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Abstract. Solid-state devices that employ few and single atoms are emerging
as a consequence of technological advances in classical microelectronics and
proposals for quantum computers based on spin or charge. The fabrication
of devices in both these areas requires the development of techniques for
deterministic doping of silicon where few or single dopant atoms must be
placed to, typically, nanometre precision. Here we discuss a top-down approach,
based on deterministic ion implantation, which can potentially be used to
fabricate devices intended to explore the novel challenges of designing, building
and measuring solid-state devices at the single atom limit. In particular, we
address the potential of fabricating more complex devices that exploit quantum
coherence. We propose a prototype triple-donor device that transports electron
spin qubits via the coherent tunnelling by adiabatic passage (CTAP) protocol
for a scalable quantum computer. We examine theoretically the statistics of
dopant placement using ion implantation by employing an analytical treatment
of CTAP transport properties under hydrogenic assumptions. We evaluate the
probability of fabricating proof of concept devices subject to the limitations of
ion implantation. We find that the results are promising with a yield of one in six
for 14 keV phosphorus implanted into silicon with a target atom site spacing of
30 nm with even higher yields possible for lower-energy implants. This suggests
that deterministic doping is an important tool to fabricate and test near-term
practical quantum coherent devices.

1 Author to whom any correspondence should be addressed.
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1. Introduction

In a remarkable convergence of imperatives, the International Technology Roadmap for
Semiconductors [1] and the rise of quantum computer technology [2] in the solid state both
present significant challenges for the engineering of atoms in semiconductor devices. In the first
case, scaling of MOSFETs to the 22 nm level and below will mean large statistical fluctuations
in the number and location of dopants, leading to undesirable sharp increases in the statistical
variability of the threshold voltage compared to previous generations. A means to control this
variability must be developed. Also, the impact of quantum effects at these small scales needs
to be assessed. In the second case, these quantum effects form the basis of the device function
and again require the precise location of dopant atoms in nano-scale CMOS devices with a
comparable precision.

A potential solution to these challenges is the emerging technique of deterministic doping.
Several variations of this technique are being developed based on atomic-precision hydrogen-
resist lithography [3], or counted ion implantation [4–6]. New proposals for the use of laser-
cooled ions in the ion source of an ion implantation system could deliver arrays of single
ions with nanometre spatial precision [7–9]. These techniques could be used to construct
small-scale, solid-state quantum coherent devices to test the viability of, for example, charge-
qubit operations [10] or quantum transport [11]. In the future, hydrogen-resist lithography [12]
promises large-area atomic scale precision, necessary to build a large-scale scalable quantum
computer [13, 14].

We propose here the near-term fabrication of prototype devices by ion implantation.
Our technique makes use of a conventional ion implanter teamed with methods to count the
number of ions implanted into controlled positions in a semiconductor device. By removing
the statistical variations of blanket implantations, considerably improved device properties and
inter-device variability are expected and observed [15].

Quantum devices require quantum transport so that information can be effectively handled.
Here, we concentrate on the feasibility of quantum transport via the coherent tunnelling
adiabatic passage (CTAP) protocol [11]. Specifically, we focus on strategies for constructing
a three-donor device in phosphorus in silicon, which is intended to test the CTAP protocol.
The CTAP protocol is reviewed in section 2, along with new analytical results that enable
efficient determination of the required timescales in non-optimal geometries. These results lead
to efficient criteria to determine the theoretical device yields used later. Progress towards a
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scanned aperture system to perform the implants is described in section 3. In sections 4 and 5, we
ask whether devices at the levels of perfection required to exhibit three-state quantum coherent
behaviour are possible, or indeed practical, to make by using deterministic doping methods.
Our answer is very clearly positive. Although demonstrating CTAP is an important outcome for
solid-state quantum information, its demonstration will also highlight the levels of control that
are possible, and open new vistas for small quantum information processing tasks.

