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Summary 

The Siah family of RING proteins function as ubiquitin ligase components, contributing to the 

degradation of multiple targets involved in cell growth, differentiation, angiogenesis, 

oncogenesis and inflammation. Previously, a binding motif (degron) has been recognized in 

many of the Siah degradation targets, suggesting that Siah itself may facilitate substrate 

recognition for a subset of its targets. We report the crystal structure of the Siah in complex 

with a peptide containing the degron motif. Binding is within a groove formed in part by the 

zinc fingers and the first two β-strands of the TRAF-C domain of Siah. We show that residues 

previously described to facilitate binding to Siah interact with the protein and mutagenesis of 

Siah at sites of interaction abrogate both in vitro binding to and in vivo degradation of known 

Siah targets.  
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Protein poly-ubiquitylation functions as a signal for protein degradation by the 26S 

proteasome. One mechanism of protein ubiquitylation involves three steps – activation of 

ubiquitin by an E1 enzyme, transfer to a carrier protein (E2) and ligation to the target in the 

presence of a ligase protein/complex (E3). The E2 and more especially the E3 proteins confer 

specificity for targeting ubiquitylation1. 

Drosophila SINA (Seven in Absentia) and mammalian Siah (Seven in Absentia 

Homologue) are RING-containing proteins that function in protein degradation as parts of 

ubiquitin ligase (E3) components. In Drosophila, SINA has been shown to co-operate with 

Phyllopod (PHYL), Ebi and UBCD1 to facilitate the ubiquitylation and degradation of the 

transcriptional co-repressor Tramtrack 88 (TTK88)2-5. In mammalian cells, a similar complex 

comprising Siah1, Siah-interacting protein (SIP), and the F-box protein Ebi bind to 

adenomatous polyposis coli (pAPC) to facilitate the ubiquitylation and degradation of β-

catenin via a p53-dependent mechanism6. As well, Siah has been reported to bind directly to 

many proteins that are subsequently degraded, suggestive of a simpler E3 complex7. 

Structurally, little is known about the E3 complexes formed with this family of proteins. It has 

been suggested that they form a novel complex similar to, but distinct from, the generic 

RING-containing E3 complexes characterized by the anaphase-promoting complex (APC) 

and the Skp1/Cul1/F-box protein (SCF) ligases. The Siah protein’s dimeric nature alone 

suggests a variant complex, since none of the described complexes contain dimeric RING 

proteins. 

Siah has recently received a great deal of attention because of its role in certain disease 

processes. For example, Siah regulates hypoxia-inducible factor-1alpha protein levels, itself a 

central regulator of the cellular response to hypoxia by hypoxia-induced interaction and 
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degradation of PHD prolyl hydroxylases8. Siah also interacts with synphilin-1 and α-

synuclein and thus may play a role in Parkinson’s Lewy body formation9. 

 Siah is a dimeric protein consisting of an N-terminal RING domain followed by two 

novel zinc finger motifs and a C-terminal substrate-binding domain (SBD). We have 

previously described the crystal structure of the murine Siah1a (missing the RING domain) to 

2.6 Å resolution10. The structure revealed that Siah is a dimeric protein with each SBD 

adopting an eight-stranded β-sandwich fold. Each SBD is extended at the N-terminus by a 

tandem pair of zinc fingers. Analysis of the surface of the molecule suggested a number of 

regions that might interact with protein ligands. The dimer has two deep clefts located 

adjacent to the N-terminal zinc fingers of each monomer and a larger but shallower groove 

centred about the dimer interface. We hypothesised that the clefts might be filled by the RING 

domains that are N-terminal to the zinc fingers in the intact Siah molecule.  The large shallow 

groove (~ 30 Å wide), constructed from a curved anti-parallel β-sheet that straddles the dimer 

interface, was considered as an alternative location for a protein-protein interaction region. 

