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Summary

The mathematical structure of a complex vector space, Cd, is used in quantum physics as a

means of expressing physical properties.

Two orthonormal bases B1 and B2 of Cd are unbiased if |〈~x|~y〉| = 1√
d

for all ~x ∈ B1 and

~y ∈ B2. The term unbiased refers to when a quantum system is prepared in basis state B1,

all possible outcomes of a measurement with respect to B2 will occur with equal probabilities

[99].

A set of bases, each pair of which is unbiased, is a set of mutually unbiased bases (MUBs).

MUBs have applications in quantum physics and quantum information theory. Although

the motivation to study MUBs comes from physical properties, MUBs are a mathematical

structure. This is a mathematical investigation.

Fifty years have passed since the initial description of MUBs. There are still many open

problems, some of which have conjectured solutions.

Open Problem 0.1. What is the maximum number of MUBs in Cd?

There is a maximum of d + 1 MUBs in Cd [112]. This upper bound is attained for all

prime power dimensions, shown by explicit construction [112]. It is unknown if this upper

bound is attained for any non prime power, even for the smallest non prime power of 6. Sets

of d+ 1 MUBs in Cd are called complete. Some of the applications of MUBs rely on complete

sets.

Open Problem 0.2. Do complete sets of MUBs exist in all dimensions?

It has been noted that mutually orthogonal Latin squares (MOLS) are ‘similar in spirit’

to MUBs [111].

Conjecture 0.3 (SPR Conjecture). [96] A complete set of MUBs exists in Cd if and only if

a complete set of MOLS of order d exists.
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MOLS are much more thoroughly studied than MUBs. There are still many open questions

about MOLS, however there are key results such as the Bruck-Ryser-Chowla Theorem which

shows that complete sets of MOLS of specific orders cannot exist. If the SPR conjecture is

proven, then results such as this can be used to show the non-existence of complete sets of

MUBs in specific dimensions.

The aim of this research is to find evidence for or against the SPR conjecture. We will

approach this conjecture directly as well as by investigating structures which are related to

MOLS.

Research Question 0.4. Are mutually unbiased bases intimately linked with mutually or-

thogonal Latin squares?

Most known constructions of complete sets of MUBs rely on algebraic structures and

functions, which are known to also construct complete sets of MOLS.

Research Question 0.5. Do all complete sets of mutually unbiased bases have an algebraic

structure?

It has been 7 years since the publication of the SPR conjecture [96], and even longer since

a connection between finite geometries and MUBs was foreshadowed [112]. It has been 30

years since an algebraic structure (Galois field) was first used to construct a set of MUBs [59].

There many research groups taking various approaches to these questions, and yet they

are still open. In this thesis some significant progress has been made, which could be built

upon to answer these questions in the future.

• Inspired by constructions of MUBs which use sets of MOLS [85, 110], complete sets of

MOLS were constructed from two complete sets of MUBs. Of note is that the MOLS

structure emerges not from the vectors, but from the inner products of the vectors. This

has been published [47, 90].

• Analogous properties of Hjelmslev planes and MUBs, and gaps in knowledge motivated

investigation of Hjelmslev planes. The substructures of a Hjelmslev plane over a Galois

ring, and a combinatorial algorithm for generating Hjelmslev planes were developed. It

is shown that the analogous properties of Hjelmslev planes and MUBs occur only for

odd prime powers, making a strong connection between MUBs and Hjelmslev planes

unlikely.

2
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• A construction of MUBs that uses planar functions [93] was generalised by using an

automorphism on the additive group of a Galois field. It is unclear if this generalisation

is equivalent to the original construction.

• Relation algebras have been constructed using the structure of a complete set of MOLS

[82]. Relation algebras were constructed from the structure of MUBs which do not share

any similarities with algebras constructed from MOLS. This has been published [46].

• A set of WF type MUBs, when represented as elements of a group ring, forms a com-

mutative monoid. A set of Alltop type MUBs when similarly represented does not form

a closed algebraic structure. It is known that WF and Alltop MUBs are equivalent [42],

thus the lack of a closed structure in the Alltop MUBs suggests that the monoid is not

a property of MUBs in general.

Complete sets of MOLS and complete sets of MUBs are ‘similar in spirit’, but perhaps

this is not an inherent feature of MUBs and MOLS. All the known constructions of MUBs

rely on algebraic structures which exist only in prime power dimensions. The connection may

not be with MOLS, but with algebraic structures which generate both MOLS and MUBs.

3



Chapter 1

Introduction

1.1 Motivation

1.1.1 Inspiration

Quantum physics uses the mathematical structure of a complex vector space, Cd, as a means

of expressing physical properties.

Two orthonormal bases B1 and B2 of Cd are unbiased if |〈~x|~y〉| = 1√
d

for all ~x ∈ B1 and

~y ∈ B2. These bases are unbiased in the following sense: if a quantum system is prepared

in basis state B1, then all possible outcomes of a measurement with respect to B2 will occur

with equal probabilities. If a system is prepared in basis state B1, then a measurement in

basis B2 ‘destroys all prior knowledge’ of the system with respect to basis B1 [99].

A set of bases, each pair of which is unbiased, is a set of mutually unbiased bases, hereafter

referred to as MUBs. MUBs have several applications in quantum physics and quantum

information theory.

Although the inspiration comes from physical properties, MUBs are a mathematical struc-

ture, and will be treated as such. The physical interpretation will be mentioned for interest,

but in no way influences the mathematics.

1.1.2 Historical note on MUBs

In 1960 Schwinger realised that a quantum system prepared in one basis state would reveal no

information if measured with respect to another unbiased basis state [99]. In 1981 Ivanovic
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considered the applications of MUBs in the problem of quantum state determination [59]

and provided a construction of MUBs in odd prime power dimensions. A year earlier Alltop

published a construction for sequences with low periodic correlation for use in communication

systems [1]. Alltop’s sequences are the first published constructions of complete sets of MUBs,

though this was not known for some time. Alltop’s work was used in sequence design for many

years before the contribution to quantum physics was noticed. In 1989 Wootters and Fields

extended the Ivanovic construction to all odd prime powers, and provided a construction for

even prime powers [112]. In 2003 Klappenecker and Rötteler [64] published a summary of

known constructions which included the sets of MUBs described by Alltop, Wootters and

Fields and Ivanovic.

Mutually unbiased bases are a mathematical structure, however the original inspiration

to study them came from a physical problem. That the applications of MUBs have been

driving research is most evident in that the bulk of publications on MUBs appear in physics

and communications journals.

1.1.3 Applications of MUBs

Quantum state tomography

In a quantum system, experimental measurement outcomes are only accessible as probabil-

ities. The state of a quantum system can be written as a density matrix (Definition 2.14),

where the entries of the matrix represent the probabilities of physical outcomes.

Tomography is the process of reconstructing the density matrix from a set of measure-

ments. A measurement of a d-dimensional quantum ensemble yields d− 1 real values, which

are the probabilities of all but one of the d possible outcomes. The requirement that all prob-

abilities sum to 1 forces the dth value. Thus at least (d2 − 1)/(d− 1) = d+ 1 measurements

are required to uniquely determine the state of the quantum ensemble [112].

It is possible to determine the state using measurements which are not mutually unbiased.

However Wootters and Fields show that d + 1 mutually unbiased bases provide the optimal

set of measurements [112]. The unbiased measurements have minimal interaction with each

other, so less errors are introduced.

MUBs are thus important for measuring quantum states and subsequent applications.
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Quantum cryptography

MUBs are used in some cryptographic key distribution protocols. Cryptography is the process

of writing a message so that it can only be read by specific authorised people; a problem almost

as old as written communication.

For example: Alice wants to send a message to Bob, but must keep the message secret

from Eve. Alice encrypts the message, which Bob can decrypt using a secret key. However

if Eve also has the key, then Eve can decrypt the message. The secure distribution of a

cryptographic key is one of the more difficult problems in cryptography.

An important innovation was public key cryptography in which the encryption key is

publicly announced, and different from the decryption key, which is known only to the receiver.

Current public key cryptography is based on the RSA protocol which uses the fact that

multiplication is easy, but factoring large numbers is difficult [92]. However, given a sufficiently

powerful computer and enough time, Eve can find the key.

The use of unbiased measurements of quantum systems can provide provably secure key

distribution using optical signals. The BB84 key distribution protocol uses two MUBs [9].

The BB84 protocol has been extended to three MUBs [17], and later generalised to any set

of d+ 1 MUBs in Cd [21].

The BB84 protocol may be described as follows: Alice and Bob both have a set of photon

polarisers which have the angles of the vectors from a complete set of MUBs. Alice and

Bob agree on which directions of polarisation represent each symbol of the key alphabet.

Alice and Bob independently select a sequence of polarisations. Alice sends a sequence of

photons polarised according to her sequence. Bob detects the photons using his sequence

of polarisations. Alice and Bob can then communicate in public, to determine which parts

of their polarisation sequences were the same. They then retain the corresponding symbol

sequence as their raw key. A diagram of this process using two bases is given in Figure 1.1.

If photons behaved in a classical manner, Eve could set up intermediate detectors in the

hope of matching some of Alice’s polarisation sequence. However one of the fundamental

properties of quantum physics is that any observation makes a small change to a quantum

system. This is a highly un-intuitive notion, (think of Schrödinger’s cat [105]), but it is backed

up by a large body of experimental data [87].

Alice and Bob choose a subset of the raw key, and publicly check if they have the same

6
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Alice’s sequence 0 1 1 1 0 0 1 0 1 1

Alice’s polarisers ↗↙↘↖ l←→ l←→ ↗↙↘↖ l←→ ↗↙↘↖ ↗↙↘↖ l←→ ↗↙↘↖ l←→

transmitted photons ↗↙ l l ↘↖ ↔ ↗↙ ↘↖ ↔ ↘↖ l

Bob’s polarisers ↗↙↘↖ l←→ ↗↙↘↖ ↗↙↘↖ l←→ l←→ l←→ ↗↙↘↖ l←→ l←→

Bob’s measurements 0 1 0 1 0 1 1 1 0 1

raw key 0 1 1 0 1

Figure 1.1: Transmission of polarised photons between Alice and Bob using 2 unbiased bases

[6, Figure 2.7].

values. If the checked subset agrees, then another subset of the raw key may be used as the

cryptographic key. If they don’t agree, then changes have been introduced, which may mean

that Eve intercepted the message. They can discard the raw key and begin again.

This is a provably secure system. There are various strategies that Eve can use to get

limited information however these rely on the physical implementation of the protocol [97, 78].

If a set of MUBs is used, it is then an engineering challenge to successfully implement quantum

key distribution.

1.2 Aim

1.2.1 Conjectures about MUBs

Fifty years have passed since the initial description of MUBs. There are still many open

problems, some of which have conjectured solutions.

Open Problem 1.1. What is the maximum number of MUBs in Cd?

There is a maximum of d+1 MUBs in Cd [112]. This upper bound is attained for all prime

power dimensions. It is unknown if this upper bound is attainable for any non prime power.

A lower bound on the maximum number of MUBs in Cd is based on the prime decomposition

of d. These bounds are expounded in section 2.3.2. Sets of d + 1 MUBs in Cd are called

complete. Some of the applications of MUBs, such as tomography, rely on complete sets.

Open Problem 1.2. Do complete sets of MUBs exist in all dimensions?

7
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This has been partially answered with constructions given for all dimensions that are a

power of a prime [112]. However the question is open, even for 6, the smallest non prime

power.

Conjecture 1.3 (Zauner’s Conjecture). [116] A complete set of MUBs exists in Cd if and

only if d is a power of a prime.

This conjecture was originally published in the language of complex projective designs.

However, it has been shown that MUBs are equivalent to specific types of complex projective

designs. Thus it may be expressed as a conjecture about MUBs [65, §VI]. The only known

constructions of complete sets of MUBs use algebraic structures which only exist in prime

power order.

It has been noted that finite affine planes are ‘similar in spirit’ to MUBs [111]. This

similarity has been elevated to a conjecture:

Conjecture 1.4 (SPR Conjecture). [96] A complete set of MUBs exists in Cd if and only if

a finite affine plane of order d exists.

A finite affine plane is combinatorially equivalent to a complete set of mutually orthogonal

Latin squares (MOLS). Thus this conjecture may be rewritten for MOLS.

Conjecture 1.5 (SPR Conjecture). [96] A complete set of MUBs exists in Cd if and only if

a complete set of MOLS of order d exists.

It is known that complete sets of MOLS exist when the order is a power of a prime. One of

the most famous and celebrated open problems in discrete mathematics regards the existence

of complete sets of MOLS.

Open Problem 1.6. [23, Rem III.3.21] Does a complete set of MOLS exist of order that is

not a power of a prime?

There are results such as the Bruck-Ryser-Chowla Theorem which exclude the existence of

a complete set of MOLS for various non prime power orders [16], however there are an infinite

number of orders for which the existence of a complete set of MOLS is an open problem. The

SPR and Zauner’s conjectures may in fact be equivalent if complete sets of MOLS only exist

of prime prime order.

A weaker, though related idea connects MUBs with projective Hjelmslev planes.
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Analogy 1.7 (SP Analogy). [95] A conic in a projective Hjelmslev plane over a Galois ring

GR(p2, r) has analogous structure to a complete set of MUBs in Cpr .

The evidence for this analogy is much weaker than that for the SPR conjecture. A

Hjelmslev plane is a generalisation of a projective plane, which exists if and only if an affine

plane also exists. Again this may effectively be the same as Zauner’s conjecture.

1.2.2 Research Questions

We aim to find evidence for or against the SPR conjecture. We will approach this conjecture

directly as well as by investigating structures which are related to MOLS.

Research Question 1.8. Are mutually unbiased bases intimately linked with mutually or-

thogonal Latin squares?

The only known constructions of complete sets of MUBs rely on algebraic structures

and functions which exist only for prime power order. Most of the functions and algebraic

structures which are known to construct MUBs can also be used to construct MOLS.

Research Question 1.9. Do all complete sets of mutually unbiased bases have an algebraic

structure?

Perhaps the noticed connection with MOLS is actually a connection with algebraic struc-

tures which can generate both MOLS and MUBs.

1.3 Structure of this document

Chapter 2 provides an overview of current knowledge about MUBs. Each subsequent chapter

takes a different perspective on the two underlying research questions.

Chapter 3 approaches research question 1.8 directly by constructing mutually orthogonal

Latin squares from MUBs. This is shown to work for two constructions of MUBs.

Chapter 4 investigates Hjelmslev planes, which are a generalisation of projective planes.

Hjelmslev planes are a largely unexplored topic. The outcome of this chapter is new knowledge

about Hjelmslev planes.

9
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Chapter 5 looks at planar functions which are known to construct specific sets of MUBs

and specific sets of MOLS. A more general construction of MUBs is described, though it is

not shown if this constructs MUBs which are non-equivalent to those already known.

Chapter 6 constructs relation algebras from MUBs, and compares them to relation algebras

which have been constructed from projective planes.

Chapter 7 represents the vectors of sets of MUBs as elements of a group ring. An algebraic

structure is then found for some sets of MUBs.

Chapter 8 summarises the findings and suggests directions for future research.

1.4 Original Contribution

Most of the original work in this document is the work of the author, with the usual amount

of supervisory input. However some work was done in collaboration with Dr Asha Rao and

Assoc. Prof. Diane Donovan, into which the author, Dr Rao and Assoc. Prof. Donovan each

provided significant contribution. Sections 3.4 and 4.3 were the result of such collaboration.

10



Chapter 2

Literature review

2.1 Overview

The applications detailed in section 1.1.3 provide the motivation for this study, but not the

substance. This is a mathematical investigation. There is a lot of mathematical background

required of the reader. Section 2.2 gives some of the algebraic definitions and concepts used

throughout. Each chapter also begins with a section of background on the structures of

interest in that chapter.

Section 2.3 expounds some of the background results on MUBs. Section 2.4 shows some

known constructions of MUBs. Section 2.5 presents some known and conjectured correlations

with various algebraic and geometric structures. Section 2.6 shows the algebraic structures of

some known constructions of MUBs. Section 2.7 expands upon the research questions stated

in section 1.2.2.

2.2 Definitions and preliminary theorems

There are many algebraic and combinatorial concepts used in the discussion of MUBs. We

define them along with the notation used. All other definitions will be introduced in the

relevant chapters. Results cited from standard texts are stated without proof throughout this

thesis.
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2.2.1 Linear Algebra

General Linear Algebra

Definition 2.1. [104, §1,2] Let A be a matrix. (A)ij is the element in the cell which is in the

ith row and jth column of A. For a matrix A, A∗ is the Hermitian transpose of A. Id is the

d× d identity matrix. [0] is the matrix containing 0 in every entry.

Vectors are denoted ~v. ~va is the ath vector in a set. vab is the bth entry of ~va. vab is a

scalar, and thus is not printed with~ . All vectors are assumed to be column vectors. Entries

in vectors and matrices will be labelled beginning with 0.

~x is a column vector, ~xT is a row vector. If ~x ∈ Cd then ~x∗ is a row vector with entries

that are the complex conjugates of the entries in ~x.

C is the field of complex numbers, R is the field of real numbers. Cd is the vector space

of dimension d with entries from C. MUBs are sets of bases for Cd.

Definition 2.2. [104, §2] The inner product of two vectors ~x and ~y may be denoted as

~x∗~y or 〈~x|~y〉. (2.1)

The Dirac notation (Bra, ket) favoured in physics literature will only be used in the sense

of the inner product.

Definition 2.3. [104, §1,2] A basis B for a vector space is a set of vectors such that any

element in the space can be given as a linear combination of the elements of B. A basis is

orthonormal if all vectors are mutually orthogonal and of unit length.

The vectors of a basis may be represented as the columns of a matrix. Where context is

clear we equate a basis with a matrix containing the basis vectors as its columns. This is not

strictly correct as the order of columns within a matrix is fixed, but the order of the vectors

in a set is not.

We have now introduced enough notation to define MUBs, however many more concepts

are needed to construct and describe properties of MUBs.

Definition 2.4. [75, §2 Ex 5] The standard basis Ed, of Cd is Ed = {~e0, ~e1, . . . , ~ed−1} where

ekk = 1 and eka = 0 for k 6= a, 0 ≤ k, a ≤ d− 1.

12
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The matrix of Ed is a permutation of the columns of Id.

Definition 2.5. [104, §2] Md(C) is the space of all d × d matrices with entries from C. A

matrix A ∈ Md(C) is unitary if A∗A = Id. A is Hermitian if A = A∗. M is diagonal if

(A)ij = 0 for all i 6= j.

The matrix of an orthonormal basis is unitary.

Definition 2.6. [104, §2] Let A ∈Md(C) be a matrix, λ a scalar and ~x a vector such that

A~x = λ~x (2.2)

then ~x is an eigenvector and λ is the corresponding eigenvalue of A. If the set of eigenvectors

form a basis for Cd then this is called the eigenbasis

The eigenvalues are solutions to the characteristic equation

det(λId −A) = 0. (2.3)

Theorem 2.7. [104, §24] Let A be a matrix such that A∗A = AA∗, and Λ a diagonal matrix

with the eigenvalues of A along the diagonal, then there exists a unitary matrix U , such that

A = UΛU∗. (2.4)

This is the diagonalisation of A, and the columns of U are the eigenvectors of A. Let ~ui be

the ith column of U , and λi the eigenvalue, (Λ)ii, then

A =
d−1∑
i=0

λi~ui~u
∗
i . (2.5)

This is the spectral decomposition of A.

Unitary and Hermitian matrices are diagonalisable. The eigenvectors of a matrix A form

an orthogonal basis if and only if A is diagonalisable. An eigenvalue λ of a matrix A may

appear more than once in the diagonal matrix Λ of equation (2.4).

Definition 2.8. The algebraic multiplicity of an eigenvalue of a matrix A ∈ Md(F) is its

multiplicity in the solution to the characteristic equation.

13
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Definition 2.9. [104, §3] The trace of a square matrix is the sum of the entries on the main

diagonal.

Tr(A) =
∑
i

(A)ii (2.6)

Not to be confused with trace of a field element (Definition 2.30). For square matrices A

and B, Tr(A∗B) forms an inner product. Matrices are orthogonal if Tr(A∗B) = 0.

Lemma 2.10. [104, Thm 24.6] The trace of a matrix is equal to the sum of its eigenvalues

counted with algebraic multiplicity

For vectors ~x, ~y ∈ Cd

Tr(~x~y∗) = ~x∗~y = 〈~x|~y〉. (2.7)

Definition 2.11. [102, §2.6] Let A be an m × n matrix and B an m′ × n′ matrix. The

Kronecker product A⊗B is the mm′ × nn′ matrix defined by

(A⊗B)ij = (A)vw (B)xy where i = vm+ x, j = wn+ y. (2.8)

Each entry of A has been replaced by a scaled copy of B.

Definition 2.12. [104, §2] The Kronecker delta is a function

δx,y =

 1 if x = y

0 if x 6= y.
(2.9)

The standard basis vectors and the identity matrix may be defined using the Kronecker

delta:

Ed = {~ek : eka = δk,a} (2.10)

(Id)ij = δi,j . (2.11)

14
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Quantum physics

Quantum physics is a mathematical formalism for describing and representing the behaviour

of objects such as photons and electrons. We give some definitions that are commonly used

in quantum physics and in particular in quantum information theory, the subdiscipline of

physics that the applications of MUBs belong to.

Definition 2.13. An operator is a mapping between vector spaces.

Quantum information theory uses operators U : Cd 7→ Cd in which case the operator

may be represented as a matrix from Md(C). An operator which is Hermitian is called an

observable [6].

Definition 2.14. [6, §4.6.2] A density matrix is a Hermitian matrix, A ∈ Md(C), such that

Tr(A) = 1 and ~x∗A~x ≥ 0 for all ~x ∈ Cd.

The state of a quantum system is represented as a density matrix.

Definition 2.15. [104, §6] A projection matrix is a matrix P which satisfies

P = P 2. (2.12)

The name projection arises from the idea that P~v is the ‘shadow projected’ by ~v onto

space spanned by P . The matrix Pi = ~ui~u
∗
i with ~ui as in equation (2.5) is a projection

matrix, when |ui| = 1:

P 2
i = ~ui~u

∗
i ~ui~u

∗
i = 〈~ui|~ui〉~ui~u∗i = ~ui~u

∗
i . (2.13)

Definition 2.16. [6, §3.1] The Pauli matrices are

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 . (2.14)

The Pauli matrices provide a basis for the space of 2 × 2 Hermitian matrices, which are

used to describe the properties of quantum objects in C2. Any Hermitian matrix A in M2(C)

may be written as

A = λ0I2 + λxσx + λyσy + λzσz (2.15)
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where all the coefficients λi are real. The Pauli matrices have been generalised for larger

dimensions.

Definition 2.17. [5] The generalised Pauli matrices are defined as:

Xd~ei = ~ei+1 Zd~ei = ωid~ei (2.16)

where ~ei is the ith standard basis vector of Cd and ωd is a dth root of unity.

The generalised Pauli matrices have a physical interpretation. Xd is the position operator

and Zd is the momentum operator [99].

For example

X3 =


0 0 1

1 0 0

0 1 0

 Z3 =


1 0 0

0 ω3 0

0 0 ω2
3

 (2.17)

The generalised Pauli matrices have the following properties [5, 41, 25]

ZdXd = ωdXdZd (2.18)

(Xd)
j(Zd)

k~ei = ωki~ei+j (2.19)

Xd
d = Zdd = Id (2.20)

Tr(Xj
dZ

k
d ) = 0 for j, k not both equal to d. (2.21)

2.2.2 Abstract Algebra

All known constructions of MUBs use Galois fields and Galois rings. We give some definitions

and basic results.

Groups, Rings and Fields

A group is one of the more basic structures in algebra. Fields and rings have a group as a

substructure. All results on groups apply to fields and rings.

Definition 2.18. [40, Def 1.3.1] A group 〈G, ?〉 is a set G closed under a binary operation ?,

such that the following axioms are satisfied:

• Associativity : (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ G.

16
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• Identity : There exists an element of G, denoted 1G, such that 1G ? a = a ? 1G = a for

all a ∈ G.

• Inverse: For each a ∈ G there is a corresponding a′ such that a ? a′ = a′ ? a = 1G.

If in addition 〈G, ?〉 satisfies the following then it is an Abelian group.

• Commutativity : a ? b = b ? a for all a, b ∈ G.

For notational convenience, when the operation is obvious 〈G, ?〉 will be denoted as G.

Definition 2.19. [40, Defi 1.4.4, 2.3.2, 3.1.19] Let G be a group. A subgroup, H, of G is a

subset of G that is also a group. For a ∈ G, the subset aH is a left coset and Ha is a right

coset of H with

aH = {ah : h ∈ H} Ha = {ha : h ∈ H}. (2.22)

A subgroup is normal if its left and right cosets coincide.

aH = Ha ∀a ∈ G. (2.23)

In an Abelian group, the left and right cosets always coincide.

Definition 2.20. [40, Defi 5.1.1] A ring 〈R,+, ·〉 is a set R closed under two binary operations

such that the following axioms are satisfied.

• 〈R,+〉 is an Abelian group.

• · is associative.

• For all a, b, c ∈ R the left distribution law, a(b+ c) = (ab) + (ac), and right distribution

law, (a+ b)d = (ad) + (bd) hold.

Let 0 be the identity element of 〈R,+〉, and R∗ = R \ {0}. Then 〈R,+, ·〉 is a field if 〈R∗, ·〉

is an Abelian group.

As with groups, where the operations are implied, the ring 〈R,+, ·〉 will be denoted R. F

is the usual notation for a field.

17
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Definition 2.21. [40, Defi 6.1.10] A subring N of a ring R is an ideal if it satisfies

aN ⊆ N and Na ⊆ N ∀a ∈ R. (2.24)

Definition 2.22. [40, Defi 5.2.13] The characteristic of a ring R is the least positive integer

n such that
∑n

i=1 x = 0 for all x ∈ R. If no such n exists then R has characteristic 0.

C and R are fields of characteristic 0.

Definition 2.23. ωd is a dth root of unity.

ωd = e2iπ/d. (2.25)

Where context is clear ω will be used without subscript.

The following result is obvious but important.

Lemma 2.24.

np∑
k=1

ωkp = 0, (2.26)

where n is any positive integer, p is a prime.

Definition 2.25. [76, §5] A character is a homomorphism from a finite Abelian group to the

unit circle in C.

We make extensive use of characters of the additive group of a Galois field to construct

MUBs. There are some general properties which apply to all characters on all groups.

Lemma 2.26. [76, §5.1] The set of characters of a group is a group, denoted G∧.

χ0 is the trivial character where χ0(x) = 1 for all x ∈ G.

Lemma 2.27. [11, Thm 3.4] Let G∧ be the group of characters of a group G then

∑
χ∈G∧

χ(x) =

 |G| for x = 1G

0 otherwise,
(2.27)

∑
x∈G

χ(x) =

 |G| for χ = χ0

0 otherwise.
(2.28)

For some characters, equation (2.28) is equivalent to Lemma 2.24.
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Galois Fields

Definition 2.28. [40, 8.5.10] Let p be a prime and h(x) a primitive polynomial of degree r

over Zp. If q = pr then the Galois field Fq of characteristic p is defined to be the quotient

field Zp[x]/(h(x)).

F∗q = Fq \ {0} is a cyclic group under multiplication.

Theorem 2.29. [40, Thm 8.5.10] A Galois field of order q exists if and only if q is a power

of a prime.

Definition 2.30. [40, Ex 9.17] Let α ∈ F = Fqn and K = Fq. Then the trace of F over K is

given by

trF/K(α) = α+ αq + · · ·+ αq
n−1

. (2.29)

If q is a prime, then this is referred to as the absolute trace.

We will always use the absolute trace and refer to it as the trace.

Theorem 2.31. [107, Thm 7.12] Let Fq be a Galois field of characteristic p. For x, y ∈ Fq

and a ∈ Fp:

tr(x) ∈ Fp (2.30)

tr(x+ y) = tr(x) + tr(y) (2.31)

tr(ax) = atr(x) (2.32)

tr(xp) = tr(x). (2.33)

Let q = pr and ωp be a primitive pth root of unity. We use two characters of Fq. All

additive characters, χ, over Fq are of the form [76, eqn 5.6]

χa(x) = ωtr(ax)
p (2.34)

χ1 is denoted as χ. This character is used to construct MUBs in odd prime power dimensions.

Another character we make use of is the quadratic character η over F∗q :

η(x) =

 1 if x is the square of an element in Fq

−1 otherwise.
(2.35)
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In general, sums of characters are difficult to evaluate, and only known explicitly in a few

cases. Lemma 2.27 and Theorem 2.33 are a few of the known cases.

Definition 2.32. [76, §5.2] Let η be the quadratic character and χ an additive character of

Fq. Then the Gaussian sum is defined by

G(η, χ) =
∑
c∈F∗q

η(c)χ(c). (2.36)

Theorem 2.33. [76, Thm 5.33] Let χ be a non-trivial additive character of Fq with q odd

and let f(x) = a2x
2 + a1x+ a0 ∈ Fq[x] and a2 6= 0. Then

∑
x∈Fq

χ(f(x)) = χ

(
a0 −

a2
1

4a2

)
η(a2)G(η, χ), (2.37)

where η is the quadratic character of Fq and G is the Gaussian Sum.

This character sum is required to prove the accuracy of some constructions of MUBs.

Just as a vector space has a basis, a field may also have a basis.

Definition 2.34. [76, Defi 2.30] Let q = pr. If all elements x ∈ Fq can be written as

x = c1a1 + c2a2 + · · ·+ crar ci ∈ Fp (2.38)

then {a1, . . . , ar} is a basis for Fq. Two bases {a1, . . . , ar} and {b1, . . . , br} of Fq are dual if

tr(aibj) = δi,j . (2.39)

Every basis has a unique dual basis. Some bases are self dual.

Functions

The functions described below also apply to more general structures, including multidimen-

sional functions. However they will only be used in the context of a single dimension function,

and thus will be quoted for this restricted setting.
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Definition 2.35. [76, §7.1] A permutation function h on a group G is a function that induces

a permutation on G.

Definition 2.36. [57, §3.5.2] For groups G and H and a function f : G 7→ H, for each a ∈ G

we define the difference operator by:

∆f,a(x) = f(x+ a)− f(x). (2.40)

f is perfect non-linear if ∆f,a is uniformly distributed. If |G| = |H| and f is a perfect non-

linear function, then ∆f,a is a permutation function for each a ∈ G \ {1G}, and f is called

planar.

Planar functions are so called because they can be used to construct projective planes (see

Theorem 3.22). It is known that for a planar function to exist, |G| must be odd [30, Thm

5.13]. If G is Abelian, then |G| must be an odd prime power [12, Cor 1.3].

Conjecture 2.37. Planar functions only exist in groups of odd prime power order.

This is a sub conjecture of the wider question on the existence of projective planes (Ques-

tion 1.6).

Definition 2.38. [57, Defi 9.17] Let G be a finite Abelian group of order d. A function

f : G 7→ C is bent if∣∣∣∣∣∑
x∈G

f(x)χ(x)

∣∣∣∣∣ =
√
q ∀χ ∈ G∧. (2.41)

A narrower version of the above definition is more useful in our case. Let G and H be

finite Abelian groups and g : G 7→ H. Then g is bent if for some character η ∈ H∧,∣∣∣∣∣∑
x∈G

η(g(x))χ(x)

∣∣∣∣∣ =
√
|G| ∀χ ∈ G∧. (2.42)

Definition 2.39. [57, Defi 9.51] Let G and H be groups. A function f : G 7→ H is dif-

ferentially 1-uniform if for every (a, b) 6= (0, 0) ∈ G × H, there is at most one x ∈ G such

that

∆f,a(x) = b. (2.43)
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If |G| = |H| then a differentially 1- uniform function is planar [57, §9.2.2]. The names bent,

perfect non-linear and planar come from some of the applications where these polynomials

were first studied. The name perfect non-linear is also used for multidimensional planar

functions. A good summary is provided in [20].

Theorem 2.40. [57, Thm 9.19] Let G and H be finite Abelian groups such that |G| = |H|.

A function g : G 7→ H is bent if and only if it is perfect non-linear.

Bent and planar functions will be used to describe and construct MUBs in prime power

dimensions.

Galois Rings

Galois rings do not find as many applications as Galois fields, thus not all books on algebra

include a thorough treatment of Galois rings. An excellent reference on Galois rings is [107].

Galois rings are used to construct MUBs in even prime power dimensions.

Definition 2.41. [107, §14] Let p be a prime. Let h(x) be a monic irreducible polynomial of

degree r in Zps . The Galois ring, GR(ps, r), of characteristic ps, is the residue classes of

Zps [x]/(h(x)). (2.44)

The trace and additive characters are defined analogously as for Galois fields (Definition

2.30, equation (2.34)). The properties of the trace as described in Theorem 2.31 also apply

to Galois rings [107, Thm 14.34].

There exists a non-zero element ζ ∈ GR(ps, r) which is a root of h(x). Elements of

GR(ps, r) have a p-adic representation

g = a0 + pa1 + · · ·+ ps−1as−1, (2.45)

where each ai belongs to the Teichmüller set

Tr = {0, 1, ζ, ζ2, . . . , ζp
r−2}. (2.46)

All elements g with a0 = 0 are zero or zero divisors, all elements with a0 6= 0 are units. The

set of zero divisors an 0 forms a group, denoted H. For GR(p2, r), H = pTr, Tr ∼= Fpr [107,

Thm 13.2].
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Definition 2.42. [107, Thm 13.1] We define the ring homomorphism ¯: GR(ps, r) 7→ Fpr by

g = a0 + pa1 + · · ·+ ps−1as−1 = a0. (2.47)

So far Galois rings and Galois fields are the only two algebraic structures which have been

used to construct MUBs. There are many other algebraic structures which have not as yet

been applied to the constructions of MUBs.

2.3 Mutually Unbiased Bases

2.3.1 Definitions of MUBs

The object of study in this thesis is mutually unbiased bases. We give several equivalent

definitions and preliminary results to acquaint the reader with the ‘star’ of this study.

MUBs may be defined as a set of vectors or a set of matrices. Depending on the situation

it may be more convenient to work with one or the other.

