
Thank you for downloading this document from the RMIT
Research Repository.

The RMIT Research Repository is an open access database showcasing
the research outputs of RMIT University researchers.

RMIT Research Repository: http://researchbank.rmit.edu.au/

PLEASE DO NOT REMOVE THIS PAGE

Citation:

https://researchbank.rmit.edu.au/view/rmit:16402

Accepted Manuscript

2011 Operational Research Society Ltd. All rights reserved.

http://dx.doi.org/10.1057/jors.2009.157

Ozlen, M and Azizoglu, M 2011, 'Rescheduling unrelated parallel machines with total flow time and
total disruption cost criteria', Journal of the Operational Research Society, vol. 62, no. 1, pp. 152-164.

RESCHEDULING UNRELATED PARALEL MACHINES

WITH TOTAL FLOW TIME AND

TOTAL DISRUPTION COST CRITERIA

M Özlen1 and M Azizoğlu2*

1 School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia; and

2Department of Industrial Engineering, Middle East Technical University, Ankara, Turkey

In this paper, we consider a rescheduling problem where a set of jobs has already been assigned

to unrelated parallel machines. When a disruption occurs on one of the machines, the affected

jobs are rescheduled, considering the efficiency and the schedule deviation measures. The

efficiency measure is the total flow time, and the schedule deviation measure is the total

disruption cost caused by the differences between the initial and current schedules. We provide

polynomial-time solution methods to the following hierarchical optimization problems:

minimizing total disruption cost among the minimum total flow time schedules and minimizing

total flow time among the minimum total disruption cost schedules. We propose exponential-

time algorithms to generate all efficient solutions and to minimize a specified function of the

measures. Our extensive computational tests on large size problem instances have revealed that

our optimization algorithm finds the best solution by generating only a small portion of all

efficient solutions.

Keywords: Rescheduling; Unrelated Parallel Machines; Efficient Schedules

1 Corresponding Author

Mailing Address: Department of Industrial Engineering,

Middle East Technical University, Ankara 06531, Turkey

Phone: +90 312 210 22 81

Fax: +90 312 210 12 68

E-Mail: meral@ie.metu.edu.tr

mailto:meral@ie.metu.edu.tr
mailto:meral@ie.metu.edu.tr

 2

INTRODUCTION

 The majority of the scheduling literature considers a manufacturing environment with no

disruptions. However in manufacturing practice, the environment is very often subject to

disruptions that make the initial scheduling plan inefficient, or even infeasible and necessitate

rescheduling. Common disruptions are machine breakdowns, hence subsequent repairs, new

order arrivals, order cancellations, changes in order specifications like priorities, release times,

and due dates, and shortages of resources like materials, labor, tools and equipments.

 We consider a parallel machine environment where the machines are subject to

disruptions and where the jobs are initially scheduled so as to minimize the total flow time, i.e.,

the total time the jobs spent in the system. Flow time gives a direct indication of the work-in-

process inventory levels, hence its minimization is an important concern of many manufacturers.

Two generalizations of the total flow time objective are the total weighted flow time and total

tardiness objectives. The total weighted flow time objective assumes different priorities for the

jobs whereas total tardiness objective considers different due dates for the jobs.

We assume that the parallel machine machines are unrelated in the sense that the speeds

of the machines vary by the tasks they process. The unrelated parallel machines fit well to the

manufacturing environments where some machines are specialized for a particular class of jobs

and hence process them at higher speed, whereas some other machines can process another class

of jobs quicker. The uniform parallel machines are the special cases of the unrelated parallel

machines where the speeds of the machines vary, however the speed of a particular machine does

not vary among tasks, i.e., a machine processes all jobs at the same speed. The identical parallel

machines are the special cases of the uniform parallel machines where all machine speeds are

identical. The unrelated parallel machines form the most general, hence the hardest, class of

parallel machines.

We assume that the customer promises are given and the resource allocations are made

according to the initial minimum total flow time schedule. During the execution of the initial

scheduling plan, a disruption blocks the machines for a specified length of time, no matter which

jobs are processed. Thereafter, considering the effect of the disruption, the manufacturer still

aims to minimize the total flow time of the jobs that have not yet started. The current minimum

flow time schedule, i.e., the schedule formed after the disruption, may have different machine

allocations than the initial schedule. It may be desirable to keep these deviations at minimum

level, in particular when the preparations such as machine setups like tool loadings and resource

allocations like labor assignments are made according to the initial scheduling plan and any

 3

change to the plan adversely affects the preparations. As mentioned in Clausen et al. (2001),

such rescheduling problems fall within the scope of the disruption management. Clausen et al.

(2001) reports on the recent developments on the disruption management problems from an

operational point of view and discusses some applications in shipbuilding, airlines and

telecommunications.

We use the total disruption cost as a schedule deviation measure. We call a job disrupted,

if it is assigned to different machines in the initial and current schedules. The disruption costs

are incurred according to the machines on which the jobs are assigned in the current schedule.

