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Abstract:   

A series of 3,6-disubstituted β-carbolines was synthesized and evaluated for their in vitro 

affinities at αxβ3γ2 GABA
A
/benzodiazepine receptor subtypes by radioligand binding assays in search of 

α
1
 subtype selective ligands to treat alcohol abuse. Analogues of β-carboline-3-carboxylate-t-butyl ester 

(βCCt, 1) were synthesized via a CDI-mediated process and the related 6-substituted β-carboline-3-

carboxylates 6 including WYS8 (7) were synthesized via a Sonogashira or Stille coupling processes 

from 6-iodo βCCt (5). The bivalent ligands of βCCt (32 and 33) were also designed and prepared via a 

palladium-catalyzed homocoupling process to expand the SAR to larger ligands. Based on the 

pharmacophore/receptor model, a preliminary structure-activity relationship (SAR) study on 34 

analogues illustrated that large substituents at position -6 of the β-carbolines were well tolerated.  As 

expected, these groups are proposed to project into the extracellular domain (LDi region) of GABAA/.Bz 

receptors (see 32 and 33). Moreover, substituents located at position -3 of the β-carboline nucleus 

exhibited a conserved stereo interaction in lipophilic pocket L1, while N(2) presumably underwent a 

hydrogen bonding interaction with H1. Three novel β-carboline ligands (βCCt, 3PBC and WYS8), 

which preferentially bound to α1 BzR subtypes permitted a comparison of the physiological efficacies 

with a range of classical BzR antagonists (flumazenil, ZK93426) from several different structural 

groups and indicated these betacarbolines were “near GABA neutral antagonists”. Based on the SAR, 

the most potent (in vitro) α1 selective ligand was the 6-substituted acetylenyl βCCt (WYS8, 7).  Both 

βcct and 3PBC reduced alcohol administration in alcohol preferring (P) and high alcohol drinking 

(HAD) rats but had little or no effect on sucrose self-administration.  Moreover, these two 

betacarbolines were orally active, and in addition, were anxiolytic in P rats but were only weakly 

anxiolytic in rodent.1-3  These data prompted the synthesis of the betacarbolines presented here. 

Introduction: 
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Alcoholism 

 Alcohol addiction and dependence remain a significant public health concern, impacting 

physical and mental well-being, family structure and occupational stability.4  While advances have been 

made in the development of novel therapies to treat alcoholism, 5-8  alcohol-dependent individuals 

represent a heterogeneous group ,9-11 and it is unlikely that a single pharmacological treatment will be 

effective for all alcoholics. Hence, a better understanding of the neuromechanisms which regulate 

alcohol seeking behaviors and the design of clinically safe and effective drugs that reduce alcohol 

addiction and dependence remain a high priority.7, 12  While the precise neuromechanisms regulating 

alcohol-seeking behaviors remain unknown, there is now compelling evidence that the GABAA 

receptors within the striatopallidal and extended amygdala system are involved in the "acute" 

reinforcing actions of alcohol.13-15  The striatopallidal and extended amygdala system include the 

sublenticular extended amygdala [substantia innominata/ventral pallidum (VP)], shell of the nucleus 

accumbens (NACC), and central nucleus of the amygdala.16-18  Among the potential GABAA receptor 

isoforms within the VP regulating alcohol-seeking behaviors, GABA receptors containing the α 

receptor subtype (GABA α1) appear preeminent.  Thus, Criswell observed that acute alcohol 

administration selectively enhanced the effects of ionotophoretically applied GABA in the ventral 

pallidum (VP).19, 20  However, no effects were seen in the septum, ventral tegmental area (VTA), and 
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CAI hippocampus. Further, a positive correlation was observed between alcohol-induced GABAA 

enhancement and [3H] zolpidem binding (an α subtype selective agonist).  These data suggest the α 

Bz/Gaba(A)ergic receptor plays an important role in alcohol-motivated behaviors.   

Research on the neuroanatomical basis of alcohol reward has shown that the NACC, VTA, VP, 

central amygdala (CeA), and hippocampus are involved in GABAergic regulation of ethanol (EtoH) 

reinforcement.2, 21-24 

Other investigators have identified a dense reciprocal projection from the VP to the NACC,25-27  

and many of these have been found to be GABAergic neurons.28-30  The NACC is now well established 

as a substrate that regulates the reinforcing properties of abused drugs. 13 

Finally, immunohistochemical31, 32 and in situ hybridization studies33-35 have demonstrated that 

the VP contains one of the highest concentrations of mRNA encoding the α subunit in the CNS. These 

findings, together with pharmacological studies suggesting the VP plays a role in reward-mediated 

behaviors of psychostimulants and opiates,28, 36-39 suggest a possible role of the VP-α receptors in the 

euphoric properties of alcohol. 

Animal Models 

To model the human condition of alcohol abuse, rodents from the alcohol ‘preferring’ (P) line 
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were studied.  The P rat line has been shown to satisfy all criteria for an animal model of human alcohol 

abuse.9, 15, 40, 41 Findings of previous studies concluded that activation of VP-α receptors by the α1 

preferring antagonist 3-PBC produced marked reductions on alcohol-maintained responding (June et al 

patent).  The α-mediated suppression at the VP level by 3-PBC showed a high degree of 

neuroanatomical specificity. Specifically, the α-mediated suppression was not observed with the more 

dorsal placements in the NACC or caudate putamen. The failure of 3-PBC to alter alcohol self-

administration in the NACC/striatum is in agreement with previous research which has consistently 

reported a lack of expression of the α transcript in the NACC and caudate;31-34, 42 and weak binding of 

[3H] zolpidem binding, the α selective agonist.  Thus, Criswell and his colleagues19, 20, 35 have 

suggested zolpidem binding sites may be predictive of loci where ethanol activates GABAergic 

receptors in the CNS. 

An understanding of the neuromechanisms that regulate alcohol drinking is key in the 

development of drugs to treat alcohol addiction and dependence in humans.2 In recent years, much 

evidence has accumulated in favor of the GABA system.22, 23, 43, 44   However, despite the growing body 

of evidence in favor of the GABA system, much remains unknown about the role of specific GABAA 

receptor subtypes in regulating ethanol reinforcement. This is due to both a lack of high-affinity and 

selective ligands capable of discriminating among the GABAA receptor subunits and the heterogeneity 
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of various subunits within the known alcohol reward circuitry.31, 34  Of the potential GABAA
 receptors 

involved in the reinforcing properties of alcohol, evidence suggests the α1 subtype within the VP may 

play an important role in regulating alcohol-seeking behaviors, as mentioned above.  The VP contains 

one of the highest distributions of α1 subunits in the mesolimbic system.32-35    Finally, acute ethanol 

administration has been reported to selectively enhance the effects of iontophoretically applied GABA 

in the VP.  These effects correlate highly with [3H] zolpidem binding (an α-subtype selective agonist) 

.19, 20  Together, the above findings suggest a possible role for the VP α receptors in the reinforcing 

properties of alcohol.  

The GABAA receptor is the major inhibitory neurotransmitter receptor of the central nervous 

system (CNS) and the site of action of a variety of pharmacologically and clinically important drugs, 

such as benzodiazepines, barbiturates, neuroactive steroids, anesthetics and convulsants.45  It is now 

clear that these receptors regulate the excitability of the brain, anxiety, muscle tone, circadian rhythms, 

sleep, vigilance, memory, and learning.45  There are several disease states associated with the improper 

functioning of this protein, including anxiety, epilepsy,46 insomnia,47 depression and bipolar disorder,48, 

49 schizophrenia,50 as well as mild cognitive impairment and Alzheimer's disease.51  A role of GABAA 

receptors in drug and alcohol abuse has also been reported.52-54  Briefly, GABAA receptors are 

composed of 5 subunits that form a central chloride channel and can belong to different subunit classes.  
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A total of 19 subunits (6α, 3β, 3γ, 1ε, 1π, 1θ, 3ρ) of the GABAA receptor have been cloned and 

sequenced from the mammalian nervous system.55, 56 All these polypeptides possess an approximate 

molecular mass of ~ 50 kD and are structurally related. 

The existence of multiple GABAA receptor subunits can give rise to a large number of different 

GABAA receptor subtypes.57  The majority of GABAA receptors, however, are composed of 1γ and 2α 

and 2β subunits. The presence of a γ subunit within a GABAA receptor is necessary for the formation of 

a benzodiazepine binding site that is located at the interface of an α and γ subunit. Whereas the classical 

benzodiazepines, such as diazepam or flunitrazepam, exhibit a high affinity for receptors composed of 

α1βγ2, α1βγ2, α3βγ2, or α5βγ2 subunits (diazepam sensitive (DS) receptors), as well as for their less 

intensively investigated analogues containing the γ3 subunit, other benzodiazepine binding site ligands 

are also able to interact with α4βγ2 or α6βγ2 receptors (diazepam insensitive (DI) receptors), or with 

receptors containing γ1 subunits.45   Receptors containing γ1 or γ3 subunits exhibit quite a low 

abundance in the brain58-60 and their contribution to the “in vivo” effects of benzodiazepine binding site 

(BZ BS) ligands currently is unclear. 

To evaluate the role of the α1 receptor in regulating alcohol reinforcement, 3-propoxy-β-

carboline hydrochloride (3-PBC), a mixed benzodiazepine (BDZ) agonist-antagonist with binding 

selectivity at the α1 receptor was developed.2   Compared with the prototype BDZ agonist zolpidem, 3-
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PBC exhibits a slightly higher binding selectivity for the α1 receptor .61, 62   Preliminary behavioral 

studies in several species (e.g., rats, mice, and primates) show that 3-PBC is a BDZ antagonist, 

exhibiting competitive binding-site interactions with BDZ agonists at low to moderate doses (2.5-15 

mg/kg).61, 63, 64  At higher doses (15-60 mg/kg), 3-PBC produces anxiolytic effects in the plus maze that 

are comparable with those of chlordiazepoxide.63   Hence, 3-PBC displays an agonist or antagonist 

profile depending on both the dose and the task employed.  To determine the capacity of 3-PBC to 

modulate physiological GABAergic effects, 3-PBC was evaluated in recombinant 

α1, α2, α3, α4 and α5 receptors.   Next, it was determined whether the in vitro binding affinity of 3-

PBC in wild-type synaptosomal cortical membranes would mimic the actions of 3-PBC at recombinant  

α1 receptors.   In addition the in vivo capacity of 3-PBC to selectively reduce alcohol-maintained 

responding in a rodent model of the human condition of alcohol abuse after systemic and intra-VP 

infusions was determined.22, 65 

The evidence suggests both a regional and receptor subtype specificity for GABAA-containing 

receptors in regulating alcohol-motivated behaviors.66  Specifically, the α1 subtype in the anterior and 

medial VP2 and the α5 isoform in the CA1 CA3 hippocampus22 have both been shown to be important 

mediators of alcohol reinforcement.  Unlike the VP and hippocampus, unequivocal research exists on 

the primary type of isoform within the CeA.  For example, while some investigators contend that the 
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CeA is comprised primarily of receptors of the α1 subtype,67 others suggest the α2 and α3 receptors are 

the most predominant isoforms.31, 32, 34  Thus given the proposed subunit composition of the GABA 

receptors within the CeA, pharmacological compounds capable of exploiting the α1, α2, and α3 

subunit-containing GABAA receptors represent optimal tools to evaluate the role of the GABAA 

receptors in alcohol reinforcement and better understand neurobehavior and ethanol responding. 

