classifier employed is discussed in Section 6.4. 

6.1 Classification of Visual Feature Extraction 

Feature extraction techniques applied to visual speech recognition systems can be classified into 

the following three categories [14] 

i) Shape based or Contour based. 

ii) Appearance based or Intensity based, and 

iii) A Combination of appearance and shape based features 

The following section describes these techniques, their advantages and disadvantages.  

6.1.1 Shape Based Feature Extraction 

The shape based feature extraction techniques are concerned with the representation of 

the mouth, in terms of geometrical shape and dimensions of the lips such as height and 

width, as seen in Figure 6.1(a). This information is encoded with respect to the standard 

set of mouth shapes already in the system. In 1984, Petajan [41] proposed the first visual 

lip-reading system based on shape features. In this system Petajan extracted the speaker‟s 

mouth height, width, perimeter and area from the binary images as the features for the 

classifier. In shape based feature extraction, it is desirable to locate the exact location and 

position of visual speech articulators. This approach has the advantage of low 

dimensionality of features, however, the requirement of further localization and tracking 

may have an undesirable effect on the visual speech recognition system [61]. 
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Figure 6.1: Shape based features represent the physical shape of the mouth such as height 

and width, given in (a). Appearance based features consider the complete ROI, shown in 

(b). 

Generally, researchers [36, 64, 127, 171, 172] have considered the physical 

measurements such as mouth width, height and area of visual articulators to represent the 

speaker‟s mouth. Kaynak et al. [173]  provided a detailed description and a comparative 

analysis of lip geometric features. To extract the geometric features such as height, width 

and contour of the lips, artificial markers have been applied on the speaker‟s lips [64, 

173]. In today‟s systems, these artificial markers are not suitable in most of the scenarios. 

In recent studies model based techniques have been considered for AVSR. In these 

approaches, a geometric model of the lip contour is used. Typical examples of this 

technique are active shape models [174], in which the inner and outer contour of the lips 

are extracted by a labelled set of points on the mouth. Features extracted from model 

based approaches can be divided into two categories. In the first category, parametric 

values used to define the lip contours are directly used as a feature vector. In the second 

category, parameters such as the values of mouth height, width, perimeter, area and ratios 

between the width and height are considered as a feature vector [24, 175, 176]. Other 

examples of model based techniques are deformable templates [177], active appearance 

model (AAM) [17], multi-scale spatial analysis (MSA) [24] and smart snakes [178, 179]. 

The AAM model is an extension of ASM, which combines a shape model with a 

statistical model of grey level surface of the ROI. The AAM has been demonstrated to 

outperform ASM [24]. Wojdel and Rothkrantz [180] introduced a new feature extraction 
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method that is a model free approach used to describe the shape of the lips. It was based 

on an image segmentation technique used to detect the pixels belonging to the lips and 

known as lip geometry estimation (LGE). 

The major drawback of AAM and other model based approaches is that it requires 

manual annotations on the training samples. The performance of AAM decreases if the 

speaker‟s sample is not included in the training sample. Model based techniques are also 

sensitive to the facial skin colour and hairs on the face but are insensitive to illumination 

variations and image noise [75]. 

6.1.2 Appearance Based Feature Extraction 

The major shortcoming of the shape based feature extraction techniques [17, 174] is that 

they only consider the geometrical information of the lips to represent mouth shapes. 

These techniques only analyse the lip contour information and do not consider the other 

speech articulators, whereas the appearance based representations are concerned with the 

low level features. Appearance based techniques use the information from the complete 

pixel values available in consecutive images of the ROI as shown in Figure 6.1(b). In 

addition to the lips, other speech articulators such as teeth, tongue, jaw and some 

surrounding muscles of the mouth which are informative about the visual speech [60] are 

implicitly included in this technique. The raw pixel values in the ROI contain the salient 

information of speech and can be directly used as a feature vector [181]. However, a high 

dimensional ROI contains a large number of pixels and can be an overburden to the 

statistical classifier and would be problematic. In this regard, some image 

processing/transforming techniques are applied on the ROI image to extract a compact 

and meaningful feature vector. 

Principal component analysis (PCA) is a well-known data dimensionality reduction 

technique, used for lip-reading by various researchers [61, 63, 181-186] and achieves 

good results. Another technique that is superficially related to PCA is independent 

component analysis (ICA) which is also used for lip-reading [162]. However, results 
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achieved by traditional PCA have outperformed those of the ICA representation for lip-

reading [162]. 

In other approaches, researchers have used linear image transforms such as discrete 

wavelet transform (DWT) [185], vector quantization [187] and discrete cosine transform 

(DCT) [33, 63, 184, 188, 189] to compute the features from the ROI. In these data 

compression techniques, statistical redundancies in the image are removed with respect to 

transformed coefficients. Computation of these transforms such as Fast Fourier 

Transform (FFT) become faster when the image size is of a power of 2 or a square image, 

so can be used in real time implementation of a VSR system [190]. Potamianos et al. [35] 

applied the first and second order derivatives of a DCT on a ROI to capture the visual 

speech features. The advantage of intensity based feature extraction approaches over the 

shape based approaches is that they do not need a priori statistical lips model. This 

advantage leads to the development of a computationally efficient VSR system [169]. 

6.1.3 Hybrid Features  

Hybrid feature extraction combines both appearance and shape based representations. 

The structure of this approach is based on the hypothesis that the high level features that 

describe the geometric shapes of a mouth and the low level features that assume the pixel 

level features are complementary to each other. By combining them, performance can be 

augmented. Luttin et al. [191] presented a speech reading system in which they combined 

the shape based ASM features and intensity based PCA features. A similar combined 

feature extraction method was used by Chiou and Hwang [182], who used the snake 

contour model with PCA. Chan [192] described his feature vector using geometric 

features with PCA features. These approaches concatenate both sets of features into a 

single feature vector. In addition to the above approaches, the active appearance model 

(AAM) implicitly extracts both the appearance and shape features [17]. 

6.1.4 Motion Based Feature Representation 

In 1994, Goldschen et al. [127] introduced dynamic features to represent the actions of 

the oral cavity during speech. They demonstrated that motion features are more 
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discriminative as compared to static features. Besides the seven static features from the 

oral cavity, such as width, height, area and perimeter, they also extracted the dynamics of 

each feature by computing the change of each feature between consecutive frames and 

then calculated the second derivative. Their results indicated that the dynamic features 

are more discriminative as compared to static features. 

Rosenblum and Saldaa (1998) [193] described the static and dynamic visual speech 

information, where features extracted from static mouth images are static (pictorial) 

features. The appearance based and shaped based features reside in this category. The 

dynamic features directly represent the motion or dynamics of the mouth movement with 

respect to time varying visual information. Recently, Yau et al. [26] computed the 

dynamic features to represent visual speech. In their approach, mouth motion is 

represented by a motion history image (MHI), computed by image subtraction of 

consecutive images. 

As described in Chapter 4, the motion of the object in an image sequence provides 

sufficient information. An optical flow motion tracking approach is adopted in this 

research. It is an alternative method to the static analysis of the input video of a ROI. The 

motivation for using motion features is that they provide the temporal characteristics of 

visual speech information or lip positions [194] and describe the actual movement of the 

mouth. Another reason in favour of using temporal image data is the validation by 

Rosenblum and Saldaa [193] that time-varying information is important for visual speech 

perception as compared to time independent information. The optical flow has been used 

for lip reading since the beginning of this research domain. However, computational 

complexity and low performance optical flow algorithms have restricted its use. The 

availability of powerful CPUs/GPUs and very sensitive algorithms have allowed the use 

of optical flow for real time applications. 

In the following section, feature extraction and classification techniques applied on the 

concise images computed in Chapters 4 and 5 are described. The concise images were 

computed by means of DMHIs and non-overlapping block based approaches. 
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6.2 Visual Speech Feature Extraction 

The mouth movement is segmented from video data, using the optical flow analysis 

presented in Chapters 4 and 5, the resulting DMHIs and the templates developed from the 

optical flow vertical component can be used for matching the movement patterns of 

visemes. This Section presents the feature extraction technique applied on DMHIs to 

identify utterances. However, the templates computed from the vertical component of 

optical flow are directly fed to the classifier for training and testing, because the actual 

size of the image was reduced by computing the average values of each non-overlapping 

block. 

