
Source Code Authorship Attribution

A thesis submitted for the degree of

Doctor of Philosophy

Steven David Burrows B.App.Sc. (Hons.),

School of Computer Science and Information Technology,

College of Science, Engineering and Health,

RMIT University,

Melbourne, Victoria, Australia.

4th November, 2010

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author alone;

the work has not been submitted previously, in whole or in part, to qualify forany other academic

award; the content of the thesis is the result of work which has been carried out since the official

commencement date of the approved research program; and, any editorial work, paid or unpaid,

carried out by a third party is acknowledged.

Steven David Burrows

School of Computer Science and Information Technology

RMIT University

4th November, 2010

i

ii

Acknowledgements

I first and foremost thank my PhD supervisors Dr. Alexandra Uitdenbogerd and Assoc. Prof. Andrew

Turpin for their ongoing encouragement, guidance, and feedback. Words alone cannot articulate my

gratitude. I am indebted to the support they have given me, for which I am truly thankful.

I also thank my previous PhD supervisors Prof. Justin Zobel and Dr. Saied Tahaghoghi for their

earlier supervision before moving on to other positions. I received an exceptional introduction to the

world of research from them during my honours degree.

I thank Upali Wickramasinghe for being my thesis reading buddy for exchanging thesis chapters

for feedback. The discussions we had were very valuable for improving the thesis.

I also thank Andrew Atkinson and David Burrows for taking the time to proof read a full draft of

my thesis. Thanks also goes to Michael Harris, Matthias Petri, Lida Ghahremanloo, Lorena Bando,

Jasbir Dhaliwal, Chris Hoobin, and Rahayu Hamid, for proof reading parts of my thesis.

I next thank the supportive environment of the School of Computer Science and Information

Technology at RMIT University, and in particular the Information Storage, Analysis and Retrieval

research group. The advice and support from staff and students both past and present has been

invaluable.

Finally, I thank my family and friends for their ongoing support and encouragement during my

time as a serial student. I needed all of you to keep me sane.

iii

iv

Credits

Portions of the material in this thesis have previously appeared in the followingpublications:

• S. Burrows and S. M. M. Tahaghoghi. Source code authorship attribution using n-grams. In

A. Spink, A. Turpin, and M. Wu, editors, Proceedings of the Twelfth Australasian Document

Computing Symposium, pages 32–39, Melbourne, Australia, December 2007. RMIT Univer-

sity.

• S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Application of information retrieval techniques

for source code authorship attribution. In X. Zhou, H. Yokota, R. Kotagiri, and X. Lin, editors,

Proceedings of the Fourteenth International Conference on DatabaseSystems for Advanced

Applications, pages 699–713, Brisbane, Australia, April 2009. Springer.

• S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Temporally robust software features for

authorship attribution. In T. Hey, E. Bertino, V. Getov, and L. Liu, editors, Proceedings of

the Thirty-Third Annual IEEE International Computer Software and Applications Conference,

pages 599–606, Seattle, Washington, July 2009. IEEE Computer Society Press.Best Student

Paper Award.

• S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Authorship attribution of source code. In

submission.

This work was supported by the Australian Research Council and the Information Storage, Analysis

and Retrieval group within the School of Computer Science and InformationTechnology at RMIT

University.

The thesis was typeset using the LATEX 2ε document preparation system.

All trademarks are the property of their respective owners.

Note

Unless otherwise stated, all fractional results have been rounded to the displayed number of decimal

figures.

