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ABSTRACT This paper considers the properties of a nonparametric estimator developed

for a reliability function which is used in many reliability problems. Properties such as

asymptotic unbiasedness and consistency are proven for the estimator and using U-statistics,

weak convergence of the estimator to a normal distribution is shown. Finally, numerical

examples based on an extensive simulation study are presented to illustrate the theory and

compare the estimator developed in this paper with another based directly on the ratio of

two empirical distributions studied in Zardasht and Asadi (2010).
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1. INTRODUCTION

In reliability theory and related areas, methods of comparison between different reliability

estimators have received a great deal of attention in the research literature. This is because

these estimators allow reliability engineers and other decision makers to assess different

products and their designs, different inspection and maintenance policies, different resource

allocation policies and other similar processes. These comparisons are usually implemented

by applying some well known stochastic orderings to pairs of random variables, usually

interpreted as the lifetimes of two systems of interest. Depending on the applications, these

orderings can be partial orderings or total orderings (refer to Shaked and Shantikhumar

(1993) and Shaked and Shantikhumar (2007) for a comprehensive discussion on various

types of stochastic orderings).

Let X and Y be two random variables with distribution functions F and G and survival

functions F̄ = 1 − F and Ḡ = 1 − G, respectively. Assume that X and Y represent the

lifetimes of two systems of interest, e.g. the products produced by two different companies,

then the quantity P (X > Y ) gives the reliability of X relative to Y . Earlier on, it was

pointed out by Brown and Rutemiller (1973) that in order to ensure that a designed product

is long lasting, one should consider the quantity P (X > Y ) and then choose system with

lifetime X or with lifetime Y depending on whether this probability is greater or less than

0.5 respectively. Indeed, based on whether P (X ≥ Y ) is ≤ 0.5 or > 0.5, there is an ordering

between the two random variables which is called stochastic precedence ordering. We say

X ≤sp Y if P (X ≥ Y ) ≤ 0.5. (For the significance of this precedence ordering and its

2



application, we refer the reader to Samanieo and Hollander (2008), Boland et al. (2004) and

Singh and Misra (1994).)

Dynamic formulations of reliability theory are of considerable interest in the analysis

and comparison of working systems in real time. In fact, when assessing and inspecting

working systems, one is interested in the prospective performance of operating systems and

comparing their residual lifetimes and related quantities in a dynamic setting. Motivated

by this and stochastic precedence ordering, Zardasht and Asadi (2010) have introduced the

reliability function R(t) = P (Xt > Yt) to compare two residual lifetimes Xt = X − t|X > t

and Yt = Y − t|Y > t where X and Y are two independent non-negative continuous random

variables and the symbol X|A represents the random variable X conditioned on the event

A. They have exhibited several properties of R(t) and plotted them for various underlying

distributions.

We note that for t ≥ 0,

R(t) = P (Xt > Yt)

= P (X − t > Y − t | X > t, Y > t)

=
P (X > Y > t)

P (X > t, Y > t)

=

∫∞
t

F̄ (x) dG(x)

F̄ (t)Ḡ(t)
, (1)

provided that F̄ (t) > 0 and Ḡ(t) > 0.

The function R(t) can be fruitfully applied in many reliability problems and we give

here a couple of examples. Firstly, in burn-in procedures (refer to Block and Savits (1997)),

components or systems are subjected to a period of intensive use or accelerated testing for

3



a period of time, say b, prior to being released into general usage. Therefore, the lifetime

of components that survive the burn-in procedure is actually Xb. Thus, R(b) can be used

for comparison between successfully burned-in products as a stochastic precedence ordering.

This has its own advantage as it is also a total ordering. Secondly, from an inspection point

of view, R(t) can be a useful reliability function to consider in general failure models (see Cha

and Mi (2007) and the references therein). Consider a system composed of two components

or parts, say A and B, which are connected to each other in a series format. We assume that

the failure of A causes a minor system failure, Type I failure, whereas that of B causes a

catastrophic failure, Type II failure. If X and Y denote the lifetime of A and B respectively,

then because the lifetime of the system is T = min{X, Y }, it follows that the reliability of

the whole system is predicated on the occurrence of Type II failure and therefore a reasonable

measure of reliability is R(t) = P (Y = T |T > t), i.e. the probability that the component

with lifetime Y causes the system failure given that the system has survived up to time

t. This function is in contrast with a similar failure probability introduced by Cha and Mi

(2007) which is defined as p(t) = P (Y = T |T = t), i.e. the probability that component

B causes the system failure given that the system fails at time t. From an inspection and

maintenance point of view, high values of R(t) suggests that more attention and inspection

should be devoted to maintaining and probable replacement of component B.

