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The effect of the resilience of the steel studs on the sound insulation of steel stud cavity walls can 

be modelled as an equivalent translational compliance in simple models for predicting the sound 

insulation of walls. Recent numerical calculations have shown that this equivalent translational 

compliance varies with frequency. This paper determines the values of the equivalent 

translational compliance of steel studs which make a simple sound insulation theory agree best 

with experimental sound insulation data for 126 steel stud cavity walls with gypsum plaster 

board on each side of the steel studs and sound absorbing material in the wall cavity. These 

values are approximately constant as a function of frequency up to 400 Hz. Above 400 Hz they 

decrease approximately as a non-integer power of the frequency. The equivalent translational 

compliance also depends on the mass per unit surface area of the cladding on each side of the 

steel studs and on the width of the steel studs. Above 400 Hz, this compliance also depends on 

the stud spacing. The best fit approximation is used with a simple sound insulation prediction 

model to predict the sound insulation of steel stud cavity walls whose sound insulation has been 

determined experimentally. 
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I. INTRODUCTION 

Models for predicting the sound insulation of steel stud cavity walls need to know the 

compliance of the steel studs. This paper determines the values of the equivalent translational 

compliance of steel studs which make a simple sound insulation prediction model agree with a 

large database of sound insulation measurements. Regression curves are then best fitted to these 

values of equivalent translational compliance. 

Heckl (Heckl, 1959a; b; Cremer et al., 2005) derived formulae for the sound power 

radiated on one side of an infinite plate excited by a point force and the sound power per unit 

length radiated from one side of an infinite plate excited by an infinite line source. These 

formulae only apply below the critical frequency of the plate. He used these results to predict the 

improvement in sound insulation obtained by attaching a lightweight panel at a distance from 

heavyweight wall with point or line connections to the heavy weight wall and filling the resulting 

wall cavity with sound absorbing material. Heckl’s theory and those theories based on it ignore 

the mass of the connections and assume that the behaviour of each connection is independent of 

the other connections. 

Sharp (1973; 1978) and Sharp et al. (1980) applied Heckl’s results to predict the sound 

insulation of lightweight cavity walls with rigid studs or rigid point connections. Gu and Wang 

(1983) modelled resilient steel studs as springs with an equivalent translational stiffness of 9 or 

10 MPa. Davy (1990b; a) stated that Gu and Wang’s formulae “are not obviously an extension of 

Sharp’s formulae” and introduced an equivalent mechanical compliance (the inverse of 

equivalent mechanical stiffness) of 61 10−×  Pa-1 into Fahy and Gardonio’s (2006) version of 

Sharp’s theory. Notice that Davy’s value of equivalent mechanical compliance is a factor of 9 or 
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10 more than Gu and Wang’s compliance. Because Fahy had not integrated over angle of 

incidence, Davy performed the integration. 

The results mentioned above only apply below the critical frequency. Davy (1991) 

extended his theory to above the critical frequency. Both Sharp’s and Davy’s theories included 

empirical correction factors below the critical frequency. Davy (1993) replaced his empirical 

correction factor with the effects of resonant vibration in both panels. He also found and 

corrected an error in his theory above the critical frequency. Unfortunately this paper introduced 

an apparent asymmetry into the theory. Davy was able to explain that the apparent asymmetry in 

panel critical frequency was due to total internal reflection. If this total internal reflection is taken 

into account, the apparent asymmetry in panel critical frequency is removed. Heckl (personal 

communication to first author in 1993) pointed out that there is still an asymmetry in panel total 

damping loss factors. However this asymmetry will only arise if the panels have identical critical 

frequencies and different total damping loss factors. The recommended approach in this case is 

to use the average total damping loss factor for both panels. 

Vigran (2010b) gives a good summary of Sharp’s method of modelling sound transmission 

due to rigid studs and point connections. Vigran extends Sharp’s theory to above the critical 

frequency using a different approach to that of Davy. 

Hongisto (2006) showed that Davy’s theory agreed well with measurements on steel stud 

walls with sound absorption in the cavity while Gu and Wang’s theory did not. Unfortunately 

Davy’s theory only agreed well, because as Hongisto also showed, Davy’s theory for the sound 

transmission via a wall cavity with sound absorbing material produced results which were too 

high. It turned out that Davy’s theoretical air borne results were approximately the same as the 

experimental steel stud structure borne results and thus produced excellent agreement. Davy 
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(1998) modified his airborne theory by limiting the upper angle of integration to a maximum 

value of 61°. He also set the equivalent mechanical compliance of the steel studs to 0 Pa-1 and 

introduced “an empirical steel stud structure borne attenuation of 10 dB relative to wooden 

studs”. In 2009, Davy (2009) recommended “a stud attenuation factor in the range from 0.02 to 

0.2”. He actually used a stud attenuation factor of 0.04 to compare his theory with experimental 

results. Davy (2010) used an equivalent mechanical compliance of 61.6 10−×  Pa-1 for steel studs 

but limited the predicted steel stud transmission to be greater than a minimum value of 0.005. 

