
Study of New Mid-Pole Bonding Mitigation

System to Wooden Pole Ladder Network Model

to address Pole-Top Fire Issue

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

Mohd Fadli Rahmat

B.Eng. (Electrical Engineering), University Technology of Malaysia, Malaysia

M.Eng. (Electrical Power), University Technology of Malaysia, Malaysia

School of Electrical and Computer Engineering

College of Science, Engineering and Health

RMIT University

October 2010



D eclaration

I certify that except where due acknowledgement has been made, the work is that

of the author alone; the work has not been submitted previously, in whole or in

part, to qualify for any other academic award; the content of the thesis is the

result of work which has been carried out since the offi cial commencement date

of the approved research program;any editorial work, paid or unpaid, carried out

by a third party is acknowledged;and, ethics procedures and guidelines have been

followed.

Mohd Fadli Rahmat

October 2010

ii



Acknowledgment

F irst of all, I would like to express my heartfelt gratitude and appreciation to my

supervisor, Dr. Alan W ong, for his brilliant advice, encouragement and excellent

support during my Phd study in RMIT University. His patience and invaluable

assistance has made me a better person and it will always inspire me in the future.

I would also like to extend my thanks to my co-supervisor, Prof. Luiping W ang

for her advice and help.

Special thanks to my employer, Universiti Teknologi Malaysia, for giving me

an opportunity to further my research study in Australia. My deepest gratitude

to the staff of the Ministry of Higher Education, Malaysia for their assistance,

cooperation, understanding and generosity. The financial support given by this

department made this research work possible.

My appreciation to all administrative and academic staff at in the School of

Electrical and Computer Engineering, RMIT University, Melbourne, Australia.

Their support was invaluable. I would like to acknowledge the assistance of the

technical staff, Ivan K iss and Sinisa G avrilovic, for setting up the wooden poles

and cross-arms in the RMIT University High V oltage laboratory. Thanks also to

Dr. K amram G horbani for his kindness in allowing me to use the thermographic

camera for my laboratory testing.

Further thanks to all my research colleagues, Azizi, W ai Siang, Jonathan, Tan-

wir, Rick, Hanif, N asrul, Zamharir and others. I was very grateful for their com-

pany and help during my candidature. Thanks, also to my editor Ruth F luhr, for

her close scrutiny of my writing.

To my lovely wife, N orhaida Talib, thank you very much for your companion-

ship, patience, understanding and support throughout our stay in Melbourne. To

my son, N azmi and my daughter, N abila, you have been my inspiration. To my

parents, thanks for your prayers and for everything. I love you all.

iii



A C K N O W L E D G M E N T iv

F inally, my gratitude and thankfulness to G od for giving me good health, ideas

and wisdom during my PhD study. Hopefully my work will benefit humankind

and the further pursuit of knowledge. Amen.



Contents

D eclaration ii

Acknowledgment iii

List of Figures viii

List of Tables xi

List of Symbols xii

Abstract 1

1 Introduction 2

1.1 Background and Introduction . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outcomes of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 W ooden Pole Deterioration . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 W ooden Pole Treatment and Preservation . . . . . . . . . . . . . . 19

2.4 Failure of W ooden Poles . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Pole-Top F ire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Effect of Leakage Current . . . . . . . . . . . . . . . . . . . 28

2.5.2 Current Pole-Top F ire Mitigation Techniques . . . . . . . . 29

2.6 W ooden Pole Models . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



C O N T E N T S vi

3 Study of Leakage Current E ff ect using Ladder Network Model 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 W ooden Pole Modeling based on Ladder N etwork . . . . . . . . . . 40

3.3 Leakage Current Effect using Ladder N etwork Model . . . . . . . . 44

3.3.1 Pole Resistance . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Current Distribution of Dry and W et W ooden Pole . . . . . 49

3.3.3 Radial Current Distribution of W ooden Pole . . . . . . . . 51

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Proposed Pole-Top Fire Mitigation Technique: Mid-pole Bonding

System 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Proposed Mid-Pole Bonding System . . . . . . . . . . . . . . . . . . 56

4.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Enhanced Ladder N etwork Model for Simulating Mid-Pole Bonding

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Performance Study of Mid-Pole Bonding System and Simulation

Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Simulation of Three-Phase Leakage Current . . . . . . . . . . . . . 78

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 E xperimental Study on Novel Mid-Pole Bonding System 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Mid-Pole Bonding System Study on W ooden Pole . . . . . . . . . . 91

5.4 Thermographic Study of Cross-Arm . . . . . . . . . . . . . . . . . . 95

5.4.1 Thermographic Study of W ooden Cross-Arm with Leakage

Current of 5 mA and 14 mA . . . . . . . . . . . . . . . . . . 96

5.4.2 Thermographic Study of Steel Cross-Arm with Leakage Cur-

rent of 5 mA and 14 mA . . . . . . . . . . . . . . . . . . . . 99

5.4.3 Thermographic Study of Mid-Pole Bonding System . . . . . 103

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



C O N T E N T S vii

6 Conclusions and Future Works 106

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Recommendation for Future W ork . . . . . . . . . . . . . . . . . . . 111

Appendix A Wooden Pole 113

Bib liography 115



List of Figures

1.1 Typical transmission and distribution line structures in electrical

power network [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Stobie pole in South Australian electrical distribution network [2] . 5

1.3 Recorded pole-top fire events over South-W est Interconnected Sys-

tem (SW IS) in W estern Australia from 1993 to 2004 [3] . . . . . . . 8

1.4 Pole-top fire in Dunsborough electrical distribution network [4] . . . 9

2.1 W ood deterioration as a result of termite attack [5] . . . . . . . . . 18

2.2 Pole destruction by lightning strike [6] . . . . . . . . . . . . . . . . 23

2.3 Typical H-frame wooden pole structure in transmission lines [7] . . 25

2.4 Pole-top fire event in Southmoor distribution line [8] . . . . . . . . 27

2.5 Operator spraying silicone compound on pole-top insulators [9] . . . 30

2.6 Pole bonding configuration [10] . . . . . . . . . . . . . . . . . . . . 33

2.7 Application of pole bonding to the cross-arm [11] . . . . . . . . . . 33

3.1 A complete leakage current model . . . . . . . . . . . . . . . . . . . 41

3.2 Resistance of wooden pole with king bolt insertion . . . . . . . . . . 42

3.3 W ooden pole ladder network model . . . . . . . . . . . . . . . . . . 45

3.4 Resistance of dry wooden pole . . . . . . . . . . . . . . . . . . . . . 48

3.5 Resistance of wet wooden pole . . . . . . . . . . . . . . . . . . . . . 48

3.6 Current distribution for sapwood resistance . . . . . . . . . . . . . . 50

3.7 Current distribution for radial resistance . . . . . . . . . . . . . . . 50

3.8 Current distribution for heartwood resistance . . . . . . . . . . . . . 51

3.9 Current distribution of wet radial resistance with different locations

of king bolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Mid-pole bonding system . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



L IST O F F IG U R E S ix

4.2 N ew mid-pole bonding arrangement . . . . . . . . . . . . . . . . . . 58

4.3 Metallic band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Cable terminations for mid-pole bonding system . . . . . . . . . . . 61

4.5 W ooden pole with cross-arm and supporting steel bars . . . . . . . 64

4.6 Electrical model for mid-pole bonding system (including steel bar

and king bolt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Comparison of radial current distribution in mid-pole bonding sys-

tem and normal system . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Radial current distribution of mid-pole bonding system . . . . . . . 68

4.9 Shunting arrangement 1 for cross-arm by Ross [12]. . . . . . . . . . 69

4.10 Shunting arrangement 2 for cross-arm by Ross [12]. . . . . . . . . . 70

4.11 Electrical model for Ross shunting arrangement 1 . . . . . . . . . . 70

4.12 Electrical model for Ross shunting arrangement 2 . . . . . . . . . . 71

4.13 W ooden pole with cross-arm and supporting steel bars . . . . . . . 72

4.14 Electrical model for wooden pole and steel cross-arm(including steel

bar and king bolt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.15 Comparison of radial current distribution between wooden and steel

cross-arm under wet conditions . . . . . . . . . . . . . . . . . . . . 74

4.16 Radial current distribution of Ross’s shunting arrangement 1 . . . . 74

4.17 Radial current distribution of Ross’s shunting arrangement 2 . . . . 75

4.18 Radial current distribution of mid-pole bonding system with bypass

at section 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.19 Radial current distribution of mid-pole bonding system with bypass

at section 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.20 Radial current distribution of mid-pole bonding system with bypass

at section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.21 Comparison of radial current distribution for phase-to-phase leakage

current with wooden cross-arm with grounding . . . . . . . . . . . . 79

4.22 Comparison of radial current distribution for phase-to-phase leakage

current with wooden cross-arm without grounding . . . . . . . . . . 81

4.23 Pole-top fire at steel bar holder bolt due to leakage current phenomena 83

5.1 An experimental setup for mid-pole bonding system study . . . . . 87

5.2 High voltage transformer . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 V oltage divider for high voltage measurement . . . . . . . . . . . . 88



L IST O F F IG U R E S x

5.4 1 MΩ high voltage resistor . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 W ooden cross-arm . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Steel cross-arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Thermovision A320 thermal camera . . . . . . . . . . . . . . . . . . 91

5.8 Mid-pole bonding system on wooden pole for leakage current from

top section of wooden pole to ground . . . . . . . . . . . . . . . . . 93

5.9 Mid-pole bonding system on wooden pole for leakage current from

cross-arm to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Thermographic images for wooden cross-arm at 5 mA . . . . . . . . 97

5.11 Thermographic images for wooden cross-arm at 14 mA . . . . . . . 98

5.12 Thermographic images for steel cross-arm at 5 mA . . . . . . . . . 100

5.13 Thermographic images for steel cross-arm at 14 mA . . . . . . . . . 101

5.14 K ing bolt temperature for steel and wooden cross-arm . . . . . . . . 102

5.15 Comparison of king bolt temperature with steel cross-arm . . . . . 103

5.16 Linear regression of king bolt temperature with mid-pole bonding

system for steel cross-arm . . . . . . . . . . . . . . . . . . . . . . . 104



List of Tables

1.1 Electricity related ignitions in V ictorian bushfires, 7 February 2009

[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Australian timber pole species [14, 15] . . . . . . . . . . . . . . . . 16

2.2 Specification for preservative treatment of timber [16] . . . . . . . . 20

2.3 Current methods to reduce pole-top fire risk . . . . . . . . . . . . . 31

3.1 Pole model moisture gradient relative to sapwood and heartwood

along wooden pole [17] . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Resistances of dry pole . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Resistances of wet pole . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Metallic band dimensions and parameters . . . . . . . . . . . . . . . 60

4.2 Heat dissipation of designed heat sink . . . . . . . . . . . . . . . . . 60

4.3 Developed mitigation system . . . . . . . . . . . . . . . . . . . . . 69

4.4 Comparison of simulation results for ladder network model . . . . . 84

5.1 Average IRatio for both experimental setups at each bypass termination 95

5.2 Average IRatio for both simulation setups at each bypass termination 95

A.1 Physical dimensions of pole . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Resistances of dry pole . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.3 Resistances of wet pole . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



List of Symbols

kV kilovolt

V voltage

C celsius

cm centimeter

% percentage

ft foot

i current

R resistance

mA miliampere

Rs sapwood resistance

Rh heartwood resistance

Rs radial resistance

Rw rain resistance

MC moisture content

ρ resistivity

` length

A cross-sectional area

R pole radius

P heartwood depth

Rc conductor resistance

µΩ miliohm

MΩ megaohm

m meter

kΩ kiloohm

Rkb king bolt resistance

xii



L IST O F SY M B O L S xiii

Rst steel resistance

Rb bolt resistance

RshC A cross-arm shunting resistance

RshP pole shunting resistance

RA IR air resistance

RsteelC A steel cross-arm resistance

Rsteelend steel end cross resistance

mm milimeter

RrC A cross-arm radial resistance

RsC A cross-arm sapwood resistance

RH S heat sink thermal resistance

Abase based Cross-sectional area

Afin fin Cross-sectional area

h convective heat transfer coeffi cient

n fin effi ciency

m fin parameter

H metallic band height

W metallic band width

t metallic band thickness

Hfin fin height

Wfin fin width

tfin fin thickness

kfin fin thermal conductivity

VL eakage leakage voltage

VS hun t shunting voltage

VG round ground voltage

IL eakage leakage current

IS hun t shunting current

ACA Ammonia Copper Arsenate

PCP Pentachloropenol

ACZA Ammonia Copper Zinc Arsenate

CCA Chromated Copper Arsenate



L IST O F SY M B O L S xiv

BIL Basic Impulse Level

AU D Australian Dollar

CAID I Customer Average Interruption Duration Index

SAID I System Average Interruption Duration Index

E STA Electricity Trust of South Australia Utilities

MATLAB MATrix LABoratory software

RMIT Royal Melbourne Institute Technology

IE E E Institute of Electrical and Electronics Engineers

AU PE C Australasian Universities Power Engineering Conference

ISH International Symposium on High V oltage Engineering

SWIS South-W est Interconnected System



Abstract

This thesis presents an original study of pole-top fire in electrical distribution net-

works by using the ladder network model. A new mid-pole bonding mitigation

method has been proposed and developed in this research to overcome the pole-

top fire issue. A complete wooden pole model with cross-arm has been developed

for further investigation of pole-top fire. Leakage current concentration at the

wood-bolt insertion is demonstrated by significant information about radial cur-

rent distribution along wooden pole structures. Replacing wood with steel cross-

arm was unsuccessful in decreasing the fire-prone risk. On the other hand, Ross

shunting methods depict a similar result and caused higher current concentration

on the king bolt insertion compared to wood and steel cross-arm. A time-lapsed

thermographic study on wood and steel cross-arms with poles have shown that the

temperatures that developed on the king bolts were almost similar for both mate-

rials. The application of a mid-pole bonding system on a wooden pole structure

proved successful in reducing the pole-top fire risk by at least 50% . The mid-pole

bonding system offers better performance compared to the current method. This

new system will provide a better solution for the pole-top fire problem.

1



Chapter 1

Introduction

1.1 Background and Introduction

Electrical distribution networks in Australia and around the world face great chal-

lenges in maintaining the reliability and effi ciency of power systems. There is

tremendous pressure for power utility companies to meet the high demand from

consumers with economic and capacity constraints [18, 19]. One of the challenges

is to upgrade aging facilities and equipment to enhance the overall system relia-

bility. Continuous system upgrades will improve the power system performance

and reliability of indices such as the System Average Interruption Duration Index

(SAIDI) and the Customer Average Interruption Duration Index (CAIDI). Lack

of resources to improve the present distribution network may compromise safety

levels and also lead to power disruptions such as blackout or brownout [14]. Hence,

appropriate maintenance strategies such as regular line inspection and monitor-

ing of the condition of power equipment are important in maintaining the system

reliability and therefore preventing unexpected power disturbances.

Since the early’ 50s, wooden pole structural systems have been adopted by

2



1. Introduction 3

power utility companies in Australia and around the world as an economical

and frugal method for supporting overhead power distribution lines. Technically,

wooden pole is a selected forest product, usually hardwood timber which possesses

the required mechanical properties and high durability to support overhead con-

ductors. The Australia standard, AS 2209, sets out requirements for timber poles

intended primarily for use in overhead lines for electrical distribution networks.

The standard classifies timbers into groups of durability class 1, 2, 3 and 4 [15].

Most of the in-service wooden poles in Australia are harvested from native or local

grown forest and the majority of the timbers are from the durability class 1 and 2

species. These groups of timbers do not require full-length preservative treatment

due to their high pole strength compared to timbers in durability class 3 and 4.

In Australia, blackbutt, spottted gum (durability class 2) and messmate, moun-

tain ash and alpine ash (durability class 3 and 4) are the most common timber

species currently used [14]. Typically, these types of timbers are expected to have

a service lifespan of between 30 and 50 years.

Technically, wooden poles are used either in the transmission and distribution

of electrical power networks as depicted in F igure 1.1. Depending on the place-

ment of wooden poles in the electrical power network, certain overhead lines are

used to provide the minimum technical requirement for each design. These in-

clude the mechanical design of poles, cross-arms and foundations with weather

loads, conductor sags and tension effects, as well as the conductor characteristics

and selection according to standard practices [15, 20, 21]. For example, 38-feet

(12 meters) wooden poles are used for 12 kV to 34.5 kV distribution overhead

lines and up to 85 feet (26 meters) wooden poles are used for 138 kV H frame

or single circuit in sub-transmission lines. On top of that, these in-service poles

still require protection systems, regular line inspection and maintenance to reduce
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Figure 1.1: Typical transmission and distribution line structures in electrical power network [1]

power disturbances and improve the safety and security level of the system. F i-

nally, a systematic remedial and refurbishment strategy is needed to provide good

repair and extend the lifespan of wooden pole systems.