v

vi

Contents

Abstract 1

1 Introduction 3

1.1 Collections . 5

1.2 Benchmarking Previous Contributions .. . 6

1.3 Applying Information Retrieval .. 6

1.4 Effectiveness Parameters . 7

1.5 Improving Contributions in the Field . 8

1.6 Thesis Structure .8

2 Background 11

2.1 Definitions . 12

2.1.1 Computer Forensics . 12

2.1.2 Software Forensics . 13

2.1.3 Authorship Attribution . 14

2.1.4 Related Areas . 15

Plagiarism Detection . 17

Near-Duplicate Detection . 22

Genre Classification . 22

Stylochronometry . 23

Phylogeny and Ontogeny . 24

Identity Resolution . 24

2.2 Rationale . 24

2.2.1 Academic Dishonesty . 24

2.2.2 Software Development Marketplaces . 27

2.2.3 Dispute, Litigation, and Theft . 27

vii

CONTENTS

2.2.4 Malicious Software Tracing . 30

2.2.5 Pseudonymous Authors . 31

2.2.6 Large Software Project Maintenance .. 31

2.2.7 Exploring Evolutionary History . 31

2.2.8 Authorship Attribution Competitions . 32

2.3 Style . 32

2.3.1 Writing Style . 33

2.3.2 Coding Style . 33

2.3.3 Similarities and Differences between Writing and Coding Style 34

2.3.4 Evolving Style . 34

2.3.5 Dishonest Style . 35

2.4 Measuring Style . 36

2.4.1 Metrics in the Literature . 36

2.4.2 N-Grams . 38

2.4.3 Watermarking . 38

2.4.4 Automated Tools . 38

2.4.5 Natural Language Measurements . 39

2.5 Information Retrieval Fundamentals .. 39

2.5.1 Search Engines . 40

2.5.2 Index Structures . 42

2.5.3 Models for Query Matching . 42

Cosine . 45

Okapi BM25 . 45

Language Modelling with Dirichlet Smoothing 46

Pivoted Cosine . 47

2.5.4 Effectiveness Quantification . 47

Precision and Recall . 48

Reciprocal Rank and Mean Reciprocal Rank 49

Average Precision and Mean Average Precision49

2.6 Machine Learning Fundamentals .. 49

2.6.1 Training and Testing . 50

2.6.2 Cross Validation . 50

2.6.3 Feature Selection . 52

2.6.4 Discretisation . 52

viii

CONTENTS

2.7 Classification Algorithms . 53

2.7.1 Decision Trees . 53

2.7.2 Nearest Neighbour Methods . 53

2.7.3 Neural Networks . 54

2.7.4 Case-Based Reasoning . 54

2.7.5 Discriminant Analysis . 54

2.7.6 Regression Analysis . 55

2.7.7 Support Vector Machines . 55

2.7.8 Voting Feature Intervals . 55

2.7.9 Bayesian Networks . 56

2.7.10 Simplified Profile Intersection . 56

2.8 Summary . 56

3 Collections 57

3.1 Important Criteria for Collection Construction 58

3.2 Collections in the Thesis . 60

3.2.1 Collection Coll-A . 60

3.2.2 Collection Coll-T . 63

3.2.3 Collection Coll-P . 65

3.2.4 Collection Coll-J . 67

3.2.5 Collections Coll-PO and Coll-JO . 67

3.3 Analysis of the Collections . 67

3.4 Comparison of Our Collections to Collections in Previous Work 70

3.5 Roles of the Collections . 74

3.6 Availability of the Collections . 75

3.7 Summary . 76

4 Benchmarking Previous Contributions 77

4.1 Related Areas . 77

4.1.1 Plagiarism Detection . 78

Natural Language Plagiarism Detection . 78

Metric-Based Source Code Plagiarism Detection 80

Structure-Based Source Code Plagiarism Detection 81

4.1.2 Genre Classification . 84

4.2 Natural Language Authorship Attribution .. . 85

ix

CONTENTS

4.3 Source Code Authorship Attribution Contributions 90

4.3.1 Krsul and Spafford . 92

4.3.2 MacDonell et al. 93

4.3.3 Ding and Samadzadeh . 93

4.3.4 Frantzeskou et al. 94

4.3.5 Kothari et al. 96

4.3.6 Lange and Mancoridis . 98

4.3.7 Elenbogen and Seliya . 99

4.3.8 Shevertalov et al. 99

4.3.9 Other Work . 100

4.3.10 Comparison of Published Results . 100

4.4 Benchmarking Methodology .102

4.4.1 Reimplementation of Frantzeskou Approach 102

4.4.2 Reimplementation of Metric-Based Approaches with Weka 102

4.4.3 Methodology Common to All Approaches 104

4.5 Benchmarking Results . 106

4.6 Summary . 106

5 Applying Information Retrieval 109

5.1 Methodology . 110

5.1.1 Collection Construction and Anonymisation 110

5.1.2 Tokenisation . 111

5.1.3 N-Gram Construction . 112

5.1.4 Indexing . 113

5.1.5 Querying . 113

5.1.6 Measuring Effectiveness . 113

5.2 N-Gram Size and Similarity Measure .118

5.3 Selecting Source Code Features .. . 122

5.3.1 Backwards Feature Selection . 122

5.3.2 Evaluating Feature Classes from the Literature122

5.4 Classification . 129

5.4.1 Overall Results . 129

5.4.2 Comparing Accuracy to the Reimplemented Work 131

5.5 Managing the Number of Indexes .. 132

x

CONTENTS

5.6 Summary . 134

6 Effectiveness Parameters 135

6.1 Problem Size . 135

6.1.1 Number of Authors . 136

6.1.2 Number of Samples per Author . 137

6.2 Sample Length . 140

6.3 Strength of Style . 142

6.3.1 Analysis of Outlier Results . 142

6.3.2 Automation of Style Analysis . 146

6.4 Timestamps . 147

6.4.1 Timestamp Collection Methodology . 149

6.4.2 Timestamp Collection Baseline Results . 150

6.5 Using Timestamps to Explore Topical and Temporal Effects 154

6.5.1 Ignoring Futuristic Matches . 155

Managing the Number of Indexes Again . 156

6.5.2 Topical Matches . 156

6.5.3 Temporal Matches . 159

6.5.4 Semester-Based Matches . 159

6.5.5 Other Types of Matches . 162

6.6 Using Entropy to Identify Highly Discriminating Features 162

6.7 Improving Accuracy with Highly Discriminating Features 168

6.8 Summary . 171

7 Improving Contributions in the Field 173

7.1 Overall Results for the Information Retrieval Approach 173

7.2 Improving N-Gram Approaches .. . 175

7.2.1 Profile Length . 177

7.2.2 N-Gram Size . 179

7.2.3 Anonymisation Effects . 179

7.2.4 N-Gram Composition . 181

7.3 Improving Metric-Based Approaches 183

7.3.1 Evaluating Combinations of Metrics and Classifiers 183

7.3.2 Machine Learning with N-Gram Features 187

7.4 Summary of Results . 189

xi

CONTENTS

7.5 Summary . 195

8 Conclusions 197

8.1 Collections . 197

8.2 Benchmarking Previous Contributions .. . 198

8.3 Applying Information Retrieval .. 198

8.4 Effectiveness Parameters . 199

8.5 Improving Contributions in the Field . 200

8.6 Future Work . 201

8.6.1 Information Retrieval Approach . 201

8.6.2 Frantzeskou Approach . 202

8.6.3 Metric-Based Approaches with Machine Learning 203

8.6.4 Related Problems . 203

8.7 Summary . 204

A Glossary 207

A.1 Authorship Attribution Glossary .207

A.2 Information Retrieval Glossary .. . 208

A.3 Machine Learning Glossary .. . 209

B Reconstruction of Freelance Collections 211

C Features from the Literature 219

D Programming Language Feature Tables 229

References 235

xii

List of Figures

2.1 Authorship Attribution . 16

2.2 Authorship Mismatch . 19

2.3 Co-derivative Match .. 20

2.4 RentACoder Web Site . 28

2.5 Centralised Search Engine Architecture 40

2.6 Inverted Index .. 43

2.7 Precision and Recall .48

2.8 Six-Fold Cross Validation .51

2.9 Ten-Fold Cross Validation .52

3.1 Turnin Submission Terms . 62

3.2 Order of the Six Tasks from the Temporal Collection 63

3.3 Number of Samples per Author in Our Collections71

3.4 Number of Lines of Code per Sample in Our Collections 72

4.1 JPlag Interface .83

4.2 General Source Code Authorship Attribution System Structure 91

4.3 Frequency of Byte-Level 4-Grams in Author Profiles 97

4.4 Baseline Reimplementation Results . 107

5.1 Methodology Step 2: Collection Construction and Anonymisation 111

5.2 Methodology Step 3: Tokenisation .. 112

5.3 Methodology Step 4: N-Gram Construction .. . 114

5.4 Methodology Step 5: Indexing .. 115

5.5 Methodology Step 6: Querying .. 116

5.6 Methodology Step 7: Measuring Effectiveness . 117

xiii

LIST OF FIGURES

5.7 Sunflower Plot of Results for Our Approach 121

5.8 Six Feature Classes in Marked-Up Source Code 124

5.9 Token Volume versus MRR for Our Approach 127

5.10 Token Volume versus MRR for Our Approach (Expanded) 128

5.11 Our Approach compared with Baseline Reimplementation Results 133

6.1 Query Length versus Accuracy for Our Approach 141

6.2 Lines of Code versus Accuracy for Our Approach 143

6.3 Style Score versus Accuracy for Our Approach 148

6.4 Example Run using the Temporal Collection .149

6.5 Temporal Collection Accuracy Results for Six Tasks 151

6.6 Omitting Results Variation 1: Ignoring Futuristic Matches157

6.7 Omitting Results Variation 2: Topical Matches .158

6.8 Omitting Results Variation 3: Temporal Matches 160

6.9 Omitting Results Variation 4: Semester-Based Matches 161

6.10 Omitting Results Variation 5: Futuristic Assignment-Based Matches 163

6.11 Omitting Results Variation 6: Futuristic Semester-Based Matches 164

6.12 Inefficient C Code that Distorted Entropy Calculations 167

6.13 Equivalent Source Code using Arrays or Pointers 167

6.14 Use of Parentheses and Carriage Returns 169

7.1 Comparison of Previous Results to Our Results for All Collections 176

7.2 Varying Profile Length for Frantzeskou Approach 178

7.3 Effective N-Gram Lengths for N-Gram Approaches 180

7.4 Comparison of Feature and Byte N-Grams for Our Work 181

7.5 Comparison of Feature and Byte N-Grams for Frantzeskou Work 182

7.6 Summary Results for Classifiers and Feature Sets 185

7.7 Accuracy Scores using Normalised Token Count Features 188

7.8 Accuracy Scores using Normalised N-Gram Count Features 190

7.9 Comparison of Leading Approaches 191

B.1 Planet Source Code Collection Construction Step 1 212

B.2 Planet Source Code Collection Construction Step 2 213

B.3 Planet Source Code Collection Construction Step 3 214

B.4 Planet Source Code Collection Construction Step 4 215

xiv

LIST OF FIGURES

B.5 Planet Source Code Collection Construction Step 5 216

B.6 Planet Source Code Collection Construction Step 6 217

xv

LIST OF FIGURES

xvi

List of Tables

2.1 Code Sharing Web Sites . 26

3.1 Average Lines of Code for Each Task in the Temporal Collection 64

3.2 Properties of the Collections .69

3.3 Comparison of the Collections . 73

4.1 Comparison of Results from the Literature .. . 101

4.2 Weka Classifiers Used to Reimplement the Previous Work 104

5.1 N-Gram and Similarity Measure Results for Our Approach 119

5.2 Feature and Token Statistics for Collection Coll-A 125

5.3 Accuracy Scores for the Six Feature Classes 126

5.4 Worked Examples for Three Accuracy Metrics 130

5.5 Accuracy Results using the Three Accuracy Metrics 131

6.1 Results for Modifying the Number of Authors 136

6.2 Two-Class Results for Modifying the Number of Samples per Author 138

6.3 Ten-Class Results for Modifying the Number of Samples per Author 139

6.4 Token Statistics for All Collections .140

6.5 Criteria for Measuring Stylistic Strength .. 144

6.6 Stylistic Strength Scores for Four Outlier Authors 145

6.7 Confusion Matrices for Temporal Collection Accuracy Results 152

6.8 Pearson’s Chi-Squared Tests for Temporal Collection Results 153

6.9 Entropy between Task Samples and Author Samples 166

6.10 Entropy of White Space Features 170

7.1 Accuracy Scores for Our Approach 175

xvii

LIST OF TABLES

7.2 Byte-Level N-Gram Statistics for All Collections 177

7.3 Accuracy Score Changes for Original Collections 180

7.4 Okapi BM25 and SPI Results using Feature and Byte N-grams 183

7.5 Average Metric-Based System Performance for All Classifiers 186

7.6 Average Metric-Based System Performance for All Feature Sets 187

7.7 N-Gram Token Statistics for All Collections .. 187

7.8 Summary of Results for Whole Thesis .193

C.1 Feature Sets from the Previous Work 221

D.1 C Language Operators and Keywords 230

D.2 C++ Language Operators and Keywords .231

D.3 Java Language Operators and Keywords 232

D.4 C Language Features for Six Feature Classes 233

D.5 C Language Function Words .. 234

xviii

Abstract

To attribute authorship means to identify the true author among many candidates for samples of

work of unknown or contentious authorship. Authorship attribution is a prolific research area for

natural language, but much less so for source code, with eight other research groups having published

empirical results concerning the accuracy of their approaches to date. Authorship attribution of source

code is the focus of this thesis.

We first review, reimplement, and benchmark all existing published methods to establish a con-

sistent set of accuracy scores. This is done using four newly constructed and significant source code

collections comprising samples from academic sources, freelance sources, and multiple programming

languages. The collections developed are the most comprehensive to datein the field.

We then propose a novel information retrieval method for source code authorship attribution. In

this method, source code features from the collection samples are tokenised, converted into n-grams,

and indexed for stylistic comparison to query samples using the Okapi BM25 similarity measure.

Authorship of the top ranked sample is used to classify authorship of each query, and the proportion

of times that this is correct determines overall accuracy. The results showthat this approach is more

accurate than the best approach from the previous work for three of the four collections.

The accuracy of the new method is then explored in the context of author style evolving over time,

by experimenting with a collection of student programming assignments that spans three semesters

with established relative timestamps. We find that it takes one full semester for individual coding

styles to stabilise, which is essential knowledge for ongoing authorship attribution studies and quality

control in general.

We conclude the research by extending both the new information retrieval method and previous

methods to provide a complete set of benchmarks for advancing the field. In the final evaluation,

we show that the n-gram approaches are leading the field, with accuracyscores for some collections

around 90% for a one-in-ten classification problem.

1

2

Chapter 1

Introduction

The topic of this thesis is inherently related to the analysis of writing style. Writing style of any

individual begins to develop from an early age and continues to develop throughout life. Each writ-

ing style is different and is influenced by many factors, such as schooling, family, and community.

Therefore, it should be possible to determine the author of an unattributed piece of work based on the

writing style of the candidates. This is known asauthorship attribution.

A common misconception is that authorship attribution will fail if writing style is strongly in-

fluenced. Moreover, interpretation of results of authorship techniquessuch as thecusumtechnique

has at times brought the field under dispute, as it has been claimed that this technique is “extremely

subjective and is open to ad hoc interpretation” [Holmes and Tweedie, 1995]. It might be thought

that a class of students being taught by the same English teacher for an extended period of time would

adopt the same writing style. This is unlikely to cause authorship attribution to fail,since there are

sufficient components in writing that are always open to personal choice.

Writing elements that may offer little personal choice are those documented in style guides such

as the “Publication Manual of the American Psychological Association” by the American Psycho-

logical Association [2009] and “Writing for Computer Science” by Zobel [2004b]. These books

cover rules that are widely accepted concerning punctuation, citation, capitalisation, abbreviations,

and even preferred spelling. A specific example that was addressed in the development of this thesis

concerned when numbers should be expressed as numerals or words.

Many elements of writing style still remain open to personal choice, however.Perhaps the most

obvious example is word choice. It is always the decision of the individual concerning the words

that make up each sentence, as there are a multitude of ways that each idea can be expressed. For

example, during the development of this thesis, the frequent use of the word “contribution” stood

out as a preference, whereas others might have preferred to use alternatives more frequently such as

3

CHAPTER 1. INTRODUCTION

“approach”, “research”, or “work”.

At the individual word level, the basic restriction is spelling rules. Preference can also be exhib-

ited at the phrase level, providing that grammatical correctness is maintained.Such phrases could be

as short as word pairs or as long as full sentences. Again referring tothe development of this thesis

as an example, it was noted that the author had strong preference to use certain phrases for sentence

beginnings, and work was undertaken to introduce more variety.

Word-level and phrase-level preferences may be particularly obvious when mistakes are made.

For example, particular spelling errors or unusual grammatical structuresmay also strongly demon-

strate personal traits. Moreover, general preferences concerning various parts of speech such as

nouns, verbs and conjunctions can indicate stylistic preferences. These preferences may be observed

statistically at the word level, or by observing common patterns at the phrase level, demonstrating

preferred language constructs.

Writing style, preference, and idiom, are not restricted to natural language writing as discussed

above, but also feature in other forms of “writing” such as computer language source code. It might

be thought that programming languages are too prescriptive for individual style to be demonstrated

in source code, since coding standards provide guidelines for aspectsof programming style such as

comments, layout, naming conventions, source file organisation, and general readability. Moreover,

a program must follow rigid syntactic rules to compile.

Despite the need to satisfy coding standards and compilation rules, there is much freedom and

choice that goes into writing software. Using the choice of standard libraryfunctions as an example,

there are usually many ways to process standard data input and to output data to files and the con-

sole. Another example is interchangable looping and branching constructs, such as “if/else” versus

“switch/case”, and “for” versus “while” versus “do-while” in C-like languages. Yet another example

is the use of compound statements, such as replacing “a = a + b” with “ a += b”. Perhaps the most

freedom is given with the use of white space for indentation, the placement of curly braces for code

blocks, and commenting.

There are two clear areas of previous authorship attribution research,for natural language and

source code respectively. Natural language authorship attribution is a mature area of research with

many publications. For example, the seventy-four contributions summarised by Koppel et al. [2009]

spanning 1887 to 2008 comprise many of them. Conversely, the firstsource code authorship attri-

butionempirical contribution was presented by Krsul [1994], and there are only eight prior research

groups who have published empirical results in this area to the best of our knowledge, apart from our

own work.1

1Our comprehensive literature review comprised the use of search engines, digital libraries, and resource bibliographies.

4

1.1. COLLECTIONS

Authorship attribution can help solve many practical and adversarial problems. The following

types of questions are typical examples of investigations requiring sourcecode authorship attribution,

whether they be in academia, industry, or in general:

1. Who was the original author in this pair of plagiarised programming assignments?

2. Who was responsible for writing this defective code?

3. Who was the author of this particular computer virus?

4. Who wrote this unattributed software?

These questions are all authorship attribution problems as they have a “who” component. Other

questions that belong to related topics concern “when”, “where”, “why”, and “how many”, and are

generally beyond the scope of authorship attribution and hence this thesis.

This thesis offers several new contributions in the field of source code authorship attribution,

which enables questions such as the above four to be better answered. In Sections 1.1 to 1.5, we

review the research problems that we address in Chapters 3 to 7.

1.1 Collections

Following the thesis background material in Chapter 2, in Chapter 3 we explainthat the first step in

any authorship attribution study is the construction of suitable collections. However, care must be

taken concerning the criteria that should be used to construct such collections. For example, we want

to ensure that our work is applicable to a variety of problem settings, thus it isimportant that our

collections represent multiple programming languages, and come from a variety of sources. The first

contribution of this thesis is the presentation of our list of eleven criteria for collection construction,

based on our review of the previous work. These criteria are used when documenting our collections

and those in previous work.

We next describe the construction of four large source code collections, which meet our criteria

as best as possible, using data from a school student assignment submission archive and a code

sharing web site. When comparing the properties of our collections to those of the previous research

groups, we show that our collections are the most comprehensive to date,making them the basis of

an excellent evaluation framework for advancing the field.

We conclude our review of the collections by sharing the location of our dataand instructions

for reproducing the collections. The data release comprises single-tokenand token-pair occurrence

statistics for the four collections, allowing others to reproduce parts of the work in this thesis, whilst

5

CHAPTER 1. INTRODUCTION

keeping the samples sufficiently scrambled to satisfy intellectual property and ethics requirements.

We also present a guide for reproducing the code-sharing web site collections, since we cannot pub-

lish the links due to the likelihood of some later becoming dead, or pass on the original samples due

to the terms and conditions of the web site.

