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Abstract 

The rise in ubiquity of radiofrequency (RF) wireless communication technologies has 

been accompanied by public concern regarding safety of their use.  

Guidelines provided by expert bodies agree that limiting thermal rise in humans and 

other animals due to RF exposure provides protection from negative health effects. 

Measuring localised temperature changes in living bodies, however, especially in 

sensitive tissues such as brains and eyes, is difficult and dangerous to life.  

Physical or numerical models of humans are used instead. Compliance with safety 

standards for RF emitting devices is measured in a metric known as SAR (Specific 

Energy Absorption Rate) which describes energy absorption in tissue; this in turn may 

be quantified as thermal effect.  

How best to model humans for accurate SAR estimates remains an open question. 

Much work has been done over the years, attempting to quantify which and how 

anatomic parameters such as tissue morphology, size, dielectric properties and 

relative location, affect energy absorption; and how to incorporate those parameters 

into models that provide conservative SAR estimates protecting all individuals.  

Since the available models are either highly representative and complex or simple 

single tissue models, this issue is not easily explored, since the identified parameters 

are not easily varied within the models. Limitations of current methods include: the 

insufficiently-tested assumption that Caucasian adult male models provide 

conservative SAR estimates for all populations; wide disparity in modelling and 

measurement techniques when testing effect of anatomic variations on SAR; and the 

use of a handful of morphologically accurate models to examine effect of anatomic 

variations on energy distribution, with the implication that a randomly chosen 

individual will provide sufficient information regarding the spread of human 

anatomical variation. 
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Taking advantage of the maturity of current computational tools, attempts have been 

made here to overcome these limitations by: 

 creating a unique alternative model of the human head, incorporating a reduced 

set of tissues in a semi-homogeneous, simplified geometry for which the key 

parameters may be varied parametrically 

 validating the computational model using simplified physical models of human 

heads, custom made for this purpose 

 gathering data from literature regarding what variations exist in human 

populations for two tissue parameters 

 systematically testing what relationships exist between several anatomic variations 

in adult humans and consequent energy absorption due to RF exposure at 900 

MHz, namely: cranial thickness; skin thickness; head size; and dielectric properties 

of tissues. 

Some of the assumptions behind current compliance methodologies have been 

tested for appropriateness. Results indicate that at the range of normal human 

variation, cranial thickness and skin thickness of the head do not significantly affect 

magnitude or distribution of energy absorption, but that their inclusion in models is 

vital for accurate SAR estimation; that dielectric properties of certain tissues affect 

magnitude and distribution of SAR more than others; and that smaller head sizes 

increase SAR in this model.  

Overall, results suggest that SAR predictions could not have been anticipated using a 

priori reasoning, as location and magnitude of SAR maxima were seen to alter in 

unexpected and irregular ways with variations in tissue parameters. A compromise 

model like the one proposed here, which provides a point of diminishing returns 

between the high complexity of the multi-tissue models and the single-tissue 

homogeneous model, allows increased granularity for determination of SAR maxima 

in sensitive tissues.  

Results of this work provide some inroads into establishing the level of complexity 

necessary for simulating human heads for radiofrequency exposure compliance 

calculations. Relationships between magnitude and location of regions of high SAR in 

the head and variables listed above have been quantified and qualified in this thesis.  
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The model proposed here is available for public use upon request. It can easily be 

amended to incorporate more or fewer tissues with varying levels of complexity; 

augmented to better resemble anatomy of children's heads; or used in its current 

state to further explore relationships between anatomic variations and absorption at 

the same frequency used here, or other RF frequencies.  
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Chapter 1:  Introduction and literature review 

This section provides an outline of the history of knowledge in the field of 

radiofrequency dosimetry up to the current date; outlines some of the unanswered 

questions and limitations of existing methodologies; and provides a rationale for 

undertaking the work described in this thesis. 
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1.1 Modelling humans for radiofrequency safety compliance 

The history of modelling human bodies for RF safety reflects the development of 

scientists' knowledge about what factors influence absorption and the capability of 

their tools.  

This work restricts itself to examining SAR in the human head; discussion is likewise 

limited to human head models rather than whole bodies.  

The physical concepts behind interactions of RF exposure with human tissue are 

relatively well described. It is generally agreed that the only potentially harmful 

detectable effects of low RF exposure are thermal. Other biological effects exist, 

however they are not considered by most RF dosimetry experts to be associated with 

adverse health effects (ICNIRP 1998). 

The question arises of how to model thermal rise in humans. Thermal changes cannot 

be measured inside sections of a living organism without causing damage (if not 

death). Hence, electrically equivalent physical or numerical models of human heads 

are constructed, exposed to RF, and E-field is measured within the model. The E-field 

value is converted to the SAR (Specific Energy Absorption Rate), which quantifies 

energy absorption, which in turn may be converted to temperature change.  

In order to correctly approximate thermal change in tissue, SAR needs to be averaged 

over a volume of tissue (ICNIRP 1998; McIntosh and Anderson 2011). Higher 

averaging produces better matching with thermal change, however too much 

averaging reduces granularity. Sensitive tissues (in the head, this includes tissues such 

as brains and eyes) are in particular need of protection from potentially harmful 

effects, and it is important to be able to distinguish which tissue experiences higher 

absorption. 

RF safety standards in the US , Japan, UK, Australia (ARPANSA 2002), New Zealand, 

and many European countries are based on recommendations made by one of two 

prominent expert bodies: IEEE (IEEE 2005), the Institute of Electrical and Electronic 

Engineers,  and ICNIRP (ICNIRP 1998), the International Commission on Non-Ionizing 

Radiation Protection. These two bodies converged in their recommendations for the 

averaging volume for SAR being 10-gram in 2005 (Habash, Elwood et al. 2009).  
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To determine the location of 10-gram maximum SAR, guidelines recommend that E-

field is measured (or numerically evaluated, in the case of numerical models) over the 

entire model. SAR between measured points is interpolated. SAR is averaged in 10-

gram cubes (made of approximately 10 grams of tissue) and the cube with the 

highest average spatial SAR determines the maximum absorption in the model (IEEE 

2003). 

1.1.1 History of modelling humans for RF compliance 

Human models used for RF dosimetry are designed to allow determination of E-field 

at all points inside the organism, which allows quantification of magnitude and 

location of absorption maxima.  

Early physical and computational models consisted of shapes that were simple to 

create and analyse: rectangular slabs (Gandhi 1980; Institute 1998), spheres (Heyvaert 

and Martens 1998); and prolate spheroids (Durney, Iskander et al. 1979). Planar 

(Abdalla and Teoh 2005) and layered models (Okoniewski and Stuchly 1996; Cerri, De 

Leo et al. 1997; Nikita, Stamatakos et al. 2000) such as seen in Figure 1 were often 

used.  

Box models (known as phantoms) with homogeneous dielectric properties were used 

for compliance and research before more sophisticated models became popular 

(Kuster and Balzano 1992; Institute 1998). Also used were human-shaped phantoms 

such as the homogeneous phantom developed at the Telstra Research Laboratories 

(McIntosh, McKenzie et al. 2001). Complex heterogeneous physical models of humans 

are difficult to construct and even more difficult to measure E-field within. 

Consequently, such work is rare – one example is the multi-tissue model built by 

Anderson (Anderson and Joyner 1995) for measuring SAR in the brain and the eye.  
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Figure 1: Examples of (a) planar model of human tissue (from (Abdalla and Teoh 2005)) and (b) layered 
sphere (from (Nikita, Stamatakos et al. 2000)) 

In 1996, the Visible Human (VH) model (Figure 2a) became available for RF dosimetry 

purposes (Spitzer, Ackerman et al. 1996). VH is a heterogeneous computational 

model based on cryosection images of a 38-year-old adult male. The anatomical data 

for the Visible Man originated at the U.S. National Library of Medicine and many 

individual researchers and research labs such as Brooks Air Force Base converted it 

into finite-difference time-domain (FDTD) models. 

At the other extreme of complexity, the Standard Anthropomorphic Mannequin 

(SAM) in Figure 2b was chosen by the IEEE Standards Coordinating Committee 34, 

Subcommittee 2, Working Group 1 (SCC34/SC2/WG1) as a standards compliant 

measurement phantom and later also adopted by European standards (CENELEC 

2006; IEC 2011). SAM is a sagittally-bisected lossless fibreglass shell phantom, whose 

dimensions and shape are based on the 90th percentile of an anthropometric study of 

1774 U.S. army adult male recruits. SAM has been shown by several studies to 

provide a conservative SAR estimate when compared against other models 

(Schonborn, Burkhardt et al. 1998; Watanabe, Mochizuki et al. 2001; Lee, Choi et al. 

2002; Lee, Choi et al. 2007). These studies tested SAM against one or several single-

individual heterogeneous examples like Visible Human to determine its ability to 

provide conservative SAR estimates.  

(a) (b) 
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Figure 2: (a) Visible Human and (b) Specific Anthropometric Phantom, two extremes of tissue granularity 

The factors incorporated into SAM and other parts of the measurement standards are 

ones identified by the IEEE to influence magnitude and distribution of SAR. These are: 

dielectric properties; relative location and power of exposure source; distance of 

exposure source from body - hence pinna (outer ear) size and morphology; overall 

head morphology; and head size (IEEE 2003). 

Determining the contribution of the location, type and magnitude of power sources 

to SAR is relatively easy. Quantifying the contribution of anatomic parameters has 

been another matter. Christ’s 2006 study (Christ, Klingenbock et al. 2006), for 

example, found that at 900 MHz, the worst-case SAR scenario of tissue layers using a 

planar model consisted of skin, followed by a  layer of subcutaneous adipose tissue, 

and a layer of fat. The authors also noted that not including the skin did not result in 

accurate SAR predictions.  

With the advent of high computing power and imaging techniques, the past ten 

years has seen a suite of new heterogeneous models become available. Studies like 

Beard et al.'s (Beard, Kainz et al. 2006) and Christ et al.'s (Christ, Kainz et al. 2010) 

describe SAR studies performed using a variety of highly heterogeneous imaging-

based models, often attempting to determine how individual anatomic parameters 

help determine SAR. In the head alone, Visible Human numbers some 21 tissues.  

Average rather than worst-case models have also been created: NORMAN (stands for 

NORmalised MAN) (Dimbylow 1997) features tissue sizes and locations based on 

average values of samples taken from a large population. NAOMI (Dimbylow 2005) is 

(a) (b) 
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a female model developed along similar lines. The Virtual Family (Figure 3) has 

recently become available, a collection of eight human models encompassing 

children and adults both male and female  (Christ, Kainz et al. 2010), based to a 

certain extent on averaged morphological values.  

 

Figure 3: Virtual Family (from (Christ, Kainz et al. 2010)) 

The assumption has generally been that men's heads, being larger, provide a 

conservative SAR result which protects women and children as well (Petersen 2007), 

an assumption that has not been sufficiently tested in literature and may not be true 

for all populations. The standards define "conservative" to mean that the measured 

value will not be less than the expected value during normal use by a majority of 

users, not that that the measured value will not be less than the absolute maximum 

SAR value that could possibly occur under every conceivable combination head size, 

head shape, handset orientation, and spacing relative to the head (IEEE 2003). This 

may not be true for all populations; it is possible that many combinations of 

anatomic morphologies, dielectric properties and relative location of tissues cause 

unexpected 'hot spots'. Note also that average models like these are not 

representative of the extremes of populations, only the middle ground. Studies have 

found higher SAR in heads larger or smaller than average (Gandhi and Kang 2002). 

All the models described so far are Caucasian; few models provide representation of 

other ethnic groups. Several notable exceptions are the Nagaoka Man and Woman 

(Nagaoka, Watanabe et al. 2004), Chinese Man and Woman (Wu, Liwen et al. 2011) 

and Korean Man (Kim, Choi et al. 2008). Until recently, no female models existed at 

all.  
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These models are also only representative of a single person, realistic or otherwise; 

each provides a single point of comparison. It is difficult to systematically test if and 

how the different parameters of human anatomy influence energy absorption from 

RF using the existing models. However, literature in the past few years has begun 

asking these questions. Effect of dielectric properties (Drossos, Santomaa et al. 2000; 

Kang and Gandhi 2004), head sizes (Hombach, Meier et al. 1996; Keshvari and Lang 

2005; Bo 2007), and relative morphologies (Keshvari and Lang 2005; Christ, Kainz et 

al. 2010) on SAR have been examined to some extent. Heterogeneous and 

homogeneous models have been scaled, uniformly (Gandhi, Gianluca et al. 1996; 

Martínez-Búrdalo, Martın et al. 2004) or otherwise  (Schonborn, Burkhardt et al. 1998; 

Wang and Fujiwara 2003; Hadjem, Lautru et al. 2005) (see Figure 4 for example), to 

closer resemble the heads of children (Wiart, Hadjem et al. 2007), women, and 

differently sized men (Kainz, Christ et al. 2005; Bo 2007). However, this is an arduous 

task, as properties of individual voxels (volume pixels) need to be adjusted to provide 

scaling, often manually. The only feature of homogeneous models that may be 

adjusted is the dielectric properties, and then only en masse. In some cases, canonical 

layered models have been used in an attempt to roughly determine how layered 

dielectrics of different thicknesses attenuate RF.  

 

Figure 4: Non-uniform scaling of an adult heterogeneous head to derive children's heads (from (Wang 
and Fujiwara 2003)) 

The work described in this thesis attempts aims to overcome some of the 

shortcomings of the existing models used in RF dosimetry, and provide a more 

systematic approach to quantifying the effect of anatomic variations in the human 

head on energy absorption due to RF exposure (Christ, Klingenbock et al. 2006).  
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1.1.2 Geometry Head 

The question of how best to model humans for determining SAR for compliance with 

safety limits has not yet been answered, although much work has been done towards 

this goal over the past 60 years. Again, discussion is limited to modelling human 

heads, rather than whole bodies. 

As covered in Chapter 2 below, existing dosimetric human models are of two types. 

At one extreme are highly heterogeneous models, closely representative of human 

anatomy, such as Visible Human, often used for research into energy deposition in 

different tissues. At the other extreme are the homogeneous models generally used 

for compliance, such as SAM, the Specific Anthropomorphic Mannequin. Traditionally, 

dosimetry studies assume that an adult Caucasian male model provides a worst-case 

conservative result, though the validity of this assumption has not been thoroughly 

tested. A number of models of Caucasian women and children as well as non-

Caucasian adults (female and male) have become available in the past ten years. 

About 20 whole and partial body models of adults and about 14 models of children 

(from newborn to 14 years of age) are available, though the number is hard to 

estimate as different models were developed based on the same source data, or 

partial data sets of different patients or volunteers were combined to develop one 

complete body model. However, these are all individual comparison points, and do 

not provide enough information regarding how (and which) anatomic variations in 

humans, adult Caucasian male or otherwise, affect SAR distribution.  

Models are only as good as their input parameters, and beyond a certain point, more 

complexity does not necessarily provide a better output. It is reasoned that there may 

be a reduced set of key tissues in the head that dominate the resultant SAR 

distribution, on which the compliance considerations depend most critically. For 

example, it is expected that surface tissues such as skin are the site of maximum SAR 

in the head, while the brain and eyes are the most critical organs in the head to be 

affected by RF exposure. 

Investigating the relationships between energy absorption and specific anatomic 

variations in a systematic way is not easy using existing models. As a natural next 

step in this field, and taking advantage of the more mature modelling packages and 
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high solving power available, a new model has been created to better investigate this 

problem. The model, termed Geometry Head (GH) seen in Figure 5 includes a 

reduced set of only the most relevant tissues in a semi-homogeneous, simplified 

geometry. GH allows for easy parametric adjustment of tissue size, relative location, 

dielectric properties and morphology. Geometry Head aims to provide a point of 

diminishing returns in complexity somewhere between the homogeneous single-

tissue model and the multi-tissue models.  

 

Figure 5: Geometry Head model, shown with various cutplanes 

Initial anthropomorphic variable values such as tissue size and location were based 

on results of a large anthropometric study of adult males of multiple ethnicities 

(Farkas 1994), for higher comparability with existing models. Initial dielectric values of 

tissues are those used in SAR compliance studies (Gabriel 1996).  
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1.2 Original contributions 

The original contributions of this thesis are: 

a) Creation of a unique parametric semi-homogeneous parametrically adjustable 

model of the human head suitable for modelling exposure of human heads to 

non-ionising radiation, named Geometry Head. Model was created using an 

appropriate commercially available software package (Section 3.1), with data 

originally taken from a large anthropometric study of adult Caucasian males 

b) Validation of the model at Ericsson Research Laboratories, Sweden, using 

simplified physical models of the human head, custom built for this purpose 

(Section 3.2) 

c) Gathering of data from literature regarding thickness of skin in adult humans, 

broken down into sub populations of sex (male and female), ethnicity (African-

American, Caucasian, unknown/unspecified), and age groups (20-29, 30-39, 40-49, 

50-59, 60+ years); and analysis of data for 5th, 50th and 95th percentiles of 

individual subpopulations as well as overall human variation (Section 3.3) 

d) Gathering of data from literature regarding thickness of the skull in adult humans, 

broken down into sub populations of sex (male and female), ethnicity (African, 

African-American, Australian Aboriginal, Bedouin, Caucasian, Chinese, Japanese, 

unknown/unspecified), and age groups (20-29, 30-39, 40-49, 50-59, 60+ years); 

and analysis of data for 5th, 50th and 95th percentiles of individual subpopulations 

as well as overall human variation (Section 3.4) 

e) Examination of the relationship between several anatomic parameters and SAR, to 

determine their effects on energy absorption in human heads from exposure to 

radiofrequency at 900 MHz:  

i. cranial thickness (Section 3.3) 

ii. skin thickness (Section 3.4) 

iii. head size (Section 3.5) 

iv. dielectric properties (Section 3.6) 
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1.3 Research questions 

The current thesis is designed to address the following questions: 

 What parameters of human head anatomy contribute to absorption of energy due 

to RF exposure? 

 What variability exists in the relevant anatomic variations? 

 What is the relationship between these anatomic parameters and SAR? 

 What do these results imply for the safety standards for RF exposure?  

While attempting to answer the above questions, another research question made 

itself evident: 

 Given that existing models do not allow easy exploration of effect of anatomic 

parameters on SAR, can a new model be created without this limitation? 
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Chapter 2:  Background concepts 

The research described here combines concepts from electromagnetics, engineering 

and human anatomy. This chapter introduces some concepts required to understand 

the arguments, and experimental methods and results in this work. 
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2.1 Electromagnetics, mobile phones and safety standards 

This section provides an introduction to the characteristics of electromagnetic fields, 

specifically the non-ionising radiofrequency radiation that is associated with mobile 

phones. A brief description of national and international radiofrequency safety 

guidelines in relation to GSM mobile phones is followed by a description of specific 

absorption rate (SAR), the metric used to measure radiofrequency absorption in 

biological tissue. Computational and experimental techniques used for measuring 

SAR are also explained.  

2.1.1 Radiofrequency 

The electromagnetic (EM) spectrum illustrated in Figure 6 extends from static fields, 

though frequencies associated with power lines and electrical appliances, up to x-rays 

and high-energy gamma rays. Frequencies are measured in Hertz (Hz), or 

wavelengths per second. 

 

Figure 6: The electromagnetic spectrum (adapted from Telstra Research Laboratories training materials) 

There are several ways to differentiate electromagnetic fields (EMFs). One of the key 

characteristics of EMFs is the energy level, which is easily derived from the frequency. 

At higher frequency region (f ≥ 1012 Hz), the energy is high enough (~5 eV) to ionise, 

i.e. break electron bonds in an atom. If this reaction occurs in living matter, it creates 

free radicals (atoms with unpaired electrons that are usually highly reactive), thereby 

increasing the risk of chromosomal damage or damage to biological tissue 

(ARPANSA 2002; Habash 2002). Therefore, this frequency band is identified as 

ionising radiation. X-rays and gamma rays are both classified as ionising radiation 
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and both have the ability to penetrate biological tissue and potentially cause 

damage.  

The radiofrequency (RF) band of the electromagnetic spectrum is generally defined 

as the region between 3 kHz and 300 GHz. EMFs in this energy band do not carry 

enough energy to ionise material, hence the name non-ionising radiation. RF fields 

are used in numerous applications in modern society, most prolifically information 

transmission such as telecommunications, radio and television broadcasting. Other 

common usages for RF are heating, for example in microwave ovens, industrial 

applications such as RF welding and glue drying; and medical uses such as ablation 

and diathermy.  

2.1.2 Radiofrequency and mobile telephony 

A person in the vicinity of a base station is exposed to the radio frequency emissions 

from the base station; a person inside the same area using a mobile phone handset is 

additionally exposed to the RF emitted by the handset. This thesis is concerned with 

the emissions of handsets rather than base stations, specifically at the 900 MHz 

frequency used by technologies such as wide-band Code Division Multiple Access (w-

CDMA), 3GPP Long Term Evolution (LTE), and GSM (Global System for Mobile 

Communications, originally Groupe Spécial Mobile).  

As a general rule users are exposed to higher levels of emissions from handsets than 

from base stations due to the increased proximity of handsets to the body. 

2.1.3 Propagation of EM fields 

Under static conditions, the electric and magnetic fields form two individual vector 

quantities - E-field and H-field respectively. Electric fields exist whenever electric 

charges are present, and are produced by positive or negative charges that exert a 

force on other charged objects in the field.  Magnetic fields are produced by the 

motion of electric charges, which exert force on other moving charges. Both electric 

and magnetic fields are strongest near the source and diminish as distance increases 

(Kraus 1992).  Unlike E-fields, which exist even when no current is flowing, magnetic 

fields are produced only in the presence of moving charges (e.g. when a device is 

turned on). 
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EMFs can be mathematically defined in free space using four field quantities: electric 

field intensity (E, Volts/metre), the electric flux density (D, Coulombs/metre2), 

magnetic flux density (B, Webers), and magnetic field intensity (H, Ampere/metre). 

These four fundamental EMF quantities relate according to the Equation 1 and 

Equation 2 below: 

Equation 1 

      

Equation 2 

      

where B  = magnetic flux density (Wb), μ = permeability, H = magnetic field intensity 

(A/m), D = electric flux density (C/m2), ε = permittivity, and E = electric field intensity 

(V/m).  

Propagation of electromagnetic waves in materials such as dielectrics and conductors 

is determined by their electrical parameters – permittivity, conductivity, and 

permeability. These constants further described in Section 2.1.6 are effectively the 

gradients of field propagation.  

Under time-varying conditions, the time-varying magnetic and time-varying electric 

fields are coupled and propagate dynamically by one field component continuously 

producing the other over distance. 

2.1.3.1 Plane waves 

A transverse or a plane wave occurs when the electric and magnetic field 

components of EMF waves exist orthogonally (at right angles) to one another. The 

electromagnetic field plane is also at right angles to the direction of the wave 

propagation, as depicted in Figure 7 below. 
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Figure 7: Propagation of an electromagnetic wave (adapted from http://www.mike-
willis.com/Tutorial/PF3.htm) 

A plane wave can also be described as a spherical wave of a suitably large 

wavelength. It is an ideal EMF used for the purpose of research simplicity, and cannot 

be replicated in real life. It must be treated as a source infinitely far away from every 

point, so it makes no sense to talk about it being nearer or further than any point. 

However, regions region deeper inside a body encounter the excitation once it has 

been attenuated by surface tissue layers, and therefore diminished. 

2.1.4 Maxwell’s equations 

James Clerk Maxwell's work in describing the propagation of time-varying 

electromagnetic waves led to the development of four fundamental equations, valid 

in any point in free space. The differential forms of Maxwell's equations, and the 

corresponding integral forms are provided below in Table 1 (Kraus 1992). 

Table 1: Maxwell's electromagnetic field equations, in differential and integral forms 
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where ∇= curl operator, J = total current density (A/m2), ⍴ = total charge density 

(C/m3), dl = differential displacement of charge, ds = vector surface element, Q = 

charge (C), Φ = magnetic flux (Wb), I = current (A), and t = time (s). 

2.1.5 Near field and far field 

Over a significant propagated distance, EMFs may be categorised into two regions: 

the near-field and far-field. The near-field can be further divided into two regions, 

reactive near-field and radiating near-field.  

While specific field characteristics of an EMF may be quantified accurately by 

calculation in the far-field, in practice near-field calculations can carry large 

uncertainties given that in this region, plane wave characteristics have not been 

established and the relationship between the field quantities can be highly non-

linear. The reactive near-field is typically described as the distance within λ/2π from 

the radiating source, where λ is the wavelength. Therefore, the reactive near-field 

distance from a mobile phones radiating antenna at 900 MHz can be found to be 

approximately 5.3 cm - notably within the region of a mobile phone user’s head. On 

the other hand, the far-field distance may be defined as the region extending beyond 

2d2/π (considering an antenna of dimension d) or λ/2, whichever is the greater 

(ARPANSA 2002). In the far-field region the electromagnetic field from the mobile 

phone forms a uniform plane wave such that the ratio of electric field intensity E to 

the magnetic field intensity H is constant.  

2.1.6 Dielectrics 

A dielectric is an electrical insulator that can be polarised by an applied electric field. 

When a dielectric is placed in an electric field, electric charges do not flow through 

the material, as in a conductor, but only slightly shift from their average equilibrium 

positions causing dielectric polarisation. Positive charges are displaced toward the 

field and negative charges shift in the opposite direction. This creates an internal 

electric field which reduces the overall field within the dielectric itself. If a dielectric is 

composed of weakly bonded molecules, those molecules not only become polarised, 

but also reorient so that their symmetry axis aligns to the field (Kraus 1992). 

The study of dielectric properties is concerned with the storage and dissipation of 

electric and magnetic energy in materials.  
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Mammalian and other animal tissues classify as dielectrics. All tissues used in this 

study have permittivity, permeability and conductivity characteristics. The medium in 

which EMFs travel directly influence the relationship between E and D and between B 

and H, which in turn affect the speed of propagation. The relationship of permittivity 

and permeability of the material relate to the permittivity and permeability of free 

space. 

2.1.6.1 Conductivity 

Electrical resistivity (also known as resistivity, specific electrical resistance, or volume 

resistivity) is a measure of how strongly a material opposes the flow of electric 

current. A low resistivity indicates a material that readily allows the movement of 

electric charge. Electrical conductivity or specific conductance (σ) is the reciprocal 

quantity, and measures a material's ability to conduct an electric current (Kraus 1992). 

2.1.6.2 Permittivity: an electric characteristic 

Permittivity (ε) is a measure of how an electric field affects, and is affected by, a 

dielectric medium. It relates to a material's ability to transmit (or 'permit') an electric 

field. In most material, the permittivity is constant (where it is not, the material is said 

to be nonlinear) (Kraus 1992).  

When solving electromagnetic propagation problems, it is often convenient to use 

the relative permittivity of a material, i.e. the ratio of its permittivity to that of a 

vacuum, which is a known measured quantity:  

Equation 3 

          ⁄  

where εr is the relative permittivity, and ε0 is the permittivity of free space. ε and ε0 

are expressed in Farads per meter, however the relative permittivity is a 

dimensionless ratio. Permittivity is a complex quantity which is affected by frequency: 

Equation 4 

                ⁄   

where ε' and ε'' are the real and imaginary parts of ε respectively, σ is the 

conductivity, and ω = 2πf is the angular frequency in radians (Kraus 1992).  
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Relative rather than absolute terms are generally used in electromagnetics for 

permittivity and permeability (Section 2.1.6.3 below) partly for historical reasons, and 

partly for ease of use. Using relative terms results in equations that are easier to 

manipulate and provide neat solutions, as well as easily comparable units. Further 

information regarding this topic is available in textbooks outlining basics of 

electromagnetics such as those by Sadiku (Sadiku 1989), Durney and Christensen 

(Durney and Christensen 1999) and Kraus (Kraus 1992). 

2.1.6.3 Permeability: a magnetic characteristic 

Permeability (μ) is the measure of the ability of a material to support the formation of 

a magnetic field within itself. In other words, it is the degree of magnetisation that a 

material obtains in response to an applied magnetic field (Kraus 1992).  

As with permittivity, when solving electromagnetic problems it is often more 

convenient to refer to the ratio of the permeability of a given material (μr) to that of a 

vacuum (μ0) than use the absolute value (Kraus 1992). This is given by: 

Equation 5 

    
 

  
⁄  

Relative permeability μr is also dimensionless. Permeability may also be a complex 

quantity, whereby the real and imaginary parts (μ' and μ'' respectively) are related 

thus: 

Equation 6 

            

2.1.6.4 Skin effect 

Skin effect is the tendency of a time-varying current to distribute itself within a 

conductor with the current density being largest near the surface of the conductor, 

decreasing at greater depths. In other words, the electric current flows mainly at the 

"skin" of the conductor, at an average depth called the skin depth. In a good 

conductor, skin depth varies as the inverse square root of the conductivity. This 

means that materials with a higher σ value have a reduced skin depth. At higher 

frequencies, the skin effect reduces the depth of penetration of currents into a 

conductor (Kraus 1992).  
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2.1.6.5 Intrinsic impedance of a medium 

The characteristic or intrinsic impedance of a medium denotes how resistive the 

material is to electrical fields. It derives from Ohm's Law (Kraus 1992): 

Equation 7 

    
  

  
  √

 

 
  

For dielectric materials that have permeability and conductivity characteristics, such 

as human tissues, the intrinsic impedance is (Kraus 1992):  

Equation 8 

    √
          

     
 

2.1.7 Speed of EMF propagation 

The speed of propagation of EMFs in free space is known to be a constant 

299,792,458 m/s, otherwise known as c, the speed of light. In other materials, the 

speed is different, as it relates to the gradients of E-field and H-fields:  

Equation 9 

   
√    

⁄  

2.1.8 Refraction of EM waves in dielectrics 

The refractive index (also known as index of refraction) is a measure of the speed of 

light in that substance, and is calculated by: 

Equation 10 

   
 

  
 

where c  is the speed of light, and vr is the relative velocity of the EM wave in the 

material in question. The refractive index characterises not only the wave propagation 

speed, but also the amount of radiation transmitted and reflected by a material. It is 

dependent on the material's dielectric properties: 
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Equation 11 

    √     

As the frequency changes, the values of εr and μr change, which changes the speed of 

the EM wave propagation, and the refractive index.  

When an wave propagates through a layered dielectric, as inside a human head, its 

speed and absorption will change at each material boundary. The nature of the 

change may be calculated using Snell's law, which states that the ratio of the sines of 

the angles of incidence and refraction is equivalent to the ratio of the wavelengths in 

the two media, and equivalent to the opposite ratio of the indices of refraction (Kraus 

1992): 

Equation 12 

     

     
  

  

  
   

  

  
 

The frequency, being the inverse of the wavelength, thus determines the angle of 

refraction as the EM wave passes from one material into another.  

The amount of energy reflected from the material under normal incidence (R) is 

proportional to the square of the index change at the face (Kraus 1992): 

Equation 13 

   
      

      
 

2.1.9 RF safety standards 

Established recommendations and guidelines limiting human and animal exposure to 

electromagnetic fields exist in order to provide protection against known adverse 

health effects. Safety recommendations for non-ionising radiation are mainly 

provided by large two international expert groups: ICNIRP, the International 

Commission on Non-Ionising Radiation Protection (ICNIRP 1998) and the IEEE 

Institute of Electrical and Electronic Engineers c95 subgroup (IEEE 2005). These 

guidelines are usually adopted and enforced by government bodies.  