The pixel values of each directional motion history image and templates developed from 

the vertical component are the representation of motion history. In DMHIs each image 

represents the motion of lip movements in a particular direction (up, down, left, right) 

where more recent movements are represented with brighter pixels. One of the simplest 

options for recognizing the directional motion history images for a corresponding 

utterance is to directly use the pixel values of each image as an input feature vector to the 

classifier that classifies these features into utterances. Nevertheless, analysing visual 

speech information directly from the intensity values is very difficult due to the large data 

size and sensitivity to local variations of image intensities [195]. For example, an image 

of size 100  100 contains 10,000 pixels which is too large in dimension and hinders the 

robust classification of the image. In this research this calculation would be 57,600 

(240x240x4) pixels. In image classification tasks, it is highly desirable to have a small 

feature size that contains most of the relevant cues related to the objects of interest. The 

raw pixel values can be transformed to a different space to reduce the feature 

dimensionality, whilst retaining the relevant and meaningful motion information. Regions 

in an image can be described in terms of the external characteristics such as the 

boundaries of the regions [196, 197] or internal properties such as the pixel values within 

the regions [122, 198]. 

The external representation is used only when the shape or outline of the regions is 

important for representing the image. Since the pixel intensities of DMHIs contain spatial 
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and temporal information of mouth movement, global internal features are suitable to 

efficiently represent the intensity distribution of DMHIs. The gray level of each pixel of 

DMHI indicates the temporal characteristics of the mouth movement at that particular 

pixel location and direction. A number of global feature descriptors have been proposed 

for image representation in the literature such as wavelet transform representation [199], 

DCT representation [65] and statistical moments such as geometric, Hu moments (HM) 

[200] and Zernike moments (ZM). In this study two global internal descriptors are 

examined, to uniquely represent the set of four directional motion history images. These 

are Zernike moments and Hu moments.  

ZM and HM are extracted individually from each DMHI of an utterance to represent the 

corresponding utterances in a compact form, while redundant information is removed. 64 

Zernike moments are computed from each DMHI, so that in total a 256 dimensional 

feature vector represents an utterance. In a second feature set, a set of seven Hu invariant 

features are computed from each image, so that each utterance is represented by a 28 

dimensional feature vector. 

Statistical moments capture the global information of an image and do not require closed 

boundaries, as compared to boundary based features such as Fourier descriptors. 

Moments computed from images with different patterns are unique and hence such 

features are useful for pattern recognition of multiple visemes. The most commonly used 

moment-based features are the geometric moments that are computed by projecting the 

image function onto monomial functions. Hu [200] proposed a set of seven nonlinear 

functions named as moment invariants (MI) or Hu moments (HM) derived from 

geometric moments of 0 up to 3
rd

 order. MI features are translation, scale and rotation 

invariant. It is difficult to derive MI that is greater than the 3
rd

 order, thereby limiting the 

maximum feature size of MI to only seven moments. 

ZMs are a type of orthogonal statistical moment proposed by Teague [201] in 1980, and 

have been recognized as one of the robust region-based shape descriptors in the MPEG-7 

standard [202]. The advantages of ZM are that such features are mathematically concise 

and capable of reflecting not only the intensity distribution of an image, but also the 
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shape. As opposed to HM that can only be computed up to the 3
rd

 order, ZM can easily be 

constructed to an arbitrary high order. Another key strength of ZM is the invariance 

property of these features to rotational changes. 

A detailed description of ZM and HM is given in the Sections 6.2.1 and 6.2.2 

respectively. Classification is a procedure which tries to assign each input value to one of 

the pre-defined classes, such as the features extracted by ZM are fed as input to the 

classifier, classifier attempts to assign it to the corresponding class. Section 6.4 describes 

the support vector machines (SVM) classifier used for viseme classification. 

6.2.1 Zernike Moments 

Zernike moments (ZM) are a type of orthogonal image moment commonly used in 

recognition of image patterns [203]. ZM are independent features due to the 

orthogonality of the Zernike polynomial Vnl [201]. It has many desirable properties. One 

of the most important property is its simple rotational invariance property [203]. Others 

are robustness to noise, expression efficiency and multilevel representation for describing 

the shapes of patterns. In terms of information redundancy, sensitivity to image noise and 

image representation capability, ZM have been demonstrated to outperform the other 

image moments such as Legendre moments, geometric moments and complex moments 

[204]. The orthogonality of the ZM features enables redundancy reduction and enhances 

the computation efficiency [205]. Zernike moments are computed by projecting the 

image function  ,f x y  onto the orthogonal Zernike polynomial nlV of order n with 

repetition l defined within a unit circle (i.e., 2 2 1x y  ). 

6.2.1.1 Square-to-Circular Image Coordinate Transformation 

All the directional motion history images are scaled to a square image of NN pixels so 

that they can be mapped to the unit circle centred at the origin of an individual image. 

Each image of size NN pixels is bounded by a unit circle, the centre of the image is 

taken as the origin and the pixel coordinates are mapped to the range of a unit circle 

i.e.,: 2 2   1x y  . 
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Figure 6.1 shows the square-to-circular transformation that maps the square image 

function ( , )f i j to a circular image function ( , )f   in terms of x-y axes. Each of the 

images is enclosed within the circular x-y coordinates to ensure that no information is lost 

in the square-to-circular transformation. 

x

y





N-1

N-1

0 i

j

 

Figure 6.2: The square-to-circular image coordinates transformation of a motion template 

before Zernike moments computation. 

The transformed coordinates are given by: 
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The radius,  and angle,  after the transformations are given by:  
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6.2.1.2 Computation of ZM 

ZM is computed by projecting an image function, f(x, y) onto the orthogonal Zernike 

polynomial, Vnl. The kernel of ZM is a set of orthogonal Zernike polynomials defined 

over the polar coordinate space within a unit circle (i.e.,: 2 2   1x y  ). Zernike moments, 

Znl of order n and repetition l are given by 

  
2

0 0

1

, ( , )nl nlZ V f d d



           (6.5) 

where l n  and  n l  is even, f(,) is the intensity distribution of DMHIs mapped to 

a unit circle of radius  and angle  defined in Equation (6.3) and (6.4). The term λ is a 

normalizing constant defined as  
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The Zernike polynomial, Vnl is given by 
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where Rnl is the real-valued radial polynomial, which is given by 
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The integrals in Equation (6.5) are replaced by summations for discrete digital images 

given by 
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6.2.1.3 Rotation Invariance of ZM 

To illustrate the rotational characteristics of ZM, consider  as the rotation angle of an 

image (DMHI). The rotated image, 
rf is given by 

 ( , ) ( ,  )rf f       (6.10) 

The mapping of ZM expression from the x-y plane into the polar coordinates can be 

obtained by changing the double integral of Equation (6.5), given by the general equation 
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 yx
 defines the Jacobian of the transformation and is also the determinant of the 

matrix. Since cos  and y sinx      , the Jacobian becomes . The ZM of the 

original image (before rotation) is 
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The ZM of the rotated image is given by 
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Let   . Hence the ZM of the rotated image is  
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Equation (6.14) demonstrates that rotation of images results in a phase shift of ZM. This 

simple rotational property indicates that the magnitudes of ZM of a rotated image 

function remain identical to ZM before rotation [203]. The absolute value of ZM is 

invariant to rotational changes as given by 

 'nl nlZ Z  (6.15) 

DMHIs are represented using the absolute value of ZM as visual speech features. An 

optimum number of ZM needs to be selected to ensure a suitable trade-off between the 

feature dimensionality and the image representation ability. By including higher order 

moments, more image information is represented but this increases the feature size. 

Further, the higher order moments are more prone to noise [204]. The number of 

moments required is determined empirically. Performance measures of three different 

numbers of ZM features were computed to obtain a suitable number of ZM features for 

the viseme classification. Classification results of 49, 64 and 81 ZMs were evaluated by 

SVM classifier. Table 6.1 shows the average results of three different numbers of ZMs in 

terms of sensitivity, specificity and accuracy, which are defined in Section 7.1.2.  

Table 6.1: Average classification results of three different numbers of ZMs. 

Number of 

Zernike Moments 

Sensitivity 

% 

Specificity 

% 

Accuracy 

% 

49 71.7 99.6 97.6 

64 75.7 99.7 98 

81 72.7 99.7 97.8 
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Based on the accuracy and sensitivity values, 64 ZMs that comprise of 0th order up to 14th 

order moments (listed in Table 6.2) are adopted as visual speech features to represent 

each DMHI. 

Table 6.2: Zernike Moments from 0
th

 to 14
th

 order. 