Over the last few decades, other types of utility poles have been introduced

as an alternative to wood. These poles consist of concrete, tubular steel, fibre

glass, fibre-reinforced polymer or aluminium. For example, ”Stobie Pole”, which

is made up of a metal-concrete composite was developed by the Electricity Trust

of South Australia Utilities (ETSA), as shown in F igure 1.2. It was introduced

into South Australian distribution networks to overcome the limited availability of

wood supply [2]. According to [14], almost 100% of in service poles in the N orthern

Territory distribution networks are made of steel. This is due to the severe local

climate, which has the most destructive hazard level, making wooden poles very
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Figure 1.2: Stobie pole in South A ustralian electrical distribution network [2]

unsuitable for this region. N evertheless, wooden pole is still a favourable choice

for most power utility companies around the world because of the reasonable cost,

natural durability and excellent insulating characteristic of timber.

Currently, there have been great concerns over the build-up of greenhouse gases

in the atmosphere, particularly over deforestation to accommodate the needs of

power utilities for their electrical networks. If over 20,000 new poles are required

each year for replacement in existing lines in Australia, more forest must be cleared

for these purposes [14]. However, with effi cient forest management practices, re-

forestation and rehabilitation are successfully increasing the area of forested land.

W ood still holds a big volume of carbon in its cells after it has been harvested. On

the other hand, a very small amount of energy is used during timber production
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compared to alternative poles. For example, an alternative pole such as tubular

steel consumes four times more energy in production than concrete and wooden

poles [22]. According to this report [22], the global warming potential of a regu-

lar wooden pole is about one fifth of a concrete pole and about one thirtieth of

that of tubular steel. Therefore, it is clear that wooden pole is substantially more

environmentally benign compared to alternative poles. Regarding pole utilization

of energy and potential, alternative poles contribute more carbon dioxide to the

atmosphere, which promotes global warming.

Most wooden poles in service are still exposed to risks even though comprehen-

sive inspections, maintenance and rehabilitation have been made regularly. The

ignition of bushfires could be attributed to pole-top fires and defective fittings on

wooden pole structures. Polluted insulators allow leakage current to flow from

power lines, which will ignite fire, especially at the metal wood insertions such as

king bolts and pin insulators. Improper and ineffi cient inspection to detect faulty

fittings during regular pole maintenance could also cause a risk of mechanical fail-

ure. Both events can cause power lines to fall and trigger a spark amongst dry

vegetation on the ground. In summer, the possibility of bushfires occurring is

high, especially during dry hot conditions. According to [23], more than 30 major

bushfires have been recorded in V ictoria since 1851, burning millions of hectares of

land, destroying thousands of buildings, killing millions of livestock and hundreds

of people. As reported in [24–26], 119 people in K ilmore were killed during the

V ictorian Black Saturday fires in 2009. Some speculations were made in these re-

ports that the failure of power line assets was responsible for the bushfire tragedy.

The final report of the results of the investigation by the 2009 V ictorian Bushfires

Royal Commission [13]stated that electricity asset failure caused 5 of the 11 major

fires on 7 February 2009 as summarized in Table 1.1.
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Location Causes D escriptions
K ilmore E ast -due to conductor failure as a result

of fatigue of conductor strands,
partly caused by helical termina-
tion being incorrectly seated in
thimble.
-the failed conductor had contact
with a cable stay supporting pole
and caused arcing that ignited veg-
etation near the base ofpole.

O ne hundred and nineteen fatali-
ties, two hundred and thirty-two
casualties, 1,242 houses destroyed
and 125,383 hectares burnt.

H orsham -due to failure ofpole cap to secure
conductor on pole.
-as a result the conductor hit the
ground and caused fire to start.

N o fatalities, no casualties, thir-
teen houses destroyed and 2,346
hectares burnt.

C oleraine -tie wire that held conductor in
place on top of pole broke, caus-
ing conductor to swing in wind.
-contact between conductor and
tree,causing arcing that ignited fo-
liage near top of tree which subse-
quently fell to the ground.

N o fatalities, one casualties, one
house destroyed and 713 hectares
burnt.

P omberneit -electrical fault occurred as result
of clashing of 66 kV and 22 kV
conductors or the 22 kV and 22
kV conductors,or both.
-clashing caused emission of
molten particles, which ignited
vegetation by side of P rinces
H ighway.

N o fatalities, no casualties, no
house destroyed and 1,008 hectares
burnt.

B eechworth-
M udgegonga

-tree had fallen on power line,
pulling conductor furthest from
road off supporting insulators at
poles.
-arcing between energized conduc-
tor and pole was the probable
cause of fire,which started in veg-
etation at base ofpole.

Two fatalities, twelve casualties,
thirty-eight house destroyed and
33,577 hectares burnt.

Table 1.1: E lectricity related ignitions in V ictorian bushfires,7 February 2009 [13]

In addition, hundreds of pole-top fire cases were recorded in the electrical net-

work of SW IS after a change in pole-top fire mitigation techniques during the

period 1993 to June 2004, as shown in F igure 1.3. There is still a big number of

pole-top fire cases recorded, even though line washing, pole bonding and silicone
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Figure 1.3: R ecorded pole-top fire events over South-W est Interconnected System (SW IS) in
W estern A ustralia from 1993 to 2004 [3]

coating have been applied in the W estern Australian south-west electrical network.

According to an electrical incident report by EnergySafety W estern Australia in

[4], a bushfire which occured near Cape N atural L ighthouse, Dunsborough on 7

February 2009 was caused by pole-top fire. As a result of pole burning at the

attached insulator, the falling hot ember ignited vegetation under the power line

and triggered a bushfire, as shown in F igure 1.4. A similar report was released

by EnergySafety W estern Australia that investigated the possible causes of fire

ignition from high voltage power lines in the Toodyay bushfires [27]. The arcing

between conductors in the span between poles T303-12 and T303-43 could have

ignited the fire. Other sources of the fire ignition, such as lightning, vandalism,

vehicle movement and pole-top fire were considered and eliminated. Therefore,

wooden pole safety is aimed at preventing wildfire ignition and protecting the sur-
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Figure 1.4: P ole-top fire in D unsborough electrical distribution network [4]

rounding public from injury and electrocution. Further study and continuation of

any research that is linked to bushfire issues and power networks is imperative.

The research outcomes could supply the solution to overcoming fire prone events

in the electrical distribution networks and eliminate any fire risks.

1.2 O b jectives of the Thesis

This research is focused on the investigation of leakage current flow using wooden

pole computer simulations and an experimental approach. A new effective pole-

top fire mitigation technique that allows leakage current to flow to the ground is

designed and tested. To investigate the feasibility of the pole-top fire problem,

a ladder network model introduced by R. F ilter in [17]has been manipulated to

achieve our main research objective. The primary objectives of this research are:

� To develop a wooden pole electrical model that is based on the ladder net-

work model, then, investigate and determine significant result from simulation
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works that can be used to explain leakage current effects on the king bolt in-

sertion point along the wooden pole structure. In detail, the work is carried

out in a MATLAB software environment, which represents the real wooden

pole in service. The effects of moisture content, type of chemical treatments,

physical dimension, step size, pollution levels on insulators and also weather

conditions, such as dry and wet, are included in this study.

� To modify and manipulate the existing ladder network model purposely to in-

clude and introduce a novel electrical wooden cross-arm model for a complete

case study. The developed cross-arm model is based on the ladder network

model in which radial and king bolt resistances are used as a reference point.

� To introduce an electrical model of the P.M Ross mitigation technique, steel

cross-arm and novel mid-pole bonding system to the enhanced model. The

performance of the new mid-pole bonding system is investigated and com-

pared with the Ross shunting method and steel cross-arm method;the perfor-

mance is based on the leakage current concentration at the metal insertion.

� To verify the performance of a mid-pole bonding system simulation study with

an experimental work. A metallic bonding for mitigation purposes is designed

and the performance of a bypass technique is investigated as a function of

the bypass current ratio. This will be compared with the ladder network

computer model.

� An investigation of the leakage current effect is conducted to find out the

developed temperature on the king bolt with steel and wooden cross-arm.

The performance of the mid-pole bonding system in terms of king bolt tem-

perature development is also investigated.
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In this research, a 12-meter wooden pole with treated Chromated Copper Ar-

senate (CCA) was chosen to develop the ladder network model using MATLAB

software. In addition, a 2-meter standard length of wooden and steel cross-arm

was also used as part of the enhanced wooden pole model. The sapwood, heart-

wood and current radial distributions along wooden pole sections were determined

after a comprehensive simulation study. The simulations were performed under

an 11 kV system and the leakage current was assumed to flow in either a single

phase or phase-to-phase form, depending on case studies. The comparative perfor-

mance measures of the Ross shunting technique, the steel cross-arm and mid-pole

bonding systems were made under wet conditions.

For the laboratory work, a 6.5-meter wooden pole with treated CCA was used

for the experimental study. This was due to the limitation of laboratory working

space and wooden pole delivery transportation. Another computer model was

developed to correspond to the tested wooden pole. The testing was run with

only a single phase of 11kV power supply and a series of high voltage resistances

were used to simulate the pollution levels. A thermographic camera was also used

to capture the temperature on the pole cross-arm junction, especially at the king

bolt during the leakage current testing. An aluminium sheet was used to fabricate

a metallic band for the mid-pole bonding purposes. F inally all the experimental

studies were done in the RMIT University High V oltage laboratory.

1.3 Thesis O rganization

The background and introduction of the thesis are clearly presented in Chapter 1.

Brief descriptions of the remaining chapters are as follows:

� Chapter 2 discusses an overview of wooden pole technical literatures in the
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electrical network services. A concise explanation of wooden pole deteriora-

tion, treatment and preservation is presented in Chapter 2. A discussion of

the failure of wooden poles in terms of mechanical and electrical aspects is

also included in this chapter. A detailed study, particularly on the attribut-

ing factors that relate to pole-top fire issues is also addressed. F inally the

evolution of a wooden pole model and the current solutions for pole-top fire

issues are discussed in the last two sections of Chapter 2.

� Chapter 3 presents the development of a wooden pole ladder network model

that is associated with pole dimensions, type of treatment, moisture content

in the wood and the effect of weather. In general, the moisture level of the

wood is the major factor that influences the magnitude of the wooden pole

at each section compared to the type of treatment as depicted in Chapter

3. Current distribution of each resistance of each section of wooden pole is

examined and analyzed from simulation works in the last section of Chapter

3. As a result, the radial current distribution shows a significant result in

terms of explaining the effect of leakage current on the bolt insertion.

� Chapter 4 describes the enhancement and modification of the ladder network

model, particularly the introduction of the cross-arm element into the original

model. Electrical configuration of the Ross shunting technique is developed

on the enhanced ladder network model to determine the performance of this

mitigation method. The steel cross-arm model is also included in Chapter 4

as part of the research study. A new mid-pole bonding system is proposed

in this simulation study to overcome the disadvantages of the steel cross-

arm and the Ross shunting technique. The comparative work is done with

radial current distribution evaluation. Lastly, the simulation study works are



1. Introduction 13

made under circumstances of single phase and phase-to-phase leakage current

phenomena.

� Chapter 5 presents the laboratory experiment to verify the performance of

the mid-pole bonding system compared with the simulation works. An ob-

servation of the temperature development on the king bolt for both wooden

and steel cross-arm is made. The experimental setup is also explained in

Chapter 5, particularly as to how the specific current is measured with a

floating oscilloscope;the use of a thermographic camera to record the devel-

oped temperature at the pole cross-arm junction is also discussed. F inally, the

performance of the mid-pole bonding system based on temperature growth

at the king bolt is also included in Chapter 5.

� Chapter 6 is a conclusion and summary of the research findings, with recom-

mendations for possible future works.

1.4 O utcomes of the Thesis

A few papers have been published in refereed journals and local conference notes

by the author as outcomes of his PhD study. Most of the information delivered in

these papers is included in this thesis.

� K .L . W ong and M.F. Rahmat,“Study of leakage current distribution in

wooden pole using ladder network model”, IEEE Transaction on Power De-

livery, vol. 25(2), pp. 995-1000, April 2010.

� K .L . W ong and M.F. Rahmat,“Feasibility study of leakage current shunt-

ing method based on ladder network model”, IEEE Transaction on Power

Delivery, vol. 25(2), pp. 1133-1137, April 2010.
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� R.H. Lunuwilage and M.F. Rahmat and K .L . W ong, “Study of Leakage

Current Distribution in a W ooden Pole using a Three Dimensional Resistance

Model”,In A U PEC ’10 A ustralasian Power Engineering C onference, 2010,

pp. 1-5, Dec. 2010.

� M.F.Rahmat and K .L . W ong,“Thermographic study of stainless steel cross-

arm on overhead distribution system”, In A U PEC ’09 A ustralasian Power

Engineering C onference, 2009, pp. 1-6, Sept. 2009

� K .L . W ong and M.F.Rahmat,“Investigation of leakage current in wooden

pole using ladder network model”, In A U PEC ’08 A ustralasian Power Engi-

neering C onference, 2008, pp. 1-5, Dec. 2008.

� K .L . W ong and M.F. Rahmat,“Feasibility study of pole shunting method

based on ladder network model”, Poster presentation in ISH ’09 International

Sym posium on H igh V oltage Engineering, 2009, Aug. 2009.

� M.F. Rahmat and K .L . W ong,“Thermographic Study of Stainless Steel

Cross-arm on Overhead Distribution System”, IEEE Transaction on Power

Delivery,(Submitted for review on 14 Oct. 2009).



Chapter 2

Literature Review

2.1 Introduction

Electricity supply is distributed by an electrical distribution network either through

overhead lines or underground cables. Overhead lines become the most cost-

effective and convenient method to distribute electric power in both suburban and

rural areas. This system offers a simple voltage operation, accessibility for repair

and extension with low-cost lines construction. Most of the distribution overhead

lines are operated with a voltage of 33/11 kV or 240/415 V . On the other hand,

underground cables are more suitable for highly populated urban areas, rivers or

other obstacle-prone areas. Underground cables experience less faults per km than

overhead lines, but any faulty aspects are diffi cult to locate and more costly to

repair [28]. In Australia more than 80% overhead lines are supported by wooden

poles compared to alternative poles such as those made of concrete, metal and

fibreglass-reinforced plastic composite materials [14].

W ooden poles have been used as part of the energy utility structure since the

first electrical distribution network was constructed in the late 1880s [29]. W ooden

15
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poles are popular among power utility industries due to their natural insulation

properties, high mechanical strength, long lifecycle, availability, low initial cost,

simple foundation preparation and ease of maintenance for overhead line structures

[30]. Therefore, a lot of countries around the world, such as the United States [31],

the United K ingdom [28], Scandinavian countries [32]and Brazil [33]are still using

wooden poles to transfer electricity to their consumers. For example, the United

States has about 110 million poles in service and Brazil utilizes over 2 million

wooden poles to support distribution and transmission lines.

Table 2.1 summarizes the major timber pole species that have been used in

the Australian energy network. There is no significant number of timber poles

used in N orthern Territory and South Australia, due to very high termite hazard,

cyclone weather and meagre timber resources. Most of the timbers are classified

into durability classes which depend on the inherent resistance of a pole species

D urab ility Class Species
N ew South W ales 1 and 2 E ucalyptus pulilaris (blackbutt)

C orymbia (spotted gum)

Q ueensland 1 and 2 C orymbia (spotted gum)
P inus elliottii (slash pine)

V ictoria 1,2 and 3 E ucalyptus pulilaris (blackbutt)
C orymbia (spotted gum)
P inus radiata (radiata pine)

W estern A ustralia 1 and 2 E ucalyptus marginata (jarrah)
E ucalyptus diversicolor (karri)
C orymbia calophylla (marri)

T asm an ia 3 and 4 E ucalyptus regnans (mountain ash)
E . delegatensis (alpine ash)
E . obliqua (messmate)

A ustralia C ap ital
T erritory

1 and 2 E ucalyptus pulilaris (blackbutt)
C orymbia (spotted gum)

South A ustralia and
N orthern T erritory

nil nil

Table 2.1: A ustralian timber pole species [14,15]
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to decay, or to insect or marine borer attack [34]. According to [34], the probable

above-ground life expectancy for durability class 1 timber is more than 40 years

and the probable marine-borer-resistance life expectancy is more than 60 years.

In contrast, timber pole from durability class 4 can only last about 5 to 7 years for

both conditions. However, with full-length preservative treatment that depends

on biological hazard conditions, these durability class 4 timbers will have a life

expectancy greater than 20 years [14]. A detailed list and general requirements of

timbers for overhead lines can be referred to in the AS2209 standard [15].

In the next section, a brief discussion about wooden pole deterioration, pole

treatments and preservations, pole inspections, maintenance programs, pole struc-

tural reliability, as well as pole management is presented. Then, a detailed dis-

cussion relating to the electrical performance of wooden poles, especially on the

issue of wooden pole-top fires is included. On top of that, previous and current

practices for pole-top fire mitigation methods is also discussed in this chapter.

F inally, models of wooden pole are presented in the last section of this chapter.

2.2 Wooden Pole D eterioration

All erected wooden poles in transmission and distribution lines are exposed to

extreme weather conditions, biological attacks and fire [35]. The effect of knots

and cracks on wooden pole body structures can be easily detected, especially in

seasonal countries. This occurs during sudden transitions from hot to cold weather

for long periods of time. Fungi and termite attack might also occur on the sapwood

section of the wooden pole that has contact with the ground. Fungal rot eats the

wood cell slowly, leading to softening and decay. In addition, termite colonies

nest underground in old tree stumps or root systems, attacking and feeding on
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Figure 2.1: W ood deterioration as a result of termite attack [5]

the wooden pole through their built tunnel system. Last but not least, borers

live in wooden pole cracks laying eggs before burrowing out of the wood at the

adult stage and flying off to breed. For example, beetles, pinhole and marine

borers digging flight holes from inside may weaken the pole considerably. As a

result, the pole will attract woodpeckers to peck the wood for feeding, especially

during warmer months [36]. F inally, most fire events are related to insulator failure

which undermines the mechanical strength of wooden poles and leads to structural

failure.

