View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by RMIT Research Repository

® RMIT

UNIVERSITY
Thank you for downloading this document from the RMIT Research Repository.

The RMIT Research Repository is an open access database showcasing the research
outputs of RMIT University researchers.

RMIT Research Repository: http://researchbank.rmit.edu.au/

Citation:

Sherchan, W, Nepal, S, Bouguettaya, A and Chen, S 2012, 'Context-sensitive user
Interfaces for semantic services', ACM Transactions on Internet Technology, vol. 11, no. 3,
pp. 1-27.

See this record in the RMIT Research Repository at:

http://researchbank.rmit.edu.au/view/rmit:15241

Version: Submitted Version

Copyright Statement: © 2012 ACM

Link to Published Version:
http://dx.doi.org/10.1145/2078316.2078322

PLEASE DO NOT REMOVE THIS PAGE

https://core.ac.uk/display/15623432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchbank.rmit.edu.au/

Page 1 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic
Services

WANITA SHERCHAN
Monash University

SURYA NEPAL

CSIRO ICT Centre
ATHMAN BOUGUETTAYA
RMIT University

and

SHIPING CHEN

CSIRO ICT Centre

Service-centric solutions usually require rich context to fully deliver and better reflect on the
underlying applications. We present a novel use of context in the form of customized user interface
services with the concept of User Interface as a Service (UlaaS). UlaaS takes user profile as input
to generate context-aware interface services. Such interface services can be used as context to
augment semantic services with contextual information leading to UlaaS as a Context (UlaaSaaC).
The added serendipitous benefit of the proposed concept is that the composition of a customized
user interface with the requested service is performed by the service composition engine as it
is the case with any other services. We use a special-purpose language (called User Interface
Description Language (UIDL))to model and realize user interfaces as services. We use a real life
e-government application, human services delivery for the citizens, as a proof-of-concept. We also
present a comprehensive evaluation of the proposed approach using a functional evaluation and a
non-functional evaluation consisting of end user usability test and expert usability reviews.

Categories and Subject Descriptors: [service computing]: user interface

Additional Key Words and Phrases: semantic service, user interface, context-aware

1. INTRODUCTION

Context is typically defined as a user’s surrounding characterised by attributes such
as location, environment, identity, date and time, season, temperature etc. [Schilit
et al. 1994; Brown et al. 1997; Ryan et al. 1997]. Other works have included the
cognitive aspects of the user to define context in terms of the user’s physical, emo-
tional, social and informational state [Dey et al. 1998]. The definition of context

Author’s address: Monash University, Australia, wanita.sherchan@monash.edu

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY/0000-0111 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 111-077.

O©CoO~NOOODWN -

Transactions on Internet Technology

112 . Sherchan et al.

relevant to this paper is more in line with Abowd et al. [Abowd et al. 1999], where
context is considered to be any information that can be used to characterize the
situation of an entity relevant to the interaction between a user and an application.
If we apply this definition to services computing, context can be interpreted as the
information that characterizes the operation of a service, specifically, information
relevant to the interaction between a user and the service. Services typically repre-
sent complex real-life entities. Therefore, contextual information is paramount in
interpreting and representing service output to users. Web services are the tech-
nology of choice for realizing service computing [Curbera et al. 2002]. Services are
typically delivered through the Web. Therefore, interfaces are a significant part
of the interaction between the user and the Web service. As a result, information
pertaining to user interfaces such as user profiles are a source of context in addition
to the typical user location, identity, time etc.

A Web service is considered to be context-aware if it has the ability to detect
and respond to changes in the environment [Maamar et al. 2006]. For example,
a flight booking service is context-aware if it can adapt the currency of the ticket
price to the location of the client. Context-aware Web services should be easily
accessible and adaptable so that they have potential to enrich user experiences
and make our daily life more productive, convenient, and enjoyable. Such context-
awareness perspective also brings new challenges in the architecture, design and
implementation of existing Web services infrastructures and applications. Some
questions that need to be addressed are: how to deal with large amounts of services
based on a variety of users’ personalized needs, how to handle context-aware service
composition in a dynamic environment, and how to customize business processes
according to users’ preferences.

Issues

In many applications such as e-government services, user interfaces are considered
to be among the most important contextual information for the provisioning of ser-
vices. In that respect, the use of appropriate user interfaces is an important part of
making government services more easily and effectively accessible to a wider range
of constituencies including those with little computing skills, physical and mental
impairments and young people who are tuned to the latest in social network tech-
nologies. Therefore, user interfaces are key to providing the rich context to many
e-government services. Research in accessibility and usability has traditionally fo-
cused on typical users and domain specific application. It is assumed that users’
abilities do not change over time, and a system is designed for a specific applica-
tion. The accessibility research has mostly focused on Web page content and how it
can be made more accessible using features like text-to-speech, page magnification,
enlarging menus and scroll bars, colour and font size change and keyboard-based
navigation. The techniques for adaptive user interface usually depend on a user
selecting the most appropriate options for layout. The challenge is how to provide
an adaptive user interface in a way that is transparent to the user. Designing a
good interface in general is challenging. A new approach is needed that will provide
mechanisms to adapt to both short and long term changes in user’s abilities as well
as the need of different services accessed by the user.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 2 of 34

Page 3 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 113

Our approach

To address the aforementioned issues, we propose an approach to design User
Interface as a Service (UlaaS) to create interfaces that automatically adapt to the
conditions of the users as well as the applications. The UlaaS leverages users’
context information to allow for the easy access to services while adapting the
presentation medium (i.e., User Interface) to suit their context. The UlaaS takes
two types of input - the user’s context from the user profile and the service context
from the service being provisioned - to generate the user interface (UI) which is
itself a service. This considers Ul as a service with context as input. This enables
the composition of UI services, assignment of quality attributes, and querying them
based on the contextual information. This is a novel view of context which leverages
and extends our previous work on Aspect Oriented Approach, weaving context and
services [Li et al. 2009]. In our current proposal, we consider the user interface
as a service, which is part of the service ecosystem. Since the UlaaS already has
contextual information embedded in it, it can also serve as a source of context
for service composition leading to UlaaS as a context. The user interface service
is considered as contextual information that adapts to the needs of the service
input/output as well as to the user’s expectation and their limitations. The (UlaaS)
is a key contertual information for generating the best Ul elements for presentation
of service input/output. It is important to note here that the purpose of UlaaS is
to generate Ul elements in a standard and uniform format based on the available
context information by using already existing interface services. The presentation
of such UI elements to the end users is outside the scope of this paper. It has been
well studied in the field of Human Computer Interaction (HCT).

In our approach, UlaaS is dynamically composed with other services. This is a
form of an augmentation/weaving of their contextual presentation. The serendip-
itous effect of this approach is that no extra composition infrastructure is needed
beyond what is required for normal service composition. The composition engine
considers the Ul as any other service that is to be composed. The set of UlaaS is
managed through an ontology that maps all types of Uls to their respective ser-
vice requirements and user expectations and their physical and mental challenges.
We provide a description language that maps a service instance of a Ul concept
to a uniform representational context for a service. This language is called User
Interface Description Language (UIDL). Each retrieved service is mapped to the
“best” UI service instance and then composed with it. We use a real e-government
application to model the provisioning of social services to a large and varied set of
populations that include the unemployed, senior citizens, students, single mothers,
expecting mothers, and those stricken by transient circumstances. This work is
part of a larger research endeavour that aims to provide a seamless framework for
efficiently managing the whole lifecycle of services [Yu et al. 2008].
Contributions

This paper makes the following major contributions: (i) Use of context in Web
services interfaces: we use user profiles as a source of context for customizing user
interfaces, (ii) User interface as a service using contextual information: we use con-
textual information from user profiles as input and generate user interface services
(UlaaS) as output, (iii) User interface as a service as a context for applications:

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

114 . Sherchan et al.

the user interface services (UlaaS) can themselves be used as context for service
composition, service query etc. by other applications, and (iv) No need for new
infrastructure to support the proposed UlaaS concept: UlaaS can be realized us-
ing existing infrastructure, for example, the WSMS infrastructure [Yu et al. 2008].
UlaaS can also utilize existing functionalities such as search, compose, query etc.,
and therefore, does not require addition of new functionalities to operate correctly.

The paper is organized as follows. In Section 2, we give an overview of the Web
Service Management System (WSMS) architecture that provides a framework for
managing user interfaces as services. In Section 3, we introduce the concept of user
interface as a service (UlaaS) with context as input and Ulaa$ itself as a context.
In Section 4, we describe our proof-of-concept implementation using a real life e-
government application, human services delivery for the citizens and present two
evaluations of our approach -(i) functional, and (ii) non-functional evaluation. The
non-functional evaluation consists of an end user usability test and expert usability
reviews. In Section 5, we review the current literature in context-aware service
delivery with a focus on context-aware interfaces. We conclude and point to future
directions in Section 6.

