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Quantum graphity offers the intriguing notion that space emerges in the low-energy states of the spatial

degrees of freedom of a dynamical lattice. Here we investigate metastable domain structures which are

likely to exist in the low-energy phase of lattice evolution. Through an annealing process we explore the

formation of metastable defects at domain boundaries and the effects of domain structures on the

propagation of bosons. We show that these structures should have observable background-independent

consequences including scattering, double imaging, and gravitational lensing-like effects.
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I. INTRODUCTION

A single theory that reconciles quantum mechanics with
general relativity would revolutionize our fundamental
understanding of reality. Such an endeavour in the search
for a quantum theory of gravity has traditionally been
approached either through the quantization of general rela-
tivity or extensions of quantum field theory. For example
loop quantum gravity [1], spin foam models [2], causal
dynamic triangulation (CDT) [3], and group field theory
[4,5] fall into the first category and collectively the string
theories fall into the second [6]. Condensed matter physics
provides a third conceptual framework, where gravity is
viewed as an emergent phenomenon. Motivated by tech-
niques and concepts native to the study of many-body
interactions in condensed matter physics, this perspective
has recently stimulated investigations into gravity analogues
in condensed matter systems [7–12], emergent graviton
excitations in qubit models [13], and quantum graphity
(CDT and matrix models [14,15] may also be viewed from
this perspective).

Motivated by the removal of presumptions of the nature
of spacetime, quantum graphity (QG) was proposed as a
model in which ideas such as continuity, dimensionality,
and macro locality of the spacetime manifold are emergent
phenomena. Previous works have studied how locality
emerges in the model [16], the role matter plays in the
emergence of extended geometries [17], the entanglement
of matter with spatial degrees of freedom [18], Ising map-
pings to study low temperature properties [19], and the
entrapment of matter in regions of high connectivity [20].
See Ref. [21] for a review.

In QG it is purposed that a low-dimensional regular
graph, representing flat local space, emerged from an early
universe, represented by a complete graph. As every vertex
is connected to every other, there is no notion of subsys-
tems and hence no notion of locality, which Konopka et al.

[16] interprets as representing a state with no space. The
evolution from the complete graph of the early QG uni-
verse to a lower energy state of the spatial degrees of
freedom is reached by the destruction (and creation) of
edges. In the open (nonunitary) QG model [17], it is
assumed that the lattice is connected to an external heat
bath through which edges are exchanged. Under particular
parametrical constraints it was shown that the model can
give rise to an hexagonal or honeycomb lattice as a stable
local minimum [16]. This graph has the desirable proper-
ties that the spatial degrees of freedom are local and low
dimensional. Here we explore metastable defects to this
local minimum state and investigate the possible observ-
able effects on the propagation of bosons.
The study of defects is important, as in most realistic or

nonidealized systems, ranging from ferromagnet to field
theoretic particle and cosmological models, metastable
defects in some form exist. In many field theoretic early
universe models for example, topological defects are an
unavoidable causal process, and have been proposed to
play an important role in cosmic evolution [22]. In par-
ticular, cosmic strings have been proposed as the seeds for
large-scale structure formation such as galaxies, offering a
theoretical alternative to inflation [23,24]. However observa-
tional data indicating that cosmic microwave background
anisotropies significantly differ from the anisotropies that
are predicted to be the result of topological defects, may
relegate defects to a subsidiary role in cosmic structure
formations [22]. In large extra-dimensional models, topo-
logical defects provide a mechanism by which 3þ 1 dimen-
sional branes exist in a higher-dimensional bulk [25–27].
Topological defects, of which the above are examples,

occur as the result of the spontaneous choice of an order
parameter value that breaks a symmetry of the system.
Defects in QG on the other hand, of the type that are
disruptions to the ordered crystal structure, are more akin
to crystallographic defects. In this context, QG can be
treated analogously to crystallographic models of con-
densed matter physics. Of course there are important*quach.james@gmail.com
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differences. In conventional crystallographic models, the
structures’ internal interconnectivity is determined by the
spatial arrangement of the atoms, which changes with
the motion of the atoms. QG has an almost antithetical
perspective: It is the interconnectivity of spatial points
that determines spatial separation. The dynamics of the
QG lattice is not viewed as the movement of these spatial
points, but the change in the connections that relate these
points. Moreover these interconnectivities in QG are
quantum degrees of freedom as they can be in a superpo-
sition of on or off states. Notwithstanding these differ-
ences, one can draw similarities between the evolution of
the QG universe and the crystallization of solids.

The ordering of unit cells into periodic structures
(crystallization) is a well-known phenomenon. Although
occurring in a wide variety of systems (e.g. freezing water,
cooling magma), the process is always essentially the
same: Random atomic distributions nucleate ordered struc-
tures below some critical temperature. And if this low
temperature is maintained, these seeds will continue to
grow and coalesce into larger crystal structures. The final
atomic arrangement will be dependent on the initial con-
figuration prior to cooling, rate of cooling, and random
effects of thermal fluctuations. Typically a slower cooling
rate will produce larger grains. Due to imperfections and
thermal fluctuations however, for most materials it is
unlikely that the process will end in a structure without
defects (although under very controlled environments
single crystals, such as monocrystalline silicon, can be
manufactured). Instead the material will most probably
settle into a metastable (local minimum) state with many
grains, resistant to thermal or mechanical perturbation.