Most of the deterioration agents are linked to the role of moisture content

and moisture distribution along the wooden pole structure. Based on W allis,

fungal decay only occurs when the moisture level of the wood is above 20 percent

[37]. Therefore, before the wooden poles are installed for service, they need to go

through a preparation and pre-treatment process to reduce the exposure to fungi

and termites. These preparation procedures include a process of peeling, drying

and conditioning [38]. The bark and inner cambium layer of the poles are stripped
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out during the peeling process. Once the peeling process is completed, the poles are

dried to remove water until an equilibrium moisture content level is reached. This

is purposely done to reduce the shrinkage and crack effects. The poles are dried

either: by a heat-steam conditioning method in a pressurized cylinder;through a

long seasoning air-dry process;or by an accelerated kiln-drying controlled method.

Then the preservation treatment process is ready for the prepared poles.

2.3 Wooden Pole Treatment and Preservation

Pre-treating and preserving wooden poles is important in increasing the service

life of poles. Highly toxic chemicals have been used to preserve wooden poles

from the effects of moisture, fungi and wood-destroying insects, besides creating

weather protection. Oil-based/borne and water-based chemicals are the two com-

mon preservative types in commercial use for wooden pole preservation treatment

[29, 39–42]. Oil-based preservative is a product of distilled bitumen coal such

as coal-tar creosote, beechwood creosote and creosote bush resin. On the other

hand, oil-borne preservative is a blend of petroleum co-solvent with carrier oils.

For example, pentachlorophenol (penta or PCP) with 5% to 9% mixture has been

used in the treating of wooden poles until now, especially in the United States.

However, water-based preservative is based on chemical salts dissolved in water at

various concentrations of 2% to 5% . A water mixture of chromated copper arse-

nate (CCA), and ammoniacal copper zinc arsenate (ACZA) are the most popular

water-based preservatives. A very high-pressure cylinder or vacuum pressure plant

is used for most oil preservative and waterborne treatment for better penetration

and impregnation of wooden poles. The hot and cold bath method is the most

effective alternative for non-pressurized treatment. It depends on atmospheric
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pressure utilized by first heating the medium and then cooling it in preservative

[43].

Apparently, the relative toxicity of preservatives is successful in making wooden

poles inedible. G ood preservative penetration is also crucial to meet most require-

ments of standardized treatments to ensure effective resistance to decay, insect and

borer attack [40]. On the other hand, these treatment processes do not reduce the

high natural insulation features after treatment. According to [44], water-borne

preservative-treated wood exhibits better immunity to fires than oil preservative-

treated wood. It is also reported that the CCA-treated pole has a less hazardous

body-current level resulting from human contact with poles, compared to PCP

preservative treatment. The durability of CCA-treated poles displays no signifi-

cant differences to that of untreated poles after a standard strain mechanical test,

for either ground-line strength of stiffness as reported in [45]. Unavoidable soil and

water contamination surrounding pole butt due to the presence of toxic chlorinated

compounds in the preservative mixtures may become a risk to the environment as

well as to those who work close to wooden poles, especially linesman [29]. There-

fore, a careful procedure should be taken when dealing with any treated wooden

poles. F inally, Table 2.2 shows the current approved treatment practice for hazard

class 5 service conditions in Australia where timber is in contact with the ground

or fresh water [16].

Treatment Species Preservative
level

C C A
(% copp er + % chrom ium + % arsen ic)

Softwood
H ardwood

1.00 %
1.20 %

C reosote (% creosote) Softwood
H ardwood

24.50 %
13.00 %

Table 2.2: Specification for preservative treatment of timber [16]
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Thermal treatment of wooden pole without the addition of any toxic chemicals

is reported in [46]. This environmentally-friendly method improves the resistance

to wood decay, increases the dimensional stability and darkens the colour of wood.

However, a slight decrease in the flexibility of the wooden pole with increasing

temperatures has been observed when it is used in contact with the ground. The

study showed that large cracks were observed on existing cracks which were cre-

ated during the 180-215oC drying periods. Preliminary results demonstrated that

the poles could be used only by bucket truck linesmen and were not suitable for

climbing purposes. A standard international practice for preservation of wooden

poles in distribution and transmission lines has been published and it provides a

basic guideline for all engineers as to what is necessary for specific needs [47].

2.4 Failure of Wooden Poles

The proper management of wooden pole structures in distribution and transmis-

sion lines could minimize any mechanical and electrical failures [48–53]. W ooden

pole management, including combinations of conventional and advance inspec-

tions, pole reliability assessments from structural analysis, and action incorporat-

ing replacements, rehabilitations or maintenances has significant economic con-

siderations. Instances of wooden pole external decay, such as cracks, holes or

corrosions are assessed by regular visual inspection and internal rot is usually

detected through hammer tests, drilling or with non-destructive testing meth-

ods (sonic vibration, ultrasonic sound, infrared camera) [54–68]. W ith extreme

weather conditions, such as ice loading, wind gust and hot spells, an effi cient

structural assessment study plays an important role in improving the reliability

of distribution and transmission lines. Then cable clashing due to support failure
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and icing problems, and pole foundation failure caused by strong winds or even

unexpected bushfires during hot conditions could be avoided. Therefore, well or-

ganized maintenance and rehabilitation programs will improve the pole aging in

service and effective replacement plans could save millions of dollars per year based

on effi cient management decisions [69–78].

On the other hand, the insulation strength of wooden poles becomes a ma-

jor concern in transmission and distribution lines. As reported in [41], a typical

dry wooden pole has 1017-1018 ohm-cm resistivity which represents great insulator

properties. However the resistivity of wooden poles drops dramatically to 108-109

ohm-cm and 105-106 ohm-cm as moisture content increases to 12% at the fiber

saturation point. On top of that, the resistivity changes of water-based and oil-

based/borne treated wooden poles have much less effect compared to the changes

caused by moisture content [17, 44]. For example, untreated, PCP-treated and

CCA-treated poles have almost similar resistivity magnitude at 14% of moisture

content, but it changes dramatically as moisture level increases. Thus, these be-

come a great challenge when dealing with high voltage phenomena such as switch-

ing impulse, lightning impulse and leakage current effects.

L ightning strikes often occur during thunderstorms, a rare problem for wooden

poles. However, a direct and indirect strike of lightning can cause major me-

chanical damage such as pole splitting, conductor damage, flashovers between line

phases and pole-mounted equipment (at the insulators and transformers) and,

even worse, can cause injury or loss of human life [28, 41, 79]. Therefore, for

this uncontrollable phenomenon, action has been taken to overcome the faulty

conditions within the budgetary limit of available techniques. For example, arc

gaps, surge arresters and overhead earthwires have been installed on wooden pole

structures along with earthing rod to protect overhead lines, transmission lines
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Figure 2.2: P ole destruction by lightning strike [6]

and substations that are based on protection strategies [80–84]. At the end, the

proposed schemes should minimize the risk of lightning strike to public safety,

electricity supply interruption and also to the loss of economic value. Similar to

lightning strike protection, an identical strategy is used to overcome the switching

impulse issue with the same implementation but different specifications [85, 86].

The natural shrinkage and cracking of the wood due to natural aging of wooden

pole may cause loosening of metal to wood connection that will allow a spark

discharge inside the bolt hole [41, 87]. W ith suffi cient leakage current magnitude

and extra air supply provided by wind, the hole becomes more readily ignitable

than sound wood. The leakage current is thought to be finally concentrated in

a small zone in the volume of wood under the bolt washer. It is believed the

heat generated (i2R) together with an incident spark discharge is suffi cient to
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ignite the wood. F inally, the pole-top fire issue will be discussed in detail in the

next section. This includes causes of pole-top fire, types of damage, the possible

trigger of leakage current, current mitigation techniques and also the wooden pole

modeling .

2.5 Pole-Top Fire

Unexpected and unplanned power outages can happen at any time in the short or

long term and are able to affect tens of thousands of electricity customers. One

reason for power disturbances caused by the damaging of wooden pole structures

in the transmission and distribution system is pole-top fire. W ooden pole structure

failure could lead to phase-to-phase or phase-to-ground faults. In the worst case,

this scenario tends to initiate bushfire by the triggered electrical spark between

fallen live wires and dry vegetation such as leaves, grasses or bushes.

The causes of pole-top fire have been attributed to several factors. Pole-top fire

may be caused by the effect of capacitive coupling or high electric field intensities

between pole and phase wires or in the high voltage transmission system. On the

other hand, flows of leakage current over the failed insulators from phase wires to

the wooden pole structure can become another cause of pole-top burning especially

at the metal insertion sections such as king bolt, bolt and insulator pins. Therefore

a lot of essential work has been reported in the last few decades that relates to

pole-top fire investigations [12, 41, 44, 80, 87–99].

Johnson and W alraven investigated the unexplained fire phenomenon that oc-

curred across 160 miles of 345 kV H frame transmission wooden poles [88]. During

a climbing inspection, they found 60 burn areas in sizes from 1 inch diameter and

1 inch deep to 6 ft long, 6 inch wide, and 2 inches deep along ground wires in
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Figure 2.3: Typical H -frame wooden pole structure in transmission lines [7]

an area 10 ft above to 10 ft below levels of the bundles of phase wire. The five

possible mechanisms, such as heating due to dielectric losses, inductive ferromag-

netic heating, heating by leakage current, electromechanical heating and heating

by discharge current were investigated. The results of this intensive study states

that the high intensity of electric fields between earthing wire fasteners/clips and

high-voltage phase wire caused dielectric losses inside the wooden pole and slowly

triggered a fire. As a result, a small modification was made on the 345kV H

frame, especially at the earthing wire fasteners by re-clipping it with a stainless

steel type, increasing the distance between fasteners and also bonding the pole-

top brace hardware with earthing wire. The success of this protective adaptation
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will only be proven after a few years in service with regular climbing inspections

by experienced operators. However, there is no subsequent report based on their

work.

Lusk and Mak found that fires in the H frame of wooden high voltage transmis-

sion line towers were attributable to surface leakage current or lightning strike [89].

The excessive internal Joule (i2R) losses in wooden poles at the metal insertion

point were identified as a main cause associated with the existence of capacitive

coupling and high electric field intensities between pole and phase wires. The Joule

loss depends on the electrical conductivity of wooden pole that relies on the cur-

rent moisture content and magnitude of the charging current due to capacitive and

electric field effects. In the above study, the metal fasteners that were nailed into

the wood and held the pole earthing wire on the pole surface became current col-

lecting points or current burden drainage points, especially during wet conditions.

Two laboratory tests were run to validate the hypothesis of current discharge and

the constricted drain of the induced charge. As a result, they proposed adding

more metal fasteners on a single earthing wire to reduce the per fastener current

drainage burden. Thus, they hope to provide an extra effect of the Faraday shield

that tend to reduce the total capacitive coupling and high electric field passing

through the wood.

Leakage current flow over the surface of contaminated insulators may cause the

wood to burn, especially at the medium voltage line in the overhead distribution

system. Ross found that during prolonged dry periods, contamination accumu-

lates on the insulator surfaces and, if followed by fog, rain mist or snow, reduces

the surface resistance and allows leakage current flow [12, 90]. Two types of burn

damage, tree burning and pocket burning, often occur on wooden pole struc-

tures. Both types of burning depends on leakage current magnitudes and voltage
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dropped across the uneven wet wooden surfaces. The tree burning type, which

is more common than pocket burning, has a tree-like burn pattern on the pole

surface and usually the replacement of wooden pole structure member is unneces-

sary. However, the pocket burning always extends into the wooden pole body and

occurs only if a small portion of the pole is dry. L ight winds create a dampening

condition on the pole and insulator surfaces and produce a“shadow” area. The

high resistance of the shadow area in series with low leakage current resistance

causes a concentration of voltage across the dry area. A fire will be triggered if

the voltage drop is suffi cient and causes a short electrical breakdown across the

dry zone. The replacement of the wooden pole structure member is needed in this

instance. F igure 2.4 shows the failure of the wooden cross-arm due to pole-top

fire.
 

 

 

 

 

Figure 2.4: P ole-top fire event in Southmoor distribution line [8]
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Under controlled conditions in the laboratory, a study of the various factors

contributing to pole burning was made to evaluate the importance of the different

variables and to develop means of prevention [91]. The tests were set up with

several insulators and pin types by using methods of artificial contamination and

fogging. Pole fire was produced under dirty and foggy conditions, resulting in

burning similar to that which has been observed in the field during laboratory

testing. It was concluded that pole fires cannot be attributed to any single factor,

but are the result of a combination of several factors to be fulfilled simultaneously

such as leakage current, overall surface resistances, light wind and moisture. For

instance, localized Ohmic heating (I2R) on the wooden pole dry-band surfaces

will accelerate the fire initiation and then can cause wood burning. According to

this study, pole fires are most likely to occur at the joint between the pole and

cross-arm junction. Based on the results of a potential distribution graph, nearly

50% of the voltage gain occurred in this small section compared to the whole

test circuit. The wood in the region understudy was relatively dry so the prime

requisites for arc and fuel were present. F inally, pocket burning or“pocket fire”

occurred where there was smouldering without an open flame as a result of a deep

“pocket” burned inside the wood.

2.5.1 E ff ect of Leakage Current

A few studies were carried out by [44, 93–95, 98]about leakage current magnitude

related to pole-top fire. Based on a laboratory study, Chen and Chang reported

that the overall leakage current was below 1 mA under severe artificial pollution

of the insulator surfaces [94]. However, a leakage current measuring more than 4.4

mA on testing equipment was recorded during wet conditions. Similar to [93], it

was found that a current of 5 mA is suffi cient to ignite wood and 1 mA to sustain
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the ignition. Loxton et al. in [98]also supported these findings by concluding from

their laboratory work that miliamperes of current magnitudes are needed to cause

the ignition of wood. In [44], F ilter referred to this current as the fire inception

current. Depending on the age profile of the woods and insulator contamination

levels, the current could vary between microamperes to miliamperes [95]. Based

on their observations, in some instances, wood smouldering was noticed at the

heated king bolt that was connected into the wooden pole and cross-arm during

the test. F inally, the type of preservative treatments may have affected the overall

leakage current magnitude from the top to the bottom of the wooden pole as

reported in [44]. Laboratory tests indicated that for poles treated with water-

borne preservative, such as Ammonia Copper Arsenate (ACA) and CCA, fire

inception currents are two to three times greater than pentachlorophenol-treated

poles. During foul weather conditions and as the result of polluted insulators, 4

mA to 6 mA leakage currents were deemed possible for poles treated with water-

borne preservative.

2.5.2 Current Pole-Top Fire Mitigation Techniques

In the past, several pole fire mitigation techniques were proposed for the electrical

distribution network. Table 2.3 summarizes the practice that has been employed

over the last few decades in order to eliminate pole-top fire risk. L ine insulator

washing has been part of a live-line maintenance operation especially for those ar-

eas where pollution was very high, such as coastal areas, desert regions and others

[100]. A helicopter fitted with a water tank and spraying nozzle has been used for

those diffi cult access areas to clean and tidy up polluted insulator surfaces with

high-pressure water under a strict practices code [101]. On the other hand, a crane

operated by several washer crews has been used for easily accessible areas. Usually,
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silicone coating was applied onto insulator surfaces after the washing process had

finished. This method managed to break up water film and encapsulate particles

so that they worked effectively and did not cause flashovers and leakage current

flow when wet [102]. The main drawback has been that this silicone compound

needs to be removed and cleaned up from the insulator surfaces after a few years

in service. Besides that, insulator washing has not been very useful in environ-

ments exposed to polluting conductive mist conditions, such as marine salt fogs.

F igure 2.5 depicts the application of silicone coatings on pole-top insulators by

line operators.

Replacing or upgrading insulators and cross-arms has become a common option

for the electricity distribution company to improve their operation reliability. For

example, adding a creepages extender is able to upgrade the electrical strength of

insulators and reduce the leakage current and electrical stress, even without coating

[108]. Replacing insulators and cross-arms with better material and design can

improve the mechanical strength and pollution classification from a light to a heavy

 

 

 

 

 

Figure 2.5: O perator spraying silicone compound on pole-top insulators [9]
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E xisting
Technology

Features D rawbacks

R egular/periodic
insulator washing
[100–103]

-uses high water pressure to
clean up surface of insulator.

-sometimes does not cover every
surface of insulator.
-needs regular washing.
-costly.

Silicone C oating
[102,104–107]

-sprays a silicone coating onto
insulators surface after line
wash process.
- silicone coating acts like gel
absorbing dust, moisture and
pollution.

-after lines are washed, silicone
coating is sprayed onto insula-
tors using gun attached to com-
pressor pump.
-silicone then acts like gel ab-
sorbing moisture,dust and pol-
lution.
-need to clean up insulator after
several years in service.
-costly.