2. MANAGING THE SERVICE LIFECYCLE

The Web Service Management System (WSMS) is an enabling technology to man-
age context-aware Web services. It provides the platform to test, deploy and man-
age context-aware Web services. We use WSMS as the platform to demonstrate
the concept of UlaaS. This section provides a brief description of WSMS and its
key components, more specifically, their roles in the proposed context-sensitive user
interfaces for semantic services.

Figure 1 shows the WSMS framework architecture. The lowest layer in the ar-
chitecture contains application specific services. The second layer is the service
organization that uses ontology to describe the underlying application specific ser-
vices and contextual information about these services. The third layer is the core
components of WSMS for managing service life-cycle which include service trust
management, service optimization, service change management and service query
and composition. The highest layer is the user interface. The discussion in this
section will be limited to the second and third layer components and their roles
in supporting context aware user interface management at the highest layer. We
describe how UlaaS enables context-aware user interfaces for semantic services in
Section 3.2
Service Organization

The service organization catalogues services and relevant context information so
that they can be uniquely identified and managed within their life-cycle. We use
an ontology-based approach to organize services. An ontology provides a common
framework to represent service metadata as well as domain and context information.
The ontology also provides context-information to compose context-aware compos-
ite services. Two types of context information are relevant to user interfaces. The
first type of context information consists of inputs that a user interface service takes
such as user profile, device characteristics, geo-spatial and temporal information.
Such context information help WSMS to create context-aware user interface as a

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 4 of 34

Page 5 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 115

€ 55
=%
@3
Context Aware User Interface Management g g
\ » 38
Query Consurnphon
| e l‘ """""""""""""""""""""" |
Service B 2 Service
Query & Composition Optimization

Service Change
Management

juawabeuey
EEETINET

Service Trust Management

| :

suonduosaqg
onuewas

seaInleg
gam

S821n0say

Employment Financial Social Welfare
Services Services Services

Fig. 1. Web Service Management System (WSMS) Architecture

service. The second type of context information is user interface services as context
that the service composition takes as input to generate a composite service that
includes user interface. The first type provides context information to the user
interface service from users’ perspective, whereas the second provides context from
the system’s perspective.
Service Trust Management

The service organization may contain several services including user interfaces
that provide similar functionality. Service composition prefers that all the services
selected during composition are the best services for the given context compared to
other similar services. Therefore, trust acts as a contextual information for service
selection. However, selection of the best services becomes difficult because services
may commit to provide a certain level of Quality of Service (QoS) but may fail to
deliver. Thus, a major challenge in WSMS includes providing a trust framework for
enabling the selection of services based on trust information. We have developed a
number of reputation collection, assessment and dissemination models for WSMS
and presented in [Malik and Bouguettaya 2009]. Our trust models are based on the
concept of community, where the reputation of a service is the collective perception
of the service consumers within the community.

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

116 . Sherchan et al.

Service Optimization

WSMS may find a number of ways to create context-aware services that satisfy
all functional and quality requirements of a user. The service optimization aims to
select the services that a user would prefer the most based on the available context
information. The proposed techniques for service optimization are based on QoS
parameters. These techniques aim to identify a service with the best quality based
on context information. To conduct effective service optimization, WSMS adopts
schemes aiming to handle both quantitative and qualitative properties of services.
We propose some such techniques in [Ouzzani and Bouguettaya 2004] and [Wang
et al. 2010].

Service Change Management

The service change management is an important aspect of context-aware user
interfaces as the services in a composition may need to be changed based on the
contextual information. A user interface service may go through frequent changes.
The triggers for these changes could come from different sources. Changes in the
services include changes in the functionality they provide, the way they work, the
component services they are composed of and the quality of service they offer. The
service change management component is designed to manage such changes in the
user interface services as well as other services. WSMS uses a number of approaches
to deal with the change in user and service context (refer to [Ryu et al. 2008] for
details).

Service Query and Composition

This component takes user interface as a context and generates a composite
service. The component provides support for the underlying query model and
composition algorithms. The WSMS query model consists of a query interface, a
query language, and a query engine. The interface allows users to specify what they
want (goals) at semantic level and leave composite service generation to WSMS. The
query interface is handled by the user interface component, which will be discussed
in the next section. The underlying query language is Service Query Language, the
XML service query language we developed as an interface to WSMS query engine.
Unlike keyword-based information searching, the Service Query Language is able
to specify non-functional requirements using standard SQL-like prediction clauses.
The Service Query Language is an internal language used by the system to Based
on how services are composed to create composite services, WSMS allows three
types of composition horizontal, vertical, and hybrid [Bouguettaya et al. 2010].

Services in WSMS are organized using a semantic model in service organization.
Context-aware user interfaces are generated by the user interface component and
provided as user interface context to the service composition. Hence, context-aware
composite services can be automatically generated by WSMS. Upon receiving a
user’s query, WSMS will first identify relevant services including user interfaces
and perform logical reasoning to generate a composite service at the semantic level.
WSMS uses a matchmaking algorithm proposed in [Medjahed et al. 2003] and
context-aware service weaving algorithm proposed in [Li et al. 2009] to generate
a composite service with appropriate user interfaces. This is feasible since user
interfaces are generated as services and provided to service composition as context.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 6 of 34

Page 7 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 117

3. CONTEXT-SENSITIVE USER INTERFACES

Service-oriented applications are by nature platform and application independent
and designed to be used by a variety of users under different circumstances. There-
fore, the application interfaces should be simple and easy to use. In addition, the
query interface should be rich and powerful enough to be able to express various
concepts and their relationships. Furthermore, often the result of a query is not a
single service but a composition of atomic services from different applications. Con-
sidering these requirements, the query interface for WSMS is designed to have form
like features where users can declaratively specify their query. Different Graphical
User Interfaces (GUIs) are needed for end users to generate composite services in-
teractively in different application domains. The GUI presents the abstractions of
underlying domain knowledge with the help of the domain ontology.

In order to address this issue, we introduce a novel approach to service composi-
tion by creating user interface as a service and providing it as a context to service
composition. This enables the service composer to create composite services com-
posed of Web services and user interfaces. The functionalities of the user interface
management component in terms of context-awareness can be described as follows:
it creates context-aware user interface for users and provides user interface as a
service(UlaaS) as a context for composition for a specific application. For example,
a user interface for a color blind person is generated as a service based on their
user profile. The generated user interface is then used as a context for some human
services application for composing other services so that the outputs from the other
services can be displayed to the user using the interface service. Next, we describe
the two main contributions of this paper- user interface as a service, and interface
service as a source of context for applications.

3.1 User Interface as a Service (UlaaS)

User interfaces take different forms that include textual, audiovisual and graphi-
cal interfaces. Their main purpose is to present results of queries to make them
understandable to different categories of users. Some interfaces are general, such
as text-based interfaces, while others are more specific, such as Braille-based inter-
faces. Historically, every type of user interface is designed for a type of environment
(e.g., large/small screen) and types of users (e.g., visually impaired). There are
commonalities and differences among the different designs. The core idea behind
context sensitive user interfaces is to consider user interfaces as services that take
as input several types of context information such as user profile, device character-
istics, geo-spatial and temporal information and generate the interface to suit the
characteristics of the user, device and geo-spatial location. The focus of our work
is on the functional aspects of user interface rather than non-functional. Therefore,
the UlaaS aims to provide functionalities for generation of artefacts necessary for
user interface, but not necessarily how these artefacts are rendered and displayed
to the user.

The UlaasS treats each interface service as a first-class object that can be manip-
ulated and combined. This determines how the generated information is presented
to the user. Instead of defining a user interface in terms of overall Web page layout,
the user interface is defined as a composition of user specific Web service compo-

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

118 . Sherchan et al.

nents. Each Web service provides a user interface component for input and output
messages related to its functionality. The component’s design takes into account
users’ characteristics and disabilities, available hardware and service provided to
create a composite user interface.

The core underlying principles of UlaaS are as follows.

—A pool of services in WSMS are responsible for generating UI related artefacts.
These services are advertised like other Web services. These services take con-
textual information about the user, the application and its environment as input
and generate a set of Ul artefacts as output. For example, a service takes de-
vice type as input and generates a widget to display textual information for that
device as output. This is an example of a fine grained UI service.

—UTI services are organized by the service organizer like other services using three
layers of ontology. Therefore, Ul services are also treated as first class service
artefacts that can be queried, searched, composed, changed and trusted within
WSMS.

—UI services can be composed with other application and domain specific services
using the same composition engine. This means realizing the UlaaS concept does
not require separate composition engine for UI services.

—Keeping with the service oriented design principles, user interface services are also
platform and application independent. UI services generate artefacts according
to the given contextual information. However, the rendering and presentation of
these artefacts are outside the scope of this paper.

The UlaaS concept is not restricted to a specific design and implementation. In
this paper, we propose a design and implementation to realize the UlaaS concept
based on the above guidelines. It is important to note here that our proposed design
and implementation is one way of realizing the UlaaS concept. There could be other
alternative ways of realizing UlaaS. We next describe our proposed approach.