Guigou-Carter et al. (1998) modelled the sound insulation of 10 mm plasterboard mounted 

by rigid or resilient line connections 50 mm from a heavyweight wall. The 50 mm cavity was 

filled with glass wool. Their resilient line connectors were assumed to have an equivalent 

translational stiffness of 10 MPa. Poblet-Puig et al. (2006) calculated the vibrational level 

difference between 9 mm and 13 mm gypsum plaster board wall leaves connected via steel studs 

and compared these differences with those calculated for line connections with a range of 

equivalent translational stiffnesses or a range of equivalent rotational stiffnesses. Guigou-Carter 

and Villot (2006) used this information to calculate the sound insulation at low frequencies of 

two gypsum plaster board steel stud cavity walls with sound absorbing material in the wall 

cavity. At higher frequencies they modelled the steel studs as resilient point connections situated 

at the positions of the screws used to attach the gypsum plaster board to the steel studs. 

Research by Poblet-Puig (2008) and Poblet-Puig et al. (2009) has shown that a steel stud 

can be modelled as a translational spring with an equivalent translational stiffness which varies 

with frequency in the range from 105 to 108 Pa. The constant value of equivalent mechanical 

compliance used in Davy (2010) corresponds to an equivalent translational stiffness of 56 10×  Pa 

which lies towards the bottom end of the above range. The value of the minimum stud 
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transmission used in Davy (2010) is -23 dB. This also lies in the 0 to -40 dB stud transmission 

range determined by Poblet-Puig et al. (2009) for a standard steel stud. Vigran (2010a) has 

derived a best-fit third order polynomial approximation to the logarithm of Poblet-Puig’s 

numerical values as a function of the logarithm of the frequency for the most common type of 

steel stud. 

II. USE OF POBLET-PUIG’S STIFFNESS VALUES 

Initially, the equivalent translational stiffness values of Poblet-Puig et al. (2009) for 

standard TC steel studs were used with Davy’s (Davy, 2010) theory to predict the average of 

nine experimental measurements by the National Research Council of Canada (NRCC) 

(Halliwell et al., 1998). These nine measurements were made on walls consisting of two layers 

of 16 mm gypsum plasterboard on each side of 90 mm steel studs at 406 mm spacing. There was 

sound absorbing material in the wall cavity. This type of wall construction is denoted as 16+16-

90-406 in this paper. For walls where the thicknesses of gypsum plaster board on each side of the 

steel studs are different, the second leaf thicknesses are included in brackets. An example is 

13+16(16+16)-90-406. Some of the walls only had one layer rather than two layers of gypsum 

plasterboard on one side or both sides of the steel studs. An example is 13-90-406. 

Walls with fire rated and non fire rated gypsum plaster board (with slightly different 

masses per unit area) were grouped together, as were walls with different sound absorbing 

material in the cavity. The NRCC report gives the actual mass per unit area of the gypsum plaster 

board. Because of the combination of different densities of gypsum plaster board into the same 

group, gypsum plaster board is assumed to have a density of 770 kg/m2 in this paper and the 

nominal thickness of the gypsum plasterboard is used with this density to calculate the mass per 

unit area. The sound absorption coefficient of the cavity sound absorbing material is assumed to 
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be 1. Note that Davy’s (2009) theory limits the actual value of the sound absorbing material at 

low frequencies depending on the width of the cavity. 

A single layer of gypsum plaster board is assumed to have a Young’s modulus of 2.2 GPa. 

Because two layers of gypsum plaster board on one side of the steel studs are only fastened at 

points by the screws, they can slide relative to each other when being bent by the sound. The 

result is that the critical frequency of two equal thicknesses of gypsum plaster board is almost the 

same as that of a single thickness. In the theoretical results of this paper this result is achieved by 

assuming that two thicknesses behave as a single thickness of the same total thickness with a 

Young’s modulus of approximately one quarter of one of the original single layers. In this paper 

two layers of gypsum plaster board are assumed to have a Young’s modulus of 0.6 GPa. The 

Poisson’s ratio of gypsum plaster board is assumed to be 0.3. 