CTAP is an example of a three-site quantum protocol and has motivated a considerable
amount of interest in the solid-state and atom-optical communities. Indeed, two independent
and similar proposals for the entirely spatial analogue of the well-known stimulated Raman
adiabatic passage (STIRAP) [16] protocol appeared almost simultaneously for atomic transport
through three wells [17], and electronic transport through a line of donors or quantum dots [11].
Many of the theoretical studies in the atomic case have looked at sensing and inherent
nonlinearities that can be achieved using Bose–Einstein condensates [18–20], whereas the solid-
state investigations have considered feasibility [21–23], protocols and novel geometries [24–28].
Additionally, there has been progress towards realizing three-state systems in a range of triple-
dot systems [29–34]. Although there is yet to be a demonstration with massive particles, three-
waveguide structures have been proposed [35, 36], and these were demonstrated to exhibit
photonic CTAP [37], straddling CTAP [38] and continuum CTAP [39]. In addition to the
systems mentioned above, CTAP has also been proposed in Cooper–Pair box arrays [40] and
spin chains [41]. These previous works provide motivation for the present paper to assess the
precision of practical fabrication methods to construct arrays of single atoms for devices to
implement CTAP in the solid state.

This paper is organized as follows. In section 2, we review CTAP and introduce new
adiabatic results that allow quick determination of timescales for CTAP in experimentally
important solid-state geometries. In particular, we focus on efficient methods to determine the
total time required for a CTAP operation in a manner compatible with the architectures we
envisage. Next, in section 3, we describe the development of our deterministic doping strategy
that employs ion implantation through scanned nano-scale apertures. In section 4, we discuss
the feasibility of employing this strategy to fabricate CTAP test devices. Finally, in section 5,
we present exemplary simulations highlighting particular implanted donor configurations and
conditions necessary to demonstrate high-fidelity CTAP using these devices. The combined
results of these analyses is a critical evaluation of implantation strategies for CTAP devices,
and an analysis of the probability of fabricating a working CTAP device based on the known
limitation of the spatial precision of ion implantation imposed by straggling.

2. CTAP and adiabaticity

CTAP is a protocol for the spatial transport of a particle between two points on a quantum
chain. In its simplest case, this is a three-site protocol with the central chain being a single
site. CTAP is distinguished from STIRAP in that the variations in nearest-neighbour tunnel
matrix elements (TMEs) are effected by direct modulation of the wave-function overlaps by
either surface gate control [42] or well proximity [17]. Within the STIRAP approach, the TMEs
are strictly electromagnetic field driven2 and are commonly best considered as manipulation of
excitations, rather than true particle transport as is the case for CTAP.

2 However, we note that STIRAP across a spatial degree of freedom has been proposed in, for example, [43].
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CTAP has certain advantages over competing transport mechanisms when applied to the
task of scalable quantum computing in phosphorus in silicon (Si:P), and these have been
thoroughly discussed in [13]. Briefly, at the required donor spacings for Si:P architectures,
TMEs can be as large as 1 THz (at 20 nm interdonor spacing). Non-adiabatic control of such
TMEs would require bandwidths at least an order of magnitude greater than this, which is clearly
unfeasible for electrical control at base temperatures of dilution fridges. Hence, a sequential,
non-adiabatic ‘bucket brigade’ scheme is not possible as a route to long-range transport. Another
limitation with the original Kane approach to Si:P quantum computing [44] was the limitation of
overall gate density that could be achieved in the on-chip control electronics [45, 46]. Extensions
of CTAP to many donors (i.e. �3) via the straddling scheme [11], and to a lesser extent the
alternating scheme [27], allow a reduction in the overall gate density by reducing the number
of independent control gates required for long-range transport. Such gate density reductions are
not available in either the non-adiabatic ‘bucket brigade’ approach or the adiabatic following
technique discussed by Taylor et al [47]. Although the advantages of long-range CTAP through
chains comprising many donors are not the subject of this work, successful demonstration of
CTAP across a three-donor chain is a necessary milestone towards demonstrating the advantages
of the long-range chains.

The CTAP pathway requires the adiabatic transformation of a particular electron eigenstate
along a defined path in phase space. In the spatial setting, we restrict the control parameters to
the tunnel matrix elements that are set by surface electrodes (gates), analogous to the way in
which electromagnetic field intensities are varied in STIRAP. Although the device shown in
figure 1(a) is yet to be made, it is the purpose of this paper to investigate potential fabrication
methods based on currently available technologies. Devices of comparable complexity have
been fabricated using the counted-ion implantation techniques described in [5], and we also
note the demonstration of triple dots in GaAs 2DEG structures [29, 48, 49] and gated carbon
nanotubes [31].

