
John McCormick
Exegesis

1

So You Think Your Agent Can Dance?

An Investigation Of Choreographic And Software

Structures Within Motion-Capture Driven, Real-Time,

Virtual Dance Environments.

Exegesis component for MA by Project

John McCormick

S3087535

Supervisor: John Power

Centre for Animation & Interactive Media

School of Media and Communication

RMIT University, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15624895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

John McCormick
Exegesis

2

Contents

Table of Figures..5

Title ..7

Abstract ..7

Introduction ..8

Acknowledgements ..10

Background ..11

Case Studies of Peers ...14

igloo ...15

Bernd Lintermann, Nik Haffner and Thomas McManus ...16

Troika Ranch..17

Freider Weiss ...18

The OpenEnded Group ..19

Dance Education System ...20

RiskMan...21

Design...23

Description of hardware...23

Gypsy mechanical motion capture system...23

John McCormick
Exegesis

3

Polhemus magnetic motion capture system...24

Optitrack optical motion capture system ...24

Evaluation of different mocap systems in current context...25

Description of Software ...26

Alias Motionbuilder...26

Act3d Quest3d ...27

Unreal Engine ..27

Torque Game Engine...27

Unity ..28

DANCE ...28

Description of projects ...28

Overview ...28

2 Avatars..30

Tosser...33

Lines ..36

Nova...38

SwinGEE ...39

SwanQuake, SummerBranch, Unreal Engine..42

John McCormick
Exegesis

4

Discussion ..47

Path of Development..47

Use of a Skeletal Hierarchy to Animate Synthetic Characters...48

Behaviour control structures in the Unreal Engine ..50

State Machines ...55

Towards Agent-based Contact Improvisation..68

A Behavioral Language for Dance and Software...69

Conclusion..73

Bibliography...75

John McCormick
Exegesis

5

Table of Figures

Figure 1: Winterspace Montage, igloo ...16

Figure 2: Left to Right, Accordion, Poles, and Trace, Bernd Lintermann, Nik Haffner and Thomas

McManus ..17

Figure 3: 16 Revolutions, Troika Ranch...18

Figure 4: Glow, Frieder Weiss /Chunky Move...19

Figure 5: how long does the subject linger on the edge of the volume.., Brown/Openended Group,

Image(c) Marc Ginot...20

Figure 6: RiskMan Training System Architecture (Reprinted from Kavakli 361).........................22

Figure 7: 2 Avatars ...30

Figure 8: 2 Avatars...31

Figure 9: Tosser showing dancer joint nodes ...33

Figure 10: Tosser ..34

Figure 11: Lines showing dancer skeletal nodes (Dancer A-blue, Dancer B–red).........................36

Figure 12: Lines..37

Figure 13: Nova ..38

Figure 14: SwinGEE: Mocap player vs NPC in Torque game engine ...40

Figure 15: Swan Quake, igloo ..44

Figure 16: Swan quake, igloo...46

Figure 17: Typical Skeletal Heirarchy ...50

Figure 18: Unreal characters controlled by a scripted sequence ..52

Figure 19: Unreal Scripted Sequence ...54

Figure 20: Excerpt from Steve Paxton's Satisfyin’ Lover ..54

Figure 21: Choreographic Tasks Defined for Theme and Variations...59

John McCormick
Exegesis

6

Figure 22: Euphoria Animation Control Cycle ..62

Figure 23: A Schematic Diagram of the System for Building Life-Like Agents with a Behavioral

self-organising capability. (Athlete) (Reprinted from LIU 2001 98)..63

John McCormick
Exegesis

7

Title

So you think your agent can dance?

An investigation of choreographic and software structures within motion-capture driven, real-

time, virtual dance environments.

Abstract

In this research project I have investigated methodologies for creating interactive software

environments within the context of a live dance performance. Live dancers wearing motion capture

(mocap) technology allowed the streaming of movement data into a virtual, projected software

environment. In this project I have looked at both software structures and choreographic structures to

see if there are characteristics that might point to appropriate software environments for particular

choreographic investigation. The next step was to investigate, by examining the results of various

experiments in the nexus of choreography and software design, whether the choreographic structure,

not the movement itself, but the underlying organizational architecture, can be used to model the

software architecture itself and vice versa.

A research pathway from two dancers using mocap techniques to engage in a shared virtual

environment, to a single human dancer interacting with a software agent is described. The research

has prompted questions about the possible types and uses of software-driven ‘performance agents’.

While it is not within the scope of this research project to develop a fully autonomous collaborative

performer agent, a direction for further development is tendered. Existing choreographic structures are

compared to appropriate behavior organizational structures in software and in particular game engine

John McCormick
Exegesis

8

software, in an attempt to elucidate any potential benefits one might have for development of the

other. Beginning with simple structures I progress to more demanding choreographic scenarios and

propose potential software architectures derived from the requirements of the choreographic structure.

Introduction

When I was first introduced to real-time motion capture possibilities, I was immediately besotted

by the often unwieldy and physically encumbering devices and their promise of full-body interaction

within a virtual 3D environment. The movement data which was captured by the motion capture

systems and sent to the 3D simulation software could effect changes in the virtual environment

creating a relationship between the dancer’s motion and the resultant visual display from the 3D

software. But how close could this relationship become? When I began making work in this genre I

tended to think; here is this stream of motion data from the dancer, how can it be visualized in the 3D

environment? While, to me, this was a pretty amazing thing to be able to do, the process was largely a

one way interaction, the dancer’s movement data was sent in to the virtual environment to be rendered

in different ways. A form of feedback could be generated by virtue of the dancer witnessing the

resultant virtual environment and reacting accordingly, but this was mainly dependant on the

sensitivity of the dancer rather than being inherent in the simulation system.

I began to see examples, often in the computer gaming genre, where 3D environments reacted to

the Player and often required the Player to respond in kind. I thought that this type of interaction

might be extended into the performance works, assisted by motion capture to allow more complex

movement potential for the performer than that found in computer games. And so I set out within this

research project to find means of allowing the dance and the 3D environment to interact with each-

other in more intrinsic ways. The success of alternative interaction models in current gaming

environments, such as the eye toy, guitar hero instruments, sing star microphone and in particular the

wii controller, has allowed gesture-based interaction in a 3D environment to become relatively

commonplace and simple to engage with. As with the gaming genre and many of our daily personal

John McCormick
Exegesis

9

electronic interactions, it seems reasonable that these electronic elements become more sophisticated

in their mode of interaction. There is already a large history of electronic media utilised within dance

performance and it seems reasonable to me that these elements should also expand with developments

in simulation and interactive techniques. This form of interaction whereby the Player can choose to

navigate a simulated environment in a non-linear fashion, and have the environment respond

according to its own rules, is an interesting analogy with which to approach the process of creating a

performance with live dancer and virtual environment.

I also began to notice that I was working quite separately on the dance and software components

of a performance, leading me to question whether that was the only way to work. Given that I was

attempting to give the dancer and virtual environment more scope to interact, it seemed strange that

my process of development of the two was done quite separately. So as well as considering how to

further develop the relationship between the dancer and the virtual environment, I also began

considering if there was a way of bringing the two closer together in the conceptual and

developmental phases of making a performance.

One way I considered achieving this, was to look at the structures underlying the dance and the

software and see if they could somehow be aligned to make it easier to use the same conceptual

structures for the development of both. Would it not be nice if I could give the dancer and the

software the same instructions and then get them to collaborate on a solution that became the

performance?

This research project presents my efforts towards investigating this aim; how to develop a more

expressive relationship between the dancer and virtual software environment, possibly using shared

structures or goals? To this end I have concentrated discussions of choreography to structures that

could possibly be shared by both human dancer and software environment. I have not given an in-

depth analysis of the choreography of the live dancer, but rather focused on the intersection of the

dancer in the virtual environment and the resultant choreographic effect as a whole. For the purposes

John McCormick
Exegesis

10

of this research I have concentrated on the potential of the dancer to interact within a simulated

environment to create a performance work where the choreography of the virtual elements is as

important to me as is the live movement of the dancer. Hence my definition of choreography will

include not just the dancer’s movement but also the resultant movement of the visual elements of the

virtual environment containing the dancer’s performance. This focus on structures that allow

choreography to emerge in virtual environments was an area I felt required particular attention due to

my limited knowledge at the outset of the research project.

In this paper I begin by giving a basic overview of motion capture technology and agent based

software concepts in preparation for later sections. I then proceed to introduce the work of other

practitioners within the genre of dance who incorporate real-time motion capture as well as some

examples of projects that demonstrate motion capture analysis and integration of agent-based software

architectures with game engines. Following this I describe the primary hardware and software used in

the research, then a description of the research of the project work undertaken with finally a

discussion on the findings of the research work and areas for future investigation suggested by

analysis of the research projects.

Acknowledgements

I would like to thank all the artists I have worked with in past years, both during and prior to the

term of this research. I would especially like to thank Adam Nash for many reasons, Hellen Sky and

Ruth Gibson for their choreographic and dance knowledge, Bruno Martelli for innumerable pieces of

wit and inspiration, Scott deLahunta who provided numerous, unique opportunities to many artists,

myself included, to investigate the role of the dancer in contemporary electronic culture, Paul Bourke

who has been an inspiration to me for many years, my supervisor John Power for his support

throughout the writing process, Vivek Aiyer, my family and T.

John McCormick
Exegesis

11

Background

Motion capture (mocap) is the process of measuring and recording the relative position and / or

rotations of the limbs of the performer in order to create an accurate representation of the performer’s

movement. There are many techniques and systems in use to achieve this goal with varying results. I

became interested in motion capture as an alternative to other interface options as it afforded the

opportunity to use full body motion data within software environments. This allowed different

possibilities to the single camera, video based tracking I had used previously. Motion capture allowed

a closer representation of the movement in a format readily able to be manipulated on computer, as

well as providing accurate position and rotation information with which to interact within the

computed environment. A lot of development in motion capture has been driven by the entertainment

industry, in particular film and games. This development has led to many possibilities to leverage

existing methods from film and games into the performance arena such as the use of a skeletal system

to animate software characters in real-time using the motion capture data, the use of physics

simulation and collision detection to allow the dancer’s data to interact with other elements of the 3D

scene, and often relatively easy to use graphic user interfaces (GUIs) with which to construct the

environments. The use of a software skeleton which can be manipulated by the motion data is not

mandatory but is probably the most commonly used method of transferring the data in to the computer

software environment. For representing the performer with a humanoid looking avatar (software

representation of the real person) the skeletal system is possibly the easiest method.

In earlier experimental choreographic work, prior to using motion capture, I had been interested in

exploring the relationship of performers over electronic networks and the nature of electronic

communication. When I started using motion capture I remained interested in these networked

John McCormick
Exegesis

12

possibilities. Most of the motion capture systems I used transmitted data over a network, usually using

UDP (User Datagram Protocol). As the data could be sent to any IP (Internet Protocol) address, it

seemed feasible to connect performers in different locations by transmitting their motion data into a

single, computer mediated environment, which would usually be running on a centralized server. The

successful transmission of the motion capture data is dependent on having access to an open network

that allows transmission of UDP streams and has enough bandwidth to transfer the data between the

client and host machines. My initial experiments involved the motion capture of two dancers and the

representation of their data in a virtual environment. For expediency the dancers were in the same

space and the data was transmitted over a local dedicated network.