One may view the complete graph of the early universe
analogously to the high temperature diffused state of heated
crystalline structures, and subsequently see in the QGmodel
similar recrystallization qualities in the cooling phase.
Specifically, fluctuations may seed the nucleation of space-
like separated local energy minimum regions which are sub-
graphs of the ground state. The growth of these regions will
give rise to domains (grains). As with the cooling of heated
solids, it is not inevitable that the domains will coalesce to a
global ground state. Analogous to conventional crystalliza-
tion processes, the ripening (growth) of the different domains
will see a competition for energetically favorable local con-
figurations, resulting in a granular structure of space.

Defects in the space manifold will affect particle propa-
gation. On cosmological scales the classical treatment of
the influence of gravity on matter has been sufficient in
yielding accurate predictions: from the deflection of parti-
cles near massive objects to gravitational redshifts. The
fact that on large scales classical treatments accurately
account for observation provides an important avenue to
test QG. In particular, here we explore the possible obser-
vational consequences of domain structures and defects
in a classical lattice for the propagation of particles.

In Sec. II we briefly review and define the scope of
the QG model to be considered. In Sec. III we investigate
the formation of metastable domain structures. Through an
annealing process we show that defects that arise from an
unstable interface of antiphasing domains are metastable.
In Sec. IVB we examine the effects these structures have
on boson propagation. We further explore other metastable
domain structures that reveal interesting effects, leading to
possible observable consequences.

II. MODEL SETUP

The Hilbert space of the spatial degrees of freedom in
the QG lattice is the tensor product of the individual state
vector edge jlrsi 2 fj0i; j1igr;s. j0ir;s indicates no edge and

j1ir;s an edge between vertices r and s. The set spanned

by fj0i; j1ig constitutes an orthonormal basis. We define

creation and annihilation operators on this space as byrs �
j1ih0jr;s and brs � j0ih1jr;s respectively. Figure. 1 provides
an example of a graph representation of the state vector
jl12l13l14l23l24l34i¼ jli12jli13jli14jli23jli24jli34i¼j101101i
in this space. Note that only the interconnectivity of the
graph is encoded in the state vector. The fact that we have
embedded it in a two-dimensional (2D) plane and repre-
sented it as a square is only an illustrative choice.
Matter degrees of freedom exist on the vertices of the

graph. We consider the case of bosons. The Fock space is
spanned by their individual vertex Fock states jnri. Acting
on this space are the standard bosonic creation and anni-

hilation operators, ayr and ar. The total Hilbert space con-
sisting of the spatial and matter degrees of freedom is
spanned by fQr<sjlrsi �

Q
r0 jnr0 ig. States of the system

are represented as a tensor product of the spatial jc i ¼P
lcl

Q
r<sjlrsi and matter j�i ¼ P

ncn
Q

rjnri degrees of
freedom: jc i � j�i.
The edge number operator, which counts the number of

edges at a vertex is defined as mr �
P

sb
y
rsbrs and the

particle number operator is defined in the standard way,

nr � ayr ar. Powers of the edge number operators are also
defined as

mðLÞ
rs � X

q1;...;qL�1

mrq1mq2q3 . . .mqL�1s: (1)

Defined this way, mðLÞ
rs gives the number of paths between

vertices r and s of length L.

FIG. 1. A graph representation of the state vector
jl12l13l14l23l24l34i ¼ j101 101i which has for 4 vertices and
edges.
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In principle there are many forms the Hamiltonian H,
which associates energies to the lattice, can take. However
the choice of H is greatly constrained by the QG proposi-
tion that locality is an emergent phenomenon. Konopka
et al. [16] showed that a Hamiltonian consisting of
valence term, Hval, that energetically favors vertices with
a parameterized number of edges and a loop term, Hloop,

that discriminately assigns energy to the number of closed
loops, can give rise to a stable local minimum state that
exhibits locality. In particular, the valence term is given by

Hval ¼ gV
X
r

epðv0�mrÞ2 ; (2)

where p is a real positive parameter that penalizes vertex
valences (i.e. number of attached edges) that are away
from v0, and gV is assumed to be positive. The loop term
is given by

Hloop ¼ �gP
X
r;L

�rse
Rmrs ; (3)

where the coupling parameter gP is positive. eRmrs �P1
L¼0

RL

L! m
ðLÞ
rs sums all weighted pathways between vertex

r and s; together with �rs, only closed pathways (or loops)
are counted. The role of parameter R is to influence the
loop length L that corresponds to the peak of the effective
coupling parameter, geffP ¼ gPR

L=L!. Specifically, geffP in-
creases with L for small L, but quickly decreases for large
L; R determines this turnover point. It is worth noting that
as the effective coupling rapidly decreases with large L, the
contribution fromHloop can be approximated by truncating

Eq. (3) at some maximal loop length; this is important as
the loop counting process is computationally intensive.

For the parameter choices v0 ¼ 3 and R � 7:1 in the
regime gV � gP, Hval þHloop produces a local minimum

honeycomb graph. Figure 2(a) shows a representation of the
honeycomb and Fig. 2(b) shows an isomorphically equiva-
lent graph which we will call the brick representation.