R eplacing or U p-
grading insulator
[94,108,109]

-adds plastic hood or protective
creep-age on top of insulator.
-uses better insulator to reduce
risk of leakage current such as
hybrid insulator.

-costly.
-require line to be de-energized
during replacement.

Steel/Fibre C ross-
A rm [9,110]

-changes/replaces wooden
cross-arm to steel or fibre glass
type.

-line de-energized during cross-
arm replacement.
-over years, surface of fibre
glass/steel becomes contami-
nated with dust.
-costly.

Leakage C urrent
M onitoring [111–
114]

-online monitoring of leakage
current.

-very costly as many monitor-
ing units are required to be in-
stalled along the power lines.

P ole B onding [10–
12, 80, 87, 90, 98,
99]

-attaches conductive mate-
rial plates that have integral
punched out teeth that acts
as current collector and shunts
leakage current at wooden pole
and cross-arm junction.

-nailed/punched effect onto
wooden pole allows another
leakage current concentration
point.

L ine P ole G round-
ing [93,115–118]

-shunts leakage current to
ground.

-reduce basic impulse level of
the wooden pole.
-earthing rod needed for this
configuration and it’s very
costly.

Table 2.3: C urrent methods to reduce pole-top fire risk
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pollution category [9, 109, 110]. The disadvantage has been that the line needs

to be de-energised during the replacement operation and this procedure is very

costly. It has been reported in [119], that a budget of about AUD 10-15 million

was estimated for the replacement process cost of the thousands of wooden cross-

arms on rural V ictorian power poles. Replacement of all cross-arms with steel or

fibre glass may reduce the pole-fire risk, but cannot prevent insulator failure.

An online monitoring system which detects leakage current and partial dis-

charge activities on an insulator surface has been discussed in [111–114]. This

system comprises of: a sensor unit attached at the last shed of the insulator or at

the insulator pin;signal conditioning and data acquisition for detecting, process-

ing and transmitting monitored leakage current; and finally a protection system

installed to avoid the risk of any voltage spikes to the electronic systems. Accord-

ing to Metwally et al. in [113], pole fire normally occurs at the weakest point along

an axial point length, where there are one or more deep cracks and current entry

and exit points on the pole. The leakage current monitoring system or Pollution

Monitoring System can be used as a good warning in order to predict a pole-fire

event. Therefore, an optimal precaution action can be taken, such as live-line

washing or replacement of defective insulators at the appropriate time. However,

due to the total cost and complexity of this system, it presents a great challenge

for distribution and transmission companies to invest in this technology.

The main purpose of the pole bonding is to eliminate the voltage stress between

uneven wet surfaces across wooden pole structures, especially at the king bolt

sections. Therefore a conductive copper plate has been used and stapled across

the cross-arm surfaces and connected to the king bolts in many configurations to

overcome the pole fire problem [12, 87, 90]. In another configuration, a copper

plate with integral punch-out teeth was bonded to the cross-arm or wooden pole
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Figure 2.6: P ole bonding configuration [10]
 

 

 

 

 

Figure 2.7: A pplication ofpole bonding to the cross-arm [11]

surface in order to decrease current concentration at the king bolt section [10,

11, 80, 98, 99]. However, with time, the wires, plates or other bonding elements

tended to become loose due to shrinkage of the wood as it was exposed to the
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elements over a number of years. It was found that this loosening of the staples or

teethed copper plates in conjunction with wood shrinkage substantially worsened

the already poor electrical contact between the conductive bonding elements and

the wood surfaces it was desired to protect. It has also been proven in [120]that

the pole-bonding method caused leakage current concentration at the king bolt

junction due to the bonding arrangement.

F inally, line pole grounding has become a current popular method to overcome

the pole-top fire problem [93, 115–118]. Based on this technique, all the secured

metals such as the king bolts, insulator pins and bolts that hold the steel holders

were shunted through grounding cables to the earthing rod. Thus, any leakage

current flow phenomena that was caused by failed insulators was diverted to the

ground. However, it involved a lot of investment, especially for the earthing rod

expenses and installation costs. It also reduced the overall basic impulse level of

the wooden pole structure in which the grounding wire arrangement eliminated

the natural insulation that was provided by the wooden pole. Even with line pole

grounding installed and in service, a pole-top fire was reported in the N orthern

Beaches area in Sydney [121].

2.6 Wooden Pole Models

Technically, the wooden pole can be represented as an electrical resistances model

[41, 122–125], a thermal model [66, 67, 126]and a finite element model [127–131].

Depending on the purpose of the research, the model of the wooden pole is based

either on whole pole measurements, laboratory studies such as wood stakes or

computer simulation works, especially in the thermal and finite element models.

W hole pole evaluations techniques are based on on-site, full-length resistance mea-
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surements of the wooden pole structure by inserting electrode rods at the top and

bottom sections [122–124]. This on-site assessment provides practical electrical

test data of the in-service wooden poles. However, to generalize wooden pole

electrical resistance is diffi cult due to the contact resistance, moisture content,

treatment gradient and pole dimension factors. Therefore, intensive examinations

of each type of treatment and pole species are needed for many other in-service

wooden poles.

Conversely, wood stake studies were established by examining, under controlled

laboratory conditions, the resistivity of a uniform wood stake undergoing various

wood moisture levels, type of treatments and species effects [41, 125]. However,

such studies ignored real service conditions such as weather factors, that can affect

the wood properties. Therefore, an ideal wood electric property was presented but

did not describe a precise full-length wooden pole characteristic due to the internal

complexities of a wooden pole.

The thermal model of a wooden pole involves solving the equation formulated

by Fourier with a partial differential solver and a finite element method [66, 67].

In this study, internal through hole, external and microwave heating types were

investigated with MATLAB simulations for wooden pole inspection purposes. Due

to the large defect depths, low wood thermal diffusivity, and the wood dependen-

cies upon temperature, moisture, species and fiber orientation, an infrared camera

was used to detect defect types that were close to the wood surface. Meanwhile,

Y ounsi et al. used a diffusion equation with variables diffusion coeffi cients, and

the incompressible Reynolds averaged N avier-Stokes equation for cases of high

thermal treatment of wooden poles with a three-dimensional numerical simulation

[126]. Based on the above study, the proposed numerical algorithms were useful

for designing high-temperature wood treatment processes. The effects of initial
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moisture content, wood aspect ratio and final gas temperature on temperature

and moisture content distribution were determined and included in this study.

In [127–129], a three-dimensional finite element of the wooden pole model was

developed for stress distribution prediction purposes. The developed model was

used to measure and predict the mechanical strength and failure location in full-

size wooden poles. This research dealt with the enhancement of the laminar fluid

flow program to quantify the effect of knots and their associated cross grains on

the stress distribution of wooden poles. The study results demonstrated good

similarity between theoretical and numerically predicted pole stresses. Therefore,

this technique could be used as a part of non-destructive testing for improving

visual grading methods for wooden poles.

In summary, the thermal and finite element models offer many advantages in

terms of wooden pole inspections and assessments. However, whole pole evaluation

and the wood stakes method will provide better platforms for electrical study,

especially for basic insulation level and leakage current studies on the wooden pole

structure. For example, an impedance model was proposed by Rathsman et al. for

a wood-insulator combination subjected to a lightning impulse [132]. On the other

hand, F ilter and Mintz combined whole pole evaluation and wood stake approaches

to determine an accurate wooden pole model for leakage current effect on the

human body [17]. The integrated knowledge of these two methods allowed them

to overcome all the limitations, such as variety of pole species, wood treatment and

weather conditions and to develop a computer-based electrical equivalent circuit

of a wooden pole. This improved model was termed the ‘ladder network model’.

This ladder network model offers great simplicity and with a small modification,

it is suitable for explaining pole-top fire events [120, 133].

All the above studies were based on experimental laboratory work and computer
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simulation studies. In particular, the leakage current became main mechanism

causing the pocket-burning or tree-burning events on the wooden pole structure,

especially for medium-voltage power lines. In addition, the capacitive coupling

effect was able to be used to explain the pole-top fire events along high voltage

transmission systems. However, none of those previous studies were established

on the ladder network model of the wooden pole developed by F ilter in [17].

Therefore, this study provides the starting point and offers an opportunity to

begin investigation founded on a computer model for further understanding of the

wooden pole-top fire. The computer simulation of a wooden pole model could

provide another angle for an explanation of pole-top fire. The great advantage is

that the ladder network model of the wooden pole can be manipulated for other

purposes, especially for pole-top fire mitigation studies. In particular, this is the

first pole-top fire study which based on wooden pole ladder network model.

In conclusion, power utility companies already spend a lot of money executing

these mitigation techniques specifically to overcome the pole-top fire issue. On

top of that, the outcomes are not convincing and pole-top fires are still occurring

and reported. W eather factors such as humidity, rain, dust and wind play an

important role in the surface contamination of insulators; this is understandable

and beyond our control. However, if the flow of leakage current along the pole

structure can be diverted properly away from the current concentration spots,

such as king bolt and pin insulator sections, then the risk of wood fire igniting

can be reduced significantly. It will be seen that the contribution of the wooden

pole ladder network model study is able to easily solve this diffi cult challenge.

As a result, all the disadvantages of current practices can be overcome with the

so-called mid-pole bonding system. Theoretically, this new mitigation method can

be retrofitted to any pole structure configuration and will be relatively cheap. A
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further description, the method of implementation and the successfulness of this

method are presented in Chapters 3, 4 and 5 in detail.



Chapter 3

Study of Leakage Current E ff ect

using Ladder Network Model

3.1 Introduction

W ooden poles are commonly used to support overhead power lines in electric-

ity distribution networks. W ooden poles have become a highly popular support

structure around the world in the last few decades due to the ease of supply

and cost-effectiveness. There are more than 5 million wooden poles currently in

service all around Australia’s distribution network and up to 70% were installed

more than 20 years ago. Based on economic figures, millions of dollars of capital

expenditure is needed for pole replacement over the next decade [14]. Typically,

the life expectancy of a wooden pole is within the range of 30 to 40 years. It’s

reported that the annual wooden pole failures in the W estern Australian network

are between 1.88 and 4.34 pole failures per year per 10 000, in comparison with

the industry target of 1 pole failure per year per 10 000 poles [134]. Therefore, it

is really important to maintain continuous research into wooden pole performance

39
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to improve their reliability in service.

Pole-top fire is a wood-structure burning phenomenon and usually it happens

at the mounted cross-arm region, especially at the metal insertion sections. Com-

monly pole-top fires are related to insulator failure that allows an excessive amount

of current flow from the live conductors. Under severe conditions, it causes power

lines to collapse, power breakdowns and the conductor to hang down. As a result,

this falling conductor could trigger a spark when it touches dry vegetation and

start a flame leading to unwanted bushfire.

In a previous chapter, a detailed study relating to pole-top fire has been dis-

cussed. A new insight into the leakage current distribution along wooden pole

structures using the ladder network model is presented in the next section. This

model takes into consideration species effect and treatment variation, pole dimen-

sion, moisture gradient, and weather effects such as rain. It also describes the

ladder network modelling, including environmental simulation and other assump-

tions. The results in this chapter will help us to find a new solution in eliminating

the occurrence of pole fire. This work will highlight the important fact that a com-

plete wooden pole should be adopted in leakage current studies since the leakage

current is a function of line voltage and the total resistance consists of insulator

resistance and wood resistance, as depicted in F igure 3.1. F inally, a new find-

ing based on an intensive simulation study is presented in the last section of this

chapter.

3.2 Wooden Pole Modeling based on Ladder Network

The principal objective of the ladder network model development was to determine

the hazard of leakage current on humans under a variety of operations and fault
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Figure 3.1: A complete leakage current model

conditions resulting from contact at the wooden pole structure. It also focussed

on the feasibility of using the electrical properties of wooden poles as diagnostic

aids to allow simple and reliable assessment of internal rot. Based on laboratory

and field measurements, a wood pole equivalent circuit was developed accounting

for wood species, treatment types and weather conditions [135].

The ladder network model consists of three wood resistances i.e. sapwood re-

sistance Rs, heartwood resistance Rh and radial resistance Rr as shown in F igure

3.2. The model provides possible connection points for other resistances represent-

ing pole hardware, cross arm or metal insertions. Rain resistance can be added

to the model using suitable external bridging resistors, Rw connected between the

nodes along the pole length.. The resistances in this model are determined by pole
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Figure 3.2: R esistance ofwooden pole with king bolt insertion

species, type of preservative treatment and moisture content percentage (MC)%

of the pole. The relationships between wood resistivity ρ, moisture content and

type of treatment can be expressed in the form of equations (3.1).

Untreated wood ρ = 10(−0.137(M C % )+ 7.27)Ω − m (3.1a)

Penta treated wood ρ = 10(−0.135(M C % )+ 7.36)Ω − m (3.1b)

CCA treated wood ρ = 10(−0.250(M C % )+ 9.12)Ω − m (3.1c)

ACA treated wood ρ = 10(−0.303(M C % )+ 9.51)Ω − m (3.1d)

In general, these three resistance components are interconnected in the ladder

network which can be determined from the equation (3.2) based on wood resistivity

ρ, pole length ` and cross-sectional area of wood modeled A. The resistances for
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Rs and Rh are dependent on the wooden pole radius, R and the heartwood depth

P, as shown in (3.3) and (3.4). The scaling factor 1.83 is applied for the Rr

reflected to the Rs according to Darveniza in [135]and moisture content is limited

to no more than 30% for Rs as shown in Table 3.1. As a result of ground moisture

wicking into the pole, first meter of the pole above the ground line has high

moisture content. Therefore, bottom section of wooden pole (up to 1.5 meter)

contain greater amount of water. However, the top pole is exposed more too

drying influence of the air and sun light, the moisture content in the top meter of

the pole substantially reduced form value measured near the middle height [17].

R =
ρ`

A
(3.2)

Rh =
ρ`

π(R− P )2
(3.3)

Rs =
ρ`

2πP (R− P )
(3.4)

Rr = 1.83Rs (3.5)

For the ladder network model, we selected 0.75 meter steps will provide de-

tails leakage current distribution along wooden pole structure and suitable section

M oisture C ontent in
Location on P ole Sapwood H eartwood
Top 1.5 meter (M C )% (M C + 5)%

C entral P ortions (M C )% (M C + 9)%
B ottom (0.75 - 1.5)meter (M C + 5)% ((M C /2 + 19.5)%
B ottom (0.00 - 0.75)meter (M C + 5)% 30%

Table 3.1: P ole model moisture gradient relative to sapwood and heartwood along wooden pole
[17]



3. Study of L eakage C urrent E ff ect using L adder N etw ork M odel 44

length especially for the extended ladder network model (with cross-arm). Thus,

a 12-meter pole is represented by a 16-step model. This step size is suffi cient to

describe the behaviour at the bottom, middle and top sections of the pole during

the simulation study. Section 1 represents the section closest to ground and section

16 is the highest section above ground, as shown in F igure 3.3. In our simulations,

we selected a typical 12-meter red-pine pole height without cross-arm configura-

tion. The top and bottom radius is 11 cm and 18 cm respectively and the top

and bottom heartwood radius is 8.15 cm and 14.2 cm with 0.75 meter steps; the

pole was assumed to be treated with CCA. As depicted in F igure 3.3, a king bolt

of 2 µΩ resistance was installed at section 12. The magnitude of leakage current

depended on the degree of insulator contamination and the overall pole resistance.

Conductor resistance Rc and rain resistance Rw effect were not included in this

study.

3.3 Leakage Current E ff ect using Ladder Network Model

In this section, the discussion is focussed on how to draw out all the important

and significant information from the electrical ladder network model. The com-

puter simulations for the leakage current study are based on MATLAB software

environment for this research. The whole 16 wooden pole sections have been estab-

lished by using the SimPowerSystem toolbox to build the electrical ladder network

model. Section 1 represents the closest section to the ground and section 16 is the

highest section above the ground, as shown in F igure 3.3. The 1 MΩ insulator

resistor has been used to create the leakage current flow at a certain level from

the 11 kV line voltage source with the overall resistances of the ladder network.

Based on the simulation study, the resistances and leakage current information
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Figure 3.3: W ooden pole ladder network model
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from the radial, heartwood and sapwood are presented and discussed. The effect

of metal insertion in the wooden pole structure is included in this study, located

at section 12. F inally, the modelled simulations have been run under dry (11.7%

MC) and wet (22.7% MC) conditions to demonstrate the different weather effects

which appropriate for the Australian weather condition [136–138]. Table 3.2 and

3.3 summarizes the resistances magnitude for both dry and wet poles. Detailed

information can be referred to in Appendix A.

3.3.1 Pole Resistance

The pole resistances at each section of the ladder network model have been studied.