Order Moments 
No: of 

moments 

0 Z0,0 1 

1 Z1,1 1 

2 Z2,0, Z2,2 2 

3 Z3,1, Z3,3 2 

4 Z4,0, Z4,2, Z4,4 3 

5 Z5,1, Z5,3, Z5,5 3 

6 Z6,0, Z6,2, Z6,4, Z6,6 4 

7 Z7,1, Z7,3, Z7,5, Z7,7 4 

8 Z8,0, Z8,2, Z8,4, Z8,6, Z8,8 5 

9 Z9,1, Z9,3, Z9,5, Z9,7, Z9,9 5 

10 Z10,0, Z10,2, Z10,4, Z10,6, Z10,8, Z10,10 6 

11 Z11,1, Z11,3, Z11,5, Z11,7, Z11,9, Z11,11 6 

12 Z12,0, Z12,2, Z12,4, Z12,6, Z12,8, Z12,10, Z12,12 7 

13 Z13,1, Z13,3, Z13,5, Z13,7, Z13,9, Z13,11, Z13,13 7 

14 Z14,0, Z14,2, Z14,4, Z14,6, Z14,8, Z14,10, Z14,12, Z14,14 8 

6.2.2 Hu Moments 

For the image analysis and pattern recognition the use of moments was inspired by Hu 

[36] and Alt [5]. Hu derived a set of invariant moments (IM) which has the desirable 

properties of being invariant under image rotation, translation and scaling. The invariants 

of the object in the pattern recognition are the set of measurable quantities which 

describes the object. These are insensitive to particular deformations and provide 

sufficient discrimination power to distinguish objects belongs to different classes [206]. 

The two dimensional (p+q)
th

 order moment is defined as follows: 
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If the image is greyscale with pixel intensities I(x,y), moments are calculated by  

 ( , )ji

ij

x y

M x y I x y  (6.17) 

Hu stated that if f(x,y) is a piecewise continuous bounded function, and has nonzero 

values only in a finite region of an (x,y) plane, then the moment sequence (mpq) is 

uniquely determined by f(x,y), and conversely, f(x,y) is also uniquely determined by 

(mpq).  

Considering the fact that an image segment has finite area, or in the worst case is 

piecewise continuous, moments of all orders exist and a complete moment set can be 

computed and used uniquely to describe the information contained in the image. 

However, to obtain all of the information contained in an image requires an infinite 

number of moment values. Therefore, selecting a meaningful subset of the moment 

values that contains sufficient information to characterize the image uniquely for a 

specific application becomes very important. 

It can be noted that the moments in Equation (6.16) may not be invariant when f(x,y) 

changes by translating, rotating or scaling. The invariant features can be achieved using 

central moments, which are defined as follows: 
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where 10

00

m
x

m
  and 01

00

m
y

m
  

The pixel point ( , )x y  is the centroid of the image f(x,y). The centroid moments 

pq computed using the centroid of the image f(x,y) is equivalent to the mpq, whose centre 

has been shifted to the centroid of the image. Therefore, the central moments are 



93 
 

invariant to image translations. Scale invariance can be obtained by normalization. The 

normalized central moments are defined as follows. 
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where   is the normalization factor. The set of absolute moment invariants consists of a 

set of nonlinear combinations of central moments that remain invariant under rotation. 

Based on normalized central moments, Hu defined the following seven functions, 

computed from central moments through order three, that are invariant with respect to 

object scale, translation and rotation: 
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The functions 
1 through

6  are invariant with respect to rotation and reflection while 

7 changes sign under reflection. 

6.3 Classifier for Lip-reading 

As discussed, three novel feature sets of 14 visemes are extracted for classification, these 

are: 

i) Features from the optical flow vertical component, based on a statistical property 

of non overlapping blocks. 

ii) Zernike moments from four DMHIs 

iii) Hu moments from four DMHIs   

Classification can be defined as the process of assigning new inputs to one of the 

predefined discrete classes (utterances). Achieving accurate classification performance is 

quite difficult. Generally, the task of a classifier in visual speech recognition is to 

determine the probability of the input features of an utterance with each of the possible 

utterances in the system [207]. This can be achieved through supervised classification 

that creates a function or model from the training examples which consist of pairs of 

input (feature vectors) and output (class labels of utterances). The task of a trained 

classifier is to predict the label of new features.  

In the literature, a variety of classifiers is used for visual speech features. Classification of 

visual speech features into multiple visemes can be accomplished using generative or 

discriminative models. Statistical models for features generated through random 

processes are known as generative models. These models can be represented by the 

parameters derived from the statistical properties of the input features. Markov, Gaussian 

and hidden Markov models are examples of generative models.  The most widely used 

classifier for modelling and recognizing audio and visual speech data has been the hidden 

Markov model (HMM). HMM provides a mathematical framework that is suitable for 

modelling time varying signals. HMM is useful in finding patterns that appear over a 
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space of time and has been successfully implemented as a classifier in applications such 

as gesture recognition [208] and bioinformatics [209]. 

Discriminant models such as support vector machines (SVM) [210] and artificial neural 

networks (ANN) [211] are non-parametric models which classify features without 

assuming a priori knowledge of the data. These classifiers create decision functions that 

classify input data into one of the predefined classes based on the training samples. 

Heckmann et al. [212] developed a combination of both the ANN and HMM to form a 

hybrid ANN-HMM classifier to improve the performance of AVSR system in varying 

noise conditions. Similarly, Bregler et al. [181] and Duchnowski et al. [63] devised a 

hybrid ANN-DTW (dynamic time warping) classifier. Gowdy et al. [33] and Saenko et 

al. [22] have proposed the use of Dynamic Bayesian Networks (DBNs) for AVSR. 

Though all of the above mentioned classifiers have shown success in their respective 

AVSR systems, the SVM is the choice of this dissertation because the nature of the 

computed features is not time varying signal. In all three approaches of feature extraction, 

the number of features is fixed. Moreover, in earlier work, feed-forward multilayer 

perceptron (MLP), artificial neural networks (ANN) with back propagation [213] and 

Hidden Markov Models (HMM) [75] have already been investigated using the same 

dataset with different feature extraction techniques. The advantages of SVM are: 

 able to find a globally optimal solution,  

 can produce good generalization and  

 performs well with a relatively small number of training data. 

SVM can generate a globally best solution, as opposed to neural network training that is 

susceptible to local maxima. The following section evaluates the SVM classification 

technique for classification of the three types of feature sets discussed earlier. 

6.4 Support Vector Machine 

Support vector machine (SVM) is a supervised binary classifier that differentiates the 

input data into two possible classes. SVM developed by Vapnik [28] is a state-of-the-art 
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classifier that has been successfully exploited for various pattern recognition applications. 

The mechanism of SVM works by projecting the data on to a sparse high-dimensional 

space and then finding the optimal separating hyper-plane between the classes. One of the 

key strengths of SVM is the generalization obtained by tuning the trade-off between 

structural complexity of the classifier and empirical error. It also performs well, even 

with a small number of training data. 

6.4.1 Optimal Separating Hyper-plane 

Considering the difficulty of separating the set of training vectors belongs to two 

different classes which are labelled as -1 and +1 for either of the classes. The sample 

is }{ ,t tx  , where 1t    if 1 tx C  and 1t   if 2

tx C  

The linear decision function of SVM is given by 

   T tf x w x b   (6.27) 

The interest is to find w and b such that 

 1  for  1T t tw x b       (6.28) 

 1  for  1T t tw x b       (6.29) 

Equations (6.28) and (6.29) can be rewritten as  

 ( ) 1t T tw x b     (6.30) 

The real valued f(x) output is converted to a positive or negative label using the signum 

function. The linear decision function, f(x) partitions the input space into two parts by 

creating a hyper-plane given by 

 0T tw x b   (6.31) 

This hyper-plane lies between two bounding planes given by 
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 1 and  1T t T tw x b w x b       (6.32) 

The distance from the hyper-plane to the bounding planes on either side is called the 

margin. By maximizing this margin, the generalization error can be minimized. By using 

the hypothesis class of lines, the optimal separating hyper-plane is the one that maximizes 

the margin. Figure 6.3 shows the two linearly separable classes, separated by optimal 

hyper-plane. Data points which are closest to the separating hyper-planes are known as 

support vectors. The distance from the hyper-plane to the instances closest to it on either 

side is called the margin, which should be maximum for the best generalization. 
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Figure 6.3: Representation of linearly separable data of two classes, class 1 is represented 

by grey dots and class 2 is represented by pink dots. An optimal hyper plane separates the 

two classes. The four support vectors are shown as black and dark pink dots. 

