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Summary of Thesis 

Herbal medicines, such as St John's wort, garlic, gingko, and ginseng, are commonly used 

complementary therapies. These products are often available over the counter and 

self-administered along with conventional therapeutic drugs, which raise concerns of potential 

herb-drug interactions. Most reported herb-drug interactions are pharmacokinetic interactions, 

through modulation of the activities of cytochrome P450 (CYP), and/or drug transporters. The 

changes of CYP activities by herbal ingredients may lead to modifications of efficacies of 

prescribed drugs or result in adverse reactions. Hence, understanding of mechanism of 

interactions of herbal ingredients with human CYPs is important in evaluating and predicating 

potential herb-drug interactions and necessary for the safe practice of herbal and conventional 

medicines. 

 

The human CYP enzymes are a superfamily which consists of at least 57 functional CYP genes. 

Among them, CYP1A2, 2C9, 2C19, 2D6 and 3A4/5 are the most important enzymes 

responsible for the Phase I metabolism of therapeutic drugs. There is a large variability in the 

expressions and activities of different CYPs, which are impacted by numerous factors, 

including genetic (e.g., mutation), host (e.g., diseases), and environmental (e.g., inducers and 

inhibitors), which makes the metabolism of drugs highly variable in individuals. Inhibition of 

CYP enzymes is one of the most common causes of harmful drug–drug interactions and some 

severe adverse reactions due to drug-CYP interactions, which has led to the recent withdrawal 

of several drugs from the market, such as the nonsedating antihistamine terfenadine.  

 

When different compounds (e.g., a drug and herbal compound) are co-administered, they may 

compete at the same active site of CYPs, resulting in potential inhibition. We hypothesize that 

the atom-atom interactions between the ligands and the residues at the active site of CYPs 

determine the substrate and inhibitor specificity of individual CYPs. To test our hypothesis, we 

conducted a series of experiments including in vitro assays to determine inhibitory actions of a 

variety of natural compounds on human CYPs, pharmacokinetic-based predication of in vivo 

situation using the in vitro data; and in silico studies to explore the ligand-CYP interactions 

using docking and pharmacophore modeling methods. 

 

We first determined the inhibitory effects (IC50) of 56 herbal compounds on activities of five 

human drug metabolising CYPs (CYP1A2, 2C9, 2C19, 2D6 and 3A4) in vitro using a high 



 

 v

throughput approach. The tested herbal components included a variety of structurally distinct 

compounds such as triterpenoids of danshen (Salvia miltiorrhiza), flavonoids and their 

glycoside derivatives, saponine, other glucosides, lactones, alkaloids, and acids. A small 

number of them are found to significantly inhibit human CYP1A2, 2C9, 2C19, 2D6 and 3A4 

with differential potency, including tanshinone I, tanshinone IIA, cryptotanshinone, baicalein, 

quercetin, silybin, osthole and γ-schisandrin. 
 

Based on the in vitro data obtained, we predicted metabolic herb-drug interactions of these 

compounds in vivo with the application of appropriate pharmacokinetic principles. Some 

predicting results were consistent with published clinical reports. For example, the prediction 

of S. miltiorrhiza increasing the AUC value of warfarin is consistent with the results from 

clinical case reports. However, a marked disparity has been observed when some predictions 

are compared with results from clinical studies. For example, the prediction of S. mariani 

(containing silybin) increasing the AUC of indinavir (a CYP3A4 substrate) is not in agreement 

with the result of a clinical report where the plasma concentration of indinavir was not altered 

by co-administered silymarin in healthy volunteers. 

 

Finally, we studied the interactions of a series of ligands including substrates and inhibitors 

with CYP1A2 using docking and pharmacophore modeling approaches. We have identified 6 

residues at the active site of CYP1A2 which are essential for ligand recognition. Furthermore, 

the relative potency of potential inhibitors could be predicted through analysis of hydrophobic 

interactions between the ligand and the 6 essential residues at the active site of CYP1A2. 

Moreover, we developed a pharmacophore model on the basis of the common features of 

known CYP1A2 inhibitors. In combination with the docking results, the established 

pharmacophore model could be applied for screening novel CYP1A2 inhibitors.  

 

In conclusion, our in vitro and in silico studies have provided further insights into the 

interactions of ligands including herbal components with the active site of CYP1A2, which 

may be useful for the future studies of herb-drug and herb-CYP interactions. Further studies 

are warranted to explore the mechanisms underlying herb-CYP and herb-drug interactions.  
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CHAPTER 1  GENERAL INTRODUCTION  

1.1 An Introduction to Human Cytochrome P450s 

The cytochrome P450 (CYP), an enzyme superfamily, has been found across all organisms in 

every kind of life forms but present in diverse shapes in prokaryotic and eukaryotic worlds. In 

prokaryotes, CYPs present as soluble proteins whereas in eukaryotes they are bound to the 

membranes of either mitochondrion or the endoplasmic reticulum (de Waziers et al., 1990). 

The name of CYP derived from its unique character, namely all the enzymes are bound to cell 

(cyto) membranes and compass a heme pigment (chrome and P) that absorbs light at a 

wavelength of 450 nm when exposed to carbon monoxide (Omura and Sato, 1964).  

 

In general, CYPs are responsible for a vast number of oxidations in nature, resulting in 

biotransformation of endogenous (e.g. fatty acids and retinoic acid) and exogenous (e.g. drugs 

and carcinogens) compounds in living bodies. The oxidative reactions catalyzed by CYPs 

include hydroxylation, N-, O- and S-dealkylation, sulphoxidation, epoxidation, deamination, 

desulphuration, dehalogenation, peroxidation, and N-oxide reduction (Hannemann et al., 2007). 

Through these oxidation reactions, CYPs process a so-called Phase 1 metabolism for a number 

of therapeutic drugs, leading to biotransformations of the drugs from hydrophobic forms to 

hydrophilic forms that are generally less toxic and facilitate their elimination from the body. In 

some cases, CYPs may form toxic metabolites from drugs (Zhou et al., 2005a).  

 

A typical CYPs reaction is presented by catalysing a reductive scission of molecular dioxygen 

(bound to the heme iron at the core of the CYP), and then introducing a single atom from 

oxygen into a hydrocarbon substrate (RH) to generate a hydroxylated metabolite (ROH) and a 

molecule of water (Guengerich, 2002). During the reaction, two electrons are transferred from 

nicotinamide adenine dinucleotide phosphate (NADPH) to CYP via electron transfer proteins 

(flavoproteins or ferredoxin-like proteins, see Eq. 1-1). 

 

RH + O2 + NADPH + 2e- + H+ → ROH + H2O + NADP+                                         Equation 1-1  

According to the methods of electron delivery from NADPH to catalytic site, CYPs can be 

divided into four classes (Werck-Reichhart and Feyereisen, 2000): class I CYPs need both a 

flavin adenine dinucleotide (FAD)-containing reductase and an iron sulphur redoxin, 

comprised by most prokaryotic bacterial CYPs and eukaryotic mitochondrial CYPs (Ewen et 

al., 2008); class II CYPs require only a FAD/FMN-containing CYP reductase for electron 
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transferring, including endoplasmic CYPs (the so-called microsomal CYPs) (Koymans et al., 

1993a); class III CYPs require no electron donor and are self-sufficient; and class IV CYPs 

receive electrons directly from NADPH, which merely exist in fungal CYPs. The classification 

of the interactions with redux partners is unrelated to CYP evolutionary history. In mammals, 

the mitochondrial CYPs (class I) are essential for the biosynthesis of vitamin D, bile acids and 

cholesterol-derived steroid hormones, whereas the functions of microsomal CYPs (class II) are 

extremely diverse, from biosynthesis of steroid hormones to metabolism of therapeutic drugs. 

Meanwhile, class III CYPs catalyse the rearrangement or dehydration of alkylhydroperoxides 

or alkylperoxides initially generated by dioxygenases in both mammals and plants and class IV 

CYPs reduce nitric oxide (NO) generated by denitrigication nitrous oxide (N2O) in fungi 

(Werck-Reichhart and Feyereisen, 2000). 

 

Up to now, more than 7,000 named sequences in the CYP superfamily have been reported in 

animals, plants, bacteria and fungi (http://drnelson.utmem.edu/CytochromeP450.html, access 

date: 25 March 2009). In humans, there are 57 functional CYP genes (see Table 1-1) and 58 

pseudogenes which are grouped into different classes or families. The nomenclature of CYPs 

employs a three-tiered classification based on amino acid sequence similarity determined 

through gene sequencing, indicated by an Arabic numeral (family, e.g. CYP1, > 40% 

similarity), a capital letter (subfamily, e.g. CYP1A, > 55% similarity) and another Arabic 

numeral (gene, e.g. CYP1A2, > 97% identity comprise alleles) (Brown et al., 2008).  

 

Most of the human CYPs with much narrow substrate specificity are devoted mainly to the 

metabolism of endogenous substrates, such as sterols, fatty acids, eicosanoids, and vitamins 

(Guengerich, 2006). However, fifteen individual CYP enzymes in families 1 (1A1 and 1A2), 2 

(2A6, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1 and 2F1) and 3 (3A4, 3A5 and 3A7) with 

a wide-substrate binding profile are heavily involved in xenobiotics (including a number of 

therapeutic drugs) metabolism (Guengerich, 2006). Among them, CYP1A2, 2B6, 2C8, 2C9, 

2C19, 2D6 and 3A4/5 are essential for most therapeutic drug oxidations and have been 

investigated extensively. CYP3A4 is responsible for metabolizing more than 50% of drugs that 

are CYP substrates (Zhou, 2008b). A typical feature of these drug-metabolizing CYPs is that 

they exhibit broad and overlapping substrate specificity (Guengerich et al., 2005).  

 

Human CYP enzymes are the most important heme-thiolate enzyme system and are 

predominantly expressed in the liver, although they are found in practically all tissues, such as 
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small intestine, lung, kidney, brain, adrenal gland, gonads, heart, nasal and tracheal mucosa, 

and skin (Pelkonen et al., 2008). In human liver, all CYPs comprise approximately 2% of total 

microsomal proteins (0.3–0.6 nmol/mg, CYPs/microsomal protein). The relative abundance of 

individual CYPs in liver has been determined as CYP1A2 (>10%), 2A6 (~10%), 2B6 (<5%), 

2C8 (~5%), 2C9 (>15%), 2C19 (<5%), 2D6 (~2-4%), 2E1 (~15%), and 3A4/5/7 (35%) 

(Guengerich, 2006; Pelkonen et al., 2008). The significance of the individual CYP enzyme in 

human drug metabolism varies, with CYP3A, CYP2D, and CYP2C being responsible for the 

metabolism of 50, 25, and 20% respectively of the currently known drugs (Guengerich, 2006). 

In addition to the liver, the CYPs are expressed appreciably in extrahepatic tissues including 

small intestinal mucosa, lung, kidney, brain, placenta, olfactory mucosa, and skin, with the 

intestinal mucosa probably being the most important extrahepatic site of drug 

biotransformation (Lin and Lu, 2001; Paine et al., 2006). 

 

There is a large variability in the expression and activity of human CYPs. Large interindividual 

variation in the activity of CYPs is observed, ranging from 20- (CYP2E1 and 3A4) to 

>1,000-fold (CYP2D6) (Shimada et al., 1994a). The expression and activities of CYPs are 

impacted by numerous factors, including genetic (e.g., genetic mutation), host (e.g., diseases), 

and environmental factors (e.g., inducers and inhibitors), making drug metabolism highly 

variable (Meech and Mackenzie, 1997; Rendic and Di Carlo, 1997; Iyer, 1999; Snyder, 2000). 

For most CYPs, both environmental and genetic factors have important impact to their 

expression and activity.  

 

The most common type of genetic variation in the human genome occurs as single nucleotide 

polymorphisms (SNPs) occurring at a frequency of ≧1% in a given population. Other genetic 

mutations, such as deletion, insertion and copy number variants (CNVs), have often been 

observed (Ingelman-Sundberg et al., 2007). Genetic mutations may lead to polymorphism, 

where two phenotypes, namely poor metabolisers (PMs) and extensive metabolisers (EMs), 

exist in the population. Poor metabolisers lack detectable activity of a certain enzyme as a 

result of an autosomal-recessively transmitted defect in its expression, which may lead to 

greater bioavailability, higher plasma concentrations, prolonged elimination half-life and 

possibly increased pharmacological response from standard doses of drugs 

(Ingelman-Sundberg et al., 2007; Zhou et al., 2008). A number of allelic variants have been 

identified in most human CYP genes (http://www.cypalleles.ki.se). The functional impact of 

these mutations on pharmacotherapy varies, depending on a number of factors. The 
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polymorphisms within CYP enzymes mainly affect the pharmacokinetics of drugs that are 

mainly metabolized by those enzymes. The genotype-induced pharmacokinetic changes might 

be particularly important for certain drugs that have narrow therapeutic windows and there is a 

high risk for developing adverse drug reactions, such as warfarin and theophylline 

(Ingelman-Sundberg et al., 2007).  

 

Environmental factors, such as co-administration of two or more drugs/herbs, may significantly 

change the CYP expression or activity through induction or inhibition and subsequent impact 

on the pharmacokinetics of the drugs leading to clinically important drug-drug or herb-drug 

interactions (Lin and Lu, 2001; Zhou and Lai, 2008). The pharmacokinetic changes due to 

CYP induction and inhibition may occur with a large variety of therapeutic drugs that are 

extensively metabolized by CYPs (Lin and Lu, 2001). 

 

Overall, almost 50% of the overall elimination of commonly used drugs can be attributed to 

one or more of the various CYP enzymes in humans (Wilkinson, 2005). CYP activity varies 

among individuals of a given population. Variability in CYP content and activities can have 

profound influence on the in vivo response of humans to drugs (Nebert and Russell, 2002). 

Most CYPs are subject to induction and inhibition, and genetic mutations play an important or 

dominant role in the enzyme activity variation of many CYPs, in particular CYP2A6, 2C9, 

2C19, and 2D6 (Ingelman-Sundberg et al., 2007; Zhou et al., 2008). The major substrates, 

inhibitors and inducers of the principal drug metabolizing CYPs have been listed in Table 1-2. 

 

1.2 Biology and Pharmacology of Human CYPs 

1.2.1 Human CYP1A2 enzyme 

There are three members in human CYP1 family, CYP1A1, 1A2 and 1B1. The expression of 

CYP1A2 is major in the liver (∼13%) (Shimada et al., 1994a) and slightly in the lung (Wei et 

al., 2002; Liu et al., 2003), whereas CYP1A1 is mainly expressed in the extrahepatic tissues 

including intestine (Prueksaritanont et al., 1996; Paine et al., 1999), lung (Shimada et al., 

1996b; Willey et al., 1997), placenta (Hakkola et al., 1996a), and lymphocytes (Vanden Heuvel 

et al., 1993; Dey et al., 2001; van Duursen et al., 2005). CYP1B1 is known to be expressed in 

almost every tissue, normally in fibroblasts, bone marrow stromal cells and steroidogenic 

tissues (Hakkola et al., 1997; Heidel et al., 1998) and in the liver at a low level but not in the 

lung (Hakkola et al., 1997). In humans, CYP1A2 shares 80% amino acid sequence identity 

with CYP1A1 and about 40% with 1B1, and the substrate specificities of these enzymes often 
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overlap. However, CYP1A1 as an extrahepatic enzyme is considered to play a minor role in the 

elimination of therapeutic drugs in vivo. Human CYP1 enzymes have demonstrated remarkably 

overlapping substrate specificities for which the molecular planarity of substrates and inhibitors 

is a determining factor. 

 

1.2.1.1 Interindividual variability of the expression and activity of CYP1A2 

CYP1A2 has been found to show approximately 40- to 130-fold interindividual variations in 

CYP1A2 expression and activity (Guengerich, 2006). Approximately 15- and 40-fold 

interindividual variations in CYP1A2 mRNA and protein expression levels have been observed 

in human livers (Ikeya et al., 1989). These findings may reflex a genetically-determined 

difference in constitutive and/or inducible CYP1A2 gene expression. Environmental factors 

have been found to influence the interindividual differences in CYP1A2 activity and 

expression.  

 

Unimodal, bimodal and trimodal distributions of CYP1A2 activity when measured by caffeine 

urinary metabolic ratios have been observed in different study populations (Butler et al., 1992; 

Nakajima et al., 1994; Catteau et al., 1995; Notarianni et al., 1995). The frequency of PMs in 

non-smokers was 5% in Australians (Ilett et al., 1993), 14% in Japanese (Nakajima et al., 1994) 

and 5% in Chinese (Ou-Yang et al., 2000). There is also marked racial difference in CYP1A2 

activity. Swedes had a 1.54-fold higher CYP1A2 activity than Koreans (Kall and Clausen, 

1995). A lower CYP1A2 activity has been found in Asian and African populations compared 

to Caucasians (Relling et al., 1992). Environmental factors have been thought to influence the 

interindividual differences in CYP1A2 activity and expression. Cigarette smoking and intake 

of oral contraceptive steroids are well established inducers of CYP1A2 activity (Rasmussen et 

al., 2002). However, it has been suggested that approximately 35 to 75% of the interindividual 

variability in CYP1A2 activity is due to genetic factors (Rasmussen et al., 2002). 

 

1.2.1.2 Probe substrates of CYP1A2 

Several compounds including phenacetin, caffeine and theophylline have been often used as 

probes for phenotyping CYP1A2 in vivo. The marker reactions include phenacetin 

O-deethylation, caffeine N-demethylation, and theophylline N-demethylation. Phenacetin 

undergoes oxidative O-deethylation to yield acetaminophen by CYP1A1/1A2 and has therefore 

been used to assess the catalytic activity of CYP1A2 in vivo and in vitro or to investigate its 

activity and regulation (Bartoli et al., 1996). Caffeine is predominantly (∼95%) metabolised by 
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CYP1A2 to three metabolic dimethylxanthines and one hydroxylated metabolite and thus is 

usually used as a “gold standard” probe for determining CYP1A2 activity (Kalow and Tang, 

1991; Tassaneeyakul et al., 1992; Tassaneeyakul et al., 1994; Carrillo et al., 2000a; Ryu et al., 

2007). Theophylline N-demethylation to 3-methylxanthine is catalyzed by CYP1A2, while 

CYP2E1 and 3A4 catalyze the hydroxylation to 1,3-dimethyluric acid (Gu et al., 1992; Sarkar 

et al., 1992; Sarkar and Jackson, 1994; Ha et al., 1995; Zhang and Kaminsky, 1995; Tjia et al., 

1996).  

 

7-Ethoxycoumarin is a commonly used probe for determining CYP1A2 activity in vitro 

(Waxman and Chang, 2006). Oxidative deethylation of 7-ethoxycoumarin by CYP1A2 (low Km 

component) and by CYP2E1 and 2B6 (high Km
 components) (Yamazaki et al., 1996) produced 

7-hydroxycoumarin (i.e. umbelliferone) which was subsequently metabolized by 

glucuronidation. 7-Ethoxyresorufin O-deethylation is often used as the marker reaction. 

Similarly, this method can be applied to assay CYP1A1/2-catalyzed formation of resorufin 

from other alkoxyresorufins, such as 7-methoxyresorufin, 7-benzyloxyresorufin, and 

7-pentoxyresorufin (Chang and Waxman, 2006). 

 

1.2.1.3 Therapeutic drugs as substrates of CYP1A2 

CYP1A2 metabolises a variety of clinically important drugs, such as adenosine receptor 

inhibitors (e.g. paraxanthine (1,7-dimethylxanthine) (Tassaneeyakul et al., 1992), theophylline 

(Sarkar et al., 1992; Sarkar and Jackson, 1994; Ha et al., 1995; Zhang and Kaminsky, 1995), 

and caffeine (Kalow and Tang, 1991; Tassaneeyakul et al., 1992; Tassaneeyakul et al., 1994; 

Carrillo et al., 2000a; Ryu et al., 2007)); analgesics (e.g. phenacetin (Tassaneeyakul et al., 

1993), paracetamol (Tassaneeyakul et al., 1993), and aminopyrine (Niwa et al., 1999)); 

antiarrhythmic agents (e.g. mexiletine (Nakajima et al., 1998), amiodarone (Ohyama et al., 

2000a), and propafenone (Botsch et al., 1993; Zhou et al., 2003a)); anticancer drugs (e.g. 

tegafur (Ikeda et al., 2000; Komatsu et al., 2000b), flutamide (Shet et al., 1997; Goda et al., 

2006), thalidomide (Miyata et al., 2003), bortezomib (Uttamsingh et al., 2005), and 

5,6-dimethylxanthenone-4 acetic acid (Zhou et al., 2000; Zhou et al., 2002)); anticoagulants 

(e.g. R-acenocoumarol (Thijssen et al., 2000), and R-warfarin (Hermans and Thijssen, 1993; 

Kaminsky and Zhang, 1997));  antidepressants (e.g. amitriptyline (Mellstrom and von Bahr, 

1981; Olesen and Linnet, 1997; Venkatakrishnan et al., 2000; Venkatakrishnan et al., 2001a), 

nortriptyline (Mellstrom and von Bahr, 1981; Olesen and Linnet, 1997; Venkatakrishnan et al., 

2000; Venkatakrishnan et al., 2001a), imipramine (Koyama et al., 1997), clomipramine 
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(Nielsen et al., 1996; Wu et al., 1998), duloxetine (Lobo et al., 2008), maprotiline 

(Brachtendorf et al., 2002), mianserin (Koyama et al., 1996; Stormer et al., 2000), and 

mirtazapine (Stormer et al., 2000)); antihistamines (e.g. azelastine (Nakajima et al., 1999a), 

cinnarizine (Narimatsu et al., 1993; Kariya et al., 1996), flunarizine (Narimatsu et al., 1993; 

Kariya et al., 1996), and diphenhydramine (Akutsu et al., 2007)); antihypertensive drugs (e.g. 

verapamil (Kroemer et al., 1993), pranidipine (Kudo et al., 1999), and guanabenz (Clement and 

Demesmaeker, 1997)); anti-migraine drugs (e.g. almotriptan (Wild et al., 1999; McEnroe and 

Fleishaker, 2005), and zolmitriptan (Wild et al., 1999; McEnroe and Fleishaker, 2005)); 

antipsychotics (e.g. clozapine (Bertilsson et al., 1994), haloperidol (Fang et al., 2001), 

promazine (Wojcikowski et al., 2003), olanzapine (Ring et al., 1996), zotepine (Shiraga et al., 

1999), and thioridazine (Wojcikowski et al., 2006)); β-blockers (e.g. propranolol (Masubuchi 

et al., 1994), and carvedilol (Oldham and Clarke, 1997)); cyclooxygenase-2 inhibitors (e.g. 

rofecoxib (Slaughter et al., 2003)); hypnotics (e.g. zolpidem (Pichard et al., 1995)); 

5-lipoxygenase inhibitor (e.g. zileuton (Machinist et al., 1995)); local anaesthetics (e.g. and 

lidocaine (Orlando et al., 2004), and ropivacaine (Oda et al., 1995)); monoamine oxidase 

inhibitors (e.g. selegiline (Salonen et al., 2003)); reverse transcriptase inhibitors (e.g. efavirenz 

(Ward et al., 2003)); selective serotonin reuptake inhibitors (e.g. fluvoxamine (Carrillo et al., 

1996)); and serotonin 5-HT3 receptor antagonists (e.g. ondansetron (Dixon et al., 1995)).  

 

CYP1A2 also plays a role in the metabolism of tacrine (Spaldin et al., 1994; Spaldin et al., 

1995), triamterene (a potassium-sparing diuretic) (Fuhr et al., 2005), carbamazepine 

(Wolkenstein et al., 1998; Pelkonen et al., 2001; Pearce et al., 2002), tizanidine (Granfors et al., 

2004a), terbinafine (Vickers et al., 1999), and aminoflavone (NSC686288) (Chen et al., 2006a). 

Tacrine is a centrally acting cholinesterase inhibitor for the treatment of Alzheimer's disease 

(Qizilbash et al., 1998); terbinafine is an orally active allylamine derivative that has antifungal 

activity against dermatophytes and many other pathogenic fungi (Gupta and Shear, 1997); and 

tizanidine is a centrally acting α2 adrenergic agonist used as a muscle relaxant (Wagstaff and 

Bryson, 1997). 

 

CYP1A2 also metabolizes cyclobenzaprine (a long-acting skeletal muscle relaxant) (Wang et 

al., 1996), naproxen (Miners et al., 1996), and leflunomide (Kalgutkar et al., 2003a). 

Leflunomide is an orally active disease-modifying anti-inflammatory agent for the treatment of 

advanced rheumatoid arthritis (Silverman et al., 2005). Propofol, a short-acting intravenous 

sedative agent used for the induction of general anesthesia, is partially metabolized by 
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CYP1A2 (Guitton et al., 1998). Riluzole, a drug used to slow the progress of amyotrophic 

lateral sclerosis (Lou Gehrig’s disease) (Bryson et al., 1996; Wokke, 1996; Miller et al., 2007; 

Radunovic et al., 2007; Groeneveld et al., 2008), is substantially metabolized by CYP1A2 

(Sanderink et al., 1997). In addition, the novel Janus kinase-3 inhibitor, 

4-(4’-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131/JANEX-1), was 

metabolized by CYP1A1 and 1A2 in a regio-selective manner to inactive 7-O-demethylation 

product 4-(4’-hydroxyphenyl)-amino-6-methoxy-7-hydroxyquinazoline (Uckun et al., 2002). It 

should be noted that most of above drugs are also metabolized by other CYPs and CYP1A2 

plays a variable role in their metabolic clearance.   

 

Overall, CYP1A2 is a major enzyme in the metabolism of a number of important therapeutic 

drugs, including theophylline, tacrine, acetaminophen, antipyrine, bufuralol, ondansetron, and 

phenacetin (Guengerich, 1995). With regard to the relative contribution, CYP1A2 is a major 

enzyme for the metabolism of theophylline, caffeine, phenacetin, and propranolol, with 

contributions from other CYPs. For other substrates, the contribution of CYP1A2 is often 

<30%.  

 

1.2.1.4 Bioactivation of procarcinogens and environmental compounds by CYP1A2 

CYP1A2 together with CYP1A1 and 1B1 is well known in the bioactivation for a variety of 

procarcinogens and mutagens, such as PAHs (e.g., benzo[a]pyrene (B[a]P)), heterocyclic 

aromatic amines/amides (e.g. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and 

mycotoxins (e.g. aflatoxin B1 (AFB1)) (Guengerich and Liebler, 1985). CYP1A1 generally 

metabolizes PAHs, whereas CYP1A2 activates aminofluorenes and nitrosamines. Recombinant 

CYP1A1 and 1A2 both catalyzed stereo-selective epoxidation of a series of PAHs (Buters et al., 

1995; Shou et al., 1996). Oxidation of the chemicals by CYP1A1 and 1A2 serves as an initial 

step in the conversion of the substrates to more polar metabolites, resulting in increased 

excretion and thereby maintaining the chemical homeostasis in the body. However, the 

oxidation of carcinogenic PAHs and heterocyclic aromatic amines/amides gives rise to arene 

oxide, diolepoxide, and other electrophilic reactive species (ultimate carcinogen) that form 

DNA and protein adducts, leading to tumor formation and organ toxicity (Ma and Lu, 2007). 

 

In the presence of epoxide hydrolase, CYP1A1/1A2 and 1B1 catalyze the conversion of B[a]P 

to its 7,8-epoxide and consequently to 7,8-dihydrodiol, and both enzymes can in turn 

metabolically activate this B[a]P metabolite to an ultimate mutagenic species, the dihydrodiol 
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epoxide (7R,8S)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (Figure 1-1) 

(Shimada et al., 1996a; Shimada et al., 1999). The first step for the bioactivation of B[a]P is the 

formation of B[a]P 7,8-oxide catalyzed by CYP1A1/1A2 and 1B1. The second step, catalyzed 

by epoxide hydrolase, is the hydrolytic conversion of 7,8-oxide to 7,8-diol. Finally, CYP1A1/2 

and 1B1 catalyze the further oxidation of the 7,8-diol, producing four possible isomers of 

7,8-diol-9,10-epoxide. Quantitatively, the most important of these metabolites is 

(7R,8S)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene which is the ultimate 

carcinogen binding DNA at the guanine residues and producing DNA adducts. The DNA 

binding will activate the H-ras and K-ras oncogenes (Marshall et al., 1984; Bizub et al., 1986; 

Stevens et al., 1988; Kerzee and Ramos, 2000) and other oncogenes such as c-Jun, E6 and E7 

(Wu et al., 1992; Luch, 2005; Hockley et al., 2006; Jiao et al., 2008). B[a]P 7,8-dihydrodiol is 

a bay-region diolepoxide that can be reduced to catechol which is further oxidized to generate a 

reactive quinine metabolite. 7,8-Diol-9,10-epoxide can be conjugated by Phase II enzymes, 

resulting non-toxic glucuronides and sulfates. Alternatively, B[a]P undergoes oxidation to form 

4,5-oxide. On the other hand, a one-electron oxidation pathway may be responsible for the 

formation of 3- and 6-hydroxy-B[a]P and subsequent metabolites 1,6-, 3,6-, and 6,12-quinones 

(Van Cantfort et al., 1979; Yun et al., 1992). The 3-hydroxylation of B[a]P is catalyzed by 

CYP1A2, 2C8, 2C9 and 3A4 (Yun et al., 1992). As such, CYP1A1/2 can convert PAHs to 

reactive electrophiles that can cause damage of macromolecules such as DNA and functional 

proteins, producing carcinogenic transformation of the cells.  

 

The critically reactive metabolite of AFB1 is the exo 7,8-epoxide formed by a two-electron 

oxidation mainly catalyzed by CYP3A4, with contribution from CYP1A1, 1B1, 1A2, 2A6 and 

2B6 (Gillam et al., 1993; Penman et al., 1994; Sengstag et al., 1994; Ueng et al., 1995; Crespi 

et al., 1997). CYP3A4 catalyzes the formation of the genotoxic AFB1 exo 8,9-epoxide only; 

while CYP1A2 forms both the exo and the non-genotoxic endo isomers. The exo 8,9-epoxide 

of AFB1 can bind the N7 atom of guanine in DNA, resulting in DNA adducts. 

 

1.2.1.5 Metabolism of natural and herbal products by CYP1A2  

CYP1A2 plays an important role in the metabolism of a number of natural and herbal 

compounds, which often results in toxic metabolites. Alkenylbenzenes include simple 

compounds like safrole, methyleugenol, and estragole, which are present in herbal medicines 

such as nutmeg, cinnamon, tarragon, basil, fennel, and anise. They are used as a constituent of 

various food flavours, aromatic oils, spices, perfumes, and detergents. The carcinogenicity of 



 

 10

estragole may be related to its metabolism, which involves the formation of several metabolites, 

some of which are carcinogenic. The metabolic bioactivation of estragole starts with its 

conversion into the putative proximate carcinogen 1’-hydroxyestragole by CYP1A2, 2A6, 

2C19, 2D6, and 2E1, which is similar to the activation pathway of methyleugenol and safrole 

(Borchert et al., 1973; Jeurissen et al., 2004; Ueng et al., 2004; Jeurissen et al., 2007). 

 

In 1991, a unique form of nephropathy associated with the long-term use of Aristolochia fanchi 

for slimming purpose was reported in Belgium. More than 100 young women suffered from 

kidney damage, developing in several patients into renal and urinary tract cancer (Kessler, 

2000; Li, 2000; Nortier et al., 2000; Lampert and Xu, 2002). A line of evidence indicates that 

aristolochic acids (AAs) present in the herb are the compounds responsible for this renal 

toxicity (Cosyns et al., 1999; Lord et al., 2001; Debelle et al., 2002; Nortier et al., 2003). Thus, 

the Chinese herb-caused nephropathy is also called AA nephropathy (Stefanovic et al., 2006). 

AAs are known to be nephrotoxic, genotoxic and carcinogenic (Isnard Bagnis et al., 2004). 

AAs are a family of structurally related nitrophenanthrene carboxylic acids which are primarily 

from Aristolochia spp. (e.g. A. fangchi (Guang Fangji), A. clematits, and A. manshuriensis) 

(Ioset et al., 2003; Kumar et al., 2003). The predominant AAs are AAI 

(8-methoxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid)  and AAII 

(6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid) (Kumar et al., 2003). AA is 

demethylated to form a metabolite for phase II conjugation reactions. As alkaloids, both AAI 

and AAII underwent reduction of the nitro group catalyzed by oxidative enzymes to reactive 

cyclic nitrenium ions (Figure 1-2) (Schmeiser et al., 1997; Stiborova et al., 2001a; Stiborova et 

al., 2001b; Stiborova et al., 2002). Hepatic microsomal CYP1A1/2, NADPH:CYP reductase, 

DT-diaphorase, xanthine oxidase, cyclooxygenase-1 (COX1) and other peroxidases have been 

found to catalyze the oxidative reaction (Schmeiser et al., 1997; Stiborova et al., 2001a; 

Stiborova et al., 2001b; Stiborova et al., 2002). Addition of inhibitors or inducers of CYP1A1/2 

was found to decrease or increase the formation of DNA adducts (Stiborova et al., 2001b). The 

primary route of AAI and II metabolism appears to be the nitro reduction pathway. 

Aristolactam nitrenium ion in turn can give rise to an isomeric carbonium ion that reacts 

covalently with DNA (in particular the amino groups of guanine and adenosine) and/or proteins, 

leading to adduct formation. For example, the DNA adducts (e.g. 

7-(deoxyadenosin-N6-yl)aristolactam I or II and 7(deoxyguanosin-N2-yl)aristolactam I or II) 

have been detected in kidney and ureter tissues of patients taking herbs containing AAs, 

several months or even years after discontinuation of the herbal consumption (Pfau et al., 1990; 
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Schmeiser et al., 1996; Stiborova et al., 1999; Dong et al., 2006; Mei et al., 2006). An AT→TA 

mutation also was detected in the p53 gene of a urothelial tumor of a patient with AA 

nephropathy (Lord et al., 2004). AA-DNA adducts potentially could serve as useful biomarkers 

of exposure for monitoring of the mutagenic and/or carcinogenic potential of AAs. 

 

CYP1A2 is involved in the oxidative metabolism of some natural flavonoids. Genistein is a 

soy-derived isoflavone that has been shown to be an effective chemopreventive agent of 

chemical-induced carcinogenesis in vivo. Biochanin A, a 4’-O-methyl derivative of genistein, 

is the major isoflavone in red clover (Trifolium pratense) but is not present in soy foods. This 

compound has also been shown to inhibit chemical-induced tumor carcinogenesis. The major 

metabolic routes of genistein and biocahnin A are sulfation and glucuronidation, however, 

several hydroxylated metabolites of genistein have been identified in vitro and in vivo (Kulling 

et al., 2002). The oxidative metabolites of genistein and biochanin A are mainly 3’-, 6-, and 

8-hydroxylated products (Kulling et al., 2002). CYP1A2 is predominantly responsible for 

3’-OH-genistein formation, with contribution from CYP2E1, 2C8 and 3A4 (Hu et al., 2003). 

Biochanin A can be regarded as a prodrug of genistein and is rapidly converted into the 

demethylated metabolite genistein in vitro and in vivo (Tolleson et al., 2002). Tangeretin was 

also mainly metabolized by CYP1A2 (Breinholt et al., 2003). CYP1A2 also rapidly catalyzed 

O-demethylation of prunetin to genistein, of formononetin (neochanin) to genistein and 

daidzein, and of 5,4’-dimethoxyisoflavone to formononetin and daidzein, respectively (Hu et al., 

2003). Formononetic was also glucuronidated and hydroxylated at 2’ and 5’ positions. In 

addition, the flavonols galangin (3,5,7-trihydroxyflavone) and kempferide are metabolized by 

CYP1A1, 1A2 and 2C9 and (Otake and Walle, 2002). Galangin was oxidized at the 4’-position, 

whereas kaempferide was O-demethylated to 4’-OH-galangin. However, chrysin was not a 

substrate of CYP1A1 and 1A2. 

 

1.2.1.6 Induction of CYP1A2 

Many inducers for CYP1A1 such as 3-methylcholanthrene, 3-methylcholenthrene and 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can inducer CYP1A2. Rifampicin is only a weak 

inducer of CYP1A2 (Backman et al., 2006a). Tobacco smoking and dietary constituents such 

as cruciferous vegetables and charcoal-broiled meat can induce CYP1A2 activity (Wietholtz et 

al., 1981; Kalow and Tang, 1991; Fontana et al., 1999). Tobacco and marijuana smoking 

appears to increase the clearance of theophylline by induction of metabolic pathways (Zevin 

and Benowitz, 1999). Theophylline clearance has been shown to increase by ∼50% in young 
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adult tobacco smokers and by ∼80% in elderly tobacco smokers compared to non-smoking 

subjects (Grygiel and Birkett, 1981). Passive smoke exposure has also been shown to increase 

theophylline clearance by up to 50%. Abstinence from tobacco smoking for one week causes a 

reduction of ∼40% in theophylline clearance. 

 

Induction of CYP1A2 activity may also be influenced by coadministration with high-dose (120 

mg/day) omeprazole (Han et al., 2002; Yoshinari et al., 2008). Omeprazole induced CYP1A2 

in primary human hepatocytes at mRNA and protein levels (Diaz et al., 1990; Masubuchi et al., 

1998). A 2- to 10-fold induction of the CYP1A2 protein and CYP1A-dependent activities as 

determined by the caffeine N3-demethylation breath test was observed in liver biopsies from 

cancer patients before and after 4-day treatment with omeprazole at therapeutic doses (Rost et 

al., 1992). Similar induction was seen in cancer patients taking 20 mg/day for 4 days (Diaz et 

al., 1990). At a therapeutic dose (40 mg), omeprazole failed to induce CYP1A2 as measured by 

the caffeine N3-demethylation breath test in individuals with extensive metabolizer phenotype 

for CYP2C19, but the induction was revealed at a higher dose (120 mg) in the same individuals 

(Rost et al., 1999). On the other hand, induction of CYP1A2 by omeprazole was observed in 

individuals with poor metabolizer phenotype for CYP2C19 at the dose of 40 mg. Clearly, 

individual variations in the metabolic rate of omeprazole by CYP2C19 affect the intracellular 

concentration of the inducer (omeprazole) contributing to variability of CYP1A induction (Rost 

et al., 1992; Rost et al., 1994; Han et al., 2002). However, several other studies did not 

observed remarkable induction of caffeine and phenacetin metabolism by omeprazole or 

pantoprazole (Andersson et al., 1991; Rizzo et al., 1996; Hartmann et al., 1999). Notably, 

omeprazole is a competitive inhibitor of CYP1A2 in vitro with a Ki of 150 µM (Rost et al., 

1999).  

 

All members of CYP1 subfamily are regulated by the aromatic hydrocarbon receptor (AhR) 

through AhR-mediated transactivation following ligand binding and nuclear translocation (see 

Figure 1-3). AhR is a ligand-activated transcription factor and a basic helix-loop-helix (bHLH) 

protein belonging to the Per-Arnt-Sim (PAS, where Per stands for Drosophila period clock 

protein, Arnt refers to AhR nuclear translocator and Sim is Drosophila single-minded protein) 

family of transcription factors (Ma, 2001; Ma and Lu, 2007). The bHLH motif is located in the 

N-terminal of the protein and is a common entity in a variety of transcription factors. Members 

of the bHLH superfamily have two functionally distinctive and highly conserved domains 

(Burbach et al., 1992). The first is the basic-region (b) which is involved in the binding of the 
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transcription factor to DNA; while the second is the helix-loop-helix (HLH) region which 

facilitates protein-protein interactions. AhR contains two PAS domains, PAS-A and PAS-B, 

which are stretches of 200-350 amino acids that exhibit a high sequence homology to the 

protein domains that were found in the Drosophila genes period (Per) and single minded (Sim) 

and in Arnt. The PAS domains support specific secondary interactions with other PAS 

domain-containing proteins, resulting in heterozygous and homozygous protein complexes. 

The ligand binding site of AhR is within the PAS-B domain that contains several conserved 

residues critical for ligand binding (Goryo et al., 2007). In addition, a Q-rich domain is located 

in the C-terminal region of AhR, which is involved in co-activator recruitment and 

transactivation (Kumar et al., 2001). 

 

The mRNA of AhR is dominantly expressed in the placenta, lung, heart, pancreas, and liver 

(Dolwick et al., 1993). The AhR exists as cytoplasmic aggregates bound to two 90-kDa 

heat-shock proteins (Hsps), the cochaperone prostaglandin E synthase 3 (p23) and a 43-kDa 

immunophilin-like protein hepatitis B virus X-associated protein 2 (XAP2, also called AhR 

interacting protein 1, AIP1; or AhR-associated protein 9, ARA9) (Figure 1-3) (Carver et al., 

1998; Petrulis et al., 2000; Petrulis et al., 2003; Ogiso et al., 2004; Hollingshead et al., 2006). 

These other proteins are involved in the correct folding and stabilization of AhR. For example, 

XAP2 interacts with the C-terminal of Hsp90 and binds to the AhR nuclear localization 

sequence and thus prevents the inappropriate trafficking of the receptor into the nucleus 

(Petrulis et al., 2000). The dimer of Hsp90 together with p23 protects the receptor from 

proteolysis, constrain the receptor in a conformation receptive to ligand binding and prevent 

the premature binding of Arnt (Carver et al., 1994; Carver et al., 1998). 

 

Upon binding a ligand, after the replacement of its associated molecule with Arnt to form a 

heterodimer with release of 90 kDa HSPs, AhR translocates into the nucleus (Denison and 

Nagy, 2003). This heterodimer interacts with a 5’-GCGTG-3’ DNA sequence, the core binding 

motif of the xenobiotic response element (XRE) or dioxin response element (DRE) of the target 

genes (Fujisawa-Sehara et al., 1987; Kubota et al., 1991), located and present in multiple 

copies in the upstream region of the CYP1A1 gene promoter. The human CYP1A1, the mouse 

Cyp1a2, and the mouse Cyp1b1 genes harbor 10, 12, and 11 dioxin response element motifs in 

their respective upstream regions (Zhang et al., 1998; Zhang et al., 2003). The AhR-regulated 

genes include CYP1A1, 1A2, 1B1, and 2S1, UGT1A1 and 1A6, GSTA1 (Yueh et al., 2003).  
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A Per-Arnt-Sim protein called AhR repressor (AhRR) inhibits AhR signal transduction by 

competing with AhR for Arnt and also by binding to XRE (Mimura et al., 1999; Baba et al., 

2001; Watanabe et al., 2001; Haarmann-Stemmann et al., 2007; Evans et al., 2008). AhRR can 

be induced by AhR ligands, which represents an efficient negative feedback loop for the 

regulation of AhR signal transduction (Haarmann-Stemmann and Abel, 2006). The AhR 

knockout mice have been generated, which had decreased liver size and liver deformation, bile 

duct fibrosis, decreased accumulation of lymphocytes in the spleen and lymph nodes, loss of 

B[a]P carcinogenicity decreased constitutive expression of Cyp1a2, and resistance to 

TCDD-induced Cyp1a1 induction (Fernandez-Salguero et al., 1995b; Fernandez-Salguero et al., 

1996; McDonnell et al., 1996; Shimizu et al., 2000; Harstad et al., 2006). Two strains of 

Arnt-null mice have also been generated, but these mice die in utero (Kozak et al., 1997). 

Deletion of Xap2 in mice results in cardiac malformation and embryonic lethality (Lin et al., 

2007). However, AhRR-/- mice are normal and fertile (Hosoya et al., 2008). AhRR-/- mice 

expressed higher levels of Cyp1a1 mRNA induction in the skin, stomach and spleen than 

wild-type mice, while expression of Cyp1a1 mRNA was not significantly affected in the liver, 

lung, heart or other tissues, suggesting that the induction of Cyp1a1 mRNA in AhRR-/- mice 

takes place in a tissue-specific manner. AhRR-/- mice also displayed a delayed response to skin 

carcinogenesis caused by B[a]P (Hosoya et al., 2008). 

 

Human AhR has been mapped to chromosome 7.17.3. Cloning of human AhR cDNA revealed 

that it encodes a protein of 848 amino acid residues (Ema et al., 1994). The human AhR is 

more similar to the DBA/2 (D2) mouse AhR than to the C57BL/6 (B6) mouse AhR, with two 

critical determinants reducing ligand-binding affinity observed in D2 AhR: a T to G mutation at 

the position equivalent to the termination codon (TGA) of the B6 AhR, causing an elongation 

of the carboxyl terminus, and a Val381 equivalent to the Val375 of D2 AhR replacing Ala375 

of B6 AhR. Ligand-affinity differences range between 2- and 6-fold for the B6 and D2 AhRs 

when cDNA-expressed AHRs are studied. Recombinant human AhR gave a Kd value of 1.58 

nM for TCDD in agreement with that of D2 AhR (1.66 nM), ∼6-fold higher than that of B6 

AhR (0.27 nM); the Kd values of the mouse AhRs are qualitatively similar to those reported 

earlier (16 nM for D2 and 1.8 nM for B6) (Okey et al., 1989). Human AhR protein consists of 

many functional domains, including bHLH-PAS (amino acid residues 13-81, 111-181, and 

275-342), Hsp90-interacting (27-79 and 182-374), Arnt-interacting (40-79 and 182-374), 

nuclear localization (13-39), nuclear export (55-75), and transactivation (490-805) domains 

(Dolwick et al., 1993; Denison and Nagy, 2003). Typical ligands of human AhR are TCDD, 
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3-methylcholanthrene, and β-naphthoflavone. Several endogenous ligands have also been 

identified, such as tryptophan derivatives (e.g., indirubin) and arachidonic acid metabolites (e.g., 

lipoxin A4) (Song et al., 2002). 

 

The regulation of expression of CYP1A1/1A2 is complex because gene transcription not only 

involves the AhR but also a number of transcription factors, and is potentially influenced by the 

actions of transcriptional coactivators and corepressors. AhR-mediated signalling pathways 

provide a first line of defense against potentially toxic environmental contaminants. However, 

induction of metabolic processes by the AhR can also produce highly carcinogenic metabolites, 

creating a link between AhR activation and chemical carcinogenesis. Induction of 

CYP1A1/1A2 is generally a means of maintaining the homeostasis of the chemical 

environment in cells by increasing the metabolic clearance of substrates. Since CYP1A1/1A2 

catalyzes the metabolic activation of PAHs and heterocyclic aromatic amines/amides to 

ultimate carcinogens, it is expected that induction of the enzyme is detrimental in humans 

exposed to high levels of PAHs and heterocyclic aromatic amines/amides such as by cigarette 

smoking. Induction of the enzyme in humans exhibits large variations; high inducibility may 

impose additional risk for lung cancer to individuals who are smokers (Ma and Lu, 2007). 

Furthermore, CYP1A2 can metabolize a range of substrates; induction of the enzymes by one 

substrate may increase the metabolism of other chemicals (for instance, clinical drugs), 

resulting in unexpected drug-drug interactions. 

 

In addition to the conventional AhR-mediated pathway for the induction of CYP1A1/1A2, 

omeprazole can trigger the induction of CYP1A1/1A2 not by binding to the AhR, but by 

activating the AhR via the signal transduction pathways (Backlund et al., 1997). Genistein, a 

tyrosine kinase inhibitor, and daidzein, an inhibitor of casein kinase II, efficiently inhibited 

omeprazole-mediated but not TCDD-mediated induction of CYP1A1, as monitored at the 

transcriptional, mRNA, and protein levels (Backlund et al., 1997). In addition, insulin 

pretreatment caused an almost complete inhibition of omeprazole-dependent CYP1A1 

induction but only partially affected TCDD and B[a]P-mediated induction of CYP1A1. 

Staurosporine, an inhibitor of protein kinase C, impaired the induction by both omeprazole and 

B[a]P. In addition, omeprazole has been shown to induce several protein tyrosine kinase targets 

in vitro (Ishida et al., 2002). 
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Induction of CYP1A2 has important implication for clinical drug-drug interactions (Tang et al., 

2005). CYP1A2-mediated caffeine metabolism, as determined by the caffeine breath test, was 

induced by omeprazole at 40 mg in subjects with a poor metabolizer phenotype for CYP2C19 

(Rost et al., 1994). Potent inducers of CYP1A2 may reduce the clearance of drugs whose 

metabolism is mainly dependent on CYP1A2. On the other hand, the induction of CYP1A2 

may increase the risk of carcinogenicity of certain chemicals and contribute to cancer risk. It 

had been reported that increasing activity of CYP1A2 may be associated with high risk for 

breast cancer (Hong et al., 2004), meanly due to metabolism modulation of estrogen, a 

CYP1A2 substrate. 

 

1.2.1.7 Inhibitors of CYP1A2 

Several drugs including carbamazepine (Masubuchi et al., 2001), dihydralazine (Masubuchi 

and Horie, 1998), furafylline (Kunze and Trager, 1993), isoniazid (Wen et al., 2002b), 

rofecoxib (withdrawn from the market due to its cardiovascular risk) (Karjalainen et al., 2006), 

and zileuton (Lu et al., 2003) are mechanism-based (suicide) inhibitors of CYP1A2 (Table 1-2). 

In addition, the deethylated metabolite of amiodarone, desethylamiodarone, can inactivate 

CYP1A2 (Ohyama et al., 2000b). Furafylline as a mechanism-based inhibitor of CYP1A2 

(Kunze and Trager, 1993) is commonly used as a selective inhibitor for CYP1A2 in reaction 

phenotyping studies. Furafylline is a methylxanthine derivative that was introduced as a 

long-acting replacement for theophylline in the treatment of asthma (Segura et al., 1986). 

