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Abstract 

Movements of the lower back are a contributing factor for developing low back pain. Various 

techniques have been developed and tested for the measurement of lower back movement 

but most have been too expensive, too cumbersome and have been unable to measure 

movements over a prolonged period. The thesis investigates the development, the reliability 

and the validity of a new device (the Back Strain Monitor) to be used to measure lower back 

movement during a day’s activity. 

After a review of potential devices, three transducers to measure back movement were 

selected for laboratory testing. The first transducer, the conductive silicone polymer, 

performed poorly displaying an electrical drift as the polymer underwent repeated 

stretching. The second, the inductive coil technique, performed well in the laboratory trials 

with a CV of 0.54% for maximum linear stretch measurements. However, issues relating to 

electrical drift and electrical lag led to large variation of the baseline readings (CV = 82%). 

The third transducer, the accelerometer method, performed very well during the laboratory 

trials displaying a CV of 0.12% for the range of movement. 

Two of the three sensors (the inductive coil and the accelerometer method) were developed 

to the level of stand-alone prototypes, capable of being tested within a clinical trial setting. 

The first clinical trial involved three testers applying the inductive coil prototype to 15 

subjects to assess its measurement properties. The inductive coil performed with moderate 

inter tester reliability (ICC (2,1) = 0.65). There was limited evidence of validity for the 

inductive coil technique as it showed poor to average correlation with the three comparator 

techniques (ICC (2,1) values from 0.47 to 0.75). 
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The second clinical trial applied the accelerometer method to 23 subjects with three testers. 

There was very good inter tester reliability (ICC (2,1) ≥ 0.86) and test re-test reliability (ICC 

(2,1) ≥ 0.89). The accelerometer method also displayed a high level of agreement (ICC 

(2,1) ≥ 0.88) with the main recognized comparator technique (the double inclinometer) 

providing evidence of criterion validity. 

The accelerometer method provided a reliable option for measuring movements of the lower 

back. There was evidence of criterion validity and a preliminary case study demonstrated 

that the movement data collected over 8 hours was able to alter back postures via 

biofeedback. The accelerometer method displays advantages over other methods in that 

there is the potential to measure three dimensional movement at a high sampling rate and 

for extended periods of time. The device may provide a new management tool to assist 

health practitioners in the treatment of low back pain. 
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Glossary of Terms 

B Tracker – is a device that measures the angular changes between the spine and the 

pelvis, via a triaxial goniometer (see Figure 3.2). A harness is worn around the thorax and 

another around the pelvis (level of the belt line), to anchor the device to the lower and upper 

measurement regions. 

Central Processing Unit (CPU) – a computer chip with the power to receive, analyse and 

control the workings and functions of the PCB. 

Controlled setting – for this study is defined as an indoor setting, where all subject 

movements are performed with feet in a stationary position and there are minimal external 

influences from the environment. (ie. minimal EMI, no wind, minimal noise, minimal 

electrical interference and minimal distractions). 

Dimples of Venus – dimples at either side of the lower aspect of the lumbar spine, at the 

level of the PSIS. These represent the vertebral level of the lumbo-sacral junction. 

Hysteresis – the term relates to when a tissue or substance is placed under physical or 

mechanical tension such that the tissue is stretched to beyond its limit and when the load or 

tension is released, the tissue may retract but not to its original length or state. 

Irritability – a physiotherapy and medical term that describes how sensitive or irritable a 

person’s condition is. For example, a highly irritable condition may be easily aggravated by 

one or two movements that would normally not cause pain but due to the level of irritability, 

the patient may experience a significant increase in pain from a relatively minor activity. 
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Lumbar Motion Monitor – This monitoring device for the lower back was developed by Dr. 

William Marras. The device is an exo-skeleton which is worn on the back, from the thoracic 

spine to the lumbar spine (see Figure 3.1). The device has been validated to give reliable 

measurements of lumbar spine movement in three dimensions. 

Mechanical Pain – From a physiotherapy perspective, the word mechanical relates to pain 

or symptoms that arise from a particular movement or action and follow a somewhat 

definable pattern. In contrast, Inflammatory pain and symptoms do not necessarily follow an 

action or movement and often do not follow a pattern that relates to activity. 

Non Specific Low Back Pain (NSLBP) – this phrase relates to LBP that can not be 

definitively linked to a known cause or event and in such cases it is difficult to achieve a 

specific diagnosis based on pathology. 

Patient Profile – a rating system that is being developed to score or rate individual 

characteristics of a person, based on the likelihood of those characteristics contributing to 

LBP. The score from multiple characteristics are combined via a risk algorithm to rate a 

person’s probability of developing LBP. This process has not been validated and is 

discussed only as a concept during this thesis. 

Posterior Superior Iliac Spine (PSIS) – a bony landmark at the base of the lumbar spine, 

used to identify the level of S1. The PSIS is a bony prominence on the most medial aspect 

of the ilium, close to the superior margin of the sacro iliac joint (see Figure 7.6, Line A) 

Specific Low Back Pain (SLBP) – relates to LBP with an identified and specific diagnosis. 

SLBP may be a disc prolapse noted on MRI scan or a spondylolithesis diagnosed via CT 

scan. SLBP is well defined and often has an objective measure supporting the diagnosis. 
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Chapter 1. Introduction 

1.1 Problem statement 

Lower back disorders (LBD) in occupational settings have been considered the most 

significant musculoskeletal disorder in both cost and prevalence (Fathallah, Marras et al. 

1998; Kerr 2001). Low back pain (LBP) affects 60-80% of people during their lifetime 

(Riihimaki 1991) and is the major cause of disability for people under the age of 45 years 

(Magnusson, Bishop et al. 1998). The cost of LBP in Australia is estimated to be $9.17 

billion dollars per year (Walker 2003) and $100-200 billion per year in the United States 

(Katz 2006), accounting for up to 50% of direct compensation costs (Kerr 2001). With such 

significant disability and costs associated with LBP, health practitioners have a difficult job 

managing this condition. There are limited treatment choices available for the management 

of LBP, with general practitioners relying on medication, advice and the occasional referral 

to other health practitioners. There appears to be no readily available tool to aid health 

practitioners or workers, in returning patients safely to the work force. 

The challenge in dealing with the causes of LBP is that they are multi-factorial and complex 

(Morlock, Bonin et al. 2000). There is evidence that postures and movements performed by 

the lumbar spine contribute to lower back injuries (Riihimaki 1991; Adams and Dolan 1995; 

Fathallah, Marras et al. 1998; Hoogendoorn, Bongers et al. 2000), as do the loads placed 

on the spine (Burton, Tillotson et al. 1996; Fathallah, Marras et al. 1998; Hoogendoorn, 

Bongers et al. 2000). It has been proposed that to measure these complex loads within a 

normal work setting is most important (Cholewicki, Crisco Iii et al. 1996). 

A measurement of the lower back movements with a high degree of reliably and validity 

presents itself as a very difficult task. The human spine moves in a three dimensional 

space, often combining movements from different planes. Different body types, significant 
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variations in normal ranges of movement for different people and small ranges of movement 

in some planes of movement provide additional challenges for any measuring instrument. 

There are numerous techniques available for measuring movements of the lower back. 

Many of these techniques are either very basic and lack validity or they are labour intensive 

and time consuming to perform. Other options are quite complex and cumbersome and they 

are not easy for the health practitioners to apply. 

Many studies present methods for estimation of loads and forces acting on the lower back 

but these studies are usually conducted in laboratory settings. Limited options are available 

to measure movement in real time, for prolonged periods and with the potential to estimate 

loads acting on the lumbar spine. 

1.2 Thesis aim 

The aim of this thesis is to first introduce a new device (Back Strain Monitor) for measuring 

and analyzing movements of the lower back and second to determine the reliability and 

validity of the device via clinical trials. 

1.3 Thesis contribution 

The thesis provides the following major contributions: 

1. A new device for measuring the three-dimensional movements of the lumbar spine 

called the Back Strain Monitor (BSM) is introduced. 

2. Development stages of the BSM are presented including laboratory experiments 

testing different concepts and options which lead to the final prototype of the device. 

3. During the development process of the BSM, a number of different options for 

measuring and analyzing lower back movement were examined and tested in 
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laboratory conditions. Two viable measurement options, the Inductive Coil technique 

and the Accelerometer method, were identified and tested in laboratory settings and 

clinical trials. 

4.  Analysis of the results provided by clinical trials indicates that the accelerometer 

method provided a high level of reliability and evidence of validity. 

1.4 Major conclusions 

Based on the results of laboratory test and clinical experiments, it was concluded that the 

accelerometer method represents a reliable and valid option as a method for measuring 

lower back movements. The accelerometer method showed a high degree of reliability in 

both a laboratory setting and within a controlled clinical setting. It can be concluded that the 

accelerometer method provides a better option for the measurement and analysis of lower 

back movements than other methods reviewed in this study. 

1.5 Thesis outline 

The thesis is organized in the following way: 

Chapter 2 discusses low back pain (LBP) and the complexities associated with diagnosing a 

specific type of LBP. Who is affected by LBP and how frequently does it occur? What is the 

financial impact of LBP on society and on industry and importantly, what are the risk factors 

associated with developing LBP? 

Chapter 3 discusses multiple techniques for capturing and measuring the lower back 

movement. The advantages and drawbacks of each method are presented. Following this, 

the management of LBP is discussed. The varied roles of the doctor, allied health 

practitioners, the patient, the government and the insurance companies is reviewed in the 

context of this challenging and costly condition. The current management of back pain is 
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varied from profession to profession, with a recent study suggesting that there is little 

consensus among ‘clinicians’ when identifying subgroups within the category of non-specific 

low back pain (NSLBP; (Kent and Keating 2005). 

A new concept of a back strain monitor (BSM) is introduced in Chapter 4. The development 

stages of the essential requirements of the BSM are described in detail. Seven different 

measurement techniques are evaluated and the three strongest candidates are identified 

and prototypes for each are produced. A conductive silicone transducer, an inductive coil 

sensor and a technique using accelerometers are tested within a laboratory setting. The 

review of the different methods considered for the movement sensor helps to understand 

the development process leading to the current version of the BSM device. 

Chapter 5 describes the construction and functionality of the current version of the BSM 

device. The focus of the chapter is on the accelerometers although the gyroscope, EMG 

sensors and the Recording Feedback Device (RFD) are also briefly described. Possible 

formats for the output data are presented. There is also a brief description of further 

developments of the BSM, which include the Patient Profile and the Numerical Algorithm 

that will process the sensor’s data and calculate an overall risk score for the low back pain. 

Chapter 6 describes the design of the experiments that tested the reliability and validity of 

the inductive coil technique for measuring lower back movement in a clinical setting. Three 

testers were involved in the trial that reviewed the inter-tester reliability of the inductive coil 

technique in conjunction with three well recognised methods for measuring lower back 

movement. Fifteen subjects wore the inductive coil and performed basic lumbar spine 

movements in a controlled setting. The results from the inductive coil measuring technique 

were compared to the results from the other three methods, to assess the validity of the 

inductive coil technique. 
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Chapter 7 describes the design of the trials that tested the reliability and validity of the 

Accelerometer method (AccM) for measuring lower back movement in a clinical setting. 

Three testers were involved in the trial that reviewed the inter-tester reliability (ITR) and the 

test re-test reliability (TRTR) of the accelerometer method in conjunction with two methods 

for measuring lower back movement. Twenty-three subjects wore the accelerometer 

method transducer and performed basic lumbar spine movements in a controlled setting. 

Twenty-two of the twenty-three subjects repeated the trial with one of the testers, five weeks 

later, to test the TRTR of the method. The results from the accelerometer method were 

compared to the results from the double inclinometer technique, to assess the validity of the 

accelerometer method. 

Chapter 8 provides an overview of the thesis. The extent of the LBP problem is summarized 

with a suggestion that current management for LBP is inadequate. The importance of 

posture and awareness of movement patterns is reinforced, as is how biofeedback may be 

able to guide patients on movement patterns to efficiently recover from LBP. The different 

transducer options for measuring lower back movement are briefly discussed with 

justification presented as to why two prototypes were developed to a clinical trial stage. The 

clinical trials for the inductive coil and the accelerometer method are reviewed and the 

results are used to plan for future development for the BSM concept. 

Appendix I contains a full list of risk factors for the low back pain identified during the 

literature review discussed in Chapter 2. Appendix II shows the full protocol for the inductive 

coil trial described in Chapter 6, and Appendix III contains full protocol for the 

Accelerometer trial described in Chapter 7. 
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Chapter 2. Epidemiology and risk factors for 
low back pain 

This chapter discusses low back pain (LBP). What is LPB and what are the 

complexities associated with diagnosing a specific type of LBP. Who does it affect, 

how frequently does it occur, what is the cost and what are the risk factors 

associated with developing LBP? 

2.1 Introduction 

Low back pain continues to be a common, costly and disabling condition. Low back pain 

(LBP) affects between 60% and 80% of the population during their lifetime (Riihimaki 1991; 

Magnusson, Bishop et al. 1998) and is the most frequent cause of activity limitation in the 

US and Australia for people under the age of 45 years (Bigos, Bowyer et al. 1994). Back 

pain occurs in every nationality, gender and age group. Twelve months post lower back 

injury, between 62% and 72% of patients still have back pain and 16% have not been able 

to return to work (Henschke, Maher et al. 2008; Kent and Keating 2008). The direct and 

indirect cost of low back pain in Australia in 2001 was AUD$9.17 billion (Walker 2003) and 

as high as USD$100–200 billion US p.a. in 2005 (Katz 2006). Once a lower back injury has 

occurred, the recurrence rate is 60% within the first 12 months (Kent and Keating 2008) 

whilst treatment costs have increased 131% in New South Wales over the past 10 years 

(Richards 2003). It has been suggested that LBP is so common within human cultures that 

we may not ever be able to prevent LBP (Frank, Brooker et al. 1996).The epidemiology of 

LBP covers a number of categories and will be discussed under the following headings: 

• What is LBP and what are the difficulties associated with diagnosing LBP? 

• What is the frequency and the duration of LBP? 

• What is the cost of LBP? 

• Who is affected by LBP? 

• What are the risk factors for low back pain? 
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An electronic search was conducted using the following databases: Proquest, Medline and 

CINAHL, up until August 2008. The search terms for articles related to the epidemiology of 

low back pain included Low Back Pain “OR” LBP “OR” Lumbar “AND” epidemiology “OR” 

cost “OR” incidence. More than 230 articles were found between the three databases with 

over half of these being peer reviewed articles. Priority was given to the more recent peer 

reviewed articles. 

2.2 The difficulty with diagnosing low back pain 

Low back pain is often non-specific in nature and it can be difficult to achieve an accurate 

diagnosis of the cause. Certainly there are many cases of acute disc prolapse causing 

neural compression that may require surgery. These cases are usually well diagnosed, with 

a definite intervention to reduce pressure on neural tissues. A fracture in the lower back 

region may also be well diagnosed and defined through a detailed subjective history and 

imaging via X-ray, computed tomography (CT) scan or magnetic resonance imaging (MRI). 

These cases, where a specific pathological diagnosis can be made, have been recently 

classified in the literature as specific low back pain (SLBP). Specific low back pain accounts 

for approximately 20% of LBP in primary care (Kent and Keating 2008). 

The remaining 80% of LBP falls within the category of non-specific low back pain (NSLBP) 

(Dillingham 1995; O'Sullivan 2000; Woolf and Pfleger 2003; Kent and Keating 2008). This 

type of LBP cannot be definitively linked to a known cause or event and in such cases it is 

difficult to achieve a specific diagnosis based on pathology. Studies have shown there is 

little correlation between medical imaging results and the level of pain experienced by a 

patient (Kent and Keating 2004; Ahmed and Modic 2007). For example there are often 

imaging findings in asymptomatic patients, reducing the confidence in imaging as a stand-

alone diagnostic tool (Kent and Keating 2004). Whilst imaging techniques have vastly 

improved in clarity and are often important in the SLBP cases, imaging is often of little 
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benefit in NSLBP (Woolf and Henshall 2000). It has been concluded that there is no 

physical benefit gained via an X-ray of the lumbar spine and there is only a slight 

psychological benefit (Woolf and Henshall 2000). 

The opinion of general practitioners is that X-rays of the lower back are of minor benefit and 

rarely helpful (Lovett 2003). The decision to prescribe an X-ray was often to satisfy an 

inquisitive patient more than provide a diagnosis for the LBP. This suggests that the patient 

is often seeking further information about their LBP and the imaging provides a form of 

visual feedback and comfort that there is no sinister pathology causing their LBP. 

Recent literature suggests that the patterns observed in the behaviour of patients 

experiencing pain may be more informative than diagnostic imaging in classifying people 

with LBP (Kent and Keating 2004). A journal paper from the same authors (Kent and 

Keating 2004) surveyed 200 clinicians from different health care professions 

(physiotherapy, chiropractic, general practice and osteopaths). Five patho-anatomical 

subgroups for LBP were defined. The five subgroups included facet joint syndrome, 

contained disc lesion, instability, sacroiliac joint pain and postural pain (Kent and Keating 

2005). These subgroups did not give a definitive diagnosis but indicated that there are 

subgroups of LBP sufferers who experience similar symptoms, pain patterns and movement 

disorders. For example, a patient suffering from a contained disc lesion may be aggravated 

by sitting for long periods or repeated bending forward (Maitland 1987; Carr 1989; Pynt, 

Higgs et al. 2001). This mechanical pain behaviour is defined by cause and effect, meaning 

that the patient’s symptoms are aggravated by specific movements or postures. 

The phrase ‘mechanical pain’ behaviour relates to pain or discomfort caused by the 

positions and postures adopted during activities of daily living (ADLs). Bogduk and Twomey 

defined mechanical LBP as the pathological conditions that involve only minor structural 
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abnormalities (Bogduk and Twomey 1987). Maitland et al. described functional movements 

of the spine that can demonstrate the disability or disorder that is contributing to LBP 

(Maitland, Brewerton et al. 1986). Mechanical pain has also been described as pain 

associated with movement (Lewis, Hewitt et al. 2005). If mechanical pain is associated with 

positions of the spine, measurement of the lower back movements are important for 

understanding LBP. The analysis of the movement patterns cannot only help to understand 

the causes and mechanisms of the LBP, but also allows the option of providing a warning, 

and corrective biofeedback information to the patient. 

The concept of performing certain movements to prevent LBP or assist in the recovery of 

LBP is not new, but few studies have shown significant effect. Prone extension exercises 

have been studied to assess whether that type of exercise has a preventative role for LBP 

(Larsen, Weidick et al. 2002). The 10 month study followed 249 military recruits in a 

prospective randomised controlled trial. The intervention group performed passive lumbar 

extension exercises on a daily basis whereas the control group had no intervention. The 

results showed significantly fewer recruits reported LBP in the prone extension group (33%) 

compared to the control group (51%). There were also fewer visits to the military doctor for 

the intervention group (9% versus 25%). 

A study by Magusson (2008) reviewed the efficacy of postural biofeedback in facilitating 

chronic LBP sufferers to improve their movement patterns and improve functional ability 

(Magnusson 2008). The study involved 47 subjects and compared normal physiotherapy 

treatment (as the control group) with an intervention group receiving postural biofeedback 

and physiotherapy. The biofeedback was provided in three forms (visual, auditory and 

report based) and aimed to facilitate movement patterns that had been avoided due to 

chronic learned pain behaviour. Fifteen-minute training sessions were performed twice a 

week over a 5-week intervention period. Outcome measures (visual analogue scale, short 
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form 36 and range of movement) were performed before and after the training session, 

6 weeks after the program and 6 months after the program. The paper reported good 

treatment effect for chronic LBP participants receiving postural biofeedback. 

In another paper (Snook, Webster et al. 1998), the effect of controlling lumbar spine flexion 

during the morning hours was assessed to determine whether there was an effect on 

chronic NSLBP. The 18-month random controlled trial (RCT) followed 85 subjects with 

persistent or recurring LBP. The intervention involved instruction on how to avoid early 

morning lumbar flexion whereas the control group were given sham exercises to perform. 

Significant reductions in pain, disability, impairment and medication usage were observed. 

The above three studies demonstrated that movement patterns have an effect on the 

development of temporary or ongoing LBP. The first study (Larsen, Weidick et al. 2002) 

looked at a preventative model aimed at reducing the onset of LBP, the second study 

(Magnusson 2008) used a facilitative model aimed at encouraging movements into 

positions that had been avoided, and the third study (Snook, Webster et al. 1998) used a 

restrictive based model aimed at avoiding certain postures associated with higher risk of 

LBP. All three studies showed an impact on LBP through adjusting movement parameters 

for the subjects. 

In general the effects of movement patterns on LBP are poorly understood. The difficulty of 

understanding is increased by the lack of measuring tools for lower back movements in real 

time and in real life settings. 

Possibly the emphasis in management of LBP should identify the movement disorders and 

pain provoking activities and guide the patient to optimise their recovery. This may be 

performed via facilitating movement patterns that have been avoided due to pain or by 



Epidemiology and risk factors for low back pain 

 

- 12 - 

protective biofeedback that avoids the more provocative positions which may increase the 

risk of developing LBP. In order to manage these complex decisions, we must first be able 

to reliably and validly measure and quantify movement patterns of the lumbar spine and 

record these over extended periods of time. 

Whether the pain is coming from a sprained iliolumbar ligament or disc lesion may be less 

relevant than guiding the patient to move into positions and postures that will increase their 

rate of recovery, optimise their potential for normal movement patterns and reduce the 

chance of recurrence. 

There is some consensus as to which movement patterns increase the risk of LBP (Marras 

et al. 1993; Hoogendoorn, Bongers et al. 2000; Mazloum et al. 2006; Bio et al. 2007) and 

these factors are explored later in this chapter. In order to manage LBP more effectively it 

may be more helpful to have less emphasis on diagnosis and more emphasis on learning 

optimal movement patterns, and to put steps in place to guide people to move within safe 

limits. 

In order to provide instantaneous postural biofeedback, we first need to measure 

movements accurately. Ideally this would be able to be done within a real life setting. 

Second, there needs to be professional acceptance as to which movement patterns are 

desirable and which are provocative for the different subgroups of NSLBP. Third, a protocol 

is needed to guide different workers in different industries as to what are safe limits of 

movement. This protocol has already partially been formed through the NIOSH lifting 

equation (Waters and Putz-Anderson 1998) and other such instruments used to guide 

workers. The issue with these strategies is that they are complex and poorly understood by 

the average worker and clinician. The implementation of these systems is expensive, time 

consuming and complex. 
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The aim of this thesis is to assess a device that may be capable of measuring movements 

of the lower back. If these measurements are shown to be reliable and valid, the device 

would be able to analyse the movement data in real time and provide biofeedback to the 

wearer as to which movement patterns are to be avoided or facilitated. The biofeedback 

decisions and feedback options are not within the scope of this thesis. The emphasis of this 

thesis is to develop a reliable and valid measuring tool for movements of the lower back. 

2.3 The frequency and duration of low back pain 

The frequency of LBP is most often reported using one of the following measures: a point 

prevalence percentage, LBP within a 12-month period or the lifetime frequency of LBP. At 

an international level, LBP has very similar occurrences across many developed countries. 

Low back pain is a prevalent condition observed in many countries. In the US it has been 

reported that 28% of the population have disabling LBP during their lifetime and 8% of the 

entire work force will be disabled by LBP in any given year (Manchikanti 2000). The yearly 

prevalence of LBP in the US is stated at between 15% and 20% whereas in Europe, the 

figure is 25–40% (van der Beek and Frings-Dresen 1998). In Sweden, the point prevalence 

for LBP is 15–30% of the population with the lifetime prevalence of between 60% and 70% 

(Ekman, Johnell et al. 2005). In Australia the point prevalence of LBP was estimated by 

Walker (2003) to be 25.5% (Walker 2003) with a 12-month prevalence of 67.6% and a 

lifetime prevalence of 79.2%. In the Netherlands the point prevalence of LBP is between 3% 

and 44% with a lifetime prevalence of 58-84% (Woolf and Pfleger 2003). Woolf and Pfleger 

also reported that a new episode of LBP is twice as likely if the patient has a history of LBP. 

From an international perspective, LBP continues to be a common and disabling condition 

having similar frequency distribution across different nations and time periods. 
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A significant proportion of LBP episodes are of short duration and resolve with minimal 

intervention. It is stated that 80–90% of LBP will resolve within six weeks (Manchikanti 

2000) and that 44.3% of people suffering from LBP will seek professional help (Walker, 

Muller et al. 2004). Whilst there is often a rapid improvement in lumbar spine symptoms for 

many patients, 12 months following the onset of LBP, 62% will still experience pain and 

16% of those patients initially off work due to LBP will continue to be off work (Kent and 

Keating 2005). Once LBP is experienced, chronic or persistent LBP has been reported as 

affecting 5-10% of people (Shekelle, Martin Markovich et al. 1995) whereas other authors 

suggest this figure is as high as 28% (Miedema, Chorus et al. 1998). In Australia, one in ten 

adults have experienced LBP to a level requiring time away from normal occupational duties 

and the mean time away from normal activities is suggested to be 1.6 months (Walker 

2003). In 13.4% of 3000 Australian subjects questioned, LBP lasted for 6 months and 

37.7% confirmed they had experienced LBP on most days over a two week period (Walker, 

Muller et al. 2004). 

Another approach to reviewing the duration of LBP is to assess the number of days of 

absence per patient per year. A 1992 report found that LBP resulted in nine days off work 

per patient per year in the US where as the problem was more significant in other countries. 

There were an average of 10 days per year in West Germany, 20 days per year in Canada, 

25 days in the Netherlands, 30 days in Great Britain and 40 days in Sweden (Nachemson 

1992). 

Although 80–90% of people with LBP have symptoms that resolve within 6 weeks, the high 

recurrence rate of LBP causes the real disability and cost for this condition. Unfortunately, 

symptoms often recur with acute flare ups affecting 20–44% of patients in the first 

12 months and up to 85% during their lifetime (Woolf and Pfleger 2003). Other authors 

suggest the 12-month recurrence rate to be as high as 60% (Kent and Keating 2005). The 
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recurrent episodes increase the chance of the lower back symptoms becoming chronic, not 

allowing the patient to return to their normal occupational and recreational activities 

(Manchikanti 2000). 

2.4 The cost of low back pain 

The total cost of LBP includes the direct costs and indirect costs. The direct costs are the 

diagnostic, treatment, medication or intervention costs associated with managing and 

treating LBP. The indirect costs are less tangible and more difficult to quantify. They include 

the cost of days off work, staff replacement, staff training and compensation payments. 

Low back pain is the most significant occupational health issue contributing to 20-30% of 

compensation claims and up to 50% of compensation costs (Kerr 2001). In the US the 

direct costs associated with LBP in 1990 were calculated to be $24.3 billion (Frymoyer and 

Cats-Baril 1991) whilst the total costs of LBP have been reported as high as $100–

200 billion (Katz 2006). In the Netherlands in 1991, the direct costs of LBP were estimated 

to be $367 million with the indirect costs being $4.6 billion (van Tulder, Koes et al. 1995) 

showing the total cost for LBP in the Netherlands as being close to $5 billion p.a. In 

Germany, the direct costs associated with LBP in 1994 were DM 10 billion and the indirect 

costs were DM 24 billion, equating to a total figure of DM 34 billion (Bolten, Kempel-Waibel 

et al. 1998). In the UK the direct costs associated with LBP were calculated to be 

GBP 1.6 billion with the indirect costs as high as GBP 10.7 billion (Maniadakis and Gray 

2000). The overall cost of LBP in Sweden is stated as being Euro 1.86 billion in 2001 with 

direct costs accounting for Euro 308 million and indirect costs Euro 1.55 billion (Ekman, 

Johnell et al. 2005). Other reports have suggested even higher figures for LBP in Sweden of 

Euro 3.2 billion Euro (SBU-Report 1991). 
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In Australia, LBP is reported to cost AUD 9.17 billion per year with AUD 1.02 billion related 

to direct costs and AUD 8.15 billion related to indirect costs (Walker 2003). The direct 

treatment costs associated with treating low back pain in Australia are presented in Table 

2.1. The statistics indicate AUD 835 million is spent on healthcare providers, whilst 

AUD 92 million is spent on public hospitals and AUD 85 million on private hospitals. There 

is AUD 67 million spent on imaging and AUD 0.5 million spent on pathology. There is an 

adjustment made for double counting of selected health providers, with the total direct costs 

being AUD 1.02 billion. 

Low back pain continues to pose a significant financial problem for many of the most 

technologically advanced countries in the world. The rate of lower back injury, the costs 

incurred and the recurrence rate are not well controlled. The rate of increase in lumbar 

spine fusions within the UK has risen 77% between 1996 and 2001. In the same five-year 

period, hip replacement and knee arthroscopy increased only 13-14% (Deyo, Nachemson 

et al. 2004). 

The Australian federal government has shown significant concern in regard to the 

increasing number of people on the disability support pension, mostly due to 

musculoskeletal back pain. The former Federal Treasurer Peter Costello recently said, “We 

have seen a fairly significant increase in people on disability pensions. We have now got 

around 700,000 people on disability support pension. And the most common cause is 

musculoskeletal pain, back pain. Now, it is hard to think that there are so many more 

disabled people with bad backs in our society today than there were say 10 years ago or 

20 years ago. But we have seen this real increase Ray, this very, very substantial increase 

in people that are disabled”  (Hadley 2005). 
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Table 2-1 Low back pain (LBP) management costs for individual healthcare providers in 

Australia, 2001 (Walker 2003) 

Cost Description or 

service 

Proportion with 

low back pain 

(%) 

Cost per visit 

(AUD) 

Total Cost of LBP 

(in AUD millions) 

Chiropractor 19.6 32.81 182.932 

Physiotherapist 13.4 36.90 131.512 

General Practitioner 22.4 28.75 117.602 

Masseur 14.8 30.00 109.350 

Prescription Drugs 13.3 10.00 66.285 

Medical Specialist 4.7 67.75 51.219 

Accupuncture 3.7 27.86 45.885 

Osteopathy 2.7 49.40 35.346 

Over the counter drugs 9.5 10.90 26.928 

Other Providers 3.2 30.00 15.390 

Psychologist 1.1 83.47 15,100 

Naturopath 2.6 43.20 14.580 

Occupational Therapist 0.7 49.80 14.118 

Social Worker 0.5 50.00 5.535 

Private Nursing Care 0.6 24.00 2.333 

Dietetics 0.4  47.40 1.343 

Total   835 

 

These costs and trends indicate that the current interventions for managing LBP are not 

effective enough. 
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2.5 Who is affected by low back pain? 

The incidence of LBP is partially age dependent, with the greatest injury occurrence 

between 35 and 45 years old for occupational related LBP (Manchikanti 2000; (VWA) 

2004)Figure 2.1). It has been postulated that this may be due to the fact that slightly 

degenerative discs within the lumbar spine are at the highest risk of prolapse in subjects 

aged between 40 and 50 years (Adams and Hutton 1982) but the site or region of the 

structure causing the LBP is not the focus of this thesis. 

Age v Lower Back Injury Claims. Victorian Workcover Authority, 1992-2002
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Figure 2.1 Age versus incidence for lumbar spine injuries (VWA 2004) 

In the Netherlands, the highest incidence of LBP is seen in patients between the ages of 25 

and 64 years (Woolf and Pfleger 2003) and in Australia the mean age for the onset of LBP 

is 28.4 years based on a questionnaire filled out by 3000 subjects (Walker, Muller et al. 

2004). 
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The industry or occupation in which a person works influences the development of LBP. 

Certain industries, such as nursing and steel fixing, have a high incidence of lower back 

injuries (Smedley, Egger et al. 1995; Kumar 2007). Table 2.2 shows the 18 different 

industry codes used by the National Occupational Health and Safety Commission 

(NOHSC). 

Table 2-2 National Occupational Health and Safety Commission figures for work related lower 

back claims 2001–2004 (NOHSC Database 2005) 

Industry

Av Claims per 

year

Industry 

Population

Back Claims 

per Year

% Chance of 

Claim for LBP

Agri, Forestry & Fishing 7,298             195,140     1,359             0.70
Mining 3,222             79,347       725                0.91

Manufacturing 48,553           980,874     10,176           1.04

Elec, Gas & Water 1,470             69,976       346                0.49
Construction 19,057           451,582     4,227             0.94

Wholesale Trade 10,353           384,861     2,749             0.71
Retail Trade 24,779           1,238,963  6,607             0.53
Accom & Restaurants 10,385           449,578     2,266             0.5
Transport & Storage 17,608           352,856     4,308             1.22

Communication 3,150             145,138     734                0.51
Finance & Insurance 2,977             323,560     467                0.14
Property & Business 15,939           1,008,813  3,342             0.33
Government & Defence 9,667             414,871     2,174             0.52
Education 12,103           657,772     2,344             0.36
Health & Community 25,698           892,283     7,940             0.89

Cultural & Recreational 4,728             217,869     940                0.43
Personal & Other 9,213             300,098     1,724             0.57
Not Stated 9                    
Total 226,198         8,163,580  52,424           10.81  

 

Table 2.2 indicates that five industries (bold) with the highest percentage of lower back 

injuries per person, contribute to 46% (5% of 10.81%) of the lower back injuries across all 

the 18 occupational sectors. They are mining, manufacturing, construction, transport and 

health and community. These sectors are not specific enough to show the occurrence rates 

of LBP within a subgroup such as nursing because the statistics for nurses are included 

within the occupational sector of health and community services. In the same way roof tilers 
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and steel fixers have a very high incidence of LBP, but these figures are included within the 

building and construction sector, which also includes building supervisors, engineers and 

architects. 

A number of research papers have specifically reviewed LBP within the nursing sector 

suggesting that the incidence of LBP is between 1.8 and 4.3 times higher than the average 

incidence (Venning et al. 1987; Lagerstrom et al. 1998; Hofmann et al. 2002). In a separate 

study, via a questionnaire of 47 nurses, 74% of LBP was attributed to overexertion with 

strenuous activities and via a separate question 70% of LBP occurred whilst transferring 

patients (Vieira 2007). 

Studies involving steel workers have shown a high incidence of work related LBP (Kumar 

2007). The incidence of LBP within the steel industry was reported as 53% within the 

previous year and 25% within the previous week (Masset and Malchaire 1994). A separate 

study stated that close to 70% of steel industry workers reported having occupational 

related LBP (Udo and Yoshinaga 2001). 

Although LBP affects people of all ages and occupations, a higher proportion of LBP 

sufferers are middle aged workers who are performing tasks in occupational sectors that 

have a higher proportion of manual handling, whether that be patients or industrial 

equipment. It may be the workers within these occupational groups that are the most 

appropriate workers to assess from a movement and posture perspective. 

2.6 Risk factors for low back pain 

There is much discussion in the literature as to the cause of pain in the lower lumbar spine. 

Some experts believe psychosocial factors play a large role in the development of LBP 

(Burton, Tillotson et al. 1996; Boos, Semmer et al. 2000) whilst other authors suggest 
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sustained postures (Pynt, Higgs et al. 2001) or particular movement patterns 

(Hoogendoorn, Bongers et al. 2000) increase the risk of LBP. 

Movement patterns of individuals are difficult to quantify, especially when they can involve 

three-dimensional (3D) movement, differing velocities/accelerations and other parameters 

such as vibration and complex/combined movement patterns. 

The causes of LBP are numerous and varied. To investigate the risk factors for low back 

pain, a search strategy was designed to review current literature. The search was 

undertaken in August 2008 within the following recognised databases: Proquest (from 

1971), Medline (CSA) (only peer reviewed from 1966), CINAHL (EBSCO) (from 1982) and 

PyscINFO. The search involved the specific phrases ‘low back pain’ or ‘LBP’ and ‘risk 

factors’. A total of 1149 papers were reviewed with 194 papers from Proquest (50 retrieved), 

524 papers from Medline (127 retrieved), 364 papers from CINAHL (44 retrieved) and 67 

from PsycINFO (26 retrieved). 

The inclusion criteria included retrospective and prospective studies that reviewed the 

relationship between LBP and risk factors for developing first time low back pain. Studies 

focusing on chronicity of LBP were not included. Papers searching for any LBP risk factors 

and papers attempting to identify specific LBP risk factors were included. Only papers 

reported in English, performed on living human subjects and those with an n value greater 

than 10 were included. No (n=1) case studies were included. Literature reviews were 

included. Papers focusing on generalised musculoskeletal studies (not specific to LBP) and 

papers focusing on LBP during or after pregnancy were not included. 

Screening of the titles and abstracts led to a total of 247 papers being retrieved and after 

removing duplicate papers, 204 papers remained. Of the 204 papers, 106 met the inclusion 
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criteria and were included for the final review. The analysis of the papers involved grouping 

the risk factors into themes in a table format to display the most commonly cited risk factors 

for the development of LBP. The odds ratio for LBP was often reported within the studies. 

This represents the additional chance of a particular risk factor influencing the development 

of LBP, based on statistical probability. 

There were 278 risk factors identified within the 106 studies and a full tabled list is in 

Appendix I. The majority of the papers were questionnaire-based studies of significantly 

sized cohorts from various countries and nationalities. Table 2.3 represents the most 

commonly identified risk factors grouped into themes. For example, flexion of the lumbar 

spine was described as ‘prolonged flexion’ in one paper and ‘flexion angle’ in another paper. 

It is acknowledged that these are potentially very different movements and may have 

profoundly different effects on the spine but there needs to be a way to group the different 

factors from different papers/authors. 

Four of the five most commonly cited risk factors for LBP (in this review) relate to movement 

or posture of the lumbar spine. The four mechanical or movement based factors (lifting, 

flexion, rotation/lateral flexion and sitting) are all potentially measureable and modifiable 

parameters based on optimising movement patterns with biofeedback. 
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Table 2-3 The cited themes for risk factors associated with low back pain 

Identified Risk Factor theme

Years of 

Publication

No. of 

papers

Papers with 

Odds Ratio

Lifting as a risk factor 1994-2007 35 10
Flexion as a risk factor 1995-2007 20 10
Rotation/lateral flexion as a risk factor 1995-2007 16 7
Previous LBP is a risk factor 1997-2007 10 0
Sitting as a risk factor 1993-2008 10 2
Low social support as a risk factor 1998-2004 9 1
Psychological distress as a risk factor 1999-2007 8 2
Smoking as a risk factor 1999-2008 8 2
Driving as a risk factor 1999-2006 7 3
Low job satisfaction support as a risk factor 2002-2006 7 4
Positioning patients in bed as a risk factor 1997-2007 7 2
Depression as a risk factor 2000-2006 5 0
High BMI/Obesity as a risk factor 1999-2004 5 1
Whole body vibration as a risk factor 1996-2003 5 3
Age as a risk factor 2001-2004 2 1  

 

There are other significant risk factors that are not mechanical by nature and add another 

layer of complexity to the management of LBP. Depression, lack of social support and 

psychological distress rank highly on the list of identified risk factors and have become an 

important part of managing patients with LBP, for any health care practitioner. Whether 

these factors affect the actual onset of low back pain at a mechanical level or whether they 

have a greater impact on the coping mechanism for LBP remains unclear. One strong 

theme from the literature review is that psychological factors certainly have a significant 

impact on the development of chronicity of LBP. 

2.6.1 Mechanical factors in low back pain 

The four most commonly cited mechanical risk factors: sagittal flexion, lifting, prolonged 

sitting and rotation and lateral bending will be briefly discussed in the context of being able 

to modify these parameters in an attempt to reduce the incidence LBP or to improve 

rehabilitation times once LBP has occurred. 
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Sagittal Flexion 

Some movement patterns are essential for daily activity. To reach into the bottom of a top 

loading washing machine or to lift a sleeping child from a car seat requires a significant 

degree of lumbar spine flexion. At other times, flexed postures of the lumbar spine are 

adopted for potentially long periods of time, with little awareness from the person that this 

flexed position is a potentially imposing position for the lower back (Jackson, Solomonow et 

al. 2001). One hypothesis is that these assumed positions (whether that position involved 

flexion, lateral flexion, rotation or a combination of these) over prolonged periods of time 

adversely stress the fundamental support structures of the lumbar spine. 

Cadaver studies have shown that posterior lumbar spine structures, such as the 

intervertebral disc, are most loaded in lumbar flexion (Shiraz-Adl 1989). The stress strain 

curve in Figure 2.2 illustrates that all tissue will stretch or ‘creep’ with sustained mechanical 

tension, to a certain point after which it may not be able to return to its original length. If this 

tension increases causing continued micro-failure of the collagen fibres, macro-failure may 

occur at levels of greater than 5% elongation (Bogduk and Twomey 1987). 

One possible explanation for the lack of conscious appreciation of this tissue degradation is 

that certain areas of the intervertebral disc have been described as being aneural (Alleva 

and Hudgins 2001; Huang and Sandhu 2004; Frelinghuysen et al. 2005). Whilst the outer 

layers of the annulus fibrosis are innervated by the sinuvertebral nerve, the inner third to 

two thirds of the annulus (as well as the nucleus pulposus) do not have a nerve supply. This 

area of the disc is not able to provide sensory input as to the stresses and strains occurring 

within the fibre layers. This is a highly selective argument but provides an example and a 

theory as to why there may be a lack of conscious appreciation of potentially provocative 

postures. This argument may also suggest that there is merit in monitoring movements of 

the lumbar spine and providing biofeedback about the potentially provocative postures. By 
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measuring these postures and positions, more will hopefully be learnt about the movement 

patterns that place the lumbar spine at most risk. 

Another complexity when studying risk factors or movement patterns of the lumbar spine is 

the lack of standardisation of terminology and measurement parameters. Table 2.4 displays 

the 21 papers from the literature review that describe flexion of the lumbar spine as a risk 

factor for LBP. 

 

Figure 2.2 Stress strain curve showing clinical range, micro failure and macro failure 

 (based on (Bogduk and Twomey 1987), (Nordin, Frankel et al. 1980) and (Noyes 1977). 
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Table 2-4 Papers citing flexion of the lumbar spine as a risk factor for low back pain 

Flexion as a specific risk factor Author No. in Study Odds Ratio

1 Prolonged flexion Bakker 200
2 Sitting with forward flexion Bridger 246
3 Frequent bending Canadian Task na
4 Prolonged forward and lateral fl of Cx Christensen 281
5 Flexion > 60 degrees for > 5% work time Hoogendoorn 861 1.5
6 Flexion >30 degrees for 10-15% time Hoogendoorn 732 2.03
7 Flexion and Rotation Hoogendoorn 1192 1.8
8 Trunk flexion>45 degrees(105 vs 30min) Jansen 523 3.18
9 Flexion and rotation Jin 16 2 to 8.5

10 Forward bending positions Josephson 269
11 Flexion angle Keyserling 600
12 Frequent flexion and rotation Lotters na 1.68
13 Trunk sagittal angle Marras 403 jobs
14 Flexion in combination with lat fl and rot Milosevljevic 12
15 >12 flexion or rotation movements per hr Nieuwenhuyse 278 3
16 Frequent flexion and rotation Picavet 22,415
17 Flexion and rotation Sun 477
18 Sustained flexion of 90 degrees van Vuuren 109 2.16
19 Flexion and rotation van Vuuren 366 2.81
20 Flexed postures Yip 144 2.7
21 Duration of stooping at work Friedrich 255  

Each of the descriptions for flexion as a risk factor, is defined differently. ‘Prolonged flexion’ 

and ‘frequent bending’ can be substantially different activities and therefore place very 

different pressures and strains on the lumbar spine. The immediate questions that come to 

mind are; How long is prolonged flexion for? How often does someone need to bend before 

the movement is classified as frequent bending? There is no standardised protocol for 

measuring movement parameters of the lumbar spine in real time and in the work setting. 

Currently, video assessment, subject questionnaires and clinical goniometer measurements 

provide the basis for a significant proportion of the lower back research performed. More 

complex 3D devices have been used but the associated costs, set up time, software 

expertise and availability mean that only few studies utilise these systems. The options for 

measuring devices for the lumbar spine are described in Chapter 3. One of the aims of this 

project is to provide real time 3D measurement of lumbar spine movement at a low cost and 

with a discrete device. 
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Although there are attempts to isolate movements of the lumbar spine into the three 

anatomical planes of movement, humans are functional creatures and most ADLs involve 

movements that are combination of two or three planes of movement. An additional theme 

that became evident during the risk factor literature review was that the Odds Ratio (also 

known as the estimated relative risk) with a 95% confidence interval (CI) was far greater for 

combined movements than for isolated movements and individual factors. 

From Table 2.5, it is evident that of the risk factors with the highest odds ratio, eight of the 

eleven, are mechanical movement patterns that involve a combination of activities or 

combined movements. 

Table 2-5 The risk factors with the highest odds ratio 

Activity Performed Author No. in Study Odds Ratio

Trunk flexion>45 degrees(105 vs 30min) Jansen 523 3.18
Flexion and rotation Jin 16 2 to 8.5
>12 flexion or rotation movements per hr Nieuwenhuyse 278 3
Lifting tasks combined with driving Lilia 231 7.3
Frequent lifting and driving Lilia 231 10.4
>3 yrs in job lifting>25kg once an hour Nieuwenhuyse 278 3.7
Lifting van Vuuren 109 4.61
Lifting heavy objects van Vuuren 366 5.58
Sitting with WBV and awkward postures Lis 25 papers 4 to 9
Low job satisifaction Tam 38 4.18
Flexion and rotation Jin 16 2 to 8.5  

 

This further emphasises the need to be able to concurrently collect multiple data 

parameters, in multiple dimensions of movement and over extended periods of time. For 

maximum effect, the real time analysis of the movement parameters would allow 

instantaneous biofeedback if provocative movement patterns were identified. 
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Lifting as a Risk Factor for low back pain 

The amount of weight lifted and the type of lifting (manual handling tasks [MHT]) have been 

shown to be a risk factor for the development of LBP. In the risk factor literature review, 28 

separate studies identified 35 lifting-associated risk factors. Table 2.6 displays the 35 

factors in conjunction with the number of participants within each study and the odds ratio, 

when available. 