The distance of a point x
t
 to the discriminant is given by  

 
( )T tw x b

w


 (6.33) 

 when { 1, 1}t     Equation (6.33) can be rewritten as 
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( )

,
t T tw x b

t
w





   (6.34) 

Simple vector geometry shows that the margin is equal to 
1

x
so that 1w  . 

Minimizing w  is equivalent to minimizing 
21

2
w  and the use of this term makes it 

possible to perform Quadratic Programming (QP) optimization later on, so that it can be 

defined as 

 
21
 subject to  ( ) 1, 

2

t T tmin w w x b t      (6.35) 

This is a standard quadratic optimization problem, and can be solved to find w and b. In 

finding the optimal hyper-plane, the optimization problem can be converted to a form 

whose complexity depends on N, the number of training instances not on d, the input 

instances. To get the new formulation, Equation (6.35) is written as an unconstrained 

problem using Lagrange multipliers t : 

N
2 t

t 1

1
α [  ( ) 1]

2

t T t

pL w w x b


     (6.36) 

2 t t1
α ( ) α

2

t T t

p

t t

L w w x b      (6.37) 

pL must be minimized with respect to w and b which requires the gradient of pL to vanish 

with respect to w and b. Hence the condition: 

 0     
p t t t

t

L
w x

w
 


  


  (6.38) 

 0     0
p t t

t

L

b
 


 


  (6.39) 
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Substituting Equations (6.38) and (6.39) into Equation (6.37),  gives a new formulation 

which, is dependent on  , and known as dual function, 

  

1
 ( )

2

1
 

2

1
( )

2

T T t t t t t t

d

t t t

T t

d

t

t s t s t T s t

d

t s t

L w w w x b

L w w

L x x

    



    

   

  

  

  



 

 (6.40) 

This is maximized with respect to t only, subject to the constraints 

   0     0, t t t

t

and t      (6.41) 

This can be solved by using quadratic optimization methods. The size of the dual depends 

on N, sample size, and not on d, the input dimensionality. It will return  and then from 

Equation (6.38) w can be calculated. b can be calculated from Equation (6.39) which is a 

support vector tx  and lie on the margin. 

   1t T tw x b    (6.42) 

Using this fact, b can be calculated from any support vector as  

 t T tb w x   (6.43) 

For numerical stability, it is recommended to consider the average of all the support 

vectors. The discriminant thus found is called the support vector machine (SVM). 

6.4.2 The Non-Separable Data: Soft Margin Hyper-plane 

If the given data is not linearly separable, the above mentioned algorithm is not suitable. 

For such a type of data when there is no hyper-plane to separate the two classes, a soft 

margin method is introduced to use the optimization criterion in SVM training for 

classifying non separable data so that the least number of errors occur. The soft margin 
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method defines slack variables, 0t  , which store the deviation from the margin or 

measures the degree of misclassification. Relaxing Equation (6.30) by using a slack 

variable, 

   1t T t tw x b     (6.44) 

If 0t  , there is no problem with x
t
. If 10 ,  t tx  is correctly classified but in the 

margin. If 1,  t tx   is misclassified, so that a soft error is defined as t

t

  by adding 

this as a penalty term: 

 
21

 
2

t

p

t

L w C     (6.45) 

Where C is the penalty factor in any regularization scheme trading off complexity, to 

penalize the misclassified points and also the ones in the margin for better generalization, 

adding the constraints, the Lagrangian of Equation (6.37) then becomes 

 
2 t t

t

1
  α ( 1 ]

2

t t T t t t

p

t t

L w C w x b              (6.46) 

where t is the new Lagrange parameter with t 0,t   . In order to find the w, b and t
, 

Lp is differentiated with respect to w, b and t
 and derivatives are set to zero. 

6.4.3 Kernel Trick 

The previously discussed techniques of optimal separating hyper plane and soft margin 

hyper plane use higher dimensional decision surfaces that are linear. Both techniques are 

suitable for linear data. However, in most cases the dataset is non linear and inseparable. 

In this case, a non-linear decision function is required. Instead of using a non linear 

decision function, the non linear data can be mapped to a new space by doing a non linear 

transformation, choosing suitable basis functions and then using a linear model in this 

new space (feature space). The linear model in the new space corresponds to a non linear 
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model in the original space . The transformation is ( ) where ( ) 1j jz x z x j k    , 

mapping the data points from the input space  to feature space Z, where the 

discriminant is written as  

 

1

( )

( ) ( )

       ( )

T

T

k

j j

j

g z w z

g x w x

w x












 (6.47) 

b is not used separately and it is assumed that 1 1( ) 1z x  . The dual form of the 

decision function is defined in the Equation (6.48): 

 
1

( ) ( )
2

t s t s t T s

d

t t s

L t r r x x        (6.48) 

subject to, 

 0 and 0 ,  t t t

t

r C t      (6.49) 

The kernel machines are replaced by the inner product of basis functions, ( ) ( )t T sx x  , 

by a kernel function, ( , )t sK x x , between instances in the original input space. 

 
1

( , )
2

t t s t s t s

d

t t s

L r r K x x      (6.50) 

The kernel function can be replaced in the discriminant 

 

( ) ( ) ( ) ( )

       ( , )

T t t t T

t

t t t

t

g x w x r x x

r K x x

   



 






 (6.51) 

Once the kernel function is known, the projection of the data is done implicitly. For any 

valid kernel, there is a corresponding mapping function, but it may be much simpler to 
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use ( , )tK x x rather than calculating ( ) ( )t Tx x  and taking the dot product. Thus the linear 

separation of data can be performed on the high dimensional feature space Z, and is 

equivalent to non-linear classification in the original space . 

Many algorithms have been kernelized. These can be derived by selecting functions that 

satisfy certain mathematical properties. Selection of a suitable kernel function for the data 

is an important process for further training of SVM. 

The most popular, general purpose kernel functions used in SVM classifiers are  

 Polynomials of degree q: 

( , ) ( 1)t T t qK x x x x   where q is defined by the user. 

 Radial basis functions (RBF): 

2

2
( , ) exp

2

t

t
x x

K x x
s

 
  
 
 

 

It defines a spherical kernel, where x
t
 is the centre and s defines the radius given 

by the user. The RBF is the most demanding kernel type used in support vector 

machines, due to its performance 

 Sigmoid function: 

( , ) tanh(2 1)t T tK x x x x   

 Linear Kernel: 

( , )t TK x x x x  
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6.4.4 Multiclass Kernel Machines 

Inherently, SVM is a binary class classifier. Generally when there are K>2 classes, the 

common method one-vs-rest is implied to use a binary classifier. In one-vs-rest, each 

class is trained against all other classes combined and K support vector machines are 

learned. In training, examples of Class-1 (Ci) are labelled as +1 and examples of all other 

classes (CK), ki are labelled as -1, whilst in testing, all ( )ig x , 1, , .i K are calculated. 

In another approach, instead of building K two-class SVM classifiers to separate one 

from all the rest, a one against one (pair-wise separation) multiclass SVM is proposed. 

For k>2 classes, ( 1) / 2K K   pair-wise classifiers are built, with each ( )i jg x taking 

examples of Ci with the label +1, examples of Cj with label -1, and not using examples of 

the other classes. Separation of classes in pairs is trivial and has the additional advantage 

of faster optimization because it uses less data. 

In general, both one-vs-rest and pair-wise separation are special cases of the error-

correcting output codes [214], which decompose a multiclass problem to a set of two 

class problems. 

In yet another approach, Weston and Watkins [215] proposed to write a single multiclass 

optimization problem involving all classes  

 

2

1

1
min  

2

subject to

K
t

i i

i i t

w C 


   (6.52) 

t

0 0 2 ,  and 0t t

t t t t

i i i iz z
w x w w x w i z          

where tz contains the class index of tx and C is the usual regularization parameter. 

The SVM multiclass implementation used in this dissertation is publicly available, and is 

based on a multiclass formulation described by Crammer and Singer [216], an enhanced 
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version of Weston and Watkins [215]. To solve the problem of optimization SVM
multiclass1

 

uses an algorithm based on structural SVMs [217]. As far as author is aware, this is the 

first time a fully implemented multi class classification has been attempted in visual 

speech recognition. 

6.5 Summary 

In this chapter, visual features used for visual speech recognition are reviewed. It is 

hypothesized that appearance based features provide a better representation of visual 

speech compared to shape based and model based approaches. Appearance based features 

also do not require further localization of lip features throughout the image sequence as in 

contour and combination based techniques. Advantages and limitations of both the 

appearance based and shape based features are discussed. 