The total disruption cost is an important measure, particularly in flexible manufacturing systems

and supply chains. As stated in Olumolade and Norrie (1996), the setup costs are incurred when

the tools and pallets are allocated in advance according to the initial job assignments. Hence

retooling the machines and reallocating the pallets due to the changes in their assigned jobs may

require additional time and may bring additional disruption costs. For each job, these disruption

costs may depend on the machines they are assigned to in the current schedule. The

transportation costs may be incurred while transferring the jobs and their required materials/tools

from the initial machine to the current machine. Hence the locations of the initial and current

machines in the shop floor may affect the disruption costs. Moreover the jobs may have

different setup requirements on different machines, for example some machines may already be

equipped with a subset of the tools, fixtures, labor or equipment required by the disrupted jobs

and some others may not be.

We consider the trade-off between the efficiency of the current schedule, measured by the

total flow time and the schedule deviation measured by the total disruption cost caused by the

differences between the initial and current machine allocations. Hence we can classify our

disruption management, i.e., rescheduling, problem as a multi-criteria problem where both

efficiency and schedule deviation measures are explicitly included in the model.

An important contribution of our paper is the design of an optimization algorithm for

finding an optimal solution for a general non-decreasing function of the total flow time and total

disruption cost criteria. The models that we are considering are integer programs which suggest

that any optimization procedure will run into computational troubles at some point as the

problem size increases. There is, however, the practical question concerning the sizes of the

problem that are solvable in reasonable amount of time. Our computational results suggest that

the answer to this question for our algorithm is 80 jobs and 12 machines. Hence our algorithm

can serve as useful tool to solve large sized practical problems.

 4

The rest of the paper is organized as follows. First, we review the rescheduling literature

that is pertinent to our work. Next, we introduce the basic definitions, notation, and define our

problems. After that, we present the optimization algorithms for each problem discussed. The

results of our experiments are presented next. And finally, we present our conclusions and

discuss some possible directions for future research.

LITERATURE REVIEW

The literature on rescheduling studies is of relatively recent origin. For a thorough review of the

area we refer readers to Aytug et al. (2005) and Vieira et al. (2003). Wu et al. (1993), Daniels

and Kouvelis (1995), Ünal et al. (1997), O’Donovan et al. (1999), Hall and Potts (2004) and Qi

et al. (2006) study some rescheduling problems on single machines. Wu et al. (1993) consider

minimizing the makespan and the deviation of the job start times between the initial and current

schedules. Daniels and Kouvelis (1995) develop schedules that are robust to the future

disruptions and processing time variability. Ünal et al. (1997) consider the insertion problem of

the new jobs with part-type dependent setup times. They aim to minimize the total weighted flow

time and makespan while preserving the relative sequence of the initial jobs and incurring no

additional setups. O’Donovan et al. (1999) apply a predictive approach to the total tardiness

problem where the processing times are affected by the machine failures. Hall and Potts (2004)

consider inserting the new jobs in a schedule with small disruption of the old jobs. They consider

the maximum lateness and total flow time as efficiency measures and the sequence deviation and

total completion time deviation between the initial and current schedules as schedule deviation

measures. They either provide efficient algorithms or show that such algorithms are unlikely to

exist. Recently Qi et al. (2006) give an overview of the disruption management in machine

scheduling and concentrate on the single machine problems for which the shortest processing

time rule is optimal for their efficiency measures.

 There are a number of rescheduling studies in parallel identical machine environments.

The most note-worthy of these studies are due to Church and Uzsoy (1992), Bean et al. (1991),

Leung and Pinedo (2004), Alagöz and Azizoğlu (2003), Azizoğlu and Alagöz (2005), Curry and

Peters (2005) and Özlen and Azizoğlu (2008). Church and Uzsoy (1992) consider single

machine and parallel identical machine environments to minimize maximum lateness and the

number of times rescheduling is done. They provide a simulation study to test the efficiencies of

some strategies like periodic, event-driven and continuous rescheduling. Bean et al. (1991)

propose an algorithm that enables the current schedule to match-up with the initial schedule, at

 5

some future time. Leung and Pinedo (2004) consider an environment where the machines are

subject to breakdowns and subsequent repairs, and the jobs are dependent and have deadlines.

They aim to minimize the total flow time, makespan and maximum lateness. Alagöz and

Azizoğlu (2003) and Azizoğlu and Alagöz (2005) address the trade-off between the total flow

time and number of disrupted jobs. Azizoğlu and Alagöz (2005) develop a polynomial time

algorithm to generate all non-dominated solutions, whereas Alagöz and Azizoğlu (2003)

consider eligibility constraints and propose approximation and optimization algorithms. Recently

Curry and Peters (2005) consider the total disruption cost as a schedule deviation measure and

total tardiness as an efficiency measure. They propose a simulation study to test the performance

of some heuristic procedures and rescheduling strategies. Ozlen and Azizoğlu (2008) develop a

branch and bound algorithm to generate all efficient solutions with respect to the total flow time

and total disruption cost criteria.

 A number of rescheduling studies consider multi-stage environments, the most

noteworthy of which are Aktürk and Görgülü (1999) and Li and Shaw (1996) on flow shops and

Raheja and Subramaniam (2002), Mason et al. (2004) and Abumaizar and Svetska (1997) on job

shops. Recently, Lim and Xu (2009) study a rescheduling problem on automated assembly lines.

In this study we consider a rescheduling problem on unrelated parallel machine

environments that addresses the trade-off between the total flow time and the total disruption

cost or the number of disrupted jobs criteria. To the best of our knowledge there is a unique

rescheduling study for unrelated parallel machine environments which is due to Ozlen and

Azizoğlu (2008) who generate all efficient solutions with respect to the total flow time and the

total disruption cost criteria whereas we optimize any nondecreasing function of these two

criteria.