By Virtual Environment I refer to a software-generated representation of a 3 Dimensional (3D)

space in which various objects can act out various relationships. It could be seen as similar to a 3D

game, whereby the environment could range from extremely simple to complex, realistic in form to

completely abstract. I view the performance projects as existing within a collaborative virtual

environment whereby more than one person may interact together within the virtual environment,

allowing them to work directly together, or at least to have their data processed together in some

manner. This process of collaboration or direct engagement can refer to the relationship between two

dancers as in earlier experiments, between live participant and game character as in the case of the

game based experiments, or finally between dancer and agent-driven virtual performer (as I will

propose in conclusion as scoped for future research).

A linear progression of the research experiments is:

 From rendering virtual humanoid bodies directly to

 Visualising bodies abstractly via kinetic dynamics to

 Visualising the relationship between bodies to

 Creating environment that creates itself from incoming body data to

 Partnership between dancer’s data and software environment to

John McCormick
Exegesis

13

 Dancer interacting within game environment through a Player character to

 Control structures; finite state machines, branched structures, game character Artificial

Intelligence (AI)

 Game Player relationship to Non Player Characters (NPCs)

 Metaphor of Player to Performer and NPC to Agent Performer

In reference to the last point, Agent-based software design has gained momentum in the past few

decades as a means of addressing the increasing complexity in modern software development.

Software agents are also seen as a means of taking advantage of emerging massive distributed systems

such as the internet or subsets of the internet. (Wooldridge 1) Agent-based software has overlapping

features in common with other aspects of software design and computing such as artificial intelligence

(AI), distributed computing, grid computing and robotics. There are many views of what constitutes

an agent, one definition being:

An agent is a computer system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives. (Wooldridge 16)

There have been many attempts to describe or define what a software agent is. Many of these

descriptions might include notions such as reactivity, autonomy, collaborative behavior, inferential

capability, temporal continuity, personality, adaptivity and mobility. (Bradshaw) Agents might exhibit

some of these characteristics to a greater or lesser degree. Another approach to the definition of agents

suggests that the reason that it is hard to find a consensus on what constitutes an agent is that agency

cannot be characterized by a collection of attributes, but rather consist fundamentally as an attribution

on the part of some person (Bradshaw 5). This suggests that the key distinction between an agent

architecture and another type of smart system is our point of view, or how we regard the system. I

think that using both of these approaches to the definition of an agent is useful.

While taking the point of view that agent status can be ascribed according to a person’s views and

expectations could lead to almost any software being deemed an agent, conceptualizing software

John McCormick
Exegesis

14

components as agents and ascribing certain traits to them does change the manner in which they are

viewed and I would argue the manner in which they are developed. So while there are some traits that

an agent would do well to possess; autonomy, learning, collaborative ability, mobility, the manner in

which they are conceived and addressed is also very important. Perhaps it is better to discuss agent

behavior rather than agent attributes as it leaves the definition more open to encompass emerging

forms. One means of thinking about agents that I find useful is that:

..they locally interact with their task environments, computational or physical, in the course of

problem-solving. Responding to different local constraints received from their task environments, the

agents can select and exhibit different behavioral patterns. (Liu, Autonomous Agents and Multi-Agent

Systems 2)

This suggests that they are able to interact with and respond to their local environments and can

exhibit appropriate behavioral responses. In discussing the future of narrative in cyberspace, Murray

says of intelligent agents:

They are improvisers, aware of multiple goals at once and able to change their priorities and

behaviors in response to changes in their environment (Murray 227)

While I have not settled on a single definition of agents, mainly as I believe this emerging domain

requires a flexible approach to definition, I will focus on these above mentioned attributes:

Interaction, Response and Behavior. When later discussing choreographic structure along with

software structure, these attributes may give us some concrete parameters around which to compare

the two architectures.

Case Studies of Peers

From the outset of this research project, I have been informed by various approaches from other

groups to the issues of using real-time motion capture for performances within 3D visual

John McCormick
Exegesis

15

environments. While some of these examples don’t necessarily incorporate motion capture as such,

each project reveals various possibilities for the application of technological, design, choreographic

and aesthetic principles. The following section is comprised of a number of case studies that highlight

other contemporary work in the field.

igloo

www.igloo.org.uk

Igloo is a London based multi-media group whose works contain a strong emphasis on human

movement. Igloo was formed by Bruno Martelli and Ruth Gibson. They have used motion capture

data and projected environments in many of their works including a web browser based piece,

dotdotdot (2003), Summerbranch (2006) and SwanQuake (2008). The 2004 version of their

Winterspace installation utilized a video camera based tracking application to cause the wintry

projections of the installation to emerge relative to the position of the viewer in the installation space.

The effect was to imbue the projected environment with a seemingly rudimentary ‘intelligence’.

Summerbranch and SwanQuake, on which I collaborated, made substantial use of motion capture

sequences as the basis of the movement behavior of the characters within the game-based

environment. They utilized the Unreal Tournament Game Engine.

John McCormick
Exegesis

16

Figure 1: Winterspace Montage, igloo

Bernd Lintermann, Nik Haffner and Thomas McManus

http://www.timelapses.de/

Time Lapses was a collaborative research project exploring ‘the relationship between body and

media. It focuses on the differences between the body's physical presence in time and space

and its mediated visual real-time representations on a screen’ (Lintermann). Time Lapses utilized a

Polhemus motion capture system with custom software written by Bernd Lintermann to undertake a

series of experimental studies between 2000 and 2003 at the Institute for Visual Media | ZKM Center

for Art and Technology in Karlsruhe, Germany. Research was also undertaken at the workshop Real

Time and Networked: Sharing the Body, hosted by Monaco Dance Forum in December 2002, where I

had the pleasure of working with and witnessing the artists’ research. The works were documented in

great detail and are a pioneering study in the area of dance and real-time motion capture.

John McCormick
Exegesis

17

Figure 2: Left to Right, Accordion, Poles, and Trace, Bernd Lintermann, Nik Haffner and Thomas McManus

Troika Ranch

www.troikaranch.org

Troika Ranch was founded by Mark Coniglio and Dawn Stoppiello in 1994. They have been

pioneers in the field of interactive dance, creating both innovative, interactive dance works and

interactive software (Isadora). Troika Ranch has used a number of self-devised methods for tracking

the movement of their dancers and using this information to generate audio-visual environments

within their dance performances. MidiDancer consisted of a bodysuit outfitted with plastic fibers that

measured the flexion and extension of the major joints on the body. When a joint moved, it sent a

signal to the computer which allowed manipulation of sound, image and other devices. Troika also

uses EyesWeb (www.eyesweb.org) to enable tracking of the dancers and construction in the software

of a 2-dimensional skeleton to represent the dancer. The data sent from EyesWeb is then used to

control many elements of the Isadora software to produce engaging real-time, projected performance

environments.

John McCormick
Exegesis

18

Figure 3: 16 Revolutions, Troika Ranch

Freider Weiss

www.freider-weiss.de

Freider Weiss is a Software Artist based in Germany who has collaborated with a number of

dance groups and individuals including Chunky Move, Palindrome and Emily Fernandez. His work

uses a single camera tracking system to allow the dancer’s actions to interact with computer generated

environments. While not using traditional 3-dimensional motion capture, Weiss’ use of motion

tracking to produce rich, interactive visual environments that are responsive to the dancer is an

exemplary example of the genre.

John McCormick
Exegesis

19

Figure 4: Glow, Frieder Weiss /Chunky Move

The OpenEnded Group

www.openendedgroup.com

Paul Kaiser, Shelley Eshkar and Marc Downie (OpenEnded Group)have collaborated with many

choreographers, including Merce Cunningham, Bill T Jones and Trisha Brown, to create motion

capture driven works. Their work with Trisha Brown how long does the subject linger on the edge of

the volume…(2005) utilized a motion-capture system consisting of infrared cameras to capture the

movements of the four dancers wearing reflective markers. The resulting positional information of the

dancers’ markers was passed to a software environment written upon the open source project Field,

authored by the artists. This allowed a “complex system of analysis and graphic action, an artificial

intelligence of sorts where the images’ intentionality, memory and tentative grasp of the

choreography are enacted.” (OpenEnded Group) The results were projected in real-time onto a large

projection scrim covering the front of the stage, in front of the dancers. This allowed both the

projected imagery and the dancers bodies to be seen simultaneously and hence a direct relationship

between the dancers and projections to be formulated by the audience. The work is outstanding in the

John McCormick
Exegesis

20

development of a somewhat autonomous, intelligent system that continually responds to the dancer’s

actions based on its own set of rules and ‘desires’.

Figure 5: how long does the subject linger on the edge of the volume.., Brown/Openended Group, Image(c) Marc

Ginot.

Dance Education System

The Dance Education System (Leung), undertaken at City University of Hong Kong, utilizes an

optical motion capture system to enable students to learn a dance without the presence of a teacher.

Animated performances of certain dance sequences are able to be selected and the student, configured

within the motion capture system, may perform their version of the dance based on following the

animated teacher. The system is able to analyse the performance of the student and compare it to that

of the animated teacher, the source of which is motion capture data of an experienced performer. The

system can then provide the student with feedback based on the analysis and comparison of the

performances represented by the two motion data streams. Some of the interesting aspects of the

John McCormick
Exegesis

21

system are the emphasis on analysis rather than visualization, and the provision of feedback to the

student in order to improve upon the last effort.

RiskMan

RiskMan (Kavakli) takes an agent-based approach to the development of a virtual reality training

system. It uses the Unreal Engine, the game engine used in the Unreal Tournament franchise, and

which we used in SwanQuake, as the platform for its visual environment and so is of interest with

respect to methods of controlling interaction resulting in visual 3D environments incorporating game

engine technology. RiskMan is a virtual reality training simulation for risk management aimed at law

enforcement officers. What is interesting in its design is the use of separate, interacting, autonomous

agents to control different aspects of the simulation environment. It uses five types of agents: a

simulation agent decides and maintains the optimal path for training of a trainee; a scripted agent

controls negotiation between the trainee and the simulation agent, a human trainee agent is the trainee

using the system; the interface agent provides extensible control of keyboard, mouse, gesture and

other interface devices; and a communication agent is responsible for speech-based communication

with the scripted agent using a natural language generator and a speech synthesizer. The agents

interactively negotiate the path of information between the Narrative Engine (which stores and

generates the interactive story and scripted agent behavior), the SimMaster (which controls the overall

environment based on the current states of the narrative and the trainee), and the Game Engine (where

the interacting actors and events are displayed.) The Narrative Engine and the SimMaster are separate

programs controlling the decisions of the scripted agents, the Non Player Characters (NPCs) in the

game environment. The different components of the system use socket connections to communicate

with each other. The current version is a modification (mod) of the Unreal Tournament 2004 game.

John McCormick
Exegesis

22

Figure 6: RiskMan Training System Architecture (Reprinted from Kavakli 361)

RiskMan presents some interesting possibilities for the architectural design of complex software

projects desiring high levels of interactivity. The splitting of the software into autonomous

components allows development of these components independent of each other. This potentially

allows many different programming approaches and languages to co-exist in a single work. The use of

agents to manage the different components is also interesting as it allows an environment to develop

in a persistent manner without continuous intervention from human operators. This agent-based

architecture also enables components to be replaced or added without major disruption to other

components. For example a different rendering or game engine could be used without changing the

other parts of the system.

John McCormick
Exegesis

23

Design

Description of hardware

The motion capture systems used in this research project all attempt a similar goal, to record the

motions of the performer into a format that can be used to represent that motion in digital form. All

the mocap systems I used transferred the motion data to a computer over a network where it could be

used within a virtual environment. The data was usually used to animate a skeletal representation of

the dancer. The raw data as measured from the dancer, however, is not automatically configured in a

skeletal format. This process is done in software once the data reaches the computer.

