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Abstract 
Liquid marbles are micro reservoirs of fluid surrounded by a powder shell. Their unique properties 

show promise for high-value technological applications in the medical, biotechnology, chemical and 

pharmaceutical industries. In this study, liquid marbles were prepared from six mixtures of water and 

glycerol by releasing droplets from different heights onto a loosely packed powder bed using a 1mL 

syringe. Pictures of the liquid marbles were taken with a stereo microscope (SMZ series) with a 3MP 

Motic camera. The powders used were Aerosil R202, hydrophobic glass ballotini and PTFE spheres.  

 

In this paper, our previous proposed qualitative framework for liquid marble formation via solid 

spreading coefficient mechanism was updated in light of recent new research and the quantitative 

criteria for each step was established and validated. The last step of the framework was modified to 

reflect the physical flow mechanism now understood to be responsible for liquid marble formation. 

The revised framework presents the step by step process and quantitative criteria for liquid marble 

formation via a preformed droplet template. In addition, new frameworks for the formation of liquid 

marbles via the mechanical dispersion regime and for the formation of hollow granules were also 
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developed and validated. These frameworks give a better understanding of the mechanisms 

controlling the granulation of hydrophobic particles to form liquid marbles and provide guidance on 

how to mass produce liquid marbles and hollow granules.  

Graphical Abstract 

The previously proposed qualitative framework for liquid marble formation was updated in light of 

new research. The revised framework presents the process steps and quantitative criteria for liquid 

marble formation via a preformed droplet template as well as new frameworks for the mechanical 

dispersion regime and for hollow granule formation.  

 
 
Research Highlights 
 

• Presents an updated quantitative framework for liquid marble formation  

• Formation via drop templates or mechanical dispersion are both covered. 

• Contact angle and mixing energy are important parameters  

• Framework for hollow granule formation also proposed 

 
 

Keywords: Liquid marble; hydrophobic granulation; dry water; non-wetting; hollow granule.  

 

1. Introduction 

“Liquid marbles” are liquid droplets covered with an exterior shell of a hydrophobic powders, 

and are able to roll and bounce like glass marbles but deform and flex like a fluid [1-2]. Non stick 

liquid marbles have attracted significant attention of researchers in the past decade, due to their 
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promising technological applications [3] in biotechnology [4], chemical and mechanical engineering 

[4-12], and are already used in several commercial cosmetics [13] (e.g. Dior IOD AquaPowder) and 

hair care products (e.g. Schwarzkopf  Osis powder).  Liquid marbles are also promising candidates 

to be applied in the biomedical and genetic analysis fields where 2D micro fluidics and lab-on-chip 

methods are used to quickly analyse very small amounts of materials [8, 14-15].  Liquid marbles, 

also known as “dry water” literally repel water, bounce off after an impact and slip on a surface. 

Liquid marbles can be used as micro reservoirs, containing up to 98% w/w water [16] which can 

move quickly without any leakage as the force needed to move these marbles on solid surfaces is 

extremely small because of the diminished area of liquid-solid contact [6, 14-15, 17].  

 

Single liquid marbles can be prepared by rolling or shaking a single drop of fluid on a bed of fine 

hydrophobic particles [1]. There are now several studies on liquid marble formation at small scale 

[1-3, 5-7, 11-12, 14-15, 17-19]  but few studies on large scale production of liquid marbles using 

conventional granulation equipment are reported in the literature [16, 20-22] 

 

Aussillous and Quere [1] were the first to report liquid marbles and several studies have focused 

on the properties of individual liquid marbles, including their  robustness and possible methods for 

setting the marbles in motion [2, 18] , electrowetting [15], methane storage [23] and gas sensing [9-

10] .  

 

The evaporation rate of the liquid marble is an important parameter to ensure that liquid remains 

in the marble until it reaches its target location. If the liquid is volatile and evaporates easily, the 

liquid marble will deform and collapse. The life time of a liquid marble depends on the volatility of 
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the fluid, the chemical nature and particle size of the hydrophobic powder, and the powder wall 

structure. Gao and McCarthy [19] formed ionic liquid marbles by using fluoride containing polymers 

(OTFE, PTFE), and these ionic liquid marbles remained floating on a water surface for a week, 

compared to hydrophobic silica liquid marbles which floated for a minute before coalescing. Dandan 

and Erbil [14] studied the life time of graphite liquid marbles in comparison with water droplets of 

the same size. They found that graphite liquid marbles more than twice as long as a pure water 

droplet.   

