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Abstract 

This study focuses primarily on the development of modeling approaches for the 

reconstruction of lung airway tree and arterial vessel geometry models which will assist 

practical clinical studies. Anatomically-precise geometric models of human airways and 

arterial vessels play a critical role in the analysis of air and blood flows in human bodies. The 

generic geometric modeling methods become invalid when the model consists of both 

trachea and bronchioles or very small vessels. This thesis presents a new region-based 

method to reconstruct the entire airway tree and carotid vessels from point clouds obtained 

from CT or MR images. A novel layer-by-layer searching algorithm has been developed to 

recognize the branches of the airway tree and arterial vessels from the entire point clouds.  

Instead of applying a uniform accuracy on all branches regardless of the number of available 

points, the surface patches on each branch are constructed adaptively based on the number of 

available elemental points, which leads to the elimination of distortions occurring at small 

bronchi  and vessels. 

Acute asthma is a serious disease of the respiratory system. To understand the difference 

in geometry and airflow patterns between acute asthma affected and recovered airway trees, a 

comparison study has been conducted in this research. Two computational models of the 

airway tree up to six generations deep were reconstructed from computed tomography (CT) 

scans from a single patient. The first scan was taken one day after an acute asthma episode 

and the second scan was taken thirty days later when the patient had recovered. The 

reconstructed models were used to investigate the effects of acute asthma on realistic airway 

geometry, airflow patterns, pressure drops, and the implications for targeted drug delivery. 

Comparisons in the geometry found that in general the right side of the airway is larger in 

diameter than the left side. The recovery of the airway was most significant in the severely 

asthma affected regions. Additionally the right airway branches exhibited greater dilation 

after recovery in comparison with the left airway especially from the fifth generation 

onwards. It was also found that bifurcation angles do not vary significantly between the two 

models, however small changes were observed which may be caused by the physical scans of 
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the patient being taken at different times. The inhalation effort to overcome airway resistance 

in the asthma affected model was twice as high as that for the recovered model. Local flow 

patterns showed that the changes in the airway had significant influence on flow patterns. 

This was especially true in the region where the airway narrowing was most severe.  
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Chapter 1 

Introduction 

1.1 Research Background 

Modeling of the geometry and airflow within the respiratory system is essential in 

assessing respiratory health. This modeling includes two fields, geometry reconstruction and 

numerical simulation.  

Three dimensional (3D) geometric reconstruction is a widely used technology in the 

aerospace, automotive and manufacturing industries. These models are mathematically 

expressed as 3D solid geometries in CAD/CAM (Compute Aided Design/Computer Aided 

Manufacturing) systems. In recent years the application of geometric modeling has been 

extended to the field of medical applications, such as quantification of tissue pathology, 

surgery simulation, and radiotherapy planning. Techniques in minimally invasive surgery, 

surgery performed remotely using robotic controls, and computer-assisted planning and 

rehearsal have also proved to be very effective. However acquisition of geometric models of 

object organs is a prerequisite for the application of the above techniques. With continuously 

improving technology, computers have been able to generate accurate 3-D images of entire 

body parts for surgery or treatment planning. For example, true 3-D images are produced by 

computer tomography (CT), magnetic resonance imaging (MRI), positron emission 

tomography (PET), and ultrasound imagery (USI). Currently many studies of the 

reconstruction of human organs have been performed based on the data obtained from the 

medical image types mentioned above. Some commercial software packages have recently 

become available in the market for the reconstruction of bronchi. However, there are many 

problems in the geometries generated by these packages. The models generated can not be 

utilized in CFD (Computational Fluid Dynamics) study directly. Extensive work must be 

done on the modification of these models to satisfy the CFD requirement, and that work is 
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extremely time-consuming. This consideration hinders the associated study of air flows in 

which large amount of tests should be run on different models.  

Because of the undeveloped state of geometric modeling and CFD techniques the early 

research conducted on the physics of aerosols and airflows in the human upper airways has 

relied mainly on experimental studies. Experimentation has been used to obtain either 

velocity profiles or deposition efficiency. Generally, experimental studies can be categorized 

into two major approaches, using human cadavers to replicate airway models to study 

deposition efficiency and idealized airway models (e.g. made of smooth plastic tubes) to 

study velocity profiles using pressure probes or dye tracing. Although many of these in-vitro 

experiments provided important information, limitations were unavoidable. From a velocity 

profile perspective, the method of inserting the probe into a model to measure the flow can 

often affect the flow downstream and around the measurement point. This is especially 

noticeable when the cross-section of the airway tube is small. Moreover, only limited sample 

readings are extracted due to the cost and time required for experimental setup. Thus, the 

amount of information provided by experimental technique is not only restricted, but the 

accuracy of the results may be difficult to control. The more advanced method of using laser 

Doppler anemometry has been applied recently. This has resulted in improved accuracy for 

velocity profiles along occluded tubes without influencing the flow pattern. However, a 

disadvantage of this method remains. Some crucial flow velocity information, for example 

for the boundary layer region (near the wall) is extremely difficult to capture although the 

boundary layer flow is one of the major influences on particle deposition on the wall of the 

model. In terms of measuring deposition efficiency, there are two major approaches. One of 

the methods involves injecting a range of fluorescent polystyrene latex particles into a hollow 

silicone rubber cast of human airways, and then the cast is cut into segments. Fluorescent 

material in the particles deposited in the cast is extracted using ethyl acetate. The resultant 

solution is then filtered using a nylon membrane and the fluorescence content of the filtered 

solution is measured using a fluorescence spectrometer. The deposition fraction (i.e. 

efficiency) in each airway segment is calculated from this measurement. (Zhou and Cheng, 

2005) Another method is to inject ferric oxide particles tagged with short-lived radioisotopes, 
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so that deposition activities within the cast can be measured in a scintillation detector system. 

(Schlesinger et al., 1977) Similarly, these experimental techniques require expensive 

equipment and extensive setup time. The major disadvantage of this type of approach is that 

the casts of the airway are replicated from a cadaver in which the shape and the angle of 

bifurcation of the airway are very likely to be distorted after the airway is taken out from a 

cadaver, compared to those of living human subjects. Loss of geometric detail may also 

occur during the replication process. Another limitation was declared by Schlesinger et al. 

(1977) where the large number of bronchi within the cast and limitations imposed by use of a 

short-lived isotope tag made a complete investigation of deposition within all branches of the 

cast impractical. Measurements are, therefore, made within a selected sample of bronchi. 

Currently, the continuously enhancing capacity of computers and commercially available 

software packages help increasing numbers of scientists to contribute to this challenging 

area. CFD has been seen as an excellent technique for studying flow and particle behaviour 

within airways. One obvious advantage is the lower cost than for experimental methods. 

CFD can also incorporate more complicated flow and particle phenomena in a more complex 

airway model than with theoretical models, where simple, idealised models are often used. 

There have been many numerical studies related to flow profile, deposition efficiency and 

aerosol deposition patterns, where the close interactions between these three aspects have 

been researched. Another advantage is that CFD can provide clear insight into the 

characteristics of air flows and aerosol deposition which, in turn, may lead to better drug 

delivery techniques, better treatment and important information for clinical practitioners in 

assessing the health risks within the human airways associated with inhaled particles. From a 

research perspective, CFD can readily provide stable, high accuracy results in all aspects, 

which can be compared and validated with available experimental and theoretical results. 

However, to the best of the author’s knowledge there have been very few studies that 

compared the inhalation effort and air flow patterns between a realistic acute asthma model 

and the following recovered airway model (i.e. based on CT scan). 
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1.2 Motivations 

Asthma is a chronic inflammatory disorder of the airways affecting mainly the medium-

sized and small bronchi (Travis et al. 2002) characterized by a sudden or prolonged onset of 

airway narrowing. Long term effects of the disease can be characterized by variable degrees 

of tissue and structural remodeling in the airways that lead to a progressive loss of lung 

function (Pascual and Peters 2005; Vignola et al. 2000). During an acute asthma episode, the 

combination of bronchospasm, mucus plugging, and mucosal edema leads to increased 

airway resistance as the diameters of the airways are reduced. An increase in the inhalation 

effort is therefore required to obtain similar tidal volumes to those in unconstricted airways, 

which then leads to respiratory muscle fatigue. The increase in airway resistance also causes 

a lack of uniformity in ventilation throughout the lung causing hypoxemia from ventilation-

perfusion mismatching. In addition the changes in the geometry and inhalation efforts will 

have a significant effect on drug delivery devices such as inhalers that are designed to deliver 

pharmacological agents to affected areas within the tracheobronchial tree. Therefore, the 

comparison of geometry and air flow pattern between asthma affected and following 

recovery lung airways is necessary to provide useful information to clinical researchers in 

assessing the pathogenic potential and may lead to innovation in inhalation therapies. 

The availability of a 3D geometric model of real human airway trees is the prerequisite for 

performing comparative research about geometry and airflow pattern between asthma 

affected and following recovered human airway trees. Three dimensional (3D) geometric 

modeling is a well established technology used in aerospace, automotive and manufacturing 

industry. Many studies concerning the reconstruction of human organs have been performed 

based on the data obtained from CT or MR images, and some commercial software programs 

are available in the global market for research and clinical applications. For example, 

Pulmonary Workstation 2 (VIDA Diagnostic Inc and Materialise Inc) and Mimics 

(Materialise Group) can anatomically segment human airway trees from CT scans. However 

due to their complex geometric nature, many flaws emerge in the generated geometries when 

using the published algorithms or the commercial packages currently available in the market. 
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Extensive work is required to covert the geometries into workable numerical models. 

Consequently development of a new algorithm to generate human lung airway trees is very 

useful. Because the arterial vessels and airway tree are of similar geometric nature, tubular 

and tree-like, the geometry reconstruction algorithm developed for lung airway trees is also 

able to be used for arterial vessels.  

There have been numerous studies of the air flow and deposition of aerosols in the 

respiratory system. Much work has been done to investigate the factors that affect the flow 

pattern and deposition of aerosols. The flow rate and secondary flow pattern are quite 

sensitive to the tube diameter and bifurcation configuration (Liu et. al, 2002, 2003). Particle 

properties, breathing conditions and lung geometry are known to be the main factors 

influencing the deposition of aerosols (Martonen et al., 1994; Balashazy et al., 1999; Lee et 

al., 2000; Comer et al., 2001; Darquenne, 2001; Liu et al., 2002; Hegedus et al., 2004; and 

Miguel et al., 2004). Different particle properties and breathing conditions have been studied 

extensively even though they did not use anatomically realistic airways from living humans 

to study aerosol deposition. These particle transport studies have provided additional detailed 

information of particle behavior in the lung airways and have shown that this behavior is 

inherently linked to the fluid flow patterns within the airways.  Although most of these 

experimental and numerical works on flow in human airways were based on simplified, 

idealised airway models extracted from the early morphological studies completed by Weibel 

(1962) and Horsfield et al. (1971), there have been several attempts to explore the flow 

numerically in realistic airways which were based on computerized tomography (CT) 

scanner imaging (Perzl et al. 1996; Vial et al. 2005). Thus, computational fluid dynamic 

(CFD) techniques combined with CT reconstructed airway models have been found useful in 

simulating flow phenomena. However, most of previous studies considered only a straight 

smooth simplified airway or healthy airway, there have been few attempts to investigate the 

air flow pattern in realistic asthma affected airways. Therefore, this research was conducted 

to develop geometry modeling and CFD techniques to be used to study the differences of 

geometry and flow pattern between the acute asthma and following recovery lung airways. 
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1.3 Literature Review 

1.3.1 Airway tree geometry modeling 

The respiratory system is divided into the upper and lower airways, the upper extending 

from the nasal/oral cavity to the larynx, the lower from the larynx to the respiratory 

bronchioli and alveoli. The lower airways consist of the trachea and the main bronchi. The 

structure of human airways can be approximated to a network of repeatedly bifurcating tubes 

(Weibel, 1963). The position of a branch in relation to the stem branch can be described by 

Weibel generations which have been employed widely among researchers. 

There are some features of the airway trees which must be noted during model 

construction and simulation. The trachea is a cylindrical tube typically 10 to 12 cm long, 

approximately half of which is extrathoracic and half intrathoracic. According to Weibel 

(1963) measurements, the diameter of the trachea is approximately 1.5 to 1.8 centimetres. 

The trachea wall was composed of 16 to 20 incomplete (C-shaped) rings of cartilage with 

fibrous and muscular tissue. The trachea divides into the two primary bronchi at the level of 

the fifth thoracic vertebra. There is an internal cartilaginous ridge at the point of bifurcation, 

named the carina. 

The right bronchus is a shorter, wider tube than the left and the angle of branching from 

the trachea is only 20-30˚. Weibel (1963) measured the main bronchus to be 0.9 to 1.5 cm in 

diameter and 4 to 6 cm in length. Consequently any foreign bodies which enter the trachea 

are more likely to be inhaled into the right main bronchus. This may also influence the 

distribution of aerosol delivery to the lungs. 

The branching pattern resembles that of a tree, with large branches giving rise to 

successively smaller branches in terms of length and diameter. This pattern of division varies 

and is probably genetically determined (Shannon and Deterding, 1997). Figure 1.1 shows  
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                         Figure 1.1 Branching generation of the airway (Cefalu, 2003) 

how the lower airways are named and classified into using Weibel generations. Numbering 

begins at the stem branch and continues towards the peripheral branches. The trachea has the 

lowest generation number, and the next branch division, the main bronchus is one generation 

higher than the parent branch, trachea. This also applies to asymmetric trees in which 

terminal branches are classified in a range of generations. Branches which have different 

diameters and lengths can therefore be grouped together for simple classification. 

The early airway tree geometry model was simplified and idealized (Weibel 1963). Weibel 

developed his airway tree model in 1963 based on measurements of the major airway 

branches. The airway geometry consisted of a symmetric in-plane double bifurcation and 

each airway was replaced by a round smooth pipe. Although the first four generations and 

10% of the rest of the generations were measured precisely, because of the difficulty of 

measuring the small bronchioles, regular dichotomy and a mean branch length to diameter 

ratio were assumed to generate the remainder of the airway tree model. Therefore Weibel’s 

model is of regular dichotomy and fixed length to diameter ratio (2005) used this model 

extensively in their studies of air-particle flow. The model reconstructed by Zhang et al based 

on Weibel symmetric model A’s measurements is shown in Figure 1.2. 
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               Figure 1.2 Symmetric airway model reconstructed by Zhang et al. (2005)  

 

Horsfield and Cumming (1968) performed detailed measurements on a resin cast of the 

human lungs. 8,298 branches were measured from the trachea down to lobular branches. 

Based on their previous work, Horsfield et al. (1971) derived an asymmetric conducting 

airway model. The asymmetric model was based on the concept of regular asymmetry at 

different levels in the airway tree. Similar to Weibel (1963)’s work, they measured not only 

the diameters and lengths of branches, but they also obtained the flow distribution in terms of 

the percentage of tracheal flow, which later provided very useful reference in in comparison 

with other measurements of human airways. Erthruggen et al. (2005) employed Horsfield’s 

Delta model in constructing their computational model as well as implementing the flow 

distributions measured by Horsfield et al. (1971) in their numerical simulation. The 

numerical model constructed by Erthruggen et al. (2005) based on Horsfield et al. (1971)’s 

measurements is shown in Figure 1.3 
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           Figure 1.3 Airway model reconstructed by Erthruggen et al. (2005)  

 

Both of above models have in-plane configuration which means that the second bifurcation 

units have the same symmetry planes as the first one. There are a few advantages of using a 

double bifurcation. One of them is running time. Based on the symmetry, only half of the 

geometry needs to be modeled. However the simplified model removed some useful features 

which have significant influence in airflow and particle deposition. For example Zhang & 

Finlay (2005) proved that trachea with cartilaginous rings would enhance particle deposition 

in the trachea for all inhalation rates and particle sizes when compared with smooth-walled 

trachea.  

With the development of computer technology and medical imaging, the airway geometry 

reconstructions based on CT are becoming common place. Although all of the relevant 3-D 

measurements for objects of interest are available from medical imaging, it remains a 

difficult task to derive information about the characteristic properties (structures) of objects. 

Firstly, since direct interpretation and exploitation of large amounts of raw data is difficult, it 

is often convenient to segment image arrays into low-level entities that can be compared to 

higher-level entities derived from known representations of objects. For example, displaying 

2-D cross-sectional images sequentially is no longer sufficient to establish a reliable 
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diagnosis or to prepare a critical therapy procedure. Moreover, the complexity of the 

anatomical structure can make their identification difficult, and the use of multi-modal 

complementary images requires accurate spatial registration. Therefore, segmentation, whose 

goal is to partition the raw image data into regions corresponding to meaningful anatomic 

structures, is a fundamental problem in medical imaging applications. 

There are numerous algorithms developed to reconstruct the airway geometry from CT 

scans. These algorithms can be categorized into three types: (1) region-growing-based 

methods (Assimakopoulos et. al 1986, Aykac et. al 2003, Ballard et. al 1982 and Bashein 

1994), (2) morphology-based methods (Bilgen 2000, Bloch 1993 and Boyden 1955), (3) 

fuzzy logic-based methods (Carraghan et, al 1990, Carvalho et.al 1999 and Wonkyu et. al 

1998).  3D Region-growing-based methods simply use voxel connectivity and a threshold to 

identify regions, usually through 26-connectivity. These algorithms have been used 

extensively because of their simplicity, speed and flexibility. Their flexibility in terms of 

adding flexible rules based on the structural properties of the object has made them efficient 

segmentation methods. Morphology-based algorithms use grayscale morphological 

reconstruction to identify candidate airways on 2-D CT slices. After this initial segmentation, 

a bounded space dilation is applied to labelling connected airways and to reconstruct the 3-D 

airway tree, after which tree branch segments and tree branch points can be identified. Fuzzy-

logic methods identify intrathoracic airway trees in two stages. In the first stage, airways are 

identified in individual 2-D slices of a 3-D volumetric CT data set. In the second stage, 

airway trees are constructed by context sensitive stacking of the segmented airways. Fuzzy 

logic plays the major role in segmenting airways in the 2-D image slices by utilizing 

anatomical information about airway morphology and vessel–airway relationships. 

Although the methods mentioned above can be used in many medical applications, such as 

visualization, measurement and surgery planning, the generated model can not be used 

directly in post numerical simulation. These models are still stay in the triangular mesh stage.        
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1.3.2 Experimental studies 

The initial research into velocity profiles and flow distribution within human upper 

airways concentrated on experimental approaches. Schroter & Sudlow (1969) observed how 

secondary flows formed during inspiration and expiration in a single bifurcation glass tube 

model using dye tracing methods with either flat or parabolic inlet profiles. The of secondary 

flow profile depended on the direction of flow along the tube. Double vortices were formed 

during inspiration in the daughter tubes whereas quadruple vortices were created during 

expiration in the parent tube. Depending upon the curvature of the junction, flow separation 

with sluggish reversed flow could be observed in daughter tubes during inspiration. Axial 

velocity profiles were highly asymmetric. Peak velocities were biased to the inner walls. 

During expiration, velocity profiles developed an axial peak. Chang & El Masry (1982) 

measured detailed steady inspiratory velocity profiles in a scaled plastic tube model of the 

human tracheobronchial airways using anemometer probes, in which the model had 12 pre-

drilled measurement stations and the dimensions of their model were consistent with the lung 

geometry reported by Horsfield et al. (1971). Menon et al. (1984) used the same method and 

model used by Chang and El Masry (1982) and derived detailed velocity profiles obtained 

during inspiration and expiration.  The results of both studies showed a high degree of 

asymmetry in all branches, with peak velocities near the inner wall of the bifurcation. 

Overall, the velocity profiles were more sensitive to airway geometry than to flow rate. 

However, at low oscillatory frequencies (e.g. 0.25 Hz) of inlet flow, the velocity profiles 

attained at peak flow rate resembled the profiles seen under steady flow conditions at the 

corresponding Reynolds number. As the frequency increased (e.g. 4 Hz) the velocity profiles 

throughout most branches tended to flatten. Details for high frequency will not however be 

included here because high oscillatory frequency flow is beyond the scope of this research. 

The research described demonstrates that velocity profiles measured in different 

experiments can be comparable when correct Reynolds number, oscillatory frequency and 

geometrical details are used. This observation will be a good indicator in verifying the 

present numerical study. 
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1.3.3 Numerical studies 

In past numerical studies, a smooth-walled (and hence simplified) airway model was 

mostly employed with variation only in geometry and method of dichotomy. Regular 

dichotomy (symmetry) airway models have been extensively studied by Comer et al. (2000a 

& b) and Zhang et al. (2002a & b). Irregular dichotomous airway models have also been 

investigated by Zhang et al. (1997) and Balásházy & Hofmann (1993). All of these studies 

showed that the regional deposition efficiency (DE) can be expressed as a logistic function of 

the inlet Stokes (St) number for the studied bifurcation geometries. 

In terms of validating CFD results, Zhang and Kleinstreuer (2002) and Comer et al. (2000a 

& b) have extensively compared their numerical results with experimental results for velocity 

profile from Zhao & Lieber (1994). They demonstrated consistent results under steady flow 

conditions within a Stokes number range from 0.01-0.12. They also explained how particle 

trajectory was affected by airflow vortices before and after bifurcation using the G3-G5 

model. Balásházy and Hofmann (1993) and Zhang et al. (1997) compared the DE for 

different bifurcation angles using the G3-G6 symmetric model. Their results indicated that 

DE increased with larger bifurcation angles. Furthermore, Zhang et al. (1997) investigated 

DE at different Reynolds (Re) numbers and showed that DE initially increased with 

Reynolds number, but became almost independent of Re when St > 0.1. The studies 

described above used idealised models where the model geometry was hardly comparable to 

real human airway structures. From a realistic human airway geometry perspective, Vial et 

al. (2005) reconstructed the tracheobronchial airway from CT scan data and simulated 

airflow. Their results were examined in terms of the lobar flow distributions against Katz and 

Martonen (1996) and Corieri (1994)’s results and geometrical details against Weibel (1963)’s 

dichotomous model. Ertbruggen et al. (2005) used smooth-walled models based on the 

morphometrical data of Horsfield et al. (1971), in which Horsfield and his colleagues 

measured all structure down to generation 6 of a resin cast of a normal human bronchial tree. 

They compared their numerical results with experimental results with Kim et al. (1996) in 

terms of regional deposition efficiency and velocity profiles with Calay et al. (2002)’s 

measurements. Since the experiments against which they compared had either respiratory or 
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geometrical differences, some rounding errors were expected, but basic characteristics of 

flow and particle behavior were still reflected in their results. 

Zhang et al. (2005) proved that the larynx effect causes turbulent fluctuations at medium 

and high inspiratory flow rates (30 and 60 L/min) because of the enhancement of flow 

instabilities immediately upstream of the flow dividers. Moreover, the effects of turbulent 

fluctuations on micro-particle deposition are relatively important in the human upper 

airways. These phenomena therefore are considered in the present study. 

Asgharian and Price (2006) studied the influence of airflow distribution among bronchi on 

particle deposition and found that the airflow rate entering each major bronchus was similar 

for uniform and non-uniform lung expansions and concluded that the assumption of uniform 

air expansion and contraction was sufficient for the prediction of regional and total 

deposition of particles in the lung. However, they also indicated that accurate predictions of 

local and site-specific deposition of particles required more detailed models of lung 

ventilation including accounting for non-uniform lobar expansion because of the pressure 

variation in the pleural cavity. In the current research, the assumption of uniform air 

expansion and contraction was taken into account, but the latter issue was not considered in 

this study due to its complex modeling requirement. 

1.4 Research Objectives 

To broaden the current published knowledge of lung airway tree geometry modeling and 

its CFD simulation, the main objectives of this research are as follows. 

a. To develop a new algorithm for the reconstruction of tubular organs. 

b. To develop a new algorithm to generate a human lung airway tree and arterial 

vessel model. 

c. To compare the difference of geometries and inhalation efforts between a 

bronchoconstricted and a recovered airway tree associated with acute asthma. 
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d. To compare airflow patterns between a bronchoconstricted and a recovered airway 

tree associated with acute asthma. 

1.5 Thesis Structure 

Chapter 1 provides an in-depth review of the background for this research. The rationale 

for conducting this research, the scope and outlines of the thesis are also explained in this 

chapter. Some previous studies which relate closely to this research are considered. This 

study is divided in two parts, lung air way geometry reconstruction and numerical air flow 

simulation. Lung air way geometry reconstruction consists of four stages: medical imaging 

acquisition, image segmentation, cloud points triangulation, and NURBS patch fitting.  There 

are three main aspects of air flow simulation studies of human airways: experimental, 

theoretical and numerical approaches. The methods used in geometry reconstruction and air 

flow simulation, their differences, advantage and disadvantages of the methods are discussed 

and compared. This literature review provides the main frame of reference for this research. 

