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ABSTRACT 

In order to tackle the recording video denoising problem 

with non-stationary image contents, a critical task is to 

estimate statistical properties of the composite noise in 

video signals. After investigation of a variety of test video 

sequences, based on the wavelet decomposition of the 

noise, the estimation can be conducted by empirical 

modeling of the marginal distributions of wavelet 

coefficients as a subband-dependent parameterized 

generalized Gaussian distribution. Further development of 

a new spatio-temporal based composite noise suppression 

technique is also provided to restore surveillance video, 

based on the estimation of the parameters of the model. 

The experiments showed that the proposed techniques 

obtained promising results. 

 

KEY WORDS 

Video processing, Noise modelling, Denoising, Video 

Quality. 

 

 

1. Introduction 
 

When a video is acquired or converted from one form to 

another e.g. digitised or compressed, many types of noise 

or noise-like degradations can be presented in the video. 

Now, digital video has gradually replaced analogue video 

in all sectors of electronic visual business/techniques, 

however, a substantial volume of recorded analogue video 

material, e.g. surveillance video and archival, remains in 

existence. These recorded videos are often stored using 

VHS (Video Home System) or S-VHS (Super-VHS) 

cassettes with composite video format [1]. When people 

do image processing using composite videos, they have to 

deal with the effects of analogue conversion and recording 

noise. 

Usually, solutions of suppress video noise rely on 

signal modelling and the noise modelling. Generally, 

noise in images/video is assumed to be additive and 

randomly distributed with uniform, Gaussian, Laplacian, 

Negative exponential, Raleigh, or Poisson distributions [2, 

3] or modelled as  impulse (salt & pepper or random 

value) noise [5] or a mixture of both with noise model 

parameters either known or unknown a priori [4]. The 

effectiveness of these statistical models has been 

demonstrated in a range of applications [3]. However, for 

systems that produce composite noise/structured 

distortions, e.g., digital coding or form conversions, these 

statistical noise models may not perform adequately 

because this sort of noise become some extent correlated 

to the signals[2, 3]. The modelling of the composite noise 

is still remained as a challenge problem. 

In order to efficiently suppress the noise to enhance 

the composite video quality for further video processing, 

the noise/artefacts of the composite video should be 

isolated (acquired), analysed and modelled. In this paper, 

since direct statistical modelling of the noise information 

to capture some common features of the noise is very 

difficult, first, based on wavelet decomposition 

approaches, the noise was analysed using a variety of 

video sequences. Then, a new empirical modeling of the 

marginal distributions of wavelet coefficients as a 

subband-dependent mixture of independent, parameterized 

generalized Gaussian distribution is provided to deal with 

this challenge problem. After the noise is modelled, the 

approach to suppress the noise in surveillance videos is 

proposed based on the model. The experiments were 

conducted to verify the approach and model. It shows 

expected results to suppress the noise. 

The paper is organized as follows. In Section 2, the 

composite noise modelling is presented to describe 

various statistical properties of the noises based on 

wavelet decomposition after acquisition of the composite 

video noise. The algorithm to suppress the noise based on 

the modelling of the noise then is described in Section 3. 

Experiments to verification of the proposed technique 

using test video sequences degraded by the composite 

noises are presented in Section 4. Finally, the conclusion 

is drawn in Section 5. 

 

 

2. Composite noise modelling 
 

2.1 Acquisition of the composite noise 

 

In this paper, let 

}1,1|),,({ 2121 WcHcnccCn ≤≤≤≤=≡ c  denote the 

pixel coordinates of a color frame of a surveillance video, 

where H and W are the height and the width of the frame, 

respectively; the subscript n denotes the video frame 
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number for Nn ≤≤1 . At each pixel coordinate nC∈c , 

and N

nnCV 1}{ == , where V is a set of pixel positions of a 

video with N frames, a multivariate value 
T

BGR III )](),(),([)( ccccI = or T

CrCbY III )](),(),([)( ccccI =  

is used to represent the RGB (Red, Green and Blue) or 

YcbCr (Luminance(Y), Chrominance blue(Cb) and 

Chrominance red(Cr)) pixel values if it is a color video.  