Based on the comparison between Davy’s (2010) theory and the average of 5 NRCC 

measurements on walls with 16 mm of gypsum plaster board on each side of 40 mm double steel 

studs, the in-situ damping loss factor of gypsum plaster board is assumed to be 0.03. There was a 

10 mm gap between the 40 mm double steel studs giving a cavity width of 90 mm. The cavity 

was filled with sound absorbing material. Since there are no direct connections through studs 

between the wall leaves, this wall type is denoted 16-90-none in this paper and the comparison is 

shown in Figure 1. 

The in-situ damping loss factors have a significant effect on the theory for air borne sound 

transmission across the cavity above the critical frequency but only have a small effect below the 

critical frequency. However the theory for stud borne transmission across the cavity is affected 

by the in-situ damping loss factors across the whole frequency range. Thus it is not possible to 

distinguish between the effects of in-situ damping loss factors and the steel stud compliance from 
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the steel stud sound insulation measurements. This is why the in-situ damping loss factor is 

determined from the no stud sound insulation measurements above the critical frequency and is 

assumed to be constant as a function of frequency. It should be noted that there is some evidence 

that the damping loss factor of materials may vary with frequency (Hongisto, 2001). It should 

also be noted that assuming different values of damping loss factor would produce different 

values of steel stud compliances. However the value chosen does work well for predicting the 

average of the five NRCC double stud measurements with a single layer of 16 mm gypsum 

plaster board on each side of the wall. It is possible that the use of double layers of gypsum 

plaster board on each side of the walls may introduce more damping and increase the damping 

loss factor. 

The comparison between theory and the average of the nine experimental results for the 

16+16-90-406 type is shown in Figure 2. It is apparent that the theoretical results are much more 

irregular than the experimental results. This is due to the irregularity of the numerically 

calculated equivalent translational stiffness. Nevertheless, the comparison was encouraging 

enough to proceed further. 

III. DERIVING COMPLIANCE FROM NRCC DATA 

One way forward would have been to fit a smooth curve to the numerically calculated 

values of equivalent translational stiffness as has been done by Vigran (2010a). Instead the 

decision was made to determine the values of the equivalent translational compliance which 

would make Davy’s (2010) theory agree with NRCC sound insulation measurements on steel 

stud walls (Halliwell et al., 1998). The 126 steel stud walls were grouped into 28 different 

classes of wall. These types of wall were labelled as described at the start of the previous section. 

For each wall type and third octave band centre frequency, the value of equivalent translational 



 8 

compliance which made zero or minimised the difference between theory and experiment was 

determined if possible. Davy’s (2010) theory does not use the stud borne transmission theory 

below the mass-air-mass resonance frequency because in that frequency range the air cavity 

rigidly couples the two wall leaves. Thus an equivalent translational compliance could not be 

determined for frequencies below the mass-air-mass resonance frequency. In some situations, the 

theoretical air borne sound insulation was less than the experimental sound insulation. In these 

situations, it was also not possible to determine a meaningful value of equivalent stud 

compliance. 

Figure 3 shows the equivalent translational compliance determined using this method for a 

16+16-90-406 type of wall. Examination of Figure 3 suggests that the equivalent translational 

compliance is approximately constant up to about 400 Hz. Above 400 Hz, the relationship 

between the logarithm of the equivalent translational compliance and the logarithm of the 

frequency is approximately linear. In this frequency range, this linearity is very sensitive to the 

value of the critical frequency. The values of Young’s modulus given above for both double and 

single layers of gypsum plaster board were determined by choosing the values which made the 

above relationship as linear as possible. 

Also shown in Figure 3 are the equivalent translational compliances derived for the 

average of eleven 13-90-406 type NRCC measurements. These results show more variability 

than those derived from the 16+16-90-406 type walls because there is less difference between the 

theoretical studless sound insulation and the stud only sound insulation in this case. Since these 

are all greater than the compliances derived from the 16+16-90-406 type walls, it appears that the 

equivalent translational compliance depends on the properties of the gypsum plaster board 

leaves. 
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IV. BEST FITTING TO COMPLIANCE VALUES 

Figure 4 shows the maximum and minimum values of equivalent translation compliance 

derived by making Davy’s (2010) theory fit the 28 different wall type averages of the 126 NRCC 

(Halliwell et al., 1998) measurements on steel stud walls with sound absorbing material in their 

wall cavities. Because the equivalent translational compliance appears to decrease as a function 

of frequency above 400 or 500 Hz, a linear regression in the frequency range from 400 to 6300 

Hz was conducted of the natural logarithm of the compliance MC  as a function of the natural 

logarithms of the frequency f , the reduced mass of the gypsum plasterboard wall leaves rm , the 

steel stud spacing b  and the steel stud (cavity) width d . 