Definition 2.43. [112, Eqn 1] Two orthonormal bases B0 and B1 in Cd are called mutually

unbiased if and only if

|〈~x|~y〉|2 =
1

d
∀~x ∈ B0 and ~y ∈ B1. (2.48)

A set of MUBs may be characterised as a set of d × d matrices. We need each column

of each matrix B to have modulus 1 and each pair of columns to be orthogonal. A unitary

matrix satisfies this. The inner product of a column from B0 with any column from B1 must

have modulus 1√
d

which is satisfied by the following:

Definition 2.44. [15] A set {B0, . . . , Bn} is a set of n + 1 MUBs provided that each Bi is

unitary, and

B∗xBy = M where |(M)ij |2 =
1

d
∀ 0 ≤ i, j ≤ n, ∀x 6= y. (2.49)

This characterisation of MUBs will be further developed in section 2.4.3. The following is

a set of objects, from which a set of MUBs can always be constructed. This is not a definition

of MUBs, but a criteria that may be used to search for MUBs.
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Theorem 2.45. [5, Thm 3.2] Let B be a basis for Md(C) consisting of unitary matrices which

are orthogonal under the trace inner product and can be partitioned as

B = {Id} ∪ C0 ∪ · · · ∪ Cd (2.50)

where each class Cj contains d − 1 commuting matrices. Then the eigenbases for each class

form a set of d+ 1 MUBs in Cd.

Proof. Let Cj = {Uj,1, . . . , Uj,d−1} and Uj,0 = Id, for any 0 ≤ j ≤ d. Then

Cj ∪ {Id} = {Uj,0, Uj,1, . . . , Uj,d−1} (2.51)

is a maximal set of commuting orthogonal unitary matrices. For each 1 ≤ j ≤ d + 1 there

exists an orthonormal basis Pj such that

Uj,t = PjDj,tP
−1
j (2.52)

where Dj,t is a diagonal matrix. Let

λj,t,i := (Dj,t)ii, (Mj)ti := λj,t,i (2.53)

Then Mj is a unitary d × d matrix. Note that, since Uj,0 = Id, (Mj)0i = 1, for all

0 ≤ i ≤ d− 1.

Consider C1 and C2. Then for 0 ≤ s, t ≤ d− 1 the orthogonality condition requires that

Tr(U∗1,sU2,t) = dδs,0δt,0. (2.54)

Let ~pj,k be the vector which is the kth column of Pj . Since Tr(~p1,k~p
∗
2,l) = 〈~p1,k|~p2,l〉,

Tr(U∗1,sU2,t) = Tr

(
d∑

k=1

d∑
l=1

λ∗1,s,kλ2,t,l~p1,k~p
∗
1,k~p2,l~p

∗
2,l

)
(2.55)

=

d−1∑
k=0

d−1∑
l=0

λ∗1,s,kλ2,t,l~p
∗
1,k~p2,lTr(~p1,k~p

∗
2,l) (2.56)

=
d−1∑
k=0

d−1∑
l=0

λ∗1,s,kλ2,t,l|〈~p1,k|~p2,l〉|2. (2.57)

Then combine equations (2.54) and (2.57) to get :

d∑
k=1

d∑
l=1

λ∗1,s,kλ2,t,l|〈~p1,k|~p2,l〉|2 = dδs,0δt,0. (2.58)
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Which can be written in matrix form as A~x = ~b where

A = M∗1 ⊗M2 (2.59)

~x = (|〈~p1,0|~p2,0〉|2, |〈~p1,0|~p2,1〉|2, |〈~p1,0|~p2,2〉|2, . . . , |〈~p1,d−1|~p2,d−1〉|2)T (2.60)

~b = d~e0. (2.61)

Note that A is unitary, thus ~x = A∗~b; from which it follows that

|〈p1,s|p2,t〉|2 =
1

d
0 ≤ s, t ≤ d− 1. (2.62)

Hence P1 and P2 are unbiased bases. Repeating for each of the classes we conclude that

{P0, P1, . . . , Pd} are a set of d+ 1 MUBs in Cd.

Constructing sets of matrices which obey the conditions of Theorem 2.45 is an indirect

method for constructing MUBs. This fact is exploited in the Pauli matrix construction

(Theorem 2.56), and in computational searches [44].

2.3.2 Bounds on the number of MUBs

In this section we give some bounds on the size of a set of MUBs.

Definition 2.46. [64, §4] Let N(d) be the maximum number of MUBs in Cd.

Theorem 2.47. [112, Eq 9] N(d) ≤ d+ 1.

Proof. A d dimensional quantum state is represented as a d× d density matrix, D. Let

TD = D − 1

d
Id (2.63)

then TD is a Hermitian matrix of trace zero. Let T ⊂ Md(C) be the space of all Hermitian

matrices of trace 0. There are d2 entries in T ∈ T . The d diagonal entries of T must be

chosen such that Tr(T ) = 0, hence one entry is forced and the dimension of T is d2 − 1.

Let {B0, B1, . . . , Bn} be a set of MUBs in Cd represented as d × d matrices. Let ~bij be

the jth column of Bi.
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Let Ti be the d − 1 dimensional subspace spanned by the matrices ~bij~b
∗
ij − 1

dId with

0 ≤ j ≤ d− 1. To see that Ti is d− 1 dimensional, note that
∑d−1

i=0 ~ei~e
∗
i − 1

dId = [0].

Tr

[
(~bij~b

∗
ij −

1

d
Id)(~bkl~b

∗
kl −

1

d
Id)

]
= Tr(~bij~b

∗
ij
~bkl~b

∗
kl)−

1

d
(2.64)

= 〈~bij |~bkl〉2 −
2

d
+

1

d
(2.65)

= 0. (2.66)

Thus any element of Ti is orthogonal to any element of Tk for i 6= k.

There is then a maximum of d2−1
d−1 = d + 1 subspaces Ti and hence a maximum of d + 1

mutually unbiased bases.

Definition 2.48. [112] A set of d+ 1 MUBs in Cd is a complete set of MUBs.

The applications of MUBs described in section 1.1.3 rely on complete sets, thus much of

the interest in MUBs is aimed at finding complete sets. Constructions will be given in section

2.4 of complete sets of MUBs in all prime power dimensions.

Theorem 2.49. [112] Complete sets of MUBs exist in Cd when d is a power of a prime.

It is also of interest to find the maximum size of a set of MUBs, even if complete sets do

not exist. The following theorem gives a lower bound.

Theorem 2.50. [64, Lem 3] Let d = pa11 p
a2
2 . . . parr be the prime power decomposition of d.

Then

N(d) ≥ min{N(pa11 ), N(pa22 ), . . . , N(parr )}. (2.67)

Proof. Let m = min{N(pa11 ), N(pa22 ), . . . , N(parr )} and q = paii such that m = N(paii ), then

we have m MUBs B1, . . . , Bm of Cq. Let s = d
q . Then{

s⊗
Bk : k = 1, . . . ,m

}
(2.68)

is a set of m mutually unbiased bases in Cd.

This is referred to as the ‘reduce to prime powers’ construction and is a lower bound on

the maximum number of MUBs. It is known that this lower bound is not sharp since more

MUBs can be constructed in certain square dimensions [110] (see section 3.2.6). Combining

Theorems 2.49 and 2.50 we find that

Corollary 2.51. [64] At least three MUBs exist in all dimensions.
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2.4 Constructions of complete sets of MUBs

Complete sets of MUBs are known in prime power dimensions. This knowledge comes from

constructions using Galois fields and Galois rings. There are two different construction meth-

ods which use Galois fields, one uses planar functions and the other generalised Pauli matrices.

We expound several constructions which appear in the literature and then show that some

of them are equivalent. A construction which gives incomplete sets of MUBs, but more than

the lower bound of Theorem 2.50 will be presented in section 3.2.6.

2.4.1 Galois Fields

Planar functions

We begin with the most general construction. This uses planar functions over a Galois field.

There is an ongoing search to find new planar functions, which will then result in new sets of

MUBs. The following is a narrowing of a result which used differentially 1-uniform functions.

Theorem 2.52 (Planar function construction). [93, Thm 4.1] Let Fq be a field of odd char-

acteristic p. Let Π(x) be a planar function on Fq. Let Va := {vab : b ∈ Fq} be the set of

vectors

~vab =
1
√
q

(
ωtr(aΠ(x)+bx)
p

)
x∈Fq

=
1
√
q

(
χ (aΠ(x) + bx)

)
x∈Fq

with a, b ∈ Fq. (2.69)

The standard basis E along with the sets Va, a ∈ Fq, form a complete set of q + 1 MUBs in

Cq.

Proof. Let ~vab be as given in equation (2.69). We must show that

|〈~vab|~vcd〉| =


1 for a = c, b = d

0 for a = c, b 6= d

1√
q otherwise

(2.70)

〈~vab|~vab〉 =
1

q

∑
x∈Fq

ωtr[(a−a)Π(x)+(b−b)x]
p (2.71)

=
1

q

∑
x∈Fq

1 (2.72)

= 1 (2.73)
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Let b 6= d,

〈~vab|~vad〉 =
1

q

∑
x∈Fq

ωtr[(a−a)Π(x)+(b−d)x]
p (2.74)

=
1

q
ωtr(b−d)
p

∑
x∈Fq

ωtr(x)
p . (2.75)

Apply Lemma 2.27 to find that
∑

x∈Fq ω
tr(x)
p = 0 and hence 〈~vab|~vad〉 = 0. Each Va is an

orthonormal basis. Next we show that Va and Vc are unbiased:

〈~vab|~vcd〉 =
1

q

∑
x∈Fq

ωtr[(a−c)Π(x)+(b−d)x]
p . (2.76)

Applying Theorem 2.40 we see that∣∣∣∣∣∣
∑
x∈Fq

ωtr[(a−c)Π(x)+(b−d)x]
p

∣∣∣∣∣∣ =
√
q (2.77)

and hence

|〈~vab|~vcd〉| =
1

q

√
q =

1
√
q
. (2.78)

Each pair Va and Vc are unbiased when a 6= c. Each entry of each vector has magnitude 1√
q ,

therefore each Va is unbiased to the standard basis.

Since x2 is a planar function for all Galois fields (see Lemma 3.24), the next construction

is a special case of the planar function construction. We write it explicitly as it is used later.

This construction was first shown for prime dimensions by Ivanovic [59], generalised to prime

powers by Wootters and Fields [112], then given in the simplified form below by Klappenecker

and Rötteler [64].

Theorem 2.53 (WF Construction). [64, Thm 2] Let Fq be a finite field of odd characteristic

p and ω := e2iπ/p. Let Va := {~vab : b ∈ Fq} be the set of vectors

~vab :=
1
√
q

(
ωtr(ax2+bx)

)
x∈Fq

=
1
√
q

(
χ
(
ax2 + bx

) )
x∈Fq

with a, b ∈ Fq. (2.79)

The standard basis E along with the sets Va, a ∈ Fq, form a complete set of q + 1 MUBs in

Cq.

28



Joanne Hall Literature review

Proof.

|〈~vab|~vcd〉| =

∣∣∣∣∣∣1q
∑
x∈Fp

χ
(
(c− a)x2 + (d− b)x

)∣∣∣∣∣∣ . (2.80)

Using Theorem 2.27, if a = c, then equation (2.80) evaluates to 1 if b = d and 0 if b 6= d.

This shows the vectors in Va are orthonormal. Using Theorem 2.33 we see that if a 6= c then

|〈~vab|~vcd〉| = 1√
q . Each entry of each vector has magnitude 1√

q , therefore each Va is unbiased

to the standard basis.

The next construction was the first published construction of a complete set of MUBs in

1980 [1]. The construction has been generalised to all prime powers by Klappenecker and

Rötteler in 2003 [64].

Theorem 2.54 (Alltop Construction). [64, Thm 1] Let Fq be a finite field of odd character-

istic p ≥ 5 and ω := e2iπ/p. Let Va := {~vab : b ∈ Fq} be the set of vectors

~vab :=
1
√
q

(
ωtr((x+b)3+a(x+b))

)
x∈Fq

=
1
√
q

(
χ
(
(x+ b)3 + a(x+ b)

) )
x∈Fq

with a, b ∈ Fq.

(2.81)

The standard basis E along with the sets Va, a ∈ Fq, form a complete set of q + 1 MUBs in

Cq.

Proof.

|〈~vab|~vcd〉| =

∣∣∣∣∣∣1q
∑
x∈Fp

χ
(
3(a− c)x2 + (3a2− 3c2 + b− d)x+ (a3− c3 + ba− dc)

)∣∣∣∣∣∣ (2.82)

which is a quadratic in x. Then use the same logic as Theorem 2.53 to show this is a complete

set of MUBs.

Notice that both of the polynomials in the inner products of the WF and Alltop construc-

tions are quadratic. Godsil and Roy [42, §6] have shown that the sets of MUBs constructed

by the Alltop and WF constructions are equivalent (see Theorem 2.65).
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Generalised Pauli matrices

The following construction is equivalent to the WF construction when d is an odd prime (see

Corollary 2.66). Also note that this construction works for both odd and even prime powers

in contrast to the planar function construction which only works for odd prime powers.

Theorem 2.55. [5, Thm 2.3] Let Xd and Zd be the generalised Pauli matrices in Md(C)

(Definition 2.17). For any prime, d, the eigenbases of

Zd, Xd, XdZd, Xd(Zd)
2, . . . , Xd(Zd)

d−1 (2.83)

are a complete set of MUBs.

Proof. The set of eigenvectors of Zd are the standard basis vectors. The eigenvectors of

Xd(Zd)
k are

~vkt =

(
1√
d
χ(−tj − kσj)

)
j∈Fd

(2.84)

where σj = j + (j + 1) + · · ·+ (d− 1). Summing the arithmetic progression:

σj =
1

2
(d− j)(j + d− 1) =

1

2
(d2 − j2 − d+ j). (2.85)

〈~vkt|~vlu〉 =
1

d

d−1∑
j=0

χ
(
(t− u)(−j)− (k − l)sj

)
(2.86)

=
1

d
χ

(
1

2
(l − k)(d2 − d)

)d−1∑
j=0

χ

(
(u− t)j +

1

2
(l − k)(j − j2)

)
(2.87)

=
1

d
χ

(
1

2
(l − k)(d2 −d)

) d−1∑
j=0

χ

(
1

2
(k − l)j2 + (u− t+

1

2
l − 1

2
k)j

)
. (2.88)

Thus we have a quadratic equation inside the character sum. Following the proof of Theorem

2.53 we conclude that a complete set of MUBs has been constructed.

This has been extended to all prime powers.

Theorem 2.56 (Pauli matrix construction). [41] Let Fq be a field of characteristic p. Let Xp

and Zp be the generalised Pauli matrices in Mp(C). Let q = pr and let E = {e1, . . . , er} and

Ē = {ē1, . . . , ēr} be dual bases for Fq. Let fi = kēi so that F = kĒ for some k ∈ F∗pr . Let

Tab = Xa1
p Z

b1
p ⊗Xa2

p Z
b2
p · · · ⊗Xar

p Z
br
p a, b ∈ Fq (2.89)
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where ai = tr(ak−1fi) = tr(aēi) and bi = tr(bkei). The eigenbases of {Tab : a, b ∈ Fq} are a

complete set of MUBs.

Proof. From equation (2.18)

Xa
pZ

b
pX

a′
p Z

b′
p = ωba

′
p Xa+a′

p Zb+b
′

p (2.90)

Xa′
p Z

b′
p X

a
pZ

b
p = ωab

′
d Xa′+a

p Zb
′+b
p . (2.91)

Thus when q is a prime Tab and Ta′b′ commute if and only if ab′ − ba′ = 0. Since

(Xa1
p Z

b1
p ⊗Xa2

p Z
b2
p )(X

a′1
p Z

b′1
p ⊗X

a′2
p Z

b′2
p ) = Xa1

p Z
b1
p X

a′1
p Z

b′1
p ⊗Xa2

p Z
b2
p X

a′2
p Z

b′2
p (2.92)

we find that when q is a power of a prime Tab and Ta′b′ commute if and only if aib
′
i− bia′i = 0

for each 1 ≤ i ≤ r, which can be summarised as

r∑
i=1

aib
′
i − bia′i = 0. (2.93)

Using equation (2.38) we find that

r∑
i=1

aibi = tr(ab) (2.94)

and hence equation (2.93) becomes: Tab and Ta′b′ commute if and only if

tr(ab′)− tr(ba′) = 0. (2.95)

Let the line lα,β,γ be a subset of the space F2
q such that

lα,β,γ = {(a, b) : αa+ βb = γ with a, b,∈ Fq}. (2.96)

Choose (a, b) and (a′, b′) so that there exist α, β ∈ Fq

αa+ βb = 0 and αa′ + βb′ = 0, (2.97)

that is (a, b) and (a′, b′) are on the line lα,β,0. Then

tr(ab′)− tr(ba′) = tr

(
−βb
α

b′
)
− tr

(
b
−βb′

α

)
= 0, (2.98)

which means that Tab and Ta′b′ commute when (a, b) and (a′, b′) are both in lα,β,0. There

are q points on each line, and q + 1 lines through (0, 0). Thus we have a set which may be
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partitioned into q+ 1 subsets of q commuting matrices. Next we need to show orthogonality.

From equations (2.21) and (2.90)

Tr(Xa
pZ

b
pX

a′
p Z

b′
p ) = ωba

′
d Tr(Xa+a′

p Zb+b
′

p ) = 0, (2.99)

thus Tab and Ta′b′ are orthogonal. This result also applies when d is a power of a prime.

Hence we have a set of orthogonal unitary matrices which can be partitioned into q + 1

subsets of q commuting matrices. Theorem 2.45 shows that the eigenbases of these matrices

are a complete set of MUBs in Cd.

The eigenbases of the Tab have a physical interpretation. They are rotation operators [67].

A version of this construction, has appeared in two independent publications in 2009

[85, 25], five years after the construction was first published [41].

The construction of Paterek, Dakič and Brukner [85] is a special case when k = 1. It is

acknowledged that their construction is ‘related to’ [41]. The mathematical presentation in

[85] is easier to follow. This comment has been published as [48].

Combescure [25] generates sets of matrices Cθ = {Tab : b = θa, a,b ∈ Fq} then constructs

operators Rθ, which diagonalise the matrices of Cθ. From Theorem 2.7 we know that the

columns of Rθ form the eigenbasis of Tab where b = θa. The eigenbases of the operators Tab

are the MUBs constructed in [41]. Hence this is the same construction of MUBs. [25] does

not cite [41]. A group like structure of these MUBs is shown in [25] which will be expounded

in section 2.6.

2.4.2 Galois Rings

The planar function construction only constructs MUBs in odd prime powers. The gener-

alised Pauli matrix construction however can construct MUBs in even and odd prime power

dimensions. Galois rings may also be used to construct MUBs in even prime power dimen-

sions. Arithmetic modulo 4 and block diagonal matrices were used in the first construction

of MUBs in even prime powers [112]. Klappenecker and Rötteler simplified this construction

using the ring GR(4, r) [64, Thm 3]. GR(4, r) has applications in coding theory [50], hence

GR(4, r) is the most widely studied family of Galois rings.

Lemma 2.57. [19, Lem 3][114, Lem 3,Lem 4] Let GR(4, r) be a Galois ring of characteristic
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4 with Teichmüller set Tr. Let i = ω4 =
√
−1. For a ∈ GR(4, r)

∣∣∣∣∣∑
x∈Tr

itr(ax)

∣∣∣∣∣ =


0 if a ∈ 2Tr, a 6= 0

2r if a = 0
√

2r otherwise.

(2.100)

Proof. Tr is a group of order 2r, thus we can use Lemma 2.24 when a ∈ 2Tr, a 6= 0. If a = 0

then ∑
x∈Tr

itr(ax) =
∑
x∈Tr

1 (2.101)

= |Tr| (2.102)

= 2r. (2.103)

Let a = γ+ 2δ with γ, δ ∈ Tr and γ 6= 0. Note that x+β+ 2
√
xβ ∈ Tr for x, β ∈ Tr, and that

x+ β + 2
√
xβ runs through Tr as x runs through Tr.∑

x∈Tr

itr(ax) =
∑
x∈Tr

itr[a(x+β+2
√
xβ)] (2.104)

= itr(aβ)
∑
x∈Tr

itr[a(x+2
√
xβ)]. (2.105)

Set a = 1, and note that tr(2
√
xβ) = tr(2xβ), then∑

x∈Tr

itr(x) = itr(β)
∑
x∈Tr

itr[(1+2β)x]. (2.106)

Substituting a = γ + 2δ into equation (2.104), then using equation (2.106),∑
x∈Tr

itr[γ(1+2δ/γ)x] =
∑
x∈Tr

itr[(1+2δ/γ)(γx)] (2.107)

= i−tr(δ/γ)
∑
x∈Tr

itr(γx). (2.108)

Then using the fact that γx is a permutation of Tr and the properties of the trace map

(Theorem 2.31 and Definition 2.41),∑
x∈Tr

itr[γ(1+2δ/γ)x] = itr(−δ/γ)
∑
x∈Tr

itr(x). (2.109)

From [114, Lem 4] we get that∣∣∣∣∣∑
x∈Tr

itr(x)

∣∣∣∣∣ =
√

2r. (2.110)

and therefore |
∑

x∈Tr i
tr(ax)| =

√
2r.
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If p is odd, then not every element of Tr has a square root, and thus x+ β + 2
√
xβ is not

a permutation of Tr. Thus Lemma 2.57 does not hold in GR(p2, r) when p is odd, and the

following construction, which relies upon it is not valid in odd dimensions.

Theorem 2.58 (Galois ring construction). [64, Thm 3] Let GR(4, r) be the Galois ring of

characteristic 4 and Teichmüller set Tr. Let i = ω4 =
√
−1. Let Va := {~vab : b ∈ Tr} be the

set of vectors

~vab :=
1√
2r

(
itr[(a+2b)x]

)
x∈Tr

. (2.111)

The standard basis E along with the sets Va, a ∈ Tr form a complete set of 2r + 1 MUBs in

C2r .

Proof. By definition

|〈~vab|~vcd〉| =
1

2r

∣∣∣∣∣∑
x∈Tr

itr[(c−a)+2(d−b)]

∣∣∣∣∣ . (2.112)

If c = a then Lemma 2.57 shows that equation (2.112) evaluates to 0 when d 6= b and 1 when

d = b. Hence each Va is an orthonormal basis for Cd.

If c 6= a then from Lemma 2.57 the sum in equation (2.112) evaluates to 1√
2r

showing that

~vab and ~vcd are unbiased vectors. The entries in the vectors have magnitude 1√
2r

, and so each

Va is unbiased to the standard basis.

This construction of MUBs may also be generated using the planar function construction,

but modified to a differentially 1-uniform function [93]. It is known that if differentially 1-

uniform functions do exist for groups of even order, then the groups must be of different

size [93]. Let Tr = {0, 1, ζ, ζ2, . . . , ζ2r−2} be the Teichmüller set of GR(4, r) and let F2r be

represented cyclicly: F2r = {0, 1, α, α2, . . . , α2r−2}. Let f : F2r 7→ GR(4, r) be defined by

f(x) =

 0 for x = 0

2ζy for x = αy
. (2.113)

Equation (2.111) may be rewritten as [93, Eqn 4.6]

~vab :=
1√
2r

(
χa(x)ψb(f(x))

)
x∈F2r

(2.114)
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where χa(x) = itr(ax), tr over F2r , and ψb = itr(bf(x)), tr over GR(4, r). From equation (2.32)

there are 2r elements a, c ∈ GR(4, r) such that tr(a) = tr(c), meaning that ~vab = ~vcb. Thus

each vector is constructed multiple times.

It is known that the planar function and Alltop constructions do not generalise to rings

in arbitrary dimension [3]. Thus to construct complete sets of MUBs in arbitrary dimension,

a new type of construction is needed.

2.4.3 Equivalences of MUBs

Definition of Equivalence

Some of the constructions mentioned in sections 2.4.1 and 2.4.2 are equivalent. We begin by

defining what is meant by equivalence of MUBs.

Definition 2.59. [15, App A] Two sets of MUBs, B = {B0, B1, . . . , Bd} and

B′ = {B′0, B′1, . . . , B′d}, written as matrices, are equivalent if B can be transformed into B′ by

application of the following four transformations.

• A unitary matrix U applied to the entire set of bases:

B → U{B0, B1, . . . , Bd} = {UB0, UB1, . . . UBd}. (2.115)

• Unitary diagonal matrices Di which apply phase changes to the vectors within each

basis:

B → {B0D0, B1D1, . . . , BdDd}. (2.116)

• Permutation matrices Pi which permute columns and therefore permute vectors within

bases:

B → {B0P0, B1P1, . . . , BdPd}. (2.117)

• Complex conjugation of the entire set of bases:

B → {B∗0 , B∗1 , . . . , B∗d}. (2.118)

Each matrix of an orthonormal basis is unitary, meaning that BxB
∗
x = Id for any matrix in

a set of MUBs. This property and the definition of equivalence gives the following important

fact.

35



Joanne Hall Literature review

Lemma 2.60. [42] Every set of MUBs is equivalent to a set of MUBs which contains the

standard basis.

Definition 2.61. [57, Eqn 2.1, §4.1,4.2] A Hadamard matrix is a d × d matrix, H, with

entries from {±1} such that

HH∗ = dId. (2.119)

A complex Hadamard matrix is a d × d matrix with entries from C of modulus 1 satisfying

equation (2.119). A Butson Hadamard matrix BH(q, d) is a d×d complex Hadamard matrix

with entries that are complex qth roots of unity.

In the literature on MUBs the term generalised Hadamard matrix is sometimes used

instead of complex Hadamard matrix [110]. In some publications a complex Hadamard matrix

refers to a BH(4, d).

It is known that Hadamard matrices must be of order 1, 2, or a multiple of 4. However

it is unknown if a Hadamard matrix exists for all permissible sizes. The discrete Fourier

transform constructs a BH(d, d), thus there is at least one Butson Hadamard matrix of every

size.

Definition 2.62. [15, §1] A set of n+ 1 MUBs in Cd is dephased if it can be written as

{Id,
1√
d
H1,

1√
d
H2, . . . ,

1√
d
Hn}, (2.120)

where each Hi is a complex Hadamard matrix, with the first row and the first column having

1 in every entry.

From Definitions 2.59 and 2.62 we get:

Lemma 2.63. [15] All sets of MUBs may be dephased.

The search for a set of MUBs, may then be replaced by the search for sets of complex

Hadamard matrices. A complete classification of complex Hadamard matrices up to order 5

has allowed for a complete classification of MUBs up to dimension 5 [15].

Theorem 2.64. [15] There is a unique set of MUBs in Cd for d ≤ 5.

The relationship with Hadamard matrices has also been used in searches for MUBs in C6

[8, 60, 10].
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Equivalence of constructions

Theorem 2.65. [42, §6] A complete set of Alltop type MUBs in Cq is equivalent to a complete

set of WF type MUBs in Cq.

For q = 3r, WF type MUBs exist, but Alltop MUBs do not. Thus not all WF type MUBs

are equivalent to Alltop type MUBs.

Proof. Let {Wa : a ∈ Fq} be a set of WF type MUBs generated using equation (2.79), and

{Aa : a ∈ Fq} be a set of Alltop type MUBs generated using equation (2.81) in Cq. We show

that a permutation of A∗0 is the unitary transform required to show equivalence according to

Definition 2.59.

A∗0A0 = Iq (2.121)

A∗0Iq = A∗0 (2.122)

which after applying a phase change of χ(−x3) to each column is W0.

(A∗0Aa)xy =
∑
z∈Fq

(A∗0)xz (Aa)zy (2.123)

=
1

q

∑
z∈Fq

χ
(
−z3 − xz

)
χ
(
(z − a)3 + y(z + a)

)
(2.124)

=
1

q

∑
z∈Fq

χ
(
3az2 + (3a2 + y − x)z + (a3 + ya)

)
. (2.125)

The polynomial inside the sum is a quadratic, thus we can apply Theorem 2.33:

(A∗0Aa)xy =
1

q
χ

(
12a4 + 12ya2 − (3a2 + y − x)2

12a

)
η(3a)G(η, χ). (2.126)

Divide each column by the entry in the row x = 0. Most of the terms cancel, including η(3a)

and G(η, χ).

(A∗0Aa)xy
(A∗0Aa)0,y

= χ

(
−x2 + 2x(3a2 + y)

12a

)
(2.127)

=
(
W −1

12a

)
x, 3a

2+y
6a

. (2.128)

We conclude that A∗0 is the unitary transform and y 7→ 3a2+y
6a the permutation required by

Definition 2.59 to show equivalence.
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Some of the other constructions are equivalent, but are only known for specific cases. The

following are not published results, but are simple observations.

Corollary 2.66. [42, Lem 6.2] The MUBs generated in Cd using the WF construction and

the Pauli matrix construction are the same when d is an odd prime.

Proof. In prime dimensions the proof of Theorem 2.55 shows the equivalence of the two

constructions.

Explicit calculation of the eigenvectors of the Pauli matrix MUBs would determine the

equivalence (or not) in prime power dimensions.

Conjecture 2.67. The MUBs generated in Cd using the WF construction and the Pauli

matrix construction are the same when d is odd.

Corollary 2.68. The MUBs generated in Cd using the Galois ring construction and the Pauli

matrix construction are the same for d = 2 and d = 4.

Proof. This can be shown by calculating the set of MUBs using each method. For d = 2 both

obtain [112, Eq 3]:
 1

0

 ,

 0

1

 ,

 1√
2

 1

1

, 1√
2

 1

−1

 ,

 1√
2

 1

i

, 1√
2

 1

−i

 . (2.129)

In the case d = 4 the bases are explicitly calculated in [41, Fig 3] and [64, Ex 2], and are the

same. Note that [64] contains a misprint, which is corrected in [65, Ex 2].

This result may also be obtained from Theorem 2.64 [15]. Further calculations are required

to show equivalence (or not) in larger dimensions.

2.5 Structures related to MUBs

2.5.1 Equivalent objects

There are some objects which have been shown to be equivalent to sets of MUBs, such as

sets of commuting matrices (Theorem 2.45) and sets of complex Hadamard matrices (Lemma

2.62). We present two further objects which are equivalent to MUBs. Information about any

of these equivalent objects will lead to information about MUBs.
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Complex projective t-designs

We describe complex projective t-designs, then show that specific designs are equivalent to

complete sets of MUBs. The notion of a t-design on a projective space is an extension of

t-designs on a discrete set which we will make use of in subsequent chapters (see definition

3.16).

Definition 2.69. [65, §III] Let Sd−1 denote the sphere of unit vectors in Cd. Two unit

vectors ~u,~v are equivalent, denoted ~u ≡ ~v, if there exists some θ ∈ R such that ~u = eiθ~v. Let

the complex projective sphere be the quotient space

CSd−1 := Sd−1/≡ . (2.130)

CSd−1 is isomorphic to complex projective space, denoted CPd−1, but using vectors of

unit length is common in quantum physics. We write the elements of CSd−1 using vectors,

where 〈~x〉 ∈ CSd−1 represents all vectors of the form eiθ~x ∈ Cd.

Definition 2.70. [65, Thm 1] Suppose that X is a nonempty finite subset of CSd−1. X is a

t-design in CSd−1 if for all k in the range 0 ≤ k ≤ t

1

|X|2
∑

〈~x〉,〈~y〉∈X

|〈~x|~y〉|2k =
1(

d+k−1
k

) . (2.131)

There is also a definition of complex projective t-design which uses cubature formula and

measure theory, material which is well beyond the scope of this thesis [23, §VI 54.6][65, Def

2]. If ≥ replaces = in equation (2.131), then we have the Welch bound [109].

We denote the elements of a complex projective t-design as vectors, where ~v represents all

vectors in Cd of the form eiθ~v. The representation of a vector as a point in CSd−1 is analogous

to the idea of dephasing MUBs.

Definition 2.71. [23, Defi VI 54.6, 54.23] The angle set, A, of a t-design X is the set

A := {|〈~x|~y〉|2 : 〈~x〉, 〈~y〉 ∈ X, 〈~x〉 6= 〈~y〉}. (2.132)

The subdegree of dθ(~x) of a point 〈~x〉 ∈ X is the size of the set

dθ(x) := |{〈~y〉 ∈ X : |〈~x|~y〉|2 = θ}|. (2.133)
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MUBs are defined by the angles between vectors. Specifying the angle set is remarkably

prescriptive of other properties.

Lemma 2.72. [23, Thm VI 54.25, 54.35] Let X be a t-design on CSd−1 with angle set {0, α}.

Then for every 〈~x〉, 〈~y〉 ∈ X, dα(~x) = dα(~y).

Theorem 2.73. [65, Thm 3] A set of d+ 1 MUBs in Cd is a 2-design in CSd−1 with angle

set {0, 1
d} and d(d+ 1) elements.

Proof. Let X be a set of d+ 1 MUBs in Cd. For k = 0 equation (2.131) is trivially satisfied.

Evaluating the left side of equation (2.131) for k = 1 we get

1

d2(d+ 1)2

∑
〈~x〉,〈~y〉∈X

|〈~x|~y〉|2 =
1

d2(d+ 1)2
d(d+ 1)

(
1 + (d− 1)0 + d2 1

d

)
(2.134)

=
1

d
. (2.135)(

d
1

)
= d, thus equation (2.131) is satisfied. Similarly for k = 2:

1

d2(d+ 1)2

∑
〈~x〉,〈~y〉∈X

|〈~x|~y〉|4 =
1

d2(d+ 1)2
d(d+ 1)

(
1 + (d− 1)0 + d2 1

d2

)
(2.136)

=
2

d(d+ 1)
. (2.137)(

d+1
2

)
= d(d+1)

2 , thus equation (2.131) is satisfied. X is a 2-design in CSd−1.

Theorem 2.74. [65, Thm 4] A 2-design X ⊆ CSd−1 with d(d + 1) elements and angle set

{0, 1
d} is a complete set of MUBs in Cd.

Proof. Rearranging equation (2.131) to count subdegrees

1

|X|2

 ∑
〈~x〉∈X

1 +
∑
〈~x〉∈X

∑
θ∈{0, 1

d
}

dθ(~x)θk

 =
1(

d+k−1
k

) . (2.138)

We know |X| = d(d+ 1). For k = 1 equation (2.138) becomes

1

d2(d+ 1)2

d(d+ 1) +
∑
〈~x〉∈X

d 1
d
(~x)

1

d

 =
1

d
(2.139)

d(d+ 1) +
1

d

∑
〈~x〉∈X

d 1
d
(~x) = d(d+ 1)2 (2.140)

∑
〈~x〉∈X

d 1
d
(~x) = d3(d+ 1). (2.141)
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Using the calculations for k = 2 yields the same solution. From Lemma 2.72 and equation

(2.141) we find that d 1
d
(~x) = d2 and d0(~x) = d− 1 for every ~x ∈ X.

Let

Bx = {〈~x〉} ∪ {〈~y〉 ∈ X : 〈~x|~y〉 = 0}. (2.142)

We must show that Bx = By for each ~y ∈ Bx. If ~y ∈ Bx then ~x ∈ By. Thus we need that the

intersection set

I(x, y) = {~z ∈ X : 〈~x|~z〉 = 0 ∧ 〈~y|~z〉 = 0} = Bx ∪By \ {x, y} (2.143)

contains d− 2 elements. Specialising [54, Thm 5.2] to the case at hand shows that

|I(x, y)| = d2
1∑

i,j=0

σ0
1−iσ

0
1−j(d(d+ 1)gij(0)− 0i − 0i). (2.144)

Evaluating gij(0) using [54, Thm 5.3] we obtain that |I(x, y)| = d− 2 as required.