First the composite video noise was acquired through 

a forward and a reverse conversion process. The forward 

process converted reference digital component signals [6] 

to analogue component signals then to composite signals. 

These composite signals were recorded onto S-VHS tapes. 

For the reverse process, recorded video signals were first 

converted from composite signals to analogue component 

and then to digital signals. The actual composite video 

noise was then acquired by taking the difference between 

reference digital video signals and re-digitised video 

signals. . The composite noise captured by above process 

can be expressed as follows, 

VIz ∈−= cccc ),()()(η        (1) 

where )(cz  is the degraded(observed) signal; )(cI  is the 

true/reference signal;  )(cη  is denoted as the composite 

noise/artefacts. Nine standard test VQEG sequences 

(Water fall, Football, Ship of the line, Suzie, Studio set, 

Three, Mobile and calender, Animals and Harp)[7] were 

used to generate a set of composite video noise data. 

These sequences are either of 625 (component 4:2:2 

interlace PAL @ 50 Hz) or 525 (component 4:2:2 

interlace NTSC @ 50 Hz) format with 220 frames each. 

Evidently, the noise is visibly structured with a substantial 

portion of its energy concentrated around vertical and 

diagonal edges (see Figs. 1f -1o). 

 

2.2 Statistical properties of the composite noise 

 

Since exact mathematical/physical models may not be 

practical, a statistical approach needs to be adopted for 

this noise modeling. The statistical approach should be a 

probability model that can capture the noise variability 

and are computationally tractable. In this paper, the 

technologies of statistics (probability) models are used to 

observe and explain patterns exhibited by the composite 

video noise to build the model.  

For the purpose of statistical modeling, a video/an 

image is treated as a realization of a spatial/tempo-spatial 

stochastic process defined on some domain. The domain is 

assumed to be an image or a sequence of frames. A 

common assumption in video/image modeling is that the 

underlying video/image process is stationary, i.e. 

video/image probabilities are invariant to translations in 

the video sequences /image plane. 

 

     
a)                b)            c)        d)                     e) 

     
f)                g)            h)         i)                     j) 

     
k)               l)             m)        n)                     o) 

     
p)               q)            r)        s)                     t) 
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u)                v)             w)         x)                     y) 

Fig.1. The test video sequences and their processing/decomposition show some composite video noise properties. a) a frame of original test sequence Water 

fall, b) a frame of original test sequence Foot ball, c) a frame of original test sequence Ship on the line, d) a frame of original test sequence Suzie, e) a frame 

of original test sequence Studio set. f)-j) the corresponding frames of test sequences shown in Figs.1a-1e degraded by composite noise. k)-o) the absolute 

difference between the original sequences and their corresponding composite noise degraded sequences shown by the frames from the sequences. p)-t) the 

histograms of difference between the original sequences and their corresponding composite noise degraded sequences. u)-y) the histograms of the first band 

wavelet decomposition coefficients difference between the original sequences and their corresponding composite noise degraded sequences for Y component 

at diagonal orientation. 

 

The histograms of Figs. 1p-1y(bottom two rows) were 

generated by 30 frames randomly selected from their 

sequences. Figs. 1p-1t show that the statistical 

distributions (histograms of composite noise acquired by 

above mentioned process (1)) vary across the test 

sequences and there is no this stationary for the direct 

composite noise statistical information from the 

sequences. The statistical distributions are dependent on 

the contents of the video sequences. Recently wavelet 

based approaches have been recognized as powerful tools 

for video analysis and denoising.  In order to resolve the 

above problem to model the composite noise, in this paper 

the Daubechies discrete wavelet [9] is used to decompose 

the observed and reference video sequences 

simultaneously in space and frequency for the composite 

noise modeling.  