The reduced mass rm  is given by 

 1 2

1 2
r

m mm
m m

=
+

 (1) 

where im  is the mass per unit area of the ith wall leaf. It was chosen because it appears in the 

equation for the normal incidence mass-air-mass resonance angular frequency 0ω , 

 
2

0
0

r

c
dm
ρω = . (2) 

In this equation 0ρ  is the ambient density of air, c is the speed of sound in air and d  is the 

cavity (steel stud) width. 

According to Davy (2010), the stud transmission ratio J  is given by 

 23/2
1 2

2

41 1 M

J
m m cC
G

ω
=

⎛ ⎞
+ −⎜ ⎟
⎝ ⎠

 (3) 

where 

 1/2 1/2
1 2 2 1c cG m mω ω= +  (4) 
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(Davy, 2009). The stud transmission ratio J  is the ratio of the vibrational energy transmitted 

from wall leaf 1 to wall leaf 2 by a resilient stud with an equivalent translation compliance of 

MC  to that transmitted by a rigid stud ( 0MC = ). ciω  is the angular critical frequency of the ith 

wall leaf and ω  is the angular frequency of the sound. 

Inserting equation (4) into equation (3) gives 

 23/2
1 2

1/2 1/2
1 2 2 1

2

41 1 M

c c

J
m m cC

m m
ω
ω ω

=
⎛ ⎞

+ −⎜ ⎟+⎝ ⎠

. (5) 

If 1 2c c cω ω ω= = , then equation (5) becomes 

 23/2

1/2

2

41 1 r M

c

J
m cCω

ω

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

. (6) 

The appearance of the reduced mass rm  in equation (6) is another reason for using it in the linear 

regression. 

Using each side of the linear regression equation as the argument of the exponential 

function produces the following equation. 

 f m b dx x x x
M rC Af m b d= . (7) 

The linear regression produced the values and 95% confidence limits shown in Table I for the 

constants in equation (7). Notice that at the 95% confidence level, A is statistically different from 

1 and all four x’s are statistically different from 0. 

Because the equivalent translational compliance appears to be approximately constant as a 

function of frequency below 400 or 500 Hz, a linear regression in the frequency range from 63 to 

500 Hz was conducted of the natural logarithm of the compliance MC  as a function of the natural 

logarithms of the same variables used in the previous linear regression. This linear regression 
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produced the values and 95% confidence limits shown in Table II for the constants in equation 

(7). 

At the 95% confidence level, A is statistically different from 1, xm and xd are statistically 

different from 0 and xf and xb are not statistically different from 0. The fact that xf is not 

statistically different from zero confirms the visual observation that the equivalent translational 

compliance is not a function of frequency in the frequency range from 63 to 500 Hz. 

Because xf and xb are not statistically different from 0, a new linear regression in the 

frequency range from 63 to 500 Hz was conducted of the natural logarithm of the compliance 

MC  as a function of the natural logarithms of the reduced mass of the gypsum plasterboard wall 

leaves rm  and the steel stud (cavity width) d . Using each side of this linear regression equation 

as the argument of the exponential function produces the following equation. 

 m dx x
M rC Am d= . (8) 

The linear regression produced the values and 95% confidence limits shown in Table III for the 

constants in equation (8). 

Looking at Figure 4, the values of equivalent translational compliance are much more 

tightly grouped in the frequency range from 2500 to 6300 Hz. Thus it is of interest to repeat the 

original linear regression restricted to this frequency range. The results are shown in Table IV. 

Given that the confidence intervals for xf and xm in Table I are less than -1.5 and -1 

respectively, while they are greater than -1.5 and -1 respectively in Table IV, it is interesting to 

speculate that the true values of xf and xm in the high frequency range are -1.5 and -1 

respectively. Also xb in Table IV is not statistically significantly different from -0.5 at the 95% 

confidence level and it is also interesting to speculate that the true value of xb in the high 
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frequency range is -0.5. These speculations lead to an interesting conclusion. They imply that for 

a constant value d, the equivalent translational compliance is given by 

 1/2 3/2 1
M rC Bb mω− − −=  (9) 

in the high frequency range where B is a constant. Substituting equation (9) into equation (6) 

gives 

 2

1/2 1/2

2

41 1
c

J
Bc

b ω

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

. (10) 

This implies that for constant angular critical frequency cω  constant stud spacing b  and 

constant speed of sound c, the stud transmission ratio J  is constant. This speculative result 

agrees with the assumption of a constant or a minimum stud transmission ratio made by Davy 

(1998; 2009; 2010). 

If the magnitude of the second term in the brackets of equation (10) is much greater than 

one, equation (10) becomes 

 2 28
cbJ

B c
ω= . (11) 

Equation (29) of Davy (2010) gives the stud borne transmission coefficient τ  as 

 
2 3
0
2 2

32 c HJ
G b
ρτ

ω
=  (12) 

where H is the D of equation (50) of Davy (2009). 