Table 2-6 Lifting as a risk factor for low back pain 

Description of Activity Author No. in Study Odds Ratio

1 Lifting > 10Kg Alcouffe 7129
2 Static loads Bagirova 260
3 Loading in flexed positions Bakker 200
4 Frequent lifting Byrns 270
5 Lifting > 10Kg Canadian Task na
6 Lifting heavy objects Chiou 3159
7 Lifting previous 5 years Friedrich 255
8 Lifting heavy objects Harkness 1186
9 Lifting heavy objects Harreby 1389

10 Lifting > 25kg, > 15 times per day Hoogendoorn 861 1.6
11 Lifting >25kg, > 15 times per day Hoogendoorn 732 2.18
12 Heavy loads Hoogendoorn 1192 1.4
13 Heavy loads Kerr 316
14 Velocity of lift Keyserling 600
15 Frequency of lift Keyserling 600
16 Assymmetry of lift Keyserling 600
17 Frequent lifting Lee 1562
18 Lifting heavy objects Lee 3159
19 Lifting tasks combined with driving Lilia 231 7.3
20 Frequent lifting and driving Lilia 231 10.4
21 Lifting/pushing/pulling objects > 25lbs Macfarlane 1412
22 Lifting heavy objects Magnusson 365
23 Frequent lifting Magnusson 365
24 Liftig/forceful movement Marras 57
25 Frequent lifting Marras 403 jobs
26 Lifting heavy objects Matsui 3042
27 Lifting load Mazloum 103
28 Lifting Mohseni-Bandpei 1226
29 >3 yrs in job lifting>25kg once an hour Nieuwenhuyse 278 3.7
30 Lifting > 10 kg at work Palmer 22,194 1.3 to 1.7
31 Carrying heavy loads Tubach 3164
32 Lifting van Vuuren 109 4.61
33 Lifting heavy objects van Vuuren 366 5.58
34 Poor lifting technique Wrigley 149
35 Laying large sandstone pavers Latza 571 2.6  
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Some authors suggest there is ample evidence for a strong link between lifting physical load 

and LBP (Burdorf 1999). When the human lumbar spine is lifting a load, large muscle forces 

act on the lumbar spine and are responsible for significant compressive and shear loads, 

especially at the lower lumbar segments. These active compressive forces may be partially 

responsible for LBP when the lifting loads, especially whilst in a flexed position (Wilder, 

Aleksiev et al. 1996). Many questions remain but it seems there is some consensus that the 

load and frequency of lifting play a role in the development of LBP. 

Prolonged Sitting 

There is continuing debate regarding sitting as a risk factor for LBP. Whilst a number of 

authors suggest a link between prolonged sitting and LBP (Alcouffe, Manillier et al. 1999; 

Pynt, Higgs et al. 2001; Leclerc, Tubach et al. 2003; Tubach, BeautÃ et al. 2004; Waters, 

Genaidy et al. 2005; Toshihiko, Yuichi et al. 2006; Okunribido, Shimbles et al. 2007) 

another suggests, via a literature review of 35 papers, that there is no specific link between 

sitting and LBP (Hartvigsen, Leboeuf-Yde et al. 2000). 

Other authors have examined the intradiscal pressure whilst sitting and found high 

pressures in the lumbar discs whilst seated, especially in slouched positions (Nachemson 

and Morris 1964; Nachemson 1976; Nachemson 1981; Sato et al. 1999; Wilke et al. 1999). 

The ideal sitting position has also been studied by Pynt (2001) who suggests that a 

‘lordosed seated posture’ is the optimal seated position, with frequent breaks to allow the 

lumbar spine to maintain good postural health and prevent LBP (Pynt, Higgs et al. 2001). 

Whether the increase in intradiscal pressure correlates with an increased the risk of LBP 

whilst sitting, remains a question. 

Based on the literature review performed for this thesis, there were certainly more articles 

and papers describing prolonged sitting as a risk factor (10 papers) than those stating there 
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is no link (one paper). Table 2.7 presents a summary of the papers that site sitting or driving 

as a risk factor for the development of LBP. This seems especially true when sitting is 

combined with a driving occupation or when sitting is combined with asymmetrical 

movements or sustained postures. The subtle changes occurring within the posture of the 

lumbar lordosis whilst sitting are difficult to view via video camera and subjects may be 

unaware of their posture or seating positions if asked within a questionnaire. A device that is 

able to perform real time monitoring of the lumbar posture whilst sitting for prolonged 

periods, maybe able to assist in understanding if there is a link between sitting and LBP. 

Table 2-7 Driving and sitting as a risk factor for low back pain 

Description of Activity Author No. in Study Odds Ratio

Driving as a specific risk factor

1 Driving for long periods Alcouffe 7129
2 Driving > 2hours per day (sciatica only) Leclerc 841 2
3 Driving several days of > 2hours(sciatica only) Leclerc 841 2.7
4 Driving a bus Okunribido 64
5 Driving Tubach 3164
6 Driving for long periods Toshihiko 551
7 Being a forklift driver Waters 2.13

Sitting as a specific risk factor

1 Sitting, WBV and Awkard postures Angela Maria na
2 Sitting posture Auvinen 5999
3 Sitting with forward flexion Bridger 246
4 Sitting in non neutral posture Burdorf 275
5 Sitting posture Chiou 3159
6 Poor sitting habits Lee 3159
7 Sitting with WBV and awkward postures Lis 25 papers 4-9.0
8 Sitting looking down for > 20 hours in a month Nyland 250
9 Sitting > 3 hours Omokhodion 840

10 Sitting for prolonged periods van Vuuren 366 2.33

Sitting is not a specific risk factor

1 Sitting is not a risk factor Hartvigsen 35 papers  

 

Rotation and lateral bending movements 

Rotation (twisting) and lateral bending movements of the lumbar spine are difficult to 

measure. Video techniques that can give an indication of flexion range of movement (ROM), 
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have less reliability with the more subtle and often combined movements of rotation and 

lateral flexion. Both rotation and lateral flexion have been discussed as provocative 

movements that increase the risk of developing LBP. Table 2.8 presents the papers from 

the literature review that suggest rotation and/or lateral flexion as risk factors for LBP. One 

theory that may explain this link is discussed by Shirazi in a paper from 1989. The paper 

described that when rotation and lateral flexion occur together, there is a marked increase 

in the strain on the intervertebral disc fibres (Shiraz-Adl 1989) due to the orientation of the 

fibres of the annulus fibrosis. 

Table 2-8 Rotation and/or lateral flexion as a risk factor for low back pain 

Rotation/lateral flexion as a risk factor Author Subjects Odds Ratio

1 Lateral bending Adams 403
2 Prolonged forward and lateral fl of Cx Christensen 281
3 Rotation 30 degrees for > 10% work time Hoogendoorn 861 1.3
4 Trunk Rotation >30 degrees for 5-10%time Hoogendoorn 732 2.12
5 Flexion and Rotation Hoogendoorn 1192 1.8
6 Trunk axial rotation Jang 21
7 Flexion and rotation Jin 16 2 to 8.5
8 Frequent flexion and rotation Lotters na 1.68
9 Lateral bending velocity Marras 403 jobs

10 Rotation velocity Marras 403 jobs
11 Flexion in combination with lat fl and rot Milosevljevic 12
12 Rotation of spine Miranda 2077
13 >12 flexion or rotation movements per hour Nieuwenhuyse 278 3
14 Frequent flexion and rotation Picavet 22,415
15 Flexion and rotation Sun 477
16 Flexion and rotation van Vuuren 366 2.81  

 

Many authors have suggested that flexion movements in combination with rotation and/or 

lateral flexion movements, further increase the incidence of LBP (Punnett, Fine et al. 1991; 

van Dieën 1996; Fathallah, Marras et al. 1998; Hoogendoorn, Bongers et al. 2000). The 

combined effect of axial torque, compression loading and anatomical flexion place the 

posterior and the postero-lateral aspect of the intervertebral disc in a vulnerable position 

(Shiraz-Adl 1989; Fathallah, Marras et al. 1998). 
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2.6.2 Other risk factors in low back pain 

As illustrated in Table 2.3, there are many cited risk factors for LBP. In total, 18 factors were 

cited two or more times whilst another 16 factors were only cited once. There is an 

additional mechanical factor that was not identified in this literature review yet has been 

discussed and reviewed by other papers. 

Sudden or unexpected movements have been shown to relate to a higher incidence of LBP 

(Magora 1973; Wilder, Aleksiev et al. 1996; Fathallah, Marras et al. 1998). There is greater 

muscle force production in unexpected movements than during planned or expected 

movements. In one study, the mean muscle force was more than twice as large for sudden 

or unexpected movements as it was for planned or expected movements (Wilder, Aleksiev 

et al. 1996). From a study design perspective, it is difficult to simulate a sudden or 

unexpected movement and from an ethical perspective, it is difficult to examine this risk 

factor without unduly placing a subject at risk of LBP. 

2.7 Using biofeedback to modify movement patterns 

The previously discussed risk factors provide evidence of an increased risk of LBP. 

Whether the source of LBP relates to an intervertebral disc, a facet joint or another pain 

sensitive structure, the movements and postures a person performs may be important when 

analysing the aetiology of lumbar spine injuries. The ability to measure and record lower 

back parameters, over extended periods of time, may assist clinicians build a clearer picture 

of what may be accepted as normal and abnormal movement patterns for the spine. It may 

be valuable to measure and record movements and loads acting at the lumbar spine in 

order to better manage LBP. 

Once reliable and valid data about lumbar spine movements and loads is able to be 

recorded, biofeedback can be introduced in order to guide the movement patterns. This 
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guidance of movement patterns may be used to restrict certain provocative movement 

patterns or to facilitate desired movement patterns. The parameters around the dosages 

and thresholds of the biofeedback are another realm in themselves but early work has 

shown positive results. Recently, two separate studies have shown postural biofeedback is 

able to train subjects and guide their movement patterns. Wong, using a Smart Garment 

(fitted with accelerometers and a gyroscope), trained five healthy subjects to maintain a 

more upright posture over four days whilst performing ADLs (Wong and Wong 2008). The 

second study used a Back Tracker device (see Figure 3.2) to monitor posture and retrain 

subjects with chronic LBP. The training sessions were of 15 minute duration and were 

performed ten times over a five-week period. Positive outcomes were gained based on pain 

scales and the SF36 short form (Magnusson 2008). 

The studies to date show that there is potential for postural biofeedback to become an 

effective tool for clinicians in guiding and correcting patient’s movements. 

Developments of LBP measurement methods and devices provide continued challenges. 

This thesis introduces a new device for measurement and monitoring of lower back 

movement called the Back Strain Monitor (BSM). 
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Chapter 3. Measuring methods and the 
management of low back pain 

Many different measuring techniques for capturing lower back movement have been 

suggested. This chapter discusses multiple techniques, evaluating the positives and 

negatives of each. Following this, the management of LBP is discussed. The role of 

the doctor, allied health practitioners, the patient, the government and the insurance 

companies is reviewed in the context of this challenging and costly condition. 

3.1 Introduction 

The three-dimensional movement pattern of the multi-segmented structure has fascinated 

academics and professionals involved in medicine, engineering, physics, applied 

mathematics, biomechanics, radiology and other forms of imaging and movement analysis. 

This chapter describes some of the commercially available techniques and methods for 

assessing and quantifying the movements and deviations within the human lumbar spine. 

3.2 Existing methods of measuring lumbar spine movement 

There have been many different methods reported through the years, which have looked at 

ways of measuring lower back movement. A literature search was performed in order to 

identify measurement techniques that have specifically assessed the lumbar spine range of 

motion, with evidence of either reliability or validity. 

The search was undertaken in September 2008 and additions to the search were added as 

other methods or devices were identified through additional searches, industry knowledge 

and discussion with peers. Medline (from 1966) and CINAHL (from 1982) databases were 

searched. The search involved the specific phrases ‘low back’ or ‘lumbar’ or ‘spine’ AND 

‘measure’ or ‘movement’ or ‘analyse’ AND ‘device’ or ‘method’ or ‘technique’. A total of 743 
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papers were reviewed with 483 papers from Medline (58 retrieved) and 260 papers from 

CINAHL (12 retrieved). 

The inclusion criteria incorporated techniques, methods or devices that were clinically 

tested on subjects with and without LBP. Only papers reported in English, performed on 

living human subjects and those with a sample size greater than 10 were included. No (n=1) 

case studies were included. Literature reviews were included. 

Screening of the titles and abstracts led to a total of 70 papers being retrieved of which 24 

met the inclusion criteria and were included for the final review. Ten lower back measuring 

devices were identified from the 24 articles reviewed. The positive and negative aspects of 

each device, method or technique are noted. 

3.2.1 Biplanar radiography (X-ray) 

The Biplanar radiographic technique evolved from the simple plan X-ray. Two separate X-

ray machines are set such that the object being X-rayed is able to be viewed from the 

frontal plane and the lateral plane. The technique has been shown to be accurate to within a 

root mean square (RMS) error of less than 1.5º (Pearcy and Whittle 1982; Portek I 1983). 

Recent studies have even suggested that the biplanar technique is more accurate than MRI 

in identifying early signs of disc degeneration (Benneker, Heini et al. 2005). 

Positives 

Gives a real image of the shape and contours of the spine in real time. 

• Patient is assessed in a standing position meaning that the spine is under load 

and in a functional position. 

• Accurate technique, considered to be the gold standard for lumbar spine 

measurement. 
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Negatives 

• Radiation dose 

• Possible refraction depending on the size of the patient, distance from the X-ray 

machine and distance to the film. 

• Expensive 

• Unable to judge movement without being done via fluoroscopy (a moving x-ray), 

that further increases the radiation levels. 

3.2.2 Inclinometer and the double inclinometer technique 

An inclinometer measures angular displacement in relation to the line of gravity. The 

inclinometer technique has been shown to be more accurate for measuring lumbar spine 

motion when used as the double inclinometer (DI) technique. The DI technique utilises one 

inclinometer placed at the upper aspect of the lumbar spine (T12/L1) and a second 

inclinometer placed at the lower lumbar spine (S1 at the level of the posterior superior iliac 

spine [PSIS] see glossary). This method takes angular measurement of the lower lumbar 

spine in relation to gravity and subtracts that measure from the angular measurements of 

the upper lumbar spine in relation to gravity. The difference between the two measurements 

represents the angular position of the lumbar spine. 

Positives 

• Separates hip and lumbar spine movements. 

• Measures degrees of movement (directly comparable to X-ray). 

• Able to measure flexion, extension and lateral flexion. 

• Inexpensive and able to be used easily within a clinical setting. 

• Evidence of inter-tester reliability (Newton and Waddell 1991). 

• Evidence of intra-tester reliability (Keeley, Mayer et al. 1986; Beattie, Rothstein 

et al. 1987; Gauvin, Riddle et al. 1990; Paquet, Malouin et al. 1991). 

• Evidence of its validity as a measure of lumbar spine motion (Reynolds 1975; 

Moll 1976; Portek I 1983; Mayer, Tencer et al. 1984; Merritt, McLean et al. 1986; 

Newton and Waddell 1991). 
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Negatives 

• Time consuming. 

• Increased margin for error through human measurement and calculations. 

• Human interpretation of landmarks and angles when placing the inclinometer. 

3.2.3 Flexicurve 

A draftsman’s flexible ruler was adapted to follow the contour of the lumbar spine, from S2 

to T12. This flexible 30 cm ruler was used to measure the change in contours of the spine 

during flexion and extension. 

Positives 

• Easy to mould to the lumbar spine. 

• Contour drawn on paper to obtain angle measurement. 

• Positively correlated with goniometer (0.94) (Salisbury and Porter 1987). 

• Shows evidence of intra-tester reliability (Burton 1986) (Hart and Rose 1986) 

(Lovell, Rothstein et al. 1989). 

Negatives 

• Laborious and time consuming. 

• Errors with estimations of tangents. 

• No inter-tester of reliability (Lovell, Rothstein et al. 1989). 

3.2.4 Kyphometer 

A protractor with two parallel arms, placed on the upper and lower sections of the lumbar 

spine. 

Positives 

• Simple to use. 

• Correlated well with goniometer technique (0.99) and flexicurve (0.93) (Salisbury 

and Porter 1987). 

• Inexpensive and can be used within a clinical setting. 

• Evidence of inter-tester reliability (ÖHlÉN, Spangfort et al. 1989) (Newton and 

Waddell 1991). 
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Negatives 

• Not readily available. 

• Unable to be used through range in real time. 

3.2.5 Lumbar motion monitor: Marras (1993) 

A three-dimensional exoskeleton, which enables movement analysis in the anatomical 

planes of flexion, lateral flexion and rotation. 

Positives 

• Evidence of inter- and intra-tester reliability (Marras, Fathallah et al. 1992; Gill 

and Callaghan 1996). 

• Data recorded electronically for easy data tabulation and statistical analysis. 

• Assesses lumbar spine movement through range. 

• Assesses 3D movement 

Negatives 

• Large, cumbersome and not able to be worn whilst seated. 

• Expensive (USD $30,000+ plus custom software). 

• Need designated computer terminal and expert training to use the device. 
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Figure 3.1 The Lumbar Motion Monitor (LMM) (Marras et al. 2000) 

 (reproduced with permission from Spine journal, © Lippincott Williams & Wilkins) 

3.2.6 Back Tracker: developed by Iso Technologies (Hillsborough, NC) 

The device measures angular changes between the spine and the pelvis, via a triaxial 

goniometer. A harness is worn around the thorax and another around the pelvis (level of the 

belt line), to anchor the device to the lower and upper measurement regions. The 

measurement regions are joined by a long upright pole extending from the pelvis to the 

fixation point at the level of the mid thoracic spine.  As the lumbar spine moves, the pole will 

rotate, tilt forward or tilt sideways. These movements are registered by the triaxial 

goniometer located at the pelvic end of the pole. 
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Figure 3.2 Back Tracker in use (Magnusson 2008) 

(reproduced with permission from Spine journal, © Lippincott Williams & Wilkins) 

Positives 

• Multiple measurements are recorded through range of movement. 

• Potential applications within industry. 

• Evidence of reliability but only one paper identified (Barr 1988). 

Negatives 

• Unable to sit with the device being worn. 

• Expensive and quite cumbersome. 

• Could potentially catch on various other structures, especially if working in an 

area with leads or hanging machinery. 

3.2.7 Finger to floor 

Method whereby subject flexes forward with hands reaching toward the ground and a 

measurement is taken from the fingertips to the ground. 
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Positives 

• Quick, simple and easily performed within a clinical sitting. 

• Easily reproducible and evidence of reliability from an inter-tester perspective 

(Frost et al. 1982; Gill et al. 1988; Newton and Waddell 1991). 

Negatives 

• Not valid as a measure of spinal movement (Moll 1976; Newton and Waddell 

1991). 

• Results not comparable from one subject to another. 

• Not able to record movements through the range of motion, but only at the end 

range of flexion. 

3.2.8 The Schober Method (Modified Schober and Modified-Modified Schober) 

This method involves marking two landmarks on the lumbar spine, one at the lumbo-sacral 

junction and the other 150 mm above this point. The subject is then asked to flex forward as 

far as comfortable and a new measurement is made between the lower and upper lines on 

the lumbar spine. 

The difference between the 150 mm starting point and the end-measured point is deemed 

as the number of millimetres the lumbar spine has flexed. 

Positives 

• Easy, quick, simple, inexpensive and able to be used in a clinical setting. 

• Has evidence of inter- and intra-tester reliability (Million, Nilsen et al. 1981; 

Waddell, Main et al. 1982; Biering-Sorensen 1984; Merritt, McLean et al. 1986; 

Gill, Krag et al. 1988). 

• Has demonstrated evidence of validity for the measurement of lumbar spine 

movement (Rae 1984). 

Negatives 

• Shown not to correlate to goniometer, kyphometer, flexicurve (Salisbury and 

Porter 1987). 
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• Unable to achieve recordings of multiple measurements through the range of 

lumbar spine movement. 

• Variations with finding landmarks on the human lumbar spine. 

3.2.9 Lumbar Spine and Pelvic Skin Rigs (Wands) 

Rigid plastic wands that project perpendicular to the spine at the lumbo-sacral junction and 

at the thoraco-lumbar junction (Whittle and Levine 1997). 

Positives 

• Easy to use within a clinical setting. 

• Inexpensive if camera laboratory available. 

• Shown to be reliable for gait and static lumbar lordosis (ICC 0.90) (Whittle and 

Levine 1997). 

Negatives 

• Laboratory level camera set up is required. 

• Laborious to derive angles from video captured images. 

• Validity has not been assessed. 

3.2.10 Spinal sensor 

A posture device that adheres to the lumbar spine and monitors the degree of lumbar 

lordosis. The device has wireless communication with a docking biofeedback instrument, 

allowing the subject to receive feedback in relation to less than optimal postures. 

Positives 

• Self-calibrating. 

• Relatively inexpensive. 

• Wireless and rechargeable. 

Negatives 

• Does not allow the lumbar spine to move through full range of movement. 

• It remains unclear if the device is able to measure rotation of the lumbar spine. 

• Measurement properties not established. 



Measuring methods and the management of low back pain 

 

- 44 - 

3.2.11 Video and Laser Measurement Techniques 

Video and laser recording techniques are well established methods for assessing low back 

movement. The systems utilize multiple cameras that are strategically orientated to capture 

a subject’s movement. Opto-reflective markers are placed on the subject in pre-determined 

positions. For the lumbar spine, reliable results have been found by using ‘wands’ that 

protrude perpendicular to the spine with reflective markers placed on these wands (Whittle 

and Levine 1997). Currently available video assessment systems include the Vicon system, 

the OptiTrack and the Peak system. 

Positives 

• Accurate (to within 1° or 1mm depending on the application). 

• Established technology. 

• Able to be used on all parts of the body, not just the lumbar spine. 

• Able to be used through full range of motion. 

Negatives 

• Large set up cost. 

• Need laboratory infrastructure and dedicated technician. 

• Require ‘wands’ or ‘sticks’ protruding from the lumbar spine (potentially 

increases margin for error because markers are not where the movement is 

occurring). 

3.2.12 Smart Textiles 

A relatively new field of work involves using ‘Smart Textiles’ to sense movement of the 

body. Various sensors are placed within the woven fabric of clothing to sense movement. 

Dunne in a 2008 paper describes using plastic optic fibres to sense movement of the lower 

back (Dunne, Walsh et al. 2008). Lymberis in 2007 describes using a ‘Strain Fibre Sensor’ 

based on piezo-resistive yarns (Lymberis and Dittmar 2007). These techniques are 

currently laboratory based prototypes that are not available for commercial application. 
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3.2.13 Conclusions 

As can be seen from the above list of methods for measuring lumbar spine movement, 

there have been many attempts to find a simple, reliable and valid measuring tool for the 

lower lumbar spine. As yet there is no stand out method for the reliable and valid measure 

of the lumbar spine in all settings. The Lumbar Motion Monitor has the greatest number of 

publications and academic scrutiny and has been revised in 2001 to be a more mobile unit. 

3.3 Objectives used while building a measuring device for the 

lumbar spine 

The objectives used for building a measuring device for the lower lumbar spine can be 

summarized by the following list of requirements: 

• Inexpensive and readily available to all practitioners wishing to use it. 

• Evidence of reliability both from an inter-tester and intra-tester perspective. 

• Required to correlate well with existing reliable and valid measures of lumbar 

spine movement. 

• Able to provide measurements in the three dimensions of lumbar spine 

movement. 

• Required to measure multiple points through the full range of movements, at a 

high sampling rate (eg: >5 samples per second). 

• Record movements of the lumbar spine and analyse this movement data in real 

time to make decisions as to whether the subject is moving in a safe or unsafe 

way. 

• Be comfortable to wear, discrete and not impede normal movements of 

someone wearing the device. 

• Be able to be worn for 8–12 hours and provide preprogrammed biofeedback to 

the wearer. 
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3.4 Current management of low back pain 

Low back pain is a very difficult condition to manage. The focus in low back pain 

management for the past two decades has been in reducing the chronicity of LBP. That is 

the prevalence and duration of LBP. The overwhelming theme has been to keep patients 

active, don’t allow them to stay in bed or allow their general fitness and strength to fade 

(Kankaanp, Taimela et al. 1999; Mannion, Muntener et al. 1999; Koes, van Tulder et al. 

2001; Mannion, Junge et al. 2001; Hagen, Hilde et al. 2002; Hagen, Jamtvedt et al. 2005). 

There have also been a significant number of studies attempting to identify people at risk of 

becoming chronic LBP sufferers (Murphy and Cornish 1984; Klenerman, Slade et al. 1995; 

Miedema, Chorus et al. 1998; Seferlis, Nemeth et al. 2000; Pincus, Burton et al. 2002; 

Fayad, Lefevre-Colau et al. 2004). These studies have provided health practitioners with the 

skills to encourage their patients to stay active and to identify the patients at risk of 

developing chronic pain symptoms (Klenerman, Slade et al. 1995). 

From the patient’s perspective, it is difficult to follow medical advice to stay active when the 

LBP being experienced is at a high level or causing significant dysfunction to the person’s 

normal ADLs. How is a patient, who has experienced low back pain for the first time, going 

to rapidly capture these complex themes, internalize the impact of this potentially serious 

condition and trust a health practitioner who is telling them to continue activity in spite of 

pain being experienced? 

Evidence shows that particular movements of the lower spine are related to an increase in 

risk of LBP (see Chapter 2). It is important to be able to quantify movement and measure 

the physical activities of people in relation to their spine. Once these parameters can be 

reliably measured, the additional knowledge and quantification of movement patterns may 

assist in the understanding and the improved the management of LBP. 
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A guidance device or real time motion analysis system may help both the health 

professional and the patient to understand the movements being performed by the person 

experiencing LBP. The device is planned to record movements of the lower back, in real 

time, analyse the data and distribute biofeedback in the form of vibration, audible tone or 

visual score/graph/symbol on a handheld screen. Once the movement patterns are 

understood, biofeedback settings can be set in an attempt to guide the patient to those 

postures and movements deemed acceptable, or those encouraged by the health 

practitioner. At times the biofeedback settings may encourage the patient to move whereas 

at other times, depending on pain severity and level of dysfunction, the biofeedback may be 

restrictive or warn the subject to avoid certain movement patterns and postures. 

To review the usefulness of a new device for measuring and managing lower back 

movement and injuries, it is important to look at the current management of back pain. 

There are four main groups identified in the treatment and management of back pain and 

these include general practitioners (GPs) and doctors, allied health practitioners (AHP, i.e.; 

physiotherapists, chiropractors, osteopaths and naturopaths), patients who suffer back pain, 

and those who fund the management of LBP (government, employer groups, insurance 

companies, unions and Occupational Health & Safety [OH&S] workers). Each of these 

groups will be briefly discussed in the context of managing LBP. 

3.4.1 General practitioners 

Low back pain makes up approximately 5% of a doctor’s case load (Jensen 2004) with 

general practitioners (GPs) still being the first person consulted for the majority of the 

Australian public when they experience LBP (Walker, Muller et al. 2004). 

There are four stages of LBP management for a GP: the assessment, treatment, referral to 

other health practitioners or specialists, and the review of the patient. 
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Assessment of the low back pain 

The assessment will usually involve a history or subjective assessment followed by a 

physical examination or an objective assessment. This assessment process is explained in 

detail in Jensen’s 2004 article (Jensen 2004). A thorough lower back assessment may take 

between 20 and 30 minutes to administer. This becomes a problem for the Australian GP 

who spends an average of 13 minutes per consultation with each patient (BEACH 2006). 

Imaging forms another dimension to the doctor’s assessment process, whether that be via 

an X-ray, CT scan or MRI scan. Each of these imaging tools have their particular 

application, although recent studies suggest X-rays may be of limited value in managing low 

back pain. The X-ray may satisfy an aspect of the patient’s concerns and GP’s curiosity yet 

X-rays have been reported in a UK paper to be of no physical benefit to the patient and only 

a minor psychological benefit (Woolf and Henshall 2000). X-rays have also been shown to 

have minimal clinical correlation with patient’s symptoms (Lohman, Tallroth et al. 2006). 

Whilst CT scans and MRI scans have improved the imaging quality of bone and soft tissue 

structures, some authors still believe they are of limited benefit in the diagnosing disc 

related conditions of LBP (Malik and Joseph 2007). 

Treatment of the low back pain 

Treatment for LBP by GP’s involves a combination of medication, advice/exercise 

prescription and occasionally manipulation or mobilization. It is reported in the 2005/2006 

Beach study that 71% of GP consults prescribe medication, with the most commonly 

prescribed medication being non-steroidal anti-inflammatories (NSAI) (BEACH 2007). 

However, NSAIs have been linked to an increased risk of stroke and heart problems, if 

taken for prolonged periods (Aneja and Farkouh 2008). There has also been a worldwide 

recall for a well known and widely used NSAI, VIOXX (Hawker, Katz et al. 2006). 
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Advice to remain active and exercise prescription is possibly the safest and most important 

tool for the GP in the management of LBP but this can be difficult in a brief and often 

complex appointment session for a patient experiencing LBP. Understanding the movement 

patterns and daily activities that are potentially responsible for the LBP is a time consuming 

task. Once these provocative movement patterns are identified, educating the patient as to 

how to avoid these activities and how to promote the advantageous postures and exercises 

will take further time. A tool or device that could automatically acquire personalized 

movement data may be of benefit in streamlining the information flow between the patient 

and the medical practitioner. The same tool may also be beneficial in providing biofeedback 

in relation to the desired movement patterns outside the clinical confines. 

Manipulation and mobilization are specific skills utilized by physiotherapists, chiropractors 

and some GPs. The necessary skills for both manipulation and mobilization lie outside the 

normal medical training and are only taught in extracurricular training courses. This requires 

the GP to have a special interest in LBP and only a small number of GPs undergo this 

additional training. 

Referral 

If the patient’s LBP is not settling with medication and the GP’s advice, referral to a 

specialist or allied health practitioner is considered yet a referral only occurs 8% of the time 

(BEACH 2007). Of those patients referred, 68% are referred to specialists and 24% are 

referred to allied health practitioners (BEACH 2006). Of those referred to allied health 

practitioners, 10% are to physiotherapists, the highest single group, suggesting that 0.19% 

of GP consultations are referred to physiotherapists (BEACH 2006). These statistics 

demonstrate that the majority of patients seen by a GP will remain in the care of the GP. 

With GPs being the number one care giver for people suffering from LBP (see Table 2.1) 
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and 71% of patients visiting doctors being prescribed medication, the majority of patients 

are likely to be prescribed medication, imaging and advice only. 

Review consultation 

Low back pain rarely requires a single visit to a GP. Repeat consultations are to monitor 

progress, repeat subjective and objective assessments, review medication and pain levels 

and advise on return to work or sporting activities. If progress is satisfactory, management 

is likely to follow a very similar pathway. If no change in the LBP is evident or the condition 

has worsened, imaging, referral or a change in treatment strategy is likely. 

Low back pain continues to be a challenge for GPs and any health practitioner treating or 

managing the condition. Two of the GP’s main management tools for treating low back pain 

are NSAIs and X-rays. With NSAIs having been shown to have increasing side effects and 

the obvious radiation issues and the lack of physical benefit associated with X-ray, doctors 

may benefit from an objective tool for managing LBP. If the measuring tool/device were to 

have no side effects and could educate both the GP and their patients about the 

movements and the stresses occurring within the lumbar spine, a new device may have a 

place in the GP’s management of LBP. 

3.4.2 Allied health practitioners 

The large majority of LBP patients treated by allied health practitioners in Australia are not 

publicly funded. A small cohort of chronic LBP patients are allowed five sessions per year 

(Medicare-based Enhanced Primary Care [EPC] program), spread across a number of 

AHPs but the majority of LBP patients will not receive funding through the EPC program. 

Funding for treatment with an AHP may be available through private health insurance, Work 

Cover (State based compensation for work related injuries), TAC (State based Transport 
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Accident Commission) and the Department of Veterans Affairs (Federal funding for returned 

service people). 

The AHPs who manage LBP include physiotherapists, chiropractors, osteopaths, 

naturopaths and myotherapists/masseurs (see Table 2.1). There are other small boutique 

therapies but these are the main five who care for people with back pain. As a group, these 

AHPs offer advice, education, mobilising techniques, manipulation, massage, rehabilitation 

and exercise programs. There have been recent attempts to identify sub groups of patients 

within the definition of non-specific low back pain (NSLBP) (Kent and Keating 2004; 

O'Sullivan 2005; Dankaerts, O'Sullivan et al. 2006). The concept of sub grouping aims to 

classify LBP subjects into the movement patterns that aggravate their pain. For example, 

there may be a ‘flexion group’ that by definition, experience an increase in LBP with flexion 

related activities. This movement or posture related theme of treatment has been 

developing for a number of years (McKenzie and MacKenzie 1997) but there is now an 

attempt to put a framework around the definitions of the different types of sub groups. There 

may be less emphasis on diagnosing the anatomical structure responsible for the pain and 

more emphasis on teaching the patient to move in a way that facilitates healing and optimal 

functioning of the painful area. This theme of LBP management may be well supported by a 

measuring device that is also able to guide the way a patient moves, with those desired 

movement patterns guided by the therapist. 

3.4.3 Patients with low back pain 

For the patient who is experiencing LBP, managing the condition and the pain becomes a 

difficult decision. Should they see their GP, a physiotherapist, a chiropractor or be treated 

by an osteopath? Patients may find it quite difficult to decide on which profession will be 

able to manage their condition for optimal recovery. 
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Patients seek objective information about their lower back and the cause of their back pain. 

Limited consultation time in general practice (10–15 minutes) often leaves a patient wanting 

more information. Allied health practitioners using a ‘hands on’ approach can only spare a 

small component of the consultation time for education and advice, as the patient often 

expects and demands the ‘touch based’ therapy. The patients will often seek answers from 

the internet, family and friends and ‘current affair’ programs, although much of this 

information is uneducated, not individualized for that patient and is not based on any 

professional opinion or objective measure. 

This thesis proposes that the quality of, and access to, objective information about the lower 

back, for patients suffering LBP, does not meet the needs of the patients. In focus groups 

conducted in 2003, patients were most interested in further information in relation to their 

movement patterns performed during a days’ activities (Lovett 2003). Patients are 

interested in an objective measure of their back movement and the pressures placed on 

their back, allowing them to see a graphical representation of the movements they perform. 

The biofeedback settings, adjusted by the therapist, may provide a guide or suggestion as 

to which movement patterns may be best to avoid. The concept of a score or objective goal, 

has the potential to ‘create a sense of control’ (Brasher 2006) and understanding about their 

movement patterns. In a similar way, the heart rate monitors worn by some footballers and 

many recreational athletes, provide an example of the interest people have in their own 

bodily functions. The cholesterol threshold of 5.5 is another example of a guide or tangible 

number for the public to aim for, a goal. 

By measuring and quantifying lower back movements and by providing an option of 

biofeedback, patients may become empowered by this new information, controlling their 

movement patterns through a new option for rehabilitation. 
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3.4.4 Funding the management of low back pain 

For the groups who fund the management of LBP (government, employer groups, insurance 

companies, unions and OH&S workers), treatment is fragmented and the associated costs 

of managing LBP are difficult to manage. There are many different suppliers offering 

different treatment options for treatment of LBP. Treatment costs in Australia have risen 

131% in the last decade (Richards 2003) and the incidence of lumbar spine surgery has 

increased 77% in the US in the past 5 years (Deyo, Nachemson et al. 2004). In Australia, 

the government is particularly concerned about this significant increase in LBP 

management costs (Hadley 2005). 

Within industry, back pain management certainly has many challenges. Injury prevention 

strategies have become common place in the work place over the past decade and have 

included the no lift policy with nurses, the customized trolley for the 44 gallon drums, back 

braces used at hardware stores for all employees and weight restrictions put on most 

products handled by employees and labourers (e.g. concrete bag going from 40 kg to 20 kg, 

paint tins going from 20 L to 10-15 L). These prevention strategies have been put in place in 

an attempt to reduce the incidence and recurrence of low back pain. There is still no 

measurement system that is readily available for measuring what movements are 

performed whilst at work. Before you can manage a problem effectively, the first step is to 

be able to measure the problem. 

The Victorian Workcover Authority (VWA) has produced ‘Safe Handling Guidelines’ that aim 

to provide a guide as to what type of movement patterns are recommended in the work 

place. For the average employer these guidelines are time consuming to read, difficult to 

understand and interpret and even more difficult to educate the workers as to the 

requirements of the ‘safe handling guidelines’. The VWA guidelines suggest that the lumbar 

spine should not be in positions of greater than 20 degrees of flexion for prolonged periods. 
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The average employer and employee are not going to understand when the lumbar spine is 

at 20 degrees flexion if asked in a static position. It is even more difficult to understand 

when the worker is mobile, performing their normal daily activities. There is currently no 

objective guide, within industry, for what 20º of the lumbar spine is. 

The industry appreciates that guidelines are necessary but it is most difficult for both the 

employer and the employee to follow these guidelines when there is no objective measuring 

tool quantifying the movements they currently perform. If the movements were able to be 

quantified, the same measuring tool could potentially give biofeedback as to when particular 

movements were outside the guidelines provided by the industry. 

3.5 Conclusions 

There is currently no simple, cost effective, readily available measuring tool for the lower 

back. There is significant evidence that spinal posture and movement patterns are risk 

factors for LBP (Table 2.3) and have an impact on the chronicity of LBP (Magnusson 2008). 

If a device were to be designed such that it was reliable, gave a valid measure of lower 

back movements in three dimensions, was cost effective to use and was readily available to 

the people who manage LBP, this may be able to assist in the management of LBP. 

Chapter 4 describes the Back Strain Monitor concept and the early stage planning of this 

new measuring device. 
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Chapter 4. Development stages of the new 
Back Strain Monitor 

This Chapter introduces the concept of a Back Strain Monitor (BSM) and then 

focuses on the development stages of the essential part of the BSM called the 

measuring device (MD). The measuring device contains sensors for measuring 

movement of the lower back. 

Seven different measurement techniques are evaluated and the three strongest 

candidates, conductive silicone, inductive coil and the accelerometers, are selected 

and tested within a laboratory setting. 

The review of the different methods considered for the movement sensor, helped to 

inform the development process that led to the current version of the BSM device. 

4.1 The rationale for a back strain monitor 

To improve the management of LBP, it may be important to be able to measure multiple 

factors that could influence the development of LBP. The literature review of causative 

factors for the development of low back pain, (see Chapter 2) outlined a number of 

identified causes or risk factors that may contribute to the development of low back pain. 

These can be broadly split into biomechanical factors, psycho-social factors and individual 

risk factors (see Table 4.1). 

The biomechanical factors affecting the lumbar spine relate to the activity a person does, 

the movement they perform and the forces acting on the spine. Biomechanical factors are 

regularly referred to as a causative factor for the development of low back pain (Adams and 

Dolan 1995; Bernard 1997; Fathallah et al. 1998a,b; Hoogendoorn, Bongers et al. 2000; 

Morlock et al. 2000; McLean et al. 2001; Punnett and Wegman 2004). Biomechanical 

factors include factors such as lower back activity or lower back movement. Lower back 

activity is complex, multi-factorial and historically difficult to measure. The measurement of 
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lower back activity is a key requirement of the Back Strain Monitor (BSM, discussed in detail 

in Section 4.3), yet for a new device to be viable, the device needs to be comfortable to 

wear for prolonged periods and affordable for health practitioners to access. 

Table 4-1 Summary of risk factors for developing low back pain 

Biomechanical Factors Psycho-social Factors Individual Factors 

Heavy physical work Work dissatisfaction Age 

Manual materials handling Work support Gender 

Static postures  Socio-economic status 

Prolonged standing & sitting  Genetic profile 

Frequent trunk flexion  Previous low back disorders 

Lateral flexion and rotation  Posture 

Repetitive work  Anthropometry 

Vibration  Strength & Fitness 

  Spinal mobility 

  Smoking 

  Body weight 

Table adapted from ‘Biomechanics in Ergonomics’, (Kumar 2007) 

 

The phrase lower back activity (LBA) encompasses movement in three dimensions, body 

orientation in relation to gravity, muscle activity, vibration acting on the spine, speed and 

acceleration of movement and forces acting externally on the spine (eg: lifting a heavy 

object). Measuring these factors will provide the basic data building blocks for the lower 

back measuring device. 

4.2 Which low back pain risk factors should be measured? 

The mechanical load or strain on the lower back is difficult to measure. Marras in 2006 used 

an EMG-assisted biomechanical model to estimate spinal loading (Marras, Parakkat et al. 
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2006). In 1998 Fathallah used electrogoniometers, electro-myogram and a force plate to 

estimate loads acting on the lumbar spine (Fathallah, Marras et al. 1998). In 1998 Sparto 

used an electro-myogram model to estimate torque and spinal loading (Sparto and 

Parnianpour 1998). To estimate the amount of ‘strain’ the lower back is experiencing at any 

time, multiple factors needed to be considered. Early in the development of the BSM 

concept, three priority factors were identified. Two of these factors were mechanical factors 

(movement performed by the lumbar spine and lumbar spine muscle activity) with the third 

factor being pyscho-social influences. 

The first mechanical factor to be measured, based on the analysis table in Chapter 2 (Table 

2.3), was flexion range of movement. Lumbar flexion has been identified as a specific 

biomechanical risk factor for the development of work-related back pain in 21 journal papers 

within the literature review outlined in Chapter 2 (see Table 2.4). If the anatomical 

movements of lateral flexion and lumbar spine rotation could be measured by the same 

transducer, this could be of added benefit. The development of the measuring transducer to 

accurately quantify the movements of the lumbar spine was a priority of this study. 

The second mechanical factor to be measured by the BSM device was electro-myographic 

(EMG) activity of the muscles of the lumbar spine. Electro-myographic analysis has the 

potential to provide an indication of the load acting on the lumbar spine. The literature 

regarding the reliability of sEMG for quantifying muscle activity and deriving load 

assumptions in relation to the lumbar spine is debated within the literature (Dankaerts, 

O'Sullivan et al. 2004). Electro-myographic activity may be the more difficult parameter to 

measure reliably and was thus chosen second in the BSM development process. Although 

inherent in the BSM concept, sEMG is not specifically analysed as part of this thesis. Both 

the movement analysis and sEMG analysis were classified as assessment tools for the 

biomechanical risk factors for the development of LBP. 
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The third priority factor was not a mechanical factor but related to the pre-existing psycho-

social and individual factors, that may predispose a person to developing LBP (see Table 

4.1). The aim for the third priority was to formulate a patient profile (PP) that was derived by 

scoring the psycho-social factors and individual factors through a proposed scoring table. 

The table would allow for each factor to be rated and a formula is planned to combine these 

factors to give an overall ‘risk’ score. 

The psycho-social factors and individual factors used in calculating the PP included factors 

such as the patient having a history of the low back pain, the patient’s occupation and the 

age of the patient. Although planned to be a part of the BSM system, the PP table and 

scoring system are outside the scope of this thesis. 

4.3 General concept of the Back Strain Monitor 

The Back Strain Monitor (BSM) is an electronic and programmable device developed in 

conjunction with this thesis. The device is designed to be used by patients presenting with 

low back pain or potentially to assess whether a patient is at risk of developing low back 

pain. The aim of the device is to monitor movement, measure muscle activity, and to 

provide real-time biofeedback to the patient about potentially provocative postures and 

movements of their lumbar spine. Real-time biofeedback potentially allows the patient to 

correct the body posture or to stop the physical activity that may carry a higher risk of injury. 

The biofeedback may stimulate the neuromuscular programming needed for behavioural 

change related to postural patterns. There is some preliminary evidence that biofeedback is 

able to assist change in postures and movements, leading to improved recovery from LBP 

(Magnusson 2008). 

The current form of the device has been derived through a number of intermediate versions. 

The intermediate versions were initially tested within a laboratory setting and later, clinically 
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tested. Based on the results of these reliability trials, new improved versions of the device 

were developed. The current version of the Back Strain Monitor (BSM) has been developed 

through the knowledge and experience acquired during the laboratory and reliability trials. 

The development plan required that the BSM device record the three priority factors 

(Movement, EMG and the Patient Profile) and combine the data from the three factors via a 

specifically developed algorithm. The aim of the algorithm was to determine the load 

experienced by the lower back and the overall risk of low back pain. 

The BSM device consists of two parts (see Figure 4.1): the Measuring Device (MD) and the 

Recording Feedback Device (RFD). The Measuring Device is the transducer component 

that collects raw real-time movement and muscle activity data from the patients via sensors 

placed on the patient’s body. The Recording Feedback Device is an electronic, 

programmable device that uses a numerical algorithm to extract and process information 

from the sensors, and from the patient profile stored in the memory. By combining these 

different data outputs from the sensors, a LBP risk score is calculated. When the risk score 

exceeds certain threshold value, a real-time biofeedback signal (sound or vibration) is 

activated to inform the patient of the excessive load or high risk activity that their low back 

may be experiencing. 
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Figure 4.1 The general concept of the Back Strain Monitor 

4.4 Development of the Back Strain Monitor Measuring Device 

(the movement sensor) 

An aim of this thesis was to find a new way to measure movement of the lumbar spine. The 

most important single movement (based on a review of the literature performed in Chapter 

2, Table 2.3), was that of lumbar spine flexion. This posed the question; can a reliable 

method be found to measure sagittal-plane flexion of the lumbar spine? If so, can this 

measurement method be adapted to also measure lateral flexion and rotation movements of 

the lumbar spine? 

The initial concept for measuring lower back movement revolved around measuring skin 

stretch of the lower back as a person flexed forward. Various potential techniques similar to 

the Schober method (see Chapter 3) for skin distraction (Schober 1937) were reviewed. 

These methods measured the skin distraction or skin stretch as the lumbar spine flexed 

forward. These techniques worked as linear transducers, measuring elongation along a 
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predetermined path. Magnetic tape measures (Ball 1999) and electronic verniers (de Bruin, 

Verheij et al. 2006) were the early considerations. An electro-goniometer, used to measure 

body movement (Polak 1998) was also considered. These methods were reported to be 

reliable measuring instruments, with the vernier measuring increments of as little as one 

micron. Electronic engineers were consulted in order to gauge the likely costs and 

timeframes to modify these measurement transducers for lower back movement 

measurement. The base model transducers were all above one hundred dollars (AUD 

$100) per unit and these methods proved to be too costly to be modified to measure lower 

back movement. 

A literature search was carried out (see Chapter 3) to identify other products capable of 

measuring lower back movements, accurately and in real time. The identified 

transducers/methods were either linear, manual methods that were slow and could not 

automatically record movements, or they were cumbersome and conspicuous (e.g. Lumbar 

Motion Monitor and the Back Tracker). The BSM device was planned so as to be 

inconspicuous and comfortable to wear. The literature review did not identify a discrete 

transducer (sensor) that was readily available to measure lower back movement in real time 

and in three dimensions. 

