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Abstract 

 

Speaker recognition is the task of establishing identity of an individual based on his/her 

voice. It has a significant potential as a convenient biometric method for telephony 

applications and does not require sophisticated or dedicated hardware.  

 

The Speaker Recognition task is typically achieved by two-stage signal processing: 

training and testing. The training process calculates speaker-specific feature parameters 

from the speech. The features are used to generate statistical models of different speakers. 

In the testing phase, speech samples from unknown speakers are compared with the 

models and classified. 

 

Current state of the art speaker recognition systems use the Gaussian mixture model 

(GMM) technique in combination with the Expectation Maximization (EM) algorithm to 

build the speaker models. The most frequently used features are the Mel Frequency 

Cepstral Coefficients (MFCC). 

 

This thesis investigated areas of possible improvements in the field of speaker 

recognition. The identified drawbacks of the current speaker recognition systems 

included: slow convergence rates of the modelling techniques and feature’s sensitivity to 

changes due aging of speakers, use of alcohol and drugs, changing health conditions and 

mental state.  

 

The thesis proposed a new method of deriving the Gaussian mixture model (GMM) 

parameters called the EM-ITVQ algorithm. The EM-ITVQ showed a significant 

improvement of the equal error rates and higher convergence rates when compared to the 

classical GMM based on the expectation maximization (EM) method. 
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It was demonstrated that features based on the nonlinear model of speech production 

(TEO based features) provided better performance compare to the conventional MFCCs 

features. 

 

For the first time the effect of clinical depression on the speaker verification rates was 

tested. It was demonstrated that the speaker verification results deteriorate if the speakers 

are clinically depressed. The deterioration process was demonstrated using conventional 

(MFCC) features. 

 

The thesis also showed that when replacing the MFCC features with features based on the 

nonlinear model of speech production (TEO based features), the detrimental effect of the 

clinical depression on speaker verification rates can be reduced. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

This chapter provides the thesis problem statement, specifies the thesis aims 

and the scope. This is followed by a short summary of the major contributions 

and the outline of each chapter. 

 

  

1.1 Problem Definition  

 

Speaker recognition techniques alongside with facial image recognition, fingerprints and 

retina scan recognition represent some of the major biometric tools for identification of a 

person.  

 

Each of these techniques carries its advantages and drawbacks. The question to what 

degree each of these techniques provides unique person identification remains largely 

unanswered.  

 

If these methods can provide unique identification then, it is still not clear what kind of 

parametric representations contain information which is essential for the identification 

process, and for how long and under what conditions, this representation remains valid? 

As long as these questions are unanswered, there is a scope for research and 

improvements. 
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This thesis investigates areas of possible improvements in the field of speaker 

recognition. The following drawbacks of the current speaker recognition systems have 

been identified as having a scope for potentials improvements: 

 

1. The classical Gaussian mixture model (GMM) modelling and classification method 

uses the expectation maximization (EM) procedure to derive the probabilistic models of 

speakers. However it has been reported that EM suffers from slow convergence rates [36] 

and a tendency to end up at sub-optimal solutions. Various improving methods have been 

recently proposed [37]. This area of research has been currently very active due to the 

large interest in efficient modelling algorithms allowing real-time applications of the 

speaker recognition methodology. 

 

2. The current state of art MFCC feature extraction method makes use of the using human 

auditory perception properties, which is believed to contribute largely its power to extract 

speaker specific attributes from voice. However it has been recently reported [32,33] that 

a fusion of MFCCs with other complimentary features has a potential to provide 

additional speaker-specific information and lead to better results. Current laryngological 

studies [272,273] revealed new nonlinear mechanisms underlying the speech production 

process. This lead to the definition of new types of features which have the potential to 

improve the speaker identification rates, however these features have not been yet 

sufficiently studied in speaker recognition applications. 

 

3. Current speaker recognition systems face the challenge of performance degradation 

due to the speaker’s aging, use of alcohol and drugs, changing health conditions and 

mental state. The exact effects of these factors on speaker recognition are not known. In 

this thesis we turned our attention towards effects of the depressive disorders on the 

speaker recognition rates, which has been known to have an effect on the acoustic 

properties of speech [235,236,237].  
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The depressive disorder affects approximately 18.8 million American adults or about 

9.5% of the U.S. above 18 years of age [38]. Similar statistics have been reported in 

Australia and other developed nations.  

 

1.2 Thesis Aims  

 

The thesis aimed to investigate the advantages and drawbacks of the existing 

methodologies of the text-independent speaker verification, and to propose methods that 

could lead to an improved performance.  

 

In particular the thesis aimed to: 

 

 

� Propose an improved modelling and classification methodology for speaker 

recognition. 

� Determine the usefulness of features derived from nonlinear models of speech 

production for speaker recognition.  

� Determine the effects of a clinical environment containing clinically depressed 

speakers on speaker recognition rates. 

� Investigate if the features based on nonlinear models of speech production have 

the potential to counteract the inverse effects of the clinically depressed 

environment.  
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1.3 Thesis Scope  

 

� The study was limited to the text-independent speaker verification task. 

� The modelling and classification methods used techniques such as: K-means, 

Linde Buzo Gray (LBG), ITVQ and Gaussian Mixture Models (GMM). 

� The feature extraction was based on data driven techniques (i.e. techniques which 

calculate parametric features directly from the speech data) including: Mel 

Frequency Cepstral Coefficients (MFCCs), Inverse Mel Frequency Cepstral 

Coefficients (IMFCCs) and dynamic features such as delta (first derivative), 

double delta (second derivative), energy (E) and number of zero crossings (ZC). It 

also includes feature extraction methodologies based on the Teager Energy 

Operator (TEO). 

� The algorithm’s performance was tested using commercial speech corpora: NIST 

2001, NIST 2002 and NIST2004 as well as TIMIT and YOHO. 

� The effect of clinical environment on speaker verification was determined using 

speakers suffering from the clinical depression. The clinical speech data was 

obtained from the Oregon Research Institute (ORI), U.S.A. 

 

1.4 Thesis Contributions 

 

The major contributions of the thesis can be summarized as follows. 

 

� A new method of deriving the Gaussian mixture model (GMM) parameters called 

the EM-ITVQ algorithm was proposed. The EM-ITVQ showed a significant 

improvement of the equal error rates and higher convergence rates when 

compared to the classical GMM based on the expectation maximization (EM) 

method. 
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�  It was demonstrated that features based on the nonlinear model of speech 

production (TEO based features) provided better performance compare to the 

conventional MFCCs features. 

� For the first time the effect of clinical depression on the speaker verification rates 

was tested. It was demonstrated that the speaker verification results deteriorate if 

the speakers are clinically depressed. The deterioration process was demonstrated 

using conventional (MFCC) features. 

� It was demonstrated that when replacing the MFCC features with features based 

on the nonlinear model of speech production (TEO based features), the 

detrimental effect of the clinical depression on speaker verification rates can be 

reduced.  

1.5 Thesis Outline 

 

This thesis is divided into seven chapters, 

 

Chapter 2 defines the speaker recognition task, describes briefly possible applications 

and summarizes conventional methods of speaker recognition. A general framework of 

the speaker recognition methodology comprising the training and testing stages is 

presented. Conventional methods used at each stage of the speaker recognition process 

are explained. These methods include pre-processing, feature extraction, speaker 

modeling, classification decision making and methods of assessing the speaker 

recognition performance. The final section includes a brief review of speech corpora most 

often used in the speaker recognition research. 

 

Chapter 3 investigates the Vector Quantization (VQ) modeling for the speaker 

verification task. A relatively new vector quantization method based on the Information 

Theoretic principles (ITVQ) is for the first time used in the task of speaker verification 

and compared with two classical VQ approaches: the K-means algorithm and the Linde-
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Buzo-Gray (LBG) algorithm. The chapter provides a brief theoretical background of the 

vector quantization techniques, which is followed by experimental results illustrating 

their performance. The results demonstrated that the ITVQ provided the best performance 

in terms of classification rates, equal error rates (EER) and the mean squared error (MSE) 

compare to K-means and the LBG algorithms. The outstanding performance of the ITVQ 

algorithm can be attributed to the fact that the Information Theoretic (IT) criteria used by 

this algorithm provide superior matching between distribution of the original data vectors 

and the codewords. 

 

Chapter 4 introduces a new algorithm for the calculation of Gaussian Mixture Model 

parameters called Information Theoretic Expectation Maximization (ITEM). The 

proposed algorithm improves upon the classical Expectation Maximization (EM) 

approach widely used with the Gaussian mixture model (GMM) as a state-of-art 

statistical modeling technique. Like the classical EM method, the ITEM algorithm adapts 

means, covariances and weights, however this process is not conducted directly on 

feature vectors but on a set of centroids derived by the information theoretic vector 

quantization (ITVQ) procedure, which simultaneously minimizes the divergence between 

the Parzen estimates of the feature vector’s distribution within a given class and the 

centroids distribution within the same class. The ITEM algorithm was applied to the 

speaker verification problem using NIST 2001, NIST 2002 and NIST 2004 corpora and 

MFCC with delta features. The results showed an improvement of the equal error rate 

over the classical EM approach. The EM-ITVQ also showed higher convergence rates 

compared to the EM. 

 

Chapter 5 compares the classical features based on linear models of speech production 

with recently introduced features based on the nonlinear model. A number of linear and 

nonlinear feature extraction techniques that have not been previously tested in the task of 

speaker verification are tested. New fusions of features carrying complimentary speaker-

dependent information are proposed. The tested features are used in conjunction with the 
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new ITEM-GMM speaker modeling method described in Chapter 4, which provided an 

additional evaluation of the new method. The speaker verification experiments presented 

in this chapter demonstrated significant improvement of performance when the 

conventional MFCC features were replaced by a fusion of the MFCCs with 

complimentary linear features such as the inverse MFCCs (IMFCCs), or nonlinear 

features such as the TMFCCs and TEO-PWP-Auto-Env. Higher overall performance of 

the nonlinear features when compared to the linear features was observed.  

 

Chapter 6 for the first time investigates the effects of a clinical environment on the 

speaker verification. Speaker verification within a homogeneous environment consisting 

of the clinically depressed speakers was compared with the speaker verification within a 

neutral (control) environment containing of non-depressed speakers. Experiments based 

on mixed environments containing different ratios of depressed/non-depressed speakers 

were also conducted in order to determine how the depressed/non-depressed ratio relates 

to the speaker verification rates. The experiments used a clinical speech corpus consisting 

of 68 clinically depressed and 71 non-depressed speakers. Speaker models were built 

using the new ITEM-GMM method introduced in Chapter 4. Two types of feature vectors 

were tested, the classical ∆MFCC coefficients and the TEO-PWP-Auto-Env features. 

Experiments conducted within homogeneous environments showed a significant decrease 

of the equal error rates (EER) by 5.1% for the clinically depressed environment when 

compared with the non-depressed environment. Experiments conducted within mixed 

environments showed that an increasing number of depressed speakers lead to a 

logarithmic increase of the EER values; where the increase of the percentage of depressed 

speakers from 0% to 30% has the most profound effect on the increase of the EER. It was 

also demonstrated that the TEO-PWP-Auto-Env provided more robust performance in the 

clinical environments compare to ∆MFCC, lowering the EER from 24.1% (for ∆MFCC) 

to 17.1% (for TEO-PWP-Auto-Env).  
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Chapter 7 summarizes the key observations and presents the main conclusions of the 

thesis. Areas for future exploration based on the work reported in this thesis are also 

summarized in this chapter. 
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CHAPTER 2 

 

SPEAKER RECOGNITION METHODS 

 

This chapter defines the speaker recognition task, describes briefly the 

possible applications and summarizes the conventional methods of speaker 

recognition. A general framework of the speaker recognition methodology 

comprising the training and testing stages is presented. Conventional 

methods used at each stage of the speaker recognition process are explained. 

These methods include pre-processing methods, feature extraction 

techniques, speaker modeling methods, classification decision making 

methods and methods of assessing the speaker recognition performance. The 

final section includes a brief review of speech corpora most often used in the 

speaker recognition research.    

 

2.1 Defining Speaker Recognition Task 

 

Speaker recognition can be defined as the task of establishing the identity of speakers 

from their voices. The ability of recognizing voices of those familiar to us is a vital part 

of oral communication between humans. Research has considered automatic computer-

based speaker recognition since the early 1970’s taking advantage of advances in the 

related field of speech recognition.  

 

The speaker recognition task is often divided into two related applications: speaker 

identification and speaker verification. Speaker identification establishes the identity of 

an individual speaker out of a list of potential candidates. Speaker verification, on the 

other hand, accepts or rejects a claim of identity from a speaker.  
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Speaker recognition may be categorized into closed set and open set recognition 

depending on whether the recognition task assumes the possibility that the speaker being 

identified may not be included on the list of potential candidates. 

 

Speaker recognition may be further categorized into text-independent and text-dependent 

recognition. If the text must be the same for development of the speaker’s template 

(enrolment) and recognition (testing) this is called text-dependent recognition. In a text-

dependent system, the text can either be common across all speakers (e.g.: a common 

pass phrase) or unique. Text-independent systems are most often used for speaker 

identification. In this case the text during enrolment and identification can be different. 

 

2.2 Applications of Speaker Recognition 

 

In the recent years commercial applications of speaker recognition systems have become 

a reality. Speaker verification is starting to gain increasing acceptance in both 

government and financial sectors as a method to facilitate quick and secure authentication 

of individuals. For example, the Australian Government organization Centrelink already 

uses speaker verification for the authentication of Welfare recipients using telephone 

transactions [267]. 

 

Potential applications of speaker recognition include forensics [251], access security, 

phone banking, web services [268], personalization of services and customer relationship 

management (CRM) [11]. When combined with speech recognition, speaker recognition 

has the potential to offer most natural to human-computer means of communication.  

 

Biometric applications of speaker recognition provide very attractive alternatives to 

biometrics based on finger prints, retina scans and face recognition [2,3]. The advantages 

of speaker recognition over these techniques include: low costs and non-invasive 
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character of speech acquisition, no need for expensive equipment, possibility of acquiring 

the data without speaker’s active participation or even awareness of the acquisition 

process. As an access security tool, speaker recognition can potentially eliminate the need 

for remembering PIN numbers and passwords for bank accounts and security locks and 

various online services [12,13].  

 

Moreover, speaker identification and verification is the only biometric technique that can 

be viably used over the telephone without the user having dedicated hardware. The key 

importance of speech as a biometric in commercial applications is probably more 

profoundly expressed by a patent held by IBM for the use of speech biometrics in 

telephony applications as well as the ongoing intense research in this area [270,271] 

carried by the IBM researchers.  

 

The drawbacks of using speech as a biometric measure are in the fact that the available 

methodology is not yet reliable for stand-alone security, and it is used as a complimentary 

security measure. Due to the data-driven methodology, the performance of current 

speaker recognition systems is susceptible to changes in speaker characteristics due to the 

aging process, health problems and environment from which the user calls. Another 

disadvantage is the possibility of deception by using voice recordings instead of the 

actual voice of a speaker.  

 

Speaker recognition methodology has been also widely adopted as a supporting measure 

complimentary to other biometric systems such as face recognition or retina scanning    

[1,45,46].  

 

With rapidly increasing reliability of speaker recognition technology, speaker verification 

and identification is becoming a commercial reality and part of everyday consumers life. 

This thesis proposes a number of improvements to the existing speaker recognition 

technology. The proposed improvements include: 
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• A novel classification algorithm; 

• a study of effects of clinical environment (a population of speakers that includes 

speakers suffering from clinical depression) on speaker recognition rates and  

• testing of features that were not previously used in speaker recognition, and 

showed improved recognition rates not only in the neutral but also in the clinical 

environment.  

 

2.3 Previous Studies of Speaker Recognition 

 

Speaker recognition systems became the topic of research in the early 1970’s [227] 

closely following the advancement in the related topic of speech recognition. Some of the 

first studies of speaker recognition were published in 1971 [14,15].  

 

The advancements in speaker recognition were due to systematic improvements of the 

feature extraction and classification (or modeling) methods.  

 

Early text-dependent speaker recognition used Dynamic Time-Warping (DTW) and 

template matching techniques for text-dependent speaker recognition. Some of the first 

text-independent approaches employed are linear classifiers [16] and statistical 

techniques [15].  

 

The early used feature extraction technique included: pitch contours [151], Linear 

Prediction (LP) [74,76,162], cepstral analysis, linear prediction error energy and 

autocorrelation coefficients [16]. 

 

Current speaker recognition applications are focused almost exclusively on the text-

independent tasks and therefore explicit template matching techniques are no longer used.  
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Modern feature extraction approaches are typically based on the analysis of short frames 

of speech over which the signal is assumed to be quasi-stationary with frame lengths 

ranging between 8-30 ms for speech sampled at the rates ranging between 8 kHz and 16 

kHz. 

 

The Cepstral analysis [77,167,206,207,218] and the Mel Frequency Cepstral Coefficients 

(MFCC) [30,31,32,52] are the most common short-time feature extraction approaches. 

Linear Prediction is not commonly used on its own, although sometimes applied as an 

intermediate technique to derive the MFCC [77]. Modifications of LP such as the 

Perceptual Linear Prediction (PLP) have been proposed [166] however PLP have not 

been widely used. Other suggested approaches which also have not been widely used 

include Line Spectral Pairs (LSP) [219], and Principal Spectral Components (PSC) [219]. 

 

A number of studies provided an extensive comparison of various feature extraction 

methods for speaker recognition. In [219] the PSC based on a critical 14 band filter bank 

and Principal Component Analysis (PCA) was found to provide very good performance. 

It was also observed that Linear Frequency Cepstral Coefficients (LFCC) and MFCC 

provided good performance. The LFCC marginally outperformed the MFCC due to the 

fact that LFCC provided better spectral resolution at high frequencies than MFCC. In a 

study by Reynolds [152], the PLP, MFCC and LFCC approaches were compared. It was 

again observed that LFCC provided the best performance but marginally outperforming 

the MFCC features.  

 

It is reported in [32] that combining source features (supra-segmental features) and 

spectral features such as MFCC leads to better results. The results reported by Murty [33] 

and Prasanna [34] also pointed to the benefits of fusing MFCC with features providing 

complementary information. 
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A number of non-frame based feature extraction techniques including multi-resolution 

time-frequency approaches have been applied to speaker recognition. These methods 

include: Discrete Wavelet Transform (DWT) and Wavelet Packet Transform (WPT) 

[198,199,200,220,221,222,223,224]. The DWT and WPT allow the speech to be analyzed 

within multiple frequency bands representing different time-frequency and space-scale 

resolution. Although these methods have been recognized as having a great potential for 

extracting speaker-specific information, no effective method of using the combined 

temporal and spectral information has been developed. 

 

As demonstrated in the speech recognition research [126,146,147,165,195,201,202], the 

feature selection process; that is selection of an optimal subset of features from an 

initially large set, can provide a significant improvement of the classification results. 

Magrin-Chagnolleau et al. [123], applied the Principal Component Analysis (PCA) as a 

feature selection method to speaker recognition. Kotani et. al. [124] applied a numerical 

optimization to the feature extraction and Lee et al. [121] used the Independent 

Component Analysis (ICA). In [115], Discriminative Feature Extraction Method (DFE) 

was also successfully applied as a feature selection method in speaker recognition.  

 

A literature survey of studies concerning the speaker recognition task shows that the 

majority of research is focused on finding the best performing features. The modeling and 

classification methodology is also of inertest but plays a secondary role compare to the 

feature extraction.  

 

The modern classifiers used in speaker recognition technology include Gaussian Mixture 

Models (GMM) [19], Hidden Markov Models (HMM) [17], Support Vector Machines 

(SVM) [101] Vector Quantization (VQ) [18], and Artificial Neural Networks (ANN) 

[20].  
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The HMMs are mostly used for text-prompted speaker verification, whereas GMM, 

SVM, VQ approaches are widely used for text independent speaker recognition 

applications. The GMM is currently recognized as the state of art modeling and 

classification technique for speaker recognition [19]. The GMM models the Probability 

Density Function (PDF) of a feature set as a weighted sum of multivariate Gaussian 

PDFs. It is equivalent to a single state continuous HMM, and may also be interpreted as a 

form of soft VQ [22].  

 

The Support Vector Machines (SVM) has been used in speaker recognition applications 

in the past decade; however the improvements of performance over the GMM were only 

marginal [101,110]. A combined classification approach including SVM and GMM was 

reported to provide significant improvement over GMM [21]. 

 

Various forms of the Vector Quantization (VQ) methods have been also used as 

classification methods in speaker recognition [87,116]. The most common approach to 

the use of VQ for speaker recognition is to create a separate codebook for each speaker 

using the speaker’s training data [116]. The speaker recognition rates based on the VQ 

were found to be lower than those provided by the GMM [242].  

 

The GMM and VQ techniques are closely related, as GMM may be interpreted as a “soft 

form” of VQ [24]. Making use of that similarity, a combination of the VQ algorithm and 

a Gaussian interpretation of the VQ speaker model were described in [23]. In [24,25], the 

Vector Quantization was combined with the GMM method providing significant 

reduction of the computational complexity over the GMM method.  

 

Matusi et al. [87], compared the performance of the VQ classification techniques with 

various HMM configurations. It was found that continuous HMM outperformed discrete 

HMM and that VQ based techniques become most effective in the case of minimal 

training data. Moreover, the study found that the state transition information in HMM 
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architectures was not important for text-independent speaker recognition. This study 

provided a strong case supporting the use of the GMM classifier since a GMM classifier 

can be interpreted as a HMM with only a single state. The Matsui et. al. findings were 

further supported by Zhu et. al. [22] who found that HMM based speaker recognition 

performance was highly correlated with the total number of Gaussian mixtures in the 

model. This means that the total number of Gaussian mixtures and not the state 

transitions are important for text-independent speaker recognition. 

 

The ANN techniques have numerous architectures and a variety of forms have been used 

in the speaker recognition [117] task. The several ANN forms include Multi-Layer 

Perceptron (MLP) Networks, Radial Basis Function (RBF) Networks [127], Gamma 

Networks [20], and Time-Delay Neural Networks (TDNN) [118]. 

  

Fredrickson [119] and Finan [120] conducted separate studies comparing the 

classification performance of RBF and MLP networks. In both studies, the RBF networks 

were found to be superior. The RBF network was found to be more robust in the presence 

of imperfect training conditions due to its more rigid form. In other words, the RBF 

network was found to be less susceptible over training than the MLP network.  

 

It was shown that some of the neural network configurations can provide results 

comparable with the GMM [233], however due to significant structural differences 

between neural networks and GMM, it is not possible to draw general conclusions as to 

which architecture is superior. 

 

The above comparisons strongly indicate that the GMM provides the best performing 

classifier for speaker recognition tasks. For that reason, a number of most recent studies 

have been focused on the improvements of the classical GMM algorithm 

[23,24,243,244]. More details can be found in Chapter 4 (Section 4.3). 
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Any direct comparison of conventional speaker recognition architectures is difficult due 

to variation in the training and testing conditions, computational complexity of classifiers 

and feature extraction methods and types of speech data. The quality and number of 

speech samples used in the training and testing can have a significant impact on the 

performance of speaker recognition systems.  

 

The only viable approach for comparison of speaker recognition architectures is a study 

directly comparing different architectures under the same training and testing conditions 

and using the same set of speech data. This approach has been undertaken in this thesis; a 

novel approach to the classification process described in Chapter 4, as well as the testing 

of different feature extraction methods in Chapter 5 were performed in parallel with the 

conventional state of art speaker recognition techniques and compared. 

 

The literature survey strongly indicated that, to date, the MFCC feature extraction 

combined with the GMM modeling and classification procedure are widely recognized as 

the state of art methods providing the best speaker recognition results. For that reason the 

experiments described in this thesis use the MFCC’s and the GMM classifier as the 

baseline method providing a reference point for the assessment of the new ITGMM 

classifier described in Chapter 4 and a number of feature extraction methods tested in 

Chapter 5. 

 

2.4 Conventional Methods of Speaker Recognition  

 

2.4.1 General Framework of the Speaker Recognition System 

 

The existing speaker recognition methodology is based on so called data-driven 

techniques, where the recognition process relies on the parameters derived directly from 
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the experimental data and statistical models of these parameters build out of a large 

population of representative data samples.  

 

The main advantage of the data-driven techniques is that there is no need for an analytic 

description of a processes being modeled. Thus, very complex biological, psychological 

or physiological processes can be modeled and classified without mathematical 

descriptions or knowledge of the underlying processes.  

 

The major drawback of the data driven techniques is that the validity of such systems 

depends on the quality of the data used to derive the models. If the representative data 

changes in time or due to different environmental or noise factors, the enrolment process 

for speaker verification needs to be repeated to update the speaker’s models.  

 

A conventional speaker recognition system illustrated in Figure 2.1 is comprised of two 

stages: the first stage is called the enrolment or training process; the second stage is called 

the recognition or testing process.  
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Figure 2.1 Major components of a conventional speaker recognition system. 
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During the enrolment (or training) stage speech samples from known speakers are used to 

calculate vectors of parameters called the characteristic features [48,49]. The feature 

vectors are then used to generate stochastic models (or templates) for each speaker. Since 

the generation of model parameters is usually based on some kind of optimization 

procedure iteratively deriving the best values of the model parameters, the enrolment 

process is usually time-consuming. For that reason, the enrollment procedure is usually 

performed off line and repeated only if the models are no longer valid. Figure 2.2 shows a 

typical functional diagram of the training process.  
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Figure 2.2 Enrollment (or training) phase for a speaker recognition system.  

 

The testing phase is conducted after training; this is when the stochastic models for each 

class (speaker) have been already built. During the testing (or recognition) phase, the 

speaker recognition system is exposed to speech data not seen during the training phase 

[48,49]. Speech samples from an unknown speaker or from a claimant are used to 

calculate feature vectors using the same methodology as in the enrolment process. These 

vectors are then passed to the classifier which performs a pattern matching task 

determining the closest-matching speaker model. This process results in a decision 

making process which determines either the speaker identity (in speaker identification) or 

accepts/rejects the claimant identity (in speaker verification) [8,19,41,42,43,47]. The 

testing stage is usually relatively fast and can be done online in the real time conditions. 

Figure 2.3 shows a typical block diagram of the testing phase for speaker identification, 

whereas Figure 2.4 shows the testing phase for speaker verification. 
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Figure 2.3 Testing phase for a speaker identification system. 
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Figure 2.4 Testing phase for a speaker verification system. 

 

 

2.4.2 Bayesian Decision Theory  

 

The performance of a speaker recognition system is usually determined by the 

recognition rate or conversely by the error rate. Typical classifiers used in the speaker 

recognition systems employ the Bayesian minimum error decision rule theory providing 
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optimal recognition rates. Moreover, it is generalized such that the errors can have 

associated weights indicating their relative importance.  

 

The generalized Bayesian rule defines a partition of a sample space to minimize the total 

cost due to classification errors [114] and can be seen as a technique for designing an 

optimal classifier. 

 

Consider a classifier function ()a defined such that )(Yaj = represents a decision jCY ∈ , 

where Y is an observation in the sample space and Cj is the j
th

 class (speaker).  

 

The value cij is then defined as a cost associated with classifying an observation 

iCY ∈ when in fact jCY ∈ . From this definition the conditional risk function is defined 

as: 

 

( ) ( )YCPcYjYaR k

M

i

ij |)|)(
1

∑
=

==        (2.1) 

 

Where ( )YCP k |  is the posteriori probability of class kC  given the observation sample Y. 