Each pole section consists of sapwood, heartwood and radial resistances. Based on

the proposed ladder network model, F igure 3.4 and F igure 3.5 depicts the value

of the three resistances in dry and wet conditions (11.7% and 22.7% of moisture

content). For the dry pole study, the heartwood, sapwood and radial resistances,

located at section 16 (the highest section above ground) were 2.89 MΩ , 74.91 MΩ

Section H eight (m ) R s (Ω ) R h (Ω ) R r (Ω )
1 0.00 to 0.75 1.87 M Ω 493.55 Ω 3.43 M Ω
2 0.75 to 1.50 1.96 M Ω 7.57 kΩ 3.58 M Ω
3 1.50 to 2.25 36.42 M Ω 116.44 kΩ 66.66 M Ω
4 2.25 to 3.00 38.18 M Ω 123.31 kΩ 69.88M Ω
5 3.00 to 3.75 40.15 M Ω 130.61 kΩ 73.48 M Ω
6 3.75 to 4.50 42.20 M Ω 138.80 kΩ 77.22 M Ω
7 4.50 to 5.25 44.40 M Ω 147.78 kΩ 81.26 M Ω
8 5.25 to 6.00 46.66 M Ω 157.66 kΩ 85.39 M Ω
9 6.00 to 6.75 49.24 M Ω 168.57 kΩ 90.11 M Ω
10 6.75 to 7.50 51.89 M Ω 180.66 kΩ 94.96 M Ω
11 7.50 to 8.25 55.05 M Ω 193.72 kΩ 100.75 M Ω
12 8.25 to 9.00 58.39 M Ω 208.66 kΩ 106.85 M Ω
13 9.00 to 9.75 62.05 M Ω 225.40 kΩ 113.55 M Ω
14 9.75 to 10.50 65.85 M Ω 244.23 kΩ 120.52 M Ω
15 10.50 to 11.25 70.43 M Ω 2.64 M Ω 128.89 M Ω
16 11.25 to 12.00 74.91 M Ω 2.89 M Ω 137.09 M Ω

Table 3.2: R esistances ofdry pole
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Section H eight (m ) R s (Ω ) R h (Ω ) R r (Ω )
1 0.00 to 0.75 3.33 kΩ 493.55 Ω 6.10 kΩ
2 0.75 to 1.50 3.48 kΩ 521.06 Ω 6.38 kΩ
3 1.50 to 2.25 64.77 kΩ 550.95 Ω 118.54 kΩ
4 2.25 to 3.00 67.90 kΩ 583.47 Ω 124.26 kΩ
5 3.00 to 3.75 71.40 kΩ 617.99 Ω 130.67 kΩ
6 3.75 to 4.50 75.04 kΩ 656.74 Ω 137.33 kΩ
7 4.50 to 5.25 78.97 kΩ 699.24 Ω 144.51 kΩ
8 5.25 to 6.00 82.97 kΩ 746.01 Ω 151.85 kΩ
9 6.00 to 6.75 87.56 kΩ 797.63 Ω 160.25 kΩ
10 6.75 to 7.50 92.28 kΩ 854.80 Ω 168.87 kΩ
11 7.50 to 8.25 97.90 kΩ 916.59 Ω 179.16kΩ
12 8.25 to 9.00 103.83 kΩ 987.28 Ω 190.02 kΩ
13 9.00 to 9.75 110.34 kΩ 1.06 kΩ 201.92 kΩ
14 9.75 to 10.50 117.11 kΩ 1.15 kΩ 214.32 kΩ
15 10.50 to 11.25 125.25 kΩ 4.71 kΩ 229.21 kΩ
16 11.25 to 12.00 133.22 kΩ 5.15 kΩ 243.79 kΩ

Table 3.3: R esistances ofwet pole

and 137.09 MΩ respectively. The value of the resistance varied as the diameter

of the pole increased from the bottom to the top. The linearity between the pole

resistance and pole diameter could be clearly seen, particularly from pole section

3 to section 14, where the moisture content remained constant. The effect of the

king bolt insertion at section 12 was visible in both F igure 3.4 and F igure 3.5,

especially when the wooden pole was subjected to moisture.

The moisture content has a significant role in wooden pole modelling. In ac-

cordance with the original model developed by F ilter and Mintz [17], the moisture

content increases from 9% at the central position to 19.5% at 0.75 m to 1.5 m

from the ground and eventually 30% at the section just above the ground. The

effect of moisture content can be clearly seen in F igure 3.4. The heartwood section

of a wooden pole has the lowest resistance level and this is a result of the higher

percentage of moisture content level residing in the heartwood section [135].

W hen the wooden pole is exposed to rain, the rain effect increases the over-

all moisture content. In this simulation study, we selected a moisture level of
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22.7% to represent the wet condition of the pole and the results can be found in

Figure 3.5. The moisture content significantly reduces the value of the three resis-

tive components of the wood. In comparison to the values under dry conditions,

the heartwood, sapwood and radial resistances at the pole section 16 under wet

conditions were now 5.15 kΩ, 133.22 kΩ and 243.79 kΩ respectively.

3.3.2 Current Distribution of Dry and Wet Wooden Pole

In pole fire study, the insight into leakage current distribution across various pole

sections is critical. Figure 3.6, Figure 3.7 and Figure 3.8 depict the current dis-

tribution for pole sections 1 to 16 under both dry and wet conditions. In dry

conditions, the sum of the current across the three resistances was almost zero

or negligible. The simulated results show that was the case when the insulation

level of the high voltage insulator was reduced significantly due to surface pollu-

tion; the high value of the wood’s resistance limited the total current flow and the

effect of the king bolt insertion at section 12 had minimum effect on the current

distribution.

As the moisture level was set to 22.7%, which represented a typical damp condi-

tion occurring after rain, the overall leakage current increased to mA range. In the

case of sapwood and heartwood resistance, the highest current of 4.9 mA appeared

across pole section 16, which is the pole top. Under wet conditions, the effect of

the king bolt insertion could be clearly observed. From Figure 3.7, we could see a

current “spike” at pole section 12 where the king bolt was located. Other obser-

vations included the proportion of current flowing through the heartwood section.

These sections carry most of the current through the heartwood section down to

the ground. Also, the change in current distribution at the bottom pole section

(0 to 1.5 m from the ground) was contributed to by the higher moisture level.
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Leakage current with a value of 9.5 mA was recorded in the center section of the

pole.

3.3.3 Radial Current Distribution of Wooden Pole

The damage to wooden poles due to pole fires frequently takes place at the cross-

arm junction where the attachment of the king bolt or the insulator’s metal support

is located. Figure 3.9 depicts a graph of how the metal insertion affects the current

flow across the radial resistance. In this simulation, three different scenarios were

created: king bolt at pole section 14, pole section 12 and pole section 10. In the

first scenario, a current “spike” was created at section 14. The leakage current

was increased from 1.7 mA to 3.4 mA at pole section 15. As the king bolt was

shifted down to section 12 and 10, the effect became less apparent due to the fact

that the leakage dropped to approximately 1 mA at pole section 14 for all three
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Figure 3.9: C urrent distribution of wet radial resistance with different locations of king bolt

scenarios.

In term of energy or heat that develops along the wooden pole due to leakage

current, the combination of sapwood, heartwood and radial current at the king bolt

junction will exceed the glow current and fire inception current level as described

by R . Filter in [44]. B ased on Figure 3.6, 3.7 and 3.8, the leakage current is

channeled through the king bolt insertion (at section 12) due to the lower resistance

path provided by the king bolt. This effect is similar to the short circuit effect on

the electrical network. B ased on R . Filter’s results [44], glow current as low as 2

mA or 4.3 mA (average) is needed to provide persistent incandescent glow on the

C C A treated wooden pole. Fire inception current was observed of 7.3 mA was

recorded in his experiments, where sparks, surface tracking, heavy single track and

moderate smoke were observed. Similar fire inception current was observed in our

experimental results on C C A treated hardwood in C hapter 5 of this thesis.
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3.4 Sum m ary

This chapter demonstrates the use of the ladder network model in studying the

current distribution in wooden poles. The model in this research was developed

based on the physical dimensions of a red pine C C A-treated 12-meter pole. Since

the heartwood and sapwood resistances are represented by lump parameters, many

different forms of circuit analysis, which cannot be obtained experimentally, were

able to be done by using the computer simulation.

M any previous reports describe how the loose metal contact between wood and

metal insertion contributes to the occurrence of pole fire [87]. H owever, the results

in Figure 3.7 suggest that higher current concentration occurs at the metal-wood

junction, regardless of whether an air gap exists between the wood and the metal.

The current concentration, as shown in this figure, were solely due to the reduction

in the overall resistance as a result of metal insertion.

The ladder network model also helps to establish an important fact whereby

the bulk of leakage current flows under the surface of the wood. The heartwood

section carries the bulk current from the top to the bottom of the wooden pole and

the king bolt insertions set the upper limits for the amount of the current flow.

Furthermore, the impact of the king bolt can be clearly seen when it is located

close to the leakage current source; in this case, it occurred due to a polluted

insulator. In addition, the introduction of another metal bolt and an additional

structure, such as a pole mounted transformer, should be thoroughly analyzed. In

conclusion, better pole design that takes into account the current distribution of

the sapwood, radial and heartwood resistance could provide an answer to long-

standing pole fire problems.



Chapter 4

Proposed Pole-T op F ire

M itigation T echnique: M id-pole

B onding System

4.1 Introduction

In general, a computer simulation is an imitation of a real physical system, phe-

nomenon or process using a special software program package for research study

purposes [139]. For example, computer simulation capabilities are being widely

used to represent real things such as vehicles, robots or natural systems in order

to understand them more easily and then solve or improve any existing problems

[140–142]. Thus, a simulation model that is based on practical approximations of

and assumptions about the real system can be utilized to gain more understand-

ing of the system model and then manipulated for any purposes. The greatest

advantage is that this computer simulation study allows us to see how the model

performs by changing any variables or any input, and to obtain outcomes that ap-

54
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proximate to the actual system. This simulation study also offers the possibility

of carrying out many trial and error experiments and tests, which, in reality, are

too costly, dangerous or impractical.

A computer simulation study of the power distribution of wooden pole is really

important for a further understanding of pole-top fire events. B ased on a computer

simulation study of the modeled wooden pole in C hapter 3, radial resistance results

yielded significant information in terms of explaining the causes of pole-top fire.

The radial current distribution along the modeled wooden pole structure showed

current concentration effects, especially at the bolt insertion sections [133, 143].

Further development and manipulation of the current wooden pole model became

essential to realize the proposed pole-top fire mitigation techniques. As a result,

the completed wooden pole model with cross-arm was constructed based on the

original wooden-pole ladder-network model. Then a new mid-pole bonding sys-

tem was developed to overcome the weakness and disadvantages of the current

techniques [120].

The first part of this chapter presents the development of the complete wooden-

pole model with wood and steel cross-arm based on the ladder network model [17].

The modified ladder network model can be used to show the metal insertion effect

inside the wooden pole structure, based on radial current distribution simulation

results. On the other hand, an electrical circuit of existing mitigation techniques

has been constructed on the modified wooden pole model and compared with the

new proposed mitigation method. A comparative study will be made based on

different configurations of these techniques. The performance of the discussed

electrical models will be based on how much the leakage current can be reduced,

especially at the wooden pole cross-arm junction [133, 143].
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4.2 Proposed M id-Pole B onding System

In this research, a new cost-effective shunting arrangement is proposed which

utilizes 3 insulated cables to bypass the leakage current away from the critical

metal-wood junction. Figure 4.1 shows the physical mid-pole bonding system

arrangement between a metallic band and leakage current sources with the in-

sulated cables. Figure 4.2 depicts the shunting cables termination configuration

from the three insulator pins to the termination point i.e. the metallic band. The

greatest advantage of this mid-pole bonding system is that it offers a very simple

arrangement with low-cost implementation. In addition, this proposed method

can be installed on any kind of pole configuration and retrofitted to wooden pole

in service in electrical distribution systems. A further description of the mid-pole

bonding system will be presented and discussed in the next section.

4.2.1 System Description

As depicted in Figure 4.3, the metallic band was created purposely as a leakage

current termination point for the mid-pole bonding system. 1 mm aluminum was

chosen to make this metallic band, due to its flexible character and conductive

superiority. G ood contact between the aluminum band and pole surfaces allowed

more leakage current to be diverted through shunting cables to this termination

point. Then this leakage current could flow easily into the wooden pole struc-

ture and then to the ground. Table 4.1 summarized the detail dimensions and

parameters of the metallic band. The chosen dimensions were enough to secure

the metallic band tightly onto the wooden pole. In addition, 3 holes were made

on the metallic band and 3 bolts and nuts were used for termination purposes.

In general, aluminum has a higher thermal conductivity compared to other
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Figure 4.1: M id-pole bonding system
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Figure 4.2: N ew m id-pole bonding arrangem ent
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Figure 4.3: M etallic band

materials [144]. Thus, any thermal increase generated by the leakage current at

this termination point can be dissipated easily into the air. To improve the heat

dissipation effi ciency, 21 aluminum fins were installed and bonded to this metallic

band with rivets. Table 4.2 summarizes the heat sink performance in terms of the

thermal resistivity resulting from manipulation of the fins; the thermal resistivity

was based on equations 4.1 to 4.3 [145, 146]. As depicted in Table 4.2, the thermal

resistance of the metallic band was small which meant more heat was transferable

to the air as the number of fins were increased. Finally, the location at which this

metallic band was secured onto the wooden pole structure was very important.

M ore leakage current was able to be diverted, if the metallic band was fastened

more toward to the bottom section of the wooden pole. A minimum location of

2 to 3 meters from the ground was required to minimize the electrical contact

between the metallic band and the public.
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P aram eter D escrip tions
M etallic band height,H = 0.2 m ;width,W = 0.07 m ,thickness,t = 0.001 m

Fin height,Hfin = 0.05 m ;width,Wfin = 0.2 m ,thickness, tfin = 0.001 m
A base H x W = 0.14 m2

A fin 2(Hfin x Wfin) = 0.02 m2

kfin 250 W /m oC (T herm al conductivity of alum inum [147])
h assum ed at 50 W /m2 oC (C onvective heat transfer coeffi cient of air [148])

Table 4.1: M etallic band dim ensions and param eters

No. of F in T herm al R esistance (oC/W )
0 0.143
5 0.093
10 0.068
15 0.054
21 0.043

Table 4.2: H eat dissipation of designed heat sink

Thermal R esistance, RHS =
1

h(Abase +NfinnAfin )
(4.1)

Fin effi ciency, n =
tanh(m H fin )

m H fin

(4.2)

Fin parameter, m =

√

2h

kfintfin
(4.3)

P hysically, the source of leakage current was at the phase lines that are located

at the top of the insulator. The polluted insulators allow leakage current flow

through insulator pins to the wooden pole structures. Therefore, the leakage

current must be immediately diverted away from the insulator pin to reduce the

risk of current concentration at the metal wood insertion. As shown in Figure 4.4,

the attachment of the shunting cables can be made at the insulator pin with cable

clamps. Small screws, nuts and washers can attach the shunting cables firmly with

cable clamps at the insulator pins and metallic band. C able clips can be used with
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Figure 4.4: C able term inations for m id-pole bonding system

nails to hold the shunting cables tightly on the wooden pole structure.

The main purpose of shunting cables is to divert the leakage current away from
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the metal wood insertion, especially at the wooden pole cross-arm junction. As

discussed in C hapter 2, normally the leakage current magnitude is within the

mA range. Therefore the cable size for this mid-pole bonding system should

have enough capacity to bring down the leakage current to the aluminum band.

According to [149], 1 mm2 to 10mm2 sizes can be used and that is suitable for

the shunting cables in the mid-pole bonding system. The most important thing is

that these cables need a robust insulated cover for outdoor protection to withstand

sun light and high temperature exposure. Another option is a leakage current

measurement unit which can be included in this system for current monitoring

purposes. P assive or active component units can be used to monitor the leakage

current through online or offl ine measurement.

It has been a great concern over the basic impulse level (B IL) of wooden

pole with mid-pole bonding system particularly when lightning strike. G ener-

ally, the impulse strength of the wood alone or with combination of porcelain

insulator/cross-arm depends on the moisture contents of the wood. In detail, the

influence of moisture contents in the wood effects the impulse strength, either in

the form of natural moisture or moisture absorbed into the wood as a result from

the rain [41]. Lusignan and M iller reported that the flashover voltage for wood and

the combinations of wood-porcelain demonstrated variability of about
�
15 to 20

percent of the average (550
�
100kV p/m for poles) under dry condition [150]. The

author believes that the mid-pole bonding system will reduce the B IL of wooden

pole which is dependent on the metallic band termination position. Therefore,

the application of mid-pole bonding on wooden pole structure has to be compro-

mised with the B IL . Unfortunately, due to the limitation of the facilities in the

high voltage laboratory, B IL investigation of wooden pole with mid-pole bonding

system will not be included in this study.
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4.3 E nhanced L adder N etw ork M odel for S im ulating M id-

Pole B onding System

C ross-arm is one of the essential parts of the wooden pole structure for an electrical

distribution network. C ross-arm is a cross-piece and an arm or supporter bracket

which crosses at the top section of the pole to hold the insulators that support the

conductors and keep them separated. It has to be able to support the horizontal

loads with very good mechanical strength under all circumstances, such as where

the conductors are under tension, where the insulators carry great weight and

where adverse weather occurs (wind, rain or snow). According to [151], the cross-

arm concept generates many designs; for this study, it is limited to a 3-phase single

support cross-arm for 11 kV wooden pole lines, as shown in Figure 4.5. The king

bolt is used as a fastener to join the cross-arm and wooden pole together tightly

with a washer and a nut. The steel bars act as the bracket holders to stabilize

the cross-arm, especially to counter both the burden of the heavy insulators and

phase wires, and the effect of weather loads.