A review of potential measuring methods was undertaken, to determine whether a suitable 

method could be found and developed into the BSM transducer for measuring lower back 

movement. The review involved workshops with two electronic engineers and two 

physiotherapists, using a combination of professional experience, industry knowledge and 

electronic searches. Seven potential transducer methods were identified for measuring 

lower back movement. 
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4.4.1 Review of potential methods for sensing movement of the lumbar spine 

Each of the seven transducer methods are briefly described below, with a more detailed 

description of the three highest ranking transducer methods, later in the Chapter. 

The seven reviewed transducer methods were as follows: 

1. Gravity angle measurement via accelerometers (Baten 1996) 

Accelerometers sense acceleration, and angular position is able to be calculated from the 

acceleration reading. The plan was initially for two, 2 dimensional accelerometers to be 

placed at the top of the lumbar spine and two, 2 dimensional accelerometers to be placed at 

the lower section of the lumbar spine. It was anticipated that angular rotational movements 

of the upper section of the lumbar spine and the lower section of the lumbar spine could be 

derived from the accelerometers. The difference between the angular outputs of these two 

groups of accelerometers would provide the resultant change in lumbar spine movement. 

2. Inductive coil (Cimmino, Klein et al. 1990) 

The identified inductive coil technique involved a double helix conductive core inserted into 

a flexible elastomer body. The inductive coil converted dimensional changes (stretching or 

compression) of the double helix coil into electrical current (or voltage) variations to provide 

data output. The current (or voltage) changes were proportional to the amount the coil was 

stretched. 

3. Flexible conductive silicone (Marmaropoulos and Van Heerden 2002) 

The flexible conductive silicone contains an electrically conductive element such as carbon 

or silver. The silicone is impregnated with the conductive element during extrusion, allowing 

the silicone to conduct an electrical charge. When the silicone is stretched, the orientation of 

the conductive elements is modified, changing the electrical properties of the conductive 
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silicone and thus changing the electrical resistance. The change in electrical resistance is 

potentially proportional to the change in length of the conductive silicone. It is proposed that 

a formula linking the length of the silicone to the electrical resistance of the silicone be 

defined through prototype building and reliability experiments. 

4. Strain gauge (Steffen, Rubin et al. 1997) 

The type of strain gauge reviewed involved the attachment of a spring to a load cell 

whereby the force within the spring is proportional to elongation or compression of the 

spring. The spring acts an electrical conductor that is able to be stretched or compressed 

within its elastic limit. Stretching the strain gauge will increase the electrical resistance 

whereas compressing the strain gauge will decrease the electrical resistance. By measuring 

the change in electrical resistance the stress within the system is able to be estimated. 

5. Optical fibre (Mikasa, Sakuragi et al. 2004) 

A flexible piece of optic fibre is used to transmit a pulse of light. The time for the pulse of 

light to travel the length of the optic fibre is measured and the change in the optic fibre 

length is calculated. 

6. A linear resistor (M.W.Cresswell 1991) 

This transducer involves a silicone and brush assembly with a resistor development 

stretched between two fixed points. A sliding brush reads the resistance as it moves along 

the resistance wire. 

7. Magnetic strip encoder (Schmitt 2004) 

A metal ribbon has magnetic signals encoded upon it at 1 mm increments. A sliding 

magnetic sensor moves along the metal ribbon, reading the position of the sensor in relation 

to the length of the metal ribbon. At any time (t), the sensor knows its position along the 
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metal strip by way of the encoded magnetic signals, relative to the starting position and the 

pre-determined length of the metal ribbon. 

A review was undertaken, critically assessing the suitability of the seven identified 

transducers to record movement of the lumbar spine. 

A matrix was developed, ranking the seven different measuring techniques by way of a 

weighted scoring system. A simple 1, 2 or 3 ranking (with a higher ranking more favourable) 

was given to each transducer for each of eleven criteria important to the reliability, 

timeframe and cost of the BSM prototype development. The criteria were: thermal 

resistance, noise immunity, physical robustness, physical wear, skin movement tracking, 

cost, hysteresis, resolution, electronic drift, physical resistance and tolerance to moisture. 

The aim was to determine the most suitable techniques for measuring lumbar spine 

movement. The principal investigator conducted a literature review of the different potential 

methods to gain a high level understanding of each method. Workshops were conducted 

with both hardware and software engineers to produce a rating score for each of the 

measuring methods, based on each of the criteria within the selection matrix. As can be 

seen from Table 4.2, the accelerometer method, the conductive silicone and the inductive 

coil were ranked higher than the other transducers. The accelerometer method scored 0.86 

from a possible 1.0, whilst the inductive coil scored 0.73 and the conductive silicone scored 

0.70. 
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Table 4-2 The matrix used to evaluate the transducers’ 

Transducer Accelerometer
Inductive 
Coil

Conductive 
Silicone

Strain 
Gauge

Optical 
Fibre

Linear 
Resistor

Magnetic 
encoder

Thermal resistance 3 2 2 2 2 2 2
Noise Immunity 3 1 1 2 2 1 2
Physical Robustness 3 2 3 1 2 2 1
Physical Wear 3 3 2 2 3 1 1
Skin Tracking na 2 3 na 1 2 2
Cost 1 3 2 2 1 2 1
Hysteresis na 2 2 2 na 3 na
Resolution 3 2 2 2 2 1 1
Electronic drift na 2 2 2 na 2 na
Physical Resistance na 3 2 2 2 2 3
Tolerance to Moisture 2 2 2 2 2 2 2
Score 18/21 24/33 23/33 19/30 17/27 20/33 15/27
Ratio 0.86 0.73 0.70 0.63 0.63 0.61 0.56
na, not applicable 

 

The matrix selection identified the accelerometers, inductive coil and the conductive silicone 

as the most suitable transducers with the highest score rating. These three methods were 

investigated more thoroughly through the building of bench prototypes to examine the 

reliability, timeframe involved and expenditure for the different transducers.  

The BSM concept development, prototype design, laboratory analysis and clinical trial 

statistical analysis was performed by Andrew Ronchi, with the assistance of Daniel Ronchi. 

Each of the prototypes had technical input from specialists in who were working in the 

relevant technical domain. The conductive silicone used in ‘Conductive Silicone Polymer’ 

prototype was developed in conjunction with ABAR Rubber, Melbourne, Australia. The 

‘Inductive Coil’ prototype was developed in conjunction with RMIT University Melbourne, 

Australia. The ‘Accelerometer Transducer Board’ prototype was developed in conjunction 

with Total Electronic Solutions, Melbourne, Australia. The prototype testing described within 

this chapter was performed within a laboratory setting. Phase 1 clinical testing involving 

human subjects, is described later in Chapters 6 and 7. 
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4.5 Reliability analysis 

The statistical measure used to assess the reliability of measurements provided by tested 

devices was given by the coefficient of variation (CV) defined as 

)(

)(

xmean

xstd
CV =  (4.1) 

Where std (x) is the standard deviation of measurements x, and mean(x) is the mean value 

of measurements x (Hopkins 2000). A series of N measurements can be accepted as 

having an acceptable reliability if the CV value is less than 10% (Atkinson 1998) although 

this does depend on the type of measurement being assessed. For the purpose of 

assessing the comparative reliability of three different measurement techniques, all to be 

used for measuring lower back movement, the CV of less than 10% was deemed 

acceptable. 

Note that in Eq. (4.1), when the mean(x) approaches zero, the CV value increases rapidly to 

infinity. For that reason, the CV parameter should not be used as a reliability measure for 

measurements that have the mean value close to zero. 

4.6 Flexible conductive silicone polymer sensor 

A conductive silicone polymer was the initial technique chosen for consideration as a 

measurement method for the lower back. The conductive silicone was incorporated into the 

BSM concept, as displayed in the diagram in Figure 4.2. 
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Figure 4.2 The first version of the Back Strain Monitor 

The flexible conductive silicone changes its electrical properties as it is stretched. This 

concept evolved through the awareness that conductive silicone is used as a flexible 

contact point under the keys on a computer keyboard. The silicone is produced with a 

conductive element (carbon or silver) throughout the silicone compound. To build a suitable 

transducer, the conductive silicone needed to be extremely flexible, to allow the silicone to 

mimic the stretching of the skin on the lower back. From the Modified-Modified Schober 

(MMS) method that analyses skin stretch of the lower back, it is known that 150 mm of skin 

between L1 and S1 on the lumbar spine, can stretch as much as 90 mm on a person with a 

highly flexible lumbar spine, resulting in a total length of 240 mm for the MMS 

measurement. This equates to a 60% increase in length. Not only does the conductive 

silicone need to stretch to an additional 60% of its length, but there can only be 50 g of 

physical tension or resistance at the contact/attachment points at the skin of the lower back. 

Silicone is graded in ‘Shores’ as a measure of its flexibility. More flexible silicones have a 

lower ‘Shore’ value. More rigid silicones have a higher ‘Shore’ value. The manufacturers 
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(One Stop Plastics, Melbourne, Australia) identified a potential problem with using the more 

flexible silicones, that is the more flexible the silicone, the more unstable and degradable it 

becomes when stretched. 

Initial bench testing of a variety of conductive silicones aimed to examine whether the 

flexibility was high enough to allow a 60% stretch with a physical resistance of only 50 g. 

The conductive silicones available were too rigid at the sample size of 10 mm wide and 

2 mm thick. Different widths were tested until the flexibility matched the required resistance 

of 50 g tension at the attachment point. The sample developed for testing was 2 mm wide 

and 2 mm thick, yet the sample would break with a load that stretched the silicone to more 

than 60%. To reinforce the conductive silicone component, a more flexible clear silicone of 

’30 Shore A’ was used, with good results produced in early testing. Figure 4.3 shows the 

final conductive silicone prototype used for testing. The thin, black conductive silicone runs 

through the centre of the more flexible, clear silicone. 

 

Figure 4.3 The Conductive Silicone Transducers 

4.6.1 Repeatability testing of the conductive silicone 

Introduction 

Laboratory-based trials were conducted in order to test the performance of the silicone 

polymer in three ways. First, to assess whether the conductivity of the silicone is continuous 
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whilst being stretched. Second, to assess whether the electrical resistance for the baseline 

reading (the resting position of the CSP) remained constant after a repeated stretching, and 

third, to assess whether the change in electrical resistance between the baseline reading 

and the maximum stretch position remained constant after repeated stretching. 

Method 

The experimental set-up for the conductive silicone prototype (CSP) involved attaching the 

CSP to a fixation device on the lab bench such that the baseline (resting) length was 

150 mm. A current was passed through the CSP via a multi-meter connected to either end 

of the CSP. The length of the CSP could be increased from the baseline position (150 mm) 

to the maximum stretch position at a length of 250 mm. The electrical resistance 

corresponding to the baseline CSP length of 150 mm and the maximum stretch of 250 mm 

were registered using the multi-meter readings. The CSP was stretched 212 times. 

Analysis 

The statistical analysis used to evaluate the CSP reliability was coefficient of variation (CV), 

with an acceptable level for reliability analysis of 10% (Atkinson 1998). 

Question 1: Is there a continuous conductivity whilst the CSP is being stretched? 

The aim of this part of the experiment was to record the current through the CSP and to 

observe if there was a continuous current flow whilst the CSP was stretched from 150 mm 

to 250 mm. 

Test Results: The conductivity of the CSP was constant during the 212 stretch cycles 

performed (see Table 4.3), with no periods of electrical ‘drop out’. 
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Table 4-3 Number of ‘drop outs’ or lack of conductivity within the conductive silicone polymer 

Number of 

stretches 

Number of 

outliers 

Number of zero 

readings 

% Drop outs 

(Non- conductivity) 

 

212 0 0 0 

 

Conclusion: The CSP performed well, showing continuous conductivity during 212 

stretches from 150 mm to 250 mm. 

Question 2: Does the CSP electrical resistance for the baseline position (150 mm) 

remaining constant between the repeated stretches? 

The aim of this part of the test was to establish if the coefficient of variation for the baseline 

readings (between stretches) had a CV < 10% to ensure the electrical resistance was 

relatively constant. 

Test Results: The CSP was stretched 212 times from 150 mm to 250 mm (total stretch 

equal to 100 mm). After each stretch, the CSP baseline electrical resistance was measured. 

Figure 4.4 shows the graph of the CSP resistance for the baseline (150 mm) in Ohms 

versus the number of stretches for the total 212 stretches. 
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Figure 4.4 The electrical resistance (Ohms) of the baseline readings of the conductive silicone 

polymer 

The coefficient of variation (CV) for the 212 stretches was 9.8%, which lies within the 

tolerance level of 10%. 

Conclusion: The electrical resistance of the CSP for the baseline position (150 mm) of the 

CSP remained relatively constant during a repetitive stretching process. The CV was within 

the desired levels. 

Question 3: Did the difference between the CSP resistance for the baseline position 

(150 mm) and the CSP resistance for the maximum-stretch position (250 mm) remain 

constant during repeated stretching process? 

The aim of this part of the test was to establish if the coefficient of variation for the changes 

in the difference between the baseline and the maximum stretch electrical resistance 

remained within the 10% tolerance level during a repeated stretching process. 
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Test Results: As the CSP was stretched 212 times from 150 mm to 250 mm (stretch of 

100 mm), the CSP electrical resistance at baseline (150 mm) was recorded from the multi-

meter. A separate recording of electrical resistance was repeated at the maximum stretch 

point (250 mm). 

During the first 15 stretches, the change in CSP electrical resistance varied between 50 and 

63 Ohms. The coefficient of variation for the first 15 stretches was 7.9%, which was within 

the tolerance level of 10%. Figure 4.5 shows the graph of the change in electrical resistance 

as the CSP is stretched from 150 mm to 250 mm, for the first 15 stretches. 
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Figure 4.5 The change in resistance (Ohms) versus the number of stretches 

As the number of stretches increased from 15 to 212, however, the electrical resistance of 

the maximum stretch of the CSP started to increase steeply with the number of stretches 

(see Figure 4.6). For the stretch cycles from 15 to 212, the coefficient of variation (CV) was 

49%, well above the tolerance level of 10%. 
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Figure 4.6 The change in resistance (Ohms) versus the number of stretches 

Figure 4.7 shows the graph of the CSP resistance for the baseline (150 mm) in Ohms 

versus the number of stretches (blue line), and the graph of the CSP resistance for the 

maximum stretch (250 mm) in Ohms versus the number of stretches (pink line). 

During the first 15 stretches, the difference between the baseline and the maximum stretch 

resistance is relatively constant, but after the first 15 stretches the difference between the 

baseline and the maximum stretch point increase in a non-linear way. 
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Figure 4.7 The change in resistance (Ohms) versus the number of stretches 

 (the blue line represents the electrical resistance for the baseline (150 mm CSP length), the pink line 

represents the electrical resistance for the maximum stretch (250 mm CSP length)) 

It was considered impractical to determine a mathematical formula relating the baseline 

resistance to the number of stretches due to the highly unstable nature of the readings 

when the number of stretches was greater than 15. 

Conclusion: The difference between the CSP resistance for the baseline position 

(150 mm) and the CSP resistance for the maximum-stretch position (250 mm) increased in 

a nonlinear way during a repeated stretching process. This provides evidence that the 

electrical resistance readings from the CSP did not provide a reliable measure of 

longitudinal stretch and may not be appropriate for measuring repeated lower back 

movements. 
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Discussion 

The laboratory tests concluded that the CSP did not provide a reliable measure of repeated 

lower back movements and therefore it was not suitable as a movement sensor for the BSM 

device. 

Other drawbacks of the conductive silicone included: high development costs, complex 

chemical pathways for silicone production and the degradation of the stretching silicone 

compound in early laboratory trials. 

In the laboratory trials there was evidence of conductive silicone degradation. As the 

silicone was stretched hundreds of times, the physical bonding of the silicone began to 

show signs of fatigue, possibly leading to the increase in electrical resistance seen during 

the laboratory trials. With further analysis and research, it became evident that adding 

carbon black or other conducting elements to silicone, changed the properties of the 

polymer and the elastic and electrical properties. This caused a large increase in the 

modulus of elasticity and a decrease in percentage elongation at break point (Skotheim, 

Elsenbaumer et al. 1997). The silicone itself became plastic, undergoing hysteresis (Bogduk 

and Twomey 1987) and could not return to its normal length. 

There was also an electrical lag that existed when a current was passed through the 

stretching conductive silicone. This meant that the electrical resistance of the conductive 

silicone would change with the increasing length but would not revert back to the existing 

resistance, without a time lag. The time lag for the initial readings was 2-3 seconds, yet by 

stretch number 130, the time lag was as high as 28 seconds. This response time meant that 

particular movements would be missed if the CSP prototype was used to assess lower back 

movements in real time. 
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There was potential to improve the conductive silicone concept but the projected costs 

would be too high due to the complexity of developing a purpose-specific silicone. For these 

reasons, the CSP did not undergo clinical trials on human subjects. 

4.7 The Inductive Coil sensor 

The second BSM prototype involved an inductive coil technique. The coil was anticipated to 

be used as a measurement method for lower back movement. At an initial review that 

involved simple tests within a laboratory setting, the coil showed no sign of degradation with 

repeated stretching and no obvious electrical lag. Early investigation of the inductive coil 

concept highlighted low component cost, rapid turnaround time and concept simplicity. 

The inductive coil (see Figure 4.8) was incorporated into the BSM concept, potentially 

replacing the conductive silicone (see Figure 4.3). 

The inductive coil measurement system uses a rule of electrical physics, that is, when a 

conductive coil is stretched, the change in inductance of the coil (with a current running 

through it) is proportional to its length (Hughes 2002). An example of this type of transducer 

can be seen in the Rubbery Ruler. 
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Figure 4.8 The second version of the Back Strain Monitor 

4.7.1 Rubbery Ruler device 

Cimmino (1990) pioneered a device based on the inductive coil, called the ‘Rubbery Ruler’ 

or Flexor, (see Figure 4.9). (Cimmino, Klein et al. 1990) 

 

Figure 4.9 The ‘Rubbery Ruler’ device (also called the ‘Flexor’) 

The Rubbery Ruler used a double helical coil of copper embedded in silicone to monitor 

displacement as the coil was stretched. The transducer is highly sensitive (to 0.1%), allows 
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a large range of elongation (more than twice its length) and is non-invasive (Cimmino, Klein 

et al. 1990). 

The Rubbery Ruler is a transducer with a slim sensor, an elastomer body and double helix 

conductive core. It converts dimensional changes (stretching or compression) of the double 

helix coil into electrical current (or voltage) variations to provide data output. The current (or 

voltage) changes are in proportion to the magnitude of stretching or compression. The 

Rubbery Ruler is lightweight, flexible and durable ranging in length from centimetres to tens 

of metres. 

The Rubbery Ruler is a relatively expensive device (>AUD $1,500), and comes with its own 

data processing software. The BSM concept needed a low price movement transducer, to 

allow for the costs associated with other potential transducers (EMG) and the Recording 

Feedback Device (RFD). The aim was to keep the manufacturing cost for the entire BSM 

device, including software and hardware, at a relatively low level (<AUD $1,000). The 

complexity of the double helical coil of the Rubbery Ruler allowed very high measurement 

accuracy that was not necessarily needed for the BSM device, therefore a simpler 

transducer version was discussed and planned. Concept drawings for a new inductive coil 

prototype were developed, involving a single helical coil. 

4.7.2 The design of the Inductive Coil 

The inductive coil was required to elongate to track the skin stretch and curvature of the 

lower lumbar spine. The intention was to measure the change in stretch of the inductive coil 

via the change in inductance as the coil was stretched (see circuit diagram in Figure 4.10). 

The change in length of the coil, in a similar way to the Modified-Modified Schober (MMS) 

method (see Chapters 3 and 5), would represent the amount of lumbar spine flexion. As 

with the MMS method, the final measurement would be in millimetres. 
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The mapping of the voltage change in mV onto the corresponding change of the coil length 

in millimetres was done during the coil calibration process. This information was then used 

by the BSM processing algorithm to transform the readings in volts to metres. 
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Figure 4.10 The inductive coil circuit 

4.7.3 Laboratory calibration of the Inductive Coil 

The calibration of the inductive coil uses the rule of electrical physics which states that the 

length of an inductive coil is proportional to the radius of that coil and the change of 

inductance. The relationship between a cylindrical coil length l and the corresponding 

inductance change L is given by the following formula: 

L

AN
l

ro
2µµ

=  (4.2) 

or 

AN

l
L

ro
2µµ

=  (4.3) 

where: 

l - coil length (m) 

µo - permeability of free space = 4π × 10-7 H/m 
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µr - relative permeability of core material 

N - number of turns 

A - area of cross-section of the coil (m2) 

L - inductance in Henries (H) 

In the calibration process (Eq. 4.3), a constant voltage v0 = 9 V was connected across the 

coil and a load resistor R to generate a current flow i(t) through the coil. As the coil length 

changed by l, an inductance change L was generated (see Eq. 4.2). The corresponding 

voltage change v(t) across the known load resistor R, was measured. The relationship 

between the measured voltage v(t) and the corresponding coil length was given by a 

differential equation, which can be derived from Eq. 4.3. Using the Kirchhoff Voltage Law, 

we have: 

0)(
)(

0 =++− tRi
dt

tdi
Lv  (4.4) 

The voltage v(t) across the resistor R is given as: 

)()( tRitv =  (4.5) 

Replacing Eq. (4.5) into Eq. (4.4), we have 

0)(
)(

0 =++− tv
dt

tdi
Lv  (4.6) 

or 

0)(
)(

vtv
dt

tdv

R

L
=+  (4.7) 

Replacing Eq. (4.3) into Eq. (4.7), we can obtain an explicit relationship between the voltage 

change v(t) in Volts and the corresponding coil length l change in metres: 
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or 
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Where: 

v0 – applied voltage (V) 

i(t) – current (A) 

L – inductance in Henries (H) 

R – load resistance 

As the term ANR ro
2µµ in (4.10) represents a constant coefficient, it can be written as: 
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where ANR ro
2µµγ =  

The appropriate value of γ was determined experimentally during the calibration process. 

The BSM software package displayed the coil length and the inductance/voltage reading on 

a computer screen. The algorithm automatically converted the voltage readings in Volts into 

corresponding coil length changes in millimetres. 

The calibration process was performed in laboratory conditions; the coil was placed on the 

stretching rig such that the initial length of the coil was 150 mm and the corresponding 

voltage reading was registered. Once a stable length measurement for the coil was 
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obtained (150 mm ± 2 mm), the coil was physically stretched, on the testing rig, to 250 mm. 

The software displayed the new voltage reading for the new coil length. Depending on 

temperature and how long the circuit had been turned on, the calibration parameters would 

be modified until the 250 mm reading was accurate to within 2 mm. Once calibrated, the coil 

would be stretched to the 250 mm marker five more times to ensure the calibration was 

stable. 

4.7.4 Inductive Coil tests 

To assess whether the inductive coil could reliably measure longitudinal stretch, three 

laboratory-based experiments were performed. The first experiment assessed various coils 

for their physical tension whilst being stretched. This would ensure the coil was able to 

elongate without significant deformation/stretching of the skin that it would be attached to. 

The second experiment reviewed the coil durability, both from a mechanical perspective 

and an electrical perspective. The third experiment assessed the laboratory-based reliability 

of the Inductive coil technique for measuring linear displacement. 

The inductive coil was tested using knowledge derived from performing the MMS method 

described in Chapter 3. In the MMS method for measuring lower back movement, the 

lumbar spine measurements are based on a change in length between the upper and lower 

aspect of the lumbar spine. Body landmarks are used to identify the lower point S1 and the 

upper point L1, 150 mm towards the head, from the lower point. 

Experiment 1: Physical tension at the coil attachments points 

Introduction 

The aim was to find an inductive coil with 50 g or less of physical tension at the attachment 

points to the skin, when the coil was stretched to twice its length. The physical tension at 

the attachment points of the coil to the skin could potentially distort the normal skin 



Development stages of the new Back Strain Monitor 

 

- 85 - 

movement and contour. For the Inductive coil to be an ideal transducer, there should be no 

more than 50 g of physical tension on the skin when the coil is stretched to twice its length. 

This was verified by testing the amount of tension needed to deform the skin of the lower 

back by greater than 2 mm. 

Method 

Four different coils were identified and tested for physical tension whilst being stretched. 

The coil tension was measured using a Salter scale (Super Samson 5 g to 500 g, Salter 

Australia, Springvale, Australia). The coil was attached to the Samson scale at one end 

(Point A) with the stretch zone of the coil lined up with the 0 mm reading on a ruler fixed to 

the bench (Figure 4.11). The other end of the coil (Point B) was lightly stretched parallel to 

the ruler until it reached the 150 mm mark on the ruler. This was the starting point for the 

stretch cycle and the Samson scale was calibrated to zero at this point. The coil was 

manually stretched until the free end of the coil reached the 300 mm mark on the ruler 

(Point C) (see Figure 4.12). A reading of the grams of tension was taken from the Samson 

scale at this point and recorded. 

 

Figure 4.11 The starting point for the Inductive Coil tension test 
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Figure 4.12 The maximum stretch position for the Inductive Coil tension test 

Analysis 

Visual observation was used to determine the amount of physical tension on the Samson 

scale when the coil was stretched to twice its length. 

Results 

The four coils tested are set out in the Table 4.4, showing the diameters of the coil and the 

gauge of the wire. The amount of physical tension (in grams) needed to stretch the coil to 

twice its length is displayed. From the table it can be seen that the greater the gauge of the 

coil wire, the larger the physical tension required to stretch the coil. 

Table 4-4 Tension testing on four coils with differing dimensions 

Coil 

Description 

Coil 

Diameter 

Coil 

Gauge 

Grams of physical resistance at twice the coil’s 

length 

Tungsten Steel 4.0 mm 0.25 mm 35 grams 

Tungsten Steel 4.0 mm 0.32 mm 50 grams 

Tungsten Steel 5.0 mm 0.40 mm 60 grams 

Tungsten Steel 6.0 mm 0.45 mm 65 grams 
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Conclusion 

The coil that satisfied the above criteria was a tungsten spring coil measuring 150 mm in 

length, 4.0 mm in diameter with 0.25 mm gauge wire. 

Experiment 2: Coil durability test 

Introduction 

Experiment 2 was composed of two parts. The first part reviewed the mechanical durability 

of the inductive coil. The second part assessed the electrical durability of the inductive coil. 

For the inductive coil to be an effective transducer, the coil was required to be able to 

stretch more than 1,500 times (to simulate a person’s movements over a period of 8 hours) 

without showing signs of mechanical wear or electrical inconsistency. The coil also needed 

to be able to stretch from 150 mm to 250 mm (100 mm) to allow for the extent of skin 

distraction in the lumbar spine. The 100 mm of skin distraction is greater than the maximum 

MMS measurements of the lumbar spine (Williams, Binkley et al. 1993). 

Method 

In preparation for the durability test, the coil had to be stretched to the maximum allowable 

length (300 mm) and sprayed with an insulating paint in order to avoid conduction between 

loops of the coil whilst the coil was at rest or being compressed. 

A conducting wire was soldered to either end of the coil, to transfer the low level current 

through the coil. The conducting wire was arranged in an ‘s’ bend pattern so the wire could 

elongate to allow the full stretch of the coil, with no tension on the conducting wire. (see 

Figure 4.13 ). 
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Figure 4.13 The Inductive Coil used for the trial (embedded in an elastometric gel) 

To achieve an accurate recording of inductance, shielding between the coil and the circuitry 

of the device was necessary. There was a thin layer of copper shielding, placed over the 

printed circuit board (PCB) of the data logging device (a recording unit for data that isolated 

the prototype from mains power). 

Testing rig 

For the purpose of testing mechanical and electrical durability, a testing rig was constructed 

(see Figure 4.14) involving a straight arm attached to a circular wheel, run by a small, low 

voltage motor. The end of the straight arm moved between 150 mm and 250 mm from a 

fixed point. One end of the coil was attached to the end of the straight arm and the other 

end attached to the fixed point. This movement stretched the coil from the starting length of 

150 mm to 250 mm. 

The testing rig allowed the coil to be stretched 1200 times per hour (one stretch every 

3 seconds). Table 4.5 contains a list of eight time-intervals during which the tests were 

performed. The time-intervals include four run periods and four rest periods performed over 

a total of 2 hours, 41 minutes and 18 seconds. 
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Figure 4.14 The ‘testing rig’ for stretching the Inductive Coil 

The inductive coil device was turned on for the entire duration, whereas the ‘testing rig’ was 

turned on and off to instigate the ‘run’ time and the ‘rest’ time. During the ‘run’ period, 

recordings of coil conductivity and length were taken. 

Mechanical durability analysis 

Based on the results from the repeated stretching, the mechanical durability was assessed 

in two ways. First, by the durability of the soldered ends of the inductive coil and second, by 

testing the amount of mechanical hysteresis in the coil after repeated stretching (coil-length 

repeatability testing). 

Question 1: Is the solder attachment between the electrical wire and the coil maintaining a 

solid mechanical connection during and after a large number of repeated stretches? 

Analysis 

The strength of the coil connection was manually tested after each of the four runs by 

physically viewing and applying longitudinal tension to the soldered wire attachment to the 

coil. 
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Result 

The solder attachment between the Inductive coil and electrical wire was intact with no 

physical or visual sign of fatigue after repeated stretching. 

Conclusion 

The solder attachment was adequate to withstand the repeated mechanical durability 

testing. 

Table 4-5 Recordings for the coil durability test using the test rig 

Run / Rest Name 
Duration 

Hrs: Min: Sec 

No. of Recordings 

(at 17 samples per sec) 

Stretches of Coil 

(at 1 stretch every 3 

seconds) 

Run 1 0:09:02 9,517 180 

Rest 1 0:03:54 4,121 0 

Run 2 0:15:47 16,651 315 

Rest 2 0:12:21 13,039 0 

Run 3 0:18:58 20,001 380 

Rest 3 1:00:17 63,607 0 

Run 4 0:27:03 28,528 540 

Rest 4 0:13:49 12,423 0 

Total 2:41:18 167,887 1415 

 

Question 2: Does the physical length of the coil change after the repeated stretching is 

complete? That is, does the coil return to the original starting (baseline) length of 150 mm 

after repeated stretching? 

Analysis 

The coil baseline length was measured as 150 mm, prior to the repeated stretching. The 

four run cycles had a total of 1415 repeated stretches (see Table 4.5). After each run cycle, 
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the length of the coil was measured using the same ruler as was used for the initial 

measurements. The measurement increments of the ruler were 1 mm and CV was used to 

analyse the results. 

Result 

From the recordings of coil length, the CV of the coil length (including the initial coil length) 

varied by only 1mm on two of the measurements. The CV was 0.4%. 

Conclusion 

The inductive coil showed no significant signs of hysteresis from the four run cycles. 

Electrical durability analysis 

The aim of the electrical durability analysis was to find out if there was continuous 

conductivity in the inductive coil during the stretch testing and if there were consistent 

voltage readings across the coil as the coil stretched from the baseline length of 150 mm to 

the required length of 250 mm. 

Method 

The data for the electrical durability test was taken from Run 4, Table 4.5. There were 540 

stretch cycles over 27 minutes with 28,528 recording samples. Figure 4.15 presents a graph 

of the stretch cycles. 

Question 1: Is there continuous conductivity whilst the coil is being stretched? 

Analysis 

A visual review of the excel data spreadsheet was performed to identify any missing data 

fields or drop outs that may indicate a lack of electrical conductivity. 
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Result 

There were no missing data fields in the spreadsheet. 

Conclusion 

It was found that there was continuous electrical conductivity in the coil, with no electrical 

drop outs or missed data fields. 

Question 2: Is there consistent displacement recordings from the coil (mVolts converted to 

mm) as the coil is stretched from the baseline length of 150mm to 250mm length? 

Analysis 

The CV was used to analyse the variance in coil displacement measurements during the 

repeated stretch in Run 4. A trend line was generated for the data set of 28,528 samples. 

Results 

It can be observed in Figure 4.15 that during the first 5700 recordings (108 stretches) the 

voltage readings for the baseline and for the maximum stretch were relatively constant; 

however after the first 5700 recordings a downward bias was observed. There was a steady 

decrease in both, the baseline and the maximum stretch readings. 

The CV for the entire data set was 5.6% for the 27 minutes of repeated stretching. The 

voltage difference between the baseline and the maximum stretch reading remained 

approximately constant. 
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Figure 4.15 The coil durability test showing the coil measurements during the repeated 

stretching 

Conclusion 

The consistency and stability of the electrical readings was satisfactory for a relatively short 

period of time (less than 30 minutes). A CV of 5.6% in 27 minutes, for a device that was to 

be used for 15- to 30-minute recording sessions, may be acceptable yet the BSM device 

was planned to be used for 12 to 24 hours. Due to the drift, the current form of the inductive 

coil was found to be not suitable for long term (> 30 minute) applications. A system 

compensating for the drift in voltage reading was needed to make the coil more suitable as 

a movement sensor for the BSM applications. 

The drift observed during the electrical durability testing was thought to be related to 

excessive heat build-up in a component on the printed circuit board, thus affecting the 

readings of the coil. Changes were made to the circuit that did minimize the drift, yet it was 

not possible to eliminate it completely. During the clinical trials (see Chapter 6), the circuit 

had to be turned off between subjects, to minimise the amount of heat build-up. 
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Experiment 3: Pre-clinical trial electrical reliability test 

Introduction 

Prior to the clinical trials, the electrical reliability of the improved coil circuit was tested in the 

laboratory conditions to verify that the software and minor hardware modifications made to 

the prototype were adequate to conduct the clinical trials. 

Method 

The stretching rate for the test rig was still at one stretch every three seconds and the 

sampling rate, for voltage recordings, was increased from 17 samples per second to 44 

samples per second. A new formula had also been incorporated into the software in an 

attempt to rectify the drift experienced in the electrical durability experiment. 

The coil was stretched by using the testing rig (see Figure 4.14). Eighteen repetitions were 

completed, stretching the coil between 150 mm and 250 mm. The initial voltage at the 

baseline length of coil was set to zero. It was observed (see Figure 4.16) that the baseline 

readings were not reaching the zero value before the next stretching cycle. However, the 

readings for the maximum stretch were relatively constant. These results suggested there 

was an electrical lag in the inductance readings from the coil, in a response to a change in 

the length of the coil. The electrical lag most likely related to the capacitance remaining 

within the circuit. The capacitance was able to dissipate when there was a delay between 

stretch cycles but became more evident when the stretch cycles were more frequent 

(parasitic capacitance). 

Analysis 

The coefficient of variation (CV) was used to determine the reliability of the upper stretch 

limit and the baseline reading of the coil for the eighteen stretch cycles. The 2401 voltage 
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readings (samples) were examined to determine the maximum and minimum values for 

each stretch cycle. 

Pre-Trial Reliability Test

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

18 Stretches (2400 Recordings)

M
il

li
v

o
lt

s

 

Figure 4.16 Results of the pre-clinical trial reliability test; voltage in mV against the sample 

number 

Results 

The maximum and minimum voltage readings for each stretching cycle are illustrated in 

Figure 4.17. Whilst the voltage readings for the maximum stretch were stable, the baseline 

readings varied considerably. 

The coefficient of variation for the maximum stretch had an acceptably small value of 0.54% 

(mean = 247.17 ± 1.34). The CV for the baseline on the other hand, had a large value of 

81.9% (mean = 23.72 ± 19.44). 
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Figure 4.17 The pre-clinical trial reliability test 

(Voltage readings in mV for the baseline (blue) and for the maximum stretch (pink) values against the 

number of stretches) 

Conclusion 

The recordings for the shorter run of stretches certainly proved more accurate for the upper 

stretch limit. The reliability for the upper limit stretch reading of the inductive coil was 

excellent for the eighteen cycles, showing a CV of only 0.54%. The baseline or resting 

length measurement exposed a different problem. There was a CV of 81.9% which was 

considerably higher than expected and the upper limit CV. 

It was concluded that, although the implemented circuit changes and shortening of the test 

time improved the reliability of the voltage readings for short duration testing, there was an 

electrical ‘lag’ issue with the inductive coil prototype at the baseline point. 

Inductive Coil discussion 

The inductive coil prototype proved to be a more reliable measuring transducer for the lower 

back, than the conductive silicone. As seen in Inductive Coil Experiment 1 (4.7.4), a coil 

was identified that, when stretched to twice its length, placed minimal tension on the 

attachment points to the skin when stretched. The coil was also durable from a physical 
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perspective showing no signs of deformation with repeated stretching in Inductive Coil 

Experiment 2 (4.7.4). 

From an electrical perspective, the current flow was continuous yet the electrical resistance 

reading drifted with repeated stretching or when the device was turned on for longer periods 

of time, potentially due to overheating of the electrical circuit. To overcome this, the device 

would need to be turned off between each trial to improve reliability. 

Reliability of the inductive coil was examined for a smaller number of stretches, to avoid 

overheating and to mimic the number of stretches that would be performed in the clinical 

trials on human subjects. Inductive Coil Experiment 3 (4.7.4) showed the device to have 

excellent reliability for the upper limit of stretch (CV 0.54%) yet the baseline limit showed 

considerable variation (CV 81.9%), which could be reduced by further software-based 

compensation. 

In general, it was decided that the inductive coil electrical and mechanical reliability was 

adequate during laboratory experiments and the inductive coil would be an appropriate 

transducer for clinical trials. The reliability of the inductive coil prototype was tested during 

clinical trials that are described in Chapter 6. 

4.8 Accelerometer sensors 

The review of potential methods for sensing movement of the lumbar spine (see Section 

4.4.1) revealed that the method with the highest score (0.86), involved the use of 

accelerometers. The accelerometers were considered another transducer option for the 

BSM, potentially allowing inertial forces acting on the upper and lower aspects of the lumbar 

spine to be quantified. The third version of the BSM, utilizing accelerometers as the 

movement sensor, is illustrated in Figure 4.18. 
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Figure 4.18 The third version of the Back Strain Monitor 

The accelerometers measure change in acceleration of a small mass mounted within a tiny 

accelerometer chip (2 mm x 3 mm x 4 mm) and placed on a printed circuit board (PCB). As 

the board, and thus the accelerometer, moves from one position to another, the mass 

experiences acceleration at the start of the movement and deceleration as the movement 

finishes. The idea was to derive angular measurements of the lumbar spine movement from 

the accelerometers’ readings, as a solution from simultaneous and trigonometric equations. 

Accelerometers have a high degree of precision and reliability, having applications in the 

automotive industry and display linearity with an error smaller than 1% (Marek 2003). 

The application of accelerometers opens an opportunity to measure a wider range of the 

lumbar spine movement including the flexion, extension, right and left lateral flexion, as well 

as the rotational movements. 
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Laboratory prototypes of accelerometers were developed by Total Electronic Solutions 

(Bayswater, Australia), using two, two-dimensional accelerometer chips in an attempt to 

derive positional changes in three dimensions of movement (see Figure 4.19). The reliability 

of the accelerometer board was tested in the laboratory conditions, before the technique 

could be used to measure movement of the lower back. 

 

Figure 4.19 The accelerometer printed circuit board with the accelerometer chip highlighted 

4.8.1 Laboratory test of accelerometers 

Introduction 

The laboratory tests investigating the usefulness of accelerometers for the BSM were 

focused on establishing whether the accelerometers could provide a reliable technique for 

the measurement of four types of lower back movement: flexion, extension, left lateral 

flexion and right lateral flexion. 

The aim of this experiment was to measure the consistency of the accelerometers’ readings 

during four different movements, simulating four different movements of the lower back. 
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Method 

Initially, the accelerometer PCB was placed on the tripod at the fixed initial position. During 

the experiment the board was subjected to four different movements. The accelerometers’ 

readings were taken at the initial position, at the maximum positions for each movement 

and after each return to the initial position. 

The consistency of the accelerometers’ readings was assessed by calculating the 

coefficient of variation (CV) between readings. The accuracy of the accelerometer 

measurements was analysed by calculating the variation between the known measure (the 

tripod set) and the mean difference of the accelerometer measurement. 

The accelerometer board was mounted on a tripod, with a three dimensional rotating 

platform, allowing the chosen movement to be performed, whilst the other planes of 

movement remained locked. 

The tripod was set with maximum base width and the accelerometer board was mounted to 

the camera platform with a 90 degree bracket. The alignment of the accelerometer board as 

adjusted till the platform was vertical (set to a plumb line – see pink string line behind the 

tripod in Figure 4.20). 

The level of the accelerometer board was set via a spirit level (see Figure 4.21) to ensure 

an accurate starting platform for testing of the accelerometer. 
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Figure 4.20 Vertical alignment of the accelerometer board using a plumb line 

Experimental procedure 

The experiment was designed to test the consistency of the accelerometer’s readings 

during four different types of movement (flexion, extension, left lateral flexion and right 

lateral flexion). 

These movements occurred in two separate planes of movement. The forward bending 

(flexion) and the backward bending (extension) of the spine take place on the sagittal plane 

of movement (see Figure 4.22). Sideways tilting (lateral flexion) to the left and right side of 

the body occur on the coronal plane of movement (see Figure 4.22). 
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Figure 4.21 Horizontal alignment of the accelerometer board using a spirit level 

 

 

Figure 4.22 The three anatomical planes of movement 

(Permission granted, CC-BY-SA, © Yassine Mrabet (2008)) 

Movement One: Flexion 

The tripod allowed the accelerometer board to tilt/rotate forward by +90 degrees until a 

preset bumper was reached (see Figure 4.23). This bumper determined the 90-degree point 

for the flexion/forward bending movement. The readings of the accelerometer position were 
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automatically and continually recorded by the BSM. The accelerometer board was returned 

to the vertical starting point. This movement was labelled as movement number one, and 

was repeated ten times. 

90º

Flexion/ Forward BendingFlexion testing: Tripod set up for Accelerometer

 Vertical

0 Degrees

90 
degrees 
clockwise

90º

Accelerometer 

board in vertical 

starting position

Accelerometer board in 

horizontal finishing 

position

 

Figure 4.23 Movement 1: Flexion movement to test the accelerometer board 

Movement Two: Extension 

Next, the accelerometer board was rotated backward (extension) from the vertical position 

of 0 degrees to the position of -30 degrees in an anti-clockwise direction (see Figure 4.24). 

Readings were automatically taken by the BSM and the accelerometer was returned to the 

starting position. This movement was labeled as movement number two, and was repeated 

ten times. 

Following the first two movements, the tripod set up was adapted to allow lateral flexion 

(sideways tilting) to be tested. The total range of movement that the tripod set up allowed (in 

the coronal plane) was 60 degrees (including, +30 degrees (clockwise) to –30 degrees 

(anti-clockwise)). This range of movement closely matched the expected maximum range of 

movement for lateral flexion of the lumbar spine from previously reported trials on human 

subjects (Bogduk and Twomey 1987). 
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Figure 4.24 Movement 2: Extension movement to test the accelerometer board 

Movement Three: Right lateral flexion 

The accelerometer board was rotated/tilted from the vertical starting position, +30 degrees 

in a clockwise direction (right lateral flexion) until the board reached the pre-determined 

bumper (see Figure 4.25). Readings were automatically taken by the BSM, and the 

accelerometer was returned to the starting position. This movement was labeled as 

movement number three and was repeated ten times. 

Right Lateral Flexion testing: Tripod set up for Accelerometer

(Viewed from behind)
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Figure 4.25 Movement 3: Right lateral flexion movement to test the accelerometer board 
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Movement Four: Left lateral flexion 

The accelerometer board was then rotated/tilted from the vertical starting position, -30 

degrees in an anti-clockwise direction (left lateral flexion) until the board reached the pre-

determined bumper (see Figure 4.26). Readings were automatically taken by the device 

and the accelerometer was returned to the starting position. This movement was labeled as 

movement number four and was repeated ten times. 

The axial rotation movement of the accelerometer board was not tested during these 

laboratory tests. In the preliminary trials, measurement errors become evident during 

rotational movements. Software modifications or use of a gyroscope for the measurement of 

the rotational movements were considered (see Chapter 5). 

Left Lateral Flexion testing: Tripod set up for Accelerometer

(Viewed from behind)
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Figure 4.26 Movement 4: Left lateral flexion movement to test the accelerometer board 

Analysis 

The four different movements (flexion, extension, right lateral flexion and left lateral flexion) 

were analysed separately using the coefficient of variation (CV) to assess the consistency 

of accelerometer’s readings for each type of movement. As with the previous transducers 
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(CSP and inductive coil), the readings were accepted as consistent when the corresponding 

CV value was below 10%. 

Results 

The results are listed in Table 4.6 through to Table 4.9. 

The results suggested that the accelerometer boards provide very consistent with the 

flexion movement having a CV of 1.2% (see Table 4.6) and the extension having a CV of 

2.2% (see Table 4.7). 

The accelerometers’ readings for the entire range of movement in the case of the lateral 

flexion movements, also showed high consistency with the right lateral flexion having a CV 

of 2.4% (see Table 4.8) and the left lateral flexion having a CV of 3.1% (see Table 4.9). The 

CV values in Table 4.6 through to Table 4.9 for the starting position are marked as N/A. The 

mean value of readings at the starting position was <0.6 which is close to zero, and the CV 

is not an appropriate statistical method when the mean value approaches zero (Armstrong, 

Shen et al. 2007). 

The accuracy measure for the accelerometer measurements is calculated by subtracting 

the known tripod reading from the mean accelerometer reading. For flexion, the mean 

difference was 0.10° (Table 4.6). For extension the mean difference was 0.11° (Table 4.7). 