 

Oltipraz, a chemo-protective agent, is a competitive and mechanism-based inhibitor of 

CYP1A2 (Langouet et al., 2000). trans-Resveratrol inactivates CYP1A2, but not CYP1A1 

(Chang et al., 2001). Resveratrol selectively inhibits CYP1A1 in a concentration-dependent 

manner with an IC50 of 23 µM (Chun et al., 1999), through blocking of the activation of AhR 

(Ciolino et al., 1998a). Resveratrol showed 50-fold selectivity in its inhibition of CYP1A1 over 

1A2. ε-Viniferin, the dimer of resveratrol, more potently inhibits CYP1A1, 1B1, and 2B6 in 

vitro (Piver et al., 2003). Several other hydroxystilbene compounds obtained from natural 

sources also showed inhibitory effect on CYP1A1/1A2 activity. Rhapontigenin is a potent 

mechanism-based inhibitor of CYP1A1 (Chun et al., 2001). 

 

B[a]P and seven other PAH compounds tested inhibited CYP1A2 in a mechanism-based 

manner, but fluoranthene directly inhibited CYP1A2 (Shimada et al., 2007). All of the nine 
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PAHs examined were direct inhibitors of CYP1A1 and CYP1B1. Organophosphorothionate 

pesticides can inactive CYP1A2 and 3A4 (Di Consiglio et al., 2005). 

 

Fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), is a potent and relatively 

selective CYP1A2 inhibitor with IC50 of 0.12-0.30 μM (Brosen et al., 1993; Rasmussen et al., 

1995; von Moltke et al., 1996; Becquemont et al., 1997). Other SSRIs, including fluoxetine, 

norfluoxetine, and sertraline also inhibited CYP1A2-mediated 7-ethoxyresorufin O-deethylase 

activity (Rasmussen et al., 1995). The Ki values for fluoxetine, norfluoxetine, sertraline, 

desmethylsertraline, and paroxetine were 4.4, 15.9, 8.8, 9.5 and 5.5 μM, respectively (von 

Moltke et al., 1996). The antidepressant nefazodone and four of its metabolites 

(m-chloro-phenylpiperazine, two hydroxylated derivatives, and a triazoledione) were very 

weak inhibitors of CYP1A2. Venlafaxine and its O- and N-desmethyl metabolites showed 

minimal inhibitory activity toward CYP1A2 (von Moltke et al., 1996). Isosafrole is a selective 

inhibitor of CYP1A2 (Pastrakuljic et al., 1997). 

 

Many drugs, including oral contraceptives (Abernethy and Todd, 1985) and fluoroquinolones 

such as levofloxacin and ciprofloxacin (Parker et al., 1994; Granfors et al., 2004c), can inhibit 

CYP1A2 activity. Propafenone and mexiletine inhibited CYP1A2-mediated phenacetin 

O-deethylation with IC50 values of 29 and 37 μM, respectively (Kobayashi et al., 1998). 

Amiodarone, bepridil, aprindine, lidocaine, flecainide and quinidine inhibited 

CYP1A2-catalyzed phenacetin O-deethylation in a concentration-dependent manner, with IC50 

values of 86 to 704 μM (Kobayashi et al., 1998). Cimetidine, ranitidine and ebrotidine all 

inhibited CYP1A2 in vitro (Martinez et al., 1999). Miconazole inhibited CYP1A2 with a Ki of 

2.9 μM, but fluconazole, itraconazole, micafungin, and voriconazole did not inhibit this 

enzyme (Niwa et al., 2005). However, venlafaxine (Ball et al., 1997) did not inhibit 

CYP1A2-mediated ethoxyresorufin O-dealkylase and disopyramide, procainamide and 

pilsicainide (Kobayashi et al., 1998) did not inhibit CYP1A2-catalyzed phenacetin 

O-deethylation. 

 

Some natural compounds can inhibit CYP1A2 and 1A1. Rutaecarpine, evodiamine, and 

dehydroevodiamine are quinazolinocarboline alkaloids isolated from Evodia rutaecarpa, which 

has been used in traditional Chinese medicine for the treatment of gastrointestinal disorder, 

headache, and hypertension. They are all inhibitors of CYP1A1 and 1A2, with rutaecarpine 



 

 18

being the most potent (Ueng et al., 2002). Phenethyl isothiocyanate is a competitive inhibitor 

of CYP1A2 (Nakajima et al., 2001). 

 

Inhibition of CYP1A2 by drugs has important implications in drug-drug interactions. For 

example, coadministration of ciprofloxacin (a CYP1A2 inhibitor) and tizanidine (a CYP1A2 

substrate) had demonstrated to increase the risk of hypotension, adverse effect of overdose of 

tizanidine (Granfors et al., 2004c).  

 

1.2.2 Human CYP2C9 enzyme 

The CYP2C subfamily comprises CYP2C8, 2C9, 2C18 and 2C19, metabolizing about 20% of 

clinical drugs (Totah and Rettie, 2005). CYP2C8, 2C9, and 2C19 proteins are primarily located 

in the liver where they account for approximately 20% of total CYP contents (Shimada et al., 

1994a), whereas CYP2C18 protein seems to be primarily expressed in the skin (Zaphiropoulos, 

1997). Low levels of CYP2C mRNAs and proteins have also been found in small intestine and 

other extra-hepatic tissues (Klose et al., 1999). A number of drugs are metabolized by CYP2C 

members, with CYP2C8 and 2C18 exhibiting a similar substrate specificity to that of 2C9 or 

2C19 but with altered Vmax and/or Km. The human CYP2C genes are mapped to chromosome 

10q24 in the following order: Cen-CYP2C18-CYP2C19-CYPPP2C9-CYP2C8-Tel (Gray et al., 

1995). 

 

1.2.2.1 Substrates of CYP2C9 

CYP2C9 is one of the most abundant CYP enzymes in the human liver (∼20% of hepatic total 

CYP content), where it metabolizes approximately 15% clinical drugs (>100 drugs), including 

a number of drugs with narrow therapeutic ranges (Miners and Birkett, 1998). S-Flurbiprofen 

(4’-hydroxylation) (Yamazaki et al., 1998), S-warfarin (7-hydroxylation) (Yamazaki et al., 

1998), tolbutamide (methylhydroxylation), phenytoin (4’-hydroxylation) (Giancarlo et al., 

2001), losartan (oxidation) (Lee et al., 2003), and diclofenac (4’-hydroxylation) (Yamazaki et 

al., 1998) have been commonly used as probe substrates for CYP2C9 (Kumar et al., 2006). 

Diclofenac 4’-hydroxylase and tolbutamide methylhydroxylation have been well studied as 

marker reactions of CYP2C9 activity and are most commonly used in CYP2C9 phenotyping 

studies, although some activity of other CYP2C enzymes for these substrates has been 

observed (Wester et al., 2000). Flurbiprofen can be included into the 5-drug Pittsburgh cocktail 

without showing metabolic interactions (Zgheib et al., 2006). 
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The substrates of CYP2C9 include oral sulfonylurea hypoglycemics (e.g. tolbutamide, 

glyburide, glimepiride, gliclazide and glipizide), non-steroid antiinflammatory drugs (NSAIDs, 

e.g. diclofenac, ibuprofen, ketoprofen, suprofen, naproxen, flurbiprofen, indomethacin, 

meloxicam, piroxicam, tenoxicam, and lornoxicam); selective COX2 inhibitors (e.g. celecoxib, 

lumiracoxib, etoricoxib, and valdecoxib), diuretics (e.g. torasemide and sulfinpyrazone), 

antiepileptics (e.g. phenytoin and phenobarbital), angiotensin II receptor inhibitors (e.g. 

losartan, irbesartan, and candesartan), anticancer drugs (e.g. cyclophosphamide and tamoxifen), 

and anticoagulants (e.g. S-acenocumarol, phenprocoumon and S-warfarin) (Miners and Birkett, 

1998; Rettie and Jones, 2005).  

 

The non-sulfonylurea antidiabetic drug, nateglinide is extensively metabolized (∼70%) by 

CYP2C9 and partially by CYP3A4 (McLeod, 2004). Ketobemidone, an opioid analgesic 

structurally related to pethidine, is mainly metabolized by CYP2C9 and 3A4 via 

N-demethylation to norketobemidone (Yasar et al., 2005). Methadone is partially metabolized 

by CYP2C9, although CYP2B6, 2C19 and 3A4 may play a more important role in its 

metabolism (Foster et al., 1999; Gerber et al., 2004).  Sulfamethoxazole, a sulfonamide 

bacteriostatic antibiotic, is eliminated mainly by metabolism, and CYP2C9 plays an important 

role in its N4-hydroxylation (Cribb et al., 1995). Terbinafine is mainly metabolized by 

CYP1A2, 2C9 and 3A4 (Vickers et al., 1999). Sildenafil is converted to its major circulating 

metabolite, UK-103,320, by CYP2C9 and 3A4, with contribution from CYP2C19 and 2D6 

(Warrington et al., 2000). Vicriviroc (SCH 417690), a CCR5 receptor antagonist, is mainly 

metabolized by CYP2C9 (Ghosal et al., 2007). In addition, dapsone N-hydroxylation is mainly 

catalyzed by CYP2C9, with minor contribution from CYP2C8 and 2C19 (Winter et al., 2000). 

 

CYP2C9 participates in the oxidation of several important endogenous compounds such as 

progesterone (Yamazaki and Shimada, 1997), testosterone (Yamazaki and Shimada, 1997), 

17α-ethinylestradiol (Ball et al., 1990; Wang et al., 2004), all-trans-retinoic acid (Marill et al., 

2000). CYP2C9 is also involved in the metabolism of arachidonic acid (Rifkind et al., 1995). 

This will result in biologically active epoxyeicosatrienoic fatty acids (e.g. 11,12- and 

14,15-epoxyeicosatrienoic fatty acids) and hydroxyeicosatetraenoic fatty acids (e.g. 7-, 11-, 13-, 

or 15-hydroxyeicosatetraenoic fatty acids). 
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1.2.2.2 Induction of CYP2C9 

Like CYP2C8, rifampicin and phenobarbital induced CYP2C9, and to a lesser extent 

CYP2C19 mRNAs and proteins in primary human hepatocytes (Gerbal-Chaloin et al., 2001). 

The concentration dependence of CYP2C8 and 2C9 mRNAs in response to rifampicin and 

phenobarbital paralleled that of CYP3A4 and 2B6, the maximum accumulation being reached 

with rifampicin at 10 µM or phenobarbital at 100 µM. Phenobarbital is not a potent inducer of 

CYP2C8 and 2C9 genes. In contrast, dexamethasone resulted in maximum induction of 

CYP2C8 and 2C9 mRNAs at 0.1 µM while CYP3A4 and 2B6 were not induced. 

Dexamethasone, which has been recently shown to up-regulate pregnane X receptor (PXR) and 

constitutive androstane receptor (CAR) expression through the glucocorticoid receptor 

(GR/NR3C1), potentiated CYP2C8 and 2C9 mRNA induction in response to rifampicin and 

phenobarbital. Therefore, PXR/NR1I2, CAR/NR1I3, and GR/NR3C1 are all involved in the 

regulation of CYP2C9. In contrast to the other CYP2C messengers, CYP2C18 mRNA was not 

inducible in cultures human hepatocytes (Gerbal-Chaloin et al., 2001).  

 

There are two DR1 elements at –152 and –185 bp of the promoter region of the CYP2C9 gene, 

and hepatic nuclear factor-4α (HNF-4α/NR2A1) can activate the transcription of this gene via 

the DR1 element in HepG2 cells (Ibeanu and Goldstein, 1995; Chen et al., 2005b).  

HNF-4α/NR2A1 synergizes with CAR/NR1I3 and PXR/NR1I2 in HepG2 cells treated with 

rifampicin when the CAR/PXR binding site at –1839 bp is present (Chen et al., 2005b). 

Mutation of the two HNF-4α/NR2A1 binding sites differentially prevented up-regulation of 

CYP2C9 promoter by both CAR/NR1I3 and HNF-4α/NR2A1; synergy between the two 

receptors essentially abolished induction by rifampicin in HepG2 cells transfected with 

PXR/NR1I2. These findings suggest that there is cross-talk between distal CAR/PXR sites and 

HNF-4α/NR2A1 binding sites in the CYP2C9 promoter and that the HNF-4α/NR2A1 sites are 

required for maximal induction of the CYP2C9 promoter. 

 

Several clinical reports have focused on the changed pharmacokinetic parameters of drugs 

known as CYP2C substrates, in patients receiving rifampicin, dexamethasone, phenobarbital, 

or a high concentration of prednisone. For example, the systemic clearance of phenytoin, 

tolbutamide, and S-warfarin exhibited a 2- to 3-fold increase in patients receiving rifampicin, 

suggesting clinically significant CYP2C9 induction. Dexamethasone increased phenytoin 

clearance (McLelland and Jack, 1978; Wong et al., 1985), suggesting a clinically significant 

induction of CYP2C9. In addition, phenobarbital and prednisone decreased the half-life of 
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elimination of cyclophosphamide, a drug recently shown to be a low Km substrate of CYP2C9 

and 2C19, whereas dexamethasone produced an increase in the body clearance of this drug 

(Zhang et al., 2005; Zhang et al., 2006). 

 

1.2.2.3 Inhibitors of CYP2C9 

Sulfaphenazole is a commonly used selective inhibitor of CYP2C9 with Ki of 0.3 µM, but it 

has some inhibitory effects toward the other CYP2C8 (Ki = 63 µM) and 2C18 (Ki = 29 µM) 

(Mancy et al., 1996). Glyburide inhibited CYP2C9-catalyzed S-warfarin and phenytoin 

metabolism in a competitive manner, with Ki values of 2.4 and 3.1 µM, respectively (Kim and 

Park, 2003). 

 

Sulfamethoxazole has been shown to inhibit CYP2C9-mediated tolbutamide hydroxylation 

with an apparent Ki value of ∼250 µM (Komatsu et al., 2000a). It appears that trimethoprim 

and sulfamethoxazole are selective inhibitors of CYP2C8 and 2C9, respectively (Wen et al., 

2002a). With concentrations ranging from 50 to 500 µM, sulfamethoxazole was a selective 

inhibitor of CYP2C9-mediated tolbutamide hydroxylation in human liver microsomes and 

recombinant CYP2C9, with apparent IC50 values of 544 and 456 µM, respectively (Wen et al., 

2002a). Trimethoprim showed a selective inhibitory effect on CYP2C8-mediated paclitaxel 

6α-hydroxylation in human liver microsomes and recombinant CYP2C8, with apparent IC50 

values of 54 and 75 µM, respectively. Trimethoprim is frequently combined with 

sulfamethoxazole as cotrimoxazole, a broad-spectrum antibacterial agent, to treat a wide range 

of infections. Trimethoprim and sulfamethoxazole have increased the plasma concentrations or 

therapeutic effects of drugs such as tolbutamide (Wing and Miners, 1985), phenytoin (Hansen 

et al., 1979), warfarin (O'Reilly, 1980), and glipizide (Johnson and Dobmeier, 1990). 

Trimethoprim alone inhibited the metabolic clearance of tolbutamide by 14% and phenytoin by 

30% in humans. Inhibition of CYP2C8/9 enzymes is considered the major mechanism for these 

drug interactions. 

 

Kumar et al. (2006) investigated the inhibitory effects of 28 compounds which are mostly 

substrates of CYP2C9 on the oxidation of 5 probes of CYP2C9 (S-flurbiprofen, S-warfarin, 

tolbutamide, phenytoin, and diclofenac). They found that the estimated Ki value was ≤1.0 µM 

for 16 of the 28 inhibitors of S-warfarin hydroxylation in CYP2C9.1, including benzbromarone 

(0.001 µM); nicardipine (0.01 µM); miconazole (0.01 µM); ketoconazole (0.08 µM); dapsone 

(0.09 µM); sulfaphenadine (0.12 µM); quercetin (0.25 µM); α-naphthoflavone (0.29 µM); 
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nifedipine (0.34 µM); Vivid Green (0.53 µM); fluvoxamine (0.58 µM); omeprazole (0.64 µM); 

tamoxifen (0.66 µM); gemfibrozil (0.79 µM); piroxicam (0.92 µM); tolbutamide (1.0 µM). In 

contrast, only eight, six, nine, and nine of the inhibitors exhibited Ki values <1 µM against 

S-flurbiprofen hydroxylation, phenytoin hydroxylation, tolbutamide hydroxylation, and 

diclofenac hydroxylation, respectively. An additional eight compounds exhibited Ki values 

between 1 and 10 µM toward S-warfarin hydroxylation, resulting in 24 of 28 compounds 

exhibiting Ki values <10 µM toward this reaction (Kumar et al., 2006). For the other four probe 

substrates, the majority of inhibitors fell within this 1 to 10 µM range for the Ki values. Quinine 

was a relatively potent inhibitor of S-flurbiprofen hydroxylation with a Ki of 1.1 µM but was a 

very poor inhibitor of the oxidation of the other four probe substrates (Ki: 20 to >100 µM). 

Indomethacin was a very potent (Ki = 0.7 µM) inhibitor of S-warfarin hydroxylation but a 

relatively weak (Ki > 10 µM) inhibitor of all other probe substrates. Finally, S-ibuprofen was a 

poor (Ki > 40 µM) inhibitor of S-warfarin hydroxylation but a relatively potent (Ki ∼4 µM) 

inhibitor for other four probe substrates.  

 

1.2.3 Human CYP2D6 enzyme 

CYP2D6 accounts for only a small percentage of all hepatic CYPs (∼2%), however, it 

metabolises ∼25% of all medications in the human liver (Cascorbi, 2003; Ingelman-Sundberg, 

2005; Gardiner and Begg, 2006; Ingelman-Sundberg et al., 2007). The primarily hepatic 

expression of this enzyme governs first pass metabolism after oral drug administration, 

whereas the low level of its intestinal expression does not appear to be important. CYP2D6 has 

been identified in human kidney (Nishimura et al., 2003), intestine (Prueksaritanont et al., 1995; 

Madani et al., 1999; Nishimura et al., 2003), breast (Huang et al., 1997), lung (Guidice et al., 

1997; Bernauer et al., 2006), placenta (Hakkola et al., 1996b) and brain (Siegle et al., 2001; 

Chinta et al., 2002; Miksys et al., 2002) at low to moderate levels. In fetal liver, CYP2D6 

mRNA was undetectable (Hakkola et al., 1994). CYP2D6 protein and enzyme activity toward 

bufuralol have been detected at low levels in human intestine and are differentially expressed 

along the length of the gastrointestinal tract (de Waziers et al., 1990; Prueksaritanont et al., 

1995; Madani et al., 1999). CYP2D6 expression is highest in the jejunum and decreased 

distally to the colon. However, CYP3A4/5 is the most expressed CYP enzyme in human small 

intestine (McKinnon et al., 1995), whereas CYP2D6 and 2C19 are less expressed enzymes. 

The expression level of CYP2D6 was 3-fold lower in bronchial mucosa and 6-fold lower in 

lung parenchyma compared to that in the liver (Guidice et al., 1997). CYP2D6 is expressed 

constitutively in neurons in human brain (Siegle et al., 2001). CYP2D6 protein was primarily 
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found in large principal neurons such as pyramidal cells of the cortex, pyramidal cells of the 

hippocampus, and Purkinje cells of the cerebellum (Siegle et al., 2001). In glial cells, CYP2D6 

protein was absent. Higher expression of CYP2D6 was detected in brain regions of alcoholics 

compared to non-alcoholics (Miksys et al., 2002).  

 

1.2.3.1 Substrates of CYP2D6 

Sparteine and debrisoquine are two prototypical substrates of CYP2D6, which are widely used 

to determine the phenotype of CYP2D6. Debrisoquine was used as an anti-hypertensive agent 

and its 4-hydroxylation (so CYP2D6 is called debrisoquine 4-hydroxylase) is primarily 

mediated by the polymorphic CYP2D6 (Eiermann et al., 1998). Dextromethorphan, a synthetic 

analog of narcotic analgesics, is also a commonly used CYP2D6 probe in vitro and in vivo. In 

humans, it is primarily excreted as the unchanged parent drug and dextrorphan (Barnhart, 

1980), which is pharmacologically active (Braga et al., 1994). In addition, bufuralol, a 

β-adrenoceptor blocker, has been extensively used as a probe substrate for the in vitro study of 

CYP2D6 activity. 

 

CYP2D6 is a critical enzyme responsible for the metabolism of more than 100 therapeutic 

drugs although it only accounts for a small percentage (∼2%) of all hepatic CYP enzymes. 

CYP2D6 can metabolize a number of drugs, including antidepressants (e.g. desipramine 

(Murphy et al., 2000), clomipramine and fluoxetine), neuroleptics (e.g. haloperidol), 

β-blockers (e.g. metoprolol (Yuan et al., 2008) and nebivolol (Lefebvre et al., 2007)), 

antiarrhythmics (e.g. debrisoquine (Eiermann et al., 1998)), analgesics (codeine (Kirchheiner et 

al., 2007) and oxycodone (Heiskanen et al., 1998)), antiemetics (ondansetron and tropisetron 

(Kaiser et al., 2002)) and anticancer drugs (cyclophosphamide) (Huang et al., 2000). Many of 

these drugs have narrow therapeutic index. 

 

CYP2D6 also extensively metabolizes opioids (e.g. codeine, dihydrocodeine and tramadol), 

antiemetics (e.g. tropisetron, ondansetron, dolasetron, and metoclopramid), antihistamines (e.g. 

terfenadine (Jones et al., 1998), oxatomide (Goto et al., 2004), loratadine (Yumibe et al., 1995; 

Yumibe et al., 1996), astemizole (Matsumoto and Yamazoe, 2001), epinastine (Kishimoto et 

al., 1997), promethazine (Nakamura et al., 1996), mequitazine (Nakamura et al., 1998), 

azelastine (Imai et al., 1999; Nakajima et al., 1999a), diphenhydramine and chlorpheniramine), 

and antiarrhythmics (e.g. sparteine, propafenone, encainide, flecainide, cibenzoline, aprindine, 

lidocaine, procainamide and mexiletine).  
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CYP2D6 metabolizes drugs of abuse of amphetamine type such as methamphetamine (‘meth’, 

‘ice’), methylenedioxymethamphetamine (MDMA, ‘ecstasy’), N-ethyl-3, 

4-methylenedioxyamphetamine (‘eve’), and 3, 4-methylenedioxyamphetamine (i.e. 

tenamfetamine, ‘the love drug’) (Lin et al., 1997; Wu et al., 1997; Kreth et al., 2000; Segura et 

al., 2005). CYP2D6 is the primary enzyme for the CYP2D6 in their aromatic 4-hydroxylation 

and N-demethylation (Lin et al., 1997). Similarly, MDMA is metabolized to 

methylenedioxyamphetamine via demethylation by CYP2D6 as a high-affinity enzyme, with 

low-affinity contributions from CYP1A2, 2B6, and 3A4 (Tucker et al., 1994; Lin et al., 1997; 

Kreth et al., 2000). However, CYP2D6 did not N-demethylated MDMA (Lin et al., 1997). 

 

CYP2D6 has also been shown to metabolize carcinogens and neurotoxins such as 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Coleman et al., 1996; Gilham et al., 

1997; Modi et al., 1997; Kalgutkar et al., 2003b), 1,2,3,4-tetrahydroquinoline (Ohta et al., 

1990), and indolealkylamines (Yu et al., 2003b). MPTP is a neurotoxin and potent inducer of 

experimental Parkinson’s disease in nonhuman primates (Barsoum et al., 1986; Jenner, 2003; 

Emborg, 2007). Besides MAO-B-mediated bioactivation of MPTP to the positively charged 

mitochondrial neurotoxin N-methyl-4-phenylpyridinium (MPP+), CYP2D6, 1A2 and 3A4 

metabolize MPTP to the corresponding non-neurotoxic 

N-4-(4'-hydroxyphenyl)-N-methyl-1,2,3,6-tetrahydropyridine and 

4-phenyl-1,2,3,6-tetrahydropyridine (PTP) metabolites via N-demethylation (Coleman et al., 

1996; Modi et al., 1997). The high affinity activity toward MPTP was absent in liver 

microsomes from a PM subject (Coleman et al., 1996). Rat CYP2D and 2C can N-demethylate 

MPTP (Narimatsu et al., 1996) and female Dark Agouti rats are more sensitive to MPTP 

neutotoxicity than other strains (Jimenez-Jimenez et al., 1991). CYP2D6 efficiently 

hydroxylated various β-carbolines (Herraiz et al., 2006). 

N(2)-methyl-1,2,3,4-tetrahydro-β-carboline, a close MPTP analog, is extensively hydroxylated 

to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-β-carboline and a corresponding 

7-hydroxy-derivative (Herraiz et al., 2006). CYP2D6 is also involved in the metabolism of 

diuron, a widely used herbicide and antifouling biocide (Abass et al., 2007). 

 

A study using the CYP2D6-humanized mouse line has established that CYP2D6 is a 

5-methoxyindolethylamine O-demethylase (Yu et al., 2003b) and 5-methoxytryptamine, a 

metabolite and precursor of melatonin (N-acetyl-5-methoxytrytamine), is metabolized by 



 

 25

CYP2D6 to 5-hydroxytryptamine (5-HT/serotonin) with a high turnover of 51.7 min-1 and 

relatively low Km of 19.5 µM (Yu et al., 2003a). Recombinant CYP2D6 exhibited remarkable 

ability to convert p-tyramine and m-tyramine to dopamine. Human CYP2D6 and rat CYP2D4 

are the predominant CYP2Ds in the brain and exhibit 21-hydroxylation activity toward 

progesterone and its metabolite 17α-hydroxyprogesterone (Kishimoto et al., 2004).  

 

1.2.3.2 Induction of CYP2D6 

By employing cultured human hepatocytes, the induction of CYP1A, 2A,2B, 2C, 2E, and 3A 

subfamilies has been reported (Rodriguez-Antona et al., 2000; Gerbal-Chaloin et al., 2001). In 

contrast to these CYP enzymes, none of the model inducers examined increased levels of 

CYP2D6, 2E1, and 4A11 in 72-hr cultured human liver slices. For CYP2D6, previous studies 

have suggested that this P450 enzyme is refractory to induction by known inducers of other 

CYP subfamilies (Rodriguez-Antona et al., 2000). In cultured precision-cut human liver slices, 

treatment with 50 µM concentrations of β-naphthoflavone, lansoprazole, rifampicin, 

dexamethasone, and methylclofenapate or 500 µM sodium phenobarbital did not induce 

CYP2D6, with little effect on CYP2C8, 2C9, 2E1, and 4A1 (Edwards et al., 2003). 

Phenobarbital or rifampin failed to cause notable induction of CYP2D6 activity (Madan et al., 

2003). Ritonavir and nelfinavir did no induce CYP2D6 in human hepatocytes, but significantly 

induced CYP1A2, 2B6, 2C9, 2C19 and 3A4 (Dixit et al., 2007).  Using human enterocytes 

collected from 6 healthy subjects before and after 10 days of 600 mg/day oral rifampicin 

administration, CYP2D6 was not induced (Glaeser et al., 2005). 

 

In contrast to other CYPs, CYP2D6 is generally not regulated by many known environmental 

agents and is not inducible by common known steroids (Bock et al., 1994). However, 

interindividual differences in response to drugs metabolized by CYP2D6 may also be 

influenced modestly by hormonal state, diet, and by xenobiotic regulation of expression of the 

enzyme in liver and extrahepatic organs such as brain, kidney, and intestine (Llerena et al., 

1996; Miksys et al., 2002). 

 

In vitro and in vivo studies indicate that the nuclear receptors (NRs) including PXR, CAR and 

GR do not appear to play a role in the regulation of CYP2D6. Prototypical inducers such as 

phenobarbital, rifampin and dexamethasone do not inducer CYP2D6 in cultured human 

hepatocytes (Edwards et al., 2003; Madan et al., 2003). Additionally, no or minor to moderate 

clinical drug interactions between P450 inducers and drug substrates that are mainly 
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metabolized by CYP2D6 have been reported (Branch et al., 2000). Therefore, the currently 

available data suggest that variability of CYP2D6 is largely governed by genetic factors, which 

is consistent with the large number of CYP2D6 allelic variants that have been identified to date. 

 

HNF-4α, a member of the nuclear receptor superfamily, is mainly expressed in a restricted 

manner in the liver, intestine, kidney, and pancreas (Mendel and Crabtree, 1991). It plays an 

important role in the regulation of many liver-specific genes, such as those encoding 

apolipoproteins, coagulation factors, and CYPs (Mendel and Crabtree, 1991; Erdmann and 

Heim, 1995). A direct-repeat element with a one-nucleotide spacer located in the proximal 

promoter region of the CYP2D6 gene plays an important role in modulating CYP2D6 

expression, and HNF-4α interacts with this binding element (Cairns et al., 1996). 

Cotransfection of the minimal CYP2D6 promoter -CAT construct (-392 bp) with a mammalian 

HNF-4α expression vector resulted in a 30-fold induction of CAT activity in COS-7 cells.  

Although HNF-4α was originally identified as an orphan receptor, fatty acyl-CoA thioesters 

are identified to be endogenous ligands for HNF-4α (Hertz et al., 1998; Petrescu et al., 2002). 

The binding of ligand may shift the oligomeric-dimeric equilibrium of HNF-4α or may 

modulate the affinity of HNF-4α for its cognate promoter element, resulting in either activation 

or inhibition of HNF-4α transcriptional activity as a function of chain length and the degree of 

saturation of the fatty acyl-CoA ligands (Petrescu et al., 2002). The HNF-4α binding element 

is conserved in the proximal promoter regions of more than 20 CYP2 genes (Chen et al., 1994; 

Ibeanu and Goldstein, 1995). Recently, Jover et al. (2001) demonstrated that HNF-4α plays a 

general role in the regulation of major P450 genes, including CYP3A4, CYP3A5, CYP2A6, 

CYP2B6, CYP2C9, and CYP2D6, in human hepatocytes using antisense technique. By using 

small interfering RNA technique, Kamiyama et al. (2007) found that suppression of HNF-4α 

caused decrease in the mRNA levels of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, 

CYP2D6, CYP3A4, UGT1A1, UGT1A9, ABCB1, ABCB11, and ABCC2, as well as those of 

PXR and CAR.  In addition, deletion of HNF-4α decreased debrisoquine 4-hydroxylase 

activity in CYP2D6 humanized mice more than 50% (Corchero et al., 2001). These findings 

indicate that HNF-4α may act as a common regulator of the liver-specific transcription of 

many P450 genes.  
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1.2.3.3 Inhibitors of CYP2D6 

A number of CYP2D6 substrates and other compounds have been found to inhibit CYP2D6 

and this has important clinical implications when drugs are coadministered. Many 

antipsychotic drugs including chlorpromazine, fluphenazine, perphenazine, haloperidol, 

thioridazine, risperidone, clozapine, trifluperidol, and zuclopenthixol are metabolized by 

CYP2D6 and also significantly inhibit this enzyme (Shin et al., 1999). Metoclopramide, a 

gastroprokinetic and antiemetic agent, is a substrate and inhibitor of CYP2D6 (Desta et al., 

2002a). Terfenadine, a nonsedating H1 receptor antagonist, could interact with CYP2D6, either 

as a substrate or as an inhibitor (Smith and Jones, 1992; Jones et al., 1998).  

 

Quinidine and fluoxetine are competitive inhibitors of CYP2D6, which did not exhibit a 

preincubation-dependent increase in inhibitory potency. Quinidine, pimozide and halofantrine 

compete for the substrate-binding site of CYP2D6 but are not metabolized by it (Otton et al., 

1988). Terbinafine, used for the treatment of superficial dermatophytosis, inhibited 

dextromethorphan O-demethylation with an apparent Ki
 ranging from 28 to 44 nM in human 

hepatic microsomes and averaging 22.4 nM for the heterologously expressed enzymes 

(Abdel-Rahman et al., 1999).  Terbinafine is not metabolized by any CYPs. A number of 

anti-HIV agents are CYP2D6 inhibitors. Ritonavir inhibits CYP2D6 in vitro (von Moltke et al., 

1998a) and in vivo (Aarnoutse et al., 2005). Indinavir, saquinavir, nelfinavir, and delavirdine 

are all CYP2D6 inhibitors (von Moltke et al., 1998a; Voorman et al., 2001). Amobarbital, 

valproic acid, ethosuximide, caffeine, theophylline, disopyramide and phenytoin are not 

inhibitors of CYP2D6 (Broly et al., 1990). In addition, both bupropion and hydroxybupropion 

inhibited CYP2D6-mediated dextromethorphan O-demethylation, with IC50 values of 58 and 

74 µM, respectively (Hesse et al., 2000). 

 

Progesterone, testosterone, pregnanolone, pregnenolone, 17β-estradiol, and 17α- 

hydroxyprogesterone competitively inhibited CYP2D6 activity, whereas epiallopregnanolone 

and alfaxalone non-competitively inhibited the activity (Hiroi et al., 2001). Progesterone and 

testosterone inhibited bufuralol 1’-hydroxylation with Ki values of 33 and 63 µM, respectively. 

All these steroids lack the basic nitrogen atoms and are thus atypical substrates of CYP2D6. 

 

Paroxetine (an SSRI) inhibits CYP2D6 activity at IC50 concentrations ranging from 150 nM to 

2.0 µM, depending on the substrate (Fogelman et al., 1999). Paroxetine is also a 

mechanism-based inhibitor of CYP2D6, (Bertelsen et al., 2003), which has been shown to 
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reduce the clearance of desipramine (Alderman et al., 1997), perphenazine (Ozdemir et al., 

1997), metoprolol (Hemeryck et al., 2000), risperidone (Spina et al., 2001), and atomoxetine 

(Belle et al., 2002), where the clearance of the victim drugs is impaired by 5- to 8-fold. MDMA 

is also a mechanism-based inhibitor of CYP2D6 (Heydari et al., 2004; Van et al., 2007).  

 

1.2.4 Human CYP3A4 enzyme 

CYP3A4 has the highest abundance in the human liver, representing about 40% of the total 

hepatic CYP content and CYPs in the gastrointestinal tract (Shimada et al., 1994b). There are 

three major proteins (CYP3A4, 3A5 and 3A7) and one additional protein (CYP3A34) in the 

CYP3A family. Among them, CYP3A7 is the predominant CYP form in embryonic, fetal, and 

newborn livers (Kitada and Kamataki, 1994; Hakkola et al., 2001) but a minor form in the 

adult liver (Schuetz et al., 1994), having less important for drug metabolism in general. 

CYP3A5, with minor polymorphism and relative weak catalytic capability, has the substrate 

and inhibitor specificity highly similar to CYP3A4 (Wrighton et al., 1990; Williams et al., 

2002) and is consistently expressed in extrahepatic tissues, such as kidney, lung, colon, and 

esophagus (Ding and Kaminsky, 2003; Burk and Wojnowski, 2004). CYP3A4 is the most 

important one in the biotransformation of drugs, metabolizing more than 50% of all therapeutic 

drugs used in the clinical setting (Zhou, 2008a).  

 

1.2.4.1 Substrate specificity of CYP3A4 

The substrate specificity of the CYP3A4 enzymes is very broad, with an extremely large 

number of structurally divergent and weightly differential chemicals. A large variety of 

substrates of CYP3A4 varying in molecular weight from metyrapone (Mr 226 Dal) to 

cyclosporine (Mr 1,203 Dal), including macrolide antibiotics (e.g. clarithromycin and 

erythromycin), anti-arrhythmics (e.g. quinidine), benzodiazepines (e.g. alprazolam and 

midazolam1), immune modulators (e.g. cyclosporine and tacrolimus), HIV antivirals (e.g. 

indinavir and ritonavir), antihistamines (e.g. chlorpheniramine and terfenadine), calcium 

channel blockers (e.g. amlodipine, felodipine, nifedipine and verapamil) and 

3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG CoA) reductase inhibitors (e.g. atorvastatin, 

cerivastatin, lovastatin and simvastatin). CYP3A4 exhibits a relatively large substrate-binding 

cavity that is consistent with its capacity to oxidize bulky substrates such as cyclosporine, 

statins, taxanes, and erythromycin (Zhou, 2008a).  
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1.2.4.2 Inhibitors of CYP3A4 

The relatively low degree of substrate selectivity makes CYP3A4 susceptible to inhibition by 

different chemicals. This is accordant with the fact that the inhibitors of CYP3A4 cover a 

broad variety of structurally unrelated substances. Many of CYP3A4 inhibitors are important 

therapeutic drugs and posses mechanism-based inhibitory property, including macrolide 

antibiotics (e.g., clarithromycin, and erythromycin), anti-HIV agents (e.g., ritonavir and 

delavirdine), antidepressants (e.g. fluoxetine and fluvoxamine), calcium channel blockers (e.g., 

verapamil and diltiazem), steroids and their modulators (e.g., gestodene and mifepristone), and 

several herbal and dietary components (Zhou, 2008a).  

 

Chemicals used as selective inhibitors of CYP3A4 include a small number of compounds 

inhibiting CYP3A4 in an irreversible (e.g. triacetyloleandomycin, gestodene) and/or reversible 

(e.g. ketoconazole) manner (Zhou et al., 2005c). Ketoconazole is most widely used, probably 

because of advantages in potency, selectivity, commercial availability, and ease of use. 

However, selectivity of ketoconazole for CYP3A4 is often less than ideal. For example, 

CYP1B1, 2B6, and 2C8/9/19 enzymes are significantly inhibited (20-60%) at concentrations 

required to inhibit CYP3A4 by 95% (von Moltke et al., 1998b).  

 

A number of drugs with widely differing structures and therapeutic targets have been reported 

to be mechanism-based inhibitors of CYP3A4 (Zhou, 2008a). These include macrolide 

antibiotics (e.g., clarithromycin, and erythromycin), anti-HIV agents (e.g., ritonavir and 

delavirdine), antidepressants (e.g. fluoxetine and fluvoxamine), calcium channel blockers (e.g., 

verapamil and diltiazem), steroids and their modulators (e.g., gestodene and mifepristone), and 

several herbal and dietary components (Zhou, 2008a). Large numbers of acetylenes, 

particularly those synthetic steroids such as gestodene, norethisterone, ethinylestradiol, and 

norgestrel, have been demonstrated to cause mechanism-based inactivation of CYPs 

(Guengerich, 1990). However, most of the alkynes that inactivate CYPs are terminal acetylenes. 

Studies have shown that internal acetylenes such as several different methyl-substituted aryl 

acetylenes (propynylaryl acetylenes) and 10-dodecynoic acid also cause mechanism-based 

inactivation of CYPs (Foroozesh et al., 1997; Helvig et al., 1997). Mifepristone, an internal 

acetylene that has a methyl group substituting for the hydrogen on the external carbon of the 

triple bond, is a potent and selective mechanism-based inactivator of CYP3A4 via irreversible 

modification of the apoprotein (He et al., 1999).  
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Most of these CYP3A4 inactivators are also substrates and reversible inhibitors of CYPs (in 

particular CYP3A4), and some of which are also inducers of CYP3A and other CYPs. Three 

glitazones, troglitazone, rosiglitazone and pioglitazone, are mechanism-based CYP3A4 

inhibitors, and their order of potency for inactivation is troglitazone > rosiglitazone > 

pioglitazone (Lim et al., 2005a). Structurally, the three glitazones share a 2,4-thiazolidinedione 

functionality. Reactive metabolites from bioactivation of 2,4-thiazolidinedione moiety can 

inactivate CYP3A4. However, troglitazone is the only one containing a chromane moiety; 

instead, rosiglitazone has a dialkylamino-pyridine and pioglitazone has a dialkylpyridine group. 

Formation of quinone methide from chromane might contribute to the greater potency of 

troglitazone for inactivating CYP3A4. The less effective formation of covalent adducts in 

CYP3A4 by rosiglitazone and pioglitazone, combined with the much lower doses generally 

prescribed (<10 mg/day) may explain the lacking of idiosyncratic hepatotoxicity and 

pharmacokinetic drug-drug interactions of those drugs, compared with troglitazone, in clinical 

settings (Lim et al., 2005a). 

 

1.2.4.3 Induction of CYP3A4 

The PXR/NR1I2, also known as steroid and xenobiotic receptor and pregnane-activated 

receptor is a member of the NR family of ligand-dependent transcription factors (Synold et al., 

2001; Moore et al., 2006; Stanley et al., 2006; Matic et al., 2007). PXR/NR1I2 has been 

identified as a key regulator for the expression of genes involved in all stages of drug 

metabolism and transport (Synold et al., 2001; Matic et al., 2007). Phase I drug metabolizing 

enzymes regulated by PXR/NR1I2 include CYP2B6, 2C8, 3A4, 3A5, and 3A7, 

carboxylesterases, and dehydrogenases (Synold et al., 2001; Moore et al., 2006; Stanley et al., 

2006; Matic et al., 2007). The ligands of PXR/NR1I2 include a wide variety of structurally 

diverse, low-affinity exogenous and endogenous chemicals, e.g. steroid hormones and steroid 

metabolites, such as progesterone, estrogen, corticosterone, 5β-pregnane, and androstanol, and 

dietary and herbal compounds, such as coumestrol, carotenoids, and hyperforin, a constituent 

of the herbal antidepressant St John’s wort (Blumberg et al., 1998; Moore et al., 2000a; Moore 

et al., 2000b). Therapeutic drugs that behave as PXR/NR1I2 activators include rifampicin, 

phenobarbital, nifedipine, clotrimazole, mifepristone, and metyrapone (Moore et al., 2000b). 

Many of the PXR ligands are also shared by CAR/NR1I3. Upon ligand binding, PXR/NR1I2 

forms a heterodimer with RXRα/NR1B1 and transactivates ER6 (everted repeat with a 6 bp 

spacer) elements upstream of the CYP genes (Waxman, 1999). RXRα/NR1B1 serves as a 

common heterodimerization partner for many orphan nuclear receptors, including CAR/NR1I3. 



 

 31

The binding of PXR/RXRα to ER6 is followed by recruitment of coactivator proteins, e.g. 

steroid receptor coactivator-1 and transcriptional activation of the respective gene (Lanz et al., 

1999). There is evidence for a second binding site for PXR/NR1I2 in the ~7,800 bp upstream 

5’-flanking region of the CYP3A4 gene having ER6-like binding sites (Goodwin et al., 1999). 

PXR/NR1I2 and RXRα/NR1B1 are induced by GR/NR3C1 (Pascussi et al., 2008). Thus, the 

activation of GR/NR3C1 by glucocorticoids, such as dexamethasone, leads to the induction of 

PXR/RXR and to the increase of CYP3A4 induction by endogenous and exogenous 

compounds. Pxr knockout mice showed no induction by typical mouse Cyp3a inducers. The 

loss of Pxr did not alter the basal Cyp3a expression in mice. Transgenic mice containing 

human PXR/NR1I2 were also generated showing induction by human specific inducers, such 

as rifampicin (Xie et al., 2000). 

 

The most common clinical implication for the activation of PXR/NR1I2 is the occurrence of 

drug-drug interactions mediated by up-regulated CYP3A4. Therefore, altered function or 

expression of the PXR/NR1I2 gene due to SNPs is considered an important additional source of 

inter-individual variation in the expression and activity of CYP3A4. To date, there are 401 

reported SNPs for the human PXR/NR1I2 gene in the SNP database at NCBI 

(http://www.ncbi.nlm.nih.gov/, access date: 25 March 2009). Multiple SNPs of PXR/NR1I2 

have functional effects on the expression of human PXR/NR1I2. Zhang et al. (2001) found that 

the -25385C>T was associated with a marked higher CYP3A4 induction ability by rifampin as 

determined by the erythromycin breath test, a marker of CYP3A4 hepatic activity. Individuals 

with the -25385C>T genotype had a 2-fold higher CYP3A4 activity after treatment with 

rifampin, as compared to subjects with the wild-type genotype. Out of nine SNPs reported in 

the 3’-UTR of PXR/NR1I2, four demonstrated association with the expression levels of target 

genes. Hustert et al. (2001) found 3 variants (V140M, D163G, and A370T) with significant 

functional defects in terms of CYP3A4 transcription. A Q158K mutation of PXR/NR1I2 has 

been linked to decreased rifampin-mediated CYP3A4 induction. Koyano et al. (2004) have 

investigated the three variants [443G>A (R148Q), 1141C>T (R381W), 1207G>A (I403V)] of 

PXR/NR1I2 and found their basal and rifampicin-induced transactivation of the CYP3A4 

enhancer/promoter was significantly reduced compared with the wild-type PXR/NR1I2 (Lim et 

al., 2005b). Our previous study showed that the activity of the recombinants with alleles 

containing the -24622A>T in the 5’-untranslated region (UTR) or -24446C>A in exon 1 was 

30-40% higher than that in the reference genotype (Wang et al., 2007).  
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1.2.5 Other CYPs 

In humans, there are three functional genes in the CYP2A subfamily: CYP2A6, 2A7 and 2A13 

(Fernandez-Salguero and Gonzalez, 1995; Hoffman et al., 1995; Raunio et al., 1999). The 

CYP2A6 and 2A7 genes have a 96 % similarity in the nucleotide sequence and a 94 % identity 

at the amino acid sequence (Miles et al., 1989). CYP2A6 codes a functional enzyme that is 

polymorphically expressed in the human liver accounting for about 1-10% of total CYPs, and 

only trace amounts are found in extrahepatic tissues (Koskela et al., 1999), while the product of 

CYP2A7 has been shown to not incorporate heme and is thus inactive (Yamano et al., 1990; 

Ding et al., 1995). CYP2A13 is not expressed in the liver but expressed in the olfactory bulb 

and respiratory tract (Fernandez-Salguero and Gonzalez, 1995; Hoffman et al., 1995; Raunio et 

al., 1999). In addition, the CYP2A subfamily contains two identical copies of a pseudogene, 

CYP2A7PT and CYP2A7PC (or CYP2A7P1) which contain putative CYP2A coding sequences 

corresponding to exons 1 through 5 (Fernandez-Salguero et al., 1995a). CYP2A7 mRNA is 

expressed in liver at similar levels as CYP2A6.  

 

CYP2A6 metabolizes about 1% of clinical drugs. CYP2A6 is involved in the metabolism of 

valproic acid, with substantial contribution from CYP2B6 and 2C9 (Sadeque et al., 1997). The 

reactive metabolite, 4-ene-valproic acid, is a hepatotoxin. Halothane is metabolized by 

CYP2A6 as well as 3A4 (Spracklin et al., 1996). CYP2A6 is responsible for the sulfoxidation 

and thiono-oxidation of diethyldithiocarbamate methyl ester to form 

S-methyl-N,N-diethylthiolcarbamate sulfoxide, the putative active metabolite responsible for 

the alcohol deterrent effects of disulfiram (Madan et al., 1998). CYP2A6, 2B6, and 3A4 are the 

high Km components for cyclophosphamide and ifosfamide 4-hydroxylation, while CYP2C8 

and 2C9 are the low Km components (Chang et al., 1993). Pilocarpine is a cholinergic agonist 

that is metabolized to pilocarpic acid by serum esterase. Formation of 3-hydroxypilocarpine 

from pilocarpine, a cholinergic agonist, is mainly metabolised by CYP2A6 (Endo et al., 2007). 

Coumarin strongly inhibited the formation of 3-hydroxypilocarpine by >90%. 

2n-Propylquinoline, a newly developed drug for the treatment of visceral leishmaniasis, is 

hydroxylated by CYP2A6, with contribution from CYP2E1 and 2C19 (Belliard et al., 2003). 

 

Human CYP2A6 is the major catalyst in the metabolism of R-verbenone, a natural compound 

of the essential oil from rosemary species such as Rosmarinus officinalis L., Verbena triphylla, 

and Eucalyptus globulus, by liver microsomes (Miyazawa et al., 2003). Fenchol is a terpene 

and an isomer of borneol and the naturally occurring S-fenchol is used extensively in 
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perfumery. S-Fenchol is metabolized to fenchone by CYP2A6 (Miyazawa and Gyoubu, 2007b). 

Fenchone is further hydroxylated by CYP2A6 and 2B6 in human liver microsomes (Miyazawa 

and Gyoubu, 2007a). R-Camphor was oxidized to 5-exo-hydroxyfenchone by CYP2A6 

(Gyoubu and Miyazawa, 2007). Camphor is found in wood of the camphor laurel 

(Cinnamomum camphora). Camphor is an active ingredient (along with menthol) in 

vapor-steam products, such as Vicks VapoRub, and it is effective as a cough suppressant. 

 

CYP2A13 has similar substrate specificity to 2A6 with some marked differences. CYP2A13 is 

active in the metabolism of a number of procarcinogens. CYP2A13 is the most efficient 

enzyme in the metabolic activation of the tobacco-specific procarcinogen 

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific lung carcinogen 

(Jalas et al., 2003; Smith et al., 2003; Brown et al., 2007). CYP2A13 is mainly expressed in the 

respiratory tract (Zhu et al., 2006) where it can convert NNK into carcinogenic species that 

crosslink DNA and consequently induce carcinogenesis (Su et al., 2000). Studies with 

recombinant enzymes have demonstrated that CYP2A13 is 30-215 times more efficient at 

activating NNK into its carcinogenic metabolites than CYP2A6 (Su et al., 2000; He et al., 

2004a). CYP2E1, 2D6, and 3A4 have also been shown to metabolize NNK in vitro, but their 

Km values are much higher than Km values for the 2A enzymes (Patten et al., 1996). The level 

of lung CYP2A13, but not CYP2A6 which can also metabolize NNK, was correlated with 

human lung microsomal NNK metabolic activation activity (He et al., 2004a; He et al., 2004b; 

Zhang et al., 2007), suggesting a more important role of CYP2A13 in the activation of NNK in 

the lung.  