Hval þHloop is by no means the only Hamiltonian that

will result in low energy graphs with desirable traits such
as locality and translation symmetry; other choices may
yield different ground states also with such properties.
Without loss of generality, we use Hval þHloop (v0 ¼ 3,

R � 7:1, gV � gP) as a toy example in a general frame-
work that can be applied to other Hamiltonians, to gain
insight into defects in the QG model.
The evolution from the complete graph of the early

QG universe to a lower energy state of the spatial degree
of freedom is reached by the destruction and creation of
edges. The lattice may be assumed to be in contact with an
external heat bath through which edges are exchanged [16]
or in an alternative unitary model, energy is conserved
through the coupling of edges to matter degrees of freedom
[18]. Specifically in this unitary model, the destruction of
an edge is accompanied by the creation of two bound
quanta. The quanta hop according to

Hhop ¼ �
X
rs

mrsa
y
r as; (4)

where � is proportional to the hopping frequency and mrs

restricts hopping to nearest neighbors. Note that in pre-
vious work [18], t is used to denote this coupling parame-
ter. We use � instead, as t will be used to represent time.
The bound quanta are then subsequently destroyed creating
an edge to form a different lattice topology.
Other possible dynamic interactions include edge

exchanges where the valence of vertices are conserved
[16,17] and edge hopping. An edge analog of Hhop, edge

hopping is a local propagation of edges. We introduce it as

HX ¼ gX
X
qrs

mrsb
y
rqbqs; (5)

where gX is a coupling parameter. Figure 3 illustrates this
interaction. In the context of the Hamma et al. [18] model
where every edge is assigned some constant energy U,
every matter quantum assigned energy �, and the edge-
matter coupling constant is k, HX can be considered as an
effective dynamic lattice term in the limit k � jU��j. In
this large detuning limit where the difference in the lattice
and matter energy scales are much greater than their cou-
pling, the dynamics of the matter and lattice degrees of
freedom are effectively decoupled.

FIG. 2 (color online). Two isomorphically equivalent repre-
sentations of a local minimum graph state for v0 ¼ 3, R � 7:1:
(a) Honeycomb representation [a ¼ ð0; 0Þ, b ¼ ð�1; 0Þ,
c ¼ ð0:5; 0:87Þ, d ¼ ð2; 0Þ, e ¼ ð0:5; –0:87Þ] and (b) brick rep-
resentation [a ¼ ð0; 0Þ, b ¼ ð�1; 0Þ, c ¼ ð0; 1Þ, d ¼ ð1; 0Þ,
e ¼ ð0;�1Þ]. a, b, c, d, e are examples of the respective graph’s
vertex labeling schemes.

FIG. 3. A graphical representation of edge hopping term
HX ¼ gX

P
qrsmrsb

y
rqbqs. In this example edge jlrqi is destroyed

and edge jlqsi created. This local interaction is only allowed

because there is a edge between vertex r and s i.e. mrsjlrsi ¼ 1.
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Here we investigate defects in the brick lattice. We study
the large detuning or decoupled limit where matter dynam-
ics (Hhop) are treated independently of the lattice dynamics

(HX) i.e. we ignore the effects of matter-lattice coupling.
Furthermore, we restrict our investigation to a semiclassi-
cal model, in the sense that lattice dynamics are viewed
classically through a heuristic process but the matter
degree of freedom is studied quantum mechanically.

III. METASTABLE DOMAIN
BOUNDARY DEFECTS

In the QGmodel, the early high energy high temperature
universe is represented with a complete graph which may
be interpreted as a state without a notion of space. It
evolves to a low energy low temperature state that exhibits
translational symmetry and locality. The evolution process
from the complete graph to this lower energy state however
is difficult to calculate as it amounts to a many-body
problem for which the simulation time grows exponentially
with the number of edges and vertices. Further compound-
ing the situation is the problem of counting the number of
closed loops. As the number of loops grows exponentially
with the connectedness of the graph, this problem becomes
increasingly difficult nearer to the early universe.

Although a direct analysis of the evolution of the initial
complete graph is impractical for graphs large enough
to exhibit internal geometry, we can garner insight by a
comparison with well-known crystallographic systems.
The random distribution of atoms, say in metal alloys, in
the disordered high energy high temperature state means
that the system is rotationally symmetric. Correspondingly
for a complete graph with N edges, the system exhibits a
discrete N-rotational symmetry [20], which approaches a
continuous rotational symmetry as N ! 1.

The rotational symmetry of the condensed matter system
which exists at high temperatures (energy) is broken as the
system cools; this also occurs in QG. Specifically, nuclea-
tion sees the ordering of atoms which grows into crystal
structures that break rotational symmetry, and as the result
of thermal fluctuations and other imperfections, this crys-
tallization process may occur independently in spacelike
separated regions. It is likely that a similar process occurs
in the evolution of the complete QG graph to a lower
energy state. It is however unclear whether quantum or
thermal fluctuations or an interplay of the two will play the
dominant role in the nucleation of low-energy symmetry
breaking in such crystalline structures.

In condensed matter systems, when there is enough
energy to overcome the activation barrier, the coalescence
of locally ordered regions can allow the formation of larger
crystal structures. However, even with a slow cooling rate,
defects are likely to form in finite time. A particular type of
defect known as an antiphase boundary defect, occurs
when the intersection of two domains are out of phase.
To illustrate this, consider the crystalline structures of

alloys which are interpenetrating lattices of the different
constituent atoms. For example alloys of two types of
atoms, A and B, of composition AB (e.g. CuZn) can form
crystal grains of a simple cubic Bravais superlattice. This
superlattice is composed of two interpenetrating cubic
sublattices of A atoms and B atoms. At grain intersections
these sublattices may be out of step or phase, in which case
an antiphase boundary defect occurs.
Analogously domains of subgraphs of the ground state