The conditional risk ( ))|)( YjYaR =  is the expected cost given an observation at a 

particular point in the sample space. 

 

The overall expected cost or risk of the classifier is then defined as the expected cost over 

the entire sample space and can be calculated by using the following function:  
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Where P(Y) is the probability of making the observation Y in the sample space rΩ . 
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The Bayesian decision theory defines an optimal classifier as a classifier which 

minimizes the overall expected cost L given in Eq. (2.2). 

 

Assuming that  

- the classifier correctly models the a posteriori probability of each class in the 

sample space; 

- the a priori probabilities of each class are known; 

- the distribution of observations in the sample space are known; 

Then the classifier which minimizes L will also minimize the cost due to the 

misclassification errors [99,100,102,114]. 

 

Such a classifier is commonly known as the Bayesian minimum risk classifier and it is 

defined by the following decision rule [102,114]: 

 

))|)(((minarg  if  )( YkYaRjjYa
jk

===
≠

      (2.3) 

 

If the costs associated with all misclassifications are equal, then the decision rule can be 

simplified to: 

 

))|((minarg  if  )( YCPjjYa k
jk ≠

==        (2.4) 

 

And such a classifier is commonly known as Bayes minimum error or Maximum a 

Posteriori (MAP) decision rule [102,114]. 

 

In the case when the a posteriori probability of each class is not available directly, the 

following formula can be used [19,40]: 
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Then, the Eq. (2.4) becomes: 

 

)),((minarg  if  )( YCPjjYa k
jk ≠

==        (2.6) 

 

The rule in Eq. (2.6) is most commonly used rule in speaker recognition applications. 

 

The Bayes minimum error decision rule is commonly used in speaker recognition based 

on the Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) classifiers. 

 

In summary, a given classifier can be called Bayesian if: 

- the architecture is capable of modeling the conditional probability density of each 

class; 

- the estimation of the model parameters within that architecture has correctly 

modeled the class conditional probability density for each class. 

 

The above two conditions become of particular concern when 

- the data is incomplete  

-observations are made in the presence of noise 

-no definite description of the distribution of the multi-variate sample observations 

or class conditional densities are available. 

 

Bayesian decision theory designs a classifier which is bounded by the separability of the 

classes in the feature space. Although, the Bayesian decision theory does not address 
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feature extraction design, it highlights the need for a design that maximizes the 

separability of classes in the feature space [114] 

 

Source-filter model of speech production 

 

Majority of current feature extraction methods in speaker recognition use parameters 

derived from the classical source-filter model. The classical source-filter theory of voice 

production assumes that the air flow through the vocal folds (source) and the vocal tract 

(filter) is unidirectional. During phonation, the vocal folds vibrate. One vibration cycle 

includes the opening and closing phases in which the vocal folds are moving apart or 

together, respectively. The number of cycles per second determines the frequency of the 

vibration, which is subjectively perceived as pitch or objectively measured as the 

fundamental frequency F0. The sound is then modulated by the vocal tract configuration 

and the resonant frequencies of the vocal tract are known as formants. Finally the speech 

signal is passed through the low-pass lip radiation filter which reduces the signal energies 

with frequency by about 6 dB/octave [239].  

 

The uniqueness of the speaker specific information may be attributed to several factors 

such as the shape and size of the vocal tract, dynamics of the articulators, rate of vibration 

of the vocal folds, accent imposed by the speaker and speaking rate. All these factors are 

reflected in the speech signal, and hence are useful for speaker recognition.  

 

Pre-processing  

 

The pre-processing stage used in speaker recognition [19,40] can include speech 

processing for noise removal and enhancement; it can also include compensation for the 

channel distortion, pre-emphasis filtering to remove effects of lip radiation as well as 

removal of silence and in some cases unvoiced speech intervals.  
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Each of these approaches provides improvements to speaker verification performance 

over telephony channels. 

 

In this study it is attempted to compare the performance of proposed classification 

method (see Chapter 4) or different feature extraction methods (see Chapter 5) and thus 

no explicit channel compensation or noise removal is used. However, the silence/voiced 

removal is used as required by some of the feature extraction techniques.  

 

Short-time analysis  

 

During the pre-processing stage speech is usually divided into short-time frames using a 

windowing process and the subsequent feature extraction is performed on the frame-by-

frame basis.  

 

The reason for a short-time approach to the feature extraction is based on the fact that a 

speech signal can be viewed as a piecewise stationary signal or a short-time stationary 

signal. In a short-time (e.g., 10-30 milliseconds)), speech can be approximated as a 

stationary process [50,148,149,150,151,152]. Feature vectors extracted from speech on 

the frame-by-frame basis can therefore be used to generate stochastic models using 

approaches such as the Gaussian Mixture Model (GMM) or the Hidden Markov Model 

(HMM). 

 

The determination of the analyzing window length depends on whether the analysis aims 

to extract the speech source, vocal tract characteristics or long-term characteristics (e.g. 

word duration, intonation, speaking rate or accent) [44]. 

 

To obtain the information embedded in the vocal tract, speech is analyzed using 

segmental analysis with frames of length 10-30ms. In the range of 10-30ms few pitch 

intervals can be captured providing information about the vocal tract characteristics [50]. 
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The segmental analysis is the most widely used method to perform feature extraction for 

speaker recognition [51,148,149,150,151,152]. 

 

To obtain the information embedded in the excitation source sub-segmental analysis is 

used with speech frames of length 3-5ms [153]. The sub-segmental analysis is designed 

for capturing information within a single pitch period. Examples of the sub-segmental 

speech analysis are described in [32,33,154,155,156,157]. 

 

For supra-segmental analysis the speech is analyzed using the frames and overlap in 

between 100-300ms. This analysis method is appropriate to extract the information due to 

behavioral traits. It includes word duration, intonation, speaking rate, accent, etc. The 

information varying is relatively slower for behavioral traits thus large sized frames 

would serve the purpose. The supra-segmental analysis for speech frames is used in 

[32,151,158,159,160] demonstrating that some behavioral traits can be captured with this 

analysis of speech. 

 

Speech activity detection (SAD) 

 

An energy based approach proposed by Reynolds [144] was used for the detection of 

speech activity. This approach has been applied a number of times by Reynolds in the 

state of art speaker recognition configuration including the MFCC as features and the 

Gaussian Mixture Model (GMM) as the classifier.  
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Figure 2.5 Speech Activity Detection Procedure. Adapted from Reynolds [144]. 

The SAD algorithm is a typical energy based speech activity detection method and it uses 

an adaptive estimate of the noise energy. The estimate of the noise floor energy 

adaptively tracks the minimum value of the smoothed energy contour for each frame of 

the speech signal.  

The SAD procedure is performed in the following three major steps [144]: 

STEP 1: Raise the noise floor nf[]: 
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STEP 2: Track the lower value nf[] of the smoothed energy contour se[]: 
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STEP 3: Step down control for transition from speech to silence: 

      If     ( )][2][ nfennf >  
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     End 

As illustrated in the algorithm flowchart in Figure 2.5, the estimated values of nf[] and 

se[] are used to calculate the signal to noise ratio (SNR) for a given frame. Frames with 

SNR lower than a given constant threshold (SNR_THRESH) are assumed to contain no 

speech activity. The procedure can be adapted to distinguish between voiced and 

unvoiced segments of speech. 

 

Figure 2.5 Shows that the SAD algorithm uses several design parameters including:  

 

SNR_THRESH - threshold to which current SNR estimate is compared to 

determine whether to increment or decrement counter SC. 

SC_THRESH - threshold of counter variable SC to determine whether a frame is 

speech 

SC_MAX - maximum value of counter variable SC to limit transition duration from 

speech to silence. 

NUM_BACK - number of frames back to classify as speech in a silence to speech 

transition. 
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The values of these parameters need to be determined experimentally for a specific 

application. In [144] Reynolds provided values used in his speaker recognition 

experiments. These values are summarized in Table 2.1. 

 

Table 2.1 An example of SAD parameters used by Reynolds in [144]. 

 

 

2.4.3 Features Extraction Methods Used in Speaker Recognition  

 

The process of converting a raw speech signal into a sequence of acoustic feature vectors 

carrying characteristics information about the speaker is called feature extraction.  

 

The attributes of an ideal feature extraction strategy described in [6,47,51] include: 

 

a) The features  should be resistant to an environmental noise and channel distortion  

b) Variations in voice caused by speaker’s health or aging should not degrade the 

performance of feature extraction methodology. 

c) Feature extractor should maintain high inter-speaker discrimination and as little as 

possible of intra-speaker variability. 

d) The speaker-characteristic features extracted from speech should be relatively 

easy to calculate. 

e) The feature extraction method should be difficult to imitate or mimic using speech 

of imposters. 

 

 

 

 

 

 

Parameter  Reynolds Value   

[144]  

SNR_THRESH   5dB  

SC_THRESH  10 

SC_MAX 20 

NUM_BACK  10 
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The above attributes are difficult to achieve in a single feature extraction procedure. This 

is because some of the attributes listed above have an inverse relationship; if one is 

improved the other deteriorates. For example, a large value of the inter-speaker 

variability (high discrimination) can be obtained with short term spectral method [47,52], 

however this approach can be easily corrupted when transmitted over a noisy channel. 

Features such as fundamental frequency F0 are noise robust but requires long speech 

segments which leads to the reduction of the speaker discrimination capability.  

 

Despite numerous studies examining the source and extent of variability in speech signal 

[31,55,60,69,70,78], there has been no conclusion from the linguistic, acoustic or forensic 

point of view, as to what constitutes a “voice print”. As a result a variety of parameters 

representing speaker-characteristic features have been proposed and successfully applied 

in speaker recognition tasks. 

 

Although, no unique features distinguishing between all speakers are known, it appears 

that the inter-speaker variability can be observed within speakers on many levels, 

including temporal and spectral variability. 

 

Speech features used in the classical applications of speaker recognition can be divided 

using different criteria. Based on the domain in which the analysis is conducted [45,53], 

the characteristic features can be divided into: 

- spectral features - descriptors of the short-term speech spectrum, the spectral 

features represent entirely or partially the physical characteristics of the vocal 

tract; 

- dynamic features - time variations of other features such as spectral features; 

- prosodic features - refer to the fundamental frequency F0 and energy contours. 

 

Based on the time duration of the analyzed speech segment, the prosodic features can be 

divided into the following categories:  
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- source features – prosodic features within a single glottal period; 

- suprasegmental features – prosodic features spanning a few glottal periods; 

- high-level features – long time features spanning the time duration of a word or 

utterance.  

 

Table 2.2 shows typical examples of different type of features. 

Table 2.2 Types of features and examples. 

Type of features Examples 

Spectral features 

 

MFCC 

LPCC 

LFCC 

 

Dynamic features 

 

Velocity/acceleration 

features 

Feature fusion 

multivariate auto-regression 

(MAR) 

 

Prosodic features 

 

Pitch and energy contours 

Source features 

 

Glottal pulse shape 

Suprasegmental features 

 

F0 contours 

Intensity contours 

 

High level features 

 

Pronunciation 

Word duration 

 

Spectral features 

 

The spectral features have been the main focus in the speaker recognition studies. The 

proposed methods include: Real Cepstral Coefficients (RCC) introduced in [164], Linear 

Prediction Coefficients (LPC) proposed in [161], Linear Predictive Cepstral Coefficients 



CHAPTER 2. SPEAKER RECOGNITION METHODS 

 

 

 

 

      32 

(LPCC) derived by Atal in [162], and Mel Frequency Cepstral Coefficients (MFCC) 

derived by Davis and Mermelstein in [163].  

 

The Mel-frequency cepstral coefficients (MFCC) are the most widely used acoustic 

features for speaker modeling and recognition. The MFCC are the cosine transform 

coefficients calculated for the log power spectrum mapped onto the Mel-frequency scale. 

The Mel-frequency bands are equally spaced on the logarithmic scale, which 

approximates the human auditory system's response. For each frame of a speech signal, 

the Fourier transform and the power spectrum was calculated. The powers were then 

mapped onto the Mel scale and the logs of the powers were estimated at each of the Mel-

frequencies. Usually, the first 12 coefficients of the discrete cosine transform DCT 

applied to the Mel log powers provided the MFCC features.  

 

More details about the calculation process and the properties of the MFCC can be found 

in Chapter 5. 

 

Spectral features such as the Linear Frequency Cepstral Coefficients (LFCC) [163], are 

similar to the MFCC however instead of the logarithmic Mel frequency spectral 

subdivision, a linear scale is used providing equally spaced filters on the linear rather than 

logarithmic scale covering the entire signal bandwidth. 

 

Other types of spectral features include: Perceptual Linear Prediction (PLP) coefficients 

[166] and the Adaptive Component Weighting (ACW) cepstral coefficients [167,168]. 

 

A study by Reynolds in 1994 [152] compared the different features like MFCC, LFCC, 

LPCC and perceptual linear prediction cepstral coefficients (PLPCCs) for speaker 

recognition. It was observed that the MFCCs and LPCCs gave significantly higher correct 

recognition rates than the other features. 
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From a perceptual point of view, MFCC bear resemblance to the human auditory system, 

since these features account for the nonlinear nature of pitch perception. This is the 

primary reason of performance supremacy of MFCC features. This success of MFCC, 

combined with their robust and cost-effective computation, turned MFCC into a reality in 

the speech/speaker recognition applications. Recently a number of modifiers of MFCC 

are introduced and have shown better performance. A number of MFCC variants are 

described in Chapter 5.  

 

The Perceptual Linear Predictive (PLP) speech analysis technique is based on the short-

term spectrum of speech. The short-term spectrum of speech is subsequently modified by 

several psychophysically based spectral transformations, the PLP technique like most 

other short-term spectrum based techniques, is vulnerable when the short-term spectral 

values are modified by the frequency response of the communication channel. Human 

speech perception seems to be less sensitive to such steady-state spectral factors. 

 

Dynamic features 

 

The features which represent time derivatives of the spectrum-based features are referred 

to as the dynamic features. Dynamic cepstral features such as delta (first derivative of 

cepstral features) and double-delta (second derivative of cepstral features) have been 

shown to play an essential role in capturing the transitional characteristics of the speech 

signal [169]. A set of new dynamic features for speaker verification system was 

introduced in [170]. These new features, known as Delta Cepstral Energy (DCE) and 

Delta-Delta Cepstral Energy (DDCE), can compactly represent the time varying cepstral 

information. Dynamic features based on MFCC and LPCC were used in [171,173] 

respectively. Shifted Delta Cepstrum was used in [174] for the speaker recognition and 

have shown promising results. A method using statistical dynamic features has recently 

been proposed. In this method, a multivariate auto-regression (MAR) model is applied to 

the time series of cepstral vectors and used to characterize speakers [172].  
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The fusion of the cepstra and delta cepstra features have been shown to provide relatively 

good results for the task of speaker recognition [169,170]. It has been demonstrated that 

the speaker recognition system performance may be enhanced by adding time derivatives 

to the static parameters. The first order derivatives referred as delta features [175] can be 

calculated using the following general formula: 
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Where dt is the delta coefficient at time t, computed in terms of the corresponding static 

coefficients ct-θ to ct+θ and Θ is the size of delta window. The delta and double-delta 

cepstra are evaluated based on MFCC and performance improvements are observed, the 

details are given in Chapter 5. 

 

Prosodic features 

 

Prosodic speech features, are often used to extract the information about the speaking 

style of a person. The fundamental frequency, formants and the frame energy are the 

most commonly known prosodic features. These features are also often appended to their 

logarithmically compressed values and added to the spectrum-based speech parameters in 

order to obtain the better performance. The use of the temporal derivatives of the 

fundamental frequency and the frame energy has also remained in practice. A set of 

statistical parameters evaluated based on the temporal parameters has also established 

better performance for the speaker recognition systems. The feature extraction 

methodology proposed in [176] introduces a number of improvements to the estimation 

of the fundamental frequency and accent. These improvements include the re-synthesis of 
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the pitch contour which removes the doubling/halving that occurs during the calculation 

process of the fundamental frequency. 

 

The drawbacks of the prosodic features include the fact that they can be easily mimic or 

imitated. A combination of prosodic information with the spectrum-based features could 

lead to a better performance and eliminate the possibility of features being imitated.  

 

Fusion of features  

 

The MFCC have appeared as a performance superior feature extraction method for 

speaker recognition. Dynamic features or features extracted from prosodic information 

could be helpful when fused with spectrum-based features, but could not lead to a state of 

the art design individually. Much more efficient results could be obtained when using 

combinations (or fusions) of features. 

 

The linear prediction (LP) residual also contains speaker-specific source information [33] 

which can enhance the performance of speaker recognition systems. It has been reported 

[54] that a combination of the LP residual with LPCC or MFCC improves the 

performance as compared to that of MFCC or LPCC alone [34,155,156,157].  

 

Plumpe et al. [55] developed a technique for estimating and modeling the glottal flow 

derivative waveform from speech for speaker recognition. In his study, the glottal flow 

estimate was modeled as coarse and fine glottal features, which were captured using 

different techniques. Also, it was shown that the combined coarse and fine structured 

parameters gave better performance than the individual parameter alone [32,55]. In [145] 

methods are proposed to extract the speaker specific information from high-level 

features. 
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In the past few years an increasing interest has been observed on using several 

information fusion methods in speaker recognition [47,62,63,64,65,66,67,68]. The feature 

information fusion can be seen in several forms, such as multi-feature fusion and multi-

sample fusion [47]. A target speaker might be conditioned to utter same phrase for a 

number of times and the decision is thus based on combining the scores [67], this is 

called multi-sample fusion. In multi-feature fusion approach, same speech utterance is 

used to extract different features. The example is the use of MFCC cepstra with its delta 

cepstra. This approach is also used to develop an improved representation of features 

which is detailed in Chapter 5.  

 

Classifier fusion strategies have also been used to obtain improved recognition results. 

The fusion at classifier levels combines the match scores to obtain the final decision [62]. 

The feature extraction strategy is same for the multiple classifiers. Thus the fusion can 

appear in one of the two forms. By combining the features at the frame level into a vector 

for which a single model is trained, or by modelling each feature set using a separate 

classifier. In this thesis the fusion at the feature level is used, detail based on the 

experiments is given in Chapter 5. The fusion of the static spectral features with their 

corresponding time derivatives to capture complementary feature information has 

remained a common practice. The use of single classifier and allowing better 

discrimination between the speakers are few of the advantages of information fusion at 

feature level.  
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2.4.4 Speaker Modeling and Classification Techniques  

 

The modelling techniques transform the voice features of a speaker to an identical 

representation. The objective of modelling technique is to generate speaker models using 

speaker-specific feature vectors.  
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Figure 2.6 Major Modelling Approaches for Speaker Recognition [53]. 

 

The Modelling techniques can be classified as generative or discriminative as shown in 

Figure 2.6. The template matching techniques [71,72,74,75,76,148,162] were the most 

widely used techniques for speaker recognition at the early stages of this technology. In 

this approach training and testing feature vectors are directly compared using similarity 

measure. For the similarity measure, any of the techniques like spectral distance or 

Euclidean distance or Mahalanobis distance is used.  
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Dynamic time warping (DTW) [77] for text-dependent speaker recognition was first used 

by Furui. In this approach, the sequence of feature vectors of the training-speech signal is 

the text-dependent template model. The DTW finds the match between the template 

model and the input sequence of feature vectors from the testing-speech signal. The 

disadvantage of template matching is that it is time consuming, as the number of feature 

vectors increases. For this reason, it is common to reduce the number of training feature 

vectors by some modelling technique like clustering.  

 

K-means algorithm 

 

The K-means algorithm [79] is one of the most widely used classifiers based on the 

vector quantization techniques.  

 

The K-Nearest Neighbors (K-NN) method is a classification algorithm where the input 

feature vector is classified based on the class represented by the majority of the K nearest 

feature vectors obtained during the training process. Given an input feature vector, the 

algorithm finds K closest feature vectors representing different classes (speakers). The 

class represented by the majority of the K nearest feature vectors is assigned to the input 

vector. 

 

The major drawback of the KNN classification is that the classes with the more frequent 

examples tend to dominate the prediction of the new vector, as they tend to come up in 

the K nearest neighbors when the neighbors are computed due to their large number. One 

way to overcome this problem is to weight the classification taking into account the 

distance from the test point to each of its K nearest neighbors. 

 

A number of enhanced versions of the original K-means algorithm have been proposed.  
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Linde-Buzo-Gray (LBG) clustering technique was used in [18] for speaker recognition. It 

was demonstrated in [18] that a larger codebook gives better performance and how using 

a VQ quantizer can handle the performance degradation due to different recording 

conditions and intra-speaker variations.  

 

Fuzzy vector quantization (FVQ) using the well-known fuzzy C-means method was 

introduced by Dunn, and its final form was developed by Bezdek [81, 82]. FVQ was used 

to classify the speaker models in [83, 84]. It was demonstrated that FVQ gives better 

performance than the traditional K-means algorithm because the feature vectors are 

associated with all the clusters and there are relatively more number of feature vectors for 

each cluster.  

 

In Chapter 3 information theoretic vector quantization is investigated against K-means 

and the LBG algorithms. 

 

Hidden Markov Model (HMM)  

 

The Hidden Markov Model (HMM) is created using continuous probability measures of 

Gaussian mixture models (GMM) [85,86,87]. HMM’s are used for text-dependent 

speaker recognition in [85,86,87]. In HMM, time-dependent parameters are observation 

symbols which are created by VQ codebook labels. The main assumption of HMM is that 

the current state depends on the previous state. In training phase, state transition 

probability distribution, observation symbol probability distribution and initial state 

probabilities are estimated for each speaker as a speaker model. The probability of 

observations for a given speaker model is calculated for speaker recognition. The use of 

HMM for text-independent speaker recognition under the constraint of limited data and 

mismatched channel conditions was demonstrated in [88].  
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Neural Networks (NN) 

 

Neural networks have been widely used for pattern recognition problems; the strength of 

neural networks to discriminate between patterns of different classes is exploited for 

speaker recognition [89,90,91]. Neural network has an input layer, one or more hidden 

layers and an output layer. Each layer consists of processing units, where each unit 

represents model of an artificial neuron, and the interconnection between the two units as 

a weight associated with it.  

 

The concept of the Multi-Layer Perception Neural Network (MLPNN) was used for 

speaker recognition in [92]. In this work, a comparative analysis between MLPNN and 

VQ methods is given. Another form of neural networks called radial basis function (RBF) 

was used for speaker recognition task in [93]. In this work the performance superiority of 

the RBF to the VQ and MLP is demonstrated. 

 

The Self-Organizing Map (SOM) is a special class of neural network based on 

competitive learning [94]. The SOM was applied to speaker recognition in [95,96]. The 

disadvantage of SOM is that it does not use class information while modelling speakers, 

resulting in a poor speaker model that leads to degradation in the performance. Linear 

vector quantization (LVQ) is a supervised learning technique that uses class information 

to optimize the positions of codevectors obtained by SOM, so as to improve the quality of 

the classifier-decision regions. LVQ was proposed for speaker recognition in [97]. 

Speaker recognition using VQ, LVQ and GVQ (group vector quantization) was 

demonstrated for YOHO database in [98]. 

 

Auto-associative neural network (AANN) was developed for pattern recognition task 

[32,33,34,103,104,106,155], and was used as an alternative to GMM. AANN is a feed-

forward neural network, where the number of units in the input and output layers is equal 

to the size of the input vectors. The number of nodes in the middle layer is less than the 
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number of units in the input or output layers. The activation function of the units in the 

input and output layer is linear, whereas the activation function of the units in the hidden 

layer can be either linear or nonlinear. The advantage of AANN over GMM is that, it 

does not impose any distribution; however there is no significant evidence that AANN is 

superior to GMM in computational efficiency or recognition scores. 

 

Probabilistic Neural Network (PNN) 

 

The probabilistic neural network (PNN) [234] is a feed forward network derived from the 

Bayes decision method. It estimates the probability density function for each class based 

on the training samples. It calculates Parzen estimates of the probability density function 

for each test vector.  

 

The PNN structure consists of three layers: the input layer, the hidden layer and the 

output layer. The input layer represents the test vectors, and it is fully connected to the 

hidden layer. The hidden layer has a node for each training vector. Each hidden node 

calculates the dot product between the input vector and the test vector, subtracts 1 from it, 

and divides the result by the standard deviation squared.  

 

The output layer has a node for each class. The sum for each hidden node is sent to the 

output layer and the output node with the highest value determines the class for the input 

test vector. The PNN has a very short training time compared with other classifiers, since 

the training is done in a single pass of each training vector, rather than several. However, 

due to its structure the execution of the PNN program requires large amount of memory, 

especially when the training and testing datasets are large.  

 

The PNN shows rather high sensitivity to noisy data compared with other classifiers. It 

does not work well with data that is not highly representative. 
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Support Vector Machines (SVM) 

 

In recent years, support vector machines (SVMs) have been widely used to solve binary 

classification problems. In a binary classification problem, a SVM constructs a 

hyperplane in a multidimensional vector space, which is then used to separate vectors that 

belong to two different classes. A good separation is achieved by the hyperplane that has 

the largest distance to the nearest training vectors of each class.  

 

Given a two-class problem and a training set of N vector-class pairs: {[x1, 

y(x1),...,[xN,y(xN)]}, where xi, xj ∈ R
D
 are the D-dimensional feature vectors, and y(xi) ∈ {-

1; +1} are the actual class labels for vectors xi, the classification labels for vectors x ∈ R
D 

are produced by the decision function s(x) defined as: 
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Where α = {αi}i=1,..,N and b are the SVM model parameters, and K(x, xi) is a positive 

definite kernel chosen to be the Gaussian type of the Radial Basis Function (RBF): 
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The values of the model parameters α = {α1,...,αN} and b are not unique and have to be 

determined during the training process using a quadratic optimization procedure. The 

SVM algorithm finds an optimal vector of parameters α = {αi}i=1,..,N that minimizes the 

following objective function:  
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The parameter C is a suitable positive constant value controlling how strictly the 

classifier fits the training data. For a given vector αααα, the model offset parameter b can be 

calculated using: 
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Where xi in Eq. (2.12) are feature vectors with nonzero values of the corresponding αi 

and NSV is the number of nonzero valued αi coefficients. Once the optimal set of model 

parameters α and b are determined during the training process, test vectors x, can be 

classified using Eq. (2.8).  

 

The two-class SVM method can be expanded to a multiclass problem. It is usually done 

by reducing the single multiclass problem into multiple binary classification problems. 

Each of the problems yields a binary classifier, which is assumed to produce an output 

function that gives relatively large values for examples from the positive class and 

relatively small values for examples belonging to the negative class.  

 

In [110, 111] applications of SVM to the speaker recognition have been reported. In these 

studies, efficiency of the score-space kernels which are generalization of Fisher’s kernel 

functions were examined It was demonstrated that the SVM reduces error rates by 34% 
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comparable to the GMM classifier. However, a relatively large number of computations 

required by the SVM have been identified as a major drawback. 

 

The generalized linear discriminate sequence (GLDS) kernel for the speaker recognition 

and language identification tasks was introduced in [101]. It was shown that although the 

SVM performance was very close to the GMM performance, the combination of SVM 

and GMM yielded better recognition rates than the individual methods. The combination 

of SVM with GMM was also found to provide good results for the task of speaker 

recognition [112,113]. 