1.2 Benchmarking Previous Contributions

Our contribution in Chapter 4 is to comprehensively review and reimplement previous work in the

field, and then benchmark the contributions against one another to establishthe leading methods.

We begin with a summary of the literature from related areas such as plagiarismdetection, genre

classification, and natural language authorship attribution, which servesto identify any key ideas

missing in the source code authorship attribution literature. The bulk of the literature review then

focuses on the collections, methods, and results from eight other research groups that have previously

published empirical results in source code authorship attribution.

Direct comparison of the published work is difficult, as few of the feature sets, similarity mea-

sures, and machine learning classification algorithms have been evaluated on the same collections. To

address this problem, we reimplement the previous work as closely as possible, to enable evaluation

using our collections. By doing this, we developed a consistent set of benchmarks for comparison to

our new information retrieval method for source code authorship attribution, introduced in Chapter 5.

The results to this point show that the coordinate matching approach using counts of byte-level

source code segments (orn-grams) [Frantzeskou et al., 2006a] is more effective than approaches

based on the use of software metrics as features, and machine learning algorithms for classification.

Coordinate matching achieves around 85% accuracy for a one-in-ten classification problem using

our largest collection from the code sharing web site, compared with the leading approach from the

software metric family of approaches, which achieves an accuracy of around 75%.

1.3 Applying Information Retrieval

In Chapter 5, we introduce an information retrieval approach to source code authorship attribution.

A clear conclusion from our literature review is that the use of n-grams is underexplored for source

code authorship attribution. Therefore, in our next contribution we aim to determine whether a new

implementation motivated by the information retrieval approach for source code plagiarism detection

by Burrows et al. [2006] is effective for source code authorship attribution. The method involves

indexing token-level n-grams of source code features (such as operators and keywords), so that we

can classify samples that are represented as queries to the index. The output returned from query

6

1.4. EFFECTIVENESS PARAMETERS

requests is a ranked list of samples, ordered from most relevant to leastrelevant based on stylistic

similarity. These lists can then be post-processed to identify the most likely author represented in the

index.

To implement the method described above, we need to establish optimal settings for the choice

of n-gram length, information retrieval similarity measure, feature set, and method for classifying

authorship of the query samples using the ranked lists. We initially use common information retrieval

metrics to gauge the quality of the returned ranked lists to make suitable decisionsfor the parameters

above. We identify that the Okapi BM25 similarity measure using token-level operator, keyword, and

white space features, is effective when combined in n-grams of lengthn= 6, which helps to preserve

the locality of the features.

We conclude Chapter 5 by exploring methods for making classification decisions using the ranked

lists. We evaluate a method that uses the top-returned sample from the rankedlist, and two other

methods that use the whole lists. We find that the method that uses only the top-returned sample is

the most effective. This finding suggests that authors commonly have some samples that are either

unhelpful or misleading for making authorship decisions, therefore not using the whole set seems to

be a good decision.

1.4 Effectiveness Parameters

After implementing and evaluating the information retrieval approach described above, in Chapter 6

we investigate how our method performs when manipulating key parameters thatwere kept constant

in the development of our approach, such as the number of authors, number of samples per author, and

sample length. Other variables investigated are the stylistic maturity of authors, and the timestamps

of samples. We expect these factors to affect the accuracy of our approach, and we explore each in

turn in separate experiments.

Previous source code authorship attribution research has assumed a stable feature set over time.

We investigate timing effects using a specially constructed collection of student assignments with

guaranteed relative timestamps established from a sequential chain of courses from our school. We

find that coding style is particularly unstable early in a programmers career.This finding suggests

that it takes one semester for programmers to develop a consistent coding style, which is interesting

for people who deal with source code quality control.

It is also unclear which individual features will be of most value for makingaccurate authorship

decisions, thus we explore their effect individually. We make use of entropy [Shannon, 1948] as a

measure of information content for this work. We find that white space playsan important role, and

7

CHAPTER 1. INTRODUCTION

adjust tokenisation to make best use of the white space features.

1.5 Improving Contributions in the Field

The goal of Chapters 5 and 6 is to develop and evaluate our information retrieval approach. Therefore,

the first results we present in Chapter 7 concern the overall performance of our approach compared

with the previous work. Results show that the Frantzeskou et al. [2006a]approach is around 85%

accurate when using our largest code sharing web site collection for the one-in-ten classification

problem, and we find that our approach has advanced the state-of-the-art to around 90% accuracy.

Moreover, when considering the full set of four collections, our approach is the most accurate for

three of the four collections.

In the remainder of Chapter 7, we describe refinements to the previous work by other researchers.

First, we consider the effect of exchanging the types of string patterns (n-grams) used in our work and

that of Frantzeskou et al. [2006a]. We find that these are interchangeable, however the Frantzeskou

et al. [2006a] method requires a different n-gram length and omission of the profile truncation step to

be more effective.

The accuracy scores for the remaining combinations of machine learning classification algorithms

and software metric feature sets are then evaluated. We find that the neural network and support

vector machine classifiers are the most effective classification algorithms, and that combining the

feature sets proposed by the previous research groups is more effective than the individual parts.

We also determine whether counts of n-gram occurrences normalised by sample length are effec-

tive when combined with the classification algorithms. We find that increased numbers of n-grams is

effective, but we do not establish a single recommendation, as we find that accuracy continues to in-

crease as the number of n-grams used increases up to the largest numberof n-grams tested. Given the

time required to complete this experiment, the recommendation for future work is to find a classifier

with the best compromise between accuracy and time.

The final section of this chapter includes a comparison of all results in a single table for all

combinations of feature set and classification method explored. These provide a comprehensive set

of benchmarks for future work, and clearly identify the methods attempted to date in source code

authorship attribution.

1.6 Thesis Structure

The remainder of this thesis is organised as follows. In Chapter 2, we provide background material

important for understanding the remainder of the thesis. This includes definitions, additional motiva-

8

1.6. THESIS STRUCTURE

tion, methods for measuring authorial style, and fundamentals of information retrieval and machine

learning. In Chapters 3 to 7, we present our contributions as outlined in Sections 1.1 to 1.5. We con-

clude in Chapter 8 with a summary of the outcomes and an agenda for future work. Four appendices

follow in Appendices A to D, which can be referred to when cited in the body of the thesis.

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Background

Authorship attribution in itself is not a new problem. There is a wealth of prior work in natural lan-

guage authorship attribution, and related areas such as plagiarism detection and genre classification.

There are also eight prior source code authorship attribution contributions with published empirical

results. Gaps in previous work have in part motivated the new research questions and contributions in

this thesis. This chapter covers all the necessary background material tolead into our contributions

presented in Chapters 3 to 7.

This chapter begins in Section 2.1, with definitions of and differentiations between the key prob-

lems areas in and related to our research. In Section 2.2, we motivate the importance and relevance of

the authorship attribution problem by covering practical application areas inacademia and industry.

We provide a discussion about writing style, coding style, and their differences, plus issues related to

evolving style due to the maturing of authors in Section 2.3, which forms a large part of Chapter 4.

Given the importance of style, in Section 2.4 we review several types of stylemeasurements and tech-

niques such as metrics, n-grams, and watermarks. In Section 2.5 we coverthe background material

essential to our information retrieval approach to source code authorship attribution introduced from

Chapter 5. In Section 2.6, we cover the machine learning background material essential for reimple-

menting the existing source code authorship attribution contributions in Chapter4, and our extensions

in Chapter 7. A series of machine learning classification algorithms are reviewed in Section 2.7 that

have appeared in previous source code authorship attribution contributions. Finally in Section 2.8,

we conclude this chapter by summarising the background work, highlighting the gaps in the previous

work, and by outlining our way forward to fill some of those gaps, with our contributions following

in Chapters 3 to 7.

11

CHAPTER 2. BACKGROUND

2.1 Definitions

Our definition of authorship attribution for this thesis is as follows:

Authorship attribution is the process of assigning authorship of an unattributed or con-

tentious sample of work to its correct author amongst a finite pool of authors.

There are many definitions of authorship attribution that are sometimes inconsistent with one

another. Therefore, we begin this section by defining the broader computer forensics and software

forensics fields that authorship attribution fits within. We then take care in reviewing subproblems,

alternative definitions, and synonyms that fall under the umbrella ofauthorship attribution, given the

inconsistency in the literature. Definitions of plagiarism detection, near-duplicate detection, genre

classification, stylochronometry, phylogeny, ontogeny, and identity resolution are provided in con-

clusion to this section, which should not be confused with authorship attribution.

2.1.1 Computer Forensics

Hall and Davis [2005] collated eight definitions ofcomputer forensicsin the literature including the

following by Abraham and de Vel [2002]:

“Computer forensics undertakes the post-mortem, or ‘after-the-event’ analysis of com-

puter crime. Of particular importance is the requirement to successfully narrow the po-

tentially large search space often presented to investigators of such crimes. This usually

involves some form(s) of guided processing of the data collected as evidence in order

to produce a shortlist of suspicious activities. Investigators can subsequently use this

shortlist to examine related evidence in more detail.”

Forensics in general concerns the collection of evidence to assist with legal proceedings. Hall

and Davis [2005] presented a computer forensics case concerning a road contractor who received se-

vere injury and disability after the heavy machinery he was operating surged forward after changing

gears. Hall and Davis [2005] investigated the roles of the contractor, machine supplier and manufac-

turer, hardware component designer and supplier, and the control system programmer to determine

legal liability for compensation purposes. This is a good example of a computerforensics case study,

as the investigation reviewed many types of legal artefacts including machinery, hardware, compo-

nents, data, design documentation, and source code.

12

2.1. DEFINITIONS

2.1.2 Software Forensics

Software forensicsis a sub-area of computer forensics dealing with programs and source code. In the

case study by Hall and Davis [2005] above, the software forensics component was the investigation

of the source code produced by the programmer. Another good example isthe floating-point error

that caused the $500 million Ariane rocket to explode in 1996 [Marc Jezequel and Meyer, 1997]. Hall

and Davis [2005] collated four definitions of software forensics in the literature, including the one

by Slade [2004]:

“Software forensics involves the analysis of evidence from program code itself. Program

code can be reviewed for evidence of activity, function, and intention, as well as evidence

of the software’s author.”

It is clear from this definition that the field of software forensics is also divided into several sub-

areas. For example, Gray et al. [1997] described software forensics as having four distinct areas:

author identification, author discrimination, author characterisation, and author intent determination.

Author identificationis the descriptor used by Gray et al. [1997] that we use to define authorship

attribution. That is, it deals with the problem of assigning authorship of a work sample based on other

available work samples of known authorship.

Author discriminationis the task of deciding whether one or several authors created a piece of

work. For example, this was used in the investigation of the malicious WANK and OILZ worms

that attacked numerous networks such as NASA in 1989 [Longstaff and Schultz, 1993], where there

were three suspected authors. Author discrimination is also related to collusion where students, for

example, sometimes work together inappropriately to complete assessment tasks[Bull et al., 2002].

Author characterisationuses programming style to gain an understanding of personal traits such

as educational background [Gray et al., 1997]. This area is also known as personality profiling [Kop-

pel et al., 2009]. Profiling practitioners aim to identify as much information as possible above and

beyond just authorship of a document, such as “demographic and psychological information” [Kop-

pel et al., 2009]. Krsul [1994] also noted the partial overlap with psychology.

Author intent determinationcan be used to find the reasons for software faults. Some software

faults may be simple oversights on behalf of programmers, but others may arise from malicious

intent. For example, a disgruntled employee may include a destructive statementthat is set to go

off after leaving their place of employment [Spafford, 1989a]. Similarly, a programmer may create

deliberately confusing code to enhance job security, as no-one else would have the skills or knowledge

to maintain it [Spinellis, 2009]. Identifying deliberate faults amongst accidental ones is critical in

maintaining business integrity.

13

CHAPTER 2. BACKGROUND

Author discrimination is not discussed in this thesis, as the scope is restricted tosingle-author

problems. We also do not focus on author characterisation or author intent determination problems,

as these are beyond the scope of this thesis. This leaves us with authorshipidentification — or

authorship attribution— as explored in this thesis.