Since the main focus of this research is the use of realistic airways in the study of air 

flows, the modeling of airway geometry becomes an important aspect. Therefore, in chapter 

2 the general medical geometry modeling processing steps are reviewed and two CT/MRI 

image based geometry reconstruction approaches, the reverse engineering approach and 

STL-triangulated model converting approach, are proposed and tested in human lung airway 

geometry model generation.   

In chapter 3, a new region-based method is presented to reconstruct the entire airway tree 

and carotid vessels from point clouds obtained from CT images. A novel layer-by-layer 

searching algorithm is developed to recognize the branches of the airway tree and arterial 

vessels from the entire point clouds.  Instead of applying a uniform accuracy on all branches 

regardless of the number of available points, the surface patches on each branch are 

constructed adaptively based on the number of available elemental points, which leads to the 

elimination of distortions occurring at small bronchi and vessels. 
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Chapter 4 provides comparisons of airway geometry and inhalation effort in a 

bronchoconstricted and recovered airway tree associated with acute asthma. Reconstructed 

models of an airway tree taken a day after the initial onset of an acute exacerbation of asthma 

and following recovery from the same patient thirty days later were developed. A 

computational model was created for Computational Fluid Dynamics (CFD) analysis which 

provides details of the geometry and airflow properties including the pressure drop. 

In Chapter 5, the airflow patterns, the pressure distribution, and the implications they have 

for targeted drug delivery are compared between bronchoconstricted and recovered airway 

trees associated with acute asthma. Local flow patterns are also discussed in depth in this 

chapter.  

The final chapter summarizes the findings and presents conclusionsconcerning the 

significance of the outcomes. 
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Chapter 2 

Medical Geometry Modeling  

2.1 Introduction 

Three dimensional (3-D) geometric modeling is a widely used technology in the 

aerospace, automotive and manufacturing industries. Examples of its application include the 

geometric design of the vehicle bodies and the complex shapes of turbine blades in aircraft 

engines.  These models are mathematically expressed as 3-D solid geometries in CAD/CAM 

(Compute Aided Design/Computer Aided Manufacturing) systems. Recently the application 

of geometry modeling has been extended to scientific areas, including biomedical and 

bioengineering for constructing geometric models of human organs in order to facilitate 

diagnosis and treatment of patients (Sun 2004, Hollister 2000). For example; a geometric 

model of a tumour in a patient’s body helps the doctor prepare before commencement of 

surgery; a knee model provides insights into the mechanisms of articular joint contact; a 

geometric model of the vessels helps simulate dynamic blood flow inside the human body. 

These are examples of benefits largely made possible by developments in imaging 

technologies and in reverse engineering techniques supported equally by hardware and 

software technology advancements. Efforts to model human body parts in a CAD based 

virtual environment are referred to as Bio-CAD modeling. Most Bio-CAD modeling is image 

based and involves the three basic steps of 1) Image acquisition 2) Image segmentation 3) 

Three dimensional geometry model reconstruction. 

2.2 Medical Imaging 

Medical imaging is a relatively new discipline, emerging only in the last century (consider 

for comparison that some aspects of medicine have been in use since ancient times, and the 

more modern forms of evidence-based practice began to emerge — along with the scientific 
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method — in the 1500’s). At present, many medical image acquisition modalities are 

available, including CT(Computed Tomography), MRI(Magnetic Resonance Imaging), 

fluoroscopy, ultrasound, positron emission tomography (PET), projection radiography, 

photo-acoustic imaging, etc. Each modality has advantages and limitations and is used in 

different applications (Hollister et. al 2000). In the clinical context, medical imaging is 

typically equated with radiology; however, medical imaging encompasses the sub-disciplines 

of medical physics, biomedical engineering, and radiography (image acquisition).  

Medical imaging began in 1895 with Roentgen’s discovery of X-rays. Commonly referred 

to as ‘plain film,’ an X-ray image is created by passing electromagnetic radiation through the 

object of interest. Different tissues attenuate the rays to different degrees, creating a high 

contrast image. The attenuation depends on the thickness, density, and atomic number of the 

tissue. The resultant image is a grayscale 2-D projection of a 3-D object (which can result in 

difficulties in distinguishing between superimposed tissues with similar attributes). 

Computed tomography (CT) is a combination of mechanical and computer engineering 

which was first developed in 1972 by Sir Godfrey Hounsfield. Figure 2.1 (Kaiser Santa 

Rosa.org) shows a CT scanner. During a typical CT procedure, the patient is placed on a 

table. The table then moves the patient through the gantry (a donut-shaped device), which 

houses an X-ray tube and detector array. For each image acquired, the X-ray tube rotates 

around the patient and the X-rays pass through the patient to the detector array, and 

thousands of X-ray measurements are acquired. The computer then processes this 

information and displays the corresponding images on a computer screen. This imaging 

technique avoids superimposition of organs or tissues which might occur during other types 

of X-ray tomographic studies. The CT examination creates images analogous to a single slice 

of bread from a whole loaf or a slice from an orange. Hence, the word ‘slice’ is often used to 

describe a view of patient anatomy. Each CT image consists of a large number of small 

picture elements (pixels). Each pixel is assigned a numerical value (gray scale), based on the 

degree to which the tissue corresponding to that pixel attenuates the X-Ray beam. Figure 2.2 

(Kaiser Santa Rosa.org) illustrate the concept of slices. 
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Figure 2.1 Computed tomography (CT) scanner                 Figure 2.2 CT Slice Concepts 

             (http://Kaiser Santa Rosa.org)                                    (http://Kaiser Santa Rosa.org)       
     
Magnetic resonance imaging (MRI) essentially provides a distribution map of hydrogen 

nuclei (found in water). A large magnet (typically 1.5 Tesla, which is approximately 50,000 

times greater than the Earth’s magnetic field) is used to align dipole magnetic moments of 

protons within the object of interest. An electro-magnetic radio frequency (RF) pulse is then 

applied to induce a 90◦ offset (spin echo). Following the pulse, the magnetic moments of the 

protons return to equilibrium or relaxation. There are two relaxation times of interest: 

longitudinal relaxation (T1) is the time for approximately 63% of protons to realign with the 

magnetic field along the longitudinal axis; transverse relaxation (T2) is the time for 

approximately 63% of protons to process out of phase. Different tissues exhibit different T1 

and T2 relaxation times, which result in high-contrast images (Wright 1997). MR images are 

useful for creating images of soft tissue in the brain, spine, and joints. However, there are 

restrictions for patients with in vivo ferromagnetic objects (such as orthopaedic hardware, 

pacemakers, aneurysm clips, cochlear implants, etc). 

2.3 Image Segmentation 

2.3.1 Introduction 

The data obtained from CT scans are a series of cross sectional images which contain 

different gray scale information with respect to different organs or tissues, and these images 
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are difficult to interpret by a lay person. Fortunately, the development of image segmentation 

techniques makes the extraction of useful information from these images more available.   

2D segmentation is the extraction of the geometry of a CT scan data set (Mankovich et. al 

1990). Each slice is processed independently leading to the detection of the inner and outer 

contours of the living tissue. The contours are stacked in 3D and used as reference to create a 

solid model usually through skinning operations. 3D segmentation is the partition of pixels in 

a 2-D image into connected regions that possess a meaningful correspondence to object 

surfaces in a 3-D scene represented by the image. 3D segmentation (Viceconti  et. al 1999) of 

the CT data set is able to identify shapes within the CT data set, and extract a ‘tiled surface’ 

from them. A tiled surface is a discrete representation made of connected polygons (usually 

triangles). The most popular algorithm is the marching cube algorithm (Lorenson and Cline 

1987). In its original formulation the marching cube method produces tiled surfaces with 

topological inconsistencies (such as missing triangles) and usually a large number of triangle 

elements. This method decomposes complex geometries into ‘finite elements’ and and the 

quality of approximations to the behaviour of the system depends on the number of these 

elements and the order of the approximation over each element. In the visualization process, 

each triangle is treated as a separated polygonal entity and the computational requirements 

increase exponentially with the number of triangles. 

Many studies have been performed in the image segmentation area and several general-

purpose algorithms and techniques have been developed for image segmentation.  In general, 

image segmentation approaches can be classified into two broad classes: (i) structural and (ii) 

stochastic approaches. Structural approaches are data-driven processing which do not need 

any prior knowledge of the objects. Watershed, edge-based schemes and region-based 

schemes belong to structural approaches. Stochastic approaches are often referred to as 

model-based approaches where high level knowledge of objects is represented by statistical 

probability distributions, i.e., as the image models. 
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2.3.2 Locally constrained watershed algorithm   

The local constrained watershed algorithm is a newly developed watershed-based 

algorithm which was proposed by Richard (Beare. 2006). The algorithm modified the 

distance function of the standard watershed algorithm. It imposes constraints on region 

boundaries by the introduction of a structuring element.  This is different to the usual 

approach of adding a regularizing term to an energy function since the border constraints are 

implicit in the definition of a path.  Also, by incorporation of the structuring element a 

constrained catchment basin is defined. This definition guarantees that the resulting 

catchment basins are disjointed, opened by the structuring elements, and that the watershed 

lines generally correspond to image features. The details are as follows: 

Suppose an input image is denoted by INDf →: . And S  denotes the structuring 

element. The notation xS
denotes the structuring element with origin x . Then the path of 

structuring elements will be constructed which is denoted by π
)

 and is called a 

pathMinkowski  or pathCovered . The origins of the structuring elements form a 

path
),....,( 0 lpp=π
. The Minikowski path π

)
 is: 

 
),....,( 0 plp SS=π

)

                                                                                          (2.1)                     

This notation means that π
)

 is a sequence of translation of a structuring element with 

origins 
),....,( 0 lpp

. Hence, the Minkowski distance between p and q is given by: 

[ ]

π

π

π
f

qp

f qp ∏=∏
→∈

min),(

.                                                                                     (2.2) 

 Here, denoted by [ ]qp →  is the collection of all paths of between p  and q . The 

Minkowski cost between  p  and q  is the minimum cost of all Minkowski paths between  p  

and q . 

The constrained watershed of  f   is therefore  



 

 21 

U
Ii

iCCBDfWshed
∈

= \)(

                                                                                    (2.3) 

SVCCB ii ⊕







=

≥

U
0

)(
δ

δ
                                                                                         (2.4) 

The iV
 denotes the constrained partial catchment basin for regional minimum iM

.  δ   is a 

distance bigger than zero. 

2.3.3 Applying the locally constrained watershed segmentation 

algorithm on the carotid artery  

The segmentation method described previously was applied to five sets of human carotid 

artery CT scan images. The algorithm was implemented by using the Insight ToolKit (ITK. 

Org) library. The Insight Toolkit (ITK) is an open-source software system designed primarily 

for medical image segmentation and registration (Yoo et.al 2002, Ibanez et. al 2007). ITK is 

a set of cross-platform type-templated C++ class modules; supported operating systems 

include Windows, Unix, and MacOSX. The toolkit is organised in data-flow architecture: 

process objects (filters) consume data objects (images). ITK was originally released in 1999 

as a joint project coordinated by the US National Library of Medicine (NLM) of the National 

Institutes of Health (NIH). At the time of writing the toolkit is still supported, and has active 

user and developer mailing lists, Version 3.2.0 released in March 2007 was used for this 

evaluation. ITK supports the reading and writing of n-dimensional images (2-D, 3-D, etc), 

various noise suppression algorithms (including Gaussian, median, gradient anisotropic 

diffusion, curvature flow, bilateral filtering, and others), a wide number of intensity 

transformations and mappings, various image registration algorithms, and a range of image 

segmentation and classification methods. As ITK does not support any volume rendering or 

illustration methods, the Visualization ToolKit (VTK. Org) was used for the model 

visualisation. 
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        Figure 2.3 Carotid artery segmentation results (displayed with triangle mesh)  

 

The results are shown in Figure 2.3. “L” and “R” indicate the left and right carotid artery. 

In most cases the carotid artery could be successfully segmented by using the locally 

constrained watershed algorithm. However errors occurred in two cases due to noise. Figure 

2.3(h) shows an over segmented result in which it can be seen that the right branch of carotid 

artery is broken to two sections.  It can be seen from Figure 2.3. (i) that the left branch of the 

carotid artery should be divided into two branches at its end area, but a lump like shape is 

generated because the two branches are combined. 
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2.3.4 Pulmonary workstation 2      

The geometry of the carotid artery is much simpler than that of a lung airway. The carotid 

artery has no more than two generation bifurcations. In most cases the carotid artery has only 

one bifurcation. Based on above segmentation results, it is reasonable to draw a conclusion 

that the locally constrained watershed   algorithm is not suitable to segment the lung airway 

which has more bifurcations;with branches that are more fine and close to each other. 

Fortunately some professional commercial segmentation software packages are available on 

the market. Pulmonary Workstation 2 (VIDA Diagnostic Inc.) is one of those commercial 

software packages. 

Pulmonary Workstation 2 is a leader in commercial software packages for pulmonary 

image analysis and therapy guidance. It offers fully automated and reliable identification of 

airway trees from CT volumes. Consequently the need for human operators to manually 

optimize segmentation parameters has been eliminated. This software can work without any 

changes on different types of scans, for example, low dose and regular dose, diseased 

subjects and normal subjects, and the run time does not exceed a few minutes per volume.  

Pulmonary Workstation 2 implements the segmentation by using a new algorithm 

proposed by Juerg which is based on fuzzy connectivity (Tschirren et. al, 2004). During the 

execution of a traditional fuzzy connectivity algorithm, two regions – foreground and 

background – are competing against each other. It makes this method able to overcome lack 

of image contrast between the airway and the airway walls and the effects of noise. The 

disadvantage is its relatively high computational complexity. The new fuzzy connectivity 

algorithm reduces computing time by splitting the segmentation space into a number of 

smaller subspaces and by keeping the search space as tight as possible around the airway 

segments. The desire to keep the segmentation within a small region, together with the need 

to detect possible leaks at their root, led to the idea of using a relatively small adaptive region 

of interest (ROI) which follows the airway tree branches as they are segmented. The ROI has 

a cylindrical shape and adapts its geometric dimensions, its orientation, and position to the 

predicted size, orientation, and position of the airway branch to be segmented. The notion of 

ROI brings two main advantages. One is that it leads to shorter segmentation time as the 
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segmentation process is kept close to the airway segments. Another is that segmentation 

leaks can be detected and dealt with early. This concept is illustrated by Figure 2.4 (Tschirren 

et. al 2004). In this figure Adaptive cylindrical regions of interest (light gray) follow airway 

tree branches as the segmentation proceeds. Segmentation is performed in a small region 

only, helping in the early detection of leaks as segmentation proceeds. Using a cylindrically 

shaped ROI has the advantage that the ROI adapts better to the target shape, which is close to 

cylindrical. This means fewer “useless” background voxels need be analysed and the 

computing time can be reduced.                                               

 

 

 

 

 

 

 

 

 

 

 

                      Figure 2.4 Airway tree segmentation (Tschirren et. al, 2004).  

2.3.5 Applying pulmonary workstation 2 to lung airway segmentation 

In this study the lung airway was segmented by applying Pulmonary Workstation 2. Two 

sets of CT scan images were used in the study. The two scans were performed on a 66 year 

old non-smoking Asian male (height 171 cm and weight 58 kg) using a helical 64 slice 

multidetector row CT scanner (General Electric) the day after hospital admission with an 
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acute exacerbation of asthma. At the time, the patient’s lung function by spirometry 

(Spirocard, QRS Diagnostic, Plymouth, Minnesota, USA) showed severe airflow obstruction 

with a forced expiratory volume in 1 second (FEV1) of 1.02 L (41% predicted)  Data was 

acquired with 1-mm collimation, a 40-cm field of view (FOV), 120 kV peak and 200 mA. At 

baseline, 2 cm axial length of lung caudad to the inferior pulmonary ligament was scanned 

during a single full inhalation total lung capacity with breath-hold, which yielded 254 

contiguous images (slices) of 1-mm thickness with voxel size of 0.625 x 0.625 x 1 mm. An 

identical protocol was used to acquire images following recovery 30 days later, when his 

FEV1 was measured at 2.27 L (91% predicted). 

These two sets of CT scan images were loaded into Pulmonary Workstation 2 respectively. 

Pulmonary Workstation 2 provides a totally automatic tool to segment the lung airway. 

However it does not provide the tools to write segmentation results to files on its tool menu. 

This software can only display the segmentation results in its analysing window. The triangle 

mesh result writing tool is in a separate file named “analyze2stl.exe”. This tool can be used to 

create an ASCII STL file from an Analyze file containing the airway segmentation result. 

This Analyze file is located in a directory called “+data” at the place where the Pulmonary 

Workstation 2 is installed. The analyze file “segmentedData.hdr” and 

“segmentedData.img.gz” can also be found in the directory. The command 

“ananlyze2stl.exe” has a few optional parameters: 

(1) --f n    Reduce nr. of triangles to 1/n. Default: n = 1;  

(2) --s0     Do not smooth surface. (Default);  

(3) --s1     Smooth surface – lightly;  

(4) --s2     Smooth surface -- medium;  

(5) --s3     Smooth surface -- heavily.  

Based on our experiments the best results can be obtained by using “s1” smooth parameter. 

The segmentation results for asthma affected and recovered lung airways are shown on 

Figure 2.5 and Figure 2.6. From this figure the best segmentation results were obtained by 
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using smooth parameter “s1”. If the model is too rough it will cause problems in the down-

stream post-processing (surface fitting). On the other hand, if it is too smooth some useful 

features will be omitted. Some fine tubes at the 4th generation or over in the model which 

was obtained by using “s2” or “s3” were omitted. 

  

  

                                                                                    

 

 

 

                    (a)                                               (b)                                               (c)  
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 Figure 2.5 Asthma affected lung airway model generated by Pulmonary Workstation. (a) 
Pulmonary workstation displaying model  (b) Model smoothed by “s0”  (c) Model smoothed by “s1”  
(d) Model smoothed by “s2”  (e) Model smoothed by “s3” 
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                          (a)                                               (b)                                           (c) 

 

 

 

 

 

  

 

                                       (d)                                                               (e)  

 

  Figure 2.6 Recovered lung airway model generated by Pulmonary Workstation. (a) Pulmonary 
workstation displaying model  (b) Model smoothed by “s0”  (c) Model smoothed by “s1”  (d) Model 
smoothed by “s2”  (e) Model smoothed by “s3” 

 

  

 

2.4 Three Dimensional Geometry Reconstruction 

2.4.1 Introduction 

Although the results of segmentation from CT/MRI can be used as an accurate 3D tissue 

description, the voxel-based anatomical imaging representation (triangle mesh) cannot be 
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effectively used in many biomechanical engineering studies. For example, 3D surface 

extraction requires either a large amount of computational power or extreme sophistication in 

data organization and handling; and 3D volumetric modeling on the other hand, while 

producing a realistic 3D anatomical appearance, does not contain geometric topological 

relations. Although they are capable of describing the anatomical morphology and are 

applicable to rapid prototyping through a converted STL format, neither method is capable of 

performing anatomical structural design, modelling-based anatomical tissue biomechanical 

analysis and simulation. In general, activities in anatomical modelling design, analysis or 

simulation need to be carried out in a vector-based modelling environment, for example 

using Computer-Aided Design systems and CAD-based modelling, which is usually 

represented as ‘boundary representation’ (B-REP) and mathematically described as Non-

Uniform Rational B-Spline (NURBS) functions. Unfortunately, the direct conversion of the 

medical imaging data into its NURBS model is not a simple task. In the last few years some 

commercial programs, for example, SurgiCAD by Integraph ISS, USA, Med-Link, by 

Dynamic Computer Resources, USA, and Mimic and MedCAD, by Materialise, Belgium, 

were developed and used to construct geometry models from medical images. However, none 

of these programs has been efficiently and widely adopted by the biomedical and tissue 

engineering community due to the inherent complexity of the tissue anatomical structures. 

Effective methods for the conversion of CT data into geometry models still need to be 

developed. 

Generally, there are three ways for the generation of a geometry model from medical 

imaging data: (1) directly convert imaging data to a geometry model, (2) reverse engineering 

approach, (3) STL-triangulated model converting approach. The outline of the process paths 

for generating a solid geometry model is shown in Figure 2.7.   

 

 

 

 
    CT/MRI images 

      Image segmentation 

Direct converting approach Reverse engineering approach  STL model converting approach 
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                            Figure 2.7 Processes for the generation of geometry models 

 

As commercial software packages with the capacity to convert imaging data to geometry 

models were not available to the present study, only the last two process paths were tested in 

lung airway geometry model generation.  

2.4.2 Applying the reverse engineering approach to lung airway 

geometry model generation 

The reverse engineering approach uses the cloud points which are created from the image 

segmentation. The cloud points are first triangulated in order to find the topological 

information for the object. Then the triangulated model is further refined and enhanced to 
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reduce the file sizes and eliminate unwanted features. After being refined, the triangulated 

model are fed to reverse engineering software (for example, Geomagic Studios by Raindrop 

Inc). The freeform surfaces of NURBS patches are used to fit across the outer shape of the 

model by using reverse engineering software packages.  

Three algorithms have been used to triangulate the cloud points. Each of these three 

algorithms was tested in by using the Visualization ToolKit (VTK) library. The Visualization 

ToolKit is an open source, freely available software system for 3D computer graphics, image 

processing, and visualization used by thousands of researchers and developers around the 

world (Schroeder et. al, 1996, 2000). It consists of a large number of C++ class modules 

supporting a range of visualisation algorithms for scalar, vector, tensor, and volumetric data. 

VTK was originally created in 1993 by three researchers from GE Corporate R&D (Will 

Schroeder, Ken Martin, and Bill Lorensen). Version 5.0.3 was used in this evaluation. It 

supports reading and writing of images, some basic data preparation and segmentation 

algorithms, and volume rendering. The VTK supports a wide variety of visualization 

algorithms including scalar, vector, tensor, texture, and volumetric methods; and advanced 

modelling techniques such as implicit modelling, polygon reduction, mesh smoothing, 

cutting, and contouring. In addition, dozens of imaging algorithms have been directly 

integrated to allow the user to mix 2D imaging / 3D graphics algorithms and data. The design 

and implementation of the library has been strongly influenced by object-oriented principles.  

The three algorithms used to triangulate the cloud points in this study were: (1) Zero-set 

method (Hoppe et. al, 1992), (2) Power crust algorithm (Amenta et. al, 2001), (3) α-shape 

algorithm (Edelsbrunner et. al, 1994). The cloud points used as source data were the asthma 

affected lung airway segmentation results obtained from Pulmonary Workstation. 

Hoppe et. al (1992) reconstructed the surface by using the zero level set of a distance 

function defined by the input point samples. It is assumed that a set of data points is on or 

near an unknown surface. The signed distance from an arbitrary point to a known surface is 

then defined. Knowing the signed distance function is equivalent to knowing the surface 

because an implicit representation for the surface is given by the zero set. In other words, 
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although the surface is unknown, the surface can be estimated by firstly estimating the signed 

distance from the data points then extracting an approximation of its zero set. The key 

ingredient for estimating the signed distance functions is to associate an oriented plane with 

each of the data points. These oriented tangent planes are then used to define the signed 

distance function to the surface. The marching cubes algorithm is used to extract the 

isosurface. This algorithm has several advantages. It has the capability of dealing with large 

numbers of points and can deal with the cloud points including noisy data. 

The Crust algorithm (Amenta et. al, 1998) is the first algorithm which has been proposed 

with theoretical guarantees in reconstruction. It exploits the structures of the Voronoi 

diagram of the input point set to reconstruct the surface. Amenta et. al introduced the power 

crust algorithm which improved Crust both in theory and practice. The concepts of power 

crust and power shape were introduced in the power crust algorithm. In this algorithm, it 

outputs the power diagram faces separating the cells of inside and outside poles as power 

crusts and outputs the regular triangulation faces connecting inside poles as power shapes. 

The power crust algorithm works well on dense data sets and is capable of keeping the sharp 

corner features of the mechanical parts. However this algorithm introduces many extra points 

in the output and generates more faces than other algorithms. 

The α-shape algorithm is a Delaunay based algorithm. A very early paper on the problem 

of approximating a surface in three dimensions from its sample points was presented by 

Boissonnat who proposed a sculpting of the Delaunay triangulation for reconstruction 

(Boissonnat, 1984). A more refined sculpting strategy was designed by Edelsbrunner and 

Mucke in their α-shape algorithm (Edelsbrunner et. al, 1994). In the α-shape algorithm, the 

α-shape is defined as a generalization of the convex hull of a point set. The notion of α-ball 

and α-hull are also introduced in this algorithm. An α-ball is defined as an open ball with 

radius α. For α = 0, it is a point, and for α = ∞, it is an open half space. The α-hull is defined 

as the complement of the union of all empty α-balls. This algorithm generates the 

approximate surface of a set of point by three steps: (1) construct the Delaunay triangulations 

by using flips; (2) compute the α-intervals for all simplexes in a Delaunay triangulation; (3) 

sort the endpoints of these intervals.  
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The point set of the lung airway obtained from Pulmonary Workstation 2 was input into 

the above three surface approximation algorithms. The point set contained 46810 points. 