Equation (2.144) is a ‘fairly complicated summation’ [54], involving objects which would

require significant space to define and explain. As no further use is made of this result we

omit a detailed exposition.

Theorems 2.52 and 2.73 provide a link between planar functions and complex projective

t-designs.

Corollary 2.75. Let Fq be a field of odd characteristic, and Π a planar function on Fq, then

the set of vectors defined by equation (2.69) along with the vectors of the standard basis is a

2-design on CSd−1.

This has been further generalised with a link between differentially 1-uniform functions and

weighted complex projective t-designs [93, Thm 4.1]. However the only known differentially

1-uniform functions which produce unweighted t-designs, and therefore MUBS, are planar

functions (Theorem 2.52) and equation (2.113) [93]. New discoveries of differentially 1-uniform

functions may result in new sets of MUBs.

There is extensive literature investigating properties of complex projective t-designs, and

in particular sets which attain the Welch bound for use in communication systems [62, 113].

Constructions of such sets are found only in specific cases, and so this connection does not

immediately add to our knowledge of MUBs.
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Relative difference sets

Relative difference sets are algebraic structures, which have been shown to be equivalent to

specific sets of MUBs. This is not as strong as the connections with projective t-designs or

Hadamard matrices, as it only applies to specific sets of MUBs. However it is still important.

Definition 2.76. [11, Defi 10.1] Let G be a group with identity element 1G, and N a normal

subgroup. A subset D of G is an (m,n, d, λ)-relative difference set if

{ab−1 : a, b ∈ D} = {1G} ∪G \N. (2.145)

|N | = n, |G| = mn, |D| = d. For each x ∈ G \N , there are exactly λ pairs a, b ∈ D such that

ab−1 = x.

Several of the constructions of MUBs use character sums. Difference sets are another of

the few cases where explicit calculations of character sums is known.

Lemma 2.77. [11, §VI Thm 10.9] Let G be an Abelian group with normal subgroup N . The

characters of G form a group, G∧, as do the characters of G/N . Every character of G/N

induces a character of G which is constant on the cosets of N , and these characters form a

subgroup H∧ of G∧.

D is a (d, n, d, λ)-relative difference set of G relative to N , if and only if for every character

χ of G

∣∣∣∣∣∑
x∈D

χ(x)

∣∣∣∣∣ =


d for χ = χ0

0 for χ ∈ H∧ \ {χ0}
√
d for χ ∈ G∧ \H∧.

(2.146)

Theorem 2.78. [42, Thm 4.1] The existence of a (d, n, d, λ)-relative difference set in an

Abelian group implies the existence of a set of n+ 1 MUBs in Cd.

Proof. Let D be a (d, n, d, λ)-relative difference set and

χ�D= (χ(x))x∈D (2.147)

be a vector in Cd. Define a basis Bi for Cd using the ith coset of H∧

Bi = { 1√
d
χij�D : χij ∈ H∧ + i}. (2.148)
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The inner product of two such vectors is

〈χa�D | χb�D〉 =
∑
x∈D

χa(x)χb(x) (2.149)

=
∑
x∈D

χab−1(x). (2.150)

From Lemma 2.77, when the vectors are normalised each base is orthonormal and mutually

unbiased. Since every entry of each vector has magnitude 1√
d
, each Bi is also unbiased to the

standard basis.

This theorem has a weaker converse.

Theorem 2.79. [42, Cor 4.2] Let B = {Ed, B1, . . . , Bn} be a set of MUBs in Cd. If the

vectors of {B1 ∪ B2 ∪ · · · ∪ Bn} form a group with respect to component-wise multiplication,

then there exits a (d, n, d, λ)−relative difference set.

Proof. Let ~u,~v be vectors of B \ Ed.

|〈
√
d~u|
√
d~v〉| =


d for ~u = ~v

0 for ~u 6= ~v, ~u,~v ∈ Bi
√
d otherwise

(2.151)

A relative difference set is then inferred from Theorem 2.77.

This does not show that relative difference sets are equivalent to MUBs. In section 2.6

we see that the odd dimensional Pauli matrix MUBs and the WF MUBs form a group using

component-wise multiplication, but the Alltop MUBs do not.

It is known that (pa, pb, pa, pa−b)-relative difference sets exist for all primes p [89, §4].

However MUBs constructed using these relative difference sets are equivalent to the WF type

MUBs [42].

2.5.2 SIC-POVM

MUBs use sets of orthogonal measurements to determine the state of a quantum system.

There are many other sets of measurements which may be used. Positive operator valued

measures (POVM) are one such type of measurements. POVM share some of the applications

of MUBs such as quantum state tomography, but as yet have not found use in cryptography

[111, §3]. A POVM is informationally complete if its statistics completely determine the
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state which was measured as is required for quantum state tomography. An IC-POVM is

symmetric if all the pair-wise inner products are equal. From a mathematical perspective a

SIC-POVM is a set of d2 equiangular lines.

Definition 2.80. [91] A SIC-POVM is a set of d2 vectors ~x, ~y ∈ Cd of unit length satisfying

|〈~x|~y〉|2 =
1

d+ 1
, ~x 6= ~y. (2.152)

It is conjectured that MUBs are intimately connected with finite affine planes (see Con-

jecture 3.28). It has also been suggested that SIC-POVMs show analogous structure, but

with the role of points and lines swapped [111, 96]. Another geometric interpretation notes

that when using the Bloch representation of density matrices [84, §4.2], the Bloch vectors of

a SIC-POVM are maximally distant from the subspaces representing MUBs [2, §2].

Analytic solutions are known for SIC-POVMs in Cd where d = 2, 3, 4, 5, 6, 8 [116, 91](2004),

and more recently d = 9, 10, 11, 12, 13, 14, 15, 19, 24, 35, 48 (2010)[100]. Of particular note is

d = 6, 10, 14, where it is known that no finite affine planes of these orders can exist [16, 73].

Thus a strong connection between affine planes and SIC-POVMs is unlikely.

Conjecture 2.81. [91] SIC-POVMs exist in all dimensions.

Along with the aforementioned analytic solutions, there is numerical evidence that SIC-

POVMs exist in all dimensions. SIC-POVMs have been calculated up to machine precision

for d = 67 [91, 100]. However there are no known infinite families of constructions, suggesting

that if general constructions are found, they will not use well studied algebraic objects such

as Galois fields.

A commonality with MUBs is that SIC-POVMs may also be represented as complex

projective 2-designs.

Theorem 2.82. [91, Thm 2][65, Thm 5] A SIC-POVM in Cd forms a 2-design on CSd−1

with angle set { 1
d+1} and d2 elements.

Proof. As with Theorem 2.73 we must show that the vectors in a SIC-POVM satisfy the

Welch bound (equation (2.131)) for k = 0, 1, 2. This is obvious for k = 0. For k = 1 we

evaluate the lefthand side of equation (2.131):

1

d4

∑
〈~x〉,〈~y〉∈X

|〈~x|~y〉|2 =
1

d4

(
d2 + (d4 − d2)

1

d+ 1

)
(2.153)

=
1

d
. (2.154)
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(
d
1

)
= d, thus equation (2.131) is satisfied. Similarly for k = 2:

1

d4

∑
〈~x〉,〈~y〉∈X

|〈~x|~y〉|4 =
1

d4

(
d2 + (d4 − d2)

1

(d+ 1)2

)
(2.155)

=
2

d(d+ 1)
. (2.156)(

d+1
2

)
= d(d+1)

2 , thus equation (2.131) is satisfied.

It has been noted that this result may also be obtained from [116, Thms 2.29, 2.30].

Theorem 2.83. [91, Thm 2] A 2-design X ⊆ CSd−1 with d2 elements is a SIC-POVM.

Proof. Let A be the angle set of X. Using equation (2.138) for k = 1

1

d4

 ∑
〈~x〉∈X

1 +
∑
〈~x〉∈X

∑
θ∈A

dθ(~x)θ

 =
1

d
(2.157)

∑
〈~x〉∈X

∑
θ∈A

dθ(~x)θ = d3 − d2 = d2(d2 − 1)
1

d+ 1
(2.158)

and for k = 2

1

d4

 ∑
〈~x〉∈X

1 +
∑
〈~x〉∈X

∑
θ∈A

dθ(~x)θ2

 =
2

d(d+ 1)
(2.159)

∑
〈~x〉∈X

∑
θ∈A

dθ(~x)θ =
2d3

d+ 1
− d2 = d2(d2 − 1)

1

(d+ 1)2
(2.160)

To satisfy equations (2.158) and (2.160), we require that θ = 1
d+1 and dθ(~x) = d2 − 1 for all

〈~x〉 ∈ X.

It is also shown that d2 is the minimum number of elements in a 2-design. Thus a SIC-

POVM is a minimal 2-design on CSd−1.

There are some similarities between MUBs and SIC-POVM, both in their physical in-

terpretation and mathematical properties. However there are distinctions that suggest that

information about SIC-POVMs may have little bearing on knowledge of MUBs.

2.5.3 Computer search

There are several groups searching for sets of MUBs using computational methods. Searches

have focused on MUBs in C6, the smallest unresolved case.
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The constructions of MUBs behave quite differently in odd and even prime power dimen-

sions. 6 has both odd and even prime factors, thus it may not be the best place to search

for MUBs [7]. There are conjectures surrounding MUBs and affine planes; it is known that a

finite affine plane cannot exist of order 6, 10 or 14. It may be more fruitful to search in C15,

however each increase in size greatly increases the amount of computation required [7].

The techniques that have been employed generate sets of 3 MUBs, known to exist in any

dimension (by Theorem 2.50), and attempt to find a fourth base unbiased to the original

three.

Grassl takes advantage of Theorem 2.55 to generate the initial 3 MUBs using generalised

Pauli matrices [44], then goes on to conclude that if more than 3 MUBs exist in C6, they

cannot be constructed in this way.

Butterly and Hall use optimisation techniques on various functions to search for MUBs

[18]. They find many complete sets of MUBs for d = 2, 3, 4 and 5, no complete sets for d = 6,

and few complete sets when d = 7. Thus the methods do not scale well[18], and are not

strong evidence for the absence of complete sets of MUBs in C6

Several groups have searched for Hadamard matrices with appropriate properties. Jam-

ming, Matolcsi and Móra describe a strategy for discretising the possible sets of unbiased

Hadamard matrices [60]. Their preliminary results find an infinite family of sets of 3 MUBs

in C6, and show that no sets in this family can be extended to a set of four MUBs in C6 [61].

Bengston et.al. find subspaces for which it is possible to find sets of 3 MUBs in C6. They use

this ‘landscape’ to conjecture that there exist 4 MUBs in C6 [8, §VIII].

The amount of computing power that has been allocated to finding MUBs in C6, and the

lack of success is strong evidence that complete sets of MUBs do not exist in C6.

2.6 Algebraic Structure of MUBs

Theorem 2.79 shows that a set of MUBs which forms a group under component-wise multi-

plication is equivalent to a specific type of relative difference set. We give a simple proof to

show that planar function MUBs meet this criteria, and expound a more complicated proof

that shows that this is also the case for the Pauli matrix MUBs.
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2.6.1 Group structure of planar function MUBs

The following results on planar and Alltop MUBs are not published, but are simple calcula-

tions.

Let � denote component-wise multiplication.

Lemma 2.84. Let B := {Eq, B0, B1, . . . , Bq−1} be a complete set of MUBs in Cq as con-

structed using the planar function construction. The vectors in B \Eq form an Abelian group

under component-wise multiplication.

Proof. Let ~vab and ~vcd be vectors constructed using equation (2.69).

~vab � ~vcd =
1
√
q

(
χ((a+ c)Π(x) + (b+ d)x)

)
x∈Fq

with a, b, c, d ∈ Fq (2.161)

= ~v(a+c)(b+d). (2.162)

Lemma 2.85. Let B := {Eq, B0, B1, . . . , Bq−1} be a complete set of MUBs in Cq as con-

structed using the Alltop construction. The vectors in B \ Eq do not form a closed algebraic

structure under component-wise multiplication.

Proof. Let ~vab and ~vcd be vectors constructed using equation (2.81).

~vab � ~vcd =
1
√
q

(
χ((x+ b)3 + a(x+ b) + (x+ d)3 + c(x+ d))

)
x∈Fq

(2.163)

with a, b, c, d ∈ Fq. The cubic polynomial inside the character cannot be factored into the

form (x+ y)3 + z(x+ y).

The WF MUBs, which are a special case of the planar function MUBs, form a group.

However the Alltop MUBs, which, by Theorem 2.65 are equivalent, do not. Thus the group

structure is not an inherent property of MUBs.

2.6.2 Group structure of Pauli matrix MUBs

The Pauli matrix type MUBs have been shown to have a group structure. This is a much

more complicated proof, but with essentially the same results. It is not yet known if the Pauli

matrix MUBs are equivalent to the WF MUBs in all dimensions.
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Theorem 2.86. [25, Thm 2.14][67, §3.3] Let B := {Id, B0, B1, . . . , Bd−1} be a set of matrices

representing a complete set of MUBs in Cd as constructed using the Pauli matrix construction.

For d, an odd prime power, B \ Id forms a group using component-wise multiplication:

Bj+k = Bj �Bk, i, j ∈ Fq. (2.164)

Proof. Let two bases E = {e1, . . . , er} and F = {f1, . . . , fr} be chosen for Fpr such that F is

a multiple of the dual basis of E, fi = kēi, k ∈ Fpr . Let Xp and Zp be the generalised Pauli

matrices and let

Ua = Xa1
p ⊗Xa2

p ⊗ · · · ⊗Xar
p (2.165)

Vb = Zb1p ⊗ Zb2p ⊗ · · · ⊗ Zbrp (2.166)

where ai = tr(ak−1fi) = tr(aēi) and bi = tr(bei). Then from equation (2.89), Tab = UaVb. By

construction Bj diagonalises T(ja)a, with diagonal matrix D,

T(ja)a = BjDB
∗
j . (2.167)

Using equation (2.21), Tr(T(ja)a) = 0,

Tr(T(ja)a) = Tr(BjDB
∗
j ) = Tr(DB∗jBj) = Tr(DId) = Tr(D). (2.168)

Thus Tr(D) = 0, and hence the rows and columns of Bj and D may be permuted so that

D := µjaVa where µja := χ(m) for some 0 ≤ m ≤ p. From equation (2.167)

T(ja)a = µjaBjVaB
∗
j . (2.169)

Let ~ux be an xth eigenvector of Ua, then

Ua~ux = χ(−ax)~ux, Ua =
∑
x∈Fq

χ(−ax)~ux~u
∗
x. (2.170)

~ux may also be obtained using the discrete Fourier transform [67, Eq 8]. The set of eigenvectors

of Ua form an orthonormal basis for Fq.

Va~ux = ~ux+a, ~u∗xVa = ~u∗x−a. (2.171)

From equations (2.171) and (2.169)

Bj =
∑
x∈Fq

λxj~ux~u
∗
x (2.172)
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for some scalars λx,j , with λ0,j = 1. Then

BjVaB
∗
j =

∑
x∈Fq

λx,jλ
∗
x−a,j~ux~u

∗
x−a. (2.173)

Note that from equation (2.169)

T(ja)a = UjaVa =
∑
x∈Fq

χ(−jax)~ux~u
∗
x−a (2.174)

which shows that

λx,jλ
∗
x−a,j = µajχ(−jax). (2.175)

Let x = 0,

λ0,jλ
∗
−a,j = µaj (2.176)

hence µaj = λ∗−a,j . Rewriting equation (2.175),

λx,jλ
∗
x−a,j = λ∗−a,jχ(−jax). (2.177)

Let a = 0, we find that |λx,j |2 = 1. Let λx,j = χ(−1
2x

2j), this is a solution to equation (2.175)

χ

(
−1

2
x2j

)
χ

(
−1

2
j(x2 − 2ax+ a2)

)
= χ

(
−1

2
a2j

)
χ(−jax) (2.178)

χ

(
−jax+

1

2
a

)
= χ

(
−jax+

1

2
a

)
. (2.179)

We also find that

λ∗x,j = λx,−j (2.180)

and

λx,jλx,k = λx,j+k. (2.181)

Thus the set of scalars {λx,j : x, j ∈ Fq} form a group with λ0,0 as the identity element.

Bj �Bk =
∑
x∈Fq

λx,jλx,k~ux~u
∗
x =

∑
x∈Fq

λx,j+k~ux~u
∗
x = Bj+k (2.182)

which shows that {Bj : j ∈ Fq} forms a group, which has the structure of 〈Fq,+〉.

A group is not formed under component-wise multiplication when q is even; equation

(2.177) does not have a unique solution [67, §3.3.2].
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Theorem 2.87. [67, §3.3.2][25, Rem 2.15] Let q = 2r, then the set X = {Bj : j ∈ Fq}∪{Uj :

j ∈ Fq} forms an algebraic structure using component-wise multiplication. 〈X,�〉 obeys the

following ‘group like laws’:

Bj �Bj = U√j (2.183)

Uj � Uj+1 = U1. (2.184)

Proof. We are using a field of characteristic 2, hence −x = x. From equation (2.177), let

a = x,

λx,jλ
∗
2x,j = λ∗x,jχ(jx2) (2.185)

λ2
x,j = χ(jx2). (2.186)

Then

Bj �Bj =
∑
x∈Fq

λ2
x,j~ux~u

∗
x =

∑
x∈Fq

χ(jx2)~ux~u
∗
x (2.187)

Using the identity jx2 = (
√
jx)2, equation (2.170) and Theorem 2.31,

Bj �Bj =
∑
x∈Fq

χ(
√
jx)~ux~u

∗
x = U√j . (2.188)

This shows equation (2.183).

Uj � Uj+1 =
∑
x∈Fq

χ(jx2 + (j + 1)x2)~ux~u
∗
x (2.189)

=
∑
x∈Fq

χ(x2)~ux~u
∗
x (2.190)

showing equation (2.184).

The group structure is not an underlying property of MUBs since the Alltop MUBs and

even dimensional Pauli matrix MUBs do not form a group. There may be a weaker structure

that all MUBs conform to using different binary operations. This idea will be explored in

chapter 7.

2.7 Research Aim

Despite this large body of research the big question still remains unanswered.
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Open Problem 2.88. Do complete sets of MUBs exist in non-prime power dimensions?

There has been much discussion of the similarities between complete sets of MUBs and

geometric and combinatorial structures. In this study we focus on mutually orthogonal Latin

squares. We know specific sets of MOLS are linked to specific sets of MUBs through the planar

function construction. There are also similarities in the cardinalities of various sub-structures

within MOLS and MUBs. Are these similarities a deep connection, or coincidences?

Research Question 2.89. Are mutually unbiased bases intimately linked with mutually or-

thogonal Latin squares?

The only known constructions of complete sets of MUBs rely on algebraic structures

such as Galois fields and Galois rings. Galois fields are known to construct complete sets of

MOLS. However there are many complete sets of MOLS which do not have known algebraic

constructions. Perhaps the same will be true for MUBs.

Research Question 2.90. Do all complete sets of mutually unbiased bases have an algebraic

structure?

Perhaps the similarities with MOLS come from underlying algebraic structures, which

also underpin MUBs. As shown in section 2.6 some properties of MUBs are quite different in

odd and even prime power dimensions, with weaker properties appearing in even dimensions.

The same is true of projective planes. Will MUBs in non prime power dimensions (if they

exist) have any algebraic structure?
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Chapter 3

MUBs and MOLS

3.1 Introduction

3.1.1 Motivation

Similarities between MUBs and mutually orthogonal Latin squares (MOLS) have been noted

by several authors [96, 111]. This noted similarity has been expressed as a conjecture.

Conjecture 3.1 (SPR Conjecture). [96] A complete set of MUBs exists in Cd if and only if

a complete set of MOLS of order d exists.

The evidence for this is based on cardinalities of various substructures, and similarities of

upper and lower bounds. Specific complete sets of MUBs can be constructed using specific

complete sets of MOLS [85]. A construction that uses general sets of MOLS constructs

incomplete sets of MUBs, but more than the lower bound of Theorem 2.50.

3.1.2 Historical note on MOLS

The name ‘Latin’ square rose out of the writings of Leonard Euler who used Latin characters

as the symbols in the squares. Euler essentially began the study of mutually orthogonal Latin

squares (MOLS) with his famous ‘36 officers problem’ which asks for the construction on a pair

of orthogonal Latin squares of order 6 [23, Rem III 3.22]. This sparked interest in a range of

combinatorial designs. Combinatorial design theory expanded in the 1850s with Kirkman and

Steiner making significant contributions [102, §2]. There are many combinatorial structures

which are equivalent to sets of MOLS, thus a lot research has been done in different guises.
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3.1.3 Applications of MOLS

Latin squares have been used in experimental design for centuries. In 1788 an experiment

involving diets for sheep farming is the first evidence of use of a Latin square in experimental

design [102, §2]. In 1926 Ronald Fisher noted that Latin squares and families of mutually

orthogonal Latin squares could be used systematically for experimental design [102, §2]. A

variety of combinatorial designs are now used to design experiments across all scientific dis-

ciplines.

MOLS also have applications in error correcting codes. Linear error correcting codes rely

on the assumption that noise in the communication channel is uniform, that is each symbol of

each message being sent has equal probability of being changed to any other symbol by errors

in the system. However some systems do not adhere to this assumption. A recent example is

the use of powerlines to transmit internet data [24]. A complete set of MOLS can be used as

a more robust code in this instance.

In recent years Latin squares in the form of Sudoku problems have appeared in newspapers

and magazines worldwide [29].

3.1.4 Aim

In this chapter we approach the question of a link between MUBs and MOLS directly. We

look within the structure of some complete sets of MUBs to find MOLS. We aim to find what

part of the structure of MUBs is most closely linked with MOLS.

Section 3.2 provides definitions of MOLS and equivalent objects, some preliminary results

including the SPR conjecture, and constructions of MUBs that use MOLS. Section 3.3 details

a method for constructing MOLS from MUBs, and shows that this works for two constructions

in prime dimensions. Section 3.4 extends this construction to prime power dimensions. Section

3.5 provides a summary of findings and some further directions for this research.

3.2 Definitions and preliminary results

Definitions can be found in any standard work on combinatorial designs eg [23, 11, 102]. Many

of the geometric definitions apply to infinite and higher dimensional geometries, however only

finite planar geometries are considered in relation to MUBs. Thus all geometric definitions
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and theorems will be stated for finite planar geometries only.

3.2.1 Latin squares

Definition 3.2. [102, §5.1] A Latin square of order n is an n by n array, with each of n

symbols appearing exactly once in each row and each column.

A Latin square may also be represented as a set of ordered triples.

L := {(i, j, k) : symbol k occurs in cell (i, j) of the Latin square}. (3.1)

A cell of the Latin square may be called a point. A set of cells which are in the same row,

a set of cells which are in the same column, or a set of cells which contain the same symbol

may be called a line. There are three types of lines in a Latin square. A row line

Lri := {(i, j, k) : 0 ≤ j, k ≤ d− 1 and (i, j, k) ∈ L}, (3.2)

a column line

Lcj := {(i, j, k) : 0 ≤ i, k ≤ d− 1 and (i, j, k) ∈ L}, (3.3)

and a Latin line

Llk := {(i, j, k) : 0 ≤ i, j ≤ d− 1 and (i, j, k) ∈ L}. (3.4)

Definition 3.3. [11, §I, Def 5.4] A parallel class, ‖-class, A, is a partition of a set of points

into lines which are parallel. Two ‖-classes A and B are unbiased if each line of A contains

exactly one element in common with each line of B.

A row ‖-class is the collection {Lri | 0 ≤ i ≤ d−1}, and L = ∪0≤i≤d−1L
r
i . A column ‖-class

is the collection {Lcj | 0 ≤ j ≤ d− 1}, and L = ∪0≤j≤d−1L
c
j . A Latin ‖-class is the collection

{Llk | 0 ≤ k ≤ d − 1}, and L = ∪0≤k≤d−1L
l
k. A Latin square represents 3 mutually unbiased

‖-classes, the row ‖-class, the column ‖-class, and the Latin ‖-class.
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0 1 2 3

2 3 0 1

1 0 3 2

3 2 1 0

0 1 2 3

3 2 1 0

2 3 0 1

1 0 3 2

0 1 2 3

1 0 3 2

3 2 1 0

2 3 0 1

Figure 3.1: A complete set of MOLS of order 4 [23, §III.3 Ex 3.4].

00 11 22 33

23 32 01 10

12 03 30 21

31 20 13 02

Figure 3.2: The first and second Latin squares from figure 3.1 are superimposed. Every pair

appears exactly once, showing orthogonality.

3.2.2 Mutually orthogonal Latin squares

Definition 3.4. [102, §6.1] Two Latin squares A and B of the same order are orthogonal if

their Latin ‖-classes are unbiased. A set of Latin squares which are pairwise orthogonal are

mutually orthogonal Latin squares (MOLS).

Figure 3.2 shows a method of checking if two Latin squares are orthogonal: superimpose

the two Latin squares and check that every ordered pair of symbols appears exactly once.

A set of n MOLS is equivalent to n + 2 mutually unbiased ‖-classes; the row ‖-class,

column ‖-class and n Latin ‖-classes. Each Latin square represents the same row and column

‖-classes, as they have the same arrangement of cells. Each of the n MOLS have a different

arrangement of symbols within the cells, and hence represent different Latin ‖-classes.

We give an example of three MOLS of order 4 in Figure 3.1. A Latin square is in standard

form if the symbols in the first row appear in lexicographic order. The Latin squares in Figure

3.1 are in standard form.

Many of the counting theorems for MOLS are similar to those for MUBs. Let M(d) be

the maximum number of MOLS of side length d.

Theorem 3.5. [102, Thm 6.2] For d > 1, M(d) ≤ d− 1.
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Proof. Suppose that L1, L2, . . . , Ld are d MOLS of order d, each in standard form. Let

(1, 2, ai) be an element of Li. Since all the Latin squares are in standard form (1, 1, 1) ∈ Li

for each 1 ≤ i ≤ d, and hence ai 6= 1. Because L1, L2, . . . , Ld are mutually orthogonal we

know that a1, a2, . . . , ad are distinct. Hence we must choose d distinct elements from the set

{2, 3, . . . , d}, clearly an impossibility. Hence there can be at most d−1 MOLS of order d.

Thus counting ‖-classes, Theorem 3.5 is analogous to the upper bound on the number of

MUBs (Theorem 2.47). This bound is attainable; a set of d − 1 MOLS of order d is called

complete.

Theorem 3.6. [102, §6.2] For d = pn, a complete set of MOLS of order d exists.

Proof. A construction is given in Theorem 3.22, which from Lemma 3.24 can be used with any

Galois field. Galois fields exist for all prime powers (see for example [40, Thm 8.5.10]).

As with MUBs it is unknown if complete sets of MOLS exist in non prime power dimen-

sions.

Open Problem 3.7. Do complete sets of MOLS of order d exist when d is not a power of a

prime?

The following is analogous to the reduce to prime powers construction of MUBs (Theorem

2.50).

Theorem 3.8. (MacNeish Bound) [80] M(xy) ≥ min{M(x),M(y)}

Proof. [102, Thm 6.5] Let m = min{M(x),M(y)}, and n ≥ m. Let {K1,K2, . . . ,Km} be a

set of m MOLS of order x with symbol set {0, 1, . . . , x − 1} ⊂ Zxy . Let {N1, N2, . . . , Nn}

be a set of n MOLS of order y with symbol set {0, 1, . . . , y − 1} ⊂ Zxy. The proof is by

construction. We show that a set of m MOLS of order xy can be constructed.

For 1 ≤ a ≤ n let N r
a be the array obtained from Na by:

(N r
a)ij = (Na)ij + ry for 0 ≤ r ≤ x− 1. (3.5)

Now construct the xy × xy array La by taking the cells of Ma that contain symbol r and

inserting the matrix N r
a . This is similar, but not the same as the Kronecker product. The

symbol set of La is {0, 1, . . . , xy − 1} = Zxy.
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For each symbol k ∈ Zxy there are unique numbers rk ∈ {0, 1, . . . ,m − 1} and sk ∈

{0, 1, . . . , n− 1} such that

k = rky + sk. (3.6)

Then (La)ij contains symbol k if and only if

i = riy + si, j = rjy + sj , (Na)sisj = sk, and (Ka)rirj = rk. (3.7)

We now check that La and Lb are orthogonal for a 6= b. As Ka and Kb are orthogonal, each

pair (N r
a , N

r′
b ), where 0 ≤ r, r′ ≤ (k − 1), is superimposed exactly once when La and Lb are

superimposed. Since Na and Nb are orthogonal, every pair (k, k′), where 0 ≤ k, k′ ≤ xy − 1,

will appear exactly once when La and Lb are superimposed.

The MacNeish bound was originally conjectured as an equality when d is not a prime

power [80]. However there are examples for which there are more MOLS than this bound

shows. E.g. M(12) ≥ 5, M(14) ≥ 3 [23, §III 3.4].

The combinatorial similarities between complete sets of MOLS and complete sets of MUBs

are expressed most strongly in the SPR conjecture. Further evidence for and against this

conjecture will be given in section 3.2.5.

3.2.3 Objects equivalent to MOLS

The SPR conjecture was originally published referring to finite projective planes.

Lemma 3.9. [23, §III Thm 3.20] A projective plane of order d exists if and only if a complete

set of MOLS of order d also exists.

A complete set of MOLS is equivalent to a range of combinatorial structures. The following

is a non-exhaustive list.

Theorem 3.10. [23, §III Thm 3.18] A complete set of MOLS of sidelength d is combinato-

rially equivalent to

• an affine plane of order d.

• a (d+ 1, d)-net.

• an orthogonal array OA(d2, d+ 1, d, 2).
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• a 2− (d2 + d+ 2, d+ 1, 1) design.

We give definitions of each of these, as all have appeared somewhere in the literature on

MUBs. We choose to always refer to MOLS or affine planes where possible, as these are the

objects that the author is most familiar with.

Affine planes are a geometric structure, thus most of the published literature uses geomet-

ric definitions. MOLS are a combinatorial structure described using combinatorial definitions.

Definition 3.11. [102, §1.2] Let X be a set of points and B be a set of subsets of X. The

subsets are called blocks and (X,B) is a block design.

Definition 3.12. [30, §1.1] An incidence structure(P,L, I) is a set of points P, a set of lines

L and a set of flags I ⊂ P × L. A point P is incident with a line l if (P, l) ∈ I.

Block design is a definition from combinatorial mathematics that is equivalent to an inci-

dence structure from geometry.

Definition 3.13. [30, §3.1] A finite affine plane is an incidence structure A = (P,L, I) such

that

1. any two distinct points are incident with exactly one line.

2. for any point P not incident with l, there is exactly one line incident with P which has

no point in common with l.

3. there exist three points not incident with a common line.

Definition 3.14. [23, III.3.15] A (k, v)−net is a block design, (X,C), where X is a set of v2

points, and C is set of kv blocks. Each block contains v points such that the intersection of

two distinct blocks contains at most one element.

Let {Ll|1 ≤ l ≤ k − 2} be a set of k − 2 MOLS of order v. We construct a (k, v)-net

(X,C). Let the set of points, X, be ordered pairs (i, j) where 0 ≤ i, j ≤ v − 1. Block bnl

contains point (i, j) if n appears in cell (i, j) of Latin square l. Block bn(k−1) is the nth row

of the row ‖-class, and bnk is the nth column of the column ‖-class.

Definition 3.15. [102, §9.7] An orthogonal array, OA(N, k, v, t) is a k ×N matrix, A, with

entries from a symbol set of size v, such that in any t×N submatrix of A, each t-tuple appears

exactly N/vt times.
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Definition 3.16. [23, II.4.1] A t− (v, k, λ) design is a block design (X,C) where X is a set of

v points, C is a set of λ
(
v
t

)
/
(
k
t

)
blocks. Each block contains k points. For any subset Q ⊂ X

such that |Q| = t, there are exactly λ blocks which contain Q.

The notation Sλ(t, k; v), which is related to Steiner systems, is often used [11, Defi3.1]. A

2− (v, k, λ) design may also be called a balanced incomplete block design.

Theorem 3.17. (Bruck-Ryser-Chowla)[16][102, §12 Thm 1] Let v, k and λ be integers with

λ(v − 1) = k(k − 1) for which there exists a 2− (v, k, λ) design.

• If v is even then n = k − λ is a square

• If v is odd, then the equation z2 = (k−λ)x2 + (−1)(v−1)/2λy2 has a solution in integers

x, y, z not all zero.

The Bruck-Ryser-Chowla theorem is the best general condition for the existence of a

complete set of MOLS. It is written in terms of a t-design, however using Theorem 3.10 we

find that if n is to be the order of a complete set of MOLS then

z2 = nx2 + (−1)(n2+n)/2y2 (3.8)

must have a solution in integers.

This means that in particular n cannot take the values of 6, 14 or 21. In fact no pair of

orthogonal Latin squares of side length 6 exits [23, Theorem 3.39]. It has been shown through

exhaustive computation that there is no complete set of MOLS of side length 10 [73]. However

there are an infinite number of values for which neither the Bruck-Ryser-Chowla theorem,

nor any other result, excludes the existence of a complete set of MOLS. The existence of a

complete set of MOLS of non-prime-power order is thus an open problem.

3.2.4 Constructions of MOLS

One of the most important classes of MOLS is those that are equivalent to the Desarguesian

planes. Desargues was a French architect and mathematician, who proved an important

theorem on triangles in real Euclidean geometry [39]. Any geometry that obeys the Theorem

of Desargues is called Desarguesian.
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Definition 3.18. [30, 1.4.1] Let V be a 2 dimensional vector space over a finite field F. A

coset of V is a subset S + a = {x + a | x ∈ S}, where S is a subspace of V and a ∈ V . Let

the cosets of a subspace of dimension 0 be points, and cosets of subspaces of dimension 1 be

lines. Then the geometry formed is a Desarguesian affine plane.

Definition 3.19. Let AG(2, q) denote the affine plane which is constructed from Fq as in

Definition 3.18. Points of AG(2, q) are ordered pairs (a, b) with a, b ∈ Fq. A line is the set of

points (a, b) such that

αa+ βb = γ (3.9)

for α, β, γ ∈ Fq with α, β, γ fixed and α, β not both zero.

Lemma 3.20. [30, 1.4.5] The only finite Desarguesian affine planes are AG(2, q), for all

prime powers q.

A set of MOLS which is equivalent to AG(2, q) may be called the Desarguesian MOLS.

Planar functions are so called because they can be used to construct finite affine planes,

though not all affine planes have a planar function construction [30]. Hence planar functions

can be used to construct complete sets of MOLS. The definition given for a planar function

(Definition 2.36) does not mention planes. We give an alternate definition which shows where

the name planar originated.