Computer based lip-reading studies have indicated that the important visual information 

lies in the temporal change of a mouth [194] and motion features are more discriminative 

compared to static features for computer based lip-reading [127]. Based on the above 

studies, this research uses appearance based motion features, computed by optical flow 

estimation.  

Optical flow based DMHIs are developed. To represent these spatio-temporal templates, 

global internal region based descriptors are selected. In this research, two region based 

feature descriptors, ZM and HM, are evaluated. ZM are orthogonal moments which are 

capable of reflecting the shape and intensity distribution of DMHIs. ZM and HM have 

good rotation property and are invariant to changes of mouth orientation in the images. 

The number of ZMs is determined empirically, while the 7 HMs are computed from each 

DMHI.  

Finally, the chapter concludes with a thorough discussion of the SVM classifier. SVM is 

a discriminative classifier that classifies features without knowing the priori information 

of data. It is able to find a globally optimal solution. The discussion includes the theory 

                                                           
1
 http://svmlight.joachims.org/svm_multiclass.html 
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behind the SVM binary class and multiclass classifiers, with details of optimal separating 

hyper-plane and linearly non-separable hyper-plane with soft margin separation using the 

slack variables. SVM kernels are also described, such as linear, polynomial, radial basis 

function and sigmoid. 
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Chapter 7  

Experimental Results 

This chapter reports on the experiments conducted to evaluate the performance of motion 

templates computed by the optical flow vertical component and the directional motion 

history images (DMHIs) technique based also on optical flow. 

The experimental work consists of two parts. Section 7.1 reports solely on the optical 

flow vertical component based technique that investigates the viseme classification in 

terms of accuracy, sensitivity and specificity. The vertical component of optical flow 

contains most of the information of a visual speech viseme utterance. However, to 

capture the mouth motion while a subject smiles or laughs, the horizontal component 

cannot be ignored. The optical flow vertical component is divided into multiple non-

overlapping blocks and the statistical features of each block are used as a feature of an 

utterance. These features of an utterance were classified using a support vector machine 

classifier. For recognition and further performance evaluation of the proposed features, 

SVM multi-class classification is performed. The performance of multiple block sizes 

was evaluated empirically. The detailed theoretical frame work of the feature extraction 

and classification techniques have been explained in Chapters 4 and 6 respectively. 

Section 7.2 describes the DMHI based viseme classification. Two types of image features 

examined for DMHI were Zernike moments (ZM) and Hu moments (HM). These 

features were classified using a SVM classifier. The detailed theoretical description of 

ZM and HM has been given in Chapter 6. In addition, the proposed DMHI technique is 

compared with the traditional motion history images. For better representation of the 

results, performance evaluation is described in terms of accuracy, specificity and 

sensitivity. All experiments in this dissertation were conducted using leave-one-out 

mechanism. 
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7.1 Experimental Setup 1: Performance Evaluation of an Optical 

Flow Based Motion Template 

The proposed lip-reading technique is tested on a viseme based speech model. 

Recognition units such as digits, phonemes, words and phrases in various languages have 

been used as vocabulary in lip-reading applications. 

7.1.1 Methodology for Classification 

The optical flow vertical component of size 240320 pixels was initially divided into 

eight vertical columns as shown in Figure 7.1. The average intensity of each vertical 

column was computed, so that each image of a vertical component of optical flow was 

represented by eight pixels. As described in Chapter 4, similar subsequent images in the 

video sequence were ignored for optical flow computation. Ignoring optical flow 

computation has dual benefits - firstly, it reduces the computation burden on the system 

and secondly it is useful in compensating the inter subject variation in speed of speech. 
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Figure 7.1: Development of optical flow vertical component based motion template 

(block size is 24040). 

Consecutive values from each vertical component field are stacked such that the matrix 

of size n8 is developed, where n is the number of frames in an utterance. To compensate 

the variation in speed of speech due to the way people speak, this n8 size matrix of 

features is normalized to a 108 matrix by using a linear interpolation method for each 



108 
 

utterance. Finally each utterance is represented by 108=80 pixel values. After the 

feature vectors are obtained, the state-of-the-art SVM classifier is used for classification. 

For classification the following schemes can be employed [163]: 

 the re-substitution method (training and test sets are the same);  

 the holdout method (half the data is used for training and the rest of the data is 

used for testing); 

 the leave-one-out method;  

 the rotation method or N-fold cross validation (a compromise between the leave-

one out method and the hold out method, which divides the samples into P 

disjoint subsets, 1 ≤ P ≤ N. Use (P −1) subsets for training and the remaining 

subset for test); and  

 the bootstrap method for partitioning scheme [218]. In most cases, the leave-one-

out cross validation scheme is used for the partitioning scheme. This means that 

out of N samples from each of the classes per database, N-1 of them are used to 

train (design) the classifier and the remaining one to test it [203]. This process is 

repeated N times, each time leaving a different sample out. Therefore, all of the 

samples are ultimately used for testing. This process is repeated and the resultant 

recognition rate is averaged. Usually, this estimate is unbiased. 

In the first experiment, 5 fold cross validation is adopted including all subjects together. 

The one-vs-rest SVM classification technique was adopted to separate the visual speech 

features into 14 visemes. The LIBSVM tool box [219] was used in the experiments to 

design the SVM classifier model. Four kernel functions, i.e., linear, sigmoid, polynomial 

of order three and radial basis function (RBF) were tested on the extracted features. 

Based on these experiments RBF kernel was found to produce the best results and was 

selected for the classification. The gamma parameter and the error term penalty 

parameter C, of the RBF kernel function were optimized using preliminary experiments 

(grid search). 
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The classification performance of the SVM was tested using the leave-one-out method. 

Each repetition of the experiments used 784 training samples and 196 test samples (2 

samples from each class of each subject). This was repeated five times for each viseme, 

every time different training and test data were used. The average rate of the performance 

measures - sensitivity, specificity and accuracy of the five repetitions of the experiments 

was computed. 

7.1.2 Viseme Classification Results 

In the first part of the experiments the performance of the vertical component of optical 

flow computing 80 features per utterance was investigated. The sensitivity and specificity 

are the statistical measures of the performance of the two-class problems, where class one 

is represented as +1 (TP) and second class is represented as -1 (TN). These statistical 

measures are defined as follows: 

 100%
TP TN

Accuracy
TP TN FP FN


 

  
 (7.1) 

 100%
TP

Sensitivity
TP FN

 


 (7.2) 

 100%
TN

Specificity
FP TN

 


 (7.3) 

where TP=True Positive, TN=True Negative, FP=False Positive, and FN=False Negative 

and the term accuracy is the measure of actual (true) positives and negatives which are 

correctly recognized as positives and negatives. Sensitivity measures the proportion of 

actual positives which are correctly identified as positives. Specificity measures the 

proportion of negatives which are correctly identified as negatives. The results are 

summarized in Table 7.1 
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Table 7.1: Average Classification Results of 14 Visemes in Terms of Specificity, 

Sensitivity and Accuracy, block size 24040. (All values in %) 

 Visemes Specificity Sensitivity Accuracy 

1.  /a/ 98 65.7 95.7 

2.  /ch/ 99.2 85.7 98.3 

3.  /e/ 95.7 54.3 92.8 

4.  /g/ 97.7 61.4 95.1 

5.  /th/ 98.4 65.7 96 

6.  /i/ 96.9 60 94.3 

7.  /m/ 99.9 80 98.5 

8.  /n/ 97.5 52.9 94.3 

9.  /o/ 97.5 65.7 95.2 

10.  /r/ 97.9 61.4 95 

11.  /s/ 99 52.9 95.7 

12.  /t/ 99.1 74.3 97.3 

13.  /u/ 97.8 61.4 95.2 

14.  /v/ 99.7 88.6 98.9 

Average 98.2 66.4 95.9 

Though the sensitivity is not up to the mark, the classification results are acceptable. By 

analysing the adopted methodology, it was observed that the division of the optical flow 

vertical component into vertical columns as shown in Figure 7.1 is problematic. It 

nullifies the important features during the average computation of each block. The reason 

behind this is that during speaking the movement of the two lips is always in opposite 

directions and this motion is represented by positive and negative values in the optical 

flow vertical component which shows the direction of motion. Hence while computing 

the average values of each column, the values in opposite directions nullify the important 

features of motion. 