 

The liquid marble powder wall hinders evaporation of the droplet but is the most poorly 

understood contributor to the liquid marble lifetime.  Investigation of the internal liquid marble 

structure using confocal microscopy [24]  has shown that the liquid marble wall is composed of a 

combination of mono and multi layers of particles. Coarse particles (above 50 microns in size) 

formed mono layers, while fine particles formed a multi-layered powder shell.  Bhosale et al. [25] 

also reported that cohesive powders were more likely to form a multi-layer of particles on the liquid 

surface. Nguyen et al.  [24]  found that the extent of penetration of coarse particles into the liquid 

core was much less than fine particles. Larger particles tend to float on the top of the liquid core 

instead of submerging into the liquid core.  

 

 

 In our previous paper [26], a preliminary framework for liquid marble formation was proposed for 

formation of a stable, spherical, liquid marble from a single drop via “solid spreading nucleation” 

[22].  The final step of the framework postulated that the liquid marble formation was most likely 

driven by surface energy and could be described by the solid over liquid spreading coefficient, λSL 
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[27]. However, a fresh thermodynamic analysis [28] and calculations [29] of the existing solid-liquid 

spreading coefficient revealed that the existing solid-liquid spreading coefficient theory is not able to 

predict whether a liquid marble will form. Instead, a proportional relationship was found between 

kinetic energy and the percentage of liquid marble coverage, demonstrating that the kinetic energy of 

impact is responsible for formation of liquid marbles [29] . The shell appears to be formed by a 

physical flow mechanism during drop impact.  The kinetic energy from impact causes an increase in 

drop surface area due to the drop deformation. The subsequent drop recoil creates fluid flow which 

entrains the powder and forms the powder shell [30-31].  Increasing the drop release height (and 

therefore increasing the kinetic energy of impact) increases the liquid marble powder coverage.  

 

McEleney et al. [32] also found that kinetic energy is required for liquid marble formation, and 

reported that the surface coverage decreases with increasing particle size. If the particle size is large, 

the kinetic energy of shaking or rolling the drop may not produce enough kinetic energy to entrain 

the large particles on the liquid surface. More vigorous agitation (such as mixing in a granulator) 

would be required for complete surface coverage. 

 

These results supported separate, parallel observations of the role of mixing intensity during 

large scale production of liquid marbles. In a series of related papers, Forny et al. [16, 21, 33-34] 

reported powder encapsulation of water with different level of hydrophobicity fumed silica powder 

(Aerosil R972, R812S) in two different vertical axis mixers – a “high shear” mixer with knife blades 

and a “low” shear Triaxe mixer with rotating gyrating paddles. They also concluded that the kinetic 

energy is the key to liquid marble formation [16].  Forny et al. used two alternate methods to add 

water to the silica powder: direct loading of the liquid and powder into the mixer prior to 
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commencing mixer operation; and by atomization over 3-4 minutes. In the low shear Triaxe mixer, 

atomization was required to form liquid marbles but they collapsed quickly to form a foam or 

mousse. The high shear mixer was more successful and liquid marbles formed very quickly (approx 

10 seconds). Using the more hydrophobic silica powder (R812S) and high shear processing 

conditions, up to 98% w/w water was able to be encapsulated with powder in the high-shear mixer. 

Formation of stable silica covered drops was most effective at the speeds of 12000 min-1 or higher in 

the high shear mixer with knife-edged impeller blades. Below this speed, the water formed a puddle 

at the base of the bowl and could not be successfully dispersed through the powder. Atomization into 

the high-shear mixer was not attempted. As the hydrophobicity of the silica powder decreased, the 

system became less stable, requiring lower impeller speed and more powder to encapsulate the same 

volume of liquid. Less hydrophobic silica powders were also more sensitive to shear conditions and 

collapse of the liquid marbles into a foam or mousse was reported [21]. The time for collapse 

reduced as the impeller speed and applied shear increased.   

 

Binks and Murakami [35] also studied the transformation of particle-stabilized aqueous foam 

into water-in-air powder (dry water) and vice versa in a system of air, water and fumed silica nano-

particles with different degrees of hydrophobicity. The inversion of the air-water-particles system 

could be achieved in two ways: (i) changing the particle hydrophobicity at constant air/water ratio; 

or (ii) changing the air/water ratio at fixed particles wettability (Figure 1). If more fluid is added to a 

group of liquid marbles (without also adding more powder), the liquid will gradually excluded the 

air and the resulting phase inversion will create a mousse at high liquid contents.  
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Forny et al.  summarized the investigated the effect of powder hydrophobicity and several process 

variables on the formation of the powder encapsulated liquid and developed a regime map (which 

they termed a “state diagram”) [34] shown in Figure 2, which predicts the formation of three types of 

final products as a function of the contact angle of the system and the energy per unit mass applied 

to the process Ep. If insufficient energy is applied during mixing, the liquid and powder remains as 

two separate phases.  The applied energy per unit mass must be above a certain minimum threshold 

(Ep)min for the liquid to be effectively dispersed through the powder to form liquid marbles.  