Experiments were carried out using a personal computer with an Intel Core 2 CPU, 1.86 

GHz, and 1 GB RAM. Only the Hoppe’s algorithm could complete the computation and its 

triangulation result is shown on Figure 2.8. It can be seen from the figure that the trachea and 

first generation of the branch can be reconstructed correctly. However, the deeper 

generations of branches failed to generate because of the complexity of the geometry and the 

inherently noisy nature of the sample points.  

 

 

 

 

 

 

 

 

 

  

                                       (a)                                                                        (b)                                                                           

  Figure 2.8 Triangular surface generated from cloud points. (a) Point clouds of asthma 

affected lung airway  (b) Triangular surface generated by Hoppe’s algorithm 

As the sample points are obtained from image segmentation, it can not be guaranteed that all 

of the points are on the same surface of the object. It is possible that some points are on the 

inner surface of the object and other points are on the outer surface of the object. From the 

zoomed-in area in Figure 2.8(a), it can be found that each slice has a thickness of points 

around the tube, but the surface reconstruction algorithms tried to generate a surface going 
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through all of these points. So this resulted in the failure of the surface reconstruction 

processing. Both the power crust algorithm and the α-shape algorithm failed to complete 

their calculation for the same reasons. 

Based on the above experiments, it is apparent that the reverse engineering approach does 

not suit medical geometry model reconstruction. At the triangulated surface generation stage, 

it is difficult to generate a surface from the points which are obtained from image 

segmentation bacuase of the points being on t both inner and outer surfaces of the object. It is 

easier to extract the inner or outer surface of an object of interest from the original volume 

image at the image segmentation stage, because much more information may be used to 

generate its surface, for example, the relationships between slices. The reverse engineering 

approach to reconstructing surfaces can only apply the arbitrary point information.  

2.4.3 Applying the STL-triangulated model converting approach on lung 

airway geometry model generation   

The 3D image segmentation can also export an STL file which can then be imported into 

reverse engineering software for surface refinement and NURBS surface generation. The 

difference between this approach and the reverse engineering approach is that this approach 

uses the STL-triangulated surface rather than the point clouds data as modeling input.  

In this study the reverse engineering software, Geomagic Studio 7.0 (Raindrop Inc), was 

used for the fitting of NURBS surfaces. Geomagic Studio 7.0 is a powerful tool for reverse 

engineering of surfaces. It has a rich functionality, including point cloud processing (noise 

reduction, outlier removal, thinning), alignment of different data sets, triangulated surfaces 

(triangulation from points, smoothing, hole filling, triangle reduction), and NURBS 

modelling. The lung airway STL-triangulated models obtained from Pulmonary Workstation 

2 were used as source data. Both the asthma affected and recovered STL-triangulated models 

were tested.  
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                   (a)                                                   (b)                                                (c) 

 Figure 2.9 A NURBS surface model of asthma affected lung airway tree generated from 

triangle mesh.  (a) Triangle mesh  (b) Faceted model  (c) NURBS surface model 

 

 

                                                   

 

 

 

 

  

                  (a)                                                  (b)                                           (c)                                                                                               

Figure 2.10 A NURBS surface model of recovered Lung airway tree generated from 

triangle mesh.  (a) Triangle mesh  (b) Faceted model  (c) NURBS surface model 

The refinement of triangular meshes will increase the numbers of triangles in the polygon 

and result in a smoother surface. Although a mesh refinement function is provided by 

Geomagic Studio 7.0, the triangular meshes obtained from Pulmonary Workstation 2 are 
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smooth enough, as the triangular meshes have been refined by Pulmonary Workstation 2, so 

no further refinement is necessary in Geomagic Studio for the generation of rectangle CFD 

meshes. The asthma affected and recovered lung airway triangular meshes were respectively 

loaded into Geomagic Studio 7.0 to generate its NURBS surface. NURBS surface are the 

standard surface representations used in CAD, CAM, CAE (Computer Aided Engineering) 

programs. Gometric Studio 7.0 provides two tools: manual and automatic tools, to create a 

watertight NURBS surface for exporting to downstream applications. The exported NURBS 

surface can be saved in IGES (Initial Graphic Exchange Specification) or STEP (Standard for 

the Exchange of Product Model Data) format. The manual tools include detecting contours, 

subdividing/extending contours, specifying sharp lines, etc. The manual tools are suitable for 

the generation of surfaces with some known mechanical features. As lung airway geometry 

does not have any mechanical features such as sharp corners, fillets, and chamfers, the 

automatic tool was applied to generating the lung airway NURBS surface. 1007 NURBS 

patches were generated in the asthma affected lung airway NURBS surface model; 1084 

NUREBS patches were generated in the recovered lung airway NURBS surface model. Both 

the asthma affected and recovered lung airway NURBS surface model were saved as IGES 

files. The asthma affected and recovered lung airway NURBS surface model generations are 

shown in Figure 2.9 and Figure 2.10.  In this figure, the faceted models are from the same 

STL file as the triangle mesh model. The difference between these two models is that 

different visualization methods are used. The faceted model uses planer triangular faces to 

fill every hole of the triangle mesh model in order to make the model more realistic. From 

this figure, it is found that the faceted models are able to show more surface features than 

triangle mesh models because of surface reflection of light. Also it can be found that the 

NURBS surface models are smoother than the faceted models. The NURBS surface fitting 

process can be executed well from trachea (generation 0) to generation 3 and the generated 

NURBS surface is a true watertight surface; however over 3 generations the generated 

surface contained some errors such as gaps or overlaps between patches and some fine tubes 

were omitted in the NURBS model. The gaps or overlaps result obtained in the NURBS 

model were not suitable for the following CFD simulation. Based on the author’s 
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experiments a large amount of manual post processing is still needed. More details about post 

processing for CFD use are explained in Chapter 5. 

2.5  Summary 

In this chapter, two CT/MRI image based geometry reconstruction approaches, the reverse 

engineering approach and the STL-triangulated model converting approach, have been 

proposed and have been tested in human lung airway geometry model generation. Three 

triangulation algorithms have been investigated with the reverse engineering approach. The 

results indicate that it is difficult to triangulate the points obtained from medical image 

segmentation when the object geometry shape is complex. Generally, the selection of the 

geometry reconstruction approach depends on the particular application it is intended for. 

The reverse engineering approach would be selected when the generated surface model or 

models have less overall complexity. The STL-triangulated model converting approach is 

preferred when a rapid prototype of the model is needed for surgical planning or display.   
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Chapter 3 

Region-based Geometric Modeling of Human Airways and 

Arterial Vessels  

3.1 Introduction 

The rapid improvement in the speed of computers and available memory size over the last 

decade has led to the emergence of computational fluid dynamics (CFD) as an alternative, 

cost-effective means of simulating real biomedical flows as in human respiratory and 

vascular systems. An anatomically-precise geometric model of human airways or vessels is 

the basic prerequisite to CFD analysis of air and blood flow in human bodies (Tgavalekos et. 

al 2005, Ertbruggen et. al 2004 and Burrowes et. al 2005). This analysis is critical in the 

calculation of respiratory and hemodynamic parameters such as breath patterns and wall 

shear stress which are now widely used in the diagnosis and management of respiratory and 

arterial diseases like asthma stroke (Hassan et. al 2004 and Quatember et. al 2004).  

Three dimensional (3D) geometry modelling is a well established technology used in the  

aerospace, automotive and manufacturing industries (Choi 2003). With the advance of 

computational technology, its application has been extended to biomedical engineering in 

modelling various human organs. Much research on the reconstruction of human organs has 

been performed based on data obtained from CT or MR images (Koikkalainen et. al 2004 and 

Tawhai et. al 2004), and some commercial software programs are available in the global 

market for research and clinical applications (VIDA Diagnostic Inc and Materialise Inc).  For 

example, Volkau et al. (Volkau et. al 2005) have proposed an anatomy-based approach for 

the efficient construction of a 3D human normal cerebral arterial model from segmented and 

skeletonized angiographic data. Palágyi et al. (Palágyi et. al 2006) developed an automated 

method for skeletionization, branch-point identification and quantitative analysis of tubular 

tree structures.  Long et al. (Long et. al 2003) presented a reproducibility study of 3D 
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geometrical reconstruction of the human carotid bifurcation from in vivo MR images. By 

using a robust mathematical morphology operator – the selective marking and depth 

constrained connection cost, Fetita et al. (Fetita et. al 2004) developed an energy-based 3D 

reconstruction algorithm to construct the bronchial tree from multi-slice CT acquisitions up 

to the sixth – seventh order subdivisions.  By ensuring harmonic mean curvature vector 

distribution on the surface, a new model construction and analysis method was developed by 

Antiga et al. (Antiga et. al 2004) for patient-specific reconstruction and meshing of blood 

vessels. 

Anatomically, the human airway is a tree-like structure (Tschirren et. al 2005). The trachea 

and bronchi are tubular in shape. The diameter of the trunk (the first generation of the tree), 

the trachea, is approximately 20 mm for an adult, whereas that of the bronchus in the 4th 

generation is approximately 3 mm only, which is 1/6 of the dimension of the trachea in 

Generation 1. In chapter2 some experiments are described concerning reconstruction of the 

airway tree geometry model by using the published algorithms and the commercial packages 

currently available in the market. However, many flaws as detailed in Section 2 emerge in 

the generated geometries, which make it impossible to utilize the model directly in 

downstream CFD studies. Extensive work must be done to convert the geometries into 

workable numerical models. This hinders the downstream research on air and blood flows in 

which large amount of tests are needed to be run on different models. The availability of an 

accurate geometric model becomes a limiting factor for clinical application of CFD results. 

Therefore it is important to develop a new algorithm to reconstruct airway tree geometry 

models which can be directly used in downstream CFD studies. 

This study presents a new region-based algorithm that can be used to reconstruct 

geometric models of human airways and carotid vessels from point clouds obtained from CT 

and MR images. With this method, the generations of the airway tree or the branches of the 

vessel are firstly recognized from the entire point clouds with a new searching algorithm. The 

points on the same branch are grouped together. Because the diameters of bronchi of 

different generations may be significantly different, for example, the trachea may be 6 times 

thicker than the bronchus on the 4th generation in the airway tree, different numbers of points 
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are used to construct the surface patches, that is different accuracies or tolerances are applied 

in the approximation of surface patches on different branches.  Meanwhile, the bronchi in the 

same region or on the same generation may have similar diameters although their physical 

locations in the lung are different and the same accuracy may be used in the approximation 

process.  With this strategy, the number of elemental points used in the construction of 

different branches is adaptive to the locations of the branches, and the overall quality of the 

surface patches can be improved. 

3.2 Geometric Characteristics of Airway and Blood Vessels 

3.2.1 Geometric characteristics of airway and blood vessels  

Human airways and blood vessels can be classified as related human organs in terms of 

their geometric profiles: both have the similar tube-like shape with air or blood flowing 

inside. Figure 3.1 illustrates the dimensions of the trachea and a bronchus of the 4th 

generation. The diameter of the trachea is approximately 21.6 mm and the bronchus at the 

4th generation has a diameter of approximately 3.8 mm, which is 1/6 of that of the trachea. 

The diameter of a bronchus at higher generation is even smaller. Therefore, it may be 

concluded that there is a significant difference in diameters of the airway branches of 

different generations. This special characteristic affects the accuracy of models generated 

with the ordinary methods commonly used in reverse engineering (RE). 
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                                                               (a) 

               

                                                               (b) 

        Figure 3.1 Dimensions of airways (a) Diameter of the trachea (b) Diameter of a 

bronchus of the 4th generation  

 

3.2.2 Various flaws in the model  

The number of elemental points used in the approximation process is a key factor 

controlling the number of surface patches used in describing a model. The general procedure 

to reconstruct such a model in RE is initially to set up the tolerance for the first 
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approximation. The model is then approximated by applying this overall tolerance to the 

entire model. 

Because of the special topologies of human airways and vessels, this principle does not 

apply in this application. Various flaws such as overlap and gap (Figure 3.2) emerge in the 

model generated by using these packages. Severe errors as shown in Figure 3.2 occur at 

locations where the dimensions of the structure are small. 

Figure 3.2(c) illustrates the airway tree generated from CT images of a male adult by using 

two commercial packages. The model has 7 generations; the diameter of the trachea is more 

than 10 times larger than that of the bronchioles at the 6th generation.  In the enlarged view 

(Figure 3.2(d)) it can be seen clearly that the bronchus which is tubular becomes a flat 

surface patch. Similar errors also occur in the reconstruction of arterial vessel. These types of 

errors occur in many cases and much work is needed before a model is pre-processed for 

mesh generation. 

3.2.3 Analysis 

One possible reason for the errors described is the redundant or insufficient number of 

surface patches used in the approximation process for the smaller structures.  

In the point clouds obtained from medical images, fewer points could be obtained at the 

location of small structures due to the noise and limited resolution of the images.  If a 

uniform number of points is used in the approximation process regardless of the dimension of 

the patch, errors will occur at locations where less points are available. On the other hand, if 

the size of a surface patch is reduced to satisfy the requirement of small bronchus, a large 

number of small surface patches will be generated redundantly in the trachea or larger 

bronchus in the airway tree, which makes it not practical in clinical practice because of the 

large files size resulting from the large amount of surface patches.  
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                                                     (a)                                                   (b) 

 

                             

                                           (c)                                                   (d) 

Figure 3.2 Geometric model of airways generated by a commercial package  (a) Overlap 

on surfaces (b) Gaps between surface patches.  (c) Solid model of airways (d) Enlarged view 

of bronchus 

To solve this problem, an “adaptive tolerance” modelling strategy was developed. Under 

this strategy, a larger tolerance is used in approximating the main branches of the airway, 

which is the first or second generation of the airways tree. At the fifth or sixth generation of 
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the airway where very small structures have small diameters, a smaller tolerance is applied, 

which resulting in more surface patches at the end of each branch. With this strategy, the 

numbers of points used to construct the surface patches at different locations of the airway 

tree are different. Although the tolerance is higher at the smaller bronchi, the overall number 

of surface patches does not increase significantly and correct geometries can be generated. 

To implement this adaptive algorithm, the location of the points should firstly be 

identified. That is, the points that consist of each branch should be recognized from the entire 

point cloud. 

3.3 Surface reconstruction 

The new algorithm consists of two steps: to recognize points on each branch by using the 

new search algorithm, and to construct the surface patch for each identified branch. The 

method developed by Eck and Hoppe is used in the second step (Eck et. al 1996). 

3.3.1 Identification of branches 

With current image processing algorithms, it is not difficult to segment the medical image 

and output the results as point clouds in STL (Stereolithography) format. Points and triangles 

are the basic elements used to describe geometric features in an STL file, and no overlap 

between triangles is allowed in this format. 

To identify the branches, two essential concepts are defined as follows: 

Definition 1: Associate Triangle 

The associated triangle of Point P is a triangle with P being one of the vertex.  

Definition 2:  Closed Circle 

A “closed circle” is piece of curve whose start and end points are vertices of the same 

triangle. 

To find a bifurcation point or identify the points on each branch, the identification or 

reorganization of point clouds is done through following six phases. 
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1. Cut open the trachea and small bronchi 

 

2. Divide the point cloud into sub-regions 

According to Z coordinates, an entire point cloud is divided into 12 sub-regions as shown 

in Figure 3.3.  The purpose of this division is to reduce the number of points involved in 

the searching process so that the overall calculation time can be shortened. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 3.3 Point clouds are divided into sub-regions 

 

 

3. Search for points on the top boundary of the trachea 

(1) Since the trachea starts from the upper airway and the bronchi are at lower locations in 

the lung, it is determined that the point in Area 1 with the minimum Z coordinate is a 

point on the boundary of the trachea. This point will later be used as the seed point to 

find the remaining points representing the trachea.   If more than one point is found 
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having the same minimum Z coordinate, the seed point can be randomly selected from 

these candidate points. 

 

Assume the coordinates of the seed point are  P1 (x1, y1 , z1);  P1L (x1L, y1L , z1L) and P1R 

(x1R, y1R , z1R) are the  two neighbouring points of P1. 

∴z1 ≤  z1R  and z1 ≤  z1L, where z1 = minimum {  zi | i ∈  index of points in the clouds } 

 

 (2) Identify all triangles associated with P1.  

The search for these triangles is limited only to Area 1 as Point P1  is located in Area 1.  

Thus, the amount of calculation can be reduced significantly compared to the searching 

processes that are carried out on the entire point clouds. 

 

(3)  Among the triangles associated with P1, identify the isolated vertices which are not 

shared by any adjacent triangles.  The two isolated points found are points on the top 

boundary. 

                                 

                                   

                                     Figure 3.4 Searching for boundary points 
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It is clear that no isolated point actually exists on the boundary of the trachea. The 

isolated point here refers to the point which is a vertex of only, one associated triangle 

of P1 it is not the vertex of another associated triangle of P1. 

 

Each boundary point has two neighbouring points on the boundary. The two boundary 

points are isolated vertices of triangles associated with this boundary point. Because P1 

is on the boundary, there must exist at least two triangles on its two sides among all its 

associated triangles.  

 

In Figure 3.4, point P1 is the seed point on the boundary with the lowest Z coordinate 

found among the entire point cloud. Three triangles, ∆ P1L1A, ∆ P1AB and ∆ P1BP2, 

are found to be associated with P1.  Points A and B are not isolated points, they are the 

common points shared by two adjacent triangles associated with P1: ∆ P1 L1A and 

∆ P1AB, and ∆ P1AB, and ∆ P1BP2, respectively. Points P2 and L1 are the isolated 

vertices of associated triangles: ∆ P1 L1A and  ∆  P1BP2 . neither poiny being shared by 

any other triangle associated with P1. Therefore,  P2 and L1 are points on the boundary.  

 

(4) Use one of the two points found in Step 3, P2, as the new seed point, repeat Step 2 and 

3. Of the two newly found points, the one which is not P1 is the new boundary 

point. 

 

In Figure 4.4, assuming that P2 is used as the new seed point,   P3 and P1 are the 

newly found points from triangles associated with P2. Because P3≠ P1 it is certain 

that P3  is a  point on the boundary. 

 

(5) Repeat Steps 2, 3 and 4 to identify all points on the boundary.  

The iteration stops when the last boundary point is found to be P1. Because the 

geometry of human airway or arterial vessel is tubular, by Pi = P1, it means the 



 

 47 

iteration has come to the end of the loop and all points on the boundary have been 

recognized. 

 

4. Search for points in the 2nd layer 

(1)      Mark all triangles in Area 1 as “Non-visited”. 

(2) All points on the boundary which are found in Phase 3 belong to the first layer.  

Select the first and lastly found boundary points in the first layer (Points P11 and 

P1L in Figure 3.5(a)) and find the triangles associated with them. Both points 

belong to the “Non-visited” triangles.  

(3) Identify the common triangle shared by P11and P1L. The third vertex P21 of this 

triangle is a point in the second layer.  There is no ambiguity about this common 

triangle because no overlap between triangles exists in the geometries described 

by the STL file. 

(4) Mark this triangle as “Visited” and delete it from the group of triangles which 

associates with point P11. 

(5) Find all points in the 2nd layer which are associated with Point P11. 

(i) Among the non-visited triangles associated with P11, find the common 

triangle shared by P11 and P21. The third vertex of this triangle is a point in 

the 2nd layer (P22 in this case). 

(ii) Mark this triangle as “Visited” and delete it from the group of triangles 

associated with Point P11. 

(iii) Replace P21 with the newly found point in the 2nd layer and repeat Step (i) 

and (ii), until the point found is a point in Layer 1 (P12 in this case).  

 

Two points (P21 and P22) associated with Point P11 are found in Layer 2 in Figure 

3.5(a). Because flags of triangles which had been visited have been changed to 

“Visited”, they will not be processed again in Step (i), therefore, the point in 

Layer 1 found in Step (iii) must be Point P12, it can not be Point P1L.  
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For the case where only one point in Layer 2 is related to Point P11 ( Figure 

3.5(b)), the point found in Step (i) will be P12, a point in Layer 1 other than a 

point in Layer 2. Therefore, the checking process used in Step (iii) should be 

applied in Step (i) as well. 

 

               

                                                                  (a) 

 

 

 

 

 

                                                                  (b) 

Figure 3.5 (a) Search for points on the 2nd layer with the layer-by-layer method  (b) A point 

on the 1st layer relates to only one point in the 2nd layer 

As shown in Figure 3.5(a), P11, P12, P13 and P1L are points in the first layer. 

Point P11 is the first point used in the searching process, while Point P1L is the 

last one. Points P21, P22, P23 and P24 are points in the second layer. Point P21 is 

the first point that is found on Layer 2. 
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(6) Mark all triangles associated with this point (P11) as “visited”, and delete these triangles 

from the “Non-visited” group.     

(7) Among the Non-visited triangles, locate all the triangles associated with the 

second point (P12) on Layer 1. 

(8) Repeat Steps 5, 6 and 7 until all points in the first layer are processed.  

(9) Verify if the points in the 2nd layer formed a closed circle. 

 

5. Search for points in the next layer by using the layer-by-layer method 

Repeat Phase 4 to find all points in the next layer. If the maximum Z coordinate is 

found to be close to the minimum Z value predefined in this region (region i), 

triangles being processed are now at the bottom end of the region Triangles in the 

next region (region i+1) will be added to the group of “Non-visited” triangles to 

ensure that no triangle or point will be missed at the boundary between the two 

adjacent regions. The searching process stops when the next layer is found to be an 

open cycle, or two closed cycles can be formed with the points in that layer.  The two 

closed cycles can be described in three ways: 

 

• Two cycles share one common point, as shown in Figure 3.6(a) 

• Two cycles share more than one point (Figure 3.6(b) ) 

• No overlap exists between the two circles, but there are triangles which link 

the circles together (Figure 3.6(c)).  

 

If two closed circles are formed, it can be concluded that the search has reached the 

bifurcation layer and a new branch has emerged on this layer. All the points from the 

previous layer through this bifurcation belong to this new branch.  

 

6. Regard the points on the closed circle as the points on the “first layer” and repeat Phase 3 

and 4. All points on this branch should be recognized.  
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                                                             (b) 

(a) 
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Figure 3.6 (a) Two circles share one common point     (b) Two circles share more than one 

point   (c) A triangle exists to connect two non-overlapping circles. 

 

3.3.2 Reconstruction of surface patches 

The surface patches in each branch are constructed by using the shortest distance 

algorithm which has been used by Eric and Hoppe (Eck et. al 1996) in surface re-

construction i.e., through minimizing the distance function: 

Edist(S) =  

),(
1

2
SPd i

N

i

∑
=       (3.1) 

where: Edist( ) is the distance function, d( ) is the distance, Pi is the point , S is the surface 

patch. 

The main advantage of this algorithm is that it has the capability of dealing with a large 

number of points and can deal with the cloud points including noisy data. It assumes a set of 

data points to be on or near an unknown surface. The signed distance from an arbitrary point 

to a known surface is then defined. The availability of the signed distance function is 

equivalent to that of the surface because an implicit representation of the surface is given by 

the zero set. In other words, although the surface is unknown, it can be estimated by firstly 

(c) 
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estimating the signed distance from the data points, and  then extracting an approximation of 

its zero set. The key aspect of estimating the signed distance function is to associate an 

oriented plane with each of the data points. These oriented tangent planes are then used to 

define the signed distance function to the surface. 

For large branches like the trachea, the point clouds are further divided into sub groups if 

there are too many points. 

3.4 Examples 

The algorithm is implemented with Matlab and Visual C++.  The recognized branches of 

the carotid vessel and the airway tree are shown in Figure 3.7.  Figure 3.7(a) demonstrates 

the recognized branches or generations of the airway tree which consists of 46810 points.  

Figures 3.7(b) illustrates the corresponding solid geometric model.  

 

 

(a) 
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                                                                (b) 

Figure 3.7 (a) An airway tree with 7 generations of bronchi (b) solid model of the airway tree  

 

3.5 Discussion 

In the searching process in Step 5 of Phase 4, it is critical to ensure that all points are on a 

closed circle. The iteration can not start and stop properly if the circle is not closed. Two 

types of closed cycle may be encountered in the searching process: 

1 If the last point overlaps the points identified in the first two iterations, the points 

before the overlap should be cut off. Ten points are used in our preliminary tests. 