Reed and Ely11 noted that the deep clefts have an overall electropositive potential whereas the 

shallow groove was strikingly electronegative. Mutagenesis of carboxylate residues (Glu161, 

Asp162, Glu226, Glu237) in the shallow groove of Siah resulting in loss of binding to the 

Siah-interacting protein, SIP, whereas mutations of basic residues in the deep clefts (Arg124, 

Arg214, Arg215, Arg231, Arg232) had no effect12. Interestingly, the binding of another Siah 

ligand, BAG1, was unaffected by mutations in either groove or cleft12. More recently we 

reported that many Siah-binding proteins contain a common binding motif that may act as a 

degradation signal or ‘degron’13. However, attempts to computationally dock the consensus 

motif onto the Siah structure did not reveal the binding site for the degron (unpublished 

results). 
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Here we report the crystal structure of the Siah bound to a degron motif-containing 

peptide that reveals a binding site for Siah-interacting proteins. This site is distinct from those 

previously hypothesised as protein interaction sites. We further show that mutation of Siah 

residues seen to interact with the degron abrogate binding to multiple partners, as well as 

inhibiting cellular proteasomal degradation of such proteins in co-transfection experiments.  

 

RESULTS 

Structure of the Siah bound to PHYL (107-130) peptide 

We have determined the crystal structure of Siah (residues 92 to 282) in complex with the 

synthetic peptide encompassing residues 107-130 of Phyllopod (PHYL) (Fig. 1), which 

includes the earlier identified common degron motif13. The structure of the complex was 

determined by molecular replacement using the previously published Siah (92-282) structure 

composed of two zinc fingers and the SBD10 (see Methods for a full description). There are 

four copies (two dimers AB and CD) of the Siah:PHYL complex in the asymmetric unit.  The 

SBDs of the two dimers superimpose closely with an average root-mean-square deviation 

(rmsd) on Cα’s of 0.3 Å. Monomers A and C (SBD and fingers) superimpose with a rmsd on 

Cα’s of 0.45 Å. However, the rmsd on superposition of monomers B and D is much higher 

(0.9 Å) due to a shift of the N-terminal zinc finger domain with respect to each other. 

Superposition of the complex structure on the published Siah structure reveals no 

significant conformational changes beyond movements of the zinc finger domains and some 

loops. Superposition of the SBDs (excluding the loop 195-204 of each monomer which have 

fairly divergent conformations in the complex structure – see below) yields an average rmsd 

on Cα’s of 0.7 Å. The zinc finger domains appear more ordered in the complex structure, 

likely due to crystal lattice effects. If the SBDs of the complex and uncomplexed structures 
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are superimposed a large shift in the position of the first zinc finger is observed (5 or 9 Å 

depending on which monomer is compared) and a small shift (~ 1.5 to 2 Å) occurs in the 

position of the second zinc finger domain. A loop between residues 172 and 177 adopts a 

different conformation in the complex compared to the uncomplexed structure due to 

interaction with the PHYL peptide. However, the conformation of this loop in all four 

monomers of the complex structure is very similar. The loop at the tip of the dimer interface 

(residues 195-204) adopts a similar conformation in all 4 monomers of Siah but a different 

conformation to that of the uncomplexed structure due to the absence of a zinc ion. In the 

uncomplexed structure a zinc atom was located at the tip of the dimer interface and 

coordinated by Asp200, His202 from monomer and His202 of another monomer and His150 

of symmetry-related molecule. We had previously suggested that this zinc site was unlikely to 

be physiologically relevant10.  

The structure of the complex reveals the PHYL peptide-binding site located in a 

shallow surface groove formed by the beta-sandwich of the Siah SBD and β0 strand making 

up the connection between the second zinc finger domain and SBD (Fig. 1). Thus, there are 

two PHYL peptide binding sites on the Siah dimer separated by 45 Å. The peptide spans a 

length of 30 Å across the surface of the protein, from the concave surface formed by the anti-

parallel beta-sheet at one end of the dimer to the tip at the other end of the dimer  (Fig. 1).  