The proposed design consists of two main elements:

—A User Interface Description Language (UIDL) for describing artefacts/elements
of user interface for service oriented applications. All UI elements can be de-
scribed in UIDL. UIDL can be integrated with a standard workflow language
such as XPDL to represent a workflow composed from Web services.

—A User Interface Execution Engine (UIEE) for (a) rendering contents as per
the UIDL returned by the underlying services, and (b) invoking appropriate
underlying services in response to user inputs.

The UIDL is only one way of realizing the proposed solution. Although UIDL
is a powerful language to demonstrate the UlaaS concept, the contributions of
the proposed solution is beyond the construct and expressive power of UIDL as
explained above. This proposed design enables user interfaces to be described,
published, searched, queried, composed and invoked as services.

As shown in Figure 2, three services publish their Web service interface (WSDL)
along with their Ul into a semantic service repository. An application can then
lookup/query the Uls that meet its requirements. The application can directly
request for the UIDL from the corresponding Ul service (or optionally via the service

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 8 of 34

Page 9 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 119

Service
Repository

e

<F
e@
F
&_\‘9 D(ubf.
N g
/@
User Interface

Web Service 1

D] WSDL + UIDL
|:| Web Service 2
WWISDL + UIDL

Render

I C Y Y] P—— S 3
_UIEE 4) Ret IoL. & endce
) Retum WSDL + UIDL

Service-Oriented Application

Fig. 2. Overview of Ul as a Service (UlaaS)

repository). Once an appropriate UIDL is retrieved, the UIEE can render the Ul
according to the specification in the UIDL. Similar to traditional Web services, the
application can compose multiple Uls from multiple UI services to form their own
UI as shown in Figure 2. The proposed design works in a way similar to Web Service
User Interface (WSUI) proposed in [Kassoff et al. 2003]. However, these existing
solutions are not based on the concept of UlaaS which inhibits the composition
of user interfaces. Furthermore, they do not have independent representation of
Ul artefacts as in UIDL. We make further comparison with these works in a later
section.

User Interface Description Language (UIDL)

UIDL is an application-independent, platform-independent and programming-
language-independent user interface description language that is able to express
complex Rich User Interfaces (RUI). UIDL is designed as an XML schema which
includes a variety of atomic Ul artefacts/widgets including Label, Button, Radio
Button, Check List, Text Box, etc. It also has complex Ul widgets that are com-
posed from the above atomic UI widgets to form a higher level of UI such as Widget
Container, Page, Pages, Workflow, etc.

= = @}ﬁ_l’nqes'lyye xi—fw ?[3£xnnd ¥ Bm‘;erlguTyan;—(_; T3 WidgerContaines
= & Baze Type BasicVidgetType Type _idgetContarner Type
= numOfPage Type xsdint -
= ShowPageTiles Type usd boolean = Layout Type = xsd.stnng
= Seracelame Type usd sinng | = Title Type : wsd: string
OTE Workilow
Type wsdarlfl

Fig. 3. High-level structure of UIDL schema

While each of these widgets has its own specific properties to serve particular
interactions between user and system, they all are inherited from a basic widget.
The basic widget contains the common properties for most of the UI widgets such

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

120 . Sherchan et al.

as position, colour, font and size. Figure 3 shows the high-level structure of UIDL
schema.

"BasicWidgetType">

"height"

"xsd:int"/>
name="width" t i

"WidgetName"
"WidgetType" ty

xsd:string" />
xsd:string” use-"required"/s

Fig. 4. Schema Component Representation for BasicWidgetType

Figure 4 shows the schema representation for BasicWidgetType, the basic wid-
get from which all basic Ul components such as Label, button, etc. are derived.
Figure 5 shows the xml representation of ListItem, a basic Ul component. Fig-
ure 6 shows the schema representation for WidgetContainerType, a complex UI
component consisting of basic Ul components such as Label, RadioBox, TextBox,
Button, etc.

£ [0..1]"/> [0..1]
<ListItem> ListItemType </ListItem> [1..*]
s s

Fig. 5. XML Instance Representation for ListItem

User Interface Execution Engine (UIEE)

The User Interface Execution Engine (UIEE) interprets the UIDL and renders
a Ul according to the description in the UIDL. UIEE is programming-language-
independent and platform-independent. The basic UIEE process of rendering a
UIDL is shown in Figure 7.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 10 of 34

Page 11 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 121

ne="WidgetContainerType">

"TextBoxType"

RadioBoxType" mir
CheckBoxType
istBoxType"

"Button" type="ButtonType" max0 s="unbounded"

"xsd:string”/>
sd:string” />

Fig. 6. Schema Component Representation for WidgetContainerType

Load UIDL and
Transform to
Object

k4

for each page do
for each widgetContainer do
for each widgetContainer do
for each widget do

Render the
widget using
native lib

End

Fig. 7. UIEE Flowchart

3.2 User Interface as a Service (UlaaS) as a Context (UlaaSaaC)

The proposed concept of UlaaS is mainly targeted for service-oriented applications.
Such applications usually deliver a specific functionality (service) by composing
other Web services. Interface services generated using UlaaaS have contextual
information embedded in them. Therefore, user interfaces generated using UlaaS
can themselves be used as contextual information for service composition. The
concept of UlaaSaaC takes UlaaS as a context for a particular application domain
and composes and generates new services.

Figure 8 shows a simple Ul service realized using UIDL and UIEE based on the
concept of UlaaSaaC. The figure also shows the protocol for a typical interaction

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

122 . Sherchan et al.

System Monu oo | [wessonert |

Application Logo and Messages

————————(1) send a query—————————]—,

[— — —(2) Retumn a workflow= — — — — e
______ (3) Selection: — — — — — B
- — — — — — {BUl— — — — ——— :| e ————————
. Application
Application Workflow Display, ———— —— —5) Input— — — — — | e -
Menu Bar
Input, Output H

|————(6) Return a resuit

Fig. 8. A Simple Protocol for Interaction between UI Service and the Back-end Applications

between the Ul service and the back-end application. The interaction, managed by
the UIEE, occurs as follows:

—First, users can select an item from the application menu bar. The system creates
a query based on the user selection and executes it on the service ontology. The
execution of the query may result a return of a workflow or an execution of a
service depending of the type of a query. An example of execution of a service in
our human services application is shown in Figure 13 when a user selects a menu
item “My Life Track”.

—If the execution of an initial query is a (composite) service that requires user’s se-
lection or input, the application will return a workflow (composite service), which
may reuse an existing composite service or generate on demand by composing
existing Web services. The workflow should use a standard representation, such
as XPDL and/or BPEL, which can be shown in the Workflow Display Area. An
example of the execution of a composite service for human services is shown in
Figure 12.

—Optionally, each individual activity (can be a Web service) can have its specific
user interface for data input.

—If the query cannot provide enough data to execute the activity, a new inter-
face component will automatically pop-up to collect further input data. Such
interfaces are generated from Web Services using UlaaS concept.

—The collected input data may be used as an input to the Web service or may
result in selection of new services.

—Once the execution is completed, the application will return the execution results
to the UI service. The execution results can be formatted at server-side either in
a standard presentation language such as HT'ML or in a format understandable
by the UI Smart data projector, i.e., UIDL.

With a generic user interface, standard protocol and workflow/data representa-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 12 of 34

Page 13 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 123

tion, the strong dependency between applications and the user interface can be
decoupled, thus achieving the purported design goal: User Interface as a Service to
serve multiple Web service based applications. UlaaS treats each interface service
as a first-class object that can be manipulated and combined. Thus generated user
interfaces can be provided to service composition as context (UlaaSaaC). Addition-
ally, user’s contextual information can be used to generate personalised interfaces
using UIDL. We next describe how we have implemented these concepts in WMS
for a human services application.

4. IMPLEMENTATION AND EVALUATION

In this section, we describe an implementation of UIDL and UIEE to realize the
concept of UlaaS proposed in this paper. The context of our implementation is
e-government services. We first describe the application domain and the need for
Ulaa$S in this domain.

4.1 E-government Services

E-government services refer to services offered by a government to its citizens such
as social welfare services, financial services, employment services, disability services
and services for the aged population. Our implementation was developed for e-
government services provided by Centrelink, an Australian Government Statutory
Agency providing a range of Commonwealth services to the Australian community
on behalf of the Australian Government. Centrelink works in partnership with
client agencies, a variety of government departments, agencies and community or-
ganisations. Centrelink’s objective is to design and deliver products and services
efficiently and effectively to satisfy their stakeholders including individual citizens,
residents and other agencies. Some of the products and services provided by Cen-
trelink are:

—Support for employment: Centrelink helps people through transitional periods in
their working life by connecting people to the services they need from vocational
training to work experience through Job Services Australia (JSA). The focus
of the employment services is to transition people from welfare to sustainable
employment.

—Support for families and guardians: Centrelink provides a range of services for
families with children to help them meet the costs and cope with the challenges
associated with raising children. The financial support includes benefits such as
Child Care Benefit, Family Tax Benefit and Parenting Payment.