RF safety standards have grown more sophisticated and complex over the years of 

development, with advancements in methodology and application techniques. The 
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exact rationale behind the safety limits vary between standards, however most come 

with a background of thorough, critical literature evaluation. For example, during the 

development of the C95.1-2005 IEEE standards, Standards Committee 4 Literature 

Surveillance Working Group listed 1143 peer-reviewed papers and technical reports 

of original research that were evaluated and contributed to the standard 

development (Petersen 2007). 

The biological bases for limits in the frequency range 100 kHz to 10 GHz are whole 

body heat stress, and excess localised tissue heating  (CENELEC 2006; Petersen 2007), 

and are based on established biological mechanisms of interaction. Safety factors are 

built into these standards to ensure permitted exposures are well below levels at 

which biological effects are observed.  

Australia follows the ICNIRP recommendations (ARPANSA 2002) which specifies three 

SAR limits which all have to be fulfilled irrespectively: 

-  whole-body average SAR limit, to avoid general thermal stress 

- localised SAR for the head and trunk, to avoid local heating; this is based on danger 

of developing cataracts (this is the limit that is used for mobile phones) 

-  localised SAR limit for the limbs 

In the case of mobile phone safety using 900 MHz, the most relevant situation is 

consider is that of head and trunk localised exposure. Handsets are usually held 

against the head during use, and it has been shown that mobile handset antennas 

produce highly localised exposures (Li, Leong et al. 2000). A whole body exposure 

would be more appropriate if radiation from the base station was being considered.  

2.1.10 Dosimetry and SAR 

Dosimetry (from 'dose' and 'metric') refers to the evaluation of the amount of 

absorption of EMF in biological tissue following exposure to sources such as mobile 

phones, based on the electric field strength, induced current density, and the rate of 

energy absorption (NRPB, 2003). 

The E and H-fields are normally assessed when characterising RF exposure, since 

these field parameters are rather easier to measure than temperature change at all 
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points in the body. As previously mentioned, in the far-field region, E and H are 

coupled i.e. E is perpendicular to H and both are perpendicular to the direction of 

motion, and in free-space: 

Equation 14 

      ⁄   √
  

    ⁄       

where Z0 is the intrinsic impedance of free air. 

However, in most cases as in exposure from RF sealers and from mobile phones, the 

distance from the source to the exposed individual is too short, and near-field 

conditions exist. In such a case, E and H must be treated separately, since both 

contribute to the absorption (Kraus 1992). 

The main exposure metric used in safety standards to describe the absorption of RF 

fields up to 6 GHz in tissues (or other matter) is the Specific Energy Absorption Rate 

(SAR). This term, first proposed in 1981 (Petersen 2007), is defined as the rate at 

which energy is imparted (dissipated) from electric and magnetic fields to charged 

particles (body dielectrics) in an infinitesimal volume of an absorber per unit mass. It 

is measured in W/kg: 

Equation 15 

     
      

 
 

where σ is the tissue conductivity (S/m), ρ is the tissue density (kg/m’), and |E| is the 

magnitude of the total RMS (root mean square) E-field level (V/m) induced within the 

irradiated tissue: 

Equation 16 

     √                      

where Ex, Ey, and Ez are the RMS values of the x, y, and z components of the electric 

field. 

Note that the B-field is not included in SAR calculations. This is because the B-field 

does not transmit energy to electric charges, which constitutes almost all of 
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biological tissue. E-field can transfer energy to electric charges through the forces in 

exerts on them, however forces exerted on charges due to B-field are perpendicular 

to the velocities of the charges. The B-field can change the direction of charges but 

not their energy. B-field can also transfer energy through forces on permanent 

magnetic dipoles, however biological tissues are mostly nonmagnetic (Durney and 

Christensen 1999). 

SAR can be averaged over different volumes. Three specific averaging volumes are 

used in this thesis, as these are used in safety standards (IEEE 2005): whole body 

averaged (WBA) SAR, and localised peak-spatial SAR averaged over 1-gram 

(henceforth referred to as '1g SAR') or 10-gram (henceforth referred to as '10g SAR') 

cubes of material.  

All three variables on the right hand side of Equation 15 are temperature dependent 

and the conductivity and induced electric field are also frequency dependent. 

During far field conditions, absorption in the object is dependent on the frequency of 

the applied RF field. Roughly speaking, for E-polarization the SAR will increase with 

increasing frequency as a function of f2, up to the resonance frequency for the object, 

and then decrease as a function of 1/f, see Figure 8 below.  
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Figure 8: Effect of frequency on whole body average SAR (in far field). For E-polarization the SAR will 
increase with increasing frequency as a function of f

2
, up to the resonance frequency for the object, and 

then decrease as a function of 1/f (adapted from Telstra Research Laboratories RF training materials) 

Other factors that affect the absorption are the polarisation, the density, and the 

electrical properties (also known as the dielectric properties) of the exposed object. 

The SAR value during exposure can be calculated using the measured field strengths 

or the induced current. 

2.1.11 Field Strength 

The field strength involved when biological organisms are exposed to 

electromagnetic fields must be specified, along with the type of tissue under 

discussion. Exposure to high intensity fields from parts of the spectrum might cause 

severe biological effects while very weak fields with the same frequency do not 

(Habash, Brodsky et al. 2003). 

2.1.11.1 Power of phones  

Usually, mobile phones transmit power in the range of 0.2 to 0.6 W (Habash, Brodsky 

et al. 2003).  

2.1.12 Location of max SARs 

Localised heating becomes more important than whole body heating for exposures 

very close to the RF source. Maximum SAR in the body occurs at locations closest to 

antenna currents where incident H is highest. Localised SAR generated by a nearby 

source decays exponentially as it passes into the body. 
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2.1.13 Basic restrictions and reference levels 

More information about the history of RF safety standards and rationales used 

therein for units and measurement methods, please see Section 1.1.1. For more 

complete explanations regarding development and use of RF standards, please see  

(Habash 2002), (Habash, Elwood et al. 2009) and (Petersen 2007). 

SAR and current density are termed as "Basic Restrictions" and refer to field or energy 

values inside the exposed tissue. In most cases it is inconvenient if not impossible to 

obtain such measures since invasive methods of measurement would be required, 

therefore direct assessment of compliance with basic restrictions is not usually 

feasible. 

Instead, computational modelling can be performed: exposure guidelines define 

more usable exposure assessment metrics which do not require measurements within 

the exposed tissue. These are termed 'reference levels' and are based on 

measurements of ambient (free space) electromagnetic fields in close proximity to 

the exposed tissue. Reference levels are established via extrapolation from single 

frequency laboratory measurements using mathematical modelling. They are 

determined based on maximum energy coupling conditions, and therefore represent 

worst case scenarios (ICNIRP 1998). If the reference levels are fulfilled, it is not likely 

that the basic restrictions are exceeded. On the other hand, if the measured values do 

not comply with the reference values, numerical calculation must be used to ensure 

that the basic restriction is not exceeded. The reference values are electric and 

magnetic field strengths and currents flowing in the limbs. 

ICNIRP has adopted more stringent exposure restrictions for the general population 

than for occupational exposure, and the division factor is 5 between those two. Table 

2 provides a short summary of basic restrictions and reference values for the 

frequency range 1-2000 MHz. 
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Table 2: SAR Basic restrictions and fundamental limits (adapted from Telstra Research Laboratories RF 
training course) 

Exposure 
category 

Standard Freq. range WBA SAR 
(W/kg) 

Localised SAR 
in head & 
trunk (W/kg) 

Localised SAR 
in limbs 
(W/kg) 

Occ. ICNIRP 98 100 kHz - 10 
GHz 

0.4 10 20 

Non-Occ. ICNIRP 98 100 kHz - 10 
GHz 

0.08 2 4 

 

2.1.14 Section summary 

 radiofrequency is a non-ionising form of electromagnetic energy, nominally in the 

frequency range of 3 Hz – 300 GHz 

 radiation safety standards protect humans and other animals from tissue damage 

 limiting the absorbed power per unit mass in the whole body, localised to the 

head and the trunk and in the limbs, provides enough protection from RF heating 

effects, the only known effects to potentially cause damage 

 mammalian tissues belong to a class of materials known as dielectrics, whose 

electrical properties (conductivity, permittivity and permeability) in the presence 

of radiofrequency are frequency dependent 

 a material's conductivity, and to a lesser extent its permittivity, determine the 

amount of energy absorbed by the material due to the EM wave propagating 

through it 

 at the interface of two dielectrics, the materials' dielectric properties, and 

therefore the frequency, determine the amount of energy reflected and absorbed 

by the materials 

 this thesis is limited to exploring interaction of RF radiation at a frequency of 900 

MHz with human head tissues rather than the whole body  
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2.2 Computational techniques 

Computer power and software capabilities have increased substantially in recent 

years, and a variety of general purpose EM simulation tools are now commercially 

available for the analysis and design of antennas, microwave components, 

communication devices, and bioelectromagnetic problems.  

Not all simulators have the same capabilities or performance, and each may be best 

suited for a particular type of problem. Factors including accuracy, speed of 

execution, and setup time, play important roles in selecting the proper simulator.  

Computational methods generally involve the use of analytical and/or numerical 

techniques with a combination of techniques often useful in providing a more 

complete calculation of SAR (Habash 2002). Analytical techniques involve calculating 

the power absorption of incident fields in biological models of the human body or 

parts thereof relevant to the exposure source. Most of today's popular EM field 

simulation software packages for modelling SAR at RF frequencies are based on one 

or more of the following solving methods: Method of Moments (MoM), Finite Element 

Method (FEM), Finite Difference Time Domain (FDTD) and Finite Integration 

Technique (FIT). A brief description of each technique is provided below, along with 

advantages and drawbacks of each.  

2.2.1 MoM 

Electric dipole moment is a measure of the polarity of a system of electric charges. 

The Method of Moments (MoM) owes its name to the process of taking moments by 

multiplying with appropriate weighing functions and integrating. It is a boundary 

element method that involves breaking a model down into virtual wires and/or metal 

plates. Wires are subdivided into segments, and metal plates are subdivided into 

surface patches, both of which must be smaller than the wavelength of the device 

under investigation (Habash 2002). A virtual current source is then applied and the 

current on each wire segment and surface patch must be determined, allowing the 

electric field at any point in space to be calculated (Habash 2002). 

The main disadvantage of using the method of moments is that it doesn't deal very 

well with complex geometry and heterogeneous dielectric models. It is applicable to 

problems for which Green's functions can be calculated, a mathematical method used 
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for solving inhomogeneous differential equations subject to specific initial conditions 

('boundary conditions') (Kraus 1992). In a bioelectromagnetic problem, this usually 

involves fields in linear homogeneous media. This places considerable restrictions on 

the range and generality of problems to which boundary elements can usefully be 

applied. Since MoM requires calculation of boundary values only, rather than values 

throughout the space defined by a partial differential equation (PDE), it is 

significantly more efficient in terms of computational resources for problems where 

there is a small surface/volume ratio (Habash 2002). 

2.2.2 FEM 

The FEM solving method was originally designed for structural analysis problems. 

FEM is used for finding the approximate solution of partial differential equations 

(PDEs) and integral equations (Sadiku 1989) The solution approach is based either on 

eliminating the differential equation completely (steady state problems), or rendering 

the PDE into an equivalent ordinary differential equation, which is then solved using 

standard techniques such as finite differences, etc. The FEM is a good choice for 

solving PDEs over complex domains or when the desired precision varies over the 

entire domain.  The finite element analysis of any problem involves basically four 

steps (Sadiku 1989): discretising the solution region into a finite number of 

subregions or elements; deriving governing equations for a typical element; 

assembling of all elements in the solution region; and solving the system of 

equations obtained. When meshing a volume by finite elements, the computational 

volume must be filled entirely, i.e. no space is left between elements; and all points 

inside the volume must lie in at least one finite element. If a point lies in more than 

one finite element, then the point is located in a common vertex or on a common 

edge or face (Sadiku 1989).  

These rules mean that the complete volume of the configuration be meshed, rather 

than just the surface, with each mesh element able to have different properties where 

appropriate (such as biological tissue within a body). This can be a drawback as it is 

difficult to integrate the mesh elements for highly complex structures (Habash 2002) 
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2.2.3 FDTD 

The Finite Difference Time Domain method provides a direct solution of Maxwell's 

curl equations in the time domain. FDTD techniques have emerged as the primary 

means to model many scientific and engineering problems dealing with 

electromagnetic wave interactions with material structures, and as such it is currently 

the most popular method used for estimating SAR (Roach 2009) 

FDTD is a time-domain technique that alternately calculates the electric and magnetic 

fields in the defined region of a simulation, with the ability for different materials to 

be modelled within the computational domain. The advantages of using FDTD are its 

versatility - it is easy to understand and implement in software, and the analysis of a 

system covering a wide range of frequencies can be performed with a single 

simulation (Habash, 2002). However, this solving method is impractical for larger 

models. It requires that the entire computational domain be gridded, and the grid 

spatial discretisation must be sufficiently fine to resolve both the smallest 

electromagnetic wavelength and the smallest geometrical feature in the model. Very 

large computational domains can be developed, which results in very long solution 

times. Modelled shapes often suffer from a staircasing effect, where rounded shapes 

are approximated using cubic voxels (volume pixels), a drawback when dealing with 

rounded shapes such as exist in human bodies. Using FDTD there is also no way to 

determine unique values for permittivity and permeability at material interfaces. 

2.2.4 FIT 

The Finite Integration Technique gets its name from the fact that it discretises the 

integral rather than the differential form of Maxwell’s equations. The resulting matrix 

equations of the discretised fields can be used for efficient numerical simulations on 

modern computers. All Maxwell’s equations can be discretised with the FIT to yield 

their discrete counterparts with a compact and elegant matrix form (Sadiku 1989). 

The difference between modern FEM and FIT is only in the discretisation of the 

material property relations (Habash 2002).  
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2.2.5 Choosing a modelling package 

Table 3 below lists seven of the most well-known commercial EM field simulators 

with their adopted numerical methods and applications. 

 

Table 3: Seven of the most well-known commercial EM simulators and their adopted numerical methods 

Simulator  Method Type Application  Provider URL 

HFSS  FEM 
Frequency 
domain 

3D Full-
Wave-EM 
Field 
Simulation 

ANSYS Inc., 
USA 

http://www.ansoft.com 

CST MWS  FEM/FIT 
Time 
domain 

3D Full-
Wave-EM 
Field 
Simulation 

CST Computer 
Simulation 
Technology 
AG. 

http://www.cst.de 

SuperNEC  MoM 
Frequency 
domain 

3D antenna 
design and 
analysis 

Pointing 
Software (Pty) 
Ltd.  

http://www.supernec.com 

FIDELITY  FDTD 
Time 
domain 

3D Full-
Wave-EM 
Field 
Simulation 

Zeland 
Software Inc. 

http://www.zeland.com 

Feko 
MoM and Hybrid 
MoM/FEM 

Frequency 
domain 

3D Full-
Wave-EM 
Field 
Simulation 

EM Software 
& Systems – 
S.A. (Pty) Ltd.  

http://www.feko.info 

xFDTD FDTD 
Time 
domain 

3D Full-
Wave-EM 
Field 
Simulation 

Remcom 
(USA) State 
College, PA.  

http://www.remcom.com 

SEMCAD 
FDTD and ADI-
FDTD 

Time 
domain 

3D Full-
Wave-EM 
Field 
Simulation 

Schmid & 
Partner Eng. 
AG (SPEAG), 
Switzerland 

http://www.semcad.com 
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2.3 Measurement techniques 

Physical RF compliance measurement techniques as outlined in measurement 

standards (IEEE 2003; CENELEC 2006) are designed to provide a conservative SAR 

result while being not prohibitively complex to undertake. Heterogeneous head 

models with multiple tissues are difficult to construct. Moreover, measurements are 

often limited to specific regions of the phantom, due to restrictions imposed by bony 

structures.  

A conservative approach for assessing SAR can be achieved by using a thin low-loss 

dielectric human-shaped shell ('phantom') filled with a homogeneous dielectrically 

equivalent tissue simulating liquid.  A wireless device is positioned at various 

locations surrounding or abutting the phantom and operated at full power, while the 

computer-controlled electric field probe inserted into the tissue maps the electric 

fields inside. Computer algorithms determine the maximum electric field and then 

calculate the 1g or 10g SAR values throughout the phantom (IEEE 2003). For 

compliance measurements, a 1 mm * 1 mm * 1 mm grid is often used for probe 

measurements at the areas of interest.  Since recipes for ingredients do not produce 

exactly correct values, partly due to inaccuracies in mixing and partly because of 

variations in the properties of each ingredient, the actual values (rather than the 

standard specification) must be measured and specified in tests.  
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2.4 Anatomy 

This section describes structures of the human head and relevant measurement terms 

used elsewhere in this thesis.  

2.4.1 Planes and directions of the human body 

Figure 9 below shows some anatomic terms of location used in this thesis.  

 

Figure 9: Planes and directions of the human body (adapted from http://staff.ucc.edu/alc-
paez/biology/anat_planes/planes.htm) 

The planes of the head body are:  

• Sagittal – divides the body into right and left parts 

• Midsagittal or medial – sagittal plane that lies on the midline 

• Frontal or coronal – divides the body into anterior and posterior parts 

• Transverse or horizontal (cross section) – divides the body into superior and 

inferior parts 

The following relative directional terms are used to describe positioning of anatomic 

structures: 

• Superior and inferior – toward and away from the top of the head, respectively 

• Anterior and posterior – toward the front and back of the body 
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• Medial, lateral, and intermediate – toward the midline, away from the midline, 

and between a more medial and lateral structure 

• Superficial and deep – toward and away from the body surface 

• Ipsilateral and contralateral – on the same or opposite side as another structure 

2.4.2 Anatomy of the human skull 

The eight cranial and 14 facial bones comprise the human skull, some of which are 

named below in Error! Reference source not found.. These bones in particular will 

be referred to again in later chapters.  

 

Figure 10: The human skull 

2.4.3 Anthropometric measurements of the human head 

Anthropometry is the measurement of the human bodies for the purposes of 

collecting and understanding human physical variation.  Figure 11 below describes 

measurements of the human head and face used throughout this thesis.  

For simplicity, measurement number 14 in Figure 11 (top of head to menton) is 

referred to in this thesis as 'head height'. 
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Figure 11: Anthropometric measures of the head and face (from (Churchill 1976)) 
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Chapter 3:  Experimental methods, results and analysis 

This chapter outlines the experimental procedures and materials used in this project. 

A rationale is provided for the specific structures of the model as it stands, and each 

step as it was performed. There are three sections of experimental procedure: 

construction of the model, detailed in Section 3.1; physical validation, Section 3.2; 

and testing individual parameters, Sections 3.2 to 3.6. Literature review pertaining to 

the tested variable and a discussion of results is provided in each section, along with 

a section summary. 
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3.1 Methodology: the Geometry Head model 

An alternative computational model of the human head, named Geometry Head (GH) 

was created as part of this project using a commercially available electromagnetic 

solving package, with the intention of solving some of the existing limitations of 

human head models used for dosimetry compliance. Geometry Head consists of a 

semi-homogeneous reduced tissue set modelled as simplified geometries. 

The GH model was initially created using the xFDTD modelling package  (Remcom 

2006), which uses the Finite Difference Time Domain solving method, and the first 

variable tests - effects of cranial thickness SAR in Section 3.3 - were performed using 

this version. However, one of the requirements of a model that allows systematic 

testing of variables is the ability to quickly and easily vary their values. This is not 

possible using the FDTD method, since it requires that the entire computational 

domain be gridded, and the grid spatial discretisation must be sufficiently fine to 

resolve both the smallest electromagnetic wavelength and the smallest geometrical 

feature in the model. Altering the relative location, morphology, or size of tissues in 

xFDTD requires manual manipulation of numerous individual voxels (volume pixels), 

rendering this software package unsuitable for the work undertaken here. For further 

discussion regarding advantages and disadvantages of electromagnetic numerical 

solving methods and modelling packages, please see Section 2.3. 

The final version of the GH model seen in Figure 12 was constructed (and is available 

for general use) using EMSS FEKO (EMSS 2009), a hybrid electromagnetic solver using 

Method of Moments/Finite Element Method. Several canonical models were tested 

using both packages; results were found to agree within a few percent variation.  
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Figure 12: The Geometry Head model. Parentheses provide the dimensions used in the base-level model, based on anatomic measurements taken from a large 
sample of adult Caucasian males (Farkas 1994). 
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3.1.1 Features  

Anatomic features included in this model are brain, skull, skin, eyes, ears and nose, as 

these are a priori considered to be most significant for the determination of the SAR 

distribution. A layer of fat surrounds both eyes, as in the human body, providing 

electrical isolation. The remainder of the model (termed ‘filler’) is comprised of an 

average head tissue, compliant with IEEE Measurement Standard (IEEE 2005), taking 

the number of tissues used in this model to six.  

The brain, skull, filler and skin are modelled as a three concentric half-spheres 

separated by a cylindrical section. The head is modelled with uniform cranial and skin 

thicknesses. The top half-sphere is made up of brain, skull and skin; the bottom half-

sphere comprises filler, skull and skin. Three concentric cylinders make up the middle 

section, where the inner cylinder is split along the coronal plane into a brain section 

at the back of the head, and a front 'filler' section. The nose is modelled as two 

concentric conic sections resulting in average head tissue covered with a skin layer of 

equivalent thickness to the rest of the head. The ear is composed of skin tissue. The 

fat and eyes are two concentric spheres with a centre point offset, allowing the eyes 

to protrude through the fat layer. Eyes protrude through the skin for a worst-case 

scenario of open eyelids. 

The shapes in this model may be varied parametrically, greatly reducing the effort 

required to undertake this extensive modelling task. That is, as the size, morphology 

or relative location of any tissue or shape is altered, the rest of the head model 

automatically adjusts to accommodate the changes. This is achieved using complex 

variable dependencies. For example, the radii of the half-spheres and cylinders that 

make up the skull and skin are dependent on the brain radius, and if one is adjusted, 

the rest change accordingly.  

Initial anthropomorphic dimensions such as tissue size and location were based on 

results of a large anthropometric study of adult males of multiple ethnicities (Farkas 

1994); initial dielectric values of tissues are those used in SAR compliance studies 

(Gabriel 1996). 
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3.1.2 Parameters that may be varied 

The following parameters of the Geometry Head model may be adjusted: 

 radius of the inner half-spheres and half-cylinder (as a single variable), which 

determines head breadth and in part, the distance between the menton (bottom 

of chin) and top of the head  

 skull thickness 

 skin thickness 

 height of the middle section, which contributes to the head height 

 radius of the eye spheres 

 radius of the fat spheres, i.e. thickness of fat layer 

 offset of centre points of eye and fat spheres, which controls eye protrusion 

through fat layer 

 vertical positioning of eyes relative to top of head 

 interpupillary breadth (lateral separation of eyes) 

 vertical positioning of the nose, which determines distance between sellion and 

top of the head.  

 vertical height of nasal cone, which determines the vertical distance between 

sellion and subnasale 

 radius of nasal cones, determining nose breadth and protrusion from face 

 radius of the ear half-cylinders, which determines thickness of pinna (ear) 

 tissue makeup each shape 

 conductivity, permittivity and density of each of the six tissue types brain eye, fat, 

filler, skin, skull) as individual variables 

3.1.3 Exposure 

Exposure was treated as an experimental variable, and therefore was kept constant in 

all tests, permitting better comparison of anatomic variables. It is important to note 

that source intensity used in SAR computations can be scaled up or down after 

models are run. 900 MHz plane wave excitation propagating in the saggital plane was 

used as the exposure source, at an arbitrarily chosen power density of 10 W/m2. As 

this study is exploring the relationship between anatomic variables and SAR, the 

exposure source isn’t overly relevant, as long as it is kept constant.  



 

58 

3.1.4 Validation 

Ideally, to test the model's efficacy, SAR measurements inside a living human's head 

would be compared to predictions made by the Geometry Head model, with its 

parameters suitably adjusted to resemble the real head's anatomic features. As this 

option was not available, simplified models of the head were constructed specifically 

for this purpose, and GH parameters were adjusted to match anthropometry of the 

physical models as closely as possible. A model that can accurately predict SAR inside 

a real head should provide a reasonably accurate estimate of SAR when tested 

against a simplified solution space.  

3.1.5 Parameter testing 

In order to further test the efficacy of the Geometry Head model, the assumptions 

behind its construction, and attempt to determine relationships between tissue 

parameters and SAR, several parameters of the model were individually adjusted 

while all other variables were kept constant 

Several anatomic parameters were chosen for initial investigation: 

 cranial thickness 

 skin thickness 

 dielectric properties of each tissue  

 head size  

The Geometry Head model has been designed to resemble the anatomy of adults. It 

is not overly difficult to amend this model to closer reflect the morphology of 

children's heads, which is quite different to that of adults. Children's skulls are 

thinner, and the relative location of sensitive tissues such as brains is different. 

Moreover, the dielectric properties of children's heads are different to those of adults. 

Using directly scaled adult heads as a substitute for children’s heads has been 

discouraged in the literature (Bit-Babik, Guy et al. 2005; Wiart, Hadjem et al. 2008), as 

this approach can lead to large uncertainties with respect to the local exposure of 

tissues and therefore to the interpretation of the findings. Some studies such as 

Schonborn et al's (Schonborn, Burkhardt et al. 1998) suggest using non-linear scaling 

algorithms to create child models. With current technology, it is simpler to derive 
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child models from imaging techniques such as MRI, and these are increasingly used 

for SAR investigations (Wiart, Hadjem et al. 2008; Christ, Kainz et al. 2010).  

To establish what variations exist in the chosen anatomic features, a literature review 

was first undertaken to investigate the anatomic variability in humans. For some 

anatomic features, data is sparse and inconsistent, rendering comparisons between 

studies somewhat impractical.  Where information was scarce, a priori reasoning was 

used to establish a parameter variation range that would encompass realistic 

variability.  

3.1.6 Metrics examined 

The 10g peak spatial SAR (10g SAR) has been included in results of all tests, as it is 

the compliance metric used by ICNRIP (ICNIRP 1998) and IEEE (IEEE 2005) guidelines, 

and the ARPANSA radiofrequency standard which applies in Australia (ARPANSA 

2002).  

1g peak spatial SAR (1g SAR) has also been examined in most tests, as it was still a 

compliance requirement under IEEE recommendations until 2005 (IEEE 1999; IEEE 

2005). The whole head averaged (WHA) SAR is included in most tests as it provides 

an indication of the overall absorption in the head. 

For most tissue variations, the average SAR in each tissue of the model is also 

included. SAR plots showing the distribution of energy absorption through slices of 

the head have been included for one variable investigation. Along with location of 

1g and 10g SARs, these metrics provide insight into regions of high SAR in the head, 

and how those change with variation in tissue parameters.  

As well as raw SAR values, a calculation of the SAR percentage variation is included: 

how much the SAR value for any given tissue variation differs from the base-level GH 

SAR value, which acts as a point of comparison.  

As the location of 1g and 10g SARs move, the tissue makeup of the cubes change. 

This creates some variability in results. As covered in Chapter 2, it is known that most 

absorption is occurs at the surface; since the ear is modelled as skin, average skin 

SAR includes SAR in the pinna. Increasing the bulk averaging – from point SAR to 1g 

and 10g, all the way up to tissues and WHA SAR – provides an indication of 
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absorption trends. As the volume over which the SAR is averaged increases, the 

trends become clearer.  

3.1.7 Section summary  

 Geometry Head is a parametric, parametrically adjustable model of the human 

head, made of geometric shapes, suitable for testing relationships between 

anatomic variables in the human head and resultant energy deposition due to RF 

exposure 

 Geometry Head is created using FEKO, a commercial Method of Moments/ Finite 

Elements Method (MoM/FEM) solver 

 Initial anthropometric values used in the model are based on large multi-ethnic 

study of heads of adult males 

 Model has been validated against physical simplified head models, see next 

section 

 Several anatomic features were chosen for initial testing, see subsequent sections 

 Metrics examined in this study provide a wealth of information regarding 

relationship between tissue parameters and SAR magnitude and distribution in 

the human head 
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3.2 Validation study 

This section describes the creation of homogeneous and multi-tissue physical models 

approximating human heads, and SAR testing of those models under laboratory 

conditions. Details are provided regarding construction of analogous computational 

models using the Geometry Head model. Results of physical and computational 

models are compared to establish efficacy of the Geometry Head model at predicting 

SAR in realistic situations.  

3.2.1 Rationale 

The validation study was aimed at examining the Geometry Head model’s ability to 

predict SAR in a realistic head.  

Various studies indicate that in dosimetric studies where the computation model 

closely matches the physical model, the computational model provides highly 

accurate estimates of SAR (IEEE 2003). 

The ideal way to test the model's accuracy at predicting SAR is to adjust the model 

parameters to known anatomic and dielectric attributes of those of a living human, 

and compare SAR results in GH with those measured in situ during similar exposures.  

Instead of trying to undertake measurements likely to cause harm or death, simplified 

phantoms of the head were constructed, and GH parameters were adjusted to match 

the physical model as closely as possible. It was reasoned that a numerical model 

that can accurately predict SAR for a complex situation should be able to provide 

reasonable accuracy for a simplified solution space.  

3.2.2 Methodology 

3.2.2.1 Physical models 

Custom-built phantoms resembling human heads were created specifically for this 

study. These were used in conjunction with two plastic human skull replicas and 

dielectrically-equivalent liquids to create homogeneous and heterogeneous head 

models of adult and child proportions. Since the E-field decays exponentially with 

depth into the phantom for closely coupled sources (Habash 2002; IEEE 2005), the 

maximum SAR was expected to occur at the inside surface of the phantom closest to 

the radiating source. With this in mind, models were designed to allow the probe to 
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reach inside the brain cavity, as close as possible to the source. Models were exposed 

to RF radiation in the form of a dipole antenna radiating 900 MHz. SAR in the 'brain' 

was measured using a compliance measurement and exposure system.  

The physical models created are within realistic ranges of morphology, location, and 

size of tissues of real human heads, though they are not representative of any specific 

individuals’ anatomy. These models were not intended to accurately represent reality, 

but rather to provide a comparison point for the computational model. Parameters of 

the computational model were matched to measured parameters of the physical 

models, and the SAR predictions in both models correspond reasonably well, 

suggesting the Geometry Head model is indeed viable for SAR predictions.  

3.2.2.1.1 Measurement and exposure system 

All tests were performed using the DASY4 (Dosimetric and near-field Assessment 

SYstem, Figure 13) measurement system (Speag 2008) at the Ericsson Research 

Laboratories in Stockholm, Sweden. A similar DASY4 setup was used for initial testing 

at EMC Technologies, Melbourne, Australia. The DASY4 system comprises compliance 

testing equipment in accordance with regulatory standards. E-field probes were used 

to take volumetric scans of the ‘brains’ of custom made phantoms described below. 

From this, SAR values were derived using the SEMCAD software supplied with DASY 

systems.  

Additional equipment used for testing and exposure: 

 Signal generator, Rohde & Schwarz SMHU58  

 Dielectric probe kit, HP 85070C  

 Network analyser, HP 8752C  

 Power meter, Rohde & Schwarz NRVS   

 Power sensor, Rohde & Schwarz NRV-Z5   

 Digital radio tester, Rohde & Schwarz CMU 200   

 Thermometer, EBRO TFX-392SKWT   

 Thermo/Hygrometer, Testo 608-H2 
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Figure 13: DASY4 exposure system and schematic of components 

 

3.2.2.2 Skulls 

Two commercially purchased plastic replica skulls were used for testing of 

morphological differences (full purchasing information is provided in Appendix A). 