 

Gaussian Mixture Models (GMM) 

 

The Gaussian mixture model (GMM) method models speech as a weighted sum of 

multivariate normal probability density functions (pdf) [19]. Each pdf is called a 

component of the GMM. A GMM with M components is said to be a GMM of order M. 

For an R-dimensional feature vector x, the posteriori probability for M component GMM 

and the probabilistic model λ is defined as, 
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M

m

mm xpwxP
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)()( λ             (2.13) 

 

The Eq. (2.13) corresponds to the weighted linear combination of M unimodal Gaussian 

densities. The probability density function )(xpm , is given by, 
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Each of the pdf is parameterized by an R–dimensional mean vector mµ , RxR-dimensional 

covariance matrix m∑ and a mixture weight mw , also known as a priori probability. The a 

priori probability satisfies the following constraint, 

 

∑
=

=
M

m

mw
1

1          (2.15) 

 

The set of parameters, { }Mmwmmm ≤≤∑= 1,,,µλ completely define a GMM.  The use 

of single covariance matrix for the entire set of components is adapted in some of the 

applications; however for speaker recognition technology this practice is not common.  

 

Given a GMM { }Mmwmmm ≤≤∑= 1,,,µλ  and a set of feature 

vectors { }TxxxX ,.....,, 21= , the log likelihood of the model is computed as, 
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1

)(log)(log λλ         (2.16) 

 

The constraints applied to the GMM include: a priori-probability, covariance matrix, and 

initialization of the GMM parameters. 

 

Priori probability  

 

The a priori probabilities of the Gaussian components maintain the requirement that it 

should be summed to 1, as shown in Eq. (2.15). This constraint keeps the reliability of 

posteriori probability estimate of the GMM. The parameter mw  represents the a priori 

probability of each Gaussian component so it maintains the condition 10 ≤≤ mw . In other 

words a minimum value except zero may be enforced so that each Gaussian density may 



CHAPTER 2. SPEAKER RECOGNITION METHODS 

 

 

 

 

      46 

have a reliable share in optimization of probabilistic model. This approach would 

ultimately lead avoid singularities or over-fitting to the training data. 

 

Covariance Matrix 

 

For speaker recognition technology a local covariance matrix for each Gaussian density is 

adapted, thus it can lead to a substantial computational burden so a number of careful 

practical restrictions are then applied to selection of covariance matrix. As it can be 

depicted from Eq. (2.14) that the covariance matrix is a matrix of size RxR. Typically in 

speaker recognition applications the covariance matrix is restricted to being a diagonal 

matrix. Reynolds [19,40] suggests based on the empirical evidence that diagonal 

covariance matrices outperform full covariance matrices. This restriction reduces the 

trainable covariance parameters to R parameters per Gaussian component. The 

covariance matrix for R=4, is shown below. 
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Initialization of GMM Parameters 

 

The initial distribution of the training data before tuning by EM procedure would have 

significant impact on the overall training procedure of the speaker models [29,129]. K-

means clustering procedure is most commonly used technique to initialize the training 

speaker data.  The K-means initializes the clusters for the feature vectors, each cluster 

would then become a single component of the GMM. The initial values of weights, 
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means and covariances for each of the Gaussian densities are calculated using 

conventional statistics. The weights are determined by reciprocating the total number of 

Gaussian densities. The K-means algorithm is defined in detail in Chapter 3, where LBG 

and information theoretic clustering are used to classify the speaker models. Several K-

means variants also exist, however for this thesis it is principally used to initialize 

Gaussian components.  

 

Maximum Likelihood Estimation of GMM Parameters 

 

The maximum likelihood (ML) approach to parameter estimation is mostly adapted by 

GMM based speaker recognition. The ML approach estimates parameters to maximize 

the likelihood. In other words ML estimation would lead to maximizing the posteriori 

probability that the GMM produced the observed feature vectors belonging to class. The 

expectation maximization (EM) algorithm is widely used to obtain a ML estimate λ , 

given an initial estimation for λ .The Expectation Maximization (EM) algorithm was 

developed by Dempster [122]. It is an optimization procedure that enables the ML 

parameter estimation. This procedure does not take into account that which Gaussian 

component any particular observation belongs to. The EM procedure used for training 

speaker models is demonstrated in [19,40].  

 

The expectation maximization procedure is elaborated in detail in Chapter 4, where the 

proposed EM-ITVQ is described. However in this chapter a general description of the 

procedure is given. 

 

The EM algorithm is performed in two stages, expectation and maximization. During 

expectation stage the posterior probability based on the Gaussian densities is evaluated 

and during maximization stage the parameters are re-evaluated in a manner that 
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guarantees the improvement. This is equivalent to saying that )()( λλ xpxp ≥ . A 

thorough description of EM algorithm can be found in [40,122]. 

 

The ML estimates for a priori probability, means and covariance for the m
th

 component 

update of a target speaker model are summarised below, 
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Covariance update: 
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The posteriori probability for mth component can be evaluated as, 

 

∑
=

=
M

m

tmm

tmm

t

xpw

xpw
xmP

1

)(

)(
),( λ         (2.21) 

Where )(xpm
is given in Eq. (2.14). 

 

Maximum a Posteriori (MAP) Estimation 

 

The idea of the MAP estimation is applied to derive the optimized speaker model by 

updating the trained parameters of the prior model. ML estimates the probabilistic model 
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λ which maximizes the likelihood of training vectors x, referred as ( )λxP , however 

MAP estimates the probabilistic model λ and maximizes the likelihood ( ) ( )λλ PxP , 

where ( )λP  is the priori probability. Thus in case of MAP estimation the prior 

knowledge is also used for the EM updates to form a UBM. 

  

Assuming that a GMM based UBM is created which provides the initial estimation of the 

parameters { }M

mmmmw
1

,,
=

∑= µλ and a set of feature vectors { }TxxxX ,....,, 21=  is trained 

as a large GMM , the mth component update for the target speaker GMM of m Gaussian 

densities can be calculated as, 
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Where mα is a weight used to define the relative importance of the prior which is 

calculated by, 
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Where τ is called constant relevance factor, it determines to what extent new data will 

affect the estimate of the updated GMM parameter.  

 

Imposter Modeling  

 

Imposter model can minimize non-speaker related variability by normalizing the 

likelihood ratio scores. Generally, there are two approaches to represent the imposter 

models. 

 

Likelihood Sets (Background Sets)  

 

It is a collection of other speaker models. For each speaker, a specific model is 

constructed using the models of all non-claimant speakers. 

 

Universal Background Modeling (UBM) 

 

It is a single speaker-independent model that is used by all speakers. In addition to 

smaller storage space required, it usually provides better performance. 

 

The UBM introduced by Reynolds [19,39,40] was used where no enough training data 

was available for GMM training. It is a single large GMM trained from a pool of 

speakers; the speech data used in the training of a UBM is not used for the training of the 

individual speaker models. In other words the speech involved in the creation of UBM 

does not involve the utterances taken from the target speakers. ML estimation described 

above can also be used to estimate UBM parameters; however in this thesis MAP 
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estimation is used to evaluate the UBM parameters. The UBM can be used as the initial 

GMM for training target speaker dependent GMM. Below it is described how to train the 

target speaker model by using MAP adaptation.  

 

Gaussian mixture model (GMM) classifier was for the first time applied to the speaker 

recognition task by Reynolds [19], since then GMM has been widely used in speaker 

modeling. The GMM needs sufficient data to model the speaker, to achieve good 

performance. The distribution of feature vectors is modeled by the parameters mean, 

covariance and weight.  

 

GMM requires sufficient data to model the speaker well [19], to avoid this issue, 

Reynolds et al. introduced GMM-universal background model (UBM) for the speaker 

recognition task [39]. For UBM-GMM system, a substantial amount collected from the 

enrolled speakers is pooled and the UBM is trained, which acts as a speaker-independent 

model. The speaker-dependent model is then created from the UBM by performing 

maximum a posteriori (MAP) adaptation technique using speaker-specific training 

speech. As a result, the GMM-UBM gives better results than the GMM. The advantage of 

the UBM-based modelling technique is that it provides good performance even though 

the speaker-dependent data is small.  

 

Gaussian Mixture Models (GMMs) have been widely used for speech modelling. GMMs 

can be termed as the state of the art modelling for text independent speaker verification 

technology. GMMs can be regarded as a specific case of a Radial Basis Function (RBF) 

[93,127] neural network. GMMs are defined in this section along with summary of 

maximum likelihood (ML) and maximum a posteriori (MAP) estimation methods. Log-

likelihood ratio (LLR) test is also described to perform the verification decisions.   

 

More details on the GMM theory can be found in Chapter 4. 
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2.5 Performance Evaluation and Comparison Methods for 

Speaker Recognition Task 

 

The majority of the work reported in this thesis is focused on the speaker verification 

task. There are two types of possible errors in speaker verification: the false acceptance 

error also known as the false alarm probability and the false rejection error [7,50,143], 

also known as the miss probability. 

 

A false acceptance (or false alarm) error occurs when the system accepts a claim of 

identity from an impostor speaker. 

 

A false rejection (or miss probability) error occurs when the system rejects a legitimate 

speaker as an impostor. 

 

2.5.1 The Detection Cost Function (DCF)  

 

The performance of speaker verification system can be characterized using the false 

acceptance probability and the false rejection probability. A cost based performance 

measure CDet can be calculated based on the false acceptance and the false rejection 

probabilities and used to evaluate the system performance. The NIST speaker recognition 

evaluation plans [139,140,141] defined the performance measure parameter CDet as a 

weighted sum of the false acceptance and the false rejection error probabilities given as:  

 

)P(Target)1)(NonTarget|tanceFalseAccep(                                     

)Target()Target |tionFalseRejec(

tanceFalseAccep

tionFalseRejec

−+

+=

PC

PPCCDet

                                             (2.26) 

 



CHAPTER 2. SPEAKER RECOGNITION METHODS 

 

 

 

 

      53 

Where )Target |tionFalseRejec(P  is the probability that an actual target speaker was 

rejected, )NonTarget |tanceFalseAccep(P  is the probability that a non-target speaker 

was accepted.  

 

The parameters jectionFalseC Re  and ceFalseAccepC tan  are the costs (or weights) of the false 

rejection and false acceptance errors respectively, and P(Target) is the a priori 

probability of the specified target speaker. Table 2.3 shows the values of jectionFalseC Re , 

ceFalseAccepC tan  and P(Target) recommended by the NIST speaker recognition evaluation 

rules for all speaker detection tests. 

 

Table 2.3 Speaker Detection Cost Model Parameters. 

jectionFalseC Re  
ceFalseAccepC tan  )Target(P  

10 1 0.01 

 

The cost value CDet  can be further improved by the following normalization: 

 

DefaultDetNorm CCC /=                  (2.27) 

where, 

{ })NonTarget(),Target(min tanRe PCPCC ceFalseAccepjectionFalseDefault =             (2.28) 

 

Where P(NonTarget) is the a priori probability of a non target speaker. DefaultC  is called 

the optimal decision cost function (DCF).  

 

There are two variants of the DCF, namely the actual DCF and the optimal decision cost 

function (ODCF). The actual DCF is defined as, the actual decisions that the specific 
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system have made, and depends on the choice of value for the speaker independent 

speaker verification threshold. The optimal decision cost function (ODCF) is defined as 

the minimal decision cost attained for the given experiment. The optimal DCF is an 

indication of the potential performance that a system could achieve, while the actual DCF 

gives the true measure of the system performance. 

 

A major drawback of using the DCF measure is that it is not as sensitive to the changes in 

the system performance as the Equal Error Rate (EER) measure. When computing the 

EER, we assume equal weights for the cost parameters, 1tanRe == ceFalseAccepjectionFalse CC .  

 

Since the decision in a speaker verification task is binary (accept or reject), a threshold of 

certainty may be included in the decision rule. A claim of identity is then accepted only 

when the decision can be made with a pre-determined level of certainty. By varying this 

threshold one can vary the ratio of false acceptance to false rejection errors [143].  

 

In speaker verification system it is typically assumed that the ratio of likelihood of the 

claimant speaker model and the likelihood of the imposter speaker model should be 

greater than some threshold ζ. The threshold ζ measures how many times it was more 

likely that the claimant speaker spoke the test sample than any other speaker (or 

imposter). Thus, the value of ζ provides the certainty of the recognition decision.  

 

The claim made by the speaker is accepted if: 

 

( )
( )

ξ>
etNonTP

etTP

arg|tanceFalseAccep

arg|tionFalseRejec
       (2.29) 

 

Since the division in Eq. (2.29) can lead to round off problems in numerical 

computations, Eq. (2.29) is usually replaced by the following logarithmic version: 
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( )( ) ( )( ) )log(arg|tanceFalseAcceplogarg|tionFalseRejeclog ξ>− etNonTPetTP    (2.30) 

 

In most cases, speaker verification systems are judged by the equal error rate (EER) 

parameter. 

 

2.5.2 The Equal Error Rates (EER) and the Detection Error Trade-off 

(DET) Plots 

 

The error rates for speaker recognition system were initially measured using receiver 

operating characteristic (ROC) curves [7]. However in the more recent studies of the 

speaker recognition systems, the nonlinear ROC curves are replaced by the Detection 

Error Trade-off (DET) plots [142], which are believed to provide more efficient 

representation of the system performance because of their linear behavior in the 

logarithmic coordinate system. In this thesis DET plots are used to evaluate the 

performance of speaker verification systems.  

 

The DET plots are related to the equal error rate (EER) parameter representing a 

normalized measure of the system error rates.  

 

The detection error trade-off (DET) plot is a curve representing the percentage of the 

false rejection probability as a function of the percentage of the false acceptance 

probability. An example of a DET plot is shown in Figure 2.7. Points on the DET curve 

correspond to the different values of the acceptance threshold ζ or different values of the 

ration given in Eq. (2.29).  
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As illustrated in Figure 2.7, the false rejection probability is an inverse proportion to the 

false acceptance probability. Which means that, by decreasing the false rejection 

probability the false acceptance probability will be increased and vice versa. 

 

Since the ultimate goal of all speaker verification is to simultaneously minimize both 

errors (false rejection and false acceptance), the best compromise can be achieved when 

both errors are equal. The value of the percentage of the false rejection (or false 

acceptance) at the point when these two errors are equal is called the equal error rate 

(EER).  

 

As illustrated in Figure 2.7, the equal error rate can be determined graphically as the 

percentage of false rejection (or false acceptance) at the intersection point between a 45
0
 

line (in red) and the detection error trade-off (DET) curve (in blue). 

 

The smaller is the EER for a given speaker verification system, the better is the system 

performance. 
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Figure 2.7 An example of the Detection Error Tradeoff (DET) curve (blue) and the 

process of determining the Equal Error Rates (EER). 

 

The EER is of little practical significance since in most potential speaker verification 

systems a false acceptance error would be far more costly then a false rejection [143]. 

The EER is however, an effective technique for comparing the performance of different 

speaker recognition systems. 

 

Since, different classification thresholds ζ may be applied by different applications; 

speaker verification systems typically use some type of score normalization techniques.  

 

The score normalization is important in practical speaker verification systems, however 

since this study is primarily concerned with a closed set of speakers, and used the same 

classification rules across all tests, the score normalization was not used.  
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The work reported in this thesis belongs to speaker verification task and the EER has 

been adopted as the system performance measure in all cases.  

2.6 Speech Corpora for Speaker Recognition Research 

 

The speech corpora used in the speaker verification tests described in this thesis are: 

TIMIT, NIST 2001, NIST 2002 and NIST 2004. This section provides brief description 

of these corpora as well as few other speech corpora used for speaker recognition. 

 

The selection of suitable speech corpora is of key importance in testing the performance 

of developed speaker recognition techniques. Ideally, the database used for performance 

evaluation should reflect environmental characteristics determined by possible 

applications.  

 

Practical speaker recognition systems are typically used in non-ideal environments 

including acoustic noise and telephone line band limitations. In addition, most 

applications involve recognizing an individual at a later date then the date of the provided 

speech sample, therefore reliability over a long period of time is important.  

 

Looking at the potential commercial applications of a speaker recognition system and in 

particular telephone-based speaker recognition, the following key requirements for 

speech corpora can be identified: 

 

• Speech recorded over a telephone line [130] with the speaker in natural 

environment; 

• The time duration of a single recording session should be at least 60 seconds. 

• The data should be recorded for each speaker during a number of sessions spaced 

in time and covering a significant time interval (at least 1 year); 
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• The corpora should contain speech samples from a sufficiently large number of 

speakers; 

• The corpora should contain speakers using the same language; 

• The recording conditions should be well documented and the speech samples 

correctly labeled to avoid misuse of data. 

 

The advantage of using publicly available corpora lies in the fact that, the collection of an 

appropriate data corpus takes a significant amount of time. In addition, the costs of 

recruiting and managing subjects to provide speech data over a long period of time can be 

significant. Existing speech databases have the additional advantage of enabling direct 

comparison of results between different studies using the same database. Publicly 

available data makes it also possible to reproduce reported research results. 

 

Publicly available data comes from various commercial and academic sources and has 

been produced for a wide variety of applications and developed under different 

conditions. 

 

Although, in the recent years the NIST database became the most frequently used 

corpora, other data sets are still being used as they can provide performance evaluation 

across different recording environments, populations of speakers and different languages. 

 

The following list provides brief descriptions of selected corpora most often cited in the 

speaker recognition research. 

 

TIMIT speech corpus and it’s varaiants 

 

The TIMIT speech corpus [132] consists of 630 speakers (438 male and 192 female). For 

each speaker only one recording session was used. The speech data was recorded in a 
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sound booth and contains fixed-text sentences read by speakers and recorded over a fixed 

wideband channel. The speakers used American English.  

 

The main limitation of the TIMIT corpus is that the speech is recorded for only during 

one session per each speaker, therefore the data does not reflect time related variations in 

speech characteristics.  

 

Moreover, the clean wideband speech environment in TIMIT has an ideal character and 

does not simulate the real world conditions appearing in typical speaker recognition 

applications. 

A number of TIMIT variants also exist including: 

 

• CTIMIT; a cellular bandwidth adjunct to the TIMIT corpus;  

• HTIMIT; a re-recording of a subset of TIMIT corpus through different telephone 

handsets and  

• NTIMIT; a telephone bandwidth adjunct to the TIMIT corpus. 

 

SIVA speech corpus 

 

SIVA is an Italian speech corpus [133] consisting of 840 speakers and has an even gender 

distribution. A small subset of only 40 speakers out of 840 had multiple recording 

sessions within time intervals ranging from 3 days to a few months. The speech was 

recorded over Public Switched Telephone Network (PSTN) channels in a home office 

acoustic environment. All speakers were fluent Italian speakers. The major drawback of 

this corpus is the lack of multiple sessions for the majority of the speakers. 
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POLYVAR Speech Corpus 

 

This speech corpus [136] contains 143 speakers (85 male and 58 female). There are 3600 

sessions in total recorded with speakers recorded during 1 to 229 sessions each with an 

intercession interval ranging from days to months. The speech samples include read 

digits, words and sentences, and spontaneous speech. The speech is recorded using 

different telephone handsets over PSTN channels at home office acoustic environment. 

The speakers use Swiss, French and other European languages. 

 

POLYCOST Speech Corpus 

 

This corpus consists of 133 speakers (74 male and 59 female) [134]. Each speaker 

provided more than 5 sentences with an intercession interval ranges from days to weeks. 

The speech samples include fixed and prompted digit strings, read sentences and free 

monologue. The recordings were made using variable telephone handsets over digital 

ISDN channels in a home office acoustic environment. The speakers used non-native 

English as well as various European languages. 

 

KING Speech Corpus 

 

The King corpus consists of 51 male speakers; each speaker was recorded over 10 

sessions providing speech data with intervals ranging from weeks to a month [137]. The 

speech was recorded using a wideband microphone and an electret handset over clean and 

PSTN channels. It was recorded in a sound booth. 
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YOHO Speech Corpus 

 

The YOHO corpus consists of 138 speakers (106 male and 32 female) [135]. Each 

speaker provided data for 4 enrollment sessions and 10 verification sessions with 

intercession intervals ranging from days to months. The speech samples included 

prompted digits and phrases and were recorded over clean 3.8 kHz channels in an office 

acoustic environment. All speakers used American English. 

 

SWITCHBOARD Speech Corpus 

 

The Switchboard corpus is an extensive data set, frequently used in speaker recognition 

tasks [138]. A number of subsets of the Switchboard corpus have been also used as the 

speaker recognition benchmark sets by the speech group at National Institute of 

Standards and Technology (NIST).  

 

Switchboard I consists of 543 speakers and Switchboard II consists of 657 speakers, both 

corpora have approximately even gender distributions. Each speaker was recorded over 1 

to 25 sessions with intercession intervals ranging from days to weeks. The corpus 

consists of conversational telephone speech using different telephone handsets over a 

PSTN channel. The speech was recorded within a home office acoustic environment. All 

speakers used American English from different regions of U.S.A. 

 

NIST 2001 SRE Speech Corpus 

 

The “one-speaker detection” corpus known as the NIST 2001 Speaker Recognition and 

Evaluation (SRE) corpus is a subset of the Switchboard-Cellular corpora, post-processed 

to remove any significant silence intervals and cancel transmission channel echoes 

contained by speech signal.  
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The NIST 2001 contains spontaneous speech from 174 speakers (74 male and 100 

female) speakers recorded in different environmental conditions. For each speaker 

approximately 2 minutes of speech is available. The enrollment and test data consist of 

speech recorded over TDMA, CDMA, Cellular, GSM, and land transmission channels, 

thus different handsets and different transmission channels are available for each speaker. 

All speakers use American English. For each speaker approximately 2 minutes of speech 

is available for training for the “one-speaker detection task”. The test trials are divided 

based on the length of speech segments, 0-15sec, 16sec-25sec, 26sec-35sec, 36sec-45sec, 

and 46sec-60sec are the available length of test segments. The complete “one-speaker 

detection task” including description of the evaluation database and evaluation rules is 

described in the 2001 NIST SRE Plan [139].  

 

NIST 2002 SRE Speech Corpus 

 

The NIST 2002 speech corpus consists of spontaneous speech from 330 speakers (139 

male and 191 female) recorded in different environmental conditions. It consists of 

conversational speech recorded over a telephone line, from a microphone and from the 

news broadcast.  

 

For each speaker approximately 3 minutes of speech are available for training for the 

speaker detection task. The test data for each speaker consists of speech segments of the 

total length of 3 minutes. A comprehensive description of the evaluation database and 

evaluation rules is available in the 2002 NIST SRE Plan [140]. 

 

NIST 2004 SRE Speech Corpus 

 

The NIST 2004 speech corpus consists of 616 speakers (248 male and 368 female) 

recorded in different environmental conditions. It consists of conversational speech 
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recorded mostly over a telephone line. For each speaker approximately 5 minutes of 

speech is available for training as well as for testing. Most of the training data is in 

American English, but some training conversations involving bi-lingual speakers may be 

collected in Arabic, Mandarin, Russian, and Spanish. A comprehensive description of the 

evaluation database and evaluation rules is available in the 2004 NIST SRE Plan [141].  

 

NIST Post-2004 Speech Corpora 

 

The National Institute of Standards and Technology (NIST) has been coordinating 

Speaker Recognition Evaluations since 1996 [269]. The goal of the NIST Speaker 

Recognition Evaluation (SRE) series is to contribute to the direction of research efforts 

and the calibration of technical capabilities of text independent speaker recognition. The 

evaluation plans post-2004 are similar to the NIST 2004 corpora. Details of the new 

releases of NIST corpora can be found on: http://www.nist.gov/index.html. 

The speech corpora used in the speaker verification tests described in this thesis are: 

TIMIT, NIST 2001, NIST 2002 and NIST 2004. 
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CHAPTER 3 

 

SPEAKER VERIFICATION BASED ON THE INFORMATION 

THEORETIC VECTOR QUANTIZATION 

 

This chapter investigates the Vector Quantization (VQ) approach to the 

speaker modeling for the speaker verification task. A relatively new vector 

quantization method based on the Information Theoretic principles (ITVQ) is 

for the first time used in the task of speaker verification and compared with 

two classical VQ approaches: the K-means algorithm and the Linde-Buzo-

Gray (LBG) algorithm. The chapter provides a brief theoretical background 

of the vector quantization techniques, which is followed by experimental 

results illustrating their performance. The results demonstrated that the ITVQ 

provided the best performance in terms of classification rates, equal error 

rates (EER) and the mean squared error (MSE) compare to K-means and the 

LBG algorithms. The outstanding performance of the ITVQ algorithm can be 

attributed to the fact that the Information Theoretic (IT) criteria used by this 

algorithm provide superior matching between distribution of the original 

data vectors and the codewords.  

 

3.1 Overview 

 

3.1.1 Vector Quantization 
 

The Vector Quantization (VQ) method is a classical signal processing technique which 

models the probability density functions by the distributions of prototype vectors. The 

VQ was originally designed to be used as a data compression technique where a large set 

of points (vectors) in a multidimensional space could be replaced by a smaller set of 

representative points with distribution matching the distribution of the original data. 
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A typical VQ algorithm divides a large set of vectors into clusters having number of 

points. Each cluster is represented by its central point. According to the Shannon’s rate 

distortion theory [79], the central points for each cluster should be calculated as centers of 

gravity (or centroids); and the cluster members should be ideally selected such that, for 

each cluster member, the cluster centroid is the nearest centroid.  

 

The Vector Quantization techniques have been widely adapted as a speaker modeling 

technique in speaker recognition /verification tasks [87,116].  

 

A VQ technique encompasses two fundamental tasks: 

 

1. An encoding process which involves a nearest neighbor (NN) search, assigning the 

closed codeword to a given vector. 

2. A codebook generation process which finds an optimal, small set of vectors 

(codebook) representing a given large set of vectors. The elements of codebook are 

called the codewords. 

 

At the simplest level, the task of nearest neighbor search can be performed using a linear 

search, although this approach becomes highly inefficient when a large number of highly 

dimensional data vectors needs to be repeatedly searched in applications like speaker 

verification/recognition. Many fast encoding algorithms have been proposed including 

various tree-search techniques [61].  

 

The second VQ task of codebook generation is a complex multidimensional global 

optimization problem. For deterministic applications such as symbol identification in 

communication systems, the codebook is already defined by a given set of symbols being 

used. For non-deterministic applications such as data compression or speaker recognition, 

the VQ codebook has to be estimated using a data-driven procedure. The process of 

estimating the VQ codebook involves division of the observed data into clusters. The 
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centroid of each cluster becomes the codeword representing that cluster. The set of all 

centroids constitutes the VQ codebook. If the Cartesian distance measure is used, then the 

centroid simply represents the mean vector calculated from all vectors belonging to the 

given cluster.  

 

The best known and very efficient VQ codebook generation algorithm used in speaker 

verification/recognition tasks include: the K-means algorithm [58], the Linde Buzo Gray 

(LBG) algorithm [59], and the Kohonen’s self-organizing map (KSOM) [95]. In these 

algorithms the process of finding an optimal codebook is guided by minimization of the 

average distortion function (objective or cost function) representing an average total sum 

of distances between the original vectors and the codewords. It is also called the 

quantization error. Different types of distance measures for the quantization error have 

been proposed in literature [79]. 