Given the potential applications of R(t), it is incumbent on practitioners to estimate R(t)

when no prior information are available on the underlying distributions of X and Y . In this

paper, our objective is to provide a nonparametric estimator of R(t). Let X1, . . . , Xn and
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Y1, . . . , Ym be two independent, random samples from the populations of X and Y respec-

tively. Zardasht and Asadi (2010) have considered the following nonparametric estimator of

R(t) based on empirical distributions and investigated its property by using simulated data:

Rnm(t) =

∑n
i=1

∑m
j=1 I(Xi > Yj > t)∑n

i=1

∑m
j=1 I(Xi > t, Yj > t)

. (2)

(In the sequel, the symbol I(A) will refer to the indicator function of the set A.)

As is well known, a notable deficiency of empirical estimators is that they do not take into

account the smoothness of the corresponding functions being estimated. Also, the empirical

estimators are not able to estimate beyond the largest observation which could lead to large

bias close to the boundaries. If it is known that R(t) is a smooth function of t, then we would

expect to produce a better estimator by applying a kernel density smoother to the empirical

estimator. In the case where t = 0 which corresponds to the static case, Baklizi and Eidous

(2006) have used kernel method to give a nonparametric estimation of P (X > Y ).

Note that R(t) can also be written as

R(t) =

∫∞
t

F̄ (x) dG(x)∫∞
t

F̄ (x) dG(x) +
∫∞

t
Ḡ(x) dF (x)

=
R1(t)

R1(t) + R2(t)
, (3)

where R1(t) =
∫∞

t
F̄ (x) dG(x) and R2(t) =

∫∞
t

Ḡ(x) dF (x). In this paper, we replace F

and G in (3) with their corresponding kernel estimators (see e.g. Azzalini (1981), Wand and

Jones (1995)). Let ki(x) be a continuous kernel density function and Ki(x) =
∫ x

−∞ ki(u)du,

K̄i(x) = 1−Ki(x), i = 1, 2. The kernel estimators of F and G are

F̂ (x) =
1

n

n∑
i=1

K1(
x−Xi

h1

) and Ĝ(y) =
1

m

m∑
j=1

K2(
y − Yj

h2

)
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respectively and their corresponding survival functions estimators are

ˆ̄F (x) =
1

n

n∑
i=1

K̄1(
x−Xi

h1

) and ˆ̄G(y) =
1

m

m∑
j=1

K̄2(
y − Yj

h2

).

Also, the kernel estimators of their density functions f and g are

f̂(x) =
1

nh1

n∑
i=1

k1(
x−Xi

h1

) and ĝ(y) =
1

mh2

m∑
j=1

k2(
y − Yj

h2

)

respectively. Thus, analogous to (3) we propose the following smooth kernel estimator of

R(t):

R̂(t) =
R̂1(t)

R̂1(t) + R̂2(t)
(4)

where

R̂1(t) =

∫ ∞

t

ˆ̄F (x)ĝ(x)dx =
1

nmh2

n∑
i=1

m∑
j=1

∫ ∞

t

K̄1(
x−Xi

h1

)k2(
x− Yj

h2

)dx

and

R̂2(t) =

∫ ∞

t

ˆ̄G(x)f̂(x)dx =
1

nmh1

n∑
i=1

m∑
j=1

∫ ∞

t

K̄2(
x− Yj

h2

)k1(
x−Xi

h1

)dx.

The main objective of this paper is to investigate some key properties of the proposed

estimator defined in (4). The paper is organized as follows. In Section 2, we propose and

provide proofs of some asymptotic properties of R̂(t). Since a key component of kernel

smoothing technique is the selection of an optimal bandwidth, Section 3 is devoted to a

discussion of this important aspect of kernel smoothing. Section 4 looks at a numerical

example and finally, some concluding remarks are given in Section 5.
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2. ASYMPTOTIC PROPERTIES OF R̂(t)

The main purpose of this section is to investigate the asymptotic unbiasedness and

consistency of R̂(t) and to find its asymptotic distribution. We first give a list of reg-

ularity conditions on the distribution functions F and G and kernel densities ki(x) with

Ki(x) =
∫ x

−∞ ki(u)du, K̄i(x) = 1−Ki(x), i = 1, 2, that will be referenced in the theorems to

follow. In the sequel, we also let n′ = min{n,m} and N = n + m.