PROBLEM DEFINITION

We consider a manufacturing environment with m unrelated parallel machines. We

assume all jobs are available at time zero, and each should be assigned to one of the machines,

and processed without interruption. Each job i is characterized by an integer processing time pij

time units on machine j.

We assume that the initial schedule is known. There are disruptions of specified time

units on some of the machines after executing the initial schedule for DT time units. At time DT,

the jobs that are being processed on disrupted machines, and the jobs that start on or after DT on

non-disrupted machines are to be rescheduled. The job that is being processed on any disrupted

 6

machine at time DT requires all its processing to be done again on its new machine. We assume

there are n such jobs. Once we take the reference starting point from time zero to DT, our

rescheduling problem reduces to scheduling n jobs, available at time zero, on m unrelated

parallel machines where machine j becomes available at time aj. Accordingly aj is either the

time at which the machine is unavailable due to the disruption or the completion time of the job

in process at time DT. We assume DT, and aj are integers.

The scheduling cost, that defines our efficiency measure, is the total flow time, F. The

total flow time is the total time the jobs spent in the system and therefore is the direct indication

of total work-in-process inventory levels. As we assume all zero ready times, the total flow time

and total completion time are equivalent measures. If we let Ci denote the completion time of

job i in the current schedule, the total flow time,
1

n

i

i

F C
=

= .

We call a job disrupted if it is assigned to different machines in the initial and current

schedules by different machines. Our schedule deviation measures are the number of disrupted

jobs and total cost incurred over all disrupted jobs, i.e., total disruption cost.

We let
1 if job is disrupted

0 otherwise
i

i
R

=

 .

The number of disrupted jobs, ND, is
1

n

i

i

R
=

 .

We let wnij be the integer disruption cost due to reassigning job i to machine j. In other

words, wnij is the disruption cost incurred when job i is reassigned to machine j due to the

additional set-up, adjustment, tooling, material/labor shifting, etc.. We assume wnij is zero if

job i is assigned to machine j in the initial schedule, i.e., if it is not disrupted.

The total disruption cost, WND, is
iiMi

wn where Mi is the current machine of job i.

A schedule S is said to be efficient with respect to F and ND (WND) if there exists no

schedule S′ with F(S′) ≤ F(S) and ND(S′) ≤ ND(S) (WND(S′) ≤ WND(S)) with at least one strict

inequality.

The standard classification scheme for scheduling problems use three-field representation

| | where α is the machine environment, β specifies the constraints or special

characteristics of the problem and γ is the objective function (see Lawler et al. (1989)). We

consider unrelated parallel machines and hence set α = R. When the parallel machines are

identical, i.e., pi j= pi for all i and j, we set α = P. We have initial machine available times

denoted by aj in the β field. Moreover, we use the following constraints:

 7

β : F = F* : total flow time should be kept at its minimum value

β : WND = WND* : total disruption cost is kept at its minimum value

β : ND = ND* : total number of disrupted jobs is kept at its minimum value

β : F ≤ k : total flow time can be at most k

β : WND ≤ k : total disruption cost is at most k

β : ND ≤ k : total number of disrupted jobs is at most k

We consider F, WND, ND as efficiency and schedule deviation measures, hence we set

γ : F, WND : generating a set of efficient schedules with respect to F and WND

γ : F, ND : generating a set of efficient schedules with respect to F and ND

γ : f (F, WND) : finding an optimal schedule of a specified function of F and WND

γ : f (F, ND) : finding an optimal schedule of a specified function of F and ND

SOLUTION PROCEDURES

In this section, we provide solution procedures to the unrelated parallel machine

problems we discussed in the previous section.

 The | |
j

R a F problem

Kaspi and Montreuil (1988) show that the | |jP a F problem can be solved in polynomial

time by assigning the shortest available job to the earliest available machine. Lee and Liman

(1992) and Mosheiov (1994) study the more general case of the | |jP a F problem where the

machines are unavailable at arbitrary, but not necessarily initial, times. Lee (1996) and Lee and

Chen (2000) consider the weighted version of the identical parallel machine flow time problem

with arbitrary machine unavailable times. The arbitrary machine unavailable times on unrelated

parallel machines are considered in several studies including Suresh and Chandhuri (1996),

Yaghubian et al. (1999), Logendran and Subur (2004), and Logendran et al. (2005).

A special case of the | |jR a F problem where pi j = pi or ∞ for all i and j, is formulated as

an assignment problem in Alagöz and Azizoğlu (2003). We now extend this formulation to the

arbitrary pij case.

Our decision variable is defined as

1 if job is the last job on machine
:

0 otherwise

th

ikj

i k j
X

 8

The objective function requires the minimization of the total flow time values, i.e.,

Min
1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ (1)

kpij is the contribution of the processing time of job i to the total flow time if sequenced at the kth

position from last on machine j and aj is the start time of the first job on machine j.

The constraint sets are as stated below:

1 1

1
n m

ikj

k j

X
= =

= i (2)

1

1
n

ikj

i

X
=

 j, k (3)

 0,1ikjX i, j, k (4)

 Constraint sets (2) and (3) ensure that each job is scheduled exactly once and each

position of each machine is occupied by at most one job. Constraint set (4) requires binary

assignments. This is a weighted bipartite matching problem, so that the integrality constraints

can be replaced by nonnegativity constraints without altering the feasible set (see Lawler

(1989)).