2.1.3 Authorship Attribution

The authorship attribution definition given in Section 2.1 concerns a fixed set of candidate authors.

It is also possible that some candidate authors may be outside this set. Juola [2006] described these

two problems asclosed-classandopen-classrespectively. Juola [2006] described the closed-class

problem as: “given a particular sample of text known to be one of a set ofauthors, determine which

one”. The open class problem is: “given a particular sample of text believed to be one of a set of

authors, determine which one, if any” [Juola, 2006]. This second problem is much harder, as the

sample in question may not be represented in the collection at all. Interestingly,this problem remains

unattended in source code authorship attribution literature, as none of the previous contributions

reviewed in Chapter 4 have attempted this problem. This thesis also deals with the closed-class

problem, and the open-class problem remains as future work for sourcecode authorship attribution.

Juola [2006] also described a third problem, which does not fit under theopen-class and closed-

class definitions above; that is, all other problems that aim to infer more than just the author of the

program, such as the number of authors, and the background of the authors. This has already been

described as author discrimination and author characterisation by Gray etal. [1997] above, and Juola

[2006] referred to these areas asprofiling andstylometry. Moreover, the three problems described

by Juola [2006] have been grouped under the heading ofauthorship analysisby de Vel et al. [2001].

Stein et al. [2007] introducedauthorship identificationas their umbrella to cover their definitions

of authorship attributionandauthorship verification. Koppel and Schler [2004] and Koppel et al.

[2007] have also used authorship attribution and authorship verification definitions in the same way

as Stein et al. [2007] above, but without the authorship identification umbrella. Therefore we must

now distinguish authorship verification from authorship attribution.

In the Stein et al. [2007] report, the authorship attribution definition matches the closed-class

definition by Juola [2006] as discussed above. The definition for authorship verification by Stein

et al. [2007], however, is related to the open-class definition by Juola [2006], but has key differences

concerning the number of candidate authors in the problem. Stein et al. [2007] gave the following

definition for authorship verification: “one is given examples of the writing of a single author and is

asked to determine if given texts were or were not written by this author”. This definition essentially

asks the question: “Does this sample belong to this author?”, whereas the definition by Juola [2006]

14

2.1. DEFINITIONS

essentially asks: “Does this sample belong to any of these authors?” The definitions are similar as

they both include the possibility of the correct author being outside the candidate author set. The

only difference is the size of the author set: Stein and Meyer zu Eissen [2007] discussed a one-class

problem whereas Juola [2006] discussed a multi-class problem.

The above discussion regarding problem sizes clearly indicates that the difficulty of authorship

verification problems vary considerably, which is also true for authorshipattribution. Figure 2.1 gives

an example of a (closed) three-class authorship attribution problem, wherethe query sample on the

left is known to belong to one of Author A, B, or C. Therefore there is a1
3 chance to identify the author

by random chance alone. Generally speaking, theclosedauthorship attribution problem varies from

two classes up to any number of classes. The largest previously attempted source code authorship

attribution problem, in terms of the number of authors, is forty-six-class [Dingand Samadzadeh,

2004]. Note that the one-class problem size does not make sense for theclosed problem, as there is

only one correct answer that would be chosen for every problem.

In theopenauthorship verification problem, the unattributed sample must not only be compared

to the given candidate authors (as in Figure 2.1), but consideration must also be given for the sample

to potentially not belong to any of the authors. In authorship attribution, authorship can be assigned

to the author deemed to be the most similar using computed measurements of their style, such as

word usage and part of speech statistics. However, in authorship verification the similarity threshold

must be carefully considered to decide if the unattributed sample should be deemed to not belong

to any of the authors in the candidate set. In addition, the problem size is also unbounded, as there

could be any number of candidate authors, plus the possibility of the work belonging to none of them.

However, unlike authorship attribution, the one-class authorship verification problem is realistic and

practical.

This thesis is concerned with the authorship attribution problem, and not the authorship verifi-

cation problem. Therefore, we do not discuss authorship verification further. Similarly, we do not

discussopen-classor closed-classproblems further. We just use the termauthorship attribution, as

authorship attribution is implicitly a closed-class problem.

2.1.4 Related Areas

In this section we describe the similarities and differences between authorship attribution and six

related areas: plagiarism detection, near-duplicate detection, genre classification, stylochronometry,

phylogeny/ontogeny and identity resolution.

15

CHAPTER 2. BACKGROUND

Author AProfile A

Work A1 Work A2 Work A3

Author BProfile B

Work B3Work B2Work B1

Profile C Author C

Work C1 Work C2 Work C3

?

?

?

Work X

Author ?

Figure 2.1: A typical authorship attribution problem where an unattributed piece of work is being
assigned to one of three possible authors. With three candidate authors, this problem is described as
three-class. The circle, triangle, and square shapes in each work sample are metaphors for writing
style. Therefore the unattributed work sample is likely to belong to Author C, given that both the
unattributed sample and the Author C profile samples have many squares,which indicates similar
style.

16

2.1. DEFINITIONS

Plagiarism Detection

RMIT University [2002] defined plagiarism as “the presentation of the work, idea, or creation of

another person as though it is your own”. iParadigms [2010] provide sixspecific examples of types

of plagiarism incidents:

• “Turning in someone else’s work as your own.

• Copying words or ideas from someone else without giving credit.

• Failing to put a quotation in quotation marks.

• Giving incorrect information about the source of a quotation.

• Changing words but copying the sentence structure of a source withoutgiving

credit.

• Copying so many words or ideas from a source that it makes up the majority of

your work, whether you give credit or not.”

To distinguish the difference between plagiarism detection and authorship attribution, we describe

plagiarism detection as being concerned with document content, and authorship attribution being

concerned with document style. To make this difference clear, we must review the three different

kinds of plagiarism problems in the literature: hermetic plagiarism detection, external plagiarism

detection, and intrinsic plagiarism detection.

Mozgovoy [2007] describedhermeticplagiarism detection systems as those that can process “lo-

cal collections of documents”. Therefore hermetic plagiarism detection refers to the inward-looking

or intracorpal problem. In practice, hermetic plagiarism detection involves the comparison of all sam-

ples from a class to one another in turn. Popular existing systems of this nature include JPlag [Prechelt

et al., 2002], MOSS [Bowyer and Hall, 1999], and Sherlock [Joy and Luck, 1999]. Therefore, in a

class ofsstudents there will be the following number of comparisons:

c=
s−1
∑

i=1

i (2.1)

Conversely,externalplagiarism detection [Grozea et al., 2009] is an outward-looking or extra-

corpal problem. This problem involves two collections of documents comprising a query set and a

reference set. The problem now is to determine whether there are any similarities between the sam-

ples in the query set and reference set. The query set can be the same collection of samples from a

class described above. However, there are really no restrictions on what can make up the reference

set. For example, a reference set could be a collection of student samplesfrom a previous offering

17

CHAPTER 2. BACKGROUND

of a course, where the aim is to determine whether previous students have passed work on to current

students. The reference set could also be documents obtained from external sources, such as the

Internet, to determine whether work has been obtained online.

Hermetic and external plagiarism detection is often combined. For example, theTurnitin aca-

demic integrity vendor [iParadigms, 2007b] conducts inward comparisons of batches of uploaded

assignments, and also compares these to their enormous database including books, journals and pre-

vious assignments. The exact algorithm is not known, as the inner-workings of the software are

commercial in confidence. However, Mozgovoy et al. [2005] noted somecollection statistics that

were available on the Turnitin web site around the time of their publication in November 2005; they

reported that the “database consists of over 4.5 billion pages which is updated daily with 40 million

pages”.

Authorship attribution can assist with academic and legal investigations involvinghermetic and

external plagiarism detection discussed above. For example, consider two types of plagiarism shown

in Figures 2.2 and 2.3: theauthorship mismatchand theco-derivative matchrespectively.

An authorship mismatchoccurs when one author obtains work by another. For example, Fig-

ure 2.2 demonstrates an incident where similar work samples were identified from Author B and

Author C. In this case, Author C is determined to be the receiving author, asthe style of the work

sample was found to be stylistically similar to previous work samples by Author B. With this fact es-

tablished, the investigation can continue to determine if the work was stolen or provided willingly to

Author C. Plagiarism detection software will regularly detect authorship mismatches provided both

samples are present in the collection. However, authorship attribution is required if the investigation

needs to differentiate the original author and the receiving author. This is critical in conducting aca-

demic integrity investigations and legal proceedings to determine blame and responsibility. Figure 2.2

demonstrates that if profiles of writing or coding style can be constructed from previous samples of

work by the authors in question, then the original and receiving authors can be differentiated.

The co-derivative matchscenario can arise when neither party has colluded with one another,

but instead independently obtained the same content from a third party. A plagiarism detection in-

vestigation can identify the similar content, but finding this may be coincidental if the authors were

working independently from one another. Figure 2.3 demonstrates a co-derivative match scenario,

where similar work has been identified between Author B and Author C. In thisexample, an author-

ship analysis could confirm that neither of the writing styles of samples Work Band Work C match

their typical work, represented in Profile B and Profile C. This means that the authorship mismatch

scenario shown in Figure 2.2 can be eliminated from any investigation.

18

2.1. DEFINITIONS

Work A

Profile A

Work C

Profile C

Work B

Profile B

Aut
ho

rs
hip

m
ism

at
ch

M
at

ch

M
at

ch

Author A Author B Author C

Figure 2.2: Author C has potentially plagiarised work belonging to Author B. That is, Work C was
probably written by Author B, not Author C. This is an authorship profile mismatch. The circle,
triangle and square shapes in each sample and profile are metaphors forwriting style. Therefore the
Work C sample represents and authorship profile mismatch, since the stylematches the wrong profile.

19

CHAPTER 2. BACKGROUND

Work A

Profile A

Work C

Profile C

Work B

Profile B

Co−derivative
match

M
at

ch

Author A Author B Author C

Figure 2.3: Authors B and C have potentially plagiarised work from an external source. The Work B
and Work C samples do not match previous examples of work by those authors in Profile B and
Profile C. This is a co-derivative match. The circle, triangle, square, andhexagon shapes in each
sample and profile are metaphors for writing style. Therefore Work B and Work C samples represent
a co-derivative match, since their styles match one another but not the profiles.

20

2.1. DEFINITIONS

The authorship mismatch and co-derivative match scenarios in Figures 2.2 and 2.3 demonstrate

that plagiarism detection can only solvewithin-collectionproblems. For example, the authorship

mismatch problem may be undetectable with plagiarism detection techniques if one author was not

represented in the collection. This may occur if an outsider was hired to complete work. In this ex-

ample, an authorship analysis may still be able to determine that work was written by another party,

even if the identify of the other party remains unknown. Similarly, the co-derivative match problem

may also be undetectable with plagiarism detection techniques if only one co-derivative sample is

represented in the collection. This may occur if no other authors represented in the collection used

the derived work due to chance. Again, an authorship analysis may still beable to determine that the

work is not original. In summary, plagiarism detection techniques are very complementary with au-

thorship attribution techniques, which can help answer additional questionsthat plagiarism detection

techniques cannot.

Having reviewed hermetic and external plagiarism problems, we must now review the final prob-

lem: intrinsic plagiarism detection.Intrinsic plagiarism detection is a completely different problem to

hermetic and external plagiarism detection as it does not use a referencecollection [Meyer zu Eissen

and Stein, 2006]. Instead, the problem is to identify document chunks thatdemonstrate inconsistent

style with the remainder of the document, if any, to indicate potentially plagiarised components [Stein

and Meyer zu Eissen, 2007]. Therefore each document chunk is essentially treated as a separate and

potentially suspicious document in turn. This problem is synonymous with the open-class authorship

verification problem described previously in Section 2.1.3, with a key additional problem introduced

concerning the methods that should be used to determine the chunk boundaries.

The only plagiarism detection problem that has little overlap with authorship attribution is the

self plagiarismproblem [Collberg and Kobourov, 2005]. Self plagiarism detection can be applied

in academia to identify recycled and unoriginal publication content. It does not make sense to use

authorship attribution techniques for self plagiarism detection if the problem only concerns work

written by one author. However, there may be authorship discrimination applications for papers of

multiple authorship.