 

CYP2B6 can metabolise ∼8% of all pharmaceutical drugs to some extent. These include 

cyclophosphamide (Chang et al., 1993), ifosfamide (Chang et al., 1993; Granvil et al., 1999), 

tamoxifen (Crewe et al., 2002), ketamine (Yanagihara et al., 2001; Hijazi and Boulieu, 2002), 

artemisinin (Svensson and Ashton, 1999), nevirapine (Erickson et al., 1999; Ward et al., 2003), 

efavirenz (Erickson et al., 1999; Ward et al., 2003), bupropion (Faucette et al., 2000; Hesse et 

al., 2000), sibutramine (Bae et al., 2008), propofol (Court et al., 2001; Oda et al., 2001), 

S-mephenytoin (Heyn et al., 1996), selegiline (Hidestrand et al., 2001; Kamada et al., 2002; 

Salonen et al., 2003), S-mephobarbital (Kobayashi et al., 1999), triethylenethiophosphoramide 

(thioTEPA) (Jacobson et al., 2002), valproic acid (Kiang et al., 2006), pethidine (Turpeinen et 

al., 2006), perhexiline (Davies et al., 2007), and diazepam (Ono et al., 1996). Ketamine 

N-demethylation is catalysed by CYP3A4, 2B6 and 2C9 (Hijazi and Boulieu, 2002). CYP2B6, 
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2D6, and 3A4 catalyze the oxidation of perhexiline enantiomers (Davies et al., 2007). 

Meperidine is an opioid analgesic metabolized in the liver by CYP2B6, 3A4 and 2C19 via 

N-demethylation to normeperidine (Ramirez et al., 2004), a potent stimulant of the central 

nervous system. The novel uroprotective drug N-methyl,N-propargyl-2-phenylethylamine was 

converted by CYP2B6, 2C19 and 2D6 to N-methylphenylethylamine and 

N-propargylphenylethylamine (Rittenbach et al., 2007). In addition, human CYP2B6 

preferentially metabolized benzyloxyresorufin and pentoxyresorufin, although other CYPs also 

metabolized these substrates in human liver microsomes (Gervot et al., 1999). 

 

Some inhibitory agents against CYP2B6 have been characterized as to the potency and 

selectivity of inhibition toward CYP2B6. These include orphenadrine (Ekins et al., 1997; Guo 

et al., 1997), n-propylxanthate (Kent et al., 1999) and xanthates (Yanev et al., 1999), 

2-phenyl-2-(1-piperidinyl)propane (Chun et al., 2000), ritonavir (Hesse et al., 2001), efavirenz 

(Hesse et al., 2001), and nelfinavir (Hesse et al., 2001). Xanthates have been reported to be 

selective mechanism-based inactivators of CYP2B6 (Kent et al., 1999; Yanev et al., 1999). 

Both clopidogrel and ticlopidine inhibited bupropion hydroxylation as mechanism-based 

inhibitors (Richter et al., 2004). Ticlopidine is also a selective mechanism-based inhibitor of 

CYP2C19 (Ko et al., 2000; Giancarlo et al., 2001; Ha-Duong et al., 2001). ε-Viniferin is a 

potent mechanism-based inhibitor of CYP2B6 using 7-benzoxyresorufin-O-debenzoyloxylation 

as a marker reaction (Piver et al., 2003). thioTEPA is a selective inhibitor of CYP2B6 

catalyzed S-mephenytoin N-demethylation to nirvanol with an IC50 value of ∼5 µM (Rae et al., 

2002).  

 

CYP2C8 accounts for about 7% of total hepatic CYP contents (Shimada et al., 1994a) and 

metabolizes ∼5% of drugs cleared by Phase I reaction. The prototypical substrate for CYP2C8 

is the potent antimicrotubule drug paclitaxel, and its 6α-hydroxylation has been widely used in 

in vitro reaction phenotyping (Rahman et al., 1994; Cresteil et al., 2002). CYP2C8 contributes 

substantially to the biotransformation of a variety of clinical drugs, including antimalarial 

agents (e.g. amodiaquine (Li et al., 2002) and chloroquine (Kim et al., 2003), thiazolidinedione 

antidiabetic drugs (e.g. troglitazone (Yamazaki et al., 1999), rosiglitazone (Baldwin et al., 

1999), pioglitazone (also minor contribution from CYP2C9 and 3A4) (Jaakkola et al., 2006b)), 

statins (e.g. cerivastatin and fluvastatin (Wang et al., 2002a), atorvastatin (Jacobsen et al., 

2000), and simvastatin (Prueksaritanont et al., 2003), also contribution from CYP3A4 and 

2C9), opioids (e.g. morphine (Projean et al., 2003), methadone (Wang and DeVane, 2003), 
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buprenorphine (Picard et al., 2005), and loperamide (Kim et al., 2004)), repaglinide (a 

hypoglycaemic drug that stimulates insulin secretion) (Bidstrup et al., 2003; Kajosaari et al., 

2005), and R-ibuprofen (Hamman et al., 1997).  

 

Montelukast and zafirlukast, both leukotriene D4 (LTD4) receptor antagonists, seem to be a 

potent and relatively selective competitive inhibitor of CYP2C8 in vitro (Walsky et al., 2005a; 

Walsky et al., 2005b). Montelukast can also inhibit CYP2C9 with IC50 of 1.2 µM (50-fold 

higher than the interaction with CYP2C8) (Walsky et al., 2005b). However, montelukast and 

zafirlukast do not alter the pharmacokinetics of CYP2C8 substrates such as repaglinide 

(Kajosaari et al., 2006) and pioglitazone (Jaakkola et al., 2006a) in vivo in humans. This is 

likely to reflect the pharmacokinetic properties of montelukast that limit the in vivo 

concentration of montelukast available for CYP2C8 binding. The benzylic side chain of 

montelukast is known to be oxidized in vivo (Balani et al., 1997) and in vitro by CYP2C9 and 

3A4, but not CYP2C8 (Chiba et al., 1997). Quercetin, trimethoprim and gemfibrozil are all 

inhibitors of CYP2C8 (Wang et al., 2002a; Wen et al., 2002a). Trimethoprim has been shown 

to increase the area under the plasma concentration-time curve (AUC) of repaglinide AUC 1.3- 

to 2.2-fold (Niemi et al., 2004). Cotreatment of gemfibrozil has been shown to increase the 

AUC of rosiglitazone 1.8- to 2.8-fold (Niemi et al., 2003a), AUC of pioglitazone 3.2-fold 

(Jaakkola et al., 2005), AUC of repaglinide 5.5- to 15-fold (Niemi et al., 2003b; Tornio et al., 

2008), AUC of ibuprofen by 34% (Tornio et al., 2007), AUC of loperamide 2.2-fold (Niemi et 

al., 2006), and AUC of cerivastatin 1.3- to 10-fold (Backman et al., 2002). 

 

CYP2C19 is primarily expressed in hepatic tissue, but a significant amount is also found in the 

gut wall, particularly the duodenum (Zhou et al., 2008). CYP2C19 is responsible for the 

metabolism of approximately 10% of therapeutic drugs, including proton pump inhibitors (e.g. 

omeprazole, lansoprazole and pantoprazole), antidepressants (e.g. imipramine, amitriptyline 

and escitalopram), benzodiazepines (e.g. diazepam and flunitrazepam), anticancer drugs (e.g. 

cyclophosphamide), anti-epileptics (e.g. phenytoin, mephenytoin, phenobarbital), clopidogrel 

and so on (Zhou et al., 2008). CYP2C19 is also contributes to the catabolism of endogenous 

substrates like estradiol (Justenhoven et al., 2008), progesterone and testosterone (Yamazaki 

and Shimada, 1997). 

 

The expression level of CYP2C9 in the human liver is about 20 times higher than that of 

CYP2C19 (Romkes et al., 1991), indicating that there are some differences in the regulatory 
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mechanism of CYP2C9 and 2C19. It has been reported that PXR/NR1I2, CAR/NR1I3, 

GR/NR3C1, and HNF-3γ/NR2A2 and HNF-4α/NR2A1 are involved in the basal expression of 

CYP2C9 and 2C19 (Gerbal-Chaloin et al., 2001; Raucy et al., 2002; Chen et al., 2003; Bort et 

al., 2004; Kawashima et al., 2006; Kojima et al., 2007; Wortham et al., 2007). Analysis of the 

CYP2C19 promoter revealed a single CAR/NR1I3 binding site at -1891/-1876 bp which binds 

CAR/NR1I3 and PXR/NR1I2 and a glucocorticoid-responsive element at -1750/-1736 bp 

(Chen et al., 2003). Rifampicin induced a modest increase in promoter activity in cells 

cotransfected with PXR/NR1I2. Dexamethasone activated the -2.7-kb CYP2C19 promoter in 

HepG2 cells only in the presence of cotransfected GR/NR3C1, whereas the GR/NR3C1 

antagonist mifepristone inhibits this response and mutation of the glucocorticoid-responsive 

element abolishes Dexamethasone-induced activation (Chen et al., 2003).  

 

CYP3A5 accounts for about 7-8% of total CYP3A content in only ∼20% of the liver samples 

examined. CYP3A5 is polymorphically expressed in adults with detectable expression in about 

10-20% in Caucasians, 33% in Japanese and 55% in African-Americans (Kuehl et al., 2001). 

The CYP3A5 gene is localized in a cluster on chromosome 7q21-q22.1 and consists of 13 

exons (Spurr et al., 1989; Schuetz and Guzelian, 1995; Finta and Zaphiropoulos, 2000). 

CYP3A4 and 3A5 are considered to have similar substrate specificity, but the contribution of 

CYP3A5 to the total metabolic clearance of CYP3A substrates in the liver in vivo has yet to be 

determined. The only human CYP gene induced directly by GR/NR3C1 is CYP3A5. There is 

no consensus glucocorticoid responsive element in the CYP3A5 gene, but instead GR/NR3C1 

binds to the glucocorticoid responsive element half-sites in the 5’-flanking region of CYP3A5. 

 

1.3 Genetic Mutations of Human CYP Genes and the Functional Impact  

In 1969, Alexanderson et al. (1969) provided the first direct evidence from a twin study that 

the metabolic clearance of nortriptyline was influenced by genetic factors.  Mahgoub et al. 

(1977) and Eichelbaum et al. (1979) independently discovered that the metabolism of 

debrisoquine and sparteine, respectively, is polymorphic, and it was later shown that these 

drugs are metabolized by a common enzyme, i.e. CYP2D6 whose activity is determined by 

genetic trait. Phenotypically, a specific population are composed of ultra-rapid metabolizers 

(UMs), EMs, intermediate metabolizers (IMs), and PMs. The distribution of the genetic 

variations and the phenotypes is ethnicity-dependent (Chowbay et al., 2005). The PM 

phenotype is due to the presence of two non-functional (null) alleles or deletion of entire gene, 

while the EM phenotype is due to one or two alleles with normal function. An IM phenotype is 
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usually found in individuals carrying one null allele and another allele with reduced function, 

while UMs often carry more than one extra functional gene. Pharmacogenetics is the study of 

the influence of genetic factors in the individual variation in drug response, while 

pharmacogenomics is a more global definition and entails the study of the entire spectrum of 

genes and their contribution to variability in drug efficacy and toxicity using genome-wide 

approaches (Evans and Relling, 1999; McLeod, 2001; McLeod and Evans, 2001; 

Weinshilboum, 2003; Zhou et al., 2008). Genetic polymorphisms within CYPs mainly affect 

the metabolism of drugs that are substrates for those particular enzymes, probably leading to 

differences in drug response in addition to an altered risk for adverse drug reactions 

(Ingelman-Sundberg et al., 2007; Kirchheiner and Seeringer, 2007). 

 

Genetic polymorphisms within CYPs mainly affect the metabolism of drugs that are substrates 

for those particular enzymes, probably leading to differences in drug response in addition to an 

altered risk for adverse drug reactions (Ingelman-Sundberg et al., 2007; Kirchheiner and 

Seeringer, 2007). Most members of the CYP families are polymorphic (see 

http://www.imm.ki.se/CYPalleles) and allelic variants resulting in altered protein expression 

and activity have significant effects on the disposition of drugs and may cause diseases as a 

phenotype. 

 

1.3.1 The CYP1A2 gene 

To date, more than 15 variant alleles and a series of subvariants (*1B to *16) of the CYP1A2 

gene have been identified (see Table 1-3) (http://www.imm.ki.se/CYPalleles, access date: 25 

March 2009), and 158 SNPs have been found in the CYP1A2 upstream sequence, introns and 

exons in NCBI dbSNP (http://www.ncbi.nlm.nih.gov/, access date: 25 March 2009). 

CYP1A2*1A is referred to as the wild-type. Among the SNPs located in seven exons, there are 

22 non-synonymous that change amino acid sequence. These include 43C>T (L15F); 53C>G 

(S18C); 63C>G (F21L); 130G>A (E44K); 217G>A (G73R); 310G>A (D104N); 331C>T 

(L111F); 373T>A (F125I);  413G>A (R138H); 538A>G (M180V); 613T>G (F205V); 

841C>T (R281W); 894C>A (S298R); 895G>A (G299S); 940A>G (I314V); 1042G>A 

(G348S); 1067G>A (R356Q); 1217G>A (C406Y); 1291C>T (R431W); 1313C>T (T438I); 

1369C>T (R457W); 1434A>T (Q478H); 1543A>G (I515V). Synonymous SNPs of CYP1A2 

exons include 222C>T (D74D); 249G>T (T83T); 306C>T (G102G). 
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The most extensively studied polymorphisms are -3860G>A (CYP1A2*1C), -2467delT 

(CYP1A2*1D), -739T>G (CYP1A2*1E) and -163C>A located in intron 1 (CYP1A2*1F), which 

were first reported in a Japanese population (Chida et al., 1999a). CYP1A2*1C was reported to 

cause decreased inducibility of the enzyme in smokers of Japanese, probably due to decreased 

expression of the enzyme (Nakajima et al., 1999b). The -163C>A in intron 1 caused increased 

enzyme inducibility in the presence of an inducer (e.g. smoking) in white smokers (Sachse et 

al., 1999), although this association is controversial (Chida et al., 1999a; Nordmark et al., 2002; 

Shimoda et al., 2002; Aklillu et al., 2003; Larsen and Brosen, 2005). Smokers with the 

-163C/C genotype had 40% lower plasma 17X:137X ratios compared with those with the 

-163A/A genotype in smokers (Sachse et al., 1999).  

 

CYP1A2*1J (-163C>A; -739T>G) and CYP1A2*1K (-163C>A; -739T>G; -729C>T, all 

located in intron 1) have been detected in Ethiopian non-smokers (Aklillu et al., 2003). The 

*1K haplotype was associated with 40% lower inducibility in vitro, and non-smokers 

heterozygous for *1K had significantly lower CYP1A2 activity compared with the wild-type 

(Aklillu et al., 2003). The -729C>T SNP abolishes a binding site for an Ets nuclear factor, 

resulting in highly decreased CYP1A2 expression and caffeine metabolism (Aklillu et al., 

2003). CYP1A2*1K is relatively rare. 

 

CYP1A2*1G, *1H, *1L, *1M, *1N, *1P, *1Q, *1R, *1S, *1T, *1U, *1V, and *1W are 

relatively rare and do not alter enzyme activity (Chevalier et al., 2001; Soyama et al., 2005; 

Ghotbi et al., 2007). More recently, the −3113A>G polymorphism, with a frequency of 10% in 

a Chinese population, has been reported to be associated with decreased CYP1A2 activity 

(Chen et al., 2005a). CYP1A2*2 carries a 63C>G mutation that causes a F21L substitution, 

which was first detected from the direct sequencing of DNA from one of eight Chinese 

subjects (Huang et al., 1999), but its functional impact is unclear due to its rarity. The 

CYP1A2*3 (2385G>A; 5347T>G), *4 (2499A>T), *5 (3497G>A) and *6 (5090C>T) variants 

all cause amino acid changes, which were first detected in a French population with very low 

frequencies (0.5%) (Chevalier et al., 2001). When expressed in E. coli, CYP1A2*3, *4, and *5 

had decreased enzyme expression and activity and altered substrate specificity for phenacetin 

and heterocyclic amines; whereas *6 did not express any enzyme (Zhou et al., 2004a).  

CYP1A2*7 contains a 3534G>A mutation in intron 6, causing RNA splicing defect and leading 

to loss of CYP1A2 activity, which was found in a 70-year old patient who had very high 

plasma concentrations of clozapine when administered at normal dose (Allorge et al., 2003).  
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Other variants of CYP1A2, including *8 (5166G>A; 5347T>C), *9 (248C>T), *10 (502G>C), 

*11 (558C>A), *12 (634A>T), *13 (1514G>A), *14 (5112C>T), *15 (125C>G; 534T>C) and 

*16 (2473G>A; 5347T>C), have been detected in Japanese with very low frequencies 

(0.2-0.6%) (Murayama et al., 2004). The *11 variant (leading to F186L substitution) had a 

significantly decreased enzyme activity when expressed in V79 hamster cells, with 12% of the 

wild-type capacity for phenacetin O-deethylation and 28% for 7-ethoxyresorufin 

O-deethylation (Murayama et al., 2004). CYP1A2*8, *15, and *16 alleles, leading to R456F, 

P42R, and R377Q changes, respectively, showed <1% of the 7-ethoxyresorufin O-deethylation 

capacity compared with the wild-type in transfected V79 hamster cells (Saito et al., 2005).  It 

appears that the amino acids at residues 42, 186, 377 and 456 play an important role in 

enzyme-substrate interactions. 

 

There are significant ethnic differences in the distribution of common and rare CYP1A2 SNPs 

and alleles.  The −3860G>A and the −2467delT mutations are lower in Caucasians compared 

with Asians, while -739G was frequent in Ethiopians and Saudi Arabians (Chida et al., 1999a; 

Sachse et al., 1999; Nordmark et al., 2002; Larsen and Brosen, 2005). The -163C>A SNP has 

similar frequencies in all populations studied, with highest frequency in Africans. The 

CYP1A2*1F allele is more frequent in Caucasians and Africans, while *1D, *1L, *1M and *1N 

are more common in Asians (Chida et al., 1999a; Sachse et al., 1999; Nordmark et al., 2002; 

Larsen and Brosen, 2005). CYP1A2*1J, *1K and *1W are rare in all populations studied. 

 

Resistance to clozapine therapy due to low plasma drug levels has been reported in smokers 

harbouring the -163A/A genotype (Ozdemir et al., 2001; Eap et al., 2004). Higher plasma 

concentrations of clozapine and its metabolite N-desmethylclozapine have been observed in 

patients carrying two CYP1A2 variants associated with reduced enzyme activity (-3860A, 

-2467del, -163C, -739G and/or -729T) compared with those with one or none (Melkersson et 

al., 2007). 

 

Since CYP1A2 can bioactivate procarcinogens, epidemiological studies have been conducted 

to explore the relationship of CYP1A2 polymorphisms and cancer risk. Chinese smokers 

homozygous for the CYP1A2 haplotype -3860G/-3113G/5347C have increased hepatocellular 

carcinoma risk (Chen et al., 2006b). A 2-fold increased risk for squamous lung cancer has been 

observed in patients carrying -2467del mutation (Pavanello et al., 2007). Increased lung cancer 
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risk was also found in Japanese non-smokers carrying the -163A/A genotype (Osawa et al., 

2007). Increased gastric cancer risk was shown in non-smokers carrying the -3860 mutation 

(Agudo et al., 2006), while -163C and -2467delT alleles were associated with pancreatic 

cancer in heavy smokers (Li et al., 2006a). On the other hand, lower risk of breast cancer has 

been found in CYP1A2 -163C/C carriers (Le Marchand et al., 2005), but this allele is 

associated with endometrial and ovarian cancers (Mikhailova et al., 2006). Lower circulating 

estradiol levels have been detected in premenopausal women with the -163C/C genotype 

compared with -163A/A and -163A/C carriers (Lurie et al., 2005). High estradiol levels are 

known to increase breast cancer risk. 

 

1.3.2 The CYP2C9 gene 

To date, 33 variants and a series of subvariants of CYP2C9 (*1B through to *34) have been 

identified (Table 1-4) (http://www.imm.ki.se/CYPalleles, access date: 25 March 2009). 

CYP2C9*1A is referred to the wild-type. There have been 520 SNPs found in the CYP2C9 

upstream sequence, introns and 9 exons in NCBI dbSNP (http://www.ncbi.nlm.nih.gov/, access 

date: 25 March 2009). Among these SNPs, there are 19 non-synonymous SNPs found in exons 

3, 5, 7, 8, and 9. These include 334A>C (I112L); 371G>A (R124Q); 430C>T (R144C); 

448C>T (R150C); 449G>A (R150H); 752A>G (H251R); 815A>G (E272G); 817insA 

(273frameshift); 980T>C (I327T); 1003C>T (R335W); 1010C>T (P337R); 1073A>G 

(Y358C); 1075A>C (I359L); 1076T>C (I359T); 1080C>G (D360E); 1238T>C (L413P); 

1341A>C (L447F); 1465C>T (P489S). Eleven SNPs in exons of CYP2C9 are synonymous: 

96C>G (G32G); 228G>A (V76V); 390G>T (T130T); 837A>C (P279P); 840T>A (S280S); 

936C>A (L312L); 1026G>A (R342R); 1140C>A (L380L); 1185A>T (L395); 1323C>T 

(A441A); 1425A>T (G475G). 

 

One of the first identified and most common allelic variants is CYP2C9*2, a missense mutation 

of 430T>C causing the substitution of R144C (Rettie et al., 1994). Typically, this mutation 

causes a decrease in enzyme activity toward CYP2C9 substrates such as S-warfarin and 

tolbutamide.  CYP2C9*3 is a missense mutation of 1075A>C on exon 7 that leads to an I359L 

substitution (Sullivan-Klose et al., 1996). CYP2C9*2 causes ~20-30% loss of enzyme activity 

toward S-naproxen, whereas the *3 mutation may reduce Vmax activity by as much as 70%. It is 

possible this loss is due to enzyme conformational changes that reduce the enzyme’s ability to 

bind to substrates. CYP2C9*4 is an extremely rare missense mutation of 1076T>C originally 

identified in a Japanese epilepsy patient with an adverse reaction to phenytoin (Imai et al., 
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2000). It is believed the lack of activity is due to an I359T substitution. The CYP2C9*5 allele 

contains the 1080C>G transversion in exon 7 causing a D360E change, which has been found 

almost exclusively in African-Americans (Dickmann et al., 2001; Allabi et al., 2004; Allabi et 

al., 2005). Approximately 3% of this population carries the CYP2C9*5 allele. Unlike 

CYP2C9*2 and *3, *5 appears to affect the Michaelis-Menten (Km) constant of various drugs, 

substantially reducing the efficiency of the enzyme and increasing the Km values (Dickmann et 

al., 2001; Allabi et al., 2004). 

 

CYP2C9*6 is a null allele because of deletion of A at 818 nucleotide on exon 5 originally 

identified in an African American patient with a high sensitivity to phenytoin, which results in 

a shortened protein (Kidd et al., 2001; Allabi et al., 2005). CYP2C9*13 has been identified in a 

Chinese poor metabolizer of lornoxicam and the allele has a T269C transversion in exon 2 of 

CYP2C9 that leads to an L90P substitution (Si et al., 2004). Frequency analysis shows that 

approximately 2% of the Chinese populations carry this variant allele. The half-life of 

lornoxicam was about 105 hr in this carrier which was markedly longer than that of other 

CYP2C9*1/*3 and CYP2C9*1/*1 carriers (half-lives of 5.8–8.1 and 3.2–6.3 hr, respectively), 

suggesting that the CYP2C9*13 allele has a larger effect on CYP2C9-mediated drug 

metabolism.  

 

There are significant ethnic differences in the frequency of CYP2C9 variants (Table 1-5). 

CYP2C9*2 is reasonably frequent among Caucasians with ∼1% of the population being 

homozygous carriers and a significant 22% are heterozygous (Sullivan-Klose et al., 1996).  

The corresponding figures for the CYP2C9*3 allele are 0.4% and 15%; with another 1.4% 

being compound heterozygotes – CYP2C9*2/*3 (Kamali and Pirohamed, 2006). CYP2C9*5 is 

estimated to be inherited in ~3% of the African-American population as a single allele 

mutation of 1080C>G (Allabi et al., 2004; Allabi et al., 2005). In addition, African-Americans 

have a significantly lower rate of CYP2C9*2 and *3 inheritance than Caucasians, with 2.5% 

and 1.25% frequency, respectively. 

 

There are a number of clinical studies that address the impact of CYP2C9 polymorphisms on 

the clearance and/or therapeutic response of drugs that are substrates of CYP2C9. The drugs 

most extensively studied include coumarin anticoagulants, sulfonylurea drugs, angiotensin II 

inhibitors, phenytoin, and NSAIDs. Mutant alleles of the CYP2C9 gene have been associated 

with slow hydroxylation of S-warfarin (Lal et al., 2006). There are two common allelic 
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polymorphisms in the CYP2C9 gene, including CYP2C9*2 and *3 that encode enzymes that 

are approximately 12% and 5% as efficient as the wild-type, respectively, and both have a 

substantial effect on the intrinsic clearance of warfarin (Gage and Lesko, 2008). Subjects who 

were homozygous for the CYP2C9*3 allele showed a 90% reduction in the elimination of 

S-warfarin in comparison to subjects who were homozygous for the wild-type allele 

(Takahashi and Echizen, 2001). Impaired metabolism of a low therapeutic index drug such as 

warfarin has important clinical implications. Carriers of such polymorphisms require both 

smaller loading and maintenance doses and have a 4-fold increase in risk of bleeding 

complications, particularly at the beginning of therapy (Gage and Lesko, 2008). An individual 

that requires a low dose of warfarin is 6-fold more likely to be positive for one or more of the 

variant alleles compared with the general population. Patients who are CYP2C9*3 homozygous 

require the lowest doses (Kamali and Pirohamed, 2006). Pharmacogenetic testing of CYP2C9 

would be useful to identify this subgroup of patients who have difficulty at the initiation of 

warfarin therapy, and are potentially at a higher risk of haemorrhage. These findings clearly 

demonstrate the need for clinical assessment of CYP2C9 genotype when establishing optimal 

warfarin therapy (Bussey et al., 2008). 

 

There are case reports describing 4- to 5-fold increase in phenytoin AUCs in patients with 

CYP2C9*3/*3 or 6* (Kidd et al., 1999; Kidd et al., 2001). In Caucasian patients receiving a 

stable dose of phenytoin who had plasma concentrations within the therapeutic range, the 

presence of at least one CYP2C9*2 or *3 allele correlated with one-third lower mean dose 

requirements (199 vs 314 mg/day, respectively) (van der Weide et al., 2001). The dose 

requirements for individuals carrying the CYP2C9*1/*1, *1/*2, *1/*3, *2/*2, and *2/*3 genotypes 

needed 314, 193, 202, 217, and 150 mg/day for phenytoin, respectively (van der Weide et al., 

2001). Similar results have been observed in Japanese (Odani et al., 1997; Mamiya et al., 1998) 

and Taiwanese (Hung et al., 2004) patients. A single-dose study in healthy volunteers also 

revealed that there was a 30% lower concentrations in wild-type individuals compared with 

carriers of CYP2C9*2 or *3 alleles (Aynacioglu et al., 1999). In another study, the AUCs of 

phenytoin were 1.5- and 2.7-fold higher in healthy individuals with one or two CYP2C9*2 and 

*3 variant alleles, respectively, compared with those with the CYP2C9*1/*1 genotype (Caraco 

et al., 2001). Several studies examined whether CYP2C9 genotype affects the toxicity of 

phenytoin. There were more individuals with the CYP2C9*1/*3 genotype among Korean 

patients with skin reactions to phenytoin compared with non-exposed controls (Lee et al., 
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2004). However, no association between CYP2C9 variants and gingival overgrowth was 

observed in patients (Soga et al., 2004). 

 

1.3.3 The CYP2D6 gene 

The genetic variation contributes largely to the interindividual variation in the activity of 

CYP2D6. Presently, 71 different human CYP2D6 variant alleles (*1B to *72) and a series of 

subvariants have been identified (Table 1-6) and designated by the human cytochrome P450 

allele nomenclature committee (http://www.imm.ki.se/CYPalleles, access date: 25 March 

2009). There have been 134 SNPs of CYP2D6 described at NBCI dbSNP, with 32 

non-synonymous SNPs reported (http://www.ncbi.nlm.nih.gov/SNP/, access date: 25 March 

2009). These include 31G>A (V11M); 77G>A (R26H); 100C>T (P34S); 124G>A (G42R); 

271C>A (L91M); 281A>G (H94R); 320C>T (T107I); 358T>A (F120I); 364G>T (G122S); 

454delT (152frameshift); 463G>A (E155K); 496A>G (N166D); 501C>A (H167Q); 502T>G 

(S168A); 505G>T (G169C); 635G>A (G212E); 692T>C (L231P); 709G>T (A237S); 775delA 

(259frameshift); 886A>G (N285S); 886T>C (C296R); 899C>G (A300G); 901G>A (D301); 

931delA (281frameshift); 932C>T (S311L); 971A>C (H324P); 986G>A (G329V); 1012G>A 

(V338M); 1094G>A (R365H); 1117G>A (G373S); 1405C>G (P469A); 1408A>G (T470A); 

1432C>T (H478Y); 1435G>C (G479R); 1441T>G (F481V); 1457C>G (T486S). Synonymous 

SNPs of CYP2D6 exons include 84C>A (R28R); 294C>G (T98T); 333T>C (G111G); 336C>T 

(F112F); 408C>G (V136V); 657T>C (F219F); 801C>A (P267P); 828G>T (L276L); 

935_937delAAG> (K281K); 972T>C (H324H); 1083T>C (H361H); 1203G>A (S401S); 

1401G>C (S467S); 1410T>C (T470T); 1443T>C (F481F); 1449C>T (F483F); 1457C>G 

(T486S). 

 

Null alleles of CYP2D6 do not encode a functional protein and there is no detectable residual 

enzymatic activity. They are responsible for the PM phenotype when present in homozygous or 

compound heterozygous constellations. The mechanism by which leading to a total loss of 

function includes: a) single base mutations or small insertions/deletions that interrupt the 

reading frame or interfere with correct splicing leading to prematurely terminated protein/stop 

codon (e.g. CYP2D6*3, *4, *5, *6, *7, *8, *11, *12, *13, *14, *15, *16, *18, *19, *20, *21, 

*38, *40, *42, *44, *56 and *62); b) non-functional full length coded alleles (e.g. CYP2D6*12, 

*14 and *18); c) deletion of entire CYP2D6 gene as a result of large sequence deletions (e.g. 

CYP2D6*5); and  formation of hybrid genes (e.g. CYP2D6*13 and *16). There is a large 
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deletion of sequence in *13, and *16 and as a result both contain a CYP2D7-2D6 hybrid gene 

(Gaedigk et al., 1991).  

 

The alleles CYP2D6*10, *14, *17, *18, *36, *41, *47, *49, *50, *51, *54, *55, and *57 give 

rise to significantly decreased activity. The enzyme activity change may be 

substrate-dependent for some alleles such as *17. Individuals harboring either of these alleles 

are PMs or IMs.  

 

Functional studies did not demonstrate altered enzyme activity with several alleles of CYP2D6, 

including *2A, *17×2, *35, *41×2, and *48. The CYP2D6*27, *39 and *48 alleles encode 

enzymes with largely normal activity compared to the wild-type protein (Sakuyama et al., 

2008). CYP2D6.27 (E410K), CYP2D6.39 (S486T) and CYP2D6.48 (A90V) expressed in 

COS-7 cells showed a slightly higher intrinsic clearance than the wild-type enzyme. A90, E410 

and S486 are located in β-sheet 3, between the K’ and K’’ helices and in B helix, respectively 

(Rowland et al., 2006). It appears that these residues are not important for the function of 

CYP2D6. 

 

On the other hand, extremely high CYP2D6 activity results from gene 

duplication/multiduplication of functional alleles (e.g. *1 and *2) fused in a head to tail 

orientation, as a result of unequal crossover events and other mechanisms. This was noted by a  

molecular characterization of the CYP2D6 locus in patients with extremely rapid metabolisms 

(Bertilsson et al., 1993). Initially, alleles with 0, 1, 2, 3, 4, 5, and 13 gene copies were reported 

by Johanson et al. (1993) and Aklillu et al. (1996) In a Swedish family (father, daughter, and 

son) as many as 13 copies of a functional allele of CYP2D6 have been identified (Johansson et 

al., 1993). Carriers of CYP2D6*2×N (N = 2, 3, 4, 5, or 13) with extremely high CYP2D6 

activity were identified in a Swedish population (Dahl et al., 1995) and an Ethiopian 

population (Aklillu et al., 1996). The gene duplication/multiduplication results from unequal 

crossover events and other mechanisms. Gene duplication and multiduplication of CYP2D6 

can result enzymes which are functional, partly functional and non-functional. Gaedigk et al. 

(2007b) found gene duplication events in*1, *2, *4, *6, *10, *17, *29, *35, *43, and *45. 

Duplications occurred at 1.3, 5.75, and 2.0% in Caucasian, African American, and racially 

mixed populations, respectively. Most of the variant duplications except *35×N were found in 

African Americans. The *4×N was as frequent as *2×N in African Americans (Gaedigk et al., 
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2007b). Extremely high CYP2D6 activity can result from gene duplication or multiduplication 

of functional allele *1 and *2 fused in a head to tail orientation (Gaedigk et al., 2007b).  

 

1.3.4 Other CYP genes 

The CYP2A6 gene spans a region of approximately 6 kb pairs consisting of 9 exons and has 

been mapped to the long arm of chromosome 19 (between 19q12 and 19q13.2) (Miles et al., 

1989). It is located within a 350-kb pair gene cluster together with the CYP2A7 and 2A13 genes, 

two CYP2A7 pseudogenes, as well as genes in the CYP2B and 2F subfamilies (Hoffman et al., 

1995). To date, more than 33 variant alleles (*1B to *34) of the CYP2A6 gene have been 

identified (http://www.imm.ki.se/CYPalleles, access date: 25 March 2009). There have been 

227 SNPs found in the CYP2A6 upstream sequence, 8 introns and 9 exons in NCBI dbSNP 

(http://www.ncbi.nlm.nih.gov/, access date: 25 March 2009). There are 28 non-synonymous 

SNPs in exons 1-9. These include 13G>A (G5R); 86G>A (S29N); 352T>C (F118L); 361G>C 

(G121R); 383G>A (R128Q); 391T>G (S131A); 451G>A (E151K); 457T>C (S153P); 474C>G 

(D158E); 478C>A (L160I); 479T>A (L160H); 607C>A (R203S); 773C>A (T258K); 835G>C 

(E279Q); 874G>A (V292M); 881C>G (T294S); 902G>C (G301A); 931C>T (R311C); 

997A>T (R333*); 1093G>A (V365M); 1175T>A (F392Y); 1226A>G (Q409R); 1252A>G 

(N418D); 1257G>C (E419D); 1412T>C (I471T); 1427A>G (K476R); 1436G>T (G479V); 

1454G>T (R485L). 

 

Because of the substantial involvement of CYP2A6 in nicotine elimination, it has been 

proposed that the CYP2A6 polymorphism is a major determinant of an individual’s nicotine 

metabolic clearance and smoking behavior. Individuals homozygous for a CYP2A6 gene 

deletion displayed only 15% of urinary cotinine levels compared with individuals carrying at 

least one active CYP2A6 gene after smoking the same number of cigarettes (Kitagawa et al., 

1999). Subjects with CYP2A6*7/*7, *7/*10 (1.8), and *7/*19 showed prominently lower 

cotinine/nicotine ratios compared with that of subjects with CYP2A6*1A/*1A (Fukami et al., 

2005). Benowitz et al. (2006) revealed that individuals harboring CYP2A6*1/*9 or *1/*12 

showed 17.6% lower nicotine clearance than individuals with the wild-type (15.5 vs 18.8 

ml/min/kg). Healthy subjects with the CYP2A6*1/*2, *1/*4, *9/*12, *9/*4, or *9/*9 showed 

37.8% lower nicotine clearance than the wild-type (11.7 vs 18.8 ml/min/kg).   Overall, 

individuals carrying either of above variant alleles of CYP2A6 showed lower clearance of 

cotinine, longer half-lives for nicotine and cotinine, and greater fraction of the nicotine dose as 
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unchanged nicotine and nicotine glucuronide in the urine compared with the wild-type 

(Benowitz et al., 2006). 

 

The CYP2C19 gene is mapped to the long arm of chromosome 10, located in a densely packed 

region also containing genes encoding CYP2C8, 2C9 and 2C18 (Romkes et al., 1991). The 

CYP2C19 enzyme is a protein of 490 amino acids. It is encoded by the CYP2C19 gene 

consisting of 9 exons which is mapped to chromosome 10 (10q24.1-q24.3) (Romkes et al., 

1991). CYP2C19 is primarily present in hepatic tissue, but a significant amount is also found in 

the gut wall, particularly the duodenum. To date, at least 24 (*1B to *25) variants and a series 

of subvariants of CYP2C19 have been identified (http://www.imm.ki.se/CYPalleles, access 

date: 25 March 2009). CYP2C19*1A represents the wild-type. There have been 553 SNPs 

found in the CYP2C9 upstream sequence, introns and 9 exons in NCBI dbSNP 

(http://www.ncbi.nlm.nih.gov/, access date: 25 March 2009). Among these SNPs, there are 26 

non-synonymous SNPs found in exons 3, 5, 7, 8, and 9. These include 1A>G (M1V); 50T>C 

(L17P); 55A>C (I19L); 221T>C (M74T); 276G>C (E92D); 358T>C (W120R); 365A>C 

(E122A); 431G>A (R144H); 449G>A (R150H); 502T>C (F168L); 518C>T (A173V); 

527A>G (N176S); 636G>A (W212*); 680C>T (P227L); 836A>C (Q279P); 839C>A (S280Y); 

905C>G (T302R); 985C>T (R329C); 991G>A (V331I); 1030C>T (H344Y); 1180G>A 

(V394M); 1228C>T (R410C); 1297C>T (R433W); 1316delG (439frameshift); 1390C>A 

(P464T); 1473A>C(*491C). Synonymous SNPs in exons of CYP2C19 include 99T>C (P33P); 

390G>T (T130T); 681G>A/C (P227P); 903A>G (T301T); 990C>T (V330V); 993T>G 

(V331V); 1059C>T (H353H); 1062G>A (E354E); 1251A>C (G417G); 1440G>A (P480P). 

 

The first CYP2C19 variant allele discovered was CYP2C19*2A containing 681G>A on exon 5 

that causes splicing defect (de Morais et al., 1994b). *2B and *2C also carry this mutation and 

additional SNPs (99C>T; 990C>T; 991A>G) (Ibeanu et al., 1998). CYP2C19*3A and *3B 

share the 636G>A SNP resulting in a premature stop codon in exon 4 together with 991A>G 

and 1251A>C (*3B also contains 1078G>A) (Fukushima-Uesaka et al., 2005). CYP2C19*2A, 

*2B, *2C, *3A, and *3B are null alleles, resulting in complete loss of enzyme activity (De 

Morais et al., 1994a). The majority of PMs of CYP2C19 are due to these variant alleles (Desta 

et al., 2002b). CYP2C19*4 is an initiation codon variant of 1A>G, resulting in GTG initiation 

codon and also carries 99C>T and 991A>G (Ferguson et al., 1998).  
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The majority of enzyme deficiency associated with PMs of S-mephenytoin has been found to 

be the responsibility of various variant alleles of CYP2C19. As with other CYPs, the frequency 

of PMs varies across races, with 13 to 23% of Asians and 1 to 8% of Caucasians and black 

Africans lacking functioning enzyme (Desta et al., 2002b). Three common types of CYP2C19 

genotypes of the PM phenotype exist, including two homozygous genotypes, *2/*2 and *3/*3, 

and one heterozygous genotype, *2/*3. The homozygous CYP2C19*2/*2 genotype is by far 

the most frequent of the three defective PM genotypes (Desta et al., 2002b). For EMs, there are 

two genotypes that are heterozygous for the CYP2C19 wild-type, *1/*2 and *1/*3, and one 

genotype that is homozygous for the wild-type allele, *1/*1. 

 

The distribution of common variant alleles of CYP2C19 has been found to vary among 

different ethnic groups. The allelic frequency of CYP2C19*2 has been shown to be ∼17% in 

African-Americans, 30% in Chinese and ∼15% in Caucasians (Desta et al., 2002b). 

CYP2C19*3 has been shown to be more frequent in Chinese (5%) and less frequent in 

African-Americans (0.4%) and Caucasians (0.04%). CYP2C19*2 is the dominant defective 

allele and accounts for around 75-85% of PM phenotype in Chinese and Caucasian populations 

(Desta et al., 2002b). Almost all PMs in the Asians and Africans can be attributed to 

CYP2C19*2 and CYP2C19*3.  

 

The AUCs of both omeprazole and lansoprazole in PMs are 4- to 15-fold higher compared to 

homozygous EMs, whereas the values in heterozygous EMs are only 2- to 3-fold higher than 

homozygous EMs (Furuta et al., 1999a; Furuta et al., 1999b; Furuta et al., 2001; Ieiri et al., 

2001; Shirai et al., 2001; Cho et al., 2002; Kim et al., 2002; Shirai et al., 2002). With multiple 

dosing, the increase in the AUC of omeprazole, but not of lansoprazole or pantoprazole, 

decreases to ∼2-fold in EMs, due to inhibition of its own metabolism (Andersson et al., 1998; 

Shirai et al., 2001). Such auto-inhibition does not occur in PMs who lack functional CYP2C19 

or has very low enzyme activity. There is a 6-fold higher AUC of lansoprazole in PMs than in 

heterozygous and homozygous EMs (Tanaka et al., 1997; Andersson et al., 1998). The AUC of 

rabeprazole are also increased 3.0- to 5.3-fold in PMs compared to homozygous EMs (Horai et 

al., 2001; Ieiri et al., 2001; Shirai et al., 2001; Lin et al., 2003). 

 

1.4 Structural Features of Major Human Drug Metabolizing CYPs 

The structural information of CYPs was first obtained from bacterial CYPs, such as CYPBM3 

simply because they are all soluble proteins and much easy for crystallization. The crystal 
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structure of rabbit CYP2C5 is the first reported mammalian microsomal CYP. The crystallinity 

of the CYP2C5 (protein database (PDB) ID: 1DT6) (Williams et al., 2000) is a milestone for 

the relevant research since then the crystal structures of human CYPs could be gradually 

revealed based on the first mammalian membrane-binding CYP work. The structures of 

CYP2C5 in complex with diclofenac (1NR6) or a dimethyl derivative of sulfaphenazole (1N6B) 

(Wester et al., 2003) have been reported. The structure of rabbit CYP2B4 in a free form (1PO5) 

(Scott et al., 2004) or in complex with 1-(4-cholorophenyl)imidazole (2Q6N) (Zhao et al., 

2006), bifonazole (2BDM) (Zhao et al., 2006),  or 4-(4-chlorophenyl)imidazole (1SUO) 

(Scott et al., 2004) has also been determined. 

 

To date, the crystal structures of at least twelve human CYPs, including human CYP1A2 

(Sansen et al., 2007), 2A6 (Yano et al., 2005), 2A13 (Smith et al., 2007), 2C8 (Schoch et al., 

2004; Schoch et al., 2008), 2C9 (Williams et al., 2003), 2D6 (Rowland et al., 2006), 2E1, 2R1 

(Strushkevich et al., 2008), 3A4 (Williams et al., 2004; Yano et al., 2004), 7A1, 8A1 

(prostacyclin synthase) (Li et al., 2008),  and 46A1 (Mast et al., 2008), have been solved by 

X-ray crystallography (also see http://www.rcsb.org/pdb/, access date: 25 March 2009). The 

general information of these structures is summarized in Table 1-7.  

 

1.4.1 Common structural features of CYPs 

Comparisons to the bacterial soluble CYPs, the mammalian CYP conserves the general aspects 

of the overall folding pattern of these proteins. However, the substrate binding cavity is poorly 

conserved (Williams et al., 2000). The sequence variation of substrate recognition sites (SRS) 

in the active site is partially responsible for the change and furthermore for the catalytic 

diversity displayed by the CYP2C5 and subsequently human CYPs. 

 

In general, human CYP enzymes share a conserved overall fold and topology, although 

sequence conservation within CYPs family is relatively low at less than 20% sequence identity 

(Brown et al., 2008). The conserved core is formed by a four-helix bundle, helices J and K, a 

coil termed the 'meander' and two sets of β-sheets. The four-helix bundle composed of three 

parallel helices labelled D, L, and I and one antiparallel helix E and the heme group is bound 

between distal I helix and proximal L helix (a heme-binding loop) through an absolutely 

conserved cysteine that serves as the fifth ligand for the heme iron (see Figure 1-4). The most 

characteristic CYP consensus sequence (Phe-X-X-Gly-X-Arg-X-Cys-X-Gly) is located in the 

heme-binding loop on the proximal face of the heme just before the L helix, while another 
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CYP consensus sequence (Ala/Gly-Gly-X-Asp/Glu-Thr-Thr/Ser) accommodated at the central 

part of the long I helix which forms a wall above the heme (Werck-Reichhart and Feyereisen, 

2000). 

 

Despite the highly conserved fold, there is plenty structural discrimination due to distinct 

amino acid sequences in diverse CYP enzymes, especially the difference of certain key amino 

acid residues in the CYP active sites. These key residues in the active sites usually govern 

certain metabolisms occur in specific positions through binding certain rather than any 

substrates. A number of studies suggest that the topography and the character of certain key 

amino acid residues at the CYP active site are the major determinants of substrate specificity. 

Therefore, a single amino acid difference may affect substrate reactivity, representing by the 

change of binding affinity, reaction regioselectivity and velocity. This kind of alterations was 

actually observed in individuals with SNPs of the CYP2D6 gene (Zhou et al., 2006), although 

they were classified into poor or normal metabolism groups without aware of genetic 

polymorphisms.  

 

1.4.2 CYP1A2 

CYP1A2 substrates generally contain planar ring that can fit the narrow and planar active site 

of the enzyme (Sansen et al., 2007). Before the crystal structure of human CYP1A2 was 

resolved, the knowledge of the active site of CYP1A2 enzyme was obtained mainly from 

homology models that were built up on the basis of the structure of either bacteria CYPBM3 

(Lozano et al., 1997; Lozano et al., 2000) or rabbit CYP2C5 (Kim and Guengerich, 2004). 

These homology models did provide valuable information for understanding the 

structure-activity relationship of CYP1A2. However, the gap between the models and real 

structure of CYP1A2 had always existed until 2007 when the first X-ray structure of a human 

CYP1 family enzyme, CYP1A2, was determined (Sansen et al., 2007).  

 

Several pharmacophore models have been established for a number of structurally diverse 

inhibitors of CYP1A2 previously (Korhonen et al., 2005; Roy and Roy, 2008). Based on the 

inhibitory potencies on CYP1A2, a group of naphthalene, lactone and quinoline derivatives (n 

= 52) have been analysed (Korhonen et al., 2005). The results indicated that electronegative 

substitutions at position 1 of naphthalene (dibenzene) increased the inhibitory potency whereas 

other substitutions and heterocyclic nitrogen atom (e.g. quinoline) decreased the effect. In 

addition, a long side chain decreased the inhibition of five-ring lactones (Korhonen et al., 
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2005). Another study of 21 naturally occurring flavonoids has demonstrated that a 

non-substituted phenyl ring at position 2 and a double bond between position 2 and 3 of the 

1,4-benzopyrone nucleus are essential for the inhibitory effects of the flavonoids (Roy and Roy, 

2008). Namely, any substitutions on these positions will lead to poor inhibitory activity of the 

flavonoids. On the other hand, hydroxyl groups present at position 5 and 7 of the benzopyran 

nucleus should not be glycosylated for the potent inhibitory activity of CYP1A2 enzyme (Roy 

and Roy, 2008). The two group chemicals, flavonoids and the derivatives of naphthalene, 

lactone and quinoline, had been used for quantitative structure-activity relationship (QSAR) 

analysis to extract novel structural information related to the interaction between inhibitory 

molecules and the CYP1A2 active site. However, these models are mainly based on particular 

core structures and may be useful to screen potential inhibitors with similar structures instead 

of distinct structure chemicals. 

 

The structure of human CYP1A2 was crystallized in a complex with ANF, an inhibitor of 

CYP1A2, which has been refined to 1.95 Å (PDB ID: 2HI4) (Sansen et al., 2007). In the 2HI4 

structure, both helix F’ and G’ are 310 helical fragments instead of typical α-helices. In addition, 

the CYP1A2 structure is different from those of CYP2 and 3 members in the length and local 

structure of loop regions. CYP1A2 also contains an additional β3’-sheet between helices H and 

I and a small α-helix (K”) residing at the proximal surface (see Figure 1-4). Furthermore, the 

region connecting helices C and D possesses a Ser-rich insertion, which forms a loop extending 

into the solvent.  

 

In the 2HI4 structure in complex with ANF, the compact active site is closed with a relatively 

small volume of the cavity of 375 Å3 (Sansen et al., 2007), which is 44.2% larger than that of 

CYP2A6 (260 Å3) (Yano et al., 2005), but smaller than that of CYP2D6 (∼540 Å3) (Rowland et 

al., 2006) and CYP3A4 (1386 Å3) (Yano et al., 2004). The substrate binding cavity of 

CYP1A2 is narrow, formed by residues on helices F and I that define a relatively planar 

binding platform for the substrate on either side. It is clear that the narrow and flat active site 

cavity of CYP1A2 can fit well with planar compounds such as ANF and typical CYP1A2 

substrates such as theophylline, caffeine, melatonin, tacrine, clozapine. ANF binds CYP1A2 in 

a single preferred orientation, which places the phenyl ring close to the heme iron and makes it 

an inhibitor rather than a substrate for CYP1A2.  
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The relatively narrow, planar substrate binding cavity of CYP1A2 is of great importance in 

drug metabolism as well as in procarcinogen activation. The unique active site architecture 

defines a distinctive substrate binding site that is different from the structures of CYP2 and 

CYP3 members. The residues lining along the helices I and F contribute to the narrow binding 

pocket (see Figure 1-4) and fit the structural properties of its substrates and inhibitors. 