A1: ki(u) is bounded;

A2:
∫

uki(u)du = 0;

A3:
∫

u2ki(u)du = τ 2
i < ∞;

A4:
∫

k2
i (u)du < ∞;

B: h1, h2 → 0 and nh1,mh2 →∞, and Nh4
1, Nh4

2 → 0, as n′ →∞;

C1: F and G are absolutely continuous with densities f and g, respectively;

C2: F has finite mean, is bounded, continuously differentiable up to the second order and

has bounded second derivative;

C3: g, g′ and g′′ exist, are bounded and continuous.

Under the assumptions A1–A4, B and C2–C3, it follows using standard Taylor series

expansion of the kernel density function that (see, e.g., Wand and Jones (1995))

E[f̂(x)] = f(x) +
1

2
h2

1τ
2
1 f ′′(x) + o(h2

1), (5)

and V ar[f̂(x)] =
1

nh1

f(x)

∫
k2

1(u)du + o

(
1

nh1

)
. (6)
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A similar approach (refer to Azzalini (1981) or Lejeune and Sarda (1992)) also gives

E[ ˆ̄F (x)] = F̄ (x)− 1

2
h2

1f
′(x)τ 2

1 + o(h2
1), (7)

and V ar[ ˆ̄F (x)] =
F̄ (x)F (x)

n
+

2h1

n
f(x)

∫
wK̄1(w)K1(w) dw + o

(
h1

n

)
. (8)

Analogous equations to (5)-(8) hold true for the expectation and the variance of ĝ(y) and

ˆ̄G(y) with obvious changes and will not be displayed here.

The first theorem gives the asymptotic bias and variance of R̂(t).

Theorem 1. Assume conditions A1–A4, B and C1–C3 hold. Then, for any t

E[R̂(t)] → R(t)

and V ar[R̂(t)] → 0

as n′ →∞.

The next theorem gives the asymptotic distribution of R̂(t).

Theorem 2. Assume conditions A1–A4, B and C1-C3 hold and in addition, n
N
→ p, m

N
→ 1−p

where 0 < p < 1 as n′ →∞. Then

√
N(R̂(t)−R(t))

d→ N(0, σ2(t)), (9)

(
d→ represents convergence in distribution). N(0, σ2(t)) represents the normal random vari-

able with mean 0 and variance σ2(t) where

σ2(t) =
1

p
[a2(t)σ11(t) + b2(t)σ21(t)] +

1

1− p
[a2(t)σ22(t) + b2(t)σ12(t)],
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σ11(t) =

∫ ∞

t

[Ḡ(t)− Ḡ(x)]2f(x)dx−R2
1(t) , σ12(t) =

∫ ∞

t

F̄ 2(x)g(x)dx−R2
1(t),

σ22(t) =

∫ ∞

t

[F̄ (t)− F̄ (x)]2g(x)dx−R2
2(t) , σ21(t) =

∫ ∞

t

Ḡ2(x)f(x)dx−R2
2(t),

a(t) =
R2(t)

[R1(t) + R2(t)]2
and b(t) =

−R1(t)

[R1(t) + R2(t)]2
.

Due to their length and being of a somewhat technical nature, we have postponed the proofs

of both theorems to the Appendix.

3. CHOICE OF BANDWIDTHS

The bandwidth h of a kernel density estimator plays an important role in determining

the accuracy of the kernel estimation. It represents a window on each observation and de-

termines the degree of smoothness of the resulting estimator, with increasing smoothness

being achieved as the bandwidth increases. Since the performance of an estimator is com-

monly assessed by the Mean Squared Error (MSE), this criterion is often used as a means of

determining an optimal bandwidth. In our case, the MSE of R̂(t) does not present itself in

a closed form since R̂(t) is a ratio estimator. Therefore, the minimization of the MSE using

first–order condition through differentiation with respect to the bandwidths h1 and h2 is not

a straightforward task. However, there are some classical bandwidth selection methods (cf.

Wand and Jones (1995)) that can be chosen to select appropriate bandwidths for this prob-

lem. In the kernel density estimation context, a well-known and perhaps the most popular

method for estimating bandwidth is Least Squared Cross–Validation (LSCV) introduced by

Rudemo (1982) and Bowman (1984). This method is based on the minimization of the Mean

Integrated Squared Error (MISE) of the estimators, which, when applied to our problem,
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select values h1 and h2 which minimize the following MISE:

MISE{R̂(t)} = E[

∫
[R̂(t)−R(t)]2dt]. (10)

This is equivalent to minimizing

MISE{R̂(t)} −
∫

R2(t)dt = E[

∫
R̂2(t)dt− 2

∫
R̂(t)R(t)dt], (11)

since
∫

R2(t)dt does not depend on h1 or h2. The last term in (11) depends on the unknown

R(t). We therefore estimate this term by the usual method of “leave–one–out” averaging

implicit in cross–validation which is equivalent to choosing h1 and h2 to minimize

C(h1, h2) =

∫
R̂2(t)dt− 2

nm

n∑
i=1

m∑
j=1

∫
R̂−(i,j)(t)I(Xi > Yj > t)dt

where R̂−(i,j)(t) is R̂(t) defined by (4) constructed using all the data points except xi and yj.