Gypsy mechanical motion capture system

The Gypsy motion capture system is a mechanical exoskeleton comprising potentiometers to

measure the rotation of the various body joints and an inertial measurement unit at the hips to measure

the rotation of the pelvis. The potentiometers are joined by sliding brass struts that keep the

potentiometers in alignment. These sensors actually give fluctuations in electrical voltage equating to

relative movement of the sensors, which in turn are converted to digital readings via an analogue to

digital (AD) conversion. The resultant numbers can then be used to evaluate the amount of rotational

change each joint has undergone since the last measurement. The resultant data is sent via a wireless

modem to the host PC where software constructs a skeleton hierarchy which is in turn transmitted

over a network to a client PC. The Gypsy has its advantages and disadvantages; as it is a mechanical

structure it can be cumbersome and hinders a dancer’s contact with the floor (e.g. rolling) and some

forms of contact with other dancers. It is a wireless device with a range of approximately 100 metres

outdoors and 20 metres indoors, making it quite flexible in terms of range and use in ‘hostile’

environments, that is, environments in which other mocap technologies would be overly vulnerable to

signal interference. Its data is not as accurate as other systems, however the data is not susceptible to

John McCormick
Exegesis

24

optical occlusion or magnetic interference making it useful for both indoor and outdoor performance.

As the entire system is totally wearable, it does not have an external frame of reference like the other

systems and as such it is unable to accurately measure absolute position. The global position

measurements are calculated from the direction of the performer and the length of each step, which

leads to cumulative errors in position. Accurate calibration of the performer helps reduce this error but

cannot eliminate it. The advantage of not requiring an external source is that the capture range can be

much larger than the other systems and can extend outdoors or through walls.

Polhemus magnetic motion capture system

The polhemus system used was a Polhemus Ultrarack 16 sensor system. The Polhemus system

uses a 3 axis magnetic field generator in which the orientation and position of the sensors can be

estimated. The device used in the research project was a wired version which caused some constraints

on the type of movement achievable without getting tangled in the trailing cables. The system is very

susceptible to interference from magnetic structures within the capture volume which can distort the

measurements. In a space with little magnetic interference, the results were quite accurate and even

with some distortion present, the results were at least predictable. The Polhemus system was accurate

enough to allow predictable interaction with in-world actors and could be used in performance

situations requiring changes of lighting states and within strong projection fields.

Optitrack optical motion capture system

The Optitrack system used was an 8 camera optical system that tracked 34 optical markers (small

reflective balls) attached to the body of the performer. It was the most accurate system used, and the

least cumbersome as it had no connecting wires or wearable components aside from the small

markers. It did not work optimally with ordinary clothes or costumes as they could occlude the

markers’ visibility to the cameras. This problem of occlusion was the main problem experienced with

the system. If a marker was covered by a part of the body, objects in the environment, or floor, the

data could become unpredictable until the marker was again identified by the system. This didn’t

happen often with the majority of upright movement but floor based movement (e.g. rolling) proved

John McCormick
Exegesis

25

extremely difficult to track. Another problem experienced was markers detaching from the body

during dynamic movements. The system worked best when used with a black tight fitting spandex

suit. When used directly within a projected environment the strong beam of light from the projector,

as the projection beam traversed the performance space, could interfere with the capacity of the

cameras to accurately track the markers. This was most evident when used in a stereo projection set-

up, where the viewer wore polarized glasses to provide left and right eye views from two projectors

projecting slightly different viewpoints, and it was desirable to have the performer directly in front of

the projectors.

Evaluation of different mocap systems in current context

 As I have described, the various motion capture systems that I deployed within the research had

their own idiosyncrasies which were further compounded by the constraints placed upon them by the

particular performance environments employed. The projects were optimally designed for use within

a stereo projection environment where the performer was directly in front of the screen so as to give

the greatest illusion of the performer being enveloped within the projected environment.

While the optical system delivered the best results in normal circumstances, within the projected

environment the cameras suffered from ‘false positives’, a common glitch in image analysis software,

where the software algorithms lose track of one or more markers and end up trying to track light

sources other than the desired markers.

The magnetic system was not interfered with by the light of the stereo projections and was

useable as long as the performance space was relatively free of magnetic interference. The performer

had to take care that they didn’t trip or become entangled in the trailing leads. Strategies such as

bundling the wires together or hanging them above the floor helped to minimize the risk.

The Gypsy mocap system was the least accurate in that the data tended to drift as there was no

mechanism to measure absolute position. This only tended to be a problem where it was desirable for

the dancer’s avatar to interact directly with the virtual environment in a way that maintained a

John McCormick
Exegesis

26

meaningful registration with what was happening in the real world space, and accurate positioning of

the body was necessary. The internal rotation measurement of the joints tended to be reasonably

accurate and sufficient for most purposes.

Description of Software

Rather than try to construct a performance software environment from scratch, I chose to see what

software existed that could either fulfill my requirements or provide a foundational basis for

development.

Requirements included:

 The ability to interface to motion capture devices and manipulate the data streams

 Passive stereo projection capability

 A means of extending the software through a scripting interface or ideally a plug-in

architecture

 Relative ease and speed of development given sole developer

I was interested in software platforms that took care of as much of the commonly used

components as possible leaving me more time to concentrate on items specific to my research projects

such as motion capture interfaces, analysis and manipulation of data and visual representation of the

data.

Alias Motionbuilder

Motionbuilder is primarily developed for capturing, editing and visualizing motion capture data. It

is useful as a rapid prototyping platform for the type of work undertaken in this project. It contains a

basic building-block style scripting interface that is fast to work with but can be limited in

functionality. There is a lack of many of the functions found in modern visualization and game

engines such as collision detection, Artificial Intelligence (AI) scripting and interaction interfaces.

John McCormick
Exegesis

27

Developing plug-ins is not as easy as in other visualisation environments. It is available for Windows

and Macintosh platforms.

Act3d Quest3d

Quest3D is a DirectX based 3D development platform useful for developing games, architectural

walk-throughs, simulations and scientific visualizations. It is available for the Windows platform

only. It has a comprehensive framework for developing plug-ins with which to extend the

development environment and with which I wrote plug-ins for the three motion capture systems used

in the research. Quest3D is not just a game development environment but is suitable for a range of

simulation environments.

Unreal Engine

The Unreal Engine is the underlying technology used in the Unreal Tournament series of games

developed by Epic Games. It comes with a comprehensive editor, UnrealEd, and scripting language,

UnrealScript, making it a favourite of the game modding (modification) community. The online

community1 and support structures make it very useable for 3D visual projects. One problem can be

that the underlying platform, the Unreal Engine, is optimized for first person shooter (FPS) games and

can take a fair bit of effort to create other types of structures within the software. It does not come

with source code unless extremely hefty license fees are paid and hence it is not easy to extend the

game development environment with features such as motion capture capability.

Torque Game Engine

The Torque Game Engine (TGE), developed by Garage Games, is the engine that was used on the

Tribes franchise of online capable games, originally developed by Dynamix, a subsidiary of Sierra

Entertainment. The content of the games was stripped out by Garage Games and the actual game

engine offered to game developers, mainly independent developers. It is one of the few engines that

1 See, for example: http://wiki.beyondunreal.com/ (last accessed 24th Mar 2009).

John McCormick
Exegesis

28

offer the full engine source code with all licenses. It is also quite affordable for a commercial game

engine.

Unity

Unity is a multi-platform game development tool developed by Unity Technologies, capable of

publishing for MAC, Windows, Wii and iPhone. It comes in Indie and Pro versions. The Pro version

is required to add plug-ins in order to extend the basic development environment.

DANCE

The Dynamic ANimation and Control Environment (DANCE), authored by Ari Shapiro and

based on earlier work by Victor Ng-Thow-Hing and Petros Faloutos, is a software package for

physics-based character animation and simulation. It is a self contained program that offers a variety

of methods for generating character animation by simulating how the character would behave under

prescribed physical conditions and by incorporating motion capture data. It can be compiled to run

under Linux, Windows and OSX. It would be feasible to take methods employed in DANCE and

incorporate them into your game engine of choice, providing the engine can be extended through a

plug-in architecture or similar method. DANCE itself can be extended with user created plug-ins. One

of the aims of DANCE is to offer a platform in which character control methods can be tested and

evaluated.

Description of projects

Overview

The performance–based projects undertaken were conducted with a view to being short

performance pieces set in a proscenium style setting. The audience would be situated at one end of the

space with the performer at the other. A large screen would fill much of the wall behind the performer

onto which a stereo image is projected. The performer is in front of the screen to allow the audience a

John McCormick
Exegesis

29

view of both the performer and the resultant real-time interpretation of the motion data and to

emphasise the visual effect of the stereo projections in surrounding the performer. The audience wears

glasses with polarized lenses in order to perceive the stereo effect. The works were conceived as short

3-5 minute pieces to allow rest for the audience from having to cognitively synthesise the stereo fields

and this was seen as a suitable time in which to experiment with the limited parameters chosen for

each study. The earliest works experimented with two performers in different motion capture systems

whose data was streamed into a single visualized environment. The performers could be in the same

location or in remote locations.

While the above was an ideal situation, the experiments were not all conducted under these

conditions. Some works (2 Avatars, Nova) were performed and recorded in a studio with single

screen, non-stereo projection, or with a monitor for feedback. Tosser and Lines were presented in

stereo but the performance space was rather limited in size, making calibration of the systems

challenging. The motion data from all these performances was recorded so that the simulation could

be reproduced, often with changed parameters in order to see the effect of changed interactions. The

software could not discriminate between the live motion capture stream and the recorded motion

capture stream, which allowed testing of the software environments without the requirement of a full

performance setup including dancers on call. As the notion of shared structures between the live

motion capture performer and the virtual environment became more paramount, I focused on the area

where the two intersected, for me this was the software environment where the dancer’s data could

transform the environment and/or the environment could respond to or expand upon the incoming

motion data. This is reflected in the photos and documentation which predominantly represent the

shared virtual environment as the dancers’ motion data enters it. The use of recorded data made

experimentation with the software environments much more practical.

John McCormick
Exegesis

30

2 Avatars

Figure 7: 2 Avatars

2 Avatars (Figure 7) was a live performance within a virtual environment that investigated the use

of non-rigid humanoid representations as avatars for the live dancers. The first sketch of 2 Avatars

was created during the Motion Capture Tech Laboratory “Real Time and Networked: Sharing the

Body” hosted by Monaco Dance Forum in December 2002, and moderated by Scott deLaHunta

(deLaHunta). In previous work, such as CO3 (2002, Company In Space, Manchester Commonwealth

Games) the avatars used were deformable solid meshes of the type seen in many 3D games and

animation. The direct mapping of the motion data to these humanoid meshes tended to look rather

mechanical in that simply rendering the sampled motion tended to look pedestrian compared to the

multi-layered sensory engagement one can experience when witnessing a live performer. The use of

soft-bodied avatars was an attempt to give the rendered motion unique attributes derived from but not

John McCormick
Exegesis

31

necessarily mimicking the live performer. The virtual bodies had an amount of elasticity that was

exaggerated as a function of the velocity and direction of travel of the avatars. This methodology

allowed for the visualization of the raw motion data along with some of the inherent dynamics of the

movement.

Figure 8: 2 Avatars

Another aspect investigated in 2 Avatars was the use of one motion dataset to influence another

(Figure 8). The arm gestures of one dancer were used to sweep the second avatar in arcs around the

so-called ‘world centre’ of the 3D Cartesian axes. This exaggerated the elasticity of the target avatar

and created a unique relationship between the dancers within the virtual representation. 2 Avatars

used a simple mathematical transformation to achieve the stretched effect; taking the speed of the

hand movement from one performer and using it to apply an amount of drag on the second

performer’s avatar. The crossing over and redirection of data from one stream to another proved to be

a simple but effective mechanism for extending the visual possibilities of the projected environment.