 

The VQ codebook generation is a large scale global optimization problem, however the 

vast complexity of this problem means that in reality only sub-optimal solutions can be 

found. Codebook generation algorithms differ in the way that some algorithms are less 

and some more powerful in finding acceptable local minima of the objective function. 

 

An ideal codebook should contain a set of uncorrelated (linearly independent) centroid 

vectors. In reality there is always remaining a certain amount of correlation between 

centroids.  

 

3.1.2 Information Theoretic Learning 

 

Some of the most recent trends in vector quantization include VQ based on the 

Information Theoretic Learning [80].  
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The idea of the Information Theoretic Learning (ITL) was conceived in the late 90’s at 

the Computational Neuro-Engineering Lab (CNEL), University of Florida.  

 

The ITL uses descriptors from information theory (entropy and divergences) estimated 

directly from the data to substitute the conventional statistical descriptors of variance and 

covariance.  

 

Applications of ITL include vector quantization, adaptation of linear or nonlinear filters 

as well as different unsupervised and supervised machine learning approaches [56].  

 

3.1.3 VQ in speaker recognition and verification  

 

Vector Quantization may be used as a classification process in a number of ways [116]. 

The most often used approach is to generate a separate codebook for each speaker using 

speech recordings that belong to that speaker. During the testing phase the set XID of 

observed feature vectors from the unknown speaker are compared with codebooks 

representing the reference speakers. This process is graphically illustrated in Figure 3.1. 

 

The quantization errors for the observed feature vectors of the unknown speaker when 

quantized using each of the reference codebooks are used as a measure of how close the 

observed feature vectors are to codewords representing each speaker. The speaker whose 

codebook is the closest to the observed feature vectors is then taken as the identified 

speaker. 

 

In speaker verification task, an arbitrary threshold is often applied to the quantization 

error to determine if the observed feature vectors are close enough to the codebook for 

the claimant speaker to accept the claim. 
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Figure 3.1 Structure of the VQ based speaker recognition system; adapted from [73]. 

 

3.1.4 Relationship between VQ and GMM 

 

In Chapter 4, a new classification approach which combines the classical Gaussian 

Mixture Model with the Information Theoretic Vector Quantization (ITVQ) is 

introduced; therefore few comments are made here about the relationship between VQ 

and GMM classifiers. 
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The GMM and VQ techniques are closely related [57]. The GMM is often interpreted as 

a soft form of vector quantization [24,115]. In VQ incoming feature vectors are assigned 

to one of the codewords in the codebook.  

 

Assuming that the observed vector Y is assigned to codeword i, then the quantization 

error E can be calculated as a distance measure D between the observed vector Y and the 

assigned codeword vector Vi. It can be denoted as: 

 

),( iDE VY=           (3.1) 

 

In VQ only the distance between the observed vector and the closest codeword is 

considered [24]. 

 

In the case of the GMM approach one can consider each Gaussian component to be a 

codeword in a VQ codebook. The Gaussian components are given as the posteriori 

probabilities: 
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ii Ybpp Y         (3.2) 

 

where pi are the a priori probabilities and bi are the Gaussian component probabilities.  

 

The a priori component probability pi in Eq. (3.2) can be treated as probability of 

belonging to the i-th Gaussian component. Each of the multivariate Gaussian components 

bi can be interpreted as a measure of distance between the observed vector Y and the i-th 

codeword µµµµi.  
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For an appropriately chosen distance function D in Eq. (3.1) the quantization error E is in 

the inverse relationship to the Gaussian component probability if the mean vector for the 

codeword and Gaussian component are equal; that is µµµµi.=Vi. 

 

If all of the a priori probabilities in the GMM approach are equal and it is assumed that 

only the closest Gaussian component is significant, then the GMM and VQ approaches 

become identical. The GMM can therefore be interpreted as a “soft” form of VQ where 

membership to all the codewords is considered in a weighted form based on the a priori 

probability of a feature vector belonging to a given codeword [115]. 

 

The above interpretation can be used to reduce computational costs of the GMM based 

speaker verification /recognition systems. If the contributions of only the first few most 

significant Gaussian components are considered then there is no need to calculate the 

contributions of the remaining components since they can be assumed negligible [24].  

 

The following sections describe the most frequently used VQ algorithms: K-means and 

the Linde-Buzo-Gray (LBG) algorithm. This is followed by sections describing the 

Information Theoretic Vector Quantization (ITVQ). 

 

3.2 K-means modeling algorithm   

 

The K-means algorithm [58,105] is a clustering algorithm used for the vector 

quantization codebook generation. It clusters data based on attributes or features into K 

groups where, K is a positive integer. The clustering is achieved by minimizing the 

squared Euclidean distance between vectors xi and the corresponding cluster centroid 

vector θj. The centroid vector represents each cluster as a mean vector of the cluster. 
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Lets assume that a set of T vectors X={x1,x2,x3,…,xT} is to be divided into K clusters 

represented by their mean vectors θ ={θ1, θ 2, θ 3,…, θK}. The objective of the K-means 

algorithm is to minimize the total distortion (or quantization error) given by 

 

2

1 1

|||| j

T

i

K

j

iD θx −=∑∑
= =

        (3.3) 

 

K-means is an iterative approach, in each successive iteration; it redistributes the vectors 

in order to minimize the distortion D (quantization error).  

 

The K-means algorithm consists of the following basis steps: 

 

Step 1. Choose arbitrary initial estimates θj(0) for the centroid vectors θj‘ s, j=1,2,….,K. 

Calculate the initial value of the distortion D(0). 

Step 2.  

 For i=1 to T 

For a vector xi., determine the nearest centroid , say θj ,  

Set centroid(i)=j (centroid or cluster for the jth vector) 

End 

For i=1 to K 

Calculate new centroids θj as the mean of the vectors xi є X with 

centroid(i)=j. 

Calculate the distortion value D(i). 

End  

Step 3 Repeat Step 2 until either a maximum number of iterations is reached or the 

distortion value D(i) falls below a preset threshold or until no change in θj‘ s occurs 

between a few successive iterations. 
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The above procedure iteratively moves the cluster boundaries. When the distortion D is 

minimized, subsequent iterations do not result in any movement of vectors between 

clusters and the cluster boundaries become stabilized. This could be used as one of 

possible indicators to terminate the algorithm. The total distortion can also be used as an 

indicator of convergence of the algorithm. Upon convergence, the total distortion does 

not change as a result of redistribution. A great advantage of this algorithm is its 

computational simplicity. An example of K-means procedure is illustrated in Figure 3.2.   

 

In the case of speaker recognition the speech files are preprocessed and a set of feature 

vectors is calculated. The K-means clustering can be then used to group feature vectors 

for each speaker into K sets (clusters) which efficiently describe the acoustic attributes of 

a given speaker. Thus, each speaker is modeled by a set of K clusters of feature vectors. 

 

 

)1(1 −iθ

)(1 iθ

)1(2 −iθ

)(2 iθ

Cluster Boundaries(i)

Cluster Boundaries(i-1)

)1(1 −iθ

)(1 iθ

)1(2 −iθ

)(2 iθ

Cluster Boundaries(i)

Cluster Boundaries(i-1)

 

 

Figure 3.2 An example of the K-means clustering for 3 clusters; the blue dots represent 

data vectors, i is the iteration number and θθθθj denote centroid vectors (red dots). The green 

lines represent boundaries between clusters. 

 

There is no general theoretical solution to find the optimal number of clusters for any 

given data set. A simple approach is to compare the results of multiple runs with different 

numbers of classes (different values of K) and choose the best one according to a given 
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criterion; however it needs to be measured carefully because increasing of K, results not 

only in smaller value of the distortion but also it increases the risk of overfitting. More 

details on advantages and drawbacks of K-means can be found in [9]. 

 

The drawback of overfitting can be largely eliminated by using the Information Theoretic 

based Vector Quantization which works on the principle of physical interpretation of the 

data clusters.  

3.3 Linde-Buzo-Gray (LBG) clustering algorithm 

 

The LBG algorithm [59] is an enhanced version of the K-means clustering. It consists of 

a sequence of iterative steps minimizing the distortion measure. The algorithm consists of 

two phases: 

 

1. Codebook initialization phase;  

2. Codebook optimization phase.  

 

The codebook optimization process is guided by minimization of the average distortion 

of the maximum quantization error (MQE) given as: 
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where Y is a given codebook, X={x1, x2, ..., xN} is the set of observation data vectors, N 

is the total number of observation data vectors, d is a vector distance measure, q is the 

vector quantizer function, defined such that q(xi) is the codeword assigned to vector xi 

based on the nearest neighbor criterion.  
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The LBG algorithm requires the user to provide an initial estimate of the codebook and to 

specify the desired number of clusters. Due to the nature of the classical LBG algorithm, 

which usually generates the initial codebook by randomly splitting codewords into two 

new codewords, the desired number of clusters needs to be a power of 2. The following 

sections describe the subsequent phases of the LBG algorithm. 

 

3.3.1 Codebook initialization phase 

 

The choice of initial codebook can be critical for the quality of the final solution. The 

poor choice of the initial codebook will lead to a final quantizer with a relatively large 

value of the quantization error.  

 

A number of methods such as random initialization [107], initialization by splitting [59] 

and maximum distance initialization [108] have been proposed to perform codebook 

initialization. One of the most often used approaches is based on random splitting 

codewords until a desired codebook size is reached.  

 

As illustrated in Figure 3.3, the process of generating an initial codebook starts with a 

single random initial codeword. The single codeword is then randomly split into two 

codewords by a small random perturbation. The procedure proceeds until a pre-set 

number of codewords is reached. This type of codebook initialization results in a 

codebook size which is a power of 2.  
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Figure 3.3 Initial codebook generation by randomly splitting the codewords. Red dot-

represents the first codeword at iteration 0, blue dots-iteration 1, green dots-iteration 2, 

etc. 

 

3.3.2 Codebook optimization phase 

 

The initialization step is followed by the iterative codebook optimization procedure 

which gradually improves the codebook estimate by minimization of the total distortion 

(quantization error) D given in Eq. (3.1). 

 

The optimization phase of the LBG algorithm proceeds as follows [10]: 

 

Step 1: Assign the initial codebook as the current codebook Y
k
 and the current iteration 

number k=1. 

 

Step 2: Using the current vector quantizer q
k
, divide the training data into a set of nearest 

neighbour (NN) clusters (also called the Voronoi clusters [10]). Then calculate the 

average distortion D(Y
k
,q

k
) using Eq. (3.4). 

If  abs(D(Y
k
,q

k
)- D(Y

k-p
,q

k-p
)) is less than a preset threshold ζ, then terminate the 

algorithm. 

else, go to Step 3. The p value is a control step denoting a mall number of iterations. 

 



CHAPTER 3. SPEAKER VERIFICATION BASED ON THE INFORMATION THEORETIC VECTOR 

QUANTIZATION 

 

 

 

      77 

Step 3: Set k=k+1, and update the codebook Y
k
 by calculating the centroids of the new 

clusters, update the nearest neighbour quantizer q
k
 and go to Step 2. 

 

The cycle of iterations usually continues until the decrement in average distortion value 

calculated over a specific small number of iterations falls below a pre-set threshold ζ . 

Alternatively the algorithm can be terminated when a pre-set maximum of iterations is 

reached. 

 

The LBG algorithm offers a constructive solution to a very complex problem of 

generating an optimal VQ codebook. The great advantage of the LBG is that it does not 

require knowledge about the underlying statistics of the observation data. 

 

However, the quality of the final solutions depends on the quality of the initial codebook. 

The procedure has a gradient descent character and has no mechanisms allowing escaping 

from local minima, therefore the algorithm has a tendency to end up in low quality local 

minima. Moreover, computationally, the LBG algorithm is highly demanding. 

 

3.4 Information theoretic based vector quantization (ITVQ) 

 

In K-means and LBG algorithms, data points are associated with the nearest code vector 

reducing the size of the original data. The challenge is to find the set of code vectors (the 

codebook) that reduces the data to a smaller set preserving the distribution of the original 

data vectors.  

 

Unlike the K-means or LBG, the Information Theoretic Vector Quantization (ITVQ) [80] 

has a clear physical interpretation and relies on minimization of a well defined cost 

function.  
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The ITVQ uses descriptors from information theory (entropy and divergences) estimated 

directly from the data to substitute the conventional statistical descriptors of variance and 

covariance. The ITVQ is based on a number of core concepts of the information theory 

such as Parzen density estimator, Kullback Leibler divergence, Cauchy Schwartz 

Inequality and Renyi’s Quadratic Entropy [80].  

 

In the light of the information theory minimization, the free distance between the 

codeword’s distribution and the original data distribution is equivalent to the 

minimization of the divergence measure between these two distributions. The divergence 

measure is calculated directly from the data using the Parzen density estimator. 

 

The divergence minimization algorithm can be also seen as a probability density 

matching method, where the distance between the Parzen density estimator for the 

codewords and the Parzen density estimator for the original data is minimized.  

 

The potential field created by a single vector (particle) can be described by a kernel of the 

form K(·). Placing a kernel on each particle, the potential energy at a point in space x is 

given by: 
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Where xi are the data vectors. Eq. (3.5) is known as the Parzen density estimator [4].  

 

In order to match the distribution of the codewords with the distribution of the original 

data, Eq. (3.5) can be used to estimate their densities and then minimize the divergence 

between the densities.  

 

The distribution of the data points (xi) can be written as: 
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Similarly, the distribution over codewords (wi) can be written as: 

∑ −=
i
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Where, G(.) represents the Gaussian kernel given as 

 

( )
2

2

2

2

1
),( σ

πσ
σ

x

x
−

= eG
N

 (3.8) 

 

Numerous divergence measures exist, of which the Kullback-Leibler (K-L) divergence is 

the most commonly used [5]. The Integrated square error and the Cauchy-Schwartz (C-S) 

inequality, are both linear approximations to the K-L divergence 

 

The Kullback-Leibler (K-L) divergence represents a measure of the difference between 

two probability distributions: from a true probability distribution X to an arbitrary 

probability distribution Y. Typically X represents data, observations, or a precise 

calculated probability distribution. The measure Y typically represents a theory, a model, 

a description or an approximation of X. 

 

For probability distributions X and Y of a discrete random variable the K–L divergence 

of Y from X is defined as, 
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The Cauchy–Schwarz (C-S) inequality is a linear approximation of the K–L divergence. 

For vectors x and y, the inequality is written as, 

 

 (3.10) 

 

Substituting Eq. (3.8) to Eq. (3.6) and Eq. (3.7), the distribution f(x) of the data points xi 

is given as: 
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and the distribution g(x) of the codevectors cj. is given as: 
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Applying the Cauchy-Schwartz (C-S) inequality of Eq. (3.10) to f(x) and g(x), we have,  

 

)()()(),( xxxx gfgf ⋅≤  (3.13) 

 

Eq. (3.13) represents an equality only when f(x) and g(x) are collinear. Hence, 

maximizing the ratio between the numerator )(),( xx gf  and the denominator 

)()( xx gf ⋅  is equivalent to minimizing the divergence between f(x) and g(x). 
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To avoid the division, the logarithm can be maximized instead. This is valid since the 

logarithm is a monotonically increasing function. In order to minimize the divergence 

between the distributions f(x) and g(x) the following expression is minimized, 
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In Eq. (3.14) the first term contains the information about the interactions between the 

data points. The second term addresses the interaction between the data points xi and code 

vectors cj. However, the third term is containing the information about the interactions 

between the code vectors itself. The interaction between the data points would not lead to 

an improvement, however the interactions between the data points and code vectors and 

between the code vectors would lead to improvement. This is because the position of data 

points is fixed and the only random position selection and change is associated with code 

vectors. Therefore first term in Eq.(3.14) can be ignored. The cost function with respect 

to code vectors can therefore be written as, 

 

∫ ∫+−= dxgdxgfJ )()()(log2)( 2 xxxc  (3.15) 

 

The cost function J(c) is minimized with respect to the location of the code vectors cj. 

When the codevectors are located such that the local minima is achieved, no effective 

force acts on the code vectors. Moving the code vectors in the opposite direction of the 

gradient will bring them to such a potential minimum. This is also known as the gradient 

descent method. The gradient descent method states that the derivative of Eq. (3.15) with 

respect to the location of the codevectors must be calculated. For the sake of simplicity 
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the Eq. (3.15) is divided into two parts. The first part is denoted by C and the second part 

is denoted by V. 

 

Considering first term of Eq. (3.15), 
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Where the covariance of the Gaussian after integration is
222

gfa σσσ += . M is the 

number of code vector kernels and N is the number of data point kernels. 

 

The gradient update for the code vectors cj from the above term then becomes, 
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Where �C denotes the derivative of C w.r.t code vectors, it is calculated as, 
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Similarly for the second term V we have, 
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The gradient update for the code vectors cj from the second term then becomes, 

 

V

∆V
V

c
=log

jd

d
 (3.20) 

 

Where �V denotes the derivative of V w.r.t code vectors, and it is calculated as, 
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Where k denotes the current centroid for which the update is obtained. By substituting the 

simplification of the above two terms obtained in Eq. (3.18) and Eq. (3.21) to Eq. (3.15), 

the update formula for the ITVQ can be established as,  

 









−−=+

C

∆C

V

∆V
cc k 2)()1( ηnnk

 (3.22) 

 

Where η  is the step size, the ITVQ consists of n updates for each of the codevector ck. 
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3.5 Experiments Comparing Speaker Verification based on ITVQ, 

K-means and LBG Modeling Techniques  

3.5.1 Overview of the Speaker Verification System 

The speaker verification tests were performed using a general approach illustrated in 

Figure 3.4 including training and testing phases. This approach was described in detail in 

Chapter 2.  

 

Mel Frequency Cepstral Coefficients (MFCC) features are used to perform the speaker 

verification tests. The aim was to compare the performance of two classical Vector 

Quantization algorithms K-means and LBG with the Information Theoretic vector 

Quantization (ITVQ). 

 

 

Figure 3.4 Block diagram of the speaker verification system [53]. 
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The system in Figure 3.4 can operate in one of the two possible modes:  

 

• The target speaker enrollment (training), and  

• The testing mode.  

 

For both of the system modes identical speech detection and feature extraction methods 

were used. 

 

3.5.2 Speech Corpora 

The speaker verification experiments were performed using two speech corpora: TIMIT 

and NIST 2004.  

 

Details of these two speech corpora are given in Chapter 2, Section 2.6. 

 

The TIMIT corpus was used to obtain speech samples of 630 speakers (438 male and 192 

female). The recordings were made in a sound booth using fixed-text sentences read by 

speakers and recorded over a fixed wideband channel. The speakers used American 

English. The TIMIT corpora had a low environmental value since the clean wideband 

speech has an ideal character and does not simulate the real world conditions. 

 

In order to provide a speech corpora that provides a better representation of the real life 

conditions, The NIST 2004 was used with 616 speakers (248 male and 368 female) 

recorded in different environmental conditions. The recordings include conversational 

speech recorded mostly over a telephone line. For each speaker approximately 5 minutes 

of speech was available for training as well as for testing. Most of the training data is in 

American English. 
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Table 3.1 shows a summary of TIMIT and NIST 2004 corpora used to perform the 

experiments. 

 

Table 3.1 Properties of the speech corpora. 

Description TIMIT NIST 2004 

 

Language 

 

Client speakers 

 

Speech type 

 

Record condition 

 

Handset mismatch 

 

Sampling rate 

 

 

Quantization 

 

Train speech 

 

Test speech 

 

 

English 

 

630 

 

Read 

 

Lab 

 

No. 

 

8KHz (down-

sampled) 

 

16 bit 

 

45 sec 

 

12 sec 

 

English 

 

616 

 

conversational 

 

Telephone 

 

No. 

 

8KHz 

 

 

8 bit µ-law 

 

5 min 

 

50 sec 

 

3.5.3 Pre-processing and Feature Extraction 
 

The pre-processing method followed the Speech Activity Detection procedure introduced 

by Reynolds in [144] described in Chapter 2. The voiced/silence interval were detected 

using an energy threshold.  

 

For feature extraction 12 mel frequency cepstral Coefficients (MFCC) are used. As 

illustrated in Figure 3.5, the MFCC parameters were calculated by mapping the voiced 

speech spectrum into mel frequency scale. This mel frequency mapping was done by 
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multiplying the magnitude of speech spectrum for a preprocessed frame by magnitude of 

triangular filters in mel filterbank followed by log-compression of sub-band energies of 

the mel-scale filters and finally DCT. More details on the MFCC can be found in Chapter 

5. 

 

Input
speech x(n)

Mel
Spectrum

Log (.) DCTPre-processing
MFCC

Subband
energy

 

 

Figure 3.5 Calculation of the MFCC parameters. 

 

As discussed in Chapter 2, the MFCC feature extracted from fixed length signal frames 

effectively capture the characteristics of the speakers. It was also reported that the MFCC 

performs well for the task of speaker verification if the frame size ranging from 20 ms to 

50 ms, and the frame step ranging from 1/6 to 1/3 of the frame size is used to analyze the 

speech. Thus keeping in view these recommendations, the MFCC based feature 

extraction method was implemented on short-time signal (frame by frame basis) using 

frames of length 20ms with 10ms of overlap between adjacent frames.  

 

3.5.4 Speaker Verification Results  

 

The performance of the VQ methods was evaluated using speaker recognition rates, EER 

values and the mean square error with respect to codebooks.  

 

The speaker recognition rate is the most widely used measure to evaluate the performance 

of a speaker verification system. However the introduction of EER measure gives a more 

suitable tool for the evaluation of the performance of detection systems in general and 

speaker verification systems in particular. More details on calculation of EER can be 

found in Chapter 2, Section 2.5. 
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Speaker Recognition Rates  

 

The speaker recognition rates for all three speaker modeling methods based on VQ are 

summarized in Figures 3.6 (a) and (b). Figure 3.6 (a) shows the results based on the 

TIMIT corpora and Figure 3.6 (b) shows the results based on the NIST 2004 corpora. 

 

 

Figure 3.6(a) Recognition scores for K-means, LBG and ITVQ Classifiers for TIMIT 

Speech Corpora.  
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Figure 3.6(b) Recognition scores for K-means, LBG and ITVQ Classifiers for NIST’04 

Speech Corpora. 

 

It can be seen in Figures 3.6(a)&(b) that both corpora show the same general trend with 

ITVQ outperforming both the K-means and the LBG algorithm. The worse general 

performance in terms of the recognition rates was obtained for the K-means algorithm.  

 

The recognition rates in Figure 3.6(a)&(b) also indicate that for all three algorithms, an 

increase of the number of clusters generally leads to a noticeable increase of recognition 

rates when the number of cluster increases from 32 to 128, further increase from 128 to 

512 shows a small degradation in performance leading to slightly lower recognition rates. 

 

The reason for the performance degradation is observed due to the increase in number of 

codewords can be attributed to thinner distribution of data. With the increasing number of 
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codewords the data is highly distributed and the codewords are therefore not capable of 

modeling a particular speaker accurately, which ultimately deteriorates the performance. 

 

The relatively high recognition rates for the ITVQ indicate that Parzen density estimation 

provides better representation of the data distribution than the mean values used in K-

means and LBG algorithms. The C-S divergence minimizes the free distance between the 

data points and the code vectors more efficiently than the K-means and LBG methods.  

 

Equal Error Rates (EER)  

 

The second measure used to compare the performance of speaker verification based on 

different VQ algorithms was the equal error rate (EER). The EER is the most widely used 

performance measure for speaker verification systems. Therefore the performance of the 

VQ based speaker verification system was also measured using the EER. Since the EER 

can only be calculated for a fixed number of codewords, a codebook containing 512 

codewords was used to illustrate the performance comparison between K-means, LBG 

and ITVQ algorithms.  

 

Figures 3.7(a)&(b) illustrate the percentage miss probability versus the percentage of 

false alarm probability and the EER values for the Kmeans, LBG and ITVQ methods 

using codebook size of 512. Figure 3.7(a) shows the results for the TIMIT corpora and 

Figure 3.7(b) shows the results for the NIST 2004 corpora. 

 

The miss probability measures the percent of invalid matches and the false alarm 

probability measures the percent of valid inputs being rejected. The EER parameter 

represents the rate at which both the miss probability and the false alarm probability are 

equal. The lower the EER, the more accurate the system is considered.  
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As illustrated in Figure 3.7(a) and (b), both corpora show the same trend with ITVQ 

outperforming both K-means and LBG algorithm. The K-means algorithm provided the 

highest EER (34.9% for TIMIT and 21% for NIST 2004), LBG gave medium 

performance (27.8% for TIMIT and 19.1% for NIST 2004). Finally, the ITVQ provided 

the lowest EER (15.8% for TIMIT and 11.8% for NIST 2004). 

 

The average improvement of EER value for ITVQ method is about 19.1% over K-means 

and 7.1% over LBG for TIMIT corpus and 9.2% over K-means and 7.3% over LBG for 

NIST 2004 corpus.  
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Figure 3.7(a) EER for K-means, LBG and ITVQ Classifiers for TIMIT Speech Corpora.  
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Figure 3.7(b) EER for K-means, LBG and ITVQ Classifiers for NIST’04 Speech 

Corpora.  

 

Mean Square Error (MSE)  

 

The third measure used to compare the performance of speaker verification based on 

different VQ algorithms was the mean squared error (MSE). 

 

The mean square error (MSE) was calculated using the objective function for each of the 

evaluated procedures.  

 

Figure 3.8(a) shows the MSE values based on the TIMIT corpora and Figure 3.8(b) 

shows the MSE based on the NIST 2004 corpora. Figure 3.8 (a)&(b) show the same trend 

as previously indicated by classification rates and EER, The ITVQ provides the lowest 

MSE values and the fastest convergence rates. The LBG algorithm gives the medium 
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performance and the K-means algorithm shows the largest MSE values and the slowest 

algorithm convergence rates.  

 

 
 

Figure 3.8(a) Mean square error for K-means, LBG and ITVQ Classifiers for TIMIT 

Speech Corpora. 

 

 
 

Figure 3.8(b) Mean square error for K-means, LBG and ITVQ Classifiers for NIST’04 

Speech Corpora. 
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3.6 Summary 

 

The chapter evaluated and compared the performance of three vector Quantization 

algorithms: K-means, LBG and ITVQ as modeling techniques for the speaker verification 

system.  

 

The performance was compared using a feature set containing 12 MFCC coefficients. 

The evaluation was based on two speech corpora: TIMIT and NIST 2004. The results 

were evaluated it terms of three different performance measures: classification rates, 

equal error rates (EER) and mean squared error (MSE). 

 

The results based on these three different measures and two speech corpora were 

consistent indicating that the ITVQ algorithm provides the best overall performance. The 

LBG algorithm was consistently showing medium performance, and the lowest results 

were obtained when using the K-means algorithm.  