Especially the side chain of Phe226 on helix F (SRS2) makes a great contribution to the π−π 

stacking with ANF. Amino acid substitutions for Phe226 (F226I or F226Y) showed a reduced 

catalytic efficiency (Yun et al., 2000), indicating the prominent role of the Phe226 at the active 

site both for binding and catalysing substrates. This result is consistent with the fact that most 

of the CYP1A2 substrates and inhibitors are small, planar and lipophilic molecules (Korhonen 

et al., 2005). The crystal structure of CYP1A2 improves the understanding of drug recognition 

on the basis of molecular level and provides a rational platform for exploring CYP1A2-ligand 

interactions.  

 

1.4.3 CYP2C9  

Before the release of CYP2C9 structure in 2003, many structure-activity relationship studies 

were conducted through homology model of CYP2C9 on the basis of rabbit CYP2C5 (Oda et 

al., 2004). De Groot et al. (2002) have constructed diverse pharmacophores for CYP2C9 

inhibitors and substrates, respectively. They had built up a pharmacophore model for CYP2C9 

ligand using 16 structurally diverse substrates and pointed out that a hydrophobic region and a 

hydrogen bond acceptor are common features for these CYP2C9 ligands. Differentially, Ekins 

et al. (2000a) reported three pharmacophore models based on three groups of inhibitors and 

extracted additional features, such as an acceptor and a donor of hydrogen bond plus two 

hydrophobic zones in 2 of 3 models whereas two hydrogen bond acceptors in the third model. 

However, these models either were with very basic common features that are too wild to screen 

specific inhibitors for CYP2C9, or were built by structurally similar inhibitors of CYP2C9 that 

obstruct these models for a wide application. 

 

To date, three crystal structures of human CYP2C9 enzyme have been resolved by X-ray 

analysis: one in ligand-free form (PDB ID: 1OG2) and two in complex with warfarin (PDB ID: 

1OG5) and flurbiprofen (PDB ID: 1R9O), respectively (Williams et al., 2003; Wester et al., 

2004). The structure of 1OG5 enzyme is significantly different from that of 1R9O. There were 

extensively altered or mutated amino acids in the 1OG5 enzyme that encompass residues 

30–53, 97–121, 196–233, and 467–478. Seven amino acids had been substituted in specific 
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regions (K206E, I215V, C216Y, S220P, P221A, I223L, and I224L) and 4 histidine tags had 

been added to the 1OG5 structure (Williams et al., 2003). There were no mutations introduced 

into the catalytic domain of the protein for 1R9O construct beside two terminal modifications: 

one on C-terminus extended by a 4-residue histidine tag and another on N-terminal 

transmembrane domain which has been removed (Wester et al., 2004).  

 

In the 1OG5 structure, the seven residue substitutions (whether bound to warfarin or not) are 

similar to that of rabbit CYP2C5 (PDB ID: LVdH) in the region, which may result in warfarin 

binding to the 1OG5 enzyme in the distal end of the active site cavity, more than 10 Å from the 

heme iron (Williams et al., 2003). In this orientation, the S-warfarin molecule is believed to be 

too distant for the hydroxylation to occur. Furthermore, a relative large pocket (∼470 Å3) and 

no basic residue had been identified in the active site from the 1OG5 structure, which rendered 

the selectivity of CYP2C9 for small lipophilic anions difficult to understand. 

 

In the 1R9O structure, however, the two terminal modifications merely facilitated purification 

and structural determination of the catalytic domains of the truncated enzyme without impact 

on the active site. The flurbiprofen in the active site of CYP2C9 was positioned at a reasonable 

distance (4.9 Å) from the iron to facilitate hydroxylation. A relative small structure 

encompassed the active site cavity in the 1R9O construct. Most importantly, the 1R9O 

structure reveals that the basic Arg108 residue points into the active site and is able to interact 

with the negatively charged lipophilic substrate, such as naproxen, ibuprofen, diclofenac, 

indomethacin, and gemfibrozil (Wester et al., 2004). This structure is in accordance with 

several experimental observations that were difficult to rationalize based on the 1OG5 

structure. 

 

The crystal structures of the CYP2C9 provide insight into the ligand-CYP interaction. 

However, the differences in the active sites of the two crystal structures of CYP2C9 may not 

only reflect conformational flexibility of the protein but also present challenge to understand 

the structure determinants of substrate oxidation. Most likely, the structure of 

CYP2C9-flurbiprofen complex is more reasonable than that of CYP2C9-warfarin complex for 

the explanation of substrate specificity of CYP2C9. 
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1.4.4 CYP2D6 

Although the first modelling study of CYP2D6 published as early as 1993 based on the crystal 

structure of bacterial CYP101 (Koymans et al., 1993b), the human crystal structure of 

CYP2D6 was disclosed until 2006, a decade late (Rowland et al., 2006). A number of 

homologic models had appeared during the decade, on the basis of either bacterial enzymes 

(Koymans et al., 1993b; Lewis et al., 1997) or more recently the rabbit CYP2C5 enzyme 

(Kirton et al., 2002; Venhorst et al., 2003). These models provided some important information, 

such as the implication of Asp301 as a residue necessary for catalytic activity (Koymans et al., 

1993b). However, a lot of difference among the models gives rise to some challenging 

questions regarding the explanations for experimental results from site-directed mutagenesis 

(SDM) studies. The structure of human CYP2D6, indeed, is able to explain many reported data 

of SDM and to help understand the metabolism of some substrates. 

 

The crystal structure of CYP2D6 shows a fold similar to other recently solved human 

structures, especially to CYP2C9. Although the lengths and orientations of the individual 

secondary structural elements in CYP2D6 are very similar to those seen in CYP2C9, there are 

several notable differences existing at the helix C-D connection, the G-H loop, the turn number 

of F helix, the location of F-G loop related to B’ helix. These differences are considered to be 

essential for CYP2D6 to shape the active site cavity that stands above the heme like a “right 

foot” with the volume of ∼540 Å3 (Rowland et al., 2006). The cavity is bordered by the heme 

group and residues from the B, F, G and I helixes, the B -C loop, the loop between helix K and 

β-sheet 1 strand 4, and the loop between the strands of β-sheet 4 (Rowland et al., 2006).  

 

There are two negatively charged residues, Asp301 on I helix and Glu216 on F helix, identified 

as binding residues for substrates and inhibitors of CYP2D6. Between them, Asp301 played a 

key role in the binding of substrates to CYP2D6 as well as a structural role in hydrogen 

bonding to a backbone NH of the B-C loop, whereas Glu216 is more likely responsible for 

residue recognition and an intermediate binding form (Rowland et al., 2006). Mutation of 

either Asp301 or Glu216 to a neutral amino acid results in loss of CYP2D6 activity (Lennard, 

1990), which implicate the importance of the two residues. 

 

Two phenylalanine residues, Phe481 and Phe483, in the loop between two strands of β-sheet 4 

region (SRS6) attracted attention and also gave rise to some debate around the Phe481 

positioning (de Groot et al., 1999a). Early homology modelling studies suggested that Phe481 
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is an important aromatic residue associated with ligand binding (de Groot et al., 1999b). This 

residue appears to interact with ligands via a π-π interaction between its phenyl ring and the 

planar hydrophobic aromatic moiety common to many CYP2D6 substrates. Substitution of 

Phe481 by Leu or Gly reduced the affinity of several typical CYP2D6 substrates, including 

debrisoquine, metoprolol and dextromethorphan, with 3-16-fold higher Km values compared to 

the wild-type (Hayhurst et al., 2001). However, replacement of Phe481 with Thr did not alter 

the Km and Vmax values for S-metoprolol, debrisoquine and dextromethorphan. Homology 

models based on rabbit CYP2C5 suggest that, however, Phe481 is positioned outside the 

binding pocket, but in close contact with the active site residue Phe483 (Smith et al., 1998; 

Venhorst et al., 2003). The crystal structure clearly shows that Phe483 is oriented into the 

cavity, whereas Phe481 is located remotely rather than pointing directly toward the heme 

group (Rowland et al., 2006).  

 

Another critical Phe residue is Phe120 located in the B-C loop, and its importance has been 

recognised in SDM studies (Flanagan et al., 2004; McLaughlin et al., 2005). Keizers et al. 

(2004) revealed that the F120A mutant abolished the O-demethylation activity toward 

7-methoxy-4-(aminomethyl)-coumarin 7-methoxy-4-(aminomethyl)-coumarin (MAMC, used 

as an in vitro probe for CYP2D6), whereas bufuralol 1’-hydroxylation was not affected. 

Surprisingly, the mutant protein carrying the F120A mutation can metabolize quinidine via 

O-demethylation and 3-hydroxylation (McLaughlin et al., 2005), unlike the wild-type CYP2D6. 

The mutation F120I (358T>A; rs1135822) can be found in a small percentage of the Southeast 

Asian population (Solus et al., 2004). All of these findings indicate that residue Phe120 in the 

active site is important in substrate binding and catalysis in CYP2D6. The position of Phe120 

is confirmed in the active site of CYP2D6 by the crystal structure and the role of the Phe120 is 

suggested to orient substrates with respect to the heme and to form π-π stacking interactions 

with CYP2D6 substrates that contain aromatic rings.   

 

1.4.5 CYP3A4 

Two similar ligand-free structures of human CYP3A4 were published independently in 2004 

(Williams et al., 2004; Yano et al., 2004). In contrast to the structures of CYP2 family, the 

most prominent features of the CYP3A4 structure are the short F and G helixes that do not pass 

over the active site cavity, as well as a large, highly ordered hydrophobic core of phenyl 

alanine residues above the active site (Yano et al., 2004). However, the volumes (~670 Å3 and 

~950 Å3) of the active sites in the published both ligand-free structures seem to be too small to 
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metabolize large substrates such as bromocriptine (Mr 655 Dal) and cyclosporine (Mr 1,203 

Dal). It is speculated that conformational changes may occur upon ligand binding.  

 

Yano et al. (2004) reported an active-site volume of 1,386 Å3 while Williams et al. (2004) 

found a small volume ∼520 Å3. Although the active site volume of CYP3A4 is similar to that 

of CYP2C8, the shape of the active site cavity differs considerably due to differences in the 

folding and packing of portions of the protein that form the cavity (Yano et al., 2004). 

Compared with CYP2C8, the active site cavity of CYP3A4 is much larger near the heme iron 

(Yano et al., 2004). CYP3A4 contains an unexpected peripheral binding site located above a 

7-Phe residue cluster, which may be involved in the initial recognition of substrates or 

allosteric effectors (Williams et al., 2004). The progesterone molecule resides in the peripheral 

“nest” formed by loops between the F and F′ helices and the G′ and G helices, i.e. in the 

F/G-loop region. This resembles that of palmitate binding in the CYP2C8 (1PQ2) structure 

(Schoch et al., 2004). 

 

There is a remarkable difference between the two ligand-free CYP3A4 structures in the 

position of the Arg212 residue located within the linker between F and F0 and lining the active 

site. In the structure reported by Yano et al. (Yano et al., 2004) this side chain was directed 

towards the heme iron and hydrogen bonds to surrounding residues in a conformation that 

could disable the proton transfer pathway required for catalytic cycle. In the structure reported 

by Williams et al. (Williams et al., 2004), however, this side chain was rotated by ∼120o and 

oriented away from the putative proton transfer pathway. This discrepancy between the two 

structures indicates that this might be a flexible element of the structure. 

 

To date, there are four crystal structures of CYP3A4–ligand complex with metyrapone, 

progesterone, ketoconazole and erythromycin respectively (1TQN, 1WOE, 1WOF and 1WOG). 

Surprisingly, the protein conformational change upon ligand binding failed to be observed in 

two CYP3A4–ligand complex structures with metyrapone and progesterone (Williams et al., 

2004). However, dramatic conformational changes were observed in the structures of 

CYP3A4–ketoconazole and CYP3A4–erythromycin complexes, with the increase in the active 

site volume by >80%. The volume of the active site is increased to 1,650 Å3 in the 

ketoconazole-complexed structure and to ~2,000 Å3 in erythromycin-complexed structure 

(Ekroos and Sjogren, 2006), although these are less pronounced than those seen in the 

structures of rabbit CYP2B4 (Scott et al., 2003). Interestingly, four ketoconazole molecules 
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have been identified simultaneously binding in the active site of CYP3A4 (Ekroos and Sjogren, 

2006). One of the four ketoconazoles bound to the heme iron with its imidazole nitrogen. If the 

ligand-induced conformational changes can reflect the flexibility of CYP3A4, the simultaneous 

binding of multiple ligands may partially explain the atypical Michaelis–Menten kinetics and 

drug–drug interactions displayed by CYP3A4. 

 

1.4.6 Other CYPs 

To date, there are 10 structures of CYP2A6 available in PDB. These include the structures of 

2A6 in complex with coumarin (PDB: 1Z10) (Yano et al., 2005), methoxsalen (1Z11) (Yano et 

al., 2005) and synthetic 3-heteroaromatic analogues of nicotine as inhibitors (2FDY, 2FDW, 

2FDV, and 2FDU) (Yano et al., 2006). Several structures of the CYP2A6 N297Q (2PG5), 

L240C/N297Q (2PG6) and N297Q/I300V (2PG7) mutants have also been solved to a 

resolution of 1.95, 2.50 and 2.80 Å, respectively (Sansen et al., 2007). Recently, Devore et al. 

(2008) reported the structure of 2A6 I208S/I300F/G301A/S369G mutant in complex with 

phenacetin (3EBS).   

 

All X-ray structures of CYP2A6 show the common typical CYP fold as other CYP members. 

The identities of the residues that contact the ligand molecules are identical in different 

CYP2A6 complex structures, and changes in the contacting amino acids are generally 

restricted to slight rearrangements of 107Phe to maximize orthogonal aromatic interactions.  

 

CYP2A6 has the smallest active site cavity with a volume of 260 Å3 among all human CYPs 

whose structures have been determined. This is about 4-fold smaller than those of CYP2C8, 

2C9 or 3A4 (Yano et al., 2005). The CYP2A6 structure shows a clearly well-adapted enzyme 

for the oxidation of small, planar substrates that can fit into the compact, small, and 

hydrophobic active site with one hydrogen bond donor, Asn297, which orients ligands such as 

coumarin for regio-selective oxidation. The small active site volume of 2A6 may be associated 

with rather tight packing of the secondary structural units. In contrast to other mammalian CYP 

structures, helix I of CYP2A6 has an ideal secondary structural fold with no remarkable kink in 

the vicinity of heme. In addition, there was no water molecule found between the heme 

cofactor and helix I. The proximity of the substrate hydroxylation site (∼3.3 Å) to the heme Fe 

atom may explain the displacement of a water molecule from the sixth coordination of the 

heme iron, leading to conversion of the heme ion from a low to a high spin state. 
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The structure of CYP2C8 was first determined in the absence of substrates or inhibitors by 

Schoch et al. (2004). Consistent with the large size of several substrates and inhibitors such as 

paclitaxel and montelukast, the enzyme exhibits a relatively large substrate-binding cavity 

compared with the ones evident for structures of most other human CYPs (Schoch et al., 2004). 

Computer-simulated docking indicated that the large active-site cavity is likely to 

accommodate substrates in several possible binding poses that do not necessarily conform 

closely to the proposed pharmacophore. Additionally, the docking simulations suggested that 

anionic groups might be accommodated in a large substrate access channel located between the 

helix B-C loop and β1 sheet with the potential for polar interactions with protein side chains as 

well as residual water molecules (Melet et al., 2004). Further computer simulations also 

indicated that all-trans-retinoic acid might bind in either a proximal site or an alternative distal 

site near helix B’ that places the retinoid carboxylate close to Arg241. The latter suggested that 

conformational changes could allow Arg241 to neutralize the charge of the retinoid in the 

distal site. 

 

Recently, Schoch et al. (2008) further determined the crystal structures of CYP2C8 complexed 

with montelukast (2.8 Å, 2NNI), troglitazone (2.7 Å, 2VN0), felodipine (2.3 Å, 2NNJ), and 2 

molecules of 9-cis-retinoic acid (2.6 Å, 2NNH) (Schoch et al., 2008). Montelukast is a 

relatively large anionic (Mr = 586) inhibitor that exhibits a tripartite structure and complements 

the size and shape of the active-site cavity; while the inhibitor troglitazone (Mr = 442) occupies 

the upper portion of the active-site cavity, leaving a substantial part of the cavity unoccupied. 

The smaller neutral felodipine molecule (Mr = 384), a high affinity inhibitor of CYP2C8 with a 

Ki of 90 nM (Marill et al., 2000),  is sequestered with its dichlorophenyl group positioned 

close to the heme iron, and water molecules fill the distal portion of the cavity. The structure of 

the 9-cis-retinoic acid (Mr = 300) complex reveals that two molecules bind simultaneously in 

the active site of CYP2C8. A second molecule of 9-cis-retinoic acid is located above the 

proximal molecule and can restrain the position of the latter for more efficient oxygenation 

(Schoch et al., 2008). Solution binding studies do not discriminate between cooperative and 

noncooperative models for multiple substrate binding. The complexes of CYP2C8 with 

structurally distinct ligands further demonstrate the conformational adaptability of active 

site-constituting residues, especially Arg241, which can reorient in the active-site cavity to 

stabilize a negatively charged functional group and define two spatially distinct binding sites 

for anionic moieties of substrates. 
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1.5 Drug-drug, herb-drug and herb-CYP interactions 

1.5.1 Clinical significance of drug interactions  

Drug interactions may occur during recent or concurrent use of another drug or drugs or 

ingestion of food. It was defined as the action of a drug that may affect the activity, metabolism, 

or toxicity of another drug. A drug interaction is any pharmacological modification of an 

exogenous substance (in drug, herb and food) in a body caused by another exogenous 

compound (in drug, herb and food) during a diagnostic or therapeutic period (MacLennan et al., 

2006). This relates to so-called drug-drug interactions (interactions between drugs), herb-herb 

interactions (interactions between herbs) or drug-food interactions (interactions between drug 

and food). 

 

Most drug interactions are involved in pharmacodynamic and/or pharmacokinetic mechanisms. 

Pharmacodynamic interactions involve synergistic or antagonistic interactions on drug targets, 

e.g. receptors, which can often be predicted and avoided. For example, Ma Huang contains 

ephedrine-like alkaloids which exhibit sympathomimetic activities. Thus, Ma Huang may 

interact with other sympathomimetic agents and then increase the actions of monamine oxidase 

inhibitors and adrenergic agonists such as clonidine, and decrease the actions of bethanidine 

and guanethidine (Wooltorton and Sibbald, 2002) On the other hand, pharmacokinetic 

interactions are much more difficult to anticipate, which occur through multiple mechanisms, 

including alterations of compounds’ absorption, distribution, metabolism and excretion. Most 

reported drug interactions are pharmacokinetic interactions. Coadministration of two or more 

drugs or herbs may give rise to drug interactions due to an alteration of CYPs activity (Lynch 

and Price, 2007) if the drugs or herbs are metabolized by the same enzyme system(s). The drug 

interactions may potentially result in altered pharmacokinetics for one or all of the 

coadministered compounds due to either inhibition or induction of a specific CYP enzyme. If 

these effects of the drug interaction occur to certain extent, clinical efficacy of those drugs may 

be lost and furthermore adverse drug interactions, including some fatal interactions may 

overcome their therapeutic anticipation (Li, 2001; Lin and Lu, 2001). 

 

1.5.2 Drug interactions due to inhibition of CYP enzymes 

Inhibition of CYP enzymes is one of the most common causes of harmful drug–drug 

interactions and has led to the withdrawn of several marketed drugs during the past decades. 

The nonsedating antihistamines terfenadine and astemizole, for instance, and the 

gastrointestinal motility agent cisapride, were all withdrawn from the U.S. market because 
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metabolic inhibition by other drugs led to life-threatening arrhythmias (Dresser et al., 2000). 

The calcium channel blocker mibefradil was withdrawn from the U.S. market in 1998 because 

it was a potent mechanism-based enzyme inhibitor that increased the plasm concentration of 

other cardiovascular drugs to toxic levels (Mullins et al., 1998). 

 

Inhibition of CYPs activity can reduce metabolism and elimination of the parent compounds 

that are subject to first-pass metabolism and lead to increased bioavailability even toxicity of 

these compounds, especial for those extensively metabolized mainly by CYP enzymes. For 

example, a clinical trial had indicated that fluconazole, a potent inhibitor of CYP2C9, reduced 

approximately 70% of metabolic clearance of S-warfarin, leading to significant bleeding at 

clinical setting (Black et al., 1996). With regard to prodrugs, inhibition may result in a decrease 

in the amount of the active drug form, leading to therapeutic failure due to lack of efficacy of 

the drug. Tamoxifen, a selective estrogen receptor modulator, could significantly reduce the 

conversion of prodrug losartan to its active form by inhibiting CYP2C9 activity in breast 

cancer patients (Boruban et al., 2006). 

 

The type of CYP inhibition can be either reversible (competitive or non-competitive) or 

irreversible (mechanism-based). Reversible inhibition is the most common type of enzyme 

inhibition and takes place directly, while irreversible inhibition requires biotransformation of 

the inhibitor. Reversible inhibition can be further divided into competitive, noncompetitive, 

uncompetitive, and mixed-type inhibition (Lin and Lu, 1998; Hollenberg, 2002). In 

competitive situation, substrate and inhibitor are competitory to bind to the same position at the 

active site of an enzyme with hydrophobic, electrostatic or hydrogen-bond interactions, which 

are both formed and broken down easily (Lin and Lu, 1998; Hollenberg, 2002). In a 

noncompetitive inhibition, however, the binding site of the inhibitor is different from that of 

the substrate. As for mixed-type inhibition, both competitive and noncompetitive inhibitions 

are frequently observed. For example, in vitro studies have demonstrated that glyburide 

strongly inhibited CYP2C9-catalyzed S-warfarin and phenytoin metabolism in a competitive 

manner (Kim and Park, 2003). 

 

Irreversible inhibition, on the other hand, usually occurs by forming metabolite intermediate 

complexes, which bind to the residues or heme of the CYP with strong covalent bond leading 

to a long lasting inactivation (Zhou et al., 2004c; Zhou et al., 2005c). This process is called 

‘mechanism based inhibition’ or ‘suicide inhibition’ — the metabolic product inactivates the 
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enzyme completely. Classical mechanism-based inhibitors include the CYP1A2 inhibitor 

furafylline (Sesardic et al., 1990; Kunze and Trager, 1993), the CYP3A4 inhibitor gestodene 

(Guengerich, 1990; Back et al., 1991), and the CYP2E1 inhibitor disulfiram (Kharasch et al., 

1993). The typical feature of mechanism-based inhibition is the time-, concentration- and 

NADPH-dependent and is terminated by enzyme re-synthesis (Halpert, 1995; Ito et al., 1998c; 

Kent et al., 2001). 

 

1.5.3 Drug interaction due to induction of CYP enzymes 

In contrast to inhibition, induction of CYP enzymes usually occurs through two general 

mechanisms: stabilizing the mRNA or enzyme (e.g., CYP2E1) (Gonzalez, 2007) and 

increasing gene transcription. Increase in gene transcription of CYP enzyme is more common 

than stabilization of the mRNA or enzyme and is mediated by nuclear receptors, such as AhR, 

CAR, and PXR (Moore et al., 2002; Honkakoski et al., 2003; Wang and LeCluyse, 2003; 

Mandal, 2005; Qatanani and Moore, 2005; Tirona and Kim, 2005). Induction of gene 

transcription is usually triggered by ligand (drug) binding to the ligand binding domain (LBD) 

of the nuclear receptors. Subsequently, the ligand-activated transcription factors conduct 

conformational changes of the receptors leading to the release of co-repressors and recruitment 

of co-activators and a dimerization partner (RXR, for CAR/PXR and the AhR nuclear 

translocator, ARNT, for AhR) to form the actual DNA-binding complex. Finally, the DNA 

binding domain (DBD) on the nuclear receptor is exposed and binds to respective DNA 

response elements present in the promoter region of target genes (CYP enzymes) leading to 

gene transcription (Wang and LeCluyse, 2003; Lemaire et al., 2004). 

 

This inductive process produces more CYP enzyme than that present normally in a biological 

system. The increased CYP enzyme along with increased activity elevates metabolic clearance 

of certain drugs, substrates of relative CYP enzyme. Consequently, pharmacokinetics of these 

drugs is influenced, reflecting by reduced AUC, maximum plasma concentration (Cmax), and 

half-life. A typical example is the herbal antidepressant St John’s Wort (a potent CYP3A4 

inducer) that had been reported to increase CYP3A4 expression and consequently decrease the 

AUC and Cmax of midazolam (a CYP3A4 substrate) by 79 and 65%, respectively (Mueller et 

al., 2006). The induction of CYP3A4 by St John’s wort resulted in reduced ethinylestradiol 

levels from oral contraceptives, leading to unexpected pregnancies (Gordon, 1998; Barbenel et 

al., 2000).  Furthermore, St John’s Wort has been reported to reduce cyclosporine 

concentrations in transplant patients and lead to organ rejection (Breidenbach et al., 2000a; 
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Breidenbach et al., 2000b). Both ethinylestradiol and cyclosporine are predominately 

metabolized by CYP3A4 (Zhou, 2008a).  

 

1.5.4 Herb-drug interactions 

1.5.4.1 Clinically reported herb-drug interactions 

Herbal medicines, such as St John's wort, garlic, gingko, and ginseng, are freely available over 

the counter and very often self-administered complements along with therapeutic drugs (De 

Smet, 2002; De Smet, 2005). This has given rise to potential adverse herb-drug interactions in 

clinical settings when co-administered with prescribed medicines. A number of adverse 

herb-drug interactions have been identified in humans and frequently impacted medications are 

those with a narrow therapeutic window and extensively metabolized by CYP enzymes, such 

as warfarin, digoxin and cyclosporine (Fugh-Berman, 2000; Hu et al., 2005; Li et al., 2007; 

Zhou et al., 2007). One of the most commonly reported herbs is St John's wort which interacts 

with a broad therapeutic drugs, including cyclosporine, digoxin, theophylline, oral 

contraceptives, methadone, fluoxetine, and buspirone (Table 1-8) (Barone et al., 2000; 

Karliova et al., 2000; Mai et al., 2000; Ruschitzka et al., 2000; Ahmed et al., 2001; Beer and 

Ostermann, 2001; Moschella and Jaber, 2001; Turton-Weeks et al., 2001; Alscher and Klotz, 

2003). Gingko biloba was also reported to interact with ibuprofen, trazodone, fluoxetine, 

buspirone and phenytoin (Table 1-8). It should be noted that both warfarin and cyclosporine 

are well-known substrates of CYP2C9 and 3A4, respectively, while St John's wort is a potent 

inducer of CYP3A4 and P-glycoprotein (P-gp). An additional example is licorice (Glycyrrhiza 

glabra) which was reported to increase the plasma concentrations of prednisolone (Chen et al., 

1990; Chen et al., 1991) by inhibiting the metabolism of prednisolone, and also potentiated the 

skin vasoconstrictive action of hydrocortisone (Teelucksingh et al., 1990).  

 

The use of multiple medicines will significantly increase the risk of potential herb-drug 

interactions, especially in the elderly or certain group of consumers such as cancer patients. 

The risk for drug interactions increases with the number of products consumed. For example, 

the risk for potential interactions for consuming two products is 6%; five products, 50%, and 

the risk increases to 100% for consuming eight or more products. In this regards, the likelihood 

of herb-drug interactions is theoretically higher than drug-drug interactions since most 

therapeutic drugs usually contain a single chemical entity. 
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It should be pointed out, however, that our understanding about the interactions between herbs 

and drugs is still limited (Zhou et al., 2007). It is difficult to characterise and identify definitely 

an herb-drug interaction. The knowledge of herb-drug interaction is largely based on case 

reports or case series reports. Considering that a significant number of patients or herbal 

consumers failed to disclose the use of herbal products to their physicians (Klepser et al., 2000), 

and most physicians have limited knowledge on various herbal products, the risk of potential 

herb-drug interactions is increased. Thus, there have been efforts for implementation of 

coordinated toxicity monitoring systems by the World Health Organization (WHO), eg WHO 

Collaborating Centre for International Drug Monitoring (http://www.who-umc.org/), and by 

various governments including Australia, UK, USA, Singapore and China, aimed at improving 

monitoring and timely reporting of potential herb-drug interactions. To date, a number of 

herb-drug interactions have been identified in humans and these have been summarized in 

Table 1-8. 

 

1.5.4.2 Mechanisms for herb-drug interactions 

In general, a single herb contains multiple phytochemicals that may be biologically active and 

capable of modulating physiological actions, similar to therapeutic drugs, through complex 

synergistic and antagonistic effects. Therefore, it is not hard to understand that most herb-drug 

interactions are mediated by pharmacodynamic and/or pharmacokinetic mechanisms. 

Pharmacodynamic interactions involve synergistic or antagonistic interactions on the same 

drug targets, e.g. receptors, which can often be predicted and avoided. For example, Ma Huang 

contains ephedrine-like alkaloids which exhibit sympathomimetic activities. Thus, Ma Huang 

may interact with other sympathomimetic agents and thus increase the actions of monamine 

oxidase inhibitors and adrenergic agonists such as clonidine, and decrease the actions of 

bethanidine and guanethidine (Wooltorton and Sibbald, 2002) On the other hand, 

pharmacokinetic interactions are much more difficult to anticipate, which occur through 

multiple mechanisms, including alterations of drug’s absorption, distribution, metabolism and 

excretion. Most common reported herb-drug interactions are pharmacokinetic interactions, 

especial those resulting from the modulation of the activities of CYPs and/or drug transporters. 

 

The activity of CYPs may be changed by herbal ingredients through enzyme induction and 

inhibition. Like therapeutic drugs, the induction of CYPs by herbal product usually requires 

several days, which may lead to decreased drug plasma levels (through increased drug 

metabolism), and subsequently to reduced drug effects (Zhou et al., 2003b). Conversely, the 
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inhibition of CYPs is often immediate and may lead to increased drug plasma levels (through 

decreased drug metabolism), and thus increased drug effect which may result in significant 

adverse reactions or toxicities. Many clinical adverse events induced by herbal produces have 

been associated with CYP inhibitions (Hu et al., 2005; Li et al., 2007; Zhou et al., 2007). 

 

Herbs may inhibit CYPs by three mechanisms: competitive inhibition, non-competitive 

inhibition, and mechanism-based inhibition. Mutual competitive inhibition may occur between 

a herbal constituent and a drug, as both are often metabolised by the same CYP isoform. For 

example, diallyl sulfide from garlic is a competitive inhibitor of CYP2E1 (Teyssier et al., 

1999). Non-competitive inhibition is caused by the binding of herbal constituents containing 

electrophilic groups (e.g. imidazole or hydrazine group) to the heme portion of CYP. For 

example, piperine inhibited arylhydrocarbon hydroxylase (CYP1A) and 7-ethoxycourmarin 

deethylase (CYP2A) by non-competitive mechanism (Dalvi and Dalvi, 1991). Hyperforin 

present in St John’s wort is also a potent noncompetitive inhibitor of CYP2D6 activity in vitro 

(Obach, 2000a). The mechanism-based inhibition of CYP is due to the formation of a complex 

between herbal metabolite with CYP. For example, diallyl sulfone derived from diallyl sulfide 

is a suicide inhibitor of CYP2E1 by forming a complex via an epoxide metabolite (Premdas et 

al., 2000), leading to autocatalytic destruction of CYP2E1 (Jin and Baillie, 1997a). 

 

1.5.4.3 Prediction of metabolic herb-drug interactions 

Herb-drug interactions may be harmful or even fatal. For example, feverfew, garlic, ginkgo, 

ginger, and ginseng may potentiate the effect of warfarin, resulting in longer bleeding time 

(Fugh-Berman, 2000; Fugh-Berman and Ernst, 2001). Kava has resulted in coma when used 

with alprazolam (Miller, 1998). Therefore, it is important to be able to extrapolate both in vitro 

and in vivo data of herb-drug interactions to humans.  Some successes have occurred in the 

prediction of drug-drug interactions from in vitro metabolic inhibition data based on in vitro 

models such as hepatic microsomes and hepatocytes, if the following criteria can be met: a) 

drug clearance must be primarily by metabolism; b) drug is not subject to substantial 

conjugation or other non-CYP metabolism; c) the liver is the primary organ of metabolic 

clearance; and d) the compound does not possess physico-chemical properties that are 

associated with absorption problems (i.e. limited solubility, low gastroenteral permeability) 

(Houston, 1994; Obach, 2000b). The prediction of the alteration in plasma concentration or the 

area of the plasma AUC by a coadministered compound involves the determination of 

inhibition constant (Ki), and the unbound concentration of inhibitor ([I]).  
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However, the prediction of metabolic drug interactions from in vitro systems is limited due to 

several problems including inappropriate design of in vitro experiments; presence of 

extra-hepatic metabolism; and active transport in liver. In addition, the in vitro scaling of 

kinetic and inhibition data from human tissues is more complex, particularly as the metabolism 

of many drugs by CYP3A4 is inconsistent with a classical Michaelis-Menten kinetic model 

(Lin, 1998; Houston and Kenworthy, 2000). Despite these difficulties, quantitative in vitro 

metabolic inhibition data can be extrapolated reasonably well to in vivo situations with the 

application of appropriate pharmacokinetic principles (Ito et al., 1998a; Ito et al., 1998b). Thus, 

the prediction of metabolic herb-drug interactions could provide a useful tool to offer the 

opportunity to use in vitro inhibition data as a criterion for monitoring herb-drug metabolic 

interactions involving human drug metabolising enzymes (in particular CYPs). 

 

1.6 Tools to study drug interactions 

A combination of in silico, in vitro and in vivo models are often used in drug-drug, herb-drug 

and herb-CYP interaction studies. In silico is a term used for experiments done using a 

high-performance computer (i.e. on a silicon chip), while in vitro and in vivo refer to 

experiments done outside of living organisms and in living organisms, respectively.  

 

1.6.1 In silico methods 

There is an increasing use of in silico methods to study CYPs and their interactions with 

xenobiotics (Hutter, 2009). The major in silico methods include simple rule-based modelling, 

structure-activity relationships, three-dimensional quantitative structure-activity relationships 

(QSAR), and pharmacophores (Krejsa et al., 2003; Hutter, 2009). All represent useful tools for 

understanding reactions catalyzed by CYPs, predicting possible herb-drug metabolism 

interactions, pharmacokinetic parameters such as clearance, and toxicity (Harris, 2004). The 

resulting data based on in silico approaches may be of clinical relevance (Norinder, 2005). For 

example, knowledge of the substrate specificity and regulation of the CYP is essential, as this 

will provide information on the possible herb-drug interaction. 

 

In silico approaches have also been used to study herb-CYP interactions (Wilson et al., 2003; 

de Groot et al., 2004; de Graaf et al., 2005). A structure-activity relationship analysis was used 

to investigate the effect of structural modifications of piperine (pentadienyl or piperidine) on 

the inhibition of the CYP-catalyzed reactions, arylhydrocarbon hydroxylation (CYP1A) and 
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7-methoxycoumarin-O-demethylation (CYP2) in microsomes prepared from untreated, 

3-methylcholanthrene- and phenobarbital-treated rat liver (Koul et al., 2000). This study has 

indicated that saturation of the side chain resulted in a marked increase in the inhibition of 

CYPs; while modifications in the phenyl and basic moieties in a few analogues led to 

maximum selectivity in inhibiting either constitutive or inducible CYP activities (Koul et al., 

2000). QSAR studies have been used to analyze the inhibitory effects on caffeine 

N3-demethylation (a marker activity of CYP1A2) in human liver microsomes of naturally 

occurring flavonoids that exist in many herbs (Lee et al., 1998). This study demonstrated that 

the number of hydroxyl groups and their glycosylation had an important influence on the 

inhibitory effect of various flavonoids. QSAR analysis has indicated that the volume to surface 

area ratio was the most effective factor for producing the inhibition of caffeine 

N3-demethylation by these flavonoids, and the electron densities on the C3 and C4' atoms 

exercised significant influence on the inhibitory effect. The suppression of 

2-amino-3,4-dimethylimidazo[4,5-f]quinoline-induced umu gene expression by flavonoids was 

well correlated with their calculated CYP1A2 inhibitory potencies (Lee et al., 1998).  

 

The use of computational techniques will add chemical knowledge to the empirical data 

obtained with in vitro systems and enable the prediction of substrates or inhibitors of specific 

enzymes through computer-based models. The predictions by means of a rapid in silico screen 

might be useful as a drug interaction screen, and assist medicinal chemists understanding 

potential inhibitors for certain enzymes in the use of therapeutics and making necessary 

chemical modifications in the drug discovery process. There is an increasing use of in silico 

methods to study CYPs and their interactions with xenobiotics (Ekins and Wrighton, 2001; 

Lewis and Dickins, 2001; Vedani et al., 2006) since they are an important family of 

drug-metabolizing enzymes.  

 

In silico screening can be performed in two fundamental ways: ligand-based and protein-based 

manner. Combinations of protein- and ligand-based methods have often been used. For the 

ligand-based method, molecular descriptors extract information from a set of CYP ligands to 

build a model (e.g. QSAR or pharmacophore model) that provides rules to classify other 

chemicals as potential CYP ligands and is validated by another set of known CYP ligands. 

Alleged pharmacophore is a hypothesis representing generalized molecular features including 

3D (hydrophobic groups, charged/ionizable groups, hydrogen bond donor/acceptors), 2D 
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(substructures), and 1D (physical and biological properties) aspects that are considered to be 

responsible for a desired activity (Purushottamachar et al., 2007).  

 

There are often two different approaches applied in the hypothesis generation: Catalyst 

Hypogen and HipHop programs. Hypogen is an activity-based alignment derived from a 

training set that collects conformational models of compounds spanning activities of 4–5 

orders of magnitude. At least 16 molecules are necessary to ensure statistical significance of 

pharmacophores computed in the Catalyst Hypogen algorithm. HipHop, on the other hand, is a 

common feature alignment of highly potent compounds based on 3D feature information 

without consideration of the activity in the set molecules. In addition, two separated sets of 

compounds (training and validating sets) are critical for the applicability and predictivity of 

both Hypogen and HipHop models. If the training set for the building of both models are 

narrowed at a single core structure, the produced model may be of limited value to other 

research programs, unless the same structure type is used. Once the training set is comprised by 

a number of distinct core structures, a good generalizable hypothesis is possible to be produced 

(Ekins, 2003). A retrieved pharmacophore model is expected to discriminate between active 

and inactive compounds. 

 

In the protein-based approach, candidate ligands are docked into the crystal structure or a 

homology model of certain CYPs, and the estimated low free energy of binding and inhibition 

constant (Ki) will be calculated for the evaluation of CYP inhibitory potency.  

 

Although it is a virtual screening system, in silico study could provide some early prediction of 

the possible involvement of CYPs in the metabolism of drugs or drug candidates, not only 

improving drug safety but also contributing to make drug design more effective and less cost. 

Available crystal structures of human CYPs have provided important functional information of 

these proteins and are very useful for further in silico studies.  

 

1.6.2 In vitro methods 

A number of in vitro systems have established to investigate drug-CYP interactions, including 

cDNA expressed recombinant human CYP enzymes (from baculovirus-infected insect cells 

and E. coli), subcellular fractions (liver microsomes, cytosols, and homogenates), B 

lymphoblastoid cells, isolated and cultured hepatocytes or liver cell lines and precision-cut 

liver slices (Eddershaw and Dickins, 1999; Ekins et al., 2000b; Streetman et al., 2000a; 
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LeCluyse, 2001; Venkatakrishnan et al., 2001b; Baranczewski et al., 2006). Each of these 

systems has advantages and limitations, and it is most likely that a combination of methods 

will provide the most accurate information on drug-CYP interactions.  

 

A number of cDNA expressed recombinant human CYP enzymes are available, and offer a 

great chance for interaction study between drug candidates and CYP enzymes by a rapid 

manner, which make high throughput screening in vitro available. There are several CYP 

screening kits aimed to offer a simple “mix-and-read” fluorescent assay that is designed for 

high-throughput (HTP) screening in multi-well plates. Test compounds are analyzed by their 

capacity to inhibit the production of a fluorescent signal in reactions using recombinant CYP 

enzymes and specific CYP substrates along with appropriate positive and negative controls.  

 

To date, 26 human CYP enzymes have had commercial screening kits containing recombinant 

cDNA-expressed CYP enzymes prepared from the baculovirus-infected insect cell system, 

including CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9.1 (Arg144), 2C9.1 (Arg144), 2C9.2 

(Cys144), 2C9.3 (Leu359), 2C18, 2C19, 2D6.1 (Val374), 2D6.10, 2E1, 2J2, 3A4, 3A5, 3A7, 

4A11, 4F12, 4F2, 4F3A, 4F3B, CYP19 (aromatase) and CYP oxidoreductase 

(www.bdbiosciences.com/product_families). These enzyme systems provide high level of 

catalytic activity (six-fold higher than an average human live microsomes sample) and are used 

for screening study of diverse compounds related to metabolism in vitro. All of the major drug 

metabolism enzymes are available in this expressed enzyme system. 

 

For inhibition studies, IC50 values obtained from cDNA-expressed enzyme system can be 

compared with that of known inhibitors detected by the same enzyme without the complication 

of competing pathways of metabolism. With the cDNA-expressed enzyme system, Phase II 

reaction can also be investigated through different kits with different enzyme system (not in the 

scale of present project). However, induction effect of test compounds on CYP enzymes could 

not be investigated by these systems (Crespi and Penman, 1997). Even though, the use of 

cDNA-expressed CYP system is also a reasonable starting point for the preliminary 

determination of the principal CYPs involved in a drug candidate in a drug discovery setting. 

 

Liver microsomes systems sound like an ideal for the production of most major metabolites 

from both Phase I and Phase II reactions. However, cofactors (nicotinamide adenine 

dinucleotide phosphate–NADPH or urindine diphosphate glucuronic acid) need to be add 
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artificially since CYP- or uridine diphosphate glucuronotransferase (UGT)-catalyzed reactions 

to replace those lost due to the destruction of cell integrity. In addition, because of the latter, no 

coupled metabolism is present, and Phase II reactions following a Phase I reaction cannot be 

studied. 

 

In contrast, hepatocytes provide cellular integrity with respect to enzyme architecture and 

allow the study of Phase II reactions following Phase I metabolism. In addition, hepatocytes 

allow for any concentration gradients mediated by transporters that may affect exposure of 

substrate/inhibitor to enzymes. However, some transporters are rapidly down-regulated after 

isolation of hepatocytes (Li et al., 1997), and support matrices (sandwich cultures) may 

introduce artefacts (e.g., additional collagen diffusion barrier; and loss of enzyme activity) 

(LeCluyse, 2001). Precision-cut liver slices probably best simulate the in vivo situation as they 

retain the physiological environment for the enzymes and cofactors of both Phase I and Phase 

II reactions and partially retain the architecture of the liver (Parrish et al., 1995; Ekins, 1996; 

Ferrero and Brendel, 1997; Olinga et al., 1998). However, both uptake and/or metabolism in 

liver slices are often lower than in hepatocytes, which limit their utility as a predictive model 

for pharmacokinetic scaling. 

 

Obviously, in vitro models may provide fundamental information of drug-CYP interactions by 

a quick screening manner but is impossible to draw a comprehensive picture for the 

interactions. However, high throughput screening with cDNA-expressed enzyme system can 

provide relative accurate inhibitory potency (e.g. IC50 or Ki values) of tested compounds on a 

specific CYP (Carlson and Fisher, 2008).  

 

1.6.3 In vivo methods 

Although in silico and in vitro models may provide quick screening methods for the herb-CYP 

interactions, in vivo interaction studies are usually necessary to provide evidence of their 

clinical importance. Animal studies may give important information on herb-CYP interactions, 

but inter-species variations in the substrate specificity, catalytic features and amino acid 

sequences of CYPs may cause difficulty in extrapolating animal data to humans (Boobis et al., 

1990; Lewis et al., 1998). For example, chlorzoxazone 6-hydroxylation is extensively 

catalyzed by CYP2E1 in humans (de Vries et al., 1994), but by CYP1A2 and 3A1 in rats 

(Kobayashi et al., 2002). It may be difficult to predict accurately the effects of tested 



 

 69

compounds in humans based on animal data. Therefore, clinical trials of human studies are 

usually required to confirm herb-CYP interactions. 

 

A common approach for estimation of in vivo drug interactions in animals and humans is 

through the administration of a specific probe compound, which is predominately or 

exclusively metabolized by an individual CYP enzyme. Probe substrates and selective 

inhibitors (see Table 1-2) can be used to explore the effects of herbs on the activity of specific 

CYP enzyme in vivo, e.g. caffeine for CYP1A2 (Carrillo et al., 2000b), tolbutamide or warfarin 

for CYP2C9 (Bourrie et al., 1996; Chainuvati et al., 2003), mephenytoin or omeprazole for 

CYP2C19 (Streetman et al., 2000a; Chainuvati et al., 2003), dextromethorphan, or debrisoquin 

for CYP2D6 (Wieling et al., 2000), chlorzoxazone for CYP2E1 (Lucas et al., 1999), and 

midazolam (Rivory et al., 2001) or erythromycin (Rivory et al., 2001) for CYP3A4 

(Brockmoller and Roots, 1994; Streetman et al., 2000a). In clinical trial, there are two basic 

strategies to handle probe drugs, individual administration of a specific probe targeting one 

CYP enzyme and simultaneous administration of multiple probes targeting multiple enzymes at 

one trial session. The later method is so-called “cocktail” strategy.  

 

The cocktail of probe drugs have been used to explore the activities of multiple CYPs (Frye et 

al., 1997; Adedoyin et al., 1998; Dierks et al., 2001) and could provide information on several 

metabolism pathways in a single session of clinical trial, which minimizes the complicating 

influence of intra-individual variability over time. For example, alprazolam and caffeine can be 

administered simultaneously for the assessment of in vivo CYP3A4 and 1A2 activity, 

respectively (Schmider et al., 1999). A cocktail, including probe drugs caffeine, chlorzoxazone, 

mephenytoin, metoprolol, and midazolam administered simultaneously has effectively 

phenotyped CYP1A2, 2E1, 2C19, 2D6, and 3A4, respectively, in humans (Zhu et al., 2001). 

Similarly, a cocktail containing tolbutamide (CYP2C9), caffeine (CYP1A2), dextromethorphan 

(CYP2D6), oral midazolam (intestinal wall and hepatic CYP3A), and intravenous midazolam 

(hepatic CYP3A) have been used to investigate the effects of St John’s wort on the activities of 

various CYPs in humans (Wang et al., 2001).  

 

However, the value of the “cocktail” approach may be limited due to marked intrasubject 

variability and the possibility of interaction between the coadministered probes. Palmer et al. 

(2001) (Palmer et al., 2001) reported that chlorzoxazone significantly altered the 

pharmacokinetics of oral midazolam, perhaps through inhibition of first-pass metabolism by 
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CYP3A in the intestine. However, since Streetman et al. (Streetman et al., 2000b) have 

validated a 4-drug cocktail (caffeine, dextromethorphan, omeprazole and midazolam), a 

modified “Cooperstown 5+1” cocktail (add warfarin plus vitamin K1) (Chainuvati et al., 2003) 

have been wildly applied in clinical trials for drug interaction studies, which minimized the 

interactions among the probe drugs and succeeded to study drug interactions with CYP1A2, 

2C9, 2C19, 2D6 and 3A4, e.g. the evaluation of the drug interaction potential of a triphasic oral 

contraceptive and aplaviroc (a novel human immunodeficiency virus entry inhibitor) 

(Shelepova et al., 2005; Johnson et al., 2006). 

 

1.7 Hypothesis and General Aims 

There is increasing evidence that modulation of CYPs is the major cause of a number of 

drug-drug and herb-drug interactions. However, little is known about the interaction of ligands 

(substrates and inhibitors) with CYPs at molecular levels. It is still unclear how activities of 

specific CYPs are influenced by the presence of most herb medicines in body system. We 

hypothesize that the atom-atom interactions in the residues of the ligand and CYPs are the 

basis on which the substrate and inhibitor specificity is determined for individual CYPs. 

 

To test our hypothesis, we attempted to: a) conduct in vitro inhibitory studies of human CYPs 

by herbal compounds; b) to extrapolate the in vitro data to in vivo situations; and c) to explore 

the ligand-CYP1A2 interactions using docking and pharmacophore modelling studies. The data 

arising from this project have important clinical and toxicological implications.  

 



 

 71

Table 1-1.  List of human CYP genes and their non-synonymous SNPs. 