However, further increases in the energy applied per unit mass eventually exceed a maximum energy 

threshold (Ep)max, which causes the liquid marbles to collapse into a foam or mousse. For liquid 

marble formation, the energy applied per unit mass Ep should be between (Ep) min and (Ep) max  [34]. 

The quality of final product at very high contact angle (in the right part of the diagram) is uncertain. 

The map also summarises that liquid marble formation in highly energetic processes such as high-

shear blenders requires highly hydrophobic particles to avoid forced immersion of the particles into 

the fluid, and while lower energy processes  can use moderately hydrophobic particles. 

 

In all of the studies discussed so far, the liquid marbles were the desired end product. Hapgood et al 

[22] was the first researcher who dried liquid marbles to form hollow granules at a larger scale 

although McEleney et al. [32] later reported the formation of a hollow granule shell after 

polymerising individual poly-methylmethacralate (PMMA) liquid marbles.  In both cases, the final 

product of hollow granules was obtained by removing the interior liquid i.e. the formation of liquid 

marbles represents an intermediate product. “Designer” granules with a controlled hollow internal 

structure are ideal for high-value applications in the pharmaceutical, food and cosmetic industries.  
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Hapgood et al.  [22] produced hollow granules in a 2L granulator using a formulation of 70 wt% 

of a hydrophobic drug powder, 20% microcrystalline cellulose and 4% hydroxypropyl cellulose 

binder as hydrophilic excipients plus 1% sodium lauryl sulfate surfactant (added dry to the powder 

blend). The hollow granules were strong enough to withstand the downstream milling process as the 

excipients stabilized the powder shell to allow the hollow structure to be preserved during drying.  

 

A follow-up study of large scale production of liquid marbles and hollow granules [20] 

investigated the effect of liquid to powder mass ratio on the morphology and particle size 

distribution of hollow granules. Marbles were formed by spraying a HPC binder solution onto 

hydrophobic silica (Aerosil R202). The optimum L:S ratio was defined as the point where the raw 

fine particles were granulated but fewer flattened or stretched hollow granules were produced. If the 

nucleation process starts with a preformed template droplet (e.g. spraying liquid), the final granule 

size increases and the amount of un-granulated fine particles decreases as the L:S ratio increases. In 

contrast, Forny et al. [16, 21, 33-34] used the shear forces generated by the impeller to disperse the 

liquid through the powder, and they found no effect of L:S ratio on particle size. This implies that 

the effect of the liquid to solid ratio varies, depending on whether the fluid is atomised to form 

discrete drop templates, or added in bulk where an agitator disperses the fluid through the powder. 

 

Bhosale et al. [25] investigated the strength of liquid marbles formed with PTFE (7-12µm) and 

two types of treated fumed silica powder. High surface area nano-particles (e.g. Aerosil) created 

more uniform powder shells through uniform coverage of the liquid–vapour interface. These nano-

powder shells formed an “elastic” membrane that made the liquid marbles mechanically robust in 

comparison with conventional liquid marbles, as they were able to withstand higher compressive 
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stresses during drying. This work suggests that nano-powders may be more likely to successfully 

form hollow granules.  

 

Drying temperature is also an important variable when forming stable hollow granules from a 

liquid marble precursor [36]. Higher drying temperature, smaller or nano-sized particles and higher 

binder concentration tended to promote the formation of spherical hollow granules. The hollow 

granule survival rate was directly proportional to binder viscosity for HPMC and PVP. However for 

HPC binder, the survival rate was essentially constant regardless of HPC concentration due to 

precipitation of the HPC binder above the cloud point temperature (45ºC) [36]. 

 

This paper updates and validates the qualitative preliminary framework for liquid marble 

formation proposed previously [26], incorporating the more recent knowledge generated by several 

recent studies of liquid marble formation. Quantitative criteria for each step are determined and 

validated with the best data currently available. In addition, we extend the framework to cover the 

additional required steps for the formation of liquid marbles via mechanical dispersion, linking work 

by separate research teams, and propose a new qualitative framework for the formation of hollow 

granules from liquid marbles.  

 

2.  Materials and Methods 

Glass ballotini spheres (ρ=2.5 g/cm3, Potters Industries Pty Ltd.) in three size grades (AC, AE, 

AG/AH with 191, 121, 65 µ m mean particle size, respectively) were used to form liquid marbles. In 

order to make the glass beads hydrophobic, SIGMACOTE solution (chlorinated organopolysiloxane 

in heptane, Sigma Aldrich Pty Ltd.) was used. Two additional hydrophobic powders were used: 
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Polytetra fluoroethylene (PTFE) with four different particle size grades (1, 12, 35, and 100 µ m, 

ρ=2.1 g/cm3, Sigma Aldrich Pty Ltd), and fumed silica Aerosil R202 with a primary particle size of 

16 nm (Degussa, Germany). 