For right lateral flexion the mean difference was 0.47° (Table 4.8) and for left lateral flexion 

the mean difference was 0.19° (Table 4.9). All mean differences were within one degree. 
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Table 4-6 Results for the flexion movements 

Flexion (clockwise) 

Range of movement 

Reading at the 

starting position 

Reading at the finishing 

position Range of readings 

0 to +90 degrees 0.0 89.9 89.9 

0 to +90 degrees 0.3 90.2 89.9 

0 to +90 degrees 0.6 90.7 90.1 

0 to +90 degrees 0.2 90.6 90.4 

0 to +90 degrees 0.7 89.2 88.5 

0 to +90 degrees 1.1 88.7 87.6 

0 to +90 degrees 0.3 88.9 88.6 

0 to +90 degrees 0.2 90.8 90.6 

0 to +90 degrees 0.5 91.4 90.9 

0 to +90 degrees 0.6 90.6 90.0 

Standard Deviation 0.32 0.90 1.06 

Mean 0.45 90.10 89.65 

Coefficient of 

Variation N/A 1.0% 1.2% 

 

Table 4-7 Results for the extension movements 

Extension (anti-clockwise) 

Range of movement 

Reading at the 

starting position 

Reading at the finishing 

position Range of readings 

0 to -30 degrees 0.1 -30.5 -30.6 

0 to -30 degrees 1.5 -30.1 -31.6 

0 to -30 degrees 0.3 -29.3 -29.6 

0 to -30 degrees 0.0 -29.4 -29.4 

0 to -30 degrees 0.6 -29.7 -30.3 

0 to -30 degrees 0.3 -30.2 -30.5 

0 to -30 degrees 0.4 -30.6 -31.0 

0 to -30 degrees 0.4 -30.7 -31.1 

0 to -30 degrees 0.9 -29.4 -30.3 

0 to -30 degrees 1.2 -29.0 -30.2 

Standard Deviation 0.49 0.61 0.67 

Mean 0.57 -29.89 -30.46 

Coefficient of 

Variation N/A 2.0% 2.2% 
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Table 4-8 Results for the right lateral flexion movements 

Right Lateral Flexion (clockwise) 

Range of movement 

Reading at the 

starting position 

Reading at the finishing 

position Range of readings 

0 to +30 degrees 0.0 28.9 28.9 

0 to +30 degrees 0.6 29.4 28.8 

0 to +30 degrees 0.4 29.7 29.3 

0 to +30 degrees 0.8 28.8 28.0 

0 to +30 degrees 0.1 30.1 30.0 

0 to +30 degrees 0.7 30.0 29.3 

0 to +30 degrees 0.7 29.3 28.6 

0 to +30 degrees 1.0 29.1 28.1 

0 to +30 degrees 0.3 29.7 29.4 

0 to +30 degrees 0.2 30.3 30.1 

Standard Deviation 0.33 0.51 0.71 

Mean 0.48 29.53 29.05 

Coefficient of 

Variation N/A 1.7% 2.4% 

Table 4-9 Results for the left lateral flexion movements 

Left Lateral Flexion (anti-clockwise) 

Range of movement 

Reading at the 

starting position 

Reading at the finishing 

position Range of readings 

0 to -30 degrees 0.1 -28.8 -28.9 

0 to -30 degrees 0.7 -28.9 -29.6 

0 to -30 degrees 0.3 -29.7 -30.0 

0 to -30 degrees 1.3 -30.3 -31.6 

0 to -30 degrees -0.3 -30.6 -30.3 

0 to -30 degrees -0.2 -29.4 -29.2 

0 to -30 degrees 0.1 -28.9 -29.0 

0 to -30 degrees 0.6 -29.4 -30.0 

0 to -30 degrees 0.4 -30.9 -31.3 

0 to -30 degrees -0.4 -31.2 -30.8 

Standard Deviation 0.52 0.88 0.94 

Mean 0.26 -29.81 -30.07 

Coefficient of 

Variation N/A 3.0% 3.1% 
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Discussion 

The ability to derive angular changes of the upper and lower aspect of the lumbar spine is a 

very useful aspect of the BSM. The angular measurements are preferable in comparison to 

the linear measurements of the skin stretch recorded by the inductive coil and CSP. 

Angular measurements are more commonly used within clinical practice and provide a more 

natural physical interpretation. Angular measurements can be combined together as a 

vector of measurement values representing 3-dimensional movement parameters. These 

vectors can be stored in memory and further processed by the BSM device. 

The accelerometer board technique has been shown to have a high degree of reliability 

within laboratory conditions. The accuracy of the accelerometer readings is also high 

showing less than one degree mean difference between the accelerometer readings and 

the tripod known measurements. 

The measurements of the flexion movement showed least variability and the highest degree 

of accuracy. This is important because the flexion movement has been shown to be an 

important contributing factor in the development of LBP (see Chapter 3). 

The next stage of the BSM development and testing involved placing the inductive coil 

(Chapter 6) and accelerometer boards (Chapter 7) on the lower back of human subjects to 

examine whether it is possible to derive reliable measurements of movements of the lower 

back in clinical conditions. Prior to the clinical trial chapters, the final form of the BSM device 

is presented in Chapter 5. 
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Chapter 5. The current version of the new 
Back Strain Monitor 

This Chapter describes how the current version of the Back Strain Monitor (BSM) 

device is built and how it works. The focus of the Chapter is on the accelerometers 

yet the gyroscope, EMG sensors and the Recording Feedback Device are also 

briefly described. Finally, formats of the data outputs are presented. 

There is also a brief description of further developments of the BSM, which includes 

the Patient Profile and the Numerical Algorithm that will process the sensor’s data 

and calculate an overall risk score for the low back pain. 

5.1 Description of the current Back Strain Monitor device 

The current BSM device incorporates the Measuring Device (MD) and the Recording 

Feedback Device (RFD). 

The Measuring Device (MD) consists of three different types of sensors: accelerometers, 

gyroscopes and EMG sensors. In the new version described here, there are two 

accelerometers, two gyroscopes and two EMG sensors. One three-dimensional (3D) 

accelerometer (replacing the need for two, 2D accelerometers) and one gyroscope are on 

the same PCB of transducers called the Measuring Device for Movement (MDM). There is 

an MDM at both the upper and lower aspects of the lumbar spine (see Figure 5.1 and 5.3). 

The EMG sensors are individual, portable and wireless with no lead attachments. The EMG 

sensors are called the Measuring Device for EMG (MDE) and these are positioned on the 

left and right erector spinal muscle group of the lower back (see Figure 5.1 and 5.3). 

The three types of sensors provide the raw measurement data that includes angular 

movement data from the accelerometers, rotational movement data from the gyroscope and 

muscle activity (EMG) signals from the EMG sensors. 
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Figure 5.1 The Back Strain Monitor (BSM) device with sensors and the Recording Feedback 

Device (RFD) 

The sensors provide input data to the processing unit of the Recording Feedback Device 

(RFD). The processing unit or RFD uses a set of patient’s data parameters called the 

Patient Profile (PP), resulting from the clinical interviews with the patient, and determines 

the risk factor for each patient (see Figure 5.2). 

The patient’s risk factor together with the raw data from the sensors are processed using a 

numerical algorithm build into the RFD. The algorithm determines the low back pain risk 

score for a particular person. If the resultant score is above a pre-determined threshold 

(based on the PP), real time biofeedback is activated in the form of an audible tone or 

vibration informing the patient that they are performing movements outside recommended 

levels. The data recorded by the BSM can also be stored in the memory for later analysis or 

processing if required. 
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Figure 5.2 Functional flowchart of the Back Strain Monitor (BSM) 

5.2 The Measuring Device (Back Strain Monitor Sensors) 

The BSM Measuring Device includes three types of sensors: accelerometers, gyroscopes 

and EMG sensors. 

The Measuring Device contains a number of transducers (sensors), whose function it is to 

measure different parameters characterising movement of the lower back region. 

The Measuring Device for Movement (MDM) and the Measuring Device for Electro-

myographic muscle activity (MDE) are attached to the skin on the lumbar spine of a patient 

as illustrated in Figure 5.3, using a biocompatible and therapeutically tested adhesive foam. 
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Figure 5.3 Placement of the Back Strain Monitor sensors 

The accelerometers and the gyroscope (MDM) provide information about the movement of 

the lumbar spine about three planes of movement (see Figure 5.4). Using anatomical 

terminology, flexion and extension movements of the lumbar spine are performed in the 

sagittal plane. Side bending or lateral flexion occurs in the coronal plane and rotation occurs 

in the transverse or horizontal plane. From a biomechanical perspective, movements are 

defined in relation to three imaginary axes, drawn through the body and labelled X, Y and Z 

(Bogduk and Twomey 1991). Flexion is a rotation around the X axis, lateral flexion is 

rotation around the Z axis and rotation of the lumbar spine or twisting is rotation around the 

Y axis. 

The description for the accelerometer assessment of movement uses the X, Y and Z axes 

within the formulas used to derive range of movement of the lumbar spine. 
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Figure 5.4 Anatomical planes of movement with reference to the three axes (X, Y, Z)  

Adapted from Mrabet (2008) (Permission granted, CC-BY-SA, © Yassine Mrabet (2008)) 

The accelerometers also provide information about: 

• Body orientation (lying vs standing vs sitting) 

• Vibration (Measured in G forces by the accelerometers from raw data) 

• Data on velocity/acceleration of a movement. 

The EMG sensors (MDE) capture muscle activity data, which gives an indication of how well 

the support structures of the spine are working and an indication of when these muscles 

may be overworked. Each of the sensors is discussed in more detail in the following 

sections. 

5.2.1 Accelerometers 

There is one 3D accelerometer chip on each of the two MDM boards, the upper MDM board 

(MDM 1) and the lower MDM board (MDM 2) (see Figure 5.1 and Figure 5.3). In the earlier 
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accelerometer laboratory trial described in Chapter 4, two two-dimensional (2D) 

accelerometers were used for each MDM board. The 2D accelerometers were superseded 

in the current BSM prototype, by the 3D accelerometers. 

Each MDM has a 3D accelerometer mounted on a small PCB measuring 38 mm x 90 mm. 

One 3D accelerometer is mounted on MDM 1 and is located at the upper end of the lumbar 

spine (at the level of the first lumbar spinous process – L1). The second accelerometer is 

mounted on MDM 2 (an identical PCB to MDM 1) and is located at the lower end of the 

lumbar spine (the first sacral spinous process – S1) (see Figure 5.3). The distance between 

the two MDMs is 150 mm, measured with a flexible tape measure along the skin of the 

lumbar spine (as in the Modified-Modified Schober method, see Chapter 3). 

The accelerometer method works by calculating the change in angular position of the upper 

section of the lumbar spine (L1) and subtracting this value from the lower section of the 

lumbar spine (S1). The difference between the angular outputs of these two accelerometers 

provides the resultant change in lumbar spine movement, in the three anatomical planes of 

movement. 

For example, when a subject flexes forward, the upper accelerometer (L1) rotates by 40º in 

a flexion/extension plane (sagittal plane) of movement from its starting position. During the 

same movement, the lower accelerometer (S1) rotates in the same plane by 10º resulting in 

40º – 10º = 30º of lumbar flexion range of movement. A more detailed example of the 

accelerometer calculation of lumbar spine movement is described in Section 5.2.1.3. 

Calibration of the accelerometers 

The accelerometers are devices designed to measure change in acceleration of a small 

mass mounted within a tiny accelerometer chip (2mm x 3mm x 4mm) on the PCB. 
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As the board, and thus the accelerometer, moves from one position to another, the mass 

experiences acceleration at the start of the movement and deceleration as the movement 

finishes. 

The mass movement is generated by a force F, the value of which is given as a product of 

the mass m and the corresponding acceleration a. 

maF =  (5.1) 

When the force is caused by gravitation, then the acceleration has a known constant value 

g = 9.8 m/s2. The corresponding force is called the gravitational force Fgrav, and it is given 

as: 

mgFgrav =  (5.2) 

The accelerometer converts the force into an electrical signal with amplitude given in 

millivolts (mV) that is proportional to the force (or acceleration values). The mapping from 

the particular force (or acceleration) values to the corresponding voltage values is done 

during the calibration process. 

Calculation of gain p and offset o 

The calibration process assumes that the acceleration is a linear function of the measured 

voltage value v, and therefore, can be written as: 

opva +=  (5.3) 

Where the constant values of the gain p and the offset o are unknown and have to be 

determined during the calibration process. 
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Since there are two unknowns to be determined, two equations are needed to determine 

their values. 

The first equation is given by the calibration setup in which the voltage va is measured when 

the mass acceleration is caused by the gravitational force, so the corresponding 

acceleration is known and is equal to g = 9.8 m/s2. 

This gives the first equation as: 

opvg a +=  (5.4) 

The second equation is given by the calibration setup in which the voltage vd is measured 

when the mass initially accelerated by gravity decelerates. The corresponding acceleration 

in this case is equal g = –9.8 m/s2. This gives the second equation as: 

opvg d +=−  (5.5) 

Solving the set of equations (5.4) and (5.5) for p and o, we have: 

da vv

g
p

−
=

2
 (5.6) 

and 

pvgo a−=  (5.7) 

or 
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The values of p and o are calculated for each axis x, y and z. Thus the calibration process 

gives six constant values: px,ox, py,oy, and pz,oz. 

There are two calibration constants for each channel and three channels per sensor. This 

means there are six sets of constants determined for each accelerometer during the 

calibration process. 

From acceleration to the displacement angles 

The linear displacement values x0, y0 and z0 corresponding to the voltages vx0, vy0 and vz0 

measured during the gravitational acceleration are calculated using Eq. (5.3). 

X

Y

Z

x1x2

αx0

X

Y

Z

x1x2

αx0

 

 

Figure 5.5 Linear displacement x0 = x2 - x1 along the X-axis 

As illustrated in Figure 5.5, the linear displacement along the X-axis is given as x0 = x2 - x1. 

Replacing the acceleration value along X-direction in Eq. (5.3) by ax0, we have 

xxxx ovpa += 00  (5.9) 

During the calibration process, the acceleration ax0 is: 



The current version of the new Back Strain Monitor 

 

- 119 - 

2

0

0
)( t

x
gax

∆
==  (5.10) 

Assuming that the time interval corresponding to the calibration measurement is of unit 

value (i.e. ∆t=1), Eq. (5.9) changes to: 

xxx ovpx += 00  (5.11) 

In a similar way, the displacement values along Y-axis and Z-axis can be determined using: 

yyy ovpy += 00  (5.12) 

and 

zzz ovpz += 00  (5.13) 

The linear displacement values x0, y0 and z0 are then used to determine the corresponding 

angular displacements αx0, αy0, and  αz0. This is done using the following formulas: 
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From the raw accelerometer data, vibration affecting the human lumbar spine can be 

calculated as well as the body orientation. The device will be able to estimate whether the 

subject is upright, lying prone or supine, or upside down. The velocity and the acceleration 

of the whole body, such as running speed, may be derived from the raw data although 

these calculations are beyond the scope of this thesis. 

Calculation of the initial angles of the lumbar spine 

To measure the movement of the spine, the starting position (or initial angle) needs to be 

known. These initial angles are determined during the accelerometer calibration process. 

The starting position is chosen to be an erect standing position. The angles between the 

gravity axis and the X axis, the Z axis and the Y axis are measured at this position to 

provide the reference point (zero) for the further measurements of the lumbar spine 

movement. The calibration process is performed automatically by the BSM by pressing the 

calibration button. 
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Figure 5.6 Calculation of the initial flexion angle flexion angle Yxo 
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Figure 5.6 illustrates the calibration process for the initial flexion angle. In order to determine 

the starting position for the lumbar spine, in the flexion plane of movement (i.e.: rotation in 

the sagittal plane, occurring around the X axis), the accelerometers at L1 and S1 measure 

the initial angles (eg: Flexion angle at L1 = αx0 and flexion angle at S1 = βx0 respectively for 

the erect standing position). The initial flexion angle γx0 is then determined as: 

000 xxx βαγ −=  (5.18) 

The same measurements are done for the initial lateral flexion angle γy0 and the initial 

rotation angle γz0.The values of the initial angels αx0,βx0, αy0,βy0, αz0,βz0,are then derived from 

the measured acceleration values. 

Measurements performed by accelerometers 

The aim of using the accelerometers is to derive three angles of movement. These include 

an angle between the direction of gravity axis and the flexion plane of movement (X axis), 

an angle between the direction of gravity axis and the lateral flexion plane (Z axis) and an 

angle between the direction of gravity axis and the rotation plane (Y axis) (see Figure 5.4). 

Determining the lumbar spine position 

Once calibrated, the device is able to calculate the change in flexion angle by subtracting 

the top accelerometer flexion angle from the bottom accelerometer flexion angle. The result 

gives the new flexion angle of the lumbar spine with respect to the calibration value (zero). 

This procedure is illustrated in Figure 5.7, where the flexion angle y is calculated. 
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Let us assume that αx0 and β x0 denote the flexion calibration position of the accelerometer 

L1 and S1 respectively, and αx-αx0 and βx-βx0 correspond to the flexion angle measured by 

accelerometer L1 and S1 respectively. 

We can now derive the formula for the flexion angle γx . 

According to Fig.5.7, The flexion angle γx is: 

)(1800 ϕεγ +−=x  (5.19) 

where 

)(90)))(90(180( 0

0

0

00

xxxx ββββϕ −+=−−−=  (5.20) 

)(90 0

0

xx ααε −−=  (5.21) 
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Figure 5.7 Calculation of the flexion angle Yx 
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Replacing Eq.(5.3) and Eq.(5.4) into Eq.(5.2), we have 

))()())(90)(90(180 000

0

0

00

xxxxxxxxx ββααββααγ −−−=−++−−−=
 (5.22) 

or simply 

)()( 00 xxxxx ββααγ −−−=  (5.23) 

The (5.6) can be also written as: 

0)( xxxx γβαγ −−=  (5.24) 

where γx0 is the initial flexion angle calculated during the calibration process using Eq.(5.1). 

Equation 5.24 shows that the flexion angle movement is given as a difference between 

flexion angle measured by the accelerometer L1 and the flexion angle measured by the 

accelerometer S1. 

Similar derivations can be done for the lateral flexion angle γy and the rotation angle γz. 

These three angles γx, γy and γz,.define the lumbar spine position at a given point in time. 

Determining the lumbar spine movement 

The lumbar spine movement is defined as a change of lumbar spine position within a given 

time interval t2-t1, where t2>t1. Therefore the lumbar spine movement is measured as a 

difference in angular position calculated between t1 and the angular position calculated at t2 

(see Figure 5.8 and 5.9). 
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11º 

-20º 

 

Figure 5.8 Calculation of the starting position for the lumbar spine (-31 degrees) 

The patient then flexes forward to a comfortable finishing position. The top accelerometer 

angle is now -820 (rotating anti-clockwise from the vertical). The bottom accelerometer 

angle is now -690 (rotating anti-clockwise from the vertical). The resultant angle in a sagittal 

plane (for the finishing position) is –690 – (–820) = +130. 

 

-82º 
-69º 

 

Figure 5.9 Calculation of the finishing position for the lumbar spine (+13 degrees) 
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The total range of the lumbar spine movement from the starting position to the finishing 

position is calculated as the angular difference between the two positions at an angular 

level. Mathematically this is represented as: –310 – (+130) = –440 (anti-clockwise)(see 

Figure 5.10.). From a visual perspective, the range of movement seems far greater than 

44 degrees. The subject looks to bend forward to approximately 90 degrees. Note that 

44 degrees of movement occurs at the lumbar spine and the remaining movement occurs at 

the hip joints and in the thoracic spine. The accelerometers are able to gauge the relative 

angular change of position of the lumbar spine, between the approximate spinal levels of L1 

to S1, without being influenced by hip and thoracic spine range of movement. 

 
(-31 – (+13) = -44º) 

 

Figure 5.10 Lumbar spine flexion (in the sagittal plane) with the resultant range of movement 

equal to -44 degrees (anti-clockwise) 

Clinical experiment to determine the optimal sampling rate for the accelerometer 

method 

The frequency with which the movement data is registered by the BSM (sampling rate) is a 

very important factor determining the accuracy and the overall performance of the device. 

Too small a sampling rate means that some important developments in the data time series 

can be missed out. Too high a sampling rate provides a risk of redundant data, blocks 

wireless transmission, wastes storage space and increases processing time. 

A small clinical study of lumbar spine movements was undertaken to enable the optimal 

sampling rate to be calculated for the accelerometer method, such that no significant 
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movements of the lumbar spine were missed in the data and no irrelevant data was 

recorded. 

The study involved five subjects performing the movements of the lumbar spine, in the three 

anatomical planes (see Figure 4.22): the sagittal plane (flexion/extension), the coronal plane 

(left and right lateral flexion) and the transverse plane (rotation to the left and right). The 

movements were performed in a random sequence. 

The number of lumbar spine movements that were performed over a ten-second period 

were recorded by video and counted by visual observation, checking results against the 

video. For a movement to be counted as a measurable, it had to simulate a normal activity 

of the lumbar spine. The participants were asked to make natural movements that they may 

perform during their normal ADLs. For example: reaching over a desk to gather a pen, 

picking up a tissue from the floor, moving an object along a bench and sitting down into a 

couch. Each time, the process of bending forward was counted as one movement, and the 

process of returning to an upright position, was counted as another movement. Thus, 

bending forward and returning to upright standing equated to two movements. 

It was found that, the total number of movements within a ten-second period varied from as 

low as 16 to as high as 24, with a mean value of 20.6 and a standard deviation of ± 3.21. 

The average number of movements per second was 2.06 with a standard deviation of 

± 0.32. The individual results for each subject along with the averaged values are presented 

in Table 5.1. The average value (2 movements per second) equates to a person being able 

to flex forward and return to an upright position within one second. 

Based on the results of the clinical study, it was concluded that, a sampling rate less than or 

equal to one sample per second would be too small and may miss valuable data. For the 
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sampling rate to have a high probability of capturing all the important details of spine 

movement, it would have to be greater than one sample per second. 

Figures 5.11, 5.12 and 5.13 show an example of the same movement data displayed at 

three different sampling rates: 1 sample/second, 2 samples/second and 5 samples/second 

respectively. In this example, the subject flexed forward two times during a 10 second 

period. 

Table 5-1 The average number of movements of the lumbar spine in a ten second period 

  Total number of movements Average number of movements  

Subject in a ten second period per second 

1 21 2.1 

2 19 1.9 

3 16 1.6 

4 23 2.3 

5 24 2.4 

Mean 20.6 2.06 

Standard 

Deviation 3.21 0.32 

 

The graph in Figure 5.13, corresponding to the sampling rate of 5 samples/second, contains 

the greatest level of detail. Each large peak in Figure 5.13 represents a forward flexion 

movement. A comparison between the graphs shows that the lowest sampling rate (Figure 

5.11 at 1 sample per second) misses the first flexion movement and the middle sampling 

rate (Figure 5.1 at 2 samples per second) showed two flexion movements of 23º and 19º. 

The third sampling rate (Figure 5.13 at 5 samples per second) clearly shows the two flexion 

movements to > 30º. 
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Figure 5.11 Sampling at one sample per second, showing degrees of flexion of the lumbar 

spine 
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Figure 5.12 Sampling at two samples per second, showing degrees of flexion of the lumbar 

spine 



The current version of the new Back Strain Monitor 

 

- 129 - 

  
 

5 Hertz Sampling

-10

-5

0

5

10

15

20

25

30

35

40

13
:02

:20

13
:02

:20

13
:02

:20

13
:02

:21

13
:02

:21

13
:02

:22

13
:02

:22

13
:02

:22

13
:02

:23

13
:02

:23

13
:02

:24

13
:02

:24

13
:02

:24

13
:02

:25

13
:02

:25

13
:02

:26

13
:02

:26

13
:02

:26

13
:02

:27

13
:02

:27

13
:02

:28

13
:02

:28

13
:02

:28

13
:02

:29

13
:02

:29

Overall Pitch

Sampling at five samples per second (50 samples) 

Degrees of 

Flexion of 

the 

Lumbar 

Spine 

Sample  

numbers 

0           1             2            3           4             5          6            7             8            9           10 

Number of Seconds 

Figure 5.13 Sampling at five samples per second, showing degrees of flexion of the lumbar 

spine 

For this reason, a sampling rate of 5 samples/second was chosen for the BSM device as 

the most appropriate rate, highly likely to capture the majority of movements with the 

minimum of data redundancy. The sampling rate for the BSM device can be adjusted via 

the device software, up to a maximum value of 20 samples/second. 

5.2.2 The Gyroscope 

The rotational or twisting movements (transverse plane) of the human lumbar spine are very 

difficult to measure due to the usually small ranges of rotation (between L1 and S1) and 

different starting positions of the spine when the spinal rotation occurs. 
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Initially the accelerometers were planned to be used to calculate rotation of the lumbar 

spine. However, preliminary laboratory trials showed that in certain positions the 

accelerometers experienced data dropouts, specifically when the transducer board was 

moving in a horizontal or transverse plane. 

The error was due to the inability of the accelerometers to gather the rotational movement 

data when their alignment was perpendicular to the line of gravity. In order to overcome this 

error, a gyroscopic sensor was incorporated into the design of the Measuring Device for the 

movement (MDM) aspect of the BSM. 

A gyroscope is a device used to detect and measure the rotation of an object on which it is 

installed. Gyroscopes have been previously used to acquire accurate measurements of 

human motion in the form of a pedometer (Lim, Brown et al. 2008). The rotation is 

measured as an angular velocity in radians/second. Different types of gyroscopes use 

different ways to detect rotational movement. The gyroscope used in the MDM part of the 

BSM detects the rotation of an object on which it is mounted by measuring the Coriolis 

effect on a vibrating part of the gyroscope. The device contains a surface-micromachined 

angular rate sensor known as MEMS (Micro Electro-Mechanical System) with integrated 

electronics (iMEMS) (see Figure 5.14). A detailed description of the iMEMS angular rate 

sensing gyroscope can be found in Geen and Krakauer (2003). 

The iMEMS gyroscopes are small, have low power consumption, and better immunity to 

shock and vibration than other gyroscopes having comparable functionality. Figure 5.14 

shows the gyroscope on its own PCB, mounted perpendicular to the main PCB of the MDM. 
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Gyroscope mounted perpendicular to the main PCB to 

achieve rotation around the Y axis  

Figure 5.14 Showing the gyroscope on the new printed circuit board (PCB), mounted 

perpendicular to the main board 

The gyroscope measures the angular velocity (or rate) as an angular change per unit of 

time in radians/second. The angular change can be then determined by time-integration of 

the angular rate. 

 

X Axis 

 Z Axis 

Y Axis 

 

Figure 5.15 The gyroscopic axes of sensitivity 

Depending on how a gyroscope is positioned, its primary axis of sensitivity can be one of 

the three axes of motion: X, Y and Z (see Fig. 5.15). The gyroscope used in the BSM device 

was set to enable a measurement around the Y axis (see Fig. 5.16 and Figure 5.17). 
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Y Axis (Rotation) 

X Axis (Flexion) 

Z Axis 

(Lateral           

Flexion) 

 

Figure 5.16 The gyroscope mounted on the printed circuit board of the Back Strain Monitor 

For example, a gyroscope mounted to measure rotation around the y axis of an object 

rotating at 10 rpm (revolutions per minute) would measure a constant rotation of 

seconds 60

360
10

0

× or 60 degrees/s. The gyroscope would output a voltage proportional to the 

angular rate, as determined by its sensitivity, measured in millivolts per degree per second 

(mV/degree/s). The full-scale voltage determines how much angular rate can be measured, 

so in our example, a gyroscope would need to have a full-scale voltage corresponding to at 

least 60 degrees/s. Full-scale is limited by the available voltage swing divided by the 

sensitivity. 
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 Y Axis 

Z Axis 

X Axis 

 

Figure 5.17 The orientation of the gyroscope axis setup to measure the rotational movement 

around the y axis 

The lab based gyroscope trials aim to give the BSM a useful sensor for the rotational 

movement of the lower back, however the reliability and the validity studies of the 

gyroscope go beyond the scope of this thesis. 

5.2.3 The Electro-myographic sensors 

The third component of the Measuring Device of the BSM is a combination of two or more 

electro-myographic (EMG) activity sensors. 

Surface electromyography (EMG) is a non-invasive method for evaluating and recording 

physiologic properties of muscles at rest and while contracting (Dankaerts, O’Sullivan et al. 

2004). Electro-myographic sensors detect the electrical potential generated by muscle 

cells when these cells contract, and also when the cells are at rest. 

The technique involves placing 3 or more electrodes on the skin. There are ‘smart textile’ 

projects that utilize more than ten EMG or ECG sensors knitted into clothing (Lymberis and 
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Dittmar 2007; Wiklund, Karlsson et al. 2007). For the lumbar spine, an adhesive electrode is 

preferable due to the changing contours of the lumbar spine and the large range of 

movement. The BSM device uses three small electrodes that are adhered to the skin 

overlying the chosen muscle group to receive the electrical activity (voltage) from the 

muscle fibres below. The two active electrodes are aligned with the muscles fibres. The 

third electrode is a reference electrode that acts as a baseline measure for the electrical 

activity. The source of the electrical activity is the muscle membrane potential of about -

70mV. The EMG potentials typically range between less than 50 µV and up to 20 or 30 mV, 

depending on the observed muscle. 

The received EMG signal is periodic. Typical repetition rate of muscle unit firing is about 7–

20 Hz, depending on the size of the muscle, previous axonal damage and other factors. The 

reason for including the EMG sensor as a transducer in the BSM device was to add another 

factor characterising the physiological state of the lower back. In combination with the linear 

and rotational movement parameters, the EMG data could provide a stronger and more 

reliable assessment of the pressures and loads occurring at the level of the lower lumbar 

spine. 

Reliability of the EMG sensors 

The reliability of the EMG technique has been questioned, especially when used for 

studying muscle activity over prolonged periods (Kumar 2007). A number of other EMG 

studies report a moderately high degree of reliability for EMG recordings of the muscles of 

the lumbar spine (Lehman 2002; Ng et al. 2003; Dankaerts et al. 2004). 

It has been suggested (Lariviere, Arsenault et al. 2002), that an improvement of the EMG 

reliability can be achieved by placing two EMG sensors on the right side of the erector 



The current version of the new Back Strain Monitor 

 

- 135 - 

spinae muscle group and two on the left side (at the vertebral level of L2 and L5) and 

averaging the EMG signal between the two levels. 

The BSM uses customised EMG electrodes and a new wireless circuit design. The reliability 

and validity of the new circuit and the customised electrodes require thorough testing for the 

lumbar spine applications, however the reliability studies of the EMG circuitry and 

electrodes are beyond the scope of this thesis. 

Which muscles should monitored by the EMG sensors? 

As part of the current BSM device, the EMG sensors are primarily placed on the erector 

spinae muscle to give an indication of the activity level of the muscles supporting the 

vertebral segments of the lumbar spine. 

Erector spinae muscle 

The erector spinae muscle group has been frequently studied using EMG and there are a 

number of publications showing that reliable EMG readings can be obtained from these 

muscles (Elfving, Nemeth et al. 1999; Lehman 2002; O'Sullivan, Grahamslaw et al. 2002; 

Colloca and Hinrichs 2005; Pitcher, Behm et al. 2008). 

The BSM also has the potential to concurrently measure muscle activity from other muscle 

groups, via the wireless EMG sensors. For example, valuable information could be gained 

by assessing the activity level of the deeper core muscles such as transversus abdominus, 

iliocostalis lumborum, multifidus or the oblique abdominal muscles. It should be noted that 

surface based electrodes (sEMG) may be of limited benefit in assessing the muscle activity 

of the deeper core muscles. 
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Transversus abdominus 

Deficiencies in the active support of the core stabilising muscles (transversus abdominus) 

has been shown in subjects suffering from low back pain (Hodges and Richardson 1996). If 

the BSM EMG component were able to identify whether a subject had asymmetrical 

functioning of the deeper core muscles (transversus abdominus), this could potentially 

assist in the management of the low back pain. However, the BSM monitoring results of 

transversus abdominus had to be treated with caution since the transversus abdominus is a 

deep muscle and surface EMG is better suited to superficial muscles. One article suggests 

good validity and reliability from surface EMG on the transversus abdominus muscle 

(Marshall and Murphy 2003) although more conclusive reliability studies on transversus 

abdominus use needle electrodes into the transversus abdominus muscle belly (McMeeken, 

Beith et al. 2004). 

Iliocostalis lumborum and multifidus 

Reliable EMG results were recently reported to be obtained from the studies of the muscles 

liocostalis lumborum and multifidus (Lehman 2002; Ng et al. 2003; Dankaerts et al. 2004), 

subject to quite specific landmarks for the positioning of the electrodes. 

The importance of the multifidus muscle as a stabilizer of the lumbar spine has been well 

documented (MacDonald, Lorimer Moseley et al. 2006). Electro-myographic studies from 

the previous decade, examined EMG of the erector spinae, quadratus lumborum and 

latissimis dorsi (van Dieën 1996; Sparto and Parnianpour 1998) yet multifidus was not a 

muscle widely discussed in studies relating to surface EMG. It is not clear from the literature 

whether multifidus was not able to be accurately recorded by surface EMG or whether the 

importance of the multifidus muscle as a core stabilser was not fully known. It seems that 

few studies saw the merit of recording multifidus activity and rather, examined the erector 

spinae muscle group. 
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The current BSM protocol for EMG monitors the erector spinae muscle group although 

there may be a number of muscles added to the protocol (potentially transversus 

abdominus and multifidus) once the reliability of monitoring the erector spinae muscle 

activity is established. 

What kind of useful information can be derived from the EMG recordings? 

Recording of the EMG muscle activities can provide two types of useful information 

supporting the assessment of the low back pain risk level. These include the amount of load 

or pressure on the spine and the timing of the muscle activation. 

The amount of load or pressure on the spine 

Whilst EMG measurements are not precise and only give an estimate of the magnitude of 

muscle activity, EMG has been shown to give a good indication of dynamic spinal loading 

(Sparto and Parnianpour 1998; Dolan, Kingma et al. 1999) and to be a useful tool for 

calculating cumulative load (Village, Frazer et al. 2005). The contraction of the erector 

spinae muscle group has an extension moment and compressive moment acting on the 

lumbar vertebrae. The distribution of forces acting on the lower lumbar vertebrae due to the 

erector spinae muscle group is illustrated in Figure 5.18. 

Whether the contraction of the erector spinae muscle provides support for the stability of the 

lumbar vertebrae or whether the contraction adversely stresses the fundamental support 

structures of the lumbar spine, is a very difficult question. 

The answer may partially lie in matching the magnitude, timing and cumulative effect of the 

muscle activity with the position of the lumbar spine in three dimensions. 

When the lumbar spine is in a flexed position, the intervertebral disc fibre layers are under a 

high level of tension and high compressive forces act on the lumbar spine (Shirazi-Adl 
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1994). These significant forces acting on the lumbar spine, especially in flexed positions, 

can adversely affect the passive tissues of the lumbar spine if adequate muscle support is 

absent (Colloca and Hinrichs 2005). 

 

Erector Spinae 

muscle tension 
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Load of the Torso 

Centre of the joint 

Compression Reaction force 
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Figure 5.18 Forces acting on the lower lumbar vertebrae due to the erector spinae muscle 

(Kumar 2007) 

 (image concept adapted from S. Kumar, Basic Biomechanics, 2007) 

Conversely, if the lumbar spine is maintained in a neutral or slightly lordosed position and 

high compressive forces occur (eg lifting a heavy box whilst maintaining a straight lumbar 

spine), there is a more symmetrical loading of the passive support structures of the lumbar 

spine (Kiefer, Shirazi-Adl et al. 1997). 

A combination of the three dimensional movement data synchronised in time with the EMG 

data, and a biomechanical model of loads acting on the lumbar spine may provide a 

comprehensive assessment of the low back pain risk (Snijders, Van Riel et al. 1987). 
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The timing of the muscle activation 

The timing of muscle activation in the lumbar spine provides a potentially important insight 

into the risk of lumbar spine injury. Correct timing of the muscle activity is crucial to the 

normal functioning of the lumbar spine. In normal subjects, there is a pre-movement muscle 

activity of the core muscles prior to an activity causing the actual movement (Marshall and 

Murphy 2003). 

The EMG studies of the baseball pitchers show the preparation activity of the core muscles 

and scapula muscles, prior to the initiation of the prime moving muscles (Hirashima, Kadota 

et al. 2002). In a similar way, the core muscles of the spine have a preparation phase for 

particular movements (Hodges, Cresswell et al. 2000). An analysis of the EMG data may be 

able to show, if the actual movement of the lumbar spine is occurring, prior to the pre-

movement (or preparation activity) of the core stabilising muscles or after the preparation 

activity. If the movement of the lumbar spine is occurring, prior to the pre-movement then, 

an additional tension (or load) is being placed on the passive support structures of the 

lumbar spine, potentially increasing the probability of low back pain. 

Another risk factor for lumbar spine pain, highlights the issue of timing of muscle activity. If a 

person slips and has to adjust their posture, or if a person accidentally drops something and 

lunges in an attempt to retrieve the object, the unexpected movement is a reflex action. This 

reflex activity involving the limb/s, occurs prior to the activity of the core stabilising muscles, 

not allowing for the preparation activity to occur (Gagnon, Plamondon et al. 1995; Sparto 

and Parnianpour 1998). 

Poor timing of the activation of the lumbar spine muscles and the limited ability to predict 

movement (proprioception) has been shown in subjects suffering from chronic low back 

pain (Hodges and Richardson 1996). These factors are especially evident when lumbar 
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spine muscles are fatigued (Taimela, Kankaanpaa et al. 1999). An analysis of the EMG 

data from the BSM may be able to be used to identify deficient timing sequences and 

activity levels of the lumbar musculature in subjects with chronic back pain. 

Custom design of the EMG electrode for the BSM 

The BSM muscle activity sensors (MDE) contain arrays of electrodes placed on the sensor 

pads. Each array of electrodes contains two active electrodes placed 3 cm apart and a third 

reference electrode placed in a relatively equi-distant position from the two active electrodes 

(see Figure 5.19). This particular configuration of electrodes was suggested in studies by 

Mirka and Sparto (Mirka 1991; Sparto, Parnianpour et al. 1998). 
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Figure 5.19 The array of electrodes on the EMG sensor pad 

The EMG sensors include a disposable battery (see Figure 5.19 and Figure 5.20) to enable 

the EMG signal to be transmitted through a wireless communication channel to the 

Recording Feedback Device (RFD) unit. As illustrated in Figure 5.20, each sensor pad 

contains a low allergenic foam adhesive to adhere the electrode to the patient’s skin. 
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Signal Processing for the EMG Circuit 

Due to their low frequency and voltage (mV), surface EMG signals require amplification and 

filtering prior to digital conversion. A differential amplifier with a high CMRR (Common Mode 

Rejection Ratio) was required to reduce noise from the power supply. A high pass filter 

(minimum of 10Hz) was used to remove electrode DC offset and electrode movement 

interference. A low pass filter (500Hz) allowed harmonics to be included but was able to 

avoid signal aliasing. The signals from the analogue circuit were simulated on a PC using 

SIMetrix software package to assess amplification characteristics and frequency response. 

 

Figure 5.20 The components of the EMG sensors 

Placement of the EMG sensors 

The process of finding an optimal placement of the EMG sensors was based on the 

literature review and laboratory-based reliability trials. Previous EMG studies (Lariviere, 

Arsenault et al. 2002; Lehman 2002) showed good reliability when the electrodes for the 

erector spinae muscle were placed at L3. 

In the laboratory trials, the BSM EMG circuit was tested using a repeatable EMG signal 

generated by a flexion of the lumbar spine. The time waveform of the EMG signal is 
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illustrated in Figure 5.21. The first peak, between the two vertical blue lines, represents 

eccentric muscle activity (620mV) of erector spinae during flexion of the lumbar spine. The 

trough between the two peaks (between the vertical blue line and red line) represents 

sustaining the flexed position. The second peak, between the two vertical red lines, 

represents concentric muscle activity (1000 mV) to return the lumbar spine to an upright 

position. 

Note that there is a lack of muscle activity when the subject holds the flexed position. This is 

called the myoelectric silencing of the erector spinae or the lumbar erector spinae flexion-

relaxation phenomenon (FRP). It has been suggested by Colloca and Hinrichs (2005) that a 

prolonged silencing may stress passive tissues of the lumbar spine (Colloca and Hinrichs 

2005). 
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Figure 5.21 A time waveform of the EMG signal registered during a forward flexion of the 

lumbar spine  
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5.3 The Recording Feedback Device 

The recording device of the previous version of the BSM was upgraded in the latest version 

to become the Recording Feedback Device (RFD), with the capacity to analyse data in real 

time and generate instant feedback (sound or vibration) to the person wearing the device. 

The concept of ambulatory monitoring is gathering momentum as a new and valuable area 

of health management (Jovanov 2005). Some authors have described miniature, lightweight 

sensors capable of wireless communication negating the need for awkward and potentially 

dangerous leads (Jovanov, Milenkovic et al. 2004). This would be the ideal scenario for the 

BSM concept where the sensors wirelessly communicate with the RFD. 

The RFD has the memory capacity to store 24 hours of continuous recordings for off line 

downloading, processing and analysis. The biofeedback is provided instantly to the person 

wearing the device once a pre-determined threshold parameter is exceeded. The threshold 

parameter is currently calculated based on the time duration of the flexed position. The 

feedback is provided via vibration or an audible tone, or a combination of the two. Settings 

are adjustable to increase or decrease volume or turn off the biofeedback. 

 

Figure 5.22 The Recording Feedback Device 
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The RFD unit is a battery powered (7Volt DC Lithium Ion battery) device the size of a 

mobile phone (see Figure 5.22). The input buttons allow modification of the threshold and 

device settings, using the visual display on the LCD screen. The screen has 128 x 64 

pixels, allowing objects and figures to be displayed to visually communicate provocative 

movement patterns. The central processing unit (CPU) is a Texas Instruments MSP 

430F149 Mixed Signal 16 bit Microcontroller (Texas Instruments, Dallas, Texas). 

The BSM device uses a one wire communication circuit (or ‘Daisy Chain Style’) that allows 

additional sensors to be attached to the circuit in series. This feature may become valuable 

when extra information is required from additional EMG sensors or even additional 

accelerometers. For the reliability trial discussed in Chapter 7, the BSM sensors 

communicated with the RFD via one USB cable and a JAE (Japan Aviation Electronics)10 

pin connector. This allowed device charging, USB facilities and sensor connections through 

one plug. The PCB layout is double sided and double layered with a ribbon connector 

joining the boards. The dimensions of the device are 50 mm x 25 mm x 93 mm, with 

rounded ends and corners for user comfort (see Figure 5.23). 

5.3.1 Setting bio-feedback thresholds of the Recording Feedback Device 

The ultimate aim of the BSM is to provide accurate measurement of the lower back 

movements, allowing the identification of high risk movement patterns. Once identified, real-

time feedback can be administered in an effort to modify the posture or movement patterns 

to improve recovery rate from painful episodes of LBP and to reduce the likelihood of further 

episodes of LBP. 
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Figure 5.23 Dimensions and shape of the Recording Feedback Device (RFD) 

The BSM threshold level determines when the patient will receive the biofeedback. The 

optimal threshold value for a given patient is determined and programmed into the RFD by 

the doctor or treating health practitioner (THP), prior to the device being fitted to the subject. 

The thresholds can be also adjusted by the subject during the course of the day. 

In the current version of the BSM, the bio-feedback activation decision is based on the 

amount of lumbar spine flexion and the time spent in these flexed positions. If the subject 

wearing the BSM is in a flexed position exceeding the specified threshold level of flexion, 

and maintains this position for greater than the pre-determined time interval, then the 

biofeedback is activated. 

Figure 5.24 shows the result of a test session for the BSM thresholds settings and 

biofeedback activation. The test was conducted with one person wearing the BSM device 

for 8 hours and 15 minutes. The person wearing the device performed a normal day’s work 
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that included driving a car to various truck depots to inspect trucks that the firm may 

purchase. 

During the first 2 hours the BSM device simply recorded movement data, giving no 

biofeedback to the wearer (during this time period, the biofeedback threshold was set to 

500, greater than the maximum ROM for most people, therefore the threshold level was not 

reached and no biofeedback was given). 

 

Figure 5.24 Data records showing the flexion time waveform for an 8 hour period 

(Blue line – flexion threshold value, Red line – feedback activation) 

(The data was recorded at the rate of 5 recordings per second) 

At 2 hours and 15 minutes, the biofeedback threshold was reset such that every time the 

subject flexed their lumbar spine more than 250, for a time period greater than or equal to 

5 seconds, an audible beep and vibration warning was activated. The black line (Figure 

5.24.) represents the time waveform of the flexion value (in degrees). The blue line 
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corresponds to the flexion threshold (in degrees) and the red lines show the moments when 

an alarm or feedback was triggered. 

It can be observed in figure 5.24 that during the first 2 hours and 15 minutes, the 

biofeedback was not activated during the entire time. This scenario aims to allow the 

subject to move as they normally would. In this case, the subject frequently flexed their 

lumbar spine greater than 25º. 

During the next 6 hours, flexion of the lumbar spine to > 25º resulted in the biofeedback 

being triggered. The time spent in a position of flexion greater than 30º is graphically 

represented by the histogram in figure 5.25. The red bar indicates the duration of time in 

> 30º flexion, the yellow bar represents the time spent between 20º and 30º and the green 

bar represents the time spent below 20º flexion. 

 

Figure 5.25 Distribution of the flexion values during the first 2 hrs 15mins 

(40,000 recordings) of movements with no bio-feedback provided to the subject. The x axis is the 

degrees of lumbar spine flexion (in 10° increments) and the y axis is the number of samples/records 

from the device at 5 samples per second. 
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The Victorian Workcover Authority (VWA) states that positions greater than 20º flexion are 

to be avoided where possible, especially for prolonged periods (Authority 2005). As can be 

seen from the histogram (Figure. 5.25), without feedback (the first 2 hours, 15 minutes) the 

subject spent 31.8% of their time between 20º and 30º lumbar flexion, 10.5% of their time 

between 30º and 40º and 0.2% of their time between 40º and 50º. This equates to 42.5% of 

their time above the recommended amount of lumbar spine flexion. 

As can be seen from the second histogram (Figure 5.26) when feedback was turned on (the 

remaining 6 hours) the subject spent 11.0% of their time between 20º and 30º lumbar 

flexion and 0.2% of their time between >30º. This equates to 11.2% of their time above the 

recommended amount of lumbar spine flexion. 

From this example it can be seen that by recording lower back movement and providing 

biofeedback to modify that movement, significant postural changes are possible. Based on 

recommendations from the VWA, the BSM device was able to increase the amount of time 

spent in the recommended positions (i.e.: less than 20º of flexion of the lumbar spine). 

Without biofeedback, the subject spent 42.5% of their time over the recommended level of 

safe bending. With biofeedback turned on, the subject spent 11.2% of their time over the 

recommended level of safe bending (see Table 5.2). This result shows the potential 

effectiveness of the biofeedback. Based on the biofeedback received from the BSM, the 

subject was able to modify their movement patterns to avoid positions carrying a higher risk 

of injury. 
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Figure 5.26 Distribution of the flexion values during the following 6hrs 

(91,000 recordings) with bio-feedback provided to the subject. The x axis is the degrees of lumbar 

spine flexion (in 10° increments) and the y axis is the number of samples/records from the device at 

5 samples per second. 