Definition 3.21. Let G,H be finite groups of order n. Let f be a function from G into H.

Define points to be elements of G×H, and lines to be the sets

Llj = {(i, f(i− l) + j) : i ∈ G}, l ∈ G, j ∈ H, (3.10)

Lc = {(c, y) : y ∈ H}, c ∈ G. (3.11)

If the structure defined is an affine plane then f is a planar function.

Definitions 3.21 and 2.36 are equivalent [26]. The set of lines {Llj : l ∈ G, j ∈ H} are the

row ‖-class and the Latin ‖-class. The set of lines {Lc : c ∈ G} are the column ‖-class.

The planar function construction of MUBs (Thm 2.52) uses planar functions to construct

the vectors of the set of MUBs. Planar functions can be used to construct complete sets of

MOLS, however there are MOLS that cannot be constructed via a planar function [30, §5].
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Theorem 3.22. [27, Thm 5.3] Let f be a planar function on the group G of order n, and let

i, j, k, l ∈ G \ {0}. Let

k := f(i)− f(i− l) + j, l ∈ G \ {0}. (3.12)

Then the sets

Ll := {(i, j, k) : i, j ∈ G}, l ∈ G \ {0} (3.13)

are Latin squares, and ∪l∈G\{0}Ll form a complete set of mutually orthogonal Latin squares.

Proof. Note that given (k, l), for each i there is at least one j that will solve equation (3.12).

Let (i, j) and (i, j′) solve equation (3.12) for a given k:

f(i)− f(i− l) + j = f(i)− f(i− l) + j′ (3.14)

j = j′. (3.15)

Let (i, j) and (i′, j) solve equation (3.12) for a given k:

f(i)− f(i− l) + j = f(i′)− f(i′ − l) + j (3.16)

f(i)− f(i− l) = f(i′)− f(i′ − l) (3.17)

∆f,l(i) = ∆f,l(i
′). (3.18)

since ∆f,l is a permutation polynomial, i = i′. Thus each symbol (value for k) appears in

each row and each column exactly once and Ll is a Latin square.

For Ll and Ll′ to be orthogonal we need that given l and l′, for any k and k′ there is

exactly one pair (i, j) that solves equation (3.12) for l and l′. Let k = f(i)− f(i− l) + j and

k′ = f(i)− f(i− l′) + j:

k − k′ = f(i− l)− f(i− l′). (3.19)

Let l′ = l + x and i− l = y then

k − k′ = f(y)− f(y − x) = ∆f,x(y). (3.20)

Since ∆f,x is a permutation function, for any choice of k, k′ there is exactly one solution for

y, and hence exactly one value of i which solves equation (3.19). There are n − 1 values for

l and each pair Ll and Ll′ is orthogonal for l 6= l′, thus a complete set of MOLS has been

constructed.
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Theorem 3.23. All known planar functions on Fpr are equivalent to one of the following

[115]:

• Π(x) = xp
α+1, where α ≥ 0 is an integer and r

gcd(r,α) is an odd integer [31]. This

includes Π(x) = x2 as the simplest case.

• Π(x) = x(3k+1)/2, where p = 3, k is odd and gcd(r, k) = 1 [27].

• Π(x) = x10 − ux6 − u2x2, where p = 3, r is odd, and u ∈ F∗pr [32].

There are planar functions over other groups [51], but since Galois fields are used in many

applications, the greater focus has been on planar functions over Galois fields.

Lemma 3.24. [31, Cor 3] The planar function f ∈ Fq[X] with f(i) = i2 generates the

Desarguesian MOLS.

Proof.

k = i2 − (i− l)2 + j (3.21)

= 2il − l2 + j (3.22)

This is now a linear finction in i, j, k, which mirrors the structure of equation (3.9) which is

linear in a, b, γ.

Therefore any MOLS generated from any quadratic equations are equivalent.

Theorem 3.25. [27, Thm 5.1, 5.2] Let f be a planar function, h an additive function,

and g an additive permutation function on a group G. The MOLS generated from f(i) and

f(g(i)) + h(i) using Theorem 3.22 are equivalent.

Proof. First we show that f(i) and f(i) + h(i) generate equivalent MOLS. Let k be as in

equation (3.12) and let

k′ = f(i) + h(i)− f(i− l)− h(i− l) + j. (3.23)

Since h is additive h(i− l) = h(i)− h(l). Therefore

k′ = f(i)− f(i− l)− h(l) + j (3.24)

= k − h(l). (3.25)

62



Joanne Hall MUBs and MOLS

Thus h is just a permutation of the symbols in each Latin square.

We now show that f(i) and f(g(i)) generate equivalent MOLS. k may be thought of as a

solution to a function:

k = φf (i, j, l) = f(i)− f(i− l) + j. (3.26)

g is a permutation and thus has an inverse. Then

φf◦g(g
−1(i), j, l) = f(g(g−1(i)− g−1(l))) + j (3.27)

= f(g(g−1(i)))− f(g(g−1(i)− l)) + j (3.28)

= f(i)− f(i− g(l)) + j (3.29)

= φf (i, j, g(l)) + j. (3.30)

g is thus a permutation of the Latin squares.

Corollary 3.26. [31] All quadratic functions on Fq generate equivalent sets of MOLS.

Proof. Let f be a quadratic function in Fq[x] given by f(x) = ax2 +bx+c. Let h(x) = αx+β

and g(x) = γx+ δ be linear functions in Fq[x].

f(g(x)) + h(x) = a(γx+ δ)2 + b(γx+ δ) + c+ αx+ β (3.31)

= aγ2x2 + (2aγδ + bγ + α)x+ aδ2 + bδ + c+ β (3.32)

which is quadratic in Fq.

It is known that if a complete set of MOLS exists in a non prime power dimension, then it

cannot be Desarguesian [30, §1.4 Thm 5]. Necessary and sufficient conditions are known for a

complete set of MOLS to be constructed from a planar function [30, §5.1 Thm 13]. However

it is not known if these conditions can be met with MOLS of non prime power order.

Conjecture 3.27. If a complete set of MOLS exists in a non prime power dimension, then

it cannot be described using a planar function.
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3.2.5 SPR Conjecture

SPR Conjecture

Similarities between MUBs and (MOLS) were first noted by Wootters and Fields in 1989 [112].

Wootters further noted in 20041 that the problem of finding mutually unbiased measurements

is ‘similar in spirit’ to finding mutually unbiased ‖-classes [111]. These similarities were put

formally in the following conjecture.

Conjecture 3.28 (SPR Conjecture). [96] A complete set of MUBs exists in Cd if and only

if a complete set of MOLS of sidelength d exists.

If there is a concrete connection between MOLS and MUBs, then results on the non-

existence of complete sets of MOLS (Thm 3.17) could be used to show non-existence of

complete sets of MUBs.

If MUBs and MOLS are indeed equivalent then there should be mathematical aspects of

MUBs that correspond to points and lines of mutually unbiased ‖-classes.

Evidence for the SPR conjecture

Some counting theorems for MOLS are analogous to the counting theorems for MUBs. The

upper bound of d+ 1 MUBs (Theorem 2.47) is analogous to upper bound of d+ 1 mutually

unbiased ‖-classes ( Theorem 3.5). The reduce to prime powers lower bound on the number of

MUBs (Theorem 2.50) is analogous to the MacNeish bound for MOLS (Theorem 3.8). This

evidence is at the level of cardinalities only, and may be coincidental.

There are also structural similarities. The following is a suggestion of Wootters [111]. Let

M be a complete set of MOLS of order d. Assign to each point α of M a d dimensional

Hermitian operator Aα, and to each line l of M a one dimensional projection operator Pl

such that

Tr(
1

d
Aα) =

1

d
(3.33)

Tr(
1

d
Aα)(

1

d
Aβ) =

1

d
δαβ (3.34)∑

α∈l

1

d
Aα = Pl. (3.35)

1published in 2006, but preprint available in 2004.
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It follows from the geometry that Tr(PlPm) = 0 if l,m are parallel and Tr(PlPm) = 1
d if

l,m are not parallel. Since a complete set of MOLS has d + 1 sets of d parallel lines, the

projection operators define a complete set of MUBs. It is however unknown how to construct

the operators Aα.

It has been noted that if affine planes exist in no prime power dimensions they must be non-

Desarguesian (Lemma 3.20). The MUBs constructed using the planar function construction

are non-Desarguesian when the planar function used is not x2 (Lemma 3.24). Much of the

evidence given above for the SPR conjecture relies on the properties of Galois fields. However

if the SPR conjecture is true, then we would expect sets of MUBs that do not rely on Galois

fields to exist. The Galois ring MUBs are such an example.

Evidence against the SPR conjecture

Definition 3.29. A mutually unbiased constellation is a set of vectors that can be partitioned

into d + 1 subsets of orthonormal vectors such that for any two vectors φ and ψ that are in

different subsets of the partition, |〈φ|ψ〉|2 = 1
d .

Any subset of a set of MUBs is a mutually unbiased constellation. Thus if for some

c ≤ d(d + 1) there exists no MU constellations with c vectors in Cd, then a complete set of

MUBs cannot exist in Cd.

Definition 3.30. [108] An affine constellation of order d consists of d + 1 sets of parallel

lines, each line having d points, and any two lines from different sets having exactly one point

in common.

If at least two of the sets contain d lines then a MU constellation is a set of mutually

orthogonal partial Latin squares [23, §III, Def 1.21].

There are affine constellations of dimension 6, [108] with no corresponding mutually un-

biased constellations. Whilst this does not disprove the SPR conjecture, it does hint that

perhaps there is no deep connection between MUBs and MOLS.

3.2.6 Constructions of MUBs using MOLS

Construction using Desarguesian MOLS

This section has been published as [48].
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The Pauli matrix construction of MUBs as published in [85] uses the Desarguesian MOLS

which have been generated using a Galois field. The MOLS are then used to generate a net,

which is further used to construct a set of matrices with eigenbases that form a complete set

of MUBs. The conversion from MOLS to a net is slightly different to that given in definition

3.14.

Theorem 3.31. [85, §V] Let p be a prime and i, j, k, x ∈ Fp, then

Lx := {(i, j, k) : k = ix+ j}. (3.36)

is a Latin square, M = {Lx : x ∈ Fp} is a complete set of MOLS.

A (p+ 1, p)-net is constructed with point set Fq × Fq, and blocks

brow,j = {(y, k) : y ∈ Fp}, (3.37)

bj,col = {(k, y) : y ∈ Fp}, (3.38)

bi,j = {(x, k) : k = ix+ j} for x ∈ F∗p. (3.39)

Let

X = {brow,0, b0,col} ∪ {bi,0 : i ∈ F∗p}. (3.40)

Let q = pr and let E = {e1, . . . , er} and Ē = {ē1, . . . , ēr} be dual bases for Fq. For each block

in X choose a point (a, b). Let

Tab = Xa1
p Z

b1
p ⊗Xa2

p Z
b2
p · · · ⊗Xar

p Z
br
p a, b ∈ Fq (3.41)

where ai = tr(aēi) and bi = tr(bei) and Xp, Zp are the generalised Pauli matrices. The

eigenbases of {Tab : a, b ∈ Fq} are a complete set of MUBs.

In the Pauli matrix construction the two bases E,F chosen for Fq are required to have

the relationship F = kĒ. Thus the construction given in Theorem 3.31 is a special case of

the Pauli matrix construction with F = Ē. The equation which is used to construct the

orthogonal Latin squares (equation (3.36)) is the same equation that is used to define lines

in the proof of the Pauli matrix construction (equation (2.96)).

The fact that complete sets of MOLS are constructed is an unused intermediate step, as

the construction and proof rely on the equation k = ix+ j over a Galois field.
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0 1 2 3 4 5 6 7 8 9

1 2 6 5 8 0 9 3 4 7

2 9 4 0 5 7 3 8 6 1

3 4 9 7 6 8 5 1 0 2

4 3 7 8 1 6 0 2 9 5

5 8 3 6 2 9 7 0 1 4

6 5 1 9 7 3 8 4 2 0

7 0 5 2 9 1 4 6 3 8

8 7 0 4 3 2 1 9 5 6

9 6 8 1 0 4 2 5 7 3

0 2 4 9 1 8 7 5 3 6

1 7 3 4 5 9 2 6 0 8

2 3 8 7 6 4 1 9 5 0

3 9 5 2 4 7 0 8 6 1

4 5 6 1 9 2 8 0 7 3

5 6 2 0 8 1 9 3 4 7

6 1 7 8 3 0 4 2 9 5

7 4 9 3 0 5 6 1 8 2

8 0 1 5 7 6 3 4 2 9

9 8 0 6 2 3 5 7 1 4

Figure 3.3: A pair of orthogonal Latin squares of order 10

00 01 02 03 04 05 06 07 08 09

00 10 20 30 40 50 60 70 80 90

00 11 22 33 44 55 66 77 88 99

00 12 24 39 41 58 67 74 83 96

Figure 3.4: A set of blocks of the (4, 1)-net corresponding to the OLS of Figure 3.3.

In [85, §1] Paterek, Dakić and Brukner state that they ‘link every OLS of order being

a power of a prime with a MUB’. The MOLS constructed using equation (3.36) are the

Desarguesian MOLS. There are many sets of non-Desarguesian MOLS, for example there

are several planar functions on some Galois fields which construct non-equivalent MOLS

(Theorem 3.23).

It may be possible that this method constructs MUBs from MOLS which have been

constructed differently, but Theorem 3.31 only shows MUBs from the Desarguesian MOLS.

In subsequent work by Paterek, Pawlowski, Grassl and Brukner an attempt is made to

use a pair of orthogonal Latin squares of order 10 to create a set of MUBs in Cd[86].

The pair of orthogonal Latin squares is given in Figure 3.3. The first set of blocks of the

corresponding net is given in Figure 3.4.

The operators X2Z4 and X3Z9 do not commute, thus this pair of MOLS cannot be used
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to construct a set of 4 MUBs in dimension 10 using the algorithm of Theorem 3.31. This is

not surprising as the proof of Theorem 3.31 (given as the Pauli matrix construction) relies on

properties of Galois fields. There is no Galois field of order 10, hence the calculation in [86]

is evidence that the Pauli matrix product construction only works in the presence of a Galois

field.

Incomplete sets of MUBs using MOLS

The following construction uses a set of MOLS. Unlike the construction detailed in Theorem

3.31, any set of MOLS may be used, not just those generated using a Galois field. However

this construction cannot generate complete sets of MUBs.

Definition 3.32. [23, Def 1.7] The Hamming weight of a vector is the number of non-zero

entries. The support of a vector is the set of positions where a vector has non-zero entry.

The Hamming weight of a vector is the size of its support.

Definition 3.33. [110, Eqn 6] Let ~m ∈ {0, 1}d with Hamming weight s and support

{r0, r1, . . . , rs−1}, and let ~h ∈ Cs. The embedding of ~h into Cd controlled by ~m, denoted

h ↑ m is given by:

~h ↑ ~m :=
s−1∑
i=0

~hi~eri (3.42)

where hi is the ith entry in ~h and ~eri is the rthi standard basis vector.

For example:

~m :=


1

0

0

1

 ~h :=

 ω

1

 ~h ↑ ~m :=


ω

0

0

1

 . (3.43)

Theorem 3.34 (WB construction). [110, Thm 3] Given a set of k − 2 mutually orthogonal

Latin squares of order s and a complex Hadamard matrix of order s, a set of k mutually

unbiased bases in Cs2 can be constructed.
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Proof. Using the construction given below Definition 3.14 we construct a (k, s)-net. Let ~mab

be the incidence vector of block cab of the net. Let ~hi be the ith column of the complex

Hadamard matrix. Let

~vabj :=
1√
s

(~hj ↑ ~mba) (3.44)

and let

Ba := {~vabj : 1 ≤ j, b ≤ s}. (3.45)

We show that ∪ka=1Ba is a set of k MUBs in Cd.

All vectors ~hj ↑ ~mba have magnitude
√
s because all incidence vectors ~mab have Hamming

weight s. Thus vectors constructed from equation (3.44) are normalized.

The vectors ~mba and ~mba′ have disjoint supports and are therefore orthogonal. The vectors

~hj and ~hj′ are orthogonal from the properties of Hadamard matrices. Hence the vectors

~hj ↑ ~mba and ~hj′ ↑ ~mba′ are orthogonal for (j, a) 6= (j′a′). This shows that each Ba is an

orthonormal basis for Cd.

For a 6= a′, there is exactly one i such that ~mbai = ~mb′a′i
= 1. Thus

〈~hj ↑ ~mba|~hj′ ↑ ~mb′a′〉 = (~hj ↑ ~mba)i · (~hj′ ↑ ~mb′a′)i = x, (3.46)

where x is a complex number of modulus 1. Then

〈~vabj |~va′b′j′〉 =
1√
s
x. (3.47)

Thus vectors from Ba and Ba′ are unbiased.

This constructs more MUBs than the lower bound of Theorem 2.50 in Cs2 , if the num-

ber of MOLS of order s exceeds the MacNeish bound for MOLS of order s2, eg. s =

26, 30, 34, 42, 46, 50, 54, 62 [23, §III 3.4].

The WB construction relies entirely on the properties of the MOLS, and complex Hadamard

matrices, and is thus independent of any particular algebraic structure. It is dependent on

constructions of MOLS, which is an ongoing topic of research.

3.3 Constructing MOLS from MUBs in prime dimensions

This section has been published as [47].
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We have a construction which, when given a complete set of MUBs, constructs complete

sets of MOLS. This construction will be shown to work for 2 known constructions of MUBs:

the WF and Alltop (Thm 2.53, Thm 2.54). This is different to other constructions which

have focused on constructing MUBs from MOLS (see section 2.4). The construction exploits

properties of the polynomials which generate the MUBs.

The WF and Alltop MUBs are equivalent (Theorem 2.65). However the vectors of the

Alltop MUBs are not constructed from planar functions. Any structural properties that are

from both WF and Alltop MUBs may be underlying properties of MUBs.

3.3.1 Inner product vectors

Definition 3.35. The inner product vector, IPV [u,w], of two vectors u,w can be generated

by IPV [~u, ~w]i = uiwi = vi where ~v = (v1, v2, . . . , vn)T , ~u = (u1, u2, . . . , un)T and ~w =

(w1, w2, . . . , wn)T .

In both the WF and Alltop MUBs, a vector ~u is constructed from a function fu by

~u =
(
ωtr(fu(x))
p

)
x∈Fp

. (3.48)

Thus we may call fu the function of ~u. The inner product between ~u and ~w is given by

〈~u|~w〉 =
∑
x∈Fp

ωtr(fu(x)−fw(x)). (3.49)

Thus the inner product vector is constructed from the function fv(x) = fu(x)− fw(x) by

IPV [~u, ~w] =
(
ωtr(fu(x)−fw(x))
p

)
x∈Fp

=
(
ωtr(fv(x))
p

)
x∈Fp

. (3.50)

The inner product is easily recovered from the inner product vector by summing the entries

in the inner product vector:

〈~u|~w〉 =
∑
x∈Fp

IPV [~u, ~w]x. (3.51)

In prime dimensions, trace is an identity function. In both the WF and Alltop MUBs the

polynomials of the inner product vectors are quadratic and therefore planar functions.
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3.3.2 WF type MUBs

The construction of MOLS using MUBs will be illustrated using WF MUBs before a more

general construction is given.

Let ~vab be as in equation (2.79), and Ba = {~vab : b ∈ Fq}. Since each Ba is a basis, each

vector ~ek, 0 ≤ k ≤ q − 1, can be expressed as a linear combination of the vectors of Ba, for

fixed a ∈ Fq. First consider
∑

b∈Fq ~vab for ~vab ∈ Ba. The ith component of this sum is given

by

1
√
q

∑
b∈Fq

ω
tr(ax2i+bxi)
p =

1
√
q
ω

tr(ax2i )
p

∑
b∈Fq

ωtr(bxi)
p (3.52)

=


√
q if i = 0

0 if i 6= 0
,

xi is fixed and bxi ranges over all the elements of Fq as b ranges over Fq. In addition, the

trace map is equiv-distributed and the result follows from Lemma 2.24. Therefore

~e0 =
∑
b∈Fq

~vab. (3.53)

To get ~ek for k 6= 0, each vector needs to be multiplied by an appropriate weight. From

equation (3.52), by multiplying each vector of Ba by

w(k,a,b) :=
1
√
q
ω

tr(−ax2k−bxk)
p (3.54)

for fixed k, the ith component of
∑

b∈Fq w(k,a,b)~vab for ~vab ∈ Ba, (for fixed a ∈ Fq), is given by∑
b∈Fq

(w(k,a,b)~vab)i =
1
√
q

∑
b∈Fq

1
√
q
ω

tr(ax2i+bxi)
p ω

tr(−ax2k−bxk)
p (3.55)

=
1

q
ω

tr[a(x2i−x2k)]
p

∑
b∈Fq

ωtr[b(xi−xk)]
p

=

 1 if i = k

0 if i 6= k.

Thus each vector of the standard basis is obtained as a linear combination of the vectors

of each basis, i.e.,

~ek = w(k,a,b0)~vab0 + w(k,a,b1)~vab1 + · · ·+ w(k,a,bq−1)~vabq−1 (3.56)

where {b0, b1, . . . , bq−1} is an ordering of the elements of Fq, with b0 = 0 and 0 ≤ k ≤ q − 1.

We now turn our attention to the simpler case when q is a prime. The benefit of this

simplification is tr(x) = x for x ∈ Fp.

71



Joanne Hall MUBs and MOLS

S B0 B1 B2

~e0=


1

0

0

 ~v00= 1√
3


1

1

1

 ~v10= 1√
3


1

ω

ω

 ~v20= 1√
3


1

ω2

ω2



~e1=


0

1

0

 ~v01= 1√
3


1

ω

ω2

 ~v11= 1√
3


1

ω2

1

 ~v21= 1√
3


1

1

ω



~e2=


0

0

1

 ~v02= 1√
3


1

ω2

ω

 ~v12= 1√
3


1

1

ω2

 ~v22= 1√
3


1

ω

1



Figure 3.5: The complete set of WF MUBs in dimension 3.

3.3.3 WF type MUBs in a worked example for prime dimensions

We choose the smallest possible example to illustrate the construction. In the case q = 3 the

complete set of MUBs is given in Figure 3.5.

We call E the standard basis, and B0, B1, B2 the non-standard bases where ω = e2iπ/3.

Using Lemma 2.24, the first standard basis vector may be written as

~e0 =


1

0

0

 =
1

3


1 + 1 + 1

1 + ω + ω2

1 + ω2 + ω

 . (3.57)

This can be written as a linear combination of various non-standard bases vectors. e.g.

~e0 =
1√
3

 1√
3


1

1

1

+
1√
3


1

ω

ω2

+
1√
3


1

ω2

ω




=
1√
3

(~v00 + ~v01 + ~v02). (3.58)

In all e0 can be written as six different linear combinations of non-standard bases vectors.
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~v00 ~v01 ~v02

~v10 ~v11 ~v12

~v20 ~v21 ~v22

Figure 3.6: The structure of rows and columns to be used to build Latin squares

~e0 =
1√
3

(~v00 + ~v01 + ~v02) (3.59)

=
1√
3

(~v10 + ~v11 + ~v12) (3.60)

=
1√
3

(~v20 + ~v21 + ~v22) (3.61)

~e0 =
1√
3

(~v00 + ~v10 + ~v20) (3.62)

=
1√
3

(~v01 + ~v11 + ~v21) (3.63)

=
1√
3

(~v02 + ~v12 + ~v22) (3.64)

Then ignoring the scalar, 1√
3
, the vectors may be arranged in an array (Figure 3.6), with the

row ‖-class representing the vectors which appear in linear combinations of equations (3.59-

3.61), and the column ‖-class representing the vectors which appear in the linear combinations

of equations (3.62-3.64).

This array (Figure 3.6) is the structure we will use to build Latin squares. We have the

row and column ‖-classes, we now require a further ‖-class to give the symbols for the Latin

square. Finding 3 representations of ~e1 requires using weights.

~e1 =
1

3
(~v00 + ω2~v01 + ω~v02) (3.65)

=
1

3
(ω2~v10 + ω~v11 + ~v12) (3.66)

=
1

3
(ω~v20 + ~v21 + ω2~v22) (3.67)

Here the same vectors are found as in equations (3.59-3.61), which represents the rows ‖-class.

This is unsurprising as any vector may be written as a linear combination of the vectors in a

base. The weights, which when arranged according the array of Figure 3.6, gives an interesting
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1 ω2 ω

ω2 ω 1

ω 1 ω2

Figure 3.7: The Latin square formed from the weights in equations (3.65-3.67)

Vectors

♥ ♦ ♣

♣ ♥ ♦

♦ ♣ ♥

Figure 3.8: The Latin square formed from the vectors in equations (3.68-3.70)

pattern, in this case a Latin square (Figure 3.7). The next three representations of ~e1 give us

another mutually unbiased ‖-class.

~e1 =
1

3
(~v00 + ω~v11 + ω2~v22) (3.68)

=
1

3
(ω2~v01 + ~v12 + ω~v20) (3.69)

=
1

3
(ω~v02 + ω2~v10 + ~v21). (3.70)

The groupings according to equations (3.68-3.70) can be organized into a Latin square (Figure

3.8). The vectors used in equation (3.68) are represented by ♥, the vectors used in equation

(3.69) are represented by ♦ and the vectors used in equation (3.70) are represented by ♣.

This gives us a Latin square in the vectors. The weights form the same arrangement as when

using equations (3.65-3.67), which can be seen in Figure 3.7. The weights Latin square and

vectors Latin square are orthogonal to each other.

Repeating this for a further standard basis vector we get another 3 equations which form

the row ‖-classes and 3 equations which form a Latin ‖-class in the vectors and in the weights

(Figure 3.9). The pair of vector Latin ‖-classes are orthogonal, as are the pair of weights

Latin squares. By using the linear combinations of the vectors of the WF MUBs we have

constructed a complete set of MOLS. This construction also yields a complete set of MOLS

in the weights.
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Vectors Weights

~e1

♥ ♦ ♣

♣ ♥ ♦

♦ ♣ ♥

1 ω2 ω

ω2 ω 1

ω 1 ω2

~e2

♥ ♦ ♣

♦ ♣ ♥

♣ ♥ ♦

1 ω2 ω

ω 1 ω2

ω2 ω 1

Figure 3.9: Latin squares formed from the collections of vectors and weights used in linear

combinations that equal ~e1 and ~e2.

3.3.4 Alltop type MUBs in a worked example for prime dimensions

When using the Alltop MUBs (Thm 2.54), a complete set of MOLS is constructed in the

vectors of the linear combinations, but the weights form Butson Hadamard Matrices. For

example for q = 5, we get the set of MOLS and Butson Hadamard Matrices in Figure 3.10.

Again we have exploited the linear combinations of the vectors in a complete set of MUBs

to produce a complete set of MOLS. Note that the matrices generated from the scalars are

Butson Hadamard matrices. This may have connections with the WB construction (Theorem

3.34).

In the next section we prove that the complete set of MOLS will always be generated for

the WF and Alltop MUBs in prime dimensions.

3.3.5 Algebraic proof in prime dimensions

There are p vectors in the standard basis, hence for each k ∈ Fp there is a standard basis

vector sk. Any vector may be written as a linear combination of vectors from any basis. Thus

~ek =
∑
i∈P

w(k,i)~vi (3.71)

where P is some set of vector labels, ~vi is the vector and w(k,i) is the weight assigned to that

vector in linear combinations which sum to ~ek.

The outline of the construction and proof: for each k ∈ Fp, choose the weight that will
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~e1

Vectors

♥ ♦ ♣ ♠ 4

♦ ♣ ♠ 4 ♥

♣ ♠ 4 ♥ ♦

♠ 4 ♥ ♦ ♣

4 ♥ ♦ ♣ ♠

Weights

ω4 ω3 ω2 ω 1

ω3 ω ω4 ω2 1

ω4 ω ω3 1 ω2

ω4 1 ω ω2 ω3

1 1 1 1 1

~e2

♥ ♦ ♣ ♠ 4

♣ ♠ 4 ♥ ♦

4 ♥ ♦ ♣ ♠

♦ ♣ ♠ 4 ♥

♠ 4 ♥ ♦ ♣

ω2 1 ω3 ω ω4

ω2 ω4 ω ω3 1

ω4 1 ω ω2 ω3

1 1 1 1 1

ω2 ω 1 ω4 ω3

~e3

♥ ♦ ♣ ♠ 4

♠ 4 ♥ ♦ ♣

♦ ♣ ♠ 4 ♥

4 ♥ ♦ ♣ ♠

♣ ♠ 4 ♥ ♦

ω3 1 ω2 ω4 ω

ω3 ω4 1 ω ω2

1 1 1 1 1

ω 1 ω4 ω3 ω2

ω3 ω ω4 ω3 1

~e4

♥ ♦ ♣ ♠ 4

4 ♥ ♦ ♣ ♠

♠ 4 ♥ ♦ ♣

♣ ♠ 4 ♥ ♦

♦ ♣ ♠ 4 ♥

ω ω2 ω3 ω4 1

1 1 1 1 1

ω 1 ω4 ω3 ω2

ω ω4 ω2 1 ω3

ω2 ω4 ω ω3 1

Figure 3.10: The mutually orthogonal Latin squares generated from the collections of vectors

in linear combinations. The collections of weights form Butson Hadamard matrices.
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be assigned to each vector, then choose the vectors that will (with their weights) form a

linear combination that represents ~ek. Then show that for each k the same row ‖-class is

constructed, for k = 0 a column ‖-class is also constructed and that for each k 6= 0 a Latin ‖-

class is also constructed. Each of the Latin ‖-classes from each of the values of k are mutually

orthogonal giving p− 1 MOLS.

Let

~vab =
1
√
q

(
ωtr(fab(x))

)
x∈Fq

. (3.72)

Any vector can be expressed as a linear combination of the vectors of a base. This grouping

of vectors into bases gives the row ‖-class. For each k ∈ Fp, the weight w(k,a,b) is assigned

to ~vab. A representation of ~ek as a linear combination is required, where all summands have

the same magnitude. Thus the phase of the summands is of interest. The kth component of

w(k,a,b)~vab must be 1
q , and hence

w(k,a,b) =
1
√
q
ω−tr(fab(k)). (3.73)

Thus the elements in the linear combinations representing ~ek are:

w(k,a,b)~vab =
1

q

(
ωtr[fab(x)−fab(k)]

)
x∈Fq

. (3.74)

Choosing the vectors to be all from the same base fixes a. For each choice of a and each

choice of k

∑
b∈Fp

w(k,a,b)~vab = ~ek. (3.75)

This gives p copies of the row ‖-class. E.g. equations (3.59-3.61) and (3.65-3.67) show two

copies of the row ‖-class, a third copy has been omitted as a repetitious calculation.

In the WF MUBs, fab is a planar function, so it is no surprise that the arrays of weights,

as generated by equation (3.73) are Latin squares (e.g. Figure 3.7). In the Alltop MUBs fab

is not a planar function, and so the arrays of weights are not Latin squares (e.g. Figure 3.10).

Next, create the equations for the non-row ‖-classes using the same weights assigned to

each vector, but different groups of vectors. Note that in equations (3.65-3.67) and (3.68-

3.70) each vector has the same weight. In order to create a linear combination involving

w(k,a,b)~vab which contains vectors not in the same base, first choose one vector e.g. ~v0c, and
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see which elements can form the appropriate summation. To sum to ~ek, it is required that

(w(k,a,b)~vab)k = 1 and (w(k,a,b)~vab)x 6= (w(k,0,c)~v0c)x for all x 6= k. Hence

ωtr[fab(x)−fab(z)] 6= ωtr[f0c(x)−f0c(z)] ∀k 6= x, a 6= 0. (3.76)

Thus if equation (3.76) is satisfied for k = 0 then this grouping forms the column ‖-class

and from which an array may be prepared (Figure 3.6). If equation (3.76) is satisfied for

k 6= 0 then the cell in the prepared array corresponding to ~vab shall contain the cth symbol.

In Figure 3.8, ♥ is the 0th symbol, ♦ is the 1st symbol and ♣ is the 2nd symbol.

In the simplified situation of prime fields, the trace function is equivalent to the identity

function. Thus without loss of generality equation (3.76) may also be simplified to

[fab(x)− f0c(x)]− [fab(k)− f0c(k)] 6= 0 ∀k 6= x, a 6= 0. (3.77)

In equation (3.77), [fab(x)−f0c(x)] is the function of the inner product vector IPV [~vab, ~v0c].

[fab(k)− f0c(k)] represents the kth position of the inner product vector. It is the functions of

the inner products that create the MOLS, not the functions of the vectors themselves.

Theorem 3.36. Let ~vab be as in equation (2.79)(WF MUBs) or (2.81)(Alltop MUBs) with

a, b ∈ Fp, p a prime. Let fab be defined as

~vab =
1
√
p
ωfabp . (3.78)

Let

Lk := {(a, σ(b), c) : equation (3.77) is satisfied}, (3.79)

then there is a permutation σ such that {Lk : k ∈ F∗p} is a complete set of MOLS.

Proof. Let fab = ax2 + bx be the function for WF MUBs, as in equation (2.79). Let gab =

(x+ a)3 + b(x+ a) be the function for Alltop MUBs, as in equation (2.81) then

[fab(x)− f0c(x)]−[fab(k)− f0c(k)] = a(x2 − k2)+(b− c)(x− k) (3.80)

= (x− k)[a(x+ k) + b− c], (3.81)

and

[gab(x)−g0c(x)]−[gab(k)−gab(k)] = 3a(x2−k2)+(3a2+b− c)(x−k) (3.82)

= (x−k)[3a(x+k)+ 3a2+ b− c]. (3.83)
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For the WF MUBs, the identity permutation is used: σ(b) = b. For the Alltop MUBs

σ(b) = b+ 3a2.

The proof is in three parts.

1. For each (σ(b), k) there are exactly p valid pairs (a, c) that satisfy inequality (3.77).

No two of the valid (a, c) contain the same a or the same c. This ensures that each column

of each square contains every symbol exactly once.

2. For each (a, k) there are exactly p valid pairs (σ(b), c) that satisfy inequation (3.77).

No two of the valid pairs (σ(b), c) contain the same σ(b) nor the same c. This ensures that

each row of each square contains every symbol exactly once.

3. For each (a, σ(b)), a 6= 0 there are exactly p valid pairs (c, k) that satisfy inequation

(3.77). No two of the valid pairs (c, k) contain the same c, nor the same k. Moreover for any

c, c′,k and k′ with c 6= c′ and k 6= k′, there is exactly one pair (a, σ(b)) for which (c, k) and

(c′, k′) are both valid pairs. This ensures that all of the squares are mutually orthogonal.