Substituting equation (11) into equation (12) gives 

 
2
0
2 2 2

4 cc H
G B
ρ ωτ

ω
= . (13) 

Thus the speculative assumptions suggest that the stud borne sound insulation of a steel stud 

gypsum plaster board cavity wall with sound absorbing material in the wall cavity is independent 

of the stud spacing at medium and high frequencies. This is not the case at low frequencies 

where Table II shows that the equivalent translational compliance is independent of the stud 
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spacing and thus that equation (12) retains its inverse dependence on the stud spacing b. These 

results are in rough agreement with Hongisto et al. (2002). This reference says the following 

about steel stud spacing. “The influence of stud spacing above 200 Hz was roughly the same as 

with rigid studs, viz. only a couple of decibels. The overall effect of stud spacing was practically 

negligible with flexible studs compared to rigid studs.” 

Another conclusion to be drawn from an examination of Tables I to IV is that the 

equivalent translational compliance depends more strongly on the stud (cavity) width at low 

frequencies than at medium and high frequencies. 

Some caution should be exercised with regard to the dependence on stud spacing and stud 

(cavity) width. Only two stud spacings (406 and 610 mm) were considered. All but two of the 

walls whose results were analysed had 65 or 90 mm stud widths. The other two had 150 mm stud 

widths. On the other hand the values analysed are the most common used in practice. 

In this paper the equivalent translational compliance MC  will be calculated as the 

minimum of equation (7) calculated using the constant values in Table I and equation (8) using 

the constant values in Table III. The equivalent translational stiffness is calculated by inverting 

of the value of the equivalent translational compliance. 

Defining 

 ( )10logx f= , (14) 
then Vigran’s (2010a) best fit third order polynomial approximation, to Poblet-Puig et al.’s 

(2009) numerically calculated equivalent translational stiffness data for TC steel studs, is given 

by the following equation. 

 ( ) 3 2
10log 0.6286 4.4051 10.3323 7.0722MC x x x− = − + − . (15) 

Figure 5 compares the best fit equations of this paper (Davy et al.) and that of Vigran with 

the Poblet-Puig et al. data for 70 mm wide TC steel studs spaced at 600 mm with 13 mm gypsum 
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plasterboard on each side. The equivalent translation compliance of 61.6 10−×  Pa-1 recommended 

by Davy (2010) is in rough agreement with the low frequency value of this paper of 61.9 10−×   

Pa-1 shown in Figure 5. 

V. USE OF THE BEST FIT EQUATIONS 

Figure 6 shows the comparison of the stud transmission ratio J (dB) calculated using 

equation (3) and the best fit equations for the equivalent translational compliance of this paper 

(Davy et al.), the best fit equation of Vigran (2010a) and Poblet-Puig et al.’s (2009) numerical 

values for 70 mm wide TC steel studs spaced at 600 mm with 13 mm gypsum plasterboard on 

each side. The minimum value of the stud transmission ratio of -23 dB recommended by Davy 

(2010) is in rough agreement with the high frequency results of this paper shown in Figure 6. 

Table V shows the mean, standard deviation, maximum and minimum of sound insulation 

theory (Davy, 2010) minus experiment (Halliwell et al., 1998) for the third octave frequency 

bands from 50 to 6300 Hz for the 28 different wall types using the best fit equations derived in 

this paper for equivalent translational compliance. The overall row in Table V shows the average 

value of the mean differences, the root mean square of the standard deviations of the differences, 

the maximum of the maximum differences and the minimum of the minimum differences. For 

comparison, the last row of Table V shows the values for the 16-90-none wall type whose 

theoretical and experimental results are graphed in Figure 1. This last wall type is without studs 

which bridge the wall cavity. The overall standard deviation of 2.4 dB is not excessively greater 

than the 1.9 dB standard deviation of the 16-90-none wall type without bridging studs. 

Figure 7 shows the comparison of the average of nine NRCC experimental results 

(Halliwell et al., 1998) with theoretical calculations for a 16+16-90-406 type wall using the 

equivalent translational compliance best fit equations for steel studs in Davy’s (2010) theory. 
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This figure should be compared with Figure 2. From Table V, it can be seen that the mean, 

standard deviation, maximum and minimum of the theory minus experiment for Figure 7 are -

0.8, 1.8, 3.1 and -4.5 dB respectively. The equivalent numbers for Figure 2 are 3.0, 5.7, 11.2 and 

-8.4 dB. Thus it can be seen from both these sets of numbers and the figures that the best fit 

equations derived in this paper perform better overall than the numerical calculations of Poblet-

Puig et al. (2009). This is thought to be due to the very complicated vibrational situation that the 

numerical calculations of Poblet-Puig et al. (2009) are attempting to analyse from first 

principles. Nevertheless, the calculations of Poblet-Puig et al. (2009) are very important because 

they provide a first principles theoretical explanation of why steel studs behave vibrationally in 

the way that they do. 