α1 Subtype Selective Ligands 

The β-carboline-3-carboxylate-t-butyl ester (βcct) is a mixed benzodiazepine agonist- antagonist 

ligand with binding selectivity at the α1 receptors,2, 63, 68 βcct also exhibits some affinity (albeit lower) 

for both the α2 and α3 receptors.  Behavioural studies in several species (eg, rats, mice, primates) show 

that βcct is a BDZ antagonist exhibiting competitive binding site interaction with BDZ agonists over a 

broad range of doses.61, 63, 69-73  Other studies show that βcct produces anxiolytic effects in rodents63 and 

potentiates the anticonflict response induced by α1 subtype agonists in primates.71  Thus, βcct displays a 

weak agonist or antagonist profile depending on the behavioral task, species, and dose employed. 

In studies involving the α1 subtype, βCCT and 3-PBC were observed to selectively reduce 

alcohol-motivated behaviors in a variety of experiments.2, 74  However, unlike the α5 selective inverse 

agonist RY-23, both the β-carboline antagonists βCCT and 3-PBC displayed mixed weak agonist-

antagonist profiles in vivo in alcohol P and HAD rats. Therefore, in addition to being able to study the 
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molecular basis of alcohol reinforcement, α1 Bz beta-carboline ligands which display mixed agonist-

antagonist pharmacology in alcohol P and HAD rats may be capable of reducing alcohol intake while 

eliminating or greatly reducing the anxiety associated with habitual alcohol, abstinence or 

detoxification.   Thus, these types of ligands may be ideal clinical agents for the treatment of alcohol 

dependent individuals.2, 74 

 Consequently, several series of structurally different compounds have been synthesized which 

possess some α1 subtype selectivity.75-79 The discovery of high affinity, saturable, and stereospecific 

ligands for BzR has been coupled with the demonstration that β-carbolines exhibited an affinity for the 

BzR.80-87 Some of these agents act on the BzR to induce effects that are functionally opposite (inverse 

agonists/antagonists) to those of classical BDZs. Consequently, the affinities of a wide variety of β-

carbolines have been reported in synaptosomal membranes from this laboratory,80, 82, 83, 88-94 and the 

laboratories of others,95-100 and this prompted the study of the binding affinities of a series of β-

carbolines75 at 5 recombinant GABAA/BzR subtypes (α1β3γ2, α2β3γ2, α3β3γ2, α5β3γ2 and α6β3γ2) 

expressed from recombinant human cell lines.95, 101, 102 In general, this series of β-carboline ligands 

exhibited some selectivity at α1 receptor subtypes including βCCt (1) and 3-PBC (2).2, 3 These two 

ligands displayed a 20-fold and 10-fold selectivity, respectively, for the α1 subtype over the α2 and α3 

receptors, as well as over 150-fold selectivity for the α1 site over the α5 subtype.2, 3 βCCt (1) was more 

selective at the α1 subtype in vitro than the classical α1 selective agonists zolpidem (3) and CL 218872 

(4) (Figure 1).88, 103, 104 A number of in vitroand in vivo studies employing α1 (e.g., zolpidem ,CL 

218872, 105 βCCt, and 3-PBC106) selective ligands suggest the α1-containing GABAA/Bz receptors of 

the ventral pallidum (VP) play an important role in regulating alcohol's neurobehavioral effects; 

particularly alcohol's reinforcing properties. 2, 106,20, 35, 107 
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Structure Activity Relationships: 

A predictive 3-D QSAR pharmacophore/receptor model for inverse agonist/antagonist β-

carbolines was initially developed via Comparative Molecular Field Analysis (CoMFA) and later 

refined.108, 109 Affinities of ligands from 15 different structural classes have been evaluated.110 Based on 

this CoMFA study of a series of β-carbolines, Huang et al. reported that β-carbolines bind to all 

diazepam sensitive (DS) sites of the BzR with some selectivity at the α1 containing receptor isoform and 

this was confirmed by in vitro binding affinity of these ligands.111 A lipophilic region (LDi) of the 

pharmacophore receptor model appears to be larger in the α1, α2 and α3-containing receptor isoforms 

and important for α1 subtype selectivity.110 More recently, during the design and synthesis of βCCt-

related bivalent ligands,112-115 it was found that a series of 3,6-disubstituted β-carbolines (see Figure 1), 

including 6-iodo-βCCt (5) and 6-trimethylsilanyl-ethynyl-βCCt (6) (Figure 1) possessed α1 subtype 

selectivity.112 

Figure 1. In vitro binding affinities of a series of α1 selective ligands (Ki in nM). 
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The rigidly linked linear bivalent ligands of βCCt at position “6” did bind to BzR receptors with some 

α1 subtype selectivity and may provide the desired α1 selectivity through specific occupation of the LDi 

region of the pharmacophore/receptor model.112 Although the two 3,6-disubstituted-β-carbolines 5 and 6 

are less potent than βCCt (1), the potent binding affinities observed for 5 and 6 at the α1 subtype has 

stimulated the synthesis of the βCCt analogs: 3-substituted-β-carbolines as well as 3,6-disubstituted-β-

carbolines.  

On the other hand, these studies also indicated that the selectivity of GABAA/BzR site ligands 
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could be described in relation to binding and physiological efficacy in vitro. The physiological efficacy 

was based on the capacity of a ligand to modulate GABAergic function.116  BzR ligands act on chloride 

flux over a continuum from positive to negative modulation, with antagonists acting theoretically, at a 

point on the continuum, with zero intrinsic efficacy (bind to a receptor but exhibit no action).76 

Consequently, the pharmacological profiles of βCCt and 3-PBC at recombinant α1β3γ2, α2β3γ2, 

α3β3γ2, α4β3γ2, α5β3γ2 and α6β3γ2 receptor subtypes expressed in Xenopus oocytes were investigated.2, 3, 65  

 

Figure 2. Efficacy of βCCt in modulating GABA at recombinant GABAα1-α5 receptors 

in Xenopus oocytes: comparison with other BzR antagonists. 

 

 

Modulation of GABAA α1β3γ2, α2β3γ2, α3β3γ2, α4β3γ2 and α5β3γ2 receptor subunit combinations expressed in Xenopus 
oocytes by βCCt (open bars), flumazenil (shaded bars), and ZK 93426 (black bars). A saturating concentration (1-10 µM) 
was coapplied over voltage-clamped oocytes along with an EC50 of GABA. 

 

 

The results of this study illustrated that βCCt was a near “neutral” antagonist (i.e., little or no 

efficacy) at all receptor subtypes. In fact, the level of intrinsic efficacy of βCCt in oocytes was less at 
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some receptor subtypes than the classical nonselective antagonist flumazenil (Ro 15-1788, for which 

intrinsic efficacy at all BZ-sensitive GABAA subtype was relatively low, but not zero). To date, no 

compound has been characterized that exhibits zero efficacy at all BzR subtypes, raising the possibility 

that a compound labeled as an “antagonist” may indeed exhibit functional activity given the right 

circumstances. For example, more recently, the efficacies of both βCCt and 3-PBC in the selective 

reduction of alcohol responding and production of anxiolytic effects were demonstrated in P and HAD 

rats following oral administration.117 When compared with the classical Naltrexone treatment, these 

reductions in alcohol responding were more selective and longer in duration.117 It is important to note 

that similar reductions with βCCt and 3-PBC have now also been reported in primates by our 

collaborators, Drs Elise Weerts from John Hopkins and Donna Platt from Harvard Medical School 

(unpublished results). These studies in primates were initially investigated based on the original studies 

in the alcoholic rats. In summary, the antagonist βCCt exhibited either a neutral or low-efficacy agonist 

response at GABA receptors in oocytes. Although there has been some debate in the literature at present 

as to whether a ligand’s binding or efficacy selectivity was “the more salient factor” in determining a 

ligand’s capacity to function as an alcohol antagonist,3, 75, 117 the knowledge of the efficacy of an 

individual putative anti-alcohol reward ligand across all GABAA receptors was indeed critical to the 

knowledge of their mode of action in the CNS. 

Based on the limited availability of data on the series of α1 “binding” and “efficacy” selective β-

carbolines (βCCt, 3PBC) as anti-alcohol agents118 the present study was designed to expand the SAR 

and search for better α1 subtype selective ligands.  These compounds may be promising modulators of 

alcohol-related co-morbid behaviors in alcohol dependence via the GABAA/BzR system. Although 

recent evidence suggests a salient role for GABAergic mechanisms in the regulation of excessive 

alcohol drinking and the negative affective states associated with abstinence, decreased GABAergic 

tone stemming from chronic alcohol use and withdrawal may serve to generate anxiety.119 Thus, 

compounds that enhance GABAergic tone may be effective and safe treatments for both excessive 
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alcohol drinking and the negative affective states associated with abstinence and may represent novel 

pharmacotherapies to treat alcoholism.     

In this regard, the chemistry and pharmacological evaluation of a series of structurally modified 

analogues of βCCt (1) as selective and potent α1 subtype-preferring ligands are described. The synthesis 

of the α1 selective compound 7 (WYS8) and the structure-activity relationships (SAR) of 3,6-

disubstituted β-carbolines are also presented. The established pharmacophore/receptor model110, 120 of 

BDZ binding sites was employed to design ligands with respect to the LDi region at position-6, as well as 

characterize the binding pocket L1 at position-3. Protein-ligand docking of the α1 subtype GABAA 

receptor protein and WYS8 illustrated the agreement between the pharmacophore/receptor model and 

BzR site prediction based on homology modeling.120-122   

 

 

 

 

 

 

Chemistry: 

 The synthesis of the ligands under study is outlined in Schemes 1, 2 and 3. The important 

precursor β-carboline-3-carboxylate-ethyl ester (βCCE, 8) and its corresponding acid (9) were the 

intermediates required for large-scale synthesis of βCCt (1), as well as an intermediate required for the 

synthesis of the new β-carbolines. As outlined in Scheme 1, DL tryptophan 10 was converted into 

tetrahydro-β-carboline (11) via a Pictet-Spengler reaction. Fischer esterification of 11, followed by 

oxidation with activated MnO2 provided the intermediate BCCE (8) on 200 gram scale.  Hydrolysis of 

ester 8 to provide the acid 9, was then followed by esterification in t-butanol with CDI to provide BCCt 

(1). The synthesis of 3PBC·HCl (1) was more difficult to scale up due to the complex last step (14→ 2). 
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It began with βCCE (8) from Scheme 1, which was heated with hydrazine to furnish hydrazide (13) in 

82% yield. The hydrazide (13) was stirred with nitrous acid to provide an azide, which was unstable, 

and was converted into 3-amino-β-carboline (14) when stirred with acetic acid (Scheme 1) via a Curtius 

rearrangement. The last step, originally developed on a 100 mg scale, has now been scaled up to 4 gram 

levels to furnish 3PBC hydrochloride salt in reasonable yield. 