As shown in Figure 3.8(a), Point 2 and Point L1 overlap; therefore Points 1 and 2 

should be cut off. 
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2 If the points identified in the last two iterations do not overlap with any points obtained 

in the first two iterations (ten iterations are used in our calculation),  but connecting 

triangles exist to link them together,  the points in the connecting triangles should be 

cut off. 

 

 

 

 

 

 

 

 

 

 

 

     Figure 3.8 (a) Overlap points exist in closed loops (b) Linking triangles exist in closed 

loops 

 

As shown in Figure 3.8(b), Points 1，2，3 and 4 are points identified in the first 4 

iterations, Points L1，L2 and L3 are identified in the last three iterations.  Here, Point 

L1 connects to Point 2, Point L2 connects to Point 2 and 3. Point L3 connects to Point 

4. Because “4” and “L3” are the highest in the two iterations, the points in the linking 

triangles – Points 3, 2, 1 and Points L2, L1, are cut off.  

3.6 Summary 

Geometric modelling is an integrated step in the generation of geometric models from 

medical images. A new modelling algorithm is presented in this thesis to reconstruct human 

airway and arterial vessels which consist of tubular geometries with large differences in 

diameters.  The method consists of two steps. The first step is to recognize the branches of 
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the airway tree and bifurcations of the arterial vessels from the point clouds obtained from 

medical images, by using a new searching algorithm. On each branch the surface patches are 

constructed according to the number of available points by using an established method. In 

this way, different approximation accuracy can be applied in different branches with the 

availability of the branch information, which can lead to better surface quality. 

The topological relationship between branches and the relative locations of each branch 

could be identified once the searching direction is fixed in each layer. Because the points on 

each branch have been grouped together, the new searching algorithm can also be utilized in 

the labelling of airway trees. 
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Chapter 4 

Inhalation effort comparisons in a bronchoconstricted and 

recovered airway tree associated with acute asthma 

4.1 Introduction 

Asthma is a chronic inflammatory disorder of the airways affecting mainly the medium-

sized and small bronchi (Travis et al. 2002) characterised by a sudden or prolonged onset of 

airway narrowing. Long term effects of the disease can be characterised by variable degrees 

of tissue and structural remodelling in the airways that lead to a progressive loss of lung 

function (Pascual and Peters 2005; Vignola et al. 2000). During an acute asthma episode, the 

combination of bronchospasm, mucus plugging, and mucosal edema leads to increased 

airway resistance as the diameters of the airways are reduced. An increase in the inhalation 

effort is therefore required to obtain similar tidal volumes in unconstricted airways, which 

then leads to respiratory muscle fatigue. The increase in airway resistance also causes a lack 

of uniformity in ventilation throughout the lung causing hypoxemia from ventilation-

perfusion mismatching. In addition the changes in the geometry and inhalation efforts will 

have a significant effect on drug delivery devices such as inhalers that are designed to deliver 

pharmacological agents to affected areas within the tracheobronchial tree. This paper  

descripts reconstructed airway tree models of an acute asthma episode and following 

recovery from the same patient performed thirty days apart. The computational model was 

created for Computational Fluid Dynamics (CFD) analysis which provides details of the 

geometry and airflow dynamics such as the pressure drop. A comparison between the two 

models was undertaken to determine the disparities in the inhalation efforts and the airway 

branch diameters caused by physiological changes in the airways. 

Airway geometry details and pressure drops are often difficult to acquire completely and 

accurately using experimental methods because of their invasive nature. Numerical studies 
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such as those performed by (Comer et al. 2000a, b; Zhang et al. 2002a, b) provide a non-

invasive technique which creates an opportunity to obtain fine details of the airway. However 

the majority of studies involving airflow dynamics such as pressure drop have been based on 

regular dichotomy airway models (symmetrical or idealised geometries). Irregular 

dichotomies have also been studied but to a lesser extent. This may be due to the limitations 

of technology in the past to provide the detailed data to construct realistic models. The 

studies of Balashazy and Hofmann (1993), Balashazy et al. (2003), Choi et al. (2007) and  

Kim and Fisher (1999) are some of the few published investigations in which an irregular 

dichotomy airway model was used. One advantage of using a realistic model is the inclusion 

of the effects of cartilaginous rings present in the trachea. It has been shown by Zhou and 

Zhang (2005) that there is a disturbance in the airflow within the trachea caused by the 

presence of cartilaginous rings but this influence does not propagate to bifurcations further 

downstream. Recently, with advances in medical imaging technology, high resolution CT 

scans have provided a pictorial insight into the manifestations of asthma including thickening 

of the bronchial wall, narrowing of the bronchial lumen, areas of decreased attenuation, and 

air trapping on expiration (Isabela et al. 2004).  

In terms of validating the numerical results, (Zhang et al. 2002a, b) and (Comer et al. 

2000a) have extensively compared their numerical results with experimental results in regard 

to the velocity profile. The influence of the larynx on the airflow in the trachea and its lower 

airways has been included in many experimental and numerical simulations through 

complete upper airway analysis (from oral cavity to lower generations). Zhou and Cheng 

(2005) indicated that the deposition efficiency of inhaled particles with the larynx effect is 

generally larger than without it and hence the larynx affects the flow pattern of the tracheal 

region. They also suggest that the turbulence induced by the laryngeal jet could likely persist 

in the first few generations of the tracheobronchial airways, resulting in higher deposition 

efficiencies. However, (Zhang et al. 2005) also showed that the larynx effect causes turbulent 

fluctuations at medium and high inspiratory flow rates (30 and 60 L/min) because of the 

enhancement of flow instabilities just upstream of the flow dividers. Due to the low 

inspiratory flow rate used in this study and the complex nature of the laryngeal and tracheal 
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regions, the inclusion of the larynx effect, oral cavity, nasal cavity, and larynx were not 

considered. 

4.2 Methods 

4.2.1 Geometry generation 

The reconstruction of the asthma and recovered airway tree geometries was based on data 

obtained from CT images shown in Figure 4.1. The geometry was generated through three 

steps, image segmentation, surface reconstruction and surface fitting. More details are in 

Chapter 2. 

                                       

 

 

          (a)                                                                                            (b) 

 Figure 4.1 (a) CT scans of the airway  (b) the resulting cloud points of the airway tree 

obtained from the image segmentation stage. 
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 The geometry obtained using the methods outlined in Chapter 2 still contains many flaws 

such as overlap and gap. Manual work, referred to as boundary bound surface generation 

manipulationis performed in CATIA (CATIA Inc) with the algorithm in this study developed 

to deal with these problems. A surface patch which is overlapped or has gap with other 

patches is deleted firstly. Then a new surface patch is generated by using its adjacent four 

boundaries as bound (Figure 4.2).  The modified asthma affected and recovered models are 

shown in Figure 4.3.  Figure 4.3(a) shows that two branches of the acute asthma affected 

airway model were severely affected by the airway narrowing. These branches were 

modified and plugged at their ends acting as blocked airways. In terms of CFD modelling 

this was necessary as it is difficult to apply a suitable computational mesh on such small 

dimensioned narrowed geometries. Figure 4.3(b) is a reverse view of the recovered model 

which shows the presence of the tracheal cartilage rings and the airway smooth muscle. The 

transverse cross-section depicts the computational mesh used for the CFD analysis. 

 

                               

                                   (a)                                                                  (b)  

Figure 4.2 Boundary bound surface generation (a) gap between patches (b) after     

regenerated patch 
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                         (a) Acute Asthma                                                 (b) Recovered 

Figure 4.3 (a) A frontal view of the reconstructed computational model of the acute asthma 
affected airway. (b) A reverse view of the recovered model showing the presence of the 
tracheal cartilage rings and the airway smooth muscle.  

 

4.2.2 Mesh and boundary conditions 

Using the meshing software GAMBIT 2.2 (ANSYS Inc.), the face, volume, mesh and 

extension tubes at outlets were created and a mesh file was produced, which was then read 

into FLUENT 6.2.16 (ANSYS Inc.). For this comparative study a constant entrance profile 

was used with the inlet extended further back to allow the inlet velocity to develop naturally. 

Therefore, by allowing the flow to develop, a more accurate inlet velocity profile at the 

trachea was formed. The developing length formula (laminar flow = 0.05Re*Diam) was used 

in this study. This rationale for extending the trachea to allow flow development is that the 

velocity profiles are susceptible to being skewed by the upper carina ridges (Yang et al. 

2006). Zhang et al. (2005) also demonstrated that different flow rates had some effect in the 

trachea region after the glottis and hence the profile would be distorted somewhat due to 

additional fluid dynamics such as secondary flows and turbulent dispersion.  

Cross-section of the 

computational mesh 
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Figure 4.4 (a) Schematic diagram with branch identification inside each branch. (b) front view of the 
3D airway model. (c) magnified frontal view of the selected section rotated (d) computational mesh 
of the selected section. 

 

(a) 

(b) 

(c) 

(d) 
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An initial model with a coarse mesh was simulated to establish data to be used for analysis to improve 

the mesh. The model was then refined by cell adaptation techniques which included refining large 

volume cells, cells that displayed high velocity gradients, and near wall refinements. Average velocity 

profiles within the airway were taken for each model and compared. The velocity profiles became 

independent of the grid size as the number of cells in the model reached one million. Figure 4.4 (a) 

shows the schematic diagram with branch identification inside each branch. The numbers assigned 

represent the generation number. The second letters represent the Left or Right side of the lung. The 

third letters, U, M and L represent upper, middle and lower respectively. Figure 4.4 (b) is a front view 

of the 3D airway model. Figure 4.4 (c) shows a magnified frontal view of the selected section rotated. 

A small section showing the mesh density is given in Figure 4.4 (d). For this study the method 

adopted from Balashazy and Hofmann (1993); Longest et al. (2006) where a parabolic inlet 

profile from an extended trachea is used. In a recent study by (Li et al. 2007), it was found 

that the type of velocity inlet condition and existence of cartilaginous rings influences the air 

flow field; however, their impact is less important in comparison with the variations in the 

upper airway geometry, e.g., branch curvature. A constant flow rate of 15L/min was applied, 

which corresponds to a Reynolds number of 1079. In recent studies the flow regime has been 

considered transitional for flow rates of 15-60 L/min and for flow rates greater than 30L/min 

(Re~2500) based on the existence of the laryngeal jet producing transitional behaviour. Other 

researchers however, have applied a laminar flow regime for flow rates of 28-30L/min (Re~2000-

2500) (Nowak et al. 2003; van Ertbruggen et al. 2005) based on the argument that RANS turbulence 

models cannot predict the transitional behaviour reliably, that the flow within the lung branches 

rapidly becomes laminar after the initial bifurcations, and that the flow is mostly laminar because the 

Reynolds number is globally below the transitional value. In an investigation into the turbulence 

structures using Large Eddy Simulations (LES) showed that at a flow rate of 15L/min inlet turbulence 

is damped out and that laminar flow prevails. Interestingly deposition patterns were found to be 

unaffected by turbulent dispersion at 15L/min, although particle deposition is enhanced by turbulence 

for flow rates of 30 and 60 L/min when St≤0.06. Based on these findings and the limitation of this 

study (exclusion of the larynx) a steady laminar flow is used for a flow rate of 12L/min. In addition 

using a turbulence model for flow rates that exhibit some light transitional flow does not necessarily 

imply greater accuracy. For example RANS turbulence models are designed for fully developed 

turbulent flows, although modifications have been made to formulate low-Reynolds number models 
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that reproduce the transitional behaviour. However in these models the physics of transitional flow 

behaviour is not actually resolved but rather a modelled approach is applied. Furthermore in local 

regions of low flow rates, where laminar effects are dominant, turbulence models provide greater 

diffusion due to the turbulence production inherent in turbulence models. The numerical solutions of 

the fluid flow equations were obtained using the commercial finite volume based program, FLUENT 

6.3 (ANSYS). 

4.3 Results 

4.3.1 Airway geometry comparisons 

The equivalent hydraulic diameter, Dh defined by 
PADh 4=

 , where A is the cross-

sectional area and P is the perimeter, was calculated for the entrance and bifurcating ends of 

each generation branch. The diameters given in Table 4.1 for each generation branch are 

taken from the averages of the three diameters from the entrance and two bifurcation ends 

and are compared between the acute asthma model, the recovered model and results from 

other airway models (Choi et al. 2007) and (Weibel 1963). In general the right side of the 

airway is larger in diameter than the left side. The recovery is measured as the dilation of the 

inner diameter given in terms of the percentage increase in the average diameter and may be 

thought of as dilation of the airway smooth muscle (ASM). A large increase was expected for 

the branches that were severely affected by asthma (4LU and 4RU). Besides these affected 

branches, 3LL and 3RU had a dilation greater than 10% (Figure 4.5).  Overall the right 

airway exhibited greater dilation than the left airway especially from the fifth generation 

onwards. Three generation sections, 3LU, 4LL and 6R showed minor negative increases (-

2.2%, -0.5% and -1.8% respectively) which means that these sections were actually slightly 

more constricted. It is uncertain if this is within the margin of the modelling error or whether 

it reflects a real physiological feature. This may be due to the after effects of airway 

narrowing by inflammation and edema of the lining airway mucosa, or even the 

accumulation of mucus and other fluids, which can plug the airways. It supports the 
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heterogeneity of bronchoconstriction in the airway tree in acute asthma, which leads to major 

shifts in ventilation with the potential for catastrophic bronchospasm (Venegas et al 2005). 

 

 

Table 4.1 Average diameter of the tracheobronchial tree model (dimensions in millimeters) 

 0  1 2 3 4 5 6 7 

G3R.U 5.0 G4R.U 3.7 G5R.U 3.3 

2R 11.2 

G3R.L 8.2 G4R.L 6.6 G5R.L 5.5 

G6R 4.8 

G3L.U 6.2 G4L.U 5.1 G5L 3.8 

Acute  

Asthma  
18.0 15.4 

2L 8.8 

G3L.L 5.8 G4L.L 4.3   

G6L 3.6 

G7R 4.1 

G3R.U 5.8 G4R.U 4.0 G5R.U 3.8 

G2R 11.6 

G3R.L 8.7 G4R.L 7.1 G5R.L 6.0 

G6R 4.7 

G3L.U 6.1 G4L.U 5.3 G5L 3.8 

Recovered 18.5 15.8 

G2L 9.2 

G3L.L 6.6 G4L.L 4.3   

G6L 3.7 

G7R 4.5 

Choi et al. (2007) 16 13-16 10-14 6-11 5-8 4-7 N/A N/A 

Weibel (1963) 19 9-16 7-11 5-7 4-6 3-4 N/A N/A 
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                                                            (b) 

Figure 4.5 Percentage increase in the averaged diameter from the acute asthma model to 

the recovered model. 

 

(a) 
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4.3.2 Inhalation effort comparisons 

Pressure drop in the bifurcating airways plays an important role in the respiratory process. 

For a flow rate of 15L/min the local pressure distribution in each airway branch was recorded 

and is shown in Figure 4.6. The required pressure difference at the inlet for the AA-model 

was 5.98 Pa, which is nearly twice the value for the recovered model (3.73 Pa).  

 

 

 

 

 

 

 

 

 

 

 

Acute asthma pressure distribution                                Recovered pressure distribution 

Figure 4.6 Distribution of the average pressure difference between the airway generation 

and the pressure at the outlets. 
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                                                                (b) 

Figure 4.7 Branch comparisons for the acute asthma model and the recovered model. (a) central and 

left side of the airway (b) right side of the airway.  
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Comparisons between the two models show that larger pressure differences occur in the AA-

model within the first four generations of the airway particularly branches 4LU and 4RU. 

Branch comparisons in Figure 4.7 show vast pressure differences between the two models 

despite the same flow rate. The percentages show the increase in the pressure difference 

between the A-A model and the REC model for the specified generation. Only increases 

above 100% are displayed in this figure. The difference is mainly due to the two affected 

branches in the AA-model which effectively reduces the number of flow paths by two as the 

constriction in 4LU and 4RU is so great that no flow passes through. In all the branches 

except for 4RM higher pressure is experienced in the AA-model. The greatest percentage 

change in the pressure difference from the AA-model to the REC-model is found on the left 

side of the airway where seven branches experience a change of over 100%. Greater 

resistance is found in the AA-model because of the reduced cross-sectional areas in the AA-

model (Figure 4.5). 

4.4 Discussion 

Recovery within the airways was measured by the increases in the diameters of the 

airways within the tracheobronchial tree, measured thirty days after the initial episode of 

asthma. The increase in diameters also reflects the increase in the total lung capacity that is 

available as a larger diameter would provide a greater volume. The right airway exhibited a 

greater percentage increase in the diameters in comparison with the left side. This correlates 

with the fact that the right airway for the patient was also larger in diameter than the left side. 

Whether this correlation is a physiological feature caused by the airway size as one 

determinant for the magnitude of smooth muscle contraction and hence a cause for airway 

hyperresponsiveness (AHR) is uncertain. This uncertainty is due to the inherent role of the 

airway structure as a determinant of airway narrowing which is not a simple, well known 

function. Rather AHR is caused by the manifestations of complicated relationships between 

the magnitude of ASM shortening, baseline airway structure, and changes in lung volumes or 

airway diameters.  
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There is general agreement that the total amount of smooth muscle is increased in asthma 

(Carroll et al. 1993; Ebina et al. 1993; Kuwano et al. 1993), while increased muscle mass has 

the potential to enhance airway responsiveness, thus contributing to asthma symptoms 

(Lambert et al. 1993). The larger airways present greater complexities as they do not behave 

isotropically unlike smaller airways when ASM is stimulated (Mitchell and Gray 1999). 

More recently in a published viewpoint by (Permutt 2007), it was hypothesised that dynamic 

hyperinflation caused by narrowing of larger airways is a major determinant of airway 

hyperresponsiveness in asthma. The study by (Brown et al. 2006) shows that airway structure 

and lung volumes are important determinants of AHR and pulmonary function, while the 

work of (Lundblad et al. 2007) and (Wagers et al. 2007) suggest that a link exists between 

airway structure and its function that manifests as a change in lung volumes. While these data 

have supported the hypothesis, other researchers (Sorkness 2007; Thompson et al. 2007) in 

response have cast doubts over the claim and hence the role of large airways on smooth 

muscle contraction in asthma remains controversial. Additionally, doubts may be cast as a 

result of the conversion of the CT scans into a computational model during the image 

processing stage. Regardless of the underlying doubts, the geometrical data provides a 

quantitative driven perspective on the issue and provides a useful data set for further 

comparative studies into the physiological effects of asthma. 

Ventilation in the respiratory airway is accomplished by the transport of inspired air down 

pressure gradients within the airways. This process involves the alternating contraction and 

relaxation of the respiratory muscles which overcomes the pressure drop caused by viscous 

losses such as shearing forces within the fluid, the friction between the air and walls of the 

airways, and the resistance presented by the irregularities of the airways. Under steady 

laminar flow conditions of 15L/min the required effort by the respiratory muscle to overcome 

the pressure difference for the AA-model is nearly twice as high as the REC-model. The 

primary cause of greater resistance in the AA-model is the narrowed airways and the 

occlusion of two of the branches. This suggests that during the period of an acute asthma 

episode, the work of breathing for the patient in order to achieve the same tidal volumes, is 

double that of the recovered state, which can lead to respiratory muscle fatigue. In reality the 
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patient may breathe with greater effort invoking deep inspiration. In this case the flow may 

become turbulent which increases the amount of viscous loss effects. The walls created 

within the model are assumed rigid and smooth whereas in reality the walls may exhibit 

some roughness and elasticity. The inclusion may alter the predicted magnitudes of the 

pressure drop but it is unlikely to alter the ratio of the two pressure drops from the 

computational models. In addition the inclusion of these attributes may actually cause further 

errors as the elasticity and roughness of the walls are not accurately known. 

4.5 Conclusion 

The effects of hyperresponsiveness as a result of asthma on the physical geometry of the 

tracheobronchial tree were measured by computational modelling. It was found that the right 

sided airway tree had greater bronchodilation than the left airway tree following recovery 

after an acute asthma episode in this individual. This correlated with the fact that the right 

airway was larger in size. The correlation partially supports the hypothesis that dynamic 

hyperinflation associated with widespread airway narrowing can be a major determinant of 

airway hyperresponsiveness in asthma.  

Under steady laminar flow conditions at 15L/min the required effort by the respiratory 

muscle to overcome the pressure difference for the AA-model is nearly twice as high as the 

REC-model. This requirement suggests that the respiratory muscles exert more effort during 

an asthma attack in order to achieve the same tidal volumes which can lead to respiratory 

muscle fatigue. Additionally the flow patterns within the airways will also exhibit greater 

velocities and have a follow-on effect on the delivery of drug particles. 
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Chapter 5 

Comparative study of airflow patterns from the effects of 

acute asthma on the tracheal-broncho airway tree 

5.1 Introduction 

After the comparison of the geometry and inhalation effort described in Chapter 4, a 

comparative study of airflow patterns was then conducted between acute asthma and 

following recovered airway trees in terms of velocity profile and local flow features. The 

geometry models of acute asthma and recovery airway trees were the same as those described 

in Chapter 4. The numerical modeling method used here is superior to the method described 

in Chapter 4 and is described in this chapter. During the analysis process, advanced 

visualization technique was used. Therefore the potential “hot-spots” of high aerosol 

concentration could be immediately and easily observed. Results are validated with 

experimental data from other studies. Finally, some recommendations are drawn which could 

be useful to clinical researchers. 

5.2 Methods 

5.2.1 Numerical modeling  

Acute asthma and following recovered airway geometry models used here were the same 

as described in chapter 4. After obtaining geometries, using the meshing software GAMBIT 

2.2 (ANSYS Inc.), the face, volume, mesh and extension tubes at outlets were created and a 

mesh file was produced, which was then read into FLUENT 6.3 (ANSYS Inc.).  To model 

physically accurate profiles in the lung the entire effects of the upstream larynx jet should be 

considered. However, the focus of this study was to evaluate the effects on air flow patterns 

of the physical changes in the airway caused by acute asthma. It is assumed that it is not 
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necessary to fully simulate the effects of the laryngeal jet as these effects will be dampened 

by the trachea curvature and carinal ridges found in the current airway geometry. In addition 

other studies of local bifurcation downstream of the trachea have neglected the upstream 

effects and assumed a constant, parabolic or blunt inlet profile (Balashazy and Hofmann 

1993; Longest et al. 2006; Zhang and Kleinstreuer 2002; Zhang et al. 2005). For the present 

study the trachea was extended the required distance to allow the flow to develop naturally so 

that a more accurate inlet profile at the trachea was formed, rather than using a uniform 

profile. The rationale for extending the trachea to allow flow development is that the velocity 

profiles take into account the effects of the carina ridges (Yang et al. 2006a) and the effects 

of the trachea curvature.  

A flow rate of 15L/min was applied at the inlet, which corresponds to a Reynolds number 

of 1079. The low flow rate provides the advantages of simpler modelling by assuming a 

steady laminar flow based on the consideration that the flow throughout the airway is mostly 

laminar. The flow regime has been considered as laminar or lightly transitional at flow rates 

of 28-30L/min (Re~2000-2500) (Nowak et al. 2003; van Ertbruggen et al. 2005). To use a 

turbulence model for such a flow rate may be less accurate. For example two-equation RANS 

turbulence models are designed for flows that are fully turbulent, although modifications 

have been made to formulate low-Reynolds number models that reproduce the transitional 

behaviour from laminar to turbulent flow. However in these models the physics of 

transitional flow behaviour is not actually resolved and at low flow rates, where laminar 

effects are dominant, it may prove to be more accurate to use a laminar flow as the 

turbulence model may cause an over-prediction in the diffusion process. In addition 

sensitivity studies were performed to determine the differences between k-ω turbulence 

models and a laminar model, and showed little difference in the flow profiles. A steady flow 

was applied based on a variety of criteria (Isabey and Chang 1981; Slutsky et al. 1981; 

Sullivan and Chang 1991) such as the Womersley parameter,  ( ) 5.0
/2/ gD νωα =  ; a variant 

of the Womersley parameter,  ( ) 10075.0/2/1
5.0* <= aveuDωα  (Pedley et al. 1977); and the 
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Strouhal number,  aveuDS /ω=  where  aveu  is the mean velocity, ω is the angular frequency 

of oscillation (=2πf), D is the diameter of the tube and νg is the viscosity. 

Homogeneous outflow conditions were assumed where the mass flow was evenly 

distributed across each of the outlets. Furthermore, the outlets were artificially extended 

downstream given by, DLextension Re05.0=   to obtain fully developed profiles and hence 

avoid any reverse flow , effects of which can arise from an abrupt end to the flow field. An 

initial model with 150000 cells was initially simulated. The model underwent mesh 

refinement by cell adaption techniques which included refining large volume cells, cells that 

displayed high velocity gradients, and near wall refinements. Velocity profiles were 

compared between each subsequent model until the profiles remained the same and hence 

became independent of the grid size. The final model consisted of 1.3million cells.  