The use of the compliance equations derived in this paper with a different sound insulation 

prediction method was tested by using the CSTB prediction method for line connections with the 

compliance equations to predict the sound insulation values of the 28 classes of steel stud wall 

into which this paper has divided the NRCC data. It should be noted that CSTB prediction 

method uses an equivalent fluid method to model the absorbing material in the cavity, and spatial 

filtering technique for taking into account the double wall dimensions; the diffuse incident 

acoustic field being defined by incidence angle varying from 0° to 90°. Therefore, differences 

between CSTB and Davy’s prediction can be expected around the double wall cavity resonance 

frequency, as well as around the critical frequency. The mean differences between the theoretical 

predictions and the experimental results for both the Davy’s prediction method and the CSTB 

prediction method are shown in Figure 8. The two mean difference curves cross each other at 

125 and 2000 Hz. In the frequency range from 50 to 100 Hz, the mean differences for Davy’s 
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and the CSTB methods are 1.6 and -1.6 dB respectively. The mean differences are -0.9 and 2.3 

dB in the 160 to 1600 Hz range and 0.3 and -6.9 dB in the 2500 to 6300 Hz range. 

The standard deviations of the differences are shown in Figure 9. It is surprising how close 

the two curves are, except in the neighbourhood of the two mean difference curve crossing 

frequencies at 125 and 2000 Hz. This suggests that the theories underlying both prediction 

methods are fairly similar. The differences cannot tell us which prediction method is better, but 

only whether the prediction methods can use the same values of compliance. It is quite possible 

than the equivalent translation compliance could change dramatically in value at the critical 

frequency. However, it is clear that the CSTB prediction method would need an empirical 

correction factor above the critical frequency if used with the values of compliance derived in 

this paper. Below the critical frequency, the values of the differences are probably acceptable for 

both correction methods and no empirical correction factor is need. 

There is great variability in the experimental measurements of the sound insulation of 

double steel stud gypsum plaster board cavity walls between different laboratories (Fausti et al., 

1999). This is at least partially due to the transmission of structure borne sound from the excited 

wall leaf to the other wall leaf via the frame in which the wall is constructed (Smith et al., 1999). 

Wood frames produce more coupling than steel frames and concrete frames give less coupling 

than either steel or wood.  

The same appears to be true with single steel stud cavity walls. An exposed area of the 

mounting frame can also act as part of a flanking transmission path (Warnock, 1982). Figure 10 

shows the maximum and minimum values of the sound reduction index at each third octave band 

frequency across 13 measurements on a 16-90-610 commissioned by United States Gypsum in a 

number different laboratories. The experimental data was provided to the first author in 
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spreadsheet format by Warnock (personal communication). Also shown on Figure 10 are the 

Davy and CSTB predictions using the compliance formulae developed in this paper. From 200 to 

2000 Hz, both predictions are reasonably close to the maximum of the measured values. At and 

above 2500 Hz, the Davy prediction is close to the maximum of the measured values while the 

CSTB prediction is fairly close to the minimum of the measured values. From 80 to 125 Hz, both 

predictions are close to the minimum values. Given that the larger experimental values of the 

sound reduction index would be expected to be more correct because they are likely to have been 

less affected by coupling between the wall leaves at the edges of the wall, the agreement between 

the predicted values and the experimental values is not too bad considering the large range of the 

experimental values. 

VI. STUDS WITH DIFFERENT CROSS SECTIONS 

The NRCC data (Halliwell et al., 1998) only includes measurements on walls with 

standard TC cross section steel studs. In order to see the effect of different steel stud cross 

sections the equivalent translational compliances calculated by Poblet-Puig et al. (2009) for O, S, 

LR and AWS cross sectional studs were divided by the equivalent translational compliances 

calculated by Poblet-Puig et al. (2009) for TC cross sectional studs. The results are shown in 

Figure 11. The average compliance ratio for O and S cross sectional steel studs is close to one. 

The average compliance ratio for LR and AWS cross sectional steel studs is greater than one. 