may also be out of phase at domain boundaries as depicted
in Fig. 4(a). We will also consider examples of when
domains differ in orientation in Sec. IVB and IVC. Note
that the metal alloy system involves the interleaving of two
elements (e.g. Cu and Zn), whereas in the QG brick lattice
the interleaving is purely a structural one, i.e. consisting of
interleaving repeated structural layers as seen in Fig. 4(a).
For convenience we will refer to the brick graph as the
ground state; whether it is actually the ground state or a
local minimum does not matter for our purposes. The
antiphase boundary represented by Fig. 4(a) is unstable
under lattice interaction. For example, edge hopping de-
scribed by HX will see an edge attached to a four edged
vertex hop to a neighboring two edged vertex, producing a
lower energy state of three edged vertices. In a full quan-
tum mechanical treatment, complexity grows with the
product of both the matter and lattice degrees of freedom.
To simplify the problem, previous work [18] limited the
manifold to four vertices, and the matter degrees of free-
dom were hardcore bosons. With such a small number of
vertices, internal geometry is not a feature of the model,
and so the lattice energy terms were simplified to only
being proportional to the number of edges. Here we are
interested in the internal geometry of the lattice and there-
fore must consider a manifold with many more vertices.
The following section describes a heuristic approach to
lattice evolution and formation of metastable defects.

A. Quenching

We simulate the cooling of the lattice using the
Metropolis algorithm [28]. The Metropolis algorithm [29]
is an iterative algorithm where in each step the probability

FIG. 4 (color online). (a) Two domains form independently.
Where they meet is an unstable antiphase boundary defect.
(b) After the quenching process the boundary defect is frozen
into a metastable amorphous state.
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P of evolving from state S with energy E to a neighboring
state S0 with energy E0 is

P ¼
8><
>:
1; if E> E0

exp
�
� E0�E

kBT

�
; otherwise

(6)

where kB is the Boltzmann constant and T temperature. S0
is randomly chosen from the neighborhood of states fS0g
i.e. the set of states reachable by S. Specifically, motivated
by the edge hopping term Eq. (5), the dynamics of the
lattice are mediated by the following heuristic: at each time
step, h random number of edges are allowed to hop to their
nearest neighbors, as depicted in Fig. 3. h corresponds to a
measure of fluctuations. The states fS0g reachable by this
interaction forms the neighborhood of states.

As the probability distribution of states converges to
the Boltzmann distribution for finite temperature on
long enough time scales, Konopka et al. [17] used the
Metropolis algorithm to study the ground state. Here we
use the algorithm to study the stability of defects.

We consider the scenario where domains which locally
are ground states have formed, and that the temperature has
fallen below a critical value such that the system freezes
into some local minimum. In particular we assume the
extreme quenched case where the temperature is instanta-
neously reduced to zero. As the domains formed indepen-
dently, their interface may be out of phase, for example as
illustrated in Fig. 4(a). This high energy configuration is
unstable, and represents our starting state. To remove edge
effects, we impose periodic boundary conditions, forming
a torus. Along the domain boundary (major diameter) there
are 100 vertices, and 9 vertices running along the minor
diameter. A small h will mean that the changes to the
lattice are local perturbations, leading to the entrapment
of metastable defect states in local minima. Applying the
Metropolis algorithm with T ¼ 0, Fig. 5(a) shows the
decrease in lattice energy, averaged over 300 samples, at
each t step of the quenching process. It shows that the
average energy converges to 9:1� 107E=gP and not the
ground state energy 8:8� 107E=gP. The parameter values
are set to those that give rise to the brick graph as a local
minimum, i.e. v0 ¼ 3, r ¼ 7:2, p ¼ 1, gV=gP ¼ 105. For
practical computation times, we have limited the counted
maximum loop size, Lmax ¼ 10, in the above simulations.
We have found no evidence that increasing Lmax signifi-
cantly affects our results.

There are many ways the lattice can evolve; moreover,
under the extreme case of quenching the lattice will freeze
into a state which is not the ground state. For example,
Fig. 6(a) shows a local part of a metastable configuration
after quenching with h ¼ 1. In this local area, the valence
of vertex c is vc ¼ 2 and all other vertices have valence
v0 ¼ 3. In the gV � gP regime, energetically nearby states
are those where an edge has hopped to vertex c so that
vc ¼ v0; all other neighboring states have more than one
vertex with v � v0 and hence are much higher energy

states. There a four energetically nearby states, as shown
in Fig. 6(b); however their Hloop is smaller than Fig. 6(a),

meaning that they have higher energies. Therefore the
lattice freezes in configuration Fig. 6(a), which is in a
much higher energy state than the ground state due to the
vertices which do not have valence v0. Note that if T > 0,
then there is a finite probability of evolution to higher
energy states; in this case the lattice would eventually
evolve to the ground state.
The energy probability distribution of the local mini-

mum states reached by this quenching process is given in

FIG. 5 (color online). Results of Metropolis algorithm applied
to a toroid lattice (major diameter: 100 vertices, minor diameter:
9 vertices) with an unstable antiphase domain boundary
[Fig. 4(a)] at quenching temperature T ¼ 0. Other parameter
values: v0 ¼ 3, r ¼ 7:2, p ¼ 1, gV=gP ¼ 105, Lmax ¼ 10,
iterations ¼ 300. (a) Plot of the lattice energy averaged over
300 samples at each t step. The average energy converges
to 9:1� 107E=gP. This is higher than the ground state energy
8:8� 107E=gP (dotted line), meaning the lattice is more likely to
settle into a local minimum with defects rather than the ground
state. (b) The energy probability distribution of the lattice at
t ¼ 105, when most of the samples have reached a metastable
local minimum. As the lattice has been quenched, the distribution
does not follow the Boltzmann distribution for finiteT, but instead
resembles the typical energy distribution of quenched metal
alloys.