 The | |
j

R a ND and | |
j

R a WND problems

The | |jR a ND and | |jR a WND problems can be formulated as assignment models with

the constraint sets (2), (3) and (4) and the following objective function

Min
1 1 1

n n m

ij ikj

i k j

wn X
= = =

 (5)

The objective function expressed in (5) requires the minimization of the total disruption

cost. It reduces to minimizing the number of disrupted jobs when all wnij values are either 0 or 1.

The optimal solutions to the | |jR a ND and | |jR a WND problems can be found by

applying the right-shift strategy to the initial schedule. The right-shift strategy shifts all jobs on

disrupted machines, aj time units to the right on the time-axis, while keeping the other job

assignments same. The resulting schedule is optimal for both problems, as it has no disrupted

jobs and zero total disruption cost, that is, as the ND and WND values are at their minimum

 9

possible values of zero. The F values that solve | |jR a ND and | |jR a WND problems, i.e., F

values of the right-shift schedules, give upper bounds on the F values of all efficient schedules.

 The
*| , |

j
R a F F WND= and

*| , |
j

R a F F ND= problems

The
*| , |jR a F F ND= and

*| , |jR a F F WND= problems are singly-constrained

assignment models. The additional single constraint to the assignment model (defined by the

constraint sets (2), (3) and (4)) is expressed as follows:

F = F* ≡
1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ = F*

The objective function of the
*| , |jR a F F WND= problem is to minimize the total

disruption cost, i.e., Min
1 1 1

n n m

ij ikj

i k j

wn X
= = =

 (expression (5)). The function reduces to ND when

all wnij values are either 0 or 1.

Note that, F*, i.e., the F value that solves the | |jR a F problem, gives a lower bound on

the F values of all efficient solutions. However the resulting schedule may not be efficient as

there may exist alternate optimal schedules to the | |jR a F problem having smaller WND

values. Among the alternate optimal schedules to the total flow time problem, the one that has

the smallest WND value, hence the efficient schedule requires an exact solution of the

| , |jR a F F WND= problem. In place of incorporating F = F to our assignment model, we can

modify the objective function as F + WND WND, for a sufficiently small value of WND > 0.

Theorem 1 states this result formally and defines a range for WND.

Theorem 1. The
*| , |jR a F F WND= and | |j WNDR a F WND+ problems are equivalent when

 WND <

1

1

{ }
n

j ij

i

Max wn
=

.

Proof. WND should be set small enough so that the total flow time value should not increase

even for the largest possible value of the total disruption cost. That is F*+ WNDWNDUB < F*+1

 10

should hold. This follows WNDWNDUB < 1, i.e, WND <
1

UBWND
. The maximum possible value

of the total disruption cost is
1

{ }
n

j ij

i

Max wn
=

 . Hence WND<

1

1

{ }
n

j ij

i

Max wn
=

 should hold. ▄

When wnij = 0 or 1 for all i and j, i.e, the number of disrupted jobs is of concern,

then WND= ND <
1

n
, as Maxj{wnij}=1 for all i. In our experiments, we use ND =

1

1n+
 and

 WND=

1

1

{ } 1
n

j ij

i

Max wn
=

+
 for the | |j NDR a F ND+ and | |j WNDR a F WND+ problems

respectively.

 The
*| , |

j
R a ND ND F= and

*| , |
j

R a WND WND F= problems

The
*| , |jR a ND ND F= and

*| , |jR a WND WND F= problems are both singly-

constrained assignment problems. ND* and WND* are the ND and WND values that solve the

| |jR a ND and | |jR a WND problems respectively.

The additional single constraint to the assignment model (defined by constraint sets (2),

(3) and (4)) is expressed as follows:

WND = WND* ≡
1 1 1

n n m

ij ikj

i k j

wn X
= = =

 = WND*

The above constraint reduces to ND=ND* when all wnij values are either 0 or 1.

The objective function of the problems is to minimize the total flow time, i.e., Min

1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ (expression (1)).

The right-shift schedule solves the
*| , |jR a ND ND F= problem, as it produces an ND

value of zero and all other schedules produce at least one disrupted job, i.e., ND ≥ 1.

When wnij is zero, even when machine j is not the initial machine of job i, there can be a

schedule, other than the right-shift schedule, having a WND value of zero and an F value that is

smaller than that of the right-shift schedule. The efficient schedule having smallest F value,

among the ones having zero WND value, can be found by solving the
*| , |jR a WND WND F=

problem. Instead of treating WND=WND* constraint, one can modify the objective function as

 11

WND + F F for a sufficiently small value of F. Theorem 2 states this result formally and

defines a range for F.

Theorem 2. The
*| , |jR a WND WND F= and | |j FR a WND F+ problems are equivalent when

 F <
1

UBF
where FUB is an upper bound on the F values of all efficient solutions.

Proof. F should be set small enough so that WND* + F FUB < WND* + 1 should hold. That is

the total disruption cost should not increase even for the largest possible value of the total flow

time. Hence FFUB < 1, i.e, F <
1

UBF
. ▄

In our experiments we use F =
1

1UBF +
where FUB is the F value that solves the

| |jR a WND problem.