 

Peptide-protein interactions further define the degron motif 

Good electron density is observed for PHYL residues 114 to 124. The PHYL peptide adopts 

an extended conformation, packing against the β1 and β2 strands of the beta-sandwich of the 

Siah SBD (Figs. 1a,b). The peptide makes several parallel beta-sheet interactions between its 

main chain and the main chain atoms of the β1-strand in Siah: the main chain carbonyl of 
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Pro116 (PHYL) interacts with the main chain amide of Val164, the main chain amide and 

carbonyl moieties of Ala118 (PHYL) interact with the main chain carbonyl of Val164 and the 

amide of Leu166, the main chain amide and carbonyl moieties of Val120 (PHYL) interact 

with the main chain carbonyl moiety of Leu166 and main chain amide of Thr168. The peptide 

is also involved in anti-parallel beta-sheet interactions with the β2-strand of Siah: the main 

chain amide and carbonyl moieties of Thr123 (PHYL) interact with the main chain carbonyl 

and amide moieties of Asp177 (β2, Siah).  

There are a number of contacts involving side-chains (Figs. 1b,c) that are identical in 

all four binding sites observed in the asymmetric unit. Arg115 (PHYL) is in hydrogen 

bonding distance with Asp162 and Asn276. These residues are located in the concave surface 

formed by the anti-parallel beta-sheet that straddles across the Siah dimer. Val117 (PHYL) is 

in van der Waals contact with Val164 (β1, Siah) and Leu166 (β1, Siah). Ala118 (PHYL) is 

packed against Met180 (β2, Siah) and Leu158 (β0, Siah). The distances between the CB atom 

of Ala118 and CE, SD atoms of Met180 and CD2 atom of Leu158 are 3.4 Å, 3.7 Å and 4.1 Å 

respectively. Val120 (PHYL) is in van der Waals contact with Phe165 (β1, Siah), Met180 

(β2, Siah) and Trp178 (β2, Siah). The distances between the CG2 atom of Val120 and the 

CD2 atom of Phe165, the CB atom of Val120 and CE2 atom of Phe165, the CG1 atom of 

Val120 and CB atom of Trp178, the CG2 atom of Val120 and the CB atom of Met180 are 4.2 

Å, 4.5 Å, 4.2 Å and 3.8 Å respectively. The binding pockets for Ala118 and Val120 are too 

small to accommodate larger side chains. Pro122 (PHYL) packs against Trp178 (β2, Siah), a 

residue that is strictly conserved in the Siah/Sina family of proteins.  

There are a number of local changes observed in the Siah structure upon PHYL 

binding. The β0 strand shifts by about 1.5 Å away from the core of SBD. The side chain 

conformation of Phe165 is altered as manifested by a change in its chi2 angle from about 50˚ 
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to 180˚. This in turn causes the side chain of Leu191 to swing out of the way. The side chain 

orientation of Leu158 is also altered to accommodate Ala118 of the PHYL peptide. The same 

changes are seen in all 4 monomers in the asymmetric unit.  

 

Mutation of Siah residues that interact with PHYL (107-130) abrogates binding to 

PHYL in vitro  

We used the crystal structure of the complex as a guide for mutagenesis studies in order to 

determine the relative importance of various interacting residues of Siah with its degron target 

(PHYL). We mutated Met180 to Lys to disturb the hydrophobic pocket harbouring Ala118 

and Val120 of PHYL in the complex (Fig. 1c). We also targeted residues located in β0 

(Thr156 and Leu158) and β1 (Leu166, Thr168), as well as the residue Ala175 from the loop 

172-177 to probe the role of PHYL residues 125 to 130 in the binding (Fig. 1b). Leu158Lys, 

Leu158Asp, Thr168Arg, Leu166Lys, Ala175Glu, as well as the double mutations 

Thr156Glu/Leu158Asp and Leu166Lys/Thr168Arg, were prepared.  

The effects of the mutations were tested in in vitro pull down assays as described in 

the Methods. The results are presented in Figure 3. Met180Lys almost completely abolishes 

binding of the target by Siah, underlying the importance of the hydrophobic interaction 

observed in the crystal structure and suggesting that it is a key recognition/specificity point. 