Due to the complex geometry of the airway tree, a commercial CFD code, FLUENT, was 

utilised to predict the continuum gas phase flow under steady-state, isothermal, and 

incompressible conditions through solution of the conservation equations of mass and 

momentum. These equations in Cartesian tensor notation are: 
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∂
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which were discretised using FLUENT’s finite volume approach. The third-order accurate 

QUICK scheme was used to approximate the momentum equation while the pressure–

velocity coupling was resolved through the SIMPLE method. The convergence criteria for 

the air flow properties (resolved velocities and pressure) were set at 10−5. The convergence 

criteria were further checked by comparing the simulation of airflows along the section at R2 

with the convergence criteria values of 10−5 and 10−7. The difference of air velocity profile 

between the two simulations was negligible. 
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5.3 Results 

5.3.1 Airway geometry and velocity profile validation 

The reconstructed model of the bronchial tree exhibits an asymmetric dichotomous 

branching pattern. The beginning of the bronchial tree begins with the trachea, which is a 

hollow cylinder in the shape of a horseshoe because of the C-shaped supporting cartilage 

found anteriorly and laterally. Completing the tracheal cylinder on the posterior side is a flat 

band of muscle and connective tissue called the posterior tracheal membrane. Along the 

airway downstream, the cartilage support becomes progressively smaller and less complete. 

An indentation can be found in the left lateral wall of the distal trachea caused by the aortic 

arch. Average branch diameters have been investigated as described in chapter 4 and are 

shown in Table 4.1. The bifurcation angles between daughter branches are given in Figure 

5.1. Obtaining bifurcation angles involved manually orientating the airway to determine the 

middle axis between the two daughter branches. This method introduces some subjective 

uncertainty associated with manual detection of the middle axis, and is exacerbated for 

smaller branches. Bifurcation angles were limited to the main bronchi (L1, R1) and the upper 

lobes (R2, L2 and its extensions) as these branches are larger, affect the distribution of 

airflow more significantly, and are less prone uncertainty in the methodology. 

The bifurcation at the carina produces the right main bronchus (R2, 41o) at a more obtuse 

angle than that of the left main bronchus (L2, 25o) measured by the interbronchial axis 

(centreline of the bronchus) with the long axis of the trachea. The sum of the two daughter 

branching angles (i.e. R2+L2 = 66o ) forms the tracheal carinal angle which compares with a 

mean value of 73o from a sample of 65 men and 55 women; age range 17–85 years; mean age 

56 years (Karabulut 2005) and 63o for a sample of 21 patients with an age range of 51-60 

years (Haskin and Goodman 1982). The right main bronchus continues and bifurcates 

posterior-inferiorly into the right upper lobe bronchus (R3U) and an intermediate bronchus 

(R3L). This bifurcation occurs earlier on the right than on the left lung. R3U is always found 

in patients and usually extends into three main branches: (i) the apical bronchus which is the 

immediate continuation of the upper lobe bronchus, (ii) the posterior bronchus (R4P) and (iii)                                     
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                                                         (a) 

          

  

                (b) REC-Model                                                     (c) AA-model 

 

Figure 5.1 (a) Branch angle definition where two angles are defined at the bifurcation. (b) 

Recovered Model (REC-model) and (c) the Asthma Affected model (AA-Model) 

 

 

the anterior bronchus (R4A). R3L is the branch that continues after R3U has bifurcated from 

it, and is of variable length. It has no branches over its length and directly continues as the 
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lower lobe bronchus (R4L). In the left lung, the left main bronchus (L2) is longer than R2 

and extends laterally forming a gentle curve that runs almost horizontally. It bifurcates into 

the upper lobe bronchus (L3U) and the lower lobe bronchus (L3L). Overall the bifurcation 

angles do not vary significantly between the AA-model and the REC-model, however small 

changes are observed which may be due to the scans which were taken of the patient thirty 

days apart where the positioning and inhalation may have differed.  

 

Figure 5.2 Normalized axial velocity profile and experimental data of Menon et al. (1984)  
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Normalized velocity profiles (Figure 5.2) in the trachea and main bronchi were taken and 

compared with experimental data from a 3:1 scaled up acrylic plastic model of the human 

central airways (Menon et al. 1984). Normalized axial velocity profile is plotted as a function 

of the normalized arc length. The experimental data of Menon et al. (1984) are plotted as (●) 

for the corresponding locations. The development of the profiles has been discussed in the 

publication by Menon et al. (1984) and for brevity is not reported here. However, local flow 

patterns are discussed in detail later in this report. The numerical results generally have good 

agreement with experimental results in terms of characteristic features. Some differences are 

found due to the inherent differences of the geometries used. For example at S1 the CFD 

results show a skewed velocity profile which is a result of the indentation from the aortic 

arch as well as the trachea cartilages. It can also observed that the tracheal bifurcation at the 

carina ridge produces a biased profile towards the inner walls of the subsequent daughter 

branches (S2, S3) because of the upstream flow momentum.  

5.3.2 Pressure distribution 

Contours of the total pressure in reference to the outflow pressure are shown in Figure 5.3. 

The required pressure difference at the inlet for the AA-model was 5.98 Pa, which is nearly 

twice the value for the recovered model (3.73 Pa). Along the main bronchus the pressure 

decreases steadily while there is a definite pressure drop from each main branch into the 

subsequent daughter branch. This is due to the bifurcation ridge where a local maximum 

occurs as a result of a build up of pressure, similar to a stagnation point. 

5.3.3 Local flow features: main bronchus bifurcation 

Crossflow streamlines overlayed on contours of axial velocity at cross-sections a-a’ to f-f’ 

for the REC-model are shown in Figure 5.4 and for the AA-model in Figure 5.5. The cross-

sectional views are taken from the upstream flow point of view looking downwards in the 

axial direction. The three cross-sections preceding the bifurcation (a-a’, b-b’, and c-c’) depict 

the flow before it bifurcates at the carina. Regionally the flow is concentrated on the left 

lateral wall due to the indentation by the transverse portion of the aortic arch. The streamlines 

are directed to the right side in response to the concentrated flow on the left wall. At b-b’ the 
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streamlines are moving towards the ventral side and at cc’ just before the bifurcation, the 

flow begins to divide into the left and right side with ventrally. In the AA- 

 

 

                                                        REC-Model 

 

 

 

 

Figure 5.3 Total pressure contour plots. The pressure value is the pressure difference 

between the local region with a reference pressure at the outlets. 
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Figure 5.4 Cross-flow streamlines overlayed onto axial velocity contour plots at specified 
cross sections in the main bronchi of the REC-model. 
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Figure 5.5 Cross-flow streamlines overlayed onto axial velocity contour plots at specified 
cross sections in the main bronchi of the AA-model. 
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model the axial contours are more evenly distributed. The effect of the aortic arch indentation 

is less significant, however after the indentation the streamlines are directed to the left side of 

the airway. Just prior to the bifurcation, the flow divides and the streamlines are moving 

more laterally than in the REC-model. 

Following the flow through the right main bronchus (d-d’), of the REC-model the bulk 

flow remains close to the inner wall side with the flow momentum shifting towards the outer 

wall as characterised by the streamlines. In the left main bronchus at e-e’, the flow is found 

on the inside wall and a region of recirculation is present in the low axial flow region because 

of: i) the upstream velocity profile that is biased to the left side, ii) a more obtuse bifurcation 

angle that curves laterally producing a centrifugal acceleration, and iii) the critical carina 

geometry. The bifurcation of the left main bronchus into the upper lobe bronchus (L3U) 

occurs laterally, extending to an almost horizontal position, while the lower lobe (L3L) is 

more directly in line with the main bronchus. This leads to a high distribution of slow passing 

through the L3L. The AA-model shows some differences in airflow patterns particularly at i-

i’ and j-j’. The streamlines in left main bronchus (j-j’) suggest that the flow is moving from 

the ventral to the dorsal direction while locally the maximum axial velocity exists in the 

dorsal region. The main difference in the airway geometry is the presence of a narrowed 

rounded ridge on the ventral side. The geometry of the right main bronchus (i-i’) has a flat 

ventral profile and high axial velocity is found more centrally in the cross-section. A region 

of recirculation appears in the left ventral region. It is interesting that recirculation regions 

are found within the first two branches after the carina for both models.  

5.3.4 Local flow features: right upper lobe bifurcation 

Local flow features were investigated at the right upper lobe bifurcation region which is 

near to one of the asthma affected regions. The occluded airway is present in the apical 

bronchus (4RM) which is downstream of cross-section p-p’. Because of the orientation of the 

cross-sections, the labelling of the orthogonal axis to the labels given in the figure are of the 
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superior and inferior sides with respect to the ventral and dorsal views given in Figure 5.3. 

The cross-sections k-k’ and n-n’ given in Figure 5.6 and Figure 5.7respectively are   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Cross-flow streamlines overlayed onto axial velocity contour plots at specified 
cross sections in the right upper lobe for the REC-model. Label S and I represent superior 
and inferior sides respectively. 
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Figure 5.7 Cross-flow streamlines overlayed onto axial velocity contour plots at specified 
cross sections in the right upper lobe for the AA-model. Label S and I represent superior and 
inferior sides respectively. 

 

 

 

 

 

S 

n n’ 

I 

Area =3.3cm2 

n' n 

o 

o' 
p 

p' 

S 

o o’ 

I 

Area = 1.3cm2 

S 

p p

IB 

Area = 1.8cm2 



 

 84 

 

 

located just after the right upper lobe (R3U) bifurcation from the main bronchus posterior-

inferiorly which divides into the apical bronchus (R4M) and the posterior bronchus (R4P). 

As a result the streamlines are directed towards the superior side and the axial velocity is 

localised to one side. In both models a local recirculating region is found on the inner 

bifurcation side of the airway (m’ in the REC-model and p’ in the AA-model). This 

recirculation is caused by the flow separation as the airway bifurcates with the change in 

direction of the airway. The flow on the inner wall of the curvature and the corresponding 

axial velocities increase in comparison with the velocities on the outer wall. The flows in the 

posterior bronchi (l-l’ and o-o’) are considerably different to each other. The increase in axial 

velocity is produced by the narrowing of the airway coupled with its irregular shape. In the 

AA-model the streamlines are directed inferiorly while the axial flow is concentrated 

superiorly. This suggests that the airway is curving inferiorly and that drug particles for 

therapy which reach this region may impact on the superior side of the wall. The severe 

blockage in the right apical bronchus, distal to the cross-section p-p’, shows some additional 

recirculation where the airway is blocked. Given this blockage, low flowrates in the 

bifurcating airway are present which reduces the likelihood of drug particles depositing onto 

the walls. 

5.4 Discussion 

Treatment of asthma is most commonly employed during the onset of the asthma episode. 

Particles are atomised into smaller particles through ventilators or other drug delivery devices 

and inhaled through the mouth. The flow profiles and features presented show that the 

changes in the airway caused by airway narrowing from asthma have a significant influence 

on flow patterns. This is especially true in the region where the airway narrowing is most 

severe. Drug particles are delivered with the target being the region of airway occlusion; 

however the airflow patterns may not be conducive to transporting the particles to the 
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targeted sites. For example smaller particles with less particle inertia will follow the path 

streamlines fairly well as if they were entrained in the flow. This is advantageous for deep 

lung particle penetration but also reduces the likelihood of particles depositing in regions of 

low flow i.e. airway occlusions. On the other hand, larger particles which exhibit higher 

particle inertia are more likely to experience early inertial impaction, thus reducing the 

particle trajectory length. Therefore a compromise or alternative solution is needed to 

provide effective drug delivery to the targeted site. 

5.5 Conclusion 

Two models with six generations of the airway tree from an acute asthma episode and 

following recovery from the same patient thirty days apart were reconstructed from 

computed tomography (CT) scans in order to investigate the effects of acute asthma on 

realistic airway geometry, the airflow patterns, the pressure drop, and the implications it has 

on targeted drug delivery. The comparisons in the geometry found that in general the right 

side of the airway is larger in diameter than the left side. The recovery of the airway was 

most significant in the severely asthma affected regions. Overall the right airway exhibited 

greater dilation in comparison with the left airway especially from the fifth generation 

onwards. In addition it was found that bifurcation angles do not vary significantly between 

the AA-model and the REC-model, however small changes are observed which may be due 

to the scans which were taken thirty days apart where the positioning and inhalation may 

have differed. The required pressure difference at the inlet for the AA-model was 5.98 Pa, 

which is nearly twice the value for the recovered model (3.73 Pa). This suggests that during 

the period of an acute asthma episode, the work of breathing for the patient in order to 

achieve the same tidal volumes, is double compared to the recovered state, which can lead to 

respiratory muscle fatigue. Local flow patterns showed that the changes in the airway had 

significant influence on flow patterns. This is especially apparent in the region where the 

airway narrowing is most severe. This means that studies of therapeutic drug delivery in the 
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airway should consider the effects of airway narrowing and not a recovered or a healthy 

airway.                                                                                                                                                                         
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Chapter 6 

Conclusions and Recommendations 

6.1 Concluding Remarks 

The main objectives of this research were, 

 

a. To develop a new algorithm for the reconstruction of tubular organs. 

b. To develop a new algorithm to generate a human lung airway tree and an arterial 

vessel model. 

c. To compare the difference of geometries and inhalation efforts between a 

bronchoconstricted and recovered airway tree associated with acute asthma. 

d. To compare the difference of airflow patterns between a bronchoconstricted and 

recovered airway tree associated with acute asthma. 

 

The work conducted in this research to satisfy these objectives has resulted in the 

following conclusions: 

6.1.1 Conclusions on medical organs geometry modeling 

1. Two CT/MRI image based geometry reconstruction approaches, the reverse 

engineering approach and the STL-triangulated model converting approach, are 

proposed.  

2. The reverse engineering approach and the STL-triangulated model converting 

approach have been compared in human lung airway geometry model generation. The 

results indicate that it is difficult to triangulate the points obtained from medical 

image segmentation if the object geometry shape is complex. 
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3. The selection of the geometry reconstruction approach depends on the particular 

application it is intended for. The reverse engineering approach would be selected 

when the generated surface model or models have less overall complexity. The STL-

triangulated model converting approach is preferred when a rapid prototype of the 

model is needed for surgical planning or display. 

6.1.2 Conclusions on the region-based algorithm for human lung airway 

tree and arterial vessel model generation 

1. A new region-based algorithm is proposed to reconstruct a geometry model of human 

airway and arterial vessels which consist of tubular geometries with a large difference 

in diameters. The method consists of two steps. The first step is to recognize the 

branches of the airway tree and bifurcations of the arterial vessels; the second step is 

to construct each of the branch surface patches by using an established method. On 

each branch the surface patches are constructed according to the number of available 

points by using an established method. In this way, different approximation accuracy 

can be applied in different branches depending on the availability of the branch 

information, which can lead to better surface quality. 

2. A new searching algorithm has been developed to recognize the branches from the 

point clouds obtained from medical images. The searching principle is layer by layer. 

The topological relationship between branches and the relative location of each 

branch could be identified once the searching direction is fixed in each layer. Because 

the points on each branch have been grouped together, the new searching algorithm 

can also be utilized in the labeling of airway tresses.  

6.1.3 Conclusions on geometry and inhalation effort comparison 

between the acute asthma and recovered airway trees  

1. The recovery within the airways was measured by the increase in the diameters of the 

airways within the tracheobronchial tree, measured thirty days apart from the initial 

episode of asthma. The increase in diameters is also reflective of the increase in the 
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total lung capacity that is available as a larger diameter would provide a greater 

volume. 

2. It was found that right sided airway tree had greater bronchodilation than the left 

airway tree following recovery after an acute asthma episode in this individual. This 

correlated with the fact that the right airway was larger in size. 

3. Under steady laminar flow conditions of 15L/min, the required pressure difference at 

the inlet for the acute asthma model was 5.98 Pa, which is nearly twice the value for 

the recovered model (3.73 Pa). This requirement suggests that the respiratory muscles 

exert more effort during an acute asthma episode in order to achieve the same tidal 

volumes which can lead to respiratory muscle fatigue. 

6.1.4 Conclusions on airflow patterns comparison between the acute 

asthma and recovered airway trees  

1. The acute asthma model shows some differences in airflow patterns. The streamlines 

in the left main bronchus suggest that the flow is moving from the ventral to dorsal 

direction while locally the maximum axial velocity exists in the dorsal region. The 

main difference in the airway geometry is the presence of a narrowed rounded ridge 

on the ventral side. The geometry of the right main bronchus has a flat ventral profile 

and high axial velocity is found more centrally in the cross-section. A region of 

recirculation appears in the left ventral region. It is interesting that recirculation 

regions are found within the first two branches after the carina for both models.  

2. The severe blockage in the right apical bronchus, distal to the cross-section p-p’, 

shows some additional recirculation where the airway is blocked. Given this 

blockage, low flow rates in the bifurcating airway are present which reduces the 

likelihood of drug particles depositing onto the walls. 
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6.2 Recommendations for Further Study 

Based on the results obtained during this investigation, the author suggests the following 

recommendations should be considered in future work.  

The first major issue is to include the upper airway consisting of the oral/nasal cavity 

down to the larynx before joining the trachea and lower generations. It has been known that 

the larynx effect can significantly influence the entering flow and particle profile at the 

trachea and hence it can affect the deposition considerably in the first few bifurcations within 

the airways. If more computer resources (e.g. more powerful computers, enhanced image 

acquisition and processing software, etc) can be allocated, then lower generations (after 

generation 6) should also be included, because the entering profiles at the outlets were 

assumed to be flat when cyclic flow cases were applied at the current study. In practice, it has 

been known that the flow profile after bifurcation is hardly a flat profile. The significance of 

this issue in the final outcome is hence not incorporated in this study. 

Secondly, the walls created within the model are assumed rigid and smooth whereas in 

reality the walls may exhibit some roughness and elasticity. The exclusion of these attributes 

may alter the predicted magnitudes of the pressure drop. In addition this exclusion may 

actually cause further errors as the elasticity and roughness of the walls are not accurately 

known. Fouke has developed a method to examine the elastic behavior of the upper airway 

(Fouke et al. 1989). Therefore the elastic behavior of airway wall should also be included in 

airway tree models in future studies.   

The final recommendation is to compare and quantify the results and obtain more CT scan 

data of other patients from an acute asthma episode and following recovery. Some further 

study may advance particle deposition prediction and its dynamic nature in comparison 

between the acute asthma and recovered models.   



 91 

Appendix  

Code of layer-by-layer searching algorithm (used in Chapter 3) 

******************************************************* 

Code of Root Bifurcation Boundary Searching 

**********************************************  

%This code is designed to find the root bifurcation boundary 
%from triangulated points. The topology of the subject is tube 
%like thing. 

  
%read in the triangle from stl file and checking the point with 
%the lowest Z coordinate 

  
fid1=fopen('C:\Documents and 

Settings\S3126701\Desktop\lung\RootPoints.txt','a'); 
fid=fopen('C:\Documents and Settings\S3126701\Desktop\lung\lung2.stl','r'); 
i=1; 
LowestPoint{1}=[100 100 100]; 
line=fgetl(fid); 
while feof(fid)==0 
   line=fgetl(fid); 
   if feof(fid)~=0 
       break 
   end 
   line=fgetl(fid); 

  

   
   line=fgetl(fid); 
      t{1}=sscanf(line,'%*s %e %e %e',[1,inf]); 
     if t{1}(1,3)<LowestPoint{1}(1,3) 
          LowestPoint{1}=t{1}; 
     end 

    
   line=fgetl(fid); 
      t{2}=sscanf(line,'%*s %e %e %e',[1,inf]); 
      if t{2}(1,3)<LowestPoint{1}(1,3) 
          LowestPoint{1}=t{2}; 
      end 

    
    line=fgetl(fid); 
      t{3}=sscanf(line,'%*s %e %e %e',[1,inf]); 
      if t{3}(1,3)<LowestPoint{1}(1,3) 
          LowestPoint{1}=t{3}; 
      end 

    
   line=fgetl(fid); 

    
   line=fgetl(fid);  
    T{i}=t; 
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  i=i+1; 

   
end 

  
%*********grouping the mesh************* 
n31=1; 
n32=1; 
n33=1; 
n34=1; 
n35=1; 
n36=1; 
n37=1; 
n38=1; 
n39=1; 
n40=1; 
n41=1; 
n42=1; 
for j=1:(i-1) 
    if T{j}{1,1}(1,3)<56.2 
        gp1TriNo(n31)=j; 
        n31=n31+1; 
    else if T{j}{1,1}(1,3)<70.4             
            gp2TriNo(n32)=j; 
            n32=n32+1; 
        else if T{j}{1,1}(1,3)<84.6                 
                gp3TriNo(n33)=j; 
                n33=n33+1; 
            else if T{j}{1,1}(1,3)<98.8                     
                    gp4TriNo(n34)=j; 
                    n34=n34+1; 
                else if T{j}{1,1}(1,3)<105.9                        
                        gp5TriNo(n35)=j; 
                        n35=n35+1; 
                    else if T{j}{1,1}(1,3)<113                            
                            gp6TriNo(n36)=j; 
                            n36=n36+1; 
                        else if T{j}{1,1}(1,3)<120.1                                 
                                gp7TriNo(n37)=j; 
                                n37=n37+1; 
                            else if T{j}{1,1}(1,3)<127.2                                    

                                    gp8TriNo(n38)=j; 
                                    n38=n38+1; 
                                else if T{j}{1,1}(1,3)<134.3                                        

                                        gp9TriNo(n39)=j; 
                                        n39=n39+1; 
                                    else if T{j}{1,1}(1,3)<141.4                                          

                                            gp10TriNo(n40)=j; 
                                            n40=n40+1; 
                                        else if T{j}{1,1}(1,3)<155.6                                              

                                                gp11TriNo(n41)=j; 
                                                n41=n41+1; 
                                            else if T{j}{1,1}(1,3)<184                                                 

                                                    gp12TriNo(n42)=j; 
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                                                    n42=n42+1; 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
%**********end of grouping the mesh************* 

  
UnvisitedTriNo=gp1TriNo; 
VisitedTriNo=[]; 

   
%finding the triangles with LowestPoint from unvisited triangles 
%m=l-1 is the number of associated triangle. 
%No.AssTri is the arry to store the sequence number of associated triangle 

  
l=1; 
for k=1:(n31-1) 
   if T{UnvisitedTriNo(k)}{1,1}==LowestPoint{1} 
       AssociatedTri{l}=T{UnvisitedTriNo(k)}; 
       No.AssTri(l)=UnvisitedTriNo(k);  
       l=l+1; 
   else if T{UnvisitedTriNo(k)}{1,2}==LowestPoint{1} 
            AssociatedTri{l}=T{UnvisitedTriNo(k)}; 
            No.AssTri(l)=UnvisitedTriNo(k);  
            l=l+1; 
       else if T{UnvisitedTriNo(k)}{1,3}==LowestPoint{1} 
              AssociatedTri{l}=T{UnvisitedTriNo(k)}; 
              No.AssTri(l)=UnvisitedTriNo(k);  
              l=l+1; 
           end 
       end 
   end 
end 

  

  
%finding the NextPoint from AssociatedTri. 
%n-1 is the number of NextPoint1,  
%NextPoint1 are the points with lower z coordinate in each AssociatedTri. 
%NextPoint is the point with bigger x coordinate in NextPoint1. 

  
n=1; 
for m=1:(l-1) 
    if AssociatedTri{m}{1,1}(1,1)~=LowestPoint{1}(1,1)% x of lowest point 

unequal 
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        if AssociatedTri{m}{1,2}(1,1)~=LowestPoint{1}(1,1)% x of second 

point unequal 
            if AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                NextPoint1{n}=AssociatedTri{m}{1,1}; 
            else NextPoint1{n}=AssociatedTri{m}{1,2}; 
            end 
         else if AssociatedTri{m}{1,2}(1,2)~=LowestPoint{1}(1,2)% y of 

second point unequal 
                 if AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                     NextPoint1{n}=AssociatedTri{m}{1,1}; 
                 else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                 end 
             else if AssociatedTri{m}{1,2}(1,3)~=LowestPoint{1}(1,3)% z of 

second point unequal 
                      if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                          NextPoint1{n}=AssociatedTri{m}{1,1}; 
                      else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                      end 
                  else if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,3}(1,3)%second point = 