Properties 1, 2 and 3 combine to show that each Lk is a Latin square, and for k 6= k′, Lk
is orthogonal to Lk′ . With d− 1 possible values for k a complete set of MOLS is constructed.

Proof of 1. For the WF MUBs the identity permutation σ(b) = b is used. For equation

(3.81), fix b and k, and set x = k, then

a(2k) + b− c = 0. (3.84)

Inequality (3.77) requires inequality, thus solving the statement for equality shows the values

which will not give inequality. For each a there is a unique c that solves this equation and

hence there are p pairs (a, c). If x 6= k then none of those pairs (a, c) will be solutions to

equation (3.84), and hence satisfy inequality (3.77).

For the Alltop MUBs the permutation σ(b) = b+ 3a2 is required. For equation (3.83), fix

b and k and set x = k then,

3a(2k) + 3a2 + b− c = 3a(2k) + σ(b)− c = 0. (3.85)

For each a there is a unique c that solves this equation and hence there are p pairs (a, c). If

x 6= k then none of these pairs (a, c) will be solutions to equation (3.85), and hence satisfy

inequality (3.77).

Note that for inequality (3.77) a 6= 0 is required, as this yields the solution b = c giving

one of the pairs that solve equations (3.81) and (3.83). This shows that the first row of every
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Latin square is in standard form.

Proof of 2. For equations (3.84, 3.85), fix a and k and set x = k then solve. In the WF

MUBs c = 2ak+ σ(b), and in the Alltop MUBs c = 6ak+ σ(b). Thus for each σ(b) there is a

unique c. There are p values of σ(b) and hence p valid pairs (σ(b), c) for each (a, k).

Proof of 3. For the WF MUBs, from equation (3.81) a solution is required for

(x− k)[a(x+ k) + b− c] = 0. (3.86)

Assuming the x 6= k and fix c 6= b. Then for each x there is a unique k that solves equation

(3.86). There are p combinations of x and k that solve equation (3.86). One of these com-

binations will be of the form x = k. Select this k and set (a, σ(b), c) ∈ Lk, then equation

(3.77) is satisfied. Allow c = b, then either a = 0, which represents the symbol in the σ(b)th

column, 0th row of each square; or k = 0, which creates a column ‖-class. Hence there are p

pairs (c, k). From equation (3.86), setting x 6= k and x 6= k′:

a(x+ k)− c = b (3.87)

a(x+ k′)− c′ = b. (3.88)

Hence a = (c− c′)(k− k′)−1. Parts 1 and 2 show that Lk is a Latin square, thus for fixed a, c

and k there is a unique b which satisfies equation (3.77). Thus for each k 6= k′, Lk and Lk′

are orthogonal.

For the Alltop MUBs a solution is required for

(x− k)[3a(x+ k) + σ(b)− c] = 0. (3.89)

Then follow the argument for the WF MUBs.

3.4 Constructing MOLS from MUBs in prime-power dimen-

sions

This section has been published as [90].

3.4.1 Setting up the parallel classes

We now generalise the results of the previous section to apply to odd prime powers.

Let AG(2, q) be as in Definition 3.19
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Lemma 3.37. Let Ba := {~vab : a, b ∈ Fq} be an orthonormal basis and ∪a∈FBa be a complete

set of MUBs. Define a function from the set of bases to the finite field

f : ∪a∈FqBa → Fq, (3.90)

f(~vab) = (a+ b) mod h(x)

where h(x) is the primitive polynomial defining Fq. Then the set of ordered triples

L1 = {(a, b, f(~vab)) : a, b ∈ Fq} (3.91)

forms a Latin square of order q.

Proof. By contradiction. Assume that there exists row a0 such that the same entry occurs in

column b and b′, then f(~va0b) = f(~va0b′), and so a0 + b ≡ a0 + b′ mod h(x) but this implies

b = b′.

Alternatively, assume that there exists b0 such that f(~vab0) = f(~va′b0), then a + b0 ≡

a′ + b0 mod h(x) but this implies a = a′.

Note that defining the function f in this manner would only give us one Latin square

whereas q − 1 mutually orthogonal Latin squares are needed for a complete set. In what

follows we will show that we may assign the vectors of complete sets of MUBs to cells in an

array in q−1 ways and these q−1 arrays will give q−1 MOLS. These MOLS will correspond

to q+ 1 ‖-classes and it will be shown that each of these will partition the vectors of ∪a∈FBa

into q subsets, such that the vectors in each subset can be used to generate a member of the

standard basis.

3.4.2 WF type MOLS

Again we detail the construction using the WF MUBs.

Let w(k,a,b) be as in equation (3.54). Let ~vab be as in equation (2.79). Let

~vkab := w(k,a,b)~vab =
1
√
q
ω

tr(−ax2k−bxk)
p ~vab 0 ≤ k ≤ q − 1 (3.92)

be the weighted vector for ~vab. Let

Bk
a := {~vkab : b ∈ Fq} 0 ≤ k ≤ q − 1 (3.93)

denote the weighted bases where B0
a = Ba, and ~v0

ab = ~vab.

81



Joanne Hall MUBs and MOLS

For each k, 0 ≤ k ≤ q − 1, equation (3.56) can be used to partition the set of vectors

across a collection of ordered triples (called lines) for each a ∈ Fq:

Qra,k := {(a, b,~vkab) | b ∈ Fq} (3.94)

with the property that the sum of the vectors in each partition gives ~ek. This partitioning

can also be used to identify a row ‖-class given by the q lines

Lr1a := {(a, b, f(~vkab)) | b ∈ Fq} (3.95)

where 0 ≤ a ≤ q − 1. Here the function f is the same as that defined in equation (3.90), and

equation (3.95) describes the rows of the Latin square L1 (equation (3.91)). Note that the

same row ‖-class is obtained for every k, 0 ≤ k ≤ q − 1.

Similarly, for fixed b ∈ Fq, for each k, the vector ~ek is the weighted sum of the bth vectors

of every basis (fixing b and taking the sum over a of ~vab), since the ith component of
∑

a∈Fq ~v
k
ab

for ~vab ∈ Ba, is given by∑
a∈Fq

(~vkab)i =
1
√
q

∑
a∈Fq

1
√
q
ω

tr(ax2i+bxi)
p ω

tr(−ax2k−bxk)
p (3.96)

=
1

q
ωtr[b(xi−xk)]
p

∑
a∈Fq

ω
tr[a(x2i−x2k)]
p

=

 1 if i = k

0 if i 6= k.

Note that the weights in this case are the same as the ones in equation (3.55). Summarising,

for all b ∈ Fq

~ek = ~vka0b + ~vka1b + · · ·+ ~vka(q−1)b
. (3.97)

As with equation (3.95), this equation can be used to partition the set of vectors into a

collection of ordered triples, for each b ∈ Fq:

Qcb,k := {(a, b,~vkab) | a ∈ Fq} (3.98)

with the property that the sum of the vectors in each partition gives ~ek. This partitioning

can also be used to identify a column ‖-class given by the q lines

Lc1b := {(a, b, f(~vkab)) | a ∈ Fq} (3.99)

where 0 ≤ b ≤ q − 1.
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Equation (3.99) describes the columns of the Latin square L1 (equation (3.91)). The row

‖-class (equation (3.95)) and column ‖-class (equation (3.99)) are unbiased since a line in a

row ‖-class Lr1a0 = {(a0, b, f(~vkab0)) | b ∈ Fq} has only one point in common with a line in the

column ‖-class Lc1b0 = {(a, b0, f(~vkab0)) | a ∈ Fq} which is (a0, b0, f(~vka0b0)). It may seem at this

point that it would be enough to express ~e0 as the sum of the vectors ~vab and the weighting

of the ~vab to get the remaining ~ek are unnecessary. But this is untrue since q − 1 mutually

unbiased Latin ‖-classes (and consequently the q− 1 MOLS) are required. These q− 1 Latin

‖-classes are obtained by combining the weighted vectors ~vkab of the q MUBs in q− 1 uniquely

different ways.

In section 3.3.3, the ~ek, 1 ≤ k ≤ q − 1 are expressed as other combinations of the ~vab

resulting in the Latin ‖-classes. The construction follows on similar lines here.

The row and column ‖-classes are obtained from the first two classes of parallel lines in

the affine plane AG(2, q) (Definition 3.19), given by α = 1 and β = 0 (the row ‖-class) and

α = 0 and β = 1 (the column ‖-class). Since we need to choose vectors ~vkab, one from each

Bk
a with fixed k, such that the sum of the vectors gives ~ek, and since MOLS are equivalent

to affine planes, the obvious place to look for possible combinations is from the classes of

parallel lines in an affine plane. Other than the first two classes of parallel lines, the rest of

the classes are defined by αa + b = γ, (β = 1) with α 6= 0 constant for each class of parallel

lines, and γ constant for each line in a class. Thus within each class, if (a, b) and (c, d) are

two points on a line, then a 6= c and b 6= d.

Taking any q vectors, one from each Bk
a for fixed k, and summing them will give 1 in the

kth component of the sum of these vectors. We need to choose vectors such that we get zero

in the remaining components.

Choosing the set of (a, b) ∈ Fq × Fq: Let

Sγα = {(a, b) ∈ Fq × Fq : αa+ b = γ} for fixed (α, γ) ∈ F∗q × Fq, (3.100)

and let

Sα = {(a, b) ∈ Fq × Fq : αa+ b = γ, γ ∈ Fq} for α ∈ F∗q . (3.101)

Then Sγα is a line in Sα, and Sα is the α class of parallel lines in AG(2, q). Let xk = 2−1α; this

is always possible since q is odd. This implies that k 6= 0, hence giving a different partition

for each k, 1 ≤ k ≤ q − 1.
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Lemma 3.38. Let ~vab be a vector in a set of WF MUBs as in equation (2.79). The vector

~ek is the sum of the vectors ~vkab for α = 2xk, (a, b) ∈ Sγα and 1 ≤ k ≤ q − 1.

Proof. The ith component of
∑

(a,b)∈Sγα,α=2k ~v
k
ab is given by∑

(a,b)∈Sγα,α=2k

(~vkab)i =
1
√
q

∑
(a,b)∈Sγα

1
√
q
ω

tr(ax2i+bxi)
p ω

tr(−ax2k−bxk)
p (3.102)

=
1

q

∑
(a,b)∈Sγα

ωtr{(xi−xk)[a(xi+xk)+b]}
p

=
1

q

∑
(a,b)∈Sγα

ωtr{(xi−xk)[(2xka+b)+a(xi−xk)]}
p

=
1

q

∑
(a,b)∈Sγα

ωtr{(xi−xk)[γ+a(xi−xk)]}
p

=

 1 if i = k

0 if i 6= k
,

since γ is a constant for (a, b) ∈ Sγα, (xi− xk)[γ + a(xi− xk)] is a permutation polynomial

in a, and the trace map is equiv-distributed.

Summarising,

~ek =
∑

(a,b)∈Sγα,α=2k

~vkab for 1 ≤ k ≤ q − 1. (3.103)

This equation can be used to partition the set of vectors into a collection of ordered triples

for each γ ∈ Fq,

Qlγ,α := {(a, b,~vkab) | (a, b) ∈ Sγα} (3.104)

with the property that the sum of the vectors in each partition gives sk for 1 ≤ k ≤ q − 1.

This partition can be used to identify a Latin ‖-class given by the q lines

Ll1,γ,α := {(a, b, γ) | (a, b) ∈ Sγα} (3.105)

where 0 ≤ γ ≤ q − 1.

Note that for each α ∈ F∗q , a different Latin ‖-class is obtained.

Theorem 3.39. The Latin ‖-classes ∪γ∈FqLl1,γ,α where α ∈ F∗q together with a column ‖-

class ∪b∈FqLc1b, and a row ‖-class ∪a∈FqLr1a form a complete set of mutually orthogonal Latin

squares.

84



Joanne Hall MUBs and MOLS

Proof. To obtain the corresponding Latin squares, for each α ∈ F∗q , define an array Lα. Thus

fix α ∈ F∗q and for each γ ∈ Fq place symbol γ in cell (a, b) of Lα if (a, b) ∈ Sγα. Repeating

this for each α, q − 1 arrays are constructed.

To prove each of these arrays is a Latin square, we argue by contradiction. Assume that

there exists (a, b), (a, b′) ∈ Sγα. That is, symbol γ will occur twice in row a of array Lα. Then

aα+ b = γ = aα+ b′, but this implies b = b′. Alternatively assume (a, b), (a′, b) ∈ Sγα, and γ

occurs twice in column b of array Lα. Implying aα + b = γ = a′α + b. But since α 6= 0, this

implies a = a′. So for each α a Latin square Lα is constructed.

Next to prove that these Latin squares are mutually orthogonal: assume this is not the

case. Consequently there exists distinct α, α′ and γ, γ′ such that for some (a, b) and (c, d),

(a, b, γ), (c, d, γ) ∈ Lα and (a, b, γ′), (c, d, γ′) ∈ Lα′ . Thus (a, b), (c, d) ∈ Sγα and (a, b), (c, d) ∈

Sγ
′

α′ , or equivalently

aα+ b = γ = cα+ d

aα′ + b = γ′ = cα′ + d.

Subtracting these equations gives

a(α− α′) = γ − γ′

c(α− α′) = γ − γ′.

Hence a = c and it follows that b = d.

The above calculations show that the q+1 ‖-classes obtained from equations (3.95), (3.99)

and (3.105) are mutually unbiased. Hence the Latin squares form a set of q − 1 MOLS.

3.4.3 Alltop type MUBs

Using the same method, complete sets of MOLS can be obtained from the Alltop MUBs. Let

uab be as in equation (2.81). Let Ca := {uab : b ∈ Fq} and

w′(k,a,b) =
1
√
q
ωtr[−(a+xk)3−b(a+xk)]
p (3.106)
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then the ith component of
∑

b∈Fq w′(k,a,b)uab for uab ∈ Ca, is given by∑
b∈Fq

(w′(k,a,b)uab)i =
1

q

∑
b∈Fq

ωtr[(a+xi)
3+b(a+xi)]

p ωtr[−(a+xk)3−b(a+xk)]
p

=
1

q

∑
b∈Fq

ω
tr[x3i−x3k+3a(x2i−x2k)+(3a2+b)(xi−xk)]
p

=
1

q
ω

tr[x3i−x3k+3a(x2i−x2k)+3a2(xi−xk)]
p

∑
b∈Fq

ωtr[b(xi−xk)]
p

=

 1 if i = k

0 if i 6= k.
(3.107)

Thus each vector of the standard basis is a linear combination of the vectors of each basis,

giving the same row ‖-class as in equation (3.95).

Next, use a permutation σ(b) = b − 3a2 and let ukaσ(b) = w′(k,a,σ(b))uaσ(b). Keeping σ(b)

(and hence b) fixed and summing over a, the ith component of
∑

a∈Fq u
k
aσ(b) for uaσ(b) ∈ Ca,

is given by∑
a∈Fq

(ukaσ(b))i =
1

q

∑
a∈Fq

ωtr{[(a+xi)
3+(b−3a2)(a+xi)]−[(a+xk)3+(b−3a2)(a+xk)]}

p

=
1

q
ω

tr[x3i−x3k+b(xi−xk)]
p

∑
a∈Fq

ω
tr[3a(x2i−x2k)]
p

=

 1 if i = k

0 if i 6= k
(3.108)

and the column ‖-classes are obtained the same way as in equation (3.99). Now for the Latin

‖-classes. Since replacing b by σ(b) amounts to a permutation of the vectors in Ca for each

a ∈ Fq, the set (a, b) ∈ Fq × Fq is chosen. Let Sγα = {(a, b) ∈ Fq × Fq : αa + b = γ} for fixed

(α, γ) ∈ Fq × F∗q , and let Sα = {(a, b) ∈ Fq × Fq : αa + b = γ, γ ∈ Fq} for α ∈ Fq. Then Sγα

is a line in Sα, and Sα is the α class of parallel lines in AG(2, q). Let xk = 2−13−1α; this is

always possible since q is odd, and greater than 3.

Lemma 3.40. The vector ~ek is the sum of the vectors ukaσ(b) for α = 6xk, (a, b) ∈ Sγα and

1 ≤ k ≤ q − 1.
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Proof. The ith component of
∑

(a,b)∈Sγα u
k
aσ(b) is given by∑

(a,b)∈Sγα,α=6xk

(ukaσ(b))i =
1

q

∑
(a,b)∈Sγα

ω
tr{x3i−x3k+3a(x2i−x2k)+b(xi−xk)}
p (3.109)

=
1

q

∑
(a,b)∈Sγα

ω
tr{(xi−xk)[x2i+xixk+x2k+(6xka+b)+3a(xi−xk)]}
p

=
1

q

∑
(a,b)∈Sγα

ω
tr{(xi−xk)[x2i+xixk+x2k+γ+3a(xi−xk)]}
p

=

 1 if i = k

0 if i 6= k
.

Since γ is a constant for (a, b) ∈ Sγα, the function (xi−xk)[x2
i +xixk+x2

k+γ+3a(xi−xk)]

is a permutation polynomial in a and the trace map is equiv-distributed, the result follows

from Lemma 2.24.

The same arguments as section 3.4.2 are used to show that the Latin squares are mutually

orthogonal.

3.5 Conclusion

3.5.1 Findings

The correlation between WF MUBs and MOLS has been noted in [85]. However the method

presented also yields MOLS from the Alltop type construction, which is not covered by

previously published results. The fact the inner product vectors of the Alltop construction

are planar has been noted in [64].

A planar function is not necessary in constructing the vectors, as in the WF construction,

but is sufficient in the angles between the vectors, as in both the Alltop and WF constructions.

The MUBs tested here are generated by a Galois field. The MOLS are also generated

using a Galois field. This may have nothing to do with the MUBs structure, but from the

common properties of Galois fields as in section 3.2.6.

3.5.2 Further directions

Question 3.41. Are there sets of vectors which cannot be described by planar functions, but

the angles between the vectors are described by planar functions?
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The Alltop construction may be unique in this respect. The different properties of the

function which generates the vectors, and the function which describes the inner product

vectors, points to the possibility of other functions which construct the inner product vectors,

but not the vectors of sets of MUBs.
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Chapter 4

MUBs and Hjelmslev planes

4.1 Introduction

4.1.1 Motivation

Connections between MUBs and finite projective planes have been noted in the SPR con-

jecture [96]. A similar idea is that MUBs may be related to projective Hjelmslev planes,

which are a generalisation of projective planes. The structure of Hjelmslev planes has some

analogous properties with the structure of a complete set of MUBs [95]. A non-degenerate

conic of the Hjelmslev plane PH(2, q), with q odd, has q(q + 1) points, of which q points are

in each of q + 1 neighbourhoods. This is analogous to the q(q + 1) vectors of a complete set

of MUBs, of which q vectors are in each of q + 1 bases.

This structural analogy is at the level of cardinalities only. This is not a strong enough

link to be called a conjecture.

Analogy 4.1 (SP Analogy). [95] A conic in a projective Hjelmslev plane over a Galois ring

GR(p2, r) has analogous structure to a complete set of MUBs in Cpr .

This analogy will be detailed in section 4.2.4, after definitions and notation have been

expounded.

4.1.2 Historical note on Hjelmslev planes

In 1916 Johanes Hjelmslev, a Danish geometer proposed a ‘Geometry of reality’ [53]. The

crux of the idea was that discrete geometries do not capture some of the intuitive notions of
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real geometry. In ordinary discrete geometry there is no notion of distance between points

or angles between lines. Points may be classified as identical or non-identical; lines may be

classified as identical, intersecting or parallel.

Hjelmslev realised that a great deal of geometry could be done without the axiom that

any two points are on a unique line [13]. In 1954 (4 years after the death of Hjelmslev)

Wilhelm Klingenberg defined an incidence geometry inspired by the ideas of Hjelmslev [68].

Klingenberg showed that the incidence geometry could be constructed from a specific type

of ring [68, 69]. In 1959 Erwin Kleinfeld first used the name ‘Hjelmslev plane’ [66] for the

geometry as defined by Klingenberg.

In a Hjelmslev geometry points (or lines) may be identical, neighbour, or non-neighbour.

This is a discrete notion that captures some of the properties of points and lines being either

close or remote in a real geometry.

Substantial investigations of Hjelmslev planes were carried out by Drake in the 1970s

[33, 36, 34, 37]. These investigations seem to have been motivated by personal interest,

rather than applications. Thus, there are many aspects of Hjelmslev geometries that are

entirely untouched.

4.1.3 Applications of Hjelmslev planes

Linear codes are easily encoded and decoded using a Galois field. For more background on

coding theory see for example [81]. There exists families of codes which have useful properties,

better than any known linear code, but that are not linear over a Galois field. It has been

shown that the Kerdock and Preparata codes while non-linear over a Galois field, are linear

over a Galois ring [50]. Since this discovery linear codes over rings have received a great deal

of attention. For a background on codes over rings see [56].

A code that is linear over Fq corresponds to a multiset in PG(k − 1, q). Analogously, a

code that is linear over GR(p2, 2) corresponds to a multiset in PH(2, p2) [56]. Research into

the structure of Hjelmslev planes generated by rings is of importance in this emerging area

of coding theory.
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4.1.4 Aim

The aim of this research is to establish a concrete connection between MUBs and Hjelmslev

planes. The best possible result would be a construction of MUBs that uses only the combi-

natorial and geometric properties of Hjelmslev planes i.e. non algebraic properties. Section

4.5 gives some preliminary results in this direction.

Hjelmslev geometries are not well studied, and thus there is not the wealth of knowledge on

which to build connections with MUBs. As in all research we are ‘standing on the shoulders

of giants’. However with Hjelmslev geometry, there are not so many ‘giants’ to stand on.

Hjelmslev planes are mentioned in some books on finite geometry [30, §7.2][106], but not in

the more standard works on design theory e.g. [11, 23].

Given the obscurity, there is much unknown about Hjelmslev planes1. It is with some

serendipity that the results of section 4.4 were developed. Examples of Hjelmslev planes are

required to test hypotheses, thus a method for generating Hjelmslev planes was developed.

Some intuition as to the properties of certain Hjelmslev planes lead to the results of section

4.3. The main results of this chapter may appear to have little to do with the aim of the

overall investigation, but future work may prove otherwise.

4.2 Definitions and preliminary results

4.2.1 Hjelmslev planes

Hjelmslev planes are generalisations of affine planes (Defi 3.13) and projective planes.

Definition 4.2. [11, I Defi 2.1] A projective plane is an incidence structure such that

1. any two distinct points are incident with exactly one line.

2. any two distinct lines are incident with exactly one point.

3. there exist four points, no three of which are on a common line.

1Much of the early work on Hjelmslev planes is published in German. I have endeavoured to understand

the original German language publications, and have also cited an English language version that I have fully

understood.
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A projective plane of order m has m + 1 points on each line, m + 1 lines through each

point, m2 +m+1 points and m2 +m+1 lines. The dual incidence structure (swapping points

for lines) of a projective plane is also a projective plane.

Affine and projective planes are trivial examples of Hjelmslev planes. We use the geometric

notation: P ∈ h, to show that the point P is incident with line h; PR is a line incident with

points P and R; f ∩ h is a point of intersection of lines f and h. For Hjelmslev geometry

there is also the property of neighbours which is denoted ∼.

Definition 4.3. [36, Defi 1.3] A projective Hjelmslev plane, H, is an incidence structure such

that:

1. any two points are incident with at least one line.

2. any two lines intersect in at least one point.

3. any two points P and Q that are incident with more than one line are neighbours.

4. any two lines g, h that intersect at more than one point are neighbours.

5. there exists an epimorphism φ from H to an ordinary projective plane P such that:

(a) φ(P ) = φ(Q) ⇐⇒ P ∼ Q.

(b) φ(g) = φ(h) ⇐⇒ g ∼ h.

Axioms 1 and 2 are dual, axioms 3 and 4 are dual, and axioms 5a and 5b are dual. Thus

just as in projective planes, points and lines are dual in a projective Hjelmslev plane.

Lemma 4.4. [30, Thm 7.2.1] The neighbour property of projective Hjelmslev planes is an

equivalence relation.

Proof. ∼ is obviously symmetric and reflexive. Let P ∼ Q and Q ∼ R. From Definition

4.3,5a we get that φ(P ) = φ(Q) and φ(Q) = φ(R). Thus φ(P ) = φ(R) and we get P ∼ R. A

similar argument applies to lines.

The set of points and the set of lines of a Hjelmslev plane may be partitioned into line-

neighbourhoods and point-neighbourhoods. Let the point-neighbourhood containing P be de-

noted P̃ , and the line neighbourhood containing l be denoted l̃.
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Inspired by Fraleigh, ‘Never underestimate a theorem that counts something’ [40, p 125],

we proceed by counting points, lines and neighbourhoods of projective Hjelmslev planes.

Lemma 4.5. [66, Thm 1] Let H be a finite projective Hjelmslev plane. For any line g and

point P ∈ g let s be the number of non-neighbour points of P incident with g and let t be the

number of neighbour points of P incident with g.

1. s and t are independent of the choice of P and g.

2. each line-neighbourhood has t2 lines and each point-neighbourhood has t2 points.

3. t divides s; Let r = s
t .

4. r is the order of the projective plane associated with H by the epimorphism φ.

Proof. 1. From Lemma 4.4, neighbour is an equivalence relation. Hence for P,Q ∈ g with

P ∼ Q, s and t have the same values for the pair P, g and the pair Q, g. Similarly for g, h

incident with P with g ∼ h, s and t have the same values for the pairs P, g and P, h. We

have: For any pair Q, h such that P ∼ Q and g ∼ h, the values s and t are the same as for

the pair P, g.

Let j be a line incident with P , but non-neighbour to g. Let t′ be the number of points

on j neighbour to P . Since g 6∼ j, from axioms 2 and 4 of Definition 4.3, j must intersect

each line of g̃ in exactly one point. Thus |P̃ | = tt′. Let k be a line incident with P , but

non-neighbour to g and j. Let t† be the number of points on k neighbour to P . k must

intersect each line of g̃ in exactly one point. Thus |P̃ | = tt† and |P̃ | = t′t†. Hence t† = t′ = t

and |P̃ | = t2. Now we have: For any pair Q, h such that P ∼ Q and g 6∼ h, the value of t is

the same as for the pair P, g.

Let T be a point incident with g but non-neighbour to P . From axioms 1 and 3 of

Definition 4.3, each member of P̃ is incident with exactly one line which is also incident with

T . Thus there are t2/t = t lines neighbour to g and incident with T . Choose a line l incident

with T and non-neighbour to g. Following the same argument as for lines j, k above we find

that: for any pair Q, h such that P 6∼ Q and g ∼ h, the value of t is the same as for the pair

P, g; Every point-neighbourhood has t2 points.

Each neighbourhood of points is collapsed to a single point in a projective plane by the

epimorphism φ. Thus the number of distinct point neighbourhoods which have points incident
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with a line is the same for all lines, and hence all lines contain the same number of points. In

conclusion s and t are the same for all lines and all points.

2. The size of a point neighbourhood is shown in part 1.

For P 6∼ T there is a unique line incident with each point of P̃ and each point of T̃ . Each

line contains t points from T̃ and t points from P̃ . Thus there are (t2t2)/(t.t) = t2 lines which

are neighbour to g. As all point-neighbourhoods contain t2 points, this result holds for all

line-neighbourhoods.

3. A consequence of dividing the s+t points on a line into equivalence classes of neighbour

points. Each class has t points, so t divides s+ t.

4. Each neighbourhood of points is collapsed to a single point in a projective plane by the

epimorphism φ. Thus there are (s + t)/t = r + 1 points on a line of φ(H). Hence φ(H) is a

projective plane of order r = (s/t).

Definition 4.6. A (t, r)PH-plane is a projective Hjelmslev plane, with t and r as in Lemma

4.5.

A (1, r)PH-plane is a projective plane of order r, and may be called a trivial projective

Hjelmslev plane. This notation should not be confused with PH(R), the projective Hjelmslev

plane over the ring R, or PH(n, pr) the projective Hjelmslev plane over the ring GR(pn, r)

[95, 55] (defined in section 4.2.3).

We now define an affine Hjelmslev plane, for which we need the concept of parallelism.

Definition 4.7. [11, Defi 5.4] A parallelism, denoted ‖, is a partition of the lines of an

incidence structure into ‖-classes.

Definition 4.8. [36, Defi 1.1] An affine Hjelmslev plane H is an incidence structure such

that

1. any two points are incident with at least one line.

2. any two points P , Q, that are incident with more than one line are neighbours.

3. any two lines g, h, that meet at more than one point are neighbours.

4. There exists an epimorphism, φ, from H to an ordinary affine plane, A, such that

(a) φ(P ) = φ(Q) ⇐⇒ P ∼ Q.
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(b) φ(g) = φ(h) ⇐⇒ g ∼ h.

(c) |g ∩ h| = 0 ⇒ φ(g) ‖ φ(h).

As with affine planes, points and lines are not dual in an affine Hjelmslev plane. An affine

Hjelmslev plane may have parallel lines which are neighbours as axiom 4c of Definition 4.8 is

a one way implication. The following is analogous to Lemmas 4.4 and 4.5.

Lemma 4.9. [33][77, Satz 2.11] Let H be a finite affine Hjelmslev plane. Neighbour is an

equivalence relation. For any line g and point P ∈ g let s be the number of non-neighbour

points of P incident with g and let t be the number of neighbour points of P incident with g.

1. s and t are independent of the choice of P and g.

2. each line-neighbourhood has t2 lines and each point-neighbourhood has t2 points.

3. t divides s; r = s
t .

4. r is the order of the affine plane associated with H by the epimorphism φ.

Proof. Similar arguments to the proof of Lemmas 4.4 and 4.5.

An affine Hjelmslev plane may be denoted (t, r)AH-plane, with t, r as in Lemma 4.9. A

(1, r)AH-plane is an ordinary affine plane and may be called a trivial affine Hjelmslev plane.

There are also definitions of near affine Hjelmslev planes and fairly near affine Hjelmslev

planes [34], as well as higher dimensional Hjelmslev geometries [71] but they have no bearing

on this study so are omitted.

4.2.2 Uniform Hjelmslev planes

The Hjelmslev planes in the SP analogy are uniform (Analogy 4.1, 4.39). In order to define

uniform we need a function which describes the structure of neighbourhoods.

Definition 4.10. [33, Defi 2.3] Let P be a point of a Hjelmslev plane H. The point-

neighbourhood restriction, P̃ , is defined as follows:

1. the points of P̃ are the points that are neighbour to P .
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2. the lines of P̃ are the restrictions of lines g of H to the points P̃ : gP = g ∩ P̃ .

Strictly speaking P̃ is an incidence structure. Where context is clear P̃ refers to the set

of points.

Definition 4.11. [33, Defi 2.4] A 1-uniform projective (affine) Hjelmslev plane H is an

ordinary projective (affine) plane. A projective (affine) Hjelmslev plane is n-uniform if

1. for every point P ∈ H, P̃ is an (n− 1) uniform affine Hjelmslev plane.

2. for each point P of H, every line of P̃ is the restriction of the same number of lines of

H.

In a 2-uniform projective Hjelmslev plane every point-neighbourhood restriction is an or-

dinary affine plane. Note than a point-neighbourhood restriction never resembles a projective

plane as it has exactly t2 points, whereas a projective plane has (t2 + t + 1) points. Earlier

definitions of uniform Hjelmslev planes [66, 30] are equivalent to 2-uniform Hjelmslev planes

in Definition 4.11.

Theorem 4.12. [33, Prop 2.2] Let H be an n-uniform (t, r)PH-plane or (t, r)AH-plane.

Then for invariants t, r, s as given in Lemmas 4.5 and 4.9,

s = rn, t = rn−1. (4.1)

Proof. We use induction. Clearly the statement is true if H is 1-uniform. Let n ≥ 2. Let P

be a point of H and let s′, t′ be the invariants for P̃ , which is an (n− 1)-uniform AH-plane.

The inductive assumption implies that there exists r′ such that

s′ = (r′)n−1, t′ = (r′)n−2. (4.2)

From Lemmas 4.5 and 4.9 we know that s/t = r, thus we need only prove the value of t. The

number of points on each line of P̃ is t = r′t′, therefore

t = r′t′ =
s′

t′
t′ = s′ = (r′)n−1. (4.3)

Hence r = r′ and t = rn−1.
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Lemma 4.13. [66, Thm 2] A projective Hjelmslev plane, H, is 2-uniform if and only if it is

a (t, t)-PH plane.

Proof. From Theorem 4.12 it is clear that a 2-uniform PH-plane must have invariants (t, t).

We need to show that a (t, t)PH-plane is 2-uniform. Since the smallest projective plane has

order 2 (the Fano plane), we may assume that t ≥ 2.

We count the number of intersections between a particular line, h, and all lines of H in

two ways.

There are s+ t points on h and each point is incident with s+ t distinct lines, hence there

are (s+ t)(s+ t) total intersections.

Let λh be the average number of points of intersection between h and lines neighbour to,

but distinct from, h. Each point of h is incident with h; each point of h is incident with on

average λh(t2 − 1) lines that are neighbour to h; h intersects each non-neighbour line exactly

once. We obtain

s+ t+ λh(t2 − 1) + s(s+ t) = (s+ t)(s+ t). (4.4)

From Lemma 4.5 part 3 we know that s = t2.

λh = (t2 + t)(t+ 1) = t. (4.5)

From Theorem 4.5 part 1 we know that λh is the same for all lines. Since t is the number of

neighbouring points on a line, t is the maximum possible value for λh; and so every pair of

neighbouring lines must meet in exactly t points. As points and lines are dual, every pair of

neighbouring points is incident with exactly t lines. This satisfies axiom 2 of Definition 4.11.

Thus P̃ contains t copies of t+ 1 ‖-classes, each ‖-class contains t lines, each line incident

with t points. Each line from each ‖-class meets each line from every other ‖-class in exactly

one point. This satisfies axioms 1 and 2 of Definition 3.13. Setting t > 1 satisfies axiom 3

and we have that P̃ is an affine plane. This shows that H is uniform.

Definition 4.14. [30, §1.3] Let (P,L, I) be an incidence structure with |P| = m points and

|L| = n lines. Let the points and lines be given a fixed order. The incidence matrix is an

m× n matrix C such that (C)ij = 1 if point pi is incident with line lj , and (Cij) = 0 if point

pi is not incident with line lj .
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The entries in the incidence matrix can be treated as elements of C, and normal matrix

properties apply. Finding properties of the incidence matrix is a standard technique in discrete

mathematics.

Theorem 4.15. [63, Lem 1] Let C be the incidence matrix of a 2-uniform (t, t)-PH plane

with t 6= 1. Then the points and lines can be ordered such that C2 has eigenvalues t2, t3 and

t2(t+ 1)2 with algebraic multiplicities (t2 − 1)(t2 + t+ 1), t2 + t and 1.