In Scheme 2, the β-carboline alkyl esters 16-20 as well as chiral βCCt analogs 21-24, and 25, 26 

were prepared via the CDI-mediated process described above (see Scheme I).123 Briefly, when β-

carboline-3-carboxylic acid 9 was treated with 1,1-carbonydiimidazole (CDI) in dry DMF, the 

imidazole derivative 27 which resulted was subsequently transformed into the desired esters by treating 

it with the corresponding alcohols (individually) in the presence of DBU in a one-pot sequence. The key 

potential α1 chiral selective analogs CMD-30 R/S isomers (21 & 22) can be synthesized by the CDI 

method in 90% yield (individually) on 10 gram scale. The required starting chiral alcohols were 

obtained by asymmetric reduction of the corresponding trifluoromethyl ketones with (+)-DIP-

chloride.124, 125 or the (-)-DIP-enantiomer. The 6-substituted-iodo-β-carboline-3-carboxylates 28 were 

then prepared as intermediates to generate different functionality at position-6 through a palladium-

mediated cross coupling process. For example, as illustrated in Scheme 2, βCCt (1) was treated with 

I2/CF3COOAg in chloroform to provide 6-iodo-βCCt  

Scheme 1. Large scale synthesis of βCCt and synthesis of 3PBC. 
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5 (see also 28a) in 80% yield and the 6-substituted targets 29-31 were obtained in 65%-83% yields via a 

Stille coupling process employing commercially available substituted tributyl-stannanes. The 

substitution by halogen occurred at position-6 via NMR analysis of 5 (or 28a) with One Dimensional 

Nuclear Overhauser Effect (NOE) experiments.  

Depicted in Scheme 3 are the synthetic routes for the βCCt related bivalent ligands 32 and 33.112 

In order to efficiently affect a palladium mediated Sonogashira process at position-6 of β-carbolines (a 

reactive electron-rich indole heterocycle), protection/deprotection of the indole Na-H 
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Scheme 2. CDI-mediated esterification of 3-substituted β-carbolines followed by  

the conversion into 3,6-disubstituted β-carbolines. 
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group in β-carbolines 34 and 35 was necessary. The Boc protected 6-ethynyl-β-carboline-3-carboxylic 

acid t-butyl ester (34) was prepared directly from 6-substituted acetylenyl βCCt (7), which was initially 

termed WYS8. The common intermediate iodo-βCCt 5 (see also 28a) was then converted into the 6-

substituted trimethylsilylacetylenyl βCCt (6) via a Sonogashira coupling process.126, 127 At this point, 
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TBAF was employed to remove the trimethylsilyl group to provide the 6-substituted acetylenyl βCCt 

analog WYS8 (7) as well. 

            The ester 7, was then protected with a Boc group at the N(1) position to afford 34 under standard 

conditions.  A Sonogashira process was then employed to couple 34 with Boc protected iodo-βCCt (35) 

to provide the rigid two carbon linked bivalent ligand 32 of βCCt. The Boc protecting group was 

removed thermally by heating in cumene at high dilution and bivalent ligand 32 was obtained. The 

bisacetylenic bridged ligand 33 was synthesized from the Boc protected 6-ethynyl-βCCt 34 via a 

homocoupling process,128 followed by the removal of the Boc group under thermal conditions in cumene 

at high dilution.  

Scheme 3. Preparation of 6-substituted acetylenyl βCCt (7, WYS8) and related bivalent ligands. 
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Biological & Pharmacological Testing 

 The affinity of compounds at GABAA/BzR recombinant subtypes was measured by competition 

for [3H]Ro15-1788 (83 Ci/mmol; NEN) binding to Ltk- cell membranes expressing human receptors of 

composition α1β3γ2, α2β3γ2, α3β3γ2, α4β3γ2, α5β3γ2 and α6β3γ2.95, 101 Ki values represent the mean of two 

determinations which differed by less than 10%. The values are reported in nM and 1.8 nM [3H]Ro15-

1788 and 8 nM  [3H]Ro 15-4513 (for cells expressing α4β3γ2 and α6β3γ2) were used as radioligands. The 

results are summarized in Tables 1-3. 

The electrophysiological analyses of all selective compounds were performed with whole cell 

variation of the patch-clamp-technique, in HEK cells employing GABA concentrations around the 

subtype-specific EC20
129 to depict the quantitative efficacy difference [i.e., GABA modulation] and 

qualitative subunit modulation [i.e., subunit type] of these ligands relative to diazepam.  

Results and Discussion 

 (1) βCCt bivalent ligands.  Although the α1β3γ2 BzR/GABAergic subtype is very similar in 

structure to the α2 and α3 subtypes, there are slight differences.110, 130 One major difference is in region 

LDi, which appears larger in the α1 subtype than in either the α2, or α3 or α5 subtypes. This is located 

near position -6 of βCCt (1) and can be seen in the model of the Comparative Molecular Field Analysis 

(CoMFA) study for the α1 subtype (Figure 3).120, 131 In particular, blue contours in the western region of 

the pharmacophore/receptor model imply positive lipophilic interactions in this area that corresponds to 

region LDi (a region in the pharmacophore adjacent to the extracellular domain of the receptor) of the 

unified pharmacophore/receptor model. In this region, bulky substituents are tolerated and occupation of 

this area with substituents appears to enhance affinity at α1 subtypes. This knowledge provided an 

opportunity to introduce a linker between two pharmacophoric β-carboline-3-carboxylate residues in 

order to design selective and rigid bivalent ligands. As described in the Introduction, initial efforts to 
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find a novel series of α1-preferring ligands focused on design and synthesis of βCCt bivalent ligands. 

Although the α1 subtype selectivity was not amplified with the particular acetylenyl linked bivalent 

ligand 32, the ligand does bind preferentially at α1 subtypes (Table 1). It was proposed the two-carbon 

linker was not long enough and that crowding between the second βCCt unit and the receptor protein 

decreased the binding affinity at the α1 subtype, thereby negating some of the potential selectivity. 

However, these rigidly linked linear bivalent ligands 32 and 33 fit the GABAA/BzR 

pharmacophore/receptor model very well (Figure 4).120 The unit at C-6, presumably, protrudes into the 

extracellular domain of the BzR, as previously expected,111, 112 and bound to BzR with some α1 subtype 

selectivity.111, 112 To our knowledge these are the first two bivalent ligands in the β-carboline series, 

which bind to BzR. Further pharmacological evaluation in vivo of the βCCt bivalent ligand with the 

longer rigid linker should shed light on the above hypothesis and this would also provide some tools to 

determine the size and exact location of the LDi region.  

Figure 3. Orthogonal views of CoMFA contour maps for the affinity of 

6-benzyl-substituted β-carbolines at the α1β3γ2 BzR. 

 

 

 

 

 

 

 

 

 

Orthogonal view of CoMFA contour maps for the α1β3γ2  receptor subtype with 6-benzyl-substituted β-carbolines modeled by 
Huang.88 Green contours represent areas of positive steric interaction at a contribution level of 85%, which would result in 
reduced binding affinity.  Blue contours represent areas of positive charge interaction at a level of 85%, which would 
increase the affinity of a ligand. 

 

 



 

22 

 

Figure 4.  Alignment of bivalent ligands 32 and 33 within the included volume of the α1β3γ2 subtype. 

 

 

 

 

(2) WYS8. A series of 6-substituted-β-carboline-3-carboxylates have been synthesized and 

bound in vitro to the α1β3γ2 BzR subtype preferentially as compared to other subtypes (see Tables 1-

3).110, 111 These ligands have also been modeled in the GABAA/BzR pharmacophore model, and the 6-

substitutents align well in the LDi region.132 Occupation of this region should lead to enhanced selectivity 

of a ligand at the α1 containing isoform. Among the new 3,6-disubstituted-β-carbolines, 6-

trimethylsilanylethnyl-βCCt 6 has been recently synthesized and found in vitro to prefer the α1 subtype. 

However, the most selective ligand for the α1 subtype was, to date, WYS8 (7). This α1 subtype 

selective ligand was 100 fold more selective over the other subtypes. This was the most α1 subtype 

selective ligand reported, to date, to these authors knowledge. This 6-substituted acetylenyl βCCt 7 was 

214 fold more selective for� α1 isoforms over α5 isoforms. Studies of SAR in Table 1 confirmed the 

occupation of region LDi of the receptor pharmacophore model did enhance α1 selectivity in comparison 

to the affinity of the non-selective ligand diazepam or the α5 selective ligand, RY080. As illustrated in 
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the two dimensional Figure 5, full occupation of the LDi lipophilic region by� β-carbolines may account 

for the potency/selectivity of this class of ligands at the α1 subunit. Analysis of the in vitro binding data 

for this series of bulky 6-substituted β-carbolines (Table 1) has shown some selectivity for the α1 

receptor subtype. In addition, it is important to note that binding affinity in this series of ligands of 

greater than 400nM usually results in zero efficacy at the subtype at pharmacologically relevant 

concentrations.   

Homology models employed here of the GABAA receptor were as described previously121, 133 

except that a number of alternative models were considered for loop C, which was two residues shorter 

than the template and hence built from a loop database. The final model was selected based on 

assessment of model quality134 and consistency with published mutational data,135-139 particularly with 

the T207 side-chain appropriately positioned facing the benzodiazepine-binding pocket.  Positioning of 

WYS8 in the BzR was executed using a genetic algorithm (FlexiDock®).  Flexible docking provides a 

means of docking ligands into protein active sites. 

 

 

 

 

Figure 5a. Overlap of diazepam and βCCt in the pharmacophore/receptor model. 
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The structure of WYS8 and diazepam in a simple representation of the pharmacophore model. WYS8 (7) (blue line) and 
diazepam (black line) fitted to the inclusive pharmacophore model for the BzR. Sites H1 and H2 represent hydrogen bond 
donor sites on the receptor protein complex, while A2 represents a hydrogen bond acceptor site necessary for potent inverse 
activity in vivo. L1, L2, L3 and LDi are four lipophilic regions in the binding pharmacophore. Descriptors S1, S2, and S3 are 
regions of negative steric repulsion. 

 

 

Figure 5b.  WYS8 docked in the BzR site of the α1 subtype GABAA receptor. The α1 and γ2 subunits 
are rendered in yellow and blue, respectively. 
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Table 1. Affinities (Ki=nM) of 3,6-disubstituted β-carbolines at αxβ2γ2(x=1-3,5,6) receptor subtypes. 