Skull A is a replica of an adult African male skull; Skull B is of 5-year-old Caucasian 

child's skull, sex unknown. It was not possible to acquire real human skulls due to 

restrictions on trading in human parts, and skulls of other animals are 
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morphologically different. Although the dielectric properties of skull tissue are 

different to that of plastic (see Section 3.6 for more information regarding dielectric 

properties of human tissue), using the replicas in a model with other 'tissues' 

provided a pattern of high conductivity – low conductivity – high conductivity (from 

superior to deeper tissues) similar to reality.  

Skulls came with a cut calvarium and/or metal clips. All metal parts were removed to 

minimise interference. Where necessary, ‘hot glue’ (hot melt adhesive) or sculptor’s 

clay was used to secure mandible and/or calvarium to skull.  An opening into the 

brain cavity was made in each skull by removing a piece of cranium along the 

saggital plane, to allow access into brain cavity by the measurement probe, see 

Figure 14. 

3.2.2.3 Trial run at EMCT 

A trial run was performed in Melbourne, Australia at a SAR compliance testing 

laboratory at EMC Technologies, using DASY4 setup. Adult skull was positioned 

inside the flat part of SAM phantom, in homogeneous average head liquid (see 

Figure 14).  For detailed explanations and procedures of compliance SAR testing, 

please refer to the IEEE recommended practice guide for SAR measurement 

techniques (IEEE 2003).  

 

 

Figure 14: Initial tests using adult skull in flat part of SAM phantom at EMC Technologies, Melbourne, 
Australia 

SAR results are not included as they do not provide useful information pertaining to 

the aims of this thesis. The purpose of the exercise was to become familiar with the 
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peculiarities of the physical setup, and the software packages that control the robot 

and estimate SAR.  

3.2.2.4 Phantoms 

Two custom-made 'shell' phantoms resembling human heads were constructed (see 

Figure 15). A full protocol is provided in Appendix B: Creating shell phantoms. Before 

embarking on the phantom creation task, a literature review was undertaken to get a 

sense of how to reconstruct faces from skulls (Adeloye, Kattan et al. 1975; Ingerslev 

and Solow 1975; Siervogel, Roche et al. 1982; Stephan 2002; Stephan 2003; Swan and 

Stephan 2005), and several maxillofacial and forensic facial reconstruction experts 

were consulted for informal advice. In brief, artist's clay was used to create head casts 

by building up human 'faces' on the skulls. Placement of the facial features was 

dictated by skull anatomy; dimensions were appropriate to the age and ethnicity of 

the skull. The 'faces' were used to create moulds (negative impressions) using fast-set 

silicon. Fibreglass sheets were laid inside the mould and electrically inert epoxy resin 

was 'painted' on to create the shell phantoms and allowed to dry hard. 

A support frame was made for each phantom, by cutting a hole just large enough to 

for the phantom to fit through in a wooden plywood sheet.  

The thickness of the shell phantom varies from 2 mm to 5 mm. Thickness was 

minimised in order to reduce separation of the 'head' from the exposure source, 

however overly thin shells were found to leak.  

  

Figure 15: Shell phantoms with wooden support frame holding a skull, (a) top and (b) side (right) views. 

 

(a) (b) (b) 



 

66 

3.2.2.5 Tissue simulating Liquids 

Tissue simulating liquids were chosen here because they are malleable, relatively 

stable in their dielectric properties, and can be easily and cheaply mixed up.  

Two kinds of liquids were used. The brain and 'average head' was simulated using a 

detergent based liquid. Hartsgrove liquids (Hartsgrove 1982) were used for all other 

tissues. Brain cavity was sealed from other liquids using a thin layer of artist's clay.   

3.2.2.5.1 Detergent-based tissue simulating liquids  

As these liquids are used for standards compliance testing, detergent based tissue-

simulating liquids were available in the laboratory in large quantities.  Protocols for 

mixing are available in measurement standards (IEEE 2005). ‘Average head’ 

detergent-based liquid was used in homogeneous tests. In multi-tissue models, 

‘average brain’ liquid was used in brain cavity.  

3.2.2.5.2 Hartsgrove liquids 

Hartsgrove liquids (Hartsgrove 1982) are supersaturated deionised water solutions of 

sugar and salt. Salt increases conductivity, while sugar decreases permittivity and 

raises conductivity (though less so than salt) (Speag 2008). Hydroxyethylcellulose 

(HEC) sold under the brand name Natrosol©, a non-ionic water soluble polymer 

derived from cellulose, is added as a gelling agent. Bactericide is also added to keep 

the liquids foul-free.  

The original formulae developed by Hartsgrove in 1982 (Hartsgrove 1982) only 

provide weights used for simulating muscle tissues. The formulae used for ingredient 

percentages in this study are line of best fit equations developed by Telstra Research 

Laboratories, based on extensive experimental data. Quantities used are provided in 

Appendix C. To create liquids, deionised water was warmed to 60° Celsius while 

required quantities of salt and sugar were stirred in until a clear solution formed. HEC 

and bactericide were added last, once dielectric properties were established to be 

correct, as these have a negligible effect on dielectric properties. Densities of tissues 

were not recorded as these have no influence on the field distribution in a phantom.  
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Points to note: 

 Hartsgrove liquid recipes call for HEC at 0.5% concentration; for tissues that 

needed high viscosity, e.g. fat and eyes, this was increased to up to 10%, 

depending on resultant needs  

 a high percentage of HEC causes the mixture to become grainy and almost solid 

to the touch; this renders it difficult to measure dielectric properties (see Figure 

16) 

 ε and σ of liquids drop with increased temperature and humidity 

 water evaporation over time reduces ε and σ; tissues were made no more than 2 

days in advance, left in covered containers where possible, and dielectric 

properties measured immediately before construction of models 

 of all ingredients, salt affects dielectric properties the most; if values were too 

high, water content was increased slightly, however this was not possible for thick 

mixtures 

 food dye was occasionally added to differentiate tissues; some dyes were found 

to increase conductivity slightly; this was compensated for by the addition of a 

little extra water 

 HEC can increase conductivity a little at high concentrations, this was 

compensated for with the addition of a little extra water 

Resultant dielectric properties of high water content tissue equivalent liquids were 

found to be within 15% of expected value in most cases. Low water content 'tissues' 

were often well outside that range. This was not of great consequence here, as the 

aim of the exercise was to test how well GH predicts SAR in a physical model, and the 

dielectric parameters of the GH tissues were altered to match.  

3.2.2.5.3 Other tissue equivalent options 

Other tissue simulating options were considered but were deemed unsuitable, or 

were unavailable.  

 Guy's recipe (Guy 1971) of TX-150 (a gelling agent), polyethylene powder, water 

and sodium chloride (NaCl) does not yield a useable low-water-content tissue 

simulant (Lagendijk and Nilsson 1985)  
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 oil-in-gelatine dispersions as proposed by Lazebnik et al (Lazebnik, Madsen et al. 

2005) were deemed unnecessarily expensive when compared with other options 

 carbon loaded silicon layers, where the carbon content determines the dielectric 

properties (Gabriel 2007), was considered viable for using as an outer layer 

between the skull and the phantom, or even moulded to resemble a skull and its 

outer layers; unfortunately these could not be sourced in time for testing 

 

Figure 16: High concentration of gelling agent makes for a grainy texture; dielectric properties are 
difficult to measure. Food dye was added to differentiate tissues. 

3.2.2.6 Measuring dielectric properties 

Dielectric properties of liquids and were measured using a procedure outlined in the 

IEEE measurement standard (IEEE 2003). A listing of the equipment used in tests and 

exposure setup is provided at the start of this section. Three measurements were 

taken and the average used in each case.  

Dielectric property measurement involves sending a RF signal (at the frequency of 

SAR testing) through the material, and measuring the reflection coefficient. Before 

each measurement, the probe was calibrated by measuring free space, deionised 

water, and a shorting block. This establishes the loss through the connecting coaxial 

cable and probe, by testing against the loss seen during measurement of known 

reflectors and absorbers.  
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A wide-diameter flask was used for measurements (100 mm or wider), with a liquid 

depth of at least 60 mm in flask. This allowed enough liquid in the flask for the signal 

to travel through the material being tested and return a reflection coefficient from 

the liquid, not air or the container material.  

When measuring, the probe was slowly and carefully inserted into liquid at a 45 

degree angle to the horizontal, to ensure a uniform amount of liquid covered the 

entire probe. Care was taken to remove any air bubbles or foreign matter as these 

would interfere with the measurement. Three readings were taken and averaged to 

obtain permittivity and conductivity values. The probe was wiped clean with a wet 

cloth between readings; a small amount of detergent was used to remove highly 

viscous liquids.  

Hot glue, artist's clay and acrylic plastics such as the ones used in the manufacturing 

of the replica skulls are electrically inert, and have similar dielectric properties to air. 

In the analogous models, dielectric properties of skull tissue was set to that of air (ε = 

1, σ = 0).  

3.2.2.7 Exposure source 

A D900V2 dipole antenna and dipole position system supplied with DASY4 was used 

as the RF source (Speag 2008). The dipole physical dimensions are length of 148.5 

mm, diameter 3.6 mm, with 15 mm spacer at the centre.  

When adding the dipole into the computational FEKO model, the physical 

dimensions were closely approximated, while attempting to achieve ideal dipole 

impedance of Z = 75 +j0 Ω. Closest approximation was found to be length of 154.5 

mm, diameter 3.6 mm, and impedance of Z = 74.1 - j0.03 Ω.  

A schematic for the exposure setup used in all SAR tests in this study is shown below 

in 900 MHz signal at 250 mW power passed from the signal generator into an 

amplifier, then an RF coupler. Before each test, the reflection coefficients of the 

coupler ('B' in Figure 17) and the cable ('C' in Figure 17) were measured. Together 

with the coupling factor of the RF coupler ('A' in Figure 17, a constant), these gave 

the total reflected power, which was subtracted from the output power to give the 

total power delivered to the dipole.  
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Figure 17: Exposure setup for SAR tests used in this study. Preflected = PA (coupling factor) + PB (measured 
reflection coefficient) + PC (reflection coefficient through cable). 

When testing phones (or other devices that run on batteries), it is standard to 

measure the power in an arbitrarily chosen point, e.g. above the antenna, before and 

after a SAR test, to check for power drift in the battery. This was not necessary here 

because a dipole with a well defined, non-drifting power source was used.  

Power density in analogous computational models matches that of the physical 

models.  

3.2.2.8 Dipole positioning 

The centre of the dipole was positioned according to the IEEE SAR measurement 

standard (IEEE 2003), which specifies the antenna feed point be flush against the Ear 

Canal Reference Point (ERP). ERP is found by drawing a line passing through the ear 

canal and the mouth, and positioning the ERP 15 mm away from the ear canal 

towards the mouth – see Figure 19a.  

ERP was clearly marked on both phantoms, and dipole positioned accordingly (Figure 

19b). The dipole rotation angle was calculated using Pythagoras's Theorem to be 

49.19° for Skull A and 48.19° for Skull B (where 0° is a line in the saggital plane). 

Dipoles were aligned in the 'tilt' rather than 'cheek' position – see Figure 18. 

Signal 

Generator 

Amplifier Coupler 

Dipole 

A 
B 

C 
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Figure 18: 'cheek' (above) and 'tilt 'positions as shown on SAM phantom (image adapted from (IEEE 2003)) 

 

 

Figure 19: (a) establishing the Ear Canal Reference Point (ERP) on the skull; (b) Dipole was positioned with 
antenna feed point flush against the ERP, marked on the shell phantoms (c) 1 mm and 2 mm spacers 

between the skull and phantom; (d) skull is attached to shell using plastic screws to minimise 
electromagnetic interference 

(a) (b) 

(d) (c) 
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3.2.2.9 Constructing the physical models 

To create a skin and muscle layer between the skull and phantom of consistent 

thickness, the skulls needed to be positioned at a fixed distance from the shell. This 

was achieved by placing appropriately placed 1 mm and 2 mm spacers inside the 

shell Figure 19c), carefully locating the skull relative to facial features of the phantom, 

and attaching the skull to the shell using nylon (polyamide) screws (Figure 19d). 

Efforts were made to ensure all objects used in model construction were 

electromagnetically neutral. In cases where this was not possible, for example where 

clamps were used to attach frames, metal objects were kept at least 300 mm away 

from source and probe. Section 3.2.4 below lists the set of models constructed and 

tested.  

3.2.2.10 Defining the measurement space 

One of the implications of using non-standard models was the absence of a CAD 

schematic of the physical space, which could be uploaded to SEMCAD software for 

robot positioning: there was no pre-defined way to 'tell' the robot where to measure.  

A workaround was used to overcome this limitation. Surface testing using probe 

positioning was used to ‘teach’ the robot various reference points, which were used 

to assign the phantom space and measurement regions.  

Three reference points on the wooden support frames (visible in Figure 20a and c), 

plus an assigned depth value of 850 mm, 'told' the robot that measurement space 

was a rectangular box phantom. Overlapping two-dimensional regions were defined 

within the brain cavity (DASY software 'plane scans'), and the third dimension of 

depth was added for volume scanning ('volume scans').  
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Figure 20: Defining measurement regions within (a) adult phantom and (b) child phantom. Measurement 
planes are marked and numbered. The three red crosses on each image identify the reference points used 
to 'teach' the robot the location of the measurement space. The blue cross in each image denotes position 
of the Ear Reference Point, the ERP was marked on the outside of the shell and the dipole was positioned 

against it. The blue rectangle in the brain area represents the point of comparison for physical and 
computational models, see Section 3.1.5.  

Area scan regions measured are 50 × 82 (Region 1) and 30 ×50 mm (Region 2) in the 

adult phantom, and 30 × 70, 40 × 40 and 40 × 40 mm (Regions 1, 2 and 3 

respectively) in the child phantom. A third dimension of 30 mm depth, contralateral 

to the dipole, was added for the volume scans. 

DASY probes have the ability to use optical surface testing, however the reflectivity of 

the surfaces of the skull was not known and the probe could not be effectively 

calibrated for such conditions. Once planes were defined, the robot 'learned' the 

inner surface of the skull for the area scan, see Figure 21.  

 

Figure 21:  Measurement points used by the probe for a volume scan within adult skull. The skull surface 
was 'learned' by the robot for a plane, then extended contralateral to the dipole for 30 mm to obtain 

volume scan area. 

It was possible to take field measurements inside the shell phantoms immediately 

next to the source while the phantoms did not contain a skull, i.e. during the entirely 

(a) (b) 
(a) 

2 1 3 2 
1 
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homogeneous tests. However, to minimise uncertainty and maximise comparability, 

the measurement areas used in all model runs of the same phantom were identical, 

whether skulls were present or not. It may also have been possible to 'teach' the 

robot the entire inner surface of the phantoms (without the skulls) and use this 

information in conducting homogeneous tests to establish the location of 1g and 

10g peak SARs in entire phantom, not just the brain. However, such resources were 

not available.   

3.2.2.11 1g and 10g volume cubes 

1g and 10g peak spatial SAR were calculated using SEMCAD software. This function 

uses a finer grid for measuring E-field over a cube of 30 mm3 volume, of dimensions 

7×7×7 points. A minimum of 6 points are used for an area scan, and a minimum of 

10 points for a volume scan. The volume required by the software for 1g and 10g 

peak SAR averages must be within 5% of the required mass, contain no more than 

10% air, and must not contain any surface boundaries. If those three conditions are 

not met, and an appropriate cube cannot be found, the software uses an inverse 

polynomial approximation algorithm for spatial peak averaged SAR calculations 

(Speag 2008). For extrapolation calculations, the distance between the probe centre 

and the phantom surface was set to 5 mm.  

At certain times, the required scan area contained points inaccessible to the probe 

due to the shape of the skull. In such cases, the scan area was shifted by the 

minimum distance necessary to allow the largest possible volume scan around the 

max SAR point. When doing a zoom scan, the measurement grid is automatically 

refined by a factor of 10. Values between points are interpolated by the software. To 

find maxima, the software uses a linear search; interpolated values and values above 

or below 2 dB of the global maxima are not included.  

3.2.3 Analogous models 

The physical models were replicated computationally using the Geometry Head 

model initially described in Section 3.1, with sizes and dielectric properties of tissues 

were adjusted to resemble the physical models as much as possible, including the 

addition of a dipole antenna. Further detail is provided in the following sections. 
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3.2.4 Details of physical and computational models 

Further details of models and SAR tests are provided below. Radiated power of 

computational model dipoles was matched to the radiated power in the physical 

models. All 'tissues' named below are tissue simulating liquids as described in Section 

3.2.2.5.  

Adult phantom homogeneous  

Physical model  Analogous GH model 

Forward Power =  24.05 dBm = 254.01 mW  Tissue ε σ (S/m) 

Return power  =  2.27 dBm = 1.69 mW  Brain 40.3 0.95 

Radiated power =  254.01 – 1.69 = 252.41mW  Eye 40.3 0.95 

Temperature 
(ambient) 

22.5º C  Fat 40.3 0.95 

Humidity 47.2%  Filler 40.3 0.95 

  Skin 40.3 0.95 

Tissue ε σ (S/m)  Skull 40.3 0.95 

Average head 40.3 0.95     

 
Protocol: 

 'average head' liquid was poured into phantom to a depth of 130 mm 

 

Adult phantom homogeneous with skull 

Physical model  Analogous GH model 

Forward Power = 24.05 dBm = 254.01 mW  Tissue ε σ (S/m) 

Return power  = 3.79 dBm = 2.39 mW  Brain 40.3 0.95 

Radiated power = 254.01 - 2.39 = 251.70 mW  Eye 40.3 0.95 

Temperature (ambient) 21.5 º C  Fat 40.3 0.95 

 Humidity 50.8 %  Filler 40.3 0.95 

  Skin 40.3 40.3 

Tissue ε σ (S/m)  Skull 0 1 

Average head 40.3 0.95     

 
Protocol: 
 

 any clay blocking cavities within the head (e.g. orbital, nasal) was removed 

 skull was secured in position using nylon screws 

 'average head' liquid was poured into the space between skull and phantom until all cavities were 
filled; care was taken not to create bubbles 

 more 'average head' liquid was poured into skull cavity to a depth of 70 – 80 mm 

 

Child phantom homogeneous 

Physical model  Analogous GH model 

Forward Power =  24.01 dBm = 251.77 mW  Tissue ε σ (S/m) 

Return power  =  9.62 dBm = 9.16 mW  Brain 39.6 0.93 

Radiated power =  251.77 – 9.16 = 242.61 mW  Eye 39.6 0.93 

Temperature 
(ambient) 

21.1º C  Fat 39.6 0.93 
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Child phantom homogeneous 

Humidity 35.5%  Filler 39.6 0.93 

  Skin 39.6 0.93 

Tissue ε σ (S/m)  Skull 39.6 0.93 

Average head 39.6 0.93     

 
Protocol: 
 

 'average head' liquid was poured into phantom to a depth of 130 mm and left to settle for 30 
minutes before testing 

 

Child phantom homogeneous with skull 

Physical model  Analogous GH model 

Forward Power = 24.01 dBm = 251.77 mW  Tissue ε σ (S/m) 

Return power  = 10.20 dBm = 10.47 mW  Brain 39.6 0.93 

Radiated power = 251.77 - 10.47 = 241.30 mW  Eye 39.6 0.93 

Temperature 
(ambient) 

21.9 º C  Fat 39.6 0.93 

Humidity 35.5%  Filler 39.6 0.93 

  Skin 39.6 0.93 

Tissue ε σ (S/m)  Skull 0 1 

Average head 39.6 0.93 
 
 

    

 
Protocol: 
 

 any clay blocking cavities within the head (e.g. orbital, nasal) was removed 

 skull was secured in position using nylon screws 

 'average head' liquid was poured into the space between skull and phantom until all cavities were 
filled; care was taken not to create bubbles 

 more 'average head' liquid was poured into skull cavity to a depth of 70 – 80 mm and left to settle 
for 30 minutes before testing 

 

Adult phantom heterogeneous without eyes 
 Physical model  Analogous GH model 

Forward Power =  24.01 dBm = 251.77 mW  Tissue ε σ (S/m) 

Return power  = 3.49 dBm = 2.23 mW  Brain 42.3 0.82 

Radiated power = 251.77 - 2.23 = 249.54 mW  Eye 
¤
 38.8 0.92 

Temperature 
(ambient) 

22.2 º C  Fat 6.8 1.0 

Humidity 32.4%  Filler 
¥
 33.7 0.96 

  Skin 36.7 0.75 

Tissue ε σ (S/m)  Skull 1 0 

Average head 38.8 0.92     

Skin 36.7 0.75     

Fat 6.8 1.0     

Muscle 50.0 0.95     

Brain 42.3 0.82 
 

    

 
Protocol: 
 

 inside of the shell phantom was covered with 'skin' tissue 
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Adult phantom heterogeneous without eyes 
  'fat' was applied to front part of the 'face': cheeks, maxilla, orbital cavities, mouth 

 'muscle' was smeared everywhere except the calvarium, also liberally applied under mandible, 
inside zygomatic arch and inside nose cavity 

 the skull was attached inside the shell using the nylon screws 

 'brain' liquid was added inside brain cavity to a depth of 70 – 80 mm  

 normal viscosity ‘average head’ liquid was poured into the gap between the skull and the shell, to 
fill in any air bubbles and fill the orbital cavities, and left for 30 minutes to settle 

¤ highly gelled 'average head' liquid was used instead of eyes 

¥ 'filler' tissue dielectric properties were calculated using a weighted average of the tissues used in the 
physical model: 40% 'muscle', 30% 'fat', 30% 'average head' 

Adult phantom heterogeneous with eyes 
 Physical model  Analogous GH model 

Forward Power = 24.06 dBm = 254.68 mW  Tissue ε σ (S/m) 

Return power  = 11.19 dBm = 13.15  mW  Brain 46.6 0.82 

Radiated power = 254.68 - 13.15  = 241.53 mW  Eye 42.8 0.92 

Temperature 
(ambient) 

21.4 º C  Fat 23.6 0.51 

Humidity 42.4%  Filler 
¥
 42.5 0.83 

  Skin 36.7 0.75 

Tissue ε σ (S/m)  Skull 1 0 

Average head 38.7 0.92     

Skin 36.7 0.75     

Fat 23.6 0.51     

Muscle 52.6 0.98     

Brain 46.6 0.82     

Eye  42.8 1.25     

 
Protocol: 
 

 inside of the shell phantom was covered with 'skin' tissue 

 'fat' was applied around the front part of the face: cheeks, eyes and mouth 

 'muscle' was smeared everywhere except the calvarium, also liberally applied under mandible, 
inside zygomatic arch and inside nose cavity 

 'fat' was smeared inside orbital cavities to a depth of up to 2 mm, and two approximately spherical 
balls of 30 mm diameter were rolled by hand and carefully inserted into eye cavities 

 the skull was attached inside the shell using the nylon screws 

 'brain' liquid was added inside brain cavity to a depth of 70 – 80 mm  

 normal viscosity ‘average head’ liquid was poured into the gap between the skull and the shell, to 
fill in any air bubbles, and left for 30 minutes to settle 

¥
 'filler' tissue dielectric properties were calculated using a weighted average of the tissues used in the 

physical model: 60% muscle, 30% fat, 10% average head.  

 

Child phantom heterogeneous 
 Physical model  Analogous GH model 

Forward Power =  24.04 dBm = 253.51 mW  Tissue ε σ (S/m) 

Return power  =  11.69 dBm = 14.76 mW  Brain 45.3 0.83 

Radiated power = 253.51 - 14.76 = 238.75 mW  Eye 42.4 1.24 

Temperature 
(ambient) 

21.5 º C  Fat 17.5 0.38 

Humidity 40.0% 
 

 Filler ¥ 35.4 0.70 
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Child phantom heterogeneous 
   Skin 36.7 0.75 

Tissue ε σ (S/m)  Skull 1 0 

Average head 38.7 0.92     

Skin 36.7 0.75     

Fat 17.5 0.38     

Muscle 52.6 0.98     

Brain 45.3 0.83     

Eye 42.4 1.24     

 
Protocol: 
 

 a thin skin layer was applied inside the shell 

 'fat' was applied at anterior part of face, under the chin 

 thin layer of 'muscle' was applied everywhere except inside the cut calvarium, also liberally applied 
inside the zygomatic arch and under the mandible 

 'fat' was smeared inside eye cavities 

 extra 'fat' was added around cheek pad, as appropriate for child anatomy 

 extra 'muscle' was added at zygomatic arch 

 'eyes' of weight 18.05±1 grams were made by hand, approximately spherical, and inserted into eye 
cavities 

 skull was screwed into place 

 the entire model was left for several hours to settle 

 the top ‘eye’ leaked a little due to gravitational effects, the gelatinous liquid was moved back into 
place by hand  

 average head liquid was poured into the gap between the skull and phantom and left to settle for 
an hour 

 'brain' liquid was added inside the skull cavity 

¥ 'filler' tissue dielectric properties were calculated using a weighted average of the tissues used in the 
physical model: 45% 'fat', 45% 'muscle', 10% 'average head' 

 

 

3.2.5 Results and discussion 

3.2.5.1 Single point SAR comparison 

A point was chosen for direct comparison between physical and computational 

models, shown as blue rectangle in Figure 20 for the physical models and in the 

Figure 22 in computational models. Location was chosen to provide a high SAR value; 

point is in the brain region against the skull, medially from the dipole antenna. Values 

of SAR in both models at the comparison point are shown in Table 4 and Figure 23. 

The comparison point was no more than 20 mm from the location of 1g and 10g SAR 

cubes in any direction the computational models.  

 



 

79 

 

Figure 22: Comparison point used in computational models, shown in side and top view of the adult 
model 

Table 4: Single point SAR comparisons between physical and computational models 

 Adult 
homog 

Adult 
homog 
with 
skull 

Adult 
hetero 
with 
eyes 

Adult 
hetero 
without 
eyes 

Child 
homog 

Child 
homog 
with 
skull 

Child 
hetero 

Computational 0.23 0.51 0.44 0.47 0.43 0.51 0.46 

Physical 0.40 0.22 0.18 0.20 0.58 0.32 0.30 

 

 

Figure 23: Single point SAR comparison in the physical and computational models 

SAR in the child models varies by about 35% at the comparison point, and by about 

57% for all the non-homogeneous adult models. Interestingly, computational GH 

models overestimate SAR in the non-homogeneous models, but underestimate it by 

about 30% for homogeneous ones, contradicting previous results (Gandhi, Gianluca 

et al. 1996; Hombach, Meier et al. 1996; Meier, Hombach et al. 1997) suggesting that 

a homogeneous model provides a more conservative estimate.  
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Please refer to Section 4.3.2 for an analysis of the uncertainties in this modelling 

work, both computational and physical. Safety guidelines consider variation up to 

±30% between measured and numerically analysed results to be acceptable 

(ARPANSA 2002; IEEE 2003), which this works adheres to. The comparatively high 

level of uncertainly in the dielectric properties of the tissue-simulating liquids, and 

the human error introduced when creating the models, is likely the cause of the extra 

level of difference between what's seen here. As outlined in Section 4.3.2, every effort 

has been made to minimise human error, and its contribution to errors is considered 

minimal here, however it cannot be discounted. Human error cannot be quantified 

but is estimated to be no more than a 20% contributor to the uncertainty factor.  

Note that agreement of computational and physical models is about ±3dB (50% of 

the magnitude), which is a value treated as acceptable variation by most 

measurement work (Bassen and Babij 1990; Roach 2009). The consistent patterns 

across models also suggest that the results are reasonably accurate (correlation 

analysis was not performed). A similar difference between measured and numerical 

predictions is seen across models.  

3.2.5.2 Averaged SAR  
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Table 5 and Figure 24, and Table 6 and Figure 25,  show 1g and 10g SAR respectively 

in the brains of physical models, and 1g and 10g SARs in the analogous 

computational models, both in the entire head and in the brain tissue. 1g and 10g 

SARs in the original-sized GH model are also included. The discrepancies between 

SAR predictions in physical and computational models, and the similar pattern seen 

above in the point SAR comparison follow a pattern which suggests that the 

computational model predictions are reasonably accurate.  

Recall that the measured volumes in the physical models are only a small part of the 

'brain', whereas the computational models take into account the entire brain tissue.  
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Table 5: 1g peak SAR in physical and computational models 

1g peak in brain 
(W/kg) 
comparison 

Adult 
homog 

Adult 
homog 
with 
skull 

Adult 
hetero 
with 
eyes 

Adult 
hetero 
without 
eyes 

Child 
homog 

Child 
homog 
with 
skull 

Child 
hetero 

Original 
(Caucasian 
adult) 

GH brain tissue 0.84 0.98 0.82 0.83 0.92 0.87 0.79 0.30 

Physical model 0.65 0.22 0.09 0.18 1.68 0.53 0.41  

GH entire model 2.48 1.20 1.09 1.32 2.26 1.07 0.99 0.36 

 

Table 6: 10g peak SAR in physical and computational models 

10g peak in 
brain (W/kg) 
comparison 

Adult 
homog 

Adult 
homog 
with 
skull 

Adult 
hetero 
with 
eyes 

Adult 
hetero 
without 
eyes 

Child 
homog 

Child 
homog 
with 
skull 

Child 
hetero 

Original 
(Caucasian 
adult) 

GH brain tissue 0.39 0.48 0.42 0.44 0.47 0.48 0.46 0.22 

Physical model 0.34 0.14 0.06 0.11 0.88 0.33 0.31  

GH entire model 1.60 0.83 0.77 0.87 1.54 0.76 0.71 0.29 

 

 

Figure 24: 1g peak spatial SARs in the physical and computational models 

 

Figure 25: 10g peak spatial SARs in the physical and computational models  
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Figure 27 shows SAR plots of physical models as extrapolated by DASY4 software 

from E-field measurements taken in the 'brain' regions shown in Figure 20. The area 

scans on the left are measurements taken in the plane closest to the dipole. Energy 

absorption is seen to follow a spherical pattern, decreasing with distance from the 

source.  

It is evident from Figure 20 and Figure 27  that measurements in the physical models 

were taken in the part of the 'brain' adjacent to the dipole, though location is at least 

30 mm away from the feed point. This is consistent with the fact that measured 

1g/10g SARs in the brain of physical models are lower than those predicted by GH 

for the brain tissue, and lower still than the 1g/10g SARs predicted for the entire 

head (with the exception of the homogenous child head). The regions of highest SAR 

found in the brain tissue of GH correlate closely to the measured regions within the 

physical models, see Figure 26 for example of 1g/10g SAR locations. In the physical 

(and computational) models, some of the 'brain' tissue was closer to the feed point 

than the measured regions, which explains the discrepancy between 1g/10g GH 

results in the brain and in the entire head. It is expected that the highest SAR in the 

physical models occurred in the skin tissue closest to the feed point, though it was 

not possible to take measurements in that area.  

Measured SAR in the heterogeneous adult model with 'eyes' are surprisingly low, 

about half that of other non-homogeneous adult models. It is possible that an error 

was made during dipole positioning for that test, causing the source to be too far 

from the phantom, however the single-point measurements do not support that 

theory. A repeat of the test was not possible due to time constraints. It is more likely 

that a large heterogeneous head model using these parameters provides a low 

averaged SAR value.  
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Figure 26: Location of 1g and 10g SAR cubes (10g SAR shown here) in the brain of computational models 

Homogeneous models show significantly higher 1g and 10g SAR than heterogeneous 

models, up to 3 times as much in measured models; this agrees with others' previous 

work indicating SAM provides conservative results. However, the homogeneous 

child's head model shows higher SAR than the homogeneous adult one, suggesting 

that SAM may not provide the worst case result for all anatomic variations, 

particularly smaller heads. 