 

Several different binder solutions were used:  Distilled water, poly-ethylene glycol (PEG200, 

Sigma Aldrich Pty Ltd).  and six solutions of distilled water and glycerol (99%, Sigma Aldrich 

Rieldel-deHaen) . Food dye was added to the glycerol solutions to assist with visual observations. 

(See reference [29] for fluid properties),  

 

Liquid marbles were prepared by releasing individual droplets from a 1mL syringe with a 18g 

needle approximately 2cm above a loosely packed powder bed [29]. The droplet volumes varied 

depending on the fluid used, and the drop diameters are given in Table 1. Additional experiments 

were performed by releasing a droplet from different heights on a powder bed to investigate the 

effect of kinetic energy and to validate the dimensionless groups predicting drop shattering. Pictures 

of the liquid marbles after impact were taken with a stereo microscope (SMZ series) with a 3MP 

Motic camera [29].  

 

3. Results and Discussion  

3.1  Droplet and particle size 

To form a liquid marble, the preliminary framework [26] proposed that each drop must be much 

larger than the size of the primary powder particles (i.e. dd>>dp) in order for the particle to spread 

around the droplet template. The question is: to what extent must the droplet size be larger than the 

particle size? Experimental and literature data were reviewed to find the quantitative correlation 
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between droplet size and particle size. Table 1 summarizes the actual droplet and particle sizes that 

were used in both our previous studies [20, 26, 29, 36]  and other studies of liquid marble formation 

in literature [1, 14, 16, 19, 25, 32, 35]. Table 1 shows that for a wide range of powder and liquid 

combinations, a liquid marble forms if the droplet diameter is at least 25 times of the particle 

diameter. Therefore, the first step of the framework was modified to include the precise ratio of 

droplet diameter to particle diameter, dd >25 dp, as presented in Figure 3.  

 

Figure 3 also shows all the other modifications to the framework which will be discussed in this 

paper. Figure 3 applies only to droplet-template controlled liquid marble formation. Formation in the 

mechanical dispersion regime will be discussed later.  

 

Note that the particle size presented in Table 1 is the reported primary particle size. In practice, 

several of these powders were aggregated. For example, the reported manufactured particle size for 

Aerosil used in several studies [20-21, 25] is 12-16 nm, but this powder is tend to self-agglomerate 

to form large and loose networks with a much larger particle size between 1 to 30 µm. Graphite 

powder has a primary particle size of 2 to 30 µm but 60% of the graphite was aggregated in clusters 

between 10 and 20 µm [14]. PTFE 1, PTFE 12, and PTFE 35 with reported particle size of 1, 12 and 

35 µm, respectively [29], were also noted to agglomerate although the agglomerate particle size was 

not measured. Since the role (if any) of the powder aggregates is not known, we have used the 

primary particle size as the reference particle size.  

3.2  Dimensionless groups for drop impact and shattering 

In addition to the requirement that the droplet size be at least 25 times the particle size, the droplet 

size must also be small enough to form a spherical drop on powder bed rather than a distorted pool 
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or puddle. For this reason, the next step of liquid marble formation flow chart is Bond number Bo 

(Eq. 1), which represents the ratio of surface tension and gravity forces.  The Bond number has been 

shown by several groups to accurately predict whether a liquid marble will be spherical [1-2, 17, 32].  

   
γ

ρ 2gR
Bo =                                                              (1) 

If the Bond number is below one, the surface tension forces dominate and the droplet is pulled into a 

spherical shape liquid marble (refer to Figures 5 and 6). If the Bond number is above one, the droplet 

forms a puddle shape on a powder bed surface [2]. Figure 4 shows a puddle shaped PEG200 liquid 

marble on a bed of hydrophobic glass beads with Bo=1.14.  

 

Ideally, the drop should land on the powder and survive the impact without breaking or shattering 

into smaller satellite droplets. Previous studies [37-38] suggested that drop shattering could be 

predicted using the Weber number We (equation 2) and the Ohnesorge number Oh (equation 3)   

LV

dL vd
We

γ
ρ 2

=                                                        (2) 

5.0)( R
Oh

LVLγρ
µ=                                                    (3) 

These papers suggested that the critical criteria to prevent breakage were We<1000 and Oh > 0.05 

[37-38]. A more recent study looked at the effect of packing fraction on drop impact behaviour and 

found that the Weber number should be less than 750 to avoid shattering [39]. Table 2 presents the 

calculated value of Bond number Bo, Weber number We and Ohnesorge number Oh for the 

experimental data in a previous study [29] and indicates whether the drop shattered or remained 

intact after impact on the powder surface.  Figures 5 and 6 show several examples of conditions in 
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Table 2 where droplets survived impact without shattering. Figure 7 shows two examples of 

shattered droplets where the We >1000.  