Table 5-2 The subject’s response to bio-feedback from the BSM device 

 Time with 

BSM 

device on 

Total number of 

flexion recordings 

% of time 

between 30
0
 and 

40
0 
Flexion 

% of time in > 20
0 

Flexion 

Biofeedback off  2 h 15 min 40000 10.5 % 42.5 % 

Biofeedback on  6 h 91000 0.2 % 11.2 % 

 

Further clinical trials will have to be conducted to determine whether the bio-feedback and 

modified behaviour correspond to improved movement patterns in the longer term. How 

frequently should the biofeedback be provided to obtain maximum change in poor 

postures? Will improved movement patterns correspond to improved timeframes for the 

recovery from LBP? Will improved movement patterns reduce the chance of a recurrence of 
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low back pain? There are many questions that will require further research and 

investigation. 

5.4 Data reports produced by the Back Strain Monitor 

The BSM data provides a new approach to the monitoring of the lower back movements 

that occur during occupational or home activities. 

Currently, the following ways of displaying the raw and the processed data from the BSM 

are used: 

1. A graph showing the time waveform of the measured parameter 

2. A histogram showing the distribution of the measured parameter values 

3. A BSM Risk-Load Report of the measurement results. 

The first type of report shows raw data in the form of measured parameter values plotted 

against time (time waveform) (see examples in Figure 5.24, Figure 5.28 and Figure 5.29). 

These types of reports allow detection and analysis of specific movements patterns 

matched to the times that those movements occurred. 

The second type of report shows processed data in the form of a histogram, which displays 

the distribution of values in the recorded time waveform. The examples in Figure 5.25 and 

5.26, show how many measurement values (count) fall into different ranges of the 

parameter values displayed on the horizontal axis. The histogram reports assist with 

assessment of the severity and frequency of movement patterns that are outside 

recommended levels. 



The current version of the new Back Strain Monitor 

 

- 152 - 

It is envisaged that the third type of report (see example Figure 5.27) shows quantitative 

assessment of a parameter called the Risk-Load. The Risk-Load is derived from the raw 

measurements of flexion and EMG signals as follows. 

( ) ( ))()()( tREMGtLEMGLFROMFROMtLoadRisk +×+=−  (5.25) 

Where t denotes the time value, FROM is the flexion range of movement in degrees, 

LFROM is the lateral flexion range of movement in degrees, LEMG is the electro-

myographic activity of the left erector spinae muscle group and REMG is the electro-

myographic activity of the right erector spinae muscle group. The calculations are 

performed using the BSM processing algorithm. The algorithm is only in a very early stage 

of development. 

 

Figure 5.27 An example of the BSM Risk-Load report 

Figure 5.27 shows an example of the Risk-Load report. The Risk-Load report may be used 

to determine the time events when the warning feedback should be activated. The purple 

bar along the top of the graph in Figure 5.27 shows ‘Personal Tags’. The ‘Personal Tags’ 

mark an event or time when the patient experiences pain or a ‘high risk’ event. To generate 

the “Personal Tags’, the patient needs to press a button on the RFD to note the event in the 

data field, that is displayed for later discussion or further analysis. The red bar marks the 
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‘Alarms’. These are the times when the biofeedback threshold has been reached and a 

beep and vibration warning have been delivered to the patient. The threshold in the 

example depicted in Figure 5.27 is based on the flexion range of movement (ROM) of the 

lumbar spine, as well as the estimated Risk-Load parameter. 

Figure 5.28 shows the flexion ROM only of the corresponding four hour period of the data 

from Figure 5.27, with the feedback threshold level set at 40º (the black dotted line). The 

marked events are shown in the personal tags line and alarms line at the top of the graph. 

Figure 5.29 displays the EMG readings for the same four hour period. It is anticipated that 

practitioner’s feedback is required to identify a report format that suits their needs. 

 

Figure 5.28 Four Hours of recording of BSM flexion data 

 

Figure 5.29 Four hours of recording of the BSM’s EMG data 

The BSM device has many components and data sets that require additional work and 

research in order to validate. The following two chapters discuss the clinical trials for the 
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early BSM device. Chapter 6 analyses the inductive coil via a clinical trial and Chapter 7 

assesses the accelerometer method via a separate clinical trial. The focus of both clinical 

trials is to analyse the movement aspect of the different transducers. 
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Chapter 6. Clinical Study I for the Back Strain 
Monitor: The Inductive Coil technique 

This Chapter describes the design of the experiments that tested the reliability and 

validity of the inductive coil technique for measuring lower back movement in a 

clinical setting. Three testers were involved in the trial that reviewed the inter-tester 

reliability of the inductive coil technique in conjunction with three well recognised 

methods for measuring lower back movement. The results from the inductive coil 

measuring technique were compared to the results from the other three methods, to 

assess the validity of the inductive coil technique. 

6.1 Introduction 

Two clinical reliability and validity studies were performed as a part of the development of 

the BSM device. The first clinical study tested the reliability and validity of the inductive coil 

applied in the BSM as a movement transducer (Chapter 6). The second clinical study tested 

the reliability and validity of accelerometers applied in the BSM as the movement 

transducers (Chapter 7). 

The clinical trials performed as part of this thesis involved investigation of the reliability of 

two different measurement techniques for the lumbar spine on normal subjects, that is, 

subjects without low back pain. Subjects with low back pain have inconsistent movement 

patterns due to the nature of their low back pain. If a subject with low back pain is asked to 

‘bend forward as far as comfortable’, this could produce a significantly different movement 

on each repetition depending on the level of pain the subject is experiencing. This is a 

potential error source when movements are inconsistent.  

For the initial reliability study of a new device, it is preferable to have subjects who have 

normal low back movement so that their movement patterns will be more consistent. A 
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clinical trial on normal subjects is classified as a Phase 1 clinical trial and it is usual practice 

to investigate the reliability and stability of new devices and pharmaceuticals on normal 

subjects. The subjects in this type of Phase 1 clinical trial are used to test the ‘on body’ 

reliability of the measuring system. Subsequent trials (Phase 2 and 3 trials) will investigate 

the reliability of the device on subjects with low back pain and aim to investigate whether 

biofeedback is able to provide a treatment effect to subjects with low back pain. 

This Chapter describes the clinical reliability and validity tests for the inductive coil 

technique. The reliability test included comparison between measurements obtained by 

different testers (inter-tester reliability) on the same day. The reliability of the inductive coil 

was tested in parallel with the reliability of three other methods including: the double 

inclinometer (DI) technique, the Modified-Modified Schober (MMS) method and the Wand 

technique (WT). 

The validity tests, were done through a pairwise comparison between measurements 

obtained by the same tester using different techniques: the inductive coil technique, the 

Wand technique (Whittle and Levine 1997), the double inclinometer technique (Reynolds 

1975; Mayer, Tencer et al. 1984) and the Modified-Modified Schober method (van Adrichem 

and van der Korst 1973; Williams, Binkley et al. 1993). 

6.2 The Inductive Coil technique 

6.2.1 The Inductive Coil device 

The inductive coil device involved a datalogger, cable to the coil, software to calibrate the 

coil and the inductive coil itself (Figure 6.1). The background to the inductive coil is 

described in Section 4.7. The datalogger was powered by a 9 V battery and remained 
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isolated from mains power at all times. The inductive coil measured 150 mm at rest, had a 

diameter of 4.0 mm and was made of tungsten steel. 

 

Figure 6.1 The Inductive Coil prototype: Datalogger, lead and the inductive coil 

6.2.2 Attachment of the Inductive Coil to the subject 

The coil was attached to ‘stick-on cardboard rectangles’ (30 mm x 48 mm), by way of a 

small hook. One piece of cardboard was placed at the thoracic lumbar junction (T12/L1) and 

the other at the lumbo-sacral junction (L5/S1). The coil ran vertically for 150 mm, being 

attached to the skin at either end of the coil (Figure 6.2). 
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Figure 6.2 Coil attached to the lumbar spine 

Coil calibration for clinical tests 

The coil was initially calibrated under laboratory conditions (see Section 4.7) using a 

customised stretching rig. At the beginning of the clinical trials the laboratory calibration 

process was repeated to ensure the coil readings were re-calibrated for each subject. A 

separate and simplified calibration process was performed when the coil was mounted on 

the patient’s back. This was done for each patient before the measurements were taken. 

The calibration procedure involved recording the starting position data when the subject 

was in the erect standing position, after ensuring that the starting length of the coil was 

150 mm (± 2mm). The calibration button was pressed on the data logger, acknowledging 

the starting length for the coil. The button was pressed a second time when the subject bent 

forward to their fully flexed position and the coil was at its maximum stretch length (for that 

subject). The maximum flexed position was recorded with the tape measure to ensure the 

recorded range of the coil matched (within ± 2 mm) the recording from the tape measure. 
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6.3 Methods used in the Inductive Coil validity tests 

6.3.1 The tests used to assess the validity of the Inductive Coil 

The validity of the inductive coil measurements was tested by comparison with three 

established techniques for the measurement of the lumbar spine flexion. These methods 

were the double inclinometer (DI) technique, the Wand technique (WT) and the Modified-

Modified Schober (MMS) method. 

The DI technique has been shown to have good reliability in multiple studies (Keeley, Mayer 

et al. 1986; Beattie, Rothstein et al. 1987; Gauvin, Riddle et al. 1990; Paquet, Malouin et al. 

1991; Saur, Ensink et al. 1996; Ng, Kippers et al. 2001). Inter-tester reliability for the DI 

technique has been documented (Newton and Waddell 1991). The technique has also been 

shown to be valid for measuring lower back movement (Reynolds 1975; Moll 1976; Portek I 

1983; Mayer, Tencer et al. 1984; Merritt, McLean et al. 1986; Newton and Waddell 1991; 

Saur, Ensink et al. 1996). The DI technique was compared to radiograph measurements by 

Mayer (1984) on 12 subjects with chronic LBP (Mayer, Tencer et al. 1984). The results 

suggested that the DI technique was valid when compared to radiograph and that the 

technique was a useful tool for assessing range of movement (ROM) in patients with LBP. 

The DI technique is reliable for measuring flexion, extension and lateral flexion movements 

of the lumbar spine. 

Angular changes occurring within the lumbar spine have also been calculated using fixed 

surface markers. The Wand technique (WT) was the second method chosen for measuring 

lumbar spine movement. The WT has been shown to be reliable for measuring the angular 

lordosis of the lumbar spine (Whittle and Levine 1997). Similar methods have been used to 

analyse lumbar spine and pelvic movement whilst walking. In Taylor’s study, spinal rigs 

protruded from the lower back and pelvis and movements were captured via motion 
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analysis cameras. The changes in the angular movements of the lumbar spine and pelvis 

whilst walking on a treadmill were extrapolated from the rigs (Taylor, Goldie et al. 1999). 

The third technique is the Modified-Modified Schober (MMS) method. This method does not 

calculate angular changes of the lumbar spine. The MMS uses a tape measure to record 

the amount of skin distraction occurring as the lower back flexes forward. The MMS method 

has demonstrated good inter-tester reliability (Waddell, Main et al. 1982; Biering-Sorensen 

1984; Merritt, McLean et al. 1986; Gill, Krag et al. 1988; Hyytiainen, Salminen et al. 1991; 

Williams, Binkley et al. 1993) and has been shown to be a valid measure for lumbar spine 

flexion (Rae, Waddell et al. 1984). One limitation of the MMS method is that it is only able to 

measure flexion of the lumbar spine, not extension or lateral flexion movements. 

The three comparative techniques are explained in more detail. 

6.3.2 The Double Inclinometer technique 

The double inclinometer (DI) (Reynolds 1975; Mayer, Tencer et al. 1984) technique uses 

two gravity inclinometers to measure the angle of two aspects of the lumbar spine in relation 

to the line of gravity. The upper inclinometer is placed at the thoraco-lumbar junction 

(T12/L1) and the lower inclinometer is placed at the lumbo-sacral junction (L5/S1) (see 

Figure 6.4a,b). 

The DI measuring technique (Reynolds 1975; Mayer, Tencer et al. 1984) requires two 

gravity goniometers which have swinging needles that are always aligned with the gravity 

line (see Figure 6.3). A goniometer is calibrated such that the swinging needle points to the 

goniometer’s scale, showing the angle between the gravity line (swinging needle) and the 

base of the goniometer. 
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Figure 6.3 The Gravity Inclinometer used for the Double Inclinometer Technique 

During a measurement, the base of the goniometer is aligned with the moving object. For 

this study the base of each goniometer was aligned with the ‘Wands’ protruding out from the 

spine (see Figure 6.4a,b). The wands allow a baseline (or reference) measurement for the 

DI technique. 

The DI measurements are recorded with the subject in the starting position (erect standing, 

see Figure 6.4a) and repeated at the end of the range of flexion (see Figure 6.4b). The 

difference in degrees between the initial measurement and the final measurement 

represents the amount of an angular movement (flexion) performed by the lumbar spine. 
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 (a) 
 

(b) 

Figure 6.4 (a) Subject standing in the initial upright position, (b) Subject in the final position 

after flexing forward 

(This picture shows the process of obtaining the lumbar spine movement measurements by 

simultaneous application of three methods: the IC, the DI and the WT) 

6.3.3 The Wand technique 

The ‘Wand’ technique (WT) was described by Whittle and Levine (1997) (Whittle and Levine 

1997). The Wand technique uses small, flat cardboard templates adhered to the lumbar 

spine, with perpendicular ‘wands’ protruding from these templates (see Figure 6.5). 
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The wands used in this study were made of inverted, long golf tees, glued onto the 

cardboard rectangles, ensuring the golf tee was perpendicular to the cardboard. The rigid 

cardboard pieces measured 30 mm x 25 mm and the golf tee was 55 mm long. 

 
Figure 6.5 Diagram of the Wands stuck onto cardboard pieces 

The WT measurements of lumbar spine movement were recorded from a lateral aspect, via 

a video camera. The images of the subject in the initial standing upright position and in the 

final flexed forward position were printed out. Lines extending from the wands were drawn 

on the initial and final pictures (see Figure 6.6), the intersection angles (negative for lordosis 

and positive for flexion) were calculated for the initial and final position and subtracted from 

each other giving the final amount of the angular movement. 

The benefit of the Wand technique was that it was possible to install the coil, the wands and 

the inclinometers on the patient’s spine and take simultaneous measurements using three 

methods: IC, DI and WT. It can be observed in Figure 6.4, that such application of three 

methods could potentially provide a measurement error due to the possibility of 

misalignment between the inclinometers and the wands. Other arrangements were 

considered, however each alternative method had their own sources of potential error. 
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(a) 
 

(b) 

Figure 6.6 The Wand technique; (a) Subject standing in the initial upright position, (b) Subject 

in the final position after flexing forward. The angle of movement is calculated as a difference 
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Unlike the inductive coil (IC), which provides the movement measurements in millimetres, 

the DI and the WT methods measure the lumbar spine movements via angular 

displacement, recorded in degrees of movement. A direct comparison between the IC and 

DI or WT was not possible because the methods use different scales to record their 

findings. Mapping formulas relating the DI and WT angles to the corresponding values of 

the IC method would need to be derived. 

To enable a direct comparison of results, the Modified-Modified Schober (MMS) method, 

which provides results in millimetres, was included in the tests. 

6.3.4 The Modified-Modified Schober method 

The Modified-Modified Schober method (van Adrichem and van der Korst 1973; Williams, 

Binkley et al. 1993) is a version of the original Schober method, which uses a flexible tape 

measure to determine the change in the skin stretch when the lumbar spine flexes from a 

neutral position (erect standing) to a fully flexed position. 

The original Schober method (Schober 1937) recommended a baseline measurement of 

10 cm, marked vertically upward along the spine from the L5S1 landmark. This 

measurement was to approximately represent the length of the lumbar spine. Macrae 

(Macrae, 1969) modified the original Schober method by adding a further 5 cm 

measurement below the L5S1, producing a lumbar spine starting length of 150 mm. 

Van Adrichem and van der Korst (1973) (van Adrichem and van der Korst 1973) used the 

150 mm length but also used the posterior superior iliac spine (PSIS) as bony landmarks, 

due the ease of locating these as compared to the L5S1 landmark. Initially two points are 

marked at the positions of the two PSIS landmarks, and a horizontal line is drawn between 

these two PSIS points. At the intersection of this horizontal line and the midline of the spine, 
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a perpendicular line of length 150 mm is drawn upwards along the spine. A third marking is 

made at this upper point. These are the landmarks required for the Modified-Modified 

Schober (MMS) technique. 

In this study the posterior superior iliac spine (PSIS) landmark was used as the primary 

bony landmark. Some authors have used the lumbo-sacral junction (L5S1) although a 

comprehensive research report in 1993, explained the merits of the PSIS landmark in 

preference to the L5S1 landmark (Williams, Binkley et al. 1993). The PSIS landmark is 

easier to locate, is more reproducible than the L5S1 landmark and provides a more stable 

reference point for the measurement of lumbar spine movement. 

To perform the MMS measurements, the subject adopts an initial position of erect standing 

with feet spread shoulder-width apart. The tester circles the two PSIS landmark points and 

draws a horizontal line between them (see Figure 6.7a). At the intersection point with the 

spine, the tape is used to measure another point 150 mm upwards along the spine. A third 

point is marked 150 mm above the PSIS line (see Figure 6.7a). The subject is then 

requested to flex forward as far as comfortable and to stay at the point for 3 seconds. 

During the 3 seconds at the full flexion, the tester uses a soft flexible tape (see Figure 6.8) 

to measure the length of the stretched distance between the upper and lower marking. The 

difference between the initial length and the final length is the recorded flexion ROM of the 

lumbar spine. 

Flexible tapes used during the measurements were known to stretch or deform after 

prolonged use. For that reason only new tapes were used and checked against a metal 

ruler after every ten measurements. Tapes that varied greater than visual 1 mm from the 

metal ruler were not used for the trial. 
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 (a) 
 

(b) 

Figure 6.7 Application of the MMS method; (a) The baseline bony landmarks made during the 

initial upright standing position, (b) Measuring the stretch of the baseline due to the flexion 

6.3.5 Testers (judges) 

Three health practitioners; an Anaesthetist, a Sports Physician and a Manipulative 

Physiotherapist, took part in the inductive coil trial as testers. The clinician’s experience 

ranged from 11 years to 20 years and each therapist had significant knowledge in relation to 
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the clinical assessment and the bony landmarks of the lumbar spine. Each clinician 

received a trial package one week before the trial that included a description of the inductive 

coil prototype, the trial protocol, an instruction sheet for the application of the device and a 

timetable for the trial day. The testers (or judges) were required to be at the trial location 

one hour before the trial began, to observe a demonstration of the inductive coil prototype 

and to use the device themselves, ensuring they were familiar with the functionality of the 

device. 

6.3.6 Participants (subjects) 

To be involved in the inductive coil trial, participants were required to be aged between 18 

and 65 years and have had no significant low back pain within the previous 3 months. The 

participants were also ineligible for the trial if they were pregnant, if they were fitted with a 

pacemaker or if they had a history of spinal surgery. All participants were examined by a 

non-trial physiotherapist immediately before trial to ensure that each subject had full pain-

free movement prior to commencing the trial and understood the requirements of the trial. 

A sample of 15 subjects, who met the inclusion criteria was selected for testing. The sample 

included 11 males and 4 females. The participants’ ages ranged from 23 to 59 years and 

were recruited on a voluntary basis. No payment was offered. The participants were spread 

across different occupational groups. 

Each participant was given an identification number and the order in which the subjects 

were allocated to different testers was randomly selected and placed within a timetable for 

the trial day, to ensure that each subject was allocated to each measuring therapist, in 

random. 
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The order in which the movement tests were performed was not random. The inductive coil 

measurements and the WT measurements occurred simultaneously (managed by the 

inductive coil device and the video camera) whereas the MMS method and the DI technique 

were performed manually, with the MMS occurring first. 

6.4 Procedure 

The Human Research Ethics Sub Committee from RMIT University and the Faculty Human 

Ethics Committee from La Trobe University approved the trial. A written consent form was 

completed by each of the subjects. The trial took place at a physiotherapy centre in East 

Malvern, Melbourne. 

6.4.1 The protocol 

The protocol for the trial combined aspects from three relevant studies (van Adrichem and 

van der Korst 1973; Williams, Binkley et al. 1993; Whittle and Levine 1997). A copy of the 

protocol can be found in the Appendix II. 

Bony landmarks 

All participants were initially positioned in a comfortable erect standing position with feet 

shoulder-width apart (Youdas, Carey et al. 1991). Landmarks of the posterior superior iliac 

spine (PSIS) (Youdas, Carey et al. 1991) were identified and marked, in the shape of an 

olive with a removable pen marker, by a practitioner on the back of each participant. A 

horizontal line ‘line A’ (see Figure 6.7a) was then drawn through the centre of the two olives 

representing the lumbo-sacral junction and marking the lower attachment position for the 

coil to attach to the cardboard piece as described in Section 6.2.2. 
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A separate point, 150 mm above the first horizontal 'line A', was measured keeping the 

flexible tape measure pressed gently against the skin. A second horizontal line was drawn 

at this higher point and was labelled ‘line B’. The line ‘B’ marked the position of the upper 

attachment for the coil. 

 

A

B

 

Figure 6.8 Bony landmarks used for the device fixation for the Inductive Coil Trial 

Device fixation 

The cardboard pieces, with wands attached, were then applied to the skin using a 

therapeutic, low allergenic, double sided wig tape from Burbec medical product company 

(Melbourne, Australia). The cardboard was adhered in a horizontal position, confirmed with 

a spirit level. The coil and lead were then attached to the cardboard pieces and the lead 

plugged into the device. The device was turned on and warm up movements were 

performed. Each subject was asked to flex forward, backward, tilt left and right and rotate 

left and right to ensure that they move correctly and this also accounted for the potential of 

warm up effect (Roberts, Liang et al. 1988). Following these movements, calibration of the 

coil was performed. 
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Subject starting position 

Each subject, before commencing movements, was asked to ensure the following: 

• Stand facing the door of the room with head and shoulders straight; 

• Stand with feet shoulder-width apart; 

• Stand with arms relaxed by side; and 

• Stand with spine in an upright and erect stance. 

 
Figure 6.9 Subject starting position in erect standing 

Calibration of the inductive coil device 

Bench calibration was performed to match the coil length to a ruler, prior to the subjects 

arriving. Due to the electrical drift identified in the laboratory testing (see Chapter 4), the 

calibration needed to be performed every 30 minutes to reduce the potential drift from one 

subject to another and one tester to another. On-body calibration was also performed for 

each subject. The starting position was adopted by the subject and the calibration button on 

the device was pressed to mark the zero position/length of the coil. 

The subject was asked to flex forward to their maximum comfortable position and to hold 

that position for three seconds. This allowed the inductance readings from the coil to 

stabilise and the calibration maximum button was pressed. The inductive coil reading was 
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matched to a MMS measurement to ensure the calibration procedure was successful. The 

inductive coil was now calibrated for full flexion ROM of the lumbar spine. 

Movement to be performed 

The following lumbar spine flexion movement was performed, with all described transducers 

(IC, WT, DI, and MMS) measuring the movement. 

The participant was asked to flex their trunk forward in the sagittal plane, reaching their 

fingers toward the ground as far as they could comfortably reach. The distance from the 

finger tips to the ground was measured and a box at this same height was placed on the 

ground. The purpose of the box was to give the subject a marker to reach to, such that the 

movement amplitude was consistent. The subject was then asked to reach forward and 

touch the box lightly with their fingertips and hold the position for five seconds. This routine 

was repeated three times. The average of the three movements was calculated for each 

measurement technique and recorded. 

At the starting position and the fully flexed position, a MMS reading and the DI readings 

were taken whilst the coil and the video were actively recording the movement. After the 

three flexion movements were performed, the device was removed and the skin markings 

cleaned off with a safe solvent, to avoid any bias from the next tester using the same 

landmarks. The subject was then assisted back to the waiting room to be allocated, in a 

random sequence, to the next practitioner. 
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6.5 Method 

6.5.1 Statistical analysis 

The desired qualities of a lumbar spine movement measurement based on the inductive coil 

were assessed in two ways. First, it was determined whether the method was reliable. 

Second, it was determined whether the method was valid. 

The reliability was assessed as an amount of variability between different testers, and the 

validity was determined as an amount of agreement between different comparative 

methods. 

The inter-tester (between testers) reliability (ITR) (Streiner and Norman 2003) was 

assessed using the intraclass correlation coefficient (ICC) (Shrout and Fleiss 1979). 

Evidence of validity of the inductive coil technique was assessed by comparing the coil 

measurements to three other standard methods of the lower back movement 

measurements. These methods were: the double inclinometer (DI) technique, the Wand 

technique (WT), and the Modified-Modified Schober (MMS) method. The intraclass 

correlation coefficient (ICC) was again used to assess the agreement between these 

methods. 

According to recommendations, an ICC between 0.8 and 1.0 represents a very reliable 

method or procedure, those between 0.6 and 0.79 represent moderate reliability or 

agreement and those lower than 0.6 show doubtful, or at least questionable, reliability or 

agreement (Durand, Malouin et al. 1991). 
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6.5.2 Measures of the inter-tester reliability. 

The inter-rater reliability is the measurement of agreement among raters. It gives a score of 

how consistent the ratings are between different testers. 

There are a number of statistical methods which can be used to determine the inter-rater 

reliability. Different statistics are appropriate for different types of measurement. 

The most common methods are: joint-probability of agreement, Cohen's kappa and the 

related Fleiss' kappa, inter-rater correlation (Pearson's r or Spearman's ρ), concordance 

correlation coefficient and intra-class correlation. 

Joint probability of agreement. The joint-probability of agreement is probably the most 

simple and least robust measure. It is the number of times each rating is assigned by each 

tester, and then divides this number by the total number of ratings. 

Kappa statistics. The kappa statistics include: the Cohen's kappa (Cohen 1960), which 

works for two raters, and the Fleiss' kappa, an adaptation that works for any fixed number of 

raters. These methods provide an improvement upon the joint probability in that they take 

into account the amount of agreement that could be expected to occur through chance. 

They suffer from the same problem as the joint-probability in that they treat the data as 

nominal and assume the ratings have no natural ordering (Vincent 2002). If the data are 

continuous, some potentially valuable information within the measurements cannot be fully 

analysed. 

Correlation coefficients. Either Pearson's r or Spearman's ρ are used to measure pairwise 

correlation between testers using a scale that is ordered. Pearson’s r (Hayes 2005) 

assumes the rating scale is continuous; Spearman assumes only that it is ordinal. If more 
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than two raters are observed, an average level of agreement for the group can be 

calculated as the mean of the r (or ρ) values from each possible pair of raters. However 

neither coefficient takes into account systematic change between raters. For example, when 

rating on a scale from 1 to 5, Judge X might assign the following scores to four items: 

1,2,1,3 and Judge Y might assign 2,3,2,4. Using either Spearman's or Pearson's method, 

the correlation coefficient would be 1, indicating perfect correlation; however the judges do 

not agree on any of the items. 

Intra-class correlation coefficient. In this study the intra-class correlation coefficient (ICC) 

method was chosen as a measure of the inter-tester reliability (Keating and Matyas 1998). 

There are several types of the ICC. The range of the ICC may be between 0.0 and 1.0. The 

ICC will be high when there is little variation between the scores given to each item by the 

testers, e.g. if all testers give the same, or similar scores to each of the items. The ICC is an 

improvement over Pearson's r and Spearman's ρ, as it takes systematic change into 

account, along with the correlation between raters. 

6.5.3 Choice of the intraclass correlation coefficients 

There are several measures of ICC and they may yield different values for the same data 

set. The ICC coefficients were calculated using the SPSS statistical software package 

(SPSS Inc, Chicago, IL, USA). 

The first decision that must be made in order to select an appropriate ICC is whether the 

data are to be treated via a one way or a two way analysis of variance (ANOVA) model. 

If, for example, k ratings for each of the N participants have been produced by a subset of 

j > k testers, there is no way to associate each of the k variables with a particular tester. In 

this situation the one way random effects model should be used, with each person 
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representing a level of the random person factor. There is then no way to separate 

variability due to specific tester, interactions of testers with persons, and measurement 

error. All of these sources of variability are combined in the within participants variability, 

which is treated as an error. 

If there are k testers and each one rates all of the N participants then the variability among 

the testers is treated as a second source of systematic variability. Testers in this case 

become the second factor in a two way ANOVA model. 

If the k testers are selected at random from a larger population, the tester factor is random, 

and the two way mixed ANOVA model is used. 

The second decision to be made is whether the agreement between testers should be 

estimated in terms of consistency or in terms of absolute agreement. 

If the one way model is selected, only measures of absolute agreement are available 

because consistency measures are not defined in this case. 

If the two way model or the mixed model is selected, consistency or absolute agreement 

can be chosen. 

The difference between consistency and absolute agreement measures is defined 

depending on the importance of the systematic variability due to testers. 

If that variability between testers is considered irrelevant, it is not included in the 

denominator of the estimated ICCs, and measures of consistency are calculated. 
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If systematic differences among testers are considered relevant, tester variability 

contributes to the denominators of the ICC estimates, and measures of absolute agreement 

are calculated. 

Summarising, there are five possible options when calculating the ICC 

1. one way random model with measures of absolute agreement; 

2. two way random model with measures of consistency; 

3. two way random model with measures of absolute agreement; 

4. two way mixed model with measures of consistency; 

5. two way mixed model with measures of absolute agreement. 

Each of the five possible combinations includes two different ICC estimates: one for the 

reliability of a single rating, and one for the reliability of the mean or sum of k ratings. 

The choice depends on whether it is expected to rely on a single rating or a combination of 

k ratings. 

Taking into consideration all the above factors, the following choices were made: 

1. Determining the inter-tester reliability 

In the case of the inter-tester reliability, there was a random sample of k testers and 

each tester judged N participants. The two-way random effect model (ANOVA) was 

chosen to be appropriate. The participants were deemed random and the testers were 

also deemed random. Taking into account these factors, the ICC(2,1) was found to be 

the most appropriate (Keating and Matyas 1998). 

The value of the ICC (2,1) coefficient can be calculated as follows: 
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N

EMSJMSk
EMSkBMS

EMSBMS
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−
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−
=  (6.1) 

Where k is the number of testers, N is the number of participants, BMS is the between-

subjects mean squared result, JMS is the mean squared result for judges (testers) and 

EMS is the error mean squared. 

2. Determining the validity of the inductive coil technique 

In the case of the inductive coil validity, the measurements of three separate methods 

(WT, DI and MMS techniques) were compared to the measurements of the inductive 

coil. The N participants were deemed random and their movements were rated by each 

of the sample of k testers who were randomly selected from a larger population. The 

two-way mixed effects model (ANOVA) was chosen to assess the agreement between 

two measurement methods for a specific tester. Taking into account these factors, the 

ICC(2,1) was again found to be the most appropriate (Keating and Matyas 1998). 

The ICC (2,1) was calculated using the following formula: 

N

EMSJMSk
EMSkBMS

EMSBMS
ICC

)(
)1(

)1,2(
−

+−+

−
=  (6.2) 

Each of the variables used in the ICC (2,1) equation was taken from the ANOVA table. 

A separate ANOVA table was produced for the analysis of each ICC value. 

6.5.4 The standard error of measurement method 

Correlation coefficients indicate the retest variance between different devices in terms of a 

ratio. Correlation coefficients do not display the magnitude of the differences between 
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results in retest trials (Keating and Matyas 1998). Keating (1998) suggests that to present 

data based on ICC values in isolation, potentially raises concerns about using that data to 

support optimum reliability. 

To quantify data recording variation, alternative statistical options are available that record 

the size of the error in the actual measurement unit used. One form of this type of 

assessment is the standard error of measurement (SEM). The SEM is an average of the 

error that is presented in the initial unit of measurement (Atkinson 1998; Keating and 

Matyas 1998). 

SEM values can be calculated using the following formula (Atkinson 1998; Streiner and 

Norman 2003): 

ICCSDSEM −= 1  (6.3) 

Where SD is the standard deviation and ICC is the intra-class correlation coefficient 

Keating (Keating and Matyas 1998) suggested that SEM can be also calculated as the 

square root of the EMS term, obtained from the ANOVA table. The Keating formula is given 

as: 

EMSSEM =  (6.4) 

Both formulas (Eq. 6.3 and Eq. 6.4) gave the same results within two decimal points when 

analysing results produced in this study. Keating’s formula from Eq. 6.4 was chosen to 

present the results of this study. 

To determine a 95% confidence interval CI95% for the SEM, the formula is: 
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CI95% = ±1.96 EMS  (6.5) 

6.6 Results and analysis 

6.6.1 Flexion measurement results using the four measurement techniques 

The raw measurement results of the reliability trial for the four measurement techniques are 

displayed in Table 6.1. Each data point represents an average value obtained for the same 

measurement repeated three times. For example, the first data point in Table 6.1 for Tester 

1, Subject 1, is 60. The number 60 represents the average measurement value for a flexion 

movement performed three times by Subject 1 being tested by Tester 1. 

Table 6-1 Results representing the flexion movement measurements using four measurement 

techniques 

Tester T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Subj Subj

No. Age xº xº xº xº xº xº mm mm mm mm mm mm

1 32 60 65 61 71 74 69 71 62 80 61 54 68

2 59 32 33 31 39 38 35 43 42 44 30 39 40

3 50 49 59 59 57 62 66 63 67 54 43 59 46

4 51 36 37 43 41 41 45 41 52 42 33 47 39

5 26 54 55 58 67 69 71 67 77 80 52 64 68

6 48 56 53 55 53 54 57 54 56 68 46 44 55

7 43 47 36 52 57 46 62 65 55 49 57 50 41

8 23 68 56 62 68 65 71 60 75 66 48 43 55

9 28 60 58 53 71 70 66 72 72 70 49 45 58

10 37 33 30 34 34 32 37 43 42 46 35 39 30

11 33 60 61 50 57 66 61 71 72 72 66 60 53

12 40 59 57 51 58 60 57 79 76 75 67 62 66

13 20 52 58 56 62 62 61 62 62 62 46 55 40

14 61 38 40 31 44 47 35 55 59 42 47 50 36

15 59 31 36 30 38 35 34 47 44 41 38 30 37

Wand Flexion Double Inclin Fl MMS Flexion Inductive Coil Flexion

 

 

Results presented in Table 6.1 were used to generate the ANOVA analysis tables for the 

Wand technique (Table 6.2), Double Inclinometer technique (Table 6.3), MMS method 

(Table 6.4) and for the Inductive Coil technique (Table 6.5). The results from the ANOVA 

table were used to estimate the reliability of each method, using the ICC. 
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6.6.2 Reliability of the Wand technique 

The values listed in Table 6.2 represent the ANOVA analysis results for the Wand 

technique. 

 

Table 6-2 ANOVA results for the reliability of the Wand technique; N=15 (number of subjects), 

k=3 (number of measurement repeats) 

 SS df MS F p-value F-crit 

Rows 5395.778 14 BMS=385.4127 19.45281 8.42E-11 2.063541 

Columns 3.244444 2 JMS=1.622222 0.081878 0.921604 3.340386 

Error 554.7556 28 EMS=19.8127    

Total 5953.778 44     

 

Replacing the BMS, EMS, JMS, k, and N values from Table 6.2 into the ICC(2,1) formula 

given by Eq. 6.2, we have 

N

EMSJMSk
EMSkBMS

EMSBMS
ICC

)(
)1(

)1,2(
−

+−+

−
= = 

 87.0

15

)8.196.1(3
8.19)13(4.385

8.194.385
=

−
+−+

−
=  (6.6) 

Replacing the EMS value from Table 6.2 into the standard error of measurement (SEM) 

formula in Eq. 6.4, the following SEM and CI95% values were calculated: 

045.48127.19 === EMSSEM  (6.7) 
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00

%95 72.845.496.196.196.1 ±=⋅±=⋅±=±= SEMEMSCI  (6.8) 

These results can be interpreted such that if a flexion movement was performed and 

measured as 47° by the WT, there is a 95% chance that the measurement was within 

±8.72° (the range being between 38.28° and 55.72°). 

6.6.3 Reliability of the Double Inclinometer technique 

The values listed in Table 6.3 represent the ANOVA analysis results for the double 

inclinometer technique. 

Table 6-3 ANOVA results for the reliability of the double inclinometer technique; N=15 

(number of subjects), k=3 (number of measurement repeats) 

 SS df MS F p-value F-crit 

Rows 7219.561 14 BMS=515.6829 35.62123 4.11E-14 2.063541 

Columns 3.574524 2 JMS=1.787262 0.123457 0.884338 3.340386 

Error 405.3515 28 EMS=14.47684    

Total 7628.487 44     

 

Replacing the BMS, EMS, JMS, k, and N values from Table 6.3 into the ICC(2,1) formula 

given by Eq. 6.2, we have 

N

EMSJMSk
EMSkBMS

EMSBMS
ICC

)(
)1(

)1,2(
−

+−+

−
= = 

 92.0

15

)5.148.1(3
5.14)13(7.515

5.147.515
=

−
+−+

−
=  (6.9) 
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Replacing the EMS value from Table 6.3 into the standard error of measurement (SEM) 

formula in Eq. 6.4, the following SEM and CI95% values were calculated: 

081.348.14 === EMSSEM  (6.10) 

00

%95 47.781.396.196.196.1 ±=⋅±=⋅±=±= SEMEMSCI  (6.11) 

These results can be interpreted such that if a flexion movement was performed and 

measured as 50° by the DI technique, there was a 95% chance that the measurement was 

within ±7.47° (the range being between 42.53° and 57.47°). 

6.6.4 Reliability of the Modified-Modified Schober method 

The values listed in Table 6.4 represent the ANOVA analysis results for the Modified-

Modified Schober (MMS) Method. 

Table 6-4 ANOVA results for the reliability of the Modified-Modified Schober Method; N=15 

(number of subjects), k=3 (number of measurement repeats) 

 SS df MS F p-value F-crit 

Rows 6131.2 14 BMS=437.9429 12.87565 1.09E-08 2.063541 

Columns 20.00441 2 JMS=10.00221 0.294068 0.747499 3.340386 

Error 952.3713 28 EMS=34.01326    

Total 7103.576 44     

 

Replacing the BMS, EMS, JMS, k, and N values from Table 6.4 into the ICC(2,1) formula 

given by Eq. 6.2, we have 



Clinical Study I for the Back Strain Monitor: The Inductive Coil technique 

 

 

- 184 - 

=
−

+−+

−
=

N

EMSJMSk
EMSkBMS

EMSBMS
ICC

)(
)1(

)1,2(   

 = 81.0

15

)0.340.10(3
0.34)13(9.437
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Replacing the EMS value from Table 6.4 into the standard error of measurement (SEM) 

formula in Eq. 6.4, the following SEM and CI95% values were calculated: 

mmEMSSEM 83.548.14 ===  (6.13) 

mmmmSEMEMSCI 43.1183.596.196.196.1%95 ±=⋅±=⋅±=±=  (6.14) 

These results can be interpreted such that if a flexion movement was performed and 

measured as 60 mm by the MMS Method, there was a 95% chance that the measurement 

was within ±11.43mm (the range being between 48.57mm and 71.43mm). 

6.6.5 Reliability of the Inductive Coil technique 

The values listed in Table 6.5 represent the ANOVA analysis results for the inductive coil 

technique. 

Table 6-5 ANOVA results for the reliability of the inductive coil technique; N=15 (number of 

subjects), k=3 (number of measurement repeats) 

 SS df MS F p-value F-crit 

Rows 4028.311 14 BMS=287.7365 6.28725 1.92E-05 2.063541 

Columns 17.91111 2 JMS=8.955556 0.195685 0.823386 3.340386 

Error 1281.422 28 EMS=45.76508    

Total 5327.644 44     
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Replacing the BMS, EMS, JMS, k, and N values from Table 6.5 into the ICC(2,1) formula 

given by Eq. 6.2, we have 

N

EMSJMSk
EMSkBMS

EMSBMS
ICC

)(
)1(

)1,2(
−

+−+

−
= = 

 65.0

15

)8.450.9(3
8.45)13(7.287

8.457.287
=

−
+−+

−
=  (6.15) 

Replacing the EMS value from Table 6.5 into the standard error of measurement (SEM) 

formula in Eq. 6.4, the following SEM value was calculated: 

mmEMSSEM 76.677.45 ===  (6.16) 

mmmmxxSEMCIof 23.1376.696.196.1%95 ±=±=±=  (6.17) 

These results can be interpreted such that if a flexion movement was performed and 

measured as 55 mm by the Inductive Coil technique, there was a 95% chance that the 

measurement was within ±13.23 mm (the range being between 41.77 mm and 68.23 mm). 

6.6.6 Summary of the reliability tests for the four flexion measurement techniques 

Table 6.6 summarises the reliability test results for the four flexion measurement methods: 

WT, DI, MMS and the Inductive Coil technique. 
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Table 6-6 Intraclass correlation coefficient, standard error of measurement and 95% 

confidience interval for the Wand technique, Doublie Inclinometer, Modified-Modified Schober 

method and Inductive Coil technique 

 

6.6.7 Validity of the Inductive Coil technique 

The validity of the inductive coil technique was assessed through a pairwise comparison 

between the Double Inclinometer technique, the Wand technique, and the Modified-

Modified Schober method when tested by the same tester. 

The intra-class correlation coefficient ICC (2,1) was used to assess the agreement between 

these techniques. The methods were compared, with N participants (deemed random) and 

rated by a sample of k testers randomly selected from a larger population (Keating and 

Matyas 1998). The ICC (2,1) values for the pairwise comparison between different flexion 

measurement techniques are listed in Table 6.7. 

Measurement 

Technique 

Intraclass 

Correlation 

Coefficient 

(ICC(2,1)) 

Standard Error of 

Measurement 

95% Confidence 

Interval 

Wand technique 

Flexion 

0.87 4.45° ±8.72° 

Double 

Inclinometer 

Flexion 

0.93 3.81° ±7.47°  

Modified- Modified 

Schober Method 

Flexion 

0.81 5.83 mm 

 

±11.43 mm 

Inductive Coil 

Technique 

0.65 6.76 mm ±13.23 mm 
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Table 6-7 Intra-class correlation coefficient ICC(2,1) for a pairwise comparison between 

different flexion measurement techniques 

Compared Techniques Tester number ICC (2,1) 

WT v. IC 1 0.75 

WT v. IC 2 0.65 

WT v. IC 3 0.72 

DI v. IC 1 0.58 

DI v. IC 2 0.59 

DI v. IC 3 0.68 

MMS v. IC 1 0.61 

MMS v. IC 2 0.47 

MMS v. IC 3 0.70 

DI v. MMS 1 0.78 

DI v. MMS 2 0.80 

DI v. MMS 3 0.78 

WT v. MMS 1 0.59 

WT v. MMS 2 0.56 

WT v. MMS 3 0.57 

WT v. DI 1 0.83 

WT v. DI 2 0.86 

WT v. DI 3 0.84 

DI, Double Inclinometer; IC, Inductive Coil; MMS, Modified-Modified Schober; WT, Wand Technique 

6.7 Discussion 

The clinical reliability and validity trial for the inductive coil as a potential transducer for the 

BSM was conducted. The reliability of the inductive coil was tested in parallel with the 

reliability of three other methods including: the Wand technique (WT), the double 
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inclinometer (DI) technique, and the Modified-Modified Schober (MMS). The validity tests 

were done through a pairwise comparison between measurements obtained by the same 

tester using different techniques. 

The inductive coil trial also allowed a greater understanding of the three other measuring 

techniques (WT, DI and MMS) for measuring lower back movement. 

6.7.1 Discussion of the reliability of the Inductive Coil technique 

The results presented in Table 6.7 indicate that, the inductive coil technique showed 

moderate inter-tester reliability in the current clinical trial. The ICC value of 0.65 is lower 

than the ICC values for reliability of the other three techniques tested. The inductive coil 

technique also displays the highest error value using the standard error of measurement 

(SEM). An SEM value of 6.76 mm with a 95% CI ±13.23 mm. The amount of variance 

shown in the inductive coil results suggest the technique will not be suitable for the intended 

purpose of measuring lower back movement. 

Note that the conditions for testing the inductive coil were controlled and quite favourable for 

achieving reliable results. Training for the testers was provided and the flexion movement 

was closely guided by testers. A flexion limit (the box that set the maximum comfortable 

flexion limit (see 6.4.1.5)) provided a stop marker to improve the reliability of the subject’s 

movement and there was minimal external interference (emissions from electrical 

equipment). The potential sources of error for the inductive coil technique form part of this 

discussion. 

The inductive coil’s agreement with other measuring techniques also varied considerably. 

The coil measurements showed moderate correlation with the WT, with ICC’s ranging from 

0.65 to 0.75. The correlation was weaker between the coil and the DI technique (ICC’s 
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between 0.58 and 0.68). The poorest correlation was between the coil and the MMS, 

varying from 0.47 to 0.70. 

The inductive coil device was also turned off between each subject, to reduce the impact of 

the electrical drift seen in the laboratory trial. The inductive coil results were poorer than 

expected. The ICC value of 0.65 does correspond with moderate reliability by definition but 

the aim of the BSM device was to improve the current state of reliability for measuring lower 

back ROM. 

The WT showed good reliability with an ICC value of 0.87. This figure is less than the ICC 

values reported by Whittle, who achieved ICC values for the WT of between 0.95 and 0.97 

(Whittle and Levine 1997). The WT correlated well with the DI technique, showing ICC 

values of between 0.83 and 0.86 for the three testers. Both these techniques derive angular 

changes of the lumbar lordosis, whereas the MMS method and the inductive coil technique 

rely on skin distraction to gauge measurement of the lumbar spine. This distinction 

becomes important during the design and testing of the accelerometer method in Chapter 7. 

The DI technique displayed the most reliable results of the four measurement techniques, 

with an inter-tester ICC of 0.93. This result is closely aligned with similar studies that have 

assessed the inter-tester reliability of the DI technique. Saur et al. in 1996 showed an ICC of 

0.95 for DI measure of lumbar spine flexion (Saur, Ensink et al. 1996). Newton and Waddell 

in 1991 showed an ICC of 0.94 for the DI technique for measuring lumbar spine flexion 

(Newton and Waddell 1991). Burdett et al. in 1986 showed an ICC of 0.91 for lumbar spine 

flexion (Burdett, Brown et al. 1986). Other studies have noted significantly lower ICCs for 

lumbar spine flexion using the DI technique. Williams et al. in 1993 found an ICC of 0.60 

using the DI technique (Williams, Binkley et al. 1993). 
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6.7.2 Discussion of the validity of the Inductive Coil technique 

The two techniques that used angular change to measure lumbar spine movement (WT and 

DI) correlated well showing between 0.83 to 0.86 correlations for the three testers. 

The measurements of most interest in this study were those comparing the MMS to the 

inductive coil, because both techniques record the movements of the lumbar spine in 

millimetres. Correlations ranged from 0.47 to 0.70 suggesting there was questionable 

correlation between the two techniques. 