 The constrained optimization problems

The | , |j WNDR a WND k F WND + , | , |j FR a F k WND F + , | , |j NDR a ND k F ND +

and | , |j FR a F k ND F + are all singly-constrained assignment problems. The additional

single constraints to the assignment model (defined by constraint sets (2), (3) and (4)) are

expressed below:

 WND ≤ k ≡
1 1 1

n n m

ij ikj

i k j

wn X
= = =

 ≤ k

WND ≤ k reduces to ND ≤ k when all wnij values are either 0 or 1.

F ≤ k ≡
1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ ≤ k

The objective functions of the | , |j WNDR a WND k F WND + , | , |j FR a F k WND F + ,

| , |j NDR a ND k F ND + and | , |j FR a F k ND F + problems are minimizing

1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ + WND

1 1 1

n n m

ij ikj

i k j

wn X
= = =

 ,
1 1 1

n n m

ij ikj

i k j

wn X
= = =

 + F

1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ ,

 12

1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ + ND

1 1 1

n n m

ij ikj

i k j

wn X
= = =

 and
1 1 1

n n m

ij ikj

i k j

wn X
= = =

 + F

1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+

respectively.

 When the coefficients of the additional constraints are all 0 or 1, the singly-constrained

assignment problem is an open problem (See Aggarwal (1985)), so is the

| , |j NDR a ND k F ND + problem. For arbitrary coefficients, the singly-constrained

assignment problem is NP-Hard so are the | , |j FR a F k ND F + ,

| , |j WNDR a WND k F WND + and | , |j FR a F k WND F + problems.

 We generate the efficient schedules through the Procedure 1 below by varying k between

WNDLB and WNDUB.

Procedure 1. Finding All Efficient Schedules

Step 0. Solve the

1

1
| |

{ } 1
j n

j ij

i

R a F WND

Max wn
=

+

+
 problem and form a right-shift schedule.

WNDLB = WND value of the right-shift schedule = 0

WNDUB = WND value that solves the

1

1
| |

{ } 1
j n

j ij

i

R a F WND

Max wn
=

+

+
problem

Let k = WNDUB – 1

Step 1. Solve the

1

1
| , |

{ } 1
j n

j ij

i

R a WND k F WND

Max wn
=

 +

+
 problem.

 Let (F’, WND’) be the solution.

Step 2. If WND’=WNDLB then STOP.

 k = WND’ - 1

 Go to Step 1

 Alternately, we could solve the | , |j FR a F k WND F + problem and vary k between

FLB and FUB.

 Note that each step of Procedure 1 generates an efficient solution. The | | ,jR a F WND

problem has at most { 1, 1}UB LB UB LBMin F F WND WND− + − + , i.e., pseudo-polynomial number of

efficient solutions. The | | ,jR a F ND problem has at most n + 1, i.e., polynomial number of

 13

efficient solutions, as NDUB ≤ n and NDLB = 0 follows { 1, 1} 1UB LB UB LBMin F F ND ND n− + − + + .

Hence the algorithm iterates pseudo-polynomial and polynomial number of times for WND and

ND measures, respectively. Each iteration requires a solution of a singly-constrained assignment

problem for which no polynomial algorithm exists for ND and cannot exist for WND measures.

 The | | (,)
j

R a f F WND and | | (,)
j

R a f F WND problems

In this section, we address the problem of finding an optimal solution for a specified

general non-decreasing function of F and WND.

When, the function, f, is a linear function of F and WND then one can use an assignment

model (defined by the constraint sets (2), (3) and (4)) and the following objective function,

 Min w1F + w2WND ≡ Min w1
1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ + w2
1 1 1

n n m

ij ikj

i k j

wn X
= = =

and find an optimal solution in polynomial time.

When f is non-linear, finding an optimal solution to our assignment model would not be

possible by available mathematical programming solvers. For non-linear f, one can generate all

efficient solutions and select the one that minimizes the objective function value. However such

an approach may not be time-efficient as each generation requires a solution of a singly-

constrained assignment problem in exponential time. To overcome this difficulty, we develop an

optimization algorithm that implicitly generates all efficient solutions. We start with the two

extreme efficient schedules whose F and WND values provide upper and lower limits on F and

WND values of all efficient schedules. In each iteration, we generate an efficient schedule by

setting an upper limit on the F and WND values of any schedule that can improve the best known

solution, namely fBEST. By setting these limits, we eliminate some efficient schedules that cannot

lead to an optimal solution. Kondakci et al. (1996) use the idea of putting upper limits on one

criterion for their bicriteria single machine scheduling problem.

 Moreover, we set lower limits on the F and WND values by solving the LP relaxations of

the singly-constrained assignment problem. If the f value found by setting the lower limits is no

smaller than fBEST, then we terminate by recording the optimality of the best known schedule.

 To find an initial fBEST, we solve an assignment problem having an objective function of

(1)

UB LB UB LB

w w
Min F WND

F F WND WND

−
+

− −
 for w=0.1, 0.5, 0.9 and get at most three distinct

schedules. We also consider the f values of the two extreme efficient schedules. The smallest f

value among five resulting schedules is used as an initial fBEST. We update fBEST whenever a

 14

feasible schedule with smaller f value is reached. Procedure 2, below, is the stepwise description

of our approach.