Lowest 1g/10g SAR predicted by GH is in the adult Caucasian original model; that 

model has a smaller head than the rest of the ones tested here, again suggesting that 

SAM may not provide a conservative result for all heads. 

In the non-homogeneous models (with the exception of the adult heterogeneous 

model with 'eyes'), the difference between predicted and measured SAR in the adult 

heads is in the order 0.35 W/kg; in the child heads, 0.15 W/kg; this consistency lends 

credence to the results of the validation tests, as well as the viability of the GH model 

at predicting SAR. 
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Figure 27: Area and volume SAR scans of physical models. Locations of measured areas are shown in 
Figure 20. 
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Recall again that the 1g and 10g SAR results from physical models are due to 

averaging of a section of the brain only; whereas the entire brain was averaged to 

derive 1g and 10g SAR results in computational GH models. It is expected that some 

variation will be seen. As with the point comparison, patterns across models suggest 

the results are within a reasonable margin of prediction, indicating the Geometry 

Head model provides accurate representation of SAR in a physical situation. 

  

3.2.5.3 Uncertainty of validation study 

For a discussion of the uncertainties of this study please see Section 4.3.2 below.  

3.2.6 Section summary 

 Tissue-equivalent liquids with dielectric properties resembling those of human 

tissues were used in combination with plastic replica skulls and custom-made 

phantoms to create several homogeneous and semi-homogeneous physical 

models of the human head 

 Models anatomically resemble the heads of an adult African male and a Caucasian 

5-year-old child  

 Homogeneous and non-homogeneous models were used for performing SAR 

tests; exposure source was a dipole antenna radiating at 900 MHz; E-field 

measurements were taken inside the 'brain' tissue, as close as possible to the 

antenna feed point and SAR calculated 

 Parameters of the Geometry Head model were adjusted to create analogous 

computational models, mirroring the physical models as closely as possible 

 SAR predictions of computational and physical models are reasonably well 

matched, from which it is inferred that the Geometry Head model is able to 

accurately predict SAR in human heads 
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3.3 Cranial thickness 

3.3.1 Why this variable is important 

As discussed in Chapter 2, radiation decays exponentially as it is attenuated by the 

lossy dielectric absorbers that comprise the human head. Penetration of the 

electromagnetic wave at 900 MHz is only of a few centimetres, therefore most of the 

absorption happens near the surface. Thickness of the skull tissue, a tissue close to 

the surface of the head, is expected to play a large part in location and maximum 

values of SAR.  

3.3.2 Literature review 

Little difference is seen between male and female skulls of children, however in 

adulthood male skulls tend to be larger and more robust than female skulls, which 

are lighter and smaller, with a cranial capacity about 10 percent less than that of the 

male. However, the male body is larger than the female body, which accounts for the 

larger size of the male skull; proportionally, the male skull is about the same size as 

the female skull. Male skulls typically have more prominent supra-orbital ridges, a 

more prominent glabella (the space between the eyebrows and above the nose), and 

more prominent temporal lines. Female skulls generally have rounder orbits and 

narrower jaws. On average male skulls have larger, broader palates, squarer orbits 

and larger sinuses, than those of females. Male mandibles typically have squarer 

chins and thicker, rougher muscle attachments than female mandibles Different 

thicknesses are seen on different points of the skull (Gray 1918).  

3.3.2.1 Cranial thickness in human adults 

Much disparity exists in literature as to cranial thickness in adults. Most available data 

was found in anatomy and archaeology texts and peer-reviewed journal papers.  

Using sections excised from four cranial locations frontal and parietal regions, Ross et 

al. (Ross, Jantz et al. 1998) found mean cranial thickness to be between 7.03 mm and 

8.97 mm in females and between 6.43 mm and 7.70 mm in males.  They also noted 

that cranial thickness decreases with age in males and increases in females.  

Conversely, Lynnerup found no correlation between cranial thickness and sex, age or 

general body build (Lynnerup 2001).  These findings are noted to be in agreement 

with several earlier studies that found little or no correlation. Simms and Neely  
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(Simms and Neely 1989)studied variability of temporal bone thickness in children 

aged 0-20 years of age; their findings also indicate no thickness variability between 

sexes but displayed large differences between age groups.  Adult (20 years old) bone 

thickness was found to be between about 3 and 7 mm.  Eshel et al. (Eshel, Witman et 

al. 1995) noted that cranial asymmetry needs to be taken into account. 

Overall, categorising human skulls along delineations such as sex, age or race does 

not reduce the inter- or intra-category variation in skull thickness. As much variation 

may be found between, for example, two child skulls, as between a child skull and an 

adult skull (Anderson 2003). Definitions of ‘child’ and ‘adult’ range in the literature 

from 16, 18 to 21 years old (Anderson 2003).  

3.3.2.2 Effect of cranial thickness on RF absorption 

This variable has not been systematically explored much in literature, likely due to the 

difficulty of altering features in existing human models used for dosimetric studies. 

Heterogeneous models are closely representative of human anatomy, where skull 

thicknesses (and other features) vary greatly across the model. Homogeneous models 

obviously do not contain a separate skull tissue. Canonical layered sphere models 

have used cranial thicknesses ranging from 4.7 mm (Anderson, 2003) to 10 mm 

(Drossos, Santomaa et al. 2000), usually based on a value taken from literature. 

Where cranial thickness is varied across simplified models, other variables are too. 

Literature sources agree that in general, smaller heads absorb more energy than 

larger heads, but the specific contribution of skull thickness cannot be isolated. This 

effect is likely due to morphological differences and overall size of the head 

(Schonborn, Burkhardt et al. 1998). More information regarding effect of head sizes 

on SAR is found in Section 3.5. 

3.3.3 What do we expect to see? 

Little data is available regarding effect of cranial thickness on SAR. However, a priori 

reasoning suggests that SAR in the head would increase with decreased skull 

thickness.  
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3.3.4 Methodology, results and discussion 

3.3.4.1 Variation of human cranial thickness 

Information regarding human cranial thickness is readily available, unlike some other 

anthropometric measures. A literature review was undertaken to establish the 5th, 50th 

and 95th percentiles of thickness of the skull in human anatomy. In total, 27 literature 

sources were consulted yielding multiple measurements taken of 3103 skulls.  

Summary results are provided in Table 7 with full data available in Table 8.  

Results were split for sex (female and male), age groups (20-29, 30-39, 40-49, 50-59, 

60+ years old), and ethnicity (African, African-American, Australian Aboriginal, 

Caucasian, Bedouin, Chinese, Japanese, unknown/unspecified) sub-populations. 

Where more than one of the subpopulation criteria, (age, sex or ethnicity), 

measurements were placed into the 'Unknown' category (n = 609), so as not to skew 

the subpopulation percentile values. This category includes measurements of male 

and female skulls of various ages from Easter Island, Korea, Australia, New Zealand, 

and North and South America.  

The overall 5th, 50th and 95th percentiles of skull thickness in adult humans were 

found to be 3.70 mm, 6.43 mm and 10.80 mm respectively. These values were 

rounded to 4 mm, 6 mm and 11 mm respectively for modelling purposes.  

In general, skulls of females (n = 778) were found to be thicker than those of males (n 

= 1716), with  5th, 50th and 95th percentiles of female skull thickness found to be 4.87, 

7.16 and 9.34 mm versus male thicknesses of 3.91, 6.50 and 9.58 mm respectively. 

Japanese male skulls were the thinnest overall (5th, 50th and 95th percentiles at 4.00, 

4.70 and 6.75 mm respectively, n= 105), closely followed by those of Japanese 

females (4.83, 5.60 and 6.90 mm respectively, n = 47).  

The highest variation was seen in skulls of Australian aboriginal males (n=80), with a 

5th percentile of 3.97 mm and the 95th at 15.28 mm. Female Australian aboriginal 

skulls (n =  32) show a similar range at 4.28 mm for the 5th percentile and 12.25 mm 

for the 95th. The 95th percentile values for male and female Australian aboriginals 

were also the highest values found.  

Percentile values of three sub-populations – African males, African females, and 

Chinese females – were based on measurements taken of only one or two skulls. 
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Caucasian male skulls were the most often examined (n = 1308) in the found 

literature, with Caucasian females a poor second at 541 skulls.  
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Table 7: Overview of adult cranial thickness in literature (for full information see Table 8). n refers to the number of specimen – often multiple measurements are included 
of the same skull. 

Overall 

  All  Unknown Male  Female  

5th percentile 3.70 3.50 3.91 4.87 

50th percentile 6.43 5.60 6.50 7.16 

95th percentile 10.80 11.28 9.58 9.34 

n 3103 609 1716 778 

 

 Subpopulation - Male  

  Australian 
Aboriginal 

African African-
American 

Bedouin Caucasian Chinese Japanese 

5th percentile 3.97 6.54 6.10 5.42 3.65 6.07 4.00 

50th percentile 7.80 7.94 7.00 5.60 6.39 6.71 4.70 

95th percentile 15.28 9.33 9.40 7.67 8.38 7.51 6.75 

n 80 2 133 11 1308 77 105 

 

 Subpopulation – Female 
  
  Australian 

Aboriginal 
African African-

American 
Bedouin Caucasian Chinese Japanese 

5th percentile 4.28 6.97 6.10 5.56 5.59 7.03 4.83 

50th percentile 7.35 6.97 7.70 6.10 7.11 7.03 5.60 

95th percentile 12.25 6.97 9.40 7.63 9.10 7.03 6.90 

n 32 1 144 12 541 1 47 

Subpopulation –Age and/or Sex and/or 
Ethnicity Unknown 
5th percentile 3.50 
50th percentile 5.60 
95th percentile 11.28 
n 609 
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Table 8 Adult cranial thickness in literature (detail) 

Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

MALE 
Caucasian 20-

29 
(Adeloye, 

Kattan et al. 
1975) 

American 25 7.70 1.70   

          6.50 1.60   

          7.50 1.40   

          5.70 1.40   

    (Ross, Lee et al. 
1976) 

American, age 
unknown (17-

95) 

59 3.52 0.50   

    (Weber and Kim 
1999) 

European 1 5.37 1.87   

    (Getz 1961) Norwegian 
(Sogn), age 
unknown 

57 6.00 0.20   

          7.20 0.10   

          7.20 0.40   

          7.10 0.20   

      Norwegian 
(Oslo), age 20-

59 

30 5.80 0.30   

          5.90 0.30   

          6.50 0.20   

          7.00 0.40   

          7.40 0.30   

          7.00 0.60   

          7.10 0.30   

          7.70 0.40   

          7.60 1.10   

      Norwegian 
(Lapp), age 
unknown 

33 5.60 0.20   

          6.10 0.20   

    (Zvyagin 1975) Russian, aged 
20-86. means of 

3 skull tables 
added. 

91 6.06     

         5.18     

          6.96     

          6.47     

          7.11     

          7.39     

          6.38     

          1.20     

  30-
39 

(Adeloye, 
Kattan et al. 

1975) 

American  16 7.10 1.40   

          6.20 1.50   

          8.20 1.30   

          5.90 1.30   
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

    (Todd 1924) American, age 
unknown 

448 11.26     

          5.75     

                

          3.56     

    (Todd 1924) American, age 
unknown 

169 11.80 0.32   

          6.10 0.23   

          6.20 0.15   

          3.70 0.12   

          11.50 0.23   

          6.00 0.16   

          5.80 0.13   

          3.70 0.13   

          11.00 0.26   

          5.70 0.19   

          5.90 0.15   

          3.50 0.97   

          9.80 0.25   

          4.90 0.14   

          5.20 0.10   

          3.10 0.08   

    (Todd 1924) American, age 
unknown 

167 3.93 0.15   

  40-
49 

(Adeloye, 
Kattan et al. 

1975) 

American 17 7.50 2.40   

          6.6 1.9   

          7.3 1.5   

          5.6 0.9   

    (Lynnerup 2001)  Danish 43 7.044 1.273   

          7.825 1.657   

          5.04 1.25   

          5.034 1.328   

                

    (Ross, Jantz et 
al. 1998) 

American, aged 
18-86 (45+/-16) 

122 6.43 1.43   

          6.57 1.31   

          7.67 1.72   

          7.7 1.82   

    (Weber and Kim 
1999) 

European 1 4.34 2.14   

  50-
59 

(Adeloye, 
Kattan et al. 

1975) 

American 9 8.7 1.2   

          7.4 1.7   

          8.1 1.5   

          6.4 1.7   

  60+ (Adeloye, 
Kattan et al. 

1975) 

American 10 6.6 1.9   
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

          6.2 1.9   

          6.8 2   

          5.1 1.1   

    (Elahi, Lessard 
et al. 1997) 

Canadian 10 5.43     

          4.72     

          4.87     

          5.19     

          6.89     

          4.77     

          6.57     

          0.74     

          4.58     

          4.87     

          5.73     

          4.23     

          5.84     

          4.81     

          6.43     

          4.65     

          7.15     

          6.5     

          5.13     

          7.61     

          5.69     

          5.9     

          7.72     

          5.34     

          7.16     

          4.73     

          5.78     

          7.07     

          7.66     

          6.44     

          7.68     

          5.43     

          7.29     

          6.74     

          7.35     

          5.53     

          8.1     

          7.41     

          6.22     

          6.55     

Japanese 20-
29 

(Ishida and 
Dodo 1990)  

Aged 17-90 105 4.00 1.03 1.06 

          4.00 0.95 0.91 

          6.30 1.26 1.59 

          4.60 1.22 1.50 

          4.80 1.17 1.38 
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

          6.90 1.44 2.08 

Australian 
Aboriginal 

20-
29 

(Brown 1992) Ages unknown; 
late Holocene. 

24 7.80 1.09   

    (Brown, 
Pinkerton et al. 

1979) 

Yuendumu 
tribe, aged 19-

34. 

28 15.10 3.00   

          7.30 0.70   

          7.20 0.80   

          9.00 1.40   

          4.00 0.60   

          3.90 0.50   

    (Brown, 
Pinkerton et al. 

1979) 

Skulls from SA 
museum 

27 14 2   

          8 1.2   

          7.7 1.3   

          8.9 1.4   

          4 0.9   

          4.30 1.00   

          15.70 2.30   

African 30-
39 

(Weber and Kim 
1999) 

Bushman 1 6.38 3.43   

  50-
59 

(Weber and Kim 
1999) 

Bantu 1 9.49 3.36   

African-
American 

20-
29 

(Adeloye, 
Kattan et al. 

1975) 

American 28 6.80 1.40   

          6.60 1.50   

          8.80 2.40   

          6.60 1.80   

    (Ross, Lee et al. 
1976) 

American, exact 
age unknown 

(17-95) 

50 4.03 0.70   

  30-
39 

(Adeloye, 
Kattan et al. 

1975) 

American 16 7.00 1.90   

          6.40 1.60   

          9.60 2.50   

          7.00 1.70   

  40-
49 

(Adeloye, 
Kattan et al. 

1975) 

American 14 7.40 1.70   

          6.30 1.30   

          8.70 2.30   

          7.40 1.50   

  50-
59 

(Adeloye, 
Kattan et al. 

1975) 

American 11 7.00 1.80   

          6.10 1.60   

          8.50 1.70   

          6.90 2.40   
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

Bedouin 20-
29 

(Smith, Wax et 
al. 1985) 

Early Bedouin 
1800CE, exact 
ages unknown 

11 7.90 1.70   

          5.60 1.80   

          5.40 1.20   

Chinese 20-
29 

(Brown 1992) Exact ages 
unknown. South 

Chinese 

38 7.60 1.40   

      Ages unknown. 
North Chinese 

37 6.40 1.30   

  30-
39 

(Weber and Kim 
1999) 

  2 7.01 3.00   

          6.01 3.08   

FEMALE 
Caucasian 20-

29 
(Adeloye, 

Kattan et al. 
1975) 

American 17 7.10 1.50   

          6.10 1.10   

          8.80 1.60   

          6.20 1.60   

    (Ross, Lee et al. 
1976) 

American, age 
17-95 

50 4.27 0.90   

    (Weber and Kim 
1999) 

European 1 6.35 3.39   

    (Weber and Kim 
1999) 

European 1 5.73 2.27   

    Tallgren 1974 Finnish, aged 
20-73 

32 7.11 1.47   

          7.09 1.72   

          8.20 2.05   

          7.30 1.68   

          15.74 3.30   

  30-
39 

(Adeloye, 
Kattan et al. 

1975) 

American 8 7.20 0.90   

          5.80 1.40   

          7.40 1.00   

          5.10 1.30   

    (Israel 1973) American. Same 
population also 
measured at 50-

59 (below). 

20 7.80 1.70   

       20 7.70 1.80   

        20 6.80 1.80   

        18 7.60 1.90   

        21 8.60 2.00   

        20 9.10 2.10   

  40-
49 

(Adeloye, 
Kattan et al. 

1975) 

American 9 8.30 1.50   

          6.20 1.00   
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

          8.10 0.80   

          6.00 1.40   

    (Lynnerup 2001) Danish 21 6.68 1.12   

          7.60 2.01   

          5.64 1.14   

          5.45 1.42   

  50-
59 

(Adeloye, 
Kattan et al. 

1975) 

American 4 7.80 0.50   

          7.00 0.80   

          8.00 0.80   

          8.00 1.20   

    (Ross, Jantz et 
al. 1998) 

American, aged 
18-87 (51±19) 

58 7.03 1.57   

          7.23 1.68   

          8.87 2.74   

          8.97 2.51   

    (Israel 1973) American. Same 
population also 
measured at 30-

39 (above) 

20 8.50 1.60   

       20 8.50 1.90   

        20 7.00 1.80   

        18 8.30 2.00   

        21 8.80 1.90   

        20 9.10 2.10   

  60+ (Adeloye, 
Kattan et al. 

1975) 

American 5 8.20 1.30   

          6.00 1.20   

          9.50 2.00   

          6.70 2.20   

    (Zvyagin 1975) Russian, aged 
20-86; added 

means 

97 6.58     

      of 3 skull tables.    5.83     

          7.10     

          6.64     

          6.99     

          6.55     

          6.25     

          5.75     

Japanese 20-
29 

(Ishida and 
Dodo 1990) 

 (age 17-90) 47 4.80 1.06 1.12 

          4.90 1.25 1.57 

          6.00 1.20 1.43 

          5.50 1.22 1.48 

          5.70 1.20 1.44 

          7.20 1.33 1.78 

Australian 
Aborigine 

20-
29 

(Weber and Kim 
1999) 

  1 4.53 1.73   
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

    (Brown, 
Pinkerton et al. 

1979) 

Yuendumu 
tribe, aged 19-

27. 

31 13.40 2.00   

          7.60 0.90   

          7.10 0.90   

          8.80 1.00   

          4.20 0.60   

African 20-
29 

(Weber and Kim 
1999) 

Bantu 1 6.97 3.25   

African-
American 

20-
29 

(Adeloye, 
Kattan et al. 

1975) 

American 31 7.80 1.80   

          6.40 1.40   

          9.40 2.30   

          7.70 1.80   

    (Ross, Lee et al. 
1976) 

American, age 
unknown (17-

95) 

59 4.22 0.60   

  30-
39 

(Adeloye, 
Kattan et al. 

1975) 

American 14 7.60 1.30   

          6.30 1.10   

          9.20 2.10   

          7.70 1.60   

  40-
49 

(Adeloye, 
Kattan et al. 

1975) 

American 16 7.10 1.50   

          6.30 1.20   

          9.30 1.60   

          7.70 1.60   

  50-
59 

(Adeloye, 
Kattan et al. 

1975) 

American 5 8.30 1.10   

          7.80 2.40   

          10.50 2.10   

          8.20 1.80   

  60+ (Adeloye, 
Kattan et al. 

1975) 

American 19 8.30 1.60   

          6.10 1.30   

          8.70 2.10   

          7.30 2.20   

Bedouin 20-
29 

(Smith, Wax et 
al. 1985) 

Early Bedouin 
~1800CE, ages 

unknown 

12 7.80 1.80   

          5.50 1.60   

          6.10 1.10   

Chinese 30-
39 

(Weber and Kim 
1999) 

  1 7.03 3.62   

>1 UNKNOWN 
Unknown   (Law 1993) Male, American 1 5.20 0.89 0.80 
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

    (Zipnick, Merola 
et al. 1996) 

American (NY).  
Race, gender, 

age not 
mentioned 

26 9.00 2.00   

          9.00 2.00   

          11.00 3.00   

          14.00 5.00   

          11.00 2.00   

          9.00 3.00   

          8.00 2.00   

          10.00 3.00   

          11.00 3.00   

          10.00 2.00   

          8.00 2.00   

          7.00 2.00   

          17.55 3.18   

Korean   (Hwang, Kim et 
al. 1997)  

Korean 88 4.86 1.39   

      Age unknown   5.57 1.27   

      Males and 
females 

  6.43 1.16   

          6.67 1.41   

          5.35 1.31   

          5.86 1.33   

          6.29 1.31   

          6.10 1.35   

          5.52 1.24   

          5.45 1.31   

          5.91 1.25   

          5.54 1.29   

          4.73 1.19   

          5.21 1.21   

          5.31 1.32   

American   (Ebraheim, Lu et 
al. 1996) 

Male American 
(Ohio) 

25 6.20 1.30   

      Age unknown   6.50 1.30   

          7.60 1.70   

          9.10 1.80   

          11.60 2.60   

          15.10 2.60   

          11.50 2.60   

          9.00 2.10   

          7.40 1.50   

          6.90 16.00   

          6.60 1.60   

          5.60 1.70   

          5.50 1.90   

          5.50 1.90   

          5.70 1.90   

          7.20 2.70   

          11.10 2.50   
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

          6.70 2.20   

          5.90 1.80   

          5.70 1.70   

          6.40 1.50   

          6.10 1.90   

          4.30 1.40   

          4.60 1.80   

          4.20 1.60   

          4.70 1.60   

          5.90 2.10   

          9.00 2.00   

          5.30 2.60   

          4.50 1.40   

          4.30 1.70   

          5.20 1.80   

          5.70 1.50   

          4.00 1.70   

          4.20 1.50   

          3.70 1.20   

          4.70 1.60   

          5.90 2.10   

          6.80 1.40   

          4.90 2.20   

          4.30 1.70   

          3.80 1.30   

          4.60 1.60   

          4.50 1.10   

          4.30 2.00   

          3.90 1.50   

          3.90 1.60   

          5.10 2.00   

          5.60 1.70   

          6.10 1.80   

          5.40 1.80   

          4.50 1.80   

          3.70 1.10   

          4.80 1.90   

          4.70 1.50   

American   (Ebraheim, Lu et 
al. 1996) 

Femle American 
(Ohio) 

27 5.40 1.20   

      Age unknown   5.70 1.30   

          6.50 1.50   

          7.70 1.50   

          9.80 2.10   

          12.00 1.90   

          9.70 2.10   

          7.50 1.70   

          6.10 1.60   

          5.60 1.40   

          5.10 1.10   
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

          4.90 1.70   

          4.70 1.40   

          4.30 1.50   

          4.30 1.30   

          5.10 1.60   

          9.50 2.20   

          5.00 1.60   

          4.40 1.20   

          4.80 1.60   

          5.10 1.50   

          5.40 1.30   

          5.00 1.40   

          3.98 1.20   

          3.40 1.20   

          3.80 1.00   

          3.90 1.10   

          7.80 1.70   

          4.20 1.60   

          3.60 1.00   

          3.40 1.10   

          4.20 1.40   

          5.00 1.70   

          3.90 1.30   

          3.40 1.30   

          3.10 1.30   

          3.70 1.30   

          4.30 1.50   

          6.60 1.30   

          3.90 1.40   

          3.40 1.40   

          3.10 1.20   

          3.90 1.50   

          5.00 1.70   

          4.10 1.80   

          3.30 1.80   

          3.50 1.60   

          4.10 1.10   

          5.00 1.70   

          5.60 1.30   

          4.60 1.30   

          3.50 1.60   

          2.90 1.50   

          3.60 1.40   

          4.30 0.90   

    (Olivier 1975) male 125 15.60     

      female   13.90     

    (Grob, 
Jeanneret et al. 

1991) 

males & 
females 

10 14.00     

          6.60     
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Ethnicity Age Reference Notes n Thickness 
m 

Thickness 
s.d. 

Var 

          5.70     

    (Pensler and 
McCarthy 1985) 

males & 
females,  

200 6.80 1.04   

      caucasian &    7.03 1.06   

      African-
American 

  7.45 1.03   

      aged 18-91   7.72 1.07   

          6.86 0.99   

          7.03 1.05   

          7.46 1.09   

          7.72 1.11   

    (Garfin, Botte et 
al. 1985) 

age/sex/race 
unknown 

47 8.70     

          9.60     

          6.70     

          6.60     

          6.10     

          10.60     

          6.10     

          5.30     

    (Getz 1961) Greenland 
(age/sex 

unknown) 

10 5.70 0.40   

          6.40 0.40   

      Easter Island 
(age/sex 

unknown) 

10 7.20 0.30   

          7.60 0.30   

      Australia 
(age/sex 

unknown) 

10 5.60 0.30   

          6.50 0.20   

      New Zealand 
(age/sex 

unknown) 

10 7.10 0.20   

          7.30 0.20   

      South America 
(age/sex 

unknown) 

10 5.40 0.40   

          7.50 0.20   

      North America 
(age/sex 

unknown) 

10 5.70 0.30   

          6.10 0.30   

    No. of 
literature 

sources: 27 
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3.3.4.2 Modelling the variable 

The Geometry Head model was initially created using xFDTD, a finite-difference time 

domain software package (Remcom 2006), and cranial thickness tests were 

performed using that version.  

Recall from Section 3.1 that the base-level cranial thickness was chosen as a uniform 

5 mm. Thickness was varied to the 5th, 50th and 95th percentiles of human variation – 

4 mm, 6 mm and 11 mm – with all other variables kept constant, and SAR results 

compared.  

3.3.4.3 Effect of cranial thickness on SAR  

The whole head average (WHA) SAR, 10g peak spatial SAR (10g SAR) and peak point 

SAR results are tabulated and plotted in Table 9 and Figure 29 respectively. SAR plots 

of the Geometry Head model with 4, 6 and 11 mm cranial thicknesses are seen in 

Figure 28 below (the 4 mm model is shown with the FDTD mesh).  

 

    

  (a)         (b)   (c) 

Figure 28: SAR plots of Geometry Head with (a) 4 mm (b) 6 mm and (c) 11 mm cranial thicknesses.  

The SAR plots show that most of the absorption happens in the outer skin layer. Not 

much is absorbed in the skull tissue, likely due to its low conductivity and hence 

absorbance. A region of high SAR is seen further inside the head model, just inside 

the skull, medial to the ear.  
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The fat layer around the eyes shows higher absorption than the eye itself. This lends 

credence to the assumption that electrically isolating this tissue provides protection, 

and that the fat parameter needs to be included in human head models. 

Table 9: Cranial thickness and SAR 

Cranial thickness (mm) 4 6 11 

WHA SAR (W/kg) 0.04 0.04 0.04 

10g SAR (W/kg) 0.12 0.13 0.13 

 

 

Figure 29: Relationship between cranial thickness and SAR 

Figure 29 above charts the relationship between WHA and 10g peak spatial SAR and 

cranial thickness in adult human in the range of 5th to 95th percentiles. Lines of best 

fit are shown. However, only 3 points are used for analysis so results must be 

considered with caution. 

At the range of human anatomic variation, adult cranial thickness is predicted by this 

model to have little effect on SAR. The SAR values themselves are not critical, rather 

the relationship between SAR variable is worth noting 

3.3.5 Section summary 

 Literature provides much data regarding cranial thickness in humans, but little 

regarding the effect of this variation on SAR 

 27 literature sources were consulted, yielding numerous measurements of 3103 

adult human skulls 
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 The 5th, 50th and 95th percentiles of adult human cranial thickness were found to 

be 4, 6 and 11 mm respectively; percentiles of human sub-populations broken 

down into different sexes, ages and ethnicities are also available 

 Cranial thickness at the range of human anatomic variance, despite expectations, 

was found to make little difference to SAR using the Geometry Head model, but 

only 3 points were used for analysis so results must be treated with caution 
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3.4 Adult skin thickness 

3.4.1 Why this variable is important 

This variable was chosen for testing (and for inclusion in the Geometry Head model) 

because its location at the surface of the head provides a shield for the sensitive 

tissues further inside the organ. As discussed previously in Chapter 2, at a frequency 

of 900 MHz, the electromagnetic excitation source is expected to penetrate no more 

than a few centimetres into the head, before decaying to a negligible level. 

3.4.2 Literature review 

Human skin consists of two layers: the stratified, cellular epidermis and an underlying 

dermis of connective tissue. Below the dermis is the subcutaneous fat, which is 

further separated from the rest of the body by a striated muscle layer known as the 

panniculus carnosus (Maximow and Bloom 1943). Ridges of the epidermis protrude 

into the dermis, creating a poorly defined dermal–epidermal junction. Some glabrous 

or hair-bearing skin such as found on fingers and toes contains a further keratinous 

outer layer known as the stratum corneum (Kligman 1969).  

Skin on the face and head is thinner than many other parts of the body. The 

epidermal layer on feet, for example, can be up to 10 mm thick, and only 1-2 mm on 

the face (Gray 1918; Montagna 1962).   

3.4.2.1 Skin thickness in adult humans 

Skin thickness data was found primarily from medical and anatomic texts and 

academic papers, often exploring skin thickness for medical, dermatological or 

beauty treatments. Results of data gathering are provided in Section 3.4.4 below.  

3.4.2.2 Effect of skin thickness on SAR 

Little data is available in literature regarding effects on skin thickness on SAR. Studies 

exploring effect of body composition on SAR studies generally select a single skin 

thickness value (often taken from one or more literature sources) rather than create 

models of varying skin thicknesses for comparison (Cerri, De Leo et al. 1997; 

Bashayreh, Omar et al. 2010). When using layered sphere models, skin thickness is 

varied at the same time as other variables (Anderson 2003; Christ, Klingenbock et al. 

2006; Wang, Fujiwara et al. 2006), making it difficult to isolate contribution of this 

parameter.  
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For comparison, skin thickness of existing heterogeneous models of adults and 

children, for example Visible Human (Spitzer, Ackerman et al. 1996), Norman 

(Dimbylow 1997), Naomi (Dimbylow 2005), and the Visible Family (Christ, Kainz et al. 

2010), is in the range of 1 – 2 mm.  

3.4.3 What do we expect to see? 

Most of the absorption at 900 MHz happens at near or at the surface, and much of 

the energy absorption is expected to occur in the skin tissue, including the ear, 

modelled here as skin tissue. As skin thickness increases, we expect to see a drop in 

SAR.  

3.4.4 Methodology, results and discussion 

3.4.4.1 Range of skin thickness in humans 

A literature review was undertaken in order to establish the 5th, 50th and 95th 

percentiles of variation in skin thickness of human adults. Since work involved 

examining skin thickness of the head, collation was restricted to skin measurements 

taken from areas of thinner skin where no stratum corneum is found: face (Diridollou, 

Vienne et al. 1999), forearm flexor (Takema, Yorimoto et al. 1994), groin, thigh 

(Southwood 1955), lower back, and scalp (Hori, Moretti et al. 1972). Information 

regarding scalp thickness is scarce; scalp thickness measurements were discarded if 

they included lower tissue layers such as subcutaneous connective tissue, muscle and 

facia. 