The validity of the DI technique has been supported by a number of studies. The concept of 

using angular measures to quantify ROM of the lumbar spine has been further supported by 

Mayer et al. (1984) who stated that there was no statistically significant difference between 

X-ray measurements and inclinometer measurements. Saur et al. (1996) also compared 

radiological measurements to inclinometer measurements in their 1996 paper in the ‘Spine’ 

journal. Their study reported high correlation between radiological techniques and 

inclinometer techniques, with an r value of 0.93 (P < 0.001). 

In the current study, it is difficult to draw conclusions on the validity of the DI technique, due 

to the lack of reliability of the other measuring methods. The best result was seen between 

the DI technique and the WT (ICC 0.83 to 0.86). Results between the DI and the MMS 

showed moderate agreement (ICC 0.78 to 0.80) yet significantly less agreement was shown 

between the DI technique and the inductive coil (ICC 0.58 to0.68). 

The MMS method performed quite well showing good inter-tester reliability (ICC 0.81). 

This result shows a higher degree of inter-tester reliability than the Williams et al. study of 

1993 that showed an ICC for the MMS of 0.72 (Williams, Binkley et al. 1993). The Williams 
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et al. study, however, did not use a stop point for lumbar spine flexion. This may have 

improved the subject’s ability to flex to the same point for each movement. In the Williams et 

al. study, movements were only performed once yet in this study, movements were 

performed three times and the average of the three movements was used in the statistical 

analysis. These factors may have increased the reliability of the MMS technique in this 

study, since averaging is a method to reduce unpredictable variability. 

Within any clinical study, there are three potential sources of error during testing of reliability 

and validity (Streiner and Norman 2003). Errors can occur at the level of the equipment (the 

inductive coil in this case), at the level of the tester or at the level of the subject. For the 

purpose of this discussion, the error assessment will focus on the inductive coil technique. 

The first source of error related to the equipment, that is the inductive coil. Errors occurring 

with the inductive coil device were identified as coming from three different factors. First, the 

coil fixation to the body, second, an electronic drift occurring within the inductive coil and 

third, an electrical lag with the inductive coil. 

The first equipment error stemmed from the fact that the inductive coil was difficult to 

reliably fix to the subject. Fixation of the coil to the lines marked on the body (Line A and 

Line B) was such that the attachment of the coil to the adhesive cardboard platform could 

vary 1-2 mm depending on the attachment hook or link. This attachment was at either end 

of the coil and therefore potentially caused a variation of ± 2–4 mm in the total measure of 

lumbar spine ROM. This provides a potential source of error in the fixation of the inductive 

coil. 

The second equipment error related to the electronic drift occurring within the readings of 

the coil. The inductive coil, in preliminary experiments, tended to show electronic drift over 
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time. The longer the device was on, the further the coil measurements would drift. This was 

thought to be related to a component on the circuit overheating, thus affecting the readings 

of the coil. Changes were made to the circuit which did reduce the drift, yet the coil readings 

continued to drift, especially if the device was used continuously for greater than 

30 minutes. In Section 4.7.4, an example was given where the resting millimetre reading 

from the inductive coil drifted 5.6% in 27 minutes. This was a concern leading up to the 

trials but was managed by turning off the circuit in between each subject. The electronic drift 

was a potential source of error for the inductive coil readings. 

The third equipment error potentially stemmed from electronic lag of the inductive coil. The 

human spine has the ability to move quite quickly. When assessing movements of the 

spine, it is possible that a number of movements are made within one second. A simple 

clinical test of ‘Rate of Lumbar Spine’ movements was displayed in Chapter 5, Table 5.1. 

The results showed that the lumbar spine could perform just over two movements per 

second (2.06 per second with SD ± 0.32). The hold time (3 seconds) at the full extent of the 

flexion movement should have allowed for this lag and the lag was less evident at full 

stretch/full flexion, than in the upright position. The lag error was more evident in the upright 

position (the starting position), that is, when the coil was not being stretched. This 

introduced a potential issue with the trial protocol. The time the subject stayed in an upright 

position, between movements, was not standardised in this trial. In order to reduce the 

effect of the lag, it may have been best to ensure the subjects remained in an upright 

position for a minimum of three seconds, to allow the inductance reading from the coil to 

stabilise. 

Why did the electronic lag only occur at the baseline, or starting position, readings? When 

the coil was stretched to its maximum length (i.e., from 150 mm to 250 mm) and allowed to 

return to its starting position, the electronic recording of the coil length took 1-2 seconds to 
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reach the baseline starting position, this phenomena being called an ‘electronic lag’. This 

meant that certain movements of the lumbar spine would be missed due to the electronic 

lag experienced by the coil. This ‘lag’ was only seen at the baseline readings, whereas the 

upper limit readings showed good reliability (see Figure 4.14). The reasoning behind why 

the lag affects the baseline limit and not the upper limit is not clear. One hypothesis is that 

at the upper limit (fully stretched), there is more spacing between the loops of the coil 

therefore potentially less interference, whereas when the coil in its resting position, the 

loops of the coil are in close proximity and although insulated from each other (insulating 

paint applied when coil on full stretch, see Chapter 4), there may still be some electrical 

interference. 

The second source of error, using Streiner and Norman’s categories, relate to errors at the 

level of the tester (Streiner and Norman 2003). Two separate tester errors are discussed 

that may have influenced the results of the trial. 

The first tester error relates to the identification of bony landmarks on the human body, to 

mark the placement for the inductive coil and other measuring techniques. The testers used 

for the trial had significant experience in the management and assessment of low back pain 

but came from different backgrounds. There was an anaesthetist, a sports physician and a 

manipulative physiotherapist. During the training session for the inductive coil trial, it 

became obvious that each professional had their own technique for locating bony 

landmarks. It has also been shown in previous studies that there is significant variance 

between therapists when locating the landmarks (Panzer 1992). In order to minimise inter-

tester variance when locating landmarks for the PSIS, a brief workshop was performed prior 

to the trial, to ensure compliance and consensus with the identification of the PSIS. 
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The second tester-related error potentially stemmed from the testers’ instructions to the 

subject. The phrases and terminology used to instruct a subject on how to move can be a 

potential source of error. The phrase, ‘Bend forward as far as you comfortably can’ was 

used to describe the flexion movement of the lumbar spine. It was noted that one subject 

was unsure as to whether they should flex forward as far as they possibly could. The phrase 

‘possibly could’ was quite different to ‘comfortably can’. For this purpose, the tester was 

instructed to explain that the movement was not intended to put any strain on the subject at 

all and they needed to be able to comfortably hold the position for five seconds. The 

protocol stated quite specific instructions, or scripted phrases in an attempt to reduce errors 

relating to the instructions from the testers and the subjects interpretation of those 

instructions. 

The third source of error occurred at the level of the subject. Two potential subject errors 

were noted. 

The first subject-related error was the ‘warm up’ effect. In earlier trials, it had been observed 

that subjects would flex forward further on their repeated bends. There is a documented 

warm up effect that suggests that a subject performing a particular task, will be able to 

move further into range once the movement has been performed a number of times 

(Roberts, Liang et al. 1988; Youdas, Carey et al. 1991). In order to mitigate this potential for 

error, the subject was taken through a warm procedure as part of the protocol, involving 

hamstring stretches, lumbar rotations, lumbar flexion and extension. A further strategy 

involved setting a marker or stop point such that when a subject reached their hands 

forward, toward the ground as far as they comfortably could, a box was set at this height. 

This box gave the subject a definitive end point for their flexion ROM, encouraging them to 

repeat the same range and type of flexion movement. This procedure was repeated for the 
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lateral flexion movements but was more difficult to perform for extension of the lumbar 

spine. 

The second subject-related error was that each individual subject could vary in the way they 

performed each movement. Subjects have different concentration levels and different 

awareness about how their body is moving in a three dimensional space and this could 

have contributed to error in the measurement. The described tasks are relatively simple 

daily movements of the spine yet even in the warm up procedure, the variation in the way 

subjects would move from one movement to another was quite noticeable. Subjects with 

poor concentration or lack of attention to detail varied their starting positions whereas other 

subjects were more attentive to the instructions from the testers. 

The three standard measuring techniques (WT, DI and MMS) performed in a similar way to 

previous studies, showing similar ICC values for inter-tester reliability (Wand ICC 0.87, DI 

ICC 0.93 and MMS ICC 0.81). The validity between the DI technique and the Wand 

technique was certainly encouraging (with ICCs between 0.83 to 0.86), suggesting that the 

angular techniques may be more a more reliable method for measuring lower back 

movement than the skin distraction techniques (MMS and the inductive coil technique). The 

correlation between the MMS and the inductive coil technique ranged from 0.47 to 0.70 

which was not enough to have confidence that the recording of the coil method was reliable 

and agreed with the MMS method. 

The inductive coil technique provided positive early results in a laboratory based setting yet 

with continuous use, issues with reliability became evident. Modifications to the circuit and 

software assisted in reducing the electrical issues but the inductive coil device still needed 

to be turned off between each of the subjects. The electronic drift when the inductive coil 

was turned on for greater than 30 minutes and the electrical lag whilst the inductance levels 
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stabilized after stretching, were issues that were not easy to rectify. Coupled with the poorer 

than expected reliability and validity results, the inductive coil would need significant 

improvement before becoming a useful measuring transducer for the lower back. 

The essence of the BSM device was to develop a new reliable, valid and easy to use 

measuring device for the lower back. The inductive coil technique proved to have moderate 

reliability for short duration testing but not for prolonged periods of assessment. There was 

merit in investigating the accelerometer technique more closely, especially in light of the 

positive results from the angular techniques within the inductive coil trial. Chapter 7 reviews 

the clinical trials for the accelerometer method. The background and laboratory testing of 

the accelerometer method are described in Chapters 4 and 5. 
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Chapter 7. Clinical Study II for the Back Strain 
Monitor: The Accelerometer Method 

This Chapter describes clinical experiments conducted to test the reliability and 

validity of the Accelerometer Method. The Accelerometer Method allowed for the 

measuring of lower back movement in two dimensions. Three testers were involved 

in the trial that reviewed the inter-tester reliability of the Accelerometer Method, the 

Double Inclinometer technique and the Modified-Modified Schober method. The 

results obtained from the Accelerometer method were compared with the results 

obtained from the Double Inclinometer technique, to assess the criterion validity of 

the Accelerometer Method. 

7.1 Introduction 

The second clinical trial for reliability and validity of the BSM used the accelerometer 

transducers to measure movements of the lumbar spine. 

The aim of the study was to assess whether the accelerometer method could reliably and 

validly measure the range of movement on human subjects. The accelerometer method 

was developed 18 months after the inductive coil technique resulting in the second clinical 

study being performed on a different set of subjects. In an ideal setting, the same subjects 

would be assessed using the inductive coil technique and the accelerometer method.  

For reliability, the accelerometer method was assessed for inter-tester reliability (three 

testers on the same day) and for test re-test reliability (one tester on two different days). For 

validity, the accelerometer method (AccM) was assessed by comparing the accelerometer 

readings to two other reliable measuring methods: the double inclinometer (DI) technique 

(Mayer, Tencer et al. 1984), and the Modified-Modified Schober (MMS) technique (Williams, 

Binkley et al. 1993). 
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The DI and MMS techniques were described in detail in Chapter 6. In brief, the DI technique 

involves using two gravity inclinometers to measure the relative angle of the spine in 

relation to the line of gravity (or vertical). The DI technique measures the angular difference 

between the upper lumbar spine (L1), measured by one inclinometer, and the lower lumbar 

spine (S1), measured by a second inclinometer. One inclinometer reading is subtracted 

from the other inclinometer to calculate the position of the lumbar spine at that point in time. 

The DI technique is the comparator that most closely mimics the accelerometer 

transducers. The accelerometers measure angular movement and the accelerometers are 

placed at the same bony landmarks as inclinometers used by the DI technique. For the 

purpose of the clinical trial, the DI technique is considered the ’Gold Standard’ against 

which to gauge the accelerometer measurements. The DI technique is therefore the 

criterion measure for a clinical trial that aims to produce evidence of criterion validity for the 

AccM (Streiner and Norman 2003). 

The DI technique has been shown to be reliable and valid. However, it does only provide a 

single measurement of the start and end of lumbar spine movement. The AccM aims to 

provide multiple measurements through the full range of movement at five recordings per 

second and for extended periods of time (up to 24 hours). 

The MMS method uses a flexible tape measure to measure the change in skin stretch when 

the lumbar spine flexes from a neutral position to a fully flexed position. The landmarks are 

at the lumbo-sacral junction and the thoraco-lumbar junction and this method has been 

shown to have relatively high levels of inter-tester and test intra-tester reliability by various 

authors (Million, Nilsen et al. 1981; Waddell, Main et al. 1982; Biering-Sorensen 1984; 

Merritt, McLean et al. 1986; Gill, Krag et al. 1988), and in the previous Chapter (ICC = 0.81). 
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The clinical trial was performed within a controlled setting. A controlled setting for this study 

was defined as an indoor setting, where all subject movements are performed with their feet 

stationary and there are few external influences from the environment. 

7.2 Method 

7.2.1 Instrumentation: description of measurement techniques 

The gravity inclinometers for the double inclinometer (DI) technique 

The DI measuring technique (Reynolds 1975; Mayer, Tencer et al. 1984) requires two 

gravity inclinometers that have a swinging needle that always points vertically as the 

housing is rotated through space. The base of the inclinometer is aligned with the object 

being measured and the needle will point to the specific angle on the inclinometer housing, 

in reference to the vertical. (For a diagram of the gravity inclinometer, see Figure 6.1) 

Tape measure 

A soft, flexible tape measure (similar to one a seamstress may use) was required for the 

MMS technique. This needed to be calibrated against a ruler to ensure the metal end 

capping had been well placed when the tape was manufactured (see Figures 6.4 and 6.5). 

The Accelerometer method (Back Strain Monitor) 

The accelerometer method (AccM) involved two identical accelerometer transducer boards 

(ATBs) (Figure 7.1), EMG electrodes and a recording feedback device (RFD) (Figure 7.2) 

which acted as a data storage unit for the trial data. Whilst the EMG electrodes were used 

in the trial, the recordings and reliability of the EMG signals do not form part of this thesis. 
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The Accelerometer Transducer Boards 

The ATBs were fitted with the two separate, two-dimensional (2D) accelerometers, 

positioned perpendicular to each other, with one offset at 45˚ to the other accelerometer and 

the main PCB (see Figure 4.19). The accelerometers measured acceleration of the ATBs, 

 

Figure 7.1 Diagram of the accelerometer prototype in place on the lumbar spine 

(accelerometer transducer boards and electro-myographic electrodes) 

 

 

Figure 7.2 The accelerometer prototype used for the accelerometer trial showing the 

accelerometer transducer boards and the original recording feedback device 
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whilst the orientation of the accelerometers enabled three-dimensional trigonometry and 

simultaneous equations to calculate of the angular changes of the ATBs in relation to 

gravity (see Chapter 5). 

The first ATB was placed at the level of the PSIS, on the first sacral spinous process (S1) 

and the second ATB was placed 150mm above this, close to the level of the first lumbar 

spinous process (L1), (see Figure 7.1). By subtracting one ATB angular position from the 

other ATB angular position, the lumbar lordosis (or starting position) was derived (Whittle 

and Levine 1997). The change in lumbar lordosis was calculated by sampling the different 

positions of the lumbar spine at regular intervals, and subtracting one position from another. 

Five samples a second were taken by the accelerometers allowing a continuous analysis of 

the change in position or posture of the lumbar spine. 

The ATBs were mounted onto a thermoplastic board in order to extend the width of the 

fixation points. Although this reliability study only reviews two dimensions of movement 

(flexion/extension and lateral flexion movements), the accelerometer technique may have 

the capability to quantify axial rotation movements of the lumbar spine. During early 

laboratory testing, a smaller ATB was used with lateral dimensions of 52 mm. It became 

evident that rotation ROM of the lumbar spine caused significant contraction of the erector 

spinae musculature, leading to deviation of the small ATB, such that the ATB rotated in the 

opposite direction to the movement being performed. This only occurred at the upper ATB 

but would cause errors to any rotational measurements. 

To overcome this issue, a wider thermoplastic base was used for the ATB (100 mm, see 

Figure 7.3) than the original 52 mm. The wider base plate for the ATB ensured the intended 

rotational motion was captured by the upper ATB. Double sided adhesive foam was used to 

adhere the ATB to the subject, protecting the skin from any sharp edges of the ATB. 
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Figure 7.3 The accelerometer transducer board 

The electro-myographic electrodes 

To be able to record the muscle activity of the lumbar spine muscles, EMG electrodes were 

placed on the erector spinae muscle group at the level of L3 (Fathallah, Marras et al. 1998). 

The EMG electrodes used were 3M brand, 2560 Red Dot electrode (3M, Pymble, 

Australia).The placement and orientation of the electrodes matched the orientation 

described by Fathhallah et al. (1998). The skin preparation and application of the EMG 

electrodes followed the manufacturer’s instructions. 

The Recording Feedback Device 

The RFD consisted of a double layered printed circuit board, a 9V battery, the housing and 

the leads to the ATBs and to the EMG electrodes (further detail provided in Chapter 5). The 

RFD was capable of recording 24 hours of data. Each subject’s data set was downloaded to 

the mainframe computer after each subject performed each trial. The feedback aspect of 

the device was not used for the purposes of this trial. The original version of the RFD is 

pictured in figure 7.2, and the current version is pictured in figure 7.4. 
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Figure 7.4 The current recording feedback device 

7.2.2 Testers 

Three health practitioners, a manipulative physiotherapist, a physiotherapist and an 

anaesthetist, were the testers for the accelerometer trial. The therapist’s professional 

experience ranged from 10 years to 16 years and each therapist had significant experience 

with the assessment, treatment and management of lower back conditions. Each of the 

therapists received a trial package prior to the trials, to allow a more comprehensive 

understanding of the protocol and timetable for the trial. The package included a description 

of the device, a copy of the trial protocol, an instruction sheet in relation to the application of 

the device and a timetable for the trial day. 

The testers were required to be at the trial location one hour before the trial began, to 

observe a demonstration of the accelerometer prototype to be used in the trial and to 

operate the prototype themselves. The comparator measuring devices (DI and MMS 

techniques) were demonstrated in the same way, to ensure each of the testers were familiar 

with each of the measuring techniques. 

7.2.3 Subjects 

The subjects for this study were a convenience sample of 23 volunteers who responded to 

an advertisement placed in the waiting room of two physiotherapy centres in Melbourne. 
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The centres were the Hoppers Crossing Physiotherapy Centre, Hoppers Crossing and the 

Bluff Road Physiotherapy Centre, Sandringham. 

Before acceptance as a volunteer, each subject was questioned by a receptionist at the 

centre, who was not taking part in the trials. The subjects were not asked to take part in the 

study by their treating physiotherapist or any other health practitioner. Subjects were 

excluded from the study if they had had back pain in the previous 3 months, had a history of 

lower back surgery, were pregnant or had a cardiac pacemaker. For inclusion, the subjects 

were required to be between 20 and 65 years of age and were not able to have had recent 

surgery or have experienced a significant medical condition which affected their normal 

daily activity and/or movements of their lower back. 

The subject sample was a different and independent sample from the subjects tested in 

Chapter 6. There were 17 males and 6 females and the subjects’ age aged from 21 to 

62 years, with a mean age of 40.4. The participants were spread across different 

occupational groups. All subjects read and signed an informed consent form prior to 

inclusion in the study. Each subject was given an identification number and the order in 

which the subjects were tested was randomly selected and placed on a timetable to ensure 

that on the trial day, subjects were allocated to testers in a random order. 

7.3 Procedure for the accelerometer reliability trial 

The Human Research Ethics Sub Committee from RMIT University referred the 

accelerometer trial ethics application to the main Human Research Ethics Committee at 

RMIT. Approval was gained from the RMIT and the La Trobe University Faculty Human 

Research Ethics Committees for the trial to proceed. 
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7.3.1 The accelerometer trial protocol 

The protocol for the trial closely followed the protocol used for the inductive coil trial, 

described in Chapter 6, with the omission of the wand technique and the inductive coil 

technique and the inclusion of the accelerometer technique. The protocol for the 

accelerometer trial combines aspects of three relevant studies. 

The first study is a research report by Williams et al. (1993), who compared the MMS 

technique to the DI technique. This research report also discusses the development of the 

MMS from the original Schober technique (Schober 1937) and describes a number of 

previous studies that utilise the DI technique for assessing reliability and validity of lumbar 

spine movement (Mayer et al. 1984; Keeley et al. 1986; Merritt et al. 1986; Gill et al. 1988). 

In the second relevant study the Modified-Modified Schober (MMS) method was described 

for the first time (van Adrichem and van der Korst 1973). This study elaborates how the 

MMS method was derived from the original Schober method (Schober 1937). Van Adrichem 

and van der Korst report that the MMS method provides a reliable method for measuring 

lumbar spine movement. 

The third relevant study for the development of the accelerometer trial and the trial protocol 

is by Mayer et al. (1984). In Mayer’s study, the DI technique was compared to X-ray and no 

statistically significant difference was found between the two techniques. This study 

supported the concept of measuring angular changes at the upper and lower aspects of the 

lumbar spine to derive a measure of the movement taking place in the lumbar spine. Other 

authors have been critical of the Mayer article because the statistical analysis used means 

and standard deviations, not correlations (Williams, Binkley et al. 1993). This criticism is 

balanced by other authors who have reported that the DI is a valid technique for measuring 
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lumbar spine motion (Moll 1976; Portek I 1983; Merritt et al. 1986; Newton and Waddell 

1991). 

The protocol for the accelerometer trial was based on components from each of the above 

studies, as well as a specifically written procedure for the application of the accelerometers. 

A copy of the accelerometer trial protocol is attached in Appendix III. 

Bony landmarks 

All participants were initially positioned in a comfortable erect standing position with feet 

shoulder-width apart (Youdas, Carey et al. 1991). The posterior superior iliac spines (PSIS) 

(Hoppenfeld 1976; Magee 1987; Youdas, Carey et al. 1991) were identified and marked, in 

the shape of an olive with a removable pen marker, by each practitioner on the lower 

lumbar spine of each participant. A horizontal line ‘line A’ (see Figure 7.5) was then drawn 

through the centre of the two olives representing S1. This line marked the application point 

for the lower accelerometer transducer board (ATB) with its superior border sitting directly 

along ‘line A’. 

The second application point was identified by measuring 150 mm vertically above the 

horizontal 'line A' (towards the thoraco-lumbar (T12/L1) junction) whilst keeping the flexible 

tape measure pressed gently against the skin. Another horizontal line was drawn at this 

higher point and was labelled ‘line B’. The line ‘B’ marked the application point for the upper 

accelerometer transducer board (ATB), where its inferior border was adhered directly along 

‘line B’. 
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Figure 7.5 Diagram showing the placement of the transducer boards and electromyogrphic 

electrodes on the lumbar spine for the accelerometer trial 

The EMG electrode placements were derived from those described by Fathallah et al. 

(1998a,b). 

Device fixation 

The skin of the lower lumbar spine was shaved, where necessary, and cleaned with alcohol 

based wipes to reduce the oil content of the skin and ensure minimum impedance between 

the skin and the EMG electrodes. The skin preparation also allowed adequate adhesion of 

the EMG electrodes and the ATBs to the skin. 

The ATBs were applied to the skin using a therapeutic, low allergenic, double sided wig 

tape from Burbec P/L (Melbourne, Australia). The ATBs were placed centrally on ‘line A’ 

and ‘line B’ in accordance with the trial protocol. The ATBs needed to be horizontal and this 
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was confirmed with a spirit level. The EMG electrodes were placed in their respective 

positions in keeping with the protocol. The leads connecting the transducers (ATBs and 

EMG electrodes) to the RFD were checked to ensure adequate connection. 

Calibration of the Accelerometer Transducer Boards 

The subject was asked to stand in an erect position with hands by their side, feet shoulder-

width apart and looking forward. Once the subject was in their ‘calibration position’ (identical 

to the starting position) and the tester checked conformity with the protocol, the RFD 

calibration button was pressed to give the accelerometers their zero reference point. For the 

three dimensions of movement, this zero position was the point where all measurements 

would be referenced from. The calibration process needed to be performed for each 

subject. 

Warm up routine 

A subject’s maximum ROM of the lumbar spine can vary depending on the number of 

movements previously performed. In order to reduce the warm up effect, warm up 

movements were performed prior to measurements being taken. Each subject was asked to 

flex forward, backward, tilt left and right and rotate left and right (once in each direction) to 

ensure that were able to perform the required movements (Roberts, Liang et al. 1988). 

Subject starting position 

Each subject, before commencing movements, was asked to ensure the following: 

• Stand facing the door of the room with head and shoulders straight; 

• Stand with feet shoulder-width apart; 

• Stand with arms relaxed by side; and 

• Stand with spine in an upright and erect stance. 

(for a diagram of the subject starting position see Figure 6.9) 
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Movements to be performed 

The following movements were performed, with all described transducers measuring the 

movement. 

1. Lumbar spine flexion 

Starting posture: Standing (in starting position) 

The participant was asked to ‘flex your trunk forward, reaching your fingers toward the 

ground as far as you comfortably can’. It was explained to the subject that it was not a test 

or competition for their maximum amount of flexion, but more to bend to a level of flexion 

that they could comfortably hold for a five-second period. 

 

Figure 7.6 Subject flexing forward to a box as their limit for flexion range of movement testing 

The distance between the finger tips and the ground was measured with a tape measure 

and a box, matching this same height, was placed on the ground (see Figure 7.6). The 
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purpose of the box was to give the subject a marker to reach to such that the movements 

performed were consistent. The subject was then asked to reach forward and lightly touch 

the box with their fingertips and hold the position for five seconds. This routine was 

repeated three times. At the starting position and the fully flexed position, MMS readings 

were taken first, followed by the DI readings. The RFD automatically recorded all 

movements performed. 

2. Lumbar spine extension 

Starting posture: Standing (starting position) 

The subject was asked to arch backward as far as they are comfortable, with their arms 

folded across their chest, and to hold this position for five seconds. Whilst holding this 

position the DI readings were taken and repeated when the subject returned to their starting 

standing position. The MMS method was not used for the lumbar extension movement. The 

extension movement was repeated three times. An extreme range of movement was 

discouraged as it was shown to become uncomfortable with the sustained hold. This was 

explained to the subject during the warm up movements. 

3. Lumbar spine lateral flexion 

Starting posture: Standing (starting position) 

The subject was asked to laterally flex the lumbar spine, sliding their hand down the side of 

their thigh without allowing the trunk to deviate forward or backward. The movement was 

closely monitored during the warm up routine as well as during the testing, to ensure each 

subject understood the requirements of the lateral flexion movement. 
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It was noted in previous trials that significant variability existed when subjects performed the 

lateral flexion movements. This may be due to the scapula and shoulder complex being 

able to reach a variable amount. The testers’ instructions to the subject and subject’s 

understanding of these instructions and the lateral flexion movement, were crucial to the 

reliability of the lateral movement being performed. 

At the maximum comfortable lateral flexion range of movement, a box placed on a small 

table was placed at that height to allow the subject to return to the same level of lateral 

flexion. The lateral flexion movement was performed three times to the right and three times 

to the left with a five second hold at the maximum range of movement. 

The double inclinometer was used to record the range of lateral flexion to the right and left. 

The base of the inclinometer was placed in line with the top of the upper ATB whilst the 

second inclinometer was placed in line with the lower ATB. Readings were taken from both 

inclinometers and recorded on the subject’s data sheet. 

No Modified-Modified Schober (MMS) readings were taken for extension ROM or lateral 

flexion ROM as the MMS technique has not proven to be reliable for these movements. 

After all appropriate movements were performed, the ATBs and the EMG electrodes were 

removed and the skin markings cleaned off with a safe solvent to reduce any potential bias 

from the next tester utilising the same landmarks. The subject’s data sheet was checked by 

the trial co-ordinator, ensuring each subjects’ details and each testers’ details were correct 

and that all data fields were complete. The subject was then assisted back to the waiting 

room to be allocated, in a random sequence, to the next practitioner. Each subject was 

tested by the three testers within a one hour period, with each individual test taking between 

15 and 20 minutes to perform. 
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7.4 Statistical analysis 

The reliability of the accelerometer method relates to the consistency and reproducibility of 

the measurements from one tester to another tester (inter-tester reliability) and from the 

same tester using the accelerometer method on two separate days (test re-test reliability) 

(Thorndike and Hagen 1977). To obtain evidence of validity, the AccM measurements were 

compared to another measurement method with documented evidence of validity, in this 

case the DI technique. 

The reliability and validity of the accelerometer method for measuring lower back movement 

is currently not known. Therefore, the first step was to establish the reliability of the 

accelerometer method, to determine how consistent do the device recordings need to be in 

order to be useful? (Keating and Matyas 1998) Definitions of reliability again follow Durand’s 

recommendations (Durand, Malouin et al. 1991). An ICC between 0.80 and 1.0 represents a 

very reliable method or procedure, those between 0.60 and 0.79 represent moderate 

reliability and those lower than 0.60 show doubtful, or at least questionable, reliability. 

In Chapter 4, the inductive coil showed reasonable reliability in the laboratory trials, with a 

CV of 5.6% due to an electronic drift. Expectations for the reliability of the inductive coil in 

the clinical trial were not high due to the inherent problems in the laboratory setting. Once 

the inductive coil was placed on the lumbar spine, it was anticipated that there would be 

significantly more error. In the clinical trial described in Chapter 6, the inductive coil results 

were further impeded by the electronic lag, leaving less than acceptable results for the 

inductive coil reliability (ICC range 0.47 – 0.70). 

The accelerometer method showed very good results within the laboratory setting. There 

was a coefficient of variation of 1.0% for movements between 0˚and 90˚. The higher degree 

of consistency within a laboratory setting increased the expectations for the accelerometer 
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method within the accelerometer clinical trial. The DI technique has been shown to have an 

ICC as high as 0.95 (Saur, Ensink et al. 1996) with other studies reporting ICCs greater 

than 0.90 (Burdett, Brown et al. 1986; Newton and Waddell 1991). Within the previously 

described inductive coil trial, the DI technique had an ICC of 0.92. Whilst an ICC of above 

0.80 constitutes good reliability based on Durand’s definition (Durand, Malouin et al. 1991), 

the expectation for an acceptable ICC for the reliability of the accelerometer method within a 

controlled clinical trial setting is to be 0.90. There are also observations and lessons learnt 

from the inductive coil clinical trial, in relation to the landmark identification, tester education 

and instructions to the subject. Prior to the statistical analysis being performed, an average 

was taken for the three movements that each tester asked the subject to perform. This was 

done for the AccM, the DI technique and the MMS method. 

The statistical analysis reviewed the accelerometer measurements in three ways. First, the 

inter-tester reliability (ITR) (Streiner and Norman 2003) of the accelerometers was 

examined to determine the variability between different raters or testers using the 

accelerometer method. Secondly, the intra-tester reliability or test re-test reliability (TRTR) 

was used to determine the variability between the same tester but on a different day 

(Streiner and Norman 2003). Thirdly, evidence of validity of the accelerometer method was 

assessed by comparing the accelerometer readings to other standard lower back 

measurements, the DI and MMS techniques. To acquire evidence of validity, by comparison 

with a ‘gold standard’ measurement, is to provide evidence of criterion validity (Streiner and 

Norman 2003). 

In all three cases an intraclass correlation coefficient (ICC) method, as described by Shrout 

and Fleiss (Shrout and Fleiss 1979), was used to review the reliability and validity of the 

accelerometer method. Different forms of the ICC are used for the analysis depending on 

the design and the nature of the study. For the inter-tester reliability and the test re-test 
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reliability, ICC (2,1) was used (Keating and Matyas 1998). The ICC (2,1) has been 

previously used to account for variance in a test re-test reliability study (Taylor, Dodd et al. 

2004). For the correlation between the accelerometer method and the DI and MMS 

techniques, ICC (2,1) was also used (Keating and Matyas 1998). The ICC (2,1) formula 

(see Eq. 6.1) and the reasoning behind the choice of each ICC method is described in detail 

in Section 6.5.2 and 6.5.3 (Keating and Matyas 1998). 

7.4.1 The standard error of measurement method 

The SEM method displays the size of the error in the actual measurement unit used 

(Keating and Matyas 1998). The SEM is used to compare the measurements taken by three 

different testers on the same day and is also used to compare the measurements taken by 

the same tester, on different days. The reasoning behind utilising the SEM method has 

been previously described in Section 6.5.4. 

Another way of reviewing the SEM can be to view the data in a scatterplot (Keating and 

Matyas 1998; Hayes 2005). Hayes suggests that a visual approach can be useful because 

the variance of data points from the regression line is easily identified. If the measured 

scores are precisely the same, a straight line could be drawn through every point on a 

scatter-plot. If the opposite is true and there is significant variance in the scores, there will 

be a wide range of data points around the regression line. 

The formula for the SEM has been previously described in Eq. (6.4). A scatter-plot was also 

used to examine the deviation of the measurement scores from the regression line, in order 

to view the standard error of measurement. 

The formula to determine a 95% confidence interval CI95% for the SEM is previously 

displayed in Eq. (6.5). 
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7.4.2 Prediction of variability (Pearson’s r and r²) 

Whilst not chosen to be used for the main correlation coefficient for the reliability analysis, 

the Pearson’s r can be used to derive the r² values. The r² values can be used as a 

measure of predictable variability between the DI technique and the AccM. Howell (1992) 

suggests that the r² value is extremely useful because it suggests that the variability in one 

measure (DI technique) that is directly predictable from the variability in another method 

(AccM) (Howell 1992). The r² value is used to compare the prediction of the variability of the 

DI technique from the variability of the AccM. 

7.5 Results 

7.5.1 Inter-tester reliability 

The three testers’ results were correlated against each other’s results to determine the inter-

tester reliability for the three different measurement techniques (the AccM, DI and the 

MMS), for each of the four movements tested. Tables 7.1 and 7.2 demonstrate the data set 

and ANOVA analysis for the movement of flexion only. The results of the other movements 

are summarised in Table 7.3. 

An ANOVA table was produced to determine the variance between testers and the error 

limits. The inter-tester reliability, for the movement of flexion, was estimated for each of the 

measurement techniques. The ANOVA table used to calculated the ICC (2,1) for flexion 

ROM of the Accelerometer Method (AccM) is presented in Table 7.2. 
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Table 7-1 The data sets for the three measurement techniques for lumbar spine flexion 

Tester T1 T2 T3 T1 T2 T3 T1 T2 T3

Subj Subj

No. Age xº xº xº xº xº xº mm mm mm

1 37 70 74 72 69 71 72 72 81 68

2 34 57 56 67 66 55 66 64 74 58

3 31 71 66 61 63 65 60 67 74 68

4 60 39 37 36 40 38 40 49 47 43

5 62 45 49 36 60 50 55 56 62 44

6 21 63 64 62 60 64 64 64 65 64

7 41 59 61 59 60 62 63 82 78 77

8 34 59 67 62 63 65 62 76 75 74

9 38 35 33 38 41 39 39 46 45 48

10 29 72 71 68 63 65 67 74 75 72

11 24 69 66 72 67 70 71 61 78 69

12 44 58 46 63 63 59 66 68 58 51

13 49 54 55 59 57 61 62 56 59 70

14 27 68 71 73 71 71 74 69 80 82

15 52 42 43 46 47 46 47 43 47 44

16 51 58 63 67 61 61 60 65 70 56

17 60 41 39 36 45 47 47 45 45 46

18 33 72 75 71 74 75 75 73 65 82

19 55 68 61 58 73 75 72 70 86 68

20 57 54 57 58 52 55 55 63 80 57

21 32 80 73 76 75 76 76 75 88 71

22 28 59 47 64 63 62 62 58 61 45

23 31 74 79 76 76 75 74 75 80 83

Double Inclin Flexion Accelerometer Flexion MMS Flexion

 

 

Table 7-2 ANOVA table for accelerometer method (AccM) for flexion of the lumbar spine 

 SS df MS F p-value F-crit 

Rows 7485.333 22 BMS=340.2424 69.9554 1.91E-26 1.7889 

Columns 13.42029 2 JMS=6.7101 1.2613 0.2933 3.2093 

Error 234.0797 44 EMS=5.3200    

Total 7732.833 68     
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There was a separate ANOVA table produced for each of the measurement techniques 

(AccM, DI and MMS) and for each movement direction (flexion, extension, left lateral flexion 

and right lateral flexion). From each of the ANOVA tables, ICC values were calculated. 

Table 7.3 summarises the ICC (2,1) calculations for inter-tester reliability. 

Table 7-3 Results for the inter-tester reliability test for the AccM, DI and MMS 

Type of movement ICC for AccM ICC for DI ICC for MMS 

Flexion 0.95 0.89 0.74 

Extension 0.95 0.91 N/A 

Left Lateral Flexion 0.89 0.85 N/A 

Right Lateral Flexion 0.86 0.83 N/A 

 

The ICC values for the AccM and the DI showed very good reliability for the four different 

movements whereas the MMS displayed moderate reliability for the one movement of 

flexion. The ICC values for the DI technique are slightly less than in the previously 

described inductive coil (Chapter 6) and previous studies (Burdett, Brown et al. 1986; 

Newton and Waddell 1991; Saur, Ensink et al. 1996), yet still within guidelines of good 

reliability (Durand, Malouin et al. 1991). 

By using the SEM, the reliability results can be reviewed in the context of the original unit of 

measurement. The calculated ICC values from Table 7.3, the SEM values have been 

calculated for each of the three devices, for each of the four tested movements. 

Table 7.4 presents the SEM values for the three devices. Note that the SEM value is 

represented in the unit of measurement, that being degrees of movement for the AccM and 

the DI whereas the MMS is represented in millimetres. 
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Table 7-4 Standard error of measurements and 95% confidence intervals for the inter-tester 

reliability of the three measuring techniques 

Type of 

movement 

SEM for 

AccM 

95% CI 

(AccM) 

SEM for 

DI 

95% CI 

(DI) 

SEM for MMS 95% CI 

(MMS) 

Flexion 2.31˚ ±4.53˚ 4.24˚ ±8.31˚ 6.01 mm ±11.78 mm 

Extension 1.56˚ ±3.06˚ 2.42˚ ±4.74˚ N/A  

Left lateral 

flexion 

1.95˚ ±3.82˚ 2.47 ˚ ±4.84 ˚ N/A  

Right lateral 

flexion 

2.39˚ ±4.68˚ 2.35˚ ±4.61˚ N/A  

7.5.2 Intra-tester reliability (test re-test reliability) 

The test re-test reliability involved the comparison of one tester’s measurements on two 

separate days. Tester one repeated the measurements on 22 of the 23 subjects, five weeks 

after the first testing day. The three measuring techniques stayed constant, those being the 

AccM, DI and the MMS method. The same protocol was used, the same device, the same 

setting yet the order of subjects was randomized to avoid any potential memory effect. One 

subject was unable to attend the retest session. 

The ANOVA table was calculated to assess the variance between the first test day and the 

second. A separate ANOVA was required for each of the test methods and each of the 

movements. A total of nine ANOVA tables were produced. The ANOVA table for the 

Accelerometer extension is displayed in Table 7.5. The results of the ANOVA table were 

used to calculate the ICC (2,1) for the accelerometer method for extension. 

Table 7.6 summarises the ICC (2,1) calculations for test re-test reliability (TRTR) of the 

three measuring techniques. 
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Table 7-5 The ANOVA used to calculate the test re-test reliability for accelerometer extension 

 SS df MS F p-value F-crit 

Rows 1787.159 21 BMS=85.1028 102.5228 1.15E-16 2.0842 

Columns 0.5682 1 JMS=0.5682 0.6845 0.4173 4.3248 

Error 17.4318 21 EMS=0.8301    

Total 1805.159 43     

 

Table 7-6 Test re-test reliability of the accelerometer method 

Type of Movement ICC for AccM ICC for DI ICC for MMS 

Flexion 0.99 0.94 0.77 

Extension 0.98 0.95 N/A 

Left Lateral Flexion 0.89 0.88 N/A 

Right Lateral Flexion 0.93 0.86 N/A 

 

The SEM for accelerometer extension is calculated using Keating’s formula (Keating and 

Matyas 1998). Using the EMS value from Table 7.5, the SEM value was calculated as 

follows: 

091.083.0 === EMSSEM  (7.1) 

The 95% confidence interval CI95% from was then calculated. The results for the AccM 

TRTR are presented in Table 7.7. 
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Table 7-7 Standard error of measurement and 95% confidence intervals for the test re-test 

reliability 

Type of 

movement 

SEM for 

AccM 

95% CI 

(AccM) 

SEM for DI 95% CI 

(DI) 

SEM for MMS 95% CI 

(MMS) 

Flexion 0.91˚ ±1.78˚ 3.03˚ ±5.94˚ 4.54 mm ±8.90 mm 

Extension 0.91˚ ±1.78˚ 1.80˚ ±3.53˚ N/A N/A 

Left lateral 

Flexion 

1.84˚ ±3.61˚ 2.16 ˚ ±4.23˚ N/A N/A 

Right lateral 

flexion 

1.56˚ ±3.01˚ 2.21 ˚ ±4.33˚ N/A N/A 

 

The SEM values show that the measurement error for the test re-test results are less than 

the measurement error for the inter-tester results. The AccM method showed the least error 

when compared to the DI technique and the MMS method. 

Figure 7.7 displays a scatterplot for the data set of test re-test values for the accelerometer 

method on Day 1 and Day 2. 

7.5.3 Validity: comparisons of the Back Strain Monitor Accelerometer and Double 

Inclinometer technique 

The previous two sections of this chapter have focused on whether the AccM is repeatable 

between different testers and with the same tester on different days. This section 

statistically analyses the evidence of criterion validity of the accelerometer method, 

comparing the accelerometer method (AccM) to the double inclinometer technique (DI). The 

DI technique has been shown to be valid (Reynolds 1975; Moll 1976; Portek I 1983; Mayer 

et al. 1984; Merritt et al. 1986; Newton and Waddell 1991; Saur et al. 1996; Ng et al. 2001). 

The DI technique has also been shown to correlate well with X-ray (Mayer, Tencer et al. 

1984; Saur, Ensink et al. 1996) (see Chapter 6 for more detail). 
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Test re-test for Accelerometer Extension
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Figure 7.7 A scatterplot of test re-test values for the accelerometer method for the movement 

of extension (Day 1 & Day 2) 

The intra-class correlation coefficient (ICC) was again used to compare the double 

inclinometer technique to the accelerometers within the BSM. As discussed previously, the 

type of ICC used for this application was ICC (2,1). The formula used to calculate the 

ICC(2,1) values is given in Eq. (6.1). 

The variables used in the ICC (2,1) equation were taken from the ANOVA table. A separate 

ANOVA table was produced for the analysis of each ICC value. 
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Table 7.8 shows an example of the ANOVA table used to calculate the ICC (2,1) for the 

movement of Flexion performed by Tester 1. The results of the ICC calculations are 

presented in table 7.9. 

Table 7-8 ANOVA table for Flexion – Tester 1 

 SS df MS F p-value F-crit 

Rows 5434.419 22 BMS=247.019 17.8060 2.06E-09 2.0478 

Columns 29.8736 1 JMS=29.8736 2.1534 0.1564 4.3010 

Error 305.2022 22 EMS=13.8728    

Total 5769.494 45     

 

ICC (2,1) = 

N

EMSJMSk
EMSkBMS

EMSBMS

)(
)1(

−
+−+

−
= 

 = 

22

)87.1387.29(2
87.13)12(02.247

87.1302.247

−
+−+

−
 = 0.8889 (7.2) 

The ICC (2,1) values showed very good correlation between the AccM and DI techniques 

for measuring lower back movement. 

The Pearson’s r values were calculated to determine the r² values. The r² values can be 

used as a measure of predictable variability between the DI technique and the AccM. 

 



Clinical Study II for the Back Strain Monitor: The Accelerometer Method 

- 224 - 

Table 7-9 Validity of the accelerometer method: correlation of the accelerometer method to 

the double inclinometer for each tester performing each movement 

Measurements tested ICC (2,1) 

Compare methods: Flexion-Tester 1 0.89 

Compare methods: Flexion-Tester 2 0.88 

Compare methods: Flexion-Tester 3 0.88 

Compare methods: Extension-Tester 1 0.93 

Compare methods: Extension- Tester 2 0.96 

Compare methods: Extension-Tester 3 0.96 

Compare methods: Left Lateral Flexion- Tester 1 0.82 

Compare methods: Left Lateral Flexion- Tester 2 0.84 

Compare methods: Left Lateral Flexion- Tester 3 0.84 

Compare methods: Right Lateral Flexion- Tester 1 0.73 

Compare methods: Right Lateral Flexion- Tester 2 0.65 

Compare methods: Right Lateral Flexion- Tester 3 0.91 

 

Table 7-10 Pearson’s r values and r² values for the AccM correlated to the DI technique 

Movement Tester r r² 

Flexion 1 0.91 0.83 

Flexion 2 0.90 0.82 

Flexion 3 0.90 0.82 

Extension 1 0.96 0.92 

Extension 2 0.97 0.94 

Extension 3 0.96 0.92 

Left lateral flexion 1 0.86 0.74 

Left lateral flexion 2 0.86 0.75 

Left lateral flexion 3 0.90 0.80 

Right lateral flexion 1 0.78 0.61 

Right lateral flexion 2 0.67 0.45 

Right lateral flexion 3 0.91 0.84 
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7.5.4 Comparison of the Accelerometer Method and Double Inclinometer technique 

There are advantages and disadvantages of the accelerometer method and the inductive 

coil technique. Table 7.11 presents a comparative table of the two methods.  

 

 

Table 7-11 Comparison of the two measurement methods 

 Accelerometer Method Inductive Coil Technique 

Advantages Capable of measuring 2-3 

dimensional movement 

Cost effective 

 Able to sense velocity and 

acceleration of movement 

Simple product 

 Stable reference point (gravity) Small adhesion area on skin 

 Stable and reliable measurements  

 Able to sense vibration and impact  

Disadvantages Expensive for hardware One dimensional measurement 

 Larger adhesion area on skin Unstable measurements seen in 

the recordings (due to electrical 

drift and lag (parasitic 

capacitance)) 

 Complex algorithms to fine tune 

measurement results for combined 

movements 

Finding a suitable insulating 

product to cover the coil yet allow it 

to have the flexibility to stretch to 

double its length 

  Mechanical interference with coil 

such as when a subject is sitting 

and leaning back, compressing the 

coil against the back of a chair 

  

 

7.6 Discussion 

Both inter-tester reliability and retest reliability of the accelerometer method were assessed. 