All of the plagiarism detection problems discussed above concern detectingincidents after they

have occurred. Other research inpreventativeplagiarism detection concerns avoidance through edu-

cation [Hamilton et al., 2004] and use of editors and integrated development environments to make

copy-and-paste incidents more difficult to commit [Vamplew and Dermoudy, 2005]. However, pre-

ventative plagiarism detection is unrelated to authorship attribution and is mentioned here for com-

pleteness only.

21

CHAPTER 2. BACKGROUND

Near-Duplicate Detection

Near-duplicate detection is closely related to plagiarism detection, in that this problem also seeks

to identify verbatim content. The key difference is that near-duplicate detection concerns whole

documents and large portions of content that are identical or near-identical. We also note that near-

duplicate detection is synonymous with copy detection [Shivakumar and Garcia-Molina, 1995].

Near-duplicate detection for the Web is a very large problem, as redundancy of documents on

the Web is estimated to be a large fraction. Broder et al. [1998] reported that “experiments indicate

that over 20% of the publicly available documents on the web are duplicates”.Broder [2000] later

added that “the fraction of the total WWW collection consisting of duplicates and near-duplicates has

been estimated at 30 to 45%”. Broder [2000] stressed the importance of near-duplicate detection on

the Web for two key reasons. First, near-duplicate detection is critical in search engines to remove

or cluster redundant and highly similar query results, so that the results pages can be more useful to

users. Second, it is also critical to remove redundancy to improve efficiency.

Johnson [1993] reported on a near-duplicate detection prototype that was applied to detect re-

dundancy in over 300 megabytes of source code. Johnson [1993] described four main applications

of redundancy detection in source code: enhancing program understanding, information measures,

data compression, and distributed configuration management. First, redundancy detection canen-

hance program understanding, as “noting which text occurs multiple times in a large source tree can

facilitate understanding of the source” [Johnson, 1993]. Second,information measurescan help dif-

ferentiate copy-and-paste content changes from normal development.Third, data compressioncan

reduce the size of the stored code. Finally,distributed configuration managementtools for version

control benefit from being able to easily distinguish new from old content.

Genre Classification

Like plagiarism detection, genre classification also has many similarities to authorship attribution.

Genre classification problems aim to classify samples to one of many categoriessimilarly to how

authorship attribution problems aim to classify samples to one of many authors.

Many types of categories have appeared in the genre classification literature. A common two-

class problem is spam detection where the classes are spam and non-spam. Spam detection — also

known as unnatural language detection [Lavergne, 2006] — can be applied to email [Drucker et al.,

1999], andspamdexing, which refers to “any deliberate human action that is meant to trigger an unjus-

tifiably favourable relevance or importance for some web page” [Gyongyi and Garcia-Molina, 2005].

Other two-class problems include gender classification [Argamon et al., 2003a], fiction/non-fiction

22

2.1. DEFINITIONS

classification [Koppel et al., 2002], and machine-created/human-created content classification [Dalk-

ilic et al., 2006].

Meyer zu Eissen and Stein [2004] conducted a user study for an eight-class genre classification

problem to help with the identification of eight web page genres: article, discussion, download, help,

link collection, non-private portrayal, private portrayal, and shop. Santini [2007] instead used another

collection for a different set of seven web page genres: blog, e-shop, frequently asked question, online

newspaper frontpage listing, personal home page, and search page.There is some overlap, as “shop”

is similar to “e-shop”, and “private portrayal” is similar to “personal home page”. The motivation

to classify web pages into categories such as the above, is to ensure that search engines can deliver

content of the desired type. This functionality is present in current and widely-used commercial

search engines, in the form of searches for specialised content categories, such as news articles,

scholarly articles, and blogs. Other multi-class genre classification problemsinclude age, dialect,

nationality, and region [Burger and Henderson, 2006; Juola, 2006].

For source code, perhaps the most important genre classification problem is malicious software

detection [Maloof and Kolter, 2004]. This is a two-class problem where executables or source code

samples are classified as malicious or benign. Abou-Assaleh et al. [2004b] discussed that virus detec-

tion software not only has to detect known patterns and variations of existing viruses, but real-time

anti-virus detection requires heuristics to identify new viruses. The problem is made additionally

difficult with harmful software that masquerades as legitimate software.

Finally, topic (or subject) classification [Bae Lee and Myaeng, 2002] is a closely related problem

to genre classification. The key difference is that each genre can have content on many different

topics. For example, the article genre discussed in the Meyer zu Eissen andStein [2004] study above

could have content on arts, business, or information technology topics.

Stylochronometry

Stylochronometry is used to determine when documents were created. Knowing when a document

was written can be crucial in determining the creating author, when the originality of work is under

dispute. Juola [2006] mentioned that this area of research is sometimes in conflict with authorship

attribution, as determining the time of creation undermines any idea of a fixed “authorial fingerprint”.

This thesis addresses this conflict by exploring authorship attribution accuracy on collections with

relative timestamps in Chapter 6.

23

CHAPTER 2. BACKGROUND

Phylogeny and Ontogeny

Phylogeny and ontogeny are related to stylochronometry in that they also deal with time. Phylogeny

concerns the understanding of evolutionary history [Bennett et al., 2003], whether it be for biological

species [Goldberg et al., 1998], or documents and source code. Ontogeny is related, but it concerns

understanding evolutionary history from an origin. For example, Braine [1963] conducted a study of

the ontogeny of the first English phrases learned by young children.

Identity Resolution

Identity resolution is the process of merging references to people that appear similar but are in fact

the same person. Therefore unlike authorship attribution, which is a classification problem, identity

resolution is a clustering problem. For example, references to a person byfirst name only in several

emails on the same topic within an organisation may suggest that all the emails belongto the same

person. Identity resolution is valuable in criminal and terrorism-related investigations [Wang et al.,

2007]. Related to identity resolution is entity resolution, which can be applied to similar problems

for clustering organisational data.

2.2 Rationale

The applications of authorship attribution are numerous. In this section we motivate the need for au-

thorship attribution by presenting case studies and examples, where authorship attribution techniques

have been applied, or could be applied. In addition, we present statistics based upon actual incidents,

and surveys in the literature, to quantify the need for authorship attribution.

2.2.1 Academic Dishonesty

As discussed in Section 2.1.4, there are many academic integrity questions thatauthorship attribution

can answer, which plagiarism detection cannot answer by itself. Therefore authorship attribution is

crucial for assisting with cases of academic dishonesty.

The reports and statistics of the prevalence of plagiarism in the literature areplentiful. Marsden

et al. [2005] described the results of a comprehensive study of 954 students from four Australian

universities, where 81% admitted to having engaged in some form of plagiarism. Moreover, Ale-

mozafar [2003] described the increasing trend at Stanford University, where the Office of Judicial

Affairs witnessed violations of the honour code increase by 126% between 1998 and 2001.

24

2.2. RATIONALE

Perhaps the most comprehensive statistics can be found in the Dick et al. [2003] study, which

summarised twelve other studies of plagiarism rates from 1964 to 2001. These plagiarism rates range

from 40% to 96%, and are largely based on “student self-reporting”.

Other studies have interviewed academic staff about the prevalence of plagiarism. Bull et al.

[2002] found that 50% of respondents agreed that there “has been an increase of plagiarism in recent

years”, in their study of 321 respondents. Only 15% disagreed and 35%did not know.

Culwin et al. [2001] described another study where representativesfrom fifty-five higher educa-

tion computing schools completed a questionnaire. They found that 89% of institutions surveyed felt

that source code plagiarism was either a “minor nuisance”, a “routine headache”, or “bad and getting

worse”. Only 11% felt that it was either “not a problem”, or “under control”.

Several cases of plagiarism have attracted media attention or prompted extraordinary action by

academic staff. Ketchell [2003] described a case at RMIT University School of Computer Science

and Information Technology, where staff were alerted to suspicious pin-up advertisements offering

tutoring and extra help. The investigation found significant numbers of highly similar or identical

assignments written by the advertiser. Some of the students involved were shocked to find that iden-

tical copies of their purchased solutions were also sold to their classmates. Zobel [2004a] discussed

some steps in the investigation that involved both a tip-off and luck. This case may not have been

solved had the offender been more careful. Zobel [2004a] hypothesised about a challenging scenario

whereby a tutor could produce fresh solutions for each client. Only an authorship attribution app-

roach that profiles student work could detect a scenario such as this. The seriousness of this case

resulted in legal action. Zobel [2004a] provided further detail on this case above, named “mytutor”.

The proliferation of information on the Web is clearly making plagiarism easier,and contributing

to the high statistics above. Table 2.1 summarises twenty code sharing web sites with easily acces-

sible content, identified through search engine keyword search and link directories. The content is

available in social networks, wikis, search engines, and code repositories, with much user-contributed

content. Moreover, there are even web sites with (sometimes dubious) advice on how to avoid being

caught for plagiarism:

“And if your assignment is writing a computer program, just copy someone else’s, and

change all of the variable names to be players from a well known football team. This

cunning ruse will throw anyone marking your assignment off the scent. In fact, so much

so that you can even turn up to class the next day wearing a jersey and scarf from said

team, and nobody will suspect a thing.” [Halavais, 2006]

25

CHAPTER 2. BACKGROUND

Name Type URL
C Programming Code Repository http://www.cprogramming.com/
Code Snippets Code Repository http://codesnippets.joyent.com/
Free VB Code Code Repository http://www.freevbcode.com/
Java Homepage Code Repository http://java.sun.com/
Java2s Code Repository http://www.java2s.com/
JavaScript Source Code Repository http://javascript.internet.com/
Mud Bytes Code Repository http://www.mudbytes.net/
Mud Magic Code Repository http://mudmagic.com/codes/
PHP.net Code Repository http://www.php.net/
Planet Source Code Code Repository http://www.planet-source-code.com/
Programmer’s Heaven Code Repository http://www.programmersheaven.com/
Snipplr Code Repository http://snipplr.com/
Source Codes World Code Repository http://archive.devx.com/sourcebank/
The Free Country Code Repository http://www.thefreecountry.com/
W3 Schools Code Repository http://www.w3schools.com/
Codase Search Engine http://www.codase.com/
Happy Codings Search Engine http://www.happycodings.com/
Sourcebank Search Engine http://archive.devx.com/sourcebank/
DZone Snippets Social Network http://snippets.dzone.com/
Code Codex Wiki http://www.codecodex.com/

Table 2.1: A list of twenty code sharing web sites demonstrating the wealth of publicly available
source code in February 2010. This code is freely available and can be easily plagiarised.

26

2.2. RATIONALE

2.2.2 Software Development Marketplaces

D’Souza et al. [2007] described another independent source of plagiarism — software development

marketplaces — and reported two cases of plagiarism where solutions werebought on the RentA-

Coder web site [Exhedra Solutions Inc., 2010c] (Figure 2.4). Users ofthis web site can post work

specifications to attract competitive bidding from independent contractors. The two cases described

finalised deals for assignment solutions valued at US$200 and AU$35, which may be affordable

prices to many students. To demonstrate the severity of this problem, D’Souzaet al. [2007] presented

a list of twenty-three such web sites that function as software developmentmarketplaces. These types

of incidents can be impossible to detect with plagiarism detection software alone, as the solutions

produced may be novel, which makes authorship attribution very important.

The problem exists equally for natural language assignments in the form ofpaper mills. Nu-

merous examples exist such as Assignment Centre [2009], Custom Writing [2009], and Essay Dom

[2010], which purportedly create novel work in return for a fee. Useof web sites such as these is

again difficult to detect with plagiarism detection software. Other web sites offer pre-made essays

for free, such as the searchable essays at School Sucks [2010],which advertises the availability of

100,000 essays as of July 2010.

The above problems have also penetrated social networking web sites such as Facebook [2010].

For example, aliases similar to the following are representative of the problem:Assignment Desk,

Assignment Helper, Customised Assignment, English Assignment, and Essay Assignment.