In order that transport may be effected in timescales short compared with the expected
decoherence times, the donors need to be relatively close to each other. Ideally the device
should comprise three donor atoms spaced 20–30 nm apart, 20 nm below the surface. Here we
model departures from the ideal configuration imposed by the limitations of the implantation of
ions through nano-scale apertures. We employ SRIM [50] Monte Carlo simulations to model
the straggling of implanted ions into the substrate. The SRIM data in figures 1(c) show the
probability distribution of 100 000 14 keV P+ ions implanted through circular apertures 10 nm
in diameter and centred on the desired atom locations. A phosphorus ion accelerated to 14 keV
will travel around 23 nm into the substrate before stopping but can straggle away from this
median position as it undergoes collisions with the Si lattice, giving the range distribution a
standard deviation of 11 nm. A less energetic 7 keV ion will penetrate 14 nm below the surface
and has 40% less straggle.

To model devices containing atoms implanted in this way, we begin by writing down the
Hamiltonian of the three-donor one-electron problem in the three-state approximation where we
only keep the lowest state of the electron localized around the donor.

Although we will later treat the next-nearest neighbour tunnelling as a potential noise limit,
for the discussion that follows, it will be assumed to be zero. The CTAP protocol requires tuning
of the energies of the sites so that they are equal. This is achieved by the surface gates S1, S2 and
S3 in figure 1(a). The adiabatic pathway is affected by modulating the barrier gates B12 and B23.
In practice, all gates will affect all of the relevant parameters, and so some cross compensation
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Figure 1. (a) Triple dopant, one-charge system with surface gate control for
CTAP. The symmetry gates S1 and S3 maintain the degeneracy of the end of
chain states, whereas the variations in the TMEs are effected by the barrier
gates B12 and B23. (b) For the greatest chance of producing a working device,
5 nm B gates will be required. They would be laid in the space left by the S
gates. Spacings of 20 and 30 nm were used as the extrema of the nominal range.
(c) Top view and side view of SRIM simulations (see text) showing the spatial
probability distribution of 100 000 14 keV P+ ions implanted into silicon through
three apertures 10 nm in diameter and spaced 30 nm apart, patterned in 180 nm
of PMMA. There is a 5 nm oxide present on the Si surface.

will be required [23], which can be determined by studying the three-dimensional charging
diagram of the three-site system [29, 51]. Using the basis |1〉, |2〉, |3〉 with onsite energies Ei = 0
and TMEs �12(t), �23(t) and �13. The Hamiltonian is

H(t) = �12(t)|2〉〈1| + �23(t)|3〉〈2| + �13(t)|3〉〈1| + h.c., (1)

and with �13(t) = 0, the eigenstates are

|D0〉 =
�23|1〉 −�12|3〉√

�2
12 + �2

23

, (2)

|D±〉 =

�12|1〉 ±

√
�2

12 + �2
23|2〉 + �23|3〉√

2
(
�2

12 + �2
23

) , (3)
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with energies

E0 = 0, (4)

E± = ±

√
�2

12 + �2
23. (5)

The CTAP protocol can now be understood quite simply. The idea is to remain in the
state |D0〉 and to vary the TMEs so that at time t = 0 the system is in the desired initial
state, e.g. |D0(t = 0)〉 = |1〉, and at time t = tmax the system is in the desired final state,
e.g. |D0 (t = tmax)〉 = |3〉. Note that although this three-mode description for the tunnelling is
obviously a simplification, it still captures all of the essential physics of the CTAP protocol,
a fact confirmed by recent analyses of CTAP in the triple square well case [21, 22] and
atomistic simulations of the ideal case [23]. It is also interesting to note another point of
distinction between STIRAP and CTAP. Transport in STIRAP also employs the adiabatic
following described above, but there is another mechanism that acts to improve the fidelity of the
transport: coherent population trapping. In the case of STIRAP, |D0〉 is also the dark state, i.e.
a state decoupled from the driving fields and also from spontaneous emission. Any leakage of
population out of the dark state, e.g. caused by varying the Hamiltonian too quickly, is therefore
optically pumped back into the dark state. In this way, spontaneous emission actually serves to
improve the fidelity of the STIRAP mechanism. This channel is not, in general, open to CTAP
because at the temperatures and energy scales necessary for CTAP in Si:P, there is not expected
to be any appreciable T1 relaxation from the middle site into the other states.