However, extensive preliminary simulation trials revealed that the selected bandwidths

obtained through this minimization procedure produce estimators with large bias. This is

conjectured to have arisen due to the functional form of R̂(t), which is a combination of

R̂1(t) and R̂2(t) where h1 and h2 play different role (i.e. in R̂1(t), h1 is used for estimating

of the survival function of X whilst it is used for estimating of the density function of Y in

R̂2(t)). We have therefore adopted the approach of choosing h1 and h2 for R̂1(t) and R̂2(t)

separately by minimizing their corresponding MISE.

Thus, the selection of h1 and h2 in R̂1(t) for estimating R1(t) is reduced to choosing h1

and h2 to minimize

C1(h1, h2) =

∫
R̂2

1(t)dt− 2

nm

n∑
i=1

m∑
j=1

∫
R̂
−(i,j)
1 (t)I(Xi > Yj > t)dt (12)

10



where

R̂
−(i,j)
1 (t) =

∫ ∞

t

ˆ̄F (−i)(x)ĝ(−j)(x)dx,

F̄ (−i)(x) and ĝ(−j)(x) are the kernel estimators of F̄ (x) and g(x) constructed using all data

points except xi and yj respectively.

Similarly, selection of h1 and h2 in R̂2(t) reduces to minimizing

C2(h1, h2) =

∫
R̂2

2(t)dt− 2

nm

n∑
i=1

m∑
j=1

∫
R̂
−(i,j)
2 (t)I(Yj > Xi > t)dt (13)

where

R̂
−(i,j)
2 (t) =

∫ ∞

t

ˆ̄G(−j)(x)f̂ (−i)(x)dx,

Ḡ(−j)(x) and f̂ (−i)(x) are the kernel estimators of Ḡ(x) and f(x) constructed from all the

data points except yj and xi respectively. We note here that

E[Ci(h1, h2)] = MISE{R̂i(t)} −
∫

R2
i (t)dt

i = 1, 2.

4. NUMERICAL RESULTS

Simulation exercises were undertaken to study the performances of our estimator and

assess the performances of this estimator, comparing it with the empirical estimator given

in (2). In the simulation, we considered the following two cases for the distribution of X and

Y respectively:

(i) X and Y are exponentially distributed with means 4 and 5 respectively, i.e.

F̄ (t) = e−t/4, Ḡ(t) = e−t/5.
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(ii) X is exponentially distributed with mean 1 and Y has a Weibull distribution with shape

parameter 2 and scale parameters 1, i.e.

F̄ (t) = e−t, Ḡ(t) = e−t2 .

One can readily show using (1), that in case (i), R(t) = 4/9, and in case (ii)

R(t) = 1− 1√
2rZ(

√
2t +

√
2

2
)

where rZ(t) is the hazard rate of the standard normal random variable, i.e. rZ(t) = Φ′(t)
1−Φ(t)

and Φ(x) is the standard normal cumulative distribution function. The Epanechnikov kernel,

i.e k1(x) = k2(x) = 0.75(1− x2), |x| < 1, is used in both examples.

In each case, we ran 1000 simulation trials of different sizes n = m where:

n = m = 5, n = m = 10, n = m = 30 and n = m = 50.

For each sample and at different values of t, we obtained the optimal bandwidths h1 and h2

through minimization of C1(h1, h2) and C2(h1, h2) and use each set to estimate R̂1(t) and

R̂2(t) separately as discussed in the previous section. Unlike the empirical estimator, the

estimators that appear in the numerator and denominator of out smoothed estimator are

biased. Therefore in our simulations, we have used bootstrapping to reduce their bias (refer

to Hall (1990)). Altogether, 300 replications of bootstrapping were applied. In addition, to

avoid the drawback of the usual kernel smoothing for positive valued random variables (see,

for example, Bagai and Rao (1995)), we applied log transformation to the data noting that

the final results are invariant under this monotonic transformation. For each sample, the
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values of our smooth estimator (4) and empirical estimator (2) were obtained. This is then

repeated for 1000 samples and their corresponding bias (i.e. the average of the estimates

minus R(t)), mean–squared errors (i.e. the average of the sum of the squared difference

between the estimate and R(t)) and relative efficiencies (defined by (14) below) calculated.