 

Generally, the data in Table 2 supports the We<1000 limit [37-38] to prevent drop shattering. 

However, the additional criteria of Oh>0.05 to prevent shattering [38] is not consistent with the 

experimental results. There are several cases in Table 2 where Oh was below 0.05, but the droplet 

did not break because the Weber number was below the critical limit of 1000. For example, a 3.4 

mm 20% glycerol solution drop released on PTFE100 from 15 cm survived even though Oh was far 

less than 0.05 (We=159 and Oh=0.003). See also images (a) to (e) in Figure 4 where Oh<0.05 but the 

drop did not shatter after impact. Table 2 also contains data where the Weber number predicts 

shattering but the Ohnesorge number does not (i.e. where We >1000 but Oh >0.05). In these cases, 

the droplet shattered (e.g. 3 mm water droplet on glass beads (AG) with We=3000 and Oh=0.08).  

 

The drop shattering behaviour is also summarized in Figure 9 which plots Oh versus We and 

indicates whether the drop shattered into smaller satellite droplets on impact (filled symbols) or  

survived intact. Figure 9 clearly shows that the Weber number criterion of We>1000 successfully 

predicts that the drop will shatter after impact. In contrast, the value of Oh does not appear to be 

predictive at all.. Thus, the Oh number can be removed from the liquid marble formation framework. 

Based on our experimental data, the revised framework (Figure 3) recommends We<1000 to prevent 

drop shattering, which is in agreement with the earlier conclusions [37]. There is little data between 

750<We<1000 to support dropping the limit to 750 in line with the most recent study [39], and the 

role of the powder packing fraction [39] on drop impact and liquid marble formation is an area for 

future work 
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3.3  Contact angle 

Stable liquid marbles are formed from hydrophobic powders, since the fluid must have a contact 

angle θ greater than 90o with the powder to prevent penetration of the drop into pores of the powder 

bed. Table 3 presents the contact angle of various powders based on the values reported in the 

literature. Direct data for Aerosil R202 is not available. However, Forny et al. [16] reported the 

following ranking for different grades of fumed silica in order of increasing hydrophobicity: 

                                       R711 < R972 < R812S < R202 

The contact angle for R812S is 113º [34]. Thus, we conclude that Aerosil R202, which is the most 

hydrophobic silica powder, has a contact angle larger than 113º. Table 3 shows that all reviewed 

studies of liquid marble formation have used a powder and liquid with a contact angle above 90º and 

this is shown as the fourth criterion in the framework in Figure 3.  

 

3.4  Spray flux 

In order to maintain small individual drop templates, the dimensionless spray flux must be low [40] 

or else there will be significant drop overlap. Under low spray flux conditions (Ψa<0.1), each drop 

would be sufficiently separated from the other drops to form a single liquid marble.  Under these 

conditions, the marble size distribution would be almost identical to the atomized drop size 

distribution, i.e. the drop controlled nucleation regime [41]. The original framework [26] suggested 

Ψa<0.1 and assumed that nucleation of liquid marbles occurred only in the drop controlled regime. 

However, recent studies of liquid marble production have shown that the production of liquid 

marbles via mechanical dispersion (Ψa>1) is also possible. Forny et al.  [16, 21, 34] did not atomise 
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at all in several experiments and the calculated value of dimensionless spray flux in our previous 

experiments [20] was in fact greater than one (Ψa~1.4). Despite this, no obvious puddle formation or 

adverse affect on liquid marble formation phenomena was observed. However, deformed, stretched 

and foam-like multi-cavity hollow granules were formed instead of individual spherical hollow 

granules containing a single cavity [20]. Thus it is possible to form liquid marbles via mechanical 

dispersion of the fluid, although single cavity hollow spheres with the same size distribution as the 

spray are still are expected to be promoted by low spray flux conditions. Liquid marble formation in 

the mechanical dispersion regime is discussed in more detail in section 3.6. 

 

3.5  Role of kinetic energy in liquid marble formation 

Originally, the final step of the preliminary framework for liquid marble formation [26] was 

provisionally shown as needing a positive value of the solid-over-liquid spreading coefficient SLλ . 

The hypothesis of whether the solid-liquid spreading coefficient SLλ  predicts liquid marble 

formation has now been tested [29] by calculating the solid-liquid spreading coefficient λSL and 

comparing with the experimental results. The calculated solid-liquid and liquid-solid spreading 

coefficients for several liquid marble formulations demonstrated that the spreading coefficient theory 

is inconsistent with experimental observations of liquid marble formation [29] and with 

thermodynamic principles [28]. Instead, several independent studies have observed  the importance 

of kinetic energy in liquid marble formation, [16, 21, 29, 32, 34]. Therefore, the solid-liquid 

spreading coefficient has been removed from the framework and replaced with the kinetic energy 

criterion as presented in Figure 3.  
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In addition, Forny et al. [34] demonstrated that the energy applied per unit mass of powder (Ep) is a 

critical parameter during liquid marble formation. The energy must be above the minimum threshold 

energy (Ep)min or the particles and the fluid will remain as a separate phase, but below the maximum 

threshold energy (Ep)max where a mousse will be generated. Binks and Murakami [35] also noted the 

possibility of phase inversion to form a foam.  No bulk phase inversion was observed in our previous 

study [20] in the mechanical dispersion regime, although some larger granules with foam-like 

structure were observed. We could not determine whether these foam-like granules were due to 

localized areas of phase inversion to form a mousse or due to coalescence of liquid marbles in the 

high spray flux spray zone.  