The criterion validity of the accelerometer method was analysed by comparing the 
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accelerometer readings to those of the DI technique. The DI technique measured angular 

movements of the lumbar spine, has been previously supported in the literature and 

displayed the highest degree of inter-tester reliability during the Inductive coil trial  

in Chapter 6. 

7.6.1 Discussion of the reliability of the Accelerometer method 

The inter-tester reliability (ITR) for the accelerometer method showed very good results with 

ICC (2,1) in the sagittal plane of 0.95, with 0.95 for flexion and 0.95 for extension (Table 

7.3). Movements in a lateral (or coronal) plane were not as reliable as the sagittal-plane 

although still showing good reliability by Durand’s definition (left lateral flexion 0.89 and right 

lateral flexion 0.86). Interestingly the ITR for the DI technique displayed slightly lower 

correlations in the accelerometer study (Flexion ICC DI = 0.89) than in the inductive coil 

study (Chapter 6, Flexion ICC DI = 0.93). The MMS also showed a lower ICC in the 

accelerometer trial (Flexion ICC MMS = 0.74) than in the inductive coil trial (Flexion ICC 

MMS = 0.81). 

The SEM for the accelerometer method was relatively low when compared to the other 

techniques used in Chapter 6 and the DI technique and MMS method used in the 

accelerometer clinical trial. The SEM for the AccM was close to 2° for each of the four 

movements (Table 7.4) with the lowest value being 1.56° for the extension movement and 

the highest value being 2.39° for right lateral flexion. The SEM for the DI technique was 

close to double that of the AccM for movements in a sagittal plane (Table 7.4) but very 

similar for the lateral flexion movements. The SEM for the MMS was 6.01 mm (95% 

CI = ±11.78 mm), similar to the SEM for MMS in the previous inductive coil trial (5.83 mm 

with a 95% CI = ±11.43mm, Table 6.6) and more difficult to correlate to the AccM due to the 

difference in measurement scales (MMS in millimetres and AccM in degrees of movement). 
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The accelerometer clinical trial showed evidence that the AccM may provide a more reliable 

method for measuring lower back movement than the existing methods of the DI technique 

and the MMS method. The ICC (2,1) values for the ITR were all above 0.85 showing good 

reliability between the three testers using the AccM (Table 7.3). 

The test-retest reliability (TRTR) compared the same tester using the accelerometer method 

on two different days, five weeks apart. The TRTR showed very high levels of reliability with 

ICC (2,1) in the sagittal plane of 0.99 for flexion and 0.98 for extension (Table 7.6). 

Movements in a lateral (or coronal) plane were within guidelines of good reliability, although 

not as high as the reliability for movements in a sagittal-plane (left lateral flexion 0.89 and 

right lateral flexion 0.93). The MMS showed consistent ICC values across the three trials 

with an ICC for the TRTR of 0.77 (accelerometer trial ITR, Flexion ICC MMS = 0.74, and the 

inductive coil trial, Flexion ICC MMS = 0.81). 

The higher ICC results for the TRTR for the AccM may suggest that the identification of the 

bony landmarks, used to place the accelerometers (Figure 7.5), is a very important aspect 

for the reliability when using the accelerometer technique. When the same tester applied 

the AccM on the same subjects, five weeks later, the results showed higher degrees of 

reliability than the reliability between testers on the same day. Each of the testers was given 

the same degree of training about landmark identification and each had significant 

experience with identifying bony landmarks on the lumbar spine. The same trial protocol 

was used for the ITR trial as was used for the TRTR trial. Refinement of the ‘bony landmark 

identification’ aspect of the protocol may be necessary to improve the ITR for the AccM. 

The SEM for the TRTR using the accelerometer method was very low suggesting relatively 

low levels of error. Low SEM values across the four movements tested supported the high 

reliability of the AccM, when used by the same tester. The SEM values ranged from 0.91° 
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(95% CI = ±1.78˚) (for flexion and extension) to 1.84° (95% CI = ±3.61˚) (left lateral flexion), 

approximately half of the SEM levels for the ITR trial. The SEM values for the DI technique 

and the MMS method were also slightly lower (Table 7.7) for the TRTR trial than for the ITR 

trial, but not to the same degree as for the AccM method. The DI technique showed an SEM 

range from 1.8° (95% CI = ±3.53˚) (extension) to 3.03° (95% CI = ±5.94˚) (flexion) whereas 

the MMS showed an SEM of 4.54 mm (95% CI = ±8.90 mm). The SEM values provide 

further evidence that the AccM, in a controlled setting, shows a high degree of reliability and 

low levels of error, when applied by the same tester. These results suggest that any 

changes observed in measurement values when using the AccM are unlikely to be due to 

measurement error and the measurement represents an actual change in the position of the 

lumbar spine. 

7.6.2 Discussion of the validity of the Accelerometer method 

The AccM showed evidence of validity through its high level of correlation and agreement 

with the DI technique. The ICC was performed for each of the testers’ measurements when 

using the AccM compared to the DI technique (Table 7.9). The results displayed high 

agreement for lumbar spine flexion (ICC of 0.89 for tester 1, 0.88 for tester 2 and 0.88 for 

tester 3). The ICC values for lumbar spine extension showed higher values for all three 

testers (0.93 for tester 1 and 0.96 for tester 2 and tester 3). The movement of left lateral 

flexion also performed with a moderate to high degree of correlation between the AccM and 

the DI technique. The ICC values were between 0.82 and 0.84 for each of the testers (Table 

7.9). The movement of right lateral flexion showed more variation than the other three 

movements. For tester 1, the correlation between the AccM and the DI technique displayed 

an ICC of 0.73 showing only moderate correlation. For tester 2 the ICC value was lower still 

at 0.65 showing a weaker correlation, but for tester 3, the ICC value was 0.91 showing a 

strong correlation. These results were quite different to the other three movements that had 

performed with a high degree of consistency among the three testers. 
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The r² values in Table 7.10 give an indication of predictable variability between the DI 

technique and the AccM (Howell 1992). 

An r² value of 0.94 indicates that 94% of the variance of the DI technique measurement 

(Tester 2 Extension, see Table 7.10) was directly predictable from the AccM measurement. 

Whilst the sagittal movements performed well, there was less predictable variability in the 

lateral flexion movements. Left lateral flexion r² values ranged between 0.74 and 0.80 

whereas for right lateral flexion the r² values ranged from between 0.45 to 0.84. Tester 2 for 

the movement of right lateral flexion displayed the poorest results with the r² value of 0.45, 

suggesting that only 45% of the variance of the DI technique measurement was directly 

predictable from the AccM measurement. 

7.6.3 Sources of Error and Improvement Potentials 

As was discussed in Section 6.7.3, there are three potential sources of error; at the level of 

the equipment, at the level of the tester or at the level of the subject (Streiner and Norman 

2003). 

The equipment used for this trial mainly related to the DI technique and the AccM. From the 

reliability analysis of the two methods, the AccM showed a higher degree of ITR and TRTR, 

as well as lower SEM values than for the DI technique. The first source of equipment error 

may relate to the accuracy of the goniometers. The goniometers used for the DI technique 

had a scale of one degree increments suggesting that this would be the absolute maximum 

level of accuracy for this device. The needle of the goniometer would occasionally catch 

whilst the housing was being rotated. This was a potential source of error, especially if the 

catching occurred close to the end of a movement and was not detectable by the tester. 
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The AccM reported angular measurements to multiple decimal places of a degree. The 

laboratory testing of the AccM in Section 4.8.1 showed a CV of between 1% (flexion) and 

3% (left lateral flexion) for the AccM but no such testing was performed on the DI technique. 

The laboratory based testing of the goniometer would assist in defining the degree of error 

related to the goniometer. 

The second equipment based error relates to the fixation of the equipment, when recording 

of measurements was being taken. The AccM adheres the sensors to the lower back 

whereas the DI technique needs the manual positioning of two goniometers, 

simultaneously, to obtain measurements. This is partly an equipment based error and partly 

a tester based error due to the alignment of the goniometer with the ‘Wands’ protruding 

from the lumbar spine. 

Both of the potential equipment-based errors expose the DI technique to a higher error rate 

than the AccM. The results suggest that the DI technique may have contributed to more 

error than the AccM, yet further testing would be required to confirm this. One approach 

would be to laboratory test the DI technique to determine the degree of accuracy of the 

goniometers. A more attractive option would be to use an industrial type digital protractor 

that has been shown to be accurate to within 0.1° (Amasay and Karduna 2006). This may 

be a better comparator for the AccM. 

Another option to further examine the validity of the AccM would be to perform video 

analysis of the movements from a lateral perspective (for sagittal movements) and from a 

frontal perspective (for coronal movements). These would need to be performed in time 

sync with the AccM measurements and manual calculations (via drawn angles) can be 

taken of the angular change of movement, once screen shot images are printed. This 
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technique has been previously used to analyse movements of the lumbar spine (Whittle and 

Levine 1997) and would allow through range analysis of movements of the lumbar spine. 

The second source of error related to the testers. The potential for tester error has already 

been discussed in detail in Section 6.7.3 and the AccM clinical trial uses a very similar trial 

structure from the tester’s perspective. A brief summary of the three potential tester-related 

errors is given. 

First, the identification of the bony landmarks is critical for the placement of the AccM and 

the goniometers. Using appropriately qualified health practitioners with experience in finding 

bony landmarks should reduce errors related to bony landmarks. The additional training 

prior to the trial may also assist in forming some consensus about the bony landmarks that 

are open to interpretation and are more difficult to locate. Second, clear, concise and 

consistent instructions from the tester to the subject were necessary for repeatable 

movements from the subject. If these varied, even slightly, there was additional potential for 

error. Third, the goniometer reading required human interpretation of the range of 

movement. This was especially difficult because the needle of the goniometer was free to 

swing and would often take time to settle on a spot before a measurement could be taken. 

The third source of error related to the subjects. The subject-related errors were also 

discussed in Section 6.7.3. Two subject errors were identified. 

First, the potential for ‘warm up effect’ that could change the magnitude of movement as the 

subject repeated movements. This error was minimised by supplying a box to reach to at 

the end of each movement but there is still the potential for this error to occur. Second, the 

subject could vary the way a movement was performed. The human spine is a complex 

structure, able to move with many different permutations and combinations, not always 
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obvious to the subject performing the movements. An attempt was made to reduce this 

error by clear and uniform instructions from the tester to the subject and by the tester 

closely monitoring each movement performed by the subject. It was difficult to eradicate this 

type of potential error. 

The AccM showed positive signs of being a worthwhile instrument for measuring lower back 

movement. The ITR was high between the three testers, giving confidence that the 

measurement method may be able to be used by various testers to give reliable results. 

The TRTR was very high, suggesting that when used by the same tester the AccM is a very 

reliable method of measuring lower back movement, in a controlled setting. There was 

reasonable evidence of validity when the AccM was compared to the DI technique, but 

further work is required to quantify how valid the AccM is when compared to a more 

accurate measurement tool. And there was uncertainty about how much of variability 

between the two devices was due to the AccM and how much was due to the DI technique. 

Some significant advantages were seen for the AccM method. First, the ability of the AccM 

to automatically record measurements of lumbar spine movement, without the need for 

tester intervention. This saved time and potentially reduced tester related error.  Second 

was the continuous recording of measurements (5 samples per second), not only at the 

start and the end of a movement (as with the DI technique). This allowed for ‘through range 

measurements’ for posture monitoring and also allowed for recordings to be taken over 

extended periods of time. 

This trial was performed in a very controlled setting and with movements performed in only 

one plane of movement at a time. The real test environment for a measuring device for the 

lower back will need to cater for three-dimensional movement in an uncontrolled setting. An 
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alternative comparator device such as the LMM or Back Tracker may be required to validate 

the AccM in 3D and in an uncontrolled setting. 
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Chapter 8. Discussion and Conclusions 

Low back pain provides a significant challenge to health practitioners, compensable bodies, 

governments and those experiencing LBP. With LBP affecting 60–80% of people during 

their lifetime (Riihimaki 1991) and being the major cause of disability for people under the 

age of 45 years (Magnusson, Bishop et al. 1998) new management methods are required to 

aid this problem. With AUD $9.2 billion dollars per year being spent in Australia on LBP 

(Walker 2003) and between USD $100-200 billion per year in the US (Katz 2006), it would 

be justified to commit significant resources to curbing this debilitating condition. 

Medical practitioners currently have only limited treatment options for LBP with little 

evidence of effectiveness. Non steroidal anti-inflammatory medication and pain killers are 

their number one option yet a number of the NSAIs have been shown to have adverse side 

effects. Radiological investigation is also a common management choice but recent studies 

suggest that X-rays are of no physical benefit and provide only minor psychological and 

diagnostic benefit to the patient. There is no readily available tool to aid health practitioners 

or workers in how they should move or how to safely return to the work force after an 

episode of LBP. 

The postures and movements performed by the lumbar spine contribute to lower back 

injuries (Riihimaki 1991; Adams and Dolan 1995; Fathallah, Marras et al. 1998; 

Hoogendoorn, Bongers et al. 2000), as do the loads placed on the spine (Burton, Tillotson 

et al. 1996; Fathallah, Marras et al. 1998; Hoogendoorn, Bongers et al. 2000). It is also 

acknowledged that to measure these complex loads within a normal work setting is most 

important (Cholewicki, Crisco Iii et al. 1996). The literature review in Chapter 2 highlighted 

the movements and postures that are documented risk factors for LBP. A recent RCT has 

shown the benefits of postural biofeedback in improving recovery from LBP in a population 
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of chronic LBP patients (Magnusson 2008). The measurement system used was a 

cumbersome unit (see Figure 2.3) that could not be worn in a work environment and 

needed to be attached to a computer. New health sensor technology now allows for 

miniature sensors for ambulatory monitoring with wireless communication to a central base 

(Jovanov, Milenkovic et al. 2004). 

The aim of this thesis was to introduce the Back Strain Monitor (BSM) and to determine its 

reliability and validity via clinical trials. The BSM is a new device which uses small sensors 

to provide real time measurement and analysis of low back movements and generates a 

warning feedback to the wearer when the movements are likely to cause harm. It is of 

relatively small size and weight and can be worn without causing any limitation to natural 

movements. The device is powered by a battery, it has built-in analysis software and data 

storage capabilities, and it does not need to be attached to an external computer. 

The thesis provided the following major contributions: 

1. A new device for measuring the three-dimensional movements of the lumbar spine 

called the Back Strain Monitor (BSM) was introduced. The BSM provided an 

implementation platform for different low back movement measurement methods. 

2. Development stages of the BSM were presented including laboratory experiments 

testing different concepts and options which lead to the final prototype of the device. 

3. During the development process of the BSM, a number of different options for 

measuring and analyzing the movement of the lower back were examined and tested 

in laboratory conditions. Two viable measurement options, the Inductive Coil 

technique and the Accelerometer method, were identified and tested in laboratory 

settings and clinical trials. 

4. Analysis of the results provided by clinical trials indicates that the Accelerometer 

method provided a high level of reliability and evidence of validity. 
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Chapter 2 discussed the epidemiology of low back pain, its nature and the complexities 

associated with diagnosing a specific type of lower back disorder. The frequency of LBP 

was reviewed and documentation provided as to who is affected by LBP and the 

extraordinary costs associated with the management of LBP. A literature review was also 

presented and summarized to identify the risk factors associated with developing LBP. 

Chapter 3 reviewed the existing, most commonly used measurement methods for lower 

back movements. Ten different measurement methods were reviewed and the advantages 

and drawbacks of each were listed. The majority of the reviewed techniques were not 

suitable for automatic measurement since they required the health practitioner to manually 

record results based on goniometer or tape measure readings. Only three methods were 

potentially suitable for an automated measurement system. These included the Lumbar 

Motion Monitor (LMM), Back Tracker and Spinal Sensa. Unfortunately, all these three 

methods shared the same major drawback which was that the patient was not able to move 

and work normally whilst wearing the device. The LMM and Back Tracker are too 

cumbersome, whilst the Spinal Sensa adheres to the lumbar spine such that normal flexion 

ROM is restricted. 

Chapter 4 introduced the concept of the Back Strain Monitor (BSM) and the development 

stages of the essential part of the BSM called the measuring device (MD). Seven potential 

measurement techniques involving different types of movement sensors were reviewed and 

their suitability for the MD was assessed. The three most suitable methods were selected 

and used to build three different prototypes of the MD. These prototypes were tested in 

laboratory conditions. 

Prototype one was a conductive silicone polymer (CSP) that changed electrical resistance 

as it was stretched. Early laboratory tests showed positive results yet after repeated 



Discussion and Conclusions 

 

- 238 - 

stretching, the silicone bonds degraded and electrical resistance increased in a non-uniform 

way. The CSP prototype was superseded by the inductive coil prototype, derived from a 

commercially available transducer called the ‘Flexor’. Early laboratory tests showed the 

inductive coil to be a reliable transducer for linear stretch, with no sign of mechanical 

degradation or hysteresis on repeated stretching. However, once the testing sessions lasted 

for longer than 30 minutes, the readings from the coil began to drift. There was also an 

electrical lag seen as the coil returned from its stretched state. This lead to significant 

variation in the baseline readings from the inductive coil (CV = 82%) even though the full 

stretch measurements performed well (CV = 0.54%). The inductive coil laboratory test 

results were only moderate and a third option using accelerometers was developed into a 

prototype. 

The third prototype built used accelerometers and a gyroscope to sense movements of the 

lumbar spine. Early testing of the accelerometer components showed low power 

consumption, stable readings and minimal electrical drift. The accelerometer prototype was 

tested within a laboratory setting producing very little variation when tested with repeated 

movements (CV = 0.12% for flexion). The other significant advantage of the accelerometer 

method was that the accelerometers could sense motion in three dimensions. The first level 

accelerometer prototype was able to measure movements in the sagittal plane and the 

coronal plane but showed missing data sets and aberrant readings when measurements of 

lumbar spine rotation were attempted. For this reason the gyroscope was introduced into 

the prototype but a formal review of the rotation movement analysis and the gyroscope 

readings is beyond the scope of this thesis. The laboratory tests for the accelerometer 

focused on the movements in the sagittal plane (flexion and extension) and the coronal 

plane (left and right lateral flexion). 
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Chapter 5 described the current version of the Back Strain Monitor (BSM) device. The focus 

of the chapter was on the accelerometers although the gyroscope, EMG sensors and the 

recording feedback device (RFD) were also briefly described. The BSM device has been 

developed to measure the three-dimensional movements of the lumbar spine and muscle 

activity levels of the erector spinae muscles. Potential formats for the data outputs are 

presented in a graphical way. There was also a brief description of further potential 

developments of the BSM, which included a patient profile and a numerical algorithm that 

could process the sensor’s data and calculate an overall risk score for the low back pain. 

The clinical trials have been described in Chapters 6 and 7. The aim of the clinical trials was 

to examine the reliability and validity of the Inductive Coil transducer technique (Clinical 

Study I, Chapter 6) and of the Accelerometer method (Clinical Study II, Chapter 7). 

Chapter 6 described experiments that tested the reliability and validity of the inductive coil 

technique for measuring lower back movement in a clinical setting. Fifteen subjects wore 

the inductive coil device and performed basic lumbar spine movements in a controlled 

setting. Only movements in one direction (flexion) were tested. The measurements were 

made by three testers. The reliability test included comparison of measurements obtained 

by different testers (inter-tester reliability) on the same day. The reliability of the inductive 

coil was tested in parallel with the reliability of three other methods including: the Double 

Inclinometer (DI) technique, the Modified-Modified Schober (MMS) method and the Wand 

technique (WT). The amount of reliability was measured using the Interclass Correlation 

Coefficient (ICC(2,1)). The results showed the inductive coil to perform with the least degree 

of reliability (ICC (2,1) = 0.65) compared to the other three methods ( ICC(2,1)=0.92, for DI, 

ICC(2,1)=0.81 for MMS, and ICC(2,1)=0.87 for WT) (see Table 6.6). 
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The validity tests were analysed via a pairwise comparison between measurements 

obtained by the same tester using four different techniques: the Inductive Coil technique, 

the Wand technique, the Double Inclinometer technique and the Modified-Modified Schober 

method. The amount of validity was measured using the Interclass Correlation Coefficient 

(ICC(2,1)). The results showed relatively low values of the ICC(2,1) for the inductive coil. 

Depending on the tester, the ICC values were ranging from 0.74 to 0.65 when compared 

with WT, from 0.67 to 0.58 when compared to DI, and from 0.70 to 0.47 when compared to 

MMS (see Table 6.7). The Inductive Coil technique also displayed the largest error 

measurement with an SEM of 6.76 mm (95% CI = ±13.23 mm). 

Based on these results, it was concluded that the inductive coil did not represent a reliable 

and valid option for measuring lower back movements. 

Chapter 7 described the clinical experiments that tested the reliability and validity of the 

accelerometer method (AccM) for measuring movements of the lower back. Twenty-three 

subjects wore the accelerometer sensors and performed basic lumbar spine movements in 

a controlled setting. Unlike for the inductive coil, where only movement in one direction 

(flexion) was tested, in the case of accelerometers, four movements were tested: flexion, 

extension, left lateral flexion and right lateral flexion. The measurements were made by 

three testers. The reliability test included comparison between measurements obtained by 

different testers. The inter-tester reliability (ITR) was assessed for three testers on the same 

day whereas the test re-test reliability (TRTR) was assessed by one tester on two different 

days. The reliability of the accelerometer method was tested in parallel with the reliability of 

two other methods including: the DI technique and the MMS method. The amount of 

reliability was measured using ICC(2,1). 
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The inter-tester reliability (ITR) results showed that, the accelerometers performed with the 

highest degree of reliability (ICC (2,1) = 0.95 for flexion, 0.95 for extension, 0.89 for left 

lateral flexion, and 0.86 for right lateral flexion) compared to the DI technique (ICC 

(2,1) = 0.89 for flexion, 0.91 for extension, 0.85 for left lateral flexion, and 0.83 for right 

lateral flexion) and the MMS method (ICC (2,1) = 0.74 for F) (see Table 7. 3). 

The SEM for the AccM was also relatively low for the ITR (eg, Flexion SEM for AccM = 2.3°, 

95% CI =±4.53°) when compared with the previous results from the inductive coil clinical 

trial (Table 6.7) and the DI technique used in the AccM clinical trial (Table 7.4). 

Consistently, the test re-test reliability results also showed that the accelerometers 

performed with the highest degree of reliability (ICC (2,1) = 0.99 for flexion, 0.98 for 

extension, 0.89 for left lateral flexion, and 0.93 for right lateral flexion) compared to the DI 

technique (ICC (2,1) = 0.94 for flexion, 0.95 for extension, 0.88 for left lateral flexion, and 

0.86 for right lateral flexion) and the MMS method (ICC (2,1) = 0.77 for flexion) (see Table 

7. 6). 

The SEM for the AccM was quite low for the TRTR (eg, Flexion SEM for AccM = 0.91˚, 95% 

CI =±1.78°) when compared with the DI technique used in the AccM clinical trial (Table 7.7). 

The AccM showed evidence of a high degree of reliability in both a laboratory setting and 

within a controlled clinical setting. A high level of reliability was shown between different 

testers on the same day (ITR) and by the same tester on different days (TRTR). 

Criterion validity assessment was performed via a comparison between measurements 

obtained by the same tester using two different techniques: the Accelerometer method and 

the Double Inclinometer technique. Evidence of validity was measured using the Interclass 

Correlation Coefficient (ICC(2,1)). The results demonstrated a high level of agreement 
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between the two techniques with ICC values of 0.88 to 0.89 for flexion and 0.93 to 0.96 for 

extension, for all three testers. The ICC values for the movement of left lateral flexion were 

between 0.82 and 0.84 yet for the right lateral flexion there was less agreement with ICC 

values ranging from 0.65 to 0.91. 

Pearson’s r was used to calculate predictable variability between the two methods. The r² 

value was above 0.90 for movements in the sagittal plane yet less predictable for 

movements in the lateral plane where the r² values ranged from 0.67 to 0.91. The AccM 

displayed a moderate to high level of agreement with the DI technique. 

Based on these results, it was concluded that the Accelerometer method represents a 

reliable and valid option as a method for measuring lower back movements. It showed a 

high degree of reliability in both a laboratory setting and within a controlled clinical setting. It 

can be concluded that the accelerometer method provides the better option as a spinal 

movement transducer for the proposed Back Strain Monitor. 

8.1 Limitations of this research 

To be able to measure and quantify movements of the lower back is a complex and 

multifactorial challenge. Whilst this study has aimed to answer a number of questions about 

the reliability and validity of the AccM, there are limitations associated with such a study. 

The first limitation related to the reliability and validity of the double inclinometers used in 

both of the clinical trials. It should be noted that further research will be necessary to 

validate the Accelerometer technique against more accurate transducers than the 

goniometers used in the clinical trials. 
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The second limitation was that the AccM measured movements of the lumbar spine in two 

planes but was unable to reliably measure movements in a rotational plane. Rotation of the 

lower back needs an accurate transducer due to the small range of rotational movement 

occurring at the lumbar spine. A gyroscope has been incorporated into the MDM component 

of the new device but further testing is required to validate the gyroscopic measurements. 

The third limitation relates to the EMG aspect of the BSM device. The reliability and validity 

of EMG was not studied during this thesis. The use of the EMG values recorded by the 

BSM system will require thorough testing and validation before this data can be used to 

estimate forces acting within and around the lumbar spine. 

The final limitation is the studies described in this thesis were all performed in a controlled 

setting. Additional work will be required to analyse the reliability and validity of the AccM 

measurements during combined movements and in a real world, functional environment. 

Whilst further work is needed, the device provides the potential to collect new data in 

relation to lumbar spine movements and postures that are adopted during a full day’s 

activity and record this data for retrospective analysis. 

8.2 Future research directions 

The AccM has displayed preliminary evidence of providing a reliable and valid method for 

measuring movements of the lumbar spine in two dimensions. 

Further research is required to analyse the reliability and validity of the third dimension of 

movement, that being the rotational movement of the lumbar spine, measured by the 

gyroscope. Rotational movements of the lumbar spine provide a particular challenge 

because they often occur across gravity and there is only a small range of movement 
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occurring at the lumbar spine (<10°). This requires the movement sensor to be very 

accurate. 

The trials performed in this study were either laboratory based or within a controlled clinical 

environment, not in the real world or a fully functional setting. Further trials and research are 

required to validate the AccM within a functional setting. This may require a trial that 

compares movements recorded by the AccM (as part of the BSM device) to movements 

recorded by a recognized and validated measurement system such as the LMM. This type 

of trial would need to be performed in a semi-controlled environment, such as a production 

line or assembly line, where workers performed very similar movement patterns from one 

day to the next. There would also need to be a video analysis to validate that the type of 

movements and activities performed by the workers whilst wearing the two different devices 

were very similar to each other. 

A further extension of this work would be to formally evaluate the case study presented in 

Chapter 5. This study presented data from a single case study in which a subject wore the 

BSM device for a day at work and received biofeedback when certain movement thresholds 

were reached. The results suggested that the subject responded well to the guidance from 

the biofeedback. It would be interesting to design an additional trial to investigate the 

construct validity of the AccM and the BSM device in being able to modify posture via 

biofeedback. A second step in this trial would be to investigate how long the improved 

posture patterns continued and whether they reduced the risk of LBP or improved recovery 

rates for existing LBP. 

The AccM aims to provide one aspect of data for the BSM device, that being the 

movements of the lumbar spine. The other two aspects of the BSM are the sEMG 

measurements and the Patient Profile. These two aspects are outside the scope of this 
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thesis but are areas where future research is required. First, to substantiate that the sEMG 

signals are reliable. Second, to assess the merits of a patient profile to see whether it is 

able to differentiate people who are more likely to experience LBP from people who are not. 

Third, the data from the AccM, sEMG and the Patient Profile may be combined to form a 

risk score or rating system. These three areas of work will require significant resources and 

time but if coordinated in a strategic way, a new management system for LBP may be 

developed. 

8.3 Final conclusion 

This thesis has reviewed potential measurement options for analyzing lower back 

movements. Seven potential measurement methods were reviewed and three methods 

were chosen for which prototypes were built for laboratory testing. Two of the three 

prototypes performed with moderate reliability in the laboratory testing and further reliability 

testing was conducted through clinical trials. The inductive coil technique experienced 

issues with electrical drift and a lag that lead to reduced reliability in clinical trial testing. 

The Accelerometer method was tested in a separate clinical trial with positive results for 

inter-tester reliability, test re-test reliability and the method demonstrated evidence of 

validity when compared to the double inclinometer technique. Further work is required to 

test the Accelerometer method against a more accurate comparator, through three 

dimensions of movement and within a functional, real world environment. 

The Accelerometer method forms part of the new Back Strain Monitor (BSM) device that 

provides health practitioners with the ability to monitor a patient’s movement patterns over 

extended periods of time. The device has the potential to provide a new tool for the 

management of LBP. It is hypothesized that postural biofeedback may become an important 

aspect in the management of LBP. The BSM device may become part of the monitoring and 

biofeedback process. 
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APPENDIX I 

Full list of risk factors identified in the literature review 

Risk Factors for LBP
Risk Factor for LBP Author Journal Year

1 Lateral bending Adams Spine 1999
2 Long back Adams Spine 1999
3 Reduced lumbar lordosis Adams Spine 1999
4 Psychological distress Adams Spine 1999
5 Previous LBP Adams Spine 1999
6 Driving for long periods Alcouffe Occ and Envir medicine 1999
7 High BMI Alcouffe Occ and Envir medicine 1999
8 Uncomfortable work positions Alcouffe Occ and Envir medicine 1999
9 Lifting > 10Kg Alcouffe Occ and Envir medicine 1999

10 Long work hours Andrusaitis Clinics 2006
11 Sitting, WBV and Awkard postures Angela Maria European spine journal 2007
12 Psychological distress Feyer Occ and Envir medicine 2000
13 Previous LBP Feyer Occ and Envir medicine 2000
14 Not a risk - twin study Ashraf European spine journal 2008
15 High physical activity Auvinen Sacnd J of medicine 2008
16 Sitting posture Auvinen Sacnd J of medicine 2008
17 Static loads Bagirova Terapevticheskii arkhiv 2001
18 Physical overstrain Bagirova Terapevticheskii arkhiv 2001
19 Smoking and alcohol abuse Bagirova Terapevticheskii arkhiv 2001
20 Low physical activity Bagirova Terapevticheskii arkhiv 2001
21 Prolonged flexion Bakker European spine journal 2007
22 Loading in flexed positions Bakker European spine journal 2007
23 Depression Bildt Int J of Behav Medicine 2000
24 Occupational conditions Bildt Int J of Behav Medicine 2000
25 Sitting with forward flexion Bridger Aviation 2002
26 Sitting in non neutral posture Burdorf J of Occ Medicine 1993
27 Years as a nurse Byrns J Occ & Environ Hyg 2004
28 Frequent lifting Byrns J Occ & Environ Hyg 2004
29 Low social support Byrns J Occ & Environ Hyg 2004
30 Previous LBP Canadian Task Canadian med assc 2003
31 Lifting > 10Kg Canadian Task Canadian med assc 2003
32 Whole body vibration Canadian Task Canadian med assc 2003
33 Frequent bending Canadian Task Canadian med assc 2003
34 Depression Carroll Pain 2004
35 Lifting heavy objects Chiou Int J Nursing Studies 1994
36 Sitting posture Chiou Int J Nursing Studies 1994
37 Long work hours Chiou Int J Nursing Studies 1994
38 Psychological distress Chris Am J of Public Health 2001
39 Smoking  Chris Am J of Public Health 2001
40 Prolonged forward and lateral fl of Cx Christensen Ergonomics 1995  
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41 Poor physical health Croft Spine 1999
42 Obesity Croft Spine 1999
43 High growth Ehrmann Am J of Epidemiology 2001
44 Smoking Ehrmann Am J of Epidemiology 2001
45 Working in cold environments Dovrat Am J of Epidemiology 2007
46 High manual handling Elders Occ and Envir medicine 2001
47 Previous LBP Elders Occ and Envir medicine 2001
48 Positioning patients in bed Eriksen Occ and Envir medicine 2004
49 Low social support Eriksen Occ and Envir medicine 2004
50 Heavy physical work and smoking Eriksen Occupational Medicine 1999
51 Depression/mental illness Failde Occupational Medicine 2000
52 Manual transfer of patients Feng BMC Musculoskel dis 2007
53 Perceived physical exertion Feng BMC Musculoskel dis 2007
54 Psychological demands Feng BMC Musculoskel dis 2007
55 Job design Ferguson Ergonomics 2004
56 Lifting previous 5 years Friedrich Int arc of occ env heal 2000
57 Duration of stooping at work Friedrich Int arc of occ env heal 2000
58 Increasing age Friedrich Int arc of occ env heal 2000
59 Abnormal illness behaviour Friedrich Int arc of occ env heal 2000
60 Personal factors Gilkey Colorado State Uni 2002
61 Workplace factors Gilkey Colorado State Uni 2002
62 Lifting heavy objects Harkness Rheumatology 2003
63 Pulling heavy weights Harkness Rheumatology 2003
64 Kneeling or squatting > 15min Harkness Rheumatology 2003
65 Stressful conditions Harkness Rheumatology 2003
66 Monotonous conditions Harkness Rheumatology 2003
67 Lifting heavy objects Harreby European spine journal 1999
68 Smoking Harreby European spine journal 1999
69 Female Adolescence Harreby European spine journal 1999
70 Heavy physical work  Hartvigsen Spine 2001
71 Sitting is not a risk factor Hartvigsen Sacnd J of Pub Health 2000
72 Parents with high IQs Hestbaek BMC Musculoskel dis 2005
73 Previous LBP Hestbaek BMC Musculoskel dis 2005
74 Military physical activity Hestbaek BMC Musculoskel dis 2005
75 Smoking not linked to LBP Hestbaek BMC Musculoskel dis 2006
76 Exercise is protective Hides Spine 2001
77 Flexion > 60 degrees for > 5% work time Hoogendoorn Spine 2000
78 Rotation 30 degrees for > 10% work time Hoogendoorn Spine 2000
79 Lifting > 25kg, > 15 times per day Hoogendoorn Spine 2000
80 Low social support Hoogendoorn Scand J of Work 2001  
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81 Low supervisory support Hoogendoorn Scand J of Work 2001
82 Flexion >30 degrees for 10-15% time Hoogendoorn Occ and Envir medicine 2002
83 Flexion > 30 degrees for 15-20% time Hoogendoorn Occ and Envir medicine 2002
84 Flexion >30 degrees for >20% time Hoogendoorn Occ and Envir medicine 2002
85 Trunk Rotation >30 degrees for 5-10%timeHoogendoorn Occ and Envir medicine 2002
86 Lifting >25kg, > 15 times per day Hoogendoorn Occ and Envir medicine 2002
87 Low job satisifaction Hoogendoorn Occ and Envir medicine 2002
88 Flexion and Rotation Hoogendoorn Occ and Envir medicine 2002
89 Heavy loads Hoogendoorn Occ and Envir medicine 2002
90 Low social support Hoogendoorn Spine 2000
91 Low supervisory support Hoogendoorn Spine 2000
92 Weight of patients Jang Ergonomics 2007
93 Load moment about the spine Jang Ergonomics 2007
94 Trunk axial rotation Jang Ergonomics 2007
95 Trunk flexion>45 degrees(105min vs 30min)Jansen Occ and Envir medicine 2004
96 Flexion and rotation Jin Int J Occ and Envir Med 2000
97 Static postures Jin Int J Occ and Envir Med 2000
98 Whole body vibration Jin Int J Occ and Envir Med 2000
99 High intensity demands Johnston Am J of Indust Med 2003

100 Low job satisifaction Johnston Am J of Indust Med 2003
101 High job scheduling demands Johnston Am J of Indust Med 2003
102 Reduced lumbar flexion Jones British J Sports Med 2005
103 Reduced lateral flexion Jones British J Sports Med 2005
104 Reduced muscle endurance Jones British J Sports Med 2005
105 Reduced hip mobility Jones British J Sports Med 2005
106 Forward bending positions Josephson Scand J Work,Env,Heal 1998
107 High energetic work load Josephson Scand J Work,Env,Heal 1998
108 Perceived physical exertion Josephson Scand J Work,Env,Heal 1998
109 Low social support Josephson Scand J Work,Env,Heal 1998
110 Novice worker performing lifting tasks Julia Ergonomics 2007
111 Previous LBP Julia British Medical J 1997
112 Frequent patient transfer Julia British Medical J 1997
113 Stressful working conditions Kaneda J Nippon Medical Sch 2001
114 Postures at work Kaneda J Nippon Medical Sch 2001
115 Unstable body balance on scaffold Kaneda J Nippon Medical Sch 2001
116 Previous LBP Kerr Am J Public Health 2001
117 Low BMI Kerr Am J Public Health 2001
118 Poor workplace social support Kerr Am J Public Health 2001
119 Physically demanding job Kerr Am J Public Health 2001
120 Peak lumbar shear force Kerr Am J Public Health 2001  
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121 Heavy loads Kerr Am J Public Health 2001
123 Cumulative lumbar disc compression Kerr Am J Public Health 2001
124 Load moment about the spine Keyserling AIHAJ 2000
125 Velocity of lift Keyserling AIHAJ 2000
126 Frequency of lift Keyserling AIHAJ 2000
127 Assymmetry of lift Keyserling AIHAJ 2000
128 Flexion angle Keyserling AIHAJ 2000
129 Leg length difference Kovacs Pain 2003
130 University graduate Kovacs Pain 2003
131 Female Adolescence Kovacs Pain 2003
132 Scoliosis Kovacs Pain 2003
133 Increased driving time Krause Am J Indust Medicine 2004
134 Physical workload Krause Am J Indust Medicine 2004
135 Physical workload Krause Am J Indust Medicine 2005
136 Intense work Krause Am J Indust Medicine 2005
137 Materials handling Lotters Scand J of Work 2003
138 Frequent flexion and rotation Lotters Scand J of Work 2003
139 Whole body vibration Lotters Scand J of Work 2003
140 Low job satisifaction Lotters Scand J of Work 2003
141 Laying large sandstone pavers Latza Occ and Envir medicine 2000
142 Obesity plays a part in chronicity of LBP Leboeuf-Yde Spine 1999
143 Height above 180cm Leclerc Occupational medicine 2003
144 Driving > 2hours per day (sciatica only) Leclerc Occupational medicine 2003
145 Driving several days of > 2hours(sciatica only)Leclerc Occupational medicine 2003
146 Physical workload Lee The J of Rheumatology 2001
147 Frequent lifting Lee The J of Rheumatology 2001
148 Poor general health Lee The J of Rheumatology 2001
149 Lifting heavy objects Lee J of safety research 1994
150 Reduced work experience Lee J of safety research 1994
151 Increased age Lee J of safety research 1994
152 Poor sitting habits Lee J of safety research 1994
153 Lifting tasks combined with driving Lilia Work 2005
154 Frequent lifting and driving Lilia Work 2005
155 Sitting with WBV and awkward postures Lis European spine journal 2007
156 Lifting/pushing/pulling objects > 25lbs Macfarlane Spine 1997
157 Prolonged standing and walking Macfarlane Spine 1997
158 Lifting heavy objects Magnusson Spine 1996
159 Frequent lifting Magnusson Spine 1996
160 Whole body vibration Magnusson Spine 1996  
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161 Previous LBP Marras Ergonomics 2000
162 Unemployment/Household income Marras Ergonomics 2000
163 Age Smoking Marras Ergonomics 2000
164 Liftig/forceful movement Marras Ergonomics 2000
165 Whole body vibration Marras Ergonomics 2000
166 Awkward posture Marras Ergonomics 2000
167 Heavy physical work Marras Ergonomics 2000
168 Frequent lifting Marras Ergonomics 1995
169 Load moment about the spine Marras Ergonomics 1995
170 Lateral bending velocity Marras Ergonomics 1995
171 Rotation velocity Marras Ergonomics 1995
172 Trunk sagittal angle Marras Ergonomics 1995
173 Frontal plane imbalance Masset Spine 1998
174 Low body weight Masset Spine 1998
175 Perception of heavy lifting efforts Masset Spine 1998
176 Lifting heavy objects Matsui Spine 1997
177 Family history Matsui Spine 1997
178 Depression Mayr Lancet 2003
179 Lifting load Mazloum Industrial health 2006
180 Flexion in combination with lat fl and rot Milosevljevic Applied ergonomics 2007
181 Increased age Miranda Spine 2002
182 Mental stress Miranda Spine 2002
183 Smoking Miranda Spine 2002
184 Rotation of spine Miranda Spine 2002
185 Low job satisifaction Miranda Spine 2002
186 Lifting Mohseni-BandpeiBritish journal of nursing 2006
187 School furniture Murphy Applied ergonomics 2007
188 Emotional problems Murphy Applied ergonomics 2007
189 Family history Murphy Applied ergonomics 2007
190 Previous LBP Murphy Applied ergonomics 2007
191 Tranferring patients Muto Industrial health 2006
192 Assisting feeding Muto Industrial health 2006
193 Assisting toileting Muto Industrial health 2006
194 Depression Muto Industrial health 2006
195 Job Stressors Muto Industrial health 2006
196 Long periods of sitting Nieuwenhuyse Occupational medicine 2004
197 >12 flexion or rotation movements per hourNieuwenhuyse Occupational medicine 2004
198 >3 yrs in job lifting>25kg once an hour Nieuwenhuyse Occupational medicine 2004
200 Low psychological job demands Nieuwenhuyse Occupational medicine 2004  
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201 Low supervisory support Nieuwenhuyse Occupational medicine 2004
202 Being a physio student for > 2 years Nyland BMC Musculoskeletal 2003
203 Sitting looking down for > 20 hours in a monthNyland BMC Musculoskeletal 2003
204 Treating patients Nyland BMC Musculoskeletal 2003
205 Driving a bus Okunribido Int J Ind Ergonomics 2006
206 Combination of 2+ of posture, MMH & VibratOkunribido Ergonomics 2008
207 Farmers Omokhodion Tropical doctor 2004
208 History of trauma Omokhodion Tropical doctor 2004
209 Low educational status Omokhodion Tropical doctor 2004
210 Smoking Omokhodion Occupational medicine 2003
211 Senior staff grade Omokhodion Occupational medicine 2003
212 Sitting > 3 hours Omokhodion Occupational medicine 2003
213 Lifting > 10 kg at work Palmer Occ & Env Medicine 2003
214 Age (45-59) Park Am J Indust Medicine 2001
215 Farmer with non agricultural job as main occPark Am J Indust Medicine 2001
216 Awkward posture Picavet Preventative medicine 2000
217 Sustained postures or positions Picavet Preventative medicine 2000
218 Frequent flexion and rotation Picavet Preventative medicine 2000
219 Psychological distress Power Am J Public Health 2001
220 Heavy smokers Power Am J Public Health 2001
221 Gradual onset assc w psych symptoms Smedley Journal of Rheumatology 2005
222 Sudden onset assc w patient hand tasks Smedley Journal of Rheumatology 2005
223 Increased age Stevenson Spine 2001
224 Thoracic spine acceleration Stevenson Spine 2001
225 Medium frequency intercept EMG at L3 Stevenson Spine 2001
226  Reduced Quad strength Stevenson Spine 2001
227 Reduced Quad endurance Stevenson Spine 2001
228 Self-assessment of poor physical fitness Stevenson Spine 2001
229 Low social support Stevenson Spine 2001
230 Mediactions taken Stevenson Spine 2001
231 Flexion and rotation Sun Zhonghua lao dong wei 2007
232 Transferring patients Sun Zhonghua lao dong wei 2007
233 Physically demanding job Sven European spine journal 2006
234 Poor work conditions Sven European spine journal 2006
235 Bad weather Sven European spine journal 2006
236 Increased age Tam J of Occ Rehab 2006
237 Perceived effort Tam J of Occ Rehab 2006
238 Low job satisifaction Tam J of Occ Rehab 2006
239 Steering wheel adjustment Tamrin Industrial health 2007
240 Perception of exposure to vibration Tamrin Industrial health 2007  
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241 Central Obesity Toda Arch Int Med 2000
242 Driving Tubach J Clinical Epidemiology 2004
243 Carrying heavy loads Tubach J Clinical Epidemiology 2004
244 Previous LBP Tubach J Clinical Epidemiology 2004
245 Psychological distress Tubach J Clinical Epidemiology 2004
246 Driving for long periods Toshihiko Occupational Medicine 2006
247 Sustained flexion of 90 degrees van Vuuren J of Occ Rehab 2007
248 Manual handling van Vuuren J of Occ Rehab 2007
249 Lifting van Vuuren J of Occ Rehab 2007
250 Load carriage van Vuuren J of Occ Rehab 2007
251 Flexion and rotation van Vuuren Am J of Indust Med 2005
252 Lifting heavy objects van Vuuren Am J of Indust Med 2005
253 Load carriage van Vuuren Am J of Indust Med 2005
254 Sitting for prolonged periods van Vuuren Am J of Indust Med 2005
255 Kneeling or squatting van Vuuren Am J of Indust Med 2005
256 Uneven or slippery surfaces van Vuuren Am J of Indust Med 2005
257 Two or more other diseases Ville European spine journal 2008
258 Below average self perceived health Ville European spine journal 2008
259 Smoking Ville European spine journal 2008
260 Being a forklift driver Waters Am J Indust Medicine 2005
261 Emotional problems Watson Arch of dis in childhood 2003
262 Daytime tiredness Watson Arch of dis in childhood 2003
263 Headaches Watson Arch of dis in childhood 2003
264 Abdominal pain Watson Arch of dis in childhood 2003
265 Sore throat Watson Arch of dis in childhood 2003
266 Poor lifting technique Wrigley Clinical biomechanics 2005
267 New on ward Yip J of Advanced Nursing 2004
268 Flexed postures Yip J of Advanced Nursing 2004
269 Poor social support at work Yip J of Advanced Nursing 2004
270 Not enjoying work Yip J of Advanced Nursing 2001
271 Positioning patients in bed Yip J of Advanced Nursing 2001
272 Assisting patients with walking Yip J of Advanced Nursing 2001
273 Poor social support at work and low moodYip Psych,Health & Med 2002
274 Stressful past 12 months Yip Health care women Int 2004
275 High psychological stress Yip Health care women Int 2004
276 Physical strain activities Yip Health care women Int 2004
277 Low hip to waist ratio Yip Health care women Int 2004  
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APPENDIX II 

Clinical Trial Protocol for the Inductive Coil Trial 

BSM 

Experimental Trials 

Protocol 

May 2002 

 

Description of the Experiment 

1. General Description 

2. Experiment Aim. 

3. Preparation. 

4. Collection of Data. 

5. Analysing Collected Data. 

1. General Description 

The experiment is split into two stages: 

Stage 1 

Stage 1 will involve 20 subjects and 3 practitioners. 