N
H

N

R3R6
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H

I CO 2CH2 CF3

29a (W YS 13)

CO2 tBu

CO2 tBu

CO 2CH2 CF3

2 (3-P BC) H

CO2 tBu

CO 2CH2 CF3

CO2 tBu

CO2 tBu

F COC3 H7

L igan ds ! 1 !2 ! 3 ! 5 !6

1 (" CCt) CO 2tB u 0 .72 15 18. 9 111 >5, 000

12 39 47 122 3000

2. 4 13 27. 5 163 5000

26 143 117 127 2000

37 166 314 2861 5000

O nPr 5. 3 52. 3 68. 8 591 > 1,000

9. 2 13 72 449 2000

3. 63 2. 02 44. 3 76.5 5000

25 137 125 299 2000

36 2000 108 1000

 111 102 2000 1473 1980

3. 7 27 40 NA 254

28d (WY -B-08) I CO 2CH(CF 3)2 78 301 131 681 3000

28c (i odo-"CCE ) I CO2E t 4. 8 31 34 286 1000

6b (WY -B-25) CO 2CH2 CF3 17 59 88 1444 >3000

7b (WY -B-26-2) CO 2CH2 CF3

6c (W Y-B-99-1) CO2E t 4.5 5. 58 47 2000

29b (WY B27-1)

30a (W YS 12)

30b (WY B27-2)

31a (W YS 15)

31b (WY B29-2)

6 (W YB14)

7(W Y S8)

CM A57

4. 5 44. 6 42. 7 124 2000

R6 R3 ! 4

1000

1000

28b (WY -B-20) 2000

3000

1000

TMS 200

H 2000

TMS 4. 4 2000

O NA

O 3000

S NA

S
CO 2CH2 CF3 2000

NA

2000

TMS 6. 8 30

H 0.9 72

>2500

CM -A-82a CO2 tBu 2. 78 8. 93 24. 5 7.49 1000

CM -A-87 CO2 tBu

32 (W YS 2) 124 100 >300 >4000

1. 62 4. 54 14. 7 4.61 1000

1000

1000

30 >300

C(CH 3)3

F

Bc ctBcc t

33 (W YS 6) Bcc t Bc ct 120 1059 3942 5000 5000 5000

28a (i odo#" CCt) I CO2 tBu 14 .4 44. 9 123 65.3 >4000> 4000

H8 ("CCe ) CO 2E t 1. 2 4. 9 5.7 26. 8 2, 700ND

 

The affinity of compounds at GABAA/BzR recombinant subtypes was measured by competition for [3H]flunitrazepam 

binding to HEK cell membranes expressing human receptors of composition α1β2γ2, α2β2γ2, α3β2γ2, α4β2γ2, α5β2γ2 and α6β2γ2.140   

 

 

(3) 3-Substituted β-carbolines. It was initially believed by Braestrup, Loew, and others that an 
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ester moiety at position-3 of β-carbolines was required for a ligand to exhibit high affinity binding at Bz 

binding sites.86, 99, 141, 142 However, high affinity binding of β-carbolines including the antagonist 3-

propoxy β-carboline (3-PβC, Table 2b) demonstrated this was not the case.83, 92, 93 Examination of data 

from additional studies80, 92, 93 have suggested that at least two factors affected high affinity binding at 

BzR with respect to 3-alkoxy substituted β-carbolines,81, 88, 132, 143 one of which was the lipophilicity of 

the substituent which interacted at L1. The L1 pocket tolerates linear groups up to 4 carbons in length.  

From ligands 1 and 6 it can be seen that binding affinity is lost, illustrating that the substituent at the 3-

position is to large to allow the ligand to bind.  Likewise, the 3-benzyloxy β-carboline is also too bulky 

to fit the L1 pocket despite its lipophilic nature.  The second factor was the ability of the substituent at 

position-3 to release electron density to the pyridine ring. This enhanced the basicity of the nitrogen 

atom at N(2) which resulted in a greater ligand-receptor interaction at H1. Analysis of the binding 

affinities of the novel trifluoroalkyl esters of β-carboline-3-carboxylic acid further supported this 

hypothesis (Table 2a). The trifluoroalkyl esters exhibited reduced binding affinity at all receptor 

subtypes when compared to their corresponding alkyl esters (20 vs. 19, 15 vs. βCCE). Since the 

trifluoromethyl was a strong electron-withdrawing group, when compared to the corresponding 

alkoxycarbonyl moiety, the 3-trifluoroalkoxycarbonyl substituent would decrease electron density to the 

pyridine (N2) ring reducing the basicity of the nitrogen atom. This would result in a weaker ligand-

receptor interaction at H1. In addition, the trifluoroalkyl group was less lipophilic than the corresponding 

alkyl moiety, which may result in a weaker interaction at L1. Ramachandran and Hanzawa have reported 

that trifluoromethyl groups are nearly as large as isopropyl or t-butyl functions.124, 144 It was possible, the 

trifluoromethyl substituted ligands are simply too large to exert high affinity binding; however, βCCT 

(1), WY-B-24 (25) and CM-A-77 (26) all bound with good potency to α1 BzR subtypes (see Tables 1 

and 2), and these ester functions occupy a large molecular volume.   

 



 

28 

Table 2a. Affinities (Ki=nM) of 3-substituted β-carbolines at αxβ2γ2(x=1-3,5,6) receptor subtypes 

   

     

N
H

N

R3R6

 

H

H CO2CH2CCl3

15 H

Ligands !1 !2 !3 !5 !6

BCCE CO2Et 1.2 4.9 5.7 26.8 2700

10 33 43 189 2000

3.0 24.5 41.7 125.7 >2000

18(WYB17) H CO2CH(CH3)CCl3 2000 2000 2000 2000 5000

19(CMA64) H 18 60 116 216 >2000

20(CMA69) CO2CH(CF3)C2H5 1000 1000 1000 1000 >2000

R6 R3

H 3.99 8 32 461 2000

!4

1000

>500

1000

17(WYB23-1) 1000

3000

NA

NA

CO2CH2CF3

16(WYB09-1) CO2CH(CF3)2

CO2CH(CH3)C2H5

H

N N
H

O
O

N N
H

O
O

F
F

F
25(WY-B-24)

22.0 177 44.8 3000 422 3000

33.5 1000 1000 1000 1000 300026(CM-A-77)

 

The affinity of compounds at GABAA/BzR recombinant subtypes was measured by competition for [3H]flunitrazepam 

binding to HEK cell membranes expressing human receptors of composition α1β2γ2, α2β2γ2, α3β2γ2, α4β2γ2, α5β2γ2 and α6β2γ2.140   

Table 2b. Affinities (Ki=nM) of Ether-substituted β-carbolines at αxβ2γ2(x=1-3,5,6) receptor subtypes 
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O

Ligands

N
H

N

O

N
H

N

O

N
H

N

O

N
H

N

O

N
H

N

O

N
H

N

O

!1 !2 ! 3 !5 !6

350.2 3000 3000 3000 10000

830 3000 3000 10000 10000

36.9 194 245 1000 1000

24.9 123.6 139.2 1000 10000

245 818 859 10000 10000

5.3 52.3 68.8 591 1000

6.43 25.1 28.2 826 1000

1

2

36

38

39

2

40

 

The affinity of compounds at GABAA/BzR recombinant subtypes was measured by competition for [3H]flunitrazepam 

binding to HEK cell membranes expressing human receptors of composition α1β2γ2, α2β2γ2, α3β2γ2, α4β2γ2, α5β2γ2 and α6β2γ2.140   

 

(4) Chiral 3-substituted β-carbolines. Examination of the binding data for the enantiomeric pair 

of β-carboline sec-butyl esters 23 and 24 (Table 3) indicated that the (R)-enantiomer 24 bound tighter to 

the receptor subtypes than the (S) isomer 23. Although both enantiomers exhibited approximately a 4-

fold selectivity for the α1β3γ2 subtype, the (R) isomer remained more potent in vitro at all 5 sites. 

Because the receptor subtype selectivity remained about the same for the (R) and (S) isomers, this 

indicated the stereoenvironment in lipophilic pocket L1 was highly conserved across the entire series of 
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BzR subtypes in agreement with earlier work on the binding affinities of the enantiomers of the 

framework-constrained 4,5-substituted pyrroloimidazobenzodiazepines.145 It was possible that lipophilc 

pocket L1 was simply a large area in the pharmacophore/receptor model with only small steric 

differences between receptor subtypes. More work will be required to determine if this is the case. A 

similar result was observed in the case of (R) and (S) isomers of CMD-30. The (R)-enantiomer CMD-30 

R (22) bound slightly tighter to the receptor subtype than the (S) isomer (21) with almost 70 fold more 

selectivity for the α1 subtype over the α5 isoform. In addition, previously it was reported that a hydrogen 

bond between the N (9) H atom of a β-carboline and the secondary site A2 in the receptor 

pharmacophore was required for potent inverse agonist activity in vivo.80, 81 Therefore, a series of ligands 

with the Boc protection at position-9 such as 34-36 were evaluated and were not α1 subtype selective 

ligands.  In fact, they did not bind to BzR at all in agreement with previous work.132  

Table 3. Affinities (Ki=nM) of  chiral 3-substituted β-carbolines at αxβ2γ2(x=1-3,5,6) receptor subtypes 

Ligands !1 !2 !3 !5 !6

90 931 172 1847 >2000

27.0 343.3 453 1847 >2000

!4

>3000

>3000

17 59 88 NA 1444 >3000

7.7 32.5 43 NA 69 >2000

N N

H

O

O

CF3
H

CMD-30(S)

N N

H

O

O

CF3
H
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N N

H

O

O

H

N N

H

O

O

H

21
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The affinity of compounds at GABAA/BzR recombinant subtypes was measured by competition for [3H]flunitrazepam 
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binding to HEK cell membranes expressing human receptors of composition α1β2γ2, α2β2γ2, α3β2γ2, α4β2γ2, α5β2γ2 and α6β2γ2.140   

Table 3. Affinities (Ki=nM) of  Boc-protected 3-substituted β-carbolines at αxβ2γ2(x=1-3,5,6) receptor 

subtypes. 

Ligands !1 !2 !3 !5 !6

450 5000 5000 5000

1847

!4

N N

Boc

O

O

N N

Boc

O

O

34

35

I

WYS20

WYS21

ND ND

ND ND ND ND ND

ND = not determined yet

 

(5) Efficacy of α1 Preferring Ligands in oocytes at GABAA Receptor Channels. The 

physiological efficacy of βCCt, as compared to other Bz antagonists, was investigated across all 

diazepam sensitive (DS) receptor subunits at recombinant α1, α2, α3, and α5 receptor subunits in the 

Xenopus oocytes assay and is depicted in Figure 2 by Harvey et al.2, 65  In comparison to other BzR 

antagonists such as flumazenil and ZK 93426, as mentioned, βCCt exhibited either a neutral or low-

efficacy agonist response at GABA α1 (96±7%), α2 (99±10%), α3 (108±6%), and α4 (107±5%) 

receptors. However, a low-efficacy partial inverse agonist response was observed at the α5 receptor 

(88±7% of the GABA response). Flumazenil exhibited an efficacy profile that was qualitatively similar 

to βCCt at the α1 (99±5%), α3 (118±7%), and α5 (96±6%) subtypes. At the α2 receptor, flumazenil 

produced a low-efficacy agonist response (115±4%), while βCCt was GABA neutral (99±10%). 