2.2.3 Dispute, Litigation, and Theft

Authorship attribution has also been used widely outside of academia to resolve disputes, litigation,

and theft. Perhaps the most well-known authorship attribution dispute is that of the Federalist pa-

pers [Mosteller and Wallace, 1963]. This case involves seventy-sevennewspaper essays “published

anonymously in 1787-1788 by Alexander Hamilton, John Jay and James Madison to persuade the cit-

izens of the State of New York to ratify the Constitution” [Mosteller and Wallace,1963]. Authorship

of these papers is generally agreed, except for twelve, which could have been written by Alexander

Hamilton or James Madison. The problem has become popular for linguists, asthe correct answer is

believed to be just one of these two authors for each of the samples, making the problem well con-

tained. Bosch and Smith [1998] reported that “through the use of statisticalinterference, Mosteller

and Wallace came to the conclusion that the odds are overwhelmingly in favourof Madison having

been the author of all twelve of the disputed papers”, but this has not prevented others from also

attempting this classical problem [Zhao and Zobel, 2007a].

27

CHAPTER 2. BACKGROUND

Figure 2.4: The RentACoder web site is a software development marketplace where users can submit
software project proposals for competitive bidding between prospective developers. The web site
has sometimes been used for academic dishonesty [D’Souza et al., 2007]. Permission to use this
screenshot was provided by Ian Ippolito from Exhedra Solutions on 7 May 2010.

28

2.2. RATIONALE

Other well known disputes have concerned the works of Shakespeare. The success of his plays

and poems has motivated others to claim authorship of some of his work, whether rightly or wrongly.

According to Elliott and Valenza [1991], there are fifty-eight claimed “trueauthors” of Shakespearean

work, of which thirty-seven are testable [Elliott and Valenza, 1996]. Other studies have instead ex-

plored the verification problem, to attempt to attribute newly discovered works toShakespeare [Ko-

lata, 1986].

Many more recent cases demonstrate that courts of law may be required to resolve plagiarism

claims, copyright infringement, and authorship disputes, between parties that may result in litiga-

tion [Krsul and Spafford, 1997]. These often involve a manual inspection process where experts draw

conclusions about any combination of writing skill, coding skill, or motive.

In one case, Wong [2004] described an incident where a publisher suspected plagiarised work

by a text book author. The iThenticate service confirmed the plagiarism, butthe publisher chose to

revise later editions of the work to protect the author. iThenticate [iParadigms, 2007a] is a version

of Turnitin previously described in Section 2.1.4, which is targeted towards publishers, lawyers, and

corporations.

Similarly, our research also has application to unauthorised code reuse in the corporate sector. For

example, one role of members of the Software Freedom Law Centre [2010], is to investigate possible

violations of software licences, such as the GNU General Public License.It is difficult to discover

well-hidden violations using manual code inspections, and there is a need for tools to determine if

one project is the derivative work of another.

MacDonell et al. [2004] reported on a suspected theft case, where they were approached to de-

termine whether a former employee stole and incorporated code in a productfrom a rival company.

The two systems were examined for similarity, and it was found that the degreeof similarity was no

more than coincidental. The investigation also considered that both productsoriginated from public

domain efforts. With this knowledge, the company decided to withdraw from litigation.

There is also a need for whole organisations to protect themselves againstplagiarism and copy-

right infringement. For example, the inheritor of Unix operating system intellectual property — SCO

Group — sued IBM for more than one billion dollars, for allegedly incorporating Unix code in its

Unix-like AIX operating system in March 2003 [Shankland, 2003].

In another case, Edward Waters College in Jacksonville, Florida, had its accreditation revoked

in 2004, after plagiarised content was found in documentation sent to its accreditation agency [Bollag,

2004]. Accreditation was regained six months later after legal proceedings [Lederman, 2005]. This

incident resulted in reduced enrolments and threatened current studentswith loss of funding.

The above incidents are largely plagiarism-focused, but there is still much need for authorship

29

CHAPTER 2. BACKGROUND

attribution. Again, we mention that plagiarism detection software is of no help if the offending

samples are not in the same collection. Taking source code for example, authorship disputes can

arise since “programmers tend to feel a sense of ownership of their programs” [Glass, 1985], which

can lead to code reproduction in successive organisations. Therefore it is imperative for organisations

to monitor their coding styles, to identify code that is potentially obtained inappropriately to avoid

problems later. Likewise, authorship attribution is relevant in proving the violation of no-competition

contract clauses, whereby programmers are forbidden to work for rival companies for a fixed period

after the end of an employment arrangement by identifying the author [Lange and Mancoridis, 2007].

Stamatatos [2008] described two other important uses of authorship attribution with legal implica-

tions. First, it is very helpful in the intelligence community to identify and relate authors of terrorism

messages. Moreover, it is helpful in criminal law to identify authorship of harassing messages and

suicide notes.

Finally, we warn that great care needs to be taken when using authorshipattribution techniques in

legal proceedings, as there have been some failures that have undermined confidence. For example,

thecusum(cumulative sum chart) technique uses writing statistics such as verb frequencies, sentence

lengths, and word classes, for evidence of changes in writing style overintervals in writing [Holmes

and Tweedie, 1995]. This technique has been historically used to gather writing statistics to prove or

cast doubt over the authorship of works presented to court, and has been problematic when explaining

evidence to judge and jury. In another case, work described as “banal” was initially incorrectly

attributed to Shakespeare, which infuriated scholars [Grieve, 2005].

2.2.4 Malicious Software Tracing

Authorship attribution efforts have historically attempted to identify the authors of malicious soft-

ware, whether it be viruses, worms, Trojan horses, or logic bombs [Gray et al., 1997]. For exam-

ple, Longstaff and Schultz [1993] studied the malicious WANK (Worms Against Nuclear Killers)

and following OILZ worms that attacked the “NASA Space Physics Analysis Network, and the De-

partment of Energy’s High-Energy Physics and Energy Science networks”. The study did not identify

the authors, but suggested that three authors were involved, which were responsible for proliferation,

damage, and assembly roles respectively. This study demonstrated a concerning trend of virus writers

pooling their resources together to maximise the damage that their viruses can create.

Another published case was the unnamed Internet worm of November 1988 [Spafford, 1989b].

This worm clogged system resources, effectively disconnecting machines from the Internet. Spafford

[1989b] mentioned that “various officials” obtained early versions of the worm from the account of

30

2.2. RATIONALE

the author, which would have motivated the authorship investigation, however the author was not

proved despite speculation in the media.

Both of the above cases are after-the-fact incidents, and ideally these cases should be detectable

before they can infect their hosts. Several papers have investigated this line of research by identifying

small patterns of suspicious content (orn-grams, as discussed in Section 2.4.2) to potentially detect

malicious executables in real time [Abou-Assaleh et al., 2004a; Maloof and Kolter, 2004].

Real-time misuse detection [Krsul, 1994] is a related authorship attribution application, whereby

locally compiled programs are compared to the style of previous samples of the same author, and

malicious programming traits. However, Krsul [1994] cited two barriers towards the successful ap-

plication of such systems. First, interpreters, compilers, other tools, and operating systems, would all

need to implement these metrics. Second, code must be compiled locally, so that external systems

could not be used to avoid malicious action.

2.2.5 Pseudonymous Authors

Pseudonyms are used to identify users of email services, newsgroups,forums, social networks, and

so forth. They are also sometimes used to deliberately mask user identity of inappropriate or illegal

behaviour [Koppel et al., 2007]. This is relevant in authorship attribution, as collections with authors

using multiple pseudonyms could affect authorship attribution accuracy when the pseudonyms used

by each author are unknown.

2.2.6 Large Software Project Maintenance

Authorship attribution techniques can also be helpful in large software project maintenance [Krsul,

1994] for projects that have contributions by multiple authors over many years. When maintenance

of a code segment is needed, the identification of the original author may be required if the code

is lacking authorship documentation. Similarly, there is prior work inconcept locationfor source

code [Marcus et al., 2004; Mishne and de Rijke, 2004], which is similar to topic classification as

discussed in Section 2.1.4.

2.2.7 Exploring Evolutionary History

Studies concerning the evolutionary history of work samples are important when accounting for

changes in writing or coding style in authorship attribution work. These are often specified as phylo-

genetic trees (or dendograms) [Westhead et al., 2002, p. 99], with leaves and branches showing each

31

CHAPTER 2. BACKGROUND

work sample version, and the relationships to other versions. This area has been studied in bioin-

formatics in the analysis of “species, populations, individuals or genes” [Lesk, 2002, p. 196]. More-

over, Karim et al. [2005] used phylogeny models to help analyse potentialmalware. This is important

as new viruses are often variations or fragments of previous viruses [Goldberg et al., 1998]. Bennett

et al. [2003] has also applied phylogeny to chain letters.

2.2.8 Authorship Attribution Competitions

The importance of authorship attribution has been highlighted by two international competitions.

First, the 2004 Ad-hoc Authorship Attribution Competition [Juola and Sofko, 2004] comprised au-

thorship attribution, authorship verification, stylochronometry, cross-genre, and cross-lingual prob-

lems. These areas comprised thirteen natural language tasks of varying lengths. The best average

success rate was 71%.

Second, the annual PAN workshop included another natural languagecompetition [Potthast et al.,

2009], which commenced in 2007. PAN stands for Plagiarism, Authorship identification and Near-

duplicate detection. The last component was replaced by social softwaremisuse from 2008. The

PAN initiative also introduced the first international plagiarism detection competition in 2009, with

external plagiarism detection and intrinsic plagiarism detection tasks. Success was measured using

a combined metric incorporating precision and recall (defined in Section 2.5.4), and granularity (a

measure to penalise redundant results). The external plagiarism task results were strong, with the

top-finishing run achieving precision of 0.7418, recall of 0.6585, and granularity of 1.0038 (a perfect

score is 1.0000). The intrinsic plagiarism task was much more difficult, and the results showed this,

with only one of the four submitted result sets obtaining more effective results than the baseline.

The baseline benchmark is non-trivial for this one-class problem, as it is not clear if the benchmark

should consider all documents to be plagiarised or legitimate. Potthast et al. [2009] reported that

it is commonly understood that all documents should be assumed to belong to the author of the

“target class”, which is the author of the legitimate components. The competition continues in 2010

with a combined external plagiarism detection and intrinsic plagiarism detection task, plus a new

task concerning vandalism detection on the Wikipedia online encyclopedia [Wikimedia Foundation,

2010], which is the first social software misuse competition task.

2.3 Style

Authorship attribution relies on stylistic analysis to identify common authorship. This is unlike re-

lated fields such as plagiarism detection, which have the easier task of finding common content.

32

2.3. STYLE

Given the importance of style in authorship attribution, this section provides background material on

writing style, coding style, and their differences. We then discuss how style evolves over time, and

practices that are used for style obfuscation and general wrongdoing.

2.3.1 Writing Style

All authors exhibit personal preferences in their writing, as outlined in theChapter 1 introduction.

Examples can be evidenced with measurement between parts of language and writing structure of

samples of single authorship. For example, Koppel et al. [2003] demonstrated how individual style

comes about using the following three similar sentences:

• “John was lying on the couch next to the window.”

• “John was reclining on the sofa by the window.”

• “John had been lying on the couch near the window.”

These sentences all have some key words that remain unchanged (suchas “John” and “window”),

but there are others that are easily interchangeable such as the functionwords. Function words, such

as conjunctions, are the common words that act as glue between other words in natural language,

and have little meaning of their own. Function words are also known asstop wordsin informa-

tion retrieval, as discussed in Section 2.5.1. Given that all authors need to use function words as

the glue in their writing, the way that they are used can indicate individual styleand idiom. An ab-

sence of function words might indicate unnatural content comprising “word salads” for search engine

spamdexing [Lavergne, 2006].

2.3.2 Coding Style

The “John/window” example above demonstrates that there are some free components innatural

language sentence structure where stylistic preference can be expressed. However, some people

may argue that individual style cannot be expressed in source code, particularly when coding stan-

dards [Cannon et al., 1997; Geotechnical Software Services, 2008;Sun Microsystems, 1997] are

followed. However, there are numerous common source code components (such as operators and

keywords), which effectively act as function words that can be used to form a coding style.