After the video sequences were decomposed into 

multi-scale representation and the results of the 

decomposition were examined (see Figs. 1u -1y), we 

found that decomposing composite noise using wavelet 

transforms leads to coefficients that are no-Gaussian 

distributions, i.e. the distributions/histograms of wavelet 

coefficients display heavy tails, sharp cusps at the middle 

(zero) and some extent correlations across different scales. 

These statistical properties also presented in the 

coefficients from all above mentioned test sequences 

decomposed by wavelet. The Fig.2 demonstrates an 

example of them, the histograms of sequence Harp by a 

wavelet transformation over three scales and three 

orientations using Daubechies wavelet bases.   

These observations suggests that based on the 

characters of the coefficients, the statistical composite 

noise model could be generated, because it seems that the 

coefficients show common statistical distribution over the 

test sequences, e.g. a sharp cusp at zero and long 

exponential tails. Most of them also show symmetric 

shape if some very small part of their energy is ignored.   

 

2.3 Model of distribution of wavelet coefficients for 

composite noise 

 

We want to represent statistical nature of the wavelet 

coefficients for composite video noise by means of 

parametric densities, using only limited parameters. The 

Fig. 2 shows that coefficients of some scales, orientations 

and components, of the wavelet decomposition of the 

composite noise could be described by Gaussian or 

Laplacian density. However, in order to represent/cover 

all variability of the distributions for variety of video 

sequences, we investigate a parametric density, i.e. 

Generalized Gaussian Model (GGM) that seems to capture 

the variability of composite noise in video sequences 

better as it does for natural images. For GGM, marginal 

densities of natural image coefficients are well modeled 

[8]. The statistical motivation for using this model come 

from the shape of the marginals which assume that the 

coefficient within a subband are independent and 

identically distributed for the noise(see Figs. 2 and 3); 

with this assumption, the model could be built by the 

marginal statistics of the coefficients. These 

distributions/histograms are well described by a three 

parameters generalized Gaussian distribution: 

 

ℜ∈= −−
xAex

xB

X ,),,;(Ρ
]|[ ρµρσµ      (2) 

 

where 
)/1(2 ρ

ρ

Γ
=

b
A  , 

)/1(

)/3(1

ρ

ρ

σ Γ

Γ
=b and )(⋅Γ is a gamma 

function: ∫
∞

−− >=Γ
0

1 0,)( xdtetx
tx ; ρ  is a shape 

parameter of this distribution: ρ  =1 corresponds to a 

Laplacian density and ρ =2 corresponds to a Gaussian 

density; µ  and σ  are mean and standard deviation. 

Generally speaking, smaller values of ρ  make a density 

that has more expansive tails and is more concentrated at 

zero.  
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a)               b)           c)       d)   e) 

     
f)                g)             h)         i)    j) 

      
k)                l)             m)        n)    o) 

      
p)                q)             r)        s)    t) 

     
u)                v)             w)         x)    y) 

        
z1)                z2)            z3)        z4)    z5) 

Fig. 2 Histograms of wavelets coefficients, which represent composite noise for each of Y, Cb and Cr components, and their vertical, horizontal and diagonal 

orientations over three scales for the test video sequence, Harp by random selected 30 frames, a) a fame of the reference sequence, b) the corresponding 

composite noise degraded frame. c) absolute difference of the two fames. d)-l) the histograms for Y component cross scale 1, 2 and 3, at diagonal, horizontal 

and vertical orientations, respectively. m)-u) the histograms for Cb component cross scale 1, 2 and 3, at diagonal, horizontal and vertical orientations, 

respectively. v)-z5) the histograms for Cr component cross scale 1, 2 and 3, at diagonal, horizontal and vertical orientations, respectively. 