Flumazenil also produced a qualitatively similar response to βCCt at the α4 receptor, albeit the 
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magnitude of GABA potentiation by flumazenil far exceeded that of βCCt (132±6 vs. 108±6%, 

respectively). However, it is important to note, with regard to α4/α6β2γ2 subtypes, the agonist effect was 

observed at 10 µM, far above that required for agonist efficacy at the DS subtypes. In contrast, ZK 

93426 produced a clear agonist profile, potentiating GABAergic activity by 137±8−148±11% across the 

α1−α4 subtypes, but was GABA neutral at the α5 receptor (96±6%). These findings suggested that βCCt 

had no appreciable intrinsic efficacy. The rationale for referring to this agent as a “mixed agonist-

antagonist” was based on the fact that, despite the ability to potentiate GABA at certain receptor 

subtypes, it was “GABA neutral” at select doses.  In addition, at select doses, βCCt and 3-PβC were 

capable of competitive antagonism of classical benzodiazepine agonists,88, 90, 106 therefore, the 

development of subtype-selective antagonists for GABAA receptors, such as βCCt, which targeted the 

GABAA α1 receptor as a weak agonist-like antagonist,76 can facilitate efforts to understand the 

antialcohol action of β-carbolines in nonhuman and human primates alike.  

In the NIMH supported PDSP screen ( Roth, Evans, et al., UNC), neither βCCT, 3PBC, nor WYS8 

exhibited significant interactions at other receptors (see http://pdsp.med.unc.edu for details). 

Conclusion 

Ethanol allosterically modulates the GABA receptor complex to open the chloride channel and 

hyperpolarize cells. At the pharmacological level, the effects of ethanol can be antagonized with GABA 

antagonists.119  Unfortunately, the paucity of high affinity subtype selective ligands capable of 

discriminating among the various GABAA receptor subtypes has, thus far, precluded study of the precise 

role GABAA subunits play in mediating EtOH-maintained responding.  

A series of β-carboline ligands described here has exhibited some selectivity at the α1 receptor 

subtype which  included β-carboline-3-carboxylate-t-butyl ester (βCCt, 1) and 3-propoxy-β-carboline 

hydrochloride (3-PBC, 2). These ligands displayed a 20-fold and 10-fold selectivity, respectively, for 

the α1 subtype over the α2 and α3 receptors, as well as over 150-fold selectivity for the α1 site over the α5 
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subtype.2, 3 βCCt (1) was more selective at the α1 subtype in vitro than the classical α1 selective agonists 

zolpidem (3) and CL 218872 (4).88, 103, 104 βCCt and 3-PBC are capable of competitive antagonism of 

classical benzodiazepine agonists,88, 90, 106 therefore, the development of subtype-selective antagonists 

for GABAA receptors which targets the GABAA α1 receptor as a weak agonist-like antagonist,76 can 

facilitate antialcohol efforts to understand the action of β-carbolines in nonhuman and human primates 

alike. Compared with Naltrexone, the reductions in alcohol responding were more selective and longer 

in duration.117 The goal of this study was to identify novel α1 GABAA subtype-preferring ligands that 

may serve as prototypes for further evaluation of clinical efficacy.  These types of compounds may 

provide treatments for excessive alcohol drinking and the negative affective states associated with 

abstinence. Ligands that enhance GABAergic tone may be effective and safe treatments for both 

excessive alcohol drinking and the negative affective states associated with abstinence.  This may 

represent novel, new pharmacotherapies to treat alcoholism.  

Studies of the structure-activity relationships confirmed that occupation of region LDi of the 

receptor pharmacophore model did enhance α1 selectivity in comparison to the affinity of the non-

selective ligands or the α5 selective ligands. Full occupation of the LDi lipophilic region by� β-

carbolines may account for the potency/selectivity of this class of ligands at the α1 subunit.  Based on 

the SAR, the most potent α1 selective ligand was 6-substituted acetylenyl βCCt (WYS8, 2).  It was 

suggested the attenuation of EtOH-motivated responding effected by WYS8 (2) will be mediated via the 

α1 selective antagonism of the GABAA/.BzR receptor.2  In regard to ester functions at C(3), although 

both (R) and (S) enantiomers exhibited approximately a 4-fold selectivity for the α1β3γ2 subtype, the (R) 

isomer remained more potent in vitro at all 5 BzR sites.    Two factors affected high affinity binding at 

BzR with respect to β-carbolines, one of which was the lipophilicity of the substituent which interacted 

at L1. The second factor was the ability of the substituent at position-3 to release electron density to the 

pyridine ring.    

The most selective ligand for α1 subtypes, to date, to these authors’ knowledge was WYS8 (7).  
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This 6-substituted acetylenyl βCCt (7) was 214 fold more selective for� α1 isoforms over α5 isoforms.  

WYS8 can clearly be differentiated from nonselective BDZs by its selective binding affinity at the α1 

receptor subunit and reduced capacity to potentiate GABA in Xenopus oocytes. 

Innate elevations of the α1 and α2 subunits of the HAD rat may contribute to the capacity of 

novel β-carboline ligands to function as both anxiolytic agents and alcohol antagonists in this genetic rat 

line.117   These differences may explain the capacity of these novel β-carboline ligands to block alcohol 

drinking and exhibit anxiolytic actions in the P and HAD alcoholic rats.  WYS8 may be a suitable 

ligand to evaluate as a preclinical agent to reduce alcohol dependence.  Its reduced efficacy at the α1 – 2 

subunits in potentiating GABA may render it a safe BDZ receptor ligand devoid of synergistic 

interactions with alcohol.   

Experimental Section: 

Melting points were taken on a Thomas-Hoover melting point apparatus or an Electrothermal 

Model IA8100 digital melting point apparatus and are reported uncorrected.  Proton NMR spectra were 

recorded on a Bruker 250- or 300-MHz multiple-probe instrument.  Infrared spectra were recorded on a 

Nicolet DX FTIR BX V5.07 spectrometer or a Mattson Polaris IR-10400 instrument.  Low-resolution 

mass spectral data (EI/CI) were obtained on a Hewlett-Packard 5985B GC-mass spectrometer, while 

high resolution mass spectral data were taken on a VG autospectrometer (Double Focusing High 

Resolution GC/Mass Spectrometer, UK). Microanalyses were performed on a CE Elantech EA1110 

elemental analyzer.  Analytical TLC plates employed were E. Merck Brinkman UV active silica gel 

(Kieselgel 60 F254) on plastic, and silica gel 60b for flash chromatography was purchased from E. M. 

Laboratories.  All chemicals were purchased from Aldrich Chemical Co. unless otherwise stated.  All 

solvents were dried according to the published procedures. 

1,2,3,4-Tetrahydro-9H-pyrido [3,4-b] indole-3-carboxylic acid (11). D, L-tryptophan (1000 g, 

4.9 mol ) was added to a solution of aq sodium hydroxide  (12 L, 0.4 N) after which the mixture was 
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stirred until it dissolved. Formaldehyde (560 mL of a 37% aq solution, 6.9 mol) was added and the 

solution was allowed to stir for three days at 37 °C. Glacial acetic acid (400 mL) was added which 

resulted in the precipitation of a solid as a fine suspension. The mixture was allowed to stir for two days, 

after which additional solid formed. The solid was filtered from the medium, washed with water (4 x 

1000 mL), and dried to give 37 (953g, 90.0%). 11: mp 295 °C (lit mp 293 °C)146 （lit mp 286 °C);147 

(IR (KBr)  3600-2300, 1630 cm-1; MS (CI, CH4), m/z (relative intensity) 217 (M+ + 1, 50), 216(62), 

169(59), 144(100). This material was employed directly in the next step. 

Ethyl 1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole-3-carboxylate (12). The 1,2,3,4-tetra-hydro-

9H-pyrido[3,4-b]indole-3-carboxylic acid 11 (500 g, 2.3 mol) was dissolved in anhydrous ethanol (9 L) 

in a 12L (3 neck) flask, and conc sulfuric acid (98%, 245 mL, 4.6 mol) was carefully added to the 

solution until most of the solid dissolved. The reaction mixture was heated to reflux under nitrogen until 

the starting material was no longer detected by TLC on silica gel (48 h), and the solution became 

homogeneous. The reaction solution was cooled and the solvent removed under reduced pressure. The 

residue was dissolved in H2O (6.4 L) and the pH of the solution adjusted to 8 with cold aq NH4OH 

(conc.) after which a precipitate formed. This mixture was then extracted with CHCl3 (6 x 2.5 L). The 

combined organic layers were dried (Na2SO4) and the solvent was removed under reduced pressure to 

yield a light tan solid which was dried in a vacuum oven at 100 °C to provide 12 (465 g, 83%). 11: mp 

150 °C (lit. mp 149-150 °C);98, 148 1H (300MHz, CDCl3) δ 1.33 (t, J = 7.32 Hz, 3H), 2.45 (s(br), 1H), 

2.88 (dd, J = 9.70 Hz, J = 15.37 Hz, 1H), 3.13 (dd, J = 4.76 Hz, J = 15.5 Hz, 1H),  3.77 (dd, J = 4.76 

Hz, J = 9.70 Hz, 1H), 4.07 (s(br), 2H), 4.26 (q, J = 7.14 Hz, 2H), 7.18-7.08 (m, 2H), 7.29 (d, J = 7.87 

Hz, 1H), 7.48 (d, J = 7.68 Hz, 1H), 8.17 (s(br), 1H); MS (CI CH4) m/e 144 (97.3), 245 (M+1, 87), 244 

(100), 183 (6), 171 (33), 144 (83). This material was employed directly in the next step. 

Ethyl 9H-pyrido[3,4-b]indole-3-carboxylate (8). Into a round bottom flask (12 L) equipped 

with a reflux condenser and an overhead stir was added 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid 

ethyl ester 39 (200g, 0.86 mol) and dry benzene (8 L). The solution was allowed to heat to reflux at 

which time activated MnO2 (200 g) was added to the flask. Additional quantities of activated MnO2 
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were added until analysis by TLC (silica gel/ethyl acetate) indicated the absence of starting material. 

The hot solution was filtered through a bed of celite to remove the MnO2 and the filter cake was washed 

with hot benzene. The benzene layers were allowed to cool. A precipitate formed and was collected by 

vacuum filtration, which provided (100-120g, 50%-60%) of pure β-carboline-3-carboxylic acid ethyl 

ester 8 (βCCE). The benzene which remained in the filtrate was removed under reduced pressure to 

provide 25-35 g of additional βCCE, but as crude material. The crude material could be purified by 

recrystalization from ethanol. 8: mp 225-227 °C (lit. 224-229 °C);148, 149 1H (300MHz, DMSO-d6) δ 

1.36 (t, J = 6.95 Hz, 3H), 4.37 (q, J = 6.95 Hz, 2H), 7.37-7.24 (m, 1H), 7.68-7.57 (m, 2H), 8.38 (d, J = 

7.87 Hz, 1H), 8.90 (s, 1H), 8.97 (s, 1H), 10.7 (br, 1H); MS (CI, CH4) m/e 241 (M+ + 1, 47), 195 (22), 

168 (100), 140 (9). This material was employed directly in the next step. 