Gene Chromosomal 
location Substrates Number of amino 

acids
Number of 

exons 
Number of 

nsSNPs
Family 1 
CYP1A1 15q22-q24 Xenobiotics 512 7 25 
CYP1A2 15q24 Xenobiotics 516 7 31 

CYP1B1 2p21 
Xenobiotics, 

sterols 543 3 30 
Family 2 
CYP2A6 19q13.2 Xenobiotics 494 9 37 
CYP2A7 19q13.2 Unknown 494 9 18 
CYP2A13 19q13.2 Xenobiotics 494 9 11 
CYP2B6 19q13.2 Xenobiotics 491 9 32 
CYP2C8 10q23.33 Xenobiotics 490 9 14 
CYP2C9 10q24 Xenobiotics 490 9 28 
CYP2C18 10q24 Xenobiotics 490 9 9 
CYP2C19 10q24.1-q24.3 Xenobiotics 490 9 31 
CYP2D6 22q13.1 Xenobiotics 497 9 52 
CYP2E1 10q24.3-qter Xenobiotics 493 9 19 
CYP2F1 19q13.2 Xenobiotics 491 10 7 
CYP2J2 1p31.3-p31.2 Fatty acids 502 9 10 
CYP2R1 11p15.2 Vitamins 501 2 1 
CYP2S1 19q13.1 Unknown 504 9 5 
CYP2W1 7p22.3 Unknown 490 9 2 
CYP2U1 4q25 Unknown 544 5 0 
Family 3 
CYP3A4 7q21.1 Xenobiotics 503 13 32 
CYP3A5 7q21.1 Xenobiotics 502 13 15 
CYP3A7 7q21-q22.1 Xenobiotics 503 13 5 
CYP3A43 7q21.1 Unknown 503 13 5 
Family 4 
CYP4A11 1p33 Fatty acids 519 12 7 
CYP4A22 1p33 Unknown 519 12 15 
CYP4B1 1p34-p12 Fatty acids 511 12 18 
CYP4F11 19p13.1 Unknown 524 12 5 
CYP4F12 19p13.1 Fatty acids 524 13 11 
CYP4F2 19pter-p13.11 Eicosanoids 520 13 11 
CYP4F22 19p13.12 Unknown 531 14 2 
CYP4F3 19p13.2 Eicosanoids 520 13 6 
CYP4F8 19p13.1 Eicosanoids 520 13 3 
CYP4V2 4q35.2 Unknown 525 11 15 
CYP4X1 1p33 Unknown 509 12 1 
CYP4Z1 1p33 Unknown 505 12 0 
Family 5 
CYP5A1  7q34-q35 Eicosanoids 534 13 23 
Family 7 
CYP7A1 8q11-q12 Sterols 504 6 2 
CYP7B1 8q21.3 Sterols 506 6 1 
Family 8 
CYP8A1 20q13.13 Eicosanoids 500 10 14 
CYP8B1 3p22-p21.3 Sterols 501 1 5 
Family 11 
CYP11A1 15q23-q24 Sterols 521 6 10 
CYP11B1 8q21 Sterols 503 9 26 
CYP11B2 8q21-q22 Sterols 503 9 20 
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Family 17 
CYP17A1 10q24.3 Sterols 508 8 31 
Family 19 
CYP19A1 15q21.1 Sterols 503 10 13 
Family 20      
CYP20A1 2q33.2 Unknown 462 13 4 
Family 21 
CYP21A2 6p21.3 Sterols 495 10 68 
Family 24 
CYP24A1 20q13 Vitamins 514 12 4 
Family 26 
CYP26A1 10q23-q24 Vitamins 497 7 3 
CYP26B1 2p13.3 Vitamins 512 6 3 
CYP26C1 10q23.33 Vitamins 522 4 3 
Family 27 
CYP27A1 2q33-qter Sterols 531 8 15 
CYP27B1 12q13.1-q13.3 Vitamins 508 9 22 
CYP27C1 2q14.3 Unknown 372 8 1 
Family 39 
CYP39A1 6p21.1-p11.2 Sterols 469 12 7 
Family 46 
CYP46A1 14q32.1 Sterols 500 15 0 
Family 51 
CYP51A1 7q21.2-q21.3 Sterols 509 10 3 

Data are from Wang et al. (2009).
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Table 1-2.  The major substrates, inhibitors and inducers for the major drug metabolizing CYPs. 
 

CYP1A2 
 Substrates Inhibitors Inducers 

1 Acetaminophen Olanzapine Amiodarone Broccoli 
2 Amitriptyline Ondansetron Cimetidine Brussel sprouts 
3 Caffeine* Phenacetin* Ciprofloxacin** Char-grilled meat 
4 Clomipramine Propranolol Fluvoxamine** Insulin 
5 Clozapine Riluzole Furafylline** Methylcholanthrene 
6 Cyclobenzaprine Ropivacaine Interferon Modafinil 
7 Estradiol Tacrine Methoxsalen Nafcillin 
8 Fluvoxamine Theophylline Mibefradil β-Naphthoflavone 
9 Haloperidol Tizanidine  Omeprazole 

10 Imipramine R-Warfarin  Tobacco 
11 Melatonin* Verapamil   
12 Mexiletine Zileuton   
13 Naproxen Zolmitriptan   

CYP2C9 
 Substrates Inhibitors Inducers 

1 Amitriptyline Losartan  Amiodarone Rifampin 
2 Celecoxib Lornoxicam  Fenofibrate Secobarbital 
3 Diclofenac*  Meloxicam  Fluconazole  
4 Fluoxetine Nateglinide Fluvastatin  
5 Flurbiprofen* Phenytoin (4’-OH) Fluvoxamine  
6 Fluvastatin Piroxicam  Isoniazid  
7 Glimepiride  Rosiglitazone Lovastatin  
8 Glipizide  S-Naproxen Phenylbutazone  
9 Glipizide  Suprofen Probenicid  

10 Glyburide S-Warfarin* Sertraline  
11 Glyburide/Glibenclamide  Tamoxifen Sulfamethoxazole  
12 Ibuprofen Tolbutamide*  Sulfaphenazole**  
13 Irbesartan Torsemide Teniposide  
14   Voriconazole  
15   Zafirlukast  

CYP2C19 
 Substrates Inhibitors Inducers 

1 Amitriptyline Nelfinavir Chloramphenicol Carbamazepine 
2 Carisoprodol Nilutamide Cimetidine Norethindrone 
3 Chloramphenicol Omeprazole* Felbamate Prednisone 
4 Citalopram Pantoprazole Fluoxetine Rifampin 
5 Clomipramine Phenobarbitone Fluvoxamine  
6 Clopidogrel Phenytoin Indomethacin  
7 Cyclophosphamide Primidone Ketoconazole  
8 Diazepam  Progesterone Modafinil  
9 E-3810 Proguanil Oxcarbazepine  

10 Hexobarbital Propranolol Probenicid  

11 Imipramine 
N-demethylation Rabeprazole Ticlopidine  

12 Indomethacin R-Mephobarbital Topiramate  
13 Lansoprazole R-Warfarin (8-OH) Lansoprazole   
14 Moclobemide S-Mephenytoin*  Omeprazole   
15  Teniposide Pantoprazole   
16   Rabeprazole   

CYP2D6 
 Substrates Inhibitors Inducers 
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1 Alprenolol Metoclopramide Amiodarone Dexamethasone 
2 Amitriptyline Mexilletine Bupropion Rifampin 
3 Amphetamine Minaprine Celecoxib  
4 Aripiprazole Nebivolol Chlorpheniramine  
5 Atomoxetine Nortriptyline Chlorpromazine  
6 Bufuralol* Ondansetron Cimetidine  
7 Carvedilol Oxycodone Cinacalcet  
8 Chlorpheniramine Paroxetine Citalopram  
9 Chlorpromazine Perhexiline Clemastine  

10 Clomipramine  
(Antidepres) Perphenazine Clomipramine  

11 Codeine 
(O-demethylation) Phenacetin Cocaine  

12 Debrisoquine* Phenformin Diphenhydramine  
13 Desipramine Promethazine Doxepin  
14 Dexfenfluramine Propafenone Doxorubicin  
15 Dextromethorphan* Propranolol Duloxetine  
16 Duloxetine Risperidone Escitalopram  
17 Encainide S-Metoprolol Fluoxetine  
18 Flecainide Sparteine Goldenseal  
19 Fluoxetine Tamoxifen Halofantrine  
20 Fluvoxamine Thioridazine Hydroxyzine  
21 Haloperidol Timolol Levomepromazine  
22 Imipramine  Tramadol Methadone  
23 Lidocaine Venlafaxine Metoclopramide  
24 Methoxyamphetamine Zuclopenthixol  Mibefradil  
25   Midodrine  
26   Moclobemide  
27   Paroxetine  
28   Perphenazine  
29   Quinidine**  
30   Ranitidine  
31   Red-Haloperidol  
32   Ritonavir  
33   Sertraline  
34   Terbinafine  
35   Ticlopidine  
36   Tripelennamine  

CYP2E1 
 Substrates Inhibitors Inducers 

1 Acetaminophen Halothane Diethyl-Dithiocarba
mate Ethanol 

2 Aniline Isoflurane  Disulfiram Isoniazid 
3 Benzene Methoxyflurane    
4 Chlorzoxazone N, N-Dimethylformamide   
5 Enflurane Sevoflurane   
6 Ethanol Theophylline   

CYP3A4 
 Substrates Inhibitors Inducers 

1 Alfentanyl Lidocaine Amiodarone Barbiturates 
2 Alprazolam Lovastatin Aprepitant Carbamazepine 
3 Amlodipine Methadone Chloramphenicol Efavirenz 
4 Aprepitant Midazolam*  Cimetidine Efavirenz  
5 Aripiprazole Nateglinide Clarithromycin Glucocorticoids 
6 Astemizole  Nelfinavir  Delaviridine Modafinil 
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7 Atorvastatin Nifedipine* Diethyl-dithiocarbam
ate Nevirapine 

8 Buspirone Nisoldipine  Diltiazem Nevirapine 
9 Cafergot Nitrendipine  Erythromycin Oxcarbazepine 

10 Caffeine NOT Azithromycin Fluconazole Phenobarbital 
11 Cerivastatin  NOT Pravastatin Fluvoxamine Phenytoin 
12 Chlorpheniramine NOT Rosuvastatin Gestodene Pioglitazone 
13 Cilostazol Ondansetron Grapefruit Juice Rifabutin 
14 Cinacalcet Pimozide Imatinib Rifampin 

15 Cisapride Progesterone (Steroid 
6β-OH) Indinavir** St. John's Wort 

16 Clarithromycin Propranolol Itraconazole** Troglitazone1 
17 Cocaine Quetiapine Ketoconazole  

18 Codeine- 
(N-Demethylation) Quinidine 3-OH (Not 3A5) Mibefradil  

19 Cyclosporine Quinine Mifepristone  
20 Dapsone Risperidone Nefazodone  
21 Dexamethasone Ritonavir Nelfinavir  
22 Dextromethorphan Salmeterol Norfloxacin  
23 Diazepam (3-OH) Saquinavir Norfluoxetine  
24 Diltiazem Sildenafil Ritonavir  
25 Docetaxel Simvastatin Saquinavir  
26 Domperidone Sirolimus Telithromycin**  
27 Eplerenone Tacrolimus (FK506) Verapamil  
28 Erythromycin (Not 3A5) Tamoxifen Voriconazole  
29 Estradiol (Steroid 6β-OH) Taxol   

30 Felodipine Telithromycin 
(Macr-Antibio)   

31 Fentanyl Terfenadine   

32 Finasteride Terfenadine 
(Antihistamines)   

33 Gleevec Testosterone* (Steroid 
6β-OH)   

34 Haloperidol Trazodone   

35 Hydrocortisone (Steroid 
6β-OH) Triazolam   

36 Indinavir Verapamil   
37 Irinotecan Vincristine   
38 LAAM Zaleplon   
39 Lapatinib Ziprasidone   
40 Lercanidipine Zolpidem   

*: model substrate; **: highly selective inhibitor. Data are also extracted from the Drug-Interaction website 
http://medicine.iupui.edu/flockhart/table.htm.  
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Table 1‐3. Reported variants of human CYP1A2. 

CYP1A2 Nucleotide change Effect Enzyme activity Reference 
In vivo In vitro 

*1A Wild-type   Normal Normal (Ikeya et al., 1989; 
Quattrochi and Tukey, 
1989) 

*1B 5347T>C       (Nakajima et al., 1999b; 
Welfare et al., 1999) 

*1C -3860G>Aa   ↓   (Nakajima et al., 
1999b) 

*1D -2467delT       (Chida et al., 1999a) 
*1E -739T>G        (Chida et al., 1999a) 
*1F -163C>A   ↑Inducibility   (Chida et al., 1999a; 

Sachse et al., 1999; Han 
et al., 2002) 

*1G -739T>G; 5347T>C       (Chevalier et al., 2001) 
*1H 2025A>C; 5347T>C       (Chevalier et al., 2001) 
*1J -739T>G ; -163C>A       (Aklillu et al., 2003) 
*1K -739T>G; -729C>T; -163C>A   ↓   (Aklillu et al., 2003) 
*1Lb  -3860G>A; -2467delT; 

-163C>A; 5347T>C 
      (Soyama et al., 2005) 

*1Mb  -163C>A; 2159G>A       (Soyama et al., 2005) 
*1Nb -3594T>G; -2467delT; 

-163C>A; 2321G>C; 
5521A>G; 5347T>C 

      (Soyama et al., 2005) 

*1Pb -3594T>G; -2467delT; 
-733G>C; -163C>A; 2321G>C; 
5521A>G; 5347T>C 

      (Soyama et al., 2005) 

*1Qb -2808A>C; -163C>A; 
2159G>A 

        (Soyama et al., 2005) 

*1Rb -3594T>G; -2467delT; 
-367C>T; -163C>A; 2321G>C; 
5521A>G; 5347T>C 

      (Soyama et al., 2005) 

*1Sb -3053A>G; 5347T>C       (Soyama et al., 2005) 
*1Tb -2667T>G; 5347T>C       (Soyama et al., 2005) 
*1Ub 678C>T; 5347T>C       (Soyama et al., 2005) 
*1Vb -2467delT; -163C>A       (Ghotbi et al., 2007) 
*1Wb -3113A>G; -2467delT; 

-739T>G; -163C>A 
      (Ghotbi et al., 2007) 

*2 63C>G F21L     (Huang et al., 1999) 
*3 2385G>A; 5347T>C D348N ↓Expression   (Chevalier et al., 2001; 

Zhou et al., 2004a) 
*4 2499A>T I386F    (Chevalier et al., 2001; 

Zhou et al., 2004a) 
*5 3497G>A C406Y  ↓Expression   (Chevalier et al., 2001) 
*6 5090C>T R431W ↓Expression   (Chevalier et al., 2001; 

Zhou et al., 2004a) 
*7 3533G>A Splicing 

defect 
↓   (Allorge et al., 2003) 

*8 5166G>A; 5347T>C R456H   ↓ (Saito et al., 2005; 
Soyama et al., 2005) 

*9 248C>T T83M     (Murayama et al., 2004)
*10 502G>C E168Q     (Murayama et al., 2004)
*11 558C>A  F186L   ↓ (Murayama et al., 2004)
*12 634A>T S212C     (Murayama et al., 2004)
*13 1514G>A G299S     (Murayama et al., 2004)
*14 5112C>T T438I       (Murayama et al., 2004)
*15 125C>G; 5347T>C P42R   ↓ (Saito et al., 2005; 

Soyama et al., 2005) 
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*16 2473G>A; 5347T>C R377Q   ↓ (Saito et al., 2005; 
Soyama et al., 2005) 

 - -1051T>C; -733G>C; 
1590C>T; 2570G>A; 2646C>T; 
2694A>C; 5010C>T; 5521A>G 

          (Solus et al., 2004) 

 - 53C>G  S18C     (Solus et al., 2004) 
 - 1513C>A  S298R        (Solus et al., 2004) 
 - 1559A>G  I314V      (Solus et al., 2004) 
Data are extracted from http://www.imm.ki.se/CYPalleles (access date: 25 March 2009). 
aNucleotide variations in bold are the major SNPs responsible for the phenotype of the corresponding 
allele. 
bPredicted. 
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Table 1‐4. Reported variants of the human CYP2C9 gene. 

CYP2C9 Nucleotide change Amino acid 
change 

Reference 

cDNA Gene 

*1A Wild-type     (Romkes et 
al., 1991) 

*1Ba     -2665_-2664delTG; -1188T>C    (King et al., 
2004) 

*1Ca    -1188T>C    (Shintani et 
al., 2001; 
King et al., 
2004)       

*1Da    -2665_-2664delTG    (King et al., 
2004) 

*2Aa  430C>Tb -1188T>C, -1096A>G; -620G>T; -485T>A; 
-484C>A; 3608C>T  

R144C (Rettie et al., 
1994) 

*2Ba  430C>T -2665_-2664delTG, -1188T>C; -1096A>G; 
-620G>T; -485T>A; -484C>A; 3608C>T 

R144C (King et al., 
2004) 

*2Ca  430C>T -1096A>G; -620G>T; -485T>A; -484C>A; 
3608C>T  

R144C (King et al., 
2004) 

*3Aa  1075A>C -1911T>C; -1885C>G; -1537G>A; -981G>A; 
42614A>C 

I359L (Haining et 
al., 1996) 

*3Ba 1075A>C -1911T>C; -1885C>G; -1537G>A; -1188T>C; 
-981G>A; 42614A>C 

I359L (Shintani et 
al., 2001; 
King et al., 
2004)  

*4 1076T>C 42615T>C I359T (Imai et al., 
2000) 

*5 1080C>G 42619C>G D360E (Dickmann 
et al., 2001) 

*6 818delA 10601delA 273Frame 
shift 

(Kidd et al., 
2001) 

*7 55C>A 55C>A L19I  (Blaisdell et 
al., 2004) 

*8 449G>A  3627G>A R150H (Blaisdell et 
al., 2004) 

*9 752A>G 10535A>G H251R (Blaisdell et 
al., 2004) 

*10 815A>G 10598A>G E272G (Blaisdell et 
al., 2004) 

*11Aa  1003C>T 42542C>T R335W (Higashi et 
al., 2002) 

*11Ba 1003C>T -2665_-2664delTG;  
-1188T>C; 42542C>T 

R335W (King et al., 
2004) 

*12 1465C>T 50338C>T P489S (Blaisdell et 
al., 2004) 

*13 269T>C 3276T>C L90P (Si et al., 
2004) 

*14 374G>A 3552G>A R125H (Zhao et al., 
2004) 

*15 485C>A  9100C>A (linkage with -1188T>C can not be 
excluded) 

S162X (Zhao et al., 
2004) 

*16 895A>G -1188T>C; 33497A>G T299A (Zhao et al., 
2004) 

*17 1144C>T 42683C>T P382S (Zhao et al., 
2004) 
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*18 1075A>C; 
1190A>C;  
1425A>T 

-1911T>C; -1885C>G; -1537G>A; -1188T>C; 
-981G>A; 42614A>C; 47391A>C; 50298A>T 

I359L; D397A (Zhao et al., 
2004) 

*19 1362G>C -1188T>C; 50235G>C Q454H (Zhao et al., 
2004) 

*20 208G>C -1188T>C; 3215G>C G70R  (Zhao et al., 
2004) 

*21 89C>T 89C>T P30L (Veenstra et 
al., 2005) 

*22 121A>G 121A>G N41D (Veenstra et 
al., 2005) 

*23 226G>A 3233G>A V76M (Veenstra et 
al., 2005) 

*24 1060G>Ac 42599G>A E354K (Herman et 
al., 2006) 

*25 353_362deld  3531_3540del (AGAAATGGAA)  118Frameshift (Maekawa et 
al., 2006) 

*26a  389C>G 1565C>T; -1188T>C; 3567C>G; 3856G>A; 
8763C>T; 9032G>C; 10311A>G; 33349A>G; 
50056A>T 

T130R (Maekawa et 
al., 2006) 

*27a 449G>T -3089G>A; -2665_-2664delTG;  -1188T>C; 
3627G>T; 3898C>T; 47639C>T; 50056A>T 

R150L (Maekawa et 
al., 2006) 

*28 641A>T 9256A>T Q214L (Maekawa et 
al., 2006) 

*29a 835C>A 251T>C; 3411T>C; 33437C>A; 33658A>G; 
50056A>T 

P279T (Maekawa et 
al., 2006) 

*30 1429G>A 50302G>A A477T (Maekawa et 
al., 2006) 

 -  - 96C>G; 251T>C; 2191T>A; 2340G>A; 
2638G>T; 2737T>C; 3162G>C; 3235G>A; 
3898C>T; 3924T>C; 4033A>G; 4157C>T; 
4309A>G; 4628T>A; 4670G>T; 9032G>C; 
9069G>A; 10682T>C; 10787G>A; 10814G>T; 
33349A>G; 33658A>G; 42469T>C; 42726C>T; 
47545A>T; 47593T>C; 50053G>A; 50066G>A; 
50081G>C; 50434C>T; 50454C>G; 50566A>G; 
50658A>G; 50742T>A; 52104C>A; 52175T>C; 
52236C>T; 52319G>C; 53194insTGACAT; 
53403C>T; 53498delT; 53538G>C; 53557T>C  

  (Solus et al., 
2004) 

 -   - 49C>A L17I (Maekawa et 
al., 2006) 

 -  - 47439T>C  L413P  (Solus et al., 
2004) 

 -  - 42612A>G Y358C NCBI 
dbSNP 

 -  - -8897C>A; -8553C>A; -8422A>G; -8416T>G; 
-7419A>G; -7336G>A; -5813A>G; -5661C>A; 
-5146G>C; -5143A>C; -5140A>T; -4877G>A; 
-4302C>T; -3597A>G; -3579G>A; -3360T>C 

 - (Kramer et 
al., 2008) 

aPredicted. 
bNucleotide variations in bold are the major SNPs responsible for the phenotype of the corresponding allele. 
cExistence of the CYP2C9*2 polymorphism 430C>T on the same allele can not be excluded. 
dAGAAATGGAA (deleted). 
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Table 1‐5. Frequencies of CYP2C9 alleles and genotypes in different ethnic groups. 

Ethnic group No. of 
subject 
(n) 

Allele frequency 
(%) 

Genotype frequency (%) Reference 

*1 *2 *3 *1/*2 *1/*3 *2/*2 *2/*3 *3/*3 
Caucasian           
  
American-Caucasian 

100 86.0 8.0 6.0 16.0 12.0 0 0 0 (Sullivan-Klose 
et al., 1996) 

  
American-Caucasian 

461 90.3 9.7 0      (London et al., 
1996) 

  
American-Caucasian 

140 82.5 13.2 4.3 22.1 8.6 2.1 0 0 (Dickmann et 
al., 2001) 

  
American-Caucasian 

200 82.5 9.8 7.8 15.1 9.7 2.2 1.6 2.7 (Higashi et al., 
2002) 

  Belgiana 121 82.2 10.0 7.4 18.2 11.6 0 1.6 0.8 (Allabi et al., 
2003) 

  Brazilian  103 83.0 9.7 7.3 16.5 11.6 1.0 1.0 1.0 (Lima et al., 
2008) 

  Brazilianb  331 84.9 8.6 6.5 14.5 10.9 0.9 0.9 0.6 (Scordo et al., 
2002) 

  British  561 84.1 10.6 5.3 19.1 9.4 0.5 1.1 0 (Taube et al., 
2000) 

  British 94 80.9 19.1 0      (Furuya et al., 
1995) 

  British  100 79.0 12.5 8.5 19.0 15.0 3.0 0 1 (Stubbins et al., 
1996) 

  Canadian  325 78.0 15.0 7.0 20.3 15.7 1.2 1.6 0 (Gaedigk et al., 
2001) 

  Egyptian  247 82.0 12.0 6.0 19.0 11.7 2.4 0 0 (Hamdy et al., 
2002) 

  Faroese  311 81.2 18.8 0 17.7 10.6 0 1.6 0 (Halling et al., 
2005) 

 German  127 86.6 13.4 0      (Xie et al., 
2002) 

 German 108 81.0 14.0 5.0      (Burian et al., 
2002) 

 German 367 81.5 10.7 7.8      (Xie et al., 
2002) 

  Israeli  156 84.0 10.0 6.0 17.9 12.8 0 1.3 0 (Loebstein et 
al., 2001) 

  Italian  157 77.8 12.5 0.97 16.8 14.0 2.5 1.9 1.3 (Scordo et al., 
2001) 

  Italian  93 74.7 12.4 12.9 16.1 17.2 2.2 4.3 2.2 (Scordo et al., 
2002) 

  Portuguese 135 78.8 13.2 8.0      (Oliveira et al., 
2007) 

  Russian  290 83.9 9.1 7.0 18.3 11.3 0.7 1.4 0.3 (Gaikovitch et 
al., 2003) 

  Spanish 157 69.4 14.3 16.2 15.9 23.5 1.9 8.9 0 (Garcia-Martin 
et al., 2001) 

  Spanish  102 74.5 15.6 9.8 19.6 13.7 3.9 3.9 1.0 (Dorado et al., 
2003) 

  Spanish  70 70.0 10.7 19.3 17.1 25.7 1.4 1.4 5.7 (Llerena et al., 
2003) 

  Spanish  89 77.9 14.1 8.0 23.6 11.2 2.3 1.1 1.1 (Llerena et al., 
2003) 

  Spanish  138 78.1 14.6 7.3 19.6 11.6 2.9 2.9 0.7 (Llerena et al., 
2003) 

  Spanish 64 72.7 14.8 12.5 21.9 17.2 3.1 1.5 3.1 (Llerena et al., 
2004a) 
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  Spanish  355 71.0 19.0 10.0 28.2 15.5 3.1 2.8 1.1 (Martinez et 
al., 2005) 

  Spanish  200 81.8 12.0 6.2 22.0 12.5 1.0 0 0 (Mas et al., 
2005) 

  Spanish 142 78.5 13.7 7.7 19.0 9.6 2.8 2.8 1.4 (Dorado et al., 
2008) 

  Swedish 430 81.9 10.7 7.4 18.6 11.6 0.5 1.9 0.7 (Yasar et al., 
1999) 

  Swedish 201 82.3 11.2 6.5      (Wadelius et 
al., 2004) 

  Turkish  499 79.4 10.6 10.0 18.0 17.2 1.0 1.1 0.8 (Aynacioglu et 
al., 1999) 

  Turkish  85 - - - 11.8 14.1 3.5 1.2 1.2 (Babaoglu et 
al., 2004) 

  Turkishc 205 76.8 12.7 9.8 18.5 13.7 1.5 3.9 1.0 (Oner Ozgon et 
al., 2008) 

African           
   African 
American 

100 98.5 1.0 0.5 2.0 1.0 0 0 0 (Sullivan-Klose 
et al., 1996) 

   African 
American 

239 96.4 3.6 0       

   African 
American 

123 - - - 5.0 2.5 0 0 0 (Dickmann et 
al., 2001) 

   African 
Americand 

110 96.2 0 1.5      (Xie et al., 
2002) 

   African 
Americane 

115 85.0 5.0 5.0      (Momary et al., 
2007) 

   Belgian 
Beninese 

111 - - - 0 0 0 0 0 (Allabi et al., 
2003) 

   Ethiopian 150 94.0 4.0 2.0 8.7 4.6 0 0 0 (Scordo et al., 
2001) 

Asian           
  Chinese 135 100 0 0      (Wang et al., 

1995) 
  Chinese  115 98.3 0 1.7 0 3.0 0 0 0 (Wang et al., 

1995) 
  Chinese  102 95.0 0 5.0 0 10.8 0 0 0 (Gaedigk et al., 

2001) 
  Chinese  711 96.2 0 3.8 0 7.6 0 0 0 (Hong et al., 

2005) 
  Chinese  376 96.7 0 3.3 0 6.6 0 0 0 (Hong et al., 

2005) 
  Chinese 178 95.5 0 4.5 0 8.9 0 0 0 (Miao et al., 

2007) 
  Japanese  218 97.9 0 2.1 0 4.1 0 0 0 (Nasu et al., 

1997) 
  Japanese 86 98.3 0 1.7       
  Japanese  140 98.2 0 1.8 0 3.6 0 0 0 (Kimura et al., 

1998) 
  Korean  574 98.9 0 1.1 0 2.3 0 0 0 (Yoon et al., 

2001) 
  Koranf  358 93.4 0 6.0 0 12.0 0 0 0 (Bae et al., 

2005) 
  Malasian 191 93.2 0 6.8      (Ngow et al., 

2008) 
  Taiwanese  98 97.4 0 2.6 0 8.2 0 0 0 (Sullivan-Klose 

et al., 1996) 
Others           
  Bolivian  778 92.2 4.8 3.0 9.3 5.7 0 0.4 0 (Bravo-Villalta 

et al., 2005) 
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  Canadian native 
Indian 

114 91.0 3.0 6.0 6.1 11.4 0 0 0 (Gaedigk et al., 
2001) 

  Canadian Inuit  151 100 0 0 0 0 0 0 0 (Gaedigk et al., 
2001) 

   Iranian 160 79.3 11.0 9.7 17.5 13.7 2.5 0 1.9 (Peyvandi et 
al., 2002) 

   Iranian  200 87.2 12.8 0 10.5 0 7.5 0 0 (Zand et al., 
2007) 

   
Mexican-American  

98 86.0 8.0 6.0 15.0 10.0 0 1.0 0 (Llerena et al., 
2004b) 

  Omani  189 89.7 7.4 2.9 12.7 5.8 1.1 0 0 (Tanira et al., 
2007) 

  Tamilian  135 90.7 2.6 6.7 4.4 12.7 0 0.7 0 (Adithan et al., 
2003) 

aThe frequency of CYP2C9*11 was 0.4%. (Allabi et al., 2003) 
bThe population contained a mixture of white (n = 136), black (n = 77), and intermediate (n = 118). (Scordo et 
al., 2002) 
cThe frequency of CYP2C9*4 was 0.7%. (Oner Ozgon et al., 2008) 
dThe frequency of CYP2C9*5 was 2.3%. (Xie et al., 2002) 
eThe frequency of CYP2C9*5 was 5.0%. (Momary et al., 2007) 
fThe frequency of CYP2C9*13 was 0.6%. (Bae et al., 2005) 
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Table 1‐6. Reported variants of human CYP2D6. 

CYP2D6 Nucleotide change Amino acid change Impact on 
enzyme 
activity 

Reference 

*1A None   Normal (Kimura et al., 1989) 
*1B 3828G>A   Normal (Marez et al., 1997) 
*1C 1978C>T   Normal (Marez et al., 1997) 
*1D 2575C>A   (Marez et al., 1997) 
*1E 1869T>C   (Sachse et al., 1997) 
*1XN   N active genes ↑  (Dahl et al., 1995; Sachse 

et al., 1997) 
*2A -1584C>G; -1235A>G; -740C>T; 

-678G>A; CYP2D7 gene 
conversion in intron 1; 1661G>C; 
2850C>T; 4180G>C 

R296C; S486T Normal (Johansson et al., 1993; 
Panserat et al., 1994; 
Raimundo et al., 2000; 
Sakuyama et al., 2008) 

*2B 1039C>T; 1661G>C; 2850C>T; 
4180G>C 

R296C; S486T  (Marez et al., 1997) 

*2C 1661G>C; 2470T>C; 2850C>T; 
4180G>C 

R296C; S486T  (Marez et al., 1997; 
Sachse et al., 1997) 

*2D 2850C>T; 4180G>C R296C; S486T  (Marez et al., 1997) 
*2E 997C>G; 1661G>C; 2850C>T; 

4180GC 
R296C; S486T  (Marez et al., 1997) 

*2F 1661G>C; 1724C>T; 2850C>T; 
4180G>C 

R296C; S486T  (Marez et al., 1997) 

*2G 1661G>C; 2470T>C; 2575C>A; 
2850C>T; 4180G>C 

R296C; S486T  (Marez et al., 1997) 

*2H 1661G>C; 2480C>T; 2850C>T; 
4180G>C 

R296C; S486T  (Marez et al., 1997) 

*2J See CYP2D6*59      
*2K 1661G>C; 2850C>T; 4115C>T; 

4180G>C 
R296C; S486T  (Marez et al., 1997) 

*2L (formerly 
*41B)  

-1584C; -1298G>A; -1235A>G; 
-740C>T; 310G>T; 746C>G; 
843T>G; 1513C>T; 1661G>C; 
1757C>T; 2850C>T; 3384A>C; 
3584G>A; 3790C>T; 4180G>C 

R296C; S486T   (Gaedigk et al., 2005a) 

*2M  -1584C; -1237_-1236insAA;  
-1235A>G; -750_-749delGA; 
-740C>T; -678G>A; CYP2D7 gene 
conversion in intron 1; 310G>T; 
746C>G; 843T>G; 1661G>C; 
2850C>T; 2988G; 3384A>C; 
3584G>A; 3790C>T; 4180G>C; 
4481G>A 

R296C; S486T   (Gaedigk et al., 2005b) 

*2XN  
(N=2, 3, 4, 5 
or 13)  

1661G>C; 2850C>T; 4180G>C R296C; S486T;  
N active genes  

↑ (Johansson et al., 1993; 
Dahl et al., 1995; Aklillu 
et al., 1996) 

*3A 2549delAa 259Frameshift None (Kagimoto et al., 1990) 
*3B 1749A>G; 2549delA N166D; 

259frameshift 
 (Marez et al., 1997) 

*4A 100C>T; 974C>A; 984A>G; 
997C>G; 1661G>C; 1846G>A; 
4180G>C 

P34S; L91M; 
H94R;  splicing 
defect; S486T 

None (Gough et al., 1990; 
Hanioka et al., 1990; 
Kagimoto et al., 1990) 

*4B 100C>T; 974C>A; 984A>G; 
997C>G; 1846G>A; 4180G>C 

P34S; L91M; 
H94R; splicing 
defect; S486T 

None (Kagimoto et al., 1990) 

*4C 100C>T; 1661G>C; 1846G>A; 
3887T>C; 4180G>C 

P34S; splicing 
defect; L421P; 
S486T 

None (Yokota et al., 1993) 
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*4D 100C>T; 1039C>T; 1661G>C; 
1846G>A; 4180G>C 

P34S; splicing 
defect; S486T 

None (Marez et al., 1997) 

*4E 100C>T; 1661G>C; 1846G>A; 
4180G>C 

P34S; splicing 
defect; S486T 

 (Marez et al., 1997) 

*4F 100C>T; 974C>A; 984A>G; 
997C>G; 1661G>C; 1846G>A; 
1858C>T;  4180G>C 

P34S; L91M; 
H94R; splicing 
defect; R173C; 
S486T 

 (Marez et al., 1997) 

*4G 100C>T; 974C>A; 984A>G; 
997C>G; 1661G>C; 1846G>A; 
2938C>T; 4180G>C  

P34S; L91M; 
H94R; splicing 
defect;  P325L; 
S486T 

 (Marez et al., 1997) 

*4H 100C>T; 974C>A; 984A>G; 
997C>G; 1661G>C; 1846G>A; 
3877G>C; 4180G>C 

P34S; L91M; 
H94R; splicing 
defect; E418Q; 
S486T 

 (Marez et al., 1997) 

*4J 100C>T; 974C>A; 984A>G; 
997C>G; 1661G>C; 1846G>A 

P34S; L91M; 
H94R; splicing 
defect

 (Marez et al., 1997) 

*4K 100C>T; 1661G>C; 1846G>A; 
2850C>T; 4180G>C 

P34S; splicing 
defect; R296C; 
S486T 

None (Sachse et al., 1997) 

*4L 100C>T; 997C>G; 1661G>C; 
1846G>A; 4180G>C 

P34S; splicing 
defect; S486T 

 (Shimada et al., 2001) 

*4M -1235A>G; 746C>G; 843T>G 
974C>A; 984A>G; 997C>G; 
1661G>C; 1846G>A; 2097A>G; 
3384A>C; 3582A>G; 4401C>T  

L91M; H94R; 
splicing defect  

 (Agundez et al., 1997; 
Fuselli et al., 2004; 
Gaedigk et al., 2006) 

*4N (Found 
in a gene 
duplication) 

-1426C>T; -1235A>G; -1000G>A; 
100C>T; 310G>T; 746C>G; 
843T>G; 974C>A; 984A>G; 
997C>G; 1661G>C; 1846G>A; 
2097A>G; 3384A>C; 3582A>G; 
gene conversion to CYP2D7 in 
exon 9; 4180G>C; 4401C>T  

P34S; L91M; 
H94R; splicing 
defect; P469A; 
T470A; H478S; 
G479A; F481V; 
A482S; S486T  

None (Gaedigk et al., 2006) 

*4X2   None (Lovlie et al., 1997; 
Sachse et al., 1998) 

*5 CYP2D6 deleted CYP2D6 deleted None (Gaedigk et al., 1991; 
Steen et al., 1995) 

*6A 1707delT 118Frameshift None (Saxena et al., 1994) 
*6B 1707delT; 1976G>A 118Frameshift None (Evert et al., 1994a; Daly 

et al., 1995) 
*6C 1707delT; 1976G>A; 4180G>C 118Frameshift None (Marez et al., 1997) 
*6D 1707delT; 3288G>A 118Frameshift  (Marez et al., 1997) 
*7 2935A>C H324P None (Evert et al., 1994b) 
*8 1661G>C; 1758G>T; 2850C>T; 

4180G>C 
G169X None (Broly et al., 1995) 

*9 2615_2617delAAG K281del ↓ (Tyndale et al., 1991; 
Broly and Meyer, 1993) 

*10A 100C>T; 1661G>C; 4180G>C P34S; S486T ↓ (Yokota et al., 1993; 
Sakuyama et al., 2008) 

*10B -1426C>T; -1237_-1236insAA;  
-1235A>G; -1000G>A; 100C>T; 
1039C>T; 1661G>C; 4180G>C 

P34S; S486T ↓ (Johansson et al., 1994) 

*10C See *36    
*10D 100C>T; 1039C>T; 1661G>C; 

4180G>C, CYP2D7-like 3'-flanking 
region 

P34S; S486T  (Ishiguro et al., 2004b) 

*10X2     ↓ (Garcia-Barcelo et al., 
2000; Ji et al., 2002; 
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Mitsunaga et al., 2002; 
Ishiguro et al., 2004a) 

*11 883G>C; 1661G>C; 2850C>T; 
4180G>C 

Splicing defect; 
R296C; S486T 

None (Marez et al., 1995) 

*12 124G>A; 1661G>C; 2850C>T; 
4180G>C 

G42R; R296C; 
S486T 

None (Marez et al., 1996) 

*13 CYP2D7P/CYP2D6 hybrid:   
Exon 1 CYP2D7, exons 2-9 
CYP2D6 

Frameshift None (Panserat et al., 1995) 

*14A 100C>T; 1758G>A; 2850C>T; 
4180G>C 

P34S; G169R; 
R296C; S486T 

None (Wang et al., 1999; 
Sakuyama et al., 2008) 

*14B intron 1 conversion with CYP2D7 
(214-245); 1661G>C; 1758G>A; 
2850C>T; 4180G>C  

G169R; R296C; 
S486T 

↓ (Ji et al., 2002; Sakuyama 
et al., 2008) 

*15 137_138insT 46Frameshift None (Sachse et al., 1996) 
*16 CYP2D7P/CYP2D6 hybrid: 

Exons 1-7 CYP2D7P-related, exons 
8-9 CYP2D6 

Frameshift None (Daly et al., 1996) 

*17 1023C>T; 1661G>C; 2850C>T; 
4180G>C 

T107I; R296C; 
S486T 

↓ (Masimirembwa et al., 
1996; Oscarson et al., 
1997) 

*17XN     Normal 
(if N = 2) 

(Cai et al., 2006) 

*18 4125_4133dupGTGCCCACT 468_470dupVPT None (Yokoi et al., 1996; 
Sakuyama et al., 2008) 

*19 1661G>C; 2539_2542delAACT; 
2850C>T; 4180G>C 

255Frameshift None (Marez et al., 1997) 

*20 1661G>C; 1973_1974insG; 
1978C>T; 1979T>C; 2850C>T; 
4180G>C 

211Frameshift None (Marez-Allorge et al., 
1999) 

*21A -1584C>G; -1426C>T; 
-1258_-1257insAAAAA;  
-1235A>G; -740C>T; -678G>A; 
-629A>G; 214G>C; 221C>A; 
223C>G; 227T>C; 310G>T; 
601delC; 1661G>C; 
2573_2574insC; 2850C>T; 
3584G>A; 4180G>C 

267Frameshift None (Chida et al., 1999b) 

*21B -1584C>G; -1235A>G; -740C>T; 
-678G>A; intron 1 conversion with 
CYP2D7 (214-245); 1661G>C; 
2573_2574insC; 2850C>T; 
4180G>C 

267Frameshift None (Yamazaki et al., 2003) 

*22 82C>T R28C  (Marez et al., 1997) 
*23 957C>T A85V  (Marez et al., 1997) 
*24 2853A>C I297L  (Marez et al., 1997) 
*25 3198C>G R343G  (Marez et al., 1997) 
*26 3277T>C I369T  (Marez et al., 1997) 
*27 3853G>A E410K Normal (Marez et al., 1997; 

Sakuyama et al., 2008) 
*28 19G>A; 1661G>C; 1704C>G; 

2850C>T; 4180G>C 
V7M; Q151E; 
R296C; S486T 

 (Marez et al., 1997) 

*29 1659G>A; 1661G>C; 2850C>T; 
3183G>A; 4180G>C 

V136M; R296C; 
V338M; S486T 

↓ (Marez et al., 1997; 
Wennerholm et al., 2001; 
Wennerholm et al., 2002) 

*30 1661G>C; 
1863_1864insTTTCGCCCC; 
2850C>T; 4180G>C 

174_175insFRP; 
R296C; S486T 

 (Marez et al., 1997) 

*31 1661G>C; 2850C>T; 4042G>A; 
4180G>C 

R296C; R440H; 
S486T 

 (Marez et al., 1997) 
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*32 1661G>C; 2850C>T; 3853G>A; 
4180G>C 

R296C; E410K; 
S486T 

 (Marez et al., 1997) 

*33 2483G>T A237S Normal (Marez et al., 1997) 
*34 2850C>T R296C  (Marez et al., 1997) 
*35 -1584C>G; 31G>A; 1661G>C; 

2850C>T; 4180G>C 
V11M; R296C; 
S486T 

Normal (Marez et al., 1997; 
Gaedigk et al., 2003b) 

*35X2 31G>A; 1661G>C; 2850C>T; 
4180G>C 

V11M; R296C; 
S486T 

↑ (Griese et al., 1998) 

*36 
(Duplication 
or tandem) 

-1426C>T; -1237_-1236insA; 
-1235A>G; -1000G>A; 100C>T; 
1039C>T; 1661G>C; gene 
conversion to CYP2D7 in exon 9; 
4180G>C  

P34S; P469A; 
T470A; H478S; 
G479A; F481V; 
A482S; S486T 

Negligible (Johansson et al., 1994; 
Leathart et al., 1998) 

*36 (Single) -1426C>T;  -1235A>G; -1000G>A; 
100C>T; 310G>T; 843T>G; 
1039C>T; 1661G>C; 2097A>G; 
3384A>C; 3582A>G; gene 
conversion to CYP2D7 in exon 9 

P34S; P469A; 
T470A; H478S; 
G479A; F481V; 
A482S; S486T 

Negligible (Gaedigk et al., 2006; 
Sakuyama et al., 2008) 

*37 100C>T; 1039C>T; 1661G>C; 
1943G>A; 4180G>C; 

P34S; R201H; 
S486T 

 (Marez et al., 1997) 

*38 2587_2590delGACT 271Frameshift None (Leathart et al., 1998) 
*39 1661G>C; 4180G>C S486T Normal (Shimada et al., 2001; 

Sakuyama et al., 2008) 
*40 1023C>T; 1661G>C; 

1863_1864ins(TTT CGC CCC)2; 
2850C>T; 4180G>C 

T107I; 
174_175ins(FRP)2; 
R296C; S486T 

None (Gaedigk et al., 2002) 

*41 -1584C; -1235A>G; -740C>T;  
-678G>A; CYP2D7 gene 
conversion in intron 1; 1661G>C; 
2850C>T; 2988G>A; 4180G>C 

R296C; splicing 
defect; S486T 

↓ (Raimundo et al., 2000; 
Raimundo et al., 2004; 
Rau et al., 2006; Toscano 
et al., 2006a) 

*42 -1584C; 1661G>C; 2850C>T; 
3259_3260insGT; 4180G>C 

R296C; 
365Frameshift

None (Gaedigk et al., 2003a) 

*43 77G>A R26H  (Marez et al., 1997) 
*44 82C>T; 2950G>C  Splicing defect  None (Yamazaki et al., 2003) 
*45A -1601_-1600GA>TT; -1584C; 

-1238_-1237delAA; 
-1094_-1093insA; -1011T>C; 
310G>T; 746C>G; 843T>G; 
1661G>C; 1716G>A; 2129A>C; 
2575C>A; 2661G>A; 2850C>T; 
3254T>C; 3384A>C; 3584G>A; 
3790C>T; 4180G>C 

E155K; R296C; 
S486T 

 (Gaedigk et al., 2005a) 

*45B -1584C; -1543G>A; -1298G>A;  
-1235A>G; -1094_-1093insA; 
-740C>T; -695_-692delTGTG; 
310G>T; 746C>G; 843T>G; 
1661G>C; 1716G>A; 2575C>A; 
2661G>A; 2850C>T; 3254T>C; 
3384A>C; 3584G>A; 3790C>T; 
4180G>C 

E155K; R296C; 
S486T 

 (Gaedigk et al., 2005a) 

*46 -1584C; -1543G>A; -1298G>A;  
-1235A>G; -740C>T; 77G>A; 
310G>T; 746C>G; 843T>G; 
1661G>C; 1716G>A; 2575C>A; 
2661G>A; 2850C>T; 3030G>G/A*; 
3254T>C; 3384A>C; 3491G>A; 
3584G>A; 3790C>T; 4180G>C 

R26H; E155K; 
R296C; S486T 

 (Gaedigk et al., 2005a) 

*47 -1426C>T; -1235A>G; -1000G>A; 
73C<T; 100C>T; 1039C>T; 
1661G>C; 4180G>C 

R25W; P34S; 
S486T 

Negligible (Soyama et al., 2004; 
Sakuyama et al., 2008) 
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*48 972C>T A90V Normal (Soyama et al., 2004; 
Sakuyama et al., 2008) 

*49 -1426C>T; -1235A>G; -1000G>A; 
100C>T; 1039C>T; 1611T>A; 
1661G>C; 4180G>C 

P34S; F120I; 
S486T 

↓ (Soyama et al., 2004; 
Sakuyama et al., 2008) 

*50 1720A>C E156A ↓ (Soyama et al., 2004; 
Sakuyama et al., 2008) 

*51 -1584C>G; -1235A>G;  -740C>T; 
-678G>A; CYP2D7 gene 
conversion in intron 1; 1661G>C; 
2850C>T; 3172A>C; 4180G>C 

R296C; E334A; 
S486T 

Negligible (Soyama et al., 2004; 
Sakuyama et al., 2008) 

*52 -1426C>T; -1245_-1244insGA; 
-1235A>G; -1028T>C; -1000G>A; 
-377A>G; 100C>T; 1039C>T; 
1661G>C; 3877G>A; 4180G>C; 
4388C>T; 4401C>T 

P34S; E418K  http://www.cypalleles.ki.se

*53 1598A>G; 1611T>A; 1617G>T F120I; A122S ↑ (Ebisawa et al., 2005; 
Sakuyama et al., 2008) 

*54 100C>T; 1039C>T; 1661G>C; 
2556C>T; 4180G>C 

P34S; T261I; 
S486T 

↓ (Ebisawa et al., 2005; 
Sakuyama et al., 2008) 

*55 1661G>C; 2850C>T; 3790C>T; 
3835A>C; 4180G>C 

R296C; K404Q; 
S486T 

↓ (Ebisawa et al., 2005; 
Sakuyama et al., 2008) 

*56A -1584C>G; -1235A>G; -740C>T; 
-678G>A; CYP2D7 gene 
conversion in intron 1; 1661G>C; 
2850C>T; 3201C>T; 3384A>C; 
3584G>A; 3790C>T; 4180G>C 

R296C; R344X None (Li et al., 2006b) 

*56B  -1426C>T; -1235A>G; -1000G>A; 
100C>; 310G>T; 843T>G; 
1039C>T; 1661G>C; 2097A>G; 
3201C>T; 3384A>C; 3582A>G, 
4180G>C 

P34S; R344X  (Gaedigk et al., 2007a) 

*57 (In 
tandem with 
*10) 

100C>T; 310G>T; 843T>G; 
887C>T; 1039C>T; 1661G>C; 
3384A>C; 3582A>G; gene 
conversion to CYP2D7 in exon 9; 
4180G>C  

P34S; R62W; 
P469A; T470A; 
H478S; G479A; 
F481V; A482S; 
S486T 

Negligible (Soyama et al., 2006; 
Sakuyama et al., 2008) 

*58 -1426C>T; -1235A>G; -740C>T; 
CYP2D7 gene conversion in intron 
1; 310G>T; 843T>G; 1023C>T; 
1661G>T; 
1863_1864insTTTCGCCCC; 
2850C>T; 3384A>C; 3584G>A; 
3790C>T; 4180G>C 

T107I; 
174_175insFRP; 
R296C; S486T 

 http://www.cypalleles.ki.se

*59 1661G>C; 2291G>A; 2850C>T; 
2939G>A; 4180G>C 

R296C; S486T ↓ (Marez et al., 1997; 
Toscano et al., 2006b) 

*60       
*61 gene conversion to CYP2D7 in 

exon 9 
P469A; T470A; 
H478S; G479A; 
F481V; A482S; 
S486T 

 http://www.cypalleles.ki.se

*62 4044C>T R441C None (Klein et al., 2007) 

*63 2850C>T; gene conversion to 
CYP2D7 in exon 9 

R296C; P469A; 
T470A; H478S; 
G479A; F481V; 
A482S; S486T 

 http://www.cypalleles.ki.se

*64 -1426C>T; -1235A>G; -1000G>A; 
100C>T; 310G>T; 843T>G; 
1023C>T; 1661G>C; 2097A>G; 

P34S; T107I; 
S486T  (Gaedigk and Coetsee, 

2008) 
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3384A>C; 3582A>G; 4180G>C; 
4401C>T; 4722T>G 

*65 100C>T; 310G>T; 843T>G; 
1661G>C; 2850C>T; 3384A>C; 
3584G>A; 3790C>T; 4180G>C; 
4481G>A 

P34S; R296C; 
S486T 

 (Gaedigk and Coetsee, 
2008) 

*66 CYP2D7P/CYP2D6 hybrid:   
Exons 1-6 CYP2D7, exons 7-9 
CYP2D6 

Frameshift  (Gaedigk and Coetsee, 
2008) 

*67 CYP2D7P/CYP2D6 hybrid:   
Exons 1-5 CYP2D7, exons 6-9 
CYP2D6 

Frameshift  http://www.cypalleles.ki.se

   -98C>T; -43insG; 1923C>T; 
1998T>C; 2303C>T; 2663G>A; 
2760T>A; 3408T>C; 3435C>A; 
4172C>T  

    (Solus et al., 2004) 

   4155C>  H478Y   (Solus et al., 2004)  
   1707T>G/C/A W152G/R/R  NCBI dbSNP  
  1847G>A G169E  NCBI dbSNP 
 CYP2D7 gene conversion in intron 

4 (2050-2392) 
  http://www.cypalleles.ki.se

 2466T>C L231P  http://www.cypalleles.ki.se
 2606G>A E278K  http://www.cypalleles.ki.se
 2610A>T M279K  http://www.cypalleles.ki.se
*68 To be released    
*69 -1426C>T; -1235A>G; -1000G>A; 

100C>T; 310G>T; 746C>G; 
843T>G; 1062A>G; 1661G>C; 
2850C>T; 2988G>A; 3384A>C; 
3584G>A; 3790C>T; 4180G>C; 
4401C>T; 4481G>A 

P34S; R296C; 
splicing defect; 
S486T 

↓ (Gaedigk et al., 2009) 

*70 -175G>A; 310G>T; 843T>G; 
1608G>A; 1659G>A; 1661G>C; 
3183G>A; 3384A>C; 4180G>C; 
4722T>G 

V119M; V136M; 
V338M; S486T 

 http://www.cypalleles.ki.se

*71 -1584C>G; 125G>A; 1494 T>C G42E  http://www.cypalleles.ki.se
*72 -1426C>T; -1235A>G; -1000G>A; 

100C>T; 310G>T; 843T>G; 
1039C>T; 1661G>C; 2097A>G; 
3318G>A; 3384A>C; 3582A>G; 
4180G>C; 4401C>T 

P34S; E383K; 
S486T 

↓ (Matsunaga et al., 2009) 

 - -98C>T; -43insG; 1923C>T; 
1998T>C; 2303C>T; 2663G>A; 
2760T>A; 3408T>C; 3435C>A; 
4172C>T  

  (Solus et al., 2004) 

 - 4155C>T H478I  (Solus et al., 2004) 
 1707T>G/C/A W152G/R/R  NCBI dbSNP 
 1847G>A G169E  NCBI dbSNP 
 CYP2D7 gene conversion in intron 

4 (2050-2392) 
  http://www.cypalleles.ki.se

 2466T>C L231P  http://www.cypalleles.ki.se
 2606G>Ab E278K  http://www.cypalleles.ki.se
 2610A>Tb M279K  http://www.cypalleles.ki.se
 1621G>T R123L  http://www.cypalleles.ki.se
 4057G>A G445E  http://www.cypalleles.ki.se
Data are extracted from http://www.imm.ki.se/CYPalleles (access date: 25 March 2009).  
aNucleotide variations in bold are the major SNPs responsible for the phenotype of the corresponding allele. 
bPart of novel CYP2D7 gene conversion in exon 5 (2470-2610) that includes 2470T>C and 2575C>A. 
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Table 1-7.  Overview of published structures of human CYPs. 