Proof. Order the points and lines so that neighbourhoods are together, then the incidence

matrix splits into sub matrices

C =


C00 . . . C0(n−1)

...
...

C(n−1)0 . . . C(n−1)(n−1)

 . (4.6)

Consider CCT = C2, then (C2)ii is the number of lines incident with the point xi, and (C2)ij

is the number of lines incident with xi and xj . There are s + t = t2 + t lines incident with

a point, t lines incident with two neighbouring points and exactly one line incident with two

non-neighbouring points. Thus

CCT = C2 =



N J J . . . J

J N J . . . J

J J N
...

...
. . . J

J J J N


(4.7)

where J is the matrix with every entry 1, and N is the t2× t2 matrix with every entry on the

main diagonal equal to s+ t = t2 + t and all other entries equal to t.

Via a tedious calculation we find the characteristic equation.

det
(
C2 − λI(t4+t3+t2)

)
= (t2 − λ)(t2−1)(t2+t+1)(t3 − λ)t

2+t
(
t2(t+ 1)2 − λ

)
(4.8)

from which the eigenvalues are found.

This method is readily adapted to find the eigenvalues of incidence matrices of other

projective Hjelmslev planes.

Uniform Hjelmslev planes have a rich structure which may be useful in applications where

ordinary affine or projective geometry is insufficient.
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4.2.3 Constructions of Hjelmslev planes

Applications of Hjelmslev planes require explicit constructions. Affine and projective geome-

tries can be generated using Galois fields. Hjelmslev planes may be generated using Galois

rings. We detail a construction of a projective Hjelmslev plane using a Galois ring and give

some examples of other rings which also construct Hjelmslev planes. We also show a purely

combinatorial construction which uses semi-nets.

Hjelmslev planes constructed from Galois Rings

We first show a construction for an ordinary projective plane using a Galois field.

Definition 4.16. [30, 1.4.2] Let V be a 3 dimensional vector space over a field F. Let the

subspaces of dimension 1 be points, and subspaces of dimension 2 be lines. Then the geometry

formed is a Desarguesian projective plane.

Definition 4.17. Let PG(2, q) denote the projective plane which is constructed from Fq as

in Definition 4.16. 〈~x〉 is a point of PG(2, q) and represents all column vectors ρ~x in F3
q such

that ρ ∈ F∗q and at least one of the entries in ~x is nonzero.

Definition 4.18. [58, §1] For any subspace W of a vector space V , we define the annihilator

aV (W ) to be the set

aV (W ) = {~xT : ~xT ~w = 0,∀ ~w ∈W}. (4.9)

aV (W ) is a subspace of the dual vector space V T . When W is a set of column vectors,

aV (W ) is a set of row vectors. The annihilator uniquely defines a subspace.

The annihilator of a two dimensional subspace is a one dimensional subspace written as

a row vector.

Definition 4.19. [30, §7.2] A two dimensional subspace is called a line denoted 〈~lT 〉, which

represents all row vectors σ~lT such that σ ∈ F∗q , and at least one of the entries in ~lT is nonzero.

The point 〈~x〉 is incident with the line 〈~lT 〉 if

~lT~x = 0. (4.10)
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We check that PG(2, q) satisfies the properties of a projective plane as defined in Definition

4.2. Let 〈~x〉, 〈~y〉 be two points in PG(2, q). We want to find any lines 〈~lT 〉 that are incident

with both 〈~x〉 and 〈~y〉. Find 〈~lT 〉 such that

~lT~x = 0 and ~lT~y = 0. (4.11)

Expanded out this becomes

x0l0 + x1l1 + x2l2 = 0 and y0l0 + y1l1 + y2l2 = 0. (4.12)

Without loss of generality we choose scalars ρ, ρ′ and σ such that x0 = y0 = l0 = 1 for the

representative vectors ~x, ~y and ~lT .

1 + x1l1 + x2l2 = 0 and 1 + y1l1 + y2l2 = 0 (4.13)

which has a unique solution. This satisfies axiom 1 of Definition 4.2. The duality of points and

lines is evident from equation (4.10), and satisfies axiom 2. The points 〈(1, 0, 0)T 〉, 〈(0, 1, 0)T 〉,

〈(0, 0, 1)T 〉, 〈(1, 1, 1)T 〉 form the quadrangle required of axiom 3. We conclude that PG(2, q)

is a projective plane.

The construction of Hjelmslev planes using Galois rings is similar to the construction of

projective planes using Galois fields [30][69]. We follow the construction of [95].

Definition 4.20. Let PH(2, q), with q = pr, denote the Projective Hjelmslev plane con-

structed from GR(p2, r) as follows: 〈~x〉 is a point of PG(2, q) and represents all column

vectors ρ~x in (GR(p2, r))3 such that ρ is a unit of GR(p2, r) and at least one of the entries of

~x is a unit of GR(p2, r).

A subspace of dimension two is called a line. As with projective planes we represent a line

by its annihilator, denoted 〈~lT 〉, which represents all row vectors σ~lT such that σ is a unit of

GR(p2, r) and at least one of the entries in ~lT is a unit.

The point 〈~x〉 is incident with the line 〈~lT 〉 if

~lT~x = 0. (4.14)

A similar argument as for PG(2, q) will satisfy axioms 1, 2, 3 and 4 of Definition 4.3. The

ring homomorphism, ¯ (Definition 2.42), applied to the entries of the representative vector,

induces the the required epimorphism, φ, on points and lines as given in axioms 5a and 5b

of Definition 4.3. The duality of points and lines is evident from equation (4.14). These

properties will be explicitly shown in section 4.3.
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Hjelmslev planes constructed from other rings

Hjelmslev planes may be constructed using any ring which may be classified as a Hjelmslev

ring (Definition 4.22). A Galois ring is an example of a Hjelmslev ring. For an introduction

to geometry over rings see for example [106]. The construction of the Hjelmslev plane is the

same as when using a Galois ring (Definition 4.20).

Definition 4.21. [106, Defi 8.3] A ring is called a left (right) chain ring if for every pair of

left (right) ideals, N1, N2, either N1 ⊆ N2 or N1 ⊇ N2. This is called the chain condition.

Definition 4.22. [106, Defi 9.2] A ring R is a Hjelmslev ring if it is a left and right chain

ring and every non-unit is 0 or a zero divisor.

Lemma 4.23. [106, Lem 8.4] Let R be a left (right) chain ring. Then R has a unique

maximal ideal and is commutative.

Definition 4.24. [74, §II.4] A ring is local if it has a unique maximal ideal M , and the

residue ring R/M is a division ring.

All finite division rings are fields. Thus if R is a finite local ring then R/M is a field. The

unique maximal ideal consists of 0 and all the zero divisors of R.

Axioms 1 and 2 of Definition 4.3 correspond to the chain condition. The requirement

that every non-unit is 0 or a zero divisor corresponds to axioms 3 and 4 of Definition 4.3.

The neighbour property being an equivalence relation corresponds to the local property of a

Hjelmslev ring, where finding the residue field, R/M , corresponds to the epimorphism φ of

axioms 5a and 5b of Definition 4.3.

Lemma 4.25. [28] Let σ be an automorphism of Fq, then Rσ = 〈Fq×Fq,+, ·〉 with + defined

component-wise and multiplication defined as

(x0, x1)(y0, y1) = (x0y0, x0y1 + x1σ(y0)) (4.15)

is a Hjelmslev ring.

Proof. The zero divisors of Rσ are elements of the form (0, x1), x1 ∈ F∗q :

(0, x1)(0, y1) = (0, 0 + 0y1 + x1σ(0)) = (0, 0). (4.16)
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For x0 6= 0, let y1 = x−1
0 (1− x1σ(x−1

0 )) then

(x0, x1)(x−1
0 , y1) = (1, 1− x1σ(x−1

0 ) + x1σ(x−1
0 ) = (1, 1). (4.17)

Thus every element is either a unit, 0, or a zero divisor.

There is a unique proper ideal of Rα, being the subring of zero divisors. This fulfils the

left and right chain conditions.

All Hjelmslev rings that generate 2-uniform Hjelmslev planes have been catalogued. If

q = pr then there are exactly r+1 isomorphism classes of such rings: the Galois ring GR(p2, r),

and Rσ for each of the r automorphisms, σ, of Fq. For more on this topic see [55, 56].

Hjelmslev planes constructed from a semi net with Zings

A purely combinatorial construction of Hjelmslev planes uses a semi net.

Definition 4.26. [38] A (k, t)-semi net with zings is an incidence structure with t2 points

and kt2 lines. The set of lines L is the disjoint union of zings, L = L1 ∪ · · · ∪ Lk such that

1. each zing contains t2 lines.

2. lines g and h intersect in exactly one point if and only if they belong to distinct zings.

3. if two points are incident with a common line, then they are incident with more than

one common line.

A semi net is full if every pair of points is joined by at least one line.

If each zing is replaced by a single parallel class, then the resulting structure is equivalent

to a net (Definition 3.14). A net is therefore a trivial semi net, and a ‖-class is a trivial zing.

Theorem 4.27. [38, Prop 2.4] Let P be the incidence matrix of a projective plane of order

r. Let m = r2 + r+ 1. Let Aij with 1 ≤ i, j ≤ m be a t2 × t2 matrix with entries from {0, 1}.

Let M be the mt2 ×mt2 matrix constructed by replacing the entry in cell i, j of P with the

matrix Aij. Then M is the incidence matrix of a (t, r)PH-plane if

1. For fixed i, the concatenation of the non-zero Aix is an incidence matrix for a full

(r + 1, t)-semi net. Each nonzero Aij corresponds to a zing.

102



Joanne Hall MUBs and Hjelmslev planes

2. For fixed j, the concatenation of the non-zero Axj is an incidence matrix for a dual full

(r + 1, t)-semi net . Each nonzero Aij corresponds to a zing.

Conversely all (t, r)PH-planes can be represented in this way.

Proof. Each zing is the intersection of a line-neighbourhood with a point-neighbourhood re-

striction. Each semi net is a point-neighbourhood restriction.

Theorem 4.27 gives an alternate representation of a Hjelmslev plane and may be viewed

as an equivalent definition of a Hjelmslev plane. Theorem 4.27 changes the problem of con-

structing a Hjelmslev plane to that of constructing a semi net with zings.

Equivalent definitions can be useful as shown by the wealth of literature on objects equiv-

alent to MOLS. Given that a net is equivalent to a range of other combinatorial objects

(Theorem 3.10), nets are well studied. However there is little known about semi nets.

4.2.4 MUBs and conics of Hjelmslev planes

Conics in projective planes

In 2005 it was noted by Saniga and Planat that q + 1 is the number of points in a non-

degenerate conic of a PG(2, q), which is the same number as the maximum number of MUBs

in Cq [94].

Analogy 4.28. [94] A conic in a PG(2, q) has the same number of points as the number of

bases in a complete set of MUBs in Cq.

In 2006 this analogy was developed into the SP Analogy concerning conics in projective

Hjelmslev planes [95]. We define conics in projective planes before moving on to the richer

setting of a projective Hjelmslev plane.

Definition 4.29. [58, §II.7] Let A be a symmetric matrix with at least one entry that is a

unit, A ∈M3(Fq). A conic of PG(2, q) is

C := {〈~x〉 ∈ PG(2, q) : ~xTA~x = 0}. (4.18)

The matrix A represents a linear transformation which, combined with the transpose,

maps a point 〈~x〉 to a line 〈~xTA〉 in the dual plane. Let C be the incidence matrix of a
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projective plane. Let the rows of C be in a fixed ordering of the points 〈~x0〉, 〈~x1〉, . . . , 〈~xn2+n〉,

and the columns of C be given the ordering 〈~xT0A〉, 〈~xT1A〉, . . . , 〈~xn2+nA〉. Then (C)ii = 1 if

and only if ~xTi A~xi = 0, and hence the points in the conic are 〈~xi〉 such that (C)ii = 1.

Often the definition of a conic is given in the expanded form [58, Lem 2.30]:

Let a00, a01, a02, a11, a12, a22 ∈ Fq with at least one aij nonzero. A conic in PG(2, q) is

the set of points of the form 〈~x〉 = 〈(x0, x1, x2)T 〉, with at least one of x0, x1, x2 nonzero that

satisfy

a00x
2
0 + a11x

2
1 + a22x

2
2 + 2a01x0x1 + 2a02x0x2 + 2a12x1x2 = 0. (4.19)

If A is the matrix of the conic, then the coefficients in equation (4.19) are the entries of A.

Lemma 4.30. [58, Lem 2.35] Let C be a conic with matrix A. A line 〈~lT 〉 meets the conic

in exactly one point if and only if

~lTA~l = 0. (4.20)

A line that meets a conic in exactly one point is called an absolute line.

Corollary 4.31. [58, Lem 2.35, Cor 2, Lem 2.68, Cor 1] A conic in PG(2, q) is either empty,

a single point, or has q + 1 points.

A conic that does not contain q + 1 points is called degenerate. If the matrix A from

equation (4.18) is singular, then the conic is degenerate.

This corollary is the basis for Analogy 4.28. We give further results on projective planes

over a field that are neccesary to understand Hjelmslev planes.

Theorem 4.32. [58, Thm 2.36] Let C be a nonempty conic in PG(2, q) with q odd. Then a

basis for F3
q can be chosen such that the matrix of C has the form

0 0 −1

0 2 0

−1 0 0

 (4.21)

and the points of C are points 〈~y〉 such that y2
1 = y0y2.

Note that this does not hold for a field of characteristic 2 since the matrix of equation

(4.21) is singular in this case.
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Theorem 4.33. [58, Thm 2.69] Let C be a nonempty conic in PG(2, q) with q even, then the

points of C are the points of some line.

Corollary 4.34. [58, Cor 2.36] Any two nonempty conics in PG(2, q) are isomorphic.

The correspondence between MUBs and conics in PG(2, q) noted in Analogy 4.28 is at

the level of cardinalities only. Furthermore the points in the conic are analogous to bases;

there is no structure which is analogous to a vector. Analogy 4.28 relies on properties of

PG(2, q). An arc is a purely geometric structure, which occurs in all projective planes. It can

be shown that all arcs with q+1 points in projective planes of odd order are conics [76, 9.6.4].

Non-Desarguesian planes (not PG(2, q)) occur in prime powers ≥ 9, thus we could expect a

correspondence between non-Desarguesian MUBs (e.g. those constructed without using the

planar function x2) and non-Desarguesian projective planes.

The lack of an analogous structure for vectors leads to interest in generalisations of pro-

jective planes.

Conics in Hjelmslev planes

The SP analogy (Analogy 4.1) notes some commonalities between the structure of a conic

in PH(2, q) and a complete set of MUBs. The neighbourhood relation of a Hjelmslev plane

can be considered analogous to base membership of vectors in MUBs. A conic in PH(2, q) is

defined analogously to a conic in PG(2, q).

Definition 4.35. [58, §II.7] Let A be a symmetric matrix with at least one entry that is a

unit, A ∈M3(GR(p2, r)). A conic of PH(2, q) is

C := {〈~x〉 ∈ PH(2, q) : ~xTA~x = 0}. (4.22)

The definition of a conic may also be given in expanded form (compare with equation

(4.19)). A conic in PH(2, q) is a set of points 〈(x0, x1, x2)T 〉 which obeys

c00x
2
0 + c11x

2
1 + c22x

2
2 + c01x0x1 + c02x0x2 + c12x1x2 = 0 (4.23)

where cij ∈ GR(p2, r) and at least one of the cijs is a unit.
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Lemma 4.36. [22, Thm 2.2] Let C be a nonempty conic of PH(2, q) with q odd. Then C has

q(q + 1) points, of which q points are in each of q + 1 neighbourhoods.

Proof. First we show that C has points from q + 1 distinct point-neighbourhoods.

Let 〈~x〉 = 〈(x0, x1, x2)T 〉. Let the equation of the conic C be as in equation (4.23). Let ¯ be

the ring homomorphism, and let φ(〈~x〉) = 〈(x̄0, x̄1, x̄2)〉 be the epimorphism φ(PH(2, q)) =

PG(2, q). Then the conic φ(C) has the equation

c̄00x̄
2
0 + c̄11x̄

2
1 + c̄22x̄

2
2 + 2c̄01x̄0x̄1 + 2c̄02x̄0x̄2 + 2c̄12x̄1x̄2 = 0. (4.24)

Let A be the matrix of the conic of equation (4.23). Let B ∈ M3(GR(p2, r)) such that

B̄ ∈ M3(Fq) is the change of basis transformation required of Theorem 4.32, B̄~̄x = ~̄y such

that:

ȳ0
2 − ȳ1ȳ2 = 0. (4.25)

We apply the same transformation, B~x = ~y and BA = D to equation (4.23). D is the matrix

of the conic

d00y
2
0 + d11y

2
1 + d22y

2
2 + 2d01y0y1 + 2d02y0y2 + 2d12y1y2 = 0. (4.26)

Comparing equations (4.25) and (4.26) we see that d̄00 = 1, 2d̄12 = −1 and d11, d22, d01, d02 ∈

H where H is the group of zero divisors of GR(p2, r).

The point 〈(0, 1, 0)T 〉 is on the conic of equation (4.25), Let the point 〈~y〉 = 〈(0, 1, k)T 〉 be

on the conic of equation (4.26), where k ∈ H. From equation (4.26):

d11 + d22k
2 + 2d12k = 0. (4.27)

Define a mapping ψ : H 7→ H

ψ(k) = d22k
2 + 2d12k + d11. (4.28)

Let j ∈ H. If [ψ(k)− ψ(j) = 0 ⇐⇒ k − j = 0] then equation (4.27) has a unique solution.

ψ(k)− ψ(j) = d22k
2 + 2d12k + d11 − d22j

2 − 2d12j − d11 (4.29)

= (k − j)(d22(k + j) + 2d12) (4.30)

2d12 6∈ H and d22 ∈ H, therefore [d22(k + j) + 2d12] 6∈ H. Thus if equation (4.30) evaluates

to zero, (k − j) = 0 and equation (4.27) has a unique solution. Thus 〈~y〉 = 〈(0, 1, k)T 〉 is on

the conic of equation (4.26), and its image in φ(PH(2, q)) is 〈~̄y〉 = 〈(0, 1, 0)T 〉.
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Then any point 〈~x〉 such that B~x = ~y is on the conic with equation (4.23). As there are q+1

points on a conic in PG(2, q), C contains points from q+1 distinct point-neighbourhoods. We

now show that the conic contains q points from each of the q+1 distinct point-neighbourhoods.

Let 〈 ~̄w〉 = 〈(x̄0, 1, x̄
2
0)T 〉. Then from equation (4.25) for each x0 ∈ GR(p2, r), the point ~w

is on the conic C, and satisfies φ(〈~w〉) = 〈 ~̄w〉. Since each element of GR(p2, r) may be written

as x = a + 2b, where 2b ∈ H, there are exactly |H| = pr = q elements of GR(p2, r) such

that x̄ = a+ 2b = a. Hence each point-neighbourhood that contains a point incident with C,

contains q points incident with C.

There are q+1 point-neighbourhoods, with q points from each. q(q+1) points altogether.

It must be noted that Lemma 4.36 as originally published [22, Thm 2.2] states that q must

be even. However this is clearly a misprint as Theorem 4.32 requires odd q.

q2 of the points of a conic of PH(2, q) with q odd are of the form [95]

ρ(1, α, α2) α ∈ GR(p2, r). (4.31)

The remaining q points are of the form

ρ(0, 1, δ) δ ∈ H. (4.32)

As with constructions of MUBs, things are different in even dimensions.

Theorem 4.37. [63, Prop 2,5] Let C be a conic in a 2-uniform (q, q)PH plane with q even,

then |C| 6= q(q + 1).

Proof. When considering the incidence matrix C of a projective Hjelmslev plane for which

the rows and columns have been ordered into neighbourhoods as in Theorem 4.15, the rows

and columns may be further ordered within neighbourhoods such that (C)ii = 1 if and only if

〈~xi〉 is a member of the conic (see comment after Definition 4.29). Hence the number of points

on the conic is Tr(C). The trace of a matrix is the sum of its eigenvalues (Lemma 2.9). From

Theorem 4.15 the eigenvalues of C2 are q2, q3 and q2(q + 1)2 with algebraic multiplicities

(q2− 1)(q2 + q+ 1), q2 + q and 1. Any eigenvalue of C is a square root of an eigenvalue of C2.

C has constant row sum q(q + 1), hence q(q + 1) is an eigenvalue of C. q2(q + 1)2 is an

eigenvalue of C2 with multiplicity 1, thus −q(q + 1) is not an eigenvalue of C and q(q + 1)
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has multiplicity 1. Let n1, n2, n3 and n4 be the respective multiplicities of the eigenvalues q,

−q, q3/2 and −q3/2, which may be zero.

Tr(C) = q(q + 1) + (n1 − n2)q + (n3 − n4)q3/2 (4.33)

with n1 + n2 = (q2 − 1)(q2 + q + 1) and n3 + n4 = q2 + q.

If q is even then (q2 − 1)(q2 + q + 1) is odd and q2 + q is even, and therefore n1 − n2 6= 0

and n1 − n2 6= −(n3 − n4)
√
q. Hence

Tr(C) 6= q(q + 1) (4.34)

which means that |C| 6= q(q + 1).

In Lemma 4.40 we find that PH(2, q) is 2-uniform.

Corollary 4.38. A conic in PH(2, q) with q even cannot contain exactly q(q + 1) points.

SP Analogy

Analogy 4.39 (SP Analogy). [95] A conic in a PH(2, q) has the same number of points as

the number of vectors in a complete set of MUBs in Cq for q odd.

The q(q+ 1) points in a conic for odd q, is analogous to the q(q+ 1) vectors in a complete

set of MUBs, of which q vectors are in each of q+1 bases. The q points of the form ρ(0, δ, 1)T

are analogous to the vectors of the standard basis, with the remaining q2 points analogous to

the vectors in the non-standard bases. This analogy is at the level of cardinalities only.

Conics in Hjelmslev planes of even neighbourhood size cannot contain the q(q+ 1) points

required of the SP Analogy. Thus the SP Analogy does not hold in even dimensions.

For each d = pr there are at least r+1 non-isomorphic (d, d)PH-planes [28]. Thus if there

is a connection between MUBs and Hjelmslev planes in odd dimensions we could expect at

least r + 1 sets of non-equivalent MUBs in Cd. If MUBs in Cq and PH(2, q) are intimately

linked for q odd, then finding conics would be a method for finding MUBs.

The lack of correspondence between conics and MUBs in even dimensions makes the SP

Analogy invalid as a general model for MUBs.
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4.3 Structure of Hjelmslev planes over Galois rings

4.3.1 Motivation

The SP Analogy is based on properties of PH(2, q). In order to investigate the SP Analogy the

properties of PH(2, q) were investigated. PH(2, q) is also a candidate for use in applications

such as coding theory due to the emerging use of Galois rings.

PH(2, q) is shown to be 2-uniform, and the structure of the neighbourhoods of PH(2, q)

is determined to be AG(2, q).

4.3.2 Uniformity

In this section some of the known properties of PH(2, q) are expounded.

Lemma 4.40. [69] PH(2, q), the projective Hjelmslev plane generated by GR(p2, r) with

q = pr, is a (q, q)-PH plane, and is therefore 2-uniform.

We do not follow the original proof.

Proof. PH(2, q) contains q2(q2 + q+ 1) points and q2(q2 + q+ 1) lines. The number of points

incident with a given line is q(q + 1), every point and every line has q2 neighbours [95].

There are exactly q points on a line h neighbour to a point P , and exactly q2 points on h

non-neighbour to P .

Using Lemma 4.5, t = q and s = q2 and hence PH(2, q) is a (q, q)-PH plane. Then using

Lemma 4.13 we see that PH(2, q) is a 2-uniform projective Hjelmslev plane.

The following theorem shows how zero divisors create the neighbourhoods of a Hjelmslev

plane.

Theorem 4.41. [68, Satz 6.1] Let H be the additive subgroup of zero divisors of GR(p2, r).

For lines 〈~lT 〉 = 〈(l0, l1, l2)T 〉, 〈~mT 〉 = 〈(m0,m1,m2)T 〉 ∈ PH(2, q), 〈~lT 〉 ∼ 〈~mT 〉 if and only

if

l1m2 − l2m1, l2m0 − l0m2, l0m1 − l1m0 ∈ H. (4.35)

For points 〈~x〉 = 〈(x0, x1, x2)T 〉, 〈~y〉 = 〈(y0, y1, y2)T 〉 ∈ PH(2, q), 〈~x〉 ∼ 〈~y〉 if and only if

x1y2 − x2y1, x2y0 − x0y2, x0y1 − x1y0 ∈ H. (4.36)
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Proof. Points and lines are dual, thus we only need to prove the theorem for points. When

equation (4.36) fails, there is a single line incident with both 〈~x〉 and 〈~y〉.

Assume equation (4.36) holds. We need to show that there exists 2 lines, 〈~gT 〉 and 〈~hT 〉,

such that points 〈~x〉 and 〈~y〉 are both incident with both 〈~gT 〉 and 〈~hT 〉. Without loss of

generality let x0 6∈ H. For some a ∈ GR(p2, r)

a(x0y1 − y0x1) = (x2y0 − x0y2), (4.37)

since H is an ideal. For the specific line 〈~gT 〉 = 〈(x−1
0 (−x1a− x2), a, 1)〉 we find that

~gT~x = x0x
−1
0 (−x1a− x2) + x1a+ x2 = 0 (4.38)

and 〈~gT 〉 is incident with 〈~x〉. From equation (4.37),

x−1
0 a(x0y1 − x1y0) = x−1

0 (x2y0 − x0y2) (4.39)

ay1 + y2 = x−1
0 ax1y0 + x−1

0 x2y0. (4.40)

Consider the point 〈~y〉.

~gT~y = y0x
−1
0 (−x1a− x2) + y1a+ y2 (4.41)

which from equations (4.37) and (4.40),

~gT~y = −x−1
0 ax1y0 − x−1

0 y0x2 + ay1 + y2 = 0 (4.42)

and 〈~gT 〉 is incident with 〈~y〉.

Because x0y1 − x1y0 ∈ H we know that there exists a′ such that a′(x0y1 − x1y0) = 0. Let

〈~hT 〉 = 〈(x−1
0 (−x1(a+ a′)− x2), a+ a′, 1)〉. Let a′ 6= 0, then 〈~hT 〉 6= 〈~gT 〉.

~hT~x = ~gT~x+ a′x1 − a′x1 = 0 (4.43)

~hT~y = ~gT~y + a′(y1 − y0x
−1
0 x1) (4.44)

x0(~hT~y) = a′(x0y1 − y0x1) = 0. (4.45)

Since x0 is a unit, ~hT~y = 0. Hence 〈~hT 〉 is incident with 〈~x〉 and 〈~y〉. Therefore 〈~x〉 ∼ 〈~y〉.

Corollary 4.42. [95] For points 〈~x〉 = 〈(x0, x1, x2)T 〉, 〈~y〉 = 〈(y0, y1, y2)T 〉 and lines 〈~lT 〉 =

〈(l0, l1, l2)〉, 〈~mT 〉 = 〈(m0,m1,m2)〉 ∈ PH(2, q), 〈~x〉 ∼ 〈~y〉 if and only if

x0 − y0, x1 − y1, x2 − y2 ∈ H (4.46)
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and 〈~lT 〉 ∼ 〈~mT 〉 if and only if

l0 −m0, l1 −m1, l2 −m2 ∈ H. (4.47)

This corollary shows that the zero divisors describe the structure of a neighbourhood, and

a ring without zero divisors cannot construct a non-trivial Hjelmslev plane.

The following result is credited in [55, Def 1] to [70], however the proof is original.

Lemma 4.43. Let H be the ideal containing all zero divisors of GR(p2, r). Let

H3 = {(y0, y1, y2)T : yi ∈ H}, (4.48)

be an ideal of GR(p2, r)3. Each point-neighbourhood of PH(2, q) is a coset of H3.

Proof. Let ~x = (x0, x1, x2)T ∈ GR(p2, r)3 with at least one of x0, x1, x2 a unit, and P = 〈~x〉

be a point in PH(2, q). Then from Lemma 4.42, any point which is neighbour to P must be

of the form

〈~x+ ~h〉, ~h ∈ H3. (4.49)

Using coordinate wise addition,

P̃ = {〈~y〉 : (~x− ~y) ∈ H3}. (4.50)

Then

P̃ = P +H3 (4.51)

and P̃ is a coset of H3. Since (0, 0, 0)T ∈ H3, P ∈ P̃ , and P is the coset leader.

The following result stems from the relationship between a Galois field and a Galois ring.

Theorem 4.44. [56, Thm 4.5] Let φ be the epimorphism given in Definition 4.3 part 5. Then

φ(PH(2, q)) is PG(2, q).

Proof. Let Tr be the Teichmüller set of GR(p2, r). Let xi ∈ GR(p2, r) then xi = ai + pbi

where ai, bi ∈ Tr. The points of PH(2, q) may be written as

〈(x0, x1, x2)T 〉 = 〈(a0, a1, a2)T + p(b0, b1, b2)T 〉 with ai, bi ∈ Tr. (4.52)
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Recall the ring homomorphism xi = ai + pbi = ai (Definition 2.42). Let

φ(〈~x〉) = 〈(x0, x1, x2)T 〉 (4.53)

= 〈(a0, a1, a2)T 〉. (4.54)

Given that for GR(p2, r), Tr ∼= Fpr , points in φ(PH(2, q)) may be written as 〈(a0, a1, a2)T 〉

with a0, a1, a2 ∈ Fpr . Thus the points of φ(PH(2, q)) are the points of PG(2, q). A similar

argument shows that the lines of φ(PH(2, q)) are the lines of PG(2, q), and thus ¯ induces

the required epimorphism, φ.

4.3.3 Structure of the neighbourhoods

We explore neighbourhoods as substructures of PH(2, q). Because PH(2, q) is 2-uniform

(Theorem 4.40), we know that the point-neighbourhood restrictions are affine planes. We

now determine which affine plane. As seen in Corollary 4.42, it is the zero divisors of the

Galois ring that determine the neighbourhood structure.

Theorem 4.45. The point-neighbourhood restrictions of PH(2, q) are AG(2, q).

Proof. From Lemma 4.40 the point-neighbourhood restrictions of PH(2, q) are affine planes.

We must show that the affine plane is AG(2, q) which is generated by the equation

αx+ βy = γ, α, β, γ ∈ Fq. (4.55)

Let H be the ideal consisting of zero divisors of GR(p2, r). Let Cαβγ be the set of ordered

pairs (h1, h2) ∈ H ×H such that

αh1 + βh2 = γ. (4.56)

The sets Cαβγ partition the set H×H. If α, β, γ and h1 are fixed, then there is a unique value

of h2 such that equation (4.56) holds. Thus each |Cαβγ | = q.

Let x0, x1, x2 ∈ Tr with at least one of x0, x1, x2 nonzero. From Lemma 4.43 and without

loss of generality, taking x0 6= 0,

P̃ = {〈(x0, x1 + h1, x2 + h2)T 〉 : xi ∈ Tr, hi ∈ H}. (4.57)

Choose P = 〈~p〉 = 〈(x0, x1 + u1, x2 + u2)T 〉 ∈ P̃ . Choose a line 〈~lT 〉 of PH(2, q) through

P , and without loss of generality let 〈~lT 〉 = 〈(0, l1, l2)〉. Then from equation (4.14) we get

l1(x1 + u1) + l2(x2 + u2) = 0. (4.58)
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Note that we can choose α = l1 and β = l2, so there exists a unique γ for which αu1+βu2 = γ.

Thus (u1, u2) ∈ Cαβγ ; there are q − 1 other pairs (w1i, w2i) that satisfy αw1i + βw2i = γ,

1 ≤ i ≤ q − 1.

Note that

αu1 + βu2 = αw1i + βw2i. (4.59)

Let Q be a point which is neighbour to P .

Q = 〈~q〉 = 〈(x0, x1 + w1i, x2 + w2i)
T 〉. (4.60)

Consider

~lT ~q = l1x1 + l2x2 + l1w1i + l2w2i. (4.61)

We have chosen α = l1 and β = l2, now use equation (4.59) to get

~lT ~q = l1x1 + l2x2 + l1u1 + l2u2 = 0. (4.62)

Thus Q is incident with 〈~lT 〉. There are q − 1 points generated by the pairs (w1i, w2i) which

are also incident with 〈~lT 〉. Thus line 〈~lT 〉 is generated by equation (4.55) and is incident with

q points from P̃ .

In conclusion the point neighbourhood restriction P̃ has the structure of the affine plane

AG(2, q).

Given the relationship between Galois rings and Galois fields it is unsurprising that a

Galois field defines the structure of neighbourhoods. Points and lines are dual and generated

by the same equation. Hence the following corollary.

Corollary 4.46. The line neighbourhoods of PH(2, q) are the dual structure of AG(2, q).

4.3.4 Discussion

These results show the strong connection between PH(2, q) and AG(2, q). Given that AG(2, q)

is the most elementary affine plane, this shows that PH(2, q) is the most elementary projective

Hjelmslev plane.

This is also important as many computer packages and various applications such as coding

theory are familiar with Galois fields. The neighbourhood substructures of PH(2, q) can all
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be described by Galois fields, and thus may be constructed using Galois fields. An algorithm

has been developed in the next section.

Of further interest is the neighbourhood structures of projective Hjelmslev planes con-

structed using other rings, but this is not explored here.

4.4 An algorithm to construct 2-uniform Hjelmslev planes

This section has been submitted as [45].

4.4.1 Motivation for algorithm

Explicit constructions and concrete examples are required for further investigation of appli-

cations of Hjelmslev planes. Hjelmslev planes can be constructed using Galois rings (Section

4.2.3). Common software packages such as Maple, Mathematica, Matlab, and Magma either

do not have a Galois rings package, or do not currently have sufficient features to calculate

Hjelmslev planes. Also just as there are affine planes which cannot be constructed via a Galois

field, there are Hjelmslev planes which cannot be constructed using a Galois ring.

We show an algorithm for constructing 2-uniform projective Hjelmslev planes, some of

which cannot be constructed using Galois rings. This algorithm is easily implemented in most

programming languages so that a Hjelmslev plane may be generated for use in applications.

The construction uses a projective plane, an affine plane and an orthogonal array as inputs

for the algorithm. There are open online lookup tables (eg. [4, 101]) for these objects, or

specific examples may be constructed using a Galois field [23, §VII.2].

Drake and Shult show that all Hjelmslev planes can be constructed from a projective

plane and semi-nets with zings [38, Prop 2.4] (see section 4.2.3), however there is no library

of semi-nets with zings.

We also show that all 2-uniform Hjelmslev planes may be constructed using this algorithm.