John McCormick
Exegesis

32

John McCormick
Exegesis

33

Tosser

Figure 9: Tosser showing dancer joint nodes

The results of 2 Avatars prompted me to look further at visualising the dynamics of the live

motion datasets and creating further recombinations of the two datasets of two live dancers. The

treatment of the motion streams as datasets rather than simply representing movement allowed for the

conception of many possibilities for visualisations based on the live data. The method of combining

the datasets was taken further in Tosser (Figure 9). Tosser’s first incarnation was in Digidance 1, a

dance and technology workshop hosted by Essexdance in Chelmsford UK, in February 2004, and

moderated by Scott deLaHunta. In an attempt to treat the combined dataset as a single entity and to

focus on their dynamic properties, the humanoid bodies were dispensed with in favour of more

geometric shapes. This was in order to concentrate on the inherent patterns and dynamics of the

John McCormick
Exegesis

34

combined data. A stack of virtual glass sheets were individually propelled around the virtual space

according to the combined velocity of the joints of the two dancers. So one sheet might respond to the

combined velocity of the dancers’ right wrists, the greater the velocity the further the sheet was

expelled away from the centre of the volume. The sheets would return to their original starting points

if no impetus was applied by their corresponding body parts. The result was a geometric pattern that

could be seen constantly reconfiguring itself according to the summation of the motion datasets as

derived from the dancer’s physical exertion (Figure 10).

Figure 10: Tosser

Tosser began a line of research in to the creation of virtual environments external to the dancers’

bodies. Instead of imagining the dancer’s movement being represented by a humanoid avatar or even

an abstract visual environment, the virtual environment was imagined as an independent entity that

could receive the incoming streams of motion data and employ it to visualise the results. This led to

John McCormick
Exegesis

35

setting up filters for the incoming data that could be applied to objects in the virtual environment

rather than the data being directed onto an avatar skeleton directly.

John McCormick
Exegesis

36

Lines

Figure 11: Lines showing dancer skeletal nodes (Dancer A-blue, Dancer B–red)

Lines (Figure 11), was also conceived at Digidance1 in Chelmsford, and along with Tosser and

other works, was first performed at the Swinburne University Virtual Reality Theatre, Department of

Astrophysics and Supercomputing, in 2005. Lines further explored the method of filtering the

datasets through ‘logic blocks’ before visualising the results. As in Tosser, the visual environment

was conceived as being derived from, yet independent of the original movement data. In Lines the

dancer’s motion data was sent as UDP streams to the computer running the visualisation. The dancers

could be in the same space or in distantly remote spaces. The work created a visual entity between the

dancers. The joints of the bodies were joined by cubic objects that illustrated the combined speed and

origins of the respective joints (Figure 12).

John McCormick
Exegesis

37

Figure 12: Lines

The resultant geometric volumes grow and contract in response to the dancers’ combined

movement dynamics. Lines was conceived as a collaborative networked artwork where the dancers

could be in any geographical location as long as they had access to suitable network infrastructure to

carry the motion data to and from their partner’s location.

John McCormick
Exegesis

38

Nova

Figure 13: Nova

Nova (2004) was presented at the International Symposium on Art and Technology, Utah, USA in

September 2004 with Company In Space. Nova was a small investigation into the use of behavioural

‘states’ to control the behaviour of particle generators. The particles had two states, dormant and

attached. In the dormant state the filter was represented by a particle-system generated fire that

emanated from a fixed position. In the attached state the particles split off and attached themselves to

parts of the dancer’s avatar. The behavioural states could present the particles in a more traditional

mode, that of a fire as found in many animations or games and having a fixed location, or change to

appropriate the motion dynamics of the dancer in portraying the trajectories of the particles. The states

could be triggered by user intervention (keyboard), midi control data or from triggers from the

dancer’s movement. This represented a slight departure from earlier works in that the method of

filtering the motion data could be changed within the current software environment without loading in

a new scene. While control of the states was governed by direct intervention by the artist, it also led

me to considering the possibility of the software or external agents making appropriate decisions on

the current appropriate state.

John McCormick
Exegesis

39

SwinGEE

In SwinGEE 2004-2005, (Figure 14) a research project conducted with students at Swinburne

University2, a Player character was driven by the Gypsy mocap system allowing the Live

Player/Performer to interact in a virtual world with a Non Player Character (NPC). The Torque game

engine (www.garagegames.com) was used and was augmented to receive mocap data from a live

‘Player’ wearing the Gypsy and to project the virtual environment in passive stereo. The motion data

was not used to drive the Player skeleton directly, through applying the rotation data from the gypsy

to the Player skeleton, but rather the gypsy data was used to proportionately blend pre-recorded

locomotion animations available to the Player character in order to effect movement. For example the

arms of the character had animations for a range of rotation on the X, Y and Z axes for each of the

arm segments (shoulder, elbow and wrist). These animations were blended together according to the

rotation angles of the live player’s joints, sent from the gypsy. This method, of blending together

different animations to create alternative versions of character movement is often used to animate

NPCs and ‘normal’ Player characters and was the easiest method to implement in the Torque engine

at the time. While we could use the live mocap data to drive the animation of the player character and

calculate an approximate collision response so that the Player could physically interact with the NPC

in the virtual environment, including being able to use a sword and other weapons against the NPC,

the responses from the NPC were very rudimentary in scope, relying on the pre-recorded animations

available to it.

2 Conducted at Swinburne University Department of Supercomputing. Team members were Jackie Ng (team
leader), Magnus Nordby, Sokra Cheng, Chung Ming Sin, Ricky Soegandy, Ali Rajani and Ting Khen Hui under
the supervision of Paul Bourke and John McCormick.

John McCormick
Exegesis

40

Figure 14: SwinGEE: Mocap player vs NPC in Torque game engine

One problem with the project’s implementation in Torque was the calibration of Player

locomotion in the game world. If movement in game space was determined by the amount of distance

covered as the live Player walked, s/he would cover relatively little area within the game world,

certainly not enough to find and interact with the NPC’s. This was compounded by the limited

physical space available to the live Player in front of the screen in the Virtual Reality Theatre in

which the project took place. To enable the Player to traverse greater distances the leg locomotion

used regular walk, run and jump animations typical of those found in most games, which were

controlled by the keyboard and mouse. These were blended in with the live motion capture controlled

animations of the upper body. Thus the player character was controlled by two people at the same

time, one controlling upper body movement using the Gypsy mocap system, the other using the

keyboard and mouse to control ambulation within the game environment. It was possible to also

control the leg motion with the gypsy, and given a larger space, the live Player may have had enough

room to traverse more of the game world with the Player character mimicking the live Player’s leg

movement. However we desired for the Player to be able to traverse quite large game environments

and the blending of traditional controls for the legs and motion capture control of the upper body

John McCormick
Exegesis

41

allowed this. Methods to give the live Player control of the locomotion process, rather than delegating

it to a second person on keyboard and mouse, were considered including the use of a weight transfer

board that could be attached to a joystick mechanism to allow the live Player to lean in the direction

they wished to travel and thus control the ambulatory animations.

Another issue encountered in the SwinGEE research was the manner in which contact between

the Player character, NPC’s and the game environment was detected. Torque 1.3 used a collision

mesh system to detect contact between game elements. The collision mesh is an invisible geometric

object that covers some or all of the area of the game object, and it is with this collision object that the

game engine performs collision detection in order to ascertain certain physical interactions. Many

engines at the time used quite primitive collision hulls, even for the Player and NPC characters, often

a simple vertical cylinder that covered most of the character’s body. This meant that contact between

Player character and NPC was based on the primitive shape of the collision cylinder rather than the

shape of the character’s body. One solution was to create individual collision objects that closely

fitted the basic parts of the character’s body shape. This tended to slow down performance a little as

the collision calculations became much more complex. A future version of Torque Game Engine and

many contemporary game engines use ‘Poly Soup’ collision or ‘Mesh Collision’ which allows the

actual character mesh to be used to calculate contact with other characters and the game environment.

A more sophisticated form of collision detection than the one we managed in the SwinGEE research

would be desirable if complex physical interactions between the Player character and the NPC were to

be simulated.

While SwinGEE was successful in incorporating mocap data to allow a synthetic character

representing the live Player to interact within a game environment, the implementation was not trivial

in that the source code was rather convoluted and required very strong programming skills. The

amount of programming required to develop game levels would be enough to preclude development

of environments by most sole developers. Subsequent to the SwinGEE project I researched a number

of other game engines as alternatives to Torque including Quest3D and Unity. After writing plug-ins

John McCormick
Exegesis

42

for the motion capture systems for use in Quest3D, I found the character animation framework in

Quest3D to be rather difficult to use. While the process of receiving and managing the mocap data in

Quest3D worked well, transferring the data on to the skeletal structure of 3D characters in order to

animate and interact with them gave unpredictable results and was at times quite frustrating. Using the

motion data to animate or control other objects in the Quest3d environment worked well, but the

under-developed structure of its skeletal animation system prompted me to look further afield for an

acceptable solution to this particular part of my research. Currently I am working with Unity whose

character animation framework appears to me to be far more useable than Quest3D or Torque for the

purposes of using motion data to allow a live performer to animate a synthetic character and interact

with other digital characters within the game environment.

SwanQuake, SummerBranch, Unreal Engine

I cannot remember exactly when the concept for SwanQuake arose, but I remember it was in the

igloo studio one evening and Ruth Gibson and Bruno Martelli (igloo), Scott delaHunta and myself

were keeping warm with a few heat-inducing beverages (I’d say it was London winter, probably after

the Digidance workshops in February 2004), when the title popped up. The title said it all, dance (as

alluded to by the well-known classical ballet Swan Lake) and game engine (as exemplified by the

Quake engine and game, being one of the first 3D first-person shooter games). Bruno and Scott were

willing to engage in some collaborative game engine research, so we started investigating the then

current crop of game engines with a view to finding a platform for SwanQuake.

We considered a few engines, most in the First Person Shooter (FPS) genre, as these came with

editing tools and some with exporters for 3D creation tools which enabled importing motion capture

sequences into the engines. We looked at (and thoroughly tested) the engines behind Medal of Honor,

Call of Duty and others before eventually settling on the engine used for Unreal Tournament 2004.

From this investigation of employing game engine technology to house dance content, Summerbranch

was premiered at Artsway in 2006 and Swanquake at V22 in London in 2008. Both SwanQuake

John McCormick
Exegesis

43

(Figure 15) and Summerbranch used relatively long motion capture sequences for the motion of the

characters. The works were usually projected onto gallery walls as installation works where

participants took the role of the Player and navigated through the game worlds interacting with the

environments and the Non Player Characters (NPCs). The Player interacted within the game using

mouse and keyboard and interactions were largely determined by pre-defined scripts. Interactions

between the Player and NPCs were based on proximity and contact (through collision detection) of

the Player with the NPCs. Responses by the NPCs included disappearing and changing the current

movement phrase. Motion capture sequences were used to animate the Player and NPC, and their

sequencing was controlled by scripts. SwanQuake and Summerbranch both used slightly modified

versions of the standard navigation and interaction techniques used in the Unreal engine. While the

interactions within the works were not unusual for this type of game engine, they suggested a number

of interesting ways to perceive the relationship between a live protagonist (Player) and digital

collaborator (NPC).