The mutations in strand β0 had more pronounced effects than the mutations in β1. The side 

chains of the residues from strand β0 point into the PHYL binding groove of Siah. Ala175Glu 

has slightly increased PHYL binding, which may be due to potential additional hydrogen 

bonding contacts provided by the Glu side chain towards PHYL, particularly considering that 

the PHYL residue 125 that interacts with Siah at that position is an arginine residue.  
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Siah binding mutants fail to facilitate degradation of substrates 

To examine whether the identified binding site is also responsible for the binding induced 

degradation of Siah targets in mammalian cells, we examined the Siah substrate TIEG-1. The 

transcriptional repressor, TIEG-1, is a mammalian degradation target for Siah14 that also 

possesses the consensus degron motif13.  To investigate the relevance of the peptide-binding 

site to substrate protein degradation, co-transfection experiments were performed in 

mammalian HEK293T cells. Siah was shown to increase the rate of degradation of TIEG-1 

when co-transfected (Fig. 3). Degradation was shown to be proteasome-dependent by the 

addition of the proteasome inhibitor MG132 (Fig. 3b). When mutant Siah was introduced in 

these experiments, TIEG-1 degradation was affected to varying degrees mirroring the pull 

down assay results (cf. Figs. 2 and 3a). In particular, mutations in β1-strand of Siah involving 

residues Leu166 and Thr168 that only partly disrupted PHYL binding (Fig. 2) did not rescue 

TIEG-1 degradation (Fig. 3a). Siah mutants at Met180 and Leu158, which bound PHYL 

peptide poorly (Fig. 2), failed to degrade TIEG-1 (Fig. 3a). The mutation of Ala175 to 

glutamate apparently promoted the binding of PHYL to Siah (see above and Fig. 2), and this 

mutant was effective in promoting TIEG-1 degradation. To further substantiate that TIEG-1 

binds Siah via the degron motif, we mutated the important Val and Pro within TIEG-1 and 

showed that it was no longer degraded in the presence of co-transfected Siah (Fig. 3c). 

 

DISCUSSION 

The structure of the complex between Siah (residues 92 to 282) and PHYL (residues 107-130) 

reveals that the degron recognition site is located in a shallow surface groove formed by the 

beta-sandwich of the Siah SBD and a β-strand that connects the second zinc finger domain to 

SBD. This site has not previously been identified as a possible protein interaction site. There 
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are two PHYL peptide-binding sites per dimer with each peptide spanning a length of 30 Å 

across the surface of the protein (Fig. 1). The structure provides a molecular basis for 

understanding the importance of the previously published degron motif, Pro-X-Ala-X-Val-X-

Pro13. Pro116, Ala118, Val120 and Pro122 are all in direct contact with Siah in the complex 

structure. Ala118 and Val120 embed their side chains into the hydrophobic core of the beta-

sandwich where the binding pockets are too small to accommodate larger side chains. Pro116 

and Pro122 ensure the extended conformation of the motif for optimal presentation of the 

main chain carbonyls and amides of PHYL to the backbone atoms of the β strands of Siah. 

Pro122 also packs against the conserved Siah residue Trp178. 

In the Siah:PHYL complex crystal structure we only observe electron density 

corresponding to 114-124 of PHYL even though the peptide used in the crystallization 

included residues 107 to 130. Thus residues 108-113 and 125-130 are flexible and could not 

be modelled. Non-consensus residues that do interact with Siah include Arg115 and Thr123. 

Arg115 interacts with an acidic patch on Siah's concave surface involving residue Asp162 that 

was previously implicated in substrate recognition12 and Asn276. Modelling suggests that 

Arg111 or Lys113 could form a salt bridge to either Glu161 or Glu226 (although the peptides 

from the two binding sites could clash in this case). Arg125 on the C-terminal end of PHYL 

could form a salt bridge with Glu194 (a strictly conserved residue in Siah) or to Glu197. 

However, the latter is unlikely to be a significant interaction as it would be expected to have 

been disrupted by the Ala175Glu mutation. Mutagenesis of several flanking residues in PHYL 

including Arg115, Val117 and Arg125 results in substantial reduction in binding13. Moreover, 

the PHYL (108-130) peptide has previously been shown to bind to Siah with apparent KD 

value of 176 nM and competes effectively against many other Siah binding proteins that 

possess the consensus degron motif13. The structure of the Siah:PHYL complex suggests that 
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arginine residues that flank the consensus sequence might contribute to degron binding in an 

unspecific manner rather than be critical for the specificity of the substrate recognition, thus 

explaining the low KD value of 176 nM of PHYL compared to other targets/peptides. The high 

affinity binding of PHYL to Siah may represent the adaptor nature of PHYL, whereas the 

lower affinity of the mammalian interactors may facilitate free transfer from Siah to the 

proteasome. 