—Support for carers: Centrelink provides financial assistance to carers through a
range of products such as Carer Payment and Carer Allowance.

—Support for students: Centrelink provides a range of financial assistance services
to students such as Youth Allowance, Austudy, ABSTUDY, Fares Allowance,
Pensioner Education Supplement and Assistance for Isolated Children.

—Responding to emergencies in communities: Centrelink helps people during tran-
sition periods in their lives in case of emergencies such as bushfires, floods and
drought.

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

124 . Sherchan et al.

In many applications such as e-government services, user interfaces are considered
to be among the most important contextual information for the provisioning of
services. In that respect, the use of appropriate user interfaces is an important part
of making government services more easily and effectively accessible to a wider
range of constituencies including those with little computing skills, physical and
mental impairments and young people who are tuned to the latest in social network
technologies. Therefore, user interfaces are key to providing the rich context to
many e-government services. Since e-government services are delivered to a wide
variety of people with various characteristics and various needs, an important part
of service delivery is the customization of services to the service consumer. This
includes user interface/interaction customization provided by UlaaS. For example,
if a customer is an elderly person, then they would need larger font sizes in the user
interfaces. Similarly, if a person is color blind, a user interface that uses only black
and white is more suitable for this person. Therefore, UlaaS provides an ideal way
for providing the rich context to e-government services delivered by Centrelink.

Centrelink uses a service delivery model based on the notion of “life events” to
deliver a variety of products and services to people on behalf of client departments.
In the “life events” approach, the customers come to Centrelink at points of tran-
sition or crisis in their lives such as leaving school, becoming unemployed, retiring
from the workforce, separating from a partner and natural disasters. Centrelink
then tailors a range of government services to meet the customer’s needs. For the
purpose of our implementation, we consider the case of a person with the life event
of “principal carer for children”.

4.2 Ulaa$S Implementation Architecture

Figure 9 depicts an implementation architecture of UlaaS in WSMS on a coarse
grained level. It is implemented using open source technologies and is based on
the Java 6 platform. Each WSMS component is implemented as a dedicated Web
service using the JAX-WS technology. WSMS uses Apache CXF as a Web service
stack that implements the latest version of JAX-WS (v2.1). Apache Tomcat is used
as a Java Servlet container for hosting the Web services.

The implementation is split into four core parts:

(1) User Interface Manager: This user interface (UI) component constitutes the
UIDL based user interfaces that allow customers to register for Centrelink ser-
vices, claim services, view/update their profiles and view their current Life-
Track. The LifeTrack is a graphical view of all events reported by a customer
as well as all received benefits and services. The UI is implemented using the
Google Web Toolkit (GWT) which contains a set of efficient tools for developing
Web application.

(2) Centrelink Service Organization: This component declaratively describes all
benefits, services and products and their relationship in the Centrelink domain
by using ontologies. In particular, the WSMS system uses WSMO (Web Service
Modelling Ontology) and WSML (Web Service Modelling Language) to model
and describe the different artefacts. An open source software WSMO Studio
was used to create and edit the ontologies. The implementation also used
corresponding tools and APIs (Application Programming Interface) to parse

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 14 of 34

Page 15 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 125

Select &

Centrelink User Interface Lo E

Change
II Centrelink Querying lComcosmon Management | Trust
Service | Service Service Betvice Service
scolbes Ontology
benerl)ltes & services| I Ontology | [Optimization || Persistence
C link Service deploy | Service Service Service
Organization WSMS

‘ Social |

Services Carer Services | -
Information Employment Composite DIAC
Services Services Services kes

[| Operational |

Services

e
conin [rorme]
and Services Third Party Services

]

Fig. 9. UlaaS Implementation Architecture

the ontology at runtime.

(3) Web Service Management System (WSMS): WSMS implements the core in-

frastructure that exposes all its functionality as services. These services are
essentially middleware services, especially tailored for building service-oriented
systems. The WSMS components are generic and not related to any particu-
lar application domain. The Querying Service acts as the central entry point
and coordinator for WSMS. The User Interface Manager interacts with WSMS
to find the corresponding atomic/composite services that need to be invoked.
The User Interface Manager invokes the services (either atomic or composite)
identified by the Querying Service to accomplish user interaction.

(4) Centrelink Applications and Services: This part constitutes the domain-specific

part of the overall system. It comprises of all existing applications, Web ser-
vices, databases, etc. in the Centrelink domain. A key requirement for using
WSMS is that all relevant application services are designed in a service-oriented
way, i.e., by exposing them as Web services. In the current prototype, we “sim-
ulate” a small fraction of the Centrelink e-government services within our own
environment.

(5) Third Party Services: External services constitute a core part of Centrelink’s

business. These include services provided by external parties such as govern-
ment departments and agencies and various private and non-profit Employment
Service Providers (ESPs). Services provided by these organizations are typically
invoked within the Centrelink business processes. In the current prototype, we
“simulate” these services.

All these different system components interact with and depend on each other.

For example, a prerequisite for using WSMS is the creation of a service organization
ontology. This requires a considerable amount of time to identify the core business
services and describe them in the ontology. These descriptions are then deployed

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

126 . Sherchan et al.

to the WSMS and managed by the Ontology Service. Current WSMS implementa-
tion does not enforce any particular ontology design as long as the ontologies are
modelled cleanly in WSMO and encoded in WSML. Additionally, the concrete Web
services from the Centrelink environment are annotated with the ontological con-
cepts from the service organization ontology, which enable semantic interpretation
of the services. The data of the concrete services (e.g., WSDL description) are then
maintained by the Persistence Service in WSMS.

We next describe the three major components of this implementation relevant to
the UlaaS proposed in this paper.

Querying Service: The Querying Service retrieves a Web service query for a de-
sired service. A query in WSMS is based on the functionality described in the Ser-
vice Organization Ontology. It can also contain a number of non-functional aspects
such as trustworthiness. The query language is SQL-like language that enables
users and/or developers to query required services at a semantic level like querying
databases so that they do not have to deal with the complexity of interfacing to
individual Web services. The query language is defined as an ANTLR grammar
[Parr]. This allows automatic generation of the parser of our query language using
existing tools. Upon receiving a query, the Querying Service parses the query and
interacts with the Ontology Service to check whether the desired services exist (i.e.,
are described as part of the service organization). If the service exists the query
returns the service to the requester so that it can be invoked. If no service can be
found, the Querying Service will interact with the Service Composer to compose a
service based on the existing services in the Centrelink Service Organization.

BackgroundColour
FrontCalour
. =
v A4
4 » L
@ o Ll
LabelType

BasicWidget Typerdering. ListEioxT
istBoxType

I TextBoxType -

v L

5 \
! »
K Position OnlineHelpType JgetType * ButtonType -
’ ListItem -
" «
L - [

CheckBoxType
- ListItemType SelectableItemType RadioBoxType

- » [v

A
-
RadioltemType WidgetContainer Typs ..
-

— General Nodes » 4
o Onkology b |
Concept
W Instance
Instance Cluster

Fig. 10. UI Ontology Visualization

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 16 of 34

Page 17 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 127

Ontology Service: The Ontology Service encapsulates the access to various ontolo-
gies used for service management. It provides a simple and technology independent
access to various metadata encoded in ontologies. The current implementation uses
WSMO/WSML as concrete ontology model and language. The Ontology Service
manages various ontologies that are required for implementing WSMS including
Centrelink Service Ontology, User Interface Ontology, Trust Ontology and Change
Ontology. This service simplifies the task of service querying by providing a unique
API to all ontologies. We developed a User Interface Ontology (UI Ontology) to
describe the UlaaS design proposed in this paper. Figure 10 shows the visualization
of UI ontology. The UI ontology describes the various UI components and their
relationships as described in Section 3.2. Complex Ul concepts can be derived from
the basic Ul concepts in the Ul ontology. The UI ontology can be extended to add
more complex Ul concepts.

Composition Service: The Composition Service creates service composition as
a service by matching pre- and post-conditions of the services and generating the
composite service flow based on the matches. The input of the Composition Service
is a query that is received by the Querying Service. To successfully compose a set
of services, these services need to be annotated adequately (using the ontology),
especially with the pre- and post-conditions specified. Composed services may
consist of a composition of Web services as well as interface services.

4.3 An Example Case Study

In the following, we describe an example application service that implements Ul as
a service. Figure 11 shows example interaction design for an e-government service
for a customer seeking services as a “principal carer for children”. In the figure the
green boxes represent the user interfaces pushed to the user. The service shown
requires multiple interactions with the user (service consumer). In addition, the
questions to be asked to the user need to be customized to the user’s circumstances.
Two users requesting the same services may have different circumstances, hence,
the questions to ask should be different. Additionally, some of the information
may have already been provided by the user during registration or while accessing
other services. Therefore, the user interface needs to be aware of the context of the
service/application use and provide suitable interfaces accordingly. Our proposed
UlaasS resolves this issue by considering UI as composed of atomic parts as described
in the UIDL in Section 3.2. Based on the requirement at a particular instance, the
questions in the Ul can be composed of the atomic parts as required.