β-Carboline-3-carboxylic acid (9). β-Carboline-3-carboxylic acid ethyl ester 8 (30.0 g, 0.126 

mol) was suspended in aq NaOH (10%, 1.5L) and heated to reflux until all the material had gone into 

solution (1 h). The heating was continued for an additional 3 h. The reaction mixture was cooled to rt 

and acidified by addition of ice cold aq conc HCl to pH 4. The precipitate which resulted was stirred 

overnight. The solid was collected by vacuum filtration and washed with H2O (2 x 150 mL). The 

product was dried at 80 °C under vacuum for 24 h to provide 9 (26.1 g, 99%). 9: mp 220-221 °C (lit. mp 

220 °C);68 IR (KBr) 3260, 2970, 1710 cm-1; 1H NMR (CDCl3) δ 7.31 (t, J = 7.32 Hz, 1H), 7.69-7.57 (m, 

2H), 8.38 (d, J = 7.87 Hz, 1H), 8.90 (s, 1H), 8.96 (s, 1H), 12.10 (s, 1H, NH). (s, 1H); MS (CI, CH4), m/e 

(M+ + 1, 269). Anal. Calcd. for C16H16N2O2 (0.55 H2O): C, 69.07; H, 6.19; N, 10.07. Found: C, 68.81; 

H, 5.77; N, 10.00. 

β-Carboline-3-carboxylic acid t-butyl ester (1). To a solution of carbonyl diimidazole (28.2 g, 

0.177 mol) in anhydrous DMF (1.2 L) was added dry β-carboline-3-carboxylic acid 9 (25 g, 0.118 mol) 

under argon. The reaction mixture was initially a pale yellow-colored suspension, but after stirring for 

30min, a purple or red-colored solution resulted. The reaction mixture was stirred for an additional 2h at 

rt and carbon dioxide was released during the reaction. Analysis by TLC (silica gel) indicated the 
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absence of starting material on the baseline. To this reaction mixture was added dry DBU (18 g, 0.118 

mol) and dry freshly distilled t-butyl alcohol (437 g/560 mL, 50 eq). The mixture was heated at 85°C for 

18h until analysis by TLC indicated the disappearance of the imidazole intermediate. The solvent was 

then removed under reduced pressure. The residue was partitioned between CH2Cl2 (1.2 L) and H2O 

(800 mL). The organic layer was separated and the H2O layer was extracted with CH2Cl2 (2 x 500 mL). 

The combined organic layer was washed with an aq solution of 10% K2CO3, water, brine and dried 

(Na2SO4). The solvent was removed under reduced pressure and the residue was purified by flash 

chromatography (silica gel, EtOAc/hexane = 1:1) to provide βCCt (20 g, 65%) as a white solid. βCCt 

can be recrystallized from EtOAc to provide white crystals 1: mp 301-303°C (lit. mp 298-300);82 IR 

(KBr) 3500-3400, 3200-3000, 1610, 1560, 1370, 1340 cm-1; 1H (300MHz, DMSO-d6) δ 1.36 (t, 3H, 

J=6.95Hz), 4.37 (q, 2H, J=6.95Hz), 7.37-7.24 (m, 1H), 7.68-7.57 (m, 2H), 8.38 (d, 1H, J=7.87Hz), 8.90 

(s, 1H), 8.97 (s, 1H), 10.7 ((br), 1H); The spectral data for 1 were identical to those reported in the 

literature.92  

2,2,2-Trifluoroethyl β-carboline-3-carboxylate 15 was prepared from β-carboline-3-carbo-

xylic acid 9 and 2,2,2-trifluoroethyl alcohol following the procedure employed for the preparation of 1. 

15: mp 264-266 °C; IR (NaCl) 3275, 1735 cm-1; 1H NMR (300 MHz, CDCl3) 4.87 (m, 2H), 7.42 (m, 

1H), 7.65 (m, 2H), 8.24 (d, J = 7.9 Hz, 1H), 8.93 (s, 1H), 9.09 (s, 1H), 9.10 (s, br, 1H); δ 60.4, 60.8, 

112.8, 118.9, 120.7, 121.2, 122.7, 127.8, 129.2, 134.5, 135.2, 138.1, 141.3, 164.5; MS (EI) m/e (relative 

intensity) 294(M+, 30), 195(7), 168(100), 167(42). Anal. Calcd. for C14H9F3N2O2: C, 57.15; H, 3.08; N, 

9.52. Found: C, 57.22; H, 3.14; N, 9.23. 

9H-β-Carboline-3-carboxylic acid 2,2,2-trifluoro-1-trifluoromethyl-ethyl ester 16 was 

prepared following the procedure employed for the preparation of 1. 16: 1H NMR (300 MHz, DMSO-

d6) δ 7.05-7.21 (m, 1H), 7.33-7.44 (t, 1H), 7.61-7.72 (m, 2H), 8.48 (d, J = 7.89 Hz, 1H), 9.09 (s, 2H), 

12.31 (s, 1H); 13C NMR (75.5 MHz, DMSO-d6) δ 65.9, 66.8, 112.9, 120.1, 120.9, 122.8, 127.8, 129.4, 
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133.3, 134.9, 138.4, 141.3, 162.9. This material was pure by TLC (silica gel). 

9H-β-Carboline-3-carboxylic acid 2,2,2-trichloro-ethyl ester 17 was prepared following the 

procedure employed for the preparation of 1. 17: 1H NMR (300 MHz, CDCl3) δ 5.17 (s, 2H), 7.38-7.44 

(m, 1H), 7.63-7.74 (m, 2H), 8.27 (d, J = 7.95 Hz, 1H), 8.95 (s, 1H), 9.21 (s, 1H), 9.66 (s, 1H). This 

material was pure by TLC (silica gel). 

9H-β-Carboline-3-carboxylic acid 2,2,2-trifluoro-1-methyl-ethyl ester 18 was prepared 

following the procedure employed for the preparation of 1. 18: m.p. 247–249 °C; IR (NaCl) 2359, 1729, 

1345, 1251, 1092, 729, 450 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.82 (d, J = 6.1 Hz, 3H), 5.96 (q, 1H), 

7.42 (t, 1H), 7.67 (m, 2H), 8.26 (d, J = 7.6 Hz, 1H), 8.8 (s, 1H), 8.9 (s, 1H), 9.5 (br, 1H); 13C NMR (75.5 

MHz, CDCl3) δ 16.5, 79.1, 112.3, 118.5,121.2, 121.5, 121.9, 128.8, 129.2, 133.9, 137.4.  This material 

was pure by TLC (silica gel). 

 (S)-1,1,1-Trifluoroisopropyl β-carboline-3-carboxylate (21). To a solution of carbonyl 

diimidazole (0.168 g, 1.03 mmol) in anhydrous DMF (5 mL), β-carboline-3-carboxylic acid 9 (0.10 g, 

0.47 mmol) was added. The reaction mixture which resulted was stirred for 2 h at rt until analysis by 

TLC (silica gel) indicated the absence of starting material on the baseline.  The solution which resulted 

was then cooled to -6 °C and this was followed by addition of (S)-1,1,1-trifluoropropan-2-ol (2.3 eq) 

which was contaminated with some EtOH. The dry DBU (100 mg, 0.68 mmol) in dry DMF (0.5 mL) 

was slowly syringed into the reaction mixture at -6 °C.  The mixture was stirred at 0 °C for 8 h until 

analysis by TLC (silica gel) indicated the diaspperance of the imidazole intermediate. The reaction 

mixture was then poured into ice water (30 mL) and extracted with CH2Cl2 (3 x 40 mL). The combined 

organic layers were washed with H2O (5 x 40 mL), brine and dried (Na2SO4). The solvent was removed 

under reduced pressure and the residue was purified by flash chromatography (silica gel, 

EtOAc/hexanes = 2:1) to provide 21 (0.113 g, 78%) as a white solid. 21: mp 239-241 °C; [α]D
27= - 9.62°  

(c = 0.81, in CHCl3 ); IR (NaCl) 3266, 1725, 1502 cm-1; 1H NMR (300 MHz, CDCl3) δ1.63 (d, J = 6.6 
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Hz, 3H), 5.75 (m, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 8.25 

(d, J = 7.9 Hz, 1H), 8.91 (s, 1H), 9.18 (s, 1H), 10.04 (s, br, 1H); MS (EI) m/e (relative intensity) 308 

(M+, 17), 168 (100), 140 (21). Exact mass calcd. for C15H11F3N2O2:308.0773. Found: 308.0773. Anal. 

Calcd. for C15H11F3N2O2: C, 58.45;H, 3.60; N, 9.09.  Found: C, 58.15; H, 3.63; N, 8.88. 

(S)-1,1,1-Trifluorobutan-2-ol was prepared following the literature procedure.124 To an oven-dried, 25 

mL round-bottom flask was transferred (-)-DIP-Chloride (10.68 g, 33 mmol) in a glove box. Then 1,1,1-

trifluorobutan-2-one (4.03 g, 32 mmol) was added at rt under argon. The reaction mixture was stirred at 

rt for 10 h. Ethyl ether was added and the reaction solution was cooled  to 0 °C  followed by addition of 

acetaldehyde (1.6 g, 1.1 eq). The reaction mixture was allowed to warm to rt and stirring was continued 

for 24 h while the second equivalent of α-pinene was liberated. An aq solution of sodium hydroxide 

(2.5M, 30 mL) was added and the solution which resulted was extracted with ether (3 x 30 mL). The 

ether layer was dried (Na2SO4) and fractionally distilled through a Pyrex distilling column packed with 

glass beads. The desired alcohol was collected along with EtOH (20%). (S)-1,1,1-Trifluorobutan-2-ol: 

1H NMR (300 MHz, CDCl3) 1.04(dt, 3H, J= 0.6 Hz and J= 7.4 Hz), 1.58(m, 1H), 1.72(m, 1H), 3.82(m, 

1H). This material was used in a later step without further purification.  

  (R)-1,1,1-Trifluoroisopropyl β-carboline-3-carboxylate 22 was prepared from the acid 9 and 

(R)-1,1,1-trifluoropropan-2-ol following the procedure employed for preparation of (S)-1,1,1-trifluoro-

propan-2-ol. 30: mp 239-241 °C; [α]D
27= 8.73° (c = 0.88, in CHCl3); The spectral data for 22 were 

identical to those for 21; however, the optical rotation was in the opposite direction. 

 (S)-β-Carboline-3-carboxylic acid sec-butyl ester (23).  To a solution of carbonyl diimidazole 

(1.53 g, 9.4 mmol) in anhydrous DMF (50 mL) was added β-carboline-3-carboxylic acid 9 (1.0 g, 4.7 

mmol). The reaction mixture was stirred for 2 h at rt and carbon dioxide was released during the 

reaction. Analysis by TLC (silica gel) indicated the absence of starting material on the baseline. To this 
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reaction mixture was added dry DBU (0.72 g, 4.7 mmol) and dry (S)-butyl alcohol (1.13 g, 15.2 mmol). 

The mixture which resulted was heated at 55 °C for 8 h until analysis by TLC (silica gel) indicated the 

disappearance of the imidazole intermediate. The solvent was then removed under reduced pressure. 