Procedure 2. Finding an Optimal Solution

Step 0. Solve the

1

1
| |

{ } 1
j n

j ij

i

R a F WND

Max wn
=

+

+
 problem and form a right-shift schedule.

 Let FLB = F value that solves the

1

1
| |

{ } 1
j n

j ij

i

R a F WND

Max wn
=

+

+
 problem.

 FUB = F value of the right-shift schedule

WNDLB = WND value of the right-shift schedule, i.e., zero

WNDUB = WND value that solves the

1

1
| |

{ } 1
j n

j ij

i

R a F WND

Max wn
=

+

+
 problem

Solve the
(1)

| |j

UB LB UB LB

w w
R a F WND

F F WND WND

−
+

− −
problem with w=0.1, 0.5, 0.9.

Let the solution be (Fw, WNDw) for a specified w value.

fBEST = Min{f(FLB,WNDUB), f(FUB,WNDLB), f(F0.1,WND0.1), f(F0.5,WND0.5), f(F0.9,WND0.9)}

Step 1. If f(FLB, WNDLB) ≥ fBEST then STOP.

Find WNDa that solves f(FLB, WNDa) = fBEST.

WNDUB = 1aWRJ −

If WNDUB ≤ WNDLB then STOP.

Solve the LP Relaxation of the | , |j UB WNDR a WND WND F WND + problem.

Let (F’, WND’) be the solution.

FLB = 'F

If f(FLB, WNDLB) ≥ fBEST then STOP.

If the resulting solution is integer then

fBEST = Min {fBEST , f(F’, WND’)}

WNDUB = WND’-1

 If WNDUB ≤ WNDLB then STOP

Go to Step 3

Step 2. Find Fa value that solves f(Fa, WNDLB) = fBEST..

FUB = 1aF −

If FUB ≤ FLB then STOP.

 15

Solve the LP Relaxation of the | , |j UB FR a F F WND F + problem.

Let (F’, WND’) be the solution.

WNDLB = 'WND

If f(FLB, WNDLB) ≥ fBEST then STOP.

If the resulting solution is integer then

fBEST = Min {fBEST , f(F’, WND’)}

FUB = F’-1

If FUB ≤ FLB then STOP

Go to Step 1

Step 3. Solve the | , |j UB WNDR a WND WND F WND + problem.

Let (F’, WND’) be the solution.

FLB = F’ + 1

WNDUB = WND’ -1

If FUB ≤ FLB or WNDUB ≤ WNDLB then STOP.

fBEST = Min {fBEST , f(F’, WND’)}

Solve the | , |j UB FR a F F WND F + problem.

Let (F’, WND’) be the solution.

WNDLB = WND’+1

FUB = F’-1

 If FUB ≤ FLB or WNDUB ≤ WNDLB then STOP.

fBEST = Min {fBEST , f(F’, WND’)}

Go to Step 1

Note that we assume a single disruption or multiple disruptions occurring at the same

time. When another disruption occurs, we have a new rescheduling problem and can use the

same procedures. Hence each disruption can be handled in turn.

COMPUTATIONAL EXPERIENCE

We conducted a computational experiment to assess the efficiency of our algorithms. We

generate random problem instances having n = 40, 60 and 80 jobs and m = 4, 8 and 12 machines.

The job processing times, pij values, are drawn from two discrete uniform distributions between

[1,100] and [50,100]. The disruption costs, wnij values, are drawn from two discrete uniform

 16

distributions between [1,60] and [30,60]. The U[1,60] distribution has lower wnij values, hence

the number of efficient solutions is likely to be lower and the range of the efficient solutions is

likely to be narrower. We assume a disruption of duration, D, on the first machine. D is set to

three levels: Long (L), Medium (M) and Short (S). For level L, D is set to the completion time of

the last job on the disrupted machine in the initial schedule. Level M is set to the half of the

duration of level L. Level S is set to the half of the duration of level M.

Our algorithm is applicable to all non-decreasing and non-linear functions of F and WND.

To test the performance of our algorithm we adapted the following two non-linear, non-

decreasing functions of F and WND from Kondakci et al. (1996). Note that the F and WND

values may have significantly different magnitude, hence we scaled between [0,1].

2 2

1 (1)LB LB

UB LB UB LB

F F WND WND
f w w

F F WND WND

 − −
= + −

− −

8 8

2 (1)LB LB

UB LB UB LB

F F WND WND
f w w

F F WND WND

 − −
= + −

− −

 We refer to f1 and f2 as quadratic and quasi-chebyschev functions respectively. For each

function, we set w to 0.1, 0.5, and 0.9. Ten problem instances are generated for each combination

of the parameter values. We conducted the experiment on a PC with Intel Pentium 4 2.8 Ghz

processor and 1 GB of RAM running under Linux, specifically Fedora Core 4, operating system.

We implemented our optimization algorithm in C, compiled with GCC 4.0.1 and utilized

Borland C++BuilderX 1.0 as the development environment. We solved our integer and linear

programming models using CPLEX 8.1.1.

 Tables 1, 2 and 3 report the average number of the efficient solutions and average

percentage of the efficient solutions searched by our algorithm when n = 40, 60 and 80

respectively. The tables also include the average CPU times in seconds for finding all efficient

solutions using Procedure 1 and the average CPU time spent by our optimization algorithm,

Procedure 2.