Because the ratio is the important quantity, the averages, standard deviations and 95% 

confidence limits of the natural logarithms of the compliance ratios were calculated for the four 

different cross sectional studs. The exponential of the average of the natural logarithms of the 

compliance ratios was then taken to obtain an “average” of the compliance ratio. This is 

equivalent to taking a geometric average. The results are shown in Table VI. 
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The averages of the natural logarithms of the compliance ratios for O and S cross sectional 

steel studs are not statistically significantly different from 0 at the 95% confidence level while 

these averages for LR and AWS cross sectional steel studs are statistically significantly different 

from zero at the 95% confidence level. This means that the geometric averages of the compliance 

ratios for O and S cross sectional steel studs are not statistically significantly different from one 

while the geometric averages of the compliance ratios for LR and AWS cross sectional steel 

studs are statistically significantly different from one. To calculate the equivalent translational 

compliance for O, S, LR and AWS cross sectional studs, it is recommended that the equivalent 

translational compliance for TC cross sectional studs be multiplied by the appropriate factor 

from the bottom line of Table VI. Since the geometric averages of the compliance ratios for O 

and S cross sectional studs are not statistically significantly different from one, it would also be 

permissible to set the compliance ratios for these stud cross sections to one. 

A compliance ratio larger than one implies that the corresponding studs will have less 

effect on the double wall behaviour in the mid to high frequency range than the standard 

reference studs. This means that the sound reduction index will be improved in this frequency 

range. 

VII. CONCLUSIONS 

This paper has derived empirical best fit formulae for the equivalent translational 

compliance of standard steel studs by making Davy’s (2010) sound insulation theory agree with 

the experimental measurements of the National Research Council of Canada (NRCC) on 126 

different gypsum plaster board steel stud walls with sound absorbing material in their wall 

cavities. The values of the equivalent translational stiffness of standard steel studs are easily 

obtained by inverting the calculated values of equivalent translational compliance. 
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The equivalent translational compliance or stiffness depends on the masses per unit area of 

gypsum plaster board fastened to each side of the steel studs and the width of the steel studs 

(which is also the cavity width). Above 400 or 500 Hz, it also depends on the frequency and the 

spacing between the steel studs. 

The values of equivalent translational compliance derived in this paper and the stud 

velocity transmission ratios derived from them are in rough agreement with values proposed 

previously by Davy. 

When used with Davy’s (2010) sound insulation theory, the empirical best fit formulae for 

equivalent translational stud compliance are reasonably successful at predicting the NRCC 

experimental sound insulation results from which the empirical best fit formulae were derived. 

The use of the empirical best fit equations derived in this paper with the CSTB prediction 

method gave acceptable agreement with the NRCC data below the critical frequency, but under 

estimated the sound insulation above the critical frequency. Thus the CSTB method would need 

an empirical correction factor above the critical frequency if used with the equivalent translation 

compliances derived in this paper. Other theories of sound insulation with which the empirical 

best fit equations of this paper could possibly be used include those of Craik and Smith (2000b; 

a), Wang et al. (2005), Poblet-Puig (2008), Legault and Atalla (2009; 2010) and Vigran (2010a; 

b). 
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Table I. Values and confidence limits for the constants in equation (7) in the frequency range 

from 400 to 6300 Hz. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 1.74 2.94 1.03 

xf -1.81 -1.77 -1.84 

xm -1.40 -1.29 -1.51 

xb -0.75 -0.59 -0.92 

xd 0.28 0.43 0.13 
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Table II. Values and confidence limits for the constants in equation (7) in the frequency range 

from 63 to 500 Hz. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 8.5 x 10-5 3.1 x 10-4 2.3 x 10-5 

xf 0.0134 0.133 -0.106 

xm -1.09 -0.82 -1.35 

xb -0.02 0.35 -0.40 

xd 0.81 1.19 0.42 
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Table III. Values and confidence limits for the constants in equation (8) in the frequency range 

from 63 to 500 Hz. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 9.3 x 10-5 2.7 x 10-4 3.2 x 10-5 

xm -1.09 -0.83 -1.35 

xd 0.80 1.19 0.41 
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Table IV. Values and confidence limits for the constants in equation (7) in the frequency range 

from 2500 to 6300 Hz. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 0.0120 0.0196 0.0073 

xf -1.37 -1.32 -1.43 

xm -0.77 -0.71 -0.83 

xb -0.58 -0.49 -0.66 

xd 0.22 0.30 0.15 
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Table V. The mean, standard deviation, maximum and minimum of sound insulation theory 

(Davy, 2010) minus experiment (Halliwell et al., 1998) for the third octave frequency bands 

from 50 to 6300 Hz for different wall types. 