In total, 16 literature sources were consulted yielding 1520 measurements taken from 

numerous cadavers or live volunteers; often multiple measurements were taken from 

the same specimen at different points. Summary results in Table 10 show the 5th, 50th 

and 95th percentiles of skin thickness in adult humans are 0.03 mm, 0.84 mm and 1.86 

mm respectively, rounded to 0.05 mm, 1 mm and 2 mm for modelling purposes. 

Table 10 also shows results split for sex (female and male), age groups (20-29, 30-39, 

40-49, 50-59, 60+ years old), and ethnicity (Caucasian, African-American, 

unknown/unspecified) sub-populations. Where two or more subpopulation criteria 

were unknown or unspecified (age, sex or ethnicity), measurements were included in 

the 'unknown' category, so as not to skew the population percentile values.   
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Female skin thickness (n = 845) was found to be lower than male (n = 554), with the 

5th, 50th and 95th percentiles of female skin at 0.04, 0.77 and 1.68 mm versus male 

thicknesses of  0.89, 1.18 and 1.62 mm respectively. Caucasian and African-American 

male and female results in the literature review show no variability over the 5-95 

percentile range (female African-American: 1.06 mm, n=60; male African-American: 

1.17, n=40; female Caucasian: 1.05, n=141; male Caucasian: 1.17, n=177).  

 

 



 

109 

Table 10: Adult skin thickness in literature (summary). For full detail see Table 11.  All measurements in millimetres, and include dermis and epidermis. Note that n denotes 
the number of measurements taken, not the number of cadavers or live volunteers. 

 

Overall Subpopulations 

 All  Unknown Male  Female  

5th percentile 0.03 0.03 0.89 0.04 

50th percentile 0.84 0.91 1.18 0.77 

95th percentile 1.86 3.57 1.62 1.68 

n  1520 121 554 845 

 

Subpopulation – Male 
Ethnicity  
  

Unknown Caucasian African-American 

5th percentile 0.88 1.17 1.17 
50th percentile 1.19 1.17 1.17 
95th percentile 1.63 1.17 1.17 
n 337 177 40 

 

 Subpopulation - Female 

Ethnicity  
 

Unknown Caucasian African-American 

5th percentile 0.04 1.05 1.06 

50th percentile 0.75 1.05 1.06 

95th percentile 1.69 1.05 1.06 

n 644 141 60 

Subpopulation – sex and ethnicity 
unknown 
5th percentile 0.03 
50th percentile 0.91 
95th percentile 3.57 
n 121 
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Table 11 Adult skin thickness in literature (detail) 

Ethnicity Age Reference Notes n Thickness 
mean 

Thickness 
s.d. 

MALE 
African-

American 
20-30 (Bliznak and 

Staple 1975) 
aged 37.4+-16.3 40 1.17 1.08 

Caucasian 20-30 (Bliznak and 
Staple 1975) 

aged 36.9+-16.7 177 1.17 1.07 

Unknown 20-30 (Meema, 
Sheppard et al. 

1964) 

aged 15-65 26 1.46 0.20 

   aged 65+ 45 1.19 0.23 

  (Tan, Statham et 
al. 1982) 

 44 1.02 0.10 

    16 1.01 0.13 

    12 0.91 0.08 

    11 0.93 0.10 

    7 0.90 0.12 

    9 0.81 0.16 

  (Black 1969) mean age 32 51 1.30 0.02 

   mean age 78.6 14 0.90 0.04 

  (Upham and 
Landauer 1935) 

 40 1.53 0.06 

    42 1.61 0.06 

  (Hori, Moretti et 
al. 1972) 

cadavers, age 16-
83 

6 1.67  

   measured at scalp 2 1.52  

    5 1.46  

    7 1.18  

FEMALE 
African-

American 
20-30 (Bliznak and 

Staple 1975) 
aged 44.1+-17.6 60 1.06 1.07 

Caucasian 20-30 (Bliznak and 
Staple 1975) 

aged 46.3+-16.4 141 1.05 1.08 

Unknown 20-30 (Meema, 
Sheppard et al. 

1964) 

aged 15-65 62 1.33 0.17 

   aged 65+ 40 1.06 0.21 

  (Dahan, Lagarde 
et al. 2004) 

aged m=45, face & 
neck 

20 1.42 0.14 

     1.79 0.19 

  (Tan, Statham et 
al. 1982) 

forearm flexor 36 0.81 0.08 

    17 0.82 0.08 

    12 0.77 0.11 

    27 0.76 0.09 

    11 0.74 0.13 

    16 0.70 0.12 

  (Black 1969) mean age 32 53 1.10 0.01 

   mean age 77.2 22 0.90 0.03 

  (Upham and 
Landauer 1935) 

cutis 38 1.21 0.05 

    41 1.29 0.05 
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Ethnicity Age Reference Notes n Thickness 
mean 

Thickness 
s.d. 

  (Takema, 
Yorimoto et al. 

1994) 

ages 17-76, 
measured on 

different locations 
on face & forearm 

170 0.45 0.12 

     0.44 0.13 

     0.53 0.11 

     0.62 0.23 

     0.70 0.11 

  (Diridollou, 
Vienne et al. 

1999) 

measured on face 21 0.01 0.01 

     0.01 0.01 

     1.58 0.01 

     1.41 0.01 

  (El-Domyati, Attia 
et al. 2002) 

 2 0.07 0.00 

     0.05 0.00 

    5 0.06 0.00 

     0.05  

    5 0.07  

     0.06  

    5 0.07  

     0.06  

    21 0.06  

  (Hori, Moretti et 
al. 1972) 

cadavers, aged 16-
83; measured at 

scalp 

5 1.83  

    4 1.66  

    3 1.35  

    8 1.52  

>1 UNKNOWN 
Unknown Unknown (Maximow and 

Bloom 1943) 
histology text, 

general info given 
1 1.01  

   added dermis + 
epidermis values 

for inclusion 

1 2.12  

  (Miyauchi and 
Miki 1983) 

quoted figures; 
added min/max  

1 1.08  

   dermis + epidermis 1 4.15  

  (Southwood 
1955) 

dermis + 
epidermis; n = at 

least 20 

20 0.42  

     3.50  

  (Tan, Statham et 
al. 1982) 

 12 0.84 0.13 

     1.58 0.52 

     1.48 0.50 

    7 0.91 1.33 

    4 0.89 0.06 

     1.14 0.02 

     1.15 0.11 
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Ethnicity Age Reference Notes n Thickness 
mean 

Thickness 
s.d. 

  (Whitton and 
Everall 1973) 

only included 
measurements 

from face  

17 0.05 0.02 

    10 0.05 0.03 

    3 0.04 0.01 

    30 0.05 0.02 

  (Evans, Cowdry et 
al. 1943) 

 7 0.03  

    7 0.03  

  No. of literature sources: 16 
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3.4.5 Modelling the variable 

Recall from Section 3.1 that the base-level skin thickness for the Geometry Head 

model was chosen as a uniform 2 mm. Due to computer hardware limitations, 1 mm 

was the smallest skin thickness able to be modelled, so the 5th percentile was not 

tested. Skin thickness in the entire model was altered to 1 mm, 5 mm and 10 mm, 

with all other variables kept constant. The two latter values were used to test how 

variations outside the range of normal anatomic values affect results obtained using 

this model, and further insight into the relationship between skin thickness and SAR. 

The relative position of the eyes was not altered with skin thickness; even at skin 

thickness of 10 mm, the eyes were modelled with open eyelids.  

3.4.6 Relationship between SAR and human skin thickness  

Percentage variations in WHA, 1g and 10g SARs as skin thickness was altered relative 

to the base level models are shown below in Figure 30. Figure 31 plots the SAR in 

each of the six tissues (brain, eye, fat, filler, skin, skull) for the same models. Table 12 

provides the raw SAR values and percentage SAR variations used in both figures. 

Table 12: Skin thickness and SAR  

  Skin thickness (mm) 
 Metric 1 2 5 10 

WHA SAR 0.079 0.082 0.077 0.060 
  % SAR variation -4% 0% -5% -27% 
Brain SAR 0.089 0.089 0.075 0.050 
 % SAR variation 1% 0% -16% -44% 
Eye SAR 0.098 0.048 0.080 0.052 
  % SAR variation 104% 0% 66% 7% 
Fat SAR 0.050 0.212 0.040 0.027 
  % SAR variation -77% 0% -81% -87% 
Filler SAR 0.210 0.097 0.185 0.123 
  % SAR variation 117% 0% 91% 27% 
Skin SAR 0.126 0.118 0.093 0.064 
 % SAR variation 6% 0% -21% -46% 
Skull SAR 0.027 0.027 0.022 0.015 
  % SAR variation 1% 0% -17% -45% 

1g SAR SAR 0.372 0.364 0.354 0.337 
  % SAR variation 2% 0% -3% -7% 

10g SAR SAR 0.27 0.29 0.25 0.19 
  % SAR variation -4% 0% -11% -34% 
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 Figure 30: Skin thickness and SAR 

 

Figure 31: SAR in each tissue as skin thickness is varied 
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Interestingly, WHA and 10g SARs in Figure 30 are lower in the 1 mm skin model than 

in the 2 mm one. As skin thickness increases beyond that, both metrics are seen to 

sharply drop (WHA SAR by 27%, 10g SAR by 34% at the 10 mm skin model). 1g SAR 

drops by 12% as skin thickness increases from 1 to 10 mm.  

Examining Figure 31, some of this effect is likely explained by a changed location of 

the max SAR, and along with it the makeup of the 10g SAR cubes. SAR in skull, brain 

and skin tissues steadily decreases with increasing skin thickness. In three of the four 

skin variations tested, highest SAR occurs in the filler tissue (0.210 – 0. 123 W/kg), 

followed by skin (0.126 – 0.064 W/kg); brain and eye, of closely matching values 

(brain 0.089 – 0.050, eye 0.098 – 0.052 W/kg); then the low conductivity tissues, fat ( 

0.050 – 0.027) and lastly skull (0.025 – 0.015). When the skin thickness is 2 mm, this 

model predicts highest SAR in the fat tissue (0.212 W/kg), a dramatic drop in filler 

SAR (0.097 W/kg), and a smaller drop in eye SAR (0.048 W/kg). It is not known 

whether this pattern is due to an artefact in the model which would not be repeated 

in a real head.  

At the range of normal human skin thickness on the head as tested here (50th and 

95th percentiles), the SAR differences are minor, with variation of less than 5% seen in 

WHA, 1g and 10g SAR metrics. Some aspects of the difference in SAR values are due 

to change in volume of the head (with the cube of the diameter) and also the change 

in placement and therefore tissue makeup of the 10g blocks used for averaging. The 

shielding provided to the internal parts of the head increases with increased skin 

thickness, suggesting that other parts of the body where skin is thicker are well better 

protected than the head – SAR in individual tissues drops by up to about 50% as skin 

thickness increases from 1 mm to 10 mm. Over than range, WHA and 10g SARs drop 

by over 30%, and 1g SAR drops by about 10%.  

However, these results should be treated with some caution, as they are based on 

only 4 data points, and trends are largely interpolated.  
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3.4.7 Section summary 

 Literature provides much data regarding skin thickness in humans, but little 

regarding the effect of this variation on SAR 

 16 literature sources were consulted, yielding 1520 skin thickness measurements 

from numerous adult humans, either live volunteers or cadavers, but only of 

regions of thinner skin as found on the head and face 

 The 5th, 50th and 95th percentiles of skin thickness in adults were found to be 0.03 

mm, 0.84 mm and 1.86 mm respectively, rounded to 0.05 mm, 1 mm, and 2 mm 

for modelling purposes  

 Skin thickness in the base-level Geometry Head of 2 mm is comparable to that 

existing heterogeneous models VH, Norman, Naomi and the Visible Family  (1 – 2 

mm) 

 Results using the Geometry Head model demonstrates a direct correlation 

between increase in skin thickness and decrease of SAR in the head, except for a 

skin thickness of 2 mm; this variation is likely due to altered location of region of 

maximum SAR 

 At the range of human anatomic variation that was able to be modelled (1 - 2 

mm), skin thickness is predicated by this model to make little difference to SAR in 

the head – less than 5%  variation is seen 

 Skin thickness of 5 and 10 mm such as found on other parts of the body provides 

a good level of shielding for the whole head, with a significant drop in SAR seen 

in all SAR metrics examined here 
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3.5 Head size 

3.5.1 Why is this variable important? 

Whole body exposure is affected by frequency, intensity and polarisation of the 

incident field, as well the size of the person and the person’s electrical grounding, as 

explained in Chapter 2.  

In this study, the frequency is kept constant. Whole body SAR is not being considered 

as only absorption in the head is considered. However, some of the same factors are 

true for body parts as for whole body exposure. As the head size changes, the whole 

head or different parts of it become resonant objects for the exposure frequency. The 

regions of maximum SAR may occur in different tissues, or be higher or lower 

depending on the head size.  

3.5.2 Literature review 

3.5.2.1 Head size in human anatomy 

Much anthropometric data is available regarding head sizes of humans at different 

ages, sexes and ethnic groups (Baer 1956; Farkas, Katic et al. 2005). In this case it was 

decided to simply scale the base-level Geometry Head model up and down as far as 

possible within the software and hardware limitations, so a large collection of data 

was not undertaken.  

Figure 11 in Section 2.4 provides some anthropometric measurements for human the 

head. The 5th and 95th percentiles of the adult head breadth (combined men and 

women) are 137 mm and 161.1 mm respectively; for head length, 176 mm and 209 

mm respectively; and head height, 204 mm to 247 mm respectively.  

3.5.2.2 Effect of head size on RF compliance 

Effects of head size on SAR have been studied in the literature, though not 

systematically. Most studies that have explored this issue have compared adult heads 

to realistic child models, either derived from imaging techniques (Beard and Kainz 

2004; Christ, Chavannes et al. 2005; De Salles, Bulla et al. 2006) or by using non-

uniform scaling on adult heads (Lee, Choi et al. 2007). Studies that have used directly 

scaled heads to compare results (Gandhi, Gianluca et al. 1996; Anderson 2003; Kainz, 

Christ et al. 2005) used different exposures and modelling techniques, making it 

difficult to compare results.  
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Hombach et al. (Hombach, Meier et al. 1996), Kuster and Balzano (Kuster and Balzano 

1992) and Schönborn and Kuster (Schonborn, Burkhardt et al. 1998) have all reported 

that the peak spatial-average SAR is not significantly dependent on the head size, 

provided that the geometrical relationships between the handset and the head are 

the same. The IEEE measurement standard asserts that a head geometry that results 

in overall smaller distances between the handset and the tissue boundary, for 

example where the ear is smaller, will provide more conservative results, because the 

of the smaller separation between the equivalent current densities on the device 

under test and the tissue equivalent liquid. Thus, a larger anthropomorphic head 

model, with larger local radii of curvature, will satisfy the criterion for minimal 

distances (IEEE 2003). This was used to assign a larger male head for SAM, with a 

constant pinna thickness, as this is reasoned to represent a conservative case for 

men, women, and children.  

3.5.3 What do we expect to see? 

Results of previous tests comparing head sizes and SAR show mixed results. We 

expect that SAR in the head will vary to some extent with overall head size.  

3.5.4 Methodology 

The size of the entire Geometry Head model was scaled up and down by ±30% (70% 

to 130% of original size). The model could not be altered beyond those values due to 

hardware limitations. Table 13 below shows dimensions of GH at different sizes. 

The parametrically adjustable nature of this model made such an adjustment quite 

easy. In the software, each of the variables affecting the size of the tissues is 

multiplied by a head size scaling factor (HSSF) variable. Altering the single value of 

the HSSF variable augments the sizes of all the geometric shapes by the same scaling 

value, altering the dimension of each tissue (for example, radius of eyes and thickness 

of skin) by the required factor. 

In Table 13 head, skull and brain 'height' measurements refer to dimensions from the 

top of the tissue to the bottom in the vertical. As the shapes of this model are 

symmetrical in the saggital plane, the breadth and length of the head are identical. 
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Table 13: Geometry Head size variation relative to wavelength 

Head variables (mm) Geometry Head size variation 

 
70% 80% 85% 90% 95% 100% 105% 110% 115% 120% 130% 

Head breadth 123.20 140.80 149.60 158.40 167.20 176.00 184.80 193.60 202.40 211.20 228.80 

Head breadth/λ 0.37 0.43 0.45 0.48 0.51 0.53 0.56 0.59 0.61 0.64 0.69 

Skull breadth 120.40 137.60 146.20 154.80 163.40 172.00 180.60 189.20 197.80 206.40 223.60 

Skull breadth/λ 0.36 0.42 0.44 0.47 0.50 0.52 0.55 0.57 0.60 0.63 0.68 

Brain breadth 112.00 128.00 136.00 144.00 152.00 160.00 168.00 176.00 184.00 192.00 208.00 

Brain breadth/λ 0.34 0.39 0.41 0.44 0.46 0.48 0.51 0.53 0.56 0.58 0.63 

Head height 161.00 184.00 195.50 207.00 218.50 230.00 241.50 253.00 264.50 276.00 299.00 

Head height/λ 0.49 0.56 0.59 0.63 0.66 0.70 0.73 0.77 0.80 0.84 0.91 

Skull height 158.20 180.80 192.10 203.40 214.70 226.00 237.30 248.60 259.90 271.20 293.80 

Skull height/λ 0.48 0.55 0.58 0.62 0.65 0.68 0.72 0.75 0.79 0.82 0.89 

Brain height 149.80 171.20 181.90 192.60 203.30 214.00 224.70 235.40 246.10 256.80 278.20 

Brain height/λ 0.45 0.52 0.55 0.58 0.62 0.65 0.68 0.71 0.75 0.78 0.84 
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Table 14: SAR and percentage SAR variation in each tissuse as the head size is altered 

 Head Size Scaling Factor 

 70% 80% 85% 90% 95% Original 105% 110% 115% 120% 130% 

T
is

su
e
 t

yp
e
 

WHA SAR   |   %var 0.120*  |  47% 0.099*  |  20% 0.095*  |  15% 0.091   |   11% 0.087   |   6% 0.082   |   0% 0.077   |   -6% 0.072   |   -12% 0.068   |   -17% 0.064   |   -22% 0.059   |   -28% 
Brain SAR   |   %var 0.140*  |  57% 0.113*  |  27% 0.107*  |  20% 0.101   |   14% 0.095   |   7% 0.089   |   0% 0.082   |   -7% 0.076   |   -14% 0.071   |   -21% 0.066   |   -26% 0.059   |   -34% 
Eye SAR   |   %var 0.051*  |  5% 0.127*  | 164% 0.119*  | 148% 0.046   |   -4% 0.105   |   119% 0.048   |   0% 0.048   |   0% 0.081   |   70% 0.075   |   56% 0.039   |   -19% 0.061   |   27% 
Fat SAR   |   %var 0.209*  |  -2% 0.044*  |  -79% 0.045*  |  -79% 0.208   |   -2% 0.047   |   -78% 0.212   |   0% 0.213   |   0% 0.046   |   -78% 0.043   |   -80% 0.207   |   -2% 0.031   |   -85% 
Filler SAR   |   %var 0.159*  |  64% 0.083*  |  -14% 0.090*  |  -7% 0.113   |   16% 0.108   |   12% 0.097   |   0% 0.089   |   -8% 0.126   |   30% 0.123   |   26% 0.069   |   -28% 0.102   |   5% 
Skin SAR   |   %var 0.085*  |  -28% 0.191*  |  61% 0.200*  |  69% 0.098   |   -17% 0.211   |   78% 0.118   |   0% 0.125   |   6% 0.211   |   78% 0.209   |   76% 0.116   |   -2% 0.210   |   77% 
Skull SAR   |   %var 0.030*  |  13% 0.027*  |  -1% 0.027*  |  1% 0.028   |   2% 0.028   |   2% 0.027   |   0% 0.026   |   -2% 0.026   |   -4% 0.025   |   -7% 0.025   |   -9% 0.024   |   -10% 

                     
(a)                                                                                                                 (b)                                                                                                                             (c) 

Figure 32: Relationship between head size and (a) WHA, 1g and 10g SAR as raw SAR values (b) WHA, 1g and 10g SAR as percentage variation (c) SAR in each tissue 

Table 15: Relationship between head size and 1g and 10g SARs  

 70% 80% 85% 90% 95% Original 105% 110% 115% 120% 130% 

1g peak (W/kg) 
SAR   |   %var 0.750*   |   106% 0.547*   |   50% 0.485*   |   33% 0.320   |   -12% 0.348   |   -5% 0.364   |   0% 0.392   |   8% 0.415   |   14% 0.407   |   12% 0.383   |   5% 0.360   |   -1% 

Location Artefact point Artefact point Artefact point Near ear, 
ipsilaterally 

Near ear, 
ipsilaterally 

Eye Eye, ipsilaterally Eye, ipsilaterally Eye, ipsilaterally Eye, ipsilaterally Eye, ipsilaterally 

10g peak 
(W/kg) 

SAR   |   %var 0.498*   |   74% 0.375*   |   31% 0.332*   |   16% 0.250   |   -13% 0.272   |   -5% 0.285   |   0% 0.276   |   -3% 0.265   |   -7% 0.268   |   -6% 0.271   |   -5% 0.260   |   -9% 
Location Artefact point Artefact point Artefact point Near ear, 

ipsilaterally 
Near ear, 

ipsilaterally 
Ear Near ear, 

ipsilaterally 
Near ear, 

ipsilaterally 
Near ear, 

ipsilaterally 
Near ear, 

ipsilaterally 
Eye, ipsilaterally 

1g peak location 

    
       

10g peak location 

           

* These results are explained in the text, and should be ignored.  Artefact results are omitted in charts. 
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 Front view 
(cross-section) 

Top view 
(cross-section) 

70%* 

  

80%* 

  

85%* 

  

90% 

  

95% 

  

Original 

  

105% 

  

110% 

  

115% 

  

120% 

  

130% 

  

* These results are explained in the text, and should be ignored 

Figure 33: SAR plots inside Geometry Head as head size is varied 
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3.5.5 Results and analysis 

WHA, 1g and 10g SAR results may be seen in Figure 32 (a) as raw SAR values and (b) 

as percentage variation from the original GH model. Figure 32 (c) shows SAR in each 

tissue as head size is varied. Values are shown in Table 14 and Table 15. Table 15  

also shows location of 1g and 10g cubes.  

3.5.5.1 Artefact point 

The images in Table 15 and Figure 33 (SAR plots inside the model of different head 

sizes) show that for head sizes of 70 – 85% of the original, the regions of maximum 

SAR are at the artefact point. SAR values in those models are far higher than the rest. 

These results have not been plotted in Figure 32, and should be ignored.  

In a realistic head, the position of the spatial-average cubes seen in those smaller 

head sizes might be the position of the midbrain or the pituitary gland. In this case, it 

is likely that these peaks are seen in that area due to an artefact of the model. Recall 

from Section 3.1 that the middle section of the head shapes is modelled using a set 

of concentric cylinders. The relationship between the wavelength at 900 MHz, and 

height and breadth of the larger head objects used in GH – whole head, skull, and 

brain/average head tissue spheroids – is provided in Table 13. It can be seen that at 

900 MHz, where λ = 33 mm, certain head sizes of GH create resonances in either the 

whole head or the skull cavity. When the diameter of the cylinder that makes the 

middle part of the head shape is near λ/2 or λ /4, the highest SAR is found at the 

artefact point. At 900 MHz, λ = 33 mm.  

3.5.5.2 SAR results 

The highest WHA observed using all three SAR metrics is at the smallest viable head 

size, 90% of the original-sized GH (head height of 207 mm, head diameter 

158.4 mm), with SAR of 0.091 W/kg or 11% increase on the base-level model. For a 

head size variation of -5 to 30%, WHA SAR varies by 39%. A clear inverse relationship 

is seen between head size and WHA SAR, with SAR decreasing with increase in head 

size. 

Over the same range of GH head size, 1g and 10g SARs vary by ±15% (only twice by 

more than 10%) in an irregular pattern. This is due to the changing location of the 

cubes between eye and ear (ipsilateral to the direction of plane wave propagation). 
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SAR plots in Figure 33 show areas of high SAR regions near both regions for all head 

size models, but the location of actual maxima are different at different sizes of the 

head. In Figure 32(c) it is seen that the brain and skull tissue SARs drop with 

increased head size over the modelled range. The SAR in other tissues changes 

dramatically. The eye SAR increases by 119% at a head size of 95%, though SAR in 

the eye is comparatively low.   

The worst case SAR is observed by this model to occur at the smallest head size of 

90%, with increases in both the WHA and the highest increase seen in the sensitive 

eye tissue. 

3.5.6 Section summary 

 Whole head average SAR decreases linearly as the head size increases; for a -5 to 

+30% variation in head size, a 39% variation is seen in WHA SAR, with highest 

SAR found in the largest head size 

 Location and therefore magnitude of 1g and 10g SARs vary ±15% over the same 

range of head size using this model 

 119% increase in eye SAR is seen at head size of 95%, though the actual SAR 

value in the eye tissue is comparatively low 
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3.6 Dielectric properties of tissues 

3.6.1 Why this variable is important 

Section 2.1 describes the basic concepts governing interaction of electromagnetic 

waves and dielectric materials. There it is described how the conductivity and 

permittivity of individual tissues play a part in dielectric attenuation, which affects 

energy absorption due to electromagnetic exposure. 

3.6.2 Literature review 

3.6.2.1 Dielectric properties of human tissues in literature 

Various authors outline measurements of dielectric properties of human tissues 

(Chakkalakal, Johnson et al. 1980; Behari and Singh 1981; Pethig 1987; Bao, Lu et al. 

1997; Alanen, Lahtinen et al. 1998), or mathematical models used to extrapolate and 

interpolate such properties at various frequencies (Cole and Cole 1941; Khalafalla, 

Turner et al. 1971; Gabriel, Lau et al. 1996).  Grant et al.’s 1988 study (Grant, Clarke et 

al. 1988) measured dielectric properties of skin at 50 MHz to 2.0 GHz of a single male 

individual at four points on the body. High variability in results was attributed to 

differences in adipose tissue deposits, presence of sweat ducts and composition of 

underlying tissue. This study applied a different mathematical analysis technique to 

the measuring equipment (open-ended coaxial line sensor), which cast doubts on 

results previously obtained by Grant and others. The uncertainty in estimates of 

human tissue dielectric properties is a source of uncertainty in the resultant SAR 

calculations. Raicu (Raicu, Kitagawa et al. 2000) used a different dispersion function 

and open-ended coaxial cable to explore the dielectric properties in skin in 2000. 

Their study concluded that the coaxial probe reports on the properties of the 

superficial layer, the stratum corneum, when the skin surface is dry, whilst the signal 

from deeper skin layers becomes dominant if the skin is wetted with saline. In vivo 

measurements quoted in the above studies were often obtained from a single 

individual, with no indication as to the possible range. Results of different studies 

vary by a factor of 50%. 

Often, studies investigating the variation in dielectric properties examine the age 

related variation, i.e. how the dielectric properties change as the body ages. Wang et 

al.  (Wang, Fujiwara et al. 2006) suggested using the total body water as a proxy to 

model the impact of age-dependent changes on the dielectric properties of tissues 
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relevant for SAR calculation in the head. Wang et al.'s work used the parameters of 

rat tissues of differently aged samples to extrapolate permittivity and conductivity. 

Their model predicts age-dependent changes of high water content tissues with 

satisfactory accuracy (tissues such as brain and skin), larger deviations from the 

experimental results are reported for the skull, a low water-content tissue.  

Christ et al. (Christ, Gosselin et al. 2010) compares results of Peyman et al's 2009 

study (Peyman, Gabriel et al. 2009) with those obtained using Gabriel's interpolating 

model based (Gabriel, Lau et al. 1996) on the Cole-Cole prediction method (Cole and 

Cole 1941). Peyman et al. (Peyman, Gabriel et al. 2009) report the measured dielectric 

properties of different porcine tissues, taken from pigs aged approximately 35, 100 

and 600 days old. Christ et al. (Christ, Gosselin et al. 2010) note that as in Wang's 

study (Wang, Fujiwara et al. 2006), tissues with high water content only show small 

changes with age and are in generally good agreement with the Cole–Cole model 

(Cole and Cole 1941). However, significant differences at young age can be observed 

for tissues that have a low water content i.e. the skull, fat and bone marrow. These 

tissues show a significantly higher permittivity and conductivity for the younger age 

groups. With increasing age, they tend toward the values of the Cole–Cole model. 

Wang et al. (Wang, Fujiwara et al. 2006) found that applying different dielectric 

property parameters to tissues to peak spatial SAR calculations does not reveal any 

systematic changes within different groups. Christ et al.'s study (Christ, Gosselin et al. 

2010) supports Wang et al.'s conclusions that no age-related systemic changes could 

be found between peak-spatial SAR and dielectric properties of tissues, and 

furthermore noted that the SAR differences due to dielectric property variations are 

about 0.5 dB. SAR changes, Christ et al. conclude, are attributable to individual 

anatomic features. 

3.6.2.1.1 Can we use dielectric properties of animal tissues? 

Various studies have investigated the dielectric properties of mammalian animal 

tissue, before and after death. However, it is not certain how representative these 

results are of variance within human populations. Insufficient literature is available 

regarding the comparability of human and animal tissues with regards to dielectric 

properties.  
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Kraszewski et al. investigated the dielectric properties of various tissues in cats, 

including changes in dielectric properties for up to 4 hours after death (Kraszewski, 

Stuchly et al. 1982). Foster et al. (Foster, Schepps et al. 1980)  details dielectric 

properties of white and grey brain tissue in dogs for frequencies between 100 MHz 

and 10 GHz (Foster, Schepps et al. 1979). Thural et al. explored dielectric properties of 

mouse and rabbit brains (Thurai, Goodridge et al. 1984; Thurai, Steel et al. 1985).  

Peyman et al. (Peyman, Rezazadeh et al. 2001) showed that dielectric properties of rat 

tissues change after death. Eight years later, Peyman et al. published another 

(Peyman, Gabriel et al. 2009) study showing that in vitro dielectric properties of 

porcine tissues in the frequency range of 50 MHz – 20 GHz show statistically 

significant reduction with age in both permittivity and conductivity of 10 out of 15 

measured tissues. They ascribe this change to a reduction in the water content of 

tissues as animals age. Peyman et al. then used these results to calculate the SAR 

values in human children of age 3 and 7 years when exposed to 446 MHz RF  

Schwartz’s 1985 study into dielectric properties of frog blood and skin of dead 

animals are unusual in providing a comparison to human tissue properties (Schwartz 

and Mealing 1985). He noted no drifts in dielectric properties for several days after 

death.  

A literature review of dielectric tissue properties by Foster and Schwan also notes 

several studies which show that variation in dielectric properties relating to time after 

excision was comparable to normal variability in the studied tissues (Foster and 

Schwan 1989). Schwan et al. performed several investigations of their own into this 

matter (Schwan and Foster 1980; Schwan 1981).  

Pethig's 1987 paper (Pethig 1987) provides a similar review of the dielectric 

properties of various mammalian tissues, both human and other animals, and various 

biological fluids, for the frequency range from 1 Hz to 10 GHz.  

Several studies do show that the differences of mammalian animal studies and adult 

human tissues are within the variation of the dielectric properties among different 

species of fully grown animals (Pethig 1987; Gabriel, Lau et al. 1996; Stauffer, 

Rossetto et al. 2003).  
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Methodology and results of animal dielectric properties vary from study to study. 

Little work has been done to correlate animal tissue dielectric properties to those of 

human tissues. It is therefore assumed here that animal studies cannot be taken into 

account.  

3.6.2.2 Effect of dielectric properties on SAR  

The literature is scarce regarding tissue dielectric properties’ effect on SAR.  