A complete electrical model of a wooden pole structure can be established based

on a full understanding of the ladder network model [17]. A cross-arm electrical

model can be included with a few adaptations of the existing ladder network model.

Firstly, the king bolt of the wooden pole should act as a reference point which is

parallel to the radial resistance, Rr of wooden pole. Then the through king bolt

will hold the cross-arm and wooden pole firmly. B y assuming the through king

bolt is parallel with the radial resistance of the cross-arm, the complete electrical

model can be developed. B ased on this idea, the effect of air resistance inside

the wooden pole hole can be included in this enhanced ladder network model. In

addition, the steel bar holders with bolts and insulator pins can also be added to
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Figure 4.5: W ooden pole with cross-arm and supporting steel bars

the developed computer model. Therefore, this modified ladder network model

can be exploited for further investigation of the wooden pole-top fire through a

simulation study.

Founded on the ladder network model [17], an enhanced electrical model of

wooden pole with mid-pole bonding system can be developed, as depicts in Figure

4.6. The Rkb, king bolt is located at section 14 of the wooden pole model. It is

parallel toRr of the wooden pole and the radial resistance of the wooden cross-arm.

The 2-meter wooden cross-arm is divided into 5 steps (0.4m for each step) and the

cross-arm heartwood resistance is excluded in this cross-arm model. B othRst steel

holder resistances are connected to the second and fourth cross-arm sections with

a small bolt, Rb, to the 13th section of the wooden pole. In addition, Rm etallicband

is located at section 4 of the wooden pole ladder network model. Rshunt cables are

used as shunting cables which run from the insulator pins to the Rm etallicband.

For the simulation study, 11 kV line voltage source produces leakage current

in the mA range on the assumption that the polluted insulator has an overall
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Figure 4.6: E lectrical m odel for m id-pole bonding system (including steel bar and king bolt)
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resistance value of 1 M Ω. As shown in Figure 4.6, the wooden pole is presented

in 16 sections, where the 16th section is located at the top of the wooden pole. A

wooden cross-arm is attached to the wooden pole at section 14 and the king bolt

resistance Rkb is parallel to the radial resistance of the wooden pole and the radial

resistance of cross-arm RrC A . In addition, Rm etallicband is located at section 10 of

the wooden pole. This simulation study is focussed on the current distribution

of the radial resistance, Rr, along the wooden pole section under dry (11.7% of

moisture content) and wet (22.7% of moisture content) conditions. R adial current

distribution along 16 sections of the enhanced wooden pole model will provide

significant information that relates to the effect of the steel bar and cross-arm

under dry and wet conditions. Information about sapwood and heartwood current

distribution is excluded in this study.

Figure 4.7 and 4.8 shows the radial current of wooden pole for conditions of
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leakage current flow from Phase 2 (refer Figure 4.2). As shown in Figure 4.7, the

radial current distribution was large for the wooden pole without a shunting system

under wet conditions. About 6.3 mA and 9.7 mA radial current magnitude was

recorded at sections 14 and 13 which had Rkb and Rb insertions. Then, the radial

current distribution decreased as it flowed to the ground through the wooden

pole structure. A small increase of radial current was plotted at section 2 and

was caused by a lower radial resistance magnitude due to the high percentage of

moisture content. B ased on this study, the introduction of Rb on the enhanced

model caused another spot of radial current concentration, especially at section

13. B ased on this study, it can be concluded that Rb insertion has a higher risk

of fire ignition compared to Rkb insertion at section 14.

On the other hand, the mid-pole bonding system successfully reduced the ra-

dial current concentration at sections 14 and 13 to 1.7 mA and 3.2 mA, as shown

in Figure 4.7. These reductions were due to the role of the shunting cables which

diverted the leakage current to the metallic band at section 10 directly from the

insulator pin. H owever, another spot of radial current concentration at section 10

resulted from the metallic band termination. B ut, higher radial current concen-

tration at this section did not cause any fire risk. This was because the metallic

band was only secured on the surface of the wooden pole and did not penetrate

the wood stakes at section 10.

In addition, Figure 4.8 depicts the comparison of radial current distribution for

the mid-pole bonding system under dry and wet conditions. For this simulation

study, the leakage current was diverted from the insulator pin at P hase 2 to sec-

tion 10 of wooden pole through a shunting cable. Under dry conditions, the radial

current distribution, which is in the µA range, was very small compared to that

under wet conditions. B ased on both graphs, it is evident that the Rkb and Rb
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Figure 4.8: Radial current distribution of m id-pole bonding system

insertions caused the radial current concentration at the pole-cross-arm junction.

H owever, the mid-pole bonding system managed to reduce the current concentra-

tion by more than 65%. This proves that the enhanced wooden pole model based

on the ladder network model is really useful in terms of a pole-top fire mitigation

study.

4.4 Perform ance Study of M id-Pole B onding System and

Sim ulation Com parison

R esearch on the preventive measures related to pole-top fire began in the 1900s.

For example, a stainless-steel cross-arm is often installed in distribution systems

where the mechanical stresses on the line are too high for any other alternative

[152]. In areas that suffer from heavy pollution, stainless steel has been a good

alternative to wood. The copper jumper arrangements proposed by P.M R oss
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Mitigation system P hysical arrangem ent
1. Ross shunting 1 Figure 4.9
2. Ross shunting 2 Figure 4.10
3. Steel cross-arm Figure 4.13

Table 4.3: D eveloped m itigation system

were selected for the pole-top fire comparative study. The performance of these

two mitigation techniques was chosen for investigation on terms of their relative

radial leakage current distribution. Therefore a similar approach has been used to

develop the electrical model of a stainless steel cross-arm and copper jumper ar-

rangement on the enhanced ladder network. Table 4.3 summarizes the mitigation

systems that were developed in this study. The performance of these two selected

mitigation arrangements will be examined and compared with our new mid-pole

bonding system.

Figure 4.9 and 4.10 shows the possible shunting arrangements originally pro-

posed and designed by R oss [12], which aimed to decrease pole-top fire risk.

In these arrangements, four copper bands or metal sheets were attached to the
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Figure 4.9: Shunting arrangement 1 for cross-arm by Ross [12]
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Figure 4.10: Shunting arrangement 2 for cross-arm by Ross [12]
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Figure 4.11: E lectricalmodelfor Ross shunting arrangement 1

wooden cross-arm and wooden pole. The developed electrical models of these

shunting arrangements are shown in Figure 4.11 and 4.12. The shunting arrange-

ment resistances for cross-arm and pole, RshCA and RshP , were connected to the
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Figure 4.12: E lectricalmodelfor Ross shunting arrangement 2

king bolt with or without two sets of copper jumpers to avoid voltage concentra-

tion at the cross-arm pole junction. In these simulation models, the effects of an

air gap, (RAIR ) in between on both metal-wood and wooden pole, and metal-wood

and cross-arm junction are taken into consideration.

Figure 4.13 shows an arrangement of the stainless steel cross-arm with pole

structure. This 2-meter length steel cross-arm was made of a 3-mm thick galva-

nized steel and five holes were pre-drilled for the insulator and bolt attachments.

Similar to the wooden cross-arm, the king bolt was used to hold and secure the

steel cross-arm to the wooden pole at the center section. The steel holders were

used to hold the cross-arm in position which carried the tension of the life lines

and the weight of the insulators. Figure 4.14 depicts the electrical model of the

steel cross-arm based on the ladder network model. It is divided into two parts

and each part contains four elements (RsteelCA1, RsteelCA2, RsteelCA3, RsteelCA4)
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Figure 4.13: W ooden pole w ith cross-arm and supporting steelbars
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Figure 4.14: E lectricalmodel for w ooden pole and steelcross-arm(including steelbar and king
bolt)
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and (RsteelCA5, RsteelCA6, RsteelCA7, RsteelCA8) and finally the Rsteelend connects

both parts.

In summary, the successful manipulation of the original wooden pole ladder

network model allowed us to move forward to the next level of the pole-top fire

study. Significant information was able to be determined during an intensive sim-

ulation study of the radial current distribution along the enhanced ladder network

model. The developed R oss shunting technique and steel cross-arm helped to ex-

plain the performance of both methods. The comparative simulation study of the

mid-pole bonding system with, variously, the R oss shunting method and the steel

cross-arm will be discussed in the next section.

4.4.1 Sim ulation Results

Similar to previous studies, the leakage current was assumed to flow from the

polluted insulator located at the top section of the wooden pole i.e. at P hase 2

(refer to Figure 4.2) to the ground under wet conditions. Figure 4.15 depicts a

comparative study of radial current distribution between wooden and steel cross-

arm. The graph shows that the radial current distribution for wooden cross-

arm is almost identical to the steel cross-arm simulation results; 6.3 mA and

9.7 mA radial current were recorded at sections 14 and 13. The effect of the

king bolt insertion parallel to the radial resistance of the wooden pole and cross

arm at section 12 caused the overall resistances at this section to be very small.

Similar conditions forRb insertion also reduced the overall resistance at section 13.

H owever Rb resistance was small compared to Rkb resistance. Therefore a rapid

change in the radial current was plotted between section 14 and 13 for both cross-

arms. C onsequently, the radial current reduced significantly as it flowed toward

the bottom section of the wooden pole.
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Figure 4.16: Radialcurrent distribution of Ross’s shunting arrangement 1
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Figure 4.17: Radialcurrent distribution of Ross’s shunting arrangement 2
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Figure 4.18: Radialcurrent distribution of mid-pole bonding system w ith bypass at section 10
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R adial current distributions under wet conditions were obtained from both

R oss’s shunting arrangements and the mid-pole bonding system simulation and

are presented in Figure 4.16, Figure 4.17 and Figure 4.18. R adial current distri-

bution of the R oss shunting arrangement 1 is similar to that of the R oss shunting

arrangement 2. The results show that the shunting arrangements proposed by

R oss were unsuccessful in reducing the radial current concentration at Rb in sec-

tion 13, which had about 9.8 mA . H owever they managed to lower the radial

current concentration at Rkb in section 14 to 3.3 mA compared to no shunting

system. The copper jumper that tied up the four copper bands and that was elec-

trically bonded to the king bolt slightly reduced the radial current concentration

at section 14 but did not work for Rb section. In addition, the mid-pole bonding

system managed to reduce current concentration at section 13 to 3.2 mA after

bypassing the leakage current to section 10 of the wooden pole. The current con-

centration at Rkb also reduced to 1.7 mA , compared to that using R oss’s method.

There was about 66.37% and 72.16% reduction of radial current concentration at

section 13 and 14 for this mid-pole bonding system.

Figures 4.19 and 4.20 show the distribution of radial current for the mid-pole

bonding system with varying bypass terminations under dry conditions. A s dis-

cussed, the mid-pole bonding system successfully reduced the radial current con-

centration at section 13 and 14 of the wooden pole. In Figure 4.19, it can be seen

that the radial current concentration reduced to 1.5 mA at section 14 and 2.4 mA

at section 13. A s the termination of the metallic band moved downwards, more

leakage current flowed through the shunting to the ground. Therefore at section 13

and 14 of Figure 4.20, the current reduced to 1.8 mA and to 1.1 mA respectively.

The result demonstrates that the concept of bypassing the leakage current from

the insulator pin to lower section of wooden pole is sound. B y diverting the total
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Figure 4.19: Radialcurrent distribution of mid-pole bonding system w ith bypass at section 7
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Figure 4.20: Radialcurrent distribution of mid-pole bonding system w ith bypass at section 4
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leakage current from the insulator straight to the mid-pole section, it accomplished

the aim of reducing the radial current concentration at the pole cross-arm junc-

tion. The radial current increment at bypass termination, especially at section 10,

7 and 4 of the wooden pole, did not cause a problem because the metallic band

was only secured on the surfaces and did not intrude into the wooden pole section.

4.5 Sim ulation of T hree-P hase L eakage C urrent

The three-phase leakage current study attempted to determine the radial current

distribution characteristics due to the failure of the insulators. In this instance,

at least two insulators were assumed to fail at the same time and to permit a

leakage current flow from either P hase 1 and P hase 2, P hase 1 and P hase 3, P hase

2 and P hase 3 (refer Figure 4.2) or from all these failed insulators to the ground.

A ssumptions were made for these situations that somehow these combined events

could have happened due to the pollution caused by weather of uneven insulator

surfaces. For example, a light shower with wind may have successfully cleaned up

only one insulator in one direction but may still not have covered all in-service

insulators. For this study, all line phases were set at a 11 kV voltage magnitude

with 120o angle difference between each phase, similar to actual conditions. In

particular, this three-phase line was connected under a balanced delta configura-

tion, in which line voltage is equal to phase voltage, while the line current is equal

to phase current times the square root of 3. Finally, the insulators were set at 1

M Ω ) to simulate the medium surface pollution level and the simulation was run

under wet conditions.

Figure 4.21 depicts the results of the M ATLA B simulation for all possible con-

ditions. In case (a), the leakage current was flowing from P hase 1, P hase 2 and
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P hase 3 to the ground and causing the radial current concentration at section 13

and section 14. A bout 6.3 mA and 0.5 mA current magnitudes were recorded

flowing, respectively, at the king bolt and bolt steel holder sections under a nor-

mal configuration. W ith the R oss shunting technique, the current concentration

at section 14 was reduced to 3.4 mA . Furthermore, a slight increase of radial cur-

rent magnitude at section 13 with the R oss method was compared to the normal

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

Current Magnitude (mA)

P
o

le
 S

e
c
ti
o

n

(a) Leakage current between Phase 1, Phase 2 and Phase 3

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

Current Magnitude (mA)

P
o

le
 S

e
c
ti
o

n

(b) leakage current between Phase 1 and Phase 2

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

Current Magnitude (mA)

P
o

le
 S

e
c
ti
o

n

(c) Leakage current between Phase 1 and Phase 3
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Figure 4.21: C omparison of radial current distribution for phase-to-phase leakage current w ith
w ooden cross-arm w ith grounding
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configuration. Finally, with the mid-pole bonding system, all the potential current

concentrations, particularly at sections 13 and 14, were successfully eliminated.

A similar pattern of simulation results was plotted for the circumstances of (b)

and (d) as shown in Figure 4.21. In these cases, the leakage current was flowing

between one of insulators at the cross-arm and the insulator at the top section of

wooden pole to the ground. A s depicted in Figure 4.21, the radial current that

was mostly concentrated at the bolt section securing the steel bar holders was

compared to the radial current at the king bolt section. In case (b), 9.7 mA and

6.0 mA current at section 13 and 14 was stepped down to 3.3 mA and 0.8 mA with a

bypass of the leakage current to the metallic band at section 4. O n the other hand,

the R oss shunting method managed to cut down current concentration, especially

at section 13, to about 3 mA . A n identical radial current distribution was plotted

for case (d), indicating that the mid-pole bonding system was successful for both

conditions. In contrast, the radial current was only concentrated at section 13

for case (c), particularly under normal and R oss configurations. A very small

radial current was recorded at section 14 and 10mA current was concentrated

at section 13. These results were almost identical with the simulation results of

the single-phase leakage current study from cross-arm to ground in Section 4.4.2.

The current magnitude at section 13 was reduced from 10 mA to 4 mA with the

mid-pole bonding system.

The simulation results of Figure 4.22 explain another situation of leakage cur-

rent phenomena on the wooden pole structure. In detail, this study tried to sim-

ulate and find the reason for the leakage current that occurred between phases.

It can happen if the wooden poles are not properly grounded or the grounding

system is not in good order. In some cases, the wooden poles are not grounded

physically, as is the case where the bottom section of the wooden pole is buried at
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Figure 4.22: C omparison of radial current distribution for phase-to-phase leakage current w ith
w ooden cross-arm w ithout grounding

depth into the ground. A s depicted in Figure 4.22, the radial current is concen-

trated only at section 14 for cases (a),(b) and (d) in the range of 5 mA to 6 mA

for normal conditions. H owever, a very small current distribution was plotted for

the radial current magnitude caused by two failed insulators at the cross-arm i.e.

for case (c). O n the other hand, the R oss shunting method successfully reduced

the current magnitude at section 14 to about 3 mA for all cases (a), (b) and (d).

The current concentration at section 14 was eliminated to zero by applying the
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mid-pole bonding system to the wooden pole structure. B ased on these simulation

studies, no current flowed from section 13 to 1 due to the effect of phase-to-phase

leakage current.

4.6 Sum m ary

In this chapter, the electrical model for wooden pole with cross-arm was intro-

duced. In particular, the electrical model of wooden and steel cross-arm was

developed based on the ladder network model. Furthermore, the copper jumper

arrangement at the wooden-cross-arm junction that was introduced by P.M R oss

was also modeled for performance comparison purposes. O n the other hand, a

new mid-pole bonding system was proposed in this research to overcome the cur-

rent disadvantages of the pole fire mitigation arrangement. The simulation results

show that the king bolt junction displayed a large current concentration and the

steel bar holder bolt located at section 13 also introduced another high magni-

tude leakage current spot. It was proven that any metal insertion on the wooden

pole structure that was closed to leakage current source was very prone to the

development of fire initiation.