 

The parameters, µ , σ  and ρ , can be estimated for 

each subband of the sequences using maximum 

likelihood. Another way of estimating them is via the 

(linear) regression of log (log(h(x) + h(−x)) − 2 log(h(0))) 

versus log(|x|), where h(x) is the histogram value at x and 

x is the variable for bin centers.  In order to judge the 

performance of the proposed probability model, the 

metrics, which is the Kolmogorov-Smirnov distance, can 

be used to compare the observed frequencies to the 

frequencies predicted by the model, on the space of 

probability distributions.  

 

 

3. Composite noise suppression based on the 

proposed noise model 
 

After the noise analysis and the stochastic model of the 

noise wavelet coefficients is represented by empirical 

modeling of the marginal distributions of wavelet 
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coefficients as a subband-dependent mixture of 

independent, parameterized generalized Gaussian 

distributions (2), in this section, we discuss how to apply 

it for suppressing the noise, especially in surveillance 

videos, because there are still a huge amount of composite 

surveillance video in archive needed to be enhanced for 

processing. The proposed method attempts to remove the 

noise and estimate the original video signal by 
1−= WTWF , where W an W

-1
 stand for the forward and 

inverse discrete wavelet transform, respectively, and the T 

is a wavelet domain point-wise function which operates 

on the wavelet coefficients. To improve denoising 

performance under the wavelet-based denoising 

framework, a critical task is to seek a better modification 

strategies/function, T for wavelet coefficients. 

Let us denote the noise-free video coefficients as a 

vector I
r

 and the coefficients of the noise degraded 

(observed) video as z
r

 for all wavelet transform scales and 

orientations for each component. Our approach is 

motivated by the property of the modeling: the marginal 

distributions of wavelet coefficients of the composite 

noise in a subband are always well approximated by a 

zero mean Generalized Gaussian probability distribution 

function (p.d.f.). 

The proposed approach for estimation of the noise 2

nσ
r

,  

is to use static background/temporal motionless part of 

surveillance video to conduct this estimation. First the 

video background or temporal motionless part of the video 

is segmented by a modified Mixture of K Gaussian 

background modelling approach [10] or other video 

motion segmentation techniques. Once the video 

background is segmented, the V is divided into 

background/ temporal motionless part, 
bV  and 

foreground/motion part, 
fV .  

Since zero mean is assumed for the Generalised 

Gaussian p.d.f in (2), a good estimate of the true 

background pixel value, )(cI
r

, can be obtained by the 

pixel-wise average of a large enough number of N 

(recommended up to 20 frames if available) of the 

observations )(cnz
r

, for n = 1,…, N, as follows. 

∑
=

∈=
N

n

bn Vz
N

I
1

),(
1

)(
ˆ

ccc
rr

,      (3) 

The estimate of the parameter σ
r

 is calculated as the 

unbiased sample standard-deviation on 

b

N

n

n VIz
N

∈−
−

= ∑
=

cccc ,))(
ˆ

)((
1

1
)(ˆ 2

0

rrr
σ       (4) 

The estimates I
r̂

and σ
r

are distributed, respectively, 

following a normal distribution and a scaled non-central 

chi-distribution, which can also be approximated, very 

accurately for a large N , as a normal distribution [11]. 

After the temporal average based soothing, the 

background/ motionless part 
bV  are recovered. The 

method of suppressing the noise for foreground/ motion 

part 
fV  is introduced as follows, 

Under an orthonormal wavelet transformation, based 

on the minimum mean square estimate )(cI
r

 by )(
ˆ

cI
r

 , the 

proposed denoising method is a local spatio-temporal 

image structure and noise property adaptive based pixel-

wise method, which can express as a local Wiener-like 

estimate: 

fVzKI ∈= cccc ),()()(
ˆ rv

       (5) 

where  

22

2

)(

)(
)(

n

K
σσ

σ
rr

r

+
=

c

c
c       (6) 

where 2

nσ
r

 is the variance of the composite noise for the 

coefficients and 2σ
r

 is used to represent the structure of 

the original images. Note that the 2

nσ
r

 varies cross 

different subbans even with a frame/video(see Fig. 2). 