To effect CTAP, there is clearly a large amount of flexibility to choose the pulsing scheme
for the TMEs. In STIRAP protocols, Gaussian or Gaussian-like pulses are most commonly
employed because of the necessity to turn on the excitation (laser pulse) before varying it [16].
However, in the solid state, where nonzero TMEs arise solely due to donor proximity, such a
pulsing is not required, and so we advocate the use of the pulses that vary between their extrema
at t = 0 and tmax. Such pulses are explicitly stated below and illustrated in figure 2, and they are
chosen to be sinusoidal for analytical convenience. In [20, 26, 52] error function pulses were
employed, which have some advantages in terms of smoothness of evolution and in nonlinear
systems avoid certain complications due to eigenstate degeneracy at the ends of the protocol.
It should be noted that the TMEs between sites vary exponentially with applied gate voltage
[42] and so, although the TMEs are varied sinusoidally, the form of the control biases will
differ [21].

To determine whether the system remains in the target state, we invoke the adiabaticity
criterion, and due to symmetry we define (without loss of generality) the adiabaticity parameter
to be between |D0〉 and |D+〉. The adiabaticity parameter can be defined as

A≡
〈D+|

∂H
∂t |D0〉

|E+ − E0|
2 , (6)

and for adiabatic evolution we require A� 1. Note that this is equivalent to other means of
quantifying the adiabaticity, e.g. that given in [16]. One should be mindful of the fact that the
adiabaticity does not translate to a direct measure of fidelity; it is rather a measure of when
the assumption of adiabatic evolution is justified. Choosing as the form for the surface gate
controlled TMEs

�12(t) = W12 sin2

(
π t

2tmax

)
, (7)
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Figure 2. (a) Two of the many possible scenarios for three implanted donors,
where they are equally spaced and where the right spacing is half the left.
(b) TMEs as a function of time. The solid lines correspond to the case that
W12 = W23 for the sinusoidal variation as defined in the text, whereas the dashed
line corresponds to the case that W23 = W12/2. (c) Eigenenergies of the states
as a function of time with the sinusoidal variation; again the solid lines are for
W12 = W23 and the dashed line for W23 = W12/2. (d) The value of the adiabaticity
parameter A throughout the process. Note that it is maximized at t = tmax/2
irrespective of the values of W12 and W23, although there are minor differences in
the value ofA. As expected, the process is slightly less adiabatic with the smaller
values of W .

�23(t) = W23 cos2

(
π t

2tmax

)
(8)

gives

A=
πW12W23 sin (π t/tmax)
√

2tmax

(
W 2

12 + W 2
23

)3/2 . (9)

It is important to note here that the adiabaticity is a maximum when t = tmax/2 irrespective of
the relative values of W12 and W23. This is significant in the design of robust sequences and in
affording a quick estimate of the required timescale for CTAP operation on devices fabricated
subject to the statistical variations of ion implantation. To illustrate the energies, TMEs and
adiabaticity, in figure 2 we present characteristic plots for the case that W12 = W23 and when
W23 = W12/2.

In a realistic experiment, we will set the time for CTAP, given a certain desired adiabaticity.
Hence it is more important to rearrange (9) to determine the value for tmax that keeps the
maximum value of A at or below some threshold, i.e. we determine

tmax =
πW12W23

√
2A

(
W 2

12 + W 2
23

)3/2 , (10)

where we have dropped the sine term because we are evaluating tmax with respect to
the maximum value of A. Equation (10) is particularly useful in gaining insight into the
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practicalities of CTAP. The most obvious impediment to very long timescales will be the limits
placed by decoherence, which will set a maximum length of time over which the protocol can
be conducted [11, 53, 54].

Until now we have neglected the next-nearest-neighbour tunnelling, i.e. �13. Formally,
there is no CTAP pathway for nonzero �13 as the Hamiltonian (1) has no null (or dark) state;
however, we can place a good bound on whether neglecting �13 will be valid by comparing
the period for oscillation on the |1〉 − |3〉 transition directly, with the total time for CTAP.
We introduce J ≡ �13tmax and assert that if J � 1, then we may ignore the effect of �13

in our analysis. This criterion is helpful for proof of concept devices, but may not suffice to
assess applicability for a large-scale quantum computer where more rigorous error control is
required [13]. Having now established the criteria for successful operation of a CTAP device,
we now turn to the practicalities of fabrication.