Drossos et al. (Drossos, Santomaa et al. 2000) provide a detailed discussion of the 

validity of the simple one-dimensional layered model, and comparison to realistic 

anatomic phantoms in the near field of sources.  

Christ et al. (Christ and Kuster 2005; Christ, Klingenbock et al. 2006) have tested the 

effects of these properties on SAR. 

As mentioned above in section 3.6.2.1, a paper by Peyman et al. (Peyman, Gabriel et 

al. 2009) showed the effect of dielectric properties of SAR in children, as derived from 

an a porcine tissue model. This work used 446 MHz as exposure frequency, so cannot 

be directly extrapolated to 900 MHz, however it is interesting to note that no 

significant differences between the SAR values for children or for adults were 

observed. 

Keshvari et al. (Keshvari, Keshvari et al. 2006) varied dielectric properties of tissues in 

existing models by up to 20% and observed variation of up to 5% in computed SAR. 

3.6.2.2.1 Effects of fat dielectric properties 

Christ et al.’s 1996 paper (Christ, Klingenbock et al. 2006) considers the effect of body 

composition on SAR using a layered planar model and transmission-line models of 

dielectric property testing. They argue that the current dielectric definitions for head 

and body dielectric parameters in compliance standards were designed on the 

assumption that the source was placed near the ear and temporal bone. Their study 

expanded the planar model to worst-case scenarios of multiple tissue combinations 

(not head) with a far-field source. Their investigations found that at 900 MHz, the 

worst-case scenarios for 1g and 10g peak SARs were in a combination of high water 

content – low water content – low water content - high water content (specifically, 

skin - subcutaneous adipose tissue – fat – muscle) and high – low –high (skin - 
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subcutaneous adipose tissue - intestines) layers, respectively. The layers of fat with a 

relatively low water content only slightly attenuate the propagating waves. Christ et 

al. argue that sequences like these will lead to standing-wave effects in the low-

permittivity layer, and if the thickness of this layer, including the outermost layer of 

skin, corresponds to an electric length of approximately π/2 or wavelength of 

approximately λ/4, the reflection of the inner high-permittivity layers will lead to (a) 

impedance-matching effects, which will allow a significant amount of  the 

electromagnetic power to enter the tissue and (b) constructive interference, giving 

rise to a significant SAR increase in the skin layer.  

Guy et al’s 1968 (Guy 1968) study investigated the validity of different dielectric 

measurement systems on physical and numerical planar tissue models, using fat and 

muscle layers and neglecting the skin. The skin layer, however, significantly affects 

absorption characteristics (Schwan 1981) and should not be discounted. 

3.6.2.2.2 Effects of skin dielectric properties 

Meier et al.’s 1997 studies (Meier, Hombach et al. 1997) into absorption at 1800 MHz 

and 900 MHz noted that neglecting skin when modelling humans distorts SAR 

results. 

Standing wave of impedance-matching effects in the tissue layers can lead to an 

increase of the local SAR in the skin if the thickness of the fat layer is of the order of 

magnitude of λ/4. However, if the SAR is averaged over a cubical volume of a mass of 

1 or 10g, a conservative exposure assessment is possible using homogeneous 

material distribution, such as ‘average head’ tissue simulating liquid.  

Keshvari et al.’s 2006 paper reports that varying dielectric properties of tissues in 

existing models by up to 20% creates variation of up to 5% in computed SAR  

(Keshvari, Keshvari et al. 2006). In 2007, Fujiwara et al approximated the electrical 

properties of skin using a different method (Debye dispersion characteristics) at 1.5 

GHz (Fujiwara and Takai 1997), and noted that permittivity of skin is about 10% lower, 

and conductivity about 30% lower, than previous estimates.  
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3.6.2.2.3 What dielectric properties are used for compliance? 

Gabriel et al. published dielectric properties of various tissues in the frequency range 

of 10 Hz to 20 GHz (Gabriel, Lau et al. 1996). Gabriel’s samples were taken from 

freshly killed animals, human skin and tongues in vivo, and human autopsy material, 

the latter measured 24-48 hours after death. Her study reports variability in dielectric 

properties of ±5-10% above 100 MHz and ±15-25% at lower frequencies, but also 

note that variation within species may well exceed variations between species. These 

values became the accepted values of dielectric properties used for modelling 

humans for compliance (ICNIRP 1998; IEEE 2005) and research. These values are also 

available online for free download (FCC).  

3.6.2.3 Literature review summary 

 Studies into dielectric properties of human tissues have been performed using 

different methods and materials, comparing results is therefore difficult 

 Several studies provide information about dielectric properties of animal tissues, 

however not enough information exists about how these compare to human 

tissue properties 

 Some attempts have been made to establish what relationship exists between 

dielectric properties of human tissues and SAR; results are variable 

 The accepted standard values of human dielectric property use for compliance are 

those provided by Gabriel et al in 1996 

3.6.3 What do we expect to see? 

Permittivity is greatly affected by the reflection coefficients of consecutive tissue 

layers, and the direction of incidence of the excitation. Reflections of propagating 

waves at different tissue layer interfaces can give rise to standing-wave effects and 

impedance matching, which can lead to local SAR increases.  

Re-examining Equation 15 of SAR: 

     
     

 
 

where σ is the tissue conductivity (S/m), ρ is the tissue density (kg/m’), and |E| is the 

magnitude of the total RMS E-field level (V/m) induced within the irradiated tissue. It 
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becomes clear that tissue conductivity has a direct effect on SAR, whereas 

permittivity, which contributes to E, has a secondary effect.  

Furthermore, in 1992 Kuster and Balzano (Kuster and Balzano 1992) demonstrated 

that during reactive near-field exposure (see Section 2.1 for a definition), i.e. where 

the exposure source is within 53 mm of the head at 900 MHz frequency, SAR is 

mainly proportional to the square of the incident H-field, and therefore the 

conductivity. The incident E-field, and therefore the material's permittivity, play a 

lesser role in SAR.  

It is reasoned based on the literature survey and a priori that: 

- some direct relationships exist between tissue dielectric properties and SAR 

- tissues near the surface of the model closest to the source (in this model these are 

skin and skull) will play a greater role in SAR distribution than deeper layers 

- tissue permittivity plays a smaller part in SAR than tissue conductivity 

- small tissue volumes situated relatively far from the source (eyes, fat) will have 

little effect on SAR 

- fat and skull, the two tissues with low water content, and therefore low σ values, 

will provide insulation to sensitive tissues within them – eyes and brain 

respectively 

- the brain and filler tissues' dielectric properties are quite similar; as their values 

become closer, SAR absorption in those tissue is expected to be more uniform 

- some results will be obscured by this model's artefact (see Section 3.5 for a fuller 

explanation of the artefact in this model)  

3.6.4 Methodology 

3.6.5 Modelling the variable 

Section 3.1 details the anatomic features and tissues chosen for incorporation into 

the Geometry Head model. Dielectric variable analysis was performed using the FEKO 

software (EMSS 2009) version, see Figure 34 below. As discussed, anatomic features 

incorporated into both versions of this model are identical.  
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Figure 34: Geometry Head model created in FEKO software package, shown here with a cutplane. Different 
colours denote different tissues, and therefore regions of different dielectric properties.  The yellow circle 
denotes the artefact point, explained above in Section 3.5. 

The dielectric constant, and therefore SAR, is heavily affected by water content of the 

tissue. Tissues chosen for inclusion in the GH model include skin, skull, brain, average 

head, eye, and fat. The fat layer around the eyes (modelled as intersecting spheres, 

see Figure 34) has a relatively low water content and acts as electrical insulation. It is 

also expected that dielectric variations of the skull tissue, which has a much lower 

dielectric constant than either the skin or the inner parts of the head, will change the 

absorption characteristics of the whole head. In this model, the skull encases the 

brain/average head regions; the intersecting eye and fat spheres provide the only 

gaps.   

Dielectric properties in the model were initially set to those used for compliance 

measurement  (IEEE 2003) as described by Gabriel (Gabriel, Gabriel et al. 1996) see 

Table 16 below (density of tissues was not altered from the values shown).  

Table 16: initial values of tissue dielectric properties and densities used in the Geometry Head model. 

Tissue Conductivity 
(σ, S/m) 

Permittivity 
(ε) 

Density 
(ρ) 

Brain 0.77 45.8 1030 

Eye 1.64 68.9 1000 

Fat 0.05 5.40 1000 

Filler 0.97 41.5 1000 

Skin 0.87 41.4 1000 

Skull 0.24 16.6 1850 

 

Due to the scarcity and unreliability of available data regarding dielectric properties 

as explored in Section 3.6.2 above, it was not possible to determine a range of 

percentiles of human variability of dielectric properties. Instead, the initial ε and σ 
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values of any given tissue were individually varied, one at a time, to ±10, ±20 and 

±30 per cent (see Table 17 below for full data) while all other variables were kept 

constant. ±30% variation was chosen based on the assumption of an approximately 

linear association with SAR and the observation that a variation for SAR of 30% is an 

acceptable uncertainty in SAR measurement standards (ICNIRP 1998). The full list of 

dielectric property variations modelled is provided in Table 17.  

Table 17: Dielectric properties used in this study. Conductivity and permittivity as described by Gabriel 
were used varied to ±10, ±20 and ±30 per cent with all other variables kept constant for each test.  

Conductivity  variations 

Tissue 70% 80% 90% 100% 110% 120% 130% 

Brain 0.54 0.62 0.69 0.77 0.85 0.92 1.00 

Eye 1.15 1.31 1.48 1.64 1.80 1.97 2.13 

Fat 0.04 0.04 0.05 0.05 0.06 0.06 0.07 

Filler 0.68 0.78 0.87 0.97 1.07 1.16 1.26 

Skin 0.61 0.70 0.78 0.87 0.96 1.04 1.13 

Skull 0.17 0.19 0.22 0.24 0.26 0.29 0.31 

 

Permittivity  variations 

Tissue 70% 80% 90% 100% 110% 120% 130% 

Brain 32.06 36.64 41.22 45.8 50.38 54.96 59.54 

Eye 48.23 55.12 62.01 68.9 75.79 82.68 89.57 

Fat 3.78 4.32 4.86 5.40 5.94 6.48 7.02 

Filler 29.05 33.2 37.35 41.5 45.65 49.8 53.95 

Skin 28.98 33.12 37.26 41.4 45.54 49.68 53.82 

Skull 11.62 13.28 14.94 16.6 18.26 19.92 21.58 
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Figure 35: Dielectric properties used in this study. Conductivity and permittivity as described by Gabriel 
were used varied to ±10, ±20 and ±30 per cent with all other variables kept constant for each test. 
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3.6.6 Results and analysis 

Figure 36 to Figure 44 and Table 18 to Table 26 show the WHA (whole head average) 

SAR, 1g and 10g peak spatial SAR, and average SAR in each tissue, for each variation 

of tissue dielectric properties. Raw SAR values at exposure of field intensity of 10 

W/m2 are provided, as well as a percentage variation of the given SAR value from the 

value predicted by the original, base-level GH model. The range of variability is 

provided in each case. Location of 1g and 10g SAR is also provided. 

SAR results have been examined in four ways: 

 Figure 36-Figure 38 and Table 18 to Table 20 show how WHA, 1g and 10g SARs 

vary with σ or ε variations, with a view to see which dielectric property values have 

significant effect on these metrics 

 Figure 39-Figure 44 and Table 21 to Table 26 show the SAR variations in 

individual tissues, as the σ and ε of all tissues are altered in the range of ±30%. 

These are used to examine how the SAR in any particular tissue is affected by 

dielectric property variations; for example, which tissue's σ or ε value have a 

greater effect on SAR in the skin tissue 

 Table 27 describes the locations of the 1g and 10g SARs as the dielectric 

properties are altered, indicating where the peak absorption happens 

 Figure 45 show the WHA SAR and SAR in each tissue (as raw SAR values) as the σ 

and ε values of one tissue at a time are altered, demonstrating how the SAR 

within the head model is re-distributed with the changes 

Graphs showing the same type of results are plotted against identical axes for easy 

comparison. The graphs showing SAR variation in a given tissue vs. σ or ε are all 

plotted on a y-axis of value ±35%; some points overshoot these limits (1g vs. brain ε, 

1g vs. brain σ, and 10g vs. brain σ), explanations are provided below.  

As the spatial averaging is increased – that is, as SAR is averaged over a larger 

volume, from 1g and 10g through to tissue type and WHA – the spikes in SAR 

variation smooth out, and the trends of SAR absorption become clearer. This is 

obvious from the increased linearity of the 10g graphs over the 1g graphs, and the 

increased regularity of location of 10g cubes, as the dielectric properties are varied.  
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Not all tissue properties play a big part in peak or spatially averaged SAR. Only 

significant variations, i.e. 5% or above, are individually listed here. Regularity of 

relationships is noted. More specific information about SAR distribution in individual 

tissues is provided in the sections below.  

3.6.6.1 Artefact 

 As explained in Section 3.5 above, the Geometry Head model contains an artefact: 

sharp angles exist at the intersection of the filler and brain tissues (modelled as 

adjoining half-cylinders) along the frontal plane. This is clearly not an accurate 

representation of reality, as human heads do not contain 90° angles between tissues, 

and it causes misleading regions of high SAR along the joining 'seam'. The highest 

point SAR and 1g/10g SAR predicted by GH is sometimes at the sharp angle towards 

the top of the GH, termed the 'artefact point', and denoted by a yellow circle in 

Figure 34.  These results are misleading. Using the FEKO modelling package, it was 

not possible to easily determine the regions of next highest SAR. Where the model 

predicts highest 1g or 10g SAR at the artefact point, the values are discounted. SAR 

range calculations do not include artefact point results.  

3.6.6.2 1g and 10g SAR 

Location of 1g and 10g SARS occurs in one of four regions in this model (Table 27): at 

the ear closest to the exposure source (comprising mostly skin and skull tissues); 

inside the head between the eye and the ear, ipsilaterally to the source – this is likely 

to be the brain tissue; at the eye (encompassing eye, fat and skin tissues); and at the 

artefact point (head and filler tissues). Artefact points have been ignored. As 

explained above, artefact point results have been ignored as they are due to a 

limitation of the 'blockiness' of this model. Where the cubes stay in roughly the same 

region, incremental changes are seen in SAR values and percentage SAR variation. 

Where the cubes change region dramatically, the metrics vary accordingly. 

3.6.7 What tissue dielectric properties affect WHA, 1g and 10 SAR? 

1g and 10g SARS show complex relationships to tissue dielectric properties. Most 1g 

and 10g SAR variations are in the order of 5 – 20%, with the exception of some brain 

tissue dielectric variations. At the two lowest brain σ values (70 and 80% of original σ 

value), the SAR of 1g and 10g cubes are very high: 89% and 65% change respectively 

at the lowest σ, 43% and 27% respectively at next lowest. The other exception is the 
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39% increase in 1g SAR seen at the highest value of brain ε. Exceptions are due to the 

makeup of the cubes changing dramatically with these dielectric property variations 

(see Figure 36 to Figure 38 and Table 18 to Table 20Error! Reference source not 

found.) from the ear or eye region, to the artefact point. These results should be 

ignored.  

1g SAR bears a complex relationship to most dielectric variations.  

Over a ±30% range of σ and ε, 1g SAR significantly increases with (figures in brackets 

denote the range of SAR variation): 

 increasing average filler σ (21%) 

 increasing eye σ, but only for two highest values of σ  

 increasing skin σ (8%) 

 increasing eye ε (20%) 

1g SAR significantly decreases with: 

 decreasing fat ε (12%) 

 increasing skin σ (8%) 

The WHA plots show at most 5% variation, regardless of what dielectric variation 

occurs in individual tissues.  

Using the GH model, WHA SAR is predicted to be unaffected by: 

 eye ε or σ variations (0%) 

 fat ε or σ variations (0%) 

WHA SAR increases linearly (or mostly linearly) with: 

 increasing brain σ (2%) 

 increasing filler σ (2%) 

 increasing skin ε (5%) 

WHA SAR decreases linearly with: 

 increasing skin σ  (5%) 
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 increasing skull σ (2%) 

 increasing skull ε (2%) 

 increasing brain ε (5%) 
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Figure 36: 1g peak spatial SAR variation with dielectric properties of all tissues 

Table 18: 1g peak spatial SAR variation with dielectric properties of all tissues 

1g SAR (W/kg) 70% 80% 90% Original 110% 120% 130% Range 1g SAR (W/kg) 70% 80% 90% Original 110% 120% 130% Range 

1g SAR, brain σ 89%* 43%* -2% 0% 0% 1% 0% 3%** 1g SAR, brain ε 8% 5% 1% 0% 0% 1% 39%* 8%** 

1g SAR, eye σ -1% -1% 0% 0% 3% 7% 10% 11% 1g SAR, eye ε -4% -2% -2% 0% 3% 9% 16% 20% 

1g SAR, fat σ -1% -1% 0% 0% 2% 2% 5% 6% 1g SAR, fat ε 10% 6% 3% 0% -1% 0% -1% 12% 

1g SAR, filler σ -5% -4% -2% 0% 2% 10% 16% 21% 1g SAR, filler ε 14% 8% 0% 0% 0% 2% 4% 14% 

1g SAR, skin σ 8% 6% 3% 0% 2% 0% 1% 8% 1g SAR, skin ε 6% 5% 2% 0% 2% 1% 3% 6% 

1g SAR, skull σ 3% 1% 1% 0% -2% 0% 0% 5% 1g SAR, skull ε 2% 2% 1% 0% -1% -1% -2% 4% 

* These results are explained in the text, and should be ignored 

**Excluding artefact results 
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Figure 37: 10g peak spatial SAR variation with dielectric properties of all tissues 

Table 19: 10g peak spatial SAR variation with dielectric properties of all tissues 

10g SAR (W/kg) 70% 80% 90% Original 110% 120% 130% Range 10g SAR (W/kg) 70% 80% 90% Original 110% 120% 130% Range 

10g SAR, brain σ 65%* 27%* -4% 0% 0% 3% 5% 9%** 10g SAR, brain ε 4% 3% 0% 0% -2% -3% -4% 7% 

10g SAR, eye σ -2% 0% 0% 0% -3% -1% -3% 3% 10g SAR, eye ε -2% -2% -2% 0% -3% -3% -2% 3% 

10g SAR, fat σ -1% -1% 0% 0% -2% -2% -2% 2% 10g SAR, fat ε -2% -2% -2% 0% 0% -2% -4% 4% 

10g SAR, filler σ -11% -7% -5% 0% 1% 4% 8% 19% 10g SAR, filler ε 5% 2% 1% 0% -4% -3% -5% 9% 

10g SAR, skin σ 1% -1% -1% 0% -1% 0% 0% 2% 10g SAR, skin ε -6% -4% -3% 0% -2% 1% 4% 10% 

10g SAR, skull σ 0% -1% -4% 0% -2% -1% -4% 4% 10g SAR, skull ε 0% 0% -1% 0% -1% -2% -4% 4% 

* These results are explained in the text, and should be ignored 

**Excluding artefact results 
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Figure 38: WHA SAR variation with dielectric properties in all tissues 

Table 20: WHA SAR variation with dielectric properties in all tissues 

WHA SAR 70% 80% 90% Original 110% 120% 130% Range WHA SAR 70% 80% 90% Original 110% 120% 130% Range 

WHA, brain σ -1% -1% 0% 0% 0% 1% 1% 2% WHA, brain ε 3% 2% 1% 0% -1% -1% -2% 5% 

WHA, eye σ 0% 0% 0% 0% 0% 0% 0% 0% WHA, eye ε 0% 0% 0% 0% 0% 0% 0% 0% 

WHA, fat σ 0% 0% 0% 0% 0% 0% 0% 0% WHA, fat ε 0% 0% 0% 0% 0% 0% 0% 0% 

WHA, filler  σ -1% -1% 0% 0% 0% 1% 1% 2% WHA, filler ε 3% 2% 1% 0% -1% -1% -2% 5% 

WHA, skin σ 2% 2% 1% 0% -1% -2% -2% 5% WHA, skin ε -3% -2% -1% 0% 1% 1% 2% 5% 

WHA, skull σ 1% 1% 0% 0% 0% -1% -1% 2% WHA, skull ε 1% 1% 0% 0% 0% -1% -1% 2% 
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3.6.8 What tissues' dielectric properties affect SAR in the brain? 

In Figure 39 and Table 21 below, SAR in the brain tissue bears a simple relationship 

to changes in dielectric properties of most tissues for the range used here of ±30% σ 

and ε. Little variation is effected on SAR. For example, variations in eye and fat 

properties have no effect on brain SAR, nor does skull permittivity.  

SAR in the brain tissue is unaffected by, i.e. 5% variation or less is seen (figures in 

brackets denote the range of SAR increase):  

 fat dielectric properties, σ or ε (0%) 

 eye dielectric properties, σ or ε (0%) 

 average filler ε (2%) 

 skull ε (1%) 

Brain SAR increases with: 

 increasing brain σ (10%)  

 increasing skin ε (6%)  

Brain SAR decreases with: 

 increasing skin σ (13%)  

 increasing skull σ (8%)  

 increasing filler tissue σ (6%) 

 increasing brain ε (6%)  

- a highly lossy skin layer acts as a protective barrier for the more delicate brain 

tissue 

- the skull cavity is formed of two tissues, brain (σ = 0.77) and filler (σ = 0.97); as 

the brain's conductivity increases to equal that of the filler tissue, it absorbs 

more energy, due to impedance matching between the two tissues 

The worst case brain SAR is seen at lowest skin conductivity (skin σ = 0.61), highest 

brain conductivity (σ = 1.00), high skin permittivity (ε = 53.83) and low brain 

permittivity (ε = 32.06). 
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Figure 39: SAR variations in the brain tissue with dielectric properties in all tissues 

Table 21: SAR variations in the brain tissue with dielectric properties in all tissues 

Brain SAR 70% 80% 90% 100% 110% 120% 130% Range Brain SAR 70% 80% 90% 100% 110% 120% 130% Range 

Brain SAR, brain σ -6% -4% -2% 0% 1% 2% 3% 10% Brain SAR, brain ε 4% 2% 1% 0% -1% -1% -2% 6% 

Brain SAR, eye σ 0% 0% 0% 0% 0% 0% 0% 0% Brain SAR, eye ε 0% 0% 0% 0% 0% 0% 0% 0% 

Brain SAR, fat σ 0% 0% 0% 0% 0% 0% 0% 0% Brain SAR, fat ε 0% 0% 0% 0% 0% 0% 0% 0% 

Brain SAR, filler  σ 4% 2% 1% 0% -1% -1% -2% 6% Brain SAR, filler ε 0% 0% 0% 0% 0% -1% -1% 2% 

Brain SAR, skin σ 7% 4% 2% 0% -2% -4% -6% 13% Brain SAR, skin ε -3% -2% -1% 0% 1% 2% 2% 6% 

Brain SAR, skull σ 4% 3% 1% 0% -1% -3% -4% 8% Brain SAR, skull ε -1% -1% 0% 0% 0% 0% 0% 1% 
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3.6.9 What tissues' dielectric properties affect SAR in the eye? 

Overall, tissue permittivities have a greater effect on eye SAR than conductivities. In 

Figure 40 and Table 22 below greatest increases of eye SAR are, unsurprisingly, 

effected by increases of the eye tissue's conductivity and permittivity. That is, the eye 

tissue becomes more absorbing with increases in σ and ε, though the relationships 

are non-linear.  

SAR in the eyes is unaffected by, i.e. 5% or less change seen (figures in brackets 

denote the range of SAR change):  

 changes in brain σ (1%) or ε (4%) 

 changes in fat σ (4%) 

 changes in filler ε (3%) 

 changes in skull σ (3%) 

SAR in the eyes increases with:  

 increased eye σ (28%), increasing eye ε (28%)  

 increasing fat ε (9%)  

 increased filler tissue σ (6%)  

SAR in the eyes decreases with: 

 increasing skin σ (8%)  

 increasing skin ε (10%)  

 increasing skull ε (12%)  

These trends can be explained thus:  

- as the outer skin and skull layers become more absorbing with increasing 

conductivity and permittivity, less energy is deposited in the eyes 

- the large tissues inside GH – brain and filler tissues – don't affect the eye SAR 

much, however a small increase in eye SAR is seen with increased filler 

conductivity (6%); looking at Figure 34, as the EM wave enters the head, it 

encounters, in order: skin – skull – filler – fat – eye. It would make sense, therefore, 



 

143 

that the absorbing characteristics of the filler tissue would affect eye SAR more 

than the brain tissue, which is several centimetres away 

- some increased absorption in the fat tissue is expected to cause increased 

absorption in the eyeballs as more energy is collected in the area around the eyes. 

However, the SAR changes seen are proportionate with the relatively small size of 

the tissue  

The worst case scenario for high SAR in the eyes is seen at the highest eye 

conductivity (σ= 2.13 S/m) and highest eye permittivity (ε = 89.57).  
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Figure 40: SAR variations in the eye tissue with dielectric properties in all tissues 

Table 22: SAR variations in the eye tissue with dielectric properties in all tissues 

Eye SAR 70% 80% 90% 100% 110% 120% 130% Range Eye SAR 70% 80% 90% 100% 110% 120% 130% Range 

Eye SAR, brain σ 1% 0% 0% 0% 0% 0% 0% 1% Eye SAR, brain ε -3% -2% -1% 0% 1% 1% 1% 4% 

Eye SAR, eye σ -18% -11% -5% 0% 4% 7% 10% 28% Eye SAR, eye ε -7% -6% -4% 0% 6% 13% 21% 28% 

Eye SAR, fat σ 1% 1% 0% 0% -1% -1% -2% 4% Eye SAR, fat ε -5% -3% -2% 0% 1% 3% 4% 9% 

Eye SAR, filler  σ -3% -2% -1% 0% 1% 2% 3% 6% Eye SAR, filler ε -1% -1% -1% 0% 1% 2% 2% 3% 

Eye SAR, skin σ 4% 3% 1% 0% -1% -3% -4% 8% Eye SAR, skin ε 4% 3% 2% 0% -2% -3% -5% 10% 

Eye SAR, skull σ 1% 1% 0% 0% 0% -1% -1% 3% Eye SAR, skull ε 6% 4% 2% 0% -2% -4% -6% 12% 
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3.6.10 What tissues' dielectric properties affect SAR in fat? 

Marked changes in fat SAR are seen in Figure 41 and Table 23 with changes in fat 

tissue dielectric properties. Fat SAR is also seen to greatly increase with eye ε and 

filler tissue σ, with all other dielectric property variations associated with 5-14% SAR 

variation. The non-linear increase is likely due to location of the highest SAR 

changing (Table 27) from ear to eye to the artefact point.  

SAR in the fat tissue is unchanged by (figures in brackets denote the range of SAR 

change): 

 changes in brain σ (0%) or ε (1%) 

 changes in skin ε (3%) 

Fat SAR increases with: 

 increasing eye ε (30%) 

 increasing fat σ (47%)  

 increasing filler σ (14%) 

Fat SAR decreases with: 

 increasing fat ε (49%)  

 increasing eye σ (10%) 

 increasing skin σ (11%) 

 increasing skull σ (5%), skull ε (7%) 

All the relationships above are either monotonous over the scales used here. Fat SAR 

also decreases non-linearly with increasing average-head tissue ε (8%).  

These trends may be explained thus: 

- as with eyes, dielectric property variations in the adjacent tissues have more effect 

than non-contiguous tissues; for example, increased average head tissue σ is 

associated with an increase in fat SAR, but variations in brain dielectric properties 

cause minimal changes 
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- interestingly, changes in eye dielectric properties show large changes in fat SAR, 

but the converse is not true – fat σ is not related to eye SAR, though increasing fat 

ε is associated with increased eye SAR in this model 

- as the outer skin and skull tissues become more lossy, less absorption is seen in 

the fat tissue 

The worst case scenario for high SAR in the fat tissue is low fat conductivity (σ = 

0.04 S/m), high fat permittivity (ε = 7.02), and high eye permittivity (ε =89.57).  
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Figure 41: SAR variations in the fat tissue with dielectric properties in all tissues 

Table 23: SAR variations in the fat tissue with dielectric properties in all tissues 

Fat SAR 70% 80% 90% 100% 110% 120% 130% Range Fat SAR 70% 80% 90% 100% 110% 120% 130% Range 

Fat SAR, brain σ 0% 0% 0% 0% 0% 0% 0% 0% Fat SAR, brain ε 0% -1% 0% 0% 0% 1% 1% 1% 

Fat SAR, eye σ 6% 4% 2% 0% -1% -3% -4% 10% Fat SAR, eye ε -17% -11% -5% 0% 5% 9% 13% 30% 

Fat SAR, fat σ -17% -17% 0% 0% 16% 16% 30% 47% Fat SAR, fat ε 28% 18% 9% 0% -8% -15% -21% 49% 

Fat SAR, filler  σ -7% -5% -2% 0% 2% 4% 7% 14% Fat SAR, filler ε 7% 4% 2% 0% -1% -1% -2% 8% 

Fat SAR, skin σ 6% 4% 2% 0% -2% -3% -5% 11% Fat SAR, skin ε 1% 1% 0% 0% -1% -1% -2% 3% 

Fat SAR, skull σ 2% 2% 1% 0% -1% -2% -2% 5% Fat SAR, skull ε 3% 2% 1% 0% -1% -3% -4% 7% 
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3.6.11 What tissues' dielectric properties affect SAR in the filler tissue? 

Figure 42 and Table 24 below shows that the SAR in the filler tissue is not greatly 

affected by dielectric property variations of the range used here – most SAR changes 

seen are in the order of about 5-10%.  SAR variations associated with increasing ε 

and σ of filler tissue are opposite to those associated with skin tissue dielectric 

properties, and of comparable size. Dielectric property variations of smaller tissue 

volumes, such as eye and fat, create little or no change in filler tissue SAR using the 

GH model. 

SAR in the filler tissue is unaffected by: 

 changes in eye σ or ε (≥1%) 

 changes in fat σ or ε (≥1%) 

 changes in brain ε (2%) 

 changes in skull ε (1%) 

Filler SAR increases with (figures in brackets denote the range of SAR change): 

 increasing filler σ (8%) 

 increasing skin ε (5%) 

Filler SAR decreases with: 

 increasing skin σ (13%) 

 increasing skull σ (8%) 

 increasing brain σ (8%)  

 increasing filler ε (5%) 

These trends may be explained thus: 

- as outer layers become less conductive and absorb less, RF energy penetrates 

deeper into the head; this effect is most obvious at low skin conductivity, which is 

the point of highest filler SAR (13% increase) 

- as brain σ increases, it approaches and matches filler σ, and the entire skull cavity 

has the same conductivity 
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The worst case scenario for high filler tissue SAR is predicted by this model to be 

at lowest skin conductivity (σ = 0.61 S/m) and lowest filler permittivity (ε = 29.05).  
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Figure 42: SAR variations in the filler (average head) tissue with dielectric properties in all tissues 

Table 24: SAR variations in the filler (average head) tissue with dielectric properties in all tissues 

Filler SAR 70% 80% 90% 100% 110% 120% 130% Range Filler SAR 70% 80% 90% 100% 110% 120% 130% Range 

Filler SAR, brain σ 5% 3% 1% 0% -1% -2% -2% 8% Filler SAR, brain ε 0% 0% 0% 0% 0% -1% -1% 2% 

Filler SAR, eye σ 0% 0% 0% 0% 0% 0% 0% 1% Filler SAR, eye ε 0% 0% 0% 0% 0% 0% -1% 1% 

Filler SAR, fat σ 0% 0% 0% 0% 0% 0% 0% 0% Filler SAR, fat ε 0% 0% 0% 0% 0% 0% 0% 1% 

Filler SAR, filler  σ -6% -3% -1% 0% 1% 2% 3% 8% Filler SAR, filler ε 3% 2% 1% 0% -1% -1% -2% 5% 

Filler SAR, skin σ 7% 4% 2% 0% -2% -4% -6% 13% Filler SAR, skin ε -3% -2% -1% 0% 1% ` 2% 5% 

Filler SAR, skull σ 4% 3% 1% 0% -1% -3% -4% 8% Filler SAR, skull ε -1% -1% 0% 0% 0% 0% 0% 1% 
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3.6.12 What tissues' dielectric properties affect SAR in the skin? 