 

Therefore, the final step of the liquid marble formation flow charts is that the energy applied to the 

system must be within the optimal energy range. The new step specifies that (Ep) min< (Ep) < (Ep) max, 

as shown in Figure 3. This step is also shown (separately) in the mechanical dispersion flow sheet.  

 

 

3.6 Mechanical Dispersion Framework 

 

Several papers have been published where the liquid was dispersed by mechanical dispersion [16, 

20, 34]. In the mechanical dispersion regime, where the liquid is added in bulk [16, 34] or the spray 

has Ψa>1 [20] liquid marble formation is still possible provided that the fluid has a contact angle θ 

greater than 110o [34]as the highly energetic conditions during powder agitation can lead to the 

immersion of moderate hydrophobic particles into the liquid phase [34]. 
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Figure 9 summarizes the steps required for formation of liquid marbles in the mechanical dispersion 

regime. The contact angle needs to be above 110º and Ep must be between the upper and lower 

threshold energy limits [34], as discussed in section 3.5. The final step is that under high shear 

conditions and turbulent liquid flow, the bulk liquid is divided in stable droplets. We assume that the 

droplet size must also be 25 times larger than particle size; otherwise, no spreading of particles 

around the droplet can occur. 

 
Figure 10 integrates Figures 3 & 9, and shows how liquid marbles can be formed via the drop-

template controlled method or via the mechanical dispersion method.  This framework provides a 

useful overview of the research to date and is expected to aid future liquid marble research as well as 

trouble shooting mass production of liquid marbles. 

 

3.7 Hollow granule formation 

In order to form a hollow granule, the powder shell must be sufficiently strong and self supporting in 

order to avoid collapse during the drying process and subsequent standard powder handling 

operations [26]. Figure 11 outlines the series of steps we believe are required for the formation of a 

stable hollow granule from a liquid marble precursor. Although direct polymerisation of the shell is 

possible [32] we consider here the case where a polymeric binder is used to avoid the liquid marble 

collapsing during drying. The polymeric binder forms solid bridges between the particles during 

drying which give strength to the powder shell [22, 36]. The final morphology of a spray dried 

hollow sphere depends on chemical and physical nature of the skin material [42]. Polymeric 

materials tend to form a porous skin that can help the formation of hollow particles during the drying 

period without any rupture or deflation [42]. Experimental results [36] showed that all of the hollow 
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granules formed without polymeric binder in the formulation collapsed, as expected. Thus, the first 

step in hollow granule formation is the existence of a polymeric binder in the formulation. 

 

The next step in the successful formation of hollow granules is controlled by compatibility of the 

polymeric binder with the chemical and physical properties of the powder. For example, previous 

experimental results [36] showed that HPMC was the most compatible polymeric binder with all the 

powders used  while the use of PVP as a binder resulted in the complete collapse of all hollow 

granules at all the drying temperatures tested. Binder behaviour is a complex function of chemistry, 

rheology and other factors, including the cloud point, and cannot be fully described or quantified at 

this stage [36].  

 

There is also a minimum polymeric binder concentration needed in the formulation to provide 

enough mechanical strength to the sphere as it dries [36]. Increasing the concentration of polymeric 

binder is known to reduce particle distortion and surface rupture [42]. There was a proportional 

relationship between binder fluid viscosity (which is related to concentration of binder) and the 

proportion of hollow granules formed when PVP and HPMC were used as the binder [36].  However 

for HPC binder, the survival rate remained constant regardless of the HPC concentration, 

presumably due to precipitation of HPC above the cloud point [43].  

 

The next step in the hollow granule formation flow chart (Figure 11) is selecting the optimum liquid 

to solid ratio during granulation. The optimal liquid to solid ratio for any granulation processes must 

currently still be determined by trial and error and cannot be predicted in advance. However, the L:S 
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ratio required for liquid marbles and generally lies between approximately 1:1 to 6:1 (see Table 4). 

In contrast, conventional granulation typically uses liquid to solid ratios around 0.3 to 0.5:1. 