The replacement of the wooden cross-arm with a steel cross-arm did not improve

the wooden pole-fire resistance. B ased on the simulation study, it had a similar

radial current distribution to the normal wooden cross-arm configuration. O n

the other hand, the shunting arrangement proposed by P.M R oss was unable to

reduce the radial current concentration at section 13 and 14 by a large margin,

except in the cases of phase-to-phase leakage current. A dditionally, the mid-

pole bonding system mitigated the leakage current effectively from the metal-

cross-arm junction. In summary, this study proves that a high leakage current
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Figure 4.23: P ole-top fire at steelbar holder bolt due to leakage current phenomena

is concentrated on the metal insertion at the pole-cross-arm junction under wet

conditions in contrast to dry conditions. Figure 4.23 depicts one of the pole-top fire

phenomena in the electrical distribution system. It can be used as evidence that a

fire could be triggered at the bolt or any pole-metal insertion point, especially at

the wooden pole cross-arm junction. The proposed mid-pole bonding system gives

promising results and could provide critical direction in future pole design. Table

4.4 summarizes the ladder network simulation results, in particular to highlight

the performance of all considered mitigation methods. Finally, the experimental

investigation of this research was carried out in the R M IT U niversity high voltage

facility and is discussed in C hapter 5.
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C ondition C ases W ith G rounding N o G rounding (% ) C hanges

Sect. 13 Sect. 14

Single phase

P hase 2

Steelcross-arm 0% 0%

Ross Shunting 1 -1.61% 45.93%

Ross Shunting 2 -1.61% 45.93%

B ypass at sect. 10 66.37% 72.16%

B ypass at sect.7 74.77% 75.38%

B ypass at sect. 4 81.27% 81.33%

P hase 1
Ross Shunting 1 1.07% 0%

B ypass at sect. 4 75.08% 0%

P hase 3
Ross Shunting 1 -3.43% 0%

B ypass at sect. 4 66.62% 0%

P hase-to-phase

P hase 1,2 and 3
Ross Shunting 1 -41.51% 45.92%

B ypass at sect. 4 99.43% 99.99%

P hase 1 and 2
Ross Shunting 1 -0.18% 45.93%

B ypass at sect. 4 65.41% 86.36%

P hase 1 and 3
Ross Shunting 1 -1.37% 0%

B ypass at sect. 4 56.91% 0%

P hase 2 and 3
Ross Shunting 1 -2.62% 45.92%

B ypass at sect. 4 59.15% 88.24%

P hase 1,2 and 3
Ross Shunting 1 0% 45.98%

B ypass at sect. 4 0% 100%

P hase 1 and 2
Ross Shunting 1 0% 46.64%

B ypass at sect. 4 0% 100%

P hase 1 and 3
Ross Shunting 1 0% 0%

B ypass at sect. 4 0% 0%

P hase 2 and 3
Ross Shunting 1 0% 45.45%

B ypass at sect. 4 0% 100%

Table 4.4: C omparison of simulation results for ladder netw ork model



C hapter 5

E xp erim ental Study on N ovel

M id-P ole B onding System

5.1 Introduction

A mid-pole bonding system for pole-top fire prevention based on a ladder network

model study was proposed in C hapter 4. This technique manages to reduce cur-

rent concentration at the wooden pole cross-arm junction based on a M ATLA B

simulation study. A n experiment, the result of which will be compared with the

simulation study, is needed to prove our hypothesis. O n the other hand, there

is a lack of knowledge about the heating process of the wooden pole supporting

structure due to the high level of leakage current. A proper laboratory observation

is needed in order to investigate this leakage current effect.

A small-scale laboratory setup was created in the R M IT U niversity H igh V olt-

age Laboratory to study those two hypotheses. A 6.5-meter hardwood pole treated

with C C A was used to realize the mid-pole bonding system testing and to examine

the thermal distribution, especially at the cross-arm due to the likelihood of high

85
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leakage current at this juncture. This chapter presents an intensive laboratory

test which studied the performance of the mid-pole bonding system and compared

the results with the simulation work. It also demonstrates the leakage current

effect, especially at the wooden pole cross-arm junction based on thermographic

images. These experimental works will provide useful results with full information

for a further understanding of the leakage current effect along the wooden pole

structure.

5.2 E xp erim ental Setup

Figure 5.1 depicts an experimental setup for the mid-pole bonding system exper-

iment. For this study, the leakage current was produced by the resistive compo-

nents of the polluted insulators; this was simulated using high voltage resistors

that were connected to the high-voltage power supply. The high-voltage supply

was connected in a series with a 4 M Ω resistor to simulate the polluted insulators

that had suffered from medium surface pollution. A s discussed in C hapter 4, a

specially designed metallic band was installed at the middle section of the wooden

pole to bypass the leakage current through a shunting cable with 21 fins. This

metallic band was used for a current terminating point and for heat dissipation

purposes. A nother aluminium plate with nail was installed at the bottom section

of the wooden pole to provide maximum electrical contact to the ground. Figure

5.2, Figure 5.3 and Figure 5.4 shows the high voltage transformer, voltage divider

and resistor that were used during the experimental study.

For testing purposes, the leakage current was made to flow from 11 kV voltage

source through the conductor that was connected, either to the metal pin of the

metal cap at the top section of the wooden pole, or at the cross-arm to the ground.
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Figure 5.1: A n experimentalsetup for mid-pole bonding system study

For the measurement setup, two 100 Ω low resistors were used and they were con-

nected in a series measuring V L eakage (at top section of wooden pole) and VShunt

(at middle section of wooden pole). Both these resistors were connected to the

floating oscilloscope through a coaxial cable for current measurement purposes i.e.

the measured voltage divided by 100 Ω resistor. Floating measurement is needed
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�

Figure 5.2: High voltage transformer

�

Figure 5.3: V oltage divider for high voltage measurement
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�

Figure 5.4: 1 M Ω high voltage resistor

purposely to capture the floating VL eakage and VShunt accurately which it’s was

elevated far from the common earth. T he common reference for two input chan-

nels of the floating oscilloscope is located at the junction of VL eakage and VShunt.

T he ratio between IShunt and IL eakage gave an indication of the performance of the

mid-pole bonding system. Finally these results were compared with the simulation

study results.

T his type of wooden cross-arm,as shown in Figure 5.5, is commonly found in

power-system distribution networks of 11 kV and 22 kV around A ustralia. T he

wooden cross-arm is an untreated hardwood of 2 m x 0.1 m x 0.1 m dimension.

O n the other hand, stainless steel cross-arm has also been used as a support

structure in electrical distribution networks. A s depicted in Figure 5.6,the cross-

arm is made of a 3-mm thick galvanized steel with 5 holes that are pre-drilled

for insulators and bolt connection. O nly the wooden cross-arm was used for the

mid-pole bonding system experiments but both steel and wooden cross-arms were

used for the thermographic study.

For the cross-arm thermographic study, two high voltage resistors of 2 M Ω
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�

Figure 5.5: W ooden cross-arm

�

Figure 5.6: Steel cross-arm

and 100 kΩ were used to simulate medium and severe surface contaminations for

the polluted insulators. For this setup, the current magnitude was measured at

the primary side of the transformer and,by using the transformer transformation

ratio,the leakage current level of 5 mA and 14 mA ,which represents the current
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Figure 5.7: T hermovision A 320 thermal camera

magnitude at the secondary side was calculated on a 6.5-meter wooden pole. It

was assumed that the polluted insulator allowed whole leakage current to flow to

the king bolt through the cross-arm body,especially for the stainless steel cross-

arm type. T herefore, the conductor was connected directly to the king bolt. A

similar configuration was adopted for the wooden cross-arm thermographic study.

T he T hermovision A 320 thermal camera was used to measure the spot temper-

atures on the surface of the king bolt,cross-arm and pole. T he A 320 is designed to

deliver an accurate thermographic imaging and repeatable temperature measure-

ments in a wide range of applications. E ach T hermal image is built from 76,800

individual picture elements that are sampled by the camera’s on-board electronics

and software to measure temperature. T he thermal camera is installed at a 1-

meter distance from the test object and the near-real time 16 bit 320 x 240 image

data is recorded and stored at 10-minute intervals during the test.

5.3 M id-P ole B onding System Study on W ooden P ole

Based on our previous results in Chapter 4,the mid-pole bonding system success-

fully reduced the leakage current concentration at the wooden pole and cross-arm
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junction by at least 60% . T his calculation was based on the reduction of the

radial current magnitude, especially at the bolt section that fastened the steel

bar holders and secured the cross-arm structure. By diverting the leakage current

from the insulator pin to the metal band located at the middle section of the

wooden pole structure, the chances of any unwanted process that could trigger

fire was reduced. In particular,the relative magnitudes of IShunt and IL eakage were

exploited. T hrough this experimental study, it was impossible to measure the

radial current distribution on the actual wooden pole structure. T herefore, the

ratio between IShunt and IL eakage was used to demonstrate the performance of the

mid-pole bonding system.

For this study,the leakage current was assumed to flow either from the insulator

pin at the top section of the wooden pole or from the cross-arm to the ground.

A shunt conductor was connected from the leakage current source to the metallic

band at the middle section of the wooden pole i.e. at 3 m,4 m and 5m from the

top section. It was planned that the single-phase voltage supply be varied between

1kV to 11kV to simulate the consistency of the current ratio,IR atio between IShunt

and IL eakage. H owever,the floating oscilloscope was turned off at the 10 kV voltage

level. It is due to excessive current flow into oscilloscope through coaxial cables

which exceed its limitation. T herefore the voltage supply was limited to 9 kV .

Figure 5.8 and Figure 5.9 show the IL eakage and IShunt distribution for the tested

wooden pole with mid-pole bonding system. A s the voltage supply increased,the

IL eakage moved upward until 9 kV limited by 4 M Ω resistor. IShunt also increased,

depending on where the shunting cable was terminated. For example,by shunting

the leakage current from the top of the wooden pole to the metallic band at 5

meters from the top section at 9 kV voltage level,2.04 mA IL eakage and 1.22 mA

IShunt was recorded,as shown in Figure 5.8(c). For a similar condition with leakage
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Figure 5.8: M id-pole bonding system on w ooden pole for leakage current from top section of
w ooden pole to ground

current flow from the cross-arm insulator pin,1.85 mA IL eakage and 1.04 mA IShunt

was observed,as depicted in Figure 5.9(c). Based on these readings,at least 50%

of leakage current magnitude was successfully diverted to the middle section of

the wooden pole.

Table 5.1 summarized the results of the IR atio percentage recorded during the

lab testing. For example,almost 60.32% and 57.00% IL eakage were diverted through

the shunting cable to the metal band at 5-meter position in the lab experiments

for both cases. O n the other hand,less percentage of IR atio was computed from the

floating oscilloscope during lab testing in the case of leakage current which started
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Figure 5.9: M id-pole bonding system on w ooden pole for leakage current from cross-arm to
ground

to flow at the cross-arm. For example, about 53.93% and 56.96% IL eakage were

shunted at 3 and 4 meters compared to that in the case of the leakage current from

the top of wooden pole. In addition,a simulation study for the IR atio,was set up for

the mid-pole bonding system. A s shown in Table 5.2,the simulation results had a

higher IR atio compared to the experimental test for both test conditions. O verall,

the percentage of the IR atio magnitude decreased as the metallic band termination

moved far from the ground. For instance,74.95% IL eakage was diverted at 5 meters

and it reduced to 71.92% for leakage current at 3 meters from the top of the wooden
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IRatio for mid-pole bonding system
E xperimental Setup B ypass at 3m B ypass at 4m B ypass at 5m

Leakage C urrent from top of W ooden P ole 56.05% 58.42% 60.32%
Leakage C urrent from cross-arm 53.93% 56.96% 57.00%

Table 5.1: A verage IRatio for both experimental setups at each bypass termination

IRatio for mid-pole bonding system
Simulation Setup B ypass at 3m B ypass at 4m B ypass at 5m

Leakage C urrent from top of W ooden P ole 71.92% 73.49% 74.95%
Leakage C urrent from cross-arm 80.25% 81.39% 82.45%

Table 5.2: A verage IRatio for both simulation setups at each bypass termination

pole. Based on these studies, the mid-pole shunting system successfully reduced

the amount of current flowing through the wooden pole structure by shunting the

severe leakage current away from the burning spot i.e. the wooden pole cross-arm

junction.

5.4 T herm ographic Study of C ross-A rm

W ooden cross-arm has been used around the world as a preferred support structure

for insulators in electrical distribution networks. W ooden cross-arm offers excellent

electrical and mechanical performance and is known to have a service lifespan of

more than 20 years [153]. In recent years,across the world,many of the existing

wooden cross-arms have been replaced by stainless steel cross-arms or fibre cross-

arms. T his is due to the fact that wooden cross-arm is prone to pocket-burning or

fire in areas that are subjected to high-level pollution,dust and salt spray. In the

coastal areas where heavy salt spray from seas is high,the contaminated layer on

the insulator surfaces degrades the surface resistivity. A s discussed in Chapter 2,

Chapter 3 and Chapter 4, the leakage current flow due to surface contamination

can reach hundreds of milliamperes and cause spot burning and pole-top fire.

T he main objective of this study was to investigate the thermal and electrical
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properties of cross-arm on wooden pole. T his study showed the thermal distri-

bution in stainless steel cross-arm and compared it with wooden cross-arm. T his

thermographic study was performed using a T hermovision A 320 thermal camera

measuring the spot temperatures at the king bolt and pole-cross-arm sections and

adjacent surfaces for 60 minutes duration. T he time-lapse images of the heating

process are presented. A s part of this study,a thermographic study based on the

mid-pole bonding system is also presented. Finally,most of the results presented

in this section were presented in a published paper [154].

5.4.1 T herm ographic Study of W ooden C ross-A rm w ith L eakage C ur-

rent of 5 m A and 14 m A

T here are many past studies which focus on the leakage current level on high

voltage insulators. H owever there is a lack of knowledge in the heating process

of the supporting structure due to the high level of leakage current. M any past

researchers have suggested that the heating process was mainly contributed to

by the micro-arc that took place at the metal-wood interface in the insert. T he

following results are based on the time-lapse images taken by a thermal camera

of respectively cross-arm at,5 mA (with 2M Ω resistor) and 14 mA (with 100kΩ

resistor) leakage current level.

Figure 5.10 and Figure 5.11 illustrates the heating process at the wooden cross-

arm for the 6.5-meter wooden pole. T he spot temperatures that are shown in these

figures represent the temperature at the metallic surface of the king bolt (spot 1),

the temperature at the wood surface (spot 2),the temperatures at the cross-arm

and pole interface (spot 3) and the temperature at the surface of the cross-arm

(spot 4). T he temperature measurement at spot 1 is the most critical in this study.

T he initial temperature at spot 1 was 23.7oC before the 5mA current was applied.
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Figure 5.10: T hermographic images for w ooden cross-arm at 5 mA
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Figure 5.11: T hermographic images for w ooden cross-arm at 14 mA
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W hen the 11 kV high voltage supply was switched on,the temperature at spot 1

increased to 24.5oC in a period of 10 minutes and finally reached 25.5oC at the end

of the test period. O n the other hand,the temperature at spots 2,3 and 4 did not

experience the same level of temperature rise and the final readings were 23.9oC,

23.1oC and 23.1oC respectively. A maximum change of 1.8oC was observed at spot

1 after 60 minutes testing.

In the case of 14 mA ,the temperature at spot 1 increased from the initial value

of 23.0oC to 26.5oC after a 10-minute period. T he temperature continued to rise

gradually to 29.2oC after 20 minutes and finally a maximum temperature of 34.9oC

was recorded at the end of the test period. T he temperature at spots 2,3 and 4

also showed some changes as depicted in Figure 5.11. A maximum of 11.9oC was

observed at spot 1 after 60 minutes testing.

5.4.2 T herm ographic Study of SteelC ross-A rm w ith L eakage C urrent

of 5 m A and 14 m A

Figure 5.12 and Figure 5.13 depict the time-lapse thermographic images of the

heating process of the stainless steel cross-arm at 5 mA and 14 mA . A similar 2

M Ω and 100 kΩ current limiter was used with 11 kV voltage supply to simulate

the leakage current level. T he temperature at spot 1 increased from 22.4oC at 0

minutes to 23.2oC in a 10-minute period at 5 mA . T his spot temperature grew

steadily to 25.3oC in the 60-minute testing period. A maximum change of 2.9oC

was observed at spot 1 after a 60-minute test. In contrast, for 14 mA leakage

current level,the temperature reading at spot 1 increased gradually from an initial

temperature of 22.5oC to 25.2oC after 10 minutes. T he temperature of the king

bolt changed progressively to 27.0oC after 20 minutes and reached 31.0oC at the

end of the 60-minute test. A maximum change of 8.5oC was observed at spot 1
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Figure 5.12: T hermographic images for steel cross-arm at 5 mA



5. Experimental Study on Novel Mid-Pole Bonding System 101

�

� �
���������	
��������������������������������������������������
�����	
���

� �
����������	
���������������������������������������������������������	
���

� �
����������	
���������������������������������������������������������	
���

�
����������	
���

Figure 5.13: T hermographic images for steel cross-arm at 14 mA
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Figure 5.14: K ing bolt temperature for steel and w ooden cross-arm

after 60 minutes’testing.