Soloway [1986] reported that research involving novice programmers “suggests that language

constructs do not pose major stumbling blocks for novices learning to program. Rather, the real

problems novices have lie in ‘putting the pieces together’, composing and coordinating components

33

CHAPTER 2. BACKGROUND

of a program”. Therefore the way that even novice programmers use language constructs and put

them together demonstrates individual style.

The presence of coding standards also generates stylistic differences in itself, as there is a “lack

of consensus” between publications on programming style and standards [Oman and Cook, 1990],

and “no guidelines on how to resolve conflicts between rules” [Oman and Cook, 1988].

2.3.3 Similarities and Differences between Writing and Coding Style

Oman and Cook [1988] argued why writing style and programming style are similar. They explained

that “effective writing is more than observing established conventions for spelling, grammar and

sentence structure”, similar to how effective programming is more than just following style guides.

In writing there is “perception and judgement a writer exercises in selecting from equally correct

expressions, the one best suited to his material, audience, and intention” [Oman and Cook, 1988].

Similarly, a programmer must choose the appropriate operators, keywordsand library functions from

which many equally correct options could be chosen. Moreover, Oman and Cook [1988] explained

that some books on programming style have been derived from books on natural language style.

A key difference between writing and coding style is the lower amount of flexibility that can

be demonstrated when coding, as “computers are far less forgiving thanhumans of imprecision and

difference in usage” [Michaelson, 1996], and “in computers the compiler andrun-time system are the

ultimate arbiters of program acceptability” [Michaelson, 1996].

Another key difference is the disparity between the vocabulary size in natural language and the

number of constructs in code. For example, there are around one million English words today [Ling,

2001], which is far more than the number of features in the C programming language, with thirty-

two keywords, thirty-nine operators, and fifteen modest header files, containing the standard library

functions and constants [Kelly and Pohl, 1997]. The disparity may be further increased with the

introduction of words with spelling mistakes in natural language, since there isless scope for mistakes

in source code that must follow strict syntax rules for compilation.

2.3.4 Evolving Style

Since authorial writing style evolves over time, the earliest work samples become the least reliable

indicators of current writing style. For example, Can and Patton [2004] studied the changes in writ-

ing style of two Turkish authors spanning twenty-seven and fifty-six years respectively. With work

samples organised into “old” and “new” categories, they found a statisticallysignificant difference in

the average word length between these categories.

34

2.3. STYLE

In another study, Pennebaker and Stone [2003] found that as individuals age, they “use more

positive and fewer negative affect words, use fewer self-references, use more future-tense and fewer

past-tense verbs, and demonstrate a general pattern of increasing cognitive complexity”.

To the best of our knowledge, there is no previous research for empirical evaluation of evolving

programming style for programmers. Instead, Kemerer and Slaughter [1999] researched the evo-

lution in twenty-three software projects, spanning a twenty year period and25,000 change events.

However, this is not helpful for studying the evolution of programming style inindividuals. Kemerer

and Slaughter [1999] noted that “it is not surprising that empirical research on software evolution is

scarce. The researcher has to collect data at a minimum of two different points in time. This cre-

ates practical difficulties in terms of sustaining support for the project over this period and/or finding

an organisation that collects and retains either relevant software measurement data or the software

artefacts themselves”. Therefore, we expect that our work in Chapter6 is the first to empirically

evaluate the evolution of programming style in individuals, with our experiments that use a collection

of student programming assignments spanning six distinct points in time.

2.3.5 Dishonest Style

Kacmarcik and Gamon [2006] demonstrated that substituting just 14 words per 1,000 is sufficient

to reduce correct authorship attributions by 83%. The key is to “identify thefeatures that a typical

authorship attribution technique will use as markers and then adjust the frequencies of these terms

to render them less effective on the target document”. Kacmarcik and Gamon [2006] have also com-

mented that “idiosyncratic formatting, language usage and spelling” are tell-tale signs of authorship,

and that simple use of spelling and grammar checkers, for example, will return documents to “con-

ventional norms” making authorship attribution more difficult.

All of the above strategies can be used to mask authorship when dealing with law enforcement.

But there are also more legitimate reasons for anonymisation, such as organisational whistle-blowers

who feel the need to report bad behaviour and wish to avoid drawing attention to themselves [Kac-

marcik and Gamon, 2006].

Palkovskii [2009] wrote about counter plagiarism detection software that has been used to obfus-

cate assignments, so that plagiarism detection software is rendered useless. These algorithms involve

substituting characters from one natural language to another that appear identical to the human eye,

but are from different character sets and are hence treated differently in plagiarism detection software.

For example, the Greek letters ‘α’ (alpha) and ‘ν’ (nu) closely resemble English letters ‘a’ and ‘v’.

However, some differences cannot be discerned at all by the human eye. For example, Palkovskii

[2009] suggested the replacement of the English letter ‘o’ with a similar circular Russian charac-

35

CHAPTER 2. BACKGROUND

ter. Likewise, other substitutions involve replacing all spaces with a non-space character in a white

colour, so that it visually appears as a regular space. Methods to detectthe use of this kind of soft-

ware include transforming the content into ordinary ASCII text, so that obfuscations that are effective

in word processing software would be undone. Authorship attribution software needs to be robust

against the substitutions described above. The use of n-grams is a robust method we use in Chapter 5

as introduced in the next section.

2.4 Measuring Style

In this section we review the methods used to quantify coding style. We begin bydiscussing software

metrics, which is by far the most common approach. We then review n-grams, watermarking, and

existing automated tools. This section is concluded with a brief overview of other methods used for

measuring style in natural language.

2.4.1 Metrics in the Literature

Software metrics are important in measuring aspects of source code such as correctness, efficiency,

readability, understandability, modifiability, and verifiability [Harold, 1986].They are used in project

management for predicting development effort [Gray and MacDonell, 1997]. They are also valuable

in authorship attribution when measuring style.

A very comprehensive description of software metrics is the chapter by Conte et al. [1986,

chap. 2]. This chapter organises metrics in the literature under a taxonomy of eight headings: size

metrics, data structure metrics, logic structure metrics, composite metrics, software science compos-

ite metrics, effort and cost metrics, defect and reliability metrics, and design metrics, whichwe now

discuss in turn.

Size metricsare generally simple count-based metrics such as lines of code, token counts, and

function counts. Further examples are the well-known Halstead metrics [Halstead, 1972], including

number of unique operatorsn1, number of unique operandsn2, total occurrences of operatorsN1,

and total occurrences of operandsN2. Another well-known example is the COCOMO (COmparative

COst MOdel) metric [Kemerer, 1987], for estimating effort based on the proportion of new and reused

code in a project.

Data structure metricsrefer to how data is used. Examples include the amount of input and

output data processed by a program, live variables, variable spans, and data sharing between modules.

This category should not be confused with programmatic data structures, such as lists, trees, and

hashtables.

36

2.4. MEASURING STYLE

Logic structure metricsrelate to the use of branching and looping constructs such as decision

counts, minimum number of paths, component reachability, nesting levels, andunnatural program

flow such as the use of goto statements [Dijkstra, 1968]. This category alsoincludes Halstead’s

cyclomatic complexity measure [Halstead, 1972]. This metric measures the complexity of a program

represented as a graph, with decision statements represented as nodes and pathways represented by

edges.

We list the last five categories in the taxonomy very briefly:composite metricsrefer to metrics

consisting of multiple components;software science composite metricsrefer to new metrics devel-

oped from Halstead’s basicn1, n2, N1, andN2 measurements;effort and cost metricsrefer to mea-

sures concerning time and money;defect and reliability metricsrefer to measurements for creating

error-free and robust software; anddesign metricsrefer to high-level concepts such as coupling and

cohesion.

The above categories are very specific, and there are many general properties that the metrics

share. First, some of the above metrics are based on raw counts such as “number of functions” and

“number of decision statements”. These metrics are sensitive to the amount of code. That is, larger

source code samples will generally provide higher measurements for thesemetrics. Therefore it

becomes important to usenormalisedvariations in some applications such as authorship attribution.

Normalised metrics are important as they capture intrinsic properties of code such as function density,

rather than other properties such as source code length.

Other metrics can be measured on a continuous scale and can therefore be represented as his-

tograms with one bar for each measurement. For example, Lange and Mancoridis [2007] discussed

the line-lenexample, whereby the line lengths of source code samples are recorded with one bar for

every measurement from zero characters up to the longest line length. This technique can generate

very large numbers of measurements from just one metric such as theline-lenexample. This can be

managed by comparing entire histograms against one another using distance-based measures such as

the nearest neighbour measurement [Lange and Mancoridis, 2007]. Another technique to manage the

feature space is discretisation for grouping individual measurements, asdiscussed in Section 2.6.4.

An alternate implementation of software metrics is the use of linguistic labels instead of num-

bers. Gray and MacDonell [1997] referred to these as “fuzzy logic”metrics. Gray and MacDonell

[1997] suggested that fuzzy logic metrics provide “considerable benefits in terms of reducing com-

mitment, making full use of knowledge and improving interpretability”. For example, fuzzy logic

metrics could specify a “large number of screens” or a “low level of system complexity” [Gray and

MacDonell, 1997]. These examples require numeric measurements using hard boundaries between

classes, so describing these metrics as “fuzzy” may seem counter-intuitive. The use of linguistic

37

CHAPTER 2. BACKGROUND

labels is essentially a discretisation mechanism as described in Section 2.6.4. Other fuzzy metrics

are used to remark on how well comments match code, and how meaningful the identifiers are, for

example [Kilgour et al., 1997].

2.4.2 N-Grams

N-grams are sequences of adjacent tokens of lengthn. That is, a sequence oft tokens will generate

t−n+1 n-grams. N-grams are useful in capturing information about tokens thatoccur near one an-

other, which the stand-alone metrics discussed in Section 2.4.1 above cannot do. They are also robust

to changes in the content, as any content substitution will only affect a few overlapping n-grams. For

natural language, n-grams have been used for characters [Cavnarand Trenkle, 1994], words [Barron-

Cedeno et al., 2009], and parts of speech [Lioma, 2007] such as nouns, verbs, adjectives, adverbs,

conjunctions, and pronouns. For source code, they have been usedfor characters [Frantzeskou et al.,

2006a], bytes from executables [Maloof and Kolter, 2004], and tokens such as operators and key-

words [Burrows et al., 2006].

2.4.3 Watermarking

Watermarking refers to hiding authorship information within work. Source code watermarks, for

example, can be identifying patterns of space and tab characters [Daly and Horgan, 2005] at the end

of a file, which do not affect software execution. To successfully implement watermarking, trust

is needed in the party that resolves disputes, and there must be guarantees that dispute winners are

indeed rightful authors [Adelsbach and Reza Sadeghi, 2003]. Watermarking can potentially make

other means of measuring style redundant if successfully deployed, since the meaning of unmodified

watermarks should be absolute.

2.4.4 Automated Tools

Authorship attribution is very time-consuming to conduct manually, so any software tool that can aid

the process is highly valuable. For example, expert witnesses may be required to give evidence to

explain authorship traits, and computer software may be used to expedite the collection and summary

of evidence.

The Java Graphical Authorship Attribution Program (JGAAP) [Juola et al., 2006] is an example

of a natural language authorship attribution package, providing “textualanalysis, text categorisation,

and authorship attribution” functionality [Juola, 2010]. Other researchers have discussed the use of

natural language authorship attribution software at the prototype stage only [Cook, 2003; Kar, 2001].

38

2.5. INFORMATION RETRIEVAL FUNDAMENTALS

Such software does not yet exist for source code authorship attribution. The closest available

work is software that expedites the collection of software metrics, which canbe used as features

for making authorship decisions. Thepmccabesoftware does “McCabe-style function complexity

and line counting for C and C++” [Bame, 2010]. TheCCCCsoftware (C and C++ Code Counter)

“is a tool which analyses C++ and Java files and generates a report on various metrics of the code.

Metrics supported include lines of code, McCabe’s complexity and metrics proposed by Chidamber

& Kemerer and Henry & Kafura” [Littlefair, 2010]. TheEssential Metricssoftware “is a command

line metrics tool for C/C++ and Java software projects” [Power Software, 2010]. Counting metrics,

Halstead metrics, complexity metrics and object-oriented metrics are included. Thisis a commercial

product, but a trial version is available. Finally, theIDENTIFIED package [Gray et al., 1998] has

been used to compute twenty-six metrics by MacDonell et al. [1999] in their source code authorship

attribution work. The metrics in part relate to white space usage and normalisedcounts of individual

tokens.