The TIEG-1 degradation results support the suggestion that the PHYL/Siah interaction 

defines a substrate-binding groove on Siah that is utilized by some mammalian proteins. It is 

not known at this stage whether other proteins are recruited to this complex, or whether Siah 

itself can facilitate the transfer of ubiquitin from the E2 to the substrate. It is also not known 

whether both binding grooves within a dimer are utilized, or whether ubiquitin is transferred 

from an E2 bound to the same Siah monomer as the substrate.  Further structural experiments, 

involving larger protein fragments, will be required to answer these questions.  

 

 

 

 

METHODS 

Expression and purification of Siah. Mouse Siah 1a (92-282) was cloned into PMCSG7 and 

expressed as a His-tag fusion protein in BL21 DE3 Rosetta cells. Protein expression was 

induced with 0.1 mM IPTG for 3 hours at room temperature when the cell density reached an 

OD600 of 0.6. Siah was purified on a HisTrap (Invitrogen) column. The His-tag was cleaved 

over 48 hours with a His-tagged TEV protease. TEV, the cleaved His-tag and any uncleaved 

material were removed by a second round of purification on a HisTrap column. Siah was 
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further purified by Q-Hyper-D anion exchange in a 0 to 400 mM NaCl gradient at pH 8.0. 

Prior to crystallization, the protein was desalted on a NAP-25 column using a buffer 

consisting of 25 mM Tris pH 8.0, 0.2 mM DTT and concentrated using an Amicon 

concentrator to 10 mg/ml. 

 

Crystallization of Siah-PHYL complex. Siah was mixed with a synthetic Phyllopod (PHYL) 

peptide 107-130 (Auspep, synthesized with free amino terminus and C-terminal amide, at 

>95% purity) at a 1:1 ratio and then incubated for 2 hours at room temperature. 

Crystallization was performed at 295 K using the hanging-drop vapor-diffusion technique. 

Very thin plate shaped crystals (2 mm x 2 mm x 0.03 mm) grew within a week when 2 µl 

Siah:PHYL (107-130) was mixed with an equal volume of reservoir solution containing 100 

mM Tris pH 8.0, 5% (v/v) MPD, 10 mM Tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP) and 1.3-1.6 M MgSO4. The presence of PHYL peptide in the crystals was confirmed 

by resolving dissolved crystals on SDS-PAGE.  

 

Structure determination of Siah1a-PHYL (107-130) complex. Diffraction data were 

collected at 100 K and recorded on a MAR CCD-165 detector on BioCARS beam line 14-ID-

B at the Advanced Photon Source (Chicago, USA). The wavelength was set to 1.117 Å. 10% 

(v/v) glycerol was used as a cryo-protectant. Data were processed using the HKL package15. 

The diffraction data statistics are shown in Table 1. The structure was determined by 

molecular replacement. The search model was the Siah-SBD dimer (PDB id: 1K2F) excluding 

the zinc fingers. Calculations were performed using program Molrep16 and all data to 4 Å 

resolution included in the calculations. Two solutions were found that gave a R-factor of 52.1 

% and correlation coefficient of 0.46. The solutions were in agreement with the self-rotation 
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function. Two dimers (including zinc fingers) packed well in the asymmetric unit without any 

major clashes. The N-terminal zinc finger domains required significant rebuilding. After 4 

cycles of refinement and model rebuilding, the density corresponding to PHYL peptide could 

be unambiguously interpreted anchored at Met 119. The density for 114-124 of PHYL peptide 

is well determined in all 4 monomers of the Siah molecule that are observed in the 

asymmetric unit. The final model includes 4 Siah monomers 92-282 including 4 zinc ions and 

4 PHYL peptides (114-124). The stereochemical quality of the final model is good (Table 1) 

with 77.6% residues in the most favored region of the Ramachandran plot, only 3 residues in 

the generously allowed regions and none in the disallowed regions. Other stereochemical 

parameters such as side chain chi angle values, peptide bond planarity, alpha-carbon 

tetrahedral distortions and non-bonded interactions are all better than or within the allowed 

ranges defined by PROCHECK17.  