 CYP PDB 
ID 

Ligand Mean 
resolution 

(Å) 

Publishing 
year 

Reference 

1 1A2 2HI4 α-Naphthoflavone (ANF) 1.95 2007 (Sansen et al., 2007) 
2 2E1 3E4E 4- Methylpyrazole  2008 (Porubsky et al., 2008) 
3 2E1 3E6I Indazole  2008 (Porubsky et al., 2008) 
4 2A13 2P85 Indole 2.35 2007 (Smith et al., 2007) 
5 2A6 1Z10 Coumarin 1.9 2005 (Yano et al., 2005) 
6 2A6 1Z11 Methoxsalen 2.05 2005 (Yano et al., 2005) 
7 2A6 2FDU N,N-Dimethyl(5- 

(Pyridin-3-Yl)furan-2-Yl) 
methanamine 

 2006 (Yano et al., 2006) 

8 2A6 2FDV N-Methyl(5-(Pyridin- 
3-Yl)furan-2-Yl)methanamine 

 2006 (Yano et al., 2006) 

9 2A6 2FDW (5-(Pyridin-3-Yl)furan-2-Yl) 
methanamine 

 2006 (Yano et al., 2006) 

10 2A6 2FDY Adrithiol  2006 (Yano et al., 2006) 
11 2A6 2PG5 Free 1.95 2007 (Sansen et al., 2007) 
12 2A6 2PG6 Free 2.5 2007 (Sansen et al., 2007) 
13 2A6 2PG7 Free 2.8 2007 (Sansen et al., 2007) 
14 2A6 3EBS Phenacetin  2008 (Sansen et al., 2007) 
15 2C8 1PQ2 Free 2.7 2004 (Schoch et al., 2004) 
16 2C8d

h 
2NNH 2 × 9-cis-retinoic acid 2.6 2008 (Schoch et al., 2008) 

17 2C8d
h 

2NNI Montelukast 2.8 2008 (Schoch et al., 2008) 

18 2C8d
h 

2NNJ Felodipine 2.28 2008 (Schoch et al., 2008) 

19 2C8d
h 

2VN0 Troglitazone 2.7 2008 (Schoch et al., 2008) 

20 2C9 1OG2 Free 2.6 2003 (Williams et al., 2003) 
21 2C9 1OG5 Warfarin 2.55 2003 (Williams et al., 2003) 
22 2C9 1R9O Flurbiprofen 2 2004 (Wester et al., 2004) 
23 2D6 2F9Q Free 3 2006 (Rowland et al., 2006) 
24 2R1 3C6G Vitamin D3  2008 (Strushkevich et al., 2008) 
25 2R1 3CZH Vitamin D2  2008  
26 2R1 3DL9 1α-hydroxy-vitamin D2  2008  
27 3A4 1TQN Free 2.05 2004 (Yano et al., 2004) 
28 3A4 1W0E Free 2.8 2004 (Williams et al., 2004) 
29 3A4 1W0F Metyrapone 2.65 2004 (Williams et al., 2004) 
30 3A4 1W0G Progesterone 2.74 2004 (Williams et al., 2004) 
31 3A4 2J0D Erythromycin  2006 (Ekroos and Sjogren, 2006) 
32 3A4 2V0M Ketoconazole 2.8 2006 (Ekroos and Sjogren, 2006) 
33 46A1 2Q9F Cholesterol-3-sulphate 1.9 2008 (Mast et al., 2008) 
34 46A1 2Q9G Free 2.4 2008 (Mast et al., 2008) 
35 7A1 3DAX Free  2008  
 PGIS 3B6H Minoxidil  2008  

Data are from the PDB at http://www.rcsb.org. 



 

 90

Table 1-8. Case reports and clinical trials of herb-drug interactions in humans. 

Herb Drug Evidence Reference 

St John's wort [Hypericum 
perforatum] 

Cyclosporine 
Case reports

(Gordon, 1998; Rey and Walter, 
1998; Bon S et al., 1999; 
Barone et al., 2000; Karliova et 
al., 2000; Mai et al., 2000; 
Ruschitzka et al., 2000; Yue et 
al., 2000b; Ahmed et al., 2001; 
Barone et al., 2001; Beer and 
Ostermann, 2001; Moschella 
and Jaber, 2001; Turton-Weeks 
et al., 2001; Alscher and Klotz, 
2003) 

Case series  (Breidenbach et al., 2000a; 
Breidenbach et al., 2000b) 

Cyclosporine  Clinical trial (Bauer et al., 2003) 

Sertraline Case reports (Lantz et al., 1999; Barbenel et 
al., 2000) (Lantz et al., 1999) 

Oral contraceptives Case series  (Gordon, 1998; Barbenel et al., 
2000) 

Paroxetine Case reports (Waksman JC et al., 2000) 
Theophylline Case report (Nebel et al., 1999) 
Loperamide Case report (Khawaja et al., 1999) 
Nefazodone Case report (Lantz et al., 1999) 
Phenprocoumon Case report (Gordon, 1998) 
Venlaxafine Case report (Prost et al., 2000) 
Amitriptylin Clinical trial (Johne et al., 2002) 
Tacrolimus  Clinical trial (Hebert et al., 2004) (Mai et al., 

2003) 
Simvastatin  Clinical trial (Sugimoto et al., 2001) 
Imatinib  Clinical trial (Frye et al., 2004) 
Indinavir  Clinical trial (Piscitelli et al., 2000) 
Irenotecan  Clinical trial (Mathijssen et al., 2002) 
R- and S-verapamil Clinical trial (Tannergren et al., 2004) 
Midazolam  Clinical trial (Mueller et al., 2006) 

Digoxin  Clinical 
trials 

(Johne et al., 1999; Durr et al., 
2000; Mueller et al., 2004) 

Fexofenadine  Clinical trial (Wang et al., 2002b) 
Fexofenadine  Clinical trial (Dresser et al., 2003) 

Oral contraceptives Clinical 
trials 

(Hall et al., 2003; Murphy et al., 
2005) 

Warfarin  Clinical trial (Jiang et al., 2004) 
Warfarin Case series  (Yue et al., 2000b) 

Ginseng 
 

Phenelzine Case report (Shader and Greenblatt, 1985; 
Jones and Runikis, 1987) 

Warfarin Case report (Janetzky and Morreale, 1997; 
Rosado, 2003) 

Warfarin  Clinical 
trials 

(Jiang et al., 2004; Jiang et al., 
2006) 

American Ginseng Warfarin Clinical trial (Yuan et al., 2004) 

Danshen [Salvia miltiorrhiza] 
Warfarin 

Case report (Izzat et al., 1998) 

Case reports (Tam et al., 1995; Yu et al., 
1997) 

Dong quai [Angelica sinensis] Case report (Page and Lawrence, 1999) 
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Case report (Ellis GR and MR., 1999) 
Papaya extract [Papaya carica] Case report (McRae, 1996) 
Devil's claw 
[Harpargo-phytumprocumbens] Case report (Shaw et al., 1997) 

Garlic [Allium sativum] Case report (WH, 1991) 

Garlic [Allium sativum] 
Saquinavir  Clinical trial (Piscitelli et al., 2000) 
Alprazolam level Clinical trial (Markowitz et al., 2003) 

Ginkgo [Ginkgo biloba] 

Warfarin Clinical 
trials * 

(Egashira et al., 2003; Jiang et 
al., 2005; Jiang et al., 2006) 

Warfarin Case report (Matthews, 1998) 
Trazodone Case report (Galluzzi et al., 2000) 
Valerian Case report (Chen et al., 2002) 
Thiazide diuretic Case report (McRae, 1996) 
Aspirin Case report (Rosenblatt and Mindel, 1997) 
Ibuprofen Case report (Meisel et al., 2003) 
Phenytoin Case report (Kupiec and Raj, 2005) 
Omeprazole  Clinical trial (Yin et al., 2004) 

Evening primrose oil [Oenethera 
biennis] Anaesthetics Case report (McRae, 1996)  

Kava [Piper methysticum] 
Alprazolam Case report (Almeida and Grimsley, 1996) 
Levodopa Case report (Schelosky et al., 1995) 

Betel nut [Areca catechu] 
Flupenthixol Case report (Deahl, 1989) 
Fluphenazine Case report (Deahl, 1989) 

Eleuthero [Eleutherococcus 
senticosis] Digoxin Case report (McRae, 1996) 

Gan Cao (Licorice) Digitalis  Case report (Harada et al., 2002) 
Gan Cao (Licorice) Enalapril  Case report (Iida et al., 2006) 
Chili pepper [Capsicum species] ACE inhibitor Case report (Hakas, 1990) 

Fo
rm

ul
a 

Xiao Chai Hu Tang 
(sho-saiko-to) Caffeine  Clinical trial (Saruwatari et al., 2003) 

Xiao Chai Hu Tang 
(sho-saiko-to) 
Saiboku-To 
Sairei-To 

Prednisolone  Clinical trial (Homma et al., 1995) 

Data are also from Zhou et al. (2007), Hu et al. (2005) and Li et al. (2007). Note: All clinical trials included in 
the Table demonstrated significant interactions between the concerned herbs and drugs, except for those 
marked with “*” which showed no significant interaction between warfarin and Ginkgo. 
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Figure 1-1. Metabolic activation of benzo[a]pyrene (B[a]P) by CYP1A1, 1A2 and 1B1. B[a]P is a polycyclic aromatic hydrocarbon that is mutagenic and highly carcinogenic. The 

first step of B[a]P activation includes the formation of B[a]P 7,8-oxide catalyzed by CYP1A1, 1A2 and 1B1. 
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Figure 1‐2. Metabolic activation of aristolochic acids (AAs). Both AAI and AAII undergo reduction of the nitro group catalyzed by enzymes to reactive cyclic nitrenium 

ions. 
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Figure 1-3. A schematic illustration of the aromatic hydrocarbon receptor (AhR)-mediated induction of Phase I and Phase II drug metabolizing enzymes and drug transporters 

such as human CYP1A1, 1B1, 1A2, and 2S1, UGT1A1 and 1A6, and MDR1/ABCB1. The AhR exists as cytoplasmic aggregates bound to two 90-kDa heat-shock proteins (HSPs), 

the cochaperone p23 and a 43-kDa immunophilin-like protein hepatitis B virus X-associated protein 2 (XAP2). 
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Figure 1-4.  Crystal structures of published human CYPs with or without complexed ligands. 

CYP-year-PDB: complex* 

1A2-2007-2HI4: Alpha-Naphthoflavone 

2A6-2005-1Z10: Coumarin  2A13-2007-2P85: Indole 

2C8-2008-2NNH: 9-cis-Retinoic Acid 2C9-2004-1R9O: flurbiprofen 
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2D6-2006-2F9Q: free 2E1-2008-3E4E: 4- Methylpyrazole 

3A4-2006-2J0D: erythromycin 2R1-2008-3C6G: vitamin D3 

7A1-2008-3DAX: free 46A1-2008-2Q9F: Cholesterol-3-Sulphate 
 

*CYP-year-PDB: complex:  the name of CYP enzymes with the publication year of their crystal 
structure; PDB codes; crystal state or complex name. 
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CHAPTER 2  HIGH-THROUGHPUT SCREENING OF HERBAL INHIBITORS 

FOR HUMAN CYP ENZYMES  

2.1 Introduction 

Herbs and herbal products are more like to be used as botanical supplements in Australia and 

many other Western countries but many herbs and herbal preparations are used as medications 

to treat diseases in China (Qiu, 2007). No matter as supplements or as medications, the active 

components in herbs can significantly affect the outcome of medical treatment if herbal 

supplements are used in combination with conventional medications. In another words, 

herb-drug interactions may happen at any time when the efficacy or toxicity of a conventional 

medication is changed by the administration of herbal supplements (Zhou et al., 2007). The 

well-known clinical case is St. John's wort that had been reported to reduce the blood 

concentration of a variety of clinical drugs such as cyclosporine and indinavir (Mills et al., 

2004; Zhou et al., 2004d; Hu et al., 2005). Theoretically, the likelihood of herb-drug 

interactions is higher than drug-drug interactions because drugs usually contain a single and 

well-known chemical entity while almost all herbal products contain multiple constitutes. 

Potential herb-drug interactions are safety concern, especially for drugs with narrow 

therapeutic range (e.g. warfarin and theophylline) and for high-risk groups, such as the elderly 

or patients with renal or hepatic diseases. A number of clinically important herb-drug 

interactions have been reported based on case reports and randomized clinical studies (Hu et al., 

2005). For most of these interactions, the underlying mechanism is yet to be determined, 

although both pharmacokinetic and pharmacodynamic components are considered to play an 

important role.  

 

For pharmacokinetic herb-drug interaction, altered drug metabolism is probably the most 

important mechanism. Like many drug-drug interactions, modulation of CYPs is the major 

mechanism for some herb-drug interactions (Zhou et al., 2003b).  CYPs are a superfamily of 

membrane-bound, heme-containing and mixed function oxygenases, with at least 57 members 

in humans (Rendic, 2002). Among them, CYP1A2, 2C9, 2C19, 2D6, and 3A4 are responsible 

for the metabolism of more than 90% of currently known drugs (Rendic, 2002). Most CYPs are 

subject to inhibition and induction by a variety of structurally distinct compounds including 

herbal medicines. Herbal components such as St John’s wort are well-known CYP3A4 and 

2C9 inducer while most other herbal ingredients exhibit inhibitory effect on various CYPs 

(Zhou et al., 2003b). Thus, it is important to explore the effect of herbal components on CYPs. 
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Recently, high throughput (HTP) screening methods have been applied to examine the effect of 

natural compounds on CYPs, which represent a useful and efficient strategy for the study of 

herb-CYP interactions (Ansede and Thakker, 2004). They are capable of handling a great 

number of herbal constituents, and have the ability to provide in vitro inhibition data as a 

criterion for monitoring herb-drug metabolic interactions involving human drug metabolizing 

enzymes (in particular the CYPs). For example, an HTP screening procedure has been 

validated to assess the effects of various dietary and herbal flavonoids on human CYP1A1 

expression using HepG2 cells expressing this enzyme (Allen et al., 2001) and Zou et al. (2002) 

have examined the effect of selected herbal components on human CYPs. In this study, we 

investigated the effect of 60 purified herbal compounds and 7 crude herbal products from 

commonly used herbs on human CYPs using a HTP screening method. 

 

2.2 Materials and Methods 

2.2.1 Chemicals and reagents  

Fifty-seven purified herbal compounds tested in this study (Figure 2-1) were purchased from 

the National Institute for the Control of Pharmaceutical and Biological Products (Beijing, 

China). These compounds mainly include triterpenoids, flavonoids, saponins, lactones, and 

alkaloids. 18α-Glycyrrhetinic acid, 18β-glycyrrhetinic acid and glycyrrhizic acid ammonium 

were obtained from Sigma-Aldrich Chemicals Co. (St Louis, MO). Compound danshen 

dropping pills were from Tianjin Tasly Pharmaceutical Co. ltd., Tianjin, China; Tanshinone 

capsule were from Hebei Xinglong Xili Pharmaceuticals Co. Ltd., Xinglong, China; 

Diammonium Glycyrrhizinate Enteric-coated Capsules were from Chia-tai Tianqing 

Pharmaceutical Co., Ltd., Lianyungang, China; and Compound Yiganling Tablets were from 

Beijing Double-crane Pharmaceutical Co., Ltd. Beijing, China.  Concentrated wuweizi 

granules (Schizandra chinensis fruit extract) were obtained from Cathay Herbal Laboratories 

Pty Ltd. (Surry hills, NSW, Australia); concentrated licorice granules (Glycyrrhiza uralensis) 

were obtained from Koda International Pty. Ltd. (Sydney, Australia); Dried danshen roots were 

obtained from Chinese Medicine Research Group, RMIT University (Melbourne, Australia). 

Dimethyl sulfoxide (DMSO) was purchased from Merck Co. (Whitehouse Station, NJ). All 

other reagents were of analytical or HPLC grade. 
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2.2.2 Source of recombinant human CYP enzymes 

The inhibition of human CYP1A2, 2C9, 2C19, 2D6 and 3A4 enzymes was assessed using 

commercial kits containing recombinant CYP expressed in insect cells using BD Supersomes, 

NADPH-generating system (NADP+ and glucose-6-phosphate dehydrogenase), and 

corresponding fluorescent substrates (Table 2-1) 

(http://www.bdbiosciences.com/discovery_labware)  (Favreau et al., 1999; Crespi and Stresser, 

2000; Crespi et al., 2002). 

 

2.2.3 Enzyme inhibition assays 

The CYP inhibition assays were conducted in 96-well microplates in duplicate as described 

previously (Crespi and Stresser, 2000). Briefly, all purified herbal compounds for this study 

were dissolved in acetonitrile (24 compounds), methanol (17 compounds), or dimethyl 

sulfoxide (DMSO, 19 compounds). For crude herbal products, further extraction was 

conducted using 100% methanol.  The final concentration of acetonitrile, methanol, and 

DMSO in the reaction system was 2% acetonitrile, 1% methanol, and 0.2% DMSO, 

respectively (v/v). To each well, the test compound at various concentrations and NADPH 

were added and pre-incubated for 10 min at 37°C without shaking. The reaction was initiated 

by addition of enzyme/substrate mixture. The final concentration of each CYP enyzme is as 

following: 0.0018 μM for CYP1A2, 0.0036 μM for CYP2C9, 0.0036 μM for CYP2C19, 

0.0055 μM for CYP2D6 and 0.0036 μM for CYP3A4. The incubation time was 15 min for 

CYP1A2, 45 min for CYP2C9 and 30 min for CYP2D6, 2C19 and 3A4. The reaction was 

terminated by addition of 75 µl acetonitrile-0.5 M Tris (4:1, pH 7.5) base solution to each well. 

The fluorescence was measured using a PolarStar Microplate Reader (BMG LABTECH Pty. 

Ltd., Offenburg, Germany).  

The excitation wavelengths were 390 nm for CYP1A2, 2D6, 2C9 and 3A4; and a 405-nm 

absorption filter for CYP2C19; while the emission wavelengths were 460 nm for CYP1A2, 

2D6 and 2C19, and 530 nm for CYP2C9 and 3A4. For each assay, the positive control and 

control vehicle were included and a standard curve was constructed. The positive control 

inhibitor of each CYP enzyme is as following: furafylline for CYP1A2, sulfaphenazole for 

CYP2C9, tranylcypromine for CYP2C19, quinidine for CYP2D6 and ketoconazole for 

CYP3A4. Duplicate samples were used for each test compound in each assay. For each 

compound, the assay was conducted once following the manufacture introduction. Repeat 

assay was conducted for selected samples to confirm the results. 
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2.2.4 IC50 determination 

The IC50 value was determinate by a linear interpolation method according to the following 

equation: 

Con. Low  Con.) Low - Con.(High  
)  Inhibition% Low -   Inhibition %High (

)  Inhibition% Low -  50%(
IC 50 +×=

   

Equation 2‐1

 

 

2.3 Results 

2.3.1 Inhibitory effects on CYP1A2 

There were three herbal compounds exhibiting remarkable inhibitory effects on CYP1A2, with 

the IC50 values <1.0 µM (Figure 2-2). These included tanshinone I, tanshinone IIA and 

cryptotanshinone with the IC50 value of 0.027, 0.187and 0.910 µM, respectively. In addition, 

baicalein, osthole, quercetin, cordycepin, sodium tanshinone IIA sulfonate and hyperoside 

showed moderate inhibition on the CYP1A2, with the IC50 value of 1.22, 1.49, 3.97, 6.69, 7.08 

and 14.46 μM, respectively. Quercitrin, icariin, alloin, baicalin and triptolide had minor 

inhibitory effects on CYP1A2 with the IC50 value of 33.76, 43.00, 66.00, 70.03 and 98.22 μM, 

respectively. The other 42 herbal compounds showed little or negligible inhibition (IC50 > 100 

μM) on CYP1A2. Notably, four herbal compounds including rutaecarpine, scopoletin, puerarin 

and andrographolide produced fluorescence and thus interfered with the determination for 

CYP1A2 (Table 2-2).  

 

2.3.2 Inhibitory effects on CYP2C9 

Three herbal compounds exhibited remarkable inhibitory effects on CYP2C9. They were 

tanshinone I, tanshinone IIA and γ-schisandrin with the IC50 of 0.106, 0.209 and 0.520 μM, 

respectively (Figure 2-3). Ten herbal compounds showed moderate inhibition on the CYP2C9, 

including cryptotanshinone, sodium tanshinone IIA sulfonate, baicalein, quercetin, silybin, 

osthole, icariin, hyperoside, baicalin and quercitrin with the IC50 value of 1.23, 1.36, 2.52, 3.01, 

3.14, 8.30, 14.34, 14.37, 20.42 and 21.76 μM, respectively. Eight herbal compounds including 

gallic acid, dehydroandrographolide, 18β-glycyrrhetinic acid, ginsenoside Rg3, 

andrographolide, sodium danshensu, schisandrin, protocatechuicaldehyde and ursolic acid only 

had minor inhibitory effect on the CYP2C9, with the IC50 of 30.64, 39.76, 43.37, 61.53, 69.22, 

73.12, 85.2, 90.66 and 100.75 μM, respectively. Other twenty five herbal had weak or no 
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inhibit CYP2C9. Notably, fourteen herbal compounds generated fluorescence and could not be 

detected by this approach for CYP2C9. These included salvianolic acid B, rutaecarpine, 

scopoletin, puerarin, alloin, liquiritin, jujuboside B, asperosaponin VI, saikosaponin D, 

astragaloside, amygdalin, gastrodin, trigonelline and polydatin (Table 2-2).  

 

2.3.3 Inhibitory effects on CYP2C19 

Only two of the sixty herbal compounds, γ-schisandrin and osthole, exhibited remarkable 

inhibitory effects on CYP2C19 with the IC50 value of 0.072 and 0.920 μM, respectively 

(Figure 2-4). Eight herbal compounds showed moderate inhibition to CYP2C19, including 

baicalein, quercetin, dehydroandrographolide, cryptotanshinone, sodium tanshinone IIA 

sulfonate, silybin, tanshinone I and protocatechuicaldehyde  with the IC50 of 2.12, 7.23 8.87, 

13.65, 19.44, 20.26, 21.09 and 25.7μM, respectively. Other eight herbal compounds, gallic 

acid, schisandrin, hyperoside, baicalin, icariin, andrographolide, 18β-glycyrrhetinic acid and 

quercitrin, only had minor inhibitory effect on CYP2C19 with the IC50 value of 31.53, 36.81, 

37.08, 46.11, 72.17, 79.03, 96.67 and 98.77 μM, respectively. Other thirty-one herbal 

compounds showed weak (IC50 > 100 μM) or no inhibitory effect on CYP2C19. Notably, 

eleven herbal compounds produced fluorescence and interfered with the detection for 

CYP2C19, including rutaecarpine, tanshinone IIA, scopoletin, jujuboside B, asperosaponin VI, 

saikosaponin D, astragaloside, amygdalin, gastrodin, trigonelline and puerarin (Table 2-2). 

 

2.3.4 Inhibitory effects on CYP2D6 

None of the sixty herbal compounds exhibited remarkably inhibitory effects on CYP2D6. Only 

three herbal compounds, sodium tanshinone IIA sulfonate, γ-schisandrin and matrine, showed 

moderate inhibition to CYP2D6 with the IC50 value of 11.55, 16.97 and 24.96 μM, respectively 

(Figure 2-5). Baicalein, osthole, hyperoside, quercetin and quercitrin had minor inhibition to 

CYP2D6, with the IC50 of 36.78, 51.37, 53.22, 54.59 and 90 μM, respectively. Other 41 herbal 

compounds had little (IC50 > 100 μM) or negligible inhibition to CYP2D6. Notably, eleven 

herbal compounds produced fluorescence which interfere the detection for CYP2D6. These are 

salvianolic acid B, puerarin, protocatechuic acid, polydatin, ferulic acid, 

protocatechuicaldehyde, bilobalide, ginkgolide B, ginkgolide C, rutaecarpine and scopoletin 

(Table 2-2).  
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2.3.5 Inhibitory effects on CYP3A4 

There were only two herbal compounds, γ-schisandrin and tanshinone I, exhibiting remarkably 

inhibitory effects on CYP3A4 with the IC50 of 0.009 and 0.220 µM, respectively (Figure 2-6). 

Thirteen herbal compounds including baicalein, evodin, sodium tanshinone IIA sulfonate, 

silybin, cryptotanshinone, paclitaxol, osthole, ursolic acid, polydatin, schisandrin, quercetin, 

ferulic acid and dehydroandrographolide  showed moderate inhibition to CYP3A4, with the 

IC50 value of 1.24, 1.33, 1.78, 2.85, 2.96, 9.66, 12.01, 16.24, 16.78, 19.4, 19.8, 21.7 and 24.12 

μM, respectively. Hyperoside, gallic acid, quercitrin, 18β-glycyrrhetinic acid and 

protocatechuicaldehyde had minor inhibition on CYP3A4, with the IC50 value of 47.49, 64.44, 

71.01, 73.18 and 81.19 μM, respectively.   In addition, Sanqi saponin and total 

notoginsenosides also showed inhibitory effects on CYP3A4 and the IC50 value was 40.85 and 

60.91 μg/ml, respectively. Other 31 herbal compounds had weak (IC50 > 100 μM) or no 

inhibitory effect on CYP3A4. Seven herbal compounds, amygdalin, salvianolic acid B, 

puerarin, ginkgolide B, ginkgolide C, rutaecarpine and scopoletin, produced fluorescence 

which interfered with the detection for CYP3A4 (Table 2-2).  

 

2.4 Conclusions and Discussion 

HTP method based on fluorometric assay for screening of potential inhibitors of CYPs is 

available since 1997 (Crespi and Stresser, 2000). In the present study, we examined the effect 

of a number of herbal components in five human CYPs using a validated HTP approach. The 

herbal components tested include a variety of structurally distinct compounds such as 

triterpenoids of danshen (Salvia miltiorrhiza), flavonoids and their glycoside derivatives, 

saponine, other glucosides, lactones, alkaloids, and acids. As all the 57 compounds are purified 

herbal components, three organic solvents (acetonitrile, methanol and DMSO) had been used 

to prepare stock solutions at high concentrations. For the subsequent reaction, the test 

compounds were diluted with water at very low concentrations. These organic solvents were 

only used as vehicles to get a proper amount of test compounds dissolving into water for final 

reaction.  

 

Tanshinone I, tanshinone IIA and cryptotanshinone, all from danshen, significantly inhibited 

the activities of CYP1A2 and 2C9; tanshinone I also considerably inhibited CYP3A4.  In 

contrast, the hydrophilic constituents of danshen (sodium danshensu, protocatechuic acid, 

salvianolic acid B and protocatechuicaldehyde) showed weak or negligible inhibitory effects 

on the five CYP enzymes. Notably, the derivative of tanshinone IIA, sodium tanshinone IIA 
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sulfonate, had a remarkable inhibition to CYP2C9 and 3A4. Sodium tanshinone IIA sulfonate 

has been commonly used for patients with unstable angina pectoris in China.  

 

In the present study, we found that the activities of CYP2C9, 2C19 and 3A4 were remarkably 

inhibited by γ-schisandrin. Silybin, a major component in milk thistle (Silybi mariani), 

significantly inhibited the activities of CYP2C9 and 3A4, which is in line with the report by 

Sridar et al. (Sridar et al., 2004). It is evident that free flavonoids such as baicalein and 

quercetin (rich in Ginkgo leaves and many other herbs), have significant inhibitory effects on 

CYP1A2, 2C9, 2C19 and 3A4. However, the flavonoid glucosides (baicalin, hyperoside, 

quercitrin and icariin) have much lower inhibitory effects on CYP1A2, 2C9, 2C19 and 3A4 

than their free flavonoids.  

 

Osthole, a coumarin derivative, had remarkably inhibitory effects on CYP2C19 and moderate 

inhibitory effects on CYP1A2, 2C9 and 3A4. Alkaloids are one of the largest groups of natural 

products. We also tested eight alkaloids (stachydrine chloride, trigonelline, rutaecarpine, 

oxymatrine, sophoridine and matrine) and only found matrine having moderate inhibition to 

CYP2D6. Among the seven natural acids including salvianolic acid B, protocatechuic acid, 

18α/β-glycyrrhetinic acid, gallic acid, ferulic acid and ursolic acid tested in this study, only 

ferulic acid and ursolic acid moderately inhibited CYP3A4. All lactones tested except 

scopoletin had little inhibitory effect on CYP enzymes. In contrast, dehydroandrographolide 

(from Andrographis paniculata) inhibited CYP2C19 significantly and 3A4 to a moderate level, 

while evodin (from Evodia rutaecarpa) significantly inhibited CYP3A4.  

 

Saponins, a heterogeneous group of sterol and triterpene glucosides, are found in a large 

number of plants and some animals (e.g. the sea cucumber) (Skene and Sutton, 2006).  Most of 

the tested saponin compounds failed to show any inhibitory effects on the five CYP enzymes. 

Only ginsenoside Rg3 (panax Ginseng) exhibited minor inhibitory effect on CYP2C9, while 

sanqi saponin and total notoginsenosides (both from panax notoginseng) exhibited weak 

inhibition to CYP3A4. All other glucosides including alloin, amygdalin, arctiin, forsythin, 

gastrodin, liquiritin, polydatin and puerarin exhibited little inhibition to CYPs. Notably, 

cordycepin, an analogue of adenosine, merely inhibited CYP1A2, but not CYP2C9, 2C19, 2D6 

and 3A4.  

 



 

 104

In conclusion, a variety of structurally distinct herbal compounds have been examined with 

their ability to inhibit major human CYPs using HTP approach and a small number of them are 

found to significantly inhibit human CYP1A2, 2C9, 2C19 and CYP3A4. Given that these 

enzymes play a key role in the metabolism of many important clinical drugs, further 

investigations in humans are needed to explore the clinical impact.    
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Table 2-1. The reaction systems consisting of the CYP enzymes, positive inhibitors and probe substrates.  
 

Enzyme  Enzyme Assay Positive 
Inhibitor 

Fluorescent Substrate 

CYP1A2  Phenacetin 
O-deethylase 

Furafylline 3-Cyano-7-ethoxycoumarin 

CYP2C9  Diclofenac 
4'-hydroxylase 

Sulfaphenazole 7-Methoxy-4-trifluoromethylcoumarin 

CYP2C19  S-Mephenytoin 
4'-hydroxylase 

Tranylcypromine 3-Cyano-7-ethoxycoumarin 

CYP2D6  Bufuralol 
1'-hydroxylase 

Quinidine 3-[2-(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin

CYP3A4  Midazolam 
1’-hydroxylase 

Ketoconazole 7-Benzyloxy-4-trifluoromethylcoumarin 
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Table 2-2. IC50 value of the sixty test compounds and seven herbal products. 
 

Test compound 
Number of  
compound Herbal source 

Highest 
concentration

(µM) 

IC50  (µM) 

CYP1A2 CYP2C9 CYP2D6 CYP3A4 CYP2C19
Alloin 1 Rheum palmatum 

Aloe vera 
128.35 66.00 # - - - 

Amygdalin 2 Prunus armeniaca  
Prunus persica 

110.62 - # - # # 

Andrographolide 3 Andrographis paniculata 101.18 # 69.22 - - 79.03 
Arctiin 4 Arctium lappa 100.00 - - - - - 
Asperosaponin VI 5 Dipsacus asperoides 57.04 - # - - # 
Astragaloside 6 Astragalus membranaceus 66.20 - # - - # 
Baicalein 7 Scutellaria baicalensis 101.40 1.22 2.52 36.78 1.24 2.12 
Baicalin 8 Scutellaria baicalensis 

Lonicera japonica 
101.88 70.03 20.42 - - 46.11 

Bilobalide 9 Ginkgo biloba 100.16 - - # - - 
Borneol 10 Dryobalanops aromatic 

Chrysanthemum 
morifolium 

100.20 - - - - - 

Canthridin 11 Mylabris 99.82 - - - - - 
Cordycepin 12 Cordyceps sinensis 100.10 6.69 - - - - 
Cryptotanshinone 13 Salvia miltiorrhiza 100.22 0.91 1.23 - 2.96 13.65 
Dehydroandrographolide 14 Andrographis paniculata 100.20 - 39.76 - 24.12 8.87 
Evodin 15 Evodia rutaecarpa 100.49 - -  1.33 - 
Ferulic Acid 16 Ligusticum chuanxiong 

Angelica sinensis 
100.22 - - # 21.7 - 

Forsythin 17 Forsythia suspensa 99.93 - - - - - 
Gallic acid 18 Rheum palmatum 

Cornus officinalis 
104.13 - 30.64 - 64.44 31.53 

Gastrodin 19 Gastrodia elata 100.22 - # - - # 
Ginkgolide A 20 Ginkgo biloba 100.06 - - - - - 
Ginkgolide B 21 Ginkgo biloba 100.18 - - # # - 
Ginkgolide C 22 Ginkgo biloba 100.18 - - # # - 
Ginsenoside Rg3 23 Panax ginseng 68.07 - 61.53 - - - 
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18α-Glycyrrhetinic acid 24 Glycyrrhiza uralensis 99.77 - - - - - 
18β-Glycyrrhetinic acid 25 Glycyrrhiza uralensis 98.89 - 43.37 - 73.18 96.67 
Glycyrrhizic acid 
ammonium 

26 Glycyrrhiza uralensis 97.11 - - - - - 

Hyperoside 27 Epimedium brevicornum 
Crataegus pinnatifida 
Apocynum venetum 

101.03 14.46 14.37 53.22 47.49 37.08 

Icariin 28 Epimedium brevicornum 102.86 43.00 14.34 - - 72.17 
Jujuboside B 29 Ziziphus jujuba 50.00 - # - - # 
Liquiritin 30 Glycyrrhiza uralensis 134.09 - # - - - 
Matrine 31 Sophora flavescens 

Sophorae alopecuroidis 
Sophora tonkinensis 

100.38 - - 24.96 - - 

Notoginsenosides (total) 32 Panax  notoginseng 81.10 
µg/ml 

- - - 60.91 
µg/ml 

- 

Osthole 33 Angelica pubescens 
Cnidium monnieri 

100.42 1.49 8.3 51.37 12.01 0.92 

Oxymatrine 34 Sophora flavescens 
Sophorae alopecuroidis 

100.12 - - - - - 

Paclitaxol 35 Ramulus et folium taxi 
chinensis 

115.47 - - - 9.66 - 

Polydatin 36 Polygonum cuspidatum 155.64 - # # 16.78 - 
Protocatechuic Acid 37 Salvia miltiorrhiza 

Ilicis pubescentis 
Petiolus trachycarpi 

100.56 - - # - - 

Protocatechuicaldehyde 38 Salvia miltiorrhiza 
Ilicis pubescentis 
Petiolus trachycarpi 

100.70 - 90.66 # 81.19 25.7 

Puerarin 39 Scutellaria baicalensis 
Pueraria lobata 

111.92 # # # # # 

Quercetin 40 Ginkgo biloba 
Bupleurum chinensis 

101.08 3.97 3.01 54.59 19.8 7.23 

Quercitrin 41 Hyptericum japonicum 
Viscum coloratum 

108.83 33.76 21.76 90 71.01 98.77 

Rutaecarpine 42 Evodia rutaecarpa 100.78 # # # # # 
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Saikosaponin A 43 Bupleurum chinensis 67.35 - - - - - 
Saikosaponin D 44 Bupleurum chinensis 62.23 - # - - # 
Salvianolic acid B 45 Salvia miltiorrhiza 100.14 - # # # - 

Sanqi saponin 46 Panax  notoginseng 59.90 
µg/ml 

- - - 40.85 
µg/ml 

- 

γ-Schisandrin 47 Schisandra chinensis 100.02 - 0.52 16.97 0.009 0.072 

Schisandrin 48 Schisandra chinensis 100.08 - 85.2 - 19.4 36.81 
Scopoletin 49 Morus alba 100.54 # # # # # 

Silybin 50 Silybi Mariani 100.10 - 3.14 - 2.85 20.26 

Sodium danshensu 
(Salt of salvianolic acid A) 

51 Salvia miltiorrhiza 99.76 - 73.12 - - - 

Sodium tanshinone IIA 
sulfonate 

52 Salvia miltiorrhiza 101.67 7.08 1.36 11.55 1.78 19.44 

Sophoridine 53 Sophora tonkinensis 
Sophorae alopecuroidis 

100 - - - - - 

Stachydrine chloride 54 Leonurus heterophyllus 101.12 - - - - - 

Tanshinone I 55 Salvia miltiorrhiza 27.75 0.027 0.106 - 0.220 21.09 

Tanshinone IIA 56 Salvia miltiorrhiza 51.05 0.187 0.209 - - # 

Tetramethylpyrazine 
Hydrochloride 

57 Ligusticum chuanxiong 100.3 - - - - - 

Trigonelline 58 Trigonella 
foenum-graecum 

99.90 - # - - # 

Triptolide 59 Tripterygium wilfordii 100.22 98.22 - - - - 

Ursolic acid 60 Forsythia suspense 
Cornus officinalis 

104.01 - 100.75 - 16.24 - 

Dried danshen roots 
(equal to raw herb mg/ml) 

 Salvia miltiorrhiza 0.4* 0.0012* 0.0065* 0.106* 0.013* 0.08* 

Tanshinone capsule 
(equal to cryptotanshinone)

 Salvia miltiorrhiza 100.05 0.077 0.061 0.899 0.122 1.56 
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Compound danshen 
dropping pills (equal to 
salvianolic acid A) 

 Salvia miltiorrhiza 100.09 27.82 - - 19.96 26.55 

Concentrated licorice 
granules 
(equal to raw herb mg/ml) 

 Glycyrrhiza uralensis 9.962* 1.04* 0.0045* 2.325* 0.055* 0.0645* 

Diammonium 
glycyrrhizinate 
Enteric-coated Capsules 

 Glycyrrhiza uralensis 58.34 - - - - - 

Concentrated wuweizi 
granules 
(equal to raw herb mg/ml) 

 Schisandra chinensis 12.6* 3.17* - 0.99* 0.82* 1.49* 

Compound Yiganling tablet
(equal to a tablet weight) 

 Schisandra chinensis + 
Silybi Mariani 

1.12* 1.09* 0.01* 0.392* 0.004* 0.012* 

Inhibition percentage was presented at the highest concentration tested if IC50 could not be calculated. For concentration and IC50 values, µM was used as the unit except those crude herbal products 
with a symbol of “*”. 
“-”   No effect at the highest concentration tested. 
“#:”   IC50 value may not be estimated; compound exhibited native fluorescence at concentrations tested.  
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Figure 2‐1. Chemical structures of the natural compounds tested in this study.
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(continued) 
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(continued)
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Figure 2-2. Inhibitory effects of herbal compounds on human CYP1A2. 

 



 

 114

Figure 2‐3. Inhibitory effects of herbal compounds on human CYP2C9. 
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Figure 2‐4. Inhibitory effects of herbal compounds on human CYP2C19. 
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Figure 2‐5. Inhibitory effects of herbal compounds on human CYP2D6. 
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Figure 2‐6. Inhibitory effects of herbal compounds on human CYP3A4. 
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CHAPTER 3  PREDICTING PHARMACOKINETIC HERB-DRUG 

INTERACTIONS 

3.1 Introduction  

Many commonly used herbal products have been reported to modulate the pharmacokinetics of 

important prescribed drugs, leading to altered absorption, distribution, metabolism and 

excretion. The well-known clinical case is St. John's wort that had shown to reduce the AUC of 

a variety of clinical drugs, including cyclosporine  (Breidenbach et al., 2000b), amitriptyline 

(Johne et al., 2002), digoxin (Johne et al., 1999), indinavir (Piscitelli et al., 2000), nevirapine 

(de Maat et al., 2001), oral contraceptives (Yue et al., 2000a), warfarin (Yue et al., 2000a), 

phenprocoumon (Maurer et al., 1999), theophylline (Nebel et al., 1999), and 

simivastatin(Sugimoto et al., 2001). The outcomes due to certain herb-drug interactions may be 

fatal threaten, such as St John's wort decreasing cyclosporine’s plasma concentration and then 

causing tissue rejection in transplant patients. Therefore, combining use of certain herbs with 

certain therapeutic drugs is on the risk, especially for drugs with narrow therapeutic range (e.g. 

warfarin and theophylline) and for high-risk groups, such as the elderly or patients with renal 

or hepatic diseases. Few severe herb-drug interactions have been reported based on case 

reports (Hu et al., 2005) but the clinical study on herb-drug interactions are still limited, despite 

many opportunities of combining use of herbs with interventional drugs. Efforts to identify all 

potential herb-drug interactions will lead to limitless investigations. However, efforts to predict 

pharmacokinetic drug interactions with certain herbs may provide a perspective view to avoid 

toxic or fatal herb-drug interactions, if properly using in vitro herb-drug interaction data.  

 

Prediction of herb-drug interactions from in vitro data is commonly obtained using estimates of 

enzyme inhibition constant (Ki), inhibitor (herbal components) unbound concentrations ([I]), 

fraction (fh) of hepatic clearance (CLh) in total clearance (CLtot) for the potentially inhibited 

drug and its fraction (fm) of the metabolic process subject to inhibition in CLh. Therefore, the 

clearance of co-administered drugs must be primarily through metabolism but not subject to 

substantial conjugation or other non-CYP metabolism. Furthermore, the liver is the primary 

organ of metabolic clearance and the drug does not possess physiochemical properties that are 

associated with absorption problems (i.e. limited solubility, low intestinal permeability). We 

have conducted an in vitro-in vivo extrapolation for herb-drug interactions based on our in vitro 

inhibitory data following pharmacokinetic principles.  
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3.2 Pharmacokinetic principles for inhibitory drug interactions 

Herbs may inhibit CYPs by three mechanisms (Zhou et al., 2005b): competitive inhibition, 

non-competitive inhibition, and mechanism-based inhibition. Mutual competitive inhibition 

may occur between herbal constituent and drug, which are often metabolised by the same CYP 

enzyme. For example, diallyl sulfide from garlic is a competitive inhibitor of CYP2E1 

(Teyssier et al., 1999). Non-competitive inhibition is caused by the binding of herbal 

constituents containing electrophilic groups (e.g. imidazole or hydrazine group) to the heme 

portion of CYP. For example, piperine inhibited arylhydrocarbon hydroxylase (CYP1A) and 

7-ethoxycourmarin deethylase (CYP2A) by non-competitive mechanism (Dalvi and Dalvi, 

1991). Hyperforin present in St John’s wort is a potent non-competitive inhibitor of CYP2D6 

activity (Obach, 2000c). The mechanism-based inhibition of CYP is due to the formation of a 

complex between herbal metabolite with CYP. Diallyl sulfone is a suicide inhibitor of CYP2E1 

by forming complex, leading to autocatalytic destruction of CYP2E1 (Jin and Baillie, 1997b).   

 

Generally, the extent of inhibition (R, %) of drug metabolism by herbal constituents depends 

on the inhibition mechanism when the substrate concentration [S] is high. For example, the R 

value of a particular metabolic pathway by a competitive inhibitor from coadministered herb 

can be calculated by Eq. 3-1 (Lin, 1998; von Moltke et al., 1998b): 
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                (Equation 3‐1) 

where [S] and [I] are the maximal unbound substrate and inhibitor concentration respectively; 

Ki, the inhibitory constant; and Km, Michaelis-Menten constant.  

 

When multiple inhibitory herbal constituents are involved, R is calculated by Eq. 3-2: 
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However, in clinical situations, [S] is often much lower than Km, then R is expressed by Eq. 

3-3, independent of the inhibition nature, except for the non-competitive inhibition (Tucker, 

1992): 
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In addition, the expected increase (AUC ratio) in the AUC or steady-state concentration by an 

inhibiting constituent is dependent on the route of administration, as this will determine if the 

drug undergoes first pass in the liver and/or the gut (Ito et al., 1998c).  If drugs are 

administered by i.v. bolus, the AUC ratio (
AUC

'AUC , the ratio of AUC in the presence of inhibitor 

over that in the absence of inhibitor) can be calculated by Eq. 3-4: 

i
int

int K/]I[1
'

'ratioAUC +===
CL
CL

AUC
AUC

                        (Equation 3‐4) 

where CLint is the intrinsic clearance inhibited by the inhibiting constituent; ' represents the 

value after alteration by herb-drug interaction. Since herbs usually contain multiple inhibitory 

constituents, an herb-drug interaction in vivo is considered likely if the following is true: 
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                                 (Equation 3‐5) 

where [Ii] is the maximal unbound inhibitor concentration of each inhibitory constituent, Ki(i), 

the inhibition constant for each constituent, n, the number of inhibitory constituents in the herb.  

 

Given consideration of the fraction (fh) of hepatic clearance (CLh) in total clearance (CLtot), the 

expected AUC ratio in the AUC or steady-state concentration by an inhibiting constituent can 

also be calculated by Eq. 3-6: 
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where fh is the fraction of hepatic clearance in total clearance; CLh is the hepatic clearance; and 

' represents the value after alteration by drug interaction.  

 

For high clearance drugs administered by i.v. bolus, CLh is rate-limited by the flow rate. When 

the altered CLh remains rate-limited by the flow rate, then CLh = CLh
’, i.e. AUC ratio = 1, 

AUC is not altered.  

 

However, for a low clearance drug administered by i.v., it is necessary to consider the fraction 

(fm) of the metabolic process subject to inhibition in CLh. Therefore, the AUC ratio is given by 

Eq. 3-7.  



 

 121

mhintintmh ff1CL/'CLff
1ratio AUC

×−+××
=                      (Equation 3‐7) 

where CLint is the intrinsic clearance inhibited by the inhibiting constituent; ' represents the 

value after alteration by herb-drug interaction; and fm is the fraction of the specific metabolic 

pathway in hepatic clearance.  

 

In the clinical settings, [S] is often much lower than Km, then AUC ratio is given by the 

following equation: 
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Obviously, the AUC ratio is determined by Ki, [I], fh, and fm, but not by Km or [S]. It should be 

noted that multiple inhibitory herbal constituents are always involved in the inhibition of the 

same metabolic pathway of a drug, thus AUC ratio is calculated by Eq. 3-9. 
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The values of fh and fm can be determined from the urinary recovery of the parent molecule and 

each metabolite. Ki can be estimated by in vitro inhibition studies using liver microsomes, 

hepatocytes and cDNA-expressed microsomes. However, the determination of these 

parameters is difficult for herbs that often contain multiple components and low plasma levels 

are reached when administered. 