Wall Type mean (dB) std dev (dB) max (dB) min (dB) 
13-65-406 -0.2 3.2 6.9 -4.0 
13-65-610 0.8 2.5 5.7 -2.5 
13-90-406 0.0 2.7 5.0 -4.0 
13-90-610 -0.2 2.4 5.7 -4.6 
13-150-610 -2.6 3.6 4.7 -6.1 
16-65-406 0.6 2.7 6.9 -4.2 
16-65-610 0.8 2.6 7.0 -3.9 
16-90-406 0.3 2.2 4.7 -2.9 
16-90-610 0.0 2.5 6.0 -3.2 
16-150-610 -0.5 2.4 3.1 -5.9 
13(13+13)-65-406 0.8 2.5 6.0 -3.8 
13(13+13)-65-610 -0.2 2.3 6.5 -3.5 
13(13+13)-90-406 0.8 1.9 5.1 -1.7 
13(13+13)-90-610 0.1 2.4 5.7 -4.1 
16(16+13)-65-610 -0.2 2.4 6.2 -3.8 
16(16+16)-65-406 0.1 2.6 5.3 -5.4 
16(16+16)-65-610 0.5 2.3 6.0 -3.2 
16(16+16)-90-406 0.4 1.6 3.7 -2.0 
16(16+16)-90-610 0.4 1.7 3.6 -2.2 
13+13-65-406 -0.2 2.3 5.1 -4.0 
13+13-65-610 -0.3 2.6 5.0 -4.8 
13+13-90-406 0.1 1.4 3.8 -2.9 
13+13-90-610 0.1 2.8 5.9 -4.4 
13+16(16+16)-90-406 -0.2 2.1 4.0 -3.9 
16+16-65-406 -1.3 2.5 4.3 -6.4 
16+16-65-610 -0.6 2.0 3.9 -4.1 
16+16-90-406 -0.8 1.8 3.1 -4.5 
16+16-90-610 -0.5 2.4 3.4 -4.6 
Overall -0.1 2.4 7.0 -6.4 
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Table VI. The averages, standard deviations and 95% confidence limits of the natural logarithms 

of the compliance ratios for the four different cross sectional studs. The last line shows the 

exponential of the average of the natural logarithms of the compliance ratios. This is equivalent 

to taking a geometric average. 

Cross Section O S LR AWS 

Average of Ln -0.31 -0.02 0.68 1.22 

Std. Dev. Of Ln 1.90 1.21 1.71 2.11 

±95% CL of Ln 0.74 0.47 0.66 0.84 

Geometric Mean 0.73 0.98 1.96 3.39 



 30 

FIGURE CAPTIONS 

Figure 1. Comparison of the average of five NRCC experimental results with theoretical 

calculations for a 16-90-none type wall using Davy’s (2010) theory. 

Figure 2. Comparison of the average of nine NRCC experimental results (Halliwell et al., 1998) 

with theoretical calculations for a 16+16-90-406 type wall using Poblet-Puig et al.’s (2009) 

equivalent translational stiffness values for TC steel studs in Davy’s (2010) theory. 

Figure 3. The equivalent translational compliance required to make Davy’s (2010) theory agree 

with the average of nine 16+16-90-406 type and eleven 13-90-406 type NRCC experimental 

results (Halliwell et al., 1998). 

Figure 4. The maximum and minimum values of equivalent translational compliance of steel 

studs derived by making Davy’s (2010) theory fit NRCC experimental data (Halliwell et al., 

1998). 

Figure 5. Comparison of the best fit equations of this paper (Davy et al.) and that of Vigran 

(2010a) for the equivalent translational compliance with the Poblet-Puig et al.’s (2009) data for 

70 mm wide TC steel studs spaced at 600 mm with 13 mm gypsum plasterboard on each side. 

Figure 6. Comparison of stud transmission ratio (dB) calculated using equation (3) and the best 

fit equations for the equivalent translational compliance of this paper (Davy et al.), the best fit 

equation of Vigran (2010a) and Poblet-Puig et al.’s (2009) numerical data for 70 mm wide TC 

steel studs spaced at 600 mm with 13 mm gypsum plasterboard on each side. 

Figure 7. Comparison of the average of nine NRCC experimental results (Halliwell et al., 1998) 

with theoretical calculations for a 16+16-90-406 type wall using the equivalent translational 

compliance best fit equations for steel studs in Davy’s (2010) theory. 

Figure 8. The mean differences between the theoretical predictions and the experimental results 

for Davy’s prediction method and the CSTB prediction method. 

Figure 9. The standard deviations of differences between the theoretical predictions and the 

experimental results for Davy’s prediction method and the CSTB prediction method. 
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Figure 10. The maximum and minimum experimental values from 13 United States Gypsum 

sound insulation measurements on a 16-90-610 wall compared with the Davy and CSTB 

prediction methods. 

Figure 11. The ratio of the equivalent translational compliance of O, S, LR, AWS cross sectional 

steel studs to that of TC cross sectional steel studs as calculated by Poblet-Puig et al. (2009). 
























	Article File
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11