4.4.2 Ingredients for algorithm

The algorithm takes three different combinatorial structures and uses them to generate a

2-uniform projective Hjelmslev plane: an affine plane (Definition 3.13), a projective plane

(Definition 4.2) and an orthogonal array (Defintion 3.15).
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A projective plane of order m may be represented as a 2 − (m2 + m + 1,m + 1, 1) block

design [102, §8.4]. An affine plane of order m may be represented as a 2 − (m2,m, 1) block

design [102, Thm 18]. An affine plane may be constructed from a projective plane by deleting

a line, and the points incident with that line from every other line in the plane. In this way

an affine plane is a sub-geometry of a projective plane.

An affine plane of order m has a parallelism: there are m+ 1 mutually unbiased ‖-classes,

each ‖-class contains m lines, and each line is incident with m points.

Each symbol occurs in each column of the orthogonal array v times. An orthogonal array

may be obtained from an affine plane by assigning each point of the affine plane to a row of

the array, and each ‖-class of the affine plane to a column of the array. The symbol, s, in

position (i, j) of the array indicates that line s of ‖-class j is incident with point i of the affine

plane.

The three structures above may all be generated from a projective plane. However, for

this algorithm it is not essential that the objects have any relationship other than size.

4.4.3 An algorithm for constructing 2−uniform projective Hjelmslev planes

Algorithm 4.47. An algorithm for constructing a 2-uniform projective Hjelmslev plane is

as follows:

Step 1 Let P be a projective plane of order m, A an affine plane of order m and O an orthogonal

array OA(m2,m+ 1,m, 2). We now create a new structure H.

Step 2 Replace each of the points of P with m2 points which are a copy of A. This gives

(m2 +m+1)m2 points in H. Each affine plane will now be called a point-neighbourhood

restriction.

Step 3 Choose a line l in P and for each point of l, choose a parallel class ofA for the correspond-

ing point-neighbourhood restriction (The parallel class may be the same or different for

each point of l). Label each of the lines of the parallel class of each point-neighbourhood

restriction with the symbols from O. Since each point-neighbourhood restriction is in

m lines of P, each time a particular point-neighbourhood restriction is incident with a

chosen line, a different parallel class of A must be used. Label each column of O with

a point-neighbourhood restriction.
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P =



{0, 1, 2, 9},

{3, 4, 5, 9},

{6, 7, 8, 9},

{0, 3, 6, A},

{1, 4, 7, A},

{2, 5, 8, A},

{0, 4, 8, B},

{1, 5, 6, B},

{2, 3, 7, B},

{0, 7, 5, C},

{1, 3, 8, C},

{2, 4, 6, C},

{9, A,B,C},



A =



{R,S, T},

{U, V,W},

{X,Y, Z},

{R,U,X},

{S, V, Y },

{T,W,Z},

{R, V, Z},

{S,W,X},

{T,U, Y },

{R,W, Y },

{S,U, Z},

{T, V,X}



O =

L L L L

L M M M

L N N N

M L M N

M M N L

M N L M

N L N M

N M L N

N N M L

Figure 4.1: Constructing a 2-uniform PH plane: Step 1. A projective plane of order 3, an

affine plane of order 3 and an orthogonal array OA(9, 4, 3, 2).

{0R, 0S, 0T, 0U, 0V, 0W, 0X, 0Y, 0Z, 1R, 1S, . . . CX,CY,CZ}.

Figure 4.2: Constructing a 2-uniform PH plane: Step 2. The points of H can be written with

a double label to show membership of point-neighbourhoods.

Step 4 We now create lines in H by joining the lines of the parallel class of each point-

neighbourhood restriction according to O.

An example is given in Figures 4.1-4.4.

Theorem 4.48. The structure generated by Algorithm 4.47 is a 2-uniform (m,m)PH-plane.

Proof. Algorithm 4.47 generates an incidence structure H with (m2 +m+1)m2 points, (m2 +

m+ 1)m2 lines, each line containing (m2 +m) points, and each point incident with (m2 +m)

lines. We show that H satisfies all the axioms of Definition 4.3.

Axioms 1 and 3: Any pair of points P and Q which are in the same point-neighbourhood
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In neighbourhood 3̃; L := {R,S, T}, M := {U, V,W}, N := {X,Y, Z}.

In neighbourhood 4̃; L := {R,S, T}, M := {U, V,W}, N := {X,Y, Z}.

In neighbourhood 5̃; L := {R,S, T}, M := {U, V,W}, N := {X,Y, Z}.

In neighbourhood 9̃; L := {R,U,X}, M := {S, V, Y }, N := {T,W,Z}.

3 4 5 9

L L L L

L M M M

L N N N

M L M N

M M N L

M N L M

N L N M

N M L N

N N M L

Figure 4.3: Constructing a 2-uniform PH plane: Step 3. Choosing line l = {3, 4, 5, 9} of P,

the chosen ‖-classes of each point-neighbourhood of l, and the labels for the columns of O.
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{3R, 3S, 3T, 4R, 4S, 4T, 5R, 5S, 5T, 9R, 9U, 9X}

{3R, 3S, 3T, 4U, 4V, 4W, 5U, 5V, 5W, 9S, 9V, 9Y }

{3R, 3S, 3T, 4X, 4Y, 4Z, 5X, 5Y, 5Z, 9T, 9W, 9Z}

{3U, 3V, 3W, 4R, 4S, 4T, 5U, 5V, 5W, 9T, 9W, 9Z}

{3U, 3V, 3W, 4U, 4V, 4X, 5X, 5Y, 5Z, 9R, 9U, 9X}

{3U, 3V, 3W, 4X, 4Y, 4Z, 5R, 5S, 5T, 9S, 9V, 9Y }

{3X, 3Y, 3Z, 4R, 4S, 4T, 5X, 5Y, 5Z, 9S, 9V, 9Y }

{3X, 3Y, 3Z, 4U, 4V, 4X, 5R, 5S, 5T, 9T, 9W, 9Z}

{3X, 3Y, 3Z, 4X, 4Y, 4Z, 5U, 5V, 5W, 9R, 9U, 9X}

{6R, 6S, 6T, 7R, 7S, 7T, 8R, 8S, 8T, 9R, 9V, 9Z}

{6R, 6S, 6T, 7U, 7V, 7W, 8U, 8V, 8W, 9U, 9Y, 9T}

{6R, 6S, 6T, 7X, 7Y, 7Z, 8X, 8Y, 8Z, 9X, 9S, 9W}

{6U, 6V, 6W, 7R, 7S, 7T, 8U, 8V, 8W, 9X, 9S, 9W}

{6U, 6V, 6W, 7U, 7V, 7X, 8X, 8Y, 8Z, 9R, 9V, 9Z}

{6U, 6V, 6W, 7X, 7Y, 7Z, 8R, 8S, 8T, 9U, 9Y, 9T}

{6X, 6Y, 6Z, 7R, 7S, 7T, 8X, 8Y, 8Z, 9U, 9Y, 9T}

{6X, 6Y, 6Z, 7U, 7V, 7X, 8R, 8S, 8T, 9X, 9S, 9W}

{6X, 6Y, 6Z, 7X, 7Y, 7Z, 8U, 8V, 8W, 9R, 9V, 9Z}

Figure 4.4: Constructing a 2-uniform PH plane: Step 4. The lines of H in the line-

neighbourhoods corresponding to the lines {3, 4, 5, 9} and {6, 7, 8, 9} of P are constructed

according to O. Note that every pair of lines from within a line-neighbourhood share ex-

actly 3 points, and every pair of lines from different line-neighbourhoods share exactly one

point. Note that different ‖-classes of the point-neighbourhood restriction 9̃ are used for each

line neighbourhood.
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are incident with exactly one line of the point neighbourhood restriction, which is an affine

plane. Each line of the point-neighbourhood restriction is used in m lines of H, as each

symbol appears m times in each column of O. For points P and R which are in different

point-neighbourhoods, there is exactly one line of P which is incident with any pair of point-

neighbourhoods. Given ‖-classes P̃X and R̃Y of each point-neighbourhood, O ensures that

each line of P̃X is in a line of H with each line of R̃Y exactly once.

Axioms 2 and 4: O ensures that lines in the same line-neighbourhood meet in ex-

actly one line of a ‖-class of a point-neighbourhood restriction, which is m points. For

lines g and h which are in different line-neighbourhoods, their line-neighbourhoods may

be labelled with lines from P. Any pair of lines in P intersect in exactly one point, thus

any line-neighbourhoods of H intersect in exactly one point neighbourhood Q̃. Each line-

neighbourhood is allocated a different ‖-class Q̃X , Q̃Y . Thus the line g in H must contain a

line of Q̃X and h a line of Q̃Y . As the ‖-classes of each point neighbourhood restriction are

unbiased, g and h meet in exactly one point.

Let φ collapse point-neighbourhoods and line-neighbourhoods. It is trivial to check that

this is incidence preserving and surjective, and thus an epimorphism.

All axioms of Definition 4.3 are satisfied. Thus H is a projective Hjelmslev plane.

To see that H is 2-uniform, we see that the point-neighbourhood restrictions are con-

structed to be affine planes, and each line of each point-neighbourhood restriction is used in

m+ 1 lines of H.

4.4.4 Properties of the algorithm

In the example the affine plane used is a sub-geometry of the projective plane. However

this is not required. Any projective plane, any affine plane and any orthogonal array of the

appropriate sizes may be used. In fact different affine planes may be used for each point-

neighbourhood restriction.

Theorem 4.49. All 2-uniform projective Hjelmslev planes can be generated using Algorithm

4.47.

Proof. We already know that H is a 2-uniform projective Hjelmslev plane. Axiom 1 of Defi-

nition 4.11 requires that point-neighbourhood restrictions are affine planes; this is guaranteed

by step 2. Requiring that every line of every P̃ is the restriction of the same number of
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lines is equivalent to ensuring that each line of each parallel class of the point-neighbourhood

restriction is included in the same number of lines at step 4. This is ensured as each symbol

occurs in each column of an orthogonal array the same number of times.

For orders where there are several possible projective planes, affine planes and orthogonal

arrays, this algorithm generates many different Hjelmslev planes of the same size.

Cataloguing of projective planes, affine planes and orthogonal arrays is an ongoing project

on which any catalogue of Hjelmslev planes is dependant. Further investigation into isomor-

phism classes of Hjelmslev planes is also required.

Algorithm 4.47 may be amended to construct 2-uniform affine Hjelmslev planes

Lemma 4.50. [36]A (t, r)PH-plane can be truncated to a (t, r)AH plane.

Proof. Take PH(t, r) and remove all the lines of one line-neighbourhood together with all inci-

dent points. Uniformity is maintained as the structure of the point-neighbourhood restriction

remains unchanged.

A 2-uniform affine Hjelmslev plane may be generated directly by using Algorithm 4.47:

let P be an affine plane of size m, A an affine plane of size m and take the first m columns

of an OA(m2,m+ 1,m, 2) orthogonal array.

Unlike an ordinary affine plane which may be extended to a projective plane, not all affine

Hjelmslev planes may be extended to projective Hjelmslev planes [35]. The non-extendibility

of affine Hjelmslev planes is shown by giving a specific example which is 3-uniform [35, Cor

6.2]. Thus it may be the case that all 2-uniform affine Hjelmslev planes are extendable to

a projective Hjelmslev plane. If so all 2-uniform affine Hjelmslev planes may be generated

using Algorithm 4.47.

4.5 Proposed algorithm for constructing MUBs from Hjelm-

slev planes

An algorithm to construct a complete set of MUBs using a projective Hjelmslev plane has

been developed. This algorithm is shown to construct a complete set of MUBs in C4 when

using PH(2, 2).
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The algorithm is combinatorial, and may work on Hjelmlsev planes other than PH(2, q).

However no work has been done to asses the success of this algorithm on any plane other

than PH(2, 2).

Algorithm 4.51. 1. Let H be PH(2, q).

2. Choose q+1 points from H which are collinear, but from different line-neighbourhoods.

3. Remove all lines that contain these points.

4. Truncate all remaining lines by removing all points in the point-neighbourhoods of the

chosen points. Call this sub-geometry X .

5. Each point in X corresponds to a vector in the set of MUBs. Each of the lines of X

represents vectors which have the same symbol in particular fixed a position. Label q4

vectors of length q2 with the points of X .

6. Fill the first position in every vector with a 1.

7. Each set of disjoint line-neighbourhoods of X corresponds to an unfilled position in the

set of vectors. Allocate a symbol to each of the lines such that each line from the same

line neighbourhood has an opposing symbol, e.g. ωα, ω−α. For each line in X fill the

allocated position of the vectors whose corresponding points appear in each line, with

the symbol allocated to that line.

8. Apply an appropriate scalar multiplier to all vectors.

Algorithm 4.51 is illustrated by constructing the Galois ring MUBs in C4 using PH(2, 2);

see Figures 4.5-4.9.

PH(2, 2) is generated from GR(22, 1). The MUBs in C4 constructed according to the

Galois ring construction (Theorem 2.58) use GR(22, 2). Different, but related algebraic struc-

tures are used to generate the Hjelmslev plane and the MUBs. The construction established

in Algorithm 4.51 may be an algebraic one, where the construction of the Hjelmslev plane is

an unnecessary middle step (compare with section 3.2.6).

Conjecture 4.52. The q4 vectors generated using Algorithm 4.51 along with the standard

basis form a complete set of MUBs in Cq2.
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line-

neighbourhood line of H

026 {0A, 0B, 2A, 2B, 6A, 6B}

{0A, 0B, 2C, 2D, 6C, 6D}

{0C, 0D, 2A, 2B, 6C, 6D}

{0C, 0D, 2C, 2D, 6A, 6B}

line-

neighbourhood line of H

045 {0A, 0D, 4A, 4D, 5A, 5D}

{0A, 0D, 4B, 4C, 5B, 5C}

{0B, 0C, 4A, 4D, 5B, 5C}

{0B, 0C, 4B, 4C, 5A, 5D}

346 {3A, 3B, 4A, 4B, 6A, 6D}

{3A, 3B, 4C, 4D, 6B, 6C}

{3C, 3D, 4A, 4B, 6B, 6C}

{3C, 3D, 4C, 4D, 6A, 6D}

235 {2A, 2D, 3A, 3D, 5A, 5C}

{2A, 2D, 3B, 3C, 5B, 5D}

{2B, 2C, 3A, 3D, 5B, 5D}

{2A, 2D, 3B, 3C, 5A, 5C}

031 {0A, 0C, 3A, 3C, 1A, 1C}

{0A, 0C, 3B, 3D, 1B, 1D}

{0B, 0D, 3A, 3C, 1B, 1D}

{0B, 0D, 3B, 3D, 1A, 1C}

156 {1A, 1D, 5A, 5C, 6A, 6B}

{1A, 1D, 5B, 5D, 6C, 6D}

{1B, 1C, 5A, 5C, 6C, 6D}

{1B, 1C, 5B, 5D, 6A, 6B}

241 {2A, 2C, 4A, 4C, 1A, 1B}

{2A, 2C, 4B, 4D, 1C, 1D}

{2B, 2D, 4A, 4C, 1C, 1D}

{2B, 2D, 4B, 4D, 1A, 1B}

Figure 4.5: Constructing MUBs: Step 1. The lines of H. The points are labelled with a

double label ij where i is the point-neighbourhood. The lines are listed according to their

line-neighbourhood, which is shown in the left column.
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line-neighbourhood line of H

026 {0A, 0B, 2C, 2D, 6C, 6D}

{0C, 0D, 2A, 2B, 6C, 6D}

346 {3A, 3B, 4A, 4B, 6A, 6D}

{3C, 3D, 4C, 4D, 6A, 6D}

031 {0A, 0C, 3B, 3D, 1B, 1D}

{0B, 0D, 3A, 3C, 1B, 1D}

241 {2A, 2C, 4A, 4C, 1A, 1B}

{2B, 2D, 4B, 4D, 1A, 1B}

045 {0A, 0D, 4B, 4C, 5B, 5C}

{0B, 0C, 4A, 4D, 5B, 5C}

235 {2A, 2D, 3A, 3D, 5A, 5C}

{2A, 2D, 3B, 3C, 5A, 5C}

156

Figure 4.6: Constructing MUBs: Steps 2 and 3. We chose points 1C, 5D and 6B, and remove

all lines from H that contain any of these points.
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truncated

line-neighbourhood line of X

02 {0A, 0B, 2C, 2D}

{0C, 0D, 2A, 2B}

34 {3A, 3B, 4A, 4B}

{3C, 3D, 4C, 4D}

03 {0A, 0C, 3B, 3D}

{0B, 0D, 3A, 3C}

24 {2A, 2C, 4A, 4C}

{2B, 2D, 4B, 4D}

04 {0A, 0D, 4B, 4C}

{0B, 0C, 4A, 4D}

23 {2A, 2D, 3A, 3D}

{2A, 2D, 3B, 3C}

Figure 4.7: Constructing MUBs: Step 4. The lines of H have been truncated by removing

point-neighbourhoods 1, 5 and 6. X is a sub-geometry of H
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0A =


1

1

∗

∗

 , 0B =


1

1

∗

∗

 , 0C =


1

−1

∗

∗

 , 0D =


1

−1

∗

∗

 ,

2A =


1

−1

∗

∗

 , 2B =


1

−1

∗

∗

 , 2C =


1

1

∗

∗

 , 2D =


1

1

∗

∗

 .

Figure 4.8: Constructing MUBs: Steps 5, 6 and 7. Each vector is labelled with the points of

X . Let the truncated line-neighbourhoods 02 and 34 correspond to the second position. We

fill the second position of each of the vectors corresponding to the points of the truncated line

{0A, 0B, 2C, 2D} with 1 and fill the second position of each of those vectors corresponding to

the points of the truncated line {0C, 0D, 2A, 2B} with −1.

4.6 Conclusion

4.6.1 Findings

The aim of this chapter was to establish connections between MUBs and Hjelmslev planes and

to find evidence for or against the SP Analogy. Theorem 4.37 shows that conics in Hjelmslev

planes with even neighbourhood size cannot contain exactly q(q + 1) points, making the SP

Analogy invalid as a model for MUBs in even dimensions. Hjelmslev planes have a rich

structure, thus other aspects of a Hjelmslev plane may have connections with MUBs. The

results of section 4.5 are a small piece of evidence supporting this.

The investigation of Hjelmslev planes has been necessitated by the lack of available knowl-

edge. Building connections between Hjelmslev planes and other structures will be assisted by

knowing more about Hjelmslev planes.

The neighbourhood structure of a Hjelmslev plane over a Galois ring, PH(2, q), has been

shown to have the structure of an affine plane over a Galois field, AG(2, q).

A combinatorial algorithm has been developed to construct 2-uniform Hjelmslev planes.
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0A =


1

1

1

1

 , 0B =


1

1

−1

−1

 , 0C =


1

−1

1

−1

 , 0D =


1

−1

−1

1

 ,

2A =


1

−1

−i

−i

 , 2B =


1

−1

i

i

 , 2C =


1

1

−i

i

 , 2D =


1

1

i

−i

 ,

3A =


1

−i

−1

−i

 , 3B =


1

−i

1

i

 , 3C =


1

i

−1

i

 , 3D =


1

i

1

−i

 ,

4A =


1

−i

−i

−1

 , 4B =


1

−i

i

1

 , 4C =


1

i

−i

1

 , 4D =


1

i

i

−1

 .

Figure 4.9: Constructing MUBs: Step 7. We continue with truncated line-neighbourhoods 03

and 24 representing the third position and, 04 and 23 representing the fourth position. Pairs

of lines from the same truncated line-neighbourhood are allocated opposing symbols.
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This algorithm uses well catalogued objects as seeds. The construction of explicit examples

will be of use in applications.

4.6.2 Further directions

Each of the three sections of original work in this chapter could start an entirely new research

project.

Section 4.3 investigates properties of PH(2, q), the projective Hjelmslev plane generated by

a Galois ring. The properties of Hjelmslev planes over other rings may be further investigated

using similar techniques.

Question 4.53. What are the permissible neighbourhood structures of a Hjelmslev plane?

Section 4.4 develops an algorithm for constructing 2-uniform projective Hjelmslev planes.

This algorithm could possibly be modified to construct other objects such as affine Hjelmslev

planes, Hjelmslev planes of higher uniformity, and non-uniform Hjelmslev planes.

Question 4.54. For what sizes do non-uniform Hjelmslev planes exist?

We have shown that the analogous behaviour of conics in a Hjelmslev planes and MUBs

does not hold for all sets of MUBs. There are other aspects of Hjelmslev planes which are as

yet unexplored for connections with MUBs. Section 4.5 proposes a construction for a set of

MUBs in Cd.

Question 4.55. Can a Hjelmslev plane be used to construct mutually unbiased bases?

This construction is shown to work with PH(2, 2). Further investigation is required to

determine if this construction is valid for other Hjelmslev planes.
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Chapter 5

MUBs and Planar Functions

5.1 Introduction

5.1.1 Motivation

The planar function construction of MUBs (Theorem 2.52) is the most general construction

of MUBs. Planar functions can be used to construct both MUBs and MOLS. It may be

that the connection between MUBs and MOLS is actually a connection between MUBs and

planar functions. Further investigation of planar functions in relation to MUBs may yield

this answer.

5.1.2 Aim

From the planar function construction we know that a planar function is sufficient to con-

struct a set of MUBs. The planar function construction constructs a single set of MUBs for

each planar function over each field. We aim to determine if non-equivalent MUBs may be

constructed from the same planar function.

5.2 Definitions and preliminary results

Planar functions and characters over fields were introduced in Chapter 2. There are a few

more results that will be used in this chapter.
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5.2.1 Planar Functions

Planar functions (Definition 2.36) can be used to construct affine planes (Definition 3.21) and

MUBs (Theorem 2.52). A list of known planar functions is given in Theorem 3.23. There are

some related types of functions that we make use of.

Definition 5.1. [27, §2] An additive function h on Fq satisfies

h(x+ y) = h(x) + h(y). (5.1)

Algebra books would call this a homomorphism of the additive group of Fq. We use the

term additive function as it appears in the literature on planar functions.

Definition 5.2. A function f which is both additive and a permutation on a group, G, is an

automorphism of G.

A Galois field Fq has two operations; an automorphism of a field is an automorphism in

both operations. An automorphism of the additive group of Fq may not be an automorphism

of the multiplicative group. Let h(x) = ax where a ∈ F∗q , then h is a cyclic permutation of

Fq. The function h is also additive,

h(x+ y) = a(x+ y) = ax+ ay = h(x) + h(y), (5.2)

and so is an automorphism of the additive group of Fq. However

h(xy) = axy 6= axay = h(x)h(y). (5.3)

Thus h is not an automorphism of F∗q , the multiplicative group of Fq.

There is extensive literature on automorphisms of Galois fields [40, §9].

5.2.2 Characters

The planar function construction of MUBs uses characters (Theorem 2.52). Some definitions

and results on characters are given in section 2.2.2. Character sums of the form

∑
c∈Fq

χ(f(c)) (5.4)
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where f is a polynomial of positive degree may be called Weil sums. Evaluating the sum of

characters is difficult. In many cases only the magnitude of the solution or a bound on the

magnitude is known [76, §5.4]. Recent results improve some bounds, but do not add to the

set of polynomials of which the character sum is explicitly known [43].

Theorem 5.3. [76, Thm 5.11] Let G(η, χ) be the Gaussian sum of χ, an additive character,

and η, the quadratic character, on Fq. Then

G(η, χ) = 0 for χ = χ0 (5.5)

|G(η, χ)| =
√
q for χ 6= χ0 (5.6)

where χ0(c) = 1 for all c ∈ Fq.

Theorem 5.4. [76, Cor 5.31] If χ is a non-trivial additive character of Fq then for all

a0, a1 ∈ Fq∑
x∈Fq

χ(a1x+ a0) = 0. (5.7)

5.3 Generalised planar function construction of MUBs

The following result is a generalisation of [72, prop 5] for which L(x) = x. We only require the

result in one variable, thus although this result is true for multi-variate functions, we state it

in the single variable case.

Lemma 5.5. Let Π be a planar polynomial and L an additive permutation polynomial over

Fq. Let χ be a non-trivial character of Fq then∣∣∣∣∣∣ 1√
qn

∑
x∈Fq

χ (Π(x)− b.L(x))

∣∣∣∣∣∣ = 1 ∀b ∈ Fq. (5.8)

Proof.∣∣∣∣∣∣ 1
√
q

∑
x∈Fq

χ(Π(x)− b.L(x))

∣∣∣∣∣∣
2

=
1

q

∑
x∈Fq

χ(Π(x)− b.L(x))
∑
y∈Fq

χ(−Π(y) + b.L(y)) (5.9)

=
1

q

∑
x∈Fq

χ (Π(x))
∑
y∈Fq

χ (−Π(y)− b.L(x− y)) (5.10)

=
1

q

∑
x∈Fq

χ (Π(x))
∑
z∈Fq

χ (−Π(x− z)− b.L(z)) (5.11)

=
1

q

∑
z∈Fq

χ (b.L(z))
∑
x∈Fq

χ (Π(x)−Π(x− z)) . (5.12)
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A function which satisfies equation (2.38) is bent and by Theorem 2.40 it is also planar. Thus

the inner sum of equation (5.12) is zero unless z = 0, in which case the inner sum has value

q. Then∣∣∣∣∣∣ 1
√
q

∑
x∈Fq

χ(Π(x)− b.L(x))

∣∣∣∣∣∣
2

=
1

q
χ (b.L(0)) q. (5.13)

Because L is additive L(0) = 0. Hence we have equation (5.9) equates to 1, and equation

(5.8) is satisfied.

All known planar functions over Fq require odd q [27]. We now generalize the planar

function construction of MUBs.

Theorem 5.6 (Generalised Planar construction). Let Π(x) be a planar function and L(x) be

an additive permutation function on Fq. Then the set of vectors

~vab =
1
√
q

(
ωtr[aΠ(x)+bL(x)]
p

)
x∈Fq

(5.14)

a, b ∈ Fq and the standard basis forms a complete set of MUBs.

Proof.

〈~vab|~vcd〉 =
1

q

∑
x∈Fq

ωtr[(c−a)Π(x)+(d−b)L(x)]
p (5.15)

If a = c, then, because L is a permutation function,

〈~vab|~vad〉 =
1

q

∑
x∈Fq

ωtr[(d−b)L(x)]
p =

 1 if d = b

0 if d 6= b.
(5.16)

This shows the bases are orthonormal.

If a 6= c then, from Definition 2.38 and Lemma 5.5, equation (5.15) equals 1√
q . This shows

that bases Ba and Bc are unbiased. Each component of each vector has magnitude 1√
q , so

each base is unbiased to the standard basis.

It is possible for L to be an automorphism of Fq, but the extra conditions on the multi-

plicative operation are not required.
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5.4 Equivalences of MUBs

Lemma 5.7. Let A = {Id, A0, . . . , An−1} and B = {Id, B0, . . . , Bn−1} be complete sets of

MUBs represented as matrices with columns that form the vectors of each base. Let A and B

be equivalent with the unitary transform U such that UA = B. Then U is one of:

• a permutation matrix P ,

• A∗i , where Ai is an element of A,

• PA∗iP ′, permutations applied to A∗i where Ai is an element of A.

Proof. If U(A) = B then for some matrix Ai in A

UA = Id. (5.17)

That is U = A−1
i . Because each base is orthonormal, each Ai is unitary. We also allow a

permutation matrix, as the order of the columns within the matrix is an arbitrary ordering

of the vectors within the base, and the ordering of the rows within the whole set of matrices

is an arbitrary ordering of the dimensions.

In Theorem 2.65 a permutation of A∗0 was used to show equivalence of the WF and Alltop

type MUBs. Lemma 5.7 is a formalisation of this idea.

5.4.1 Example

Unfortunately summing over characters is difficult. Thus we cannot algebraically determine

if the generalised planar construction will construct MUBs that are not equivalent to those

constructed using the planar function construction. We show an example of two equivalent

sets of MUBs.

Let A be the set of MUBs generated by Π(x) = x2 and L(x) = x, and B be the set of

MUBs generated by Π(x) and L′(x) = x3 according to equation (5.14) over F9. This is the

Frobenius automorphism of F9 [40, Thm 9.1.19].

The column permutation (3, 7)(5, 6)(4, 8) transforms A into B, and hence they are equiv-

alent sets of MUBs.

We are yet to find an explicit example of a planar function and two additive permutation

functions which produce non-equivalent sets of MUBs.
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5.5 Conclusion

5.5.1 Findings

We have generalised the planar function construction of MUBs by using an automorphism on

the additive group of a Galois field. However it is unclear if this generalisation will lead to

new sets of MUBs.

5.5.2 Further directions

Question 5.8. Can non-equivalent sets of MUBs be constructed from the same planar func-

tion?

More knowledge about character sums would enable an algebraic test for equivalence.

Explicit computation of examples may show that there are non-equivalent MUBs which are

based on the same planar function.
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Chapter 6

MUBs and Relation Algebras

This chapter has been published as a section of [46].

6.1 Introduction

6.1.1 Motivation

Relation algebras have been constructed from the set of points and the set of lines of pro-

jective planes [52, 82]. A projective plane exists if and only if a complete set of MOLS also

exists. Given the SPR conjecture connecting MOLS and MUBs, these relation algebras are

investigated for connections with MUBs.

6.1.2 Historical note on relation algebras

In 1860 De Morgan [83] published the first discussion of binary relations as a branch of formal

logic. Until that time studies of logic had remained essentially unchanged since Aristotle [52,

§1.1]; however Aristotle’s system did not consider relations between objects.

In the second half of the nineteenth century several authors [88, 98] studied the properties

of relations and operations [82, §1.1]. Boole [14] had formalized an algebra of unary relations

in 1851 (Boolean algebra), and this structure was built upon to define relation algebras.

6.1.3 Aim

We construct algebras of relational type using the structure of MUBs. These algebras are

compared with two known relation algebras which use the structure of a projective plane.
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Constructing a relation algebra from a set of MUBs that is equivalent to a relation algebra

from a projective plane would be evidence for the SPR conjecture.

6.2 Definitions and preliminary results

Definitions can be found in comprehensive works on logic such as [49, 103]. For a more

comprehensive study of relation algebras see for example [52, 82]. We follow the notation of

[82].

6.2.1 Axioms of relation algebras

Relation algebras are algebraic structures which can be generated by a set of relations on

some underlying set, and using set theoretic operations on those relations.

Definition 6.1. Let X be a set of objects. A binary relation, R, on X is a subset of X×X.

Let R be a relation, then for notational convenience (x, y) ∈ R may be written as Rxy,

and (x, y) 6∈ R may be written as ¬Rxy.

Let Sb(X) be the powerset of a set X. Then a set of binary relations M is a subset of

Sb(X ×X).

Definition 6.2. An algebra, M, on a set, M, that has 2 unary operations, ,̄ ,̆ 2 binary

operations, +, ;, and an identity element, I, is an algebra of relational type. Denoted M =

〈M,+,̄ , ; ,̆ , I〉.
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There are 10 axioms that describe the structure of an algebra of relational type [82, §6.01].

∀A,B,C ∈M :

R1 A+B = B +A + commutativity

R2 A+ (B + C) = (A+B) + C + associativity

R3 Ā+ B̄ + Ā+B = A Huntington

R4 A; (B;C) = (A;B);C ; associativity

R5 (A+B);C = A;C +B;C ; + distributivity

R6 A; I = A identity

R7
˘̆
A = A ˘ involution

R8 (A+B)̆ = Ă+ B̆ ˘ + distributivity

R9 (A;B)̆ = Ă; B̆ ; ˘ distributivity

R10 Ă;A;B + B̄ = B̄ Tarski/DeMorgan.

(6.1)

Definition 6.3. [82, §6.01] An algebra of relational type that meets axioms R1-R10 is a

relation algebra.

There are algebras which meet some, but not all of these axioms. For example the class

of non-associative relation algebras meets axioms R1 −R3 and R5 −R10 [82, §6.3].

Lemma 6.4. [82, §1] Let P and Q be relations on a set X. Define operations on relations

as:

P ∪Q := {(x, y) : (x, y) ∈ P ∨ (x, y) ∈ Q} Union, (6.2)

P := {(x, y) : (x, y) 6∈ P} Complement, (6.3)

P |Q := {(x, z) : ∃y, (x, y) ∈ P ∧ (y, z) ∈ Q} Composition, (6.4)

P̆ := {(x, y) : (y, x) ∈ P} Converse. (6.5)

Any set of relations which is closed under the operations ∪, ,̄ |,˘obeys axioms R1 − R10

and is therefore a relation algebra.

It must be noted that the operations of Lemma 6.4 are sufficient, but not necessary for a

relation algebra.
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6.2.2 Properties of relation algebras

The Identity relation on the set X is given by

IX := {(x, x) : x ∈ X}. (6.6)

The Universal relation on the set X is given by

UX := {(x, y) : x, y ∈ X}. (6.7)

Definition 6.5. An algebra M = 〈M,+,̄ , ; ,̆ , I〉 of relational type is finite if M is a finite

set.

If M is a finite set of relations on X then, X is not necessarily finite.

Definition 6.6. [52, Ex 3.3.7] A relation algebra M = 〈M,+,̄ , ; ,̆ , I〉 is symmetric if A = Ă

for all elements of M.

Definition 6.7. [82, §5.2] An element, A, of a relation algebra M = 〈M,+,̄ , ; ,̆ , I〉 is an atom

if A+R 6= A for all elements R ∈M and A;R 6= A for some R ∈M. The set of atoms may

be denoted At(M). An algebra M is atomic if for every R ∈ M there exists an A ∈ At(M)

such that A+R = R.

Since an algebra is closed under the four operations +,̄ , ; ,̆ , an atomic relation algebra

may be defined by its atoms.

A ternary relation T on a set X is a subset of X ×X ×X. Let

U := {x : ∃y,∃z, Txyz ∨ Tyxz ∨ Tyzx}, (6.8)

then U is the field of T . U ⊆ X. Ternary relations may be reduced to binary relations. For

example:

Q := {(a, b) : a, b ∈ U,∀x∀y[Taxy ⇔ Tbyx] ∨ [Txay ⇔ Tybx]}. (6.9)

Definition 6.8. [82, §6.26] Let T be a ternary relation. Let U be the field of T and Q as

defined in equation (6.9). Then Cm(T ) := 〈Sb(U),∪,̄ , ; , ,̆I〉 is the complex algebra of T , where

137



Joanne Hall MUBs and Relation Algebras

the operations ∪,¯are defined as in Lemma 6.4, and ;, ăbd I are defined as

R;S := {c : ∃r, ∃s, [r ∈ R, s ∈ S, Trsc]} (6.10)

R̆ := {b : ∃r, [r ∈ R,Qrb]} (6.11)

I := {a : a ∈ U,∀r, ∀s, [[Tars ∨ Tras]⇒ r = s]}. (6.12)

The elements of a Cm(T ) are subsets of U , not binary relations. Cm(T ) is an algebra of

relational type, but depending on T it may not satisfy all the axioms of a relation algebra.