The solution to this problem is the use of non-overlapping rectangular blocks, as shown 

in Figure 7.2. As can be seen from the Figure, the upper and lower lip motions are 

separated so that the nullifying effect is eliminated. To optimize the block size, 

experiments were conducted to evaluate the size of the blocks that could be used. After 

experimenting with six different block sizes (4032, 3232, 4840, 2420, 3020 pixels) 

a block size of 4840 pixels was chosen as the optimized block size. It represents a good 
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compromise between sensitivity, accuracy and the number of features. As a result, each 

image of the optical flow vertical component is divided into blocks of size 4840 pixels, 

resulting in 40 blocks (5 rows8 columns) per optical flow, as shown in Figure 7.2. 

 

Figure 7.2: Representation of vertical component division in rectangular blocks. 

To develop the template for each viseme, each optical flow frame was represented by the 

average of each block which resulted in a matrix of 5 rows  8 columns = 40 values, then 

each matrix were converted into a row matrix. Row matrices of subsequent optical flow 

frames were stacked to develop the template matrix. To overcome the difference in the 

speed of speaking, each utterance was normalized (temporally) to 10 frames using linear 

interpolation. This resulted in a final feature vector of size 400 (1040). The procedure of 

this motion template development is shown in Figure 7.3. 
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Figure 7.3: Development of optical flow vertical component based motion template 

(block size is 4840). 
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Again the one-vs-rest binary class SVM technique was adopted for the classification. 

Results are shown in Table 7.2. A wide variety of feature extraction and classification 

algorithms have been suggested to date. It is quite difficult to compare the results as they 

are rarely tested on a common audio visual dataset. However it can be observed from 

Table 7.2 that the accuracy figure of 98.5% compares favourably to the techniques 

presented in [14, 34, 43, 67, 68, 72], in a visual-only scenario. The average specificity 

and sensitivity values of 99.6% and 84.2% respectively indicate that the proposed method 

is very efficient.  

Table 7.2: Average classification results of individual one-vs-rest binary class SVM for 

14 visemes (All values in %) 

 Visemes Specificity Sensitivity Accuracy 

1.  /a/ 99.9 82.9 98.6 

2.  /ch/ 99.6 92.9 99.1 

3.  /e/ 99.5 84.3 98.4 

4.  /g/ 99.1 77.1 97.6 

5.  /th/ 99.6 82.9 98.4 

6.  /i/ 99.2 80 97.9 

7.  /m/ 100 100 100 

8.  /n/ 99.8 78.6 98.3 

9.  /o/ 100 87.1 99.1 

10.  /r/ 99.2 77.1 97.7 

11.  /s/ 99.1 72.9 97.2 

12.  /t/ 99.5 75.7 97.8 

13.  /u/ 100 94.3 99.6 

14.  /v/ 100 92.9 99.5 

Average 99.6 84.2 98.5 

The work by Mase et al. [72] is the closest reported to date to the proposed method. 

While that work uses a time warping based classification, this work presents the use of 

Support Vector Machines (SVM), and normalization is achieved by intensity quantization 

and the use of a fixed number of frames for an utterance to overcome the issue of 

difference in speed of speaking. A further difference is that Mase et al. had experimented 

on digit recognition while this work reports viseme recognition (visemes being 

fundamental units of visual speech). This difference is important because the optical flow 

computed from digits contains more information compared to visemes which are shorter 
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and there are less differences between different visemes. The proposed method will 

eventually lead to the development of continuous visual speech recognition with limited 

vocabulary and digit recognition would also be achieved. 

Figure 7.4 shows the cross-validation process for accuracy, specificity and sensitivity 

values. As can be seen, the accuracy and specificity values do not have outliers and the 

results are highly consistent. The plot for sensitivity shows an increase in the standard 

deviation for visemes /g/, /r/, /s/ and /t/ (compared with individual data) even though the 

overall results are impressive. This can be attributed to the fricatives and stop consonants 

such as /g/, /t/ and /r/ that are the most difficult to identify in visual speech recognition 

because these sounds are not only based on lip movement, but also on the movement of 

the tongue that is not observed in the video data. It is proposed that these types of errors 

can be corrected using contextual information and cannot be achieved using only visual 

speech data. 

In addition to the above experiments, a hierarchical structure for classification is used to 

realize the multiclass classification. The SVM
multiclass

 (V2.13)
2
 implementation is used for 

multiclass classification purpose. It uses the multiclass formulation described by 

Crammer and Singer [216]. But to avoid the problem of optimization, SVM
multiclass

 uses 

an algorithm based on Structural SVMs [217]. 

In multiclass classification the first classifier is binary and classifies /a/ vs ~/a/ (not /a/). If 

the result of the classifier is +1, the result is declared as /a/, otherwise it checks the next 

classifier /c/ vs ~/c/. Again, if the result is +1, the result is declared as /c/, otherwise it 

checks the next classifier and so on. As the proposed system is basically designed to work 

in real time, computationally expensive schemes such as Directed Acyclic Graph SVM 

(DAGSVM) which warrants the use of many more one-vs-one or one-vs-rest classifiers 

are avoided. Although it is at a cost, the results indicate that the proposed hierarchical 

process meets the criterion set out for a real time system. The SVM kernel function used 

was a radial basis function (RBF). The gamma parameter and the trade–off parameter C 

of the kernel chosen were optimized using iterative experiments (grid search). 

                                                           
2
 http://svmlight.joachims.org/svm_multiclass.html 
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Figure 7.4: Cross validation Results (a) Accuracy, (b) Specificity and (c) Sensitivity. 



115 
 

The SVMs were trained with 882 training samples and were tested using the 98 

remaining samples (one sample from each viseme) from all seven speakers. This process 

was repeated ten times for each viseme using standard cross validation method (10-fold). 

To improve the understanding of the error generated and a possible solution, a confusion 

matrix was generated using a simple hierarchical structure for realizing multi-class SVM. 

The confusion matrix of multi-class classification is given in Table 7.3. Each row 

corresponds to a correct class, and columns represent the predicted classes. For instance, 

four examples of viseme /e/ are misclassified as /i/ and vice versa. The lowest accuracies 

in Table 7.3 are observed for visemes /th/ and /n/ which are interchangeably 

misclassified. It has to be noted that both /th/ and /n/ are dental consonants and their 

visual appearance is identical but the sound is different due to other sources of sound 

such as tongue, teeth and pallet. These types of errors cannot be solved by the choice of 

alternate features or classifiers but can be corrected by adding contextual information as 

carried out in state-of-the-art speech recognizers[220]. The multiclass classification 

results demonstrate that these features, when classified using SVM, can identify (85%) 

the visemes, and the misclassifications are not localized but spread across all visemes. As 

a future work, it is intended to use this data for implementing a contextual based classifier 

to further improve the results. 

Table 7.3: Confusion Matrix for 14 visemes using hierarchical multi class SVM 

 /a/ /ch/ /e/ /g/ /th/ /i/ /m/ /n/ /o/ /r/ /s/ /t/ /u/ /v/ 
Accuracy 

% 

/a/ 59 1 1 2 1 3 0 1 0 1 0 1 0 0 84.3 

/ch/ 1 61 0 2 0 0 0 1 1 0 1 2 1 0 87.1 

/e/ 3 0 56 1 1 4 0 1 0 1 1 2 0 0 80 

/g/ 2 2 2 58 0 1 0 1 1 0 0 2 1 0 82.9 

/th/ 1 0 4 0 53 1 0 6 0 2 2 0 0 1 75.7 

/i/ 0 0 4 0 0 58 0 2 0 0 5 1 0 0 82.9 

/m/ 0 0 1 0 1 0 64 0 1 0 0 0 2 1 91.4 

/n/ 0 0 2 3 4 2 0 53 0 2 1 2 1 0 75.7 

/o/ 1 2 0 0 0 1 0 1 62 2 0 0 1 0 88.6 

/r/ 3 0 1 1 1 0 0 0 3 61 0 0 0 0 87.1 

/s/ 0 0 0 0 4 3 0 2 0 2 57 0 0 2 81.4 

/t/ 2 0 3 3 1 1 0 0 0 2 0 58 0 0 82.9 

/u/ 0 1 0 0 0 0 0 0 1 1 0 0 67 0 95.7 

/v/ 0 0 0 0 1 0 0 2 0 0 0 1 0 66 94.3 
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7.2 Experimental Setup 2: Performance Evaluation of DMHIs 

In Chapter 5 and 6, the development of the proposed DMHIs and the feature extraction 

techniques are discussed. This section presents the performance evaluated from the 

proposed approach by using two different feature extraction techniques which are 

compared with the traditional MHI. 