The residue was partitioned between CH2Cl2 (100 mL) and H2O (100 mL). The organic layer was 

separated and the H2O layer was extracted with  CH2Cl2 (2 x 80 mL). The combined organic layer was 

washed with H2O (3 x 100 mL), brine and dried (Na2SO4). The solvent was removed under reduced 

pressure and the residue was purified by flash chromatography (silica gel, EtOAc/hexane = 2:1) to 

provide 23 (0.96 g, 76%) as a white solid. 23: mp 212-213 °C; [α]25 = 35.6° (CHCl3, c = 1.43); IR (KBr) 

3222, 1706, 1622, 1494 cm-1; 1H NMR (300 MHz, CDCl3) δ 0.99 (t, J = 7.5 Hz, 3H), 1.40 (d, J = 6.3 

Hz, 3H), 1.79 (m, 2H), 5.27 (m, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 8.3 

Hz, 1H), 8.21 (d, J = 7.9 Hz, 1H), 11.47 (s, br, 1H); MS (CI, CH4) m/e (relative intensity) 269(M+ + 1, 

100), 241(15), 213(41), 195(14). Anal. Calcd. for C16H16N2O2: C, 71.62; H, 6.01; N, 10.44.  Found: 

C, 71.33; H, 6.09; N, 10.26. 

 (R)-β-Carboline-3-carboxylic acid sec-butyl ester 24 was prepared in 75% yield following 

the procedure for preparation of 1. 24: [α]25 = -35.2° (CHCl3, c = 1.25) The spectral data for 22 were 

identical to those for 23. 

6-Iodo-9H-β-carboline-3-carboxylic acid t-butyl ester (5). Into a round bottom flask (250 mL) 

was added CF3CO2Ag (1.03 g, 4.67 mmol), β-carboline-3-carboxylic acid t-butyl ester 9 (1.02 g, 3.83 

mmol), and CHCl3 (100 mL).  This was followed by addition of iodine (1.15 g, 4.66 mmol). The 

reaction mixture was allowed to stir at rt for 6 h after which another portion of CF3CO2Ag (500 mg, 2.26 

mmol) was added and stirring continued for another 10 h at reflux. Analysis by TLC (silica gel) 

indicated that most of the βCCt had disappeared. The reaction mixture was filtered through a bed of 

celite to remove the solid salts and the filter cake was washed with EtOH (3 x 50 mL). The solvent was 

removed under reduced pressure and the residue was purified by flash chromatography (silica gel, 
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EtOAc/hexane = 4:1) to provide 5 (908 mg, 65%) as a white solid. 5: mp 347-348 °C (dec.); IR (NaCl) 

3223, 1710, 1485, 1323, 1245, 1161, 1104, 1020 cm-1; 1H NMR (300 MHz, CDCl3) δ1.68 (s, 9H), 7.63 

(d, J =8.6 Hz, 1H), 7.85 (dd, J = 1.5 Hz and J = 8.6 Hz, 1H), 8.53 (d, J = 1.4 Hz, 1H), 9.31 (s, 1H), 

11.47 (s, br, 1H); 13C NMR (75.7 MHz, CDCl3) δ 28.3, 80.8, 83.6, 115.1, 118.1, 123.9, 126.7, 131.2, 

134.1, 136.8, 137.5, 138.7, 140.4, 164.9; �MS (EI800) m/e (relative intensity) 395 (M+ + 1, 18), 367 

(20), 339 (100), 268 (33). Anal. Calcd. for C16H15IN2O2: C, 48.75; H, 3.84; N, 7.11.  Found: C, 49.01; H, 

3.91; N, 6.95.  

6-Trimethylsilanylethynyl-9H-β-carboline-3-carboxylic acid t-butyl ester (6). Into a round 

bottom flask (50 mL) which contained a solution of degassed THF/Et3N (10 mL/2 mL), was added 6-

iodo-9H-β-carboline-3-carboxylic acid t-butyl ester 5 (400 mg, 1.02 mmol), bis[triphenylphosphine] 

palladium dichloride (35 mg, 5 mol%) and copper(I) iodide (7 mg, 5 mol%) Note: Practically, on a 

small scale, CuI could be used up to 10-15 mol% because of its lower molecular weight compared to the 

palladium catalyst; on a bigger scale, both Pd(PPh3)2Cl2 and CuI can be used as low as 0.5-1 mol%. The 

reaction mixture was then degassed 2 times with an oil pump at –78 ºC, and then the trimethylsilyl 

acetylene (300 mg, 3.06 mmol) was added into the mixture and it was degassed one more time at –78 º 

C. The reaction mixture was gradually allowed to warm to rt and stirred at rt for an additional 0.5-1h 

until all the starting material had disappeared (TLC analysis indicated that the original red spot changed 

color to purple, since both s.m. and product had very similar Rf values). The solvent was removed under 

reduced pressure at this point and the residue was purified by flash chromatography (silica gel, 

EtOAc/hexane = 4:1) to provide 6 (340 mg, 92%) as a white solid.  1H NMR (300 MHz, CDCl3) δ 1.71 

(s, 9H), 1.75 (s, 9H), 7.67 (m, 2H), 8.26 (d, J = 7.6 Hz, 1H), 8.8 (s, 1H), 8.9 (s, 1H), 9.5 (br, 1H); 13C 

NMR (75.5 MHz, CDCl3) δ 0.021, 28.3, 81.9, 92.6, 105.7, 113.2, 114.9, 117.7, 121.3, 125.5, 128.3, 

132.4, 133.8, 138.2, 138.4, 141.5, 165.4; EIMS 364(M+, 38), 293(12), 264(100), 249(48), 124(60). This 

material was employed directly in the next step. 
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6-Ethynl-9H-β-carboline-3-carboxylic acid t-butyl ester (7)-WYS8.  To a solution of 6-

trimethylsilanyl-β-carboline-3-carboxylic acid t-butyl ester 5 (850 mg, 2.32 mmol) in THF (10 mL) was 

added 1.2 eq of TBAF (2.8 mL of 1M TBAF/THF solution) at 0 ºC and then the solution was allowed to 

warm to rt. After consumption of the starting material as indicated by TLC, H2O (10 mL) was added and 

the mixture was extracted with CH2Cl2 (3 x 20 mL). The combined organic layer was concentrated 

under reduced pressure and the residue was chromatographed on a short silica gel column 

(EtOAc/hexane = 4:1) to give 7 (620 mg, 92%) as a white solid. 7: 1H NMR (300 MHz, CDCl3) δ 

1.75(s, 9H), 3.54(s, 1H), 7.62-7.85 (m, 2H), 8.41 (s, 1H), 8.83 (s, 1H), 9.33 (s, 1H), 11.1 (s, 1H); EIMS 

292 (M+, 25), 236(12), 192 (100), 164(30). This material was pure by TLC (silica gel) and used directly 

in the next step. 

6-Thiophen-2-yl-9H-β-carboline-3-carboxylic acid t-butyl ester (30a). Representative 

Procedure for preparation of 6-subsitituted β-carbolines.  A solution of 6-Iodo-β-carboline-3-carbo-

xylic acid t-butyl ester 5 (265 mg, 0.67 mmol) in dry toluene (15 mL) was degassed under vacuum and 

purged with dry N2 through the solution 3 times. The mixture was then heated to 140 °C under nitrogen 

after which tetrakis(triphenylphosphine) palladium (0) (77 mg, 0.067 mmol, 10mol%) and 2-

(tributylstannyl) thiophene (718 mg, 2.01 mmol) were added in one portion. The mixture was heated to 

reflux under nitrogen. After 12 h, the mixture was allowed to cool to rt and the precipitate which 

resulted was removed by vacuum filtration. The filtrate was concentrated under reduced pressure and 

the residue was treated with a saturated aq solution of NaHCO3 (30 mL) and extracted with CH2Cl2  (3 x 

25 mL). The combined extracts were washed with brine and dried (Na2SO4). The solvent was removed 

under reduced pressure and the residue was purified by flash chromatography (silica gel, EtOAc/hexane 

= 5:1) to provide a white solid 30a (195 mg, 83%). 30a: 1H NMR (300 MHz, CDCl3) δ 2.07 (s, 9H), 

7.15 (t, 1H), 7.31 (d, J = 3Hz, 1H), 7.40 (d, J = 3Hz, 1H), 7.89 (q, 2H), 8.44 (s, 1H), 8.89 (s, 1H), 9.32 

(s, 1H), 11.2 (s, 1H).  This material was pure by TLC (silica gel). 
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6-Furan-2-yl-9H-β-carboline-3-carboxylic acid t-butyl ester 29a was prepared following the 

procedure for preparation of 30a.  29a: 1H NMR (300 MHz, CDCl3) δ 1.63(s, 9H), 6.63 (m, 1H), 6.97 (d, 

J = 6Hz, 1H), 7.70 (d, J = 9Hz, 1H), 7.77 (s, 1H), 7.96 (d, J = 9Hz, 1H), 8.73 (s, 1H), 8.90 (s, 1H), 8.96 

(s, 1H), 12.1 (s, 1H); 13C NMR (75.5 MHz, CDCl3) δ 14.3, 22.4, 28.4, 31.3, 78.9, 80.7, 102.3, 104.6, 

104.9, 106.3, 112.4, 113.2, 117.4, 117.8, 121.7, 123.5, 125.1, 127.1, 127.8, 133.6, 134.1, 138, 140.6, 

142.6, 154.1, 165.0, 166.0.  This material was pure by TLC (silica gel). 

6-Furan-2-yl-9H-β-carboline-3-carboxylic acid 2,2,2-trifluoro-ethyl ester 29b was prepared 

following the procedure for preparation of 30a. 29b: 1H NMR (250 MHz, CDCl3) δ 4.82-4.92 (m, 2H), 

6.54 (s, 1H), 6.75 (s 1H), 7.38 (s, 1H), 7.65 (d, J = 10Hz, 1H), 7.96 (d, J = 10Hz, 1H), 8.5 (s, 1H), 8.93 

(s, 1H), 9.13 (s, 1H), 9.59 (s, 1H); 13C NMR (75.5 MHz, CDCl3) δ 60.9, 105.3, 112.5, 112.8, 113.3, 

117.6, 119.2, 122.3, 123.8, 125.3, 127.9, 134.7, 135.3, 138.6, 140.6, 142.7, 154.1, 164.4.  This material 

was pure by TLC (silica gel). 

6-Iodo-β-carboline-3,9-dicarboxylic acid di-tert-butyl ester (35). To a solution of  6-iodo-β-

carboline-3-carboxylic acid t-butyl ester 5 (2g, 5.06mmol) in anhydrous CH2Cl2 ( 30mL), (Boc)2O 

(1.32g,  6.07mmol) and DMAP(123mg, 1.01mmol) were added. The reaction mixture was allowed to 

stir at rt for half an hour until analysis by TLC (silica gel) indicated that the starting material had been 

converted into the Boc protected indole 35. The solvent was removed under reduced pressure and the 

residue was purified by flash chromatography (silica gel, EtOAc/hexane = 5:95) to provide 35 (2.3 g, 

92%) as a white solid. 35: mp 317-320 °C; IR (NaCl) 2975, 2917, 1728, 1457, 1343, 1238, 1154, 1119, 

1031, 811cm-1; 1H NMR (300 MHz, CDCl3) δ 1.71 (s, 9H), 1.77 (s, 9H), 7.91 (d, J = 8.972 Hz, 1H), 

8.22 (d, J = 8.972Hz, 1H), 8.42 (s, 1H), 8.61 (s, 1H), 9.61 (s, 1H); 13C NMR (300MHz, CDCl3) δ 28.1, 

28.2, 82.1, 85.8, 87.2, 115.9, 118.5, 125.7, 129.9, 130.6, 135.7, 138.9, 143.0 149.6 164.1; MS (EI) m/e 

(relative intensity) 494 (M+, 42), 438 (71), 338 (100), 294 (70), 268 (8), 212 (8), 168 (35). Anal. calcd. 

for C21H23IN2O4(0.1 C6H14): C, 51.60; H, 4.85; N, 5.57; Found: C, 51.84; H, 4.88; N: 5.45. 
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6-Trimethylsilanylethynyl-β-carboline-3,9-dicarboxylic acid di-tert-butyl ester (36). 