High skin conductivity is seen to significantly increase SAR in the skin in Figure 43 

and Table 25 below. As discussed above in Section 8.2, it is reasoned a priori that the 

surface layer plays a significant role in energy absorption of the head. Note the ear, 

which is the closest GH dielectric to the source, consists of skin tissue, so the highest 

SAR likely occurs there, as any EM exposure deeper in the head has been already 

attenuated by the outer tissues. A few other interesting patterns are seen here: skin 

SAR drops when the skull layer is more conductive; as the inner volumes of the head 

increase in conductivity, skin SAR increases; as those volumes increase in permittivity, 

the skin SAR drops. 

SAR in the skin tissue is unaffected by:  

 changes in eye σ or ε (0%) 

 changes in fat σ or ε (≥1%) 

 changes in skin ε (2%) 

Skin SAR increases with (figures in brackets denote the range of SAR change): 

 increasing skin σ (47%) 

 increasing brain σ (5%) 

 increasing filler σ (7%) 

Skin SAR decreases with: 

 increasing skull σ (5%) and ε (10%) 

 increasing brain ε (8%)  

 increasing filler ε (9%)  

These trends may be thus explained: 

- a highly lossy skin layer, i.e. one with a higher water content, absorbs a lot of 

energy, protecting the rest of the head tissues 

- deconstructive interference of the EMF at the superposition of different dielectric 

layers is likely responsible for the patterns described above 
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The worst case scenario for high SAR in the skin is predicted by this model to be 

at highest skin conductivity (σ = 0.61).  
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Figure 43: SAR variations in the skin tissue with dielectric properties in all tissues 

Table 25: SAR variations in the skin tissue with dielectric properties in all tissues 

Skin SAR 70% 80% 90% 100% 110% 120% 130% Range Skin SAR 70% 80% 90% 100% 110% 120% 130% Range 

Skin SAR, brain σ -3% -2% -1% 0% 1% 2% 3% 5% Skin SAR, brain ε 6% 3% 1% 0% -1% -1% -2% 8% 

Skin SAR, eye σ 0% 0% 0% 0% 0% 0% 0% 0% Skin SAR, eye ε 0% 0% 0% 0% 0% 0% 0% 0% 

Skin SAR, fat σ 0% 0% 0% 0% 0% 0% 0% 0% Skin SAR, fat ε 0% 0% 0% 0% 0% 0% 0% 1% 

Skin SAR, filler  σ -4% -2% -1% 0% 1% 2% 3% 7% Skin SAR, filler ε 6% 4% 2% 0% -1% -2% -3% 9% 

Skin SAR, skin σ -25% -16% -8% 0% 8% 15% 22% 47% Skin SAR, skin ε -1% -1% 0% 0% 0% 1% 1% 2% 

Skin SAR, skull σ 3% 2% 1% 0% -1% -2% -3% 5% Skin SAR, skull ε 5% 3% 2% 0% -2% -4% -6% 10% 
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3.6.13 What tissues’ dielectric properties affect SAR in the skull? 

Increasing skull σ in Figure 44 and Table 26 below is seen to increase SAR in the skull, 

while the opposite is true of skull permittivity. The reverse trend is seen with respect 

to skin dielectric properties and skull SAR; high skin absorbance is correlated with 

lower SAR in the next tissue layer. Other tissues' σ and ε show a lesser or no effect on 

skull SAR, often with a complex relationship.  

Skull SAR is unaffected by: 

 changes in eye and fat ε and σ 

 increasing filler σ, increasing brain σ (SAR changes by 3-4% at the range of σ used 

here, though a relationship does exist, which may cause high skull SAR at 

extremely high values of brain and filler σ values) 

Skull SAR increases monotonously with (figures in brackets denote the range of SAR 

change): 

 increasing skull σ (51%) 

 increasing skin ε (5%) 

Skull SAR decreases with: 

 increasing skin σ (13%) and skin ε (5%) 

 increasing filler ε (13%) 

 increasing brain ε (13%) 

These trends may be explained by: 

- a protective effect is evident here, where higher conductivity in the outer layer of 

the skull causes lower SAR deeper within the head figure 

- higher permittivity in the inner layers is associated with lower skull SAR and skin 

SAR, likely due to constructive or deconstructive interference at the boundaries 

between multiple dielectrics 

- complex relationship between skull σ and skull SAR are likely due to the changing 

location of the highest SAR, from the ear to further inside the head; it is likely that 
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there are two SAR peaks on either side of the skull tissue (inside and outside), and 

the point of actual maximum varies somewhat as skull σ increases 

The worst case scenario for high skull SAR is at high skull conductivity (σ = 0.31 S/m) 

and low skull permittivity (ε = 11.62). 
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Figure 44: SAR variations in the skull tissue with dielectric properties in all tissues 

Table 26: SAR variations in the skull tissue with dielectric properties in all tissues 

Skull SAR 70% 80% 90% 100% 110% 120% 130% Range Skull SAR 70% 80% 90% 100% 110% 120% 130% Range 

Skull, brain σ -2% -1% -1% 0% 1% 1% 2% 3% Skull, brain ε 8% 5% 2% 0% -2% -3% -4% 13% 

Skull, eye σ 0% 0% 0% 0% 0% 0% 0% 0% Skull, eye ε 0% 0% 0% 0% 0% 0% 0% 0% 

Skull, fat σ 0% 0% 0% 0% 0% 0% 0% 0% Skull, fat ε 0% 0% 0% 0% 0% 0% 0% 0% 

Skull, filler  σ -2% -1% -1% 0% 1% 1% 2% 4% Skull, filler ε 8% 5% 2% 0% -2% -3% -4% 13% 

Skull, skin σ 7% 4% 2% 0% -2% -4% -6% 13% Skull, skin ε -3% -2% -1% 0% 1% 2% 2% 5% 

Skull, skull σ -26% -19% -7% 0% 7% 18% 24% 51% Skull, skull ε 10% 6% 3% 0% -2% -4% -6% 16% 
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3.6.14 General trends 

Tissues in this model may be loosely grouped into three types: outer protective layers 

(skin and skull); large-volume cavity fillers (brain, filler); and low-volume (eyes, fat). 

Some interesting trends are seen across those groupings when dielectric properties 

of tissues are varied.  

 as expected, the highest SAR in any given tissue is predicted by this model to 

occur when the conductivity of that tissue is highest 

 altering the conductivity of the cavity-filler tissues alters their SAR by 3%; of the 

small tissues, 10-30%; of the outer layers, about 23% 

 dielectric variations in small-volume tissues (eye, fat) do not affect the SAR in any 

other tissue, or the WHA SAR; 1g SAR varies by 20% over a ±30 range of σ and ε 

of eye and fat tissues, however when increasing the averaging to 10g of 

contiguous tissue, the effect of those variations drop to about 3% 

 altering the ε of either of the cavity-filler tissues over a ±30% range is associated 

with a 2% increase in SAR in the other cavity-filler tissue 

 skull ε does not significantly affect SAR in either head or filler tissue, but increased 

skin ε is associated with a 5% increase in the SAR of both those tissues 

 increased filler σ is associated with increased SAR in the skin, but decreased SAR 

in the skull 

 small-volume tissues are unaffected by dielectric property variations in the brain, 

likely due to significant distal separation in this model 

 increased skull ε lowers the SAR in both small-volume tissues (12% variation in 

eye SAR, 7% in fat SAR) 

 increased skin σ lowers SAR of both eye and fat tissues by 8% and 11% 

respectively 

 increasing filler σ is associated with increased SAR in both the eye and the fat 

tissues (by 6% and 14% respectively) 

 a 30% increase in eye and fat SAR is associated with increased eye ε 

 changes in fat σ do not affect eye SAR in the range tested here, but eye σ does 

decrease fat SAR by 10% 
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Unexpected highs and lows are seen at various permutations of tissue variations; 

these are likely due to the complex dielectric makeup of the head, even in such a 

simplified model as the Geometry Head. Constructive and deconstructive interference 

occurs at tissue boundaries, creating reflections and attenuations of the EM signal.  
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Table 27: Location of 1g and 10g peak spatial SARs. Images show examples of 1g and 10g locations as described in the table; exact location vary 

  Conductivity   Permittivity 
Brain 70% 80% 90% 100% 110% 120% 130% Brain 70% 80% 90% 100% 110% 120% 130% 

1g Artefact 
point* 

Artefact 
point* 

Eye Eye Eye Eye Inside 
head 

1g Inside 
head 

Inside 
head 

Inside 
head 

Eye Eye Eye Artefact 
point* 

10g Artefact 
point* 

Artefact 
point* 

Ear Ear Ear Ear Ear 10g Ear Ear Ear Ear Ear Ear Ear 

Eye 70% 80% 90% 100% 110% 120% 130% Eye 70% 80% 90% 100% 110% 120% 130% 

1g Inside 
head 

Inside 
head 

Inside 
head 

Eye Eye Eye Eye 1g Inside 
head 

Inside 
head 

Eye Eye Eye Eye Eye 

10g Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

10g Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Fat 70% 80% 90% 100% 110% 120% 130% Fat 70% 80% 90% 100% 110% 120% 130% 

1g Inside 
head 

Inside 
head 

Eye Eye Eye Eye Eye 1g Eye Eye Eye Eye Inside 
head 

Inside 
head 

Inside 
head 

10g Ear Ear Inside 
head 

Ear Inside 
head 

Inside 
head 

Inside 
head 

10g Ear Ear Ear Ear Ear Ear Ear 

Head 70% 80% 90% 100% 110% 120% 130% Head 70% 80% 90% 100% 110% 120% 130% 

1g Eye Eye Eye Eye Ear Ear Ear 1g Inside 
head 

Inside 
head 

Inside 
head 

Eye Eye Eye Eye 

10g Ear Ear Ear Ear Ear Ear Ear 10g Inside 
head 

Inside 
head 

Inside 
head 

Ear Inside 
head 

Inside 
head 

Inside 
head 

Skin 70% 80% 90% 100% 110% 120% 130% Skin 0% 80% 90% 100% 110% 120% 130% 

1g Inside 
head 

Inside 
head 

Inside 
head 

Eye Eye Eye Eye 1g Eye Eye Eye Eye Inside 
head 

Inside 
head 

Inside 
head 

10g Inside 
head 

Inside 
head 

Inside 
head 

Ear Ear Ear Ear 10g Ear Ear Ear Ear Ear Ear Ear 

Skull 70% 80% 90% 100% 110% 120% 130% Skull 70% 80% 90% 100% 110% 120% 130% 

1g Eye Eye Eye Eye Eye Eye Eye 1g Eye Eye Eye Eye Eye Eye Ear side 
10g Inside 

head 
Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

10g Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

Inside 
head 

* These results are explained in the text, and should be ignored 

Artefact point: Ear: Inside head, ear-side: Eye: 

           .
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3.6.15 When the dielectric properties of a single tissue vary, what 
happens to the rest of the tissues in the GH model?  

Figure 45 shows the raw SAR values in each tissue in the GH model, as the σ and ε of 

an individual tissue are altered to ±30 of the initial value. The SAR values have been 

scaled to a power density of the plane wave of 10 W/m2. The minima, maxima and 

range of SARs in each tissue are show in Table 29. 

The highest SAR values are found in the skin tissue (0.160 - 0.260 W/kg), followed in 

order by eye (0.098 – 0.144 W/kg); filler, WHA and brain in a close range (0.080 – 

0.103 W/kg); fat (0.038 - 0.062); and skull (0.020 – 0.034).  

The skin tissue also shows the highest variability in SAR with a range of 0.100 W/kg, 

more than double the next highest (eye SAR, 0.046 W/kg). As noted in Section 3.6.8 

above, the highest variability in any tissue's SAR occurs when the dielectric properties 

of that tissue are altered. SAR values in the rest of the tissues stay more or less the 

same under those conditions.  
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Figure 45: SAR changes in each tissue as the conductivity and permeability of one tissue are altered; values are detailed in Table 28
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Table 28: SAR changes in each tissue as the conductivity and permeability of one tissue are altered; these results are graphed in Figure 45 

 

Brain σ and ε  SAR (W/kg)  Eye σ and ε  SAR (W/kg)  Fat σ and ε  SAR (W/kg) 

Conductivity 70% 80% 90% 100% 110% 120% 130% Range  Conductivity 70% 80% 90% 100% 110% 120% 130% Range  Conductivity 70% 80% 90% 100% 110% 120% 130% Range 

WHA, brain σ 0.081 0.082 0.082 0.082 0.082 0.083 0.083 0.002  WHA, eye σ 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.000  WHA, fat σ 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.000 

Brain, brain σ 0.085 0.087 0.089 0.090 0.092 0.093 0.093 0.009  Brain, eye σ 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.000  Brain, fat σ 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.000 

Skull, brain σ 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.001  Skull, eye σ 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.000  Skull, fat σ 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.000 

Skin, brain σ 0.208 0.210 0.212 0.214 0.216 0.217 0.219 0.011  Skin, eye σ 0.214 0.214 0.214 0.214 0.214 0.213 0.213 0.000  Skin, fat σ 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.000 

Eye, brain σ 0.120 0.119 0.119 0.119 0.119 0.119 0.119 0.001  Eye, eye σ 0.098 0.106 0.113 0.119 0.124 0.128 0.131 0.033  Eye, fat σ 0.121 0.121 0.119 0.119 0.117 0.117 0.116 0.005 

Fat, brain σ 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.000  Fat, eye σ 0.050 0.049 0.049 0.048 0.047 0.046 0.046 0.005  Fat, fat σ 0.040 0.040 0.048 0.048 0.055 0.055 0.062 0.023 

Filler, brain σ 0.101 0.099 0.097 0.096 0.095 0.094 0.094 0.007  Filler, eye σ 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.001  Filler, fat σ 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.000 

Permittivity 70% 80% 90% 100% 110% 120% 130% Range  Permittivity 70% 80% 90% 100% 110% 120% 130% Range  Permittivity 70% 80% 90% 100% 110% 120% 130% Range 

WHA, brain ε 0.084 0.084 0.083 0.082 0.082 0.081 0.080 0.004  WHA, eye ε 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.000  WHA, fat ε 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.000 

Brain, brain ε 0.094 0.092 0.091 0.090 0.090 0.089 0.088 0.005  Brain, eye ε 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.000  Brain, fat ε 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.000 

Skull, brain ε 0.029 0.028 0.028 0.027 0.027 0.026 0.026 0.003  Skull, eye ε 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.000  Skull, fat ε 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.000 

Skin, brain ε 0.225 0.220 0.216 0.214 0.212 0.211 0.209 0.016  Skin, eye ε 0.214 0.214 0.214 0.214 0.214 0.214 0.213 0.000  Skin, fat ε 0.214 0.214 0.214 0.214 0.213 0.213 0.213 0.001 

Eye, brain ε 0.116 0.116 0.118 0.119 0.120 0.120 0.120 0.005  Eye, eye ε 0.111 0.112 0.114 0.119 0.126 0.134 0.144 0.033  Eye, fat ε 0.113 0.115 0.117 0.119 0.121 0.122 0.124 0.011 

Fat, brain ε 0.048 0.047 0.048 0.048 0.048 0.048 0.048 0.001  Fat, eye ε 0.040 0.043 0.045 0.048 0.050 0.052 0.054 0.014  Fat, fat ε 0.061 0.056 0.052 0.048 0.044 0.041 0.038 0.023 

Filler, brain ε 0.096 0.096 0.096 0.096 0.095 0.095 0.095 0.001  Filler, eye ε 0.096 0.096 0.096 0.096 0.096 0.096 0.095 0.001  Filler, fat ε 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.001 

                             

Filler σ and ε  SAR (W/kg)  Skin σ and ε  SAR (W/kg)  Skull σ and ε  SAR (W/kg) 

Filler, Filler  σ 70% 80% 90% 100% 110% 120% 130% Range  Conductivity 70% 80% 90% 100% 110% 120% 130% Range  Conductivity 70% 80% 90% 100% 110% 120% 130% Range 

WHA, Filler  σ 0.081 0.081 0.082 0.082 0.082 0.083 0.083 0.002  WHA, skin σ 0.084 0.083 0.083 0.082 0.081 0.081 0.080 0.004  WHA, skull σ 0.083 0.083 0.082 0.082 0.082 0.081 0.081 0.002 

Brain, Filler  σ 0.094 0.092 0.091 0.090 0.090 0.089 0.089 0.006  Brain, skin σ 0.096 0.094 0.092 0.090 0.088 0.087 0.085 0.012  Brain, skull σ 0.094 0.093 0.091 0.090 0.089 0.088 0.087 0.007 

Skull, Filler  σ 0.026 0.027 0.027 0.027 0.027 0.027 0.028 0.001  Skull, skin σ 0.029 0.028 0.028 0.027 0.026 0.026 0.025 0.004  Skull, skull σ 0.020 0.022 0.025 0.027 0.029 0.032 0.034 0.014 

Skin, Filler  σ 0.206 0.209 0.211 0.214 0.216 0.218 0.220 0.014  Skin, skin σ 0.160 0.180 0.196 0.214 0.230 0.245 0.260 0.100  Skin, skull σ 0.220 0.218 0.215 0.214 0.212 0.210 0.208 0.011 

Eye, Filler  σ 0.115 0.117 0.118 0.119 0.120 0.121 0.122 0.007  Eye, skin σ 0.124 0.122 0.121 0.119 0.117 0.116 0.114 0.010  Eye, skull σ 0.121 0.120 0.119 0.119 0.119 0.118 0.117 0.003 

Fat, Filler  σ 0.044 0.046 0.047 0.048 0.049 0.050 0.051 0.007  Fat, skin σ 0.050 0.049 0.049 0.048 0.047 0.046 0.045 0.005  Fat, skull σ 0.049 0.049 0.048 0.048 0.047 0.047 0.047 0.002 

Filler, Filler  σ 0.091 0.093 0.094 0.096 0.097 0.098 0.099 0.008  Filler, skin σ 0.103 0.100 0.098 0.096 0.094 0.092 0.090 0.013  Filler, skull σ 0.100 0.099 0.097 0.096 0.095 0.093 0.092 0.008 

Permittivity 70% 80% 90% 100% 110% 120% 130% Range  Permittivity 70% 80% 90% 100% 110% 120% 130% Range  Permittivity 70% 80% 90% 100% 110% 120% 130% Range 

WHA, Filler ε 0.084 0.084 0.083 0.082 0.082 0.081 0.081 0.004  WHA, skin ε 0.080 0.081 0.081 0.082 0.083 0.083 0.084 0.004  WHA, skull ε 0.083 0.083 0.082 0.082 0.082 0.081 0.081 0.002 

Brain, Filler ε 0.091 0.091 0.091 0.090 0.090 0.090 0.089 0.001  Brain, skin ε 0.087 0.088 0.089 0.090 0.091 0.092 0.092 0.005  Brain, skull ε 0.089 0.090 0.090 0.090 0.090 0.090 0.090 0.001 

Skull, Filler ε 0.029 0.028 0.028 0.027 0.027 0.026 0.026 0.003  Skull, skin ε 0.026 0.027 0.027 0.027 0.027 0.027 0.028 0.001  Skull, skull ε 0.030 0.029 0.028 0.027 0.026 0.026 0.025 0.004 

Skin, Filler ε 0.227 0.221 0.217 0.214 0.211 0.209 0.208 0.019  Skin, skin ε 0.211 0.212 0.213 0.214 0.214 0.215 0.216 0.005  Skin, skull ε 0.224 0.221 0.217 0.214 0.210 0.206 0.202 0.022 

Eye, Filler ε 0.118 0.118 0.118 0.119 0.120 0.121 0.122 0.004  Eye, skin ε 0.124 0.123 0.121 0.119 0.117 0.115 0.113 0.011  Eye, skull ε 0.126 0.124 0.121 0.119 0.117 0.114 0.112 0.014 

Fat, Filler ε 0.051 0.050 0.048 0.048 0.047 0.047 0.047 0.004  Fat, skin ε 0.048 0.048 0.048 0.048 0.047 0.047 0.047 0.002  Fat, skull ε 0.049 0.049 0.048 0.048 0.047 0.046 0.046 0.003 

Filler, Filler ε 0.099 0.098 0.097 0.096 0.095 0.095 0.094 0.004  Filler, skin ε 0.093 0.094 0.095 0.096 0.097 0.097 0.098 0.005  Filler, skull ε 0.095 0.095 0.096 0.096 0.096 0.096 0.096 0.001 

Table 29: minimum, maximum and range of SAR in each tissue, as the σ and ε of individual tissues is altered to ±30% 

Tissue Minimum SAR (W/kg) Maximum SAR (W/kg) Range SAR (W/kg) 

WHA 0.080 0.084 0.005 
Brain 0.085 0.096 0.012 
Eye 0.098 0.144 0.046 
Fat 0.038 0.062 0.024 

Filler 0.090 0.103 0.013 
Skin 0.160 0.260 0.100 
Skull 0.020 0.034 0.014 
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3.6.16 Summary 

The conductivity and permittivity of tissues in the head, varied in a 60% range, are 

predicted by the Geometry Head model to affect SAR in individual tissues by up to 

about ±25% and affect 1g and 10g SAR by at most 5%. These results agree with 

previous work by Keshvari, Christ and others (Christ, Klingenbock et al. 2006; 

Keshvari, Keshvari et al. 2006). In line with others' work, results of this study further 

suggest that dielectric properties of tissues nearest the source, and closest to the 

surface play a greater part in SAR. More detail is provided below.  

3.6.17 SAR in the brain 

SAR in the brain varies by 10% or less due to most σ and ε variations in different 

tissues; it is not affected by eye or fat dielectric properties at all. Increasing skin 

conductivity over a 60% range is associated with a 13% decrease in brain SAR. The 

relationships between brain SAR and tissues' σ and ε are for the most part 

monotonous, so important to note.  

Changing the brain's dielectric properties by ±30% has little effect on SAR of 

different tissues, except those of skin and brain. Using the Geometry Head model, the 

highest WHA SAR is seen when the brain conductivity is lowest (σ = 0.54 S/m) and 

the permittivity is highest (ε = 59.54).  

3.6.18 SAR in the eye 

SAR in the eye tissue is greatly affected by the dielectric properties of the eyes, 

though in a complex manner, increasing by 28% over a ±30% range in σ and ε. 

Dielectric property variations in other tissues create eye SAR changes in the order of 

6-12%, with the greatest decreases in SAR seen with increasing ε of the two outer 

layers, skin and skull.  

3.6.19 SAR in the fat 

Most SAR variations in the fat tissue are in the order of 5-14%. Large changes in the 

order of about 50% are associated with changes in the fat tissue dielectric properties, 

and with eye permittivity (30%). As with the eyes, dielectric properties of tissues 

adjacent to the fat have a greater effect on fat SAR. Changes in eye dielectric 

properties show large changes in fat SAR, but the converse is not true – fat σ is not 
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related to eye SAR, though increasing fat ε is associated with increased eye SAR in 

this model.  

3.6.20 SAR in the filler 

Filler SAR is only seen to increase with increasing filler conductivity (by 8% over a 

60% range of σ), and increasing skin permittivity (by 5% over the same range). All 

other dielectric property changes either lower the filler SAR or don't affect it, 

suggesting a protective skin effect. Dielectric property variations in this model mostly 

show a simple relationship to filler SAR. Dielectric properties of small-volume tissues, 

i.e. eyes and fat, do not affect filler SAR.  

3.6.21 SAR in the skin 

At the ranges of dielectric properties used here, it was found that a highly conductive 

skin layer absorbs 47% more energy than a low conductivity one, providing excellent 

protection to tissues deeper inside the head. Higher skin SAR is also seen, to a much 

lesser extent, to be associated with increasing conductivity of the large-volume inner 

tissues, brain and filler. A skull layer with higher ε or σ, directly beneath the skin in 

this model, will lower the SAR in the skin. SAR predictions using GH show that as, 

expected, a strong relationship exists between skin conductivity and absorption.  

3.6.22 SAR in the skull 

This model predicts high skull SAR at the highest values of skull conductivity, i.e. 

when the skull forms a lossy layer: a 51% increase of SAR in the skull is seen over a 

±30% σ change. Higher permittivity in the inner, large-volume tissues (brain and 

filler) is associated with a 13% skull SAR decrease.  

3.6.23 Overall re-distribution of SAR with dielectric property variation 

The averaging mass is an important factor in assessing RF energy absorption. As SAR 

is averaged over larger volumes, from 1g to 10g to whole tissues, distribution is seen 

to be more regular. It is clear that regions of high SAR in this model occur in four 

specific locations: at the ear, eye, or brain region closest to the source; and at a point 

in the centre of the model, where an artefact exists.  

This study shows that the SAR value in the head does not necessarily increase 

markedly with significant increases in dielectric parameters. Furthermore, the 
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interaction of RF energy with biological tissues such as the human head is an 

extremely complex biophysical phenomenon. A priori reasoning, such as examining 

of the SAR equation, may suggest that SAR bears a direct correlation to fundamental 

physical parameters such as tissue dielectric properties. However, far-reaching 

conclusions cannot be theorised for such a complex system without in-depth 

analysis.  
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Chapter 4:  Further discussion 

For in-depth discussion regarding validation of the Geometry Head model, and 

testing of individual parameters, please see Chapter 3. This section provides a 

summary of results, and discussion and assessment of the methodology and results 

of this project. Benefits of this work are also explored.  
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4.1 Summary and further discussion of results 

Recall that all variables tested here are for adults, not children.  

4.1.1 What anatomic variations affect SAR? 

 Dielectric properties: 

o conductivity and permittivity of tissues in the head, varied to ±30% from the 

widely accepted values, are predicted by the Geometry Head model to affect 

SAR in individual tissues by up to about ±25%  

o dielectric properties of the 6 tissue types in this model affect 1g, 10g and 

whole head average SAR by up to ±5%  

o complex relationships exist between dielectric properties of the tissues and 

location of maximum SAR and SAR distribution, which cannot be anticipated 

without modelling 

 Overall size of the head: 

o as head size increase, the whole head average SAR decreases; smallest head 

modelled here of 90% the original size of the GH model showed 11% increase 

in WHA SAR 

o location and value of 1g and 10g peak spatial SAR vary with increased head 

size, with variations of up ±15% over the range tested here, with unexpected 

peaks in sensitive eye tissue (119% SAR increase at 95% head size model), 

though eye SAR values are comparatively low 

4.1.2 What tested variables do not significantly affect SAR? 

 cranial thickness: 

o  at the range of human anatomic variation of 3.7 to 10.8 mm (5th to 95th 

percentiles) is not predicted to significantly affect SAR by this model 

 skin thickness: 

o at the range of human anatomic variation of 0.03 to 1.86 mm (5th to 95th 

percentiles) has a negligible effect on SAR in this model; however, when skin 

thickness is increased to 5 mm, which is well outside the normal range for the 

face and head but is normal for other regions of the body, WHA and 10g SAR 

decrease by 5% and 11% respectively; where the skin thickness is increased to 

10 mm, WHA drops by 27% and 10g SAR by 34% 
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4.1.3 Where does high SAR occur? 

SAR values in different tissues 

Using a plane wave exposure, the highest SAR values are found in the skin tissue, 

with 1g and 10g cubes often encompassing the ear ipsilateral to the plane wave (the 

ear is modelled as skin tissue). When a dipole exposure is used, 1g and 10g SARs are 

found deeper inside the head, ipsilateral to the antenna feed point.  

After skin, the tissue with the next highest SAR levels is the eye, followed in order by 

filler tissue, brain, fat, and skull. SAR values in filler and brain tissues are similar.  

Regions of high SAR  

Three regions of the head are predicted by this model to experience high SAR, all of 

them ipsilateral to the source: the ear, the eye and inside the head, often at the brain 

or filler tissue medially from the ear.  

4.1.4 What anatomic variations create the worst case SAR scenario? 

Factors that increase SAR in the skin and eyes provide worst-case scenarios. Factors 

that affect SAR in the brain tissue are also counted, as this a particularly sensitive 

tissue.  

High skin conductivity is predicted by this model to show highest SAR in the skin, but 

also lowest SAR in the brain, providing a protective effect. The brain SAR increase was 

13% at low skin σ, as opposed to  

Factors that increase skin, eye and brain SAR;  

 as overall head size is varied in a range of -5 to +30%, the WHA is seen to linearly 

decrease with increased head size; smallest head size of 90% that was able to be 

modelled (without artefact results) is predicted to cause a 11% increase in WHA 

SAR and a 119% increase in SAR in the eye 

 high skin conductivity (highest tested here was σ = 0.61 S/m) is associated with 

high skin SAR (increase of 47% in SAR over a 60% increase in σ) 

 high eye conductivity (highest tested here was σ = 2.13 S/m) and high eye 

permittivity (highest tested ε = 89.57) are predicted by this model to cause high 

eye SAR (increasing by 28% over a 60% range in σ and ε) 
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As discussed in Chapter 1, SAM was designed to provide conservative SAR estimates 

for all users; various studies indicate that a homogeneous, larger-sized adult male 

head absorbs more SAR than a woman’s or child’s head  (Petersen 2007). Shapes of 

SAM parts - head, for example - cannot be altered, nor sub-parts such as ‘brain’, the 

way GH can. The only things you can alter in SAM are the dielectric properties of the 

model, and only en masse.  Taking advantage of today’s powerful computing powers, 

Geometry Head can provide a worst-case model with barely more effort than using 

SAM, and far more fidelity to real life situations.  
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4.2 Results in context  

Table 30 to Table 32 below show results of GH model when compared with other 

models commonly used for RF research and compliance.  

The skin thickness, skull thickness and overall head sizes of GH are comparable with 

other commonly used models. The results show that in most cases, resultant SAR in 

GH is somewhere between the homogeneous models used for compliance and the 

heterogeneous models, suggesting that GH provides accurate SAR predictions.   

Interestingly, the Geometry Head SAR values when testing cranial thickness were 

found to be lower than those of the homogenous head and Norman, and quite 

similar to those of Visible Human.  

Table 30: Cranial thickness results and consequent SAR results in GH versus other models  

 

Table 31: Skin thickness and consequent SAR results in GH versus other models 

 

Skin thicknesses of human anatomic range of 1 and 2 mm at 0.31 and 0.30 W/kg 

respectively, are comparable with those of other computational models. GH SAR 

results are lower than those of the SAM (0.27 W/kg), and higher than those of the 

heterogeneous models (0.15 W/kg for VH and 0.19 for NORMAN). Being 

homogeneous, the SAM model does not have a separate skin tissue.  Skin thickness 

of VH and Norman models is dependent on mesh size - 1.5 mm and 2 mm 

respectively, however some areas contain no skin voxels (skin thickness of zero). 