In addition to customization of the UI components as per need, our proposed Ul
service design also enables customization of usability/readability of the Ul Stan-
dard customer profiles can be saved for different demographics such as aged and
colour blind. Before rendering the UI, the User Interface Execution Engine (UIEE)
checks the profile of the current customer and if a matching profile is found, say aged
customer, then the Ul is customized with larger font sizes automatically. Similarly,
if the customer is using a different device for accessing the service, our interface
service accepts the device profile and automatically adjusts the display and contents
of the application interface to the device.

Figure 12 shows an instance of context-awareness in the user interface. The
screen shows the available “life events” for the customer’s selection and reporting

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

128 . Sherchan et al.

Principle Carer / Disabllity
BPEL Process

Get

! User

{User ID- » User's Deiails
Information

Push | e
Possible Benefits .« Possible Benelits or Products._ Service
or Products ‘ for Carer Organizer

-(Ge(User Selectad |

Passible Benafits or Products
for Users to choose

User Selected Benefits or Products Beneiits or ‘

Products

User
Infarmatior
Database

Push
Fringiple Carer
Questionnaire

Princigle Carer _
Questionnaine

Principle Carer
Questionnaire

No
Filled out Get Filled out

Principke Carer—- »| Principle Carer
Questiannare Queslionnaire

Disability
Benefit?

Yes

L 3

Disability
Questionnaire

Disabilty Push Disabiliyy
Questionnaire Questionnaire

l No

Filled out Get Filled out
Disability Disability
Questionnaire Questionnaire

l

Check Eligibility of
Selacted Benefits
and Products

Call Change
Manager
1o Upcate
Workflow

]

Notification 1o
User

Fig. 11. Principal Carer Service Process Interaction Design

to Centrelink as a tag-cloud. Based on the customer’s profile, certain life events
are highlighted. As can be seen, in this instance of a 30 plus married woman,
the UI highlights “looking for work” and “caring for someone” since most people
having similar profiles are likely to be experiencing these two life events. Such user
profiling is performed using domain knowledge. In addition, if further information
is available in the profile such as the user is colour blind or elderly or with low
vision, then the UI changes accordingly with black and white fonts and larger fonts
respectively.

Figure 13 shows an instance of LifeTrack- a mechanism for the user (Centrelink
customer) to track their life events and the benefits they are receiving/have received.
This Ul is also generated using the concept of UlaasS.

To summarize, our context-aware user interface design provides the following

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 18 of 34

Page 19 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services

Australian Goernment

Centrelink
.

My Centrelink
Me

My Life Track

parent or guardian
R caring for someone iliness or disabillty
e i spocin e looking for work help after someone has died
retrement maved 1o ausrala T

self employment or farmer

Fig. 12. Life Events Tag-Cloud Generated using the Concept of UlaaS

My Life Event

- or disabled funly member

Fig. 13. LifeTrack Generated using the Concept of UlaaS

benefits to application developers:

129

—Application developers can register and publish generic user/workflow interfaces
in the service repository.

—Application developers can search and query the user/workflow interfaces pub-
lished in the registry and use in new applications.

—Application developers can compose the Ul for a new application by using already
existing user interface services.

—Application developers can publish the composed Ul services for future use so
that other application developers developing similar applications can use the
published interface as a service using the principles of service oriented systems.

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

130 . Sherchan et al.

4.4 Evaluation

This section presents the evaluation of the proposed UlaaS concept as well as imple-
mented user interface for a human services application. We classify our evaluation
into two broad categories: functional and non-functional. We next describe the
results of our evaluation in these two broad categories.
Functional Evaluation

The functional evaluation refers to the technology/concept evaluation and deals
with the interactions between user interfaces and underlying application systems.
This evaluation helps to differentiate the proposed concept from existing approaches
proposed in the literature [Butter et al. 2007; Mowafi and Zhang 2007; Liu et al.
2003; Kumar et al. 2006; Weis et al. 2006; Kassoff et al. 2003]. We have investigated
a number of characteristics related with the development of user interfaces such as
ease of generating and combining user interface artefacts within a service-oriented
system, reusing already existing user interface artefacts, etc, and analysed on how
the proposed technologies help to achieve them. We found that there is no standard
set of metrics for conducting functional evaluation of the user interface from the
point of view of technologies. Therefore, we first define a set of metrics for our
evaluation purpose as follows.

—Composition (C): A user interface is said to be composable if it can be combined
with other services (including other interface services).

—Application independent (AI): A user interface can be used for different applica-
tions without significant modifications.

—Context-awareness (CA): A user interface takes into account of contextual infor-
mation while generating relevant artefacts.

—GUI independent (GI): A user interface functionality is independent of the graph-
ical user interface presented to the user.

—Service orientation (SO): A user interface is developed using “pure” service ori-
ented approach. This means a user interface can be described and advertised like
other web services.

A number of technologies or concepts have been proposed and used in developing
user interfaces for web applications [Butter et al. 2007; Mowafi and Zhang 2007;
Liu et al. 2003; Kumar et al. 2006; Weis et al. 2006; Kassoff et al. 2003; Repo 2004;
Kruger et al. 2004]. We compare them with our proposed UlaaS approach using
the above defined metrics. Table I shows a high-level comparison result. A brief
description of each of these other approaches is presented as related work in the
next section.

Non-functional Evaluation

The most popular method used for evaluating user interfaces based on non-
functional properties is usability test [Jeffries et al. 1991]. This method is very
popular among researchers working in the field of HCI. The usability test includes
structural layout of the user interface artefacts as well as their ease of use. The
metrics used in this method include ease of use, ease of learning, satisfaction, use-
fulness, comfort, convenience, shape, colour, brightness, etc. [Han et al. 2000]. This
method of evaluation needs involvement of end users or experts. In summary, the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 20 of 34

Page 21 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 131
Approaches/Properties — C | Al | CA | GI | SO
XUL [Butter et al. 2007] X | v |V X X
User-Centric Approach [Mowafi and Zhang 2007] X | v v X X
Hydrogen Approach [Hofer et al. 2003] X | X v X X
Adaptive Approaches [Liu et al. 2003; Kumar et al. 2006] | x | v v v X
Generic Approach [Weis et al. 2006] X | Vv v X v
CAPNET [Repo 2004] x| v | v | x | x
Connected User Interface [Kruger et al. 2004] X | X v X X
GUI for Web Services [Kassoff et al. 2003] x | Vv v v X
UlaaS V|V v v v

Table I. Functional comparison of UlaaS and other approaches. C: Composition, AIl: Application
Independent, CA: Context-awareness, GI: GUI Independent, SO: Service Orientation

non-functional properties evaluate the interactions between the users and user inter-
faces. There are two types of usability test: expert review and end user evaluation.
We first conducted an end user evaluation. In order to better understand the results
of the end user evaluation, we followed up with an expert review. We next describe
our evaluation process and results on both types of usability test.

End User Usability Test: We first designed a set of questions. There were three
types of questions: factual, opinion and attitude. The first type questions capture
the generic information about the user such as age, sex, use of computer, use of
already existing online system, etc. The later two types of questions were used to
evaluate the users’ experience with the user interface. There are a number of well
known methods to conduct end user usability test such as QUIS [Chin et al. 1988],
PUEU [Davis 1989], NAU [Nielsen 1993], CSUQ [Lewis 1995], ASQ [Lewis 1995],
PUTQ [Lin and Salvendy 1997] and USE [Lund 2001]. We studied these different
methods and evaluated their appropriateness for our system. We have decided to
use Lund’s USE questionnaires to conduct the end user usability [Lund 2001]. The
decision was made based on our studies on the appropriateness of the method to
our system and the advice from the usability experts. However, we have used only
three criteria: ease of use, ease of learning, and satisfaction. We left a usefulness
criteria as it is not an appropriate criteria for our system. The ease of use has 11
questions as defined in Lund’s USE questionnaires (e.g., it is simple to use, it is
user friendly, etc.). The ease of learning criteria has 4 questions (e.g., I learned to
use it quickly, T easily remember how to use it, it is easy to learn to use it, etc.).
The satisfaction criteria has 7 questions (e.g., I am satisfied with it, I feel I need
to have it, etc.).

Users were asked to assume themselves as a parent or guardian of two children.
One of their children goes to primary school and the other is disabled and needs
a special care. They would like to get an assistance from the government to help
raising their kids. They were made aware that they can claim eligible benefits online
and they were given a link to our system. They were asked to perform four tasks:
register to the online system, claim the benefits as a parent or guardian of two
children, observe the successful transactions and states, and observe and update
their profile. Users were asked to play with the system as much as they like after
performing the given tasks. Users were then asked to answer 22 questions from
Lund’s three categories on a Likert [Likert 1932] scale from 1 (strongly disagree)

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

132 . Sherchan et al.

to 7 (strongly agree). Users were also given an option of choosing not applicable
where they feel so.