3. Deterministic doping using nano-apertures

Although ion implantation is an industry-standard technique for the introduction of dopant
atoms into semiconductor materials, there are three main limitations to applying the technique
to deterministic doping: the registration of individual ion strikes, spatial registration of the ion
implant site and straggling of the ion due to the statistical nature of the stopping process.

We propose here that these problems are now close to being solved to the level required
for the fabrication of a prototype three-atom CTAP device. The first problem has several
demonstrated solutions. These include registration of individual ion strikes by on-chip detector
electrodes [5]; changes in the source–drain current in MOSFETs or micro-resistors [6, 55];
or detection of the secondary electrons liberated from the surface of the substrate [6]. To
overcome the second problem, regarding spatial registration of the ion impact, these methods
have been combined with either surface masks written on the device surface with electron beam
lithography (EBL) or the use of a sub-100 nm focused ion beam [15]. A further alternative
is the use of a scanned nano-aperture to collimate the ion beam. Use of a nano-aperture in
the cantilever of an atomic force microscope (AFM) has demonstrated a spatial precision of
90 nm [56] with the potential of a few nm in the near future.

For the present paper, we will concentrate on a deterministic doping system that we are
developing to fabricate the structures described in the previous section. However, the system can
be used for other ions and other energies because no special ion source is required to achieve
the spatial resolution. Our system implants single ions collimated by a scannable nano-aperture
as in the conceptual schematic shown in figure 3. Ion strike registration by on-chip detector
electrodes has already been demonstrated [5]. Briefly, this method employs LN2 cooling of
the substrate and a charge-sensitive JFET preamplifier provides low enough noise to detect
the charge induced by the impact of a single ion into the substrate. We present here proof of
principle experiments with the most important elements of this system, in particular our ability
to deliver single ions to specific locations on the substrate. Here we employ 500 keV He+ ions
for simplicity—these ions can be detected at room temperature with a test substrate consisting
of a commercial photodiode.

Our nano-aperture has been fabricated in a 2.5 µm-thick Si cantilever using a focused ion
beam (FIB) system using the method of Schenkel et al [57]. An initial slot is milled with the
FIB, which is backfilled by the in situ deposition of Pt dissociated from a precursor gas by
the ion beam. Slots fabricated in this way were typically down to about 60 nm in width in the
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Figure 3. Schematic of the scanned nano-aperture apparatus. A cantilever drilled
with a perpendicular slot is scanned parallel to a one-dimensional array of
static surface apertures patterned in PMMA with EBL. First, the position of
the scanned aperture is registered by detecting ions in a registration zone. Once
the position of the aperture has been identified, deterministic implants can be
performed in the implant zone.

2.5 µm thickness of the cantilever, which is sufficient to mask a 500 keV He+ ion. We have
used an aperture nominally 100 nm wide and 10 µm long onto which was directed the incident
500 keV He+ ion beam focused to a 1 µm spot as described in [58].

The substrate that received the implant was a Hamamatsu S1223 photodiode mounted on
a Nanonics piezoelectric scanning stage. The surface of the photodiode was masked with a
test structure fabricated in a spin-coated 0.4 µm PMMA and patterned with EBL to produce
trenches that reached the substrate as shown in the AFM topographical image in figure 4. In this
experiment, the slot in the cantilever was oriented parallel to the trenches. The substrate was
then scanned in the perpendicular direction for both 220 and 28 nm steps. The spectrum of ion
energy collected from the charge induced by ion impacts in the substrate was recorded at each
step.

Features of the resulting ion energy spectra show signals at low energy from ions that enter
the substrate after losing energy from passing through the full thickness of the PMMA mask
surrounding the trenches. Signals corresponding to the incident beam energy are from ions that
impact the substrate directly through a trench. A map of the ion intensity as a function of ion
energy loss and cantilever step position produces the images shown in figures 4(a) and (c). These
images faithfully represent the two-dimensional structure of the PMMA film when compared
to the AFM trace in figures 4(b) and (d) and confirm the function of the system with a nominal
spatial resolution of 100 nm, which is expected from the width of the nano-aperture.