It means that 1)( ≤cK , and )(cI
r

 is determined 

by )(cK . Our solution in (5) is that the devised pixel-wise 

based denoising function is adaptive to noise statistical 

coefficient distribution parameters for different band 

levels and image structure around the pixel in order to 

preserve the fine structure of the video by over smoothing. 

Approximately a smooth area of the video is with 

smaller variance 2σ
r

 and the noise level of the video could 

be represented by its noise variance 2

nσ
r

, which depends on 

contents of the frame and level of the wavelet 

decomposition (see Fig. 2).  The proposed denoising 

approach is devised as that in the smooth or low noise 

level area of the frame, the output value of )(cK is to be 

smaller. For example, if 2

nσ
r

=0 (without noise), 1)( =cK , 

i.e.  )()(
ˆ

cc zI
rr

= , calculated by (5) and (6).  

Therefore if 2σ
r

 and 2

nσ
r

 are estimated then the )(
ˆ

cI
r

 

will be determined by (5). The proposed approach for the 

estimation of 2

nσ
r

,  is to use static background/temporal 

motionless part of the same frame of the surveillance 

video to conduct this estimation, which introduced in (3) 

and (4).The estimation of local variance 2σ
r

is conducted 

as follows. To take full advantage of the strong spatio-

temporal correlations of neighboring frames, and a block 

matching(TSS)[11 8] for foregrounds, based on their 

motion compensation from a phase-cross based global 

motion estimation, is applied to adjacent frames, which 

increases their temporal correlations. Then, the proposed 

denoising technique for determining the 2σ
r

 is to build up 

an estimate for it by an observation of the wavelet 

coefficients in a spatio-temporal neighbourhood 

surrounding )(cz
r

. The estimation of the variance of each 

coefficient can be obtained by  
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fN
Vzz

M
∈−= ∑ ∈

ccc
cc

,))()((1ˆ 2

)(

2 vrr
σ      (7) 

where N(c) is a multi-frames of a 3-D spatio-temporal 

neighborhood of )(cnz
r

, which is made by 3x3 pixel 

window centered at c for the wavelet coefficients of 

current frame n, previous frames n-2 and n-1, and next 

frames n+1and n+2. 

After the required 2

nσ
r

 and 2σ
r

 are estimated, in the 

proposed denoising techniques, the true value of )(
ˆ

cI
r

 is 

estimated by (5) if 
fV∈c  . 

 

 

4. Experiments 
 

The proposed composite noise modeling and suppression 

technique were evaluated by a variety of tests video 

sequences, which including Animals, Tree, Ship on the 

line, Mobile and calender, Suzie and Studio set. These 

sequences, with 220 frames each, contain various 

complicated contents and motions.  

 

4.1 Parameters estimation for the noise model 

 

In Fig. 3, the red lines represent the real normalised 

histograms of the wavelet coefficients of the test 

sequences, which show the p.d.f. of the coefficient 

composite noise from the test sequences; the red dash line 

represent the proposed coefficients composite noise 

models for the sequences. The parameters of the models 

were obtained by the maximum likelihood method. The 

blue lines represent the Gaussian distributions with 

parameters driven from the wavelet coefficients to try to 

fit the real p.d.f.. The Fig. 3 demonstrates that the 

proposed models with the estimated parameters are well 

fitted to the real p.d.f., because it has a special shape 

control parameter p, which is 0.87 and 1.12 for the models 

in Fig. 3a and Fig. 3b respectively. In most cases, the 

Gaussian distribution can not fit the real p.d.f. well. 

 

    
a)                   b)         

Fig. 3  Normalized histograms of wavelet coefficients for  the test 

sequences Mobile and calender and Studio set,  are fitted by the 

proposed GGM generated from the wavelet coefficients .a) test sequence 

Mobile and calender, b) test sequence Studio set. 