W hen the pole was subjected to a low leakage current level of 5 mA , both

types of cross-arm showed a similar heating process. O n the other hand, these

two cross-arms went through a different heating process when subjected to higher

leakage current. T he heating rate of the king bolt at the steel cross-arm was far

less compared to that of the wooden cross-arm,as shown in Figure 5.14. From our

results,it is clearly shown that the king bolt experiences the highest temperature

rise compared to other spot measurements during the test period. T his is due to

the fact that the king bolt has a higher thermal conductivity compared to wood.

In terms of reducing the risk of pole-top fire or pocket burning,the thermographic

test results showed that the steel cross-arm didn’t give much benefit compared to

the benefits of wooden cross-arm. D uring the one-hour test period,an unpleasant

smell was noticed at 15 mA leakage current level. A t this stage,the scent of wood

burning could be detected within the laboratory. In particular,a small burnt spot
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was detected at the wood with king bolt washer and nails for aluminium plate

which located at the bottom section of wooden pole during visual inspection.

5.4.3 T herm ographic Study of M id-P ole B onding System

T he mid-pole bonding system was used to reduce the heating effect of the king bolt.

T his current diverter system was installed on the wooden pole with a steel cross-

arm which diverted the leakage current through the shunting cable to a metallic

band located at 5 meters from the top of the wooden pole. Figure 5.15 shows the

heating process for the steel cross-arm over a two-hour period. T he temperature

reading was taken from spot 1 and it is clearly demonstrated that the mid-pole

bonding system reduced the temperature by 0.6oC. A s shown in Figure 5.15,the

king bolt temperature increased from 23.0oC to 24.4oC for the setup without a

mid-pole bonding system during the two-hour test period. T his is equivalent to a
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Figure 5.15: C omparison of king bolt temperature w ith steel cross-arm
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change of 1.4oC. In contrast,the king bolt temperature rose slowly from 23.3oC to

23.8oC and a change of 0.5oC was observed. Based on this study a large amount of

leakage current magnitude was bypassed through the shunting cable and reduced

the radial current concentration effect on the king bolt. T herefore the mid-pole

bonding system successfully reduced the leakage current effect on the king bolt.

A s part of this study,we also demonstrated the effectiveness of the mid-pole

bonding system on the wooden pole structure. T his mid-pole bonding system

managed to reduce the heating effect at the king bolt, as illustrated in Figure

5.16. By extending the results in Figure 5.15 with a linear regression method,the

best fitting line of the king bolt temperature was plotted for the next ten-hour

testing period. T his linear regression method was used to predict and estimate the
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Figure 5.16: L inear regression of king bolt temperature w ith mid-pole bonding system for steel
cross-arm
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temperature of the king bolt,based on the least square approach of the recorded

data. A s shown in Figure 5.16,about 29.4 degree Celsius of the king bolt temper-

ature can be reduced to 25.8oC with the mid-pole bonding system over a ten-hour

period. T his is equivalent to a difference of 3.6oC. In conclusion, a slow king

bolt temperature development is significant in the long term and will decrease the

degree of thermal generated at the king bolt.

5.5 Sum m ary

T his chapter investigated the performance of the mid-pole bonding system and

the thermal characteristics of steel and wooden cross-arms at different levels of

leakage current. T his research was conducted at the R M IT U niversity H igh V olt-

age Laboratory. T he leakage current flow due to surface contamination on the

insulator increased the king bolt temperature to a hazardous level on both cross-

arms. H igh leakage current caused the king bolt to heat up at a more rapid rate

than low leakage current. T he recorded thermographic images provided a more

highly accurate spot temperature reading of the heating process on the king bolt.

In addition, the mid-pole bonding system successfully reduced the risk of raised

temperature at the king bolt, especially in the long term. T he results offer new

insights into the initial stage of pole-top burning at the king bolt junction. Con-

tinuous monitoring of the king bolt temperature should be included as part of

regular wooden pole inspection and any asset management program. Finally,the

comparative study between testing and simulation also shows the huge potential

of the new mid-pole bonding system. In conclusion,this mid-pole bonding system

has significant potential to eliminate the risk of pole-top fire by diverting a large

amount of leakage current and thereby reducing the heating effect of the king bolt.



C hapter 6

C onclusions and Future W orks

Pole-top fire in electrical distribution networks has become a great concern to all

utility companies in their effort to provide reliable,secure and safe power supply to

customers. T he two main causes of pole-top fire— a mechanical failure on a wooden

pole structure causing power supply interruption,and sparks triggered by falling

live lines in dry vegetation areas— have already become a common issue discussed

in the media. P ower provider agencies are working hard to maintain, improve

and upgrade their assets, so that these issues and any associated problems can

be minimized and avoided. A t the same time,extensive and continuous research

work at a higher education level can support and provide advanced solutions for

the current related issues.

T his thesis commenced with the objective of understanding a wooden pole lad-

der network model for the pole-top fire issue. To achieve this,the author manipu-

lated and modified the existing ladder network model onto a completed structure

of a distributed wooden pole. T he model developed by the author demonstrates

a new accomplishment in leakage current effect in wood.

T his research program presented an analytical procedure using computer sim-

106
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ulations and experimental work,which is presented as follows:

1. A comprehensive examination of the ladder network model consisting of sap-

wood, radial and heartwood resistances influenced by CCA treatment and

moisture levels in wood, together with the leakage current effect related to

pole-top fire.

2. M odification of the existing ladder network model to include the wooden

cross-arm,steel cross-arm and R oss shunting methods in the current model.

3. T he introduction and proposition of an original mid-pole bonding system to

overcome leakage current concentration at the wooden pole cross-arm junc-

tion.

4. A cross-examination in a high-voltage laboratory of the computer model and

the real wooden pole,both with mid-pole bonding,in terms of their leakage

current bypass percentage.

5. A thermal characterization of the wooden cross-arm,steel cross-arm and mid-

pole bonding system with wooden pole using a thermographic camera.

In the next section,conclusive statements that show the major findings in this

research program and recommendations for future works will be presented.

6.1 C onclusions

T he research program goals have been successfully accomplished by developing and

manipulating the ladder network model of wooden pole for pole-top fire research.

A s a result,many significant outcomes have been discovered in the field of pole-

top fire study on an 11 kV distribution network 3-phase system. From these
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achievements, all the outcomes and original contributions are summarized and

listed below:

� A computer model of wooden pole has been successfully developed in a M A T -

LA B environment,based on the ladder network principles. T ype of treatment

i.e. CCA -treated,moisture levels of the wood,realistic pole dimensions,step

size, levels of insulator surface contamination are included respectively. A

king bolt was inserted into the 16 sections of wooden pole and the resulting

built model became the foundation of the research work. To the author’s

knowledge, this is the first pole-top fire research study that is based on the

established ladder network model.

� To the best of the author’s knowledge,a radial current distribution result of

the developed model is a novel discovery in terms of explaining the leakage

current effect on wooden pole structures. Compared to the sapwood and

heartwood current distribution along 16 sections of wooden pole, the metal

insertion effect with radial current distribution is clearly shown. T he influ-

ence of moisture content in the wood significantly changes the resistances of

the developed ladder network whereby wet conditions cause a higher leakage

current concentration at the metal insertion in contrast to the concentration

under dry weather conditions.

� A new completed wooden pole model with wooden cross-arm was developed

and introduced onto the ladder network model. T his original development

was based on the author’s critical thinking which resulted in the king bolt

being manipulated as a reference point before introducing it from the point

of radial resistance of the cross-arm. T he heartwood resistances were not

included,due to the wooden cross-arm’s physical appearance. T he effect of a
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loosed bolt was able to be included,which was represented by air resistance

that is parallel with a king bolt resistance at section 14 of the wooden pole.

A nother secured bolt was introduced in this model to hold the cross-arm

firmly on a wooden pole with steel bar holders. It caused another leakage

current concentration point,especially at section 13 of the wooden pole.

� The copper jumper and copper cross-arm band electrical connections of the

P.M Ross shunting techniques were also successfully introduced into the en-

hanced wooden pole model. Two Ross shunting methods were developed

and used for mitigation performance study purposes. Based on computer

simulation work, the Ross shunting techniques failed to reduce leakage cur-

rent concentration at sections 14 and 13. Copper-band configurations clearly

increased radial current magnitude at sections 13 and 14 in the case of single-

phase leakage current. A small reduction at section 14 was recorded for the

Ross shunting method in the case of phase-to-phase leakage current; this is

not very significant for overall performance.

� A new steel cross-arm model was successfully introduced in this research

work. Similar to the wooden cross-arm, two steel bar holders were included

to keep it steady on the wooden pole structure. Interestingly, the radial

current distribution of this configuration is the same as that of the wooden

cross-arm. It can be concluded then that the steel cross-arm did not decrease

the risk of pole-top fire.

� The novel mid-pole bonding system was successful in overcoming the leakage

current concentration at the wooden pole cross-arm junction for all study

cases. All the limitations of Ross’s shunting techniques and steel cross-arm

were eliminated using this new mitigation method. By mitigating the leakage
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current from pin insulators with insulated conductors, and securing a metal

band at the bottom section of the wooden pole, the magnitude of current

concentration at sections 13 and 14 were reduced significantly. Based on the

simulation study of the ladder network model, the risk of pole-top fire can be

eliminated by implementing this technique on a wooden pole structure. The

comparative summary of the simulation work is shown in Table 4.4.

	 Critical experimental work was successfully performed in the RMIT high volt-

age laboratory to verify the performance of the mid-pole bonding system on

a 6.5 meter wooden pole structure. Another ladder network computer model

was also successfully developed to imitate the tested pole dimension, type

of treatment and also the moisture level of the wood. A specially designed

metallic band from aluminium sheet was used for the mid-pole bonding sys-

tem testing. More than 50% leakage current was bypassed through shunting

cable in the laboratory study, compared to 70% in the simulation work. If

the test is done with a 12-meter wooden pole length, better results will be

recorded for the mid-pole bonding system.

	 The temperature growth under the influence of leakage current at the wooden

pole cross-arm junction was successfully recorded and monitored with a ther-

mographic camera. It shows that the development of temperature on the king

bolt is almost similar in steel and wooden cross-arm. It proves that there is

no significant contribution from steel cross-arm, the mechanical strength of

which is greater than that of wood. F inally, the success of the mid-pole bond-

ing system is shown in terms of temperature development on the king bolt,

which records a very small temperature change compared to that in a normal

setup.
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In conclusion, based on a simulation study, this research work clearly demon-

strates the successful implementation and potential of ladder network model in

explaining pole-top fire problem. The flexibility of the ladder network model for

allowing further improvement and extension is highly appreciated by the author

and will lead to wider and more comprehensive research work to overcome the dis-

advantages of current solutions. A new mid-pole bonding system that offers simple

implementation and a low cost solution should be utilized by distribution compa-

nies for their electrical distribution networks. H opefully, this work will contribute

much to this field of research and provide benefits to humankind.

6.2 Recommendation for Future Work

In order to have research continuity in this field, a few recommendations have been

identified which have large research potential throughout this research work. The

proposed exploration work for the future includes:

1. Further D evelopment of Ladder N etwork Model


 The new wooden pole ladder network model is based on the combined re-

sistances of sapwood, radial and heartwood which are distributed through-

out the numerous pole sections from the top to the bottom. The author

believes that by dividing each section into small segments, the leakage

current concentration on the metal insertion could be localized to small

segments of the pole section. This will result in very detailed simulation

work on the wooden pole model.


 To include other variables such as capacitive and inductive parameters

into the ladder network model which demands advanced critical thinking
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and a deeper understanding on the part of interested researchers. The au-

thor believes it will provide significant and interesting results in terms of

explaining pole-top fire events. It could be used for further investigation

on an impulse study of the ladder network model.

2. Further investigation to determine another significant parameter that can be

used to explain the metal insertion effect on wooden pole structures using

finite element method. It is possible to display the effect of king bolt with a

voltage distribution or other parameters from the ladder network model.

3. Further investigation to determine the BIL of the mid-pole bonding system

on the wooden pole structure.

4. The actual on-site installation of a mid-pole bonding system in a distribution

network, especially for very high-risk fire prone areas. This implementation

could provide further understanding of the mid-pole bonding system in terms

of its effectiveness and performance. Technical modifications for further im-

provements can be made according to on-site conditions. Currently, the H ori-

zon Power company in W estern Australia has expressed interest in applying

this new method in their electrical distribution network. D iscussions are still

at an early stage and hopefully this mid-pole bonding system can be installed

on their wooden poles soon.

5. A continuous monitoring of king bolt temperature as a part of asset manage-

ment action in a distribution network.



A pp endix A

Wooden P ole

Section H eight (m ) l (m ) r (m ) R (m ) P (m ) A s (m 2) A h (m 2)
1 0.00 to 0.75 0.75 0.142 0.181 0.0395 0.0352 0.0633
2 0.75 to 1.50 0.75 0.138 0.177 0.0388 0.0336 0.0600
3 1.50 to 2.25 0.75 0.134 0.172 0.0382 0.0322 0.0567
4 2.25 to 3.00 0.75 0.130 0.168 0.0375 0.0307 0.0535
5 3.00 to 3.75 0.75 0.126 0.163 0.0367 0.0292 0.0505
6 3.75 to 4.50 0.75 0.123 0.159 0.0360 0.0278 0.0476
7 4.50 to 5.25 0.75 0.119 0.154 0.0353 0.0264 0.0447
8 5.25 to 6.00 0.75 0.115 0.150 0.0347 0.0251 0.0419
9 6.00 to 6.75 0.75 0.111 0.145 0.0340 0.0238 0.0391
10 6.75 to 7.50 0.75 0.107 0.141 0.0334 0.0226 0.0365
11 7.50 to 8.25 0.75 0.104 0.136 0.0326 0.0213 0.0341
12 8.25 to 9.00 0.75 0.100 0.132 0.0319 0.0201 0.0316
13 9.00 to 9.75 0.75 0.096 0.127 0.0312 0.0189 0.0293
14 9.75 to 10.50 0.75 0.092 0.123 0.0306 0.0178 0.0270
15 10.50 to 11.25 0.75 0.089 0.118 0.0298 0.0166 0.0249
16 11.25 to 12.00 0.75 0.085 0.114 0.0293 0.0156 0.0228

Table A .1: P hysicaldim ensions ofpole
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Section H eight (m ) R s (M C% ) R h (M C% ) R s (Ω ) R h (Ω ) R r (Ω )
1 0.00 to 0.75 16.70 30.00 1874977.045 493.55 3431207.99
2 0.75 to 1.50 16.70 25.35 1961289.153 7575.22 3589159.15
3 1.50 to 2.25 11.70 20.70 36426610.62 116442.85 66660697.43
4 2.25 to 3.00 11.70 20.70 38186244.63 123317.59 69880827.66
5 3.00 to 3.75 11.70 20.70 40156301.72 130613.52 73486032.14
6 3.75 to 4.50 11.70 20.70 42200815.29 138801.85 77227491.99
7 4.50 to 5.25 11.70 20.70 44408514.51 147785.05 81267581.54
8 5.25 to 6.00 11.70 20.70 46662707.70 157669.40 85392755.09
9 6.00 to 6.75 11.70 20.70 49243544.43 168579.60 90115686.31
10 6.75 to 7.50 11.70 20.70 51893562.19 180662.70 94965218.82
11 7.50 to 8.25 11.70 20.70 55054912.41 193720.66 100750489.70
12 8.25 to 9.00 11.70 20.70 58392490.56 208662.28 106858257.70
13 9.00 to 9.75 11.70 20.70 62051127.12 225401.67 113553562.60
14 9.75 to 10.50 11.70 20.70 65858523.87 244239.23 120521098.70
15 10.50 to 11.25 11.70 16.70 70434822.89 2649451.55 128895725.90
16 11.25 to 12.00 11.70 16.70 74915930.82 2897558.42 137096153.40

Table A .2: R esistances ofdry pole

Section H eight (m ) R s (M C% ) R h (M C% ) R s (Ω ) R h (Ω ) R r (Ω )
1 0.00 to 0.75 27.70 30.00 3334.23 493.55 6101.64
2 0.75 to 1.50 27.70 30.00 3487.72 521.06 6382.52
3 1.50 to 2.25 22.70 30.00 64776.69 550.95 118541.34
4 2.25 to 3.00 22.70 30.00 67905.81 583.47 124267.63
5 3.00 to 3.75 22.70 30.00 71409.12 617.99 130678.69
6 3.75 to 4.50 22.70 30.00 75044.84 656.74 137332.05
7 4.50 to 5.25 22.70 30.00 78970.74 699.24 144516.46
8 5.25 to 6.00 22.70 30.00 82979.33 746.01 151852.17
9 6.00 to 6.75 22.70 30.00 87568.78 797.63 160250.86
10 6.75 to 7.50 22.70 30.00 92281.25 854.80 168874.69
11 7.50 to 8.25 22.70 30.00 97903.01 916.59 179162.52
12 8.25 to 9.00 22.70 30.00 103838.16 987.28 190023.83
13 9.00 to 9.75 22.70 30.00 110344.24 1066.49 201929.96
14 9.75 to 10.50 22.70 30.00 117114.85 1155.62 214320.18
15 10.50 to 11.25 22.70 27.70 125252.79 4711.46 229212.61
16 11.25 to 12.00 22.70 27.70 133221.45 5152.66 243795.26

Table A .3: R esistances ofw et pole
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