 
 

Mutagenesis experiments. Siah and TIEG-1 mutants were made using the Stratagene 

QuikChange Mutagenesis Kit. The mutations were confirmed by restriction enzyme digest 

and DNA sequencing. The Siah mutants were expressed using the protocol for wild-type Siah 

and purified using His-Bind Quick 300 Cartridges (Novagen). The His-tag was retained for 

use in pull-down assays.  The mutagenic oligo pairs for Siah are as follows: 

GCTGTCGACTGGGTGAAAATGCAGTCTTGTTTTGGC  M180K forward 

GCCAAAACAAGACTGCATTTTCACCCAGTCGACAGC M180K reverse 

TCCATTACCACCGACCAAGGAGAAGATATCGTTTTCC L158D forward 

GGAAAACGATATCTTCTCCTTGGTCGGTGGTAATGGAC L158D reverse 

GTCCATTACCACCAAGCAAGGAGAAGATATCGTTTTCC    L158K forward 

GGAAAACGATATCTTCTCCTTGCTTGGTGGTAATGGAC L158K reverse 

GGAGAAGATATCGTTTTCAAAGCTACAGACATTAACC L166K forward 



 Page 14  

GGTTAATGTCTGTAGCTTTGAAAACGATATCTTCTCC L166K reverse 

CAAGTCCATTGAAACCGACCAAGGAGAAGATATCGTTTTCCTTGC T156E/L158D forward 

GGAAAACGATATCTTCTCCTTGGTCGGTTTCAATGGACTTGTG T156E/L158D reverse 

GAAGATATCGTTTTCAAAGCTCGTGACATTAACCTTCCTGGTGC L166K/T168R forward 

GGAAGGTTAATGTCACGAGCTTTGAAAACGATATCTTCTCCTTGC L166K/T168R reverse 

GATATAGTTTTCCTTGCTCGAGACATTAACCTTCC T168R forward 

GGAAGGTTAATGTCTCGAGCAAGGAAAACTATATC T168R reverse 

CATTAACCTGCCTGGTGAAGTTGACTGGGTGATGATGC      A175E forward 

GCATCATCACCCAGTCAACTTCACCAGGCAGGTTAATG      A175E reverse 

The mutagenic oligo pair for TIEG-1 were: 

CATACCATGTGCCGCTAACTCAAACAACAGATCCAAATGTG VxP to NxN forward 

CACATTTGGATCTGTTGTTTGAGTTAGCGGCACATGGTATG VxP to NxN reverse 

 

Pull-down assays. 50 µl of Ni-NTA agarose resin (Qiagen) was used for each sample. 

Siah WT or Siah mutants (approximately 0.04 mM) were mixed with PHYL(107-130) 

peptide (0.1 mM) in the binding buffer (25 mM Tris pH 8.0, 0.2 M NaCl, 2mM TCEP, 

0.1 % Np-40).  6His-galectin-3 + PHYL(107-130), Siah WT with no PHYL(107-130), 

and PHYL(107-130) alone were used as controls. The samples were pre-mixed and 

incubated for 20-30 minutes at room temperature. 50 µl Ni-NTA resin was washed 3 

times with the binding buffer prior to addition of the samples. The samples were added to 

the resin and incubated for 40 minutes at room temperature with gentle rocking. The 

resins were then spun down for 2 min. at 2000 rpm. The supernatants were removed and 

kept for examination by gel electrophoresis. The resins were washed 3 times with binding 

buffer and then resuspended in 40 µl of SDS sample buffer and analyzed on a 16.5% 

Tricine gel. The amount of PHYL bound to Siah was quantitated by scanning 
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densitometry (Molecular Dynamics) using ImageQuaNT 5.0 software. The measurements 

were normalized to Siah loading.   