Through simulation, we also obtained confidence intervals with nominal confidence level of

0.95 and estimate the total coverage rate, i.e. the proportion of intervals which cover the

true value R(t).

Table 1–Table 2 summarize the results of the 1000 simulation trials for both examples.

The notations Ts(Te), Bs(Be) and MSEs(MSEe) refer to the total coverage rate, bias and

mean–squared error of the smooth estimator (the empirical estimator) respectively. We also

displayed the relative efficiency between the two estimators defined by

eff =
MSEs

MSEe

. (14)

(Table 1–Table 2 TO BE PLACED HERE.)

As is evident from the above tables, the performance of our smooth estimator is generally

better than that of the empirical estimator. Although both estimator underestimate R(t)

for large values of t, the smooth estimator produces better results when considering bias,

mean–squared error and efficiency. The total coverage rates are also slightly better although

they both deteriorate for large values of t. From a practical point of view, the main objective

of the simulation is to show that the performance of the smoothed estimator is comparable
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or exceeds that of the empirical estimator. From the results obtained, we may conclude that

this is indeed the case here. It is anticipated that with larger samples, the improvement of

the smooth estimator over empirical estimator would be further enhanced.

5. CONCLUSION

In this paper, we have considered some properties of a smoothed nonparametric estimator

of a reliability function based on two independent random samples. A nonparametric ap-

proach provides a viable alternative to the conventional method based on knowing the exact

distributions of the survival functions of the underlying variables, which is often not possi-

ble nor realistic in practical applications. This estimator was shown to be asymptotically

unbiased and consistent, and also to converge in distribution to a normal random variable.

An extensive simulation exercise was undertaken to compare between the performance of

this estimator and one which uses directly the empirical distributions of the true underlying

distributions and the results argue favorably for the smoothed estimator.

There are several quantitative measures of reliability, e.g. Mean Residual Life (MRL)

(c.f. Abdous and Berred (2005)), which are used by practitioners in disciplines such as

engineering, medical statistics and finance, to assess the reliability of products and systems.

The method discussed in this paper could be used to estimate these measures when the

underlying distributions are unknown or imprecise.

Finally, some issues have surfaced in the course of conducting this research and they

have to do with the selection of optimal bandwidths when the function to be estimated is in

the form of a ratio, such as R(t). In this paper, the optimal bandwidths were obtained by
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considering the components R1(t) and R2(t) of the ratio separately as discussed in Section

3. Since both estimators are biased, it is expected that the nonparametric estimator of

R(t), will require a much larger sample size than the ones used here in order to achieve a

satisfactory level of accuracy. Thus, it will be necessary to seek an alternative method of

selecting bandwidths in order to reduce bias when estimating a reliability function of the

type considered in this paper.
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APPENDIX

Proof of Theorem 1.

Under the given assumptions and using the equations (5) and (7) we obtain

|E[R̂1(t)]−R1(t)| ≤
∫ ∞

t

|E[ ˆ̄F (y)]− F̄ (y)|E[ĝ(y)]dy +

∫ ∞

t

F̄ (y)|E[ĝ(y)]− g(y)|dy

≤ O(h2
1)[

∫ ∞

t

g(y)dy +
1

2
h2

2τ
2
2

∫ ∞

t

g′′(y)dy] + O(h2
2) = O(h2

1 + h2
2),

where the last equality follows by omitting the smaller order terms. Thus, it follows that

E[R̂1(t)] = R1(t) + O(h2
1 + h2

2). (15)

Similarly, it can be shown that

E[R̂2(t)] = R2(t) + O(h2
1 + h2

2). (16)
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Under the given conditions, one can easily show that E[ ˆ̄F (x) ˆ̄F (y)] → F̄ (x)F̄ (y) and E[ĝ(x)ĝ(y)] →

g(x)g(y) as n′ →∞. Since

E[R̂2
1(t)] =

∫ ∞

t

∫ ∞

t

E[ ˆ̄F (x) ˆ̄F (y)]E[ĝ(x)ĝ(y)]dx dy,

applying dominated convergence theorem and (15) imply that V ar[R̂1(t)] → 0 as n′ → ∞.

Likewise, V ar[R̂2(t)] → 0 as n′ → ∞. Also, using Holder’s inequality in conjunction with

(15) and (16), one can show that E[R̂1(t)−R1(t)][R̂2(t)−R2(t)] goes to zero as n′ →∞.