We also conclude that not all ions are transmitted through the nano-aperture with full
energy, as some ions forward scatter from the walls of the aperture and this can be seen from
the low-energy signals. However, for the proposed application of the system to implant sub-
14 keV ions, the nano-aperture can be made in a much thinner substrate, which will allow
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Figure 4. (a) The ion impact pulse height (energy signal) from the photodiode
substrate as a function of the position of the scanned nano-aperture with a step
size of 220 nm. The colour scale represents the intensity of ions at a given energy.
(b) AFM image of the patterned PMMA. (c) The same as (a) but with a step size
of 28 nm. (d) Trace from the AFM image of the patterned PMMA.

narrower apertures to be made [59–61], and ions scattered in the aperture will be unable to enter
the substrate except through the open areas of the PMMA mask. When applied to fabricate a
deterministically doped device, the stepping of the cantilever would be gated on the ion impact
signals, thus delivering a single implanted atom to each site.

4. Implications for ion-implanted devices

Now we are in a position to evaluate the use of our deterministic doping system demonstrated
here to calculate the theoretical yield of three-donor CTAP test devices. We use an appropriate
Hamiltonian following the theory of section 2 and employ the SRIM Monte Carlo simulations
of the ion straggling. We also restrict ourselves to the hydrogenic approximation, which is the
only computationally feasible method for simulating a large number of devices to evaluate the
statistical variations in the straggling process. This should be contrasted with the more accurate,
but substantially more computationally intensive rigorous identification of the CTAP pathway
in an ideal three-donor device using the atomistic NEMO3D package [23].

To determine the bare (unperturbed) TMEs, we use the hydrogenic approximation [62, 63]
applied by Openov [64] as a simplified approach to the study of singly ionized double-donor
structures [65, 66]. These results are applicable to donor separations predominantly along the
[100] direction in silicon where the valley degeneracy has less effect [10, 65, 67, 68].

We use

Wi j = 4E∗

(
di j

a∗

B

)
exp

(
−

di j

a∗

B

− 1

)
, (11)
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where E∗ is the effective Hartree energy and di j is the interdonor separation between donors i
and j . With these constraints, we can immediately write down tmax and J as

tmax =
πa∗

Bd12d23 exp
(
−(d12 + d23)/a∗

B − 2
)

4
√

2E∗A
[
(F12)

2 + (F23)
2
]3/2 , (12)

J =
πd12d23d13 exp

(
−(d12 + d23 + d13)/a∗

B − 3
)

√
2A

[
(F12)

2 + (F23)
2
]3/2 , (13)

Fi j = di j exp

(
−

di j

a∗

B

− 1

)
=

Wi ja∗

B

4E∗
. (14)

A rigorous calculation of tmax and J would involve full band structure considerations, but these
formulae give an extremely efficient mechanism for determining these important parameters
with relatively minimal computational cost. The hydrogenic approximation of equation (11)
also allows us to determine the fraction of simulated devices that have tunnelling rates Wi j

larger than the valley–orbit splitting (10.8 meV) to the 1s excited states. Taking the simple gate
geometry shown in figure 1(a), we can exclude implanted donors that prohibit the placement of
a 5 nm gate between them which will prevent control of the tunnelling rates.

Additionally, donors too close to the surface may hybridize with states at the oxide
interface [69–71]. While this may not necessarily be a catastrophic failure channel, we will
exclude ion arrays where one or more of the donors are closer than 5 nm to the interface as
the coherence times are expected to be shorter and the approximation assumed in our CTAP
analysis is expected to be not valid. Donors deeper than 25 nm are expected to be difficult to
control with reasonable surface gate potentials; hence we identify this as another failure mode.

To explore the statistical variations in possible three-donor devices, we performed SRIM
simulations of the straggling for both 14 and 7 keV P+ implants where the ion strike location
was chosen randomly within one selected aperture in a three-aperture array. Each aperture
was assumed to be 10 nm in diameter (state-of-the-art for EBL in PMMA), separated linearly
by either 20 or 30 nm. 14 keV P+ ions reach an average depth of 23 nm below the substrate
surface and it is therefore possible to implant through a typical 5 nm gate oxide employing the
demonstrated on-chip detector electrodes [5]. Simulations for the 7 keV P+ ions assume a state-
of-the-art 1.2 nm gate oxide and will achieve a higher placement precision because the effect of
lateral and longitudinal straggle will be less. Near-future developments of the on-chip detection
system to improve sensitivity may allow the deterministic implant of 7 keV P+ ions.