FIG. 6. (a) An extract of a metastable lattice at the domain
boundary after quenching. (b) Energetically nearby states acces-
sible from configuration (a), by nearest neighbor edge hopping.
The dotted lines represent hopping edges. Other neighborhood
states (not shown) are of much higher energies as more than one
vertex has v � v0. Calculation of Hloop shows that the states in

(b) are higher energy states then configuration (a). Therefore as
configuration (a) is energetically lower than its set of neighbor-
ing states, configuration a) forms a metastable state.
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Fig. 5(b). As expected, it shows that the most probable state
is centered around 9:1� 107E=gP. Treating the problem as
a statistical ensemble, we do not study the many possible
individual metastable configurations. Nevertheless in gen-
eral, the structures of these metastable states resemble two
domains separated by an amorphous boundary defect.
Figure 4(b) and 6(a) represent extracts of two typical
examples. In the local lattice region of configuration
Fig. 4(b), all vertices have valence v0, therefore no further
edge hopping is possible in this region, as doing so one
would go to a higher energy state. In this local region,
Fig. 4(b) is energetically separated from the ground state
by the difference in loop contribution, Hloop. As already

discussed above, Fig. 6(a) is also metastable. Note that in
the gV � gP regime, Fig. 6(a) depicts a much higher
energy state than Fig. 4(b). Inspecting the set of local
minimum states of the numerical simulation shows that
there are a very low number of isomorphic graphs [30].
This indicates that the number of local minima in this
energy landscape is large. As T ¼ 0 the distribution is
not the Boltzmann probability distribution of finite tem-
peratures, but instead resembles the quenched energy dis-
tributions of, for example, amorphous metal-metalloid
alloys [31]. In the Boltzmann probability distribution,
lower energy states are more likely to form, with the
ground states the most probable, which for the 100� 9
torus lattice corresponds to a ground state energy of
8:8� 107E=gP. In comparison, in the quenched probabil-
ity distribution the most likely states are centered around
9:1� 107E=gP. In other words, under the prescribed con-
ditions, stable local minimum defect states are more likely
to form than the ground state.

IV. EFFECTS OF DOMAIN STRUCTURES ON
THE PROPAGATION OF BOSONS

The presence of metastable defects affect the propaga-
tion of particles. This is important as the observation of
these effects could serve as a possible avenue through
which to test QG. In this section we discuss the dispersion
of bosons and simulate their propagation in the presence of
defects. We study domain structures that give rise to scat-
tering, reflection, refraction, and lensing-like behavior.

A. Scattering

In calculating the dispersion relation of bosons on the
lattice we are only interested in the hopping term Hhop. We

label the vertices of the ground state lattice with rr �
ðxr; yrÞ 2 N2. For a useful mapping between Euclidean
space and the lattice, we associate a hop between nearest
neighbors with one spatial unit under the Euclidean dis-

tance function dðr1; r2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 � x1Þ2 þ ðy2 � y1Þ2

p
. This

correspondence means that a neighborhood in Euclidean
space corresponds to a neighborhood on the lattice. The
brick representation as shown in Fig. 2(b) is a natural

representation under this mapping and vertex labeling
scheme. By natural representation we specifically mean
that embedding the lattice in Euclidean space, the vertex
label corresponds to the Euclidean coordinates. As a
comparison, a different labeling scheme, as indicated in
Fig. 2(a), sees the honeycomb vertex labels correspond to
the coordinates of the embedding Euclidean space. In these
examples, Euclidean space is the appropriate embedding
space as these lattices represent flat space. However there
are infinitely many possible embeddings and each will
have their corresponding dispersion relation. Contrasting
such embeddings is not the aim of this paper, instead
we examine scattering from defects in the brick represen-
tation. We however stress that scattering from defects is
background independent, although the details of how they
are represented are not, and so particle propagation is a
useful tool for exploring potential physically testable con-
sequences of the QGmodel. In fact, detailed measurements
of propagating fields may, in the future, allow us to reach
some conclusions about how the microscopic structure of
spacetime should be viewed.
Forming primitive unit cells as shown in Fig. 2(b), the

matrix energy equation can be written as [32,33]X
r

½Hrs�f�rg ¼ Ef�sg; (7)

where ½Hrs� is the ð2� 2Þ submatrix of the irreducible
representation of Hhop that relates unit cell s with neigh-

boring unit cell r � s; ½Hss� is the intracell interaction.
f�rg is a ð2� 1Þ vector denoting the wave function in unit
cell r. Using Bloch’s theorem, this equation can be solved
with the ansatz

f�rg ¼ f�0geik	Dr : (8)

where Dr invariantly translates the crystal from some
arbitrary unit cell 0 to unit cell r and k � ðkx; kyÞ is a

vector in the space reciprocal to D.
Substituting Eq. (8) into Eq. (7) gives the energy eigen-

value equationX
r

½Hrs�eik	ðDr�DsÞf�0g ¼ Ef�0g; (9)

which when solved gives the dispersion relation or band
structure (see the Appendix)

½EðkÞ=��2 ¼ 1þ 4 coskxðcoskx þ coskyÞ: (10)