While working on SwanQuake I investigated the structures used within the Unreal game engine to

organise the movement behaviour of NPCs and how they react to player characters. In the Unreal

engine the NPC is often called a bot, (probably a derivative of robot or software robot), whose simple

behaviour can be controlled by simple functions that are ‘called’ at every frame3 or in response to

some external stimulus e.g. being bumped by a player character. For behaviour with a limited palette,

calling functions to define responses was often adequate to enable basic reactivity in the NPCs. In

order to give a more complex range of responses and to simulate intelligence for the NPC, states are

used. These states can define a broader range of actions for the NPC in response to changes in the

game environment. In SwanQuake specific responses were programmed depending on the relationship

between the Player and the NPC which could change over time or as events dictated. Some simple

responses were encoded; for example, the NPC would become transparent, less visible, as the Player

3 The frame rate can vary when the Unreal Engine is running, from anywhere between once to over one hundred
times a second, although ‘real-time’ tends to presuppose at least 25 frames per second.

John McCormick
Exegesis

44

approached, creating a sense of elusiveness. (Figure 16) Choreographed actions were performed when

the Player bumped into or touched the NPC or when the Player came within a certain proximity to the

NPC. Though there were limitations to the types of interactions that were possible in the Unreal

Engine, partly due to its fundamental architecture as a First-Person-Shooter (FPS) style game engine,

it did prompt me to look further at using Artificial Intelligence (AI) as a mediator between the motion

activities of a live Player/Performer and a digital Partner/NPC.

Figure 15: Swan Quake, igloo

In many of the previous experiments two dancers were performing together in an increasingly

mediated environment. The work with game engines encouraged me to view the software entity

(a.k.a. bot, NPC, agent) as a potential partner that could mediate the relationship between two

networked dancers, or could replace the remote dancer and potentially become the dancing partner,

responding to movement stimulus from the live dancer’s motion data.

John McCormick
Exegesis

45

There are a number of strategies used in the Unreal engine to govern interaction with bots and

other in-game elements: scripted sequences, states, AI, interactions based on the relationship with the

player and other bots and interactions based on triggers, zones or states embedded in the virtual

environment itself. The choreographic potential inherent in game engines is what is employed to also

create machinima artworks.

Now the choreographer faces a challenge similar to that of a games developer. Given a set of

motions, how do you build an architecture for a larger ensemble of motions? How do you string them

together? Starting from one motion, you could consider any number of possible movements to join it

to. (Kaiser 6)

Considering the game engine not as a closed environment but as a space for collaboration

between a live dancer (akin to the Player) and a digital partner (akin to a NPC) yields some interesting

potential for exploring the duet form in a synthetic environment.

John McCormick
Exegesis

46

Figure 16: Swan quake, igloo

John McCormick
Exegesis

47

Discussion

Path of Development

While, through my projects, I began investigating the use of motion capture to allow two dancers

to engage in a shared 3D synthetic environment, I have moved more recently towards developing

automated mechanisms that enable a dancer to engage with a synthetic partner. This partner could be

of humanoid or abstract representation or take many visual forms. The choices of representation are

specific to the work being undertaken and can be viewed as separate to the structures that govern their

behavior. I am also going to limit the discussion here to game engine and related software

environments as that is the path I have taken, and am currently taking for present and future work.

Also, to narrow the context of this discussion to a manageable level, I will imply the synthetic partner

to be a valid substitute for a human partner in terms of experimenting with movement responses and

capability. I haven’t intended to necessarily mimic complex human movement and responses in

software, however I am interested in interaction with a character that is plausibly recognisable as

being of human derivation. This does not mean the character would have to pass a visual equivalent of

the Turing test 4, whereby an external viewer would have to ascertain which is the real human (data),

and which is the synthetic. The human movement basis is partly dictated by the use of a humanoid

skeleton for both Player and NPC, and I have emphasised physical movement rather than emotional or

intent driven behavior. This is still a wide field of play as, in Tosser for example, while the pattern of

behavior of the geometry is based on real human motion, i.e. movements that are constrained by the

dancer’s biomechanical structure, the result does not necessarily look like bipedal motion. While the

4 In 1950 Alan Turing posed an experiment to determine a machine’s intelligence. If a third person in carrying
out a text based conversation with a computer and a person could not tell which was the person and which the
computer, the computer was deemed to be able to ‘think’.

John McCormick
Exegesis

48

manner in which the synthetic partner is represented will vary the degree to which human traits might

be attributed it, all of the projects I have undertaken have used a skeletal representation of the dancer

or character to visualise the movement in the 3D environment. This use of a skeleton to represent the

human body is a convention prevalent in most of the software used in this project. The motion capture

systems can all make use of a skeletal representation on which to model the movement of the

performer. This skeletal paradigm is expedient in that it allows different systems to exchange motion

data in a relatively consistent and predictable manner.

Use of a Skeletal Hierarchy to Animate Synthetic Characters

The skeletal hierarchy becomes an important tool for capturing, transferring and representing the

dancer’s motion and also as a means of representing motion in a synthetic character. It is through

these skeletal hierarchies that most of the interaction between dancer and synthetic character has

occurred. In earlier works, such as 2 Avatars, Tosser and Lines, the two dancers were also represented

through a skeletal system and most of the calculations of interaction in the shared environment and

resultant responses were performed on parts or the whole of the skeletons. Characteristics of the

movement gleaned from the motion data included proximity of one dancer to another, and to other

parts of their own bodies, speed of body parts, direction of facing and movement, relative and

absolute position in space, angle of rotation of specific joints and of multiple joints, the latter which

can be used to predict the occurrence of specific gestures. Using skeletal models as a basis on which

to analyse and formulate responses to incoming motion data from two dancers was very useful in that

it provided a common framework for using different mocap systems in the same work, allowed a

fairly easy transfer of resources from one software environment to another, gave useful feedback to

the dancers as to what effect their movement was having within the virtual environment and allowed

the viewer to more easily interpret the movement relationships between the live dancer and their

virtual representation. As a consequence I continue to pursue this model in looking at relationships

between a live performer and a synthetic character.

John McCormick
Exegesis

49

In the film and game industries the most common way of animating characters is to create a

skeleton that is then used to deform and hence move the mesh or skin of the character. This method of

animating characters is found in most 3D creation software packages and is also supported in nearly

all game engines. It is also the method employed to visualize real-time motion in software packages

such as MotionBuilder (see above).

How can this ubiquitous skeletal arrangement be employed in the context of a live performance

between dancer and agent? A similar if not identical skeletal structure can be used for both recorded

and live motion data. This presents the possibility for editing and recombining the motion from

human and synthetic characters both individually and together. In the Unreal Engine, Quest3D and

Unity the default method of animating characters is using skeletal animation. Motion data can be

imported into a 3D animation package and transferred to a character via the skeletal hierarchy. The

animated character is then exported to the desired game engine and the animations can be used to

represent Non Player Characters in the game environment. There are a number of methods used to

control these available animations, They can be played in sequence, looped, blended to form new

animations, parts of one animation can be overlaid upon another animation e.g. an animation of

waving arms played over a running animation, or they can be combined with an Inverse Kinematic 5

system which alters the original animation to allow fine tuning of things like grasping objects or

maintaining foot contact on uneven surfaces. The NPC movement can also be treated the same as a

live character, by sending a motion data stream to animate the character. This is a typical method used

to visualize the motion data from a live dancer. The live motion data stream is connected to the

skeleton of a character to animate it in concert with the dancer. A motion stream can be simulated,

either composited from existing motion sets or generated in software, that looks to the character like

live human motion data. It follows then that this would allow for the generation of motion responses

5 Inverse kinematics is a method of controlling flexible joined objects, such as the bones in a 3D skeleton, so
they can be manipulated to achieve required actions. For example, the feet might be moved up or down to adjust
for uneven terrain and the rest of the skeleton (shin, thigh, hips, and onward up the chain) would be adjusted
appropriately to compensate. Often the adjustments try to maintain human biomechanical limits.

John McCormick
Exegesis

50

for the synthetic character based on many methods; modification of the live dancer’s motion, re-

compositing of recorded motion sets, pure software or mathematical generation of motion sets or any

combination of these. It would also allow the logic that determines the responses to be either within

the game engine environment or outside it, sending the resultant motion stream into the engine as you

would a live stream.

Figure 17: Typical Skeletal Heirarchy

Behaviour control structures in the Unreal Engine

John McCormick
Exegesis

51

During the course of working on Swan Quake I investigated many of the Non Player Character

(NPC) control structures available within the Unreal engine. The scripted sequence found in the

Unreal Engine, which has a counterpart in most game engines, allows the developer to create more

complex behavior from basic components. In movement terms, a NPC might have a number of short

animations within its repertoire that could be put together to form a longer sequence of movement.

This ‘sequencing’ type of choreographed behavior could be seen to approximate a traditional

choreographic form where the dance is composed of known movement parts that are performed in a

linear sequence from start to finish and also reflects certain digital methods of composition in music

software and, more recently, in animation and motion graphics software that use repeated ‘tiles’ of

motion or time-based motifs to run in preordained sequences or to run when triggered by certain other

events. An example might be a ballet sequence where the dancer performs known, predetermined

steps in a predetermined order. This is a common choreographic device used across many dance

genres and may even be said to be typical of much western contemporary and classical dance. From

the available arsenal of character control methods present in the Unreal game engine, the scripted

sequence is a suitable structure for a synthetic partner to accompany a dancer undertaking this form of

choreography. The scripted sequence was useful for causing the NPC to undertake a set sequence of

movement animations in response to an event such as interaction with the Player.

John McCormick
Exegesis

52

Figure 18: Unreal characters controlled by a scripted sequence

While using the Unreal Engine in SwanQuake, as a container for recorded dance activity, I started to notice some

similarities between the control structures built in to the engine and some choreographic structures I had previously

read about. In particular I found strong resemblances between the structure of a scripted sequence as used in the

Unreal Engine and Steve Paxton’s Satisfyin’ Lover. (

Figure 20) From his early days as a choreographer, Paxton was interested in the architecture that

underpinned movement.

Through his solos – Paxton is involved in “using improvisation as a force to discover

architectural and emotional form simultaneously, exploring movement as a reason, not just as an

expression of someone’s momentary need.” (Banes, Writing Dancing in the Age of Postmodernism)

 The main characteristic shared by Unreal’s triggered scripted sequence and Paxton’s score is the

listing of actions to be performed by the performers which are set in motion by triggers or cues. In

Paxton’s work the dancers have a predetermined movement sequence they are to perform which is

mainly triggered by the actions of the dancers who go before them. They are not time dependant but

John McCormick
Exegesis

53

rather take their cues from the activities of surrounding actors. In the following example of a scripted

sequence from the Unreal engine (Figure 19), an actor pawn will wait for a specific event (another

actor does something, time, end of an action / animation), which will be the trigger to perform the

prescribed action or series of actions. So in this example the NPC pawns wait for a trigger whence

they move to their allotted starting positions and then wait for cues to perform the next set of actions

designated to them. The process is very similar to the method prescribed in Paxton’s Satisfyin Lover.

While the similarities are likely due to expediency; a logical manner in which to organize behavior

based on the common human methods of performing one action after another, and responding to an

event with a known or even predetermined response if one is available, it nevertheless led me to

investigate other common methods of structuring software and choreography mainly based on desired

interaction and behavior. The Unreal engine scripted sequence shown (Figure 19) is a high level

abstraction in that it is Graphic User Interface (GUI) driven, rather than script driven, tool and is

devised in this way to make it easier for non-programming developers to construct bot behavior.