The results of our simulations are shown in figure 5 and table 1. For each three-donor
array, in which the donor positions vary according to the statistics and the randomly selected
impact site within the corresponding aperture, we have calculated 1SAS, tmax and J . For a donor
spacing of 20 nm, the straggle of implanted ions is more detrimental to the control requirements
than to the coherence restrictions. When the donor implantation spacing is increased to 30 nm,
the lateral straggle affecting gate control is less important while the portion of donors with
tmax < 10 ns decreases. One in nine devices fabricated with 14 keV P+ implants into the 10 nm
apertures spaced 20 nm apart will have suitable configurations, while the implants into the same
apertures spaced 30 nm apart increase the yield to one in six. Decreasing the energy of the
phosphorus ion to 7 keV increases this to better than one in two devices with favourably placed
ions.
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Figure 5. The overlap of success modes in a given three-donor array. In the
14 keV, 20 nm spacing Venn diagram, most arrays with a short enough tmax,
small J , suitable 1SAS or d13 > d12/d23 (favourable coherence) are also suitably
positioned for alignment with the surface gates (well positioned laterally) and/or
for suitable gate control (well positioned vertically). Increasing the implant
spacing to 30 nm subtly decreases the total number of arrays that have sufficiently
short tmax times but greatly increases the number of arrays that are well positioned
laterally, and this increases the number of successful arrays to one in six.

5. Device simulations

The calculations of 1SAS using the hydrogenic approximation above do not take into account
factors such as device geometry and the physics of the silicon substrate. To gain further insight
and confirm the criteria specifying geometrically suitable triplets have suitable pairwise 1SAS,
more accurate methods are required, which we perform here on selected simulated devices.
From the large number of configurations in the simulations of the previous section, we select
a number of donor configurations that are to be on the border of suitability and perform a
calculation of the gate-controlled pairwise tunnelling rates. We model the gate potentials by
employing the industry-standard semiconductor device modelling code ISE-TCAD (see [72]).

We model a simplified structure consisting of two donors buried in silicon with one barrier
gate between them to modulate the tunnelling rate. For these calculations, we use the same
approach applied in [27] using a finite element modelling package to simulate the electric
potential in the device in response to different applied barrier gate biases. These simulations
are then in turn used in a Monte Carlo calculation of the Hamiltonian for the pair of donors,
modelling the barrier gate as an infinite line of charge. We extract the electric potential within
the device at mesh points from the finite element modelling simulations and fit a linear charge
density that would give rise to the same potential landscape resulting in an expression for the
electric potential due to the gate bias to include in the Monte Carlo calculation. This approach
allows for any gate bias to be used, and yields the electric potential at any point in the space of
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Table 1. Percentage of three-donor devices that satisfy control or coherence
restrictions with our present model including straggling. The success modes are
listed for implanted donors that are implanted P+ ions with energies of either 7 or
14 keV at a randomly selected impact site within three 10 nm diameter apertures
spaced either 20 or 30 nm apart. An array of three donors needs to satisfy all
placement conditions to be considered viable (see figure 5); the percentage of
three-donor arrays that satisfy all control and coherence requirements is given
for each implant scenario.

20 nm spacing 30 nm spacing
Success mode 14 keV (%) 7 keV (%) 14 keV (%) 7 keV

Jmax < 0.001 97 98 99 100%
tmax <10 ns 95 100 84 91%
1SAS < 10.8 meV 95 95 99 100%
d13 > d12, d23 83 87 96 100%
Not too shallow >5 nm 72 75 72 75%
Not too deep <25 nm 42 90 42 90%
Lateral separation >gate width 34 63 62 90%

CTAP suitable arrays 11 41 17 56

the calculation without the need for recalculating the device potential for each bias separately
using the ISE-TCAD package, and without having to interpolate between the mesh points used
by the simulation to obtain the potential for an arbitrary point in the Monte Carlo calculation.

The Hamiltonian for the two-donor, Si:P system is written as

H=HSi + Vd(r − R1) + Vd(r − R2) + VE , (15)

where HSi is the Hamiltonian of an electron in the pure silicon lattice, which includes both a
kinetic term and the effective potential due to the silicon lattice; Vd is the Coulombic potential of
each donor, located at the coordinates R1 and R2; and VE is the field applied externally through
the barrier gate [68, 73, 74].