Model name Model type Cranial thickness (mm) Whole head average SAR (W/Kg) 10g Ave SAR (W/Kg)

SAM Homog  - 0.043 0.27

Geometry Head Semi-homog 4 0.036 0.12

6 0.036 0.13

11 0.035 0.13

VH Hetero 3 - 16 0.034 0.15

Norman 2 - 13 0.043 0.19

Model name Model type Skin thickness (mm) 1g SAR (W/Kg) 10g SAR (W/Kg)

SAM Homog  - 0.66 0.27

Geometry Head Semi-homog 1 0.37 0.27

2 0.36 0.29

5 0.35 0.25

10 0.34 0.19

Visible Human Hetero 1 - 2 0.59 0.15

Norman 1 - 2 0.73 0.19
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Table 32: Dimensions of GH and commonly used models (heads only) 

 

Dimensions of the GH model are comparable to other commonly used models, as 

seen in Table 32. The largest GH head modelled here (130% size of the original) is of 

a quite similar size to Norman. SAR results of GH are about half those of both SAM 

and the highly heterogeneous models.  

The dielectric property results of this study agree with previous work such as 

performed by Keshvari (Keshvari, Keshvari et al. 2006), Christ (Christ and Kuster 2005); 

Bashayreh (Bashayreh, Omar et al. 2010) and Cerri (Cerri, De Leo et al. 1997) that 

suggests that dielectric properties of tissues affect SAR by ±10% or less.  

Model name Model type Height x Breadth (mm) 1g SAR (W/Kg) 10g SAR (W/Kg)

SAM Homog 228 x 190 0.66 0.27

GH Semi-homog 230 x 176 0.36 0.29

GH 90% 207 x 158 0.32 0.25

GH 130% 299 x 229 0.36 0.26

VH Hetero 226 x 236 0.59 0.15

Norman 296 x 238 0.73 0.19
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4.3 Validity of results 

The map is not the territory; it is important to remember that a model is only as good 

as its input parameters. If the parameters chosen to represent reality were not 

appropriate, the model’s predictions are meaningless.  

Effort was made to use best practice methodology in modelling the human head 

according to features known or reasoned to be contributing factors for energy 

absorption of RF, without sacrificing ease of use. This model is intended to provide a 

point of diminishing returns in complexity, where adding more complexity would not 

add much more accuracy of results.  

4.3.1 What other factors could be included in the model?  

It is difficult to answer this question without including more parameters in the model 

and testing their effects on SAR. The relationship between SAR and anatomic 

variations are complex, and cannot be determined by a priori reasoning. For example, 

although skin absorbs the most SAR, the thickness and dielectric properties of this 

tissue at the ranges of human variation (0.05  – 2 mm, though only 1 and 2 mm 

values were tested) has little effect on SAR distribution; variations in skin dielectric 

properties affect whole head SAR very little, but cause increases in individual tissue 

SAR distributions. It is likely that including more tissue layers between the skull and 

the skin, of alternating high- and low-conductivity such as muscle and fat 

respectively, would produce different energy absorption patterns. The GH model is 

available for general use and such amendments are easy to implement.  

Tissues inside the skull are mostly of similar dielectric properties. As such, it is 

unlikely that including them in this model would add much accuracy. Another 

anatomic variation that may affect SAR which is not currently incorporated into GH is 

an ear canal. This would be easy to implement (possibly as a conic air gap) and not 

prohibitively difficult to measure in humans for personal adjustments of the model.  

Another advantage of this model is the relative ease with which complexity (such as 

added layers and features) may be added. This, however, is outside the scope of this 

project. 
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4.3.2 Uncertainty 

4.3.2.1 Computational modelling 

Software rounding errors using today’s powerful machines are minimal. 

Computational techniques are now regarded as equally effective to measured results 

in the area of RF dosimetry, where they techniques allow the study of complex 

system and natural phenomena that would be too costly, time consuming, 

dangerous, and often impossible to study directly by experimentation. Significant 

progress has resulted from rapid and powerful advances in computer algorithms and 

architecture, enabling computational scientists and engineers to solve, with relative 

accuracy, large-scale problems that were once thought intractable. Little to no 

uncertainty is introduced via numerical solving approximation. A literature search was 

undertaken to quantify accuracy of FEKO code against canonical models, none was 

found. Information from the software manufacturers suggests this has been 

thoroughly tested with satisfactory results.  

The reduced tissue set is a mixed blessing. On the one hand, it is an approximation of 

reality, which introduces uncertainty. On the other, using fewer tissues reduces 

uncertainty.  

The artefact described in Chapter 3 (see Section 3.5 for a thorough discussion) causes 

an unrealistically high SAR region at the ‘brain’-’filler’ interface, and some SAR results 

have been discarded during parameter testing due to that. It is unlikely that the 

overall SAR patterns are much distorted by internal reflections from the artefact, as 

all other regions of high SAR in GH correspond with predictions of existing models. 

Dielectric properties, relative sizes and morphologies of tissues were chosen to 

approximate reality as much as possible given available knowledge based on 

extensive literature review. Few anthropometric studies provide detailed descriptions 

of anthropomorphic standardisation methods, much less statistical analysis of 

measurement reliability assessments. If superior information is found, parameters of 

Geometry Head can be easily adjusted to better represent reality.  

4.3.2.2 Physical modelling 

The DASY4 system, and the testing apparatus setup at the Ericsson Research 

Laboratories, Sweden, are designed for, and are almost exclusively, used for 
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compliance testing. Work involved using entirely non-standard phantoms, which 

severely hampered the explorations that could be performed. It was not possible, for 

example, to test SAR in tissues other than the 'brain'.  

However, all tests were undertaken in a laboratory that routinely performs 

compliance-quality SAR testing using refined techniques, calibrated equipment and 

with support from highly qualified and experienced staff. Results can therefore be 

assumed to be of the same high quality as any other measured work reported on in 

literature.  

Uncertainty of physical measurements can be broken down into the several 

categories described below. 

SAR assessment uncertainty is related to evaluating the peak spatial-average SAR 

value of the SAR distribution produced by for the specific exposure condition with 

the specified setup configuration. These include measurement and calibration 

tolerances in the instrumentation, uncertainties in the algorithms used to process the 

data, and other equipment related variations and tolerances.  

Uncertainties introduced by the DASY4 system have been well quantified by its 

manufacturers at under ±25% (Speag 2008), see Appendix D for a full uncertainty 

budget. The highest source of uncertainty in DASY (±9.6%) is the hemispherical 

isotropy; the next highest is probe calibration, with an uncertainty value of ±5.9%. 

Care was taken to meet the minimal software and hardware requirements for low 

DASY uncertainty. For example, the minimum size of measurement grid used was of 

7 x 7 x 7 points with 5 mm resolution, whereby the uncertainty of the extrapolation 

routines is less than ±1% for 1g and 10g SAR cubes. 

Source uncertainty due to variations of operating parameters such as drift of output 

power due to changes in battery voltages, operating frequency, signal modulation, 

antenna performance, and other device performance tolerances, can produce 

significant variations in the measured SAR (IEEE 2003). Experiments were performed 

using a test system designed to comply with the ±30% variability in SAR results as 

specified by measurement standards (IEEE 2003). 
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Test position uncertainty due to deviations of source positioning uncertainties may 

have been introduced here. Efforts were made to ensure dipole was positioned flush 

with the phantom and within 1 mm of the Ear Reference Point, however even small 

variations in position can produce significant changes in SAR distributions (IEEE 

2003). It is suspected that the low SAR values seen in the heterogeneous adult model 

with ‘eyes’ are due to relatively high separation of the dipole from the phantom, 

which affected the RF coupling. These results are included for observation but are 

discounted.  

Phantom uncertainty describes the variations in SAR introduced by differences in 

the dielectric parameters of the tissue-equivalent liquid used during the 

measurement and the target parameters specified by the protocol.  

Potential human errors in constructing the models, for example existence of air 

bubbles in equivalent tissue liquids, were kept to a minimum, but cannot be 

discounted. It is estimated that human error contributed no more than 20% to the 

uncertainty factor. Due to the difficulty of measuring dielectric properties of high-

viscosity tissue-equivalent liquids, likely due to inhomogeneity of supersaturated 

solutions, variation of up to 15% was considered acceptable (measurement standards 

recommend no more than ± 5% variation). This would have affected the calculation 

of SAR by the DASY software, and the matching of computational to physical 

parameters and consequent GH SAR predictions by 15%. As Gabriel et al. noted in a 

paper discussing uncertainty analysis of tissue simulating liquids (Gabriel and 

Peyman 2006), in practice, for most tissue types the random inhomogeneity is by far 

the greatest source of error.  

Variations between dimensions of anatomies in physical and computational models 

were kept to within ±10% as much as possible. Exact reproductions of the physical 

models (or real human heads) are not possible due to the approximation of using 

geometrical shapes; for example, heads are not spheroids, and noses are not conic.  

4.3.3  Limitations of the model 

4.3.3.1 Limited tissue set 

The tissue set of GH model may be expanded, and this is encouraged by the author. 

For example, adding several layers of tissue between the skin and the skull layers 
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would be a relatively simple exercise.  The model as it stands has 6 tissues and all the 

features considered a priori as relevant to SAR analysis. As seen in Section 3.2, it is 

possible to turn GH into a homogeneous model (as is possible for all multi-tissue 

models, but altering the dielectric properties of all tissues to the same values).  

A drawback of the low granularity of this model when compared to the highly 

heterogeneous ones is a reduced ability to distinguish which exact tissue within the 

head is experiencing higher SAR. Using VH or NORMAN, for example, it is possible to 

see absorption patterns in up to 42 separate tissues. On the other hand, the benefit 

of relatively low complexity is the ability to get a ‘quick and dirty’ estimation of a 

single individual’s SAR, without the expense and time of high-resolution medical 

imaging. If the individual’s SAR is within the safety limits, no further explorations 

need be undertaken.  

4.3.3.2 Artefact 

A known artefact exists in this model which creates unrealistically high SAR 

predictions inside the model. This is discussed in full in Section 3.5. Some results have 

been ignored, however overall SAR patterns are clearly discernible using this model. 

4.3.3.3 Thermoregulation 

As discussed in Section 1.1, the SAR metric serves as an analogue to temperature 

change, which is the only measurable effect of low level RF exposure. Like all other 

human models used for RF dosimetry, the GH model takes into account different 

tissues’ water content and dielectric properties, but does not account for blood 

perfusion or the thermoregulatory effects of a living mammalian organism. It cannot 

estimate thermal change, only energy absorption patterns.  
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4.4 Critical analysis of methods  

4.4.1 Computational modelling 

4.4.1.1 Modelling package 

FEKO was seen to be a suitable modelling package for this model. Parametrically 

adjustable anatomic variations were able to be incorporated into the model with 

relative ease, a critical requirement. In earlier versions of the software, edge cases 

were found, where certain variable combinations could not be solved. This ceased to 

be a problem in the current version (v6.21). The software allows determination of 

relevant SAR metrics such as whole head average, 1g and 10g SAR, SAR plots within 

the entire model, and point SAR.  

4.4.1.2 Model construction 

The GH model works well for its intended purpose: it is successfully parametrically 

adjustable for all tissue variations explored in this work. For example, adjusting the 

interpupillary breadth moves the eyes laterally around the circumference of the head, 

rather than in a single dimension on the frontal plane; the skin thickness on the nose 

remains constant regardless of skin thickness or position on the nose, modelled as a 

conic section; adjusting the dimension of any one tissue creates automatic 

proportional adjustments in all other dimensions to keep the model's integrity. The 

entire model can also be easily adjusted to incorporate more or fewer tissues and 

features.  

4.4.1.3 Parameters incorporated into the model 

Features incorporated into the model such as eyes, brains, skull, skin and ear all 

showed some contribution towards SAR magnitude and distribution, suggesting they 

were correctly chosen. The use of the adult Caucasian head for initial base-level 

variables provided comparability with how results of this work fit within the context 

of existing scientific exploration in the field.  

4.4.2 Physical modelling 

4.4.2.1 Model construction 

Parameters incorporated into the model are seen in Section 3.2 to alter SAR metrics, 

indicating successful testing. Best efforts were made to work within practical resource 

limitations to create faithful yet simplified representations of human anatomy, with 

sound reasoning for all decisions made. Considerable research was made into how 
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best to physically model human anatomy for RF compliance. Before embarking on 

the phantom creation task, several maxillofacial and forensic facial reconstruction 

experts were consulted for advice and a moulding course was undertaken.  

4.4.2.2 Model testing 

A world class standards compliant measurement and exposure system and protocols 

were used, with support from experienced staff. Measurements taken were of a high 

standard.  
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4.5 Benefits and uses of this work 

4.5.1 Parametric model 

To the best of the author's knowledge, Geometry Head is the only existing human 

head model suitable for SAR compliance studies that allows easy adjustment of 

anatomic features. It serves as a highly sophisticated version of the layered sphere 

models used in studies, with far more scope for systematically determining 

relationships between individual anatomic parameters and SAR. This unique feature 

provides the ability to further test what relationships exist between anatomic features 

and energy absorption from exposure due to use of non-ionising radiation sources in 

popular use such as wireless communications devices. 

4.5.2 Ethnic populations 

The large trove of data collection regarding anatomic variations in cranial and skin 

thicknesses of different ethnic populations can be used to create models of different 

ethnic groups to ascertain whether some are not covered by the current safety limits.  

4.5.3 Other frequencies 

This model can very easily be adapted for testing SAR at other non-ionising 

frequencies by adjusting a single variable in the software.  

4.5.4 Implications for safety standards 

Safety limits take into account the inexactness of measurement. If it is assumed that 

SAR measurements have a high level of uncertainty, then the SAR limits need to be 

stringent; if the SAR estimation techniques can be assumed to have low uncertainty, 

the limits may be relaxed.  

With the advent of high-powered computers and high-fidelity numerical solving 

techniques, computational modelling of humans for SAR estimation can often be 

considered as accurate as physical modelling. The new RF standard for exposure 

around base stations (IEC 2011) allows just that.  

Existing human models used for SAR have various drawbacks. Geometry Head takes 

advantage of new computing power by providing less overestimation of SAR than 

the homogeneous phantoms currently used for compliance testing. It also has the 

advantage over highly homogeneous model, with its ability for quick and easy 
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adjustment of parameters such as relative size and location of anatomic features, and 

dielectric properties, to provide a close estimation of any individual's head for SAR 

testing.  

Given that, it is not unreasonable to suggest that the use of higher fidelity models 

such as Geometry Head could lead to more lenient RF safety standards. 
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Chapter 5:  Conclusions 

The project described here has made some inroads into determining how certain 

anatomic variations in human populations impact energy absorption due to exposure 

to radiofrequency sources at 900 MHz. The question of whether some combinations 

of anatomic populations place some people in danger of exposure above the safety 

limits has been explored here using a novel computational model of the human 

head, along with extensive data collection regarding what variation exists in the skin 

thickness and cranial thickness of adults. The range of variability in those parameters 

have been described for subpopulations of different sexes, ages and ethnicities, and 

combined to give statistical data for overall human distributions. Though cranial & 

skin thickness do not affect SAR significantly at the range of human variation (5th to 

95th percentile), results of SAR tests while varying dielectric properties and head tests 

indicate that these tissues can significantly affect maximum SAR, both location and 

magnitude. The tissues chosen for inclusion in the model are in fact tissues that affect 

SAR. As Christ et al. and Keshvari et al. (Christ, Klingenbock et al. 2006; Keshvari, 

Keshvari et al. 2006) have noted, the reflections and absorptions at dielectric 

boundaries with a combination of high – low – high – low conductivities creates 

worst-case SAR scenarios. In a complex structure like the human head, the effects of 

composition, morphology, and relative location of these layers on SAR distribution 

cannot be anticipated with a priori reasoning. Physical validation of this model 

suggests results obtained provide a reasonable estimate of absorption in human 

heads.  

To assess the outcomes of this thesis the research questions defined in Section 1.3 

are answered below.  

5.1.1 What parameters of human anatomy contribute to absorption of 
energy due to RF exposure? 

Results suggest that presence of skin, skull, brain, eye and fat tissues affect SAR 

distribution in ways that cannot be anticipated without modelling. Direct relationship 

is observed between decreasing head size and increased SAR, by head size and 

dielectric properties.  
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5.1.2 What variability exists in the relevant anatomic variations? 

An extensive literature survey has provided a range of variability of cranial thickness 

and skin thickness on the head and face in adults.  

5th, 50th and 95th percentiles of skin thickness in adult humans are 0.03 mm, 0.84 mm 

and 1.86 mm respectively. Summary results in Table XXX are split for sex (female and 

male), age groups (20-29, 30-39, 40-49, 50-59, 60+ years old), and ethnicity 

(Caucasian, African-American, unknown/unspecified) sub-populations 

5th, 50th and 95th percentiles of skull thickness in adult humans were found to be 3.70 

mm, 6.43 mm and 10.80 mm respectively. Summary results in Table XXX are split for 

sub-populations of sex (female and male), age groups (20-29, 30-39, 40-49, 50-59, 

60+ years old), and ethnicity (African, African-American, Australian Aboriginal, 

Caucasian, Bedouin, Chinese, Japanese, unknown/unspecified). 

Variations in data gathering methods and results pertaining to variability in dielectric 

properties of tissues rendered this a futile search; a range of ±30% was used to test 

effects of this parameter instead, as well as the parameter of adult head size.  

5.1.3 What is the relationship between these anatomic parameters and 
SAR? 

At the ranges of normal variation, skin and skull thickness do not significantly affect 

SAR, however their inclusion in the model is vital for accurate SAR estimations.  

WHA SAR is predicted to increase with decreasing head size using this model. For the 

smallest viable head size modelled here, 90% the original size of the GH model, an 

11% increase in WHA SAR was observed. A 119% increase eye tissue SAR is observed 

at the next largest head size of 95%, though SAR in the eye is low relative to other 

tissues. Location and value of 1g and 10g peak spatial SAR vary with increased head 

size, with variations of up ±15% over the range tested here.  

Conductivity and permittivity of tissues in the head, varied to ±30% from the widely 

accepted values, are predicted by the Geometry Head model to affect SAR in 

individual tissues by up to about ±25%. Dielectric properties of the 6 tissue types in 

this model affect 1g, 10g and whole head average SAR by up to ±5%. Complex 
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relationships exist between dielectric properties of the tissues and location of 

maximum SAR and SAR distribution, which cannot be anticipated without modelling 

5.1.4 What do these results imply for the safety standards for RF 
exposure?  

Using today's high computing power and software capabilities, where computational 

estimation of SAR is as accurate as physical measurement, a more accurate model 

such as Geometry Head can be used to predict with higher granularity the SAR 

maxima and distributions in human heads, without resorting to simplified 

homogeneous models. This kind of parametric model can also serve to discern 

whether safety limits are too conservative.  

While it's much simpler today than 20 years ago to create highly representative 

models of any person's anatomy using imaging technology and scanning algorithms, 

the process is still costly and resource intensive. It also fails to provide information 

regarding effect of population-wide anatomic variability, with many studies 

indicating individual differences show as much variability within a population as 

when compared with other populations. Epidemiological testing as provided by GH 

may provide the ability to determine whether the current safety standards protect all 

populations and individuals.  

5.1.5 Given that existing models do not allow easy exploration of effect 
of anatomic parameters on SAR, can a new model be created 
without this limitation? 

This question arose as a result of attempting to answer the previous research 

questions using pre-existing models. The Geometry Head model was custom built to 

allow investigation into some of the research questions presented above, and has 

shown to be successful at providing answers. Factors that are known or have been a 

priori reasoned to affect SAR have been included in the model, and have been made 

parametric and easily adjustable. The model, created using a commercially available 

software package, is accessible upon request. A battery of anatomic variation tests as 

well as physical validation work have been used to verify the model's efficacy and 

accuracy.  
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5.2 Recommendations for future research 

The Geometry Head model is available for further research upon request.  

5.2.1 Further explorations with the model as it stands 

The Geometry Head model could benefit from some further testing of parameters, 

and perhaps some improvements. For example, efforts could be made to minimise 

the artefact in the model best described in Section 3.5 which causes unrealistically 

high SAR predictions at certain tissue variations.  

This model can also very easily be adapted for testing SAR at other non-ionising 

frequencies, or at the tail ends of anatomic variation distributions, by adjusting a 

single variable in the software. 

Further testing of how results of this model compare with existing ones could be 

done by editing the model variables to match those of existing heterogeneous 

models.  

GH can also be used for SAR testing of epidemiological population variations and the 

implications of these results for safety standards. Anatomic variation data of several 

tissue properties, provided in this thesis, can be used for performing sensitivity 

studies to determine what combinations of anatomic variations result in exposures 

above the safety standard recommendations. 

Another suggested use for this model is re-examining the scientific basis for current 

appropriateness of safety standards. Using this high accuracy model with low 

variability between measured and modelled results, it is possible to garner evidence 

for either raising or lowering exposure levels considered safe for all human 

populations. 

5.2.2 Augmenting the model 

Children's exposure to RF is currently of high public concern; augmenting GH for 

investigating relationships between SAR and children would be of value. Other 

tissues can be added to the model to test their contribution to SAR, for example fat 

and muscle layers between the skin and skull. Tissue layers can also be removed to 

simplify the model, if it is determined that their contribution to SAR results are 

sufficiently minor. 
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Appendix A – Purchasing information for materials used in this 
study 

 

 

Barnes Moulding & Casting Supplies 

40-42 Swan St, Richmond  VIC  3121 

Ph: (03) 9428 5511 

 

Moulding materials 

 Pinkysil fast-set silicon 

 Artist's clay 

 Sundry mixing materials (rubber gloves, stirrers, plastic cups) 

 

Skulls Unlimited International, Inc. 

10313 South Sunnylane 

Oklahoma City  OK  73160  USA 

http://www.skullsunlimited.com 

Ph: +1 405 794 9300 

 

Plastic skulls 

Human Male African / Negroid Skull 

 Catalogue #: WBC-110 (formerly WBC-154) 

 http://www.skullsunlimited.com/record_variant.php?id=3563 

5-year-old Human Caucasian Child Skull - No Alterations 

 Catalogue #: WBC-190 (formerly WBC-312) 

 http://www.skullsunlimited.com/record_variant.php?id=3805 
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Appendix B – Creating shell phantoms 

Two fibreglass shell phantoms were created at the ACRBR (Australian Centre for 

Radiofrequency Bioeffects Research) RF Laboratory at Swinburne University, 

Melbourne, Australia, and shipped to Ericsson Research Laboratories, Sweden for SAR 

testing. The following protocol was used for making both phantoms.  

1. 2 mm thick ‘sheets’ of artist’s clay were rolled using a pasta roller; clay was 

softened using a space heater, hair dryer or by kneading with hands 

2. For eyes, two clay balls were rolled by hand, of 50 mm and 30 mm diameter 

for adult and child heads respectively 

3. ‘eyes’ were measured using callipers and positioned in centre of orbital 

cavities 

4. orbital cavities were covered with a sheet of clay such that 'eyes' did not move 

freely (Figure 46) 

5. clay was used to block and build up nasal cavity 

6. a 'nose' was constructed to anatomically accurate proportions; dimensions 

were appropriate to the age and ethnicity of the skull 

 

Figure 46: Artist’s clay rolled into 2 mm thicknesses using a pasta roller was used for creating head casts 
for fibreglass shell phantoms 

7. entire structure was carefully covered in three layers of rolled clay; care was 

taken not to overlap edges of layers 
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8. four to six clay sheets were added onto cheeks to pad out the facial cavity on 

the maxima and mandible 

9. for the child skull, a heavier padding was applied around the zygomatic arch, 

mandibular shelf and cheek cavity, in accordance with children’s facial 

anatomy 

10. the face was used as a cast (positive image) in the construction of a latex 

mould (negative image): 

a. the 'face' was held nose-down a few centimetres above a board, while a 

'shelf' of artist's clay was built several centimetres around the it (see Figure 

47) 

b. the space between the shelf and the 'face' was filled with the fast-setting 

liquid silicon sold under the trade name Pinkysil ©; the 'face' was light 

enough to float a few centimetres in the silicon so did not need to be held 

in place 

 

Figure 47: (a) side and (b) top view of the process of making a negative impression of the 'face' using fast 
set liquid silicon and a 'shelf'' of artist's clay 

11. once the mould was set, the clay 'wall' and the 'face' were carefully removed 

12. fibreglass sheets were layered inside the mould and painted with epoxy resin 

(Figure 48) 

(b) (a) 
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Figure 48: (a) completed silicon mould and (b) fibreglass sheets pressed into a latex mould and painted 
with resin 

13. once dried, the resin and fibreglass shells were carefully removed from the 

latex mould (Figure 49) 

14. before testing, shells were reinforced with further fibreglass sheets and resin 

as they were found to leak; this increased the separation of the 'head' from the 

dipole  

 

Figure 49: (a) the flexible latex mould was carefully loosened from the fibreglass shell (b) underside view 
of a fibreglass shell 

15. each shell phantom was supported on a 700 * 700 * 20 mm wooden board, 

with a hole just large enough for the shell to fit through (Figure 50) cut using a 

jigsaw 

(b) (a) 

(a) (b) 
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Figure 50: shell phantoms inside board supports, (a) top view with skull inside phantom and (b) side view 

16. boards were used to hold phantoms in place during testing (Figure 51) 

 

Figure 51: phantom and wooden frame with DASY4 system 

(a) (b) 
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Appendix C – Tissue-simulating liquid recipes 

Hartsgrove liquids were used for most tissue-simulating liquids for the physical 

validation part of this project. Equations used to calculate requisite quantities of salt, 

sugar, and water, were provided by Telstra Research Laboratories, and are based on 

line of best fit derivations using extensive experimental data. Quantities used to 

create 'tissues' are also provided.   

‘Average head' and 'average brain' tissues were made according to the protocol 

provided below. All other tissues were created using Hartsgrove methods. Salt and 

sugar were purchased at a supermarket. All other ingredient information is as above.  

Table XXXIII: Recipes for ingredients used in heterogeneous models 

Skull A heterogeneous without eyes 
 Skin Fat Muscle 
Sugar (g) 298.38 320  222.67 

Salt (g) 2.06 0 
¤
 4.1 

Water (ml) 203.49 105.58 256.51 
HEC (g) 20 20 20 
Preservative (g) 1 1 1 
Dielectric values ε = 36.7, σ = 0.75 ε = 6.8, σ = 1.0 ε = 50.0, σ = 0.95 

¤
 the recipe called for a negative value of salt 

Skull A heterogeneous with eyes 
¥
 

 Skin Fat Muscle Eye 
Sugar (g) 298.38 482 1336.03 35.17 
Salt (g) 2.06 0 24.60 8.29 
Water (ml) 203.49 154.37 1593.03 145.09 
HEC (g) 20 30 120 20 
Preservative (g) 1 1 1 1 
Dielectric values ε = 36.7, σ = 0.75 ε = 23.6, σ = 0.51 ε = 52.6, σ = 0.98 ε = 42.8, σ = 1.25 

 

Skull B heterogeneous 
¥
 

 Skin Fat Muscle Eye 
Sugar (g) 298.38 482 1336.03 35.17 
Salt (g) 2.06 0 24.60 8.29 
Water (ml) 203.49 154.37 1593.03 145.09 
HEC (g) 20 30 120 20 
Preservative (g) 1 1 1 1 
Dielectric values ε = 36.7, σ = 0.75 ε = 17.5, σ = 0.38 ε = 52.6, σ = 0.98 ε = 42.8, σ = 1.24 

¥
 the same batches of tissue liquids were used for both of these models; dielectric properties of 'fat' 

tissue drifted significantly over time 
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Table XXXIV: Suggested recipes for achieving target dielectric parameters (adapted from Appendix C, P1528-2003:  IEEE Recommended Practice for Determining 
the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques) 
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Appendix D – DASY 4 uncertainty budget 

Table XXXV: DASY4 worst-case uncertainty budget for DASY4 assessed according to IEEE 1528. The budget 
is valid for the frequency range 300 MHz - 3 GHz and represents a worst-case analysis. For specific tests 
and configurations, the uncertainty could be considerable smaller (adapted from DASY4 User Manual) 
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Appendix E – Previous relevant publications 

Book chapters 

Sauren, M., McKenzie, R. J. McIntosh, R. L. (2008) 'Effects of skin dielectric properties on 

radiofrequency exposure compliance using an alternative human head model', Volume 29 

Studies in Applied Electromagnetics and Mechanics, Edited by: A. Krawczyk, R. Kubacki, S. 

Wiak and C. Lemos Antunes, June 2008, ISBN: 978-1-58603-860-1 

Journal papers and conference papers published as full papers 

Sauren, M., McKenzie, R. J. McIntosh, R. L., (2007) 'Effects of skin dielectric properties on 

radiofrequency exposure compliance using an alternative human head model', 2nd 

international  Conference on Electromagnetic Fields, Health And Environment, EHE'07 

September 10 – 12, 2007, Wroclaw, Polands 

Sauren, M., McKenzie, R. J. McIntosh, R. L. (2006), 'Determining the Influence of Adult Skin 

Thickness on Compliance with Radiofrequency Exposure Limits', World Congress on Medical 

Physics and  Biomedical Engineering 2006 (WC2006), Aug 27 - Sep 1, 2006, Seoul, Korea. 

Sauren, M., McKenzie, R. J., Cosic I. (2005) 'Determining The Influence Of Population Variation 

On Compliance With Radiofrequency Exposure Limits: Proposed Study', Conf Proc IEEE Eng 

Med Biol Soc. 2005;3(1):2962-2965 

Conference abstracts (peer-reviewed) 

Sauren, M., McKenzie, R. J. McIntosh, R. L., (2007) 'Effects of skin dielectric properties on 

radiofrequency exposure compliance using an alternative human head model', 2nd 

international  Conference on Electromagnetic Fields, Health And Environment, EHE'07, 

September 10 – 12, 2007, Wroclaw, Poland 

Sauren, M., McKenzie, R. J. McIntosh, R. L., (2007) 'Effects of Dielectric Properties on 

Radiofrequency Exposure Compliance Using an Alternative Human Head Model', Progress In 

Electromagnetics Research Symposium (PIERS), August 27–30, 2007, Prague, Czech Republic 

Industry conference presentations 

Sauren, M., McKenzie, R. J. McIntosh, R. L. (2008), 'Head size and its effect on SAR – tests using 

Geometry Man', 33rd Australasian Radiation Protection Society (ARPS) Conference, Canberra, 

Australia 
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Sauren, M., McKenzie, R. J. McIntosh, R. L. (2007), 'Validating Geometry Man: physical 

validation study of a human head model' 33rd Australasian Radiation Protection Society 

(ARPS) Conference, 21-24 Canberra, Australia 

Sauren, M., McKenzie, R. J. McIntosh, R. L. (2006), Determining The Influence Of Adult Skin 

Thickness On Compliance With Radiofrequency Exposure Limits', 32nd Australasian Radiation 

Protection Society (ARPS) Conference, 26-29 Nov, 2006 Sydney, Australia 

Sauren, M., McKenzie, R. J. McIntosh, R. L. (2006), 'Determining the influence of adult cranial 

thickness on compliance with radiofrequency exposure limits', Bioelectromagnetics Society 

28th Annual Meeting, Cancun, Mexico 

Sauren, M., McKenzie, R. J. McIntosh, R. L. (2005), 'Determining the influence of adult skin 

thickness on compliance with radiofrequency exposure limit',  31st Australasian Radiation 

Protection Society (ARPS) Conference, Sydney, Australia, Nov 26-29 2006. 

Sauren, M., McKenzie, R. J. McIntosh, R. L. (2005), 'Determining the influence of population 

variance on compliance with radiofrequency exposure', 30th Annual Conference of the 

Australian Radiation Protection Society and World Health Conference, Melbourne, Nov, 2005. 
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