John McCormick
Exegesis

54

Figure 19: Unreal Scripted Sequence

GROUP A
1. Walk 2/5. 10 second stop. Exit.
2. Cue 10 steps. Walk across.
3. Cue 20 steps. Walk across.
4. Cue #1 pauses. Walk across.
5. Cue #1 pauses. Walk 1/5. Stop 20 seconds. Exit.

6,7,8. Cue 5 steps. enter together. #6 falling gradually behind (at
exit be 15 steps behind). 7&8 walk across.

Figure 20: Excerpt from Steve Paxton's Satisfyin’ Lover

John McCormick
Exegesis

55

State Machines

State Machines or Finite State Machines (FSM) are a method commonly used in game engines to

define and control behavior. A FSM is usually a model of prescribed behaviours containing a finite

number of states or set of instructions, containing a set number of actions to be performed while in

that state and able to be entered or transitioned into by some event. In the Unreal engine they are

called states and take the form of small components containing blocks of embedded behavior. A state

could be seen as an encapsulated piece of behavior that can be called upon when circumstances

dictate. A NPC might have a number of states that give scope for the character to respond differently

as circumstances change. A finite state machine could also be viewed as an abstract model of a

machine with a primitive internal memory. They are often used to give NPCs a primitive AI

capability. States are not time dependant in that all members of the state are available at once when

that state is entered, there is no linear path through the state. In developing the Unreal Engine a

flexible approach to time and states became a core part of the engine, facilitating AI programming.

The major complication in C/C++ based AI and game logic programming lies in dealing with

events that take a certain amount of game time to complete, and with events which are dependent on

aspects of the object’s state. In C/C++, this results in spaghetti-code that is hard to write,

comprehend, maintain, and debug. UnrealScript includes native support for time, state, and network

replication which greatly simplify game programming. (Sweeney)

Choreographic examples of state machines (that could be said to anticipate the structure of state

machines) might be Steve Paxton’s Flat (1964) (Banes, Writing Dancing in the Age of

Postmodernism) and Trisha Brown’s Line Up (1976) (Banes, Terpsichore in Sneakers 89). In Line Up,

the dancers have a number of set choreographed sequences that they could potentially perform with a

John McCormick
Exegesis

56

main sequence and two variations that branch from the main sequence. The sequences can also be

performed in retrograde, reversing the arrangement of movements in a sequence. Four dancers

perform the sequences according to the instructions given by a fifth performer who cries out the

names of the dancers and their instructions; either “Reverse”, “Branch” or “Spill”. The resultant

performance is never quite the same as the performers respond to the instructions given them, in turn

re-formulating the inter-relationships between the dancers and the movement material. The mental

processing power required by the dancers to achieve this performance of known base material dictated

by unknown timing and order is more demanding than simply remembering and performing the

sequences alone. So too in a software simulation, the artificial intelligence structures required to

model this kind of choreographic structure requires more complex structures than to model linear

choreography alone. With a state machine, and as in Line Up, the basis of the content is still known,

which makes processing somewhat easier. If we proceed to a more extreme example where the

movement is unknown until performed and the structure governing the movement is a process of

negotiation of the moment of interaction (as in Contact Improvisation) then the processing required of

the participants is potentially more complex and may require structures beyond that of state machines

and other existing game control paradigms.

Some readers might see an emerging trend in the choreographic works cited as examples thus far.

Paxton and Brown were among the artists involved in Judson Dance Theatre which met at Judson

Church in New York between 1962 and 1964, and later part of the Grand Union, and are seen as

seminal figures in the post-modern dance movement. They were among the leading arts

experimentalists of the time whose methods departed markedly from those of the ‘Modern Dance’

period such as Martha Graham, Doris Humphrey and Lester Horton. While the term post-modern

might be questionable as it is used in dance history, modern art historians might say their earlier work

fits in with the themes of modern art, (Banes, Writing Dancing in the Age of Postmodernism 301)

their investigations were nevertheless deeply concerned with the fundamental structuring of dance not

just with movement invention.

John McCormick
Exegesis

57

The concept of the “line up” has characterised both format and method in Brown’s work. Her

major concern has always been to find the schemes and structures that organize movement, rather

than the invention of movement per se. (Banes, Terpsichore in Sneakers 86)

It is due to Paxton and Brown’s focus on schemes and organizational structure, that I have chosen

many of these seminal works as a means to investigate relationships between choreographic structure

in dance and organizational structures in software. The movement employed at the time was often

very simple, even pedestrian, everyday, non-virtuosic movement was embraced as being equally valid

as codified theatrical dance movement. The non-trained body was displayed equally with the trained

practitioner. My reason for choosing these works is that the emphasis on structure rather than

movement technique helps illuminate the underlying organizational behavior of the works and makes

it easier to draw out comparable design choices. It is this emphasis on structure that has led me to

question what this implies for the design of software. Could the resultant work benefit if the software

and choreographic architectures are purposefully aligned?

My work to this point had tended to use a similar architecture in different works, fashioning

different visual outcomes, comparable perhaps to different movements, but based on the same

underlying framework. Once I started to see some potential similarities between the organizational

structures in software such as the Unreal engine and documented choreographic structures, I decided

to make some conceptual design experiments as a way of further exploring these potential

connections. As I had begun treating the software environment as a potential dance partner in the

performance environment, was interested in game engine technology, and had become persuaded that

there may be aspects of the choreographic order that could positively underpin software development

efforts, I took a few existing dance works and redesigned them for use with a software partner. In this

manner I was able to analyse some of the main choreographic requirements of the dance work and

envisage software architectures that might best suit the redesign of the piece for live motion captured

performer and digital partner.

John McCormick
Exegesis

58

The work I have used as examples from Paxton and Brown have largely used pre-choreographed

sequences albeit that the nuance of the movement is very performer dependant. The ordering or re-

ordering of known movement is similar to the behaviour organization structures occurring in the

Unreal game engine. The primary concern of the software is to provide the organizational structures

that enable movement to occur without necessarily being concerned with the details of the movements

themselves. Different animations can be substituted into the organizational structure at will to produce

different variations on character movement. Scripted sequences and state machines in the game

environment use pre-recorded animations and as such could be used to organize choreographic

structure and in a manner, reproduce a work like Paxton’s Satisfyin Lover or Brown’s Line Up. Even

substituting synthetic dancers for some of the live dancers might not upset the underlying integrity of

the dance too much as the dancers are still performing as individuals with their own logic and scripts

that are dependent on the other performers mainly for cues. What of works where the choreographic

rules are less defined? Brown’s Theme and Variations 1972 is a work where the choreographic

structure leads to unpredictable or unknown behavior.

The tension between the mathematical or formal precision of a movement idea and its physical

distortion has been Brown’s concern in several other dances. In Theme and Variation 1972 one dancer

performs a string of movements, and then repeats it over and over as best she can despite attempts by

a second performer to interrupt her. The result is a set of variations on the original phrase. (Banes,

Terpsichore in Sneakers 85)

The description of this work by Brown reminded me of the similarities with some NPC behaviour

in the Unreal game engine. Reactive animation is often generated by combining different animations

together through motion blending. A NPC might be walking along when the Player bumps into them.

The NPC might respond by still trying to walk but blending in an amount of falling animation away

from the Player commensurate with the force of the bump. Another method of causing a NPC to react

to a bump or other intervention is to blend an amount of ‘Rag-Doll’ physics generated movement in

with the pre-recorded animation. Rag-doll physics is a method of using a physical simulation to create

John McCormick
Exegesis

59

an appropriate movement behavior for the virtual bodily mass of an NPC. It is a quite different

approach to using pre-recorded animations as the physics simulation creates the unique movement in

real-time. For character control in the Unreal engine, there are often a small number of base motions

that are augmented by combining multiple motions together to form new variations of those motions,

effectively increasing the characters’ repertoire. So motion blending might provide a solution to the

requirement of taking a set movement phrase being performed by a digital character and modifying

the movement based on the motion data of a live dancer. Collision detection could be used to reveal

where on the digital character’s body the virtual contact was made and an amount of another falling

animation could be blended-in based on a reaction to the actions and direction of the live dancer. The

following describes the cycle of choreographic tasks involved in Theme and Variations.

Figure 21: Choreographic Tasks Defined for Theme and Variations

While most of the requirements of Brown’s Theme and Variations could be superficially

replicated in this conceptualized re-staging, the results would possibly have some serious

shortcomings. One of the main problems would be in the response of the synthetic character. The

animations used as a blend in response to contact from the live dancer’s data could not cater for the

John McCormick
Exegesis

60

varied ways in which a live performer might choose to interfere with their partner, the character could

react, but such reactions would tend to be generic and could quickly become repetitive unless the

palette of available animations was very large and even then the responses could not be appropriate

for all situations, limited, as the choices would be, by the controlling AI’s simple ‘awareness’ of the

movement in context. For the programmer’s design to account for all possibilities of intervention by a

second performer and provide suitable recorded responses would be a painstaking and probably

unobtainable task. Use of some instance-generated animation such as a rag-doll based physics

response that could be blended into the currently performed animation might be a useful method for

introducing a certain amount of organic ‘chaos’ into the pattern of NPC responses. This chaotic

character motion is used in game engines to do things such as generating falling or dying movement

for NPCs. The NPC uses pre-recorded movements for most actions, however if an event such as

falling down an incline or being shot occurs, the game engine stops using the animations to drive the

character and uses a usually simplified physics based simulation to calculate appropriate movement

for the character incorporating suitable contact with the environment.

Another possibility would be to use a kinematic system in conjunction with the recorded

animation to allow for appropriate modification of the performed actions. The kinematic system could

measure the collision from the performer’s avatar and adjust the appropriate bones as a modification

of the base NPC movements. This could work quite well if the kinematics can achieve reasonable

solutions to the interventions. The Unity engine has the basis of a kinematics system that can adapt

the current animations to uncertain terrain and obstacles. This could perhaps be adapted to cater for

our present problem, however it is not developed enough yet, as it mainly caters for adjusting feet

position. However it is a promising direction to pursue. Using animation blending and other tools

found within current game technology could provide a partial solution that could passably fulfill the

requirements of the choreographic structure in Theme and Variations, however the solutions arrived at

would be entirely dependent on the mathematical solutions found in the kinematic equations and,

John McCormick
Exegesis

61

while making the NPC appear more acutely responsive to obstacles, would not entail any real

enhancement to its decision making process.

Two current software applications that extend the concept of intelligently modifying motion

capture animations to allow characters to adapt their movement are Massive Prime and Euphoria.

Massive Prime (www.massivesoftware.com) has been used in the making of large computer generated

crowd scenes for films such as Lord of the Rings. Each character or agent in the scene has a software

‘brain’ capable of making subtle responses to its circumstances through Fuzzy Logic6. This allows the

Massive agents to provide a finer grain of decision making to the process of co-coordinating the

motion captured movement used to animate the characters. So while the characters are still animated

largely by motion capture, the subtlety and adaptability with which it is deployed is given finer detail

by the individual AI capabilities of the agents.