Good 7.00
6.00
@
H
& 5.00
t
£
o 4004
o
g
s 300+
E
2.00
Bad 1007
0.00 —
All users Users who have never used the Users who have used the existing
existing online system hefore online system hefore
mEase of Use 4.59 4.23 543
m Ease of Leaming 5.83 5.46 6.67
O Satisfaction 443 3.78 5.94

Fig. 14. Results for end user usability test

We have conducted the usability test with a variety of users, representative of the
citizens. There were total 10 users. 70% of them have never used existing online
system for claiming benefits from the government before and 30% of the users have
used the existing system for claiming one or more types of benefits. Figure 14 shows
the results of our evaluation. The average score for all users was about 5 out of 7.
The score went up to above 6 when we consider only those users who have used
the existing online system. This provides an indirect comparison with the existing
system. Another observation from the results is that users seem to find our interface
easy to learn independent of their experience with the existing system. However,
the satisfaction level is very low among users who did not have any experience with
the existing system. There is a significant difference at the level of satisfaction
between the users who did not have any experience and those who have had some
kind of experience with the existing system. In order to better understand this gap,
we have conducted the expert usability reviews. We next present the process and
results on the expert usability reviews of our interface.

Ezpert Usability Reviews: The expert usability review is also known as expert
review or usability audit or heuristic evaluation. This is an evaluation of a user
interface versus common usability best practices and heuristics by a trained us-
ability professional. We have invited 5 usability experts from the HCI and User
Experience research group within CSIRO ICT Centre. They were asked to perform
some critical tasks in the system. The tasks were the same as that of end user us-
ability test: registration, claiming a benefit, observing the status of the claim and
updating the profile. The same set of tasks were chosen with an aim of correlating
the results between two usability tests. In addition to performing the tasks, experts

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 22 of 34

Page 23 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services

133

were allowed to play with the system as much as they like. We have then asked
experts to provide score to Neilson’s 10 usability heuristics [Nielsen 1993]. The
scoring scale is set to a Likert scale from 1 (bad) to 7 (good).

52 [p

Expert Reviewer 5

54 {{';3 Expert Reviewer 4
M 56 . Expert Reviewer 3
| 6.4 . Expert Reviewer 2
: ﬁﬂ i 42 . Expert Reviewer 1
» ' ff & 40
ol | Fn| @ - 46
5 ® o0 W
N
5.5
' " - '@ 30

0 ¥+ 2 3 4 § 6 7T NA

Bad
Likert Scale s

Fig. 15. Results for expert usability test

Figure 15 shows the results of the expert usability test. It shows that experts
have given a high score (> 5) for the first four criteria. This result is in consistent
with the end user usability test as these criteria have direct influence on the ease of
learning. The expert reviews identify two main areas of concerns: lack or minimal
error handling and clearly marked exits. We observed this as the main reason of
resulting low satisfaction score among inexperienced users in end user usability test.
We plan to use these results as a guide for improving our user interface in future.

5. RELATED WORK

Context has been the center of sustained research in several areas, including databases
[Kashyap and Sheth 1996], distributed computing [Yau et al. 2002], semantics [Noy
and Musen 2001], and recently service computing [Baldauf et al. 2007]. Context
has been used to model a range of situations including geo-spatial and temporal
information [Moldovan et al. 2005], mobile computing [Riva and Toivonen 2007],
and computing environments [Chen et al. 2003]. Context is broadly defined as the
environment characterizing the situation in which the entity of interest is in [DBL].
If this definition is applied to Web services, context is interpreted as the information
that characterizes the situation in which a Web service operates. Sample contexts
include location and time.

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

134 . Sherchan et al.

Context-awareness is particularly important for Web service composition since
context-aware Web services can adapt to diverse situations caused by the diversity
of users. Current composition methods can hardly cope with context-aware service
composition. Usually, whenever a new context is available, most current composi-
tion methods have to reconsider the whole composition. Our own Aspect-Oriented
Programming (AOP) based approach overcomes this problem by leveraging the key
features of AOP of dividing a service into two parts [Li et al. 2009]. The first part
is the main service implementing business logic and the second is the context as-
pects concerning context services. A context aspect describes the context service
which should be executed to adapt the main service to a particular context. The
main part implements the application functions,while the aspects part adds some
auxiliary features to the main functions. These two parts are separated clearly in
syntax. When the auxiliary features are not needed or changed,the aspects part
can be independently removed or updated.For example,logging the execution re-
sults of some Java methods for debugging can be implemented in an aspect; after
debugging is finished,the logging aspect will be removed without affecting the de-
bugged Java methods. An important technique underlying AOP is the weaving
mechanism. Weaving in this instance refers to the ability of the context services to
be meshed (composed) into the main service such that the context services may be
invoked when executing the main service. The weaving approach is semantic-based:
a context service is inserted into a main service according to its semantics.

This section reviews the literature related to context-aware user interfaces from
the point of view of Web services and service-oriented architectures. We classify
the relevant literature into three broad categories as follow.

5.1 Context-aware Web Services

The centre of service computing has been an automatic service composition [Berardi
et al. 2005; Narayanan and Mecllraith 2002; Kona et al. 2008]. However, the focus
in the past has been on how to use functional and non-functional attributes of the
services to achieve automatic composition. Recently, there has been an increasing
interest in the content-aware Web service and service composition. A body of work
has been done in this area in recent times [Mostéfaoui and Hirsbrunner 2003; Zhou
et al. 2007; Maamar et al. 2007; Medjahed and Atif 2007; Maamar et al. 2005;
Maamar et al. 2006; Sheng and Benatallah 2005].

Medjahed et al. [Medjahed and Atif 2007] introduced a generic definition of Web
service context through an ontology-based categorisation of contextual information.
The rule-based service match making was proposed to consider the relevant context.
Similarly, Li Li et al [Li et al. 2009] construct an ontology (context ontology) to
facilitate the detection of join point semantically. However, they are more concerned
about the support of changing context as they treat the context as aspect in Aspect-
Oriented Programming (AOP).

Gu et al. [Gu et al. 2005] proposed a service-oriented context-aware middleware
(SOCAM) architecture for the building and rapid prototyping of context-aware ser-
vices, but with focus on infrastructure support to context-aware systems. A number
of context-aware architectural approaches has been proposed in the literature [Gu
et al. 2004; Riva and Toivonen 2007; Pawlak et al. 2001]. However, it is difficult
to develop complex context-aware Web services. This issue has been addressed to

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 24 of 34

Page 25 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 135

some extend by Sheng and Benatallah in [Sheng and Benatallah 2005] by proposing
a modelling language for model driven development of context aware Web services
based on the Unified Modelling Language (UML), called ContextUML. Sheng et
al. [Sheng et al. 2009] have provided a development platform, ContextServ, for rapid
development of context aware Web services using ContextUML.

Mrissa et al. [Mrissa et al. 2007] proposed a context-based approach for semantic
Web services composition. The approach enables developers to annotate WSDL
descriptions to describe contextual details; to deploy a context-based mediation
architecture to allow explicit assumptions on data flow; to automatically generate
and invoke Web service mediator to handle data heterogeneities during Web service
composition. The context ontology was defined to make context explicit for each
concept of a domain ontology.

Maamar et al. [Maamar et al. 2005] proposed an approach for context-oriented
Web service composition by using agents. The context model presented in [Maa-~
mar et al. 2007; Maamar et al. 2005] comprises four types of context: W-context
deals with Web services’ definitions and capabilities; C-context addresses how Web
services are discovered and combined; S-context handles the semantic heterogene-
ity that arise between Web services; and R-context focuses on the performance of
Web services. After identified these different types of context in Web service com-
position, the authors presented a policy-based approach for developing a context-
oriented Web service. Three types of policies were introduced to support transitions
between the four context levels. They are engagement, mediation and deployment.
While the proposed context model is advantageous in terms of context categorisa-
tion, it is less generic than the one defined in [Medjahed et al. 2003].

5.2 Context-aware User Interfaces

A user interface is context-aware if it is cognizant of its situation and is able to
modify its behaviour according to the changing situation. Context-awareness is
particularly important for user interfaces since context-aware user interfaces can
adapt to diverse situations caused by the diversity of the users. Achieving context-
aware user interface in the service computing is a challenging task. When developing
a user interface for a particular application, it is often difficult to predict all possible
contexts in which the interface is used. Moreover, contexts for user interfaces are
dynamic in nature and keep evolving with the change in the situation of use.
Context-ware user interfaces have been well studied in the context of mobile de-
vices [Hofer et al. 2003; Butter et al. 2007]. Mobile devices available today are
very heterogeneous with regard to their display and input capabilities and used
software platform configurations. In addition to adapting the interface of an appli-
cation to the device characteristics, the interface needs to be adapted to the current
context of the user. This adds extra burden to developers. Butter et al. [Butter
et al. 2007] have overcome this limitation by proposing an XUL-based User Inter-
face Framework. This framework separates the Ul adoption from the application
logic and offers portability to different Java ME platform configurations. Using this
framework the user interface (UI) adapts itself automatically on context-changes
and changes to different screen resolutions or orientations without increasing code
complexity for the developers. The context here is defined around both device char-
acteristics and user behaviour. Mowafi and Zhang [Mowafi and Zhang 2007] have

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

136 . Sherchan et al.

defined the context based on user characteristics. They proposed a user-centric
approach for obtaining and parsing context, driven by users context of interest that
offers more interactive and construed context to users.