This dispersion relation is notably anisotropic. However at
low energies near k ¼ 0 the dispersion relation can be
approximated to second-order as, EðkÞ 
 ��ðk2x þ k2y=

3� 3Þ. This has the quadratic form of a conventional
two-dimensional (anisotropic) free-space dispersion rela-
tion. The apparent anisotropy can be approximately elim-
inated by transforming the lattice (i.e. relabeling the
vertices) to the isomorphic honeycomb representation.
The dispersion relation in the honeycomb representation
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is Ehex ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos

ffiffiffi
3

p
kx=2ðcos

ffiffiffi
3

p
kx=2þ cos3ky=2Þ

q
which in the low energy limit is approximated as
EhexðkÞ 
 ��ð3k2x=4þ 3k2y=4� 3Þ, resembling the dis-

persion relation in conventional 2D flat space. At higher
energies however, higher order terms become significant
implying that the dispersion relation in any representation
is no longer quadratic, and the anisotropy can not simply
be relabelled away. As we live in an isotropic universe
(although there is some indication that anisotropies exist
on cosmological scales [34]), the honeycomb representation
may be the appropriate representation in 2D. However to
more clearly reveal the effects of the anisotropy of the
lattice, we use the brick representation where the anisotropy
of the dispersion relation is evident even at low energies.

To see the effects of the antiphase boundary defects on
the propagation of bosons, we simulate a single moded
Gaussian pulse centered around ðx0; y0Þ with width
ð�x; �yÞ,
jc ð0Þi ¼ N

X
x;y

e�½ðx�x0Þ2=2�2
x�e�½ðy�y0Þ2=2�2

y�eikxxeikyyj1ix;y;

(11)

where N is a normalization factor. Evolution of the
system is dictated by the Schrödinger equation, jc ðtÞi ¼
eiHhoptjc ð0Þi. It is important to note here that the evolution
of the system is dependent on the lattice interconnectivity
and not the representation.

In Fig. 7(a) a Gaussian pulse is initialized at x0 ¼
ð100; 80Þ with � ¼ ð10; 10Þ and k ¼ ð0;�2Þ. The gradient
of Eq. (10) gives us the group velocity (vg ¼ rkE). As we

initialize the boson away from the domain boundaries we
can use the dispersion relation, Eq. (10), to estimate the
group velocity, v�g =� ¼ �ð0; 1Þ. Figure 7(b) shows that

most of the pulse being in the Eþð0;�2Þ state propagates
as vþg , and the metastable amorphous defect region has a

scattering effect on the boson. Although we have chosen to
present the simulation in the brick representation, the
manifestation of scattering from domain boundary defects
are representation independent consequences of meta-
stability in QG. In other words, choosing a different rep-
resentation changes only the details of the scattering, and
hence scattered bosons may be used by an observer to
detect the presence of a domain boundaries. We also note
that there is also some localization of the boson along the
domain boundary for a finite time.

B. Refraction and reflection

The discrete ordered structure of crystals means that
they are not rotationally invariant. In QG, crystallization
of spacelike separated regions into subgraphs of the ground
state, having no preferred orientation, will give rise to
dislocations when they meet. Figure 8 illustrates such an
example. The relative orientation of the domains can be
represented by a global � 2 ½0; �Þ rotation of the vertex
labels. Within a domain there is short-range order, but this
symmetry is broken over longer ranges. We investigate the
effects of these types of domain structures on the propa-
gation of bosons.
As an introductory case we consider two domains that

are oriented perpendicular to each other as represented in
Fig. 8. This state is metastable under small fluctuations h as
there is no nearby state of lower energy i.e. local edge
hopping will not produce a lower energy state. We will
identify domains by their orientation angle.
The dispersion relation of the ground state with a gen-

eralized rotation of the vertex labels is

½Eðk; �Þ=��2 ¼ 1þ 4 cosðkx sin�� ky cos�Þ
� ½cosðkx cos�þ ky sin�Þ
þ cosðkx sin�� ky cos�Þ�: (12)

Figure 9 shows the isoenergy contour plot for � ¼ 0
and � ¼ �=2.

FIG. 7 (color online). Simulation of a localized boson as it
scatters at a metastable amorphous domain boundary defect.
(a) The boson is initialized at x0 ¼ ð100; 80Þ, with �¼ð10;10Þ
and k ¼ ð0;�2Þ so that it has v�g =� ¼ �ð0; 1Þ. Most of the

boson wave packet propagates as vþg . Inset: Zoomed depiction of

the amorphous defect line which runs from vertex (0,100) to
(100,100). (b) Snapshot of the system at t ¼ 100=� showing that
the amorphous defect has caused the boson to scatter; there is
some probability that the boson is also localized on the domain
boundary for a finite time.

FIG. 8 (color online). Two domains formed independently
with different orientation, labelled as domain-�=2 and
domain-0. At their intersection is a domain boundary defect.
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Domain boundaries introduce edge effects, which means
Eq. (12) is only valid away from the domain boundary.
Nevertheless, as simulations will show, the dispersion
relation can be used as a good indicator of the refractive
and reflective properties across the domain boundary.

The difference in the dispersion relation of domains of
dissimilar rotation angles will mean that as the boson
passes from one domain to another it will experience
refraction. Incident and refracted angles are described
relative to an interface normal. Using tan½�ðk; �Þ� ¼
vg;y=vg;x and Eq. (12), the angle of propagation relative

to the domain boundary normal is given by

�ðk; �Þ ¼ arctan

�
cAsBs� þ ðcB þ 2cAÞsAc�
sBcAc� � ðcB þ 2cAÞsAs�

�
; (13)

where A � kyc� � kxs� and B � kxc� þ kys�. We have

used the notation cq � cosq and sq � sinq, q ¼ A, B, �.