Natural Motions’ Euphoria (www.naturalmotion.com) has been used in games such as Grand

Theft Auto IV and Star Wars: The Force Unleashed. It uses techniques that descend from Karl Sim’s

work on evolutionary generated virtual creatures (Sims). It also uses recorded motion capture

sequences as a base for the character motion. The innovative aspect of Euphoria is its use of Neural

Networks7 (NN) and Genetic Algorithms8 (GA) to find an optimal solution to controlling a

biomechanically modeled skeleton. A state machine is then used to apply varying degrees of the

motion capture or evolved AI simulation. (Figure 22) The GA method is not necessarily a quick

6 With Fuzzy Logic, decisions can have variable shades of truth as opposed to binary, true/false logic. For
example, a car travelling at 65 kph might be deemed, on a scale of 0-1, and characterized as slow, medium or
fast, to be travelling 0.8 medium speed and 0.2 fast speed. Thus more than one outcome can be true to varying
degrees.
7 Neural Networks in this context are software components that mimic the behaviour of biological neurons in
order to perform certain AI tasks. They are often attempts at simplified models of brain behaviour.
8 Genetic Algorithms are a type of Evolutionary Algorithm, and usually evolve through the process of running a
simulation on a population of potential solutions (or genomes to keep the genetic analogy) in order to reach an
optimized solution to a problem. The simulation is often done in several stages, taking the best solutions from
one stage and running them through the simulation again to further refine subsequent ‘generations’.

John McCormick
Exegesis

62

solution though, it takes time to evolve a stable working solution and in the case of Euphoria, this tacit

‘tuning’ process is done outside the game engine and only later inserted when a robust solution to a

particular set of game environment circumstances is arrived at. It is interesting to note that the task

cycles for Brown’s Theme and Variations and Euphoria’s Dynamic Motion Synthesis (DMS), as the

publishers Natural Motion like to call the process, are extremely similar, suggesting they could be a

good match between the desired choreographic and software constrained outcomes (Figure 21) and

(Figure 22).

Figure 22: Euphoria Animation Control Cycle

While the GA based solution used in Euphoria could well yield acceptable results to our

choreographic task, the requirement of evolving a solution over several generations may not suit a live

performance situation where a solution is required immediately in response to the dancer’s input.

What our digital character ideally requires is a way of developing appropriate responses to the nature

of the interruptions in an autonomous fashion. If we were to develop a sufficiently sophisticated dance

partner, it needs to be able to assess the quality and magnitude of the motion from the live partner and

generate an appropriate response. There may be patterns to the interventions that the character could

learn from, which would then aid in formulating variations. This is where the AI in the game engines I

have used to date reach the limits of their current capabilities. The AI required to formulate and

animate our character appropriately is very complex and requires a more complex solution, one that

John McCormick
Exegesis

63

can perform intelligent actions in such a dynamic environment. (Russell) By dynamic environment I

refer to the unpredictable nature of the live motion capture data in comparison to the normal range of

pre-recorded actions available to a Player character and NPC. Pre-determined responses are likely to

be inappropriate to unforeseen movement activity.

One approach would be to use a more sophisticated form of AI capable of assessing an unknown

terrain (a second body) and reacting accordingly by appropriately animating the character’s skeletal

structure. One possible method is suggested by Liu (Liu, Autonomous Agents and Multi-Agent

Systems 73) in response to a desire to create digital, synthetic agents that can autonomously self-

animate, adapt to their environments, and learn new behaviours to attain some specific goal. Liu’s

method is to utilize a multi-agent approach to the problem of addressing an unknown terrain.

Figure 23: A Schematic Diagram of the System for Building Life-Like Agents with a Behavioral self-organising

capability. (Athlete) (Reprinted from LIU 2001 98)

John McCormick
Exegesis

64

Towards this end Liu has created an autonomous animated character called the Athlete Agent.

Athlete seeks to navigate around an unfamiliar 3D environment, adapting to obstacles and unfamiliar

terrain. Athlete must seek solutions allowing it to overcome the obstacles and continued navigation of

the environment. One of the key elements of Athlete and of most research into agent-based software is

the ability for the agent to learn from its experience. To this end Athlete employs what Liu terms

Motifs, interweaving software threads that can be combined or clustered to form a self-organizing

computational unit. (Liu, Behavioural Self-Organizaion in Lifelike Agents 254) The individual motifs

are capable of behavioural self-organization towards some specified goal as well as being able to take

into account state information from other motifs in the cluster and passing their own current states on.

The motif-based behavioural organization will reach a state of dynamic equilibrium, whereby no

drastic changes are required of the states or any of the motifs, and a current, optimal solution will

have been arrived at. Athlete employs two motifs termed Pattern-Motif (P-Motif) and Configuration-

Motif (C-Motif) that interact to provide solutions to the current problem. P-Motif engages with the

environment and the current Athlete internal states to generate mappings of each. (Figure 23) C-Motif

optimizes itself to arrive at an optimum solution based on the mappings provided by P-Motif and then

returns its decisions as feedback to P-Motif and the process continues. While the implementation of

such a system has been beyond the current scope of the project component of this project, the devices

it suggests are very promising. Essentially Athlete’s decision making process is governed by the

negotiation of two interwoven organizing threads that have autonomy to pursue their own goals but

also share the results of their processes resulting in a higher level solution between them. One Motif

surveys the environment and the current state of Athlete and makes possible suggestions. The second

Motif surveys the suggestions and chooses the solution which it deems most fit and lets Motif 1 know

of the choice so it can update its next survey. One thing to note about this approach is that there is an

emphasis on the behavior and interaction of and between the Motifs.

It is now widely recognized that interaction is probably the most important single characteristic

of complex software. (Wooldridge 7)

John McCormick
Exegesis

65

Over the years, a wide range of software engineering paradigms have been devised (e.g.

procedural programming, structured programming, object-oriented programming, design patterns,

application frameworks, and component-ware) to deal with the increasing complexity of software

applications. Most software engineering paradigms are unable to provide structures that make it

easier to handle this complexity. Consequently a lot of research has now been directed toward

treating computation as a process of interactions. (Biswas 3)

Could this approach, treating computation as a process of interactions, be adapted to solve our

choreographic requirements? Let us look at the sequence of events for Athlete. Athlete proceeds in a

state of equilibrium (walking) until an obstacle is encountered. Through its Motif architecture it

assesses the obstacle and its current state, then attempts a solution to overcome the obstacle until it

can return to a state of equilibrium again. Likewise, in Theme and Variations our dancer performs her

pre-determined movement until she encounters an obstacle (in our case, the physical intervention of

another dancer), she assesses the obstacle and the state of her body in motion and formulates a

solution to overcome the obstacle and return to the base movement material. In terms of a digital

performer and a live motion captured performer, a similar process unfolds. The digital performer

proceeds performing predetermined movement until an obstacle is encountered. It assesses the

environment (the topology of the motion data from the live dancer) and its own state (the current

movement state) and formulates a solution in order to return to the original movement. The approach

taken by Liu is very attractive for a number of reasons; it allows us to assign the choreographic tasks

required of the dancers, in terms of decision making, to the motif agents; it allows us to divide the

work into modular components that have some autonomy yet closely inter-relate; and it gives the

work scope to adapt to new circumstances or possibilities that would be extremely difficult to account

for in a more traditional, scripted software approach.

John McCormick
Exegesis

66

From the perspective of the choreographer, the first point is perhaps the most interesting, the

ability to think of interacting software components in terms of behavior, and here in terms of

choreographic behavior. Liu’s work belongs to the rapidly expanding area of agent-based software

and in particular multi-agent systems. Conveniently, Athlete also uses a primitive skeletal system,

which while focusing on lower body locomotion, could be expanded to cater for a full body skeleton

as currently used in the present projects. In order for the Motifs to gather the required information for

the internal and external states on which behavioural choices are based, several virtual sensors are

mounted on the body of Athlete. Body sensors are installed on the body to prevent body parts

colliding, Internal sensors are used to detect the agent’s internal state and External sensors are

mounted to detect the presence of virtual objects in the environment that might present as obstacles.

The Body and Internal sensors could be viewed as being analogous to the human proprioceptive

system while the external sensors could be viewed as being akin to the human peripheral senses.

Viewing the sensor system in this way may help clarify the possible system architecture as it puts it in

the context of a known existing system which can be clearly visualized. The methods of surveying the

body and the environment in order to arrive at suitable solutions would have a similar basis for both

dancer and software.

In terms of the practical development of such a work, based on an agent architecture, the Motif

agents could be written as plug-ins for a game engine environment which would have its advantages

and disadvantages. Having the agents running inside the game environment would allow the work to

be easily distributed and run as a single application, however the agents would tend to be peculiar to

that game environment, although they could send information out of the engine if required.

Liu’s Athlete uses quite a different approach from those encountered within the Unreal game

environment. Using state machines or triggered sequences, the solution arrived at will be a pre-

defined solution as the system jumps to what is evaluated as an appropriate state. A state machine

only acts upon inputs, outputs are determined by the input and the resultant state. With the approach

suggested by Athlete, the previous assessments made by the evaluating motif-agents become

John McCormick
Exegesis

67

incorporated into next iteration of evaluation, the output has a direct influence on the input as it is

looped back into the system, allowing scope for more varied solutions than from sequential or state-

based solutions. Within the Athlete approach, the emphasis is on negotiation between the agent

components regarding appropriate interpretation of the data with a view to how they can interact to

achieve a suitable behavioural outcome.

Another solution to dynamic behavior in NPCs is suggested in RiskMan (Kavakli 357). The

agents in RiskMan (Figure 6) run independent from each other in their own processes, and send the

results to the game engine over the network. There are some advantages to this approach; the

components can be developed in any language or mix different development platforms and styles of

programming whereby the components can be incorporated with changes and updated, completely

independent of other components and the components could reside on separate servers or migrate

from one machine to another as required rather than having to run on the same machines. This last

point borrows from research into mobile agent architectures. There are a number of uses for this

distributed, mobile architecture other than encapsulating the agents into the game engine. One of the

key themes of my work has been the collaboration of data streams coming in over a network into a

virtual environment. In a mobile, multi-agent based approach, each motion data stream might come

with its own agent interface that can analyse the data and provide appropriate information to other

agents and to the environment as a whole in the pursuit of collaborative use of the motion streams.

RiskMan provides an example of such an architecture, the simulation agent, scripted agents, trainee

agent interface agent and communication agent interact to provide an optimal simulation experience

for the trainee through control of the narrative and behavior engines, the results of which are then

passed onto the game engine for the display of virtual characters with whom the trainee interacts to

enact the simulation experience. The characters in the RiskMan game environment use only

prerecorded motions, however the work undertaken by Liu provides a means of inserting appropriate

dynamically generated responses into the simulated environment.

John McCormick
Exegesis

68

Integrating aspects of RiskMan and Athlete together with the motion playback and blending

capabilities of a game engine could provide an architecture capable of providing an entirely or partly

simulated solution to the choreographic requirements of Brown’s Theme and Variations in as far as a

digital character can provide a scaled-down version of the depth of human motion. The choreography

is based largely on known movement material modified from an outside source.

Towards Agent-based Contact Improvisation

How would we deal with a choreographic situation where the movements are not predetermined

and the negotiation between the two performers is the source of the movement invention? One such

choreographic situation would be the case of contact improvisation. The invention of contact

improvisation, certainly the term itself and its early propagation, has been ascribed to Steve Paxton.

(Novak 10) In contact improvisation the emphasis is not so much on the choreographic shaping of

movement phrases or narrative or emotional expression but rather on the physical dialogue between

two dancers and the interaction resulting from shared touch, weight and contact. As a form to be

emulated as a live and digital partnership, this free form, improvisational type of choreographic

structure, requiring decisions to be made from moment to moment, is far harder to emulate in a

software system than when using prerecorded or known movement material as a base. It is in such a

dynamic system, where decisions must be constantly negotiated and solutions generated, that a

distributed multi-agent architecture approach may be the only real software solution. (Liu,

Autonomous Agents and Multi-Agent Systems 90) While certainly associations between the motion

of a live dancer and a digital partner could be made in most software systems, to achieve a solution

even partly comparable to that which two people would arrive at would be extremely difficult in

traditional approaches to software development. While the combined agent approaches of Liu and

Kovakli would be a means of structuring the heavy AI demands of emulating contact improvisation

processes in software, adequate means of analysing the live dancers’ motion stream and the digital

response are also required.