 

3.3 Predicting metabolic herb-drug interactions based on in vitro data 

We had examined the effect of a number of herbal components in five human CYPs using a 

validated high throughput approach. The herbal components tested include a variety of 

structurally distinct compounds such as triterpenoids, flavonoids, saponine, lactones, alkaloids, 

and acids. We found that a small number of herbal compounds exhibited remarkable inhibitory 

effect (IC50 < 1.0 μM) on CYP1A2, 2C9, 2C19, or 3A4, including γ-schisandrin, tanshinone I, 

tanshinone IIA, cryptotanshinone, osthole and silybin (Table 3-1). 
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Following above pharmacokinetic principles, we conducted an exercise to predict 

pharmacokinetic herb-drug interactions using these in vitro results, with a focus on the 

constituents purified from Schizandra chinensis (Wuweizi), Salvia miltiorrhiza (Danshen), 

Angelica pubescens (osthole) and Silybi Mariani (Shuifeiji).  

 

The expected AUC ratio was mainly dependent on [I], Ki, fh, number of inhibitory herbal 

constituents (n) and fm. As shown in Equation 3-10 , herb-drug interactions would be with low 

risk if [ ]i(i)i
1

K/]I[∑
=

n

i

 is less than 0.1, medium risk if it is between 0.1-1.0, and high risk if it is 

greater than 1 (Zhou et al., 2004b). Furthermore, a Ki value of a competitive inhibitor can be 

estimated by its IC50 as it equal to half IC50 value (Zhou et al., 2004b). In present study, we 

hypothesize that all the herbal compounds used here are competitive inhibitors of CYP1A2. 

 

3.4 Results 

Table 3-2 shows the predicted risk of pharmacokinetic changes by various herbal medicines. 

Table 3-3 shows the estimated AUC ratio (based on Eq. 5) with regard to CYP isoform 

inhibited by individual herbal constituents using S. chinensis, S. miltiorrhiza, S. Mariani (milk 

thistle) and A. pubescens/Cnidium monnieri as examples. It appeared that the S. chinensis 

might cause high risk for metabolic interactions with drugs that are primarily metabolised by 

CYP2C9, 2C19 or 3A4; S. miltiorrhiza would cause high risk for metabolic interactions with 

drugs that are mainly eliminated by CYP1A2 at low blood concentration and might also cause 

high risk for metabolic interactions with drugs that are metabolised by CYP2C9 or 3A4 at high 

blood concentration; Sodium tanshinone IIA sulfonate, the artificial derivate of tanshinone II A 

(S. miltiorrhiza), would cause medium to high risk for metabolic interaction with drugs that are 

primarily metabolized by CYP1A2, 2C9, 2C19, 2D6 or 3A4, whereas S. Mariani (milk thistle) 

might cause medium to high risk for metabolic interaction with drugs that are mainly 

eliminated by CYP2C9, 2C19 or 3A4. The other five herbal constituents, baicalein, baicalin, 

quercitrin, quercetin and icariin, would just cause low to moderate risk for metabolic 

interactions with drugs that are mainly eliminated by these enzymes.  

 

As shown in Table 3-3, the AUC ratio due to herb-drug combination can be estimated using Eq. 

3-9. Coadministration of S. chinensis was expected to significantly increase the AUC values of 

warfarin (a CYP2C9 substrate) and most CYP3A4 substrates, such as carbamazepine, 
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cyclosporine A, indinavir, midazolam and tacrolimus. It was also expected to significantly 

increase the AUC of omeprazole (a CYP2C19 substrate).  

 

Coadministration of the herb S. miltiorrhiza (Danshen) was expected to increase the AUC 

values of CYP1A2 and 2C9 substrates, such as caffeine and theophylline (both CYP1A2 

substrates), and CYP2C9 substrate warfarin, but it would not remarkably change the AUC of 

CYP3A4 substrates (including carbamazepine, cyclosporine, indinavir, midazolam and 

tacrolimus). However, sodium tanshinone IIA sulfonate, the artificial derivate of tanshinone 

IIA (S. miltiorrhiza), was expected to remarkably increase the AUC of warfarin (a CYP2C9 

substrate) and the AUC of carbamazepine, cyclosporine, indinavir, midazolam and tacrolimus 

(all CYP3A4 substrates), but it would not significantly change the AUC of CYP1A2 (e.g. 

theophylline) and 2C19 substrates (e.g .omeprazole).  

 

The S. Mariani (milk thistle) was expected to remarkably increase the AUC values of warfarin 

and most CYP3A4 substrates such as carbamazepine, cyclosporine, indinavir, midazolam and 

tacrolimus, but it would not remarkably change the AUC of omeprazole (CYP2C19 

substrates).  

 

Concurrent use of A. pubescens or C. monnieri (including osthole) might significantly increase 

the AUC values of caffeine/theophylline (CYP1A2 substrates), warfarin (CYP2C9 substrate) 

and omeprazole (CYP2C19 substrate), while it would not remarkably change the AUC of most 

CYP3A4 substrates such as carbamazepine, cyclosporine A, indinavir, midazolam and 

tacrolimus. 

 

3.5 Conclusions and Discussion 

For low clearance drug by i.v. injection, the AUC ratio was generally determined by inhibition 

constant (Ki), unbound inhibitor concentration ([I]), hepatic fraction (fh), number of inhibitory 

herbal constituents (n) and metabolic pathway fraction in hepatic metabolism (fm), while the 

AUC ratio for a high clearance drug by oral route, the AUC ratio was determined by Ki, [I], n 

and fm. By varying these parameters, the AUC ratio changed accordingly. It appeared likely to 

predict an herb-drug metabolic interaction, if the inhibiting herbal constituents could be 

qualitatively and quantitatively determined. High throughput screening assays provide a useful 

strategy for the qualitative and quantitative study of herb-CYP interactions. High throughput 

screening assays are capable of handling the great number of herbal constituents (if using 
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purified herbal components), thus offer the opportunity to use the resulting in vitro inhibition 

data as a criterion for monitoring herb-drug metabolic interactions involving human drug 

metabolising enzymes (in particular CYPs) (Masimirembwa CM et al., 2001).  

 

Based on our previous high throughput results, we conducted predictions for S. chinensis 

(γ-schisandrin and schisandrin), S. miltiorrhiza (tanshinone I, tanshinone IIA, and 

cryptotanshinone), sodium tanshinone IIA sulfonate, S. Mariani (silybin A and B) and A. 

pubescens/Cnidium monnieri (osthole). Some predicting results were consisting with clinical 

reports. For example, it was expected that S. chinensis (γ-schisandrin and schisandrin) would 

increase the AUC value of tacrolimus, which is consistent with the report (Xin et al., 2007) 

where Schisandra sphenanthera extracts increase the oral bioavailability of tacrolimus. 

Furthermore, the prediction of S. miltiorrhiza increasing the AUC value of warfarin (CYP2C9 

substrate) is consistent with the report by Chan (2001). It is also in agreement with the case 

reports that S. miltiorrhiza products increased 2-fold in prothrombin time of warfarin and 

induced over-anticoagulation in patients.  

 

However, some predictions were opposite or different to the clinical studies. For example, 

clinical studies of S. miltiorrhiza interaction with caffeine/theophylline (CYP1A2 substrates) 

showed a different picture. An early study reported that compound danshen tablets (mainly 

contained S. miltiorrhiza) increased the metabolism of caffeine in healthy subjects, implicating 

that compound danshen tablets induced the activity of CYP1A2. However, a recent study by 

Qiu et al. (2008a) reported that S. miltiorrhiza extracts did not influence the metabolism of 

theophylline in healthy volunteers. The in vitro study showed that human CYP1A2 is inhibited 

by the ethyl acetate extract of danshen and danshen products (Ueng et al., 2003; Qiu et al., 

2008b). Another example is indinavir (a CYP3A4 substrate), whose plasma concentration was 

not altered by co-administered silymarin (containing silybin) in healthy volunteers (DiCenzo et 

al., 2003). However, the prediction was that S. Mariani would increase the AUC of indinavir.  

 

These findings reflect the difficulties and complexity when predicting herb-drug interactions. 

The reasons are as following: a) using above pharmacokinetic principles plus in vitro data to 

predict herb-drug interactions in vivo can only be used for the herbs with inhibitory effects. If 

herbal compounds act as inductors in vivo, like St John Wort, current predicting procedure is 

not proper. b) herbal preparations may contain multiple CYP-modulating constituents, with 

unknown amounts and inhibition/induction potency for CYPs. Therefore the total effects in 
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vivo are balance results of individual effects of the multiple constituents; c) the 

inhibitor/induction of CYP by herbs may by temporally distinguishable, depending on the 

herb’s dosing, administration route and tissues; d) marked variability in the contents of herbal 

constituents (Bergonzi et al., 2001); e) presence of extra-hepatic metabolism; and active 

transport in liver; and f) many herbs are used chronically.  

 

In conclusion, the prediction of metabolic herb-drug interactions based on in vitro inhibition 

data involving human drug metabolising enzymes (in particular CYPs) is possible, but the 

prediction is uncertain and complex when multiple factors are involved. 
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Table 3-1. The IC50 of potential herbal inhibitors. 
 

Herbal compound IC50 (μM) 
CYP1A2 CYP2C9 CYP2D6 CYP3A4 CYP2C19

γ-Schisandrin - 0.52 16.97 0.009 0.07 
Schisandrin - 85.20 - 19.40 36.81 

Tanshinone I 0.027 0.11 - 0.22 21.09 

Tanshinone IIA 0.19 0.21 - - - 
Cryptotanshinone 0.91 1.23 - 2.96 13.65 

Sodium tanshinone IIA sulfonate 7.08 1.36 11.55 1.78 19.44 

Sodium Danshensu - 73.12 - - - 
Salvianolic acid B - - - - - 
Protocatechuicaldehyde  - 90.66 - 81.19 25.70 
Protocatechuic Acid - - - - - 
Osthole 1.49 8.30 51.37 12.01 0.92 

Silybin - 3.14 - 2.85 20.26 
Baicalein 1.22 2.52 36.78 1.24 2.12 
Baicalin 70.03 20.42 - - 46.11 
Quercetin 3.97 3.01 54.59 19.80 7.23 
Quercitrin 33.76 21.76 90.00 71.01 98.77 
Icariin 43.00 14.34 - - 72.17 
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Table 3-2. Prediction for the risk of herb-drug interaction. 

  
[I] 
μM 

Ki 
μM 

[I]/Ki 
Estimated AUC 

ratio (R) 

Risk of 
herb-drug 
interaction

Schisandra chinensis (Wuweizi) 

CYP1A2 γ-Schisandrin - - - 
- NA 

Schisandrin - - - 
CYP2C9 γ-Schisandrin 0.689  0.26 2.65 

3.75 High 
Schisandrin 4.31  42.6 0.101 

CYP2C19 γ-Schisandrin 0.689  0.036 19.15 
20.38 High 

Schisandrin 4.31  18.41 0.234 
CYP2D6 γ-Schisandrin 0.689  8.49 0.081 

1.08 Low 
Schisandrin 4.31  - - 

CYP3A4 γ-Schisandrin 0.689  0.0045 153.16 
154.61 High 

Schisandrin 4.31  9.70 0.445 
Salvia miltiorrhiza (Danshen) Low Con.  

CYP1A2 Tanshinone I 0.006 0.014 0.437 
2.0 High Tanshinone IIA 0.009  0.094 0.101 

Cryptotanshinone 0.209  0.455 0.460 
CYP2C9 Tanshinone I 0.006 0.053 0.111 

1.56 Medium Tanshinone IIA 0.009  0.105 0.090 
Cryptotanshinone 0.209  0.615 0.340 

CYP2C19 Tanshinone I 0.006 10.55 0.0006 
1.03 Medium Tanshinone IIA 0.009  - - 

Cryptotanshinone 0.209  6.83 0.031 
CYP2D6 Tanshinone I 0.006 - - 

- NA Tanshinone IIA 0.009  - - 
Cryptotanshinone 0.209  - - 

CYP3A4 Tanshinone I 0.006 0.11 0.054 
1.19 Medium Tanshinone IIA 0.009  - - 

Cryptotanshinone 0.209  1.48 0.141 
Salvia miltiorrhiza (Danshen) High Con.  

CYP1A2 Tanshinone IIA  5.44* 0.094 58.14 59.14 High 

Cryptotanshinone 2.09  0.455 4.60 5.60 High 
CYP2C9 Tanshinone IIA  5.44*  0.105 52.02 53.02 High 

Cryptotanshinone 2.09  0.615 3.40 4.40 High 
CYP2C19 Tanshinone IIA  5.44*  - - - NA 

Cryptotanshinone 2.09  6.83 0.307 1.31 Medium 
CYP2D6 Tanshinone IIA  5.44* - - - NA 

Cryptotanshinone 2.09  - - - NA 
CYP3A4 Tanshinone IIA  5.44* - - - NA 

Cryptotanshinone 2.09  1.48 1.414 2.41 High 
Sodium tanshinone IIA sulfonate 

CYP1A2 

Sodium 
tanshinone IIA 

sulfonate 

1.26 3.54 0.357 1.36 Medium 
CYP2C9 1.26 0.679 1.86 2.86 High 
CYP2C19 1.26 9.72 0.130 1.13 Medium 
CYP2D6 1.26 5.78 0.219 1.22 Medium 
CYP3A4 1.26 0.890 1.42 2.42 High 
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Angelica pubescens / Cnidium monnieri (Duhuo / Shechuangzi) 

CYP1A2 

Osthole 

2.75 0.75 3.69 4.69 High 
CYP2C9 2.75 4.15 0.66 1.66 Medium 
CYP2C19 2.75 0.46 5.98 6.98 High 
CYP2D6 2.75 25.69 0.107 1.11 Medium 
CYP3A4 2.75 6.01 0.458 1.46 Medium 
Silybi Mariani (Shuifengji, milk thistle) 

CYP1A2 Silybin A 4.84 - - 
- NA 

Silybin B 1.21 - - 
CYP2C9 Silybin A 4.84 1.57 3.08 

4.85 High 
Silybin B 1.21 1.57 0.768 

CYP2C19 Silybin A 4.84 10.13 0.478 
1.60 Medium 

Silybin B 1.21 10.13 0.119 
CYP2D6 Silybin A 4.84 - - 

- NA 
Silybin B 1.21 - - 

CYP3A4 Silybin A 4.84  1.43 3.40 
5.24 High 

Silybin B 1.21  1.43 0.847 
Scutellaria baicalensis (Huangqin) 
CYP1A2 

Baicalein 

0.207 0.61 0.340 1.34 Medium 
CYP2C9 0.207 1.26 0.164 1.16 Medium 
CYP2C19 0.207 1.06 0.196 1.20 Medium 
CYP2D6 0.207 18.39 0.011 1.01 Low 
CYP3A4 0.207 0.620 0.334 1.33 Medium 
Scutellaria baicalensis /Lonicera japonica (Huangqin/Jinyinhua) 

CYP1A2 

Baicalin 

0.067 35.02 0.002 1.002 Low 
CYP2C9 0.067 10.21 0.007 1.007 Low 
CYP2C19 0.067 23.06 0.003 1.003 Low 
CYP2D6 0.067 - - - NA 
CYP3A4 0.067 - - - NA 
Hyptericum japonicum / Viscum coloratum (Diercao/Hujisheng) 

CYP1A2 

Quercitrin 

8.19 16.88 0.49 1.49 Medium 
CYP2C9 8.19 10.88 0.75 1.75 Medium 
CYP2C19 8.19 49.39 0.166 1.17 Medium 
CYP2D6 8.19 45 0.182 1.18 Medium 
CYP3A4 8.19 35.51 0.231 1.23 Medium 
Ginkgo biloba / Bupleurum chinensis (Yinxinye/Caihu) 

CYP1A2 

Quercetin 

0.051* 1.99 0.026 1.03 Low 
CYP2C9 0.051* 1.51 0.034 1.03 Low 
CYP2C19 0.051* 3.62 0.014 1.01 Low 
CYP2D6 0.051* 27.30 0.002 1.002 Low 
CYP3A4 0.051* 9.90  0.005 1.005 Low 
Epimedium brevicornum (Yinyanghe) 

CYP1A2 

Icariin 

0.151 21.50 0.007 1.007 Low 
CYP2C9 0.151 7.17 0.021 1.02 Low 
CYP2C19 0.151 36.09 0.004 1.004 Low 
CYP2D6 0.151 - - - NA 
CYP3A4 0.151 - - - NA 
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Table 3-3. Prediction of AUC ratio. 

Major CYP   fh fm Estimated
AUC ratio

Observed 
AUC ratio Ref. 

Schisandra chinensis (γ-schisandrin + schisandrin)  
CYP2C9 Warfarin 2.75 1 0.85 2.66   

CYP2C19 Omeprazole 19.38 0.75 0.56 1.66   
CYP3A4 Carbamazepine 153.61 0.8 0.65 2.07   
CYP3A4 Cyclosporine A 153.61 0.94 0.76 3.45   
CYP3A4 Indinavir 153.61 0.85 0.7 2.45   
CYP3A4 Midazolam 153.61 0.88 0.75 2.90   

CYP3A4 Tacrolimus 153.61 0.86 0.7 2.49 1.64 (Xin et al., 
2007) 

Salvia miltiorrhiza (tanshinone I + tanshinone IIA + cryptotanshinone)  

CYP1A2 Caffeine 0.998 0.95 0.79 1.60   
CYP1A2 Theophylline 0.998 0.84 0.69 1.41   
CYP2C9 Warfarin 0.559 1 0.85 1.44 Increased (Chan, 2001)

CYP2C19 Omeprazole 0.031 0.75 0.56 1.01   
CYP3A4 Carbamazepine 0.195 0.8 0.65 1.09   
CYP3A4 Cyclosporine A 0.195 0.94 0.76 1.13   
CYP3A4 Indinavir 0.195 0.85 0.7 1.11   
CYP3A4 Midazolam 0.195 0.88 0.75 1.12   
CYP3A4 Tacrolimus 0.195 0.86 0.7 1.11   

Sodium tanshinone IIA sulfonate  
CYP1A2 Caffeine 0.357 0.95 0.79 1.25   
CYP1A2 Theophylline 0.357 0.84 0.69 1.18   
CYP2C9 Warfarin 1.86 1 0.85 2.24   

CYP2C19 Omeprazole  0.130 0.75 0.56 1.05   
CYP3A4 Carbamazepine 1.42 0.8 0.65 1.44   
CYP3A4 Cyclosporine A 1.42 0.94 0.76 1.72   
CYP3A4 Indinavir 1.42 0.85 0.7 1.54   
CYP3A4 Midazolam 1.42 0.88 0.75 1.63   
CYP3A4 Tacrolimus 1.42 0.86 0.7 1.55   

Silybi Mariani (silybin A + silybin B)  
CYP2C9 Warfarin 3.85 1 0.85 3.07   

CYP2C19 Omeprazole 0.597 0.75 0.56 1.19   
CYP3A4 Carbamazepine 4.24 0.8 0.65 1.73   
CYP3A4 Cyclosporine A 4.24 0.94 0.76 2.37   

CYP3A4 Indinavir 4.24 0.85 0.7 1.93 0.91 (Piscitelli et 
al., 2002) 

CYP3A4 Midazolam 4.24 0.88 0.75 2.15   
CYP3A4 Tacrolimus 4.24 0.86 0.7 1.95   

Angelica pubescens/Cnidium monnieri (Osthole)  
CYP1A2 Caffeine 3.69 0.95 0.79 2.44   
CYP1A2 Theophylline 3.69 0.84 0.69 1.84   
CYP2C9 Warfarin 0.663 1 0.85 1.51   

CYP2C19 Omeprazole 5.98 0.75 0.56 1.56   
CYP3A4 Carbamazepine 0.458 0.8 0.65 1.20   
CYP3A4 Cyclosporine A 0.458 0.94 0.76 1.29   
CYP3A4 Indinavir 0.458 0.85 0.7 1.23   
CYP3A4 Midazolam 0.458 0.88 0.75 1.26   
CYP3A4 Tacrolimus 0.458 0.86 0.7 1.23   

[ ]i(i)i
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CHAPTER 4  A COMPUTERIZED MODELING STUDY FOR THE 

INTERACTION OF LIGANDS WITH HUMAN CYP1A2 ENZYME 

4.1 Introduction 

In the superfamily of the human CYP enzymes, family 1 contains three well characterized 

monooxygenases, namely CYP1A1, 1A2 and 1B1. These CYPs participates in over 10% of all 

Phase 1 oxidative reactions. Among them, CYP1A2 is the most important one for the oxidative 

metabolism of exogenous compounds in human liver, including a variety of procarcinogens 

such as PAHs and therapeutic drugs (Brosen, 1995; Eaton et al., 1995; Hammons et al., 1997; 

Rendic and Di Carlo, 1997). CYP1A1 is not expressed in the liver, but inducible by smoking 

and some compounds. CYP1A2 is one of the enzymes responsible for activating aromatic 

heterocyclic amines and PAHs to highly reactive metabolites that crosslink DNA and 

ultimately cause carcinogenesis (Eaton et al., 1995; Guengerich et al., 1999; Zhou et al., 

2005a). The activation of procarcinogens such as heterocyclic amines and PAHs by CYP1A2 

makes this enzyme particularly important in carcinogenesis. The amino radical (-NH2) in these 

amines, rich in cooked meat and fish, is converted by CYP1A2 into a hydroxyamino group 

(N-OH-) which is further activated to form esters that ultimately produce DNA adducts 

(Yamashita et al., 1988). In general, aromatic amines are bioactivated in two steps, N-oxidation 

by CYP1A2, followed by a conjugation (usually acetylation or sulphonation) (Yamashita et al., 

1988). These conjugation reactions introduce good leaving groups, resulting in a highly 

reactive resonance-stabilized nitrenium/carbonium ion (Yamashita et al., 1988). Therefore, 

induction of CYP1A2 enzyme may enhance individual susceptibility to carcinogenesis, 

whereas inhibition of the CYP1A2 enzyme might have important implications for cancer 

chemoprevention. In fact, some natural compounds with potent inhibitory effect on CYP1A2 

have been shown to reduce chemical-induced carcinogenesis in preclinical studies (Zhou et al., 

2005a). On the other hand, since CYP1A2 is involved in the metabolic clearance of a number 

of clinical drugs such as theophylline, tacrine and propranolol, inhibition or induction of 

CYP1A2 activity is associated with a number of pharmacokinetic drug interactions when drugs 

are administered concomitantly (Zhou et al., 2009). The drug interactions are more clinically 

important when the victim drug has a narrow therapeutic index (e.g. theophylline).  

 

The crystal structure of human CYP1A2 (Sansen et al., 2007) has been recently solved, which 

provides us a firm basis for further investigation of the mechanism of ligand-CYP1A2 

interaction at molecular level. A narrow, planar ligand binding cavity in the active site of 
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CYP1A2 is observed in the structure (PDB ID: 2HI4, see Figure 1-4), which is consistent with 

the fact that most of the CYP1A2 substrates and inhibitors are planar, small molecules with 

high log P values (highly lipophilic) (Korhonen et al., 2005; Zhou et al., 2009). CYP1A2 

contributes significantly to the hepatic metabolism of many hydrophobic drugs such as 

amitriptyline, haloperidol, olanzapine, tacrine, theophylline, zileuton, and zolmitriptan, as well 

as its probe substrate caffeine (Zhou et al., 2009).  

 

The known inhibitors of human CYP1A2 include amiodarone, ciprofloxacin, cimetidine, 

fluvoxamine, furafylline, mibefradil, ANF, propafenone, rofecoxib and rofecoxib (Zhou et al., 

2009). Fluvoxamine, for instance, a selective serotonin reuptake inhibitor, is a potent 

mechanism-based inhibitor of CYP1A2 and has been shown to significantly increase the 

plasma levels of tizanidine (a substrate of CYP1A2), leading to tizanidine intoxication when 

coadministered (Granfors et al., 2004b). Drugs behaving as potent mechanism-based inhibitors 

of CYP1A2 may explain some drug-drug interactions observed in clinical practice. For 

example, zileuton is a mechanism-based inhibitor of CYP1A2 (Lu et al., 2003) and this may 

explain why it decreased the oral clearance of antipyrine (St Peter et al., 1995), propranolol 

(Lau, 1997), R-warfarin (Awni et al., 1995e), and theophylline (Granneman et al., 1995), at 

doses that have a minimal effect on the pharmacokinetics of S-warfarin (Awni et al., 1995e), 

phenytoin (Samara et al., 1995), digoxin (Awni et al., 1995d), naproxen (Awni et al., 1995a), 

prednisone (Awni et al., 1995c), sulfasalazine (Awni et al., 1995b), and terfenadine (Awni et 

al., 1997). Rofecoxib moderately increases the plasma level and effects of theophylline 

(Bachmann et al., 2003) and the R-warfarin (Schwartz et al., 2000). Like fluvoxamine, 

rofecoxib at therapeutic doses of 25 mg per day increased more than 10-fold the plasma 

concentrations and adverse effects of the CYP1A2 substrate tizanidine in humans (Backman et 

al., 2006b).  

 

Previous studies have established several pharmacophore models to explore the interaction of 

ligands with CYP1A2 (Lozano et al., 1997; Lewis et al., 2003). However, these models have 

intrinsic limitations as they are all based on homology models arising from bacterial and rabbit 

CYP structures. The structural information obtained from these models is limited. This has 

prompted us to conduct docking studies for known CYP1A2 substrates and inhibitors, and then 

established pharmacophore models using a set of known CYP1A2 inhibitors. We then 

validated the models with a set of other known CYP1A2 inhibitors and compared with our in 

vitro inhibitory data (see Section 2.3 of Chapter 2). 
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4.2 Modelling Methods 

The AutoDock program and the Ligplot program were used to establish models for CYP1A2 

and its ligands including substrates and inhibitors. The HipHop module in Catalyst (Accelrys, 

Inc., installed in Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 

Shanghai, China) was used to generate pharmacophore hypotheses with qualitative common 

features utilizing a series of ligands. 

 

4.2.1 Docking study  

The binding mode of 25 known substrates of CYP1A2 with diverse structures in the active site 

of CYP1A2 was estimated by docking simulation using the AutoDock 4.0 program. These 

substrates included acetaminophen, amitriptyline, caffeine, estradiol, tacrine, naproxen, 

fluvoxamine, phenacetin, tizanidine and zileuton (Table 4-1). The AutoDock program can 

calculate the binding energy of a ligand when it binds to a protein and, in present study, was 

used to determine the energy when a ligand was docked into the active site of CYP1A2.  

 

Ligands were added polar hydrogens; Gasteiger charges computed; non-polar hydrogens 

merged; and energy minimization was performed as entries before docking as described 

previously (Paxton et al., 2005). Docking was carried out in a standard grid-based mode within 

the active site of CYP1A2 structure, derived from 2HI4 (PDB) where water and ligand 

(α-naphthoflavone) were removed. Default values for van der Waals scaling, electrostatics, and 

ligand minimization were used. A modified genetic search algorithm employing a local 

minimum refinement was used to identify low energy binding sites and orientations of the 

probe molecule. A grid of 54 × 54 × 54-point with a spacing of 0.375 Å centred at 2.674 × 

18.041 × 19.672 Å that fully encompassed the active site was employed. The top ten scoring 

conformations of each ligand were saved. The other parameters were set as follows: number of 

genetic algorithm evals, 700,000; number of genetic algorithm popular size, 120; number of 

genetic algorithm runs, 10; maximum number of generations, 30,000; maximum number of top 

individuals, 1; rate of gene mutation, 0.02; rate of crossover, 0.8; GA crossover mode, twopt. 

Only the substrate/inhibitor and amino acid residues within 4.5 Å were allowed during the 

determination. The protein was frozen when the docking was performed automatically. 
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4.2.2 Ligplot study 

The Ligplot program was used to analyse the docking results of ligands at the active site of 

CYP1A2 by generating the schematic diagrams for the protein–ligand interactions (Wallace et 

al., 1995). These diagrams indicate which residue atoms in the CYP1A2 protein interact with 

which ligand atoms. The atom-atom interaction carried out by the Ligplot program was 

presented as hydrogen bond (O-H) and hydrophobic (C-C) interactions. After obtaining the 

diagrams from substrate and inhibitor analysis, the binding residues involved in these 

interactions were selected. 

 

4.2.3 Pharmacophore hypotheses generation for CYP1A2 inhibitors 

The HipHop module in Catalyst was routinely used to generate pharmacophore hypotheses 

with qualitative common features utilizing a series of ligands. To identify the common features 

of CYP1A2 inhibitors, we employed a series of ligands with distinct core structures to generate 

a pharmacophore model. 

 

The training set of ligands (n = 5) included fluvoxamine, galangin, miconazole, 

α-naphthoflavone (used as initial template), and rutaecarpine which are all CYP1A2 inhibitors 

(Fig. 4-1). To identify pharmacophore features necessary for potent CYP1A2 inhibitors, the 

qualitative HipHop model was generated based on these five compounds in training set. 

Besides to study common features of CYP1A2 inhibitors, we also explored the common 

features shared by substrates and inhibitors of CYP1A2, on the assumption that the ligands 

with high affinity bind in a similar manner at the enzyme active site. Therefore, we used 

CYP1A2 inhibitors as the training set and utilized both substrates and inhibitors of CYP1A2 as 

validating sets. 

 

The validating set of ligands encompassed 9 well-known CYP1A2 inhibitors, namely, 

amiodarone, cimetidine, ciprofloxacin, enoxacin, furafylline, methoxsalen, mibefradil, 

propafenone and rofecoxib. We further examined the usefulness of the established 

pharmacophore models employing a series of ligands, including 56 herbal compounds and 18 

well-known CYP1A2 substrates. 

 

4.2.4 Training set selection and conformational analysis  

All structural models were built and minimized within the Catalyst (Accelrys Inc.). Before 

starting the pharmacophore generation process, conformational models for the molecules were 
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calculated using the best conformer generation method. When the lowest energy was more than 

20 kcal/mol, the conformers were excluded. The poling algorithm was used, which sought to 

provide a broad coverage of conformational space. The number of conformers generated for 

each compound was limited to a maximum number of 255 which was set as a default value. 

 

4.2.5 Generation of pharmacophore models  

In the HipHop model generation process using above five CYP1A2 inhibitors, the highest 

weight was assigned to the most active ligand with the highest binding affinity, 

α-naphthoflavone, in the training set. α-Naphthoflavone was considered as a ‘reference 

compound’ specifying a ‘principal’ value of 2 and a ‘MaxOmitFeat’ value of 0. A ‘principle’ 

value of 2 ensures that all of the chemical features in the ligand will be considered in building 

hypothesis space, while a 0 of ‘MaxOmitFeat’ value forces mapping of all features of the 

ligand. For the remaining four inhibitors, the ‘principle’ value was set at 1 and ‘MaxOmitFeat’ 

value at 1 since these ligands show lower binding affinity compared to α-naphthoflavone. 

Maximum pharmacophore hypotheses were set to 10 and minimum interfeature distance to 2, 

while all other parameters were set at default values. 

 

4.3 Results 

4.3.1 AutoDock study of known CYP1A2 substrates 

Most substrates of CYP1A2 are known as small, planar, hydrophobic, and either weakly basic 

or neutral molecules (Sansen et al., 2007). For perspective of substrate-CYP1A2 interaction at 

molecular level, an AutoDock program was used to dock the ligands into the active site of the 

ligand-free CYP1A2 crystal structure (PDB ID: 2HI4) (Sansen et al., 2007). Our docking 

experiments resulted in a maximum of 10 docking poses that needed to be analyzed manually. 

To reasonably analyze the docking results of CYP1A2 substrates, the known metabolic 

pathway of each substrate catalyzed by CYP1A2 was employed to select their unique 

conformation based on the fact that only such unique poses produce metabolites (see Figure 

4-2).  

 

After docking, a total of 77 conformers had been generated from 25 known substrates for 

CYP1A2 (Figure 4-3), with 3.1 conformers per substrate molecule. According to the known 

metabolic pathway of these substrates, a unique pose of each substrate was identified from 

their multi-conformations, resulting in unique poses for 18 substrates only (Figure 4-2). For the 

remaining 7 substrates, their unique poses could not be identified even when we conducted 
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further docking using their conformers at the lowest energy. These compounds included 

acetaminophen, clozapine, estradiol, mexiletine, olanzapine, riluzole, and theophylline. It is 

unknown why these known substrates of CYP1A2 could not give rise to unique poses. 

Therefore, a total of 18 poses for the 18 substrates were used for further Ligplot analysis. 

 

4.3.2 Ligplot study for substrate-CYP1A2 interaction  

The Ligplot program was used to analyze the docking results of ligands at the active site of 

CYP1A2. Substrate-CYP1A2 interaction occurred in the active site of CYP1A2 between the 

atoms on substrates and atoms in residues of CYP1A2, including hydrogen bonds and 

hydrophobic contacts. This program can identify specific atom-atom interactions including 

both hydrogen bond (O-H) and hydrophobic (C-C) interactions between the ligand and protein. 

Therefore, the interactions between the atoms on 18 substrates of CYP1A2 with 18 identified 

unique conformers resulting in metabolite production and the atoms in residues at the active 

site of CYP1A2 were analyzed using the Ligplot algorithm. Since the unique conformers of 

other seven substrates had not been successfully gained, they were not included in the Ligplot 

study. 

 

As for hydrogen bond (O-H) interactions, a total of 11 hydrogen bonds, including 5 hydrogen 

bond donors (HBDs) and 6 hydrogen bond acceptors (HBAs) on CYP1A2 residues were found 

from the interactions between the 18 conformers and CYP1A2. Three residues, Ala317, 

Thr124 and Thr118 of the CYP1A2 were identified as hydrogen donors, while other four 

residues (Asn257, Asn312, Asp320 and Thr124) were found as hydrogen acceptors. As 

hydrogen donors, residues Ala317 and Thr124 were involved in the generation of two HBDs 

for each, while Thr118 formed one HBD only. For hydrogen acceptors, Asn312 and Asp320 

were involved in the formation of two HBAs for each, and Asn257 and Thr124 generated one 

HBA for each (see Table 4-1).  

 

With regard to hydrophobic (C-C) interactions, a total of 21 residues at the active site of 

CYP1A2 were identified to participate in the hydrophobic interactions between the substrates 

and the enzyme. These residues included Ala317, Asn312, Asp313, Asp320, Gly316, Ile117, 

Ile386, Leu382, Leu497, Phe125, Phe226, Phe256, Phe260, Ser122, Thr118, Thr124, Thr223, 

Thr321, Thr498 and Val227 (Table 4-2). Hem900 was also involved in the substrate-enzyme 

interactions and thus was included in the Ligplot study.  
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As expected, the residue Phe226 interacted with most CYP1A2 substrates tested in this study. 

According to the sum of interacting C-C pairs on each residue with 18 conformers, it was 

identified that interactive C-C pairs of Phe226 were over 150 (Group 1). Ala317, Hem900, 

Gly316, Phe125, Phe260 and Thr124 were between 50 and 100 C-C pairs (Group 2); Asp313, 

Asp320 and Leu497 were between 25 and 50 C-C pairs (Group 3); and the remaining residues 

only had less than 25 C-C pairs (Group 4, please see Table 4-2). Obviously, Phe226 was the 

most essential residue for binding interaction between the 18 substrates and CYP1A2, followed 

by the 6 residues (with 50~100 C-C pairs) acting as the second essential group and then the 

third group of residues (with 25~50 C-C pairs). On average, each substrate interacted with the 

enzyme via 3.0 C-C pairs. 

 

Among the 21 residues, 13 of which were involved in the interaction of more than half of the 

18 substrates with CYP1A2. These residues included Ala317 (18 substrates), Phe226 (18), 

Hem900 (17), Gly316 (16), Phe125 (16), Thr124 (15), Ile386 (14), Leu497 (14), Asp313 (12), 

Phe260 (12), Thr321 (12), Thr118 (10), and Asp320 (10) (see Table 4-2 and Figure 4-4). There 

were six residues including Phe226, Ala317, Gly316, Phe125, Thr124 and Hem900 that 

participated in the interactions of 15-18 substrates with CYP1A2, indicting their essential role 

in the substrate-CYP1A2 binding. 

 

Phe226 in helix F, which has been found to interact with all 18 substrate tested in our study, 

appears to play a critical role in substrate recognition, acting as a sensor for aromatic 

hydrocarbon substrates. Another Phe, Phe260 in helix G, was located on the other side of 

Phe226, forming an aromatic platform together with Phe226 which can accommodate aromatic 

hydrocarbons (Figure 4-4). Since the distance between the two benzol rings of Phe226 and 

Phe260 is slightly different, it may facilitate recognition of some substrates containing 

polycyclic aromatic hydrocarbons. SDM studies have confirmed the important role of Phe226 

in substrate recognition (Parikh et al., 1999) 

 

The active site of CYP1A2 contains three important residues, Asp313, Ala317, and Thr321 

positioning side by side in helix I above the heme. These three residues are well reserved in 

other CYPs which are also found in CYP2C9 (PDB ID: 1R9O) and 2D6 (PDB ID: 2F9Q) with 

identical positioning (see Figure 4-5). These three residues together with the heme constitute a 

conservative core of the active site for these enzymes. Furthermore, in CYP1A2, 2C9 and 

2C19 (a homology model), a Gly is conserved sequentially before the Ala, while a Ser instead 
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of Gly was found neighboring the Ala in CYP2D6. This conserved structure at active sites 

could explain why CYP1A2 and 2C9 share certain substrates (e.g. amitriptyline and naproxen) 

and inhibitor (fluvoxamine). However, diverse residue constitution and 3rd-grade structure 

beyond the active core makes most CYP1A2 substrates different from those of CYP2C9.   

 

Overall, there are six hydrophobic residues (Phe226, Ala317, Gly316, Phe125, Thr124 and 

Hem900) and two acidic residues (Asp313 and Asp320 on helix I located besides Ala317) 

forming the core of CYP1A2 active site cavity. These residues play a critical role in substrate 

recognition. At position Phe125, there is a natural mutation (373T>A) identified in humans. 

 

4.3.3 Pharmacophore study for CYP1A2 inhibitors 

Previous pharmacophore studies of CYP1A2 inhibitors have demonstrated that typical 

CYP1A2 inhibitors are aromatic, lipophilic, neutral, and acidic compounds (Lewis et al., 2004; 

Gleeson et al., 2007). However, these studies have only provided limited structural information 

for CYP1A2 inhibitors. To further explore the common configuration features of CYP1A2 

inhibitors, we conduct pharmacophore modelling studies using Catalyst. The models were 

further validated using a series of well-known CYP1A2 inhibitors using Ligand 

Pharmacophore Mapping module of the Catalyst. 

 

For the first step, we have set up the preliminary pharmacophores representing the common 

chemical features such as HBA, HBD, and hydrophobic area. The best pharmacophore 

(Hopyo-1) based on the five typical CYP1A2 inhibitors (i.e. fluvoxamine, galangin, 

miconazole, naphthoflavone-template, and rutaecarpine) indicated that two hydrophobic areas, 

one aromatic ring and one HBA were common (see Figure 4-6).  

 

We further validated these pharmacophores derived from five known CYP1A2 inhibitors, 

using another 9 well-known CYP1A2 inhibitors (see Figure 4-7) through Ligand 

Pharmacophore Mapping program. During validation, the four essential features including two 

distinct hydrophobic areas, one aromatic ring and one HBA were all tested. The mapping result 

showed that 8 out of 9 inhibitors (88.9%) were hit and 6 of them (67%) showed a good 

agreement (Fit value > 2.77/4) with the four features, one with reasonable agreement (Fit value 

~2.4/4), and only one with a poor Fit value (1.8/4) (see Table 4-3).  
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Furthermore, we conducted a small-scale screening of 56 herbal compounds based on the 

validated pharmacophores. Except four compounds without optimized conformations, the 

Hopyo-1 hit 21 of remaining 52 herbal compounds and 19 of the 21 hits have Fit value over 

2.7/4, including 9 potential inhibitors shown in our in vitro studies (Table 2-2). If one 

hydrophobic region was excluded from the pharmacophore model, 26 of the 52 herbal 

compounds could be hit including 12 potential inhibitors observed in our in vitro studies (Table 

4-4).  

 

Moreover, we mapped the Hopyo-1 to 25 known CYP1A2 substrates to check how many of 

the common features were shared between inhibitors and substrates of CYP1A2. It hit 13 

substrates with 8 of them showing good agreement (Fit value > 2.9/4) and 5 exhibiting poor 

agreement (Fit value < 2.3/4) (Table 4-3). The 8 substrates showing good agreement with 

pharmacophore features arising from CYP1A2 inhibitors included fluvoxamine, haloperidol, 

olanzapine, ondansetron, ropivacaine, tizanidine, verapamil and R-warfarin. Four more 

substrates (baicalein, hyperoside, polydatin and quercetin) were hit if one hydrophobic region 

of the four common features was omitted. These results implicate that there are certain 

common structural features between substrates and inhibitors of CYP1A2. However, some 

CYP1A2 inhibitors may not be as hydrophobic as most CYP1A2 substrates.  

 

4.3.4 AutoDock study for herbal components  

Following pharmacophore screening of 56 purified herbal compounds, we conducted a series 

docking of the 56 herbal compounds into the active site of CYP1A2 using AutoDock 4.0 

program. After docking, a total of 180 conformers had been generated from the 56 herbal 

compounds, with an average of 3.2 conformers per compound. Only the optimal pose of each 

compound with the lowest free energy of binding were used for docking analysis.  

 

These dockings yielded values of estimated free energy of binding ranging from -11.09 to 

+2,870 kcal/mol (note that the more negative the value is, the tighter the predicted binding is). 

Thirty seven of 56 herbal compounds showed high values of binding energy ranging from 

-6.51 to +2,870 kcal/mol and were predicted to be poor inhibitors of CYP1A2. In contrast, 

other remaining 19 herbal compounds had relatively low binding energy ranging from -11.09 

to -6.73 kcal/mol and were estimated to be potential inhibitors of CYP1A2. These 19 

compounds included amygdalin, andrographolide, baicalein, baicalin, cordycepin, 

cryptotanshinone, dehydroandrographolide, matrine, osthole, oxymatrine, polydatin, quercetin, 
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quercitrin, rutaecarpine, scopoletin, sophoridine, tanshinone I, tanshinone IIA, and tanshinone 

IIA sulfonate sodium. 

 

If these results were combined with those from the pharmacophore studies, 8 of the 19 

predicted CYP1A2 inhibitors were hit by the hypothesis (Hopyo-1) (see Table 4-4), and 11 of 

the 19 predicted inhibitors could be hit if one hydrophobic region was omitted from the 

hypothesis 1 (Hopyo-1m) (Table 4-4). Indeed, 8 of the 11 predicted inhibitors which were also 

hit the Hopyo-1 were found to be moderate to potent CYP1A2 inhibitors in our in vitro studies. 

There were other three weak inhibitors of herbal compounds (alloin, hyperoside and icariin) hit 

by the Hopyo-1 but scored with high values of binding energy (-5.64, -6.10 and +50.81 

kcal/mol, respectively). In fact, these three compounds were weak to moderate inhibitors of 

CYP1A2 with IC50 of 66.00, 14.46 and 43.00 μM, respectively.  

 

Our bench work identified 14 of the 56 herbal compounds as inhibitors in vitro and 13 of the 

14 potential inhibitors (92.9%) were successfully predicted by pharmacophore model in 

combination with the data from docking results. Only cordycepin, as an exception, was not 

included in the correct prediction list because it failed to form proper conformation to map the 

Hopyo-1. However, cordycepin had a low estimated binding energy and indeed it was a 

moderate inhibitor of CYP1A2 in vitro. 

 

4.3.5 Ligplot study for herb-CYP1A2 interaction 

Using the Ligplot program, we further performed analysis of ligand-enzyme binding studies 

with the 19 herbal compounds showing a low binding energy (see Table 4-5). We counted the 

C-C pair number interacting between each of the 19 compounds and the 6 essential residues of 

CYP1A2 (Phe226, Ala317, Gly316, Phe125, Thr124 and Hem900). Rutaecarpine and 

quercitrin had the most and same C-C pairs (42) with the 6 residues, followed by 

andrographolide (40), dehydroandrographolide (40), baicalin (36), polydatin (36), tanshinone 

IIA sulfonate sodium (36), tanshinone I (31), oxymatrine (30), sophoridine (29), 

cryptotanshinone (28), osthole (26), amygdalin (25), tanshinone IIA (25), matrine (24), 

cordycepin (21), baicalein (15), quercetin (15) and scopoletin (12) (Table 4-5).  

 

Since molecules with Mr >310 Dal are often complicated with steric and electrochemical 

characteristics that make the compound difficult to enter the active site of CYP1A2, we 

analysed the impact of molecular weight on the atom-atom pairing. There are 7 of the 19 
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molecules with Mr >310 Dal, i.e. alloin, baicalin, hyperoside, icariin, quercitrin, triptolide and 

tanshinone IIA sulfonate sodium. It was found that the 7 relatively large molecules had more 

C-C pairs than other 13 ones with Mr < 310, except rutaecarpine. However, only 3 of the 7 

compounds had shown weak to moderate inhibition on CYP1A2 in our in vitro study, i.e. 

tanshinone IIA sulfonate sodium (IC50, 7.1 μM), quercitrin (IC50, 33.8 μM) and hyperoside 

(IC50, 14.5 μM). Among the relatively small 13 compounds, the order of C-C pair numbers 

were rutaecarpine > tanshinone I > oxymatrine > sophoridine > cryptotanshinone > osthole > 

amygdalin > tanshinone IIA > matrine > cordycepin > baicalein > quercetin > scopoletin 

(Table 4-5). Among these 13 compounds, seven had shown moderate to potent inhibitory effect 

on CYP1A2 in our in vitro results, in an order of inhibitory potency as follow: tanshinone I > 

tanshinone IIA > cryptotanshinone > baicalein > osthole > quercetin > cordycepin. Table 4-6 

and Figure 4-8 show the details of C-C interactions between tanshinone I and CYP1A2. The 

inhibitory potency of these smaller compounds was higher than those with Mr > 310 Dal 

(Figure 2-2).  

 

It was worthy to note that rutaecarpine, andrographolide and scopoletin produced fluorescence 

and thus interfered with the determination for CYP1A2 activity. However, rutaecarpine had 

been reported to have potent inhibition on CYP1A2 with IC50 of 22 nM by other group (Don et 

al., 2003) and had have the most C-C pair number in our Ligplot analysis. The remaining 

compounds, amygdalin, dehydroandrographolide, polydatin, matrine, oxymatrine and 

sophoridine, did not hit by Hopyo-1 in pharmacophore analysis and also did not exhibit any 

inhibitory effect on CYP1A2 in our in vitro study, although these compounds had hydrophobic 

interaction with the functionally essential residues in the active site of CYP1A2 with a low 

binding energy.  

 

4.4 Conclusions 

These results indicate that hydrophobic contact of ligand and certain residues in the active site 

of CYP1A2 are important for substrate-CYP1A2 and inhibitor-CYP1A2 interactions, which 

may partially explain why most CYP1A2 substrates and inhibitors are small, planar with 

aromatic ring and hydrophobic molecules. The common features of these ligands are of one to 

two hydrophobic regions, an aromatic ring and a hydrogen bond acceptor. Phe226, Ala317, 

Gly316, Phe125, Thr124 and Hem900 were identified as the most important residues to 

influence inhibitory potency of CYP1A2 inhibitors. Furthermore, three essential residues (Asp, 

Ala and Thr) standing side by side in helix I immediately above the heme were identified as 
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conservative residues in the active sites of CYP1A2, which are also found in CYP2C9 and 

2D6.  

 

Using a combined in silico approach of estimating binding energy, pharmacophore modelling 

and hydrophobic atom-atom interaction analysis between the ligand and the 6 functionally 

essential residues in the active site of CYP1A2, it is likely to screen potential inhibitors for 

CYP1A2 from herbal sources and synthetic compound library. The data from the in silico 

screening can also be used to predict relative inhibitory potency of potential CYP1A2 

inhibitors.  
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Table 4-1.  Known CYP1A2 substrates and the data relevant to metabolic pathways catalyzed by CYP1A2 

and conformations in the active site of CYP1A2. 

Number Substrate 
Total 
number of 
metabolite 

Total number of 
conformer based 
on known 
metabolic 
pathway 

Total 
number 
of posea 

Distance of 
reactive 
atom to Fe 
(X, Å) 

Residue as 
hydrogen 
bond donor 

Residue as 
hydrogen 
bond acceptor

1 Acetaminophen 1 0 4 ND   
2 Amitriptyline  1 1 2 4.34   
3 Caffeine  1 1 2 4.34   
4 Clomipramine  1 1 3 3.36   
5 Clozapine  1 0 1 ND   
6 Cyclobenzaprine  1 1 3 3.29   
7 Estradiol  1 0 2 ND   
8 Fluvoxamine   1 1 7 3.94   
9 Haloperidol   1 1 5 5.42   
10 Imipramine  2 1 2 5.02   
11 Mexiletine  3 0 3 ND   
12 Naproxen 1 1 3 ND Ala317  
13 Olanzapine  3 0 1 ND   
14 Ondansetron  4 1 2 4.94  Asn257 
15 Phenacetin  1 1 2 4.00  Asn312 
16 Propranolol  2 1 5 4.1 Thr124  
17 Riluzole   1 0 3 ND   
18 Ropivacaine  2 1 2 4.00   
19 Tacrine 4 1 1 5.27  Asp320 
20 Theophylline  2 0 1 ND   
21 Tizanidine 1 1 4 6.66  Thr124 
22 Verapamil   1 1 7 7.20 Thr118  
23 Warfarin  3 1 2 4.46 Thr124  
24 Zileuton   1 1 3 4.86 Ala317  

25 Zolmitriptan 1 1 7 3.35  Asn312 
Asp320 

Total 25 41 18 77  5 6 

Mean ± 
SD - 1.64 ± 0.99 0.72 ± 0.46 3.08 ± 

1.85 

4.62 ± 1.09  
(range: 3.29 
to 6.66) 

- - 

aTotal pose number refers to docking generated conformation number. ND = Not determined. 
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Table 4-2.  The total amino acid residues and C-C pairs involved in the binding of known substrates (n = 18) 

to the active site of CYP1A2 as analyzed by Ligplot. 