 INSERT TABLES 1, 2, and 3 HERE

Table 4 reports the same statistics for the number of the disrupted jobs problem, i.e., the

disruption cost is set to 1 on all machines, except the initial machine where it is zero. The table

includes the results when n = 60 and 80 jobs and D = L and M.

 17

 INSERT TABLE 4 HERE

 It can be observed from the tables that the number of the efficient solutions increases as n

increases. An increase in the difficulty of attaining the efficient solutions is much more

pronounced than an increase in the number of the efficient solutions. This is due to the fact that

as n increases the number of the integer variables used in our models increases considerably,

which in turn increases the solution times of the integer programs.

 For fixed n, the average number of efficient solutions and the CPU times of attaining

these solutions are not always proportional. For example, when n = 60, m = 12, pij ~ U[50,100],

wnij ~ U[30, 60] and the disruption duration is long, 39.6 efficient solutions are obtained in

154.8 CPU seconds on average. For the same n, when m = 8, pij ~ U[50,100], wnij ~ U[1, 60] and

the disruption duration is long, more efficient solutions is obtained in smaller CPU times (44.9

solutions are generated in 84.1 CPU seconds) on average. This may be due two reasons: first, as

m increases the number of the integer variables increases, thereby increasing the solution times

of the integer programs. Second, some integer solutions are obtained very quickly in particular

when the optimal LP solutions return many integer variables.

 For all problem combinations, when the disruption duration is longer, there are more

efficient solutions. This is because the jobs on the disrupted machine in the initial schedule are

likely to be placed on the non-disrupted machines in the current schedule, thereby increasing the

number of disruption choices. For m = 4, pij ~ U[1,60] and wnij ~ U[1, 60] , n= 40 combination,

there are 28.5, 11.5 and 4.3 efficient solutions when the disruption durations are at levels L, M

and S, respectively. For the same combination, but with 60 jobs, there are 60.3, 23.2 and 8.7

efficient solutions, and with 80 jobs, there are 91.3, 28.3 and 10.7 efficient solutions, when the

disruption durations are set to L, M and S respectively. The average number of the efficient

solutions generated increase, but the percentages of the efficient solutions decrease, when the

disruption durations get longer. For example when the average number of efficient solutions is

91.3, 9.1 % (hence 8.3 efficient solutions) is generated and when there are 10.7 efficient

solutions on average, 51.5 % (hence 5.5 efficient solutions) is generated.

 Moreover when pij and wnij values are higher, i.e., pij ~ U[50,100] and wnij ~ U[30, 60],

the number of efficient solutions is higher, as the range of the efficient solutions is wider. When

the disruption costs are either 0 or 1, the integer programs are solved very quickly and in many

cases the optimal LP relaxations return all integer values. As can be observed from Table 4,

where wnij values are either 0 or 1, the average number of efficient solutions is smaller, and on

average the CPU times of attaining those solutions are much lower.

 18

 In general, for all parameter combinations and both objective function types, the

optimization algorithm finds the optimal schedule by generating only a small percentage of all

efficient solutions. The higher percentages are associated to the cases with smaller number of

efficient solutions. Hence, for those instances, the number of efficient solutions generated is also

very small. Note that when n=80, the percentages are lower as the number of efficient solutions

is higher.

The results on all tables reveal that our algorithm solves all instances in much smaller

CPU time than that of spent in generating all efficient solutions.

CONCLUSIONS

In this study, we have addressed a rescheduling problem on unrelated parallel machines.

We consider the trade-off between the efficiency of the current schedule, measured by the total

flow time and the schedule deviation measured by the total disruption cost caused by the

differences between the initial and current machine allocations. Hence we can classify our

disruption management, i.e., rescheduling, problem as a multi-criteria problem where both

efficiency and schedule deviation measures are explicitly included in the models.

We provide polynomial-time solution methods to the following hierarchical optimization

problems: minimizing total disruption cost among the schedules with minimum total flow time

and minimizing total flow time among the schedules with minimum total disruption cost. We

propose an exponential-time algorithm for finding an optimal solution for a general non-

decreasing function of the total flow time and total disruption cost criteria. Our computational

runs on large sized problem instances revealed that our optimization algorithm generates only a

small percentage of all efficient solutions and solves the instances in much smaller CPU time

than that of spent in generating all efficient solutions. We could solve problems with up to 80

jobs and 12 machines in reasonable times. We hope our algorithm will serve as a useful tool for

the practitioners who need to solve large sized problem instances and who are interested in

reducing the schedule performance while keeping the assignments not too far from the initial

plans.

The models we have studied represent a growth area in the rescheduling literature. Our

results can be extended to the multi-stage scheduling problems that reside on unrelated parallel

machines in each stage. Another interesting research extension might be addressing more

general efficiency measures, like weighted flow time and total tardiness.

 19

REFERENCES

Abumaizar R J and Svestka J A (1997). Rescheduling job shops under random disruptions, Int J

Prod Res 35: 2065-2082.

Aggarwal V (1985). A lagrangean-relaxation method for the constrained assignment problem.

Comp Oper Res 12: 97-106.

Aktürk M S, Görgülü E (1999). Match-up scheduling under a machine breakdown. Euro J Oper

Res 112: 81-97.

Alagöz O and Azizoğlu M (2003). Rescheduling of identical parallel machines under machine

eligibility constraints. Euro J Oper Res 149: 523-532.