John McCormick
Exegesis

69

The approach taken in the Dance Education System (Leung) presents a means of analyzing the

data streams and supplying possible responses. In the Dance Education System the skeletal joint

rotations from the student’s movements are measured and compared to the teacher’s performance of

the same movement sequence. The degree of closeness of the student’s movements to that of the

teacher are gauged and feedback is presented to the student on areas of the movement that are close to

that of the teacher and areas that might need more attention. Using this method it is also possible to

recognize predefined gestures when they are performed by the student. With a work like Brown’s

Theme and Variations this approach might be adequate. Because we are starting with known base

material, the respective agents could use the techniques employed by Leung et al to analyse the

current desired state of the movement and the state of the second, live dancer’s motion and formulate

a variation on the original movement. A second set of agents could assess the current modified state

of the digital character, along with the desired base movement and formulate a strategy to return to

this known base movement. However, to account for two constantly changing streams of motion with

no predefined movement references, as in contact improvisation, would require an extra layer of

behavioural interpretation.

A Behavioral Language for Dance and Software

We have a curiosity about body organization and the physics, subtle and gross, of bodies moving

through contact, primarily in duet, but inclusive of other configurations. (Body-Research)

If you're dancing physics, you're dancing contact. If you’re dancing chemistry, you’re doing

something else. (attributed to Paxton 1987)

…the aesthetic of contact improvisation was largely conceived of as an appreciation of movement

based on “survival” and on the “natural” and ‘honest” outcome of playing with weight, momentum,

and gravity, an implied contrast to more “artificial, contrived” dance forms based on ideas or

aesthetic concepts. (Novak 181)

John McCormick
Exegesis

70

I am not necessarily a big fan of contact improvisation as a theatrical dance form, I find its merit

is in the doing rather than as a spectator. However the emphasis on the physics of the bodies is useful

in our process of modeling behavior as there already exist examples of physical simulation tools

within 3D simulation environments. Having to find behavioral solutions based on conceptual and

aesthetic choices as well, would greatly increase the level of difficulty. This emphasis on the physics

of bodies is another reason contact improvisation makes a useful genre in which to explore a synthetic

partner’s potential behavior.

By incorporating a physics-based animation system such as DANCE 9 (see above) into a game

engine framework we would have the tools to investigate solutions to the problem of generating

dynamic movement responses by a digital partner to a live dancer’s movement data. Borrowing also

from Athlete and RiskMan, an agent-based architecture could be employed to analyse the current state

of the dancers’ representations and then use the dynamic physics-based character animation engine

(DANCE) to generate appropriate movement responses for the synthetic dancer. The methods

employed in DANCE could be used in place of the narrative engine in RiskMan, or by the

configuration-motif in Athlete to generate appropriate physical responses for the synthetic dancer.

As mentioned before, one of the key requirements of the Athlete agent is that it can autonomously

self-animate, adapt to its environments, and learn new behaviours to attain some specific goal. (Liu,

Autonomous Agents and Multi-Agent Systems 73) This designation of, and attempt to attain some

specified goal, is a key component of agent design. Thus the goals set for the agent are of paramount

importance to the eventual outcome they produce. How do we choose the goals for the agents? A

shared set of goals between the agent system controlling the actions of the synthetic character and the

live dancer could be a starting point. This would allow the choreographer or designer to prescribe the

same set of tasks to the live dancer and the software agents controlling the synthetic character’s

movement behavior. This goes a step further from using similar organizational structures to develop

9 http://www.arishapiro.com/researchportfolio/DANCE/

John McCormick
Exegesis

71

solutions to choreographic tasks, such as using a state machine controlling pre-recorded and

dynamically generated animations, to meet the requirements of Theme and Variations, to using a

common definition of goals to be attempted by the live performer and agent. This development of a

common syntax, able to be applied to both the live performer and the synthetic, agent-driven partner

has ramifications for the potential ease with which a choreographer might interface with and direct,

complex software agents.

An example of common goals which could be set for the different parties might be taken from a

description of some possibilities inherent in contact improvisation suggested by Paxton in a 1975

article. (Novak 182) After stating that contact improvisation “as a social system” comprises different

combinations of the elements active (A), passive (P), demand (d) and response (r), Paxton continues

with the following description:

One [person] may lift the other (Ad & Pr) [Active demand and Passive response]. One may fall

so the other must catch (Pd & Ar) [Passive demand and Active response]. One may attempt to lift and

find the energy translated so s/he is lifted (Ad & Ar) [Active demand and Active response], etc.

From this truncated description a set of goals could be formulated; determine whether you are in

an active or passive role, determine whether you are in a position of demand or response, and based

on the current input from the physical simulation formulate an appropriate action.

This basic framework gives us a means of creating meaningful associations between the two

constantly changing and somewhat unpredictable movement streams of the live dancer and synthetic

character. The determination of whether the (live or virtual) dancer is in, or should attain, an active

role and is therefore required to instigate a new behavior gives our system a means of determining

when to instigate purposeful action. The choice of action would be partly determined by the current

state of the virtual bodies in the simulation and partly by the types of actions available.

John McCormick
Exegesis

72

In Athlete the actions formulated by the agent motifs are grouped under generic conceptual

groupings; Walk, Hop, Jump, Run and Squat. These become definitions for primitive behavioural

patterns. This reduces the complexity of the architecture to behavioural states and subsequent

interaction with the environment. This would be a useful method to retain with the choice of behavior

pattern primitives also drawn from Paxton’s description. Lift, Fall and Catch could be added to basic

locomotion patterns. Along with the goals of determining their current and potential active or passive

status, and the possible need for instigating action, this would give our agents a means of determining

when an active response is necessary and the ability to instigate a behavior type in keeping with the

shared expectations of the live and synthetic dancers based on a set of shared choreographic goals.

John McCormick
Exegesis

73

Conclusion

During the process of developing new work I have sought means of integrating the digital and

human components of a performance into a cohesive whole. There are many parameters to consider in

achieving this; choreographic design, stage design, projection design, visual design - both physical

and virtual - and the design capabilities of the digital tools used in the making of the performance to

name a few. In this research I have looked mainly at the role of choreographic and software

development, in creating a performance. In earlier works the two were often interdependent, e.g. if

there was no movement there was no response in the visual environment, and while this might seem

like a good thing, this caused a certain lack of flexibility that often restricted either or both aspects

from developing beyond an initial stage. I have looked here at whether the two elements can co-exist

in other more intrinsic ways that would be beneficial for the resultant work. I asked myself the

question whether creating shared structures or goals for both the choreography and software might

lead to beneficial results. I have come to the conclusion that this is indeed a path forward in seeking to

integrate the live and digital environments. The use of appropriate software structures aligned to the

type of choreographic structure in use can be taken into consideration to efficiently order the

movement behavior of the synthetic characters in order to achieve the desired choreographic tasks.

For relatively dynamic choreographic structures an agent-based approach may provide a solution

to formulating movement solutions for synthetic characters. An agent architecture focused on goals,

interactions, responses and behaviors provides an interface to software tools that has similar attributes

to interactions found within many choreographic works. From the perspective of a choreographer this

might transpire as the ability to pass the same tasks or goals to dancer and software environment and

require them to negotiate a suitable outcome. The potential to conceive choreographic task

development and software development as developing from the same basis and towards the same

John McCormick
Exegesis

74

inherent goals means that they need not necessarily be considered as separate components requiring

different approaches and trains of thought.

John McCormick
Exegesis

75

Bibliography

Banes, Sally. Terpsichore in Sneakers. Boston: Houghton Mifflin Company, 1977.

—. Writing Dancing in the Age of Postmodernism. Hanover: Wesleyan University Press, 1994.

Biswas, Pratik K. "Toward Agent-Oriented Conceptualization and Implementation." Lin, Hong.

Architectural Design of Multi-AgentSystems: Technologies and Techniques. New York: Information

Science Reference, 2007. 1-25.

Body-Research. Contact Jam. 2009. 10 01 2009

<http://www.bodyresearch.org/contactjam.shtml>.

Bradshaw, Jeffrey. Software Agents. Cambridge, Massachusetts: MIT Press, 1977.

deLaHunta, Scott. The Dimensions of Data Space. 29 01 2003. 10 11 2008

<http://www.sdela.dds.nl/mcrl/index.html>.

igloo. igloo. 1 January 2000. 11 November 2008 <http://igloo.org.uk>.

Kaiser, Paul. "Paul Kaiser of Riverbed Interviews Michael Girard and Susan Amkraut." 13 04

2002. Ohio State University. 24 10 2008 <http://design.osu.edu/carlson/history/PDFs/girard-

amkraut.pdf>.

Kavakli, Manolya. "RiskMan: A Multi-Agent System for Risk Management." Lin, Hong.

Architectural Design of Multi-Agent Systems: Technologies and Techniques. New York: Information

Science Reference, 2007. 356-376.

John McCormick
Exegesis

76

Laurel, Brenda. "Interface Agents: Metaphors with Character." Bradshaw, Jeffrey. Software

Agents. Cambridge, Massachusetts: MIT Press, 1977. 67-77.

Leung, Howard and Chan, Jacky and Tang, Kai-Tai and Komura, Taku. "Ubiquitous Performance

Training Tool Using Motion Capture Techmology." 1st International Conference on Ubiquitous

Information Management and Communication. Seoul Korea, February 2007.

Lin, Hong and Yang Chunsheng. "Chemical Reaction Metaphor in Distributed Learning."

Proceedings of the International Conferenace on Industial & Engineerning Applications of Artificial

& Expert Systems (IEA/AIE 2004). Ottawa, Ontario, Canada: NRC 46551, 2004.

Lintermann, B. Haffner, N. McManus, T. Timelapses. 2000. 21 November 2008

<www.timelapses.de>.

Liu, Jiming. Autonomous Agents and Multi-Agent Systems. Singapore: World Scientific, 2001.

—. "Behavioural Self-Organizaion in Lifelike Agents." Proceedings of the Second International

Conference on Autonomous Agents. Minneapolis, 1998. 254 - 260.

Murray, Janet. Hamlet on the Holodeck. New York: The Free Press, 1997.

Novak, Cynthia J. Sharing the Dance: Contact Improvisation and American Culture. Madison,

Wisconsin: University of Wisconsin Press, 1990.

OpenEnded Group, The. how long… / 2005. 2005. 20 January 2009

<http://www.openendedgroup.com/index.php/artworks/how-long/>.

Russell, S.J., & Norvig, P. Artificial Intelligence: A Modern Approach (2nd Edition). New Jersey:

Prentice Hall, 2003.

Sims, karl. "Evolving Virtual Creatures." Computer Graphics (Siggraph '94 Proceedings).

Siggraph , 1994. 15-22.

John McCormick
Exegesis

77

Sweeney, Tim. "UnrealScript Language Reference." 21 December 1998. epicgames. 14 January

2008 <http://unreal.epicgames.com/UnrealScript.htm>.

Van de Velde, W. "Cognitive Architectures - From Knowledge Level to Structural Coupling."

Steels, L. The Biology and Technology of Intelligent Autonomous Agents. Berlin: Springer Verlag,

1995. 197-221.

Wooldridge, Michael. An Introduction to MultiAgent Systems. Chichester: John Wiley & Sons

Ltd, 2002.