Number Residue Sum of number of 
interaction atom pairs  

(n = 18) 

Number of 
substrates 
involved 

Average number of 
C-C pairs per 

substrate 

Groupa

1 Phe226 173 18 9.6 1 
2 Ala317 94 18 5.2 2 
3 Hem900 91 17 5.4 2 
4 Gly316 71 16 4.4 2 
5 Phe125 59 16 3.7 2 
6 Thr124 55 15 3.7 2 
7 Phe260 52 12 4.3 2 
8 Asp313 34 12 2.8 3 
9 Asp320 31 10 3.1 3 

10 Leu497 27 14 1.9 3 
11 Phe256 24 8 3.0 3 
12 Ile386  22 14 1.6 3 
13 Thr223 19 7 2.7 4 
14 Thr118 18 10 1.8 4 
15 Thr321 17 12 1.4 4 
16 Ser122 14 9 1.6 4 
17 Asn312 12 6 2.0 4 
18 Leu382 8 6 1.3 4 
19 Thr498 8 7 1.1 4 
20 Ile117  7 6 1.2 4 
21 Val227 7 6 1.2 4 

Mean ± 
SD 

- - - 3.0 ± 2.0 - 

aGrouping was based on the number of interaction atom pairs. 
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Table 4-3. Ligand-pharmacophore (Hopyo-1 & Hopyo-1m) mapping results for known substrates and 

inhibitors of CYP1A2. The mapping extent was determined by the Fit value out of 4 features. 

Compounds Fit value 
(Hopyo-1) 

Fit value 
(Hopyo-1m) 

LogP Mr (Dal) 

CYP1A2 substrates (13/25) (17/25)   
Caffeine NM 1.153 -0.131 194.191 
Estradiol 1.279 1.971 4.131 272.382 
Fluvoxamine  2.909 2.742 3.113 318.335 
Haloperidol 3.873 2.995 3.014 375.864 
Naproxen  1.983 1.996 2.998 230.259 
Olanzapine 2.950 2.651 1.507 312.432 
Ondansetron  3.934 2.949 2.074 293.363 
Phenacetin NM 1.861 1.626 179.216 
Propranolol  0.109 0.683 3.097 259.343 
Riluzole 0.400 1.908 2.843 234.198 
Ropivacaine  2.994 2.863 3.105 274.401 
Tacrine NM 1.121 3.316 198.264 
Tizanidine  3.093 2.793 0.653 253.711 
Verapamil  3.607 2.884 3.899 454.602 
Warfarin  3.195 2.868 3.417 308.328 
Zileuton 2.337 2.079 3.74 236.290 
Zolmitriptan NM 1.819 1.644 287.357 
Mean ± SD 2.51 ± 1.24 2.20 ± 0.73 2.591 ± 1.179 275.443 ± 68.360 
CYP1A2 inhibitors  (8/9) (9/9)   
Amiodarone 3.824 2.994 8.891 645.312 
Cimetidine 3.434 2.96 0.19 252.339 
Ciprofloxacin 2.412 2.387 0.654 331.342 
Enoxacin 2.770 2.583 0.552 320.319 
Furafylline 3.491 2.839 -0.244 260.249 
Methoxsalen 1.840 1.545 1.93 216.19 
Mibefradil 3.262 2.828 6.294 495.629 
Propafenone 3.455 2.991 3.934 341.444 
Rofecoxib NM 2.472 1.342 314.356 
Mean ± SD 3.061 ± 0.665 2.622 ± 0.463 2.616 ± 3.141 353.020 ± 135.280
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Table 4-4. Ligand-pharmacophore (Hopyo-1 and Hopyo-1m) mapping results for herbal compounds tested in 

this study. The mapping extent was determined by the Fit value out of 4 features for Hypyo-1 and 3 for 

Hypro-1m, respectively. 

Herb compound (21/56) Fit value (Hopyo-1) Fit value (Hopyo-1m) IC50 (μM) 
Alloin 2.869 2.767 66 
Arctiin  3.691 2.931 ND 
Baicalein NM 2.999 1.22 
Baicalin  3.078 3.000 70.03 
Cryptotanshinone  2.876 2.675 0.91 
Evodin  2.467 2.392 ND 
Ferulic Acid  0.126 1.424 ND 
Forsythin  3.823 2.929 ND 
Hyperoside NM 2.999 14.46 
Icariin  3.490 2.999 42.998 
Liquiritin 2.913 2.999 ND 
Osthole 3.179 2.989 1.49 
Paclitaxol 3.228 2.707 ND 
Polydatin NM 2.848 ND 
Puerarin  3.319 2.888 ND 
Quercetin NM 2.998 3.97 
Quercitrin  3.127 3.000 33.76 
Rutaecarpine  2.765 2.880 ND 
Salvianolic acid B  3.413 2.929 ND 
Schisandrin A  3.411 2.717 ND 
Schisandrin B-γ 3.025 2.499 ND 
Scopolein NM 1.455 ND 
Silybin 3.279 2.996 ND 
Tanshinone I 3.719 2.979 0.027 
Tanshinone IIA 3.085 2.986 0.187 
Tanshinone IIA sulfonate 3.157 2.988 7.077 
Mean ± SD 3.05 ± 0.75 2.77 ± 0.42 - 

ND = Not determined due to lack of inhibitory effect at the highest concentrations tested or interfering 
fluorescence. 
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Table 4-5.  The results for tested herbal compounds: IC50, fit value for pharmacophore (Hopyo-1) mapping, 

free binding energy for the conformations in the active site of CYP1A2, C-C pairs of the first and second pose 

for each compound and CYP1A2 interaction. The first half table list the herbal compounds that the free 

energy of binding lower than -6.60 kcal/mol; the second half table list the herbal compounds that the free 

energy of binding higher than -6.60 kcal/mol.  

Test herbal compound Mr (Dal) IC50 
(μM)

Total number of 
posea 

Hopyo-1
Fit 

value 

Binding energyb 
(kcal/mol) 

C-C 
pairsc 

Amygdalin 457.42 ND 5 NM -7.98 25 
Andrographolide 350.46 ND 2 NM -8.07 40 
Baicalein 270.23 1.22 2 2.999* -9.06 15 
Baicalin 446.36 70.03 4 3.078 -6.73 36 
Cordycepin 251.24 6.69 4 Nm -6.76 21 
Cryptotanshinone 296.35 0.91 1 2.876 -10.89 28 
Dehydroandrographolide 332.42 ND 2 NM -9.53 40 
Matrine 248.37 ND 1 NM -8.05 24 
Osthole 244.28 1.49 2 3.179 -8.28 26 
Oxymatrine 264.36 ND 9 Nm -8.28 30 
Polydatin 390.00 ND 5 2.848* -7.81 36 
Quercetin 302.24 3.97 2 2.998* -8.67 15 
Quercitrin 448.39 33.76 2 3.127 -8.24 42 
Rutaecarpine 287.31 ND 1 2.765 -10.39 42 
Scopoletin 192.16 ND 2 1.455* -6.80 12 
Sophoridine 248.37 ND 1 NM -8.86 29 
Tanshinone I 276.28 0.027 1 3.719 -10.82 31 
Tanshinone IIA 294.33 0.187 1 3.085 -11.09 25 
Tanshinone IIA Sulfonate 396.00 7.077 2 3.157 -10.72 36 
Mean ± SD 315.61 ± 

78.13 
 2.58 ± 2.04  -8.79 ± 1.43 29.11 ± 

9.26 
18β-Glycyrrhetinic acid 2 470.70 ND 1 NM +12.34  
Alloin 418.39 66 5 2.869 -5.64  
Arctiin  534.54 ND 7 3.691 +6.03  
AsperosaponinVI 929.10 ND 10 NM +530.35  
Astragaloside  784.00 ND 6 NM +223.59  
Bilobalide  326.30 ND 2 NM -4.42  
Borneol  154.20 ND 2 NM -5.92  
Canthridin 196.21 ND 2 NM -6.27  
Sodium Danshensu 185.13 ND 7 NM -5.87  
Evodin  470.50 ND 3 2.467 +20.55  
Ferulic Acid  194.18 ND 2 0.126 -6.20  
Forsythin  534.54 ND 6 3.823 +31.25  
Gallic acid 170.12 ND 2 NM -5.21  
Gastrodin  286.27 ND 2 NM -6.51  
Ginkgolide A  408.41 ND 1 NM -0.21  
Ginkgolide B  424.41 ND 2 NM +9.50  
Ginkgolide C  440.41 ND 1 NM +11.13  
Ginsenoside Rg3 785.03 ND 8 NM +473.18  
Glycyrrhetinic acid  839.99 ND 1 NM +19.42  
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Hyperoside  464.37 14.46 4 2.999* -6.10  
Icariin  676.65 42.998 5 3.490 +50.81  
Liquiritin 418.39 ND 6 2.913 -1.42  
Paclitaxol 853.92 ND 4 3.228 +415.88  
Protocatechuic Acid 154.12 ND 2 NM -5.59  
Protocatechuic aldehyde 138.12 ND 2 NM -5.24  
Puerarin  416.37 ND 5 3.319 -4.12  
Saikosaponin A  780.96 ND 6 NM +295.57  
Saikosaponin D  780.96 ND 3 NM +284.80  
Salvianolic acid B  718.60 ND 10 3.413 +130.71  
Schisandrin A  432.50 ND 1 3.411 -3.16  
γ-Schisandrin 400.45 ND 2 3.025 -4.25  
Silybin 482.43 ND 5 3.279 +22.48  
Stachydrine  179.64 ND 2 NM -4.41  
Tetramethylpyrazine  136.20 ND 1 NM -5.27  
Trigonelline  137.13 ND 2 NM -4.58  
Triptolide  360.39 98.22 1 NM -6.48  
Ursolic acid  456.68 ND 1 NM +13.81  
Mean ± SD 447.18 ± 

242.81 
- 3.58 ± 2.59 - 66.34 ± 144.99 

- 
aDocking generated conformation number. 
bEstimated free energy of binding for the optimized pose. 
cThe hydrophobic interaction between herbal compounds with their optimized poses and the 6 essential 
residues of the CYP1A2 active site. 
*The mapping extent was determined by the Fit value out of 3 for Hypro-1m, instead of 4 features for 
Hypyo-1. 
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Table 4-6.  Hydrophobic interaction between tanshinone I and the residues in the active site of CYP1A2. 

Residue Atom (from residue) Atom (from ligand) Distance (Å) 
Ala317  C (B) C21 3.59 
Ala317  C (A) C21 3.76 
Ile386  C (D1) C20 3.70 

Ala317  C (B) C20 3.75 
Thr124  C (G2) C20 3.43 

Hem900  C (4D) C19 3.65 
Hem900  C (HA) C19 3.75 

Ile386  C (D1) C19 3.27 
Thr124  C (G2) C19 3.26 

Hem900  C (4D) C18 3.60 
Hem900  C (2A) C18 3.82 
Hem900  C (1A) C18 3.31 
Hem900  C (HA) C18 3.46 

Ile386  C (D1) C18 3.81 
Hem900  C (4A) C17 3.63 
Hem900  C (HB) C17 3.58 
Leu382  C (D2) C17 3.20 
Thr321  C (G2) C17 3.21 
Leu497  C (D2) C15 3.85 
Thr498  C (G2) C14 3.66 
Leu497  C (D2) C14 3.81 
Thr321  C (G2) C14 3.88 
Asp320  C (G) C13 3.87 
Asp320  C (B) C13 3.77 
Ala317  C (A) C12 3.85 
Ala317  C (B) C11 3.84 
Ala317  C (A) C11 3.49 
Ala317  C (A) C9 3.71 
Gly316  C C9 3.70 
Gly316  C C7 3.51 
Gly316  C (A) C7 3.56 
Phe226  C (E2) C7 3.75 
Gly316  C C6 3.53 
Gly316  C (A) C6 3.76 
Phe226  C (E2) C6 3.66 
Phe226  C (D2) C6 3.64 
Asp320  C (B) C5 3.87 
Gly316  C C5 3.79 
Phe226  C (E2) C5 3.84 
Phe226  C (D2) C5 3.66 
Asp320  C (B) C3 3.84 
Phe226  C (D2) C3 3.78 
Thr223  C (G2) C3 3.58 
Thr223  C (B) C3 3.48 
Phe226  C (D2) C2 3.72 
Phe226  C (G) C2 3.77 
Phe260  C (E1) C1 3.55 
Phe260  C (D1) C1 3.79 
Phe256  C (Z) C1 3.35 
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Phe256  C(E2) C1 3.20 
Mean ± SD  - - 3.64 ± 0.20 

The alphabet letter in the brackets of column 2 is the position of the C-atom of the amino acid residue.
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Figure 4-1. Chemical structures of fluvoxamine, galangin, miconazole, α-naphthoflavone (used as initial 

template), and rutaecarpine which are all CYP1A2 inhibitors. These compounds were used as the training set. 
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 Figure 4-2.  Known CYP1A2 substrates and their structures relevant to metabolic pathways and conformations in the active site of CYP1A2. 

Amitriptyline X =4.34 Å 

 

Cyclobenzaprine X =3.29 Å 

  

Clomipramine X =3.36 Å 

 

Imipramine X= 5.02 Å 

  

Caffeine X =4.34 Å 

 

Fluvoxamine X =3.94 Å 
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Haloperidol X= 5.42 Å 

 

Naproxen X=4.73 Å 

 

 

Ondansetron X= 4.94 Å 

 

Phenacetin X= 4.00 Å 

 

 

Propranolol X= 4.10 Å 

 

Ropivacaine X= 4.00 Å 
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Tacrine X= 5.27 Å 

 

Tizanidine X= 6.66 Å 

 
 

Verapamil X= 7.20 Å 

 

R-warfarin X =4.46 Å 

 
 

Zileuton X =4.86 Å 

 

Zolmitriptan X =3.35 Å 
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Figure 4-3. Chemical structures of 25 substrates of CYP1A2. 
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Figure 4-4.  The active site of CYP1A2 and the key residues responsible for substrate binding. 
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Figure 4-5. The three conserved residues (Asp, Gly/Ser, Ala and Thr) in the active sites of CYP1A2, 2C9, 

2C19 and 2D6. 

Active site of CYP1A2 Active site of CYP2C9 

Active site of CYP2C19 Active site of CYP2D6 
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Figure 4-6.  Pharmacophore models generated by five potent inhibitors of CYP1A2 with the HipHop module 

in Catalyst. Hopyo-1: the intact model with all the four features (two distinct hydrophobic areas, one aromatic 

ring and one HBA); Hopyo-1m: a model modified by excluding a hydrophobic area.  

Hopyo-1 Hopyo-1m 
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Figure 4‐7. Chemical structures of 9 known CYP1A2 inhibitors, which were used as the validating set. 
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Figure 4-8.  The interaction between tanshinone I and the residues in the active site of CYP1A2. 
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CHAPTER 5  GENERAL DISCUSSION 

5.1 A Summary of Objectives Achieved 

In this project, we have hypothesized that the substrate and inhibitor specificity of individual 

human CYPs is based on the atom-atom interactions between the ligand and the residues in the 

active site of the particular CYP. In order to test the hypothesis, we first employed an HTP 

approach to examine the inhibitory effect of a number of herbal components on five important 

drug-metabolising CYPs (1A2, 2C9, 2C19, 2D3, and 3A4, Table 2-1). The tested herbal 

components include a variety of structurally distinct compounds such as triterpenoids of 

danshen (S. miltiorrhiza), flavonoids and their glycoside derivatives, saponine, other 

glucosides, lactones, alkaloids, and acids (Table 3-1). A small number of them are found to 

significantly inhibit human CYP1A2, 2C9, 2C19, 2D6 and 3A4 with differential potency, 

including tanshinone I, tanshinone IIA, cryptotanshinone, baicalein, quercetin, silybin, osthole 

and γ-schisandrin. Thereafter, we predicted potential herb-drug interactions of these 

compounds in vivo based on the in vitro inhibition data. Some predicting results are consistent 

with the data observed in clinical reports, but some predictions are wrong. Finally, we have 

conducted docking studies for a series of known CYP1A2 substrates and inhibitors and 

established pharmacophore models using a set of CYP1A2 inhibitors. We have identified 6 

residues in the active site of CYP1A2 being essential for ligand recognition through the 

analysis of docking results. Furthermore, we set up and validated the pharmacophore model for 

virtual screening of CYP1A2 inhibitors. In combination with docking results, the 

pharmacophore hypothesis and hydrophobic contact between ligand and the 6 essential 

residues in the active site of CYP1A2, it is likely to screen potential CYP1A2 inhibitors and to 

predict their inhibitory potency for the CYP1A2 enzyme. Our results provide insights into the 

mechanisms for ligand-CYP1A2 interactions and partial explanation for the substrate and 

inhibitor specificity of CYP1A2, an important enzyme that metabolizes a number of 

therapeutic drugs and activate a variety of procarcinogens. 

 

5.2 Herb-Drug and Herb-CYP Interactions 

Botanical products are increasingly becoming popular as alternative medicines, and an 

estimated one third of adults in the developed countries use alternative therapies, including 

herbs. Herbs are often administered in combination with therapeutic drugs, raising the potential 

of pharmacokinetic and/or pharmacodynamic herb-drug interactions. 
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There are an increased number of reports on herb-drug interactions, although many of them are 

from case reports and limited clinical observations. Thus, herb-drug interactions may be 

significantly under-reported and underestimated, and more frequently than drug-drug 

interactions, since most patients (up to 70%) do not reveal their herbal use to their allopathic 

practitioners (Eisenberg et al., 1993). 

 

Despite the widespread use of herbal medicines, documented herb-drug interactions are sparse 

and many of the observed herb-drug interactions are based on individual case and case series 

reports (Table 1-8). Although some herb-drug interactions may be beneficial by enhancing the 

efficacy and reducing the toxicities of the coadministered drugs, in many cases, the herb-drug 

interactions may increase drug toxicity, or even be fatal. Thus, more studies are needed to 

confirm and assess the clinical significance of these potential herb-drug interactions. 

 

A number of in vitro systems can be used to investigate herb-CYP interactions (e.g. liver 

microsomes, precision-cut liver slices, cultured hepatocytes, and cDNA-expressed enzymes). 

We have adopted an HTP approach to screen the inhibitory effect of a number of herbal 

compounds on five major drug-metabolizing CYP enzymes. From our in vitro study, it was 

found that all three lipophilic components of Danshen (e.g. tanshinone IIA) had significantly 

inhibition on both CYP1A2 and 2C9 activity, whereas the hydrophilic constituents of Danshen 

(e.g. danshensu) only showed poor to weak inhibitory effects on all the five CYP enzymes.  

 

We have found that the activities of CYP2C9, 2C19 and 3A4 were remarkably inhibited by 

γ-schisandrin, a major active compound present in S. chinensis (Wuweizi). Wuweizi is 

traditionally used to protect the liver and treatment of chronic liver diseases. The total CYP 

content and the metabolic rate of antipyrine were enhanced significantly in the liver 

microsomes obtained from the rats pretreated with Wuweizi (S. chinensis) (Zhu et al., 2000). 

Treatment with extracts of Wuweizi induced the expression of drug-metabolizing enzymes and 

transporters in reporter gene assays and in cultured human hepatocytes (Mu et al., 2006). The 

affected enzymes and transporters included CYP3A and 2C enzymes and the multidrug 

resistance-associated protein 2. In rats, the administration of Wuweizi enhanced the clearance 

of warfarin (Mu et al., 2006). These results demonstrate a potent inducing effect of Wuweizi in 

vivo and have important implications in drug-herb interactions. 
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We found that two free flavonoids (baicalein and quercetin) had significant inhibitory effects 

on CYP1A2, 2C9, 2C19 and 3A4, but their flavonoid glucosides (baicalin, hyperoside, 

quercitrin and icariin) only showed minor to moderate inhibitory effects on these enzymes. 

Flavonoids are a diverse group of phytochemicals that are produced by various plants including 

medicinal herbs (e.g. Silybum marianum, Alpinia officinarum, and H. perforatum) (Dixon and 

Steele, 1999). Flavonoids are structurally classified into eight groups: flavans, flavanones, 

isoflavanones, flavones, isoflavones, anthocyanidines, chalcones and flavonolignans. 

Flavonoids exhibit a wide range of biological activities arising mainly from their antioxidant 

properties and ability to modulate several enzymes or cell receptors.  These include 

anti-bacterial and antiviral activity, antiinflammatory, antiangionic, analgesic, antiallergic 

effects, hepatoprotective, cytostatic, apoptotic, estrogenic and antiestrogenic properties (Dwyer, 

1995; Gordon et al., 1995; Nagai et al., 1995; Galati et al., 2000; Rice-Evans, 2001). As the 

chemical structure and activities of some flavonoids are similar to those of naturally occurring 

estrogens, they are assigned as phytoestrogens. 

 

Flavonoids can also directly modulate the activities of various CYPs (Chan et al., 1998; Zhai et 

al., 1998; Doostdar et al., 2000; Henderson et al., 2000; Boek-Dohalska et al., 2001; Ho et al., 

2001; Piver et al., 2001; Hodek et al., 2002; Kent et al., 2002). Some naturally occurring 

flavonoids are potent inhibitors of CYP1A1, 1A2, 1B1, 3A4, 3A6, and CYP19. In contrast, 

some flavonoids enhanced/stimulated the activities of CYP3A4 and 1A2 (Tsyrlov et al., 1994; 

Ueng et al., 1997; Boek-Dohalska et al., 2001). The different effects of various flavonoids on 

CYP3A4 may be partly explained by the presence of distinct ligand binding sites on CYP3A4 

(Hosea et al., 2000). Structure-activity analysis indicated that flavonoids containing hydroxyl 

groups inhibited CYP activity, whereas those lacking hydroxyl groups stimulated the enzyme 

activity. For example, non-substituted 7,8-benzoflavone increased CYP3A4 activity (Ueng et 

al., 1997; Boek-Dohalska et al., 2001). In another study, quercetin inhibited the activity of aryl 

hydrocarbon hydroxylase (CYP1A), but enhanced the activity of cDNA-expressed human 

CYP1A2 (Tsyrlov et al., 1994). Likewise, 7,8-benzoflavone was an inhibitor of human 

CYP1A1 and 1A2, but an activator of CYP3A4 (Tassaneeyakul et al., 1993).  

 

Flavonoids of oral herbal products or food may be metabolized by microflora in the gut, where 

flavonoid glycosides are usually cleaved into free flavonoids (aglycones), and both glycosides 

and aglycones are absorbed (Hollman and Katan, 1997). The degradation of a flavonoid 

skeleton occurs mainly in the gut, resulting in degradation products including various phenolic 
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acids, some of which still exhibit a radical-scavenging activity. These metabolites can be 

absorbed and consequently found in urine (Hollman and Katan, 1997; Rice-Evans, 2001). 

Some flavonoids have been identified as substrates of CYPs (Silva et al., 1997a; Silva et al., 

1997b; Roberts-Kirchhoff et al., 1999; Doostdar et al., 2000; Rice-Evans, 2001). In the liver, 

flavonoids are hydroxylated and/or O-demethylated by various CYPs and then subjected to 

conjugation reactions (glucuronidation, sulfation, O-methylation) catalyzed by phase II 

enzymes. For example, genistein (5,7,4'-trihydroxyisoflavone) is converted into orobol 

(5,7,3',4'-tetrahydroxyisoflavone) by CYPs 1A1, 1A2, 1B1 and 2E1, while CYP 3A4 

metabolizes genistein into two other undefined metabolites (Roberts-Kirchhoff et al., 1999). 

 

Notably, many flavonoids have been reported to be potent inducers of various CYPs 

(Canivenc-Lavier et al., 1996; Ciolino et al., 1998b; Ciolino and Yeh, 1999; Hodek et al., 

2002). For example, galangin, quercetin, diosmin and its aglycone form, diosmetin, increased 

the expression of CYP1A1, while other flavonoids such as flavone, tangeretin and synthetic 

β-naphthoflavone stimulated the expression of CYP1A1/2 and CYP2B1/2 (Ciolino et al., 

1998b; Ciolino and Yeh, 1999). Flavanone appears to be specific inducer of CYP2B1/2 

(Canivenc-Lavier et al., 1996). However, other CYPs such as CYP2E1 and 3A4 which are 

responsible for the metabolism of a number of therapeutic drugs and the activation of many 

procarcinogens, appeared not to be inducible by flavonoids.  Similarly, some flavonoids such 

as genistein, equol or hop prenylflavanones and prenylchalcones did not modulate CYP 

(Helsby et al., 1997).  

 

An additional free flavonoid, silybin with a relatively large molecular mass (Mr 482.44), was 

found to significantly inhibit the activities of CYP2C9 and 3A4 in our study. Silibin, also 

known as silybinin, is the major active constituent of silymarin, the mixture of flavonolignans 

extracted from milk thistle (S. marianum). Extracts of milk thistle are well-known to prevent or 

reverse hepatotoxicity of reactive drug metabolites or naturally occurring toxins (Kroll et al., 

2007). Silibinin has hepatoprotective properties that protect liver cells against toxins (Vogel et 

al., 1984; Das and Vasudevan, 2006; Pradhan and Girish, 2006). Silibinin has also 

demonstrated anti-cancer effects against human prostate adenocarcinoma cells, 

estrogen-dependent and -independent human breast carcinoma cells, human ectocervical 

carcinoma cells, human colon cancer cells, and both small and nonsmall human lung 

carcinoma cells both in vitro and in mouse models (Raina et al., 2008; Singh et al., 2008a; 

Singh et al., 2008b; Singh et al., 2008c; Garcia-Maceira and Mateo, 2009; Singh et al., 2009). 
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Silybin inhibited CYP3A4, 2D6 and 2E1 in human liver microsomes (Zuber et al., 2002). 

Silybin and its β-glycosides did not induce the expression of CYP1A2 and 3A4 (Kosina et al., 

2005). Silybin did not affect the activity of P-gp (Patel et al., 2004). Co-administration of 

silymarin does not considerably change the extent of absorption or metabolism of nifedipine 

but may decrease the absorption rate in healthy subjects (Fuhr et al., 2007). This finding 

indicates that silymarin is not a potent CYP3A4 inhibitor in vivo. Another flavonoid, tangeretin, 

did not alter the CYP3A4 activity in human volunteers (Backman et al., 2000). It appears that 

silybin has limited effects on the pharmacokinetics of drugs in vivo (Wu et al., 2009). 

 

From our in vitro inhibition results, it can be expected that lipophilic and small herbal 

components show greater inhibition on human CYP1A2. Most known inhibitors of CYP1A2 

are lipophilic and small. Since CYP1A2 contains a small active site cavity, it can readily 

accommodate small molecules. 

 

Herbal compounds can inhibit human CYPs to variable extent in vitro, but many of them 

induce these enzymes through nuclear receptor-mediated pathways. Flavonoids modulated 

most CYPs, in particular CYP3A4, the predominant human hepatic and intestinal CYP, which 

is responsible for the metabolism of approximately 50% of therapeutic agents. Concomitant 

administration of herbs and drugs may alter the pharmacokinetics of the latter, which may 

result in an altered therapeutic effect or cause toxicity. 

 

5.3 Prediction of Pharmacokinetics Herb-Drug Interactions Based on in vitro Data  

Pharmacokinetic herb-drug interactions are caused due to altered absorption, metabolism, 

distribution and excretion of drugs. The underlying mechanisms for the altered drug 

concentrations by concomitant herbal medicines are always to be determined, but the induction 

or inhibition of hepatic and intestinal CYPs and/or drug transporters such as P-gp (Walter-Sack 

and Klotz, 1996; Wilkinson, 1997; Evans, 2000; Ioannides, 2002; Zhou et al., 2003c) have 

been suggested. Herbs are often given orally and thus herbal constituents may modulate 

gastrointestinal pH and motility. Due to high concentrations in the gut lumen, herbal 

constituents are likely to exert a major effect on intestinal enterocytes. These cells represent the 

first cell lining limiting entry of orally administered drugs into the body. Both P-gp and 

CYP3A4 are expressed at high levels in the villus tip of enterocytes, the primary site of 

absorption for orally administered drugs. The interplay of both intestinal P-gp and CYP3A4 

determines bioavailability of many drugs such as cyclosporine (Kolars et al., 1991), midazolam 
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(Paine et al., 1996), HIV protease inhibitors (Kim et al., 1998), verapamil (Fromm et al., 1996), 

digoxin (Greiner et al., 1999), and talinolol (Westphal et al., 2000). Thus, the modulation of 

intestinal P-gp and CYP3A represents an important mechanism for the enhanced or reduced 

bioavailability of coadministered drugs. 

 

Based on the in vitro results, we predicted the pharmacokinetic herb-drug interactions 

following pharmacokinetic principles, with a focus on purified constituents from S. chinensis 

(γ-schisandrin), S. miltiorrhiza (tanshinone I and II A), A. pubescens (osthole) and S. Mariani 

(silybin). We predicted that the S. chinensis (γ-schisandrin and schisandrin) might increase the 

AUC of drugs that are primarily metabolised by CYP2C9, 2C19 or 3A4 in humans (Table 3-2 

and Table 3-3). The oral bioavailability of tacrolimus (a CYP3A4 substrate) was increased in 

humans when S. sphenanthera extracts were co-administrated (Xin et al., 2007). Our prediction 

of S. miltiorrhiza causing pharmacokinetic drug interactions is also consistent with results from 

the clinical study (Chan, 2001) where S. miltiorrhiza products increased the prothrombin time 

of warfarin 2-fold and induced over-anticoagulation in patients. Thus, using in vitro inhibition 

data, it is possible to predict some pharmacokinetic herb-drug interactions with certain herbs 

and to provide a perspective view on how potential for the herb would interact with the drug 

coadministered. The prediction data can be used to avoid toxic or fatal herb-drug interactions. 

 

The clinical importance of herb-drug interactions depends on factors that are related to 

coadministered drugs (dose, dosing regimen, administration route, pharmacokinetic and 

therapeutic range), herbs (species, dose, dosing regimen, and administration route) and patients 

(genetic polymorphism, age, gender and pathological conditions)  (Dresser et al., 2000). 

Generally, a doubling or more in drug plasma concentration/AUC has the potential for 

enhanced adverse effects. However, less marked changes may still be clinically important for 

drugs with a steep concentration-response relationship or a narrow therapeutic index. In most 

cases, the extent of herb-drug interaction varies markedly among individuals, depending on 

interindividual differences in drug metabolizing enzymes (in particular CYP3A4) and 

transporters (e.g. P-gp), existing medical condition, age and other factors (Zhou et al., 2003b; 

Zhou et al., 2004e). Due to the difficulties in determining the specific constituents responsible 

for the inhibition of CYPs and/or P-gp, it appears to be difficult to predict herb-drug 

interactions (Zhou et al., 2004b). 
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5.4 Docking and Pharmacophore Modeling Studies for CYP1A2 

CYP1A2 accounts for ∼13% of the total CYP content of the human liver and is the major 

enzyme involved in the metabolism of a number of drugs including acetaminophen, caffeine, 

imipramine, propranolol, tacrine and theophylline as well as the metabolism of endogenous 

substances such as 17â-estradiol, melatonin and uroporphyrinogen III (Table 1-2). Many 

clinical drugs and some herbal medicines are known to inhibit the activity of CYP1A2, which 

may provide an explanation of some clinical drug interactions observed.  

 

To assess the molecular factors affecting the inhibitory effect of herbal compounds on 

CYP1A2, we have conducted ligand-based analysis in the basis of Catalyst/HipHop programs 

to evaluate the common features for structurally diverse inhibitors and to develop 

pharmacophore models. The corresponding results offered better understanding of the 

structural features that are important for selective binding in the CYP1A2 active site and also 

provide us with clues towards novel selective inhibitors of the CYP1A2. Meanwhile, we have 

employed AutoDock 4.0 programs for protein-based analysis to explore the binding mode and 

binding energy in the active site of substrates, inhibitors and tested herbal compounds of 

CYP1A2. The Ligplot program has also been used to analyse the docking results of the 

substrates, inhibitors and tested herbal compounds for CYP1A2 and for the ligand-protein 

interactions.  

 

5.4.1 Residues in CYP1A2 active site involved in substrate recognition 

In the 2HI4 structure in complex with ANF (Figure 1-4), the rather compact active site is 

closed without clear solvent or substrate access channels with a relatively small volume of the 

cavity of 375 Å3 (Sansen et al., 2007). Sansen et al. (2007) have found that the substrate 

binding cavity of CYP1A2 is narrow, which is lined by residues on helices F and I that define a 

relatively planar binding platform for the substrate on either side. Helix I bends as it crosses the 

heme prosthetic group and its residues form one flat side of the substrate binding cavity, 

resulting in a coplanarity through the Ala317 side chain, the Gly316-Ala317 peptide bond, and 

the Asp320-Thr321 peptide bond. On the other side of the cavity, the side chain of Phe226 of 

helix F forms a parallel substrate binding surface.  

 

The active site cavity of CYP1A2 is stabilized through a strong hydrogen-bonding interaction 

between the side chain of Thr223 on helix F and the side chain of Asp320 on helix I. Both 

Thr223 and Asp320 play a role in forming an extensive network of hydrogen-bonded water 
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molecules and side chains, including Tyr189, Val220, Thr498, and Lys500. It is clear that the 

narrow and flat active site cavity of CYP1A2 can fit well with planar compounds such as ANF 

and typical CYP1A2 substrates such as theophylline, caffeine, melatonin, tacrine, clozapine. 

ANF is a potent, competitive inhibitor of CYP1A2 with Ki values of 1-50 nM (Shimada et al., 

1998; Cho et al., 2003). ANF binds CYP1A2 in a single preferred orientation, which places the 

phenyl ring close to the heme iron and makes it an inhibitor rather than a substrate for CYP1A2. 

Similarly, CYP2A6 contains a narrow and flat active site cavity and this protein preferentially 

oxidizes small planar compounds such as nicotine, coumarin and naphthalene (Yano et al., 

2005). 

 

We have employed computerized programs to analyze the ligand-CYP1A2 interaction based 

on the crystal structure of CYP1A2 (PDB ID: 2HI4). Our substrate-CYP1A2 interaction study 

identified 12 residues at the active site of CYP1A2 as important residues for ligand binding. 

These residues define the substrate specificity of CYP1A2 as small, planar aromatic-ring 

containing and hydrophobic ligands. In particular, there are 6 residues in the active site of 

CYP1A2 identified as essential residues for substrate recognition, including Thr124, Phe125, 

Phe226, Gly316, Ala317, and Hem900. The 6 residues are also identified as the most important 

residues for the binding of CYP1A2 inhibitors and the extent of ligand and the 6 residue 

interaction determines the extent of inhibitory potency. This is consistent with the results from 

the study by Sansen et al. (2007).  

 

Interestingly, a recent study of CYP1A1 homology models based on the rabbit CYP2C5 and a 

composite of CYP2C5, 2C8, and 2C9 X-ray crystal structures has revealed several residues in 

its active site that are potentially involved in binding of the prototypic CYP1A1 substrate 

7-ethoxyresorufin (Lewis et al., 2007). These include Ser122, Phe123, Phe224, Ala317, 

Thr321, and Ile386. SDM studies have confirmed their importance in 7-ethoxyresorufin 

binding and turnover and aromatic interactions over hydrogen bonding in orientating 

7-ethoxyresrufin play a critical role in a catalytically favorable manner (Lewis et al., 2007). 

 

Our data demonstrated that Phe226 is the most significant residue in the hydrophobic active 

site of CYP1A2 for most substrate binding and this is supported by an SDM study (Parikh et 

al., 1999). The SDM study has indicated that three mutants at Phe226 position (F226I, F226T, 

and F226Y) of human CYP1A2 displayed very low kcat values for 7-ethoxyresorufin and 

phenacetin oxidations (Parikh et al., 1999).  
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Other two acidic residues (Asp313 and Asp320) at the active site of CYP1A2 are found to be 

essential for the hydrogen bond formation between a ligand and CYP1A2, and also determine 

the basic preference of CYP1A2 ligands. This is partially supported by an SDM study at the 

Asp320 position of human CYP1A2. One of the Asp320 mutants, D320A, was found to 

substantially decrease the activity of CYP1A2 (Parikh et al., 1999).  

 

Notably, we found that there are three conservative residues (Asp, Ala and Thr) located at the 

same positioning in the active sites of CYP1A2, 2C9 and 2D6. The conservation of the three 

residues implies the fundamental function of these three CYPs in substrate recognition and 

catalytic reactions. 

 

Human CYP1 enzymes have demonstrated remarkably overlapping substrate specificities for 

which the molecular planarity of substrates and inhibitors is a determining factor. The planar 

active site architecture in the CYP1A2 structure, which is well adapted for the oxidation of 

relatively large aromatic compounds, is likely to be conserved among the CYP1 enzymes. 

Relatively small changes in the enzyme active site residues can provide an explanation for 

CYP1A specificities for the O-dealkylation of alkoxyresorufins. Although wild-type CYP1A1 

shows a clear preference for 7-ethoxyresorufin versus 7-methoxyresorufin O-dealkylation 

compared to CYP1A2, the reciprocal CYP1A1 V382L and CYP1A2 L382V mutants display 

interchanged specificities (Liu et al., 2004). In the 2HI4 structure, the distance between Leu382 

Cδ and C'3 and C'4 of ANF is only 3.9 and 4.1 Å, respectively, which demonstrates the 

restricted architecture at the base of the CYP1A2 active site cavity and explains the preference 

of CYP1A2 for shorter alkoxyresorufins. The unique active site topology of CYP1A2 

demonstrates how CYP1 enzymes have evolved to catalyze efficiently polycyclic aromatic 

hydrocarbon oxidation and delineates structural properties that define a distinctive substrate 

binding site. 

 

5.4.2 Common features of CYP1A2 ligands 

Our pharmacophore modelling studies showed the common features of CYP1A2 inhibitors as 

one to two hydrophobic regions, an aromatic ring and a HBA. The model presents the common 

features of CYP1A2 inhibitors, which could hit 88.9% known inhibitors of CYP1A2 and 64% 

herbal inhibitors tested. Interestingly, this model could hit 56% known CYP1A2 substrates as 

well. It is worthy to note that excluding one hydrophobic feature of the model could improve 
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the hitting rate of known inhibitors to 100%; known CYP1A2 substrates to 68% and herbal 

inhibitors tested to 86%. The model is efficient to screen most inhibitors and a number of 

substrates of CYP1A2. Since the modified model (a hydrophobic region, an aromatic ring and 

a HBA) hit more substrates and inhibitors of CYP1A2, it is suggested to be fundamental 

common features for CYP1A2 ligands.  

 

Since both substrates and competitive inhibitors interact with the active side of CYP1A2, there 

must be some common features shared by substrates and inhibitors. Therefore, using five 

potent inhibitors, we developed pharmacophore Hopyo-1 that can effective distinguish 

CYP1A2 inhibitors from a set of herbal compounds in combination with docking analysis. This 

pharmacophore model may not be specific for certain category inhibitors with certain core 

structures but represent common features shared by most CYP1A2 inhibitors. The three to four 

identified common features (one to two hydrophobic regions, an aromatic ring and a hydrogen 

bond acceptor) may help us to conduct initial screening for searching work of novel CYP1A2 

inhibitor. The pharmacophore Hopyo-1 represents the fundamental 3D structure features of 

most CYP1A2 inhibitors that may appear different 2D structures. This model is useful for early 

stage of screening and additional docking study is necessary to exclude the molecules with 

high binding energy in the active site of CYP1A2. In combination with docking program, the 

pharmacophore model may serve for database searching to hit potential new lead inhibitors for 

CYP1A2.  

 

In addition to hydrophobic and hydrophilic interaction, rutaecarpine and tanshinone I have a 

planar polycyclic structure, which is critical element for inhibitory potency of CYP1A2 

inhibitors. A slight break of the polycyclic and planar structure shapely decreases the inhibitory 

extent. Tanshinone IIA and cryptotanshinone, two close analogues of tanshinone I, possess 

similar polycyclic with a slight different on steric structure leading their IC50 increasing to 187 

nM and 910 nM, respectively. Further analysis indicated that both Tanshinone IIA and 

cryptotanshinone have the same number of the polycyclic but loss a double bond at cycle D 

that breaks the planarity of the two molecules in 3D structures. Moreover, the methyl on cycle 

A of cryptotanshinone breaks the planar structure at another head of the polycyclic, which is a 

possible reason for the inhibitory potency of cryptotanshinone is lower than that of Tanshinone 

IIA.  

 



 

 170

These results can be supported by the residue constitute in the active site of CYP1A2. There 

are three Phe residues in the active site of CYP1A2. The Phe residues implicate that aromatic 

rings are involved heavily in ligand-CYP1A2 interactions. Further analysis showed that the 

Phe226 participates all researched interactions and most π−π stacking interplays while the 

Phe260 participates most of the two interactions. Additionally, the Phe125 locates at the pocket 

entry of the active side and is supposed to be responsible for ligand recognition. These results 

may partially interpret the favourite of CYP1A2 for aromatic polycyclic chemicals.  

 

In addition, the pharmacophore model derived from five potent inhibitors of CYP1A2 also 

support this finding. Aromatic ring is one of the four common features of the hypothesis 

(Hopyo 1) and another two hydrophobic areas may also be possible to hit aromatic rings. Only 

one hydrogen bond donor implicates most CYP1A2 ligands should be quite lipophilic 

molecule that has at least one aromatic ring. Most importantly, our lab data and literature 

reports fully support the finding. The aromatic polycyclic compounds, such as tanshinone I, 

tanshinone IIA and cryptotanshinone, show the most potent inhibition on CYP1A2. 

Alternatively, the finding gives rise of a good explanation for the characters of CYP1A2 

ligands with multiple aromatic rings.  

 

An additional analysis of oxymatrine, sophoridine and matrine further emphasizes the 

importation of the planar polycyclic structure for CYP1A2 inhibitory potency. The three 

compounds are analogues with four cycles linking together constructed merely by single bonds, 

which leads to an inflated instead of planar structure in space. Although three of them 

accommodated in the active site with low binding energy by docking and interacted with the 

six essential residues with a number of C-C pairs, none of them were hit by the pharmacophore 

and also detected any inhibitory effect on CYP1A2 in our in vitro study. 

  

The in silico approaches provide useful tools for understanding ligand-CYP interactions and 

for predicting possible drug interactions (Ekins and Wrighton, 2001). The resulting data based 

on in silico approaches may be of clinical and toxicological relevance. For example, it is 

possible to identify or design very potent CYP1A2 inhibitor which can be used to block 

procarcinogen bioactivation. 

 

In combination with our in vitro study and the Ligplot analysis of the interaction between 

herbal compounds and CYP1A2, we identified that the C-C number of hydrophobic 
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interactions between small ligand and the six residues are able to predict relatively inhibitory 

potency of potential inhibitors. Our screening results showed that rutaecarpine and tanshinone I 

(Mr < 310 Del) hold the most C-C pairs with the 6 residues of CYP1A2 and predicted to be the 

strongest herbal inhibitors, which is in accordance with our in vitro study and literature reports. 

The inhibitory effect on CYP1A2 of tanshinone I was detected as IC50 of 27 nM, while 

rutaecarpine was reported (Don et al., 2003) as a selective and potent inhibitor of CYP1A2 

with IC50 of 22 nM. Rutaecarpine, in docking result, showed an additional hydrogen bond and 

π−π stacking interactions with CYP1A2, which may let rutaecarpine bind in the active site 

tighter than other inhibitors that have only hydrophobic interactions, like tanshinone I.  

 

5.5 Limitations of the Present Project 

Although the present study has conducted in silico and in vitro experiments to investigate the 

herb and drug interaction, there are several limitations for this project. With the high 

throughput approach, we have assessed the inhibitory effects of the 56 herbal compounds on 

five principal CYP enzymes (CYP1A2, 2C9, 2C19, 2D6 and 3A4). However, the inhibitory 

effect on the remaining important CYPs (e.g. CYP2E1, 2B6, 2C8 and 2A6) is not determined. 

We can only screen a small number of natural compounds given that there are more than 

22,000 compounds isolated from natural medicinal products so far. We have only determined 

the IC50 values, rather than the Ki values. As such, we can only assume that the nature of 

inhibition was competitive and estimate the Ki values based on IC50 values when extrapolating 

the in vitro data to in vivo situations. Since only microsomes are used, the inducing effects of 

these herbal compounds on CYPs are not determined. Further studies are warranted to explore 

the potential effects of herbal components on drug-metabolizing enzymes and drug transporters 

using cultured human hepatocytes and precision-cut liver slices.  

 

Although the inhibition test is an HTP approach, the inhibition potency cannot be determined 

for a proportion of herbal components due to interfering fluorescence or very low levels of 

metabolite formation in the enzyme reaction systems. Thus, the reaction system should be 

optimized and alternative probes should be used to avoid signal interference. 

 

In our in silico study, the pharmacophore models built for CYP1A2 ligands are based merely 

on certain structural information without relevant activity values. Therefore, the models can 

only be applied for initial screening to identify potential CYP1A2 inhibitors but could not 

predict the inhibitory potency of the potential inhibitors. To make a relatively accurate 
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prediction, QSAR analysis is a proper approach to address this issue. Although the in silico 

results were validated by in vitro data, it is still necessary to explore these herb-drug 

interactions in vivo (both animal and human studies). In our ligand-CYP1A2 interaction studies, 

the dynamics is not considered. Molecular dynamic studies are needed to explore the 

ligand-enzyme interactions at molecular levels. 

 

In addition, the computer-based docking and pharmacophore studies are only conducted for 

CYP1A2. These models may fail as disappointing results can be linked to the key aspects of 

the model and modelling procedure, and many of these related to the original data and its 

interpretation (Stouch et al., 2003). Further work is ongoing to analyze the interactions of 

ligand with other important CYPs such as CYP2A6, 2C9, 2C19, 2D6 and 3A4. Furthermore, 

the essential amino acid residues identified for binding at the active site of CYP1A2 require 

further validation by SDM studies.  

 

Finally, we did not conduct any animal and human studies in this project. Although in vitro and 

in silico studies can provide useful information for CYPs and potential herb-CYP interactions, 

animal studies can offer valuable data on potential inducing and inhibitory effect of herbs on 

important CYPs, although caution is often needed when extrapolating the data from animal 

studies to humans due to marked interspecies variations. For any potential herb-drug 

interactions, well-designed clinical studies with reasonable sample size are certainly required 

to confirm the interaction, but these studies are always time-consuming and expensive.   

 

5.6 Conclusions and Future Directions 

Evidence from in vitro and in vivo studies has indicated that the constituents of herbal 

preparations interact with various CYP enzymes extensively, either as substrates, inhibitors 

and/or inducers, and it is apparent that the modulation of CYPs by herbs is complex, depending 

on the type of source of herb, their administration dose, regimen and route, the target organ and 

the species. These interactions will not be confined to the liver, but may also occur in other 

tissues where the CYPs are considerably expressed, in particular in the gastrointestinal site, as 

medicinal herbs are most often given orally. In addition, the multiple ingredients in herbs may 

modify the intestinal pH and motility, and inhibit and/or induce intestinal drug transporters 

such as P-gp, and thus change the rate and extent of concomitant drug absorption.  
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High throughput screening assays may represent a useful strategy for the study of herb-CYP 

interactions. They are capable of handling the great number of herbal constituents (e.g. a single 

herb usually contains dozens of constituents), and have the ability to provide in vitro inhibition 

data as a criterion for monitoring herb-drug metabolic interactions involving human drug 

metabolizing enzymes (in particular the CYPs). 

 

In silico approaches represent a useful tool for the study of herb-CYP interactions as 

demonstrated by our studies and studies by other researchers. Our established pharmacophore 

model could readily distinguish the most potent inhibitor if CYP1A2. Thus, this model could 

be used as a high throughput-screening tool to identify natural constituents of herbal 

preparations that inhibit CYP1A2, before undertaking in vitro determinations.  This will help 

avoid coadministration of drugs that are extensively metabolized by CYP1A2 with herbal 

products that showed potent inhibitory effects on this enzyme. 

 

Herb-CYP interactions may have important clinical and toxicological implications, and 

rigorous testing for possible drug interactions with widely used herbs is needed. It is perhaps 

time to consider herbs not as alternative medicine based on tradition and experience, but as 

phytotherapy, and an integrated part of modern medical treatment. Regulations on medicinal 

herbs would be desirable, but this would be a matter of considerable debate. However, safety 

(e.g. herb-drug interactions), quality and efficacy should be proved, based on an objective and 

appropriate standard as for modern medicines. 

 

However, herb-drug interactions are difficult to characterize and resolve, because of the lack of 

comprehensive federal regulations regarding safety, efficacy, and manufacturing standards for 

herbal medicines. It has been proposed that herbs are appropriately labelled to alert consumers 

to possible interactions with other concomitantly used drugs and to recommend a consultation 

with their general practitioners, pharmacists, and/or other medical carers. It is time to consider 

herbs not as alternative medicine based on tradition and experience, but as phytotherapy, an 

integrated part of medical treatment (Qiu, 2007). Regulations with regard to safety (e.g. 

herb-drug interactions), quality and efficacy of herbs would be highly desirable. Thus, 

monitoring of adverse events when herbal medicines are coadministered with drugs can be 

systematically carried out and potential herb-drug interactions be identified. This would enable 

more accurate product labelling and a body of useful information on potential herb-drug 

interactions to medical professionals. 
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