6.2.3 Relation Algebras constructed from projective planes

There are two classes of relation algebras that have been constructed using the structure of

projective planes: the Lyndon and Jonsson algebras [82, 52]. We construct the Jonsson and

Lyndon algebras and discuss some of their properties.

Jonsson Algebra

Definition 6.9. [82, §6.31] Let P be a projective plane of order at least 2. Let e be a point

not in P. Let U be the set of points of P in union with {e}. Let T be the ternary relation

consisting of all triples (a, b, c) of distinct collinear points of P and triples of the form (e, a, a),

(a, e, a), (a, a, e) with a ∈ U .

The Jonsson algebra of P is Cm(T ).

The Jonsson algebra is an algebra of relational type. Axioms R1 −R3 and R5 −R10 hold

for all Jonsson algebras. If P is of order 2, then axiom R4 also holds and the Jonsson algebra

is a relation algebra.

Lemma 6.10. [82, §6.31]The Jonsson algebra is symmetric. If P is a projective plane of

order 3 or greater then the Jonsson algebra is non-associative in the operation ;.

Since the elements of Cm(T ) are subsets of U , each {a}, a ∈ U is an atom of Cm(T ). If the

projective plane is finite, then there is a finite number of atoms, and hence Cm(T ) is finite.

{e} is the identity element I since

R; I = R ⇐⇒ R = {p : ∃r, ∃i, [r ∈ R, i ∈ I, T rip]} (6.13)
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and Trer for all r ∈ U .

Thus for P a finite projective plane of order 3 or greater the Jonsson algebra is an algebra

of relational type that is symmetric, atomic, finite and non-associative.

Lyndon Algebra

Definition 6.11. [79, §3][52, §4.5] A Lyndon algebra Ln = 〈L,∪,̄ , ; ,̆ , I〉 of order n is a finite

relation algebra with n+ 2 atoms, I, a0, a1, . . . , an. Composition is defined by

ai; ai = ai ∪ I (6.14)

ai; aj =
∑
k 6=i,j

ak for i 6= j. (6.15)

All atoms of L are self converse, ăi = ai. Operations ∪, and ¯are as defined in Lemma 6.4.

Lemma 6.12. [79, §3][52, §4.5] Let n ≥ 3. Ln is a relation algebra.

Ln may be constructed on 4 or less atoms, but associativity does not hold.

The Lyndon algebra may be constructed as the complex algebra of a ternary relation.

This construction differs from the Jonsson algebra by the inclusion of the triples of the form

(a, a, a) in the ternary relation.

Definition 6.13. [82, §6.32] Let P be a projective geometry of order at least three. Let e

be a point not in P. Let U be the set of points of P and {e}. Let T ′ be the ternary relation

consisting of all triples (a, b, c) of distinct collinear points of P and triples of the form (e, a, a),

(a, e, a), (a, a, e), (a, a, a) with a ∈ U .

L(P) is Cm(T ′).

Theorem 6.14. L(P) as given in Definition 6.13 is a Lyndon algebra Ln where n is the

number of points in the projective plane. Each atom ai is a point of the projective plane, and

I represents a set containing a point not in the plane, {e}.

Proof. The atoms of Ln and L(P) are the points of P and I = {e}. The operations ∪, ¯ are

the same for both Ln and L(P).

Let R = {r} and S = {s} be atomic relations of L(P). Then R;S is all points on the line

rs except r and s, which is consistent with equation (6.15). R;R = {r, e} = R ∪ I, which is

consistent with equation (6.14). Thus ; is the same operation for both Ln and L(P).
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From equation (6.11)

R̆ = {b : ∃r ∈ R,∀x ∈ U,∀y ∈ U, [[T ′rxy ⇔ T ′byx] ∨ [T ′xry ⇔ T ′ybx]]. (6.16)

If T ′rxy then either r, x, y are collinear or T ′rrr, T ′rre, or T ′rer. If T ′byx then b, x, y are

collinear, T ′bbb, T ′bbe, or T ′beb. Thus b = r and R̆ = R.

All operations on L(P) are the same as for Ln, hence L(P) = Ln.

The following result shows that the Lyndon algebra has a unique set of properties.

Theorem 6.15. [79][82, Thm 347] L is the Lyndon algebra of a projective geometry with at

least four points on every line if and only if L is a relation algebra that is complete, atomic,

symmetric, I is an atom of L and a; a = a+ I for every atom.

In particular if P is a line with n+ 1 points, then the Lyndon algebra is representable if

and only if a projective plane of order n exists.

Discussion

Both the Jonsson and Lyndon algebras have different properties depending on whether the

underlying geometry has three or more points on a line. It is possible that other relation

algebras can be constructed from the structure of projective or affine planes, but that is

beyond the scope of this project.

6.3 Relation Algebras constructed from MUBs

We now construct some algebras of relational type using the structure of MUBs.

Definition 6.16. Let X be the union of the vectors in a set of MUBs. The relations on these

vectors can be defined using the inner product:

U := {(a, b) : a, b ∈ X} Universality, (6.17)

∅ := { } Empty, (6.18)

I := {(a, a) : a ∈ X} Identity, (6.19)

O := {(a, b) : |〈a|b〉|2 = 0} Orthogonality, (6.20)

N := {(a, b) : |〈a|b〉|2 =
1

d
} Non-orthogonality. (6.21)
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| Ix Ox Nxy Nyx Nyz

Ix Ix Ox Nxy Nyx Nyz

Ox Ox Ox ∪ Ix Nxy ∅ ∅

Nxy ∅ ∅ ∅ Ox ∪ Ix Nxz

Nyx Nyx Nyx Oy ∪ Iy ∅ ∅

Nyz ∅ ∅ ∅ ∅ ∅

Figure 6.1: Cayley table of atomic relations in R.

Lemma 6.17. Let M = {U, ∅, I, Ī, O, Ō,N, N̄} as defined in equations (6.17 -6.21). Then

M = 〈M,∪, ,̄ |,̆ , I〉 is a relation algebra with operations union ∪, complement ,̄ composition

|, and converse ,̆ defined as in Lemma 6.4.

Proof. By Lemma 6.4, M obeys axioms R1 −R10 and is therefore a relation algebra.

This relation algebra structure exists for any set of at least two MUBs in any dimension.

In order for the algebraic structure to be useful in finding MUBs, or finding links between

projective planes and MUBs, the relations need to be more specific. The relations need to

contain information about how many MUBs are in the set and their dimension. Thus we split

the original relations to reflect membership of each base. Let Bx be the xth base in a set of

MUBs, then relations may be defined as:

Ix = {(a, a) : a ∈ Bx}, (6.22)

Ox = {(a, b) : a, b ∈ Bx ∧ a 6= b}, (6.23)

Nxy = {(a, b) : a ∈ Bx, b ∈ By}. (6.24)

Lemma 6.18. Let X be the union of vectors in a set of n MUBs. Let R be the set of

relations generated by the atomic relations Ix, Ox, Nxy, 1 ≤ x, y ≤ n. Then R = 〈R,∪, ,̄ |,̆ , I〉

is a relation algebra with operations union, ∪, complement, ,̄ composition, |, and converse ,̆

as in Lemma 6.4.

Proof. By generating the set of relations using ∪ we ensure it is closed under .̄ Ix and Ox

are symmetric relations. N̆xy = Nyx, which shows closure under .̆ The Cayley table of the

atoms under | (Figure 6.1), in conjunction with closure under ∪ shows closure under |.
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R is not symmetric, and does not satisfy A|A = A ∪ I for any element of R. Thus R is

neither a Jonsson nor a Lyndon algebra.

R does not contain any information about the dimension. Different relations may be

required for this. Both the Lyndon and Jonsson algebras are symmetric, thus if we are trying

to construct a Lyndon or Jonsson algebra, then R may not be worth further investigation.

6.4 Conclusion

6.4.1 Findings

The algebras constructed from the structure of MUBs do not share any similarities with

algebras constructed from projective planes. Perhaps this is a small piece of evidence pointing

to MUBs and projective planes being non-equivalent. However we have not conducted an

exhaustive investigation of relation algebras from the structure of MUBs.

The Jonsson and Lyndon algebras have different properties, even though they are con-

structed from the same geometric structure. They also have different properties depending

on the size of the projective plane. This may be similar to the WF and Alltop type MUBs,

although the MUBs are equivalent, the Alltop construction fails when d is a power of 3.

6.4.2 Further directions

Question 6.19. What relational algebra structures can be constructed for complete sets of

MUBs.

A ternary relation that reflects base membership may yield a relation algebra with simi-

larities to the Jonsson or Lyndon algebras.
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Chapter 7

MUBs and Group Rings

This chapter has been published as a section of [46].

7.1 Introduction

7.1.1 Motivation

Difference sets can be represented as elements in group rings [11]. Theorem 2.78 connects

relative difference sets and MUBs [42].1 We investigate MUBs using group rings.

A vector can be written as a formal sum

d∑
i=1

aisi (7.1)

where ai are elements of a field, and si are basis vectors. In the case of MUBs the field is

C. A group ring is a set of formal sums where the ai are elements of a ring, and the si are

elements of a group. This structural similarity and connections from Theorem 2.78 lead to

the representation of the vectors of MUBs as group ring elements.

7.1.2 Aim

In this chapter we use group rings to investigate the algebraic structure of MUBs. By rep-

resenting the vectors as group ring elements we aim to establish an algebraic structure for a

set of MUBs.

1 Although the publication date of [42] is after that of [46] on which this chapter is based, a preprint was

available.
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From Theorem 2.65 we know that MUBs can be constructed from relative difference sets,

which can be represented as group ring elements. We choose a different interpretation of

group ring elements in the hope for a more general result than Theorem 2.65.

From Theorem 2.86 we know that, under component-wise multiplication, specific sets of

MUBs have a group structure. Using the convolution product of a group ring may yield an

algebraic structure for more sets of MUBs.

7.2 Definitions and preliminary results

Definitions and properties of group rings may be found in standard works on algebra for

example [40, 74].

Definition 7.1. [74, §2.1] Let K be a ring and G be a group. Then the group ring K[G] is

the set of formal linear combinations

α =
∑
x∈G

axx where ax ∈ K and x ∈ G. (7.2)

A difference set D of a group G may be represented as an element of a group ring:

D =
∑
x∈G

axx where ax ∈ K, x ∈ G, ax = 1K for x ∈ D, and ax = 0 otherwise. (7.3)

Definition 7.2. [74, §2.1] Let α =
∑

x∈G axx and β =
∑

y∈G byy be elements of K[G]. Then

the convolution product is defined as:

α ∗ β =
∑
x∈G

∑
y∈G

axby(x+ y) =
∑
z∈G

( ∑
x+y=z

axby

)
z. (7.4)

The elements of G may be thought of as labels on each component of a vector. By choosing

these labels from a finite group we take advantage of the algebraic structure.

We represent vectors in Cq as members of a group ring C[Fq] using the additive group of

Fq. Thus ax, by ∈ C and x, y ∈ Fq. When constructing MUBs we are interested only in the

direction of the vectors, not their magnitude, so a modified version of convolution is used.
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Definition 7.3. Normalised convolution, ∗̂ is defined as:

α∗̂β = µ : ∃c∈C, α∗β = cµ (7.5)

Lemma 7.4. [74, p85] If G is a commutative group, and K is a commutative ring, then K[G]

is commutative.

Definition 7.5. [40, 1.3.17] A monoid 〈M,?〉 is a set M closed under a binary operation ?

which is associative, and has an identity element.

If a monoid is also commutative then it is a commutative monoid ; if every element has an

inverse, then it is a group.

7.3 Group ring representation of MUBs

7.3.1 Representing vectors as group ring elements

Vectors of a set of MUBs can be represented as elements of a group ring. This is shown with

an example.

Let N2 be the set of vectors of 3 MUBs in C2 [112] in union with {~0}. These vectors can

be generated using the Galois ring construction or the Pauli Matrix construction.

N2 =


 1

0

,
 0

1

 ,
1√
2

 1

1

, 1√
2

 1

−1

,
1√
2

 1

i

, 1√
2

 1

−i

 ,

 0

0

 . (7.6)

Consider the elements of N2 to be elements of the group ring C[Z2]. To avoid confusion with

elements of C we denote the elements of Z2 as µ and ν. Let

~s0=1µ+ 0ν,

~s1=0µ+ 1ν,

~v00= 1√
2
(1µ+ 1ν),

~v01= 1√
2
(1µ− 1ν),

~v10= 1√
2
(1µ+ iν),

~v11= 1√
2
(1µ− iν),

~0=0µ+ 0ν.

(7.7)
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∗̂ ~0 ~s0 ~s1 ~v00 ~v01 ~v10 ~v11

~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0

~s0 ~0 ~s0 ~s1 ~v00 ~v01 ~v10 ~v11

~s1 ~0 ~s1 ~s0 ~v00 ~v01 ~v11 ~v10

~v00 ~0 ~v00 ~v00 ~v00 ~0 ~v00 ~v00

~v01 ~0 ~v01 ~v01 ~0 ~v01 ~v01 ~v01

~v10 ~0 ~v10 ~v11 ~v00 ~v01 ~s1 ~s0

~v11 ~0 ~v11 ~v10 ~v00 ~v01 ~s0 ~s1

Figure 7.1: Cayley table of 〈N2, ∗̂〉 [46, Prop 3].

The Cayley table of 〈N2, ∗̂〉 in Figure 7.1 shows that 〈N2, ∗̂〉 is associative, commutative

and has ~s0 as an identity element. Hence when considered as elements of C[F2], 〈N2, ∗̂〉 forms

a commutative monoid.

7.3.2 Group ring structure of WF type MUBs

Structure of vectors of WF type MUBs

We begin with some examples.

Let d = 3, 5, 7. The vectors of WF type MUBs in union with {~0}, when considered as

elements of the group ring C[Zd], form a commutative monoid.

Let d = 9. The vectors of WF type MUBs in union with {~0}, when considered as elements

of the group ring C[Z3×Z3], form a commutative monoid. Using the group ring C[Z9] does

not produce a closed structure.

Let d = 4. The vectors of Galois ring MUBs in union with {~0}, when considered as

elements of the group ring C[Z2×Z2], form a commutative monoid. Using the group ring

C[Z4] does not produce a closed structure.

The vectors forming a commutative monoid holds generally for WF type MUBs when

the vectors of WF type MUBs are represented as elements of the group ring C(Fq), using

the additive group of Fq. We begin with some specific Lemmas before showing the monoid

structure.
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Let Ba be the ath base of WF type MUBs constructed using equation (2.79)

Ba = {~va0, ~va1 . . . ~va(p−1)} (7.8)

~vab =
(
χ
(
ax2 + bx

))
x∈Fq . (7.9)

Let vabz be the zth entry in vector ~vab,

vabz = χ(az2 + bz). (7.10)

We begin by first expanding out the convolution product:

(~vab∗̂~vcd)z = k
∑
x+y=z

vabxvcdy (7.11)

= k
∑
x∈Fq

vabxvcdz−x (7.12)

= k
∑
x∈Fq

χ
(
ax2 + bx+ c(z − x)2 + d(z − x)

)
(7.13)

= k
∑
x∈Fq

χ
(
(a+ c)x2 + (b− c2z − d)x+ (cz2 + dz)

)
. (7.14)

Here k ∈ C is chosen to normalise the vectors. It is important to note that a, b, c, d, x, y, z ∈ Fq.

χ is a mapping from Fq to C.

There are several possibilities for the solution to ~vab∗̂~vcd:

• ~vef for some e, f ∈ Fq, (Lemma 7.6)

• a member of the standard basis, (Lemma 7.8)

• ~0, (Lemma 7.9)

• a vector which is not contained in the set of MUBs. (Not possible by Lemma 7.11)

Equation (7.14) will be used in the following results to show the various solutions to ~vab∗̂~vcd.

Lemma 7.6. For a+ c 6= 0

~vab∗̂~vcd = ~vef (7.15)

where e = c− c2(a+ c)−1 and f = c(a+ c)−1(b− d) + d.
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Proof. Let ~vab∗̂~vcd = ~γ.

Using equation (7.14) and Theorem 2.33 we find that

γz = kχ

(
cz2 + dz − (b− 2cz − d)2

4(a+ c)

)
η(a+ c)G(η, χ) (7.16)

= kχ

((
c− c2

a+ c

)
z2 +

(
c(b− d)

a+ c
+ d

)
z − (b− d)2

4(a+ c)

)
η(a+ c)G(η, χ). (7.17)

All of the terms without a z will be a scalar on the entire vector, which will be factored out

by choosing appropriate k.

γz = χ
(
z2(c− c2(a+ c)−1) + z(c(a+ c)−1(b− d)− d)

)
(7.18)

Thus ~γ = ~vef with e = c− c2(a+ c)−1 and f = c(a+ c)−1(b+ d)− d.

Corollary 7.7. For a+ c 6= 0

~va0∗̂~vc0 = ~ve0 (7.19)

with e = c− c2(a+ c)−1.

Lemma 7.8. For a+ c = 0, c 6= 0

~vab∗̂~vcd = ~sr (7.20)

with r = (b− d)(2c)−1.

Proof. If a+ c 6= 0 then

(~vab∗̂~vcd)z = kχ

(
(cz2 + dz)− (b− c2z − d)2

4(a+ c)

)
η(a+ c)G(η, χ). (7.21)

Since χ(x) 6= 0 and η(x) 6= 0 equation (7.21) can only equal 0 if G(η, χ) = 0. By Theorem

5.3, G(η, χ) = 0 if and only if χ is a trivial character. But χ is not trivial, thus the left hand

side of equation (7.21) can never equal 0. Thus if a+ c 6= 0, ~vab∗̂~vcd 6= ~sr.

If a+ c = 0 then equation (7.14) becomes

(~vab∗̂~vcd)z = k
∑
x∈Fq

χ
(
(b− 2cz − d)x+ cz2 + dz

)
. (7.22)

If b− 2cz − d 6= 0, then from Theorem 5.4

k
∑
x∈Fq

χ
(
(b− 2cz − d)x+ cz2 + dz

)
= 0. (7.23)
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If b− 2cz − d = 0, then when allowing for the factor k to be chosen,

k
∑
x∈Fq

χ(cz2 + dz) = 1. (7.24)

For each combination of b, d, c there is exactly one value of z for which b−2cz−d = 0. Let

r = (b− d)(2c)−1 then ~vab∗̂~vcd = ~sr when a+ c = 0. Because 0 does not have a multiplicative

inverse, if c = 0 then r has no solution, hence c 6= 0. If b = d then r = 0.

Corollary 7.9.

~v0b∗̂~v0d =

 ~0 for b 6= d,

~v0b for b = d.
(7.25)

Proof. From equation (7.14) we see that if b− d 6= 0 then

(~v0b∗̂~v0d)z = k
∑
x∈Fq

χ ((b− d)x+ dz) = 0 (7.26)

for each z. Thus ~v0b∗̂~v0d = ~0.

If b = d then

(~v0b∗̂~v0b)z = k
∑
x∈Fq

χ(bz) = v0bz . (7.27)

Lemma 7.10. ~s0∗̂~vab = ~vab.

Proof. Obvious.

Lemma 7.11. If ~vab∗̂~vcd = ~vef then ~vag∗̂~vcd = ~veh where h = f + (g−b)c
a+b .

Proof. From equation (2.79)

vabx =
1
√
q
χ
(
ax2 + bx

)
vcdy =

1
√
q
χ
(
cy2 + dy

)
. (7.28)

Let g = b+m then

vagx =
1
√
q
χ
(
ax2 + gx

)
= χ

(
ax2 + bx+mx

)
= χ(mx)vabx . (7.29)

Then using equation (7.14) and Theorem 2.33 we get a2 = a + c, a1 = b − c2z − d,

a0 = cz2 + dz.

vefz = χ

(
(cz2 + dz)− (b− c2z − d)2

4(a+ c)

)
η(a+ c)G(η, χ). (7.30)
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Let ~vag∗̂~vcd = ~ve′h:

ve′hz = k
∑
x∈Fq

χ
(
ax2 + gx+ c(z − x)2 + d(z − x)

)
(7.31)

= k
∑
x∈Fq

χ
(
ax2 + bx+mx+ c(z − x)2 + d(z − x)

)
(7.32)

= k
∑
x∈Fq

χ
(
(a+ c)x2 + (b− c2z − d+m)x+ (cz2 + dz)

)
. (7.33)

Then using Theorem 2.33 we get a2 = a+ c, a1 = b− c2z − d+m, a0 = cz2 + dz.

ve′hz = kχ

(
(cz2 + dz)− (b− c2z − d+m)2

4(a+ c)

)
η(a+ c)G(η, χ) (7.34)

= kχ

(
(cz2 + dz)− (b− 2cz − d)2

4(a+ c)
− 2m(b− 2cz − d) +m2

4(a+ c)

)
η(a+ c)G(η, χ)

(7.35)

= kχ

(
−2m(b− 2cz − d)−m2

4(a+ c)

)
vefz (7.36)

= kχ

(
mcz

a+ c

)
χ

(
2m(d− b)−m2

4(a+ c)

)
vefz . (7.37)

Thus we have that ve′hz is a scalar multiple of vefz . h = f + mc
a+c , e

′ = e, and the other

term is cleared by k.

We have now shown enough results to show the structure of the vectors.

Theorem 7.12. The vectors in a complete set of WF type MUBs in union with {~0}, when

considered as elements of C[Fq] form a commutative monoid under ∗̂.

Proof. Closure: By induction. Lemma 7.7 gives the base set, and Lemma 7.11 gives the

inductive step.

Associativity: C[Fq] is a ring, so we know that convolution is associative.

Identity: Lemma 7.10 shows that ~s0 is the identity element.

Commutativity: Lemma 7.4.

Corollary 7.9 shows that not every element has an inverse, thus the vectors do not form

a group.

This result is weaker that that of Theorem 2.79, which finds a group.

150



Joanne Hall MUBs and Group Rings

Structure of bases of WF MUBs

We can look at the structure of the set of MUBs as a set of bases, rather than as a set of

vectors.

There is the special case of v0b∗̂v0d = ~0. According to the definition of ∗̂, ~0 represents all

vectors. We could choose it to represent v00.

Theorem 7.13. The bases in a complete set of WF type MUBs, without B0 form an Abelian

group under ∗̂.

Proof. Associativity, Identity and Commutativity, are the same as for Theorem 7.12

Closure: Lemma 7.7 shows that the only way for vab∗̂vcd = v0f is if a = 0. This then

combined with closure in Theorem 7.12 provides closure in the group.

Inverse: Lemma 7.8.

This is similar to Theorem 2.164 which finds that the Pauli matrix MUBs in odd dimen-

sions without the standard basis forms a group. This adds further evidence to Conjecture

2.67, that the Pauli matrix MUBs in odd dimensions are equivalent to the WF MUBs.

Lemma 7.14. Let Ba be the ath base of WF type MUBs as generated by equation (2.79) and

E the standard basis.

For a+ c 6= 0

Ba∗̂Bc = Be e = c− c2(a+ c)−1. (7.38)

For a+ c = 0, c 6= 0

Ba∗̂Bc = E. (7.39)

Ba∗̂E = Ba. (7.40)

B0∗̂B0 = B0 ∪ {~0}. (7.41)

Proof. From Lemma 7.6 if a + c 6= 0 then vab∗̂vcd = vef with e = c − c2(a + c)−1 and

f = c(a+ c)−1(b− d)− d. Thus e only depends on a and c, and hence Be ⊆ Ba∗̂Bc.

Choose any f ∈ Fq, then for fixed a, c, (b−d), we can choose d such that f = c(a+c)−1(b−

d)− d. Thus Be ⊇ Ba∗̂Bc.

Therefore Ba∗̂Bc = Be.

Then use similar logic applied to Lemmas 7.8, 7.9 and 7.10.
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This result shows that the complete set of MUBs does not form a closed algebraic structure.

Corollary 7.15. The bases in a complete set of WF type MUBs in union with {B0 ∪ {~0}}

form a commutative monoid under ∗̂.

7.3.3 Group ring structure of Alltop MUBs

All the previous results only apply to WF type MUBs. The same techniques are now applied

to Alltop type MUBs.

Let Aa be the ath base of the Alltop type MUBs as constructed using equation (2.81).

Aa = {~ua0, ~ua1 . . . ~ua(p−1)} (7.42)

~uab =
(
χ
(
(x+ b)3 + a(x+ b)

))
x∈Fq . (7.43)

Let ξ := ~uab∗̂~ucd, then

ξz = k
∑

χ
(
(x+ b)3 + a(x+ b) + (z − x+ d)3 + c(z − x+ d)

)
. (7.44)

This then expands out to a polynomial a3x
3 + a2x

2 + a1x+ a0,

a3 = 0 (7.45)

a2 = 3(z + d+ b) (7.46)

a1 = 3b2 + a− 3(z + d)2 − c (7.47)

a0 = b3 + (z + d)3 + ab+ cz + cd (7.48)

which can then be substituted into Theorem 2.33.

The coefficient a2 is dependant on z, thus η(a2) is not a constant. Hence ξ 6= ~uef for any

e, f ∈ Fq. A cubic equation has at most three distinct roots, thus at most three positions in

the vector ξ may be 0. Alltop type MUBs do not occur in dimensions less than 5, hence ξ is

neither a standard basis vector nor ~0.

Representing Alltop type MUBs as elements of a group ring does not result in a closed

algebraic structure.
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7.3.4 Group ring structure of Galois ring MUBs

Let Ga be the ath base of Galois ring type MUBs in C2r constructed using equation (2.111)

Ga = {~va0, ~va1 . . . ~va(p−1)} (7.49)

~vab = (χ ((a+ 2b)x))x∈Tr . (7.50)

Let vabz be the zth entry in vector ~vab,

vabz = χ((a+ 2b)z). (7.51)

We expand out the convolution product.

(~vab∗̂~vcd)z = k
∑
x+y=z

vabxvcdy (7.52)

= k
∑
x∈Tr

vabxvcdz−x (7.53)

= k
∑
x∈Tr

χ ((a+ 2b− c− 2d)x+ (c+ 2d)z) (7.54)

= kχ((c+ 2d)z)
∑
x∈Tr

χ ((a+ 2b− c− 2d)x) . (7.55)

Using Lemma 2.57, the sum may only be explicitly calculated when a + 2b − c − 2d ∈ 2Tr.

Thus we cannot know if the Galois ring MUBs form a closed algebraic structure using ∗̂.

We have a computational example to show that it is possible. This is in contrast to using

component-wise multiplication which does not work at all (Theorem 2.87).

7.4 Conclusion

7.4.1 Findings

A set of WF type MUBs, when represented as elements of the group ring C[Fq], form a

commutative monoid. A set of Alltop type MUBs does not form a similar closed algebraic

structure. In Theorem 2.65 it is shown that that WF and Alltop MUBs are equivalent, thus

the lack of a closed structure in the Alltop MUBs suggests that the monoid is a peculiarity

of the WF type MUBs, and not a property of MUBs in general.

When a specific base is removed from a set of WF type MUBs a group is formed. This

mirrors Theorem 2.67 which shows a similar result with the Pauli matrix MUBs in odd

dimensions using component-wise multiplication.
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Due to the lack of knowledge about character sums, it is not shown whether Galois ring

type MUBs form an algebraic structure when represented as group ring elements.

7.4.2 Further Directions

When examined in Chapter 3 the WF and Alltop type MUBs both reveal MOLS, however

the MOLS do not come from the vectors, but rather from differences between the vectors.

Perhaps the same may be said for the monoid structure.

Question 7.16. Is there an algebraic structure if the inner product vectors of a set of MUBs

are represented as group ring elements?

WF type MUBs are a special case of planar function MUBs. The monoid structure may

occur in all sets of planar function MUBs. The group structure may also occur when a specific

base is dropped from the set of MUBs.

Question 7.17. Do all the planar function MUBs have similar algebraic properties?

The Pauli matrix MUBs have not been investigated here. Perhaps there will be an al-

gebraic structure. This may help to determine the equivalence of the WF and Pauli matrix

MUBs.

Further knowledge of sums over Galois rings, may show an algebraic structure of the

Galois ring MUBs.
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Chapter 8

Conclusion

8.1 Findings

The research questions investigated in this thesis have been open for a number of years.

Research Question 8.1. Are mutually unbiased bases intimately linked with mutually or-

thogonal Latin squares?

It has been 7 years since the publication of the SPR conjecture [96], and even longer since

a connection between finite geometries and MUBs was foreshadowed [112].

Research Question 8.2. Do all complete sets of mutually unbiased bases have an algebraic

structure?

It has been 30 years since an algebraic structure (Galois field) was first used to construct

a set of MUBs [59].

There are many research groups taking various approaches to these questions, and yet

they are still open. In this thesis some significant progress has been made, which can be built

upon to answer these questions in the future.

Complete sets of MOLS were constructed from two complete sets of MUBs. The MUBs

tested are generated by a Galois field. The MOLS are also generated using a Galois field.

This may have nothing to do with the MUB’s structure, only the properties of Galois fields.

The MOLS structure comes from the inner products of pairs of vectors, which in both cases

can be described by a planar function. This shows that planar functions are not necessary to

construct MUBs, but are sufficient in describing the angles between vectors.
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Analogous properties of Hjelmslev planes and MUBs, and gaps in knowledge about Hjelm-

slev planes motivated investigation of Hjelmslev planes. The sub-structures of a Hjelmslev

plane over a Galois ring, and a combinatorial algorithm for generating Hjelmslev planes were

developed. The analogous properties of MUBs and conics in Hjelmslev planes are not valid in

even dimensions, making a strong connection between MUBs and conics in Hjelmslev planes

unlikely.

The planar function construction of MUBs was generalised by using an automorphism

on the additive group of a Galois field. However it is unclear if this generalisation is non-

equivalent to the original MUBs.

Relation algebras were constructed from the structure of MUBs which do not share any

similarities with algebras constructed from projective planes. However we have not conducted

an exhaustive investigation of relation algebras from the structure of MUBs.

A set of WF type MUBs, when represented as elements of the group ring C[Fq], form a

commutative monoid. A set of Alltop type MUBs when similarly represented does not form a

closed algebraic structure. In Theorem 2.65 it is shown that that WF and Alltop MUBs are

equivalent, thus the lack of a closed structure in the Alltop MUBs suggests that the monoid

is a peculiarity of the WF type MUBs, and not a property of MUBs in general.

Complete sets of MOLS and complete sets of MUBs are ‘similar in spirit’, but perhaps

this is not an inherent feature of MUBs and MOLS. All the known constructions of MUBs

rely on algebraic structures which exist only in prime power dimensions. The connection may

not be with MOLS, but with the algebraic structures which generate both MOLS and MUBs.

8.2 Implications for applications

The applications of MUBs rely on complete sets of MUBs; we have neither found new complete

sets nor shown the non-existence of complete sets of MUBs. Thus the results on MUBs have

no immediate practical implications.

The generalised planar function construction of MUBs may be used if it can be shown

that it provides new sets of MUBs.

The new results on Hjelmslev planes have implications for the applications of Hjelmslev

planes, such as constructing codes over rings.
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8.3 Further directions

This research has not answered either of the two research questions, but has provided results

in many directions. Many specific questions have been raised that give directions for future

research.

Planar functions are not necessary in constructing the vectors of a set of MUBs, as in the

planar construction, but are sufficient in describing the angles between the vectors, as in both

Alltop and planar function constructions.

Question 8.3. Are there sets of vectors which cannot be constructed by planar functions, but

the angles between the vectors can be described by planar functions?

The Alltop construction may be unique in this respect. In even dimensions planar func-

tions cannot be used, but a differentially 1-uniform function has been shown to construct

MUBs in even prime power dimensions.

Question 8.4. Are there sets of vectors which cannot be constructed by differentially 1-

uniform functions, but the angles between the vectors can be described by differentially 1-

uniform functions?

Hjelmslev planes are a largely unexplored structure. There are many aspects of Hjelmslev

planes which have not been investigated.

Question 8.5. What are the permissible neighbourhood structures of a Hjelmslev plane?

Question 8.6. For what sizes do non-uniform Hjelmslev planes exist?

The applications of Hjelmslev planes are only just emerging. The SP analogy regarding

conics in Hjelmslev planes does not hold in even dimensions making a deep connection unlikely.

There are many unexplored aspects of Hjelmslev planes which may have stronger connections.

Question 8.7. Can a Hjelmslev plane be used to construct mutually unbiased bases?

We already know the answer is yes in two special cases, as planar functions construct pro-

jective planes which are trivial Hjelmslev planes, and Galois rings construct both Hjelmslev

planes and MUBs in even dimensions. There are many different Hjelmslev planes, constructed

using different algebraic structures, for which no connection with MUBs has yet been estab-

lished.
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There is still much to be done looking at the equivalences of constructions of MUBs.

Conjecture 2.67 and Corollary 2.68 suggest the Pauli matrix MUBs are a different method for

constructing the WF and Galois ring MUBs. The generalised planar function construction

is yet to be shown to be equivalent or non-equivalent to the planar function construction of

MUBs.

Question 8.8. Can non-equivalent sets of MUBs be generated from the same planar function?

More knowledge about character sums would enable an algebraic test for equivalence.

Explicit computation of examples may show that there are non-equivalent MUBs which are

based on the same planar function.

The relation algebras that were constructed from the structure of sets of MUBs are not

the only possible relation algebras. Different constructions may yield a relation algebra with

similarities to the relation algebras constructed from MOLS.

Question 8.9. What relational algebra structures can be constructed from a complete set of

MUBs?

When examined in Chapter 3 the WF and Alltop type MUBs both reveal MOLS, however

the MOLS do not come from the vectors, but rather from differences between the vectors.

Perhaps the same may be said for the monoid structure. There may be a monoid when

differences between the vectors of Alltop MUBs are examined.

Question 8.10. Is there an algebraic structure if the inner product vectors of a set of MUBs

are represented as group ring elements?

WF type MUBs are a special case of planar function MUBs. The monoid structure may

occur in all sets of planar function MUBs.

Question 8.11. Do all the planar function MUBs have similar algebraic properties?

Computation showed a commutative monoid for the Galois ring MUBs in small dimen-

sions. This may be the case more generally.

It would seem from the volume of research, that finding MUBs is a hard problem; a

problem that will require many small results, before it is completely solved.
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[67] A.B. Klimov, C. Muñoz, and J.L. Romero. Geometrical approach to the discrete Wigner

function in prime power dimensions. Journal of Physics A: Mathematical and General,

39(46):14471–14497, 2006.

[68] W. Klingenberg. Projektive und affine Ebenen mit Nachbarelementen. Mathematische

Zeitschrift, 60(1):384, 1954. German.

[69] W. Klingenberg. Desarguessche Ebenen mit Nachbarelemten. Abhandlungen aus dem

Mathematischen Seminar der Universität Hamburg, 20(1-2):97–111, 1955. German.
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