 

The outstanding performance of the ITVQ algorithm can be attributed to the fact that the 

Information Theoretic (IT) criteria used by this algorithm provide better matching 

between distribution of the original data vectors and the codewords.  
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CHAPTER 4 

 

NEW INFORMATION THEORETIC EXPECTATION 

MAXIMIZATION ALGORITHM FOR THE GAUSSIAN 

MIXTURE MODELLING 

 

This chapter introduces a new algorithm for the calculation of Gaussian 

Mixture Model parameters called Information Theoretic Expectation 

Maximization (ITEM). The proposed algorithm improves upon the classical 

Expectation Maximization (EM) approach widely used with the Gaussian 

mixture model (GMM) as a state-of-art statistical modeling technique. Like 

the classical EM method, the ITEM algorithm adapts means, covariances and 

weights, however this process is not conducted directly on feature vectors but 

on a set of centroids derived by the information theoretic vector quantization 

(ITVQ) procedure, which simultaneously minimizes the divergence between 

the Parzen estimates of the feature vector’s distribution within a given class 

and the centroids distribution within the same class. The ITEM algorithm was 

applied to the speaker verification problem using NIST 2001, NIST 2002 and 

NIST 2004 corpora and MFCC with delta features. The results showed an 

improvement of the equal error rate over the classical EM approach. The 

EM-ITVQ also showed higher convergence rates compared to the EM.  

 

4.1 Overview 

 

This chapter demonstrates the performance of the speaker verification system using 

Gaussian mixture models (GMM) based on an information theoretic metric. The 

Gaussian mixture model (GMM) method is commonly regarded as the state of art 

modeling and classification technique. It was successfully applied in many pattern 
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recognition problems including speech and speaker recognition, stress and emotion 

classification, face recognition, and many others [109,125,128,131,177]. In its classical 

form the GMM applies the Expectation Maximization (EM) procedure to derive the 

model parameters. In Chapter 3 the speaker verification results based on the ITVQ, k-

means and the LBG were compared. The results demonstrated a superior performance of 

the ITVQ method. In this chapter, the ITVQ algorithm was combined with the classical 

EM procedure and applied to estimate the GMM parameters including: weights, means 

and covariances. The results showed that this combination provides a significant 

improvement of the speaker verification results compared to the EM. 

 

The speaker verification experiments were performed using the NIST 2001, NIST 2002 

and NIST 2004 speaker recognition and evaluation (SRE) speech corpora. The 

evaluations based on the NIST corpora are widely used by researchers to assess and 

compare the performance of new speaker verification/identification methods.   

 

The speech features used in speaker verification included: the mel-frequency cepstral 

coefficients (MFCC), the first derivative of MFCC (delta), the second derivative of 

MFCC (double delta), the energy of the each frame and the number of zero crossings for 

the respective speech frame.  

 

A number of different window sizes of the delta features were examined to obtain a set of 

features which most efficiently represent the speaker’s models. The pre-processing was 

used to eliminate the silence/noise speech intervals and to perform the pre-emphasis of 

speech. 

 

This chapter is organized in the following way; Section 4.2 describes the theory of the 

GMM algorithm and the classical EM procedure. In Section 4.3 a brief review of the 

previous research combining the vector quantization methods with the EM method is 

given. The new ITEM approach is described in Section 4.4. Finally, Section 4.5 presents 
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the experimental results which show the performance comparison between the classical 

EM and the proposed ITEM algorithms.  

 

4.2 The Gaussian Mixture Model and Expectation Maximization 

 

The Gaussian mixture model (GMM) method [19] is commonly regarded as the state-of 

art modeling and classification technique successfully applied in many pattern 

recognition problems including speech recognition and speaker identification, image 

coding and many others. 

 

In a variety of practical applications, the distribution of the parameters can be 

approximated by a family of finite mixture densities where, the density function is a 

weighted sum of component densities. The component densities are commonly modelled 

as Gaussians. It can be shown that any continuous probability density function can be 

approximated arbitrarily closely by a Gaussian mixture density [39]. In it’s classical form 

[40], the GMM applies the expectation maximization algorithm (EM), which iteratively 

updates the means, covariances and weights for each class, and converges to a set of 

parameter vectors, providing the maximum value of the expectation function. Each set 

consisting of means, variances and weights constitutes a class model. The resulting 

models provide multivariate probability density functions for each class with the highest 

expectation values for given training data. 

 

4.2.1 Gaussian Mixture Model 

 

The GMM method iteratively develops different multivariate Gaussian probability 

density functions for each class. Given N classes and M components (Gaussian mixtures) 
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within each class, the Gaussian pdf of a feature vector x  for the ith mixture within class k, 

is given as, 

 

( ) )exp()2/1()( )()()(
2

1 1
2/1

2/ k

i

k

i

Tk

i

k
ip

Rk
i µxΣµxΣx −−− −

= π  (4.1) 

 

Where i=1,2,…M, k=1,…N, iµ is the component mean vector, iΣ is the component 

covariance matrix, and R  is the dimension of the feature vectors.  

 

The set of weights, means and covariances for all components within a given class 

constitutes a class model { }k

i

k

i

k

ik w Σµ ,,=λ , where k is the class index (k=1, 2,...,N). The 

probability that a feature vector x  represented by a particular model 
kλ  belongs to any of 

the M components representing k
th

 class is a weighted mixture of M Gaussian pdfs, 
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jk pwp λ  (4.2) 

 

Where )(xk

jp are the component mixture densities (pdfs) for a class k, and k

jw are the 

mixture weights for a class k. The weight’s values are usually constrained, such that  

∑
=

=
M

j

k

jw
1

1  to ensure that the maximum pdf value is equal to 1. The commonly used 

approach to estimate the GMM model parameters is the maximum likelihood (ML) 

estimation method which maximizes with respect to elements of kλ , the conditional 

probability )( kkp λX , where the vector { }k

S

kk

k xxxX ,..., 10=  contains all feature vectors for a 

particular speaker k. For simplicity it is assumed that all classes are represented by the 

same number of S vectors. The ML solution is derived iteratively by the expectation 

maximization (EM) algorithm. 
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4.2.2 Expectation Maximization (EM) Algorithm 

 

The EM algorithm iteratively improves the estimates of elements of kλ , by increasing on 

each iteration the probability, that the model estimate 
kλ  matches the observed feature 

vectors from a training set of data representing a given speaker k. This means that on 

each iteration )()( 1 iter

kk

iter

kk pp λλ XX >+ , where iter is the iteration number and the 

conditional probability )( kkp λX  is given as, 
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The maximization of )( kkp λX  with respect to the unknown probabilistic model kλ can 

be achieved by maximizing the expectation of the log-likelihood [238] given as, 
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By differentiating 
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unknown mean, covariance and weight parameters and setting it to zero, the following 

parameter updating formulas can be derived: 



CHAPTER 4.NEW INFORMATION THEORETIC EXPECTATION MAXIMIZATION ALGORITHM FOR 

THE GAUSSIAN MIXTURE MODELING 

 

 

 

      100 

{ } ),
1

|(
1

 
iter
k

S

n

k
n

k
i

k
nip

S

iterk
iw λ∑

=
== x  (4.5) 

 

{ }
),

1
|(

),
1

|(

 
iter
k

S

n

k
n

k
i

k
nip

k
n

iter
k

S

n

k
n

k
i

k
nipiterk

i
λ

λ

∑
=

=

∑
=

=

=

x

xx

µ  (4.6) 

 

{ } Tk
n

k
n

iter
k

S

n

k
n

k
i

k
nip

Tk
n

k
n

iter
k

S

n

k
n

k
i

k
nip

iterk
i )(

),
1

|(

)(),
1

|(

 µµ

x

xxx

Σ −

∑
=

=

∑
=

=

=

λ

λ

 (4.7) 

 

Where the posterior probabilities ( )iter
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and )( n
iter
ip x is the ith pdf mixture component for the iteration iter and can be calculated 

using Eq. (4.1) 

 

As illustrated in the flowchart of Figure 4.1, the EM algorithm is usually conducted in the 

following steps, 

 

Step 1. Initialization.  

An arbitrary initial set of models initial
kλ is generated for each class. 

 

Step 2. Checking the stopping criteria.  

Usually the algorithm proceeds until a maximum number of iterations are reached, 
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although other stopping criteria may be defined.  

 

Step 3. Updating the model parameters.  

The model’s parameters are updated according to Eq. (4.5-4.7). Replacement of the 

model components is then made to obtain the next estimate of the k
th

 class model iter
kλ , 

and the procedure is repeated by returning to Step 2.  

 

The flowchart of the EM algorithm is illustrated in Figure 4.1. 
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Figure 4.1 The EM algorithm flowchart. 

 

Figure 4.2 shows that like vector quantization methods, the EM algorithm is also a 

clustering procedure. The multidimensional input feature vectors representing each class 

and denoted as black dots are grouped into M clusters (Gaussian mixtures). This grouping 

is denoted by the continuous-line ovals. The GMM/EM process is often regarded as a 
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“soft” clustering since each cluster is represented not by a single central vector but by a 

statistical multivariate Gaussian function given in Eq. (4.1).  
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Figure 4.2 The EM viewed as a “soft” clustering process; the black dots represent feature 

vectors, the EM clusters or Gaussians (continuous-line black ovals) are built out of the 

original feature vectors. 

 

The expectation maximization algorithm is not only used to approximate the Gaussian 

mixture parameters but as a general optimization procedure it can be also used to 

determine samples that diverge from a priori known distributions [122,178], evaluate the 

weight parameters in the re-weight least squares method [122], calculate the parameters 

of hidden Markov models (HMMs) [50] and make feature selection in order to achieve 

lowest prediction error [179].  

 

4.2.3 Speaker Identification/Verification using the GMM models 

(testing process) 

Assuming that N classes of the target speaker models Njj ,...,1, =λ  have been estimated, 

the speaker identification or verification task can be performed,  
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Speaker Identification 

 

In speaker identification the system identifies the target speaker to which the input 

utterance belongs.  

 

Using a frame-by-frame approach feature vectors nx are calculated from the speech 

samples of the speaker being identified. Given these features, the a posterior probabilities 

( )njP x|λ of each speaker model are then computed and the speaker class with the 

highest probability is assigned to the speaker being identified. This method is called the 

maximum a posteriori probability (MAP) estimation [239]. The a posteriori probabilities 

( )njP x|λ  can be calculated from the pdf functions (Eq. (4.2)) derived by the GMM 

modeling using the following Bayes formula [238]:  
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 (4.9) 

 

Since ( )nP x  has a constant value, maximization of Eq. (4.9) is equivalent to finding jλ  

for which the numerator )()|( jjn Pp λλx has the maximum value. The term 

)( jP λ is called the a priori probability of the speaker characterized by jλ  being the 

source of the input feature vector nx . 
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It is customary to assume that the a priori probabilities )( jP λ to be constant which 

further simplifies the identification problem to finding the GMM model jλ  which 

maximizes )|( jnp λx given in Eq. (4.2). 

 

In practice there is no one feature vector nx for a speaker being identified but a set of NF 

feature vectors },...,{ 1
FN

xx . Therefore the identification process must find the speaker 

model jλ  which maximizes the probability )|},...,({ 1 jN F

p λxx . Typically it is 

assumed that the feature vectors are independent, therefore the probability 

)|},...,({ 1 jN F

p λxx can be calculated as the following product: 
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n

jnjN
pp

1

1 |)|},...,({ λλ xxx  
(4.10) 

Since the EM algorithm calculates log of the probabilities )|( jnp λx , therefore by 

applying log to the both sides of Eq. (4.10), the following classification formula can be 

derived: 

( )[ ]∏
=

≤≤
=

FN

n

jn
Nj

pC
1

1
|logmax λx  

(4.11) 

Where C is the class index assigned to the input speaker. 
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Speaker Verification 

 

The speaker verification is based on the assumption that speaker known to the system 

who is correctly claiming his/her identity is called a claimant and a speaker unknown to 

the system who is claiming to be a known speaker is called an imposter. 

 

The speaker verification requires a binary decision stating either: that the test utterance 

belongs to the target speaker (hypothesis H0) or to the imposter (hypothesis H1). 

 

Assuming that we have a GMM for the target speaker and GMM for a collection of 

imposters; a likelihood ratio that makes a decision between H0 and H1 is defined as a 

quotient between the probability )|( XP Cλ that the input vectors },...,{ 1 NsX xx= belong 

to the claimant speaker and the probability )|( XP
C

λ  that X is from the impostor 

speaker. 

 

The Bayes’ decision rule can be then expressed as: 

 

)(/)()|(

)(/)()|(

)|(

)|(

XPPXp

XPPXp

XP

XP

CC

CC

C

C

λλ

λλ

λ

λ
=  

(4.12) 

 

Where P(X) is the probability of the vector stream },...,{ 1 NsX xx= . Assuming that 

)( CP λ , )(
C

P λ  and )(XP are constant and taking the log of both sides of Eq. (4.11), the 

following likelihood ratio can be derived: 

 

[ ] [ ]
CC XpXpX λλ |(log)|(log)( −=Λ  (4.13) 
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Choosing an arbitrary constant threshold value θ, the accepting/rejecting decision can be 

then made as follows:  

If θ≥Λ )( X , then accept 

If θ<Λ )( X , then reject. 

 

4.3 Drawbacks of the conventional EM-GMM method and 

previously proposed modifications 

 

Although, in general the GMM method based on the classical EM procedure has been 

shown to provide very good speaker classification/verification rates, several studies 

pointed to drawbacks such as the sensitivity to the channel distortion, a relatively slow 

convergence rates (especially for large data bases) and a tendency of the EM algorithm to 

end up at sub-optimal solutions.  

 

For applications of mixture modeling, one key issue is the number of parameters in the 

class models { }k

i

k

i

k

ik w Σµ ,,=λ . The larger the number of parameters, the more precise 

description of the fine structure of the underlying data distribution can be achieved. On 

the other hand, a large number of parameters can lead to an overfit where the estimated 

model reflects random properties associated with the data. A large set of parameters can 

also lead to excessive complexity. Thus, the selection of the number of parameters must 

be a compromise. A method reducing the number of parameters was proposed in [27] 

where the covariance matrices k

iµ are assumed to be diagonal. 

  

In [30], an improvement of the expectation–maximization (EM) algorithm for Gaussian 

mixture modeling was proposed using statistical tests. The first test is a multivariate 

normality criterion based on the Mahalanobis distance of a sample measurement vector 

from a certain Gaussian component center. This test was used in order to derive a 
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decision whether to split a component into another two or not. The second test is a central 

tendency criterion based on the observation that multivariate kurtosis becomes large if the 

component to be split is a mixture of two or more underlying Gaussian sources with 

common centers. If the common center hypothesis was true, the component was split into 

two new components and their centers are initialized by the center of the (old) component 

candidate for splitting. Otherwise, the splitting was accomplished by a discriminant 

derived by the third test. Experimental results are presented against seven other EM 

variants both on artificially generated data-sets and real ones demonstrate that the 

proposed EM variant has an increased capability to find the underlying model, while 

maintaining a low execution time. 

 

Another major drawback of EM algorithm cited in the literature [29] is the tendency to 

converge into local minima. The reason behind this is the gradient descent character of 

the EM algorithm which allows the iterative solutions to proceed only towards solution 

giving “better” values of the objective function. A method based on the “hill climbing” 

search using simulated annealing which allows occasional moves towards “worse” values 

of the objective function was proposed in [28] to avoid the local convergence problem of 

EM algorithm.  

 

In [240,241] Reynolds provided extensive evaluation of the GMM for speaker 

identification using clean speech from the TIMIT data base and the actual speech 

transmitted over the actual telephone lines from the NTIMIT database. The experiments 

showed significant degradation of the GMM performance due to the channel distortion. 

  

In [242] Reynolds compared the GMM method based on the classical EM procedure with 

the minimum distance and the vector quantization (VQ) classifiers using different speaker 

identification tasks. The experiments used the KING database containing clean 

conversational utterances recorded with a high quality equipment as well as 

conversational utterances recorded over the telephone channel. The clean speech from the 
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KING database showed that the GMM outperformed the other two methods. The 

minimum distance classifier showed the worse performance. When using the telephone 

speech general decline in performance of all three methods was observed however their 

relative performance levels were the same.  

 

Recent advancements in probabilistic models have led to increased interest in vector 

quantization as a possible alternative or a modifier of the EM optimization [26,27,28]. 

Vector quantization methods group the input feature vectors into [109] clusters. The 

clusters partition the input space. For any input vector the association with each cluster is 

calculated based on the given distance measure between the input vector and the vector 

representing a given class and called the cluster centre. As discussed in Chapter 3, the 

vector quantization methods have been successfully applied to the speaker verification 

problem showing good convergence rates and having the advantage of being relatively 

simple, computationally. 

 

As explained in [26], the learning rules used by a number of vector quantization methods 

to optimize the cluster centers are equivalent to the iterative improvement of the model 

means provided by the EM algorithm. It was therefore suggested that, the learning rules 

used by a number of clustering techniques such as hard c-means (HCM), fuzzy c-means 

(FCM) and fuzzy learning vector quantization (FLVQ) to estimate the cluster centers can 

be used as approximations to the expectation maximization (EM) method as applied to 

Gaussian mixtures. The main benefit of using a VQ to approximate the model means was 

in the reduction of computational complexity and in some cases improvement of the 

algorithm convergence properties. 

Different combination of the vector quantization (VQ) and the GMM methods have been 

therefore proposed as a mean of reducing the computational complexity and improving 

the convergence properties of the GMM modeling process.  
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In [243] the VQ approach was used to first sub-divide the features space into clusters for 

each speaker and then build a Gaussian model for each cluster. Each of the testing speech 

samples was only tested against the Gaussian mixture sub-model representing the closest 

cluster. The contribution from adjacent clusters was not taken under consideration. This 

approach reduced the accuracy of testing, however provided significant reduction in the 

testing time. A similar but simplified method was introduced in [244] where only a single 

Gaussian distribution was used to model each cluster. This approach not only disregarded 

the contribution of adjacent clusters but also the contributions of different Gaussian 

mixtures within a given cluster. 

 

Another VQ-GMM combination was proposed in [23]. This method uses an extended VQ 

in the training phase and a Gaussian interpolation of a VQ model in the testing phase. The 

results using YOHO database showed improved classification rates compared to VQ and 

only a small deterioration compared to the full GMM. The training cost was only slightly 

higher than the cost required by a VQ method. 

 

Pelicanos et. al.  [24] proposed a method, combining vector quantization with single 

multi-dimensional Gaussians called the VQG algorithm for a rapid development of 

speaker models when using large data bases. However unlike [243,244], this method 

included in the testing process contributions of the adjacent clusters. A VQ was used to 

separate feature vectors into clusters representing different speakers and a single multi-

dimensional Gaussian was calculated for each cluster. A substitute Gaussian Mixture 

Model was then calculated to provide pdfs for the adjacent regions by combining 

information from single Gaussian and fixed number of points from the adjacent regions. 

The tests using NIST 1996 showed comparable and in some cases improved performance 

to the conventional GMM method. 
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4.4 New Information Theoretic Expectation Maximization 

Algorithm 

 

This section describes a new version of the EM algorithm which reduces the 

computational complexity of the classical EM algorithm and improves the convergence 

properties of the Gaussian mixture modeling process compare to the conventional EM-

GMM method. The modifications are included in the training process; the testing part 

remains unchanged and proceeds as described in Section 4.2.3. 

 

The proposed algorithm is a modified version of the EM optimization procedure and 

combines two objective criteria: the objective criterion used in the classical EM algorithm 

with the objective criterion used in the information theoretic vector quantization (ITVQ) 

method described in Chapter 3. The new method is referred to as the information 

theoretic expectation maximization (ITEM) algorithm. 

 

In the EM-ITVQ method, the “soft” clustering process of the EM method (Figure 4.2) is 

enhanced by data reduction achieved through the ITVQ clustering (Figure 4.3). Figure 

4.3 shows that the ITEM clusters are composed of the ITVQ centroids rather than the 

original feature vectors. 

 

The ITEM algorithm convergence properties are reinforced by both maintaining the 

expectation maximization process of the EM algorithm, as well as an iterative 

improvement of centroids calculation guided by the information theoretic criteria which 

simultaneously minimize the divergence measure between each vector within a given 

cluster and the centroid of this cluster, and maximize the divergence between centroids of 

neighboring clusters. 
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Figure 4.3 The ITEM clustering; the gray dots represent feature vectors, and the black 

crosses represent ITVQ centroids. The black ovals are the ITVQ clusters. The ITEM 

clusters (red ovals) are built out of the centroids rather than the feature vectors. 

 

4.4.1 The ITEM Algorithm 

 

As illustrated in Figure 4.4, the ITEM algorithm proceeds in the following steps, 

 

Step 1. Initialization.  

In this step an initial set of C centroids { }initk

C

kkinit

k cccC ,..., 10= is generated for each class k 

using a relatively simple unsupervised clustering method such as for example the k-

means algorithm. The centroids are then used to derive the initial models 
init
kλ  using Eq. 

(4.14-4.16). 

Step 2. Checking the stopping criteria 
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In this step arbitrary stopping criteria are checked. Usually, the algorithm proceeds until 

an arbitrary number of iterations, is reached or the increase of the expectation value over 

a number of consecutive iterations is less than an arbitrary threshold value ζ.  

 

Step 3. ITVQ Update 

During this step, the ITVQ algorithm iteratively improves the centroids with respect to 

the information theoretic (IT) criteria producing a new set of centroids 

{ }iterk

C

kkiter

k cccC ,..., 10= for each class k. The optimal number NITVQ of the ITVQ sub-

iterations has to be determined experimentally. 

 

Step 4. Updating the model parameters 

In this step the model’s parameters are updated using centroids 

{ }iterk

C

kkiter

k cccC ,..., 10= calculated in Step 3 and the following formulas: 
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A replacement of the model components is then made to obtain the next set of 

estimates
iter
kλ , and the procedure is repeated by returning to Step 2. 

 

In general, the ITVQ process can be viewed as a “sharp” clustering (Figure 4.3), where 

each class is divided into a number of clusters and each cluster is represented by C 

centroid vectors. Thus, on each iteration of the ITEM, the large number of S original 

feature vectors in each class is updated along with a smaller number of C (C<S) 

representative centroid vectors. The centroids are iteratively refined using information 

theoretic criteria nested within the EM procedure. Thus, the EM-ITVQ has a dynamic 

character as it applies the updating formulas of Eq. (4.14-4.16) not to a constant set of 

feature vectors but to a gradually more and more refined configurations of centroids 

which change at each iteration. It is worth noticeable in Eq. (4.14-4.16) that the weight, 

mean and covariance updates are applied on centroid vectors cn instead of feature vectors. 
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Figure 4.4 The ITEM algorithm. 
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4.4.2 ITVQ Centroids Calculation 

 

For a given set of feature vectors { }k

S

kk

k xxxX ,..., 10= , finding the optimal configuration 

{ }k

C

kk

k cccC ,..., 10= of C centroids is equivalent to minimizing the divergence between the 

Parzen estimates of the feature vector’s distribution within a given class and the centroids 

distribution within the same class. The Parzen estimate of the feature vector’s distribution 

has S Gaussian kernels, and it is given as, 

 

( ) ∑
=

−−=
S

j fjSf
1

))
2

/
2

||)(||2/1(exp()/1(ˆ σxxx  (4.17) 

 

The Parzen estimate of the centroids distribution has C (C<S) Gaussian kernels, and it is 

given as, 
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=

−= −
C

j
Cg gj

1
))/)(2/1(exp()/1(ˆ

22|||| σcxx  (4.18) 

 

Where 2
f

σ  and 2
gσ are the kernel variances. The cost function is the divergence 

)(cJ between these two distributions given by the Cauchy-Schwarz formula, 

 

xxgxxxxxc ddgfdfJ )(
2

ˆlog)(ˆ)(ˆlog2)(
2ˆlog)( ∫+∫−∫=  (4.19) 

 

The cost function is minimized by calculating the derivatives of )(cJ with respect to the 

centroids ic , which leads to the following centroid updating formula, 
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( ))/(2)/()()1( D∆DV∆Vcc −−=+ ηnini  (4.20) 

 

Where i=1,…, C and n is the ITVQ index, η  is a constant step size, and the vectors D  

and V  are given as, 

 

xxxD dgf )(ˆ)(
2ˆ∫=  (4.21) 

 

 

xxV dg )(
2

ˆ∫=  
(4.22) 

 

The terms ∆D  and ∆V are the vectors of derivatives of Dand V respectively, calculated 

with respect to the centroids ic . The η  value of 0.03 provided satisfactory results when 

applied to the speaker verification problem. 

 

Summarizing, the proposed ITEM algorithm can be either seen as a sequential application 

of the ITVQ to derive the cluster centroids and then the classical EM applied to these 

centroids to approximate Gaussian mixture parameters. However, since both algorithms 

the EM and the ITVQ operate on the same set of vectors (centroids), the ITEM can be 

simply described as a classical EM optimization applied to centroids rather than original 

feature vectors and using two rather than one objective criteria (expectation maximization 

and minimization of the divergence between feature vectors distribution and centroids 

distribution). 
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4.5 Speaker Verification Experiments using the Proposed ITEM 

Method and the Conventional EM 

 

In this section results obtained when applying the proposed ITEM algorithm to the GMM 

based speaker verification are presented and compared with results obtained when using 

the conventional EM method to derive the Gaussian mixture model parameters for 

speaker verification. 

 

4.5.1 Overview of the Speaker Verification System 

 

The configuration of the speaker verification system used in the experiments examining 

the performance of the proposed ITEM method is shown in Figure 4.5.  

 

The system can operate in one of the three possible modes:  

 

• The Universal Background Model (UBM) training,  

• The target speaker enrollment (training), and  

• The testing mode.  

 

In each case identical speech detection and feature extraction methods are used. 
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Figure 4.5 UBM-GMM based Speaker Verification System. 

 

In the voiced/silence detection block in Figure 4.5, an energy based silence detector 

which identifies the low energy portions of the signal as silence regions was used; details 

of the applied speech activity detection method are described in Chapter 2.  

 

As indicated in Chapter 2, the MFCC based speaker verification is relatively robust to the 

changes in the frame size ranging from 20 ms to 50 ms, and the frame step ranging from 

1/6 to 1/3 of the frame size. Following these recommendations, the MFCC feature 

extraction method was implemented on the frame by frame basis using frames of length 

20ms with 10ms (50% of the frame length) of overlap between adjacent frames.  

 

The feature vector representing a given frame had 38 dimensions including: 12 MFCC 

parameters, 12 delta parameters ∆MFCC (first derivative of MFCC), 12 double delta 

parameters ∆∆MFCC (second derivative of MFCC), 1 averaged spectral energy 

parameter calculated for the speech signal within a given frame, and 1 zero crossing 

parameter calculated for the speech waveform within a given frame.  
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The sequences of feature vectors were subsequently modeled using the GMM based on 

the conventional EM algorithm and the proposed ITEM algorithm.  

 

The number of Gaussians (Gaussian mixtures) used for every target speaker was 1024. 

The speech samples for training and testing were taken from the NIST 2004 and NIST 

2002 corpora. In the speaker enrollment (training) stage each speaker was represented by 

speech utterances of the total length of 5 minutes (for NIST 2004) and 3 minutes (for 

NIST 2002) and in the testing stage by speech utterances of the total length of 5 minutes 

(for NIST 2004) and 3 minutes (for NIST 2002). The training and testing sets contained 

mutually exclusive sets of speakers. 

 

After the target speaker’s enrollment, the universal background model (UBM) 

parameter’s inference was accomplished using a large corpus of speech containing only 

the non-target speakers (speakers not used in the enrolment and testing stages). To 

generate the UBM parameters speech recordings of the total length of 1 hour from the 

NIST 2001 were used. The details about creating a UBM are given in Chapter 2, Section 

2.4.4. 

 

The speaker verification (testing) was performed using approach described in Section 

4.2.3. 