Choosing the optimal L:S ratio is important for maximising the number of spherical, single cavity 

granules and minimising the formation of foam sheets [20, 35]. In practice, the optimum L:S ratio is 

not as simple to define, and has been defined as the liquid ratio where the final product contains the 

least ungranulated fine particles and the minimum number of flattened or foam-like hollow granules 

are produced [20].  

 

The liquid to solid ratio data from small scale single drop studies has not been considered, as this 

data can be difficult to measure and the ratio at small scale does not necessarily extrapolate to the 

same ratio at full scale commercial production. It is not currently known whether the powder shell 

structure and thickness is the same or different for liquid marbles formed from a single drop, 

compared to liquid marbles formed in bulk via a spray. 

 

The final criteria established for formation of hollow granules is the drying temperature, which is as 

important as the polymeric binder concentration in determining whether a hollow spherical granule 

is formed. As an example, hollow granules formed from glass ballotini survived if the drying 

temperature was above 80 ºC while Aerosil granules survived as long as the drying temperature was 

above 60 ºC [36]. This implies that there is a different minimum temperature requirement for various 

powder/binder combinations in order to form a hollow granule. In general, increasing temperature 

increases the survivability and improves the quality of hollow granules, although HPC binders do 

not follow this trend [36].  
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Figure 11 illustrates each of the qualitative criteria we believe to be necessary to convert a liquid 

marble formulation into a stable hollow granule. Each step in this framework requires further 

investigation to determine more specific quantitative criteria and to validate them. 

3.8  Conclusion 

 In this paper, the preliminary flow chart for liquid marble formation proposed previously [26] was 

revised and validated in light of new knowledge.. A revised flow chart for the formation of liquid 

marbles via the “droplet template” regime was presented. In addition, the flowsheet was extended to 

include the formation of liquid marbles via the “mechanical dispersion” regime. The main 

differences between droplet template regime and mechanical dispersion regime are the contact angle 

and spray flux requirements. When spray flux becomes greater than one, granulation switches from 

droplet template regime to mechanical dispersion regime. Liquid marbles can form successfully in 

the mechanical dispersion regime if the contact angle is above 110ºC. This is higher than the 90o 

angle required for the drop template framework, as the particles must be more hydrophobic in the 

mechanical dispersion regime in order to resist immersion into the fluid, destroying the liquid 

marbles. 

 

In addition, a qualitative framework for the formation of hollow granules was proposed which 

emphasizes the importance of the finding a compatible polymeric binder and identifying the 

optimum binder concentration, L:S ratio and drying temperature. However, the hollow granule 

framework proposed here required further work to quantify and validate the criteria in each step. 
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These frameworks give a better understanding of the controlling mechanisms in the granulation of 

hydrophobic particles and provide guidance on how to mass produce liquid marbles and hollow 

granules.  
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Figure 1: Phase inversion of foams (air-in-water) to Liquid Marble (water-in-air) (Adapted 

from [35]) 

 

Figure 2. State diagram for liquid marble formation as a function of the contact angle and the 

energetic contribution Ep of the process (a) the position of Ep for blenders, (b) the position of 

Ep for granulators [34] 

 

Figure 3: Revised framework for the formation of liquid marbles via the droplet template 

regime 

 

Figure 4: Puddle form of 4 mm PEG200 droplet on hydrophobic glass beads (AG), Bo=1.14 

 

Figure 5: Survived and spherical 3.4 mm (a) water (Bo=0.48, We= 76, Oh= 0.002) (b) 20% 

glycerol (Bo=0.5, We= 106, Oh= 0.003) (c) 40% glycerol (Bo=0.54, We= 112, Oh= 0.005) (d) 

60% glycerol (Bo=0.58, We= 101, Oh= 0.009) (e) 80% glycerol (Bo=0.6, We= 137, Oh= 0.02) (f) 

100% glycerol (Bo=0.88, We= 35, Oh= 1.08) droplet released from 10 cm height on PTFE 100 

powder bed  
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Figure 6: Survived and spherical 3.4 mm water droplet released from 10 cm height on (a) 

PTFE 1 (b) PTFE 12 (c) PTFE 35, Bo=0.48, We= 113, Oh= 0.003 

 

Figure 7: Shattered (a) 3.4 mm 80% glycerol droplet released from 75 cm (Bo=0.6, We= 1094, 

Oh= 0.02) and (b) 3 mm water droplet released from 80 cm release height (Bo=0.3, We= 3000, 

Oh= 0.08) onto hydrophobic glass bead (AG). Arrows indicate the satellite drops produced 

after the original droplet shattered. 