 

4.2 Composite noise suppression 

 

The proposed composite noise suppression technique were 

evaluated by a range of tests and its performance is 

compared with some benchmark filtering technique [12] 

in the area of removing noise in color images. Several 

objective criteria are used in the tests to measure the 

restotion in restored images. The objective criteria include 

the Mean Square Error (MSE) and the Mean Absolute 

Error (MAE) defined in the RGB color space [3], and the 

Normalized Color Difference (NCD) [3] which measures 

the color distortion in the perceptually uniform CIELAB 

color space. 

Four levels of wavelet transformation and their 

vertical, horizontal and diagonal orientations for each of 

Y, Cb and Cr components were used in the proposed 

denoising technique to improve the composite noise 

degraded test sequences. We verified the proposed 

technique using the typical test video sequences Tree, 

Animals and Ship on the line. The selected video 

sequences represent different types of image structures.  

 

     
a)           b)                    c)           d)   

Fig. 4 The composite  noise distributions(histograms) driven from the differences based on recovered coefficients by estimated parameters of the proposed 

model or reference true sequences. a) and b) for test sequence Suzie at scale 2, diagonal orientation and Y component, c) and d) for test sequence Animals at 

scale 3, horizontal orientation and Cr component. 

 

The Fig. 4 shows the verification results of parameters 

estimated from the background or temporal motionless 

part of degraded sequences. The histograms in Figs. 4b 

and 4d were generated by difference between the 

estimated )(
ˆ

cI
r

 by (3) in background/ temporal motionless 

part of degraded sequences and the degraded sequences. 

The histograms in Figs. 4a and 4c were generated by 

degraded sequences and noise-free reference sequences. It 

can be seen there is not significant difference between the 

estimated ones and real ones, so the estimated parameters 

of foreground by (3) and (4) are reliable. 

 

48



 

 
Table1. Performance of the proposed composite noise supression technique for sequences, Tree, Ship on the line and Animals. 

Tree Ship on the line Animals 
Filters 

MSE MAE NCD MSE MAE NCD MSE MAE NCD 

Degraded 234.72 7.64 2.19 256.3 7.8 2.01 85.76 3.45 2.61 

Proposed 202.92 6.32 1.63 235.5 7.1 1.58 74.25 3.24 2.25 

Soft_thresholding[12] 328.92 7.63 2.16 256.1 8.1 2.01 86.69 3.51 2.64 

 

The performances for the proposed denoising 

technique and a compared technique are shown in Table. 

1. It can be seen that the proposed denoising technique 

performs well due to the output of the proposed wavelet 

based denoising function adapted to signal content and the 

composite noise level in different bands in the proposed 

filter. The proposed new spatio-temporal based denoising 

technique achieves significant enhancement for the 

degraded sequences in terms of the objective 

measurements MSE, MAE and NCD while the soft 

thresholding based approach looks not suit for suppressing 

composite noise. 

 

 

5. Conclusion 
 

Modelling of pixel level, image level and video level 

noise characteristics of videos, especially the 3-D spatio–

temporal feature based modelling and estimation of the 

parameters of the model, lays ground work for further 

video enhancement/noise suppression algorithms. The 

contributions of the proposed composite noise/artefacts 

modelling and suppression techniques are that in order to 

analyse the properties of the composite video noise, based 

on wavelet decomposition of the noise, subband-

dependent mixture of independent, parameterized 

generalized Gaussian distributions was proposed to model 

the marginal distributions of wavelet coefficients. Based 

on the parameters of estimation from the proposed 

statistical model, a new spatio–temporal based denoising 

approach was proposed especially to suppress the 

composite noise in surveillance video. Extensive 

experiments conducted using standard test video 

sequences have shown that the proposed composite noise 

modelling and suppression techniques obtained promising 

results.  The proposed model and estimations will provide 

a better understanding of composite video noises and 

artefacts. It facilitates the further design of adaptive 

filtering, optimisation criteria/rules, and algorithms, based 

on the model and its parameters estimation, to efficiently 

suppress the composite noise.  
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