 

The system performance was assessed using the equal error rate (EER) measure and by 

plotting detection error trade-off (DET) curve as described in Section 4.5.4. 
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4.5.2 Description of Speech Corpora  

 

Table 4.1 contains a summary of speech corpora used in the speaker verification 

experiments.  

 

The annual NIST speaker recognition evaluations (SRE) provide speech corpora widely 

used in evaluations of new methods introduced in the field of speaker recognition.  

 

The speaker recognition experiments based on the EM-ITVQ and EM methods were 

conducted using data from NIST corpora: NIST 2001, NIST 2002 and NIST2004. 

 

The NIST 2004 SRE data consisted of telephone conversational speech and excerpts from 

the Linguistic Data Consortium’s Mixer project. The NIST 2004 experimental protocol 

used the 1side-training and 1side-testing task [141]. For each of the 616 target speakers 

(248 males and 368 females), 5 minutes of un-transcribed, concatenated (after 

silence/unvoiced removal) speech was used for target speakers training and 5 minutes of 

speech utterances for testing. The training and testing sets were mutually exclusive. 

 

The NIST 2002 SRE data consisted of the telephone conversational speech and excerpts 

from the Switchboard corpus. The NIST 2002 experimental protocol used the one-

speaker detection task [140]. For each of the 330 speakers (139 males and 191 females), 3 

minutes of un-transcribed, concatenated (after silence/unvoiced removal) speech was 

used for target speakers training and 3 minutes of speech utterances for testing. The 

training and testing sets were mutually exclusive. 

 

A subset of the NIST 2001 speech data consisting of about 1 hour of the cellular 

telephone conversational speech recorded from 174 speakers (74 males and 100 females) 
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was used to train the UBM model parameters. The NIST 2001 experimental protocol 

applied in experiments uses the one-speaker detection task [139].  

 

The speech from all three corpora was sampled at 8 KHz. It was ensured that the UBM 

data did not share speakers with the target training and testing sets, and any duplicate 

speakers were removed. The summary of the properties of the training data is given in 

Table 4.1. 

 

Table 4.1 Summary of Speech Corpora Used in Experiments with ITEM. 

 

 
Description 

 
NIST 2001 

 
NIST 2002 

 
NIST 2004 

Language English English English 

Number of 
speakers  

174 speakers (74 
males and 100 

females) 

330 speakers (139 
males and 191 

females) 

616 speakers 
(248 males and 
368 females), 

 
Speech type 

 
conversational 

 
conversational 

 
Conversational 

 
Record 

condition 
 

Cellular 
Telephone 

Broadcast news, 
microphone speech, 

telephone speech 
 

Telephone 
Speech 

 

Sampling 
rate 

8KHz 8KHz 8KHz 

UBM 
training 

1 hour - - 

Target 
training 

 
- 

 
3 min 

 
5 min 

 
Testing - 3 min 5 min 
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4.5.3 Comparison of the Convergence Rates and the Computational 

Complexity of EM and ITEM 

 

The effect of different number of ITVQ iterations on the convergence rates of the 

reciprocal of the log-likelihood function in Eq. (4.4) is illustrated in Figure 4.6. It can be 

noted that, the ITEM maintains the monotonic behavior of the EM algorithm providing 

on each iteration improved log-likelihood values. The ITEM algorithm introduced 

additional complexity to the modeling process by applying the ITVQ centroids updating 

procedure. Based on the convergence rates illustrated in the Figure 4.6, this additional 

complexity can be reduced to 15 ITVQ sub-iterations (updates) while still maintaining 

significantly higher convergence rate of the ITEM procedure compared to the 

conventional EM approach. Figure 4.6 shows that while increasing the number of ITVQ 

updates from 3 to 15, the convergence rate of EM-ITVQ were improved on an average by 

32% compared to the EM algorithm. An increase from 15 to 50 updates provided further 

improvement of the average convergence rates by 13.5%. The convergence rates were 

approximated by selecting several points on the convergence curves and calculating an 

average gradient. 

The issue of computational complexity for the task of speaker verification is of vital 

importance. The complexity of a speaker verification system depends upon following, 

 

� The computations originating from the distance or likelihood between the feature 

vectors of the unknown speaker and the models in the database, 

� It vitally depends on the number of feature vectors and their dimensionality, 

� The complexity of the training method used to generate speaker models 

� The number of speakers.  

 

From the numerical computation point of view, the proposed ITEM method uses the EM 

and the information theoretic criteria which obviously increases the computational 
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complexity, However with the careful analysis of Figure 4.6 (convergence rates) we can 

observe, 

 

� The likelihood of 3 is obtained by EM algorithm at around 55
th

 EM update, see 

Figure 4.6.  

� The likelihood of 3 is obtained by ITEM algorithm at around 8th ITEM update, 

see Figure 4.6.  

 

With this analysis, it can be established that on one hand ITEM increases the 

computational complexity by using the additional criteria of ITVQ but on other hand it 

shows the significant reduction in computational complexity by reducing the number of 

iterations from 55 to 8.  
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Figure 4.6 Convergence rates for the EM and ITEM algorithms. 
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4.5.4 Comparison of the Speaker Verification Results 

 

The speaker verification scores discussed were based on the ITEM procedure using 15 

ITVQ updates. In this approach log-likelihood ratio is evaluated, and the convergence is 

actually aligned with the improved likelihood estimates. 

 

Figure 4.7 and Figure 4.8 illustrate the percentage miss probability versus the percentage 

of false alarm probability for both the EM and the ITEM optimization procedures. The 

miss probability was calculated as the probability that the system incorrectly declares a 

successful match between the input features and a non-matching model in the database. It 

measures the percent of invalid matches. The false alarm probability was calculated as 

the probability that the system incorrectly declares failure of match between the input 

features and the matching model. It measures the percent of valid inputs being rejected. 

The EER parameter represents the rate at which both the miss probability and the false 

alarm probability are equal. The lower the EER, the more accurate the system is 

considered. A MAP-UBM based GMM system was defined which involves training for 

both optimization algorithms. The algorithms were tested using 38-dimensional (R=38) 

feature vectors. The ITEM based modeling shows an improvement of the average equal 

error rate (EER) value over the classical EM algorithm. The average improvement of 

EER is about 1.95% (R=38) for NIST 2002 and 1.5% (R=38) for NIST 2004. 
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Figure 4.7 Miss Probability versus false alarm for EM and ITEM using NIST 2004 for 

speaker enrolment and testing. The UBM was developed using NIST 2001. 
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Figure 4.8 Miss Probability versus false alarm for EM and ITEM using NIST 2002 for 

speaker enrolment and testing. The UBM was developed using NIST 2001. 
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4.6 Summary 

A novel approach to the GMM training of speaker models has been described.  

 

It has been empirically demonstrated that when applied to the speaker verification task, 

the ITEM modeling algorithm achieves higher convergence rates and provides smaller 

EER values compared with the classical EM algorithm.  

 

In contrast to EM, the ITEM method works with averaged feature vectors (centroids) 

rather than the original feature vectors. The averaging process removes noise, reduces the 

data, and captures only the essential characteristics, which results in a quality 

improvement of the final models. The essential characteristics refer to the refinement of 

the data clusters.  

 

Unlike EM, which relies only on maximization of the expectation function, the EM-

ITVQ method is guided by an additional objective given in Eq. (4.19) helping to 

minimize a divergence measure between the distribution of the original feature vectors 

and the distribution of the centroids. The resulting centroids have the Parzen density 

matching the density of the original features. The replacement of the original feature 

vectors by a set of centroids with matched distribution has a key importance in increasing 

the speed of the mean adaptation process. 

 

From the structural point of view, the proposed ITEM algorithm can be seen as a 

sequential application of the ITVQ deriving the cluster centroids followed by the classical 

EM applied to these centroids to approximate the Gaussian mixture parameters. Since 

both algorithms, the EM and the ITVQ operate on the same set of vectors (centroids), the 

ITEM can be alternatively described as a classical EM optimization applied to centroids 

rather than original feature vectors and using two rather than one objective criteria 
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(expectation maximization and minimization of the divergence between feature vectors 

distribution and centroids distribution). 

The proposed ITEM algorithm does not alter the testing (verification) process; the only 

changes are introduced at the training stage. 

 

Unlike previously proposed methods, which limited to the number of mixtures to a single 

Gaussian [24,244], the new ITEM algorithm does not alter the fundamental structure of 

the classical EM algorithm, and allows modeling of multiple Gaussians. 
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CHAPTER 5 

 

LINEAR VERSUS NON-LINEAR FEATURES FOR SPEAKER 

VERIFICATION 

 

This chapter compares the classical features based on linear models of 

speech production with recently introduced features based on the nonlinear 

model. A number of linear and nonlinear feature extraction techniques that 

have not been previously tested in the task of speaker verification are tested. 

New fusions of features carrying complimentary speaker-dependent 

information are proposed. The tested features are used in conjunction with 

the new ITEM-GMM speaker modeling method described in Chapter 4, which 

provided an additional evaluation of the new method. The speaker 

verification experiments presented in this chapter demonstrated a significant 

performance improvement when the conventional MFCC features were 

replaced by a fusion of the MFCCs with complimentary linear features such 

as the inverse MFCCs (IMFCCs), or nonlinear features such as the TMFCCs 

and TEO-PWP-Auto-Env. Higher overall performance of the nonlinear 

features was observed when compared to the linear features is observed.   

 

 5.1 Overview 

 

The speech features must provide an ample representation of the speech signal. A number 

of sources can lead to the redundant or inaccurate information being added to the speech 

signal, which actually affects widely the speaker-specific information and design of a 

speaker model. Such sources include interference from the environment and distortions 

added by the transmission channel. In the speech/speaker recognition tasks, it is required 
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that the speech features represent the specifics of particular voice with sufficient 

accuracy. 

 

Speech carries information about the message to be conveyed, speaker characteristics, 

and the language. According to the source-filter model, speaker characteristics in the 

speech signal can be attributed to the excitation source characteristics and the vocal tract 

characteristics.  

 

The speaker-specific vocal tract information is most often represented by the vocal tract 

features including Mel-frequency cepstral coefficients (MFCCs) and linear prediction 

(LP) cepstral coefficients [77].  

 

A relatively smaller number of studies investigated the usefulness of features extracted 

from excitation source characteristics for speaker recognition [55,155,157,180]. 

 

Another approach to finding the most representative features is to combine different types 

of features which carry complimentary information about speakers.  

 

In this chapter different linear and nonlinear features and feature combinations are 

examined. Some of these features have not been previously tested in the task of speaker 

verification; however they showed good performance in the related disciplines such as 

speech recognition, as well as stress and emotion recognition in speech.  

 

The chapter starts with examination of different variants of the classical MFCC 

parameters based on the linear source-filter model of speech production, and then moves 

into applications of the inverted MFCC (IMFCC). This is followed by the study of 

features based on the latest nonlinear models of speech production and the Teager Energy 

Operator (TEO). The nonlinear features include TMFCC and TEO-PWP-Auto-Env 

parameters.  
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Fusion of features carrying complimentary speaker-dependent information are also 

proposed and tested. These new methods include: MFCC/IMFCC, MFCC/TMFCC and 

MFCC/ TEO-PWP-Auto-Env. 

 

In all cases, the feature performance was tested using speech from the NIST corpora and 

the new ITEM approach to the GMM speaker modeling described in Chapter 4. 

 

 

5.2 Importance of the human auditory characteristics for speech 

parameterization 

 

Fletcher in [182] conducted experiments, which measure the threshold of hearing of a 

sinusoidal signal as a function of the bandwidth of a band-pass noise masker. Based on 

these experiments it was found that the human auditory system behaves as if it consisted 

of a bank of band-pass filters with overlapping pass-bands. These filters are now known 

as auditory filters. The work of Zwicker [184] led to the definition of the bark scale, 

which improved the definition of auditory filters and finally another improvement was 

made in [185] leading to the so called Equivalent Rectangular Bandwidth (ERB) scale. In 

[181,183,184] a mapping between objective frequency in Hz and a subjective perception 

of pitch leading to a development of the mel scale was described.  

 

According to psychophysical studies, human perception of the frequency content of 

sounds follows a subjectively defined nonlinear scale called the mel scale. The mel 

(derived from the word melody) scale, is a heuristically determined perceptual scale and 

provides the relation between subjectively perceived frequency (or pitch) of a pure tone 

as a function of its objective acoustic frequency. The mapping curve between the acoustic 

frequency in Hz and the subjective pitch in mels is shown in Figure 5.1. 
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Studies of speaker, stress and emotion recognition in speech clearly indicate that 

characteristic features based on human auditory characteristics provide better 

performance than features that do not take these characteristics into account [226]. One 

reason for it is the fact that the speaker-characteristic information embedded into the 

speech signal is optimized for the human (not machine) perception and therefore the 

information is encrypted into the structure of human auditory filters. The widely used 

mel-frequency cepstral coefficients (MFCC) [163] described in Chapter 2 provide an 

example of feature parameters based on the human auditory perception. It was 

demonstrated in [19,186] that in noisy conditions MFCC show higher robustness than 

features such as LPCC, PLP, which do not incorporate human auditory characteristics. 

 

 

Figure 5.1 Pitch in mels versus frequency adapted from [181]. 
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5.3 Different versions of features based on the MFCC parameters 

 

The MFCC were first introduced and applied to speech processing in [163]. Since then a 

number of MFCC variants are proposed and compared with its original implementation 

[187,188]. The MFCC variants differ based on choice of the number of filters, the shape 

of the filters, the way the filters are spaced, the bandwidth of the filters, and the manner 

in which the power spectrum is deformed. In addition based on the requirement of a 

particular set of speakers or the design attributes of a corpus, MFCC variants also differ 

based on the frequency range of interest, number of cepstral coefficients that are chosen 

to design a speaker model. 

 

The diversity in the MFCC implementations was also caused by the advancement made 

in psychoacoustics which gradually provided more and more refined models of the 

human auditory perception.  

 

A number of approximations were established based on how the pitch perception is 

related to the human auditory system.  

 

The mel scale is defined as a logarithmic scale of frequency based on human pitch 

perception. Equal intervals in mel units correspond to equal pitch intervals. The following 

mapping formula between frequency in Hz and the corresponding subjective pitch in 

mels is the most widely used for the MFCC implementation in speech and speaker 

recognition applications. 

 





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
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Where fmel is the subjective pitch in mels corresponding to f which is the actual frequency 

in Hz. 

  

Table 5.1 includes a list of different MFCC implementations introduced by researchers. 

 

Table 5.1 Variants of the MFCC features. 

MFCC variants 

 

• MFCC FB-20 – introduced by Davis [163] (1980). 

• MFCC FB-24 – from the Cambridge HMM Toolkit (HTK version 3.4.1 2009) 

described in [189] 

• MFCC FB-40 – from the MATLAB Auditory Toolbox of Slaney [190]. 

 

 

The MFCC variants differ by the number of filters and the methods of calculation of the 

filter’s centre frequencies. Detailed descriptions of these different methods can be found 

in [163,189,190]. 

 

5.3.1 Calculation of the MFCC parameters 

This section describes as an example the steps used in the evaluation of the mel frequency 

cepstral coefficients MFCC FB-20 [163]; which subsequently leads to the mathematical 

derivation and experimental evaluation of the inverted MFCC (IMFCC) parameters in 

Section 5.4. 

 

Input
speech x(n)

Mel
Spectrum

Log (.) DCTPre-processing
MFCC

Subband
energy

 

 

Figure 5.2 Calculation of the MFCC parameters. 
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As illustrated in Figure 5.2, the MFCC parameters are calculated by mapping the speech 

spectrum into mel frequency scale. This mel frequency mapping is done by multiplying 

the magnitude of speech spectrum for a preprocessed frame by magnitude of triangular 

filters in mel filterbank followed by log-compression of sub-band energies of the mel-

scale filters and finally DCT. 

 

Let x(n) represent a speech frame that is pre emphasized and hamming windowed. Firstly 

x(n) is converted to frequency domain by an N point DFT of the input signal, 
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This is followed by a filter bank, with M equal height triangular filters (i=1,2,…,M). Each 

of these M equal height filters is defined as, 
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where i=1,2,…,M stands for the i
th

 filter, fbi are the boundary points of the filters, and 

k=1,2,….,N corresponds to the k
th

  coefficient of the N-point DFT. The boundary points 

fbi are expressed in terms of position. Their relative position depends on the sampling 

frequency Fs and the number of points N in the DFT, 
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 fmel is defined in Eq. (5.1), flow and fhigh are respectively the low and high boundary 

frequency for the entire filter bank. M is the number of filters and 1−
melf  is the inverse of 

Eq. (5.1) and can be written as, 

 


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
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
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exp(.7001 mel

mel

f
f  (5.5) 

 

The filter bank used comprises of twenty equal height filters. The centre frequencies of 

the first ten filters are linearly spaced between 100 Hz and 1000 Hz, and the next ten have 

centre frequencies logarithmically spaced between 1000 Hz and 4000 Hz. The centre 

frequency for the i
th

 filter can be approximated as [191],  
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Where the centre frequency is assumed to be in Hz. 

 

 

Figure 5.3 A mel spaced filter bank with 20 filters; the centre frequencies of the first ten 

filters are linearly spaced and the next ten are logarithmically spaced. 
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The endpoints of each one of the triangular filters are determined by the centre 

frequencies of adjacent filters as shown in Figure 5.3. The bandwidths of the filters 

depend upon the spacing between the centre frequencies of the adjacent filters, which is a 

function of the sampling rate of the signal and the number of the filters in the filter bank. 

Therefore, for a given sampling frequency, increase of the number of filters results in 

decrease of their bandwidth. 

 

The MFCC coefficients are calculated as, 

 

∑
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Where M is the number of filters in the filter bank, J is the number of cepstral coefficients 

Xi is formulated as the log-energy output of the i
th

 filter is given as, 
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5.3.2 Experimental evaluation of the MFCC variants: FB-20, FB-24 and 

FB-40 

 

The MFCC variants FB-20 [163], FB-24 [189] and FB-40 [190] were evaluated on the 

2004 NIST corpus using the UBM modeling based on the data from NIST 2004. The new 

ITEM-GMM method introduced in Chapter 4 was applied to train the target speakers and 

the UMB for the text-independent speaker verification system.  
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The experimental rules described in the 2004 NIST SRE plan [141] were followed to 

conduct the experiments for the MFCC variants, and only the core test as defined in [141] 

were performed. 

 

In principle the MFCC FB 20 should use 20 filters, the MFCC FB 24 should use 24 filters 

and the MFCC FB 40 should use 40 filters. Since the NIST 2004 corpora had speech 

bandwidth of 4 KHz, some of the filters falling beyond this range could not be 

implemented. For example to conduct the experiments with the MFCC FB-20, nineteen 

filters are used, ten with linearly spaced centre frequencies and nine with logarithmically 

spaced ones. To define the filter bank for HTK MFCC FB-24, only 20 filters were used 

by following the way as defined in [189]. In the experiment with the MFCC FB-40, the 

first 32 filters are kept, which cover the frequency range {133-3954} Hz.  

 

The NIST 2004 SRE’s 1side-1side speaker verification task had 5 minutes speech 

available for training of the target speakers and 5 minutes speech available for the test 

trials.  

 

The UBM was created by using the training speech available with the 2001 NIST SRE 

corpus [139]. One hour and forty minutes of voiced speech was used for that purpose. 

After training, the user models were tested carrying out trials as defined in the 1side-1side 

speaker recognition task.  
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Figure 5.4 Miss probability versus false alarm probability and the equal error rates for the 

MFCC variants. 

 

The miss probability versus the false alarm probability curves for the evaluated MFCC 

variants are presented in Figure 5.4, alongside with the corresponding equal error rates 

(EERs).  

 

It can be observed that the system performance did not differ significantly when different 

approximations of the non-linear pitch perception of human were used. At the same time 

it can be noted that regardless of the specific filter bank design the larger is the number of 

filters, the better are the speaker recognition rates. Beside the number of filters in the 

filter bank, the larger amount of overlapping between the neighboring filters can also 

improve the results. 
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5.4 Inverse MFCC (IMFCC) 

 

The MFCCs have been successfully used as a characteristic features in many speaker 

recognition applications. However, as the results in Section 5.3.2 showed, the selection of 

the number of filters in the filter bank design and the overlap between filters can enhance 

the performance of the speaker recognition applications.  

 

The filter bank used in the MFCC FB-20 procedure captures vocal tract characteristics 

more effectively within the lower frequency regions.  

 

In this section, a set of features which uses a complementary filter bank structure called 

the inversed MFCC (IMFCC) is evaluated in the speaker verification task. 

  

The IMFCC introduced in [35] extract the speaker specific cues present within the higher 

frequency regions. Unlike high level features [32,33,34,192] that are often difficult to 

extract, the IMFCC offer computational simplicity during the extraction process. 

 

The calculation steps for the IMFCCs are almost identical to the steps involved in the 

calculation of MFCCs. The only difference lies with the formulas used to calculate the 

filter bank structure [35].  

 

The IMFCC method inverts the filter bank structure used in the MFCC method such that 

the lower frequencies are averaged by using small number of widely spaced filters and 

the higher frequencies are averaged by using narrower spacing of filters as shown in 

Figure 5.5. Thus, the IMFCC effectively capture information available at the high 

frequency formants which is ignored by the MFCC. 
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The frequency range considered for the speaker recognition is between 100-3900Hz, thus 

the reversed Mel scale can be obtained by flipping the filter bank at the point f=2kHz. 

The flipping of the filter bank can be expressed mathematically as, 
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iM −+= −+H(k)H i  (5.9) 
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Figure 5.5 Structure of the filters for the inversed mel scale. 

 

Where (k)H i
ˆ  is the response of reversed filter bank. The inverse mel-frequency as 

evaluated in appendix A is given by,  
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Where melf̂  is the inverted mel scale pitch value in mels. 
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Figure 5.6 The mel scale (red line) and the inversed mel scale (black line); adapted form 

[35]. 

 

The mel frequency cepstral coefficients method established a way of transforming a 

physically measured spectrum of speech into a perceptually meaningful subjective 

spectrum based on the human auditory system [193] with low resolution at high 

frequency ranges. However the new reversed mel scale shown in Figure 5.6 provides a 

complimentary structure capturing high frequency formants with higher accuracy than the 

mel scale. Figure 5.6 shows that for the mel scale, pitch increases less rapidly as the 

frequency increases, on the other hand, for the inverted mel scale pitch values increase 

rapidly with frequency.  
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5.4.1 Experimental evaluation of the feature level MFCC/IMFCCs 

fusion 

 

In this section a new MFCC/IMFCC fusion strategy, at the feature level is proposed and 

tested in speaker verification applications using NIST SRE 2004 speech corpus and the 

ITEM-GMM classifier. The idea behind the fusion was to capture formant characteristics 

at both low and high frequency ranges. 

 

In [35] a parallel implementation of the MFCC and IMFCC was tested. However, the 

integration of MFCC and IMFCC was performed not at the feature’s level but at the 

classifier level. Speaker models were generated separately for the MFCCs and for the 

IMFCCs were classified using the classical GMM which provided two classification 

scores: SMFCC and SIMFCC. The classification decision was then made using the following 

weighted sum of individual classification scores: 

 

IMFCCMFCCcom SSS )1( λλ −+=  (5.11) 

 

Where the weight λ was chosen to a constant value of 0.5 as detailed in [32]. However, 

more suitable weights can be investigated further to enhance the performance of the 

combined system. The value of The speaker recognition results for MFCC/IMFCC 

conducted on the YOHO (microphone speech) data and POLYCOST (telephone speech) 

with the classical GMM as a classifier showed significant improvement of the 

classification rates when compared to the MFCC and IMFCC features used alone. 

 

This section introduces a different approach to combining the MFCCs with the IMFCCs. 

Instead of deriving separate sets of speaker models for MFCCs and IMFCCs, and then 

making a decision at the classification level, these two types of feature parameters are 
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concatenated into combined feature vectors and these concatenated vectors are used to 

generate speaker models. Speakers are then verified based on the classification score 

obtained for the concatenated feature vectors.  

 

Since the MFCC features provide speaker characteristics with fine resolution at the low 

frequency range and the IMFCC, on the other hand provide features with high resolution 

at the high frequency range, the proposed combined feature vectors have the advantage of 

a uniform resolution across the entire frequency band.  

 

The difference between the MFCC/IMFCC features and features calculated over 

constant-width bands across all frequencies is that, the MFCC/IMFCC approach 

maintains the nonlinear human auditory characteristics. 

 

The new MFCC/IMFCC feature vectors were tested in the context of speaker verification. 

The tests aimed to compare the fused MFCC/IMFCC feature vectors with the MFCC and 

IMFCC features used alone. 

 

The general framework of the speaker verification system used to conduct the 

experiments was same as described in Section 4.5.1 and Figure 4.5. The system was 

designed to operate in one of the three possible modes: universal background model 

(UBM) training mode, target speaker enrollment mode and testing mode.  

 

After the pre-processing of the speech signals, the feature extraction was performed based 

on the short-time window analysis with speech frames of length 20ms and 10 ms step 

size. For each frame 12 MFCC coefficients and 12 IMFCC coefficients were calculated 

and used to generate the following feature vectors: 12-dimensional MFCC feature vector, 

12-dimensional IMFCC feature vector, 24-dimensional MFCC/IMFCC fused feature 

vector and 38-dimensional MFCC+∆MFCC (first derivative of MFCC)+∆∆MFCC 

(second derivative of MFCC) +E (average spectral energy)+Z (number of zero crossings 
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for the speech time waveform) baseline feature vector. The modeling and testing was 

based on the new ITEM algorithm described in Chapter 4.  

 

The number of Gaussian mixtures used to model a target speaker was 1024. The speech 

corpus used for training and testing was NIST 2004. Each speaker was represented by 

speech utterances of the total approximate length of 10 minutes of the concatenated 

speech obtained after silence/unvoiced removal. In the speaker enrollment (training) stage 

for each speaker about 5 minutes of speech was used and in the testing stage also 5 

minutes of speech was used (available utterances for 1side-1side task for NIST 2004). 

The training and testing sets contained mutually exclusive sets of speakers. 

 

After the target speaker’s enrolment, the universal background model (UBM) parameter’s 

inference was accomplished using a large corpus of speech containing only the non-target 

speakers (speakers not used in the enrolment and testing stages). To generate the UBM 

parameters speech recordings of the total length of 1 hour from the NIST 2001 were used. 

 

The results illustrated in Figure 5.6 show the performance of MFCC, IMFCC, 

MFCC/IMFCC and ∆MFCC (MFCC+∆MFCC+∆∆MFCC+Energy+Zero-crossings) 

features.  

 

It can be noted that the 38-dimensional feature vectors containing the ∆MFCC parameters 

provided the best overall performance. The MFCC showed better performance than 

IMFCC, however the MFCC/IMFCC fusion outperformed both, the MFCC and the 

IMFCC features alone.  

 

These results indicate that the speaker characteristic information is present in both low 

and high frequency ranges. Although the MFCC with their high resolution at the low 

frequency range provide relatively good speaker verification rates when applied on their 
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own, the addition of IMFCC with high resolution at the high frequencies helps to improve 

the verification results. 