The refractive and reflective properties of the domain
boundary are simulated in the propagation of a boson
Gaussian wave packet in a discrete space described by
the geometry of Fig. 8. A boson initiated in domain-0
with k�¼0 ¼ ð�1:6;�0:5Þ will have an incident angle
given by Eq. (13) as j�Ij ¼ 43

�
. As the boson is initialized

away from the domain boundary and hence edge effects,
this propagation angle is well matched in the simulation as
seen in domain-0 of Fig. 10(a). This boson will couple to a
mode in the domain-�=2 with the same energy and ky
component. Without edge effects, k�=2 ¼ ð�1:0;�0:5Þ,
giving a refraction angle j�Rj ¼ 8:8

�
. Edge effects at the

domain boundary will cause deviation from this refraction
angle, however this angle can used as a guide as to how
light will refract, as shown in Fig. 10(a).

In this toy 2D universe an observer in domain-�=2 may
see two images of an object. This is because for certain
incident angles on the domain boundary energy conservation

and phase matching can not simultaneously occur and these
field components will be reflected to form a second image of
the object. Fig. 10(b) demonstrates this with k�=2 ¼
ð0:84;�1:1Þ. The boson initialized at t ¼ 0 propagates hit-
ting the domain boundary and gets reflected.
We point out that although the calculated refraction and

reflection angles are specific to the brick representation and
the domain structure setup in Fig. 8, the qualitative effects
of refraction and reflection, which are the result of the
anisotropies of the lattice, will be present irrespective of
the representation. In the hexagonal representation where
the anisotropies are less severe than in the brick representa-
tion, refraction and reflection only become significant at high
energies. Similar reflective effects are also predicted with
topological defects in cosmological field theories [22]. For
example the conical nature of space around straight sections
of cosmic strings can give rise to double images of galaxies or
quasars [35]. If such observations are ever to be found,
domain boundaries may offer an alternative explanation.
The observation of double imaging of astronomical

objects implies domain sizes at commensurate scales,
however it is not clear from our model what the average
sizes of the domains should be. Although there is no

FIG. 9 (color online). Isoenergy contours of the dispersion
properties of domain-0 (left panel) and domain-�=2 (right
panel). A mode with E=� ¼ 2 (bolded contour lines) and
k0 ¼ ð�1:6;�0:5Þ in domain-0 has vþg =� ¼ ð0:88; 0:83Þ as in-
dicated by the arrow. Neglecting edge effects, phase matching
will mean that this mode will couple to propagating mode
k�=2 ¼ ð�1:0;�0:5Þ in domain-�=2, which will have vþg =� ¼
ð1:6; 0:3Þ (indicated by the arrow).

FIG. 10 (color online). Simulation of the propagation of a
boson wave packet over time. Different time instances, t,
are superimposed; each instance is labeled with ð�t;MÞ. For
clearer presentation, populations are multiplied by factor M so
that the peak value at each time instant is approximately the
same. (a) The boson is initialized in domain-0 with k0 ¼
ð�1:6;�0:5Þ. As the boson propagates through the domain
boundary it undergoes refraction with angle of refraction j�Rj 

8:8o. (b) The boson is initialized in domain-�=2 with k�=2 ¼
ð0:84;�1:1Þ. As this mode can not couple to resonant modes in
domain-0 the boson will be completely reflected. Inset: Zoomed
depictions of the domain boundary.
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precise method to predict the probable domain size in our
model at present, it is likely related to the effective rate of
cooling, as with conventional crystal properties. As fluctu-
ations seed domains of random orientation in many differ-
ent places, the rate of cooling will influence the ability of
these smaller domains to coalesce into larger ones:
Specifically a slower cooling rate would form larger do-
mains than a faster rate. Many small domains with random
orientations will form an amorphous manifold. With no
preferred direction, on a scale much larger than the indi-
vidual domains, this granular space will appear to exhibit
rotational symmetry. On the other hand, at wavelength
scales commensurate with the domain sizes the bosons

will be scattered. In such a universe, double imaging of
astronomical objects as a result of domain boundaries
would not be observed. As our universe does appear to
be isotropic and we do not see such scattering effects, the
length scales of the domains must either be very small
(submicroscopic) or very large (astronomical).

C. Domain lensing

Gravitational lensing is the bending of light as the result
of gravitational effects such that multiple or distorted
images are formed of the source. Light is bent most near
the center of the lens as the gravitational strength here is
greatest. Because of this, gravitational lenses are charac-
terized by a focal line (as opposed to a focal point of
conventional lenses). Here we show how a granular struc-
ture of space can give rise to similar lensing-like effects.
This mechanism is distinct from the curved geodesics of
general relativity. As an example we show that lensing-like
effects can arise from the intersection of four (bottom, left,
top, right) domains as illustrated in Fig. 11(a). We assume
the structure to extend indefinitely. Because every vertex
has valence v0 ¼ 3, the domain structure of Fig. 11(a) is
stable to small fluctuations (h ¼ 1), as local edge hopping
will not produce a lower energy state.
To understand how this four domain geometry can pro-