 

Degradation experiments. Transfections were performed in 12-well tissue culture plates 

using HEK293T cells and Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions. DNA for Flag-TIEG-1 (in pCDNA4/TO), and HA-Siah1a 

(pCDNA3) were added as shown in the Figure legend. After 20-24 hours in culture, cells 

were washed once in 1 ml of PBS, harvested in SDS sample buffer, prior to SDS-PAGE 

and Western blotting. Blots were probed with anti-Flag antibody (Sigma) for TIEG-1, 

anti-HA antibody for Siah and PHYL expression, and anti-α-tubulin as a loading control. 

Expression vector for Flag-TIEG-1 was a gift from Steven Johnsen and Thomas 

Spelsburg (Mayo Clinic and Foundation, Rochester, NY). 

 

Accession codes. Atomic coordinates and structure factors have been deposited in the Protein 

Data Bank (accession code 2AN6). 
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Table 1  Data collection and refinement statistics 

 

 siah_phyl_28 
Data collection  
Space group P21 
Cell dimensions  
    a, b, c (Å) 63.3, 100.0, 103.4 
α, β, γ (°)  90.0, 104.3, 90.0 
Resolution (Å) 3.0 (3.1-3.0) 
Rmerge 8.2 (50.8) 
I / σI 13.0 (1.3) 
Completeness (%) 99.2 (95.8) 
Redundancy 3.2 (3.0) 
  
Refinement  
Resolution (Å) 3.0 
No. reflections 23606 
Rwork / Rfree 23.7 / 30.2 
No. atoms 6376 
    Protein 6024 
    PHYL peptide/Zn ions 344/8 
B-factors  
    Protein 75.0 
    Protein (Siah SBD only) 65.7 
    Protein (Zn finger domains only) 93.2 
    PHYL peptide/Zn ions 71.4/96.8 
R.m.s. deviations  
    Bond lengths (Å) 0.017 
    Bond angles (°) 1.8 
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FIGURE  LEGENDS 

 

Figure 1 Structure of the Siah (92-282)-PHYL (107-130) complex. (a) Orthogonal views of 

the two dimers observed in the asymmetric unit in ribbon style with the PHYL peptide shown 

in stick fashion. Substrate binding domains are shown in green and yellow, the first and 

second zinc finger domains are in red and blue respectively. Zinc ions are denoted as purple 

spheres.  An omitted Fo – Fc electron density map, calculated from the final model after the 

PHYL peptide was excluded and contoured at 3σ,  is shown in light blue. This figure was 

prepared with Bobscript18 and rendered with RASTER3D19. (b,c) Stereo views showing the 

key interactions between the PHYL peptide (residues underlined) and Siah. Hydrogen bonds 

are shown as purple dashed lines. The brown dash loop represents the conformation of 172-

177 loop observed in the uncomplexed Siah structure. Residues of β1 and β2 of Siah are 

shown as bonds in (b). The hydrophobic pocket of Siah (including residues of strand β0) that 

harbours PHYL residues Ala118 and Val120 is shown as bonds in (c).  

 

 

Figure 2 Binding groove mutants of Siah fail to bind PHYL. 16.5% tricine gel 

demonstrating the effect of Siah mutants on PHYL binding as examined in the pull-down 

assays described in Methods. Bars below the gel represent quantitated amounts of PHYL 

peptide bound to Siah and mutants.  

 

Figure 3 TIEG-1 degradation is dependent on the PHYL-binding groove of Siah. (a) 

HEK293T cells, in 12-well plates were transfected with 500 ng of Flag-TIEG-1 and 100 

ng of HA-Siah1a DNA, expressing wild type and various mutations of residues in the 
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PHYL-binding groove as described in the Methods. (b) TIEG-1 degradation is 

proteasome-dependent. HEK293T cells were transfected with 500 ng of Flag-TIEG-1, 

plus and minus 25 ng of HA-Siah1a, in the presence and absence of MG132. (c) TIEG-1 

degradation is dependent on the VxP Siah-binding motif. HEK293T cells were 

transfected with 500 ng of Flag-TIEG-1 or Flag-TIEG-1 (VxP to NxN), and 6.25 – 100 

ng of HA-Siah1a. TIEG-1 levels were monitored by Western blot probing with anti-Flag 

antibody. Due to degradation, Siah1a immunoreactivity was not detected reproducibly at 

or below 100 ng of DNA transfected. 
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