The Monte Carlo simulation was first applied to an ideal system closely modelled on
the 14 keV P+ implantation example. In this case, the implanted donors were assumed to be
‘perfectly’ aligned with spacing 20 nm apart, exactly symmetrically about a 5 nm wide gate
and buried 20 nm below the oxide–silicon interface, as is shown in figure 6(a). This was then
compared with the same simulation run for donors spaced 2.5 and 15 nm on either side of the
centreline of the gate and 20 nm deep, shown in figure 6(b).

By the geometric conditions imposed in section 4, these configurations would be deemed to
be just within the bounds of being part of a functional three-donor CTAP device. The resulting
gate voltage bias to find the 1SAS for each of these pairs of donors is shown below. Figure 7
shows the results for varying the lateral alignment of the donors.

For the perfect alignment case, we obtain a minimum gate varied tunnelling rate of
∼ 1 µeV and may be driven from this minimum up to ∼100 µeV with a change of less than
100 mV in the barrier gate voltage. When we investigate a pair with disorder in the lateral
coordinate, we see that the lateral misalignment results in a minimum gate modulated tunnelling
rate higher than that for the perfectly aligned pair.
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Figure 6. Configurations of donor pairs calculated. (a) The ‘perfect’ alignment
example. (b) Donor pair with lateral disorder at the limits of the geometrically
acceptable bounds.

Figure 7. (a) 1SAS curves for donors perfectly aligned, misaligned in the lateral
coordinate and misaligned but setting vz to 0 to simulate the resultant 1SAS when
the misalignment is completely compensated. Errors are due to the numerical
errors from the Monte Carlo routine. (b) Close-up of the anti-crossings for the
ideal and compensated imperfect cases near zero TME.

Figure 8 shows the vx and vz components of the Hamiltonian. These are coefficients of
the Pauli matrices σx and σz of the external field component of the Hamiltonian after a Pauli
decomposition has been performed, with donors laterally separated along the x-direction. To
suppress the tunnelling (or at least decrease the 1SAS by two orders of magnitude), another gate
must be used to compensate for the misalignment. This gate would need to provide a voltage to
oppose the vz component of the Hamiltonian that arises from this asymmetry.

These results show that such a pair on the boundary of the geometric criteria in lateral
disorder does in fact yield a 1SAS, and suppression of the tunnelling rate can be achieved
with a change of gate bias of order only 100 mV, compatible with that required for the CTAP
protocol. In this hydrogenic model, the depth straggle case is difficult to model and awaits
further developments of the theory.

6. Conclusions

The construction of proof-of-principle devices, for CTAP in particular, requires the ability to
accurately place donors within a substrate. We have experimentally demonstrated some aspects
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Figure 8. Components of the two-donor Hamiltonian as a function of the barrier
gate voltage (vx and vz). To suppress 1SAS one must be able to vary vx to cancel
with the bare Si:P-P+ hx and for vz to be close to zero or at least smaller by an
order of magnitude than vx so as not to dominate the 1SAS calculation. From
the plot we see that for the pair with disorder in their lateral separation, the
vz component is comparable with vx . This suggests that it may reasonably be
compensated using another surface gate.

of just such a method of implanting single ions deterministically. We have also simulated
ion-implanted three-donor CTAP devices using SRIM to model the lateral straggling within
the constraints of a realistic fabrication system to assess the impact of finite accuracy. In our
analysis, we have not gone beyond the hydrogenic approximation to donor interaction (which
can be done with NEMO3D [23, 75]), as atomistic approaches are far too numerically intensive
to explore the very large number of configurations investigated here.

However, our results suggest that a yield of successful devices of better than one in six is
immediately realizable with 14 keV phosphorus ion implantation, improving to one in two with
the near future innovation of 7 keV ion detection. Such yields are certainly adequate for proof-
of-concept devices. Numerical modelling of devices with greatest allowable lateral disorder
confirms that tunnelling can be controlled with reasonable gate voltages.

The study highlights the need to improve the deterministic doping technique to allow
implants at lower energies for more accurate placement, provided also that issues associated
with the proximity of the oxide can also be ovecome. The prospect of scaling up to longer
CTAP chains required for large-scale quantum computer architectures [13] is expected to be
less favourable, and hydrogen-resist lithography methods for producing such CTAP chains may
be required. On the basis of our results, however, we predict that ion implantation is a viable
route to the fabrication of proof-of-concept CTAP devices with three atoms.
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