Expanding R̂1(t)

R̂1(t)+R̂2(t)
in a Taylor series about (R1(t), R2(t)), it follows that

R̂(t)−R(t) =
R2(t)

[R1(t) + R2(t)]2
[R̂1(t)−R1(t)]− R1(t)

[R1(t) + R2(t)]2
[R̂2(t)−R2(t)]

+ o

(√
[R̂1(t)−R1(t)]2 + [R̂2(t)−R2(t)]2

)
. (17)

Since V ar[R̂1(t)] → 0 and V ar[R̂2(t)] → 0 as n′ → ∞, then [R̂1(t) − R1(t)]
2 + [R̂2(t) −

R2(t)]
2 = op(1) by Chebyshev’s inequality. Therefore, the last term in (17) is op(1) and this,

along with (15) and (16), proves asymptotic unbiasedness. Finally, squaring both sides of

(17) and using the second moment properties of R̂1(t) and R̂2(t) stated earlier, consistency

will follow.

Proof of Theorem 2.

Let

ψ1t(Xi, Yj) =
1

h2

∫ ∞

t

K̄1(
y −Xi

h1

)k2(
y − Yj

h2

)dy,

ψ2t(Xi, Yj) =
1

h1

∫ ∞

t

K̄2(
y − Yj

h2

)k1(
y −Xi

h1

)dy.

16



Then, we have

R̂1(t) =
1

nm

n∑
i=1

m∑
j=1

ψ1t(Xi, Yj),

R̂2(t) =
1

nm

n∑
i=1

m∑
j=1

ψ2t(Xi, Yj).

R̂1(t) and R̂2(t) are in the form of a two–sample U–Statistics and we can use the projection

method of Hajek (1968) to approximate R̂1(t) and R̂2(t) by their projections R̂∗
1(t) and R̂∗

2(t)

defined by

R̂∗
1(t)− E[R̂1(t)] =

1

n

n∑
i=1

ϕ11(Xi) +
1

m

m∑
j=1

ϕ12(Yj),

R̂∗
2(t)− E[R̂2(t)] =

1

n

n∑
i=1

ϕ21(Xi) +
1

m

m∑
j=1

ϕ22(Yj),

and where

ϕ11(x) = E[ψ1t(Xi, Yj)|Xi = x]− E[R̂1(t)], ϕ12(x) = E[ψ1t(Xi, Yj)|Yj = x]− E[R̂1(t)],

ϕ21(x) = E[ψ2t(Xi, Yj)|Xi = x]− E[R̂2(t)], ϕ22(x) = E[ψ2t(Xi, Yj)|Yj = x]− E[R̂2(t)].

Assuming A1–A4 hold, then Theorem 2.1 in Grams and Serfling (1973) shows that both

R̂1(t)− R̂∗
1(t) and R̂2(t)− R̂∗

2(t) are asymptotically negligible and therefore R̂1(t) and R̂2(t)

have the same asymptotic distributions as R̂∗
1(t) and R̂∗

2(t) respectively. Let

Znm =
√

N(R̂∗
1(t)− E[R̂1(t)], R̂

∗
2(t)− E[R̂2(t)]) =

√
N [

1

n

n∑
i=1

Z1i +
1

m

m∑
j=1

Z2j]

where

Z1i = (ϕ11(Xi), ϕ21(Xi)) and Z2j = (ϕ12(Yj), ϕ22(Yj)).

17



Since the summands of R̂∗
1(t) and R̂∗

2(t) are independent, they may be dealt with by stan-

dard central limit theorem. We will show that Znm converges in distribution to a bivariate

normal distribution. To accomplish this, it is sufficient, using the Cramér-Wold device, to

prove that c′Znm converges to a normal distribution for any c = (c1, c2) in R2. For any

i = 1, 2, . . . , n, we have

ϕ11(Xi) + E[R̂1(t)] =

∫ ∞

t

K̄1(
y −Xi

h1

)E[
1

h2

k2(
y − Y1

h2

)]dy, (18)

and V ar[ϕ11(Xi)] =

∫ ∞

−∞

(∫ ∞

t

K̄1(
y − x

h1

)E[
1

h2

k2(
y − Y1

h2

)]dy

)2

f(x)dx

−E2[R̂1(t)]. (19)

Let σ11(t) be the limit of V ar[ϕ11(Xi)] on letting n′ →∞. Firstly, under the given conditions

and Theorem 2.1, as m →∞, applying the bounded convergence gives

V ar[ϕ11(Xi)] →
∫ ∞

−∞

(∫ ∞

t

K̄1(
y − x

h1

)g(y)dy

)2

f(x)dx−
(∫ ∞

t

E[ ˆ̄F (x)]g(x)dx

)2

=

∫ ∞

−∞
[Ḡ(t)K̄1(

t− x

h1

)−
∫ ∞

t−x
h1

k1(v)Ḡ(x + h1v)dv]2f(x)dx (20)

−
(∫ ∞

t

E[ ˆ̄F (x)]g(x)dx

)2

after applying an integration by parts and a change of variables. We next note that when

x < t, the squared terms in the integrand of (20) converges to 0 as h1 → 0 and when x > t

it converges to

(Ḡ(t)K̄1(−∞)− Ḡ(x)

∫ ∞

−∞
k1(v)dv)2 = (Ḡ(t)− Ḡ(x))2.