NextPoint 
                          NextPoint1{n}=AssociatedTri{m}{1,1}; 
                      else NextPoint1{n}=AssociatedTri{m}{1,3}; 
                      end 
                  end 
             end 
         end 
      else if AssociatedTri{m}{1,1}(1,2)~=LowestPoint{1}(1,2)% y of first 

point unequal 
              if AssociatedTri{m}{1,2}(1,1)~=LowestPoint{1}(1,1)% x of 

second point unequal 
                  if AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                      NextPoint1{n}=AssociatedTri{m}{1,1}; 
                  else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                  end 
              else if AssociatedTri{m}{1,2}(1,2)~=LowestPoint{1}(1,2)% y of 

second point unequal 
                      if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                          NextPoint1{n}=AssociatedTri{m}{1,1}; 
                      else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                      end 
                  else if AssociatedTri{m}{1,2}(1,3)~=LowestPoint{1}(1,3)% 

z of second point unequal 
                          if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                              NextPoint1{n}=AssociatedTri{m}{1,1}; 
                          else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                          end 
                      else if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,3}(1,3)%second point = 

NextPoint 
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                              NextPoint1{n}=AssociatedTri{m}{1,1}; 
                          else NextPoint1{n}=AssociatedTri{m}{1,3}; 
                          end 
                      end 
                  end 
              end 
          else if AssociatedTri{m}{1,1}(1,3)~=LowestPoint{1}(1,3)% z of 

first point unequal 
                  if AssociatedTri{m}{1,2}(1,1)~=LowestPoint{1}(1,1)% x of 

second point unequal 
                      if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                          NextPoint1{n}=AssociatedTri{m}{1,1}; 
                      else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                      end 
                  else if AssociatedTri{m}{1,2}(1,2)~=LowestPoint{1}(1,2)% 

y of second point unequal 
                          if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                               NextPoint1{n}=AssociatedTri{m}{1,1}; 
                          else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                          end 
                      else if 

AssociatedTri{m}{1,2}(1,3)~=LowestPoint{1}(1,3)% z of second point unequal 
                              if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,2}(1,3) 
                                  NextPoint1{n}=AssociatedTri{m}{1,1}; 
                              else NextPoint1{n}=AssociatedTri{m}{1,2}; 
                              end 
                          else if 

AssociatedTri{m}{1,1}(1,3)<AssociatedTri{m}{1,3}(1,3)%second point = 

NextPoint 
                                  NextPoint1{n}=AssociatedTri{m}{1,1}; 
                              else NextPoint1{n}=AssociatedTri{m}{1,3}; 
                              end 
                          end 
                      end 
                  end 
              else if 

AssociatedTri{m}{1,2}(1,3)<AssociatedTri{m}{1,3}(1,3)%first point = 

NextPoint 
                      NextPoint1{n}=AssociatedTri{m}{1,2}; 
                  else NextPoint1{n}=AssociatedTri{m}{1,3}; 
                  end 
              end 
          end 
    end 
    n=n+1; 
end 
n1=1; 
NextPoint{1,1}=LowestPoint{1}; 
for n1=1:(n-2) 
    if NextPoint1{n1}(1,1)>NextPoint1{n1+1}(1,1) 
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        NextPoint{1,2}=NextPoint1{n1}; 
        No.NextPoint=No.AssTri(n1); 

         

         
    else NextPoint{1,2}=NextPoint1{n1+1}; 
         No.NextPoint=No.AssTri(n1+1); 
    end 
end 
% 
%******************************************* 
%finding the NextPoint starts from NextPoint. 
% 
% 
 n7=3; 
 r=n31-1; 
 while NextPoint{1,(n7-1)}~=LowestPoint{1};%finishing the loop of finding 

rootbundary 
                                %when it reach start point(LowestPoint) 

                                
    VisitedTriNo=[VisitedTriNo,No.NextPoint]; 
    %r=size(UnvisitedTriNo1,2); 
    %delet visited triangle. 
    %n2=find(UnvisitedTriNo==No.NextPoint); 
    %aa=[]; 
    %ab=[]; 
    %for n3=1:r 
    %    if n3<n2 
    %        aa(n3)=UnvisitedTriNo(n3); 
    %    end 
    %    if n3>n2 
    %        ab(n3-n2)=UnvisitedTriNo(n3); 
    %    end 
    %end 
    %UnvisitedTriNo=[aa,ab]; 
    UnvisitedTriNo(No.NextPoint)=0; 
    %finding associated tri from unvisited tri 
    %r=size(UnvisitedTriNo,2); 
    i=1; 
    No.AssTri=[]; 
    for n4=1:r 
        if UnvisitedTriNo(n4)~=0 
           if T{UnvisitedTriNo(n4)}{1,1}==NextPoint{(n7-1)}            
               No.AssTri(i)=UnvisitedTriNo(n4);             
               i=i+1;        
           else if T{UnvisitedTriNo(n4)}{1,2}==NextPoint{(n7-1)} 
                    No.AssTri(i)=UnvisitedTriNo(n4);        
                    i=i+1;                 
               else if T{UnvisitedTriNo(n4)}{1,3}==NextPoint{(n7-1)} 
                      No.AssTri(i)=UnvisitedTriNo(n4);            
                      i=i+1; 
                   end 
               end 
           end 
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        end 
     end 

  
    if i<3%in the case which has only one associated tri 
        if T{No.AssTri(i-1)}{1,1}(1,1)~=NextPoint{(n7-1)}(1,1)% x of first 

point unequal  
            if T{No.AssTri(i-1)}{1,2}(1,1)~=NextPoint{(n7-1)}(1,1)% x of 

second point unequal 
                if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-1)}{1,2}(1,3) 
                    NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2};    
                end 
            else if T{No.AssTri(i-1)}{1,2}(1,2)~=NextPoint{(n7-1)}(1,2)% y 

of second point unequal 
                    if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,2}(1,3) 
                        NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                    else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                    end 
                else if T{No.AssTri(i-1)}{1,2}(1,3)~=NextPoint{(n7-

1)}(1,3)% z of second point unequal 
                        if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,2}(1,3) 
                            NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                        else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                        end 
                    else if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,3}(1,3)%second point = NextPoint 
                            NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                        else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,3}; 
                        end 
                    end 
                end 
            end 
        else if T{No.AssTri(i-1)}{1,1}(1,2)~=NextPoint{(n7-1)}(1,2)% y of 

first point unequal 
                if T{No.AssTri(i-1)}{1,2}(1,1)~=NextPoint{(n7-1)}(1,1)% x 

of second point unequal 
                    if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,2}(1,3) 
                        NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                    else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                    end 
                else if T{No.AssTri(i-1)}{1,2}(1,2)~=NextPoint{(n7-

1)}(1,2)% y of second point unequal 
                        if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,2}(1,3) 
                            NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                        else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                        end 
                    else if T{No.AssTri(i-1)}{1,2}(1,3)~=NextPoint{(n7-

1)}(1,3)% z of second point unequal 
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                            if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,2}(1,3) 
                                NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                            else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                            end 
                        else if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,3}(1,3)%second point = NextPoint 
                                NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                            else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,3}; 
                            end 
                        end 
                    end 
                end 
            else if T{No.AssTri(i-1)}{1,1}(1,3)~=NextPoint{(n7-1)}(1,3)% z 

of first point unequal 
                    if T{No.AssTri(i-1)}{1,2}(1,1)~=NextPoint{(n7-1)}(1,1)% 

x of second point unequal 
                        if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,2}(1,3) 
                            NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                        else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                        end 
                    else if T{No.AssTri(i-1)}{1,2}(1,2)~=NextPoint{(n7-

1)}(1,2)% y of second point unequal 
                            if T{No.AssTri(i-1)}{1,1}(1,3)<T{No.AssTri(i-

1)}{1,2}(1,3) 
                                 NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                            else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                            end 
                        else if T{No.AssTri(i-1)}{1,2}(1,3)~=NextPoint{(n7-

1)}(1,3)% z of second point unequal 
                                if T{No.AssTri(i-

1)}{1,1}(1,3)<T{No.AssTri(i-1)}{1,2}(1,3) 
                                    NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                                else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                                end 
                            else if T{No.AssTri(i-

1)}{1,1}(1,3)<T{No.AssTri(i-1)}{1,3}(1,3)%second point = NextPoint 
                                    NextPoint{1,n7}=T{No.AssTri(i-1)}{1,1}; 
                                else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,3}; 
                                end 
                            end 
                        end 
                    end 
                else if T{No.AssTri(i-1)}{1,2}(1,3)<T{No.AssTri(i-

1)}{1,3}(1,3)%first point = NextPoint 
                        NextPoint{1,n7}=T{No.AssTri(i-1)}{1,2}; 
                    else NextPoint{1,n7}=T{No.AssTri(i-1)}{1,3}; 
                    end 
                end 
            end 
        end 
        No.NextPoint=No.AssTri(i-1); 
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        n7=n7+1; 
    else NextPoint1={};%clear the NextPoint1 
      for n5=1:(i-1)%exclude the NextPoint{n7-1} from associated tri 
          if T{No.AssTri(n5)}{1,1}(1,1)~=NextPoint{(n7-1)}(1,1)% x of first 

point unequal 
              if T{No.AssTri(n5)}{1,2}(1,1)~=NextPoint{(n7-1)}(1,1)% x of 

second point unequal 
                   NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                   NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 

                   
              else if T{No.AssTri(n5)}{1,2}(1,2)~=NextPoint{(n7-1)}(1,2)% y 

of second point unequal 
                      NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                      NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 

                       
                  else if T{No.AssTri(n5)}{1,2}(1,3)~=NextPoint{(n7-

1)}(1,3)% z of second point unequal 
                          NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                          NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 

                           
                      else NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 

%second point = NextPoint 
                          NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,3};  

                        
                      end 
                   end 
              end 
          else if T{No.AssTri(n5)}{1,1}(1,2)~=NextPoint{(n7-1)}(1,2)% y of 

first point unequal 
                  if T{No.AssTri(n5)}{1,2}(1,1)~=NextPoint{(n7-1)}(1,1)% x 

of second point unequal 
                      NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                      NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 

                       
                  else if T{No.AssTri(n5)}{1,2}(1,2)~=NextPoint{(n7-

1)}(1,2)% y of second point unequal 
                          NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                          NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 

                           
                      else if T{No.AssTri(n5)}{1,2}(1,3)~=NextPoint{(n7-

1)}(1,3)% z of second point unequal 
                              NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                              NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 
                          else 

NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1};%second point = NextPoint 
                               NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,3}; 

                               
                          end 
                      end 
                  end 
              else if T{No.AssTri(n5)}{1,1}(1,3)~=NextPoint{(n7-1)}(1,3)% z 

of first point unequal 
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                      if T{No.AssTri(n5)}{1,2}(1,1)~=NextPoint{(n7-

1)}(1,1)% x of second point unequal 
                          NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                          NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 
                      else if T{No.AssTri(n5)}{1,2}(1,2)~=NextPoint{(n7-

1)}(1,2)% y of second point unequal 
                              NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                              NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 
                          else if 

T{No.AssTri(n5)}{1,2}(1,3)~=NextPoint{(n7-1)}(1,3)% z of second point 

unequal 
                                  NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1}; 
                                  NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,2}; 
                              else  

NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,1};%second point = NextPoint 
                                    

NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,3}; 

                                   
                              end 
                          end 
                      end 
                  else NextPoint1{n5}{1,1}=T{No.AssTri(n5)}{1,2};%first 

point = NextPoint 
                       NextPoint1{n5}{1,2}=T{No.AssTri(n5)}{1,3}; 
                  end 
              end 
          end 
      end 
      %finding the nextpoint2 which doesn't equal to other points in 
      %associated tri 
      NextPoint2={}; 
      b={}; 
      for n10=1:(i-1) 
          l1=1; 
          l2=1; 
          for n9=1:(i-1) 
              if NextPoint1{n9}{1,1}(1,1)==NextPoint1{n10}{1,1}(1,1)%== 

first point x 
                 if NextPoint1{n9}{1,1}(1,2)==NextPoint1{n10}{1,1}(1,2) %== 

first point y 
                     if NextPoint1{n9}{1,1}(1,3)==NextPoint1{n10}{1,1}(1,3) 

%== first point z 
                         b{n10}(1,1)=l1; 
                         l1=l1+1; 
                     end 
                 end 
              end 
              if NextPoint1{n9}{1,2}(1,1)==NextPoint1{n10}{1,1}(1,1)%== 

second point x 
                 if NextPoint1{n9}{1,2}(1,2)==NextPoint1{n10}{1,1}(1,2) %== 

second point y 
                     if NextPoint1{n9}{1,2}(1,3)==NextPoint1{n10}{1,1}(1,3) 

%== second point z 
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                         b{n10}(1,1)=l1; 
                         l1=l1+1; 
                     end 
                 end 
              end 
              if NextPoint1{n9}{1,1}(1,1)==NextPoint1{n10}{1,2}(1,1)%== 

first point x 
                 if NextPoint1{n9}{1,1}(1,2)==NextPoint1{n10}{1,2}(1,2) %== 

first point y 
                     if NextPoint1{n9}{1,1}(1,3)==NextPoint1{n10}{1,2}(1,3) 

%== first point z 
                         b{n10}(1,2)=l2; 
                         l2=l2+1; 
                     end 
                 end 
              end 
              if NextPoint1{n9}{1,2}(1,1)==NextPoint1{n10}{1,2}(1,1)%== 

first point x 
                 if NextPoint1{n9}{1,2}(1,2)==NextPoint1{n10}{1,2}(1,2) %== 

first point y 
                     if NextPoint1{n9}{1,2}(1,3)==NextPoint1{n10}{1,2}(1,3) 

%== first point z 
                         b{n10}(1,2)=l2; 
                         l2=l2+1; 
                     end 
                 end 
              end 
          end 
      end 
      n11=1; 
      for n12=1:(i-1) 
          if b{n12}(1,1)<2 
              NextPoint2{1,n11}=NextPoint1{n12}{1,1}; 
              No.NextPoint2(n11)=No.AssTri(n12); 
               n11=n11+1; 
          end 
          if b{n12}(1,2)<2 
              NextPoint2{1,n11}=NextPoint1{n12}{1,2}; 
              No.NextPoint2(n11)=No.AssTri(n12); 
              n11=n11+1; 
          end 
      end%after finish this step only two points left in this turn 

       
      for n13=1:3% the next point is the point which is not in same tri 

with last nextPoint 
         if T{No.NextPoint}{1,n13}(1,1)==NextPoint2{1,1}(1,1) 
             if T{No.NextPoint}{1,n13}(1,2)==NextPoint2{1,1}(1,2) 
                 if T{No.NextPoint}{1,n13}(1,3)==NextPoint2{1,1}(1,3) 
                    NextPoint{1,n7}=NextPoint2{1,2}; 
                    No.NP=No.NextPoint2(2); 
                    n7=n7+1; 
                 end 
             end 
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         end 
      end 
      for n14=1:3 
          if T{No.NextPoint}{1,n14}(1,1)==NextPoint2{1,2}(1,1) 
             if T{No.NextPoint}{1,n14}(1,2)==NextPoint2{1,2}(1,2) 
                 if T{No.NextPoint}{1,n14}(1,3)==NextPoint2{1,2}(1,3) 
                    NextPoint{1,n7}=NextPoint2{1,1}; 
                    No.NP=No.NextPoint2(1); 
                    n7=n7+1; 
                 end 
             end 
          end 
      end 
      No.NextPoint=No.NP; 
    end 
 end 

  

  
%***************************** 
%reorder the step 1 NextPoint 
%***************************** 
%finding the biggest x,y and samallest x,y points 
biggestXPoint{1,1}=NextPoint{1,1}; 
biggestYPoint{1,1}=NextPoint{1,1}; 
smallestXPoint{1,1}=NextPoint{1,1}; 
smallestYPoint{1,1}=NextPoint{1,1}; 

  
for n15=1:(n7-2) 
    if NextPoint{1,n15}(1,1)>biggestXPoint{1,1}(1,1) 
        biggestXPoint{1,1}=NextPoint{1,n15}; 
        No.biggestXPoint=n15; 
    end 
    if NextPoint{1,n15}(1,2)>biggestYPoint{1,1}(1,2) 
        biggestYPoint{1,1}=NextPoint{1,n15}; 
        No.biggestYPoint=n15; 
    end 
    if NextPoint{1,n15}(1,1)<smallestXPoint{1,1}(1,1) 
        smallestXPoint{1,1}=NextPoint{1,n15}; 
        No.smallestXPoint=n15; 
    end 
    if NextPoint{1,n15}(1,2)<smallestYPoint{1,1}(1,2) 
        smallestYPoint{1,1}=NextPoint{1,n15}; 
        No.smallestYPoint=n15; 
    end 
end 

  
%reorder the step 1 NextPoint 
n16=1; 
n17=No.biggestXPoint; 
for n15=1:(n7-2) 
    if n17<=(n7-2) 
        NextPoint5{1,n15}=NextPoint{1,n17}; 
        n17=n17+1; 
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    else NextPoint5{1,n15}=NextPoint{1,n16}; 
        n16=n16+1; 
    end 
end 

  
for n6=1:(n7-2) 
    fprintf(fid1,'%f %f 

%f\n',NextPoint5{1,n6}(1,1),NextPoint5{1,n6}(1,2),NextPoint5{1,n6}(1,3)); 
end 

  

  

                                      

   

       
%*********************************************************************** 
NextPoint={}; 
NextPoint=NextPoint5; 

  
fclose(fid); 
fclose(fid1); 
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*********************************** 

Code of layer by layer searching 

*********************************** 

%This code is designed to find next step point start form the root 

bifurcation boundary 
%from unvisited triangule. The topology of the subject is tube 
%like thing. 

  
i1=1; 

  
for m=1:1000 

             
    n7=1; 
    n=1; 
    %NextPoint{m,n}={}; 
    i9=0; %birfucation indicator(case 1)refer to bif2step55 
    i10=0;%birfucation indicator(case 2)refer to bif1step15 
    i11=0;%birfucation indicator(case 3)refer to bif1.1.1.step14 

   
    while n<=(j-1) 

         
        %finding the triangles with NextPoint from unvisited triangles 
        %No.AssTri is the arry to store the sequence number of associated 

triangle 
        if n==1              
           l1=1; 
           No.AssTri=[]; 
           No.AssTriAddress=[]; 
           for k=1:r 
               if UnvisitedTriNo(k) ~= 0 
                   if T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),n} 
                      No.AssTri(l1)=UnvisitedTriNo(k); 
                      No.AssTriAddress(l1)=k; 
                      l1=l1+1; 
                  else if T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),n} 
                           No.AssTri(l1)=UnvisitedTriNo(k);  
                           No.AssTriAddress(l1)=k; 
                           l1=l1+1;  
                      else if T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),n} 
                               No.AssTri(l1)=UnvisitedTriNo(k);  
                               No.AssTriAddress(l1)=k; 
                               l1=l1+1;                      
                          end 
                      end 
                   end 
               end 
           end%for k=1:r 
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           %finding the triangles with last NextPoint from unvisited 

triangles 
           %No.LAssTri is the arry to store the sequence number of 

associated 
           %triangles 
           l2=1; 
           for k=1:r 
               if UnvisitedTriNo(k)~=0 
                   if T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),(j-1)} 
                      No.LAssTri(l2)=UnvisitedTriNo(k); 
                      l2=l2+1;                                 
                  else if T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),(j-1)} 
                           No.LAssTri(l2)=UnvisitedTriNo(k); 
                           l2=l2+1;                                 
                      else if T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-

1),(j-1)} 
                               No.LAssTri(l2)=UnvisitedTriNo(k); 
                               l2=l2+1;                                 
                          end 
                      end 
                   end 
               end 
           end%for k=1:r 

            
           %finding the same Tri between AssTri and LAssTri 

  
           for n1=1:(l1-1)%if existing same Tri 
               for n2=1:(l2-1) 
                   if No.LAssTri(n2)==No.AssTri(n1) 
                       a=n1; 
                   end 
               end 
           end 

            

                
           %finding the first NextStep point which neither equal to 

nextpoint 
           %nor equal to last nextpoint in same Tri 
              for n2=1:3 
                   if T{No.AssTri(a)}{1,n2}==NextPoint{(m-1),(j-1)} 
                       b1(1,1)=n2; 
                   end 
               end 
               for n2=1:3 
                   if T{No.AssTri(a)}{1,n2}==NextPoint{(m-1),n} 
                       b1(1,2)=n2; 
                   end  
               end 
               if b1(1,1)==1 
                   if b1(1,2)==2 
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                       b1(1,3)=3; 
                   end 
               end 
               if b1(1,1)==2 
                   if b1(1,2)==1 
                       b1(1,3)=3; 
                   end 
               end 
               if b1(1,1)==1 
                   if b1(1,2)==3 
                       b1(1,3)=2; 
                   end 
               end 
               if b1(1,1)==3 
                   if b1(1,2)==1 
                       b1(1,3)=2; 
                   end 
               end 
               if b1(1,1)==2 
                   if b1(1,2)==3 
                       b1(1,3)=1; 
                   end 
               end 
               if b1(1,1)==3 
                   if b1(1,2)==2 
                       b1(1,3)=1; 
                   end 
               end 
               NextPoint{m,n7}=T{No.AssTri(a)}{1,b1(1,3)};  
               c=1;%reset c=1; 
               for n6=1:3%if the point is on last step, if so, clear this 

point  
                   if NextPoint{m,n7}==NextPoint{m-1,n6} 
                       c=2; 
                       break;%stop the loop of for n6=1:(j-1) 
                   end 
                   if NextPoint{m,n7}==NextPoint{m-1,j-1-n6} 
                       c=3; 
                       break;%stop the loop of for n6=1:(j-1) 
                   end 
               end 

                
               %*********   if c==1   ************************ 

                
               if c==1%unequal to last step 
                  l3=1;%find the AssTriNo with NextPoint{m,1}  
                  No.AssTri2=[]; 
                  for k=1:r 
                      if UnvisitedTriNo(k)~=0 
                         if T{UnvisitedTriNo(k)}{1,1}==NextPoint{m,1} 
                             No.AssTri2(l3)=UnvisitedTriNo(k); 
                             l3=l3+1;                                                           

                         else if T{UnvisitedTriNo(k)}{1,2}==NextPoint{m,1} 
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                                  No.AssTri2(l3)=UnvisitedTriNo(k); 
                                  l3=l3+1; 
                             else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{m,1} 
                                      No.AssTri2(l3)=UnvisitedTriNo(k); 
                                      l3=l3+1;                                 
                                 end 
                             end 
                         end 
                      end 
                   end %for k=1:r %end find the AssTriNo with NextPoint{m,1}  
                   UnvisitedAssTriNo=No.AssTri; 
                   r1=size(UnvisitedAssTriNo,2); 
                   VisitedAssTriNo=No.AssTri(a); 
                   n2=find(UnvisitedAssTriNo==No.AssTri(a)); 
                   aa=[]; 
                   ab=[]; 
                   for n3=1:r1 
                       if n3<n2 
                           aa(n3)=UnvisitedAssTriNo(n3); 
                       end 
                       if n3>n2 
                           ab(n3-n2)=UnvisitedAssTriNo(n3); 
                       end 
                   end 
                   UnvisitedAssTriNo=[aa,ab];       
                   r1=size(UnvisitedAssTriNo,2); 
                   while r1>=2 %finding the Tri which include 

NextPoint1{m,n7} from AssTri                       
                       for n4=1:r1 
                           if T{UnvisitedAssTriNo(n4)}{1,1}==NextPoint{m,n7}                   

                               No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                           else if 

T{UnvisitedAssTriNo(n4)}{1,2}==NextPoint{m,n7} 
                                   No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                               else if 

T{UnvisitedAssTriNo(n4)}{1,3}==NextPoint{m,n7}                    
                                       No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                   end 
                               end 
                           end 
                       end%for n4=1:r1 
               %finding the first NextStep point which neither equal to 

nextpoint 
               %nor equal to last nextpoint in AssTri1 
                       for n2=1:3 
                           if T{No.AssTri1(1)}{1,n2}==NextPoint{m,n7} 
                               b1(1,1)=n2; 
                           end 
                       end 
                       for n2=1:3 
                           if T{No.AssTri1(1)}{1,n2}==NextPoint{(m-1),n} 
                               b1(1,2)=n2; 
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                           end  
                       end 
                       if b1(1,1)==1 
                           if b1(1,2)==2 
                               b1(1,3)=3; 
                           end 
                       end 
                       if b1(1,1)==2 
                           if b1(1,2)==1 
                               b1(1,3)=3; 
                           end 
                       end 
                       if b1(1,1)==1 
                           if b1(1,2)==3 
                               b1(1,3)=2; 
                           end 
                       end 
                       if b1(1,1)==3 
                           if b1(1,2)==1 
                               b1(1,3)=2; 
                           end 
                       end 
                       if b1(1,1)==2 
                           if b1(1,2)==3 
                               b1(1,3)=1; 
                           end 
                       end 
                       if b1(1,1)==3 
                           if b1(1,2)==2 
                               b1(1,3)=1; 
                           end 
                       end 
                       n7=n7+1; 
                       NextPoint{m,n7}=T{No.AssTri1(1)}{1,b1(1,3)}; 
                       VisitedAssTriNo=[VisitedAssTriNo,No.AssTri1(1)]; 
                       n2=find(UnvisitedAssTriNo==No.AssTri1(1)); 
                       aa=[]; 
                       ab=[]; 
                       for n3=1:r1 
                           if n3<n2 
                               aa(n3)=UnvisitedAssTriNo(n3); 
                           end 
                           if n3>n2 
                               ab(n3-n2)=UnvisitedAssTriNo(n3); 
                           end 
                       end 
                       UnvisitedAssTriNo=[aa,ab];%finding associated tri 

from unvisited tri 
                       r1=size(UnvisitedAssTriNo,2);    
                       %No.NextPoint=No.AssTri1(1); 
                       n5=0;%if the nextpoint equal to last step point, 

clear this point 
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                       for n4=1:(j-1-n)%if the nextpoint equal to last step 

point, clear this point 
                           if NextPoint{m,n7}==NextPoint{(m-1),(n4+n)} 
                               n5=1; 
                           end 
                       end 
                       if n5==1 
                           n7=n7-1; 
                           break%stop the loop of while r1>=2 
                       end                                            
                   end %end while r1>=2 