Dichlorobis(triphenylphosphine)palladium(II) (140 mg; 2 mol %), and CuI (40 mg; 2 mol % ) were 

added to a solution of 6-iodo-β-carboline-3,9-dicarboxylic acid di-tert-butyl ester 35 (4.9 g; 10 mmol) in 

anhydrous THF (30 mL) and triethylamine (10 mL). The mixture was degassed, and back-filled three 

times with argon. Then (trimethylsilyl) acetylene (1.08 g; 11 mmol) was added with stirring under 

argon. After the mixture was allowed to stir for 1 h, the solvents were removed in vacuum and the 

residue was chromatographed on a short column (silica gel, hexane/CH2Cl2 = 7:3) to give 36 (4.36 g, 

94%) as a white solid. 36: mp 334-336 °C (dec); IR (NaCl) 2974, 2137, 1732, 1559, 1476, 1469, 1368, 

1343, 1309, 1247, 1156, 1109, 872, 842, 760 cm-1; 1H NMR (300 MHz, CDCl3) δ 0.31 (s, 9H), 1.71 (s, 

9H), 1.78 (s, 9H), 7.77 (d, 2H, J=8.97), 8.25 (s, 1H), 8.41 (d, 2H, J=8.61), 8.65 (s, 1H), 9.62 (s, 1H); 13C 

NMR (300MHz, CDCl3) δ 0.11, 28.1, 28.2, 82.1, 85.8, 94.4, 104.4, 116, 116.5, 118.7, 123.5, 124.7, 

131.6, 133.7, 136.2, 138.1, 139.2, 142.9, 149.7, 164.1; MS (EI) m/e (relative intensity) 465 (M+, 30), 

409 (100), 365 (21), 308 (80), 262 (25), 249 (40). Anal. calcd. for C26H32N2O4Si: C, 67.21; H, 6.94; N, 

6.03; O, 13.77; Si, 6.04.  This material was pure by TLC (silica gel) and used in the next step. 

6-Ethynyl-β-carboline-3,9-dicarboxylic acid di-tert-butyl ester 34: To a solution of 6-

trimethylsilanylethynyl-β-carboline-3,9-dicarboxylic acid di-tert-butyl ester 36 (2.14g, 4.6 mmol) in 

THF (20 mL), 1.2 eq of TBAF (5.52 ml of 1M TBAF/THF solution) at  0 o C was added and then the 

solution was allowed to warm to rt. After consumption of the starting material as indicated by TLC 

(silica gel), H2O (10 mL) was added and the mixture was extracted with CH2Cl2 (20 mL, 3X). The 

combined organic layer was concentrated under reduced pressure and the residue was chromatographed 

on a short column (silica gel, hexane/CH2Cl2 = 4:1) to give 34 (1.66 g, 92%) as a white solid. 34: mp 

226-229 °C; IR (NaCl) 3303, 2978, 2346, 2232, 1734, 1622, 1560, 1463, 1394, 1310, 1248, 1151, 1110, 

1031, 911, 836, 731 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.54 (s, 9H), 1.72 (s, 9H), 1.79 (s, 9H), 3.17 (s, 

1H), 7.79 (d, 2H, J=8.76), 8.27 (s, 1H), 8.44 (d, 2H, J=8.94), 8.67 (s, 1H), 9.64 (s, 1H); 13C NMR (75.5 
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MHz, CDCl3) δ 27.3, 28.1, 28.2, 67.8, 82.1, 83.0, 85.1, 85.5, 116.0, 116.7, 123.5, 124.9, 133.7, 136.2, 

138.1, 139.4, 143.0, 164.2; MS  (EI) m/e (relative intensity) 393 (M+, 32), 338 (13), 321 (26), 293 (100), 

167 (28), 139 (24).  Anal. Calcd. for C23H24N2O4(0.05CH2Cl2): C, 69.78; H, 6.12; N, 7.06; Found: C: 

69.70; H: 6.10; N: 6.81. 

1,2-Bis(9H-β-carboline-3-carboxylic acid tert-butyl ester) ethyne (32). Dichlorobis (tri-

phenylphosphine)palladium(II) (60 mg, 2 mol%) and copper iodide (16 mg, 2 mol%) were added to a 

mixture of  6-ethynyl-β-carboline-3,9-dicarboxylic acid di-tert-butyl ester 34 (1.6g, 4.1mmol) and 6-

iodo-β-carboline-3,9-dicarboxylic acid di-tert-butyl ester 35 (2.1g, 4.25mmol) in THF/ TEA(30 mL; 

4:1). The reaction mixture which resulted was degassed, and back-filled three times with argon. The 

reaction mixture was then allowed to stir at rt for about 1h until analysis by TLC (silica gel) indicated 

the starting materials were absent. The solution was concentrated under reduced pressure and the 

residue was chromatographed on a silica gel column with CH2Cl2 as the eluent to give 1,2-Bis(β-

carboline-3,9-dicarboxylic acid di-tert-butyl ester) ethyne (2.97 g, 95%) as a white solid: mp 305-307 

°C; IR (NaCl) 2972, 2929, 1737, 1559, 1466, 1338, 1156, 1102, 823, 624cm-1; 1H NMR (300 MHz, 

CDCl3) δ 1.72 (s, 9H), 1.79 (s, 9H), 7.86 (d, J = 8.97 Hz, 1H), 8.32 (s, 1H), 8.47 (d, J = 8.79Hz, 1H), 

8.68 (s, 1H), 9.63 (s, 1H); 13C NMR (300MHz, CDCl3) δ 28.2, 82.1, 85.8, 89.0, 116.0, 116.7, 118.6, 

123.6, 124.3, 131.5, 133.3, 136.1, 138.1, 139.1, 143.0, 149.7, 164.2; MS (FAB) 759(M+, 13). Anal. 

calcd. for C44H46N4O8 (H2O): C, 68.03; H, 6.22; N, 7.21; Found: C: 68.10; H: 6.22; N: 7.21. 

The 1,2-bis(β-carboline-3,9-dicarboxylic acid di-tert-butyl ester) ethyne (800mg, 1.05 mmol) was added 

to a distilled solution of cumene (40 mL), which had been  degassed. The reaction vessel was evacuated 

and refilled with nitrogen three times.  The temperature was then brought to reflux for about 30 min 

until a yellow precipitate had formed. The mixture which resulted was filtered and washed with hexane 

to give pure dimer 32 (545 mg, 93%). 32: m.p. >350 °C (dec.); IR (KBr) 3227, 1716, 1327, 1162, 738, 

450 cm-1; 1H NMR (300 MHz, DMSO) δ 1.62 (s, 9H), 7.70-7.80 (m, 2H), 8.7 (s, 1H), 8.94 (s, 1H), 8.99 



 

46 

(s, 1H), 12.25 (s,1H); 13C NMR (300MHz, CDCl3) δ 28.3, 80.8, 113.3, 114.6, 117.9, 125.8, 127.5, 

131.9, 134.2, 138.0, 140.8, 164.9;  MS (FAB) 559(M+, 41).  This material was pure by TLC (silica gel). 

1,4-Bis(9H-β-carboline-3-carboxylic acid tert-butyl ester) buta-1,3-diyne (33). In a round 

bottom flask (200 mL), PdCl2(PPh3)2 (58 mg, 2 mol%), CuI(16mg, 2 mol%), and diisopropylethylamine 

(534 mg, 4.92 mmol) were added and the mixture stirred under argon. The flask was evacuated 

(degassed) and refilled with argon. The THF (40 mL) and 6-ethynyl-β-carboline-3,9-dicarboxylic acid 

di-tert-butyl ester 34 (1.6 g,  4.1 mmol) were then added (under argon) to the above mixture. To this 

flask methyl bromoacetate (410 mg, 2.5 mmol) was added, and the reaction mixture was stirred at rt for 

6-8 h. The progress of this reaction was monitored by TLC on silica gel. After the reaction was 

complete, 8-10 g of silica gel was added and the solvent was removed under vacuum. The solid residue 

(a plug) was then placed on a column and subjected to column chromatography (CH2Cl2) to give 1,4-

Bis(β-carboline-3,9-dicarboxylic acid di-tert-butyl ester) buta-1,3-diyne (2.08 g, 65%): 1H NMR 

(300 MHz, CDCl3) δ 1.74(s, 9H), 1.81(s, 9H), 7.82(d, J = 8.79 Hz, 1H), 8.34(s, 1H), 8.48(d, J = 8.79 Hz, 

1H), 8.69(s, 1H), 9.65(s, 1H); 13C NMR (300MHz, CDCl3) δ 28.2, 74.0, 81.2, 82.2, 86.0, 116.1, 116.9, 

117.2, 123.7, 125.5, 131.3, 134.0, 136.2, 138.1, 139.6, 143.2, 149.6, 164.1; MS (FAB) 783(M+, 100). 

Anal. Calcd. for C46H46N4O8 ·1.5H2O: C, 68.22; H, 6.10; N, 6.91; Found: C: 68.49; H: 5.87; N: 6.58. 

The 1,4-Bis-(β-carboline-3,9-dicarboxylic acid di-tert-butyl ester) buta-1,3-diyne (411 mg, 0.5 mmol) 

was added to a distilled solution of cumene (20 mL), which had been  degassed.  The reaction mixture 

was evacuated and refilled with nitrogen three times. The temperature was then brought to reflux for 

about 30 min until a yellow precipitate had formed. The mixture was filtered and the solids washed with 

hexane to give pure dimer 33. 33: mp >350 °C (dec.) IR(KBr) 3424, 1708, 1627, 1466, 1369, 1302, 

1251, 1154, 1107, 1025, 846, 645 cm-1;  1H NMR (300 MHz, DMSO) δ 1.63(s, 9H), 7.60-7.69(m, 2H), 

8.40(s, 1H), 8.96(s, 1H), 9.04(s, 1H), 12.5(s, 1H); 13C NMR (300MHz, CDCl3) δ 28.3, 78.8, 82.5, 112.9, 

118.1, 121.0, 122.1, 129.5, 131.5, 134.8, 141.1, 163.0, 131.9, 134.2, 138.0, 140.8, 164.9; MS (FAB) 
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583(M+, 100).  This material was pure by TLC (silica gel). 
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