duce a lensing-like effect, we plot the isoenergy contours of
the system at a particular frequency in Fig. 11(b). The blue
isoenergy contour corresponds to domain-0 and the green to
domain-�=2. The interface of the domains occur at angles
��=4, requiring the phase matching condition kx � ky ¼
k0x � k0y at the bottom-left domain interface and k0x þ k0y ¼
k00x þ k00y at top-left domain interfacewith similar conditions

at the right domain interfaces. For example a mode origi-
nating in the bottom domain with k ¼ ð��=6;��=2Þ
propagates with vþg =� ¼ ð ffiffiffiffiffiffiffi�3

p
=2;

ffiffiffi
3

p
=2Þ (arrow 1). Phase

FIG. 11 (color online). (a) The intersection of four domains
(bottom, left, top, right) with orientation � ¼ 0, �=2.
(b) Isoenergy contours at E=� ¼ 2. The blue contour corre-
sponds to domain-0 (bottom and top domains) and the green
contour corresponds to domain-�=2 (left and right domains).
The arrows represent group velocities. A mode originating in the
bottom domain with k ¼ ð�=6;��=2Þ propagates with vþ

g =� ¼
ð ffiffiffiffiffiffiffi�3
p

=2;
ffiffiffi
3

p
=2Þ (arrow 1). It couples to the propagating mode

k ¼ ð0;��=3Þ in the left domain (arrow 2). At the second
domain boundary it will couple to the propagating mode
k ¼ ð��=2;��=6Þ in the top domain (arrow 3). This trajectory
will converge with its symmetric (about the y-axis) mode pro-
ducing a lensing-like effect.

FIG. 12 (color online). Simulation of boson Gaussian wave packets with a) k ¼ ð��=8;��=8Þ, b) k ¼ ð��=6;��=6Þ,
c) k ¼ ð��=5;��=5Þ at the four domain structure of Fig. 11. The arrows indicate the group velocity (vþ

g ) in each domain. As

the boson crosses the domain boundaries it undergoes refraction to converge on the far side. The foci points for the different modes of
the boson wave packet form a focal line. Note that there are also modes (the faint light blue pulses) associated with v�

g which

propagate in the opposite direction (i.e. downward) and are reflected off the hard wall boundary. The notation ð�t;MÞ follows Fig. 10.
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matching at the domain boundarywhich is at�=4 relative to
the x-axis, will mean it will couple to the propagating mode
k ¼ ð0;��=3Þ (arrow 2). At the second domain boundary
which is at��=4 relative to the x-axis, phasematchingwill
mean that this mode will couple to the propagating mode
k ¼ ð��=2;��=6Þ (arrow 3). This example is symmetric
about the x, y-axis. So together with its symmetric mode
reflected about the y-axis these trajectories will converge to
focus the source.

The domain lensing effect is simulated by propagating a
boson wave packet in the lattice represented by Fig. 11(a).
In Fig. 12(a), the boson is initialized as a Gaussian pulse of
two modes, k ¼ ð��=8;��=8Þ, in the bottom domain. As
it propagates through the domain boundaries (indicated by
the dotted lines) it undergoes refraction, following the
predicted trajectories, to focus on the far side. The simu-
lation of other modes [Fig. 12(b) and 12(c)] show that their
foci do not converge to the same point, but instead form a
focal line. It is important to point out that this behavior,
where a point source is separated and then focused again
on a contiguous line (as determined by lattice connectivity)
is a property independent of representation. In other words,
this is a property of the interconnectivity of the domain
structure of Fig. 11(a) and not it’s brick representation.
How we presented this in Fig. 12 is of course a result of our
choice of representation.

The presence of a focal line means that an observer in this
2D universe would detect a distorted image of the source.
This effect can be compared to the distortion of images of
astronomical objects due to gravitational lensing in our three
dimensional world. It is important to note however that the
effect in our model is purely nonrelativistic. Furthermore, in
general relativity gravitational lensing, light of all modes
bends more the closer it is to the gravitational source;
whereas in domain lensing (as illustrated in the preceding
example) for a givenmode the amount of bending (refraction
angle) is invariant with the distance from the optical axis.
This distinction offers a possible avenue in which to test the
model.

V. CONCLUSION

Quantum graphity is a background independent model
that provides an alternative viewpoint on the notion and

structure of space, based on condensed matter concepts but
extended to a dynamic quantum lattice. Through an anneal-
ing process we explored metastable domain structures and
boundary defects. We investigated the propagation of
bosons in these structures, revealing that they produce
intriguing scattering, double imaging, and gravitational
lensing-like effects. Importantly this serves as a framework
in which observable consequences of the QG model may
allow it to be tested.
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APPENDIX

Forming primitive unit cells as shown in Fig. 2(b) means
that each unit cell will have four nearest neighbors.We label
the displacement between a cell and its four neighboring
cells as d1¼ð�dxdyÞ, d2 ¼ ðdx; dyÞ, d3 ¼ ðdx � dyÞ,
d4 ¼ ðdx � dyÞ. The Hamiltonian in Eq. (9) is written as

X
r

½Hrs�eik	ðDr�DsÞ

¼ �
0 1þ eik	d2 þ eik	d4

1þ eik	d1 þ eik	d3 0

" #
:

(A1)

Solving for the eigenvalues of this matrix, the dispersion
relation is

½EðkÞ=��2¼1þ4cosðkxdyÞ½cosðkxdyÞþcosðkydxÞ�: (A2)

In the brick representation ðdx; dyÞ ¼ ð1; 1Þ and in the hon-
eycomb representation ðdx; dyÞ ¼ ð3=2; ffiffiffi

3
p

=2Þ.
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