            

        
                   for i=1:(l1-1)%clear visitedTri 
                       VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                       UnvisitedTriNo(No.AssTriAddress(i))=0; 
                       i1=i1+1; 
                   end %end for i=1:(l1-1) 
                   n=n+1; 

                  
               end %c==1 
               %**********end if c==1  *************************** 

                
               %**********  if c==2   **************************** 
               if c==2%on last step; refer to step37 
                   n7=1; 
                   c3=0;%c3=0 finding same tri from reverse direction, c3=1 

need not finding from reverse direction 

                   
             %************ start finding same tri from normal direction ** 
                   for n8=1:4 
                       if c==2%on last step 
                           for i=1:(l1-1)%clear visitedTri 
                               VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                               UnvisitedTriNo(No.AssTriAddress(i))=0; 
                               i1=i1+1; 
                           end%end for i=1:(l1-1) 

                            
                       end 
                       n=n+1; 
                       d1=0;%d1=0 no same tri, d1=1 exist same tri 
                       l1=1; 
                       for k=1:r 
                           if UnvisitedTriNo(k) ~= 0 
                               if T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-

1),n} 
                                   if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),(j-1)} 
                                      No.AssTri(l1)=UnvisitedTriNo(k); 
                                      No.AssTriAddress(l1)=k; 
                                      l1=l1+1; 
                                      d1=1; 
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NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,3}; 
                                      break %for k=1:r 
                                   else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),(j-1)} 
                                            No.AssTri(l1)=UnvisitedTriNo(k); 
                                            No.AssTriAddress(l1)=k; 
                                            l1=l1+1; 
                                            d1=1; 
                                            

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,2}; 
                                            break %for k=1:r 
                                       end 
                                   end                                           
                               else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),n} 
                                        if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),(j-1)} 
                                            No.AssTri(l1)=UnvisitedTriNo(k); 
                                            No.AssTriAddress(l1)=k; 
                                            l1=l1+1; 
                                            d1=1; 
                                            

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,3}; 
                                            break %for k=1:r 
                                        else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),(j-1)} 
                                                 

No.AssTri(l1)=UnvisitedTriNo(k); 
                                                 No.AssTriAddress(l1)=k; 
                                                 l1=l1+1; 
                                                 d1=1; 
                                                 

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,1}; 
                                                 break %for k=1:r 
                                            end 
                                        end     
                                    else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),n} 
                                             if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),(j-1)} 
                                                 

No.AssTri(l1)=UnvisitedTriNo(k); 
                                                 No.AssTriAddress(l1)=k; 
                                                 l1=l1+1; 
                                                 d1=1; 
                                                 

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,2}; 
                                                 break %for k=1:r 
                                             else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),(j-1)} 
                                                      

No.AssTri(l1)=UnvisitedTriNo(k); 
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No.AssTriAddress(l1)=k; 
                                                      l1=l1+1; 
                                                      d1=1; 
                                                      

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,1}; 
                                                 break %for k=1:r 
                                                 end 
                                             end     
                                        end 
                                   end 
                               end 
                           end %if UnvisitedTriNo(k) ~= 0                                     

                        end%for k=1:r 
                        if d1==1%exist same Tri 
                            c=1; 
                            for n6=1:3%if the point is on last step, if so, 

clear this point  
                                if NextPoint{m,n7}==NextPoint{m-1,n6} 
                                    c=2;%on last step 
                                    n7=1; 
                                    break;%stop the loop of for n6=1:(j-1) 
                                end 
                                if NextPoint{m,n7}==NextPoint{m-1,j-1-n6} 
                                    c=2; 
                                    n7=1; 
                                    break;%stop the loop of for n6=1:(j-1) 
                                end 
                            end  
                        end 
                        if c==1 %doesn't on last step 
                            for i=1:(l1-1)%clear visitedTri 
                               VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                               UnvisitedTriNo(No.AssTriAddress(i))=0; 
                               i1=i1+1; 
                            end%end for i=1:(l1-1) 
                            l1=1; 
                            for k=1:r 
                                if UnvisitedTriNo(k) ~= 0 
                                    if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),n} 
                                        No.AssTri(l1)=UnvisitedTriNo(k); 
                                        No.AssTriAddress(l1)=k; 
                                        l1=l1+1; 
                                    else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),n} 
                                             

No.AssTri(l1)=UnvisitedTriNo(k);  
                                             No.AssTriAddress(l1)=k; 
                                             l1=l1+1;  
                                         else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),n} 
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No.AssTri(l1)=UnvisitedTriNo(k);  
                                                  No.AssTriAddress(l1)=k; 
                                                  l1=l1+1;                      
                                             end 
                                        end 
                                    end 
                                end 
                            end%for k=1:r 
                            l3=1;%find the AssTriNo with NextPoint{m,1}  
                            No.AssTri2=[]; 
                            for k=1:r 
                                if UnvisitedTriNo(k)~=0 
                                    if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{m,1} 
                                        No.AssTri2(l3)=UnvisitedTriNo(k); 
                                        l3=l3+1;                                                           

                                    else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{m,1} 
                                             

No.AssTri2(l3)=UnvisitedTriNo(k); 
                                             l3=l3+1; 
                                        else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{m,1} 
                                                 

No.AssTri2(l3)=UnvisitedTriNo(k); 
                                                 l3=l3+1;                                 
                                            end 
                                        end 
                                    end 
                                end 
                             end %for k=1:r %end find the AssTriNo with 

NextPoint{m,1}  
                             UnvisitedAssTriNo=No.AssTri; 
                             r1=size(UnvisitedAssTriNo,2); 

                              
                             while r1>=2 %finding the Tri which include 

NextPoint1{m,n7} from AssTri                       
                                 for n4=1:r1 
                                     if 

T{UnvisitedAssTriNo(n4)}{1,1}==NextPoint{m,n7}                    
                                         

No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                     else if 

T{UnvisitedAssTriNo(n4)}{1,2}==NextPoint{m,n7} 
                                              

No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                          else if 

T{UnvisitedAssTriNo(n4)}{1,3}==NextPoint{m,n7}                    
                                                   

No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                              end 
                                         end 
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                                     end 
                                  end%for n4=1:r1 
                                  %finding the first NextStep point which 

neither equal to nextpoint 
                                  %nor equal to last nextpoint in AssTri1 
                                  for n2=1:3 
                                      if 

T{No.AssTri1(1)}{1,n2}==NextPoint{m,n7} 
                                          b1(1,1)=n2; 
                                      end 
                                  end 
                                  for n2=1:3 
                                      if 

T{No.AssTri1(1)}{1,n2}==NextPoint{(m-1),n} 
                                          b1(1,2)=n2; 
                                      end  
                                  end 
                                  if b1(1,1)==1 
                                      if b1(1,2)==2 
                                          b1(1,3)=3; 
                                      end 
                                  end 
                                  if b1(1,1)==2 
                                      if b1(1,2)==1 
                                          b1(1,3)=3; 
                                      end 
                                  end 
                                  if b1(1,1)==1 
                                      if b1(1,2)==3 
                                          b1(1,3)=2; 
                                      end 
                                  end 
                                  if b1(1,1)==3 
                                      if b1(1,2)==1 
                                          b1(1,3)=2; 
                                      end 
                                  end 
                                  if b1(1,1)==2 
                                      if b1(1,2)==3 
                                          b1(1,3)=1; 
                                      end 
                                  end 
                                  if b1(1,1)==3 
                                      if b1(1,2)==2 
                                          b1(1,3)=1; 
                                      end 
                                  end 
                                 n7=n7+1; 
                                 

NextPoint{m,n7}=T{No.AssTri1(1)}{1,b1(1,3)}; 
                                 

VisitedAssTriNo=[VisitedAssTriNo,No.AssTri1(1)]; 
                                 n2=find(UnvisitedAssTriNo==No.AssTri1(1)); 
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                                 aa=[]; 
                                 ab=[]; 
                                 for n3=1:r1 
                                     if n3<n2 
                                         aa(n3)=UnvisitedAssTriNo(n3); 
                                     end 
                                     if n3>n2 
                                         ab(n3-n2)=UnvisitedAssTriNo(n3); 
                                     end 
                                 end 
                                 UnvisitedAssTriNo=[aa,ab];%finding 

associated tri from unvisited tri 
                                 r1=size(UnvisitedAssTriNo,2);    
                                 %No.NextPoint=No.AssTri1(1); 
                                 n5=0;%if the nextpoint equal to last step 

point, clear this point 
                                 for n4=1:(j-1-n)%if the nextpoint equal to 

last step point, clear this point 
                                     if NextPoint{m,n7}==NextPoint{(m-

1),(n4+n)} 
                                         n5=1; 
                                     end 
                                 end 
                                 if n5==1 
                                     n7=n7-1; 
                                 break%stop the loop of while r1>=2 
                                 end                                            
                            end %end while r1>=2      
                            for i=1:(l1-1)%clear visitedTri 
                                VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                                UnvisitedTriNo(No.AssTriAddress(i))=0; 
                                i1=i1+1; 
                            end %end for i=1:(l1-1) 
                            n=n+1; 
                            c3=1; 
                            break;%stop the loop of for n6=1:4 
                        end %c==1 
                   end%for n8=1:4 
           %*********  end finding tri from normal direction   ***** 

            

            
           %********* start finding tri from reverse direction ******* 
                   if c3==0%find same tri from reverse direction 
                       for n28=1:5 
                           if c==2%on last step 
                               for i=1:(l1-1)%clear visitedTri 
                                   VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                                   UnvisitedTriNo(No.AssTriAddress(i))=0; 
                                   i1=i1+1; 
                               end%end for i=1:(l1-1)                            
                           end 
                           d1=0;%d1=0 no same tri, d1=1 exist same tri 
                           l1=1; 
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                           for k=1:r 
                               if UnvisitedTriNo(k) ~= 0 
                                   if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),(j-2)} 
                                       if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),n28} 
                                           No.AssTri(l1)=UnvisitedTriNo(k); 
                                           No.AssTriAddress(l1)=k; 
                                           l1=l1+1; 
                                           d1=1; 
                                           

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,3}; 
                                           break %for k=1:r 
                                       else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),n28} 
                                                

No.AssTri(l1)=UnvisitedTriNo(k); 
                                                No.AssTriAddress(l1)=k; 
                                                l1=l1+1; 
                                                d1=1; 
                                                

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,2}; 
                                                break %for k=1:r 
                                           end 
                                       end                                           
                                   else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),(j-2)} 
                                            if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),n28} 
                                                

No.AssTri(l1)=UnvisitedTriNo(k); 
                                                No.AssTriAddress(l1)=k; 
                                                l1=l1+1; 
                                                d1=1; 
                                                

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,3}; 
                                                break %for k=1:r 
                                            else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),n28} 
                                                     

No.AssTri(l1)=UnvisitedTriNo(k); 
                                                     No.AssTriAddress(l1)=k; 
                                                     l1=l1+1; 
                                                     d1=1; 
                                                     

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,1}; 
                                                     break %for k=1:r 
                                                end 
                                            end     
                                        else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),(j-2)} 
                                                 if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),n28} 



 

 116 

                                                     

No.AssTri(l1)=UnvisitedTriNo(k); 
                                                     No.AssTriAddress(l1)=k; 
                                                     l1=l1+1; 
                                                     d1=1; 
                                                     

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,2}; 
                                                     break %for k=1:r 
                                                 else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),n28} 
                                                          

No.AssTri(l1)=UnvisitedTriNo(k); 
                                                          

No.AssTriAddress(l1)=k; 
                                                          l1=l1+1; 
                                                          d1=1; 
                                                          

NextPoint{m,n7}=T{UnvisitedTriNo(k)}{1,1}; 
                                                     break %for k=1:r 
                                                     end 
                                                 end     
                                            end 
                                       end 
                                   end 
                               end %if UnvisitedTriNo(k) ~= 0                                     

                            end%for k=1:r 
                            if d1==1%exist same Tri 
                                c=1; 
                                for n6=1:3%if the point is on last step, if 

so, clear this point  
                                    if NextPoint{m,n7}==NextPoint{m-1,n6} 
                                        c=2;%on last step 
                                        n7=1; 
                                        break;%stop the loop of for 

n28=1:(j-1) 
                                    end 
                                    if NextPoint{m,n7}==NextPoint{m-1,j-1-

n6} 
                                        c=2; 
                                        n7=1; 
                                        break;%stop the loop of for 

n28=1:(j-1) 
                                    end 
                                end  
                            end 
                            if c==1 %doesn't on last step 
                                for i=1:(l1-1)%clear visitedTri 
                                    

VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                                    UnvisitedTriNo(No.AssTriAddress(i))=0; 
                                    i1=i1+1; 
                                end%end for i=1:(l1-1) 
                                l1=1; 
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                                j=j-1; 
                                n=n28; 
                                for k=1:r 
                                    if UnvisitedTriNo(k) ~= 0 
                                        if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),n} 
                                            No.AssTri(l1)=UnvisitedTriNo(k); 
                                            No.AssTriAddress(l1)=k; 
                                            l1=l1+1; 
                                        else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),n} 
                                                 

No.AssTri(l1)=UnvisitedTriNo(k);  
                                                 No.AssTriAddress(l1)=k; 
                                                 l1=l1+1;  
                                             else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),n} 
                                                      

No.AssTri(l1)=UnvisitedTriNo(k);  
                                                      

No.AssTriAddress(l1)=k; 
                                                      l1=l1+1;                      
                                                 end 
                                            end 
                                        end 
                                    end 
                                end%for k=1:r 
                                l3=1;%find the AssTriNo with NextPoint{m,1}  
                                No.AssTri2=[]; 
                                for k=1:r 
                                    if UnvisitedTriNo(k)~=0 
                                        if 

T{UnvisitedTriNo(k)}{1,1}==NextPoint{m,1} 
                                            

No.AssTri2(l3)=UnvisitedTriNo(k); 
                                            l3=l3+1;                                                           

                                        else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{m,1} 
                                                 

No.AssTri2(l3)=UnvisitedTriNo(k); 
                                                 l3=l3+1; 
                                            else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{m,1} 
                                                     

No.AssTri2(l3)=UnvisitedTriNo(k); 
                                                     l3=l3+1;                                

                                                end 
                                            end 
                                        end 
                                    end 
                                 end %for k=1:r %end find the AssTriNo with 

NextPoint{m,1}  
                                 UnvisitedAssTriNo=No.AssTri; 
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                                 r1=size(UnvisitedAssTriNo,2); 

                                  
                                 while r1>=2 %finding the Tri which include 

NextPoint1{m,n7} from AssTri                       
                                     for n4=1:r1 
                                         if 

T{UnvisitedAssTriNo(n4)}{1,1}==NextPoint{m,n7}                    
                                             

No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                         else if 

T{UnvisitedAssTriNo(n4)}{1,2}==NextPoint{m,n7} 
                                                  

No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                              else if 

T{UnvisitedAssTriNo(n4)}{1,3}==NextPoint{m,n7}                    
                                                       

No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                                  end 
                                             end 
                                         end 
                                      end%for n4=1:r1 
                                      %finding the first NextStep point 

which neither equal to nextpoint 
                                      %nor equal to last nextpoint in 

AssTri1 
                                      for n2=1:3 
                                          if 

T{No.AssTri1(1)}{1,n2}==NextPoint{m,n7} 
                                              b1(1,1)=n2; 
                                          end 
                                      end 
                                      for n2=1:3 
                                          if 

T{No.AssTri1(1)}{1,n2}==NextPoint{(m-1),n} 
                                              b1(1,2)=n2; 
                                          end  
                                      end 
                                      if b1(1,1)==1 
                                          if b1(1,2)==2 
                                              b1(1,3)=3; 
                                          end 
                                      end 
                                      if b1(1,1)==2 
                                          if b1(1,2)==1 
                                              b1(1,3)=3; 
                                          end 
                                      end 
                                      if b1(1,1)==1 
                                          if b1(1,2)==3 
                                              b1(1,3)=2; 
                                          end 
                                      end 
                                      if b1(1,1)==3 
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                                          if b1(1,2)==1 
                                              b1(1,3)=2; 
                                          end 
                                      end 
                                      if b1(1,1)==2 
                                          if b1(1,2)==3 
                                              b1(1,3)=1; 
                                          end 
                                      end 
                                      if b1(1,1)==3 
                                          if b1(1,2)==2 
                                              b1(1,3)=1; 
                                          end 
                                      end 
                                     n7=n7+1; 
                                     

NextPoint{m,n7}=T{No.AssTri1(1)}{1,b1(1,3)}; 
                                     

VisitedAssTriNo=[VisitedAssTriNo,No.AssTri1(1)]; 
                                     

n2=find(UnvisitedAssTriNo==No.AssTri1(1)); 
                                     aa=[]; 
                                     ab=[]; 
                                     for n3=1:r1 
                                         if n3<n2 
                                             aa(n3)=UnvisitedAssTriNo(n3); 
                                         end 
                                         if n3>n2 
                                             ab(n3-

n2)=UnvisitedAssTriNo(n3); 
                                         end 
                                     end 
                                     UnvisitedAssTriNo=[aa,ab];%finding 

associated tri from unvisited tri 
                                     r1=size(UnvisitedAssTriNo,2);    
                                     %No.NextPoint=No.AssTri1(1); 
                                     n5=0;%if the nextpoint equal to last 

step point, clear this point 
                                     for n4=1:(j-1-n)%if the nextpoint 

equal to last step point, clear this point 
                                         if NextPoint{m,n7}==NextPoint{(m-

1),(n4+n)} 
                                             n5=1; 
                                         end 
                                     end 
                                     if n5==1 
                                         n7=n7-1; 
                                     break%stop the loop of while r1>=2 
                                     end                                            
                                end %end while r1>=2      
                                for i=1:(l1-1)%clear visitedTri 
                                    

VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
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                                    UnvisitedTriNo(No.AssTriAddress(i))=0; 
                                    i1=i1+1; 
                                end %end for i=1:(l1-1) 
                                n=n+1; 
                                c3=1; 
                                break;%stop the loop of for n6=1:5 
                            end %c==1 
                       end%for n28=1:5 
                   end%if c3==0   
                 %*********  end finding tri form reverse direction ***** 
               else if c==3 %refer to step89                        
                       l2=1; 
                       for k=1:r 
                           if UnvisitedTriNo(k)~=0 
                               if T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-

1),(j-2)} 
                                  No.LAssTri(l2)=UnvisitedTriNo(k); 
                                  l2=l2+1;                                 
                               else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),(j-2)} 
                                       No.LAssTri(l2)=UnvisitedTriNo(k); 
                                       l2=l2+1;                                 
                                   else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),(j-2)} 
                                           No.LAssTri(l2)=UnvisitedTriNo(k); 
                                           l2=l2+1;                                 
                                       end 
                                   end 
                               end 
                           end 
                       end%for k=1:r 
                       for n1=1:(l1-1)%if existing same Tri 
                           if n1~=a 
                              for n2=1:(l2-1) 
                                  if No.LAssTri(n2)==No.AssTri(n1) 
                                     a1=n1; 
                                  end 
                              end 
                           end 
                       end 
                       for n2=1:3 
                            if T{No.AssTri(a1)}{1,n2}==NextPoint{(m-1),(j-

1)} 
                                b1(1,1)=n2; 
                            end 
                       end 
                       for n2=1:3 
                           if T{No.AssTri(a1)}{1,n2}==NextPoint{(m-1),n} 
                               b1(1,2)=n2; 
                           end 
                       end 
                       if b1(1,1)==1 
                           if b1(1,2)==2 
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                               b1(1,3)=3; 
                           end 
                       end 
                       if b1(1,1)==2 
                           if b1(1,2)==1 
                               b1(1,3)=3; 
                           end 
                       end 
                       if b1(1,1)==1 
                           if b1(1,2)==3 
                               b1(1,3)=2; 
                           end 
                       end 
                       if b1(1,1)==3 
                           if b1(1,2)==1 
                               b1(1,3)=2; 
                           end 
                       end 
                       if b1(1,1)==2 
                           if b1(1,2)==3 
                               b1(1,3)=1; 
                           end 
                       end 
                       if b1(1,1)==3 
                           if b1(1,2)==2 
                               b1(1,3)=1; 
                           end 
                       end 
                       NextPoint{m,n7}=T{No.AssTri(a1)}{1,b1(1,3)};  
                       l3=1;%find the AssTriNo with NextPoint{m,1}  
                       No.AssTri2=[]; 
                       for k=1:r 
                           if UnvisitedTriNo(k)~=0 
                               if T{UnvisitedTriNo(k)}{1,1}==NextPoint{m,1} 
                                   No.AssTri2(l3)=UnvisitedTriNo(k); 
                                   l3=l3+1;                                                           

                               else if 

T{UnvisitedTriNo(k)}{1,2}==NextPoint{m,1} 
                                        No.AssTri2(l3)=UnvisitedTriNo(k); 
                                        l3=l3+1; 
                                   else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{m,1} 
                                            

No.AssTri2(l3)=UnvisitedTriNo(k); 
                                            l3=l3+1;                                 
                                       end 
                                   end 
                               end 
                           end 
                       end %for k=1:r %end find the AssTriNo with 

NextPoint{m,1}  
                       UnvisitedAssTriNo=No.AssTri; 
                       r1=size(UnvisitedAssTriNo,2); 
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                       VisitedAssTriNo=No.AssTri(a); 
                       n2=find(UnvisitedAssTriNo==No.AssTri(a)); 
                       aa=[]; 
                       ab=[]; 
                       for n3=1:r1 
                           if n3<n2 
                               aa(n3)=UnvisitedAssTriNo(n3); 
                           end 
                           if n3>n2 
                               ab(n3-n2)=UnvisitedAssTriNo(n3); 
                           end 
                       end 
                       UnvisitedAssTriNo=[aa,ab];       
                       r1=size(UnvisitedAssTriNo,2); 
                       while r1>=3 %finding the Tri which include 

NextPoint1{m,n7} from AssTri                       
                           for n4=1:r1 
                               if 

T{UnvisitedAssTriNo(n4)}{1,1}==NextPoint{m,n7}                    
                                   No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                               else if 

T{UnvisitedAssTriNo(n4)}{1,2}==NextPoint{m,n7} 
                                        No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                   else if 

T{UnvisitedAssTriNo(n4)}{1,3}==NextPoint{m,n7}                    
                                            

No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                       end 
                                   end 
                               end 
                           end%for n4=1:r1 
               %finding the first NextStep point which neither equal to 

nextpoint 
               %nor equal to last nextpoint in AssTri1 
                           for n2=1:3 
                                if T{No.AssTri1(1)}{1,n2}==NextPoint{m,n7} 
                                    b1(1,1)=n2; 
                                end 
                           end 
                           for n2=1:3 
                                if T{No.AssTri1(1)}{1,n2}==NextPoint{(m-