 

As illustrated in Figure 5.7, the equal error rate (EER) based on the IMFCC is only 1.10% 

lower than for the MFCC. The 24-dimensional MFCC/IMFCC fusion shows a significant 

improvement of the EER value by 3.9% compared to ERR for the 12-dimensional MFCC 

feature vectors. The 38-dimensional ∆MFCC features show further improvement of 

0.25%, compared to the MFCC/IMFCC, however this is achieved at the cost of much 

higher dimensionality of the feature vectors and therefore much higher computational 

complexity.  
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Figure 5.7 Miss probability versus false alarm probability and the equal error rates (EER) 

for MFCC, IMFCC, MFCC/IMFCC fusion and MFCC+∆+∆∆+E+Z (∆MFCC). 
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Recent laryngological experiments [194] on animals demonstrated that there is a strong 

correlation between the symmetry of the vocal folds vibration and the acoustic energy in 

the higher frequencies. In vocal folds showing periodic and symmetric motion, the energy 

of the high frequency spectral components was larger than in vocal folds showing an 

asymmetric motion. Assuming that these observations apply to humans, it can be 

speculated that different speakers differ in the viscosity and elasticity of their vocal folds 

and the symmetry of the vocal vibration. Acoustically these differences would be evident 

in the distribution of the spectral energy of speech. In this case the energy at high 

frequency harmonic components can be expected to provide vital speaker-specific 

information missed by the MFCC due to their coarse division of the high frequency 

range. 

 

 

5.5 Features based on the Teager energy operator (TEO) 

 

In this section characteristic features based on the parameter called the Teager energy 

operator (TEO) are described and tested in the context of speaker verification. Unlike 

MFCC parameters which are derived from the linear model of speech production, the 

theory behind the TEO parameter assumes a non-linear model of speech production. The 

following sections explain briefly the classical model and provide introduction to the 

more recent non-linear concepts of the air flow occurring during the speech phonation 

process. This introduction leads to the definition of the TEO based features. Finally 

speaker verification test and results based on the TEO features are presented. 

 

 

5.5.1 Linear model of speech production 

 

The majority of feature vectors such used the speaker verification process represent 

acoustic speech parameters derived from the classical source-filter model of speech 
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production [196]. This includes parameters such as the linear predictive coefficients 

(LPC), the linear predictive cepstral coefficients (LPCC) and the mel frequency cepstral 

coefficients (MFCC). 

 

The classical source-filter theory of voice production assumes that the air flow through 

the vocal folds (source) and the vocal tract (filter) is unidirectional and has a laminar 

character. During phonation, the vocal folds vibrate. One vibration cycle includes the 

opening and closing phases in which the vocal folds are moving apart or together, 

respectively. The number of cycles per second determines the frequency of the vibration, 

which is subjectively perceived as pitch or objectively measured as the fundamental 

frequency F0. The sound is then modulated by the vocal tract configuration and the 

resonant frequencies of the vocal tract are known as formants.  

 

The speaker verification process assumes that certain speaker-specific characteristics 

have an effect on the acoustic parameters of the source-filter model. Therefore statistical 

modeling of these parameters can be used to derive speaker models used in the speaker 

verification/recognition process. 

 

5.5.2 Nonlinear model of speech production 

 

In his pioneering work, Teager [197] indicated the importance of the energy measures in 

speech analysis. His experimental studies [197,203,204], pointed to the fact that in 

addition to the laminar air flow during the speech phonation, certain non-linear and 

turbulent phenomena can be observed in the form of the supra-glottal air vortices. These 

vortices are formed above the vocal folds as shown in Figure 5.8. Teager’s suggestions 

were further supported by the air flow modeling [248] and simulation experiments [249]. 
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As indicated in [250], the supra-glottal vortices have the potential to generate sounds 

when heating hard surfaces of the vocal tract or interacting with each other. In the study 

of stress classification in speech Zhou et. al. [250] proposed new type of features based 

on the Teager energy operator (TEO) and called the TEO-Auto-Env-Area. The high 

performance of the TEO-Auto-Env-Area was attributed to the fact that this parameter is 

highly sensitive to the presence of additional harmonics and cross-harmonics in speech. It 

was assumed that in the state of stress, supra-glottal vortices are formed providing 

additional harmonic components. Different levels of stress would results in different 

energies and frequencies of these harmonics. 

 

In [247], a modified version of the TEO-Auto-Env-Area called the TEO-PWP-Auto-Env 

was introduced and tested providing very good results in the stress and emotion 

recognition in speech. In [246] another TEO based parameter TMFCC was successfully 

applied to the anger recognition in speech. 

 

The following sections explain the theory behind different TEO based feature parameters. 

This is followed by sections describing application of the various TEO based features to 

the speaker verification process. 
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Figure 5.8 Nonlinear model of sound propagation along the vocal tract [274].  

 

 

5.5.3 Teager energy operator (TEO) 

 

In the light of the recent non-linear models of speech production, the speech signal could 

be regarded as an effect of amplitude and frequency modulation of separate oscillatory 

waves and modeled as a combination of several amplitude and frequency modulated 

(AM-FM) oscillatory components. Maragos [209,210] proposed a nonlinear model of 

speech, which represents a discrete-time speech signal ][ns as a sum of M components, 

 

∑
=

=
M

i

i nxns
1

][][  (5.12) 

 

Each component ][nx of speech can be modeled as an AM-FM sine wave given in the 

discrete time domain as, 
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Where ][kq  is the modulating signal, cω is the source frequency (carrier), ];0[ ch ωω ∈ , is 

the maximum frequency deviation, θ  is a constant phase offset, and ][na  is the 

instantaneous amplitude. 

 

Eq. (5.13) can be also expressed in the continuous time domain as: 
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Where a(t) is the time varying instantaneous amplitude, and 
dt

td
t

)(
)(

Φ
=ω  is the 

instantaneous frequency. 

 

Assuming the above AM-FM modulation of speech, Kaiser and Teager [205,245] 

proposed the following estimate of the speech instantaneous energy known as the Teager 

energy operator (TEO): 

 

2
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In the discrete-time domain Eq. (5.15) becomes: 

 

( ) ]1[]1[][][ 2 −+−=Ψ nxnxnxnx  (5.16) 
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Applying Eq. (5.15) to the AM-FM speech signal given in Eq. (5.14), the following 

formula can be derived [211]: 

 

2
)(

)()]([ 





≈Ψ

dt

td
tatx

ϕ
 (5.17) 

 

Eq. (5.17) shows that TEO can track the modulation energy and identify the 

instantaneous amplitude and frequency. 

 

5.5.4 TMFCC 

 

In this section a feature extraction method called the TMFCC based on the Teager energy 

operator for the speaker verification applications is described.  

 

Application of the TMFCC features showed promising results in anger detection [246], 

and stress classification [196], language recognition [211], and speech enhancement in 

the presence of noise [212,213].  

 

The idea of using TEO instead of the commonly used averaged energy is to take 

advantage of the instantaneous amplitude and frequency tracking capability of the TEO. 

This leads to a better representation of formant information in the feature vector than 

MFCC [212]. 

  

As described in Section 5.3.1, computation of the MFCC parameters involves the 

mapping of the speech spectrum into the mel frequency scale. Figure 5.9 illustrates 

computational steps involved in the calculation of the Teager MFCC parameters, which 

are similar to steps involved in the calculation of the MFCC parameters.  
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As illustrated in Figure 5.9, the TMFCC differ from the traditional MFCC in the 

definition of energy measure, i.e., MFCC employs energy in frequency domain (due to 

Parseval’s equivalence) at each sub-band whereas TMFCC employs Teager energy in 

time domain and determines the spectrum. 

 

The mapping of the speech spectrum is achieved the by multiplying the magnitude of 

speech spectrum for a preprocessed frame by magnitude of triangular filters in Mel filter 

bank followed by log compression of the whole bandwidth and finally DCT [211].  

 

Input
speech x(n)

TEO
Mel

Spectrum
Log (.) DCTPre-processing

TMFCC
Input
speech x(n)

TEO
Mel

Spectrum
Log (.) DCTPre-processing

TMFCC

 

 

Figure 5.9 Calculation of the TMFCC parameters. 

 

5.5.5 TEO-PWP-Auto-Env 

 

This section describes another TEO based type of features called the TEO-PWP-Auto-

Env. The TEO-PWP-Auto-Env features were introduced in [247] and successfully 

applied to the stress recognition in speech. In this chapter TEO-PWP-Auto-Env were for 

the first time applied to the speaker verification problem. 

 

The human auditory system is assumed to perform a filtering operation which partitions 

the entire range of the audible frequencies into critical bands [214,215] listed in Table 

5.1. The width of these bands increases logarithmically with the frequency. Observations 

of the changes in the numbers of harmonics within critical bands can provide cues for the 

recognition of stress in speech.  
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Based on this assumption the TEO-PWP-Auto-Env feature extraction process employs 

approximations of the critical bands to filter the speech signal followed by the TEO 

processing as shown in the Figure 5.10.  

 

The critical bands are approximated using the perceptual wavelet packet analysis [247]. 

The perceptual wavelet packets bands have the advantage of having much faster roll off 

rates for the side lobes and less oscillations in the pass band than the band-pass filters 

designed using standard Matlab procedures.  

 

The steps involved in the calculation of the TEO-PWP-Auto-Env features are illustrated 

in Figure 5.10. After the voiced/unvoiced detection, the voiced speech is filtered using a 

bank of Perceptual Wavelet Packet (PWP) filters listed in Table 5.2. The filters centre 

frequencies were set to the centre frequencies of the critical bands, and effective RMS 

bandwidth of each filter was set to the width of the corresponding critical band. For each 

band the Teager Energy Operator and the area under the normalized TEO autocorrelation 

envelope were calculated. 
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Figure 5.10 Flowchart of the TEO-based feature extraction process. Adapted from [247]. 

 

The Wavelet Packet (WP) analysis is a modified form of the Discrete Wavelet Transform 

where the signal is passed iteratively through a larger number of filters than in DWT. In 

the PWP analysis each decomposition level is calculated by passing the previous 

approximation coefficients though a high and low pass filters (see Figure 5.11). 

 

The WP analysis provided high resolution at both low and high frequency ranges. The 

TEO-PWP-Auto-Env features were calculated for the outputs from 17 bands. The 

corresponding frequency ranges of these bands are listed in Table 5.1. The detailed 

mathematical description of the wavelet packet theory is given in [216,217]. 

 

In the speaker verification experiments, the TEO-PWP-Auto-Env feature extraction was 

performed with mother wavelet db2.  
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Table 5.2 The PWP and critical bands (CB) under 4 kHz. Adapted from [247]. 
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Figure 5.11 The wavelet packet (WP) decomposition tree; G-low pass filters, H-high pass 

filters [275]. 

 

The TEO-PWP-Auto-Env features were calculated for the outputs from the following 

filters (see Figure 5.11): GGGGG5, HGGGG5, GHGGG5, HHGGG5, GGHGG5, 

HGHGG5, GHHGG5, HHHGG5, GHGG4, HGHG4, GHHG4, HHHG4, GGGH4, HGGH4, 

HGH3, GHH3, HHH3.  

 

If a speech frame contains only a single harmonic with constant instantaneous amplitude 

][na  and constant instantaneous frequency ][niω , then Eq. (5.15) indicates that the 
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corresponding TEO profile is a constant number. If the signal frame contains more 

harmonics then the TEO profile ()Ψ changes as a function of n.  

 

In reality, speech signals always contain a number of harmonic components. If there is 

only one excitation source with the fundamental frequency F0, then there will be a whole 

harmonic series of integer multiples of F0. Additional excitation sources (vortices) will 

generate their own harmonic series. High pitch values will generate smaller numbers of 

harmonic components, and low pitch values will generate larger numbers of harmonic 

components within a speech bandwidth.  

 

As suggested in [196], if the speech signal is broken into small bands, and the TEO is 

calculated for each band, it is easier to observe the presence or absence of harmonic 

component within each band. Moreover, the speech analysis becomes more robust if the 

characteristic features are derived not directly from the TEO but from the normalized 

TEO autocorrelation function ][)( kR xΨ given as, 

 

∑
−=

Ψ +ΨΨ
+

=
M

Mn

x knxnx
M

kR ])[(])[(
12

1
][)(  (5.18) 

 

Where M is the number of samples within the analyzed speech frame.  

 

The normalized TEO autocorrelation function reflects the same trends as the TEO profile 

itself but it is less sensitive to sudden changes in TEO values. In general, the TEO profile 

may contain multiple harmonics and cross-harmonic terms causing very rapid changes in 

the TEO profile. The normalized TEO autocorrelation function can suppress some of 

these changes while still maintaining fluctuations which are due to changes in the vortex 

formation patterns. These changes could be attributed to different individual 

characteristics of speakers, different stress levels or emotions. 
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In the simplest case of a single harmonic with a constant instantaneous amplitude and 

constant instantaneous frequency, the normalized TEO autocorrelation function of Eq. 

(5.18) will produce a straight line decaying from the point (0,1) to the point (N,0), where 

N is the number of samples in the analyzed speech frame. The area under the 

autocorrelation line in this case, will be equal to N/2. If the analyzed speech frame 

contains more harmonic components, the normalized autocorrelation function will 

produce a time varying contour decaying in an oscillatory way to zero. The area under the 

autocorrelation contour in this case will be less than N/2. The area under the normalized 

TEO autocorrelation contour can be used as an indicator of changes in the harmonic 

components of speech due to conditions such a stress or emotion.  

 

As indicated in Figure 5.10, the values of the area under the normalized TEO 

autocorrelation contour were calculated on the frame-by-frame basis for each of the 

analyzed frequency bands, and used as characteristic features in the speaker verification 

experiments. 

 

5.5.6 Speaker verification experiments using TEO based features 

 

In this section, the TEO based features including TMFCC and TEO-PWP-Auto-Env were 

for the first time applied to the speaker verification problem. The idea behind these tests 

was to determine if the TEO based features can efficiently capture speaker’s 

characteristics.  

 

The theory behind the nonlinear speech production model presented in Section 5.5.2 lead 

to an assumption that speakers-dependent differences in elasticity, and symmetry of the 

vocal folds can generate to different patterns of vortex formation during speech 

production. These differences would result in variations of harmonic components of 

speech and could be detected by changes in the TEO based parameters.  
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The general framework of the speaker verification system used to conduct the 

experiments was the same as described in Section 4.5.1 and Figure 4.5. The system was 

designed to operate in one of the three possible modes: universal background model 

(UBM) training mode, target speaker enrollment mode and speaker testing mode.  

 

After the pre-processing of the speech signals which removed the silence and unvoiced 

intervals, the feature extraction was performed based on the short-time window analysis 

with speech frames of length 20ms and 10 ms step size.  

 

In the case of the TMFCC features, for each frame of voiced speech, 12 TMFCC 

coefficients and 12 MFCC coefficients were calculated and used to generate the 

following feature vectors: 12-dimensional TMFCC feature vector, 12-dimensional MFCC 

feature vector, 24-dimensional MFCC/TMFCC fused feature vector and 38-dimensional 

MFCC+∆MFCC (first derivative of MFCC)+∆∆MFCC (second derivative of MFCC) +E 

(average spectral energy)+Z (number of zero crossings for the speech time waveform) 

baseline feature vector. The modeling and testing was based on the new ITEM algorithm 

described in Chapter 4.  

 

In the case of the TEO-PWP-Auto-Env features, for each frame of voiced speech, 17 

TEO-PWP-Auto-Env coefficients and 12 MFCC coefficients were calculated and used to 

generate the following feature vectors: 17-dimensional TEO-PWP-Auto-Env feature 

vector, 12-dimensional MFCC feature vector, 29-dimensional MFCC/TEO-PWP-Auto-

Env fused feature vector and 38-dimensional MFCC+∆MFCC (first derivative of 

MFCC)+∆∆MFCC (second derivative of MFCC) +E (average spectral energy)+Z 

(number of zero crossings for the speech time waveform) baseline feature vector. The 

modeling and testing was based on the new ITEM algorithm described in Chapter 4.  

 

The number of Gaussian mixtures used to model a target speaker was 1024. The speech 

corpus used for training and testing was NIST 2004. Each speaker was represented by 
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speech utterances of the total approximate length of 10 minutes of the concatenated 

speech obtained after silence/unvoiced removal. In the speaker enrollment (training) stage 

for each speaker about 5 minutes of speech was used and in the testing stage also 5 

minutes of speech was used (available utterances for 1side-1side task for NIST 2004). 

The training and testing sets contained mutually exclusive sets of speakers. 

 

After the target speaker’s enrolment, the universal background model (UBM) parameter’s 

inference was accomplished using a large corpus of speech containing only the non-target 

speakers (speakers not used in the enrolment and testing stages). To generate the UBM 

parameters speech recordings of the total length of 1 hour from the NIST 2001 were used. 

 

The results in Figure 5.12 demonstrate the performance of TMFCC, MFCC, 

MFCC/TMFCC and ∆MFCC (MFCC+∆MFCC+∆∆MFCC+Energy+Zero-crossings) 

features.  

 

It can be observed that the 24-dimensional feature vectors containing a fusion of 

MFCC/TMFCC provided the best overall performance. The ∆MFCC parameters 

outperformed both MFCC and TMFCC used alone, however the TMFCC futures, showed 

better performance than the MFCC (an EER improvement of 0.95% is observed).  

 

These results indicate that the nonlinear TMFCC parameters based on the Teager energy 

operator, which are sensitive to instantaneous changes in the signal energy and frequency, 

are more effective in capturing speaker-characteristic changes in the distribution of the 

spectral energy then the linear MFCC parameters based on averaged values of the 

spectral energies. The addition of derivatives to the MFCC features (in ∆MFCC) is not as 

efficient in detecting the vital energy and frequency changes as addition of the TMFCC 

parameters (in MFCC/TMFCC fusion).  
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Figure 5.12 Miss probability versus false alarm probability and the equal error rates for 

the MFCC, TMFCC and the MFCC/TMFCC fusion. The R values indicate the 

dimensions of feature vectors. 

 

 

Figure 5.13 shows the results obtained for the TEO-PWP-Auto-Env, MFCC, 

MFCC/TEO-PWP-Auto-Env fusion and ∆MFCC features.  
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Figure 5.13 Miss probability versus false alarm probability and the equal error rates for 

the TEO-PWP-Auto-Env (TPAE) features. The R values indicate the dimensions of 

feature vectors. 

 

It can be observed in Figure 5.13, that the 29-dimesional MFCC/TEO-PWP-Auto-Env 

fusion provides the best overall performance. The ∆MFCC parameters outperformed both 

MFCC and TEO-PWP-Auto-Env used alone, however the TEO-PWP-Auto-Env features, 

showed better performance than the MFCC (an EER improvement of 2.5% is observed).  

 

These results show very consistent trend with the results presented in Figure 5.12. Again, 

the nonlinear TEO-PWP-Auto-Env parameters based on the Teager energy operator are 

more effective in capturing speaker-characteristic changes in the distribution of the 

spectral energy then the linear MFCC parameters. Moreover, the addition of derivatives 

to the MFCC features (in ∆MFCC) is not as efficient in detecting the vital energy and 
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frequency changes as addition of the TMFCC parameters (in MFCC/ TEO-PWP-Auto-

Env fusion).  

 

When comparing the results in Figures 5.12 and 5.13, it can be noted that the TEO-PWP-

Auto-Env (ERR=7.50%) clearly outperform the TMFCC (ERR=9.05%). Similarly, the 

MFCC/ TEO-PWP-Auto-Env (ERR=4.05%) works slightly better than the 

MFCC/TMFCC fusion (ERR=4.5%). This can be attributed to the fact that the TMFCC 

parameters are based on the critical band sub-division of the speech bandwidth, which 

gives lower frequency resolution at the high frequencies (see Table 5.2). The TEO-PWP-

Auto-Env parameters, on the other hand use more evenly distributed frequency resolution 

across both low and high frequency bands. These results again indicate the importance of 

including low as well as high frequency speaker-dependent information in the feature 

vectors. 
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5.6 Summary 

 

A number of feature vectors based on the classical linear model of speech production as 

well as features based on the recent nonlinear models were described and applied to the 

speaker verification task. 

 

Table 5.3 summarizes the performance of the tested features by showing the values of the 

equal error rates (EER) produced by these features. 

 

It can be observed that when used alone the non-linear features including TMFCC and 

TEO-PWP-Auto-Env show stronger performance (lower EER values) than the classical 

nonlinear features including MFCC and IMFCC.  

 

The best overall performance was achieved by the proposed new fusions of linear 

features (MFCC/IMFCC) and linear/nonlinear features: MFCC/ TEO-PWP-Auto-Env 

and MFCC/TMFCC. It is likely that these combinations of features contain vital 

complimentary information about speaker characteristics.  

 

The strong performance of the TEO based nonlinear features is consistent with the 

theories describing speech as a linear combination of AM-FM signals with the speaker-

specific information included in the instantaneous changes of the signal amplitude and 

frequency.  

 

Since the TEO based features are sensitive to the presence of additional harmonics and 

cross-harmonics in the speech signal, their high performance is consistent with the recent 

models of speech productions assuming nonlinear air flow and generation of vortices 

providing additional sound sources during the phonation process.  
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The high performance of the TEO-PWP-Auto-Env features when compared to the 

TMFCC features indicated an importance of including speaker-specific information from 

the low and high frequency ranges in the feature vectors. 

 

Table 5.3 Summary of the linear and nonlinear feature performance in the speaker 

verification task based on the % equal error rates (EER).  

 

Features EER (%) 

MFCC/TEO-PWP-Auto-Env 4.05 

MFCC/TMFCC 4.55 

∆MFCC 5.85 

MFCC/IMFCC 6.10 

TEO-PWP-Auto-Env 7.50 

TMFCC 9.05 

MFCC 10.0 

IMFCC 11.10 

 

 

The new modeling technique introduced in Chapter 4, as well as the best performing 

feature extraction methods introduced in Chapter 5 are tested in the Chapter 6 using a 

clinical speech corpus, which includes the speaker’s suffering with the clinical 

depression. Effects of the clinical environment on the speaker verification rates are 

determined.  
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CHAPTER 6 

 

EFFECTS OF CLINICAL DEPRESSION ON AUTOMATIC 

SPEAKER VERIFICATION RATES 

 

  

 

This chapter, for the first time investigated the effects of a clinical 

environment on the speaker verification. Speaker verification within a 

homogeneous environment consisting of the clinically depressed speakers 

was compared with the speaker verification within a neutral (control) 

environment containing of non-depressed speakers. Experiments based on 

mixed environments containing different ratios of depressed/non-depressed 

speakers were also conducted in order to determine how the depressed/non-

depressed ratio relates to the speaker verification rates. The experiments used 

a clinical speech corpus consisting of 68 clinically depressed and 71 non-

depressed speakers. Speaker models were built using the new ITEM-GMM 

method introduced in Chapter 4. Two types of feature vectors were tested, the 

classical �MFCC coefficients and the TEO-PWP-Auto-Env features. 

Experiments conducted within homogeneous environments showed a 

significant decrease of the equal error rates (EER) by 5.1% for the clinically 

depressed environment when compared with the non-depressed environment. 

Experiments conducted within mixed environments showed that an increasing 

number of depressed speakers lead to a logarithmic increase of the EER 

values; where the increase of the percentage of depressed speakers from 0% 

to 30% has the most profound effect on the increase of the EER. It was also 

demonstrated that the TEO-PWP-Auto-Env provided more robust 

performance in the clinical environments compare to �MFCC, lowering the 

EER from 24.1% (for �MFCC) to 17.1% (for TEO-PWP-Auto-Env).   
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6.1 Speaker Verification in Adverse Environments 

This chapter aims to demonstrate the need for the development of a speech modelling 

approaches which take into account the dynamics of speech under adverse conditions.  

It has been reported that the performance of the speaker recognition systems which 

assume a noise-free tranquil environment, degrades due to both intra-speaker variability 

as well as the background noise and channel distortion.  

 

The effects of noise [259,260,263] and channel distortion [260,261] on the speaker 

verification rates have been thoroughly investigated, and a number of compensation 

methods for the adverse effects have been proposed [259,262]. The adverse effects of the 

intra-speaker variability on the other hand, received relatively small attention from 

researchers.  

 

The various sources of the intra-speaker variability include: aging, health problems, 

emotional state, stress level, use of alcohol and drugs.  

 

Previous psychological research suggested that intra-speaker variations in the voice can 

be traced in the psychological and physiological state of a speaker [225,226].  

 

In [226] Scherer postulated that automatic speaker verification can be improved by 

training the algorithms on emotional speech. In [264] Scherer reported on a project to 

improve on current speaker verification systems by the development of phonetically 

informed methods of coping with intra-speaker variation due to emotion and stress.  

 

One of the important, yet not fully investigated health factors that can have potential 

impact on the speaker verification rates is clinical depression. 
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Clinical depression belongs to the mood disorders. It is characterized by prolonged 

periods of sadness and social withdrawal [255]. The psychomotor retardation often 

associated with clinical depression is described as general slowing of body movement, 

mental processing, and speech production [228]. This impacts the speaking mechanisms 

by creating slower and monotone speech delivery. Speech contents of depressed speaker 

consist of more abstractive flow of conversations, higher frequency of pauses and more 

non verbal sounds than speech of normal speaker. Kuny and Stassen [256] indicated that 

clinical depression effects voice characteristics and speaking behavior. Recent 

experiments [228,235,236,237,252,253,254,254] demonstrated that clinical depression 

changes acoustic characteristics of speech to the degree that makes it possible to detect 

depression signs through an automatic acoustic speech analysis.  

 

It is estimated that up to one in eight individuals will require treatment for depressive 

illness in their lifetime. The occurrence of depression is the world’s fourth most serious 

health problem and it is also expected to rise linearly with the increasing age of 

population [265,266]. Statistics from the World Health Organization (WHO) [257] 

indicate that about 121 million people are recognized to as affected by depression 

worldwide. Depression affects almost 10% of the population, or 19 million Americans, in 

a given year. In Australia, about 20% of people will be affected by depression and 6% 

will experience a major depressive illness [258].  

 

These large numbers of depressed people use our telephone networks and undergo 

various security checks using speaker verification/recognition systems. At this point in 

time, it is not known to what degree the depression symptoms affect the performance of 

these systems. 

 

Although, the effects of clinical depression of the speaker verification/recognition rates 

have not been tested yet, it is likely that they are quite profound. The prevalence of 

depression in our society makes these tests particularly important. 
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This chapter for the first time investigates the effects of clinical depression on the speaker 

verification rates.  

 

In Section 6.2 the clinical speech data base used in the experiments is described. Section 

6.3 presents the general framework of the speaker verification system. In Section 6.4 

preliminary experiments which determine the optimal number of Gaussian mixtures and 

the optimal testing/training sets sizes are presented. In Section 6.5 speaker experiments 

based on the classical ∆MFCC features are described. In Section 6.6 speaker experiments 

based on the TEO-PWP-Auto-Env features are described. Finally, Section 6.7 provides 

the chapter’s summary. 

 

6.2 Clinical Speech Corpus 

 

A clinical speech corpus was used to investigate the effects of clinical depression on the 

speaker verification rates.  

 

The clinical speech corpus was obtained as a result of research cooperation with the 

Oregon Research Institute (ORI). The corpus consists of speech recordings from 139 

speakers including 93 females and 46 males. The speakers were 12-19 years of age. The 

speech was a soundtrack of video recordings (in MPEG) format made during problem-

solving, event planning and family consensus discussions between family members. 