Therefore, it follows that

σ11(t) =

∫ ∞

t

[Ḡ(t)− Ḡ(x)]2f(x)dx−R2
1(t). (21)

18



Similarly,

ϕ12(Yj) + E[R̂1(t)] =
1

h2

∫ ∞

t

E[K̄1(
y −X1

h1

)]k2(
y − Yj

h2

)dy,

and V ar[ϕ12(Yj)] =

∫ (
1

h2

∫ ∞

t

E[K̄1(
y −X1

h1

)]k2(
y − z

h2

)dy

)2

g(z)dz − E2[R̂1(t)].

Let σ12(t) be the limit of V ar[ϕ12(Yj)] as n′ →∞. As n →∞,

V ar[ϕ12(Xi)] →
∫ ∞

−∞

(
1

h2

∫ ∞

t

F̄ (y)k2(
y − z

h2

)dy

)2

g(z)dz −
(∫ ∞

t

F̄ (x)E[ĝ(x)]dx

)2

=

∫ ∞

−∞

(∫ ∞

t−z
h2

F̄ (z + h2v)k2(v)dv

)2

g(z)dz −
(∫ ∞

t

F̄ (x)E[ĝ(x)]dx

)2

.

(22)

Then, letting h2 → 0 in (22), we obtain

σ12(t) =

∫ ∞

t

F̄ 2(z)g(z)dz −R2
1(t) (23)

using the same reasonings as in the previous case.

Likewise, we can show that as n′ →∞

V ar[ϕ21(Xi)] → σ21(t) =

∫ ∞

t

Ḡ2(z)f(z)dz −R2
2(t) (24)

and

V ar[ϕ22(Yj)] → σ22(t) =

∫ ∞

t

[F̄ (t)− F̄ (x)]2g(x)dx−R2
2(t). (25)

Let

ϕ̃11(Xi) =

∫ ∞

t

K̄1(
y −Xi

h1

)E[
1

h2

k2(
y − Y1

h2

)]dy,

and

ϕ̃21(Xi) =
1

h1

∫ ∞

t

E[K̄2(
y − Y1

h2

)]k1(
y −Xi

h1

)dy.
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Notice that E[ϕ̃11(Xi)] = E[R̂1(t)] and E[ϕ̃21(Xi)] = E[R̂2(t)]. Then,

Cov[ϕ11(Xi), ϕ21(Xi)] = E [ϕ̃11(Xi)ϕ̃21(Xi)]− E[R̂1(t)]E[R̂2(t)]

= E
[
ϕ̃11(Xi){ϕ̃21(Xi)− E[R̂2(t)]}

]
+ E[R̂2(t)]{E[ϕ̃11(Xi)]− E[R̂1(t)]}

= E
[
ϕ̃11(Xi){ϕ̃21(Xi)− E[R̂2(t)]}

]
.

Under assumption C3,

|ϕ̃11(Xi)| ≤
∫ ∞

t

K̄1(
y −Xi

h1

)[g(y) + O(h2)]dy

≤ sup
y

g(y)h1

∫ ∞

t−Xi
h1

K̄1(w)dw + O(h2)h1

∫ ∞

t−Xi
h1

K̄1(w)dw

= O(h1) + O(h1 h2)

almost surely, hence

|Cov[ϕ11(Xi), ϕ21(Xi)]| ≤
∫

ϕ̃11(x)|ϕ̃21(x)− E[R̂2(t)]|f(x)dx

≤ 2E[R̂2(t)](O(h1) + O(h1 h2)).

Therefore, it follows that

lim
n′→∞

Cov[ϕ11(Xi), ϕ21(Xi)] = 0.

Similarly, one can show that

lim
n′→∞

Cov[ϕ12(Yj), ϕ22(Yj)] = 0.