Four directional motion history images (DMHIs) for each viseme are developed from the 

horizontal and vertical components of optical flow. The procedure to develop DMHIs has 

been described in Chapter 5. Each image of size 240x240 pixels represents the integrated 

motion of a mouth during an utterance in four directions (up, down, left and right). 

Varying facial movements during articulation of the 14 multiple visemes resulted in 4 

motion templates of different patterns. In order to classify these images from a dataset, 

the image features are desired which represent the particular image with an optimized 

number of features.  Features should have sufficient discriminating power and noise 

immunity for retrieval from the large image dataset. Two types of image features were 

evaluated to investigate the proposed technique; these were Zernike moments (ZM) and 

Hu moments (HM). ZM are image moments or features having the desired properties 

such as expression efficiency, robustness to noise, rotation invariance and multilevel 

representation for describing the shapes of patterns [203]. The optimum number of ZM 

features which is required for classification of the fourteen visemes was determined 

empirically. Hu [200] derived seven moment functions from the regular moments, which 

are also rotation, scaling and translation invariant. The seven Hu moments were 

computed from each DMHI. The experiments have compared the performance of both 

the features by using the SVM classifier and verified the robustness of ZM comparing to 

HM.  

The SVM classification results for 980 utterances using ZM features and HM features are 

tabulated in Table 7.4 and Table 7.5. The results demonstrate the promising performance 

of using motion templates for recognition of visemes. The results indicate that both ZM 

and HM features are efficient descriptors to represent DMHIs. However the smaller 

number of Hu moments show less accuracy which is obvious from the number of  
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Table 7.4: Classification results of individual one-vs-rest class SVM using ZM (All 

values in %) 

  Zernike Moments of DMHIs  

 Visemes Specificity Sensitivity Accuracy 

1.  /a/ 99.9 74.3 98.1 

2.  /ch/ 99.7 71.4 97.7 

3.  /e/ 99.5 77.1 97.9 

4.  /g/ 99.8 70 97.7 

5.  /th/ 100 74.3 98.2 

6.  /i/ 99.5 75.7 97.8 

7.  /m/ 99.8 90 99.1 

8.  /n/ 99.5 71.4 97.4 

9.  /o/ 99.9 80 98.5 

10.  /r/ 99.6 72.9 97.7 

11.  /s/ 99.6 70 97.4 

12.  /t/ 99.6 72.9 97.7 

13.  /u/ 99.7 81.4 98.4 

14.  /v/ 99.9 78.6 98.4 

Average 99.7  75.7  98  

Table 7.5: Classification results of individual one-vs-rest class SVM using Hu moments 

(All values in %) 

 
 Hu Moments of DMHIs  

 
Visemes  Specificity  Sensitivity  Accuracy  

1.  /a/ 99.7 71.4 97.7 

2.  /ch/ 100 65.7 97.6 

3.  /e/ 99.8 67.1 97.4 

4.  /g/ 99.6 58.6 96.6 

5.  /th/ 100 74.3 98.2 

6.  /i/ 100 65.7 97.6 

7.  /m/ 99.9 90 99.2 

8.  /n/ 98.9 64.3 96.4 

9.  /o/ 99.8 80 98.4 

10.  /r/ 99.6 68.6 97.3 

11.  /s/ 99.6 58.6 96.6 

12.  /t/ 99.5 70 97.3 

13.  /u/ 99.9 80 98.5 

14.  /v/ 99.8 74.3 97.9 

Average  99.7  70.6  97.6 
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features. The seven Hu moments features provide only the course shape of the image 

pattern and are insufficient for complicated pattern matching applications. Another 

shortcoming of geometric moments is the non-orthogonality of the features resulting in 

redundancy. The high success rates attained is also attributed to the ability of the RBF 

kernel SVM to correctly classify the non-linearly separable data. 

7.2.1 Comparing the Performance of DMHI vs MHI 

The experiments also compared the performance of DMHIs with traditional MHI. MHI 

was compared with the proposed DMHI technique using the same number of features 

consisting of 64 Zernike moments. However, the total number of Zernike moments of 

DMHIs is four times that of MHI because of four motion templates. Comparative results 

are presented in Table 7.6. It shows the average accuracy of identifying the visemes for 

all the 7 subjects for 14 different visemes using DMHIs and MHI. It can be observed 

from the results that the performance of DMHIs has outperformed the MHI using the ZM 

features in identifying the utterance on all accounts as it can address the overwriting 

problem significantly. While the average accuracy (98% and 93.66%) and specificity 

(99.7% and 99%) of the two techniques was comparable, the average sensitivity of 

DMHI was much better than that of MHI, with sensitivity of DMHIs being 75.7% while 

that of MHI was 24.4%. Thus, from the results, it is evident that the proposed DMHIs 

have outperformed the MHI in recognizing the lip movements for different phonemes. 

The results indicate that the proposed method using DMHI is more sensitive in 

recognizing the correct viseme and leads to lower false negatives. The proposed method 

is based on advanced optical flow analysis [143] in which a standard incremental multi-

resolution technique is used to estimate flow fields with large displacement. The optical 

flow estimated at a coarse level is used to warp the second image toward the first at the 

next finer level, and a flow increment is calculated between the first image and the 

warped second image. In building the pyramid each level is recursively down-sampled 

from its nearest lower level. The method employs robustness against lighting changes. 

The direction of motion of the lips is an important feature which is provided by the 

optical flow based DMHIs. Compared to DMHI, the standard MHI is the gray scale 
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representation of the difference of successive binary images of a video. In representing 

the MHI by ZM features the important information about their direction is lost which is 

critical in visual speech recognition. Hence, comparing sensitivity values in Table 7.6 

suggests that the use of ZMs of DMHIs is successful in representing the lip movement, 

vindicating the hypothesis of this work. The sensitivity and unique property of rotational 

and scale invariance of ZMs ensures that the feature representation is independent of 

subject and the style with which they speak. 

The use of motion templates generated by the optical flow vertical component and optical 

flow based DMHIs has eliminated the need for temporal modelling of visemes, and hence 

a static classifier such as SVM is able to classify the visemes reliably. 

Table 7.6: Comparison of DMHI vs MHI (All values in %). 

  DMHI MHI 

 Visemes Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 

1.  /a/ 99.9 74.3 98.1 99.7 15.7 93.7 

2.  /ch/ 99.7 71.4 97.7 96.7 28.6 91.8 

3.  /e/ 99.5 77.1 97.9 99.8 15.7 93.8 

4.  /g/ 99.8 70 97.7 99.7 11.4 93.3 

5.  /th/ 100 74.3 98.2 98.7 21.4 93.2 

6.  /i/ 99.5 75.7 97.8 98.7 35.7 94.2 

7.  /m/ 99.8 90 99.1 98.4 52.9 95.1 

8.  /n/ 99.5 71.4 97.4 99.3 18.6 93.6 

9.  /o/ 99.9 80 98.5 98.6 25 93.6 

10.  /r/ 99.6 72.9 97.7 100 17.1 94.1 

11.  /s/ 99.6 70 97.4 99 24.2 93.6 

12.  /t/ 99.6 72.9 97.7 98.9 25.1 93.6 

13.  /u/ 99.7 81.4 98.4 99.1 24.7 93.8 

14.  /v/ 99.9 78.6 98.4 99.1 25.6 93.8 

Average 99.7 75.7 98 99 24.4 93.7 

7.3 Summary 

In this chapter the performance of the proposed techniques based on optical flow vertical 

component motion templates and DMHIs was evaluated. A high level of viseme 
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recognition rate was obtained by each method. The optical flow vertical component of 

each image of a video was divided into non-overlapping blocks to compute the feature 

vector. Optimal size of the block was obtained by experimenting seven different block 

sizes. A block size of 4840 pixels was chosen as the optimized block size. Average 

intensity value of each block was computed for a complete image sequence of an 

utterance and used as feature vector. The mean recognition rate of 98.5% with specificity 

of 99.6 % and sensitivity of 84.2 % has been achieved with one-vs-rest SVM classifier. 

To improve the understanding of the error generated multiclass SVM was adopted, 

however, the average accuracy of recognition reduces to 85%. The proposed system is 

computationally inexpensive with only 40 features required to represent each frame, and 

400 features to represent each utterance. The system is independent of speed of speech of 

the subjects. 