There is a body of work in adaptive user interfaces [Liu et al. 2003; Kumar
et al. 2006]. For example. Liu et al. [Liu et al. 2003] have proposed a technique of
adapting user interfaces for applications using user interface events and frequencies.

By computing episode frequencies and implication relations, they can automat-
ically derive application-specific episode associations and therefore enable an ap-
plication interface to adaptively provide just-in-time assistance to a user. Kumar
et al. [Kumar et al. 2006] have developed an adaptive user interface in media ap-
plications. Not all user interface adaptation is beneficial in content-aware systems.
Some adaptations introduce poor usability. Paymans et al. [Paymans et al. 2004]
have presented a study on usability trade-offs. Similarly, Lavie et al. [Lavie and
Meyer 2010]. examines the positive and the possible adverse effects of adaptive user
interfaces in the context of an in-vehicle telematic system.

5.3 User Interfaces for Web Services

It is obvious from the above discussion that today’s context-aware services are
isolated systems designed for a special scenario. For example, a context aware airline
service knows when your plane leaves and whether it is on time or not. Similarly,
context-aware taxi service knows how long it takes to the airport from your home.
There is a need to federate context-data retrieved from different services. Weis et
al. [Weis et al. 2006] identified several challenges to address this need. One of
them is to define a general purpose user-interface for such applications that allows
users to deal with context-data and interact with context-aware services. They have
developed a general purpose user interface which is a collage of instant messenger,
roadmap, and Web browser. However, the concept is still limited to a specific
travel application. It is not suitable to capture context information about other
application domains such as human services. Furthermore, user interface itself is
not context aware and is fixed for five views: People, Places, Maps, Objects, and
Activities.

Repo [Repo 2004] addressed this problem to some extent in the pervasive net-
working environment. There is a need of providing a seamless access to surrounding
services using a personal mobile device in such environment. [Repo 2004] proposed
a reference model architecture to facilitate the development of adaptable user in-
terfaces in a context-aware pervasive networking environment. Though the paper
was able to accommodate the idea of context-awareness in the user interface, the
proposed solution was still for a domain specific application.

Kruger et al. [Kruger et al. 2004] uses a different approach. Rather than design-
ing one unified user interface, they focus on invoking specialized user interface for
different situations. However, the proposed solution was still targeted to specific
application. This means the user interface is contextualized for limited contexts.
We have seen similar limitation in many other approaches proposed in the liter-
ature. For example, Vermeulen et al. [Vermeulen et al. 2008] have proposed to
augment service descriptions with high-level user interface models to support auto-
matic user interface adaptation in a mobile computing environment. Their method
was built by defining ontology for a hierarchical task structure and selected presen-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 26 of 34

Page 27 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 137

tation information. This allows end-users to interact with services on a variety of
platforms.

It is clear from the above discussion that context-aware Web services and context-
aware interfaces have been studied from two different perspectives. The novelty of
the approach presented in this paper is to bring these two perspective together to
provide context-aware user interface as a Web Service.

6. CONCLUSION

We propose a new concept of User Interface as a Service (UlaaS) to model context-
aware services. We describe a specialized XML-based language for modelling UlaaS
as a context. Contextual information related to user interface types is implicitly
mashed-up with the requested services services when the results are displayed. Con-
text consisting of UlaaS is organized in an ontology which describes the different
classes of user interfaces. We address the interface complexity issue from two as-
pects. First, we design a Ul service with uniform GUI and standard communication
protocol to serve different applications. Second, we leverage our own Web Service
Management System (WSMS) prototype to manage UlaaS. They represent a spe-
cial type of services, thus enabling UlaaS to be managed as any other services.
The serendipitous effect is that context services consisting of user interfaces may
now be organized, composed, queried, changed, and managed as any other services.
We implemented the designed UI service and demonstrated its usefulness leverag-
ing our own WSMS prototype. We evaluated the proposed interface design in two
ways -(i) based on functional properties, and (ii) based on non-functional proper-
ties. We conducted two types of non-functional evaluation -(i) end user usability
test, and (ii) expert reviews. Based on these evaluations, we intend to refine the
user interface in the future.

ACKNOWLEDGMENTS

We wish to thank the WSMS project members for their contribution in the design
and implementation of the WSMS prototype including the UlaaS manager. In
particular, we would like to acknowledge the contribution of Florian Rosenberg,
Xuan Zhou, Jemma Wu, Payam Aghaei Pour, Armin Haller and Hongbing Wang.

REFERENCES

ABowD, G. D., DeY, A. K., BRowN, P. J., Davigs, N., SmitH, M., AND STEGGLES, P. 1999.
Towards a better understanding of context and context-awareness. In Proceedings of the 1st
international symposium on Handheld and Ubiquitous Computing. HUC ’99. Springer-Verlag,
London, UK, 304-307.

BALDAUF, M., DUSTDAR, S., AND ROSENBERG, F. 2007. A survey on context-aware systems.
IJAHUC 2, 4, 263-277.

BERARDI, D., CALVANESE, D., Giacomo, G. D., HuLL, R., AND MECELLA, M. June 2005. Au-
tomatic composition of web services in Colombo. In Proceedings of the Thirteenth Italian
Symposium on Advanced Database Systems, SEBD 2005, A. Cali, D. Calvanese, E. Franconi,
M. Lenzerini, and L. Tanca, Eds. 8-15.

BOUGUETTAYA, A., NEPAL, S., SHERCHAN, W., ZHou, X., Wu, J., CHEN, S., Liu, D., L1, L.,
WangG, H., anp Liu, X. 2010. End-to-end service support for mashups. IEEE T. Services
Computing 3, 3, 250-263.

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

138 . Sherchan et al.

BrowN, P., BovEy, J., AND CHEN, X. 1997. Context-aware applications: from the laboratory to
the marketplace. Personal Communications, IEEE 4, 5 (oct), 58 —64.

BuTTER, T., ALEKSY, M., BOSTAN, P., AND SCHADER, M. 2007. Context-aware user interface
framework for mobile applications. In Proceedings of the 27th International Conference on
Distributed Computing Systems Workshops. IEEE Computer Society, Washington, DC, USA,
39.

CHEN, H., FININ, T., AND JosHI, A. 2003. An ontology for context-aware pervasive computing
environments. Knowl. Eng. Rev. 18, 197-207.

CHIN, J. P., DIEHL, V. A., AND NORMAN, K. L. 1988. Development of an instrument measuring
user satisfaction of the human-computer interface. In Proceedings of the SIGCHI conference
on Human factors in computing systems. CHI ’83. ACM, New York, NY, USA, 213-218.

CURBERA, F., DUFTLER, M., KHALAF, R., NAcYy, W., MUKHI, N., AND WEERAWARANA, S. 2002.
Unraveling the web services web: An introduction to soap, wsdl, and uddi. IEEE Internet
Computing 6, 86-93.

Davis, F. 1989. Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Quarterly 13, 3, 319-339.

DEvY, A. K., ABowD, G., PINKERTON, M., AND WooOD, A. 1998. Cyberdesk: A framework for
providing self-integrating context-aware services. In Knowledge-Based Systems. ACM Press,
47-54.

Gu, T., Pung, H. K., AND ZHANG, D. 2005. A service-oriented middleware for building context-
aware services. J. Network and Computer Applications 28, 1, 1-18.

Gu, T., Pung, H. K., AND ZHANG, D. Q. 2004. Toward an osgi-based infrastructure for context-
aware applications. I[EEE Pervasive Computing 3, 66-74.

HAN, S. H., Yun, M. H., Kivm, K.-J., AND KwaHK, J. 2000. Evaluation of product usability:
development and validation of usability dimensions and design elements based on empirical
models. International Journal of Industrial Ergonomics 26, 4, 477 — 488.

HOFER, T., SCHWINGER, W., PICHLER, M., LEONHARTSBERGER, G., ALTMANN, J., AND RETS-
CHITZEGGER, W. 2003. Context-awareness on mobile devices - the hydrogen approach. In
HICSS. 292.

JEFFRIES, R., MILLER, J. R., WHARTON, C., AND UYEDA, K. 1991. User interface evaluation in
the real world: a comparison of four techniques. In Proceedings of the SIGCHI conference on
Human factors in computing systems: Reaching through technology. CHI ’91. ACM, New York,
NY, USA, 119-124.

KASHYAP, V. AND SHETH, A. P. 1996. Semantic and schematic similarities between database
objects: A context-based approach. VLDB J. 5, 4, 276-304.