Potential speakers were excluded from the recording sessions if they evidenced any 

substance dependence or conduct disorders or if they were taking any medications that 

affect the cardiac system.  

 

For the purpose of this study, the speech was used in the mono channel format and was 

dawn-sampled from the original sampling rate of 44.1 kHz to 8 kHz to match the 
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sampling rates of the NIST corpora used in the experiments described in the previous 

chapters. Parts of recordings which contained more than one speaker were manually 

removed. For each speaker, utterances of approximate length of 7 to 8 minutes were 

available.  

 

Through the self-report and interview measures of depression [229], 68 speakers (49 

females and 19 males) were diagnosed by psychologists from ORI, as suffering from 

major depressive disorder (MDD), and the remaining 71 speakers (44 females and 27 

males) were diagnosed as non-depressed controls (i.e., showing no current or lifetime 

history of the major depressive disorder). A detailed description of the ORI database and 

the way it was made can be found in [230,231,232].  

 

6.3 Speaker Verification Framework 

 

In order to maintain consistency with the experiments described in Chapters 4 & 5, the 

general framework of the speaker verification system used to conduct the environmental 

experiments was the same as described in Section 4.5.1 and Figure 4.5. The system was 

designed to operate in one of the three possible modes: universal background model 

(UBM) training mode, target speaker enrollment mode and testing mode.  

 

In the pre-processing stage silence and unvoiced intervals were removed using speech 

activity detection (SAD) procedure as defined in Chapter 2, Section 2.8. The voiced 

speech was concatenated providing for each speaker speech samples of an approximate 

length of 6 minutes. Out of these samples, about 5 minutes of speech was used for the 

speaker enrolment (training) and 1 min for testing.  
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The concatenated speech samples were used to calculate feature vectors on the frame-by-

frame basis with speech frames of length 20 ms and 10 ms step size (50% overlap). For 

each frame, two types of feature vectors were calculated. 

 

As a baseline, classical 38-dimensional ∆MFCC vectors consisting of MFCC+∆MFCC 

(first derivative of MFCC) +∆∆MFCC (second derivative of MFCC) +E (average spectral 

energy)+Z (number of zero crossings for the speech time waveform) were tested.  

 

The second type of feature vectors was comprised of the TEO-PWP-Auto-Env 

parameters described in Chapter 5. The TEO-PWP-Auto-Env futures were chosen for 

testing in the clinical environment because it was demonstrated in Section 5.5.6 that 

within neutral environment they showed better performance than TMFCC and ∆MFCC 

parameters. It was therefore reasonable to expect that TEO-PWP-Auto-Env may show a 

similar level of robustness within adverse clinical environment.  

 

After the target speaker’s enrolment, the universal background model (UBM) parameters 

were calculated using a large corpus of speech containing only the non-target speakers 

(speakers not used in the enrolment and testing stages). To generate the UBM parameters 

speech recordings of the total length of 1 hour from the NIST 2001 and NIST 2002 were 

used. 

 

For each test, three-turn cross validations were performed. Each turn was run with 

different randomly chosen training and testing set. The classification rate was calculated 

as an average value for the three turns.  

 

To maintain consistency with experiments described in Chapters 4 and 5, the modeling 

and testing was based on the new ITEM algorithm introduced in Chapter 4.  
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6.4 Preliminary Experiments 

 

Prior to the main tests, preliminary research has been conducted to determine: 

 

• An optimal values of the Gaussian mixtures for the ORI data 

• Optimal sizes of the training and testing data sets 

 

6.4.1 Optimizing the number of Gaussian mixtures 

 

In order to determine the optimal numbers of Gaussian mixtures for the two ORI data 

sets, one containing depressed speakers and one containing non-depressed speakers, the 

performance of the speaker verification system was analyzed on each set using different 

numbers of Gaussian mixtures.  
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Figure 6.1 Correct recognition rates (in %) versus the number of Gaussian mixtures with 

GMM modeling based on the classical EM algorithm (purple bars) and the new ITEM 

algorithm (blue bars). Calculated for the depressed (D) speakers from the ORI data base. 

 

While the increasing number of mixtures was generally expected to provide better 

classification accuracy, the associated increase of the computational complexity could 

make the applications impractical. Therefore, the experiments aimed to determine 

numbers of Gaussian mixtures which provide best compromise between the 

computational complexity and the classification accuracy. 

 

To ensure consistency of observations, the tests were performed using the GMM 

modelling based on the new ITEM procedure for calculating the model parameters, as 

well as the classical EM algorithm. The ∆ΜFCC parameters were used as characteristic 

features. 

 



CHAPTER 6. EFFECT OF CLINICAL DEPRESSION ON AUTOMATIC SPEAKER VERIFICATION RATES 

 

 

 

      173 

 

Figure 6.2 Correct recognition rates (in %) versus number of Gaussian mixtures with 

GMM modeling based on the classical EM algorithm (purple bars) and the new ITEM 

algorithm (blue bars). Calculated for the non-depressed (ND) speakers from the ORI 

database. 

 

 

The number of Gaussian mixtures was gradually increased from 1 to 1024 with the step 

size of 2
n 

where n was equal to 1, 2, 3,…,11. For each number of Gaussian mixtures, 

speaker verification was performed and the correct classification rate was calculated. 

 

Figure 6.1 shows the correct recognition rates calculated for the depressed (D) speakers 

from the ORI data base versus the number of Gaussian mixtures with GMM modeling 

based on the classical EM algorithm (purple bars) and the new ITEM algorithm (blue 

bars).  

 

Similarly, Figure 6.2 shows the correct recognition rates calculated for the non-depressed 

(D) speakers from the ORI data base versus the number of Gaussian mixtures with GMM 
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modeling based on the classical EM algorithm (purple bars) and the new ITEM algorithm 

(blue bars).  

 

It can be observed in Figure 6.1 that for the depressed data sets, when the number of 

Gaussian mixtures increases from 1 to 128, the correct classification rates also increases, 

however any further increase of the numbers of Gaussian mixtures from 128 to 1024 

leads to a slow decrease of the correct classification rates. The decrease was an effect of 

rapidly decreasing numbers of vectors within Gaussian clusters (mixtures) due to thinner 

distribution of data. 

 

Figure 6.2, on the other hand shows that for the non-depressed data set, when the number 

of Gaussian mixtures increases from 1 to 256, the correct classification rates increase 

logarithmically reaching a constant plateau, and any further increase of the numbers of 

Gaussian mixtures from 128 to 1024 had almost no effect on the correct classification 

rates.  

 

The above trends were consistent for both modeling techniques: EM/GMM and 

ITEM/GMM. 

 

Based on these results, it was decided that 128 Gaussian mixtures provided satisfactory 

classification rates for both data sets (depressed and non-depressed) without making the 

computational complexity prohibitively large. 

 

6.4.2 Optimizing the training and testing sets sizes 

 

In this section optimal sizes of the training and testing sub-sets for the two ORI data sets, 

one containing depressed speakers and one containing the non-depressed speakers are 

determined. 
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The speaker verification tests were based on the new ITEM procedure described in 

Chapter 4, and the ∆MFCC parameters were used as characteristic features. 

 

Three training sets of different sizes were tested: 5 min (set A), 4 min (Set B) and 2 min 

(set C). These three training sets were tested in combinations with four testing sets of 

size: 60 sec, 30 sec, 15 sec and 5 sec. For each combination, three-turn cross validations 

were performed. Each turn was run with different randomly chosen training and testing 

set. The correct classification rates were calculated as an average value for the three 

turns.  

 

The % of correct classification for all the 12 combinations of training/testing set’s sizes 

are illustrated in Figure 6.3 (for the depressed speakers) and in Figure 6.4 (for the non-

depressed speakers).  

 

The results in Figures 6.3 and 6.4 show the same general trends for the depressed and 

non-depressed data. For a given size of the testing set, the correct classification rates 

increase with the training size increasing from 2 min to 5 min. For a given size of the 

training set, the correct classification rates decrease with the decreasing size of the testing 

set. 

 

Based on these results, the testing set size of 5 min and the training set size of 60 seconds 

were chosen to perform experiments testing the effect of clinical depression on the 

speaker verification rates. These experiments are described in Sections 6.5 and 6.6. 
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Figure 6.3 Correct classification rates in % for depressed speakers (from the ORI data 

base) using different training (set A, 5min, set B, 4 min & set C, 2 min) and testing (60 

sec, 30 sec, 15 sec and 5 sec) sets sizes. 

 

 

 

Figure 6.4 Correct classification rates in % for non-depressed speakers (from the ORI 

data base) using different training (set A, 5min, set B, 4 min & set C, 2 min) and testing 

(60 sec, 30 sec, 15 sec and 5 sec) sets sizes.  
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6.5 Speaker Verification Using Classical ∆MFCC Features 

 

In the first set of experiments the effect of clinical depression on speaker verification 

rates was tested using classical feature vectors ∆MFCC. The ∆MFCC vectors are most 

often used features in speaker verification [239,240,241,242] and the ∆MFCC feature 

vector consists of: MFCC+∆MFCC (first derivative of MFCC)+∆∆MFCC (second 

derivative of MFCC) +E (average spectral energy)+Z (number of zero crossings for the 

speech time waveform). 

 

The ∆MFCC were used to determine the verification rates within homogeneous 

environments i.e. environments consisting only of depressed speakers or non-depressed 

speakers (Section 6.5.1) and mixed environments i.e. environments containing a mixture 

of both depressed and non-depressed speakers (Sections 6.5.2 & 6.5.3). 

 

6.5.1 Speaker verification within homogeneous environments using 
classical ∆MFCC features  

 

In this section two speaker verification experiments were conducted within homogeneous 

environments.  

 

In the first experiment, the speaker verification rates were measured within an 

environment consisting of 68 clinically depressed speakers (D) from the ORI data base. 

 

In the second experiment, the speaker verification rates were measured within an 

environment consisting of 70 non-depressed speakers (ND) from the ORI data base.  

 

Since the numbers of speakers in both clinically depressed and non-depressed sets of the 

ORI data are approximately the same, and the recordings were made within identical 
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laboratory conditions including similar levels of the background noise, the speaker 

verification results within these two sets are directly comparable. 

 

Figure 6.5 shows the miss probability versus false alarm probability and the equal error 

rates (EERs) for the homogeneous environments using ORI data (clinically depressed (D) 

– red line and non-depressed (ND) –green line). 

 

It can be observed in Figure 6.5 that the speaker verification equal error rate (EER) 

within homogeneous environment containing only depressed speakers is 5.1% higher 

than for the homogeneous environment containing only non-depressed speakers.  

 

These results indicate that the accuracy of speaker verification within clinical 

environment containing only depressed speakers decreases significantly when compared 

with the environment containing only non-depressed speakers. In other words, clinical 

depression makes the speaker verification task more challenging due to increase of the 

intra-speaker variability.  
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Figure 6.5 Miss probability versus false alarm probability and the equal error rates 

(EERs) for homogeneous environments using ORI data (clinically depressed (D) – red 

line and non-depressed (ND) –green line) and for the mixed environments.  

 

 

6.5.2 Speaker verification within mixed environments using classical 
∆MFCC features  

 

This section describes speaker verification tests performed on data sets containing both 

clinically depressed and non-depressed speakers. 

 

Described here experiments were based on mixed environments containing different 

ratios of depressed /non-depressed speakers. The aim was to determine how the depressed 

/non-depressed ratio relates to the speaker verification rates.  
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Four data sets were used: the first data set contained (68) 100% of depressed speakers, 

the second set contained a mixture of (34) 33% of depressed speakers and (68) 77% of 

non-depressed speakers, the, the third set contained a mixture of (17) 20% of depressed 

speakers and (68) 80% of non-depressed speakers, and finally, the fourth set contained 

(68) 100% of non-depressed speakers.  

 

Speaker verification results for these four mixed environments are presented in Figure 

6.6. The plots in Figure 6.6 show the miss probability versus false alarm probability and 

the equal error rates (EERs) (black line-100% ND, blue line – 25% D + 75% ND, red line 

-12% D + 88% ND, green line – 100% D).  

 

It can be clearly observed in Figure 6.6 that with the increasing numbers of depressed 

speakers within the tested environments, the miss probability versus false alarm curves 

move towards areas corresponding to larger EER values. 

 

The effect of increasing numbers of depressed speakers on the EER values is illustrated 

in Figure 6.7. It shows a logarithmic increase of the EER values with the increasing 

percentage of depressed speakers within a given environment. An increase of the 

numbers of depressed speakers from 0% to about 30% has the largest impact, and rapidly 

increases the EER from 19% to 24.8%. Further increase of the numbers of depressed 

speakers from 30% to 100% causes a slow increase of the EER values from 24.8% to 

25.3%.  
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Figure 6.6 Miss probability versus false alarm probability and the equal error rates 

(EERs) for mixed environments using ORI data (black line-100% ND, red line -12% D + 

88% ND, blue line – 25% D + 75% ND, green line – 100% D).  
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Figure 6.7 EER versus the % of depressed speakers in mixed environments using ORI 

data. 

 

Additional two experiments related to the mixed environments test were conducted. In 

the first experiment, depressed speakers were verified within a mixed environment 
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consisting of equal fractions (50%) of depressed and non-depressed speakers (68 

depressed and 68 non-depressed speakers). In the second experiment, non-depressed 

speakers were verified within the same mixed environment. These experiments aimed to 

determine if there is a significant difference in the verification accuracy between the 

depressed and the non-depressed speakers within an environment containing equal 

amounts of both types of speakers. 

 

Results of these additional experiments are illustrated in Figure 6.8, which shows miss 

probability versus false alarm probability and the equal error rates (EERs) for mixed 

environments, (black line –verifying depressed speakers in the mixture of 50% depressed 

and 50% non-depressed speakers, blue line – verifying non-depressed speakers in the 

mixture of 50% depressed and 50% non-depressed speakers). 

 

It can be observed in Figure 6.8, that the EER resulting from the verification of the 

depressed speakers is significantly higher (28.2%) than the ERR resulting from the 

verification of the non-depressed speakers (23.5%).  

 

Looking at the results for homogeneous environments in Figure 6.5 and for mixed 

environments in Figure 6.8, it can be observed that the EER resulting from the 

verification of depressed speakers within a homogeneous environment containing only 

depressed speakers is lower (24.1%) than the EER resulting from the verification of 

depressed speakers within a mixed environment containing equal amounts of depressed 

and non-depressed speakers (28.2%). This possibly indicates that the depressed speakers 

were under-represented within the mixed environment containing 50% of depressed and 

50% of non-depressed speakers.  

 

Similarly, an inspection of the results for homogeneous environments in Figure 6.5 and 

for mixed environments in Figure 6.8, it can be observed that the EER resulting from the 

verification of non-depressed speakers within a homogeneous environment containing 
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only non-depressed speakers is lower (19%) than the EER resulting from the verification 

of depressed speakers within a mixed environment containing equal amounts of 

depressed and non-depressed speakers (23.5%). This could indicate that the non-

depressed speakers were also under-represented within the mixed environment containing 

50% of depressed and 50% non-depressed speakers and the presence of depressed 

speakers introduced an environmental noise.  

 

These results are consistent with the previous results in Section 6.5.1 indicating that the 

verification task in general is more challenging within environments consisting of 

depressed speakers and the verification of depressed speakers is in general more 

challenging than identification of non-depressed speakers. 
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Figure 6.8 Miss probability versus false alarm probability and the equal error rates 

(EERs) for mixed environments; black line –verifying depressed speakers in the mixture 

of 50% depressed and 50% non-depressed speakers, blue line – verifying non-depressed 

speakers in the mixture of 50% depressed and 50% non-depressed speakers. 
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6.6 Speaker Verification in Homogenous Environments Using 

TEO-PWP-Auto-Env Features 

 

Speaker verification tests presented in Section 6.5 demonstrated that addition of clinically 

depressed speakers to the testing and training data results in significantly lower equal 

error rates.  

 

These results were obtained using the benchmark speaker verification system including 

∆MFCC features and GMM classifier, tested previously in numerous speaker verification 

studies [239, 241, 242]. Majority of these studies used NIST corpora or similar data bases 

consisting of “normal” speaker, i.e. speakers which were not identified as suffering from 

any particular type of disorder that could potentially alter acoustic characteristics of their 

speech. In other words, the benchmark speaker verification system was optimized without 

taking into account the possibility of an environmental noise that could be introduced by 

the presence of clinically depressed speakers in the testing and training data. 

 

Since the characteristic features are of key importance in majority of the pattern 

recognition systems, the possible panacea for the adverse effects of depression on the 

speaker verification rates could be provided by the right choice of the feature vectors. 

 

Aiming to compensate for the adverse effects of clinical depression on the speaker 

verification rates, the TEO-PWP-Auto-Env features which showed the best performance 

in Section 5.5.6 were applied and compared with the classical ∆MFCC features.  

 

As explained in Section 5.5, the TEO-PWP-Auto-Env were derived [196] based on recent 

laryngological experiments [194, 197] investigating the air flow during the glottal flow 

formation. The nonlinear character of the glottal flow results in a number of vortices, 
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which affect the acoustic properties of speech. Namely, they change the spectral energy 

distribution and generate additional harmonics and cross-harmonics in the speech signal.  

 

The high performance of the TEO-PWP-Auto-Env demonstrated in Chapter 5 can be 

attributed to the fact that this parameter is highly sensitive to the presence of additional 

harmonics and cross-harmonics in speech. Assuming that in the state of depression alters 

the vocal system physiology and generates speaker-specific vortices providing additional 

harmonic components; the TEO-PWP-Auto-Env-Area was expected to provide better 

performance than the classical ∆MFCC features, which were derived assuming a laminar 

air flow during the phonation process.  

 

Speaker verification experiments comparing the performance of the nonlinear TEO-PWP-

Auto-Env features with the classical ∆MFCC features were conducted within two 

homogeneous environments. The first environment contained only depressed speakers 

(68 speakers from the ORI data base), and the second environment contained only non-

depressed speakers (71 speakers from the ORI data base).  
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Figure 6.9 Miss probability versus false alarm probability and the equal error rates 

(EERs) for homogeneous environments using ∆MFCC features and TEO-PWP-Auto-Env 

features.  

 

 

The results in Figure 6.9 indicate that within the homogeneous environment containing 

only depressed speakers, the TEO-PWP-Auto-Env provided better performance compare 

to the ∆MFCC  features. The TEO-PWP-Auto-Env features significantly decreased the 

EER from 24.1% (for ∆MFCC) to 17.1% (for TEO-PWP-Auto-Env). 

 

Figure 6.9 shows that the TEO-PWP-Auto-Env features provided more robust 

performance in the homogeneous non-depressed environment (based on ORI data) 

compare to ∆MFCC, lowering the EER from 19.0% (for ∆MFCC) to 15.4% (for TEO-

PWP-Auto-Env).  
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The nonlinear TEO-PWP-Auto-Env features provided superior performance compared to 

the classical ∆MFCC features and showed higher robustness by maintaining high level of 

performance despite of a change of environment and introduction of higher intra-speaker 

variability. These results are consistent with the previous results based on the NIST 2004 

corpora, described in Section 5.5.6 

 

6.7 Summary 

 

In this chapter, effects of a clinical environment on the speaker verification rates were 

investigated for the first time.  

 

Speaker verification within a clinical environment consisting only of the clinically 

depressed speakers was compared with the speaker verification within a neutral (control) 

environment containing only non-depressed speakers.  

 

Experiments based on mixed environments containing different ratios of depressed/non-

depressed speakers were also conducted in order to determine how the depressed /non-

depressed ratio relates to the speaker verification rates.  

 

The experiments used a clinical speech corpus consisting of 68 clinically depressed and 

71 non-depressed speakers.  

 

Speaker models were built using the new ITEM-GMM method introduced in Chapter 4.  

 

The feature vectors consisted of the classical ∆MFCC content including mel frequency 

cepstral coefficients (MFCC), their first and second derivatives, short time energy 

coefficient and the zero-crossing rates calculated for speech samples on the frame-by-

frame basis.  
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The results based on this classical approach indicated that the speaker verification within 

the clinical environment provides a challenging task.  

 

Experiments conducted within homogeneous environments showed a significant decrease 

of the equal error rates (EER) by 5.1% for the clinically depressed environment when 

compared with the non-depressed environment.  

 

Experiments conducted within mixed environments containing different depressed/non-

depressed ratios showed that an increasing number of depressed speakers lead to a 

logarithmic increase of the EER values; where the increase of the percentage of depressed 

speakers from 0% to 30% has the most profound effect on the increase of the EER.  

 

In order to compensate for the adverse effects of depression on the speaker verification 

rates, TEO-PWP-Auto-Env features which showed the best performance in Chapter 5 

were applied and compared with the classical ∆MFCC features.  

 

The results showed that the TEO-PWP-Auto-Env provided more robust performance in 

the clinical environment compare to ∆MFCC, lowering the EER from 24.1% (for 

∆MFCC) to 17.1% (for TEO-PWP-Auto-Env). The TEO-PWP-Auto-Env also provided 

better performance within the non-depressed environment compare to ∆MFCC, lowering 

the EER from 19.0% (for ∆MFCC) to 15.4% (for TEO-PWP-Auto-Env), which was 

consistent with previous results based on NIST 2004, described in Chapter 5. This 

demonstrates that the TEO based features are more representative of the clinical 

depression in speech. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

This chapter summarizes the key conclusions from this thesis and 

highlights potential future work in exploring the data-driven and time-

frequency approaches to feature extraction for speaker recognition. In 

particular it addresses the key challenges that have been met, and those 

remaining for the field, as well as discussing limitations of the work.    

 

7.1 Summary of Research and Conclusions 

 

The thesis aimed to investigate three major areas of improvements of the existing speaker 

recognition methodology. 

 

Firstly, the aim was to propose an improved modelling and classification methodology 

for speaker recognition. This aim was achieved by the development of a new algorithm 

for the calculation of Gaussian Mixture Model parameters called Information Theoretic 

Expectation Maximization (ITEM). The proposed algorithm improves upon the classical 

Expectation Maximization (EM) approach widely used with the Gaussian mixture model 

(GMM) as a state-of-art statistical modeling technique. Like the classical EM method, the 

ITEM algorithm adapts means, covariances and weights, however this process is not 

conducted directly on feature vectors but on a set of centroids derived by the information 

theoretic vector quantization (ITVQ) procedure, which simultaneously minimizes the 

divergence between the Parzen estimates of the feature vector’s distribution within a 
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given class and the centroids distribution within the same class. The ITEM algorithm was 

applied to the speaker verification problem using NIST 2001, NIST 2002 and NIST 2004 

corpora and MFCC with delta features. The results showed an improvement of the equal 

error rate over the classical EM approach. The EM-ITVQ also showed higher 

convergence rates compared to the EM. 

 

Secondly, the aim was to determine the usefulness of features derived from nonlinear 

models of speech production for speaker recognition.  

This aim was achieved by comparing the classical features based on linear models of 

speech production with recently introduced features based on the nonlinear model. A 

number of linear and nonlinear feature extraction techniques that have not been 

previously tested in the task of speaker verification are tested. New fusions of features 

carrying complimentary speaker-dependent information are proposed. The tested features 

are used in conjunction with the new ITEM-GMM speaker modeling technique, which 

provided an additional evaluation of the new method. The speaker verification 

experiments presented demonstrated significant improvement of performance when the 

conventional MFCC features were replaced by a fusion of the MFCCs with 

complimentary linear features such as the inverse MFCCs (IMFCCs), or nonlinear 

features such as the TMFCCs and TEO-PWP-Auto-Env. Higher overall performance of 

the nonlinear features when compared to the linear features was observed.  

 

Thirdly, the aim was to determine the effects of a clinical environment containing 

clinically depressed speakers on speaker recognition rates, and to investigate if the 

features based on nonlinear models of speech production have the potential to counteract 

the inverse effects of the clinically depressed environment.  

For the first time, the thesis investigated the effects of a clinical environment on the 

speaker verification. Speaker verification within a homogeneous environment consisting 

of the clinically depressed speakers was compared with the speaker verification within a 

neutral (control) environment containing of non-depressed speakers. Experiments based 
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on mixed environments containing different ratios of depressed/non-depressed speakers 

were also conducted in order to determine how the depressed/non-depressed ratio relates 

to the speaker verification rates. The experiments used a clinical speech corpus consisting 

of 68 clinically depressed and 71 non-depressed speakers. Speaker models were built 

using the new ITEM-GMM method introduced in Chapter 4. Two types of feature vectors 

were tested, the classical ∆MFCC coefficients and the TEO-PWP-Auto-Env features. 

Experiments conducted within homogeneous environments showed a significant decrease 

of the equal error rates (EER) by 5.1% for the clinically depressed environment when 

compared with the non-depressed environment. Experiments conducted within mixed 

environments showed that an increasing number of depressed speakers lead to a 

logarithmic increase of the EER values; where the increase of the percentage of depressed 

speakers from 0% to 30% has the most profound effect on the increase of the EER. It was 

also demonstrated that the TEO-PWP-Auto-Env provided more robust performance in the 

clinical environments compare to ∆MFCC, lowering the EER from 24.1% (for ∆MFCC) 

to 17.1% (for TEO-PWP-Auto-Env). 

 

 

7.2 Future Challenges  

 

From the perspective of real-time implementations of the speaker recognition technology, 

further work is needed in the optimization of the speaker modeling and classification 

approaches. Issues such as improvement of convergence rates of the modeling process, 

distance measures and likelihood estimation between the feature vectors of the unknown 

speaker and the speaker models are of key importance for the future research.  

 

More work is also needed in the area of feature extraction. This line of research can 

largely benefit from the developments of new nonlinear models of speech production 

which explicitly take into account mechanisms responsible for changes of acoustic 
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properties of speech due to emotions, diseases, aging, use of alcohol and drugs. Through 

the development of such models, new parameters can emerge providing more robust 

speaker characteristics. 

 

Another area for future research includes studies of effects of different environments. 

This is linked to the development of speech processing, and speech enhancement methods 

compensating for the adverse effects of different environments.  
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Appendix A  

 

 

 

Analogous to Eq. (5.3), the filter bank coefficients for the reversed MFCC can be defined 

as, 
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Where Nk ≤≤1 and 
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Therefore an equation analogous to Eq. (5.4) can be formulated as, 

 

{ }














+

−
+








= −

1

)(ˆ)(ˆ
)(ˆˆˆ 1

M

ffffi
fff

F

N
f

lowmelhighmel

lowmelmel

s

bi

       (3) 

 

Thus 
iMbf

−+1
can be obtained as, 

 

{ }









+

−−+
+








= −

−+ 1

)()()1(
)(1

1 M

ffffiM
fff

F

N
f

lowmelhighmel

lowmelmel

s

b iM
       (4) 



APPENDIX A 

 

 

 

 

 

 

      217 

 

By substituting 
ibf̂ and 

iMbf
−+1

 in Eq. (2), the following can be obtained, 
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The above can be simplified as, 
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The reversed mel scale shares the common boundary points with the actual mel scale so, 
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Thus Eq. (6) becomes, 
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Let, 
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Thus Eq. (7) becomes, 
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Further it can be simplified as, 
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Re-arranging Eq. (12), the following can be obtained, 
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Thus Eq. (12) can be written as, 
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Assuming, KHzFs 8= , N=256,  
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Using, Hz
N
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low 25.31== , and KHz
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== , Eq. (14) can be simplified as, 
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Where melf̂  is the inverted mel scale pitch value in mels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