1),n} 
                                    b1(1,2)=n2; 
                                end 
                           end 
                           if b1(1,1)==1 
                               if b1(1,2)==2 
                                   b1(1,3)=3; 
                               end 
                           end 
                           if b1(1,1)==2 
                               if b1(1,2)==1 
                                   b1(1,3)=3; 
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                               end 
                           end 
                           if b1(1,1)==1 
                               if b1(1,2)==3 
                                   b1(1,3)=2; 
                               end 
                           end 
                           if b1(1,1)==3 
                               if b1(1,2)==1 
                                   b1(1,3)=2; 
                               end 
                           end 
                           if b1(1,1)==2 
                               if b1(1,2)==3 
                                   b1(1,3)=1; 
                               end 
                           end 
                           if b1(1,1)==3 
                               if b1(1,2)==2 
                                   b1(1,3)=1; 
                               end 
                           end 
                           n7=n7+1; 
                           NextPoint{m,n7}=T{No.AssTri1(1)}{1,b1(1,3)}; 
                           VisitedAssTriNo=[VisitedAssTriNo,No.AssTri1(1)]; 
                           n2=find(UnvisitedAssTriNo==No.AssTri1(1)); 
                           aa=[]; 
                           ab=[]; 
                           for n3=1:r1 
                               if n3<n2 
                                   aa(n3)=UnvisitedAssTriNo(n3); 
                               end 
                               if n3>n2 
                                   ab(n3-n2)=UnvisitedAssTriNo(n3); 
                               end 
                           end 
                           UnvisitedAssTriNo=[aa,ab];%finding associated 

tri from unvisited tri 
                           r1=size(UnvisitedAssTriNo,2);    
                           %No.NextPoint=No.AssTri1(1); 
                           n5=0;%if the nextpoint equal to last step point, 

clear this point 
                           for n4=1:(j-1-n)%if the nextpoint equal to last 

step point, clear this point 
                               if NextPoint{m,n7}==NextPoint{(m-1),(n4+n)} 
                                   n5=1; 
                               end 
                           end 
                           if n5==1 
                               n7=n7-1; 
                               break%stop the loop of while r1>=2 
                           end                                            
                       end %end while r1>=2 
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                       for i=1:(l1-1)%clear visitedTri 
                           VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                           UnvisitedTriNo(No.AssTriAddress(i))=0; 
                           i1=i1+1; 
                       end %end for i=1:(l1-1) 
                       n=n+1; 
                       j=j-1; 
                   end%else if c==3                        

                        
               end %if c==2                                 
        end %if n=1 

     
        if n>1               
           l1=1; 
           No.AssTri=[];                       
           for k=1:r 
               if UnvisitedTriNo(k)~=0 
                  if T{UnvisitedTriNo(k)}{1,1}==NextPoint{(m-1),n} 
                      No.AssTri(l1)=UnvisitedTriNo(k); 
                      No.AssTriAddress(l1)=k; 
                      l1=l1+1;                                 
                  else if T{UnvisitedTriNo(k)}{1,2}==NextPoint{(m-1),n} 
                           No.AssTri(l1)=UnvisitedTriNo(k); 
                           No.AssTriAddress(l1)=k; 
                           l1=l1+1;                                 
                      else if T{UnvisitedTriNo(k)}{1,3}==NextPoint{(m-1),n} 
                               No.AssTri(l1)=UnvisitedTriNo(k); 
                               No.AssTriAddress(l1)=k; 
                               l1=l1+1;  
                          end 
                      end 
                  end 
               end 
            end %for k=1:r 
            if l1==2             
                VisitedTriNo=[VisitedTriNo,No.AssTri(1)]; 
                UnvisitedTriNo(No.AssTriAddress(1))=0; 
                i1=i1+1; 
            end%if l1==2 
            if l1>2 
                VisitedAssTriNo=[]; 
                UnvisitedAssTriNo=No.AssTri; 
                r1=size(UnvisitedAssTriNo,2); 
                while r1>=2 %finding the Tri which include NextPoint1{n7} 

from AssTri                                                       
                    for n4=1:r1 
                        if T{UnvisitedAssTriNo(n4)}{1,1}==NextPoint{m,n7}                   

                            No.AssTri1(1)=UnvisitedAssTriNo(n4); 
                            i8=n; 
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                        else if 

T{UnvisitedAssTriNo(n4)}{1,2}==NextPoint{m,n7} 
                                 No.AssTri1(1)=UnvisitedAssTriNo(n4);  
                                 i8=n; 

                                  
                            else if 

T{UnvisitedAssTriNo(n4)}{1,3}==NextPoint{m,n7}                    
                                     No.AssTri1(1)=UnvisitedAssTriNo(n4); 
                                     i8=n; 

                                      
                                end 
                            end 
                        end 
                    end 
                    if (n-i8)>8 
                        i7=i8; 
                        i9=1; 
                    end 
                    if i9==1 
                        if i8==n 
                            i10=1; 
                            fprintf('There is a birfucation on step 

%d\n',m-1) 
                            break%while r1>=2 
                        end 
                    end 

                     

                         
                    %finding the point which neither equal to nextpoint 
                    %nor equal to last step nextpoint in AssTri1 
                    for n2=1:3 
                        if T{No.AssTri1(1)}{1,n2}==NextPoint{m,n7} 
                            b1(1,1)=n2; 
                        end 
                    end 
                    for n2=1:3 
                        if T{No.AssTri1(1)}{1,n2}==NextPoint{(m-1),n} 
                            b1(1,2)=n2; 
                        end  
                    end 
                    if b1(1,1)==1 
                        if b1(1,2)==2 
                            b1(1,3)=3; 
                        end 
                    end 
                    if b1(1,1)==2 
                        if b1(1,2)==1 
                            b1(1,3)=3; 
                        end 
                    end 
                    if b1(1,1)==1 
                        if b1(1,2)==3 
                            b1(1,3)=2; 
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                        end 
                    end 
                    if b1(1,1)==3 
                        if b1(1,2)==1 
                            b1(1,3)=2; 
                        end 
                    end 
                    if b1(1,1)==2 
                        if b1(1,2)==3 
                            b1(1,3)=1; 
                        end 
                    end 
                    if b1(1,1)==3 
                        if b1(1,2)==2 
                            b1(1,3)=1; 
                        end 
                    end 
                    n7=n7+1; 
                    NextPoint{m,n7}=T{No.AssTri1(1)}{1,b1(1,3)}; 
                    VisitedAssTriNo=[VisitedAssTriNo,No.AssTri1(1)]; 
                    n2=find(UnvisitedAssTriNo==No.AssTri1(1)); 
                    aa=[]; 
                    ab=[]; 
                    for n3=1:r1 
                        if n3<n2 
                            aa(n3)=UnvisitedAssTriNo(n3); 
                        end 
                        if n3>n2 
                            ab(n3-n2)=UnvisitedAssTriNo(n3); 
                        end 
                    end 
                    UnvisitedAssTriNo=[aa,ab];%finding associated tri from 

unvisited tri 
                    r1=size(UnvisitedAssTriNo,2);  
                    n5=0; 
                    for n4=1:(j-1-n)%if the nextpoint equal to last step 

nextpoint, clear this point 
                        if NextPoint{m,n7}==NextPoint{(m-1),(n4+n)} 
                           n5=1; 
                        end 
                    end 
                    if n5==1 
                        n7=n7-1; 
                        break 
                    end 
                    c1=1;%whether equal to current step point 
                    if n7>100 
                        for r4=1:10 
                            if NextPoint{m,n7}==NextPoint{m,r4} 
                                c1=2; 
                                break 
                            end 
                        end 
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                        if c1==2%equal to the current step point 
                            break%stop the loop of the for r4=1:10 
                        end 
                    end%if n7>10 
                end %end while r1>=2 
                if i10==1 
                    i11=1; 
                    break% stop while n<=(j-1) loop 
                end 

                 
                for i=1:(l1-1)%clear visitedTri 
                    VisitedTriNo=[VisitedTriNo,No.AssTri(i)]; 
                    UnvisitedTriNo(No.AssTriAddress(i))=0; 
                    i1=i1+1; 
                end%end for i=1:(l1-1)                         
            end %if l1>2 
            if n7>100%if equal to the first point 
                if c1==2 
                     r6=1; 
                     for r5=1:(n7-1) 
                         if r5>=r4 
                             NextPoint5{1,r6}=NextPoint{m,r5}; 
                             r6=r6+1; 
                         end 
                     end 
                     for r5=1:10 
                         NextPoint{m,n7+1-r5}={}; 
                     end 
                     for r5=1:(r6-1) 
                         NextPoint{m,r5}= NextPoint5{1,r5}; 
                     end 
                     n7=r5; 
                    break%stop the loop of while n<=(j-1) 
                end 
            end 
            n=n+1;     
       end%if n>1             
    end %while n<=(j-1); 
    if i11==1 
       Bif1={}; 
        Bif2={}; 
        d2=i7; 
        d3=i8-1; 
        for i4=1:i7 
            Bif1{1,i4}=NextPoint{(m-1),i4};%birfucation 1 
        end 
        for i5=1:(j-1-i8+2) 
            Bif1{1,(i4+i5)}=NextPoint{(m-1),d3};%birfucation 1 
            d3=d3+1; 
        end 
        d3=1; 
        for i6=(i7+1):(i8-2) 
            Bif2{1,d3}=NextPoint{m-1,i6};%birfucation 2 
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            d3=d3+1; 
        end 

         
        j=i7+j-1-i8+3;  
        break % stop the loop of m=15:15 
    end 

     
    if NextPoint{m,n7}==NextPoint{m,1} 
       NextPoint{m,n7}={}; 
       n7=n7-1; 
    end 

     
    %****** if the last or last last point equal to some first 10 points %% 

refer to bif1.1.1.step13****** 
    connectedNo4=0; 
    connectedNo5=0; 
    for n6=1:3 
        if NextPoint{m,n7-1}==NextPoint{m,n6} 
            connectedNo5=n6; 
        end 
    end 
    for n6=1:3 
        if NextPoint{m,n7}==NextPoint{m,n6} 
            connectedNo4=n6; 
        end 
    end 
    if connectedNo5>0 
       for k3=1:(connectedNo5-1)%clear visited Tri             
            for k=1:r 
                if UnvisitedTriNo(k) ~= 0 
                    if T{UnvisitedTriNo(k)}{1,1}==NextPoint{m,k3} 
                        VisitedTriNo=[VisitedTriNo,UnvisitedTriNo(k)]; 
                        UnvisitedTriNo(k)=0; 
                        i1=i1+1; 
                    else if T{UnvisitedTriNo(k)}{1,2}==NextPoint{m,k3} 
                            VisitedTriNo=[VisitedTriNo,UnvisitedTriNo(k)]; 
                            UnvisitedTriNo(k)=0; 
                            i1=i1+1; 
                        else if T{UnvisitedTriNo(k)}{1,3}==NextPoint{m,k3} 
                                

VisitedTriNo=[VisitedTriNo,UnvisitedTriNo(k)]; 
                                UnvisitedTriNo(k)=0; 
                                i1=i1+1; 
                            end 
                        end 
                    end 
                end 
            end 
        end 

             
        for k3=1:(n7-connectedNo5) 
            NextPoint{m,k3}=NextPoint{m,(k3+connectedNo5)}; 
        end 
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        for k3=1:connectedNo5 
            NextPoint{m,n7+1-k3}={}; 
        end 
        n7=n7-connectedNo5; 

     
    else if connectedNo4>0 
            for k3=1:(connectedNo4-1)%clear visited Tri             
                for k=1:r 
                    if UnvisitedTriNo(k) ~= 0 
                        if T{UnvisitedTriNo(k)}{1,1}==NextPoint{m,k3} 
                            VisitedTriNo=[VisitedTriNo,UnvisitedTriNo(k)]; 
                            UnvisitedTriNo(k)=0; 
                            i1=i1+1; 
                        else if T{UnvisitedTriNo(k)}{1,2}==NextPoint{m,k3} 
                                

VisitedTriNo=[VisitedTriNo,UnvisitedTriNo(k)]; 
                                UnvisitedTriNo(k)=0; 
                                i1=i1+1; 
                            else if 

T{UnvisitedTriNo(k)}{1,3}==NextPoint{m,k3} 
                                    

VisitedTriNo=[VisitedTriNo,UnvisitedTriNo(k)]; 
                                    UnvisitedTriNo(k)=0; 
                                    i1=i1+1; 
                                end 
                            end 
                        end 
                    end 
                end 
            end 

             
            for k3=1:(n7-connectedNo4) 
                NextPoint{m,k3}=NextPoint{m,(k3+connectedNo4)}; 
            end 
            for k3=1:connectedNo4 
                NextPoint{m,n7+1-k3}={}; 
            end 
            n7=n7-connectedNo4; 
        end 
    end 

     
    %******* end equal to some point *************************** 

     

     
    %****** cut off these points below to connected point  ******* 
    connectedNo1=0; 
    connectedNo2=0; 
    connectedNo3=0; 
    connectedNo4=0; 
    for n6=1:3        
        l1=1; 
        for k=1:r 
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            if UnvisitedTriNo(k) ~= 0 
              if T{UnvisitedTriNo(k)}{1,1}==NextPoint{m,n6}  
                  atri{1,n6}(1,l1)=UnvisitedTriNo(k); 
                  atriaddress{1,n6}(1,l1)=k; 
                  l1=l1+1; 
              else if T{UnvisitedTriNo(k)}{1,2}==NextPoint{m,n6} 
                       atri{1,n6}(1,l1)=UnvisitedTriNo(k); 
                       atriaddress{1,n6}(1,l1)=k; 
                       l1=l1+1; 
                  else if T{UnvisitedTriNo(k)}{1,3}==NextPoint{m,n6} 
                           atri{1,n6}(1,l1)=UnvisitedTriNo(k); 
                           atriaddress{1,n6}(1,l1)=k; 
                           l1=l1+1; 
                      end 
                  end 
              end 
            end 
        end%for k=1:r 
        for k=1:(l1-1) 
              if T{atri{1,n6}(1,k)}{1,1}==NextPoint{m,n7} 
                  connectedNo1=n6; 
              else if T{atri{1,n6}(1,k)}{1,2}==NextPoint{m,n7} 
                      connectedNo1=n6; 
                  else if T{atri{1,n6}(1,k)}{1,3}==NextPoint{m,n7} 
                          connectedNo1=n6; 
                      end 
                  end 
              end 
              if T{atri{1,n6}(1,k)}{1,1}==NextPoint{m,n7-1} 
                  connectedNo2=n6; 
              else if T{atri{1,n6}(1,k)}{1,2}==NextPoint{m,n7-1} 
                      connectedNo2=n6; 
                  else if T{atri{1,n6}(1,k)}{1,3}==NextPoint{m,n7-1} 
                          connectedNo2=n6; 
                      end 
                  end 
              end  
              if T{atri{1,n6}(1,k)}{1,1}==NextPoint{m,n7-2} 
                  connectedNo3=n6; 
              else if T{atri{1,n6}(1,k)}{1,2}==NextPoint{m,n7-2} 
                      connectedNo3=n6; 
                  else if T{atri{1,n6}(1,k)}{1,3}==NextPoint{m,n7-2} 
                          connectedNo3=n6; 
                      end 
                  end 
              end  
              if T{atri{1,n6}(1,k)}{1,1}==NextPoint{m,n7-3} 
                  connectedNo4=n6; 
              else if T{atri{1,n6}(1,k)}{1,2}==NextPoint{m,n7-3} 
                      connectedNo4=n6; 
                  else if T{atri{1,n6}(1,k)}{1,3}==NextPoint{m,n7-3} 
                          connectedNo4=n6; 
                      end 
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                  end 
              end  
        end%k=1:(l1-1) 
        catri(1,n6)=l1-1; 
    end%for n6=1:10 
    if connectedNo4>0 
       for k1=1:(connectedNo4-1) 
            for i=1:catri(1,k1)%clear visitedTri 
                if UnvisitedTriNo(atriaddress{1,k1}(1,i))~=0 
                   VisitedTriNo=[VisitedTriNo,atri{1,k1}(1,i)]; 
                   UnvisitedTriNo(atriaddress{1,k1}(1,i))=0; 
                   i1=i1+1; 
                end 
            end %end for i=1:catri(1,k1) 
        end 
        for k1=1:catri(1,connectedNo4)%clear visitedTri 
            if T{atri{1,connectedNo4}(1,k1)}{1,1}==NextPoint{m,n7-2} 
                VisitedTriNo=[VisitedTriNo,atri{1,connectedNo4}(1,k1)]; 
                UnvisitedTriNo(atriaddress{1,connectedNo4}(1,k1))=0; 
                i1=i1+1; 
              else if T{atri{1,connectedNo4}(1,k1)}{1,2}==NextPoint{m,n7-2} 
                      

VisitedTriNo=[VisitedTriNo,atri{1,connectedNo4}(1,k1)]; 
                      UnvisitedTriNo(atriaddress{1,connectedNo4}(1,k1))=0; 
                      i1=i1+1; 
                  else if 

T{atri{1,connectedNo4}(1,k1)}{1,3}==NextPoint{m,n7-2} 
                          

VisitedTriNo=[VisitedTriNo,atri{1,connectedNo4}(1,k1)]; 
                          

UnvisitedTriNo(atriaddress{1,connectedNo4}(1,k1))=0; 
                          i1=i1+1; 
                      end 
                  end 
             end  
        end                                                 
        k1=1; 
        for k2=1:n7%move the sequence 
            if k2>=connectedNo4 
                NextPoint{m,k1}=NextPoint{m,k2}; 
                k1=k1+1; 
            end 
        end 
        for k2=1:(n7-k1+4) 
            NextPoint{m,n7-k2+1}={}; 
        end 
        n7=k1-4;  
    else if connectedNo3>0 
            for k1=1:(connectedNo3-1) 
                for i=1:catri(1,k1)%clear visitedTri 
                    if UnvisitedTriNo(atriaddress{1,k1}(1,i))~=0 
                       VisitedTriNo=[VisitedTriNo,atri{1,k1}(1,i)]; 
                       UnvisitedTriNo(atriaddress{1,k1}(1,i))=0; 
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                       i1=i1+1; 
                    end 
                end %end for i=1:catri(1,k1) 
            end 
            for k1=1:catri(1,connectedNo3)%clear visitedTri 
                if T{atri{1,connectedNo3}(1,k1)}{1,1}==NextPoint{m,n7-1} 
                    VisitedTriNo=[VisitedTriNo,atri{1,connectedNo3}(1,k1)]; 
                    UnvisitedTriNo(atriaddress{1,connectedNo3}(1,k1))=0; 
                    i1=i1+1; 
                  else if 

T{atri{1,connectedNo3}(1,k1)}{1,2}==NextPoint{m,n7-1} 
                          

VisitedTriNo=[VisitedTriNo,atri{1,connectedNo3}(1,k1)]; 
                          

UnvisitedTriNo(atriaddress{1,connectedNo3}(1,k1))=0; 
                          i1=i1+1; 
                      else if 

T{atri{1,connectedNo3}(1,k1)}{1,3}==NextPoint{m,n7-1} 
                              

VisitedTriNo=[VisitedTriNo,atri{1,connectedNo3}(1,k1)]; 
                              

UnvisitedTriNo(atriaddress{1,connectedNo3}(1,k1))=0; 
                              i1=i1+1; 
                          end 
                      end 
                end  
            end                                                 
            k1=1; 
            for k2=1:n7%move the sequence 
                if k2>=connectedNo3 
                    NextPoint{m,k1}=NextPoint{m,k2}; 
                    k1=k1+1; 
                end 
            end 
            for k2=1:(n7-k1+3) 
                NextPoint{m,n7-k2+1}={}; 
            end 
            n7=k1-3; 
        else if connectedNo2>0 
                for k1=1:(connectedNo2-1) 
                    for i=1:catri(1,k1)%clear visitedTri 
                        if UnvisitedTriNo(atriaddress{1,k1}(1,i))~=0 
                           VisitedTriNo=[VisitedTriNo,atri{1,k1}(1,i)]; 
                           UnvisitedTriNo(atriaddress{1,k1}(1,i))=0; 
                           i1=i1+1; 
                        end 
                    end %end for i=1:catri(1,k1) 
                end 
                for k1=1:catri(1,connectedNo2)%clear visitedTri 
                    if T{atri{1,connectedNo2}(1,k1)}{1,1}==NextPoint{m,n7} 
                        

VisitedTriNo=[VisitedTriNo,atri{1,connectedNo2}(1,k1)]; 
                        UnvisitedTriNo(atriaddress{1,connectedNo2}(1,k1))=0; 
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                        i1=i1+1; 
                      else if 

T{atri{1,connectedNo2}(1,k1)}{1,2}==NextPoint{m,n7} 
                              

VisitedTriNo=[VisitedTriNo,atri{1,connectedNo2}(1,k1)]; 
                              

UnvisitedTriNo(atriaddress{1,connectedNo2}(1,k1))=0; 
                              i1=i1+1; 
                          else if 

T{atri{1,connectedNo2}(1,k1)}{1,3}==NextPoint{m,n7} 
                                  

VisitedTriNo=[VisitedTriNo,atri{1,connectedNo2}(1,k1)]; 
                                  

UnvisitedTriNo(atriaddress{1,connectedNo2}(1,k1))=0; 
                                  i1=i1+1; 
                              end 
                          end 
                    end  
                end 

             

             
                k1=1; 
                for k2=1:n7%move the sequence 
                    if k2>=connectedNo2 
                        NextPoint{m,k1}=NextPoint{m,k2}; 
                        k1=k1+1; 
                    end 
                end 
                for k2=1:(n7-k1+2) 
                    NextPoint{m,n7-k2+1}={}; 
                end 
                n7=k1-2; 
            else if connectedNo1>0 
                    for k1=1:(connectedNo1-1) 
                        for i=1:catri(1,k1)%clear visitedTri 
                            if UnvisitedTriNo(atriaddress{1,k1}(1,i))~=0 
                               VisitedTriNo=[VisitedTriNo,atri{1,k1}(1,i)]; 
                               UnvisitedTriNo(atriaddress{1,k1}(1,i))=0; 
                               i1=i1+1; 
                            end 
                        end %end for i=1:catri(1,k1) 
                    end 
                    k1=1; 
                    for k2=1:n7%move the sequence 
                        if k2>=connectedNo1 
                            NextPoint{m,k1}=NextPoint{m,k2}; 
                            k1=k1+1; 
                        end 
                    end 
                    for k2=1:(n7-k1+1) 
                        NextPoint{m,n7-k2+1}={}; 
                    end 
                    n7=k1-1; 
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                end 
            end 
        end 
    end 

         

                 

         
   %***********  end cut off  *************************    

     
   %***********  whether this step is closed  ********* 
    connect1=0; 
    r7=size(VisitedTriNo,2); 
    for k=1:r7        
        if T{VisitedTriNo(k)}{1,1}==NextPoint{m,1} 
            if T{VisitedTriNo(k)}{1,2}==NextPoint{m,n7} 
                connect1=1; 
                break %for k=1:r 
            else if T{VisitedTriNo(k)}{1,3}==NextPoint{m,n7} 
                     connect1=1;                            
                     break %for k=1:r 
                end 
            end                                      
        else if T{VisitedTriNo(k)}{1,2}==NextPoint{m,1} 
                 if T{VisitedTriNo(k)}{1,1}==NextPoint{m,n7} 
                     connect1=1;                            
                     break %for k=1:r 
                 else if T{VisitedTriNo(k)}{1,3}==NextPoint{m,n7} 
                          connect1=1;                            
                          break %for k=1:r 
                     end 
                 end 
            else if T{VisitedTriNo(k)}{1,3}==NextPoint{m,1} 
                     if T{VisitedTriNo(k)}{1,1}==NextPoint{m,n7} 
                         connect1=1;                             
                         break %for k=1:r 
                     else if T{VisitedTriNo(k)}{1,2}==NextPoint{m,n7} 
                              connect1=1;                             
                              break %for k=1:r 
                         end 
                     end 
                end 
            end 
        end 
    end%for k=1:r7 
    if connect1==0 
        fprintf('step %d is not closed\n',m) 
    end 
%************  end checking whether is closed  *********************         
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%************  birfucation checking   ******************************       
    for i2=1:n7 
        for i3=1:n7 
            if i2~=i3 
                if NextPoint{m,i2}==NextPoint{m,i3} 
                    if (i3-i2)>10 
                        fprintf('There is a birfucation on step %d\n',m) 
                        break %for i3=1:n7 
                    end 
                end 
            end 
        end 
        if i3~=n7 
            d2=i2; 
            d3=i3; 
            break %for i2=1:n7 
        end 
    end 
    if i2~=n7 
        Bif1={}; 
        Bif2={}; 
        for i4=1:i2 
            Bif1{1,i4}=NextPoint{m,i4};%birfucation 1 
        end 
        for i5=1:(n7-i3) 
            Bif1{1,(i4+i5)}=NextPoint{m,d3+1};%birfucation 1 
            d3=d3+1; 
        end 
        d3=i3; 
        for i6=1:(i3-i2) 
            Bif2{1,i6}=NextPoint{m,d2};%birfucation 2 
            d2=d2+1; 
        end 
        j=i2+n7-i3+1; 
        break% "for m= " roop 
    end 
%************  end birfucation checking   *************************               

  
    VisitedTri{(m-1)}=VisitedTriNo; 
    VisitedTriNo=[]; 
    PointCounter(m)=n7; 
    j=n7+1; 

     

  

     
end%for m=2:3 

  
%******************************************* 
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