Kassorr, M., Kato, D., AND MousiN, W. 2003. Creating guis for web services. IEEFE Internet
Computing 7, 66—73.

Kona, S., BANSAL, A., BLAKE, M. B., AND GUPTA, G. 2008. Generalized semantics-based service
composition. In ICWS. 219-227.

KRUGER, A., BuTz, A., MULLER, C., STAHL, C., WASINGER, R., STEINBERG, K.-E., AND DIRSCHL,
A. 2004. The connected user interface: realizing a personal situated navigation service. In
Proceedings of the 9th international conference on Intelligent user interfaces. IUI '04. ACM,
New York, NY, USA, 161-168.

KuMAR, M., GUPTA, A., AND SAHA, S. 2006. An approach to adaptive user interfaces using
interactive media systems. In Proceedings of the 11th international conference on Intelligent
user interfaces. ITUI 06. ACM, New York, NY, USA, 312-314.

Lavie, T. AND MEYER, J. 2010. Benefits and costs of adaptive user interfaces. Int. J. Hum.-
Comput. Stud. 68, 508-524.

Lewis, J. R. 1995. Ibm computer usability satisfaction questionnaires: psychometric evaluation
and instructions for use. Int. J. Hum.-Comput. Interact. 7, 57-78.

Li, L., Liu, D., AND BOUGUETTAYA, A. 2009. Semantic weaving for context-aware web service
composition. In WISE. 101-114.

LIKERT, R. 1932. A technique for the measurement of attitudes. rchives of Psychology 140, 1-55.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 28 of 34

Page 29 of 34

O©CoO~NOOODWN -

Transactions on Internet Technology

Context-sensitive User Interfaces for Semantic Services . 139

Lin, H. X., C. Y.-Y. AND SALVENDY, G. 1997. A proposed index of usability: A method for
comparing the relative usability of different software systems. Behaviour and Information
Technology 16, 267-277.

Liu, J., Wong, C. K., anD Hui, K. K. 2003. An adaptive user interface based on personalized
learning. IEEE Intelligent Systems 18, 52-57.

LunD, A. 2001. Measuring usability with the use questionnaire. Usability and User Experience
Newsletter of the STC Usability SIG.

MAAMAR, Z., BENSLIMANE, D., AND NARENDRA, N. C. 2006. What can context do for web
services? Commun. ACM 49, 12, 98-103.

MAAMAR, Z., BENSLIMANE, D., THIRAN, P., GHEDIRA, C., DUSTDAR, S., AND SATTANATHAN, S.
2007. Towards a context-based multi-type policy approach for web services composition. Data
Knowl. Eng. 62, 2, 327-351.

MAAMAR, Z., MOSTEFAOUI, S. K., AND YAHYAOUI, H. 2005. Toward an agent-based and context-
oriented approach for web services composition. IEEE Trans. Knowl. Data Eng. 17, 5, 686—697.

MALIK, Z. AND BOUGUETTAYA, A. 2009. Rateweb: Reputation assessment for trust establishment
among web services. The VLDB Journal 18, 885-911.

MEDJAHED, B. AND ATIF, Y. 2007. Context-based matching for web service composition. Dis-
tributed and Parallel Databases 21, 1, 5-37.

MEDJAHED, B., BOUGUETTAYA, A., AND ELMAGARMID, A. K. 2003. Composing web services on
the semantic web. VLDB J. 12, 4, 333-351.

MoLDOVAN, D.; CLARK, C., AND HARABAGIU, S. 2005. Temporal context representation and
reasoning. In Proceedings of the 19th international joint conference on Artificial intelligence.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1099-1104.

MosTEFAOUI, S. K. AND HIRSBRUNNER, B. June 2003. Towards a context-based service compo-
sition framework. In Proceedings of the International Conference on Web Services, ICWS’03,
L.-J. Zhang, Ed. CSREA Press, 42-45.

MOWAFI, Y. AND ZHANG, D. 2007. A user-centered approach to context-awareness in mobile
computing. In Proceedings of the 2007 Fourth Annual International Conference on Mobile and
Ubiquitous Systems: Networking€Services (MobiQuitous). IEEE Computer Society, Washing-
ton, DC, USA, 1-3.

MRissA, M., GHEDIRA, C., BENSLIMANE, D., MAAMAR, Z., ROSENBERG, F., AND DUSTDAR, S.
2007. A context-based mediation approach to compose semantic web services. ACM Trans.
Interet Technol. 8, 1, 4.

NARAYANAN, S. AND MCILRAITH, S. A. 2002. Simulation, verification and automated composition
of web services. In WWW ’02: Proceedings of the 11th international conference on World Wide
Web. ACM, New York, NY, USA, 77-88.

NIELSEN, J. 1993. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

Novy, N. F. aAND MuseN, M. A. 2001. Anchor-prompt: Using non-local context for semantic
matching.

OuzzAaNI, M. AND BOUGUETTAYA, A. 2004. Efficient access to web services. IEEE Internet
Computing 8, 34-44.

PARR, T. The Definitive Antlr Reference: Building Domain-Specific Languages (1st ed.). Prag-
matic Bookshelf.

PAawLAK, R., SEINTURIER, L., DUCHIEN, L., AND FLORIN, G. September 2001. JAC: A flexible
solution for Aspect-oriented programming in java. In Metalevel Architectures and Separation
of Crosscutting Concerns, Third International Conference, REFLECTION 2001, A. Yonezawa
and S. Matsuoka, Eds. Lecture Notes in Computer Science, vol. 2192. Springer, 1-24.

Paymans, T. F., LINDENBERG, J., AND NEERINCX, M. 2004. Usability trade-offs for adaptive user
interfaces: ease of use and learnability. In Proceedings of the 9th international conference on
Intelligent user interfaces. IUI ’04. ACM, New York, NY, USA, 301-303.

REPO, P. 2004. Facilitating user interface adaptation to mobile devices. In Proceedings of the
third Nordic conference on Human-computer interaction. NordiCHI 04. ACM, New York, NY,
USA, 433-436.

ACM Journal Name, Vol. V, No. N, Month 20YY.

O©CoO~NOOODWN -

Transactions on Internet Technology

140 . Sherchan et al.

Riva, O. AND TOIVONEN, S. 2007. The dynamos approach to support context-aware service
provisioning in mobile environments. J. Syst. Softw. 80, 1956-1972.

RyaN, N., PAscog, J., AND MORSE, D. 1997. Enhanced reality fieldwork: the context-aware
archaeological assistant. Computer Applications in Archaeology.

Ryu, S. H., Casarti, F., SKOGSRUD, H., BENATALLAH, B., AND SAINT-PAUL, R. 2008. Supporting
the dynamic evolution of web service protocols in service-oriented architectures. ACM Trans.
Web 2, 13:1-13:46.

ScHILIT, B., AbpAMS, N., AND WANT, R. 1994. Context-aware computing applications. In Pro-
ceedings of the 1994 First Workshop on Mobile Computing Systems and Applications. IEEE
Computer Society, Washington, DC, USA, 85-90.

SHENG, Q. Z. AND BENATALLAH, B. 2005. Contextuml: A uml-based modeling language for model-
driven development of context-aware web services. In ICMB. 206-212.

SHENG, Q. Z., POHLENZ, S., Yu, J., WoNG, H. S., Ncu, A. H. H., AND MAAMAR, Z. 2009.
Contextserv: A platform for rapid and flexible development of context-aware web services. In
ICSE. 619-622.

VERMEULEN, J., VANDRIESSCHE, Y., CLERCKX, T., LUYTEN, K., AND CoONINX, K. 2008. Engi-
neering interactive systems. Springer-Verlag, Berlin, Heidelberg, Chapter Service-Interaction
Descriptions: Augmenting Services with User Interface Models, 447-464.

WanNg, H., Zoou, X., Zuou, X., Liu, W., L1, W., AND BOUGUETTAYA, A. 2010. Adaptive service
composition based on reinforcement learning. In /CSOC. 92-107.

WEIs, T., SATERNUS, M., KNOLL, M., BRANDLE, A., AND COMBETTO, M. 2006. Towards a general
purpose user interface for service-oriented context-aware applications. In Proceedings of the
international workshop in conjunction with AVI 2006 on Context in advanced interfaces. CAI
’06. ACM, New York, NY, USA, 53-55.

Yau, S. S., KAarim, F., WANG, Y., WANG, B., AND GuPTA, S. K. S. 2002. Reconfigurable context-
sensitive middleware for pervasive computing. IEEE Pervasive Computing 1, 33—40.

Yu, Q., Liu, X., BOUGUETTAYA, A., AND MEDJAHED, B. 2008. Deploying and managing web
services: issues, solutions, and directions. VLDB J. 17, 3, 537-572.

Zuou, J., NIEMELA, E., PERALA, J., AND PAKKALA, D. 2007. Web service in context and
dependency-aware service composition. In The 2nd IEEE Asia-Pacific Service Computing
Conference. 349-355.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 30 of 34