Let σ2
nm(t) = limn′→∞ V ar(c′Znm); using the assumptions n

N
→ p and m

N
→ 1− p where

0 < p < 1, it follows that

σ2
nm(t) =

1

p
(c2

1σ11(t) + c2
2σ21(t)) +

1

1− p
(c2

1σ22(t) + c2
2σ12(t)) > 0.
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Under assumption A1, ϕij(.), i, j = 1, 2 are bounded and the conditions stated in Corollary

3.1, Grams and Serfling (1973) hold, giving rise to the following Berry-Esséen type bound:

sup
x
|Pr

[
(c′Znm/

√
V ar(c′Znm) ≤ x

]
− Φ(x)| = O(N− 1

2
+ε)

for every ε > 0 and where Φ(x) refers to the standard normal cumulative distribution

function. Therefore, as N →∞, we have

c′Znm
d→ N(0, σ2

nm(t))

and hence

Znm
d→ N(0,

1

p
Σ1 +

1

1− p
Σ2)

where

Σ1 =




σ11(t) 0

0 σ21(t)


 and Σ2 =




σ12(t) 0

0 σ22(t)


 .

Finally, let Z̃nm =
√

N(R̂1(t)−R1(t), R̂2(t)−R2(t)), then we obtain

Z̃nm =
√

N(R̂1(t)− E[R̂1(t)], R̂2(t)− E[R̂2(t)]) +
√

N(E[R̂1(t)]−R1(t), E[R̂2(t)]−R2(t))

=
√

N(R̂1(t)− E[R̂1(t)], R̂2(t)− E[R̂2(t)]) +
√

N(O(h2
1 + h2

2), O(h2
1 + h2

2))

where the last equation follows from equations (15) and (16). Therefore, under assumption

B, Slutsky’s theorem implies

Z̃nm
d→ N(0,

1

p
Σ1 +

1

1− p
Σ2)

and a simple application of the delta method (Lehmann 1999), p. 85) completes the proof of

the theorem.

21



BIBLIOGRAPHY

Abdous, B. and Berred, A. (2005). Mean residual life estimation. Journal of Statistical

Planning and Inference, 132, pp. 3–19.

Azzalini, A. (1981). A note on the estimation of a distribution function and quantiles by a

kernel method. Biometrika, 68, 326 –328.

Bagai, I., and Rao, B.L.S., P, (1995). Kernel Type Density Estimators for Positive Valued

Random Variables Sankhya, Series A, 57, 56-67.

Baklizi, A., and Eidous, O. (2006). Nonparametric Estimation of P (X < Y ) Using Kernel

Methods. Metron, vol. LXIV,1, 47-60.

Block, H. and Savits, T. (1997). Burn–in. Statist. Sci., 12, 1–13.

Boland, P.J., Singh, H., Cukic, B. (2004). The stochastic precedence ordering with applica-

tions in sampling and testing. J. Appl. Prob., 41, 73-82.

Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of

density estimates. Biometrika, 71, 353–360.

Brown, G. G., and Rutemiller, H. C. (1973). Evaluation of P (X > Y ) when both X and Y

are from Three-Parameter Weibull distributions. IEEE Trans. on Reliab., 22, 78–82.

Cha, J. H. and Mi, J. (2007). Some Probability Functions in Reliability and Their Applica-

tions. Naval Research Logistics, 54, 128–135.

22



Grams, W.F. and Serfling, R.J. (1973). Convergence rates for U–Statistics and related

statistics. The Annals of Statistics, 1, 153–160.

Hajek, J. (1968). Asymptotic normality of simple linear statistics under alternatives. Ann.

Math. Statist., 39, 325–346.

Hall, P. (1990). Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing

Parameter in Nonparametric Problems. Journal of Multivariate Analysis, 32, 177-203.

Jones, M.C. and Foster, P.J. (1996). A simple nonnegative boundary correction method for

kernel density estimation. Statistica Sinica, 6, 1005–1013.

Lejeune, M. and Sarda, P. (1992). Smooth estimators of distribution and density functions.

Comput. Statist. Data Anal., 14, 451–471.

Lehmann, E. L. (1999). Elements of Large-Sample Theory. New York: Springer–Verlag.

Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scan. J.

Stat., 9, 65–78.

Samanieo, F. J., and Hollander, M. (2008). On Comparing the Reliability of Arbitrary Sys-

tems via Stochastic Precedence. Advances in Mathematical Modeling for Reliability, Bedford,

T., Quigley, J., Walls, L., Alkali, B., Daneshkhah, A. and G. Hardman (Editors), 129–137.

Singh, H., Misra, N. (1994). On redundancy allocations in systems. J. Appl. Prob., 31,

1004–1014.

Shaked, M., and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications.

23



Academic Press.

Shaked, M., and Shanthikumar, J. G. (2007). Stochastic Orders. Springer.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. London: Chapman and Hall.

Zardasht, V. and Asadi, M. (2010). Evaluation of P (Xt > Yt) when both Xt and Yt are resid-

ual lifetimes of two systems. Statistica Neerlandica, doi:10.1111/j.1467-9574.2010.00464.x

24