Aytug H, Lawley M A, McKay K, Mohan S and Uzsoy R (2005). Executing production

schedules in the face of uncertainties: a review and some future directions. Euro J Oper Res 161:

86-110.

Azizoğlu M and Alagöz O (2005). Parallel machine rescheduling with machine disruptions. IIE

Trans 37: 1113-1118.

Bean J C, Birge J R, Mittenthal J, and Noon C E (1999). Matchup scheduling with multiple

resources, release dates and disruptions. Oper Res 39: 470-483.

Church L K and Uzsoy R (1992). Analysis of periodic and event-driven rescheduling policies in

dynamic shops. Int J Comp Integ M 5: 153-163.

Clausen J, Hansen J, Larsen J and Larsen A (2001). Disruption management. ORMS Today 28:

40-43.

Curry J and Peters B (2005). Rescheduling parallel machines with stepwise increasing tardiness

and machine assignment stability objectives. Int J Prod Res 43: 3231-3246.

Daniels R L and Kouvelis P (1995). Robust scheduling to hedge against processing time

uncertainty in single stage production. Manage Sci 41: 363-376.

Hall N G, and Potts C N (2004). Rescheduling for new orders. Oper Res 52: 440-453.

Kaspi M and Montreuil B (1988). On the scheduling of identical parallel processes with

arbitrary initial processor available time, Research Report 88-12, School of Industrial

Engineering, Purdue University.

Kondakci S, Azizoglu M and Koksalan M (1996) Note: Bicriteria scheduling for minimizing

flow time and maximum tardiness. Nav Res Logist 43: 929-936.

Lawler E L, Lenstra J K, Rinnooy Kan A H G and Shmoys D B (1989). Sequencing and

scheduling: algorithms and complexity, Reports BS-R8909, Centre for Mathematics and

Computers Science, Amsterdam.

 20

Lee C Y (1996). Machine scheduling with an availability constraint. J Glob Opt 9: 395-416.

Lee C Y and Chen Z L (2000). Scheduling jobs and maintenance activities on parallel machines.

Nav Res Logist 47: 929-936.

Lee C Y, and Liman S D (1992) Single-machine flow-time scheduling with scheduled

maintenance. Acta Inform 29: 375-382.

Leung J Y-T, and Pinedo M (2004). A note on scheduling parallel machines subject to

breakdown and repair. Nav Res Logist 51: 60-71.

Li E., and Shaw W (1996). Flow-time performance of modified-scheduling heuristics in a

dynamic rescheduling environment, Comp Ind Eng 31: 213 - 216.

Lim A., and Xu Z (2009). Searching optimal resequencing and feature assignment on an

automated assembly line, J Oper Res Soc 60: 361 - 371.

Logendran R, McDonell B and Smucker B (2005). Unrelated parallel machine scheduling with

sequence-dependent set-ups, IIE Ann Conf Exp.

Logendran R, and Subur F (2004). Unrelated parallel machine scheduling with job splitting. IIE

Trans 36: 359-372.

Mason S J, Jin S and Wessels C M (2004). Rescheduling strategies for minimizing total

weighted tardiness in complex job shops. Int J Prod Res 42: 613-628.

Mosheiov G (1994). Minimizing the sum of job completion times on capacitated parallel

machines. Math Comp Mod 20: 91-99.

O’Donovan R, Uzsoy R and McKay K N (1999). Predictable scheduling of a single machine

with breakdowns and sensitive jobs. Int J Prod Res 18: 4217-4233.

Olumolade M O and Norrie D H (1996). Reactive scheduling system for cellular manufacturing

with failure-prone machines. Int J Comput Integr Manufact 9: 131-144.

Qi X T, Bard J R and Yu G (2006). Disruption management for machine scheduling: the case of

SPT schedules. Int J Prod Econ 103: 166-184.

Ozlen M and Azizoğlu M (2008). Generating all efficient solutions of a rescheduling problem on

unrelated parallel machines. Int J Prod Res, forthcoming.

Raheja A S and Subramaniam V (2002). Reactive recovery of job shop schedules – A review. Int

J Adv Man Tech 19: 756-763.

Suresh V and Chaudhuri D (1996). Scheduling of unrelated parallel machines when machine

availability is specified. Prod Plan Cont 7: 393-400.

Ünal A T, Uzsoy R and Kıran A S (1997). Rescheduling on a single machine with part-type

dependent setup times and deadlines. Annals Oper Res 70: 93-113.

 21

Vieira G E, Herrmann J W and Edward L (2003). Rescheduling manufacturing systems: a

framework of strategies, Policies and Methods. J Sch 6: 39-62.

Wu S D, Storer R H and Chang P C (1993). One-machine rescheduling heuristics with efficiency

and stability as criteria. Comp Oper Res 20: 1-14.

Yaghubian A R, Hodgson T J, Joines J A, Culbreth C T and Huang J C (1999). Dry kiln

scheduling in furniture production. IIE Trans 31: 733-738.

 22

 23

 24

 25

 26

Table Captions

Table 1. Results for Total Disruption Cost, n=40 (average of 10 instances)

Table 2. Results for Total Disruption Cost, n=60 (average of 10 instances)

Table 3. Results for Total Disruption Cost, n=80 (average of 10 instances)

Table 4. Results for the Number of Disrupted Jobs, n=40 (average of 10 instances)