Each Practitioner will mark on each subject, the PSIS and another mark 150mm up from the 

PSIS’s intersecting line, apply the BSM device, Calibrate the device and the subject will be 

asked to go through 4 movements. There is a specific protocol to follow in this procedure 

which is outlined below. Measurements will then be taken of the subject’s full range of flexion 

using the BSM Device. 

The process will be recorded by the BSM device and on video tape for later analysis. 

Stage 2 

Stage 2 involves 20 subjects and 1 practitioner. 

Each subject will then have additional markers applied to their lower back, and be asked to go 

through a set of movements. These movements will be recorded by the BSM device, and by 

video cameras for later analysis. 

2.  Aim: 

The aims of this experiment are: 

• To establish the inter-tester reliability of using the PSIS as a landmark for 
reliable measurement of lower back movements. 
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• To verify the reliability of the BSM to measure skin stretch during lumbar 
movement based on the parameters defined below. 

• To gain feedback from practitioners regarding the use of the device and the 
concept itself. 

3. Preparation: 

The Equipment 

MD 

Description:  Titanium Coil 

Diameter:  4.00mm 

Thickness of Wire: 0.25mm 

Length:  150.00mm 

Frequency: 100 KHz 

Attachment types: Approved electrodes (insulated) commonly used with EMG work. 

Other:  Coil coated with lacquer to prevent current ‘leak’. 

RFD 

Description: Prototype Datalogger on breadboard. 2 potentiometers or calibration + 2 

LED’s for calibration. Power/Reset LED and switch. Start/stop recording 

switch and LED. 

Input Type:  MilliVolts 

DSP type:  Motorola 68HC11 

Power: 6 volts DC. 

Method 

Blind Testing. Practitioners will not be aware of the purpose of the testing or the status of each 

subjects low back pain. 

Subjects will be unaware of the purpose of the testing, as well as the desired results. 

Subjects 

• 20 subjects in total. 

• Subjects are to be collected via private connections. 

• The Population for the trials will have the following characteristics: 

Category Sample Population 

Sex 10 male, 10 female 

Age > 60 =5 
50-60 =5 
20-30 =5 
30-50 =5 

Other Subjects must have no history of back injury, defined as 
injury requiring days off work (normal daily activities). 

• Each subject must complete: 

1. the PAI “BSM Questionnaire – Contributing Factors” Form 

2. The PAI Consent Form. 

Practitioners / Testers 

3 qualified Practitioners will conduct stage 1 of the trial with each subject. 

Practitioners will be briefed on the protocol before beginning with subjects. 

Subject Starting Position 
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Each subject before commencing each movement, should be asked to stand in “the 

starting position”. Please ask the subject to: 

• “stand relaxed but upright with your feet shoulder-width apart and 
arms relaxed by your side” 

Please explain this starting position to each subject. 

Landmarks Protocol 

Both stages of the trials require locating of landmarks for the attachment of the MD 

unit. The marks on the lower back are to be located using the following procedure only: 

1. Instruct the subject to stand in the “starting position”; 

2. Mark the PSIS on the left and right sides such that each is the size of an olive; 

3. Draw a small horizontal line across the middle of each PSIS ‘olive’; 

4. Join these two horizontal marks with one extended horizontal line (Line “A”) 
stretching across the spine. 

5. Measure with a soft measuring tape, 150mm up from line “A”, measuring with the 
tape pressed against the subjects skin, gently following the skin contours. Mark a 
small horizontal line here (Line “B”). 

6. Get the subject to stand with feet shoulder-width apart and re-measure the distance 
in millimetres between the two lines; 

7. Instruct the subject to bend forward as far as they feel comfortable, keeping their 
knees straight. 

8. Whilst the subject is in their maximum 
flexed position, measure the new 
distance between line A and B in 
millimetres. Also mark the point on 
the subjects shins, where the tips of 
their fingers have reached. Record 
measurements on data sheet; 

9. Instruct the subject to return to their 
original standing position. 

10. Place a fixation pad (provided) such 
that the white line on the pad matches 
up with the line marked on the skin. 
Place each pad orientated such that 
the bulk of the pad is outside of the 
area to be measured (see diagram to 
the right). 

 

Stage 2 – BSM Recordings 

 

Fixation to the skin 

1. Instruct the subject to stand on the feet placement markers on the ground in area two; 

2. Instruct the subject to stand in the ‘starting position’; 

3. Apply the BSM Measuring unit (helical coil) to the lower back; 
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3.1. The stretch zone is as indicated in the diagram to the 
right. Clip the press-studs at both ends of the MD to the 
press-studs on the pads at the top and bottom of the 
stretch zone. Connect the wires from the device to the 
coil; 

3.2. Secure the wires with a piece of tape to the subject’s hip 
either on the skin or on a belt. 

3.3. Check that the technician is ready to begin the test; 

4. Instruct the patient to stand in the starting position; 

5. Instruct the patient to bend forward as far as they comfortably 
can, hold for one second and then return to the starting position; 

6. Repeat steps 4 and 5 five times. 
 
 

4. Data Collection: 

The BSM will be positioned at midline of L1 and S1 level. Data is to be collected by 

initiating movements where we believe the back is most active. 

In summary, each subject will be performing two steps. Firstly, they will be asked to 

bend to their maximum range, and return to the starting position. 

This will be repeated three times. 

The subject will then be asked to perform a set of simple activities, mimiking everday 

activities. These will be video taped as well as recorded by the BSM for later analysis. 

 

Stage 2, Step 1 

Setting 

Ask the subject to place the feet on the placement markers on ground, and stand in the 

starting position, looking straight ahead. 

Aim 

The purpose of this station is to collect data regarding simple forward flexion of the spine, 

and compare this data to Schober method recordings. This will assist in verifying the 

relationship of skin stretch to lower back movement. 

Actions to be Taken 

The subject is standing in the starting position as outlined above. 

The subject is asked to bend forward as far as comfortably possible at slow speed, 

whilst recordings are taken using the Schober method. When at full flexion the subject 

is asked to return to the starting position. 
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This step is repeated three times. 

Stage 2, Step 2 

Settting 

At Station two there is an ordinary office desk set up with a computer, printer and chair. 

A camera is placed recording the desk at right angles, on the left hand side. 

The subject is asked to sit in the chair and perform a number of predetermined tasks. 

Aim 

The aim of this Step is to capture movement recordings for a very everyday task for 

many workers. 

BSM recordings will later be compared with video analysis of the tasks. 

Actions to be Taken 

The subject is asked to begin with feet on the placement markers. 

The subject is asked to take a seat in the chair at the desk. 

The subject is asked to type “The quick brown fox jumped over the lazy dog” onto the 

keyboard. 

The subject is asked to pick up the pile of paper off the floor and fill the printer tray. 

The subject is asked to print the text to the printer. 

The subject is asked to highlight the text using the mouse and delete it. 
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The Experiments Utility 

The experiments will be conducted to determine the reliability of the BSM device when 

measuring the back strain of subjects. 

 

 

5. Analysis of Collected Data 

Subjects chosen are of three ‘sizes’ with no physical limitation in order to get accurate 

readings. 

In order to get accurate readings the experiment is done in a controlled environment 

with all the positions and the movements predetermined. The position of the BSM on 

the skin of the lower back will be the same in all subjects. 

Once the data is collected, a histogram for each subject is analysed using subjective 

practitioner questionnaire and also statistical methods. 

Practitioner Analysis 

Graphs will be created separately for movements recorded during each of the stations 

for each subject. 

Practitioners will be shown graphs for each station mixed in random order and asked to 

predict which station the graphs depicts activity in. 

The practitioner will be unaware of which station and which subject they are analysing. 

Statistical Analysis 

The Intraclass Correlation Coefficient (ICC) will be used to analyse the reliability of the 

coil technique. The reliability of the Schober method will also be calculated using the 

same method. 

Classification 

Project may be classified Minimal Risk: 

Procedures taken to minimise risks involved – 

Maintaining Confidentiality 

All the forms and experimentation sheets will not have subject 

identification details, only specific details to identify the age and sex of 

the subject relevant to the experiment. 

� The device is electrically safe and is not connected to mains electricity. 
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RMIT HUMAN RESEARCH ETHICS COMMITTEE 

PLAIN LANGUAGE STATEMENT 

 

FACULTY OF Engineering 

SCHOOL OF Electrical and Computer Systems Engineering 

Name of participant:  

Project Title: Back Strain Monitor (BSM) Experimental Trials 

  

Name(s) of investigators:    (1) Andrew J Ronchi Phone: 0417-882267 

 

Pro-Active Industries Pty Ltd (PAI) & RMIT University are conducting research into injuries of 

the lower back region. This research requires PAI to collect measurements of lower back 

movement from many different people. 

The experiment involves subjects being fitted with a small device onto the skin of their lower 

back, and then being asked to go through a variety of everyday movements. 

The collated results of these measurements will be used to create standardised ranges of 

movement for the lower back and to test the validity of an electronic measurement device. The 

results of this study may be published in a journal in Australia and/or overseas, and/or used to 

promote the commercial interests of PAI. 

However, none of your personal details, including your name, will be connected with any of the 

published material. Only the measurements taken (sex, height, weight and age) will be 

included in the published results. 

The experiments do not involve any dangerous substances, radiation or processes. There is 

no electrical current passed through the body, and the device is battery powered, not mains 

powered. 

 

Please Note: 

If you feel any discomfort or pain during the experiments, please return to a standing or 

lying position immediately and notify the practitioner of your pain/discomfort. 
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HREC Form No 2b 

RMIT HUMAN RESEARCH ETHICS COMMITTEE 

 

Prescribed Consent Form For Persons Participating In Research Projects Involving 

Interviews, Questionnaires or Disclosure of Personal Information 

FACULTY OF Engineering 

SCHOOL OF Electrical and Computer Systems Engineering 

Name of participant:  

Project Title: Back Strain Monitor (BSM) Experimental Trials 

  

Name(s) of investigators:    (1) Andrew J Ronchi Phone: 0417-882267 

(2)  Phone:  

 

1. I have received a statement explaining the interview/questionnaire/activities involved in this project. 

2. I consent to participate in the above project, the particulars of which - including details of the interviews or 

questionnaires - have been explained to me. 

3. I authorise the investigator or his or her assistant to interview me or administer a questionnaire. 

4. I acknowledge that: 

(a) Having read Plain Language Statement, I agree to the general purpose, methods and demands 
of the study. 

(b) I have been informed that I am free to withdraw from the project at any time and to withdraw any 
unprocessed data previously supplied. 

(c) The project is for the purpose of research and/or teaching. It may not be of direct benefit to me. 

(d) The confidentiality of the information I provide will be safeguarded. However should information of 
a confidential nature need to be disclosed for moral, clinical or legal reasons, I will be given an 
opportunity to negotiate the terms of this disclosure. 

(e) The security of the research data is assured during and after completion of the study. The  data 
collected during the study may be published, and a report of the project outcomes will be 
provided to_____________(specify as appropriate).  Any information which will  identify me will 
not be used. 

Participant’s Consent 

Name:  Date:  

(Participant) 

 

Name:  Date:  

(Witness to signature) 

 

Participants should be given a photocopy of this consent form after it has been signed. 

Any complaints about your participation in this project may be directed to the Secretary, RMIT Human Research Ethics Committee, 

University Secretariat, RMIT, GPO Box 2476V, Melbourne, 3001. The telephone number is (03) 9925 1745. 
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Appendix III 

Clinical Trial Protocol for the Accelerometer Trial 

RMIT HUMAN RESEARCH ETHICS COMMITTEE 

 

APPLICATION FOR APPROVAL OF A PROJECT INVOLVING HUMAN PARTICIPANTS 

No handwritten applications can be accepted. This form is available from: 

http://www.rmit.edu.au/departments/secretariat/hrec.html 

 

Section A: Approvals and Declarations 

 

Project title: 

Determine the usefulness of a device for measuring lumbar spine movements and 

load within an industrial setting over prolonged periods of time. 

A1. Complete this section if you are undertaking Research for a Degree Awarded 

by RMIT or another university. (Bachelor/Masters by Coursework/Masters by 

Research/PhD). 

 

Investigator  

Name: Andrew J Ronchi 

Student No: 3029015 

Qualifications: B.App.Sci(Physio) 

Department: School of Electrical & Computer Systems Engineering 

Address: 7 Burke Road, Malvern East, Victoria, 3145 

Phone: 0417-882267 Email: Pro_act@ihug.com.au 

Degree Doctor of Philosophy 

(for which research is 

undertaken) 

 

 

Supervisor  

Name: Dr Dinesh Kant Kumar 

Qualifications: PhD, BE Honour(Electrical) 

Department: School of Electrical & Computer Systems Engineering 

Campus: City 
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Phone: 03-9925-1954 Email: dinesh@rmit.edu.au 

 

A1. Complete this section if your research is Not for Any Degree 

 

Principal Investigator  

Name:  

Qualifications:  

Department:  

Campus:  

Phone:  Email:  

 

Other Investigators  

Name:  

Qualifications:  

Department:  

Campus:  

Phone:  

Email:  
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Section A2 

 

Project title:  Determine the usefulness of a device for measuring lumbar spine movement 

and load within an industrial setting over prolonged periods of time. 

  

 

 

 

 

  

 

 

Name/s of persons associated with the conduct of the work described in this 

proposal (you may increase space to include all those involved): 

Name: Mr. Phil Brasher Qualifications

: 

B.App.Sci (Physio) 

 

Role: 

 

Research adviser and planner. 

    

Name: Nick Taylor Qualifications

: 

PhD, BAppSc (Physio) 

Role: Consultant 

  

Name: Ms. Barbara Polus Qualifications

: 

Dr. Of Chriopractic 

 

Role: 

 

2nd Supervisor 

  

Name: Dr Dinesh Kant Kumar Qualifications

: 

PhD, BE Honour(Electrical) 

 

Role: 

 

Supervisor 

  

Name: Mr Andrew Ronchi Qualifications

: 

B.App.Sci (Physio) 

 

Role: 

 

Researcher / Applicant 
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Declaration by the Investigator(s): 

I have read the current NH&MRC National Statement on Ethical Conduct in Research 

Involving Humans 1999, and accept responsibility for the conduct of the procedures detailed 

below in accordance with the principles contained in the Statement and any other condition 

laid down by the RMIT Human Research Ethics Committee. 

Name: Andrew Ronchi Date:  

(Signature of Principal Investigator) 

 

Name: Phillip Brasher Date:  

(Signature of other Investigators) 

 

Name: Dr Dinesh K. Kumar Date:  

(Signature of supervisor – if applicable) 

    

Name: Dr Barbara Polus Date:  

(Signature of supervisor – if applicable) 

 Dr Nick Taylor   

Name:  Date:  

(Signature of supervisor – if applicable) 
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Section A3 

 

Project title: Determine the usefulness of a device for measuring lumbar spine movement 

and load within an industrial setting over prolonged periods of time. 

 

  

 

 

 

 

  

 

 

 

Declaration by the Head of Department: 

Statement on the adequacy of the project’s experimental design: 

The proposed project follows a logical pathway. The first aspect of the project analyses 

lumbar spine movement and load, comparing the new device measurements to pre-existing 

parameters which are well recognised by the medical profession. This analysis will be 

performed by way of experimental trials with a strict experimental protocol which has 

already been field tested. The correlation between the new device measurements and pre-

existing data measurements will give valuable statistical data in relation to the reliability and 

validity of the device and the proposed measuring technique, within a controlled setting. 

The second aspect of the project will involve a pilot study in which the device will be used 

within a real work setting. Subjects will perform normal daily work tasks whilst wearing the 

device as well as being video taped. The correlation between the device’s recorded 

movement data and the video recording data, will give an idea of the reliability and validity 

of the device within a work setting. 

 

Ethical issues that are to be addressed by the Human Ethics Committee: 

1) Safety of subjects: 

a) A low grade electrical device is to be used for the trials. To ensure there is no 

danger to subjects, the device is currently powered by a standard mains isolated 

powerpack, with additional 5KV isolation built into the circuitry itself (exceeding 

AS3000 commercial requirements). 
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b) Subjects are advised that if they feel pain and/or discomfort during the test, they are 

to stop and discontinue the trials. 

c) No heavy loads will be lifted during the course (i.e.: < 10Kg’s) of the experiments. 

2) Confidentiality of Data: The data collected from the subjects will not be linked to their 

name or date of birth. Only the subjects age may be used. No private information will be 

published unless we have written permission from each particular subject involved. 

The project set out in the attached application, including the adequacy of its experimental 

design and compliance with recognised ethical standards, has the approval of the 

Department/Faculty. 

 

Name:  Date:  22nd AUGUST 2003 

(Signature of Head of Department) 

 

Departm

ent: 

 

Electrical & Computer Systems Engineering 

 

Extn: 

 

9925 1971 

 

Faculty: 

 

Engineering 

 

Camp

us: 

 

City 

 

Should substantive amendments to the proposal be sought by the HREC or its Faculty Sub 

Committee, these are to be endorsed below: 

Amendments made at the date indicated: 

 

 

Name:  Date:  

(Signature of Head of Department) 
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Section A4 

 

Faculty Human Research Sub-Committee Use Only 

 

 

Date Application Received:  

 

Faculty HRE Sub-Committee Register No 

 

 

 

Recommended project risk classification (circle one): Level 1  Level 2  Level 3 

 

   

Approved by Faculty Sub-Committee:  

 

Date: 

 

 

Period of Approval:                          From 

  

to 

 

 

Or 

 

Referred to RMIT HREC:  Date:  

 

 

Comments/Provisos: 

 

 

 

Name:  Date:  

(Faculty HRE Sub-Committee Chair) 

 

Date PI notified/sent to RMIT HREC: 
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Section A5 

University Human Research Ethics Committee Use Only 

 

 

AR Project: 

  

RMIT HREC Register No: 

 

 

Period of Approval: From 

  

to: 

  

 

Comments/Provisos: 

 

 

 

Name:  Date:  

(HREC Chair) 

 

Date PI notified/sent to HREC Sub-Committee: 
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Investigators are advised to include with their application sufficient detail about the project, 

recruitment method and procedures for obtaining informed consent, to enable the 

Committee to make a proper assessment of the project. Having sufficient information 

assists the Committee to make a speedy decision. 

 

Please supply details of your proposed project according to the headings given below - 

 

Section B: Project particulars 

 

B1. Title of Project: 

Determine the usefulness of a device for measuring lumbar spine movements and load over 

prolonged periods of time: Experimental Trials 

 

There will be two trials/tests over the duration of the project that need approval from the 

HREC. The first is outlined comprehensively below and the second is outlined briefly and 

will be submitted separately to the first, before February 2004. 

B2. Project description: for HREC assessment of ethical issues. 

 

TRIAL ONE – RELIABILITY TESTING 

1.  Aim: 

Reliability testing in a controlled setting: 

(1)The first aim of this experiment is to assess the test-retest reliability and the inter-tester 

reliability within a controlled setting (i.e.: one room) of the Back Strain Monitor (BSM) to 

measure skin stretch and angular change during lumbar movement. 

 

 (2) The second aim is to compare the BSM accelerometer readings to the inclinometer 

readings, as well as the video angular readings, to assess the degree of criterion validity of 

the BSM accelerometer readings. 

 

 (3)The third aim is to review whether the BSM device can reliably (test/re-test and inter-

tester reliability) measure functional activity in a semi-controlled setting (i.e.: 10 chosen 

functional activities performed in one room with the BSM device worn and video recording 

of the activities).  
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(4)The Fourth: The 10 chosen activities will be ranked, in order of risk/pressure to the 

lumbar spine disc (Nachemson 1976), by 30 physiotherapists. From the data gathered by 

the BSM in the functional reliability study, estimates will be made of which activity is 

performed by reviewing the data only. These data estimates will be compared to the 

professional estimates to see whether there is criterion validity of the BSM data in being 

able to discriminate professional opinion in relation to risk to the lumbar spine disc.  

 

2.  Methods 

The experiment will use a combination of the Modified-Modified Schober test, the double 

inclinometer technique, the BSM device and video analysis. The BSM measures two 

parameters at any one time. These are; 

(a) Angular changes via 4 accelerometers, with 2 at the upper lumbar spine 

and 2 at the lower lumbar spine (see ‘landmarks’ heading for more 

specific placement details). These angular recordings will be taken 

through range during flexion, lateral flexion and rotation movements. The 

readings will then be compared with the double inclinometer technique as 

described by Mayer, 1984. These measurements will give start and end 

range of movement for each of the described movements. 

(b) Muscle activity of the erector spinae/multifidus and biceps brachii via 

EMG recordings (Muscle activity will not be measured in these 

experiments). 

 

Research questions: (numbered in sync with the above aims) 

Controlled Setting: 

1. Do the accelerometers, attached to the upper and lower lumbar spine, reliably (test/re-

test and inter-tester reliability) measure the movements of the lumbar spine in all three 

planes (i.e.: flexion, lateral flexion and rotation)? Proposed statistical method for test/re-test 

will be ICC and estimates in the units of measurement based on the standard error of 

measurement (Keating,1998) 

 

2. How do the readings from the accelerometers compare to the readings from the 

inclinometers and the angular readings taken from the video? What degree of criterion 

validity exists between these three measuring systems? The accelerometer readings, the 

inclinometer readings and the video angular readings will be compared by the determination 
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of the correlation coefficient and 95% confidence intervals derived form the standard error 

of estimate. 

 

Functional Setting: 

3. Can the combined data from the accelerometers and the EMG readings, reliably measure 

functional activity (as defined by 10 chosen functional activities with an increasing risk rating 

to injuring the lumbar spine)? Test/retest and inter-tester reliability will be assessed via 

ICC(2,1) ,(Shrout, 1979). 

 

4. Ten different movements, representing differing loads/pressure on the lumbar spine, are 

ranked in order of estimated risk, by qualified physiotherapists (1= highest risk, 10= least 

risk). Can these movements be identified and differentiated from each other from the data 

alone (i.e.: the three types of data: the coil, the accelerometers and the EMG recordings)? 

 

Testing Procedure: 

Subjects will be briefly interviewed to establish whether they fulfil the inclusion 

criteria which states that subjects can not have had any back pain in the preceding 

three months and the subject has no history of spinal surgery to the lumbar, thoracic 

or cervical spine. There will be three testers; a Manipulative Physiotherapist (10yrs 

experience), a Sports Physician (15 yrs experience and an Anaesthetist (15yrs 

experience). There will be 30 subjects to be assessed over an eight hour period on 

one day. A follow up testing day will be organised for four weeks later to gather the 

data for the test/retest reliability aspect which will involve one of the testers with the 

same 30 subjects. 

Starting position will be with each subject standing with feet shoulder width apart in 

comfortable but erect standing (Youdas et al, 1991).The landmarks will be identified 

by Therapist 1 marking the PSIS’s, with a removable pen marker, in the shape of an 

olive. A horizontal line ‘Line A’ is then drawn across the middle of the olive and 

joined with the corresponding line on the opposite side of the lumbosacral spine. 

This line represents the lumbosacral junction and is the lower attachment for the coil 

and for the lower accelerometer. Fifteen centimetres is then measured from this 

horizontal line upwards towards the thoracolumbar junction keeping a flexible tape 

measure pressed gently against the skin. This point is marked with another 

horizontal line ‘Line B’ and the distance between the two horizontal lines will be 

confirmed as 15cm’s with the same flexible tape measure pressed gently against the 

skin on the central vertical line of the lumbar spine. This line ‘B’ is the upper 
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attachment for the coil and the marker for the upper accelerometer. The EMG 

electrodes positions are marked for the erector spinae group as described by 

Fathallah.F.A,1998, Spine. 

Subjects will then be fitted with the BSM Device such that the Accelerometers are at 

either end of line A and B. 

Movements within a controlled setting will be tested first. Each subject will be 

asked to flex forward, backward, tilt left and right and rotate left and right to ensure 

that they move correctly and this will also account for any warm up effect (Roberts et 

al. 1988). 

The testing will then begin (see next section for detailed description of requirement 

of subjects). 

Movements within a functional setting will then be tested. Subjects will be asked to 

go through 10 everyday activities with each movement being repeated three times. 

The BSM will be removed and the subject will be free to leave. 

The entire process is expected to take approximately 4 hours. 

The subjects will be required to return four weeks later, for one hour only, for one 

tester to re-test his/her measurements to assess the test/re-test reliability. 

3. Detailed Description of requirements of Subjects: 

The movements being performed during the experiments are listed below. The first 

section relates to movements within a ‘controlled setting’ and the second part to 

movements within a more ‘functional setting’. 

 

Controlled setting: 

NOTE 

Each practitioner will explain to each subject to stop movements if they have any 

discomfort. The experiment will stop immediately for any such Subject. 

 

Subject Starting Position (reliability testing in a controlled setting) 

Each subject before commencing movements, should ensure the following: 

• Stand facing the door of the lab with head and shoulders straight; 
• Stand with feet shoulder width apart; 
• Stand with arms relaxed by side; and 
• Stand with legs and trunk in relaxed stance. 
These following movements will be performed in a random sequence to avoid any potential 

bias. 

1. Lumbar spine Flexion: 

Starting posture: Standing as detailed above. 



APPENDIX III 

 

- 275 - 

The subject is asked to flex trunk forward reaching their fingers toward the ground as far as 

they comfortably can. The distance from the finger tips to the ground is measured and a box 

at this same height is placed on the ground. This box gives the subject a marker to reach to 

such that the movements they perform are consistent. The subject is then asked to reach 

forward and touch the box with their fingertips and hold the position for five seconds. This 

routine is repeated three times. At the erect standing position and the fully flexed position, a 

Schober reading and the double inclinometer readings will be taken and the BSM will be 

recording continously. 

2. Lumbar spine extension: 

Starting posture: as above 

The subject is asked to arch backward as far as they are comfortable, with their arms folded 

across their chest, and to hold this position for five seconds. Whilst holding this position the 

double inclinometer readings are taken and repeated when the subject is in erect standing. 

The Schober method is not used here. This extension movement is repeated three times. 

An extreme range of movement is not desirable as it may become uncomfortable with the 

sustained hold. This will be explained to the subject during the warm up movements. 

3. Lumbar spine Lateral Flexion: 

Starting posture: Standing with erect trunk. 

The subject is asked to laterally flex the lumbar spine, sliding their hand down the side of 

their leg without allowing the trunk to deviate forward or backward. This will be closely 

monitored during the warm up routine as well as during the testing. At the maximum 

comfortable lateral flexion, a box or marker will be placed at that height to allow the subject 

to return to the same level of lateral flexion. This lateral flexion movement is repeated three 

times to the right and three times to the left with a five second hold for each movements 

maximum range. The double inclinometer is again used to record the range of lateral flexion 

to the right and left. 

No Schober readings are required here. 

 

Thoraco-lumbar rotation: 

Starting position is in a 60 degree squat to reduce rotation through the hips, knees and 

ankles. The video camera is set up above the subject and will record the movement of the 

markers sticking out from the accelerometer boards. The subject will be asked to rotate to 

the left and the right, as far as comfortable, ensuring their knees continue to point forward. 

The inclinometer and the Schober are not to be used here. The movements will be held at 

full comfortable rotation for two seconds and repeated two times. Recordings will be taken 

automatically by the video and the accelerometers. 
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Uncontrolled Setting: 

With the BSM still attached and recording, the subjects will be asked to carry out ten 

different functional activities and repeat each activity twice, except movements one and two. 

These two movements will only be performed one time each as they are potentially 

provocative movements, especially if repeated more than once. 

There will be no attempt to record Schober measurements or inclinometer measurements 

during these movements. 

Each subject will be asked if they feel safe lifting each object and if it is something they 

would normally do. If they do not normally lift that particular weight, that lift will be left out of 

their functional movements. 

The movements will be recorded via video, in time sync with the BSM readings, to allow 

later processing of what movements occurred at what exact time. 

These movements will be performed in a random sequence in order to avoid any bias. 

(1) Bending forward fully and twisting fully to lift 20 Kg from ground level. 

(2) Bending forward fully and lifting 20 Kg from ground level. 

(3) Bending forward ¾ range flexion and lifting 15 Kg weight from 20cm high (i.e.: 1 step). 

(4) Bending forward ½ range of movement and lifting 10 Kg from 40cm high (i.e.: 2 steps). 

(5) Bending forward ½ range of movement and lifting 5 Kg from 60 cm high (i.e.: 3 steps). 

(6) Forward flexion to ½ range of movement. 

(7) Forward flexion to ¼ range of movement. 

(8) Squat with lumbar spine remaining in lordosis. 

(9) Walking upright. 

(10) Lying down on side. 

 

After all appropriate movements are performed, the BSM will be removed and the skin 

markings cleaned off with a safe solvent to reduce any bias from the next tester. The 

subject then moves to the next tester who has been allocated in a random sequence to 

reduce any potential bias. 

B3. Proposed commencement of project 

RELIABILITY TESTING – October 2003 

 

B4. Proposed duration of project; proposed finish date. 

The project will begin in October 2003 and end in February 2004. 

The Clinical Tests will run for two days in total. 
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B5. Source of funding (internal and/or external) 

External 

B6. Project grant title; proposed duration of grant (where applicable) 

Back Strain Monitor – AusIndustry Biotechnology Innovation Fund Grant No.2588 

    Grant duration (July ’02 – February ’04) 

 

Section C: Details of participants 

C1. Number, type, age range, and any special characteristics of participants. 

RELIABILITY TESTING: 

Number:   30 

Sex:    Male & Female 

Age Range:   20 – 60 years old 

Special Characteristics:   

Subjects must not have suffered from an injury to the lower 

back in the past 3 months. 

 

C2. Source of participants (attach written permission where appropriate) 

Advertisements are being placed at RMIT city campus and at two Private Physiotherapy 

practices. 

C3. Means by which participants are to be recruited 

Flyer advertisements, practitioners asking suitable patients. 

 

C4. Are any of the participants "vulnerable" or in a dependent relationship with 

any of the investigators, particularly those involved in recruiting for or conducting 

the project? 

No. 

 

Section D: Risk classification and estimation of potential risk to participants 

 

D1. Please identify the risk classification for your project by assessing the level of 

risk to participants or (if any) to the researcher. 

Risk Level 2 (MR) 

 

D2. If you believe the project should be classified level 2 or level 1 please explain 

why you believe there are minimal risks to the participants. 
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Physical Risks: Subjects are not being required to perform any strenuous or dangerous 

tasks. The tasks being performed are well within everyday tasks for the average person and 

there is therefore very little risk involved in the project. All subjects and examiners will be 

briefed that if any discomfort is felt by any subject, then the experiment must stop 

immediately for that subject. 

There is no electrical current passed through the body and extensive measures have been 

taken to isolate the equipment and the subject from mains power. 

 

Other Risks: Subjects will not be placed under any stress to complete tasks. There will be 

no pressure on applicants. There is no risk of any mental or psychological ramifications 

from the trials. There is no nudity or compromising positions involved in the trials that may 

cause some subjects discomfort or humiliation. 

OR 

If you believe the project is classified level 3 please identify all potential risks to participants 

associated with the proposed research. Please explain how you intend to protect 

participants against or minimise these risks. 

 

D3. Please explain how the potential benefits to the participant or contributions to 

the general body of knowledge outweigh the risks. 

The risks involved are very minor. The benefits to the subjects are minimal. 

The potential contribution to the body of knowledge will be significant. 

 

D4. Contingency planning: first aid / debriefing 

Mr Andrew Ronchi and Mr Phil Brasher, who are both Physiotherapists involved in the trials, 

have current First Aid certificates, as will other practitioners involved. A locality plan will also 

be placed in the lab, which will illustrate where the nearest first aid room is available, and 

list all relevant phone numbers for ambulance, nearest hospital and RMIT First Aid Room. 

 

 

D5. Please complete this checklist by placing Y (Yes) or N (No) and give details of 

any other ethical issues that may be associated with this project. 

Y/N 

a Is deception to be used?  

b Does the data collection process involve access to personal or sensitive data without the 

prior consent of participants? 
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c Will participants have pictures taken of them eg: photographs, video recording, 

radiography? 

 

d Will participants come into contact with any equipment which uses an electrical supply in 

any form eg: audiometer, biofeedback, electrical stimulation, etc? 

 

e 

 

If interviews are to be conducted will they be tape-recorded or videotaped?  

f 

 

Do you plan to use an interpreter?  

g 

 

Will participants be asked to commit any acts which might diminish self-esteem or cause 

them to experience embarrassment or regret? 

 

h 

 

Are any items to be taken internally (orally or intravenously)?   

i Will any treatment be used with potentially unpleasant or harmful side effects?  

j Does the research involve a fertilised human ovum?  

k Does the research involve any stimuli, tasks, investigations or procedures which may be 

experienced by participants as stressful, noxious, aversive or unpleasant during or after 

the research procedures? 

 

l Will the research involve the use of no-treatment or placebo control conditions?  

m Will any samples of body fluid or body tissue be required specifically for the research, 

which would not be required in the case of ordinary treatment? 

 

n Will participants be fingerprinted or DNA "fingerprinted"?  

o Are the participants in any sort of dependent relationship to the investigator/s?  

p Are participants asked to disclose information that may leave them feeling vulnerable or 

embarrassed? 

 

q Are there in your opinion any other ethical issues involved in the research?  

 

Where you have placed ‘Y’ to any of the questions on the checklist, please give details and 

state what action you intend to take to ensure that no difficulties arise for your participants. 

 

D5(C) Video Footage 

Video footage will be taken of the subjects throughout the trials. This is an integral part of 

the analysis of the data once the trials have been completed. As stated in the subject 

consent form, PAI make a written assurance that this footage will not be used apart from 
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internally. It will not be used in any marketing or promotional materials, nor shown to any 

parties that are not a member of the trial team. 

We think this adequately prevents any public viewing of the material and therefore any 

ramifications for the subjects. We have been sure to state that video footage will be taken 

right from the outset, to ensure all subjects are fully aware well before the trials commence. 

 

D5(D) Electrical Equipment 

The device being tested is an electrical device. Power isolation has been a major point of 

design of the prototype, both the power supply and the electrical circuit itself have power 

isolation to above AS3000 standards. This poses no threat of electrocution to the subjects. 

No electrical current is at any time passed through any part of the subject’s person (eg: 

electrodes) and at no time will any equipment subjects come in contact with be connected 

to main power. 

There is no risk of any harm coming to any subject through electrocution. 

 

Details [except (a) and (b)] must be included in the plain language statement. 
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Section E: Informed consent 

 

E1. Attach to the application your plain language statement & consent form. 

See Attachment #1 

E2. Dissemination of results 

Included in PLS 

E3. Participants under 18 years 

N/A 

E4 Persons subject to the Guardianship Act (Vic) (If applicable) 

N/A 

 

Section F: Research Involving Collection, Use Or Disclosure Of Information 

We wish to acknowledge permission from the Department of Human Services, Vic on 

whose Common Application Form the questions in this section have been based.  

Please note that if you propose to collect information about an individual from a source other 

than the individual, or to use or disclose information without the consent of the individual whose 

information it is, you will also have to complete the Special Privacy Module (Appendix ix) as well 

as the questions below. 

Under statutory guidelines a HREC may approve some research where the public interest 

outweighs considerations of privacy, however a researcher must make a special case for such 

approval. The Special Privacy Module is the starting point for preparing such a case.  

For a more detailed guidance and definitions for each of the question below, see Notes to 

assist in completing the form, Section F. 

F1 Does this Section Has to be Completed? 

Does the project involve the collection, use or disclosure of personal information, health 
information including genetic information, or sensitive information,? (see Notes to assist in 
completing the form, Section F) 

  No – you do not have to answer any questions in this section. Go to Section G. 

  Yes – you must answer questions in this section. Go to Question F2. 

F2 Type of Activity Proposed 

Are you seeking approval from this HREC for: 

 (a) collection of information? 

   Yes – start at Question F3 
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   No – start at Question F4 

 (b) use of information? 

   Yes  No 

 (c) disclosure of information? 

   Yes  No 

F3 Collection of Information 

(a) Does the project involve collection of information directly from individuals about 
themselves? 

 No – (i.e. -collected from a third party/existing records) You must fill out the 
Special Privacy Form 9 (See Appendix ix), as well as this form. 

 Yes – answer the following questions: 

(b) What type of information will be collected? (Tick as many as apply) 

   personal information 

   sensitive information 

   health information 

(c) Does the plain language statement explain the following: 

The identity of the organisation collecting the information and how to 
contact it? 

 
Yes    No  

The purposes for which the information is being collected? Yes    No  

The period for which the records relating to the participant will be 
kept? 

Yes    No  

The steps taken to ensure confidentiality and secure storage of 
data? 

 

Yes    No  
 

The types of individuals or organisations to which your organisation 
usually discloses information of this kind? 

Yes    No  

How privacy will be protected in any publication of the information? Yes    No  

The fact that the individual may access that information? Yes    No  
 

Any law that requires the particular information to be 
collected/disclosed? (e.g. notifiable diseases or mandatory reporting 
obligations re child abuse) 

Yes    No  
Not 
Applicable 

 

The consequences (if any) for the individual if all or part of the 
information is not provided? (eg any additional risks if a participant 
does not fully disclose his/her medical history) 

Yes    No  

Not 
Applicable 

 
If you answered “No” to any of these questions, give the reasons why this information has 
not been included in the plain language statement. 
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F4 Use or Disclosure of Information About Individuals 

(a) Does the project involve the use or disclosure of identified or potentially identifiable 
information? 

 No – go to Question F5. 

 Yes, answer the following questions. 

(b) Does the project involve use or disclosure of information without the consent of the 
individual whose information it is? 

 No - go to Question F5. 

 Yes, You must fill out the Special Privacy Form, as well as this form. (See 
Appendix ix) 

F5 General Issues 

(a) How many records will be collected, used or disclosed? Specify the information that 
will be collected, used or disclosed (e.g. date of birth, medical history, number of 
convictions, etc) 

Number of records: 300 – 500 records 

Type of information: Date of Birth, History of low back pain, Occupation. 

(b) For what period of time will the information be retained? How will the information be 
disposed of at the end of this period? 

It is anticipated that the information will be retained for the required statutory period. 
It is unclear at this time whether a follow-up study will be required on some subjects. 
The information will be destroyed by shredding after the statutory period.  

(c) Describe the security arrangements for storage of the information. Where will the 
information be stored? Who will have access to the information? 

Only the investigator will have access to the confidential data. Records relating to 
data collected and to personal information will be removed from each other by a 
coding system for names and records. 

Once collation of the data is complete (2 weeks from conclusion), the information 
will be stored in two separate, locked filing cabinets at 7 Burke Rd, East Malvern 
3145. 

(d) How will the privacy of individuals be respected in any publication arising from this 
project? 

No information that would enable identification of an individual will be published. In 
any results, no information will link any name with date of birth or other personal 
information. 
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(e) Does the project involve trans-border (i.e. interstate or overseas) data flow? 

   Yes  No 

 If Yes, give details of how this will be carried out in accordance with relevant Privacy 
Principles (e.g. HPP 9, VIPP 9 or NPP 9). 

 

 

(f) Does the project involve the adoption of unique identifiers assigned to individuals by 
other agencies or organisations? 

   Yes  No 

 If yes, give details of how this will be carried out in accordance with relevant Privacy 
Principles (e.g. HPP 7, VIPP 7 or NPP 7). 

 

 

F6 Adverse Events 

Are procedures in place to manage, monitor and report adverse and/or unforeseen events 
relating to the collection, use or disclosure of information? 

   Yes  No 

Give details. 

Both in the plain English statement and as part of the experimental protocol, 
subjects will be given the opportunity to ask questions or express concerns, about 
any part of the experiment they are not entirely comfortable with. Subjects will also 
be advised that if at any time during the course of the experiments they encounter 
any pain or discomfort, they are to cease the experiment immediately. 

 

F7 Other Ethical Issues 

Discuss any other ethical issues relevant to the collection, use or disclosure of information 
proposed in this project. Explain how these issues have been addressed. 

 

 

 

Section G: Other issues 

 

G1. Do you propose to pay participants? If so, how much and for what purpose. 

A $20 payment will be made to the subject in appreciation for the subject’s time. 

G2. Where will the project be conducted? 
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The project is to be completed at two private physiotherapy practices in Melbourne. 

G3. Is this project being submitted to another Human Research Ethics 

Committee, or has it been previously submitted to a Human Research Ethics 

Committee? 

No 

G4. Are there any other issues of relevance? 

No. 

For any further detail about completion of this form, or for additional supporting material, 

please contact the Secretary of your Faculty HRE Sub Committee or the Secretary to the 

RMIT Human Research Ethics Committee C/o University Secretariat, (03) 9925 1745. 
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HREC Form 2a 

 

RMIT HUMAN RESEARCH ETHICS COMMITTEE 

Prescribed Consent Form For Persons Participating In Research Projects Involving Tests 

and/or Medical Procedures 

 

FACULTY OF Engineering 

DEPARTMENT OF Electrical & Computer Systems Engineering 

Name of participant:  

Project Title: Back Strain Monitor (BSM) 

  

Name(s) of 

investigators:    (1) 

Andrew Ronchi Phone: 0417-882267 

 

1) I have received a statement explaining the tests/procedures involved in this project. 

2) I consent to participate in the above project, the particulars of which - including details of 
tests or procedures - have been explained to me. 

3) I authorise the investigator or his or her assistant to use with me the tests or procedures 
referred to in 1 above. 

4) I acknowledge that: 

a) The possible effects of the tests or procedures have been explained to me to my 
satisfaction. 

b) I have been informed that I am free to withdraw from the project at any time and to 
withdraw any unprocessed data previously supplied (unless follow-up is needed for 
safety). 

c) The project is for the purpose of research and/or teaching. It may not be of direct 
benefit to me. 

d) The privacy of the information I provide will be safeguarded. However should 
information of a private nature need to be disclosed for moral, clinical or legal 
reasons, I will be given an opportunity to negotiate the terms of this disclosure. 

e) The security of the research data is assured during and after completion of the 
study. The data collected during the study may be published, and a report of the 
project outcomes will be provided to RMIT HREC.  Any information which will 
identify me will not be used. 
 

 

Participant’s Consent 

Name:  Date:  

(Participant) 

 

 

Name:  Date:  

(Witness to signature) 
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Where participant is under 18 years of age: 

I consent to the participation of ____________________________________ in the above project. 

Signature: (1)                                             (2) Date:  

(Signatures of parents or guardians) 

 

Name:  Date:  

(Witness to signature) 

Participants should be given a photocopy of this consent form after it has been signed. 

 

Any complaints about your participation in this project may be directed to the Secretary, RMIT Human Research 

Ethics Committee, University Secretariat, RMIT, GPO Box 2476V, Melbourne, 3001. The telephone number is 

(03) 9925 1745. 

Details of the complaints procedure are available from the above address. 
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HREC Form No 2b 

 

RMIT HUMAN RESEARCH ETHICS COMMITTEE 

Prescribed Consent Form For Persons Participating In Research Projects Involving 

Interviews, Questionnaires or Disclosure of Personal Information 

 

FACULTY OF Engineering 

DEPARTMENT OF Electrical & Computer Systems Engineering 

Name of participant:  

Project Title: Back Strain Monitor (BSM) 

  

Name(s) of 

investigators:    (1) 

Andrew Ronchi Phone: 0417-882267 

(2)  Phone:  

 

1. I have received a statement explaining the interview/questionnaire involved in this 

project. 

2. I consent to participate in the above project, the particulars of which - including 

details of the interviews or questionnaires - have been explained to me. 

3. I authorise the investigator or his or her assistant to interview me or administer a 

questionnaire. 

4. I acknowledge that: 

Having read Plain Language Statement, I agree to the general purpose, methods and 

demands of the study. 

I have been informed that I am free to withdraw from the project at any time and to withdraw 

any unprocessed data previously supplied. 

The project is for the purpose of research and/or teaching. It may not be of direct benefit to 

me. 

The privacy of the information I provide will be safeguarded. However should 

 information of a private nature need to be disclosed for moral, clinical or legal 

 reasons, I will be given an opportunity to negotiate the terms of this disclosure. 

The security of the research data is assured during and after completion of the study.  The 

 data collected during the study may be published, and a report of the project 

outcomes will be provided to the RMIT HREC. Any information which will identify me will not 

be used. 
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Participant’s Consent 
 

 

Name:  Date:  

(Participant) 

 

 

Name:  Date:  

(Witness to signature) 
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RMIT HUMAN RESEARCH ETHICS COMMITTEE 

PLAIN LANGUAGE STATEMENT 

FACULTY OF Engineering 

SCHOOL OF Electrical and Computer Systems Engineering 

Name of participant:  

Project Title: Determine the usefulness of a device for measuring lumbar spine 

movement and load within an industrial setting over prolonged 

periods of time. title needs to be more descriptive 

  

Name(s) of 

investigators:    (1) 

Andrew J Ronchi Phone: 0417-882267 

 

Andrew Ronchi is conducting research into injuries of the lower back region as part of his 

PhD This research requires him to collect measurements of lower back movement from 

many different people. 

 

The experiment involves subjects being fitted with a small device onto the skin of their lower 

back, and then being asked to go through a variety of everyday movements. 

 

The collated results of these measurements will be used to create standardised ranges of 

movement for the lower back and to test the validity of an electronic measurement device. 

The results of this study may be published in a thesis, in journals in Australia and/or 

overseas, and perhaps used for the release of a commercial product. 

 

However, none of your personal details, including your name, will be connected with any of 

the published material. Only the measurements taken, sex, height, weight and age may be 

included in the published results. 

 

The confidential data will be stored separately from the data collected to help ensure your 

privacy is kept, and only the investigator himself will have access to both sources of 

information that would enable identification. The confidential information will be kept for the 

statutory period. If you would like to see the confidential information at any time, you can 

phone the investigator on the number above. 

 

The experiments do not involve any dangerous substances, radiation or processes. There is 

no electrical current passed through the body, there is no invasive elements to the tests. 
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Please Note: 

Be sure to indicate to the research team if you have had any prior back injuries and what 

the severity of those injuries is or was. This is essential to ensure your safety through the 

testing. 

If you feel any discomfort or pain during the experiments, please return to a standing or 

lying position immediately and notify the practitioner of your pain/discomfort. 
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