 

Figure 8: Droplet survival or shattering behaviour as a function of We and Oh 

 

Figure 9: Framework for the formation of liquid marbles via the mechanical dispersion regime 

 

Figure 10: Combined framework for the formation of liquid marbles via the droplet template 

and mechanical dispersion regime  

 

Figure 11: Framework for formation of hollow granules from liquid marbles 
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Figure 2 
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Figure 9
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Figure 11
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Table 1: Droplet and particle size value for liquid marble formation  

Powder Fluid 
Particle 
diameter 
(dp, µm) 

Droplet 
diameter 
(dd, µm) 

Droplet diameter 
/Particle diameter 

(dd/dp) 

Liquid 
marble? 

Small scale experiment [26, 36] 
Aerosil  
PTFE 1 
PTFE 12 
PTFE 35 
PTFE 100 
Hydrophobic glass bead (AG/AH) 

Water or 
Glycerol 

0.01 
1 
12 
35 
100 
65 

3400 

340000 
3400 
283 
97 
34 
52 

Yes 
 

PTFE 1 
PTFE 12 
PTFE 35 
PTFE 100 

PEG 200 

1 
12 
35 
100 

2580 

2580 
215 
74 
26 

Yes 
 

Hydrophobic glass bead (AH) PEG 200 65 2580 40 Yes 
Hydrophobic glass bead (AE) PEG 200 121 2580 21 No 
Hydrophobic glass bead (AC) PEG 200 191 2580 14 No 

Large scale experiment [20] 
Aerosil 5%HPC 0.01 442 44200 Yes 

Literature data 
PTFE [25]  Water or 

Glycerol 
7-12 1200 100-170 Yes 

Aerosil [25]  Water or 
Glycerol 

0.01 1200 120000 Yes 

Lycopodium [1]  Water 20 2000 100 Yes 
Graphite micro powder [14]  Water 2-30 2000, 4000 67-2000 Yes 
Aerosil [35]  Water 0.02-0.03 50- 400 2500-20000 Yes 
PTFE [19]  Water & 

Ionic liquid 
35 1280 37 Yes 

OTFE [19]  Water & 
Ionic liquid 

35 1280 37 Yes 

Hydrophobic copper powder [32]  
Poly-methylmethacralate 
(PMMA) [32] 

Water 9 
15 

2000 
220 
130 

Yes 
 

320 2000 6 No* 
Aerosil [21] Water 0.01 2000 200000 Yes 
PTFE [25] Water 0.016 80 5000 Yes 

* Maximum coverage of liquid marble was 60-70%. 
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Table 2:  Summary of drop impact and shattering experiments. 

Fluid Powder Height 
(cm) 

Drop 
diameter 

(mm) 
We # Oh # Bo # Shattered? 

Water Hydrophobic glass bead (AG) 15 3 ~300 0.08 0.3 No 
Water Hydrophobic glass bead (AG) 80 3 ~3000 0.08 0.3 Yes 
Water & 
dye 

PTFE 1, 12, 35 2.5 

3.4 

28 

0.003 0.48 No 
5 56 

7.5 85 
10 113 

12.5 141 
Water & 
dye 

PTFE 100 2 

3.4 

15 

0.002 0.48 
No 

4 31 
6 46 
8 61 
10 76 
92 1050 Yes 

Hydrophobic glass bead (AH) 92 3.4 1050 0.002 0.48 Yes 
20% 
Glycerol 
& dye 

PTFE 100 5 

3.4 

53 

0.003 0.5 No 
7.5 80 
10 106 

12.5 133 
15 159 

40% 
Glycerol 
& dye 

PTFE 100 5 

3.4 

56 

0.005 0.54 No 
7.5 84 
10 112 

12.5 140 
15 169 

60% 
Glycerol 
& dye 

PTFE 100 5 

3.4 

51 

0.009 0.58 No 
7.5 76 
10 101 

12.5 127 
15 152 

80% 
Glycerol 
& dye 

PTFE 100 5 

3.4 

68 

0.02 0.6 
No 

10 137 
15 205 
20 273 
25 342 
30 411 

Hydrophobic glass bead (AH) 75 1094 Yes 
100% 
Glycerol 
& dye 

PTFE 100 5 

3.4 

175 

1.08 0.88 No 
10 35 
15 525 
20 701 
25 876 
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Table 3: Contact angle values for several powders with water 

Powder Contact angle (o) Reference 
PTFE 140 [37] 
OTFE 177 [9] 
Aerosil R972 103 [27] 
Aerosil R812S 113 [27] 
Aerosil R202 > 113 [27] 
Hydrophobic copper powder  157 [25] 
Poly-methylmethacralate (PMMA) 120 [25] 
Lycopodium powder  >150 [2] 
Graphite micro powder  145-160 [5] 

 
 
 

Table 4: Optimum L:S ratio in different studies of hollow granule formations 

Investigated range of L:S ratio Optimum L:S  Reference 

0.7-0.78:1 0.74:1 [12] 

0.5-15:1 3:1 - 6:1 [10] 

33:1 Not reported [3] 

 
 
 
 
 
 
 
 
 
 
 
 