In other experimental setup, optical flow based four DMHIs are developed to represent a 

viseme. The performance of DMHIs for viseme recognition was evaluated. ZM and HM 

based features computed from each DMHI have produced the average recognition rates 

of 98% and 97.6% using the SVM classifier. The classification results of the proposed 

DMHI technique was compared with the traditional MHI technique using the ZMs as 

features and SVM as classifier. The results indicated that DMHIs have outperformed 

MHI in identifying the utterance on all accounts as it can address the overwriting problem 

in MHI significantly. While the average accuracy (98% and 93.66%) and specificity 

(99.7% and 99%) of the two techniques were comparable. The average sensitivity of 

DMHIs was achieved 75.7% while that of MHI was 24.4%. 
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Chapter 8  

Conclusions and Future Directions 

8.1 Conclusions 

The main focus of this thesis was to develop a robust visual speech recognition system. 

Robust features are the desired characteristics to improve existing systems. Once robust 

visual features are extracted, their modelling with any classifier is straight forward. 

This thesis has described two novel methods for the extraction of visual speech features 

and their modelling by support vector machines for visual speech recognition. The 

proposed feature extraction techniques are based on optical flow analysis, which is 

defined as the distribution of apparent velocities of brightness pattern movements in an 

image [92]. This gives the actual motion of the speaker‟s mouth movement as opposed to 

approximating the motion by computing the first and second order derivatives or 

difference of images in consecutive image sequence. Although optical flow analysis is 

very computational demanding, recent advances in high speed processor have resolved 

this issue. 

Using visual information only, the system obtained performance levels on the recognition 

of 14 visemes defined in MPEG4. The described visual feature vectors consisting of 

motion and intensity information present two novel approaches to the representation of 

visual speech information. In the first approach, pure motion features obtained from the 

optical flow vertical component are used and have outperformed the other approaches. A 

SVM classifier was applied to classify the optical flow based feature vector and an 

overall 98.5% accuracy was obtained, and for viseme identification a hierarchical 

structure for classification is used to realize the multiclass classification, the overall 85% 

accuracy was obtained. It is concluded that the optical flow approach performed 



122 
 

according to expectations. However, some of the loss in performance is due to 

inaccuracies of the optical flow detection algorithm and not to the limited information 

content of the features. In addition, it is very difficult to compute the accurate optical 

flow of the speaker's face when occlusions by tongue and teeth suddenly appear. What is 

more rewarding is that the optical flow vertical component was investigated which 

contains more important features as compared to the horizontal component. In addition to 

that, the varying speeds of speech in inter and intra speakers were compensated to make 

the system suitable for subject independent scenarios. 

In the second approach, motion features computed by optical flow analysis were used to 

develop four directional motion history images, in which motion features are mapped by 

the integer values in each image and are not the exact representation of motion and hence 

results in slight reduction in overall accuracy. The advantages of an optical flow based 

motion computation are that it does not require artificial markers for training and 

provides pure motion of the mouth, analogous to human perception. 

Mouth movements represented by DMHIs were classified using the features extracted 

from each DMHI image. Two different image descriptors, ZM and HM, were 

investigated. A support vector machine classifier was used to classify the ZM and HM, 

where average accuracies of 98% with Zernike moments and 97.6% with Hu moments 

were achieved. The results have demonstrated that DMHIs are an efficient representation 

of spatial and temporal information of an utterance and are reliable for phoneme 

recognition in subject independent scenarios. To evaluate the performance of the 

proposed technique, ZM features of DMHIs were compared with the ZMs of the 

traditional MHI technique. The results indicated that the DMHI have outperformed the 

MHI technique, as it can address the overwriting problem in MHI significantly. 

Using the DMHI technique, the average sensitivity was promising with 75.7% when 

compared to the average sensitivity of basic motion history image that is 24.4%. The 

advantage of ZM and HM based techniques is that the feature vector is reasonably low in 

dimension. Also they have important properties like invariance to translation, scale, and 

rotation which provide the robustness to the view angle and distance variations of 
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camera. However, the dimension of the feature vector of DMHI is four times that of the 

MHI but when compared to the HM based features the dimension of the HM feature 

vector is considerably lower. But HM computation have drawback of increasing 

complexity with increasing order of moments. 

This thesis also describes a video-based adhoc temporal segmentation of isolated 

utterances. It was used to detect the start and the end frame of an utterance from an image 

sequence. The technique is based on a pair-wise pixel comparison method. The efficiency 

of the proposed technique was tested on the available data set with short pauses between 

each utterance. The average error between automatic and manual segmentation for all 

subjects and all utterances is 2.98 frames/utterance. That is around 1.5 frames on either 

side of an utterance which is negligible. The limitation of the proposed technique is that it 

is suitable only for the data which have small pauses between each utterance. 

Because of the nature of the computed features in all three scenarios, the SVM was the 

choice of classifier. This has performed well because it is suitable for a relatively a small 

number of features. The success of SVM in experiments is attributed to the use of a fixed 

number of features that eliminate the need of a temporal classifier. This is one of the first 

studies in its domain, which used the SVM multiclass classification and achieved good 

results. 

Finally, it is concluded that progress of lip reading is increasing steadily but it requires 

more research to reach a human perceptual level. However, the advancement in 

processing speed and advanced algorithms in computer vision provides a larger 

momentum. This coupling assures that in the future, lip reading will be a major addition 

to human machine interaction. 

8.2 Future Work 

Optical flow based visual speech recognition techniques have demonstrated the ability to 

produce promising performance. A more robust visual speech recognition system can be 

obtained if the face and mouth detection algorithms are integrated with the proposed 

methods. Viola-Jones [95] face detection algorithm is one of the fast and efficient face 
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detectors available in literature that can be implemented for face detection. Even better 

results can be obtained if the rectangular division of the vertical component of optical 

flow is automated, and the division is performed exactly from the centre line of the lips 

by using mouth corner detection algorithms. 

So far, current VSR systems are research level setups and datasets are recorded under 

carefully controlled conditions. Parameters such as head pose, distance and view angle 

between the camera and subject and lighting are fixed. However, variations in these 

parameters can have adverse affects on visual speech recognition. Processing of videos in 

these setups is performed offline. For future work it is desirable to build a limited 

vocabulary prototype, which is practically deployable on existing computers or mobiles, 

so that real time limitations can be observed. 

To examine the feasibility of proposed optical flow based motion template for emotion 

recognition from the facial expressions of a subject. Facial expressions can indicate 

wether a subject is angry or happy, study of psychology has reported that the facial 

expressions contribute 55% of the effect of a communicated message while language and 

voice contribute 7% and 38% respectively [221]. The human perception about the 

emotions is based on movements of multiple facial features, so the proposed method can 

be suitable for human emotion recognition as it is solely based on motion tracking. 

In Chapter 4, a simple speed of speech normalization technique based on linear 

interpolation has been adopted. In addition to that, DTW is a well-known technique to 

find an optimal alignment between variable length (time dependent) sequences. The 

overall distortion between signals is based on a sum of local distances between sample 

points. However, the particular optimal alignment minimizes the overall distortion to 

match the sequences. Initially, DTW has been used to compare different speech patterns 

in audio speech recognition. Later on, DTW has been used to automatically handle 

different speed and time deformation associated in the time dependent data in the fields 

of information and data mining.   More work is required to compare the performance of 

the proposed linear interpolation method to the DTW in order to find out which approach 
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is more suitable for visual speech recognition, specifically when dealing with word 

recognition instead of viseme recognition. 

Furthermore, almost all work to date in the visual domain has focused on a limited 

vocabulary dataset, and these datasets are pre annotated to find the word boundaries. 

Automatic annotation of visual speech recordings at the viseme level is a fundamental 

requirement in visual speech recognition. Identification of visemes‟ boundaries in 

continuous speech is a starting point of continuous visual speech recognition. Typically 

manual or audio signal based approaches has been adopted. These approaches are not 

suitable for continuous speech recognition in a visual domain. HMM is a finite state 

model that represents signals as transitions between a numbers of states. Each state is 

associated with a probability distribution. HMM assumes that the speech signals contains 

short time segments that are stationary. HMM models these short periods where the 

signals are steady and describes how these segments changes to subsequent segments. 

The changes between states are represented as transitions of states in HMM. The 

temporal variations within each of these segments are assumed to be statistical. 

Characteristics of HMM to represent the transition of states can be utilized to identify the 

word boundaries in continuous speech and then can be further used to segment the 

visemes. 

Automatic temporal segmentation of continuous visual speech into basic visual units and 

the definition of new standard visemes is the biggest knowledge gap which should be 

addressed. This is a challenging part in the visual speech recognition domain and will 

solve the major problems of continuous visual speech recognition. 
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