2.4.5 Natural Language Measurements

Measuring style in natural language is beyond the scope of this thesis, so we just mention this area

briefly. Measurements for natural language include word length, sentence length, distribution of

syllables, parts of speech, function words, and word frequencies [Holmes, 1994]. Koppel et al. [2003]

showed that “frequent but unstable features are especially useful for style-based text categorisation”.

2.5 Information Retrieval Fundamentals

Manning et al. [2009] defined information retrieval as follows:

“Information retrieval (IR) is finding material (usually documents) of an unstructured na-

ture (usually text) that satisfies an information need from within large collections (usually

stored on computers).”

Since search engines are an important application of information retrieval, this section begins

with an overview of search engine architecture. We then follow with detail about the indexing and

querying components and models that are of most relevance to our work. This section concludes with

an overview of measures for evaluating the effectiveness of search engines.

39

CHAPTER 2. BACKGROUND

Users

Interface Query Index Indexer Crawler

Web

Engine

Centralised Search
Engine Architecture

Figure 2.5: A centralised search engine architecture comprising an interface, query engine, index,
indexer module, and a crawler. This figure is modelled on a diagram by Baeza-Yates and Ribeiro-
Neto [1999, p. 374].

2.5.1 Search Engines

Industry-scale search engines have numerous components that work together to facilitate indexing

and querying of content [Brin and Page, 1998]. The search engine requirements in this thesis are less

onerous, given that we are not using search engines to index billions ofdocuments, which requires

a distributed architecture for extreme scalability, and redundancy to mitigate failure. Instead, we use

a centralised architecture that is described by Baeza-Yates and Ribeiro-Neto [1999], as comprising

an interface to users, a query engine, an index, an index module, and a crawler to harvest content as

shown in Figure 2.5.

Thecrawler module is responsible for traversing and obtaining content from the Web for index-

ing. However, we mention this component for completeness only, since this is the only component

that we do not use in our work.

The indexermodule is responsible for extracting term and occurrence data from crawled pages.

Pre-processing often takes place before data is stored in theindex, such as stopping, stemming, and

case-folding [Witten et al., 1999, pp. 145–150].

40

2.5. INFORMATION RETRIEVAL FUNDAMENTALS

Stoppinginvolves omitting very common terms, which offer little value when retrieving docu-

ments. For example, Kelk [2010] listed the five most common UK English words as“the”, “and”,

“to”, “of”, and “a”, which are all good candidate stop words identified from a collection of twenty-

nine literary works. However, care needs to be taken that any stop list does not adversely impact

queries consisting of stop words. For example, the band name “The Who” and the Shakespearean

phrase “to be or not to be”, both consist of words that could all be potentially stopped.

Stemminginvolves transforming words to common base forms by eliminating prefixes and suf-

fixes, so that word variations can be equated. For example, the words “plays”, “played” and “playing”

can all be reduced to the root form “play”. However, care needs to betaken that word meaning is not

lost. For example, stemming “replay” to “play” is less appropriate in the above example. In addition,

“flies” and “flying” stem to a nonsensical word “fl”.

Case foldinginvolves transforming character case to a consistent case for ease of processing.

For example, capitalised words would be treated equivalently as those typedentirely in lower case.

Finally, other pre-processing is often necessary such as removing punctuation and correcting spelling

errors.

The indexmodule is for storing term and occurrence data for efficient lookup. The index is often

referred to as aninverted index, as the organisation of its data is in reverse to the norm. For example,

a standard book is organised by page number with headings, paragraphs, sentences, and words on

each page. Conversely, the inverted index is organised by term with occurrence data to follow, which

is more akin to an index of terms at the end of a text book. Index structures and components are

described in detail in Section 2.5.2.

The querymodule is responsible for receiving keywords provided by the user in theinterface

module, and retrieving document identifier and term occurrence data fromthe index. Keyword pre-

processing is again performed as necessary (stopping, stemming, and case-folding) to be consistent

with the pre-processing steps performed in index construction. After receiving candidate documents,

the query module (or a separate module) is then responsible for ranking thedocuments from most

relevant to least relevant [Arasu et al., 2001]. Ranking is performed using a similarity measure to

quantify document relevance. Several similarity measures are describedin detail in Section 2.5.3.

Finally, the ranked list of documents is returned to the interface module for viewing by the user.

Theinterfacemodule is responsible for generating web pages for the user. Initially, this will sim-

ply be a page with a text form field and a submit button for entering keyword searches. When a search

is submitted and a ranked list of results is returned, the interface module will then render the results as

a list with clickable items. Additional functionality will typically be present in industry-scale search

engines, such as the ability to automatically run related searches, view cached documents, and view

41

CHAPTER 2. BACKGROUND

similar pages.

2.5.2 Index Structures

Figure 2.6 shows an example of an inverted index created from the contentsof two documents. The

content of these documents simply comprises one sentence each from Section 2.5.1. Case-folding

has been applied to these documents, and punctuation has been removed. However, no stopping or

stemming has been applied in this example.

The inverted index contains two essential components: the lexicon and the inverted lists. The

lexiconcomprises a sorted list of all terms in the collection with one entry per term.

The inverted listscontain term occurrence data for each term in the lexicon including the collec-

tion frequency (ft), document identifier (d), and within-document frequency (fd,t). In a collection of

N documents, the inverted lists can be generically represented as:ft : [d1, fd1,t], [d2, fd2,t], ..., [dN, fdN,t].

The collection frequency (ft) tells us the number of documents that the term occurs in. The doc-

ument identifier (d ∈ d1, ...,dN) is a code to uniquely identify a documentDd. The within-document

frequency (fd,t ∈ fd1,t, ..., fdN,t) tells us the number of times termt appears in documentDd.

Other data can be included in the inverted lists. For example, pre-computed values for com-

ponents of some similarity measures described in Section 2.5.3 can be stored, which only require

computation once per document. The inverted lists can also include term offset information in the

documents, which is useful in identifying adjacent terms inphrase queries[Bahle et al., 2002]. For

example, the inverted list for the term “for” with offsets is “2 : [1,1, 〈5〉], [2,2, 〈4,10〉]”, with the first

term in each document being assigned a zero offset.

Inverted lists are usually also highly compressible. For example, an invertedlist for a common

stopword in a large document collection would be very long. Therefore, document identifiers and

offsets can be stored as small gaps relative to one another instead of large whole numbers. Higher

compression is achieved with this approach, as the number of distinct integers is reduced. This tech-

nique is known asd-gapsin the literature [Anh and Moffat, 2005], but we do not discuss compression

further as it is beyond the scope of this work.

2.5.3 Models for Query Matching

Models for query evaluation aim to assign a similarity score between queries and documents, with the

documents having the highest similarity scores being deemed the most relevant.Similarity measures

implement some or all of the following core ideas: term frequency, inverse document frequency, and

inverse document length, which we now discuss.

42

2.5. INFORMATION RETRIEVAL FUNDAMENTALS

the index
module
is for
storing
term and
occurrence
data for
eff icient
lookup

the indexer
module is
responsible
for extract ing
term and
occurrence
data from
crawled
pages

(2)

(1) Lexicon Inverted Lists

Documents Inverted Index

and

crawled

data

eff icient

extract ing

for

f rom

index

indexer

is

lookup

module

occurrence

pages

responsible

storing

the

term

2: [1,1], [2,1]

1: [1,1]

2: [1,1], [2,1]

1: [2,1]

1: [1,1]

2: [1,1], [2,2]

1: [1,1]

1: [2,1]

1: [1,1]

2: [1,1], [2,1]

1: [2,1]

2: [1,1], [2,1]

2: [1,1], [2,1]

1: [1,1]

1: [1,1]

1: [2,1]

2: [1,1], [2,1]

2: [1,2], [2,1]

Figure 2.6: An inverted index showing the lexicon and inverted lists created from the content of two
example documents in the left of the figure.

43

CHAPTER 2. BACKGROUND

When evaluating the similarity of a query to a pool of documents, some documentswill have

more instances of the query term(s) than others. Therefore documents witha higherterm frequency

should be weighted higher.

In addition, since documents will usually have a mixture of common and rare terms, it is ex-

pected that rarer terms that appear in fewer documents are more suitable for distinguishing relevance.

Therefore documents with a higherinverse document frequencyshould be weighted higher.

Moreover, it is expected that documents will be of unequal length, and longer documents should

not be considered more relevant simply due to having more words that can potentially match query

terms. Therefore documents with a higherinverse document lengthshould be weighted higher.

This thesis in part explores the Cosine [Witten et al., 1999, pp. 185–188],Okapi BM25 [Sparck-

Jones et al., 2000a;b], language modelling with Dirichlet Smoothing [Zhai andLafferty, 2004], and

Pivoted Cosine [Singhal et al., 1996] measures, which implement the aboveideas to varying extents.

Therefore we review the above similarity measures now. These are chosen because they are imple-

mented in the Zettair search engine [Search Engine Group, 2009], which forms part of the experi-

mental setup used in this thesis. A more complete review of information retrieval similarity measures

can be found in the book by Baeza-Yates and Ribeiro-Neto [1999]. Forreference, common symbols

in information retrieval are summarised below [Zobel and Moffat, 1998].

t: A term.

q: A query identifier.

Q: A query.

|Q|: Query length (number of terms in queryQ).

d: A document identifier.

Dd: A document with identifierd.

|Dd|: Document length (number of terms in documentDd).

N: Number of documents in the collection.

fq,t: Within-query frequency (number of occurrences of termt in queryq).

fd,t: Within-document frequency (number of occurrences of termt in documentd).

ft: Raw document frequency (number of documents in which termt appears).

44

2.5. INFORMATION RETRIEVAL FUNDAMENTALS

Ft: Collection frequency (number of occurrences of termt in the collection).

F: Total number of terms in the collection.

These terms form part of the information retrieval glossary in Appendix A.2.

Cosine

The Cosinesimilarity metric is based on the vector space model in which queries and documents

are plotted in multi-dimensional space with one dimension per term. Similarity is computedusing

the angle between the vectors. The query and document pair that has the smallest angle will give

the largest Cosine value. The largest possible Cosine value is obtained when there is zero degrees

between vectors [Witten et al., 1999, p. 186]. Witten et al. [1999] definedthe Cosine measure as:

Cosine(Q,Dd) =
1

WqWd
×

∑

t∈Q∩Dd

wq,t ×wd,t, where (2.2)

Wq =

√

√

n
∑

t=1

w2
q,t, Wd =

√

√

n
∑

t=1

w2
d,t, wq,t = ln

(

1+
N
ft

)

, wd,t = 1+ ln fd,t, and

• Wq is the Euclidean length (or weight) of the query,

• Wd is the Euclidean length (or weight) of documentd,

• wq,t is the query-term weight, and

• wd,t is the document-term weight.

In this formula,WqWd implements inverse document length,wq,t implements inverse document

frequency, andwd,t implements term frequency.

Okapi BM25

The Okapi BM25metric is based on the probabilistic model. Sparck-Jones et al. [2000a] gave a

simplified account of the development of the probabilistic model from the probabilistic theory. They

define the probability of relevance as:

“What is the probability that this document is relevant to this query?” [Sparck-Jones

et al., 2000a]

45

CHAPTER 2. BACKGROUND

Sparck-Jones et al. [2000a] then introduced the following two events based upon documentDd

and queryQ as a starting point to guiding the reader through the theory and mathematics:

1. “L, thatDd is liked, i.e. is relevant toQ”, and

2. “L̄, thatDd is not liked, i.e. is not relevant toQ”.

With these definitions, it would then be useful to calculate the probability that a document de-

scription Dd is liked L for judging relevance. Therefore, the remainder of the Sparck-Jones et al.

[2000a] overview discusses how to calculateP(L|D), and then introduces probabilistic theory for

individual terms. The final model is defined as:

OkapiBM25(Q,Dd) =
∑

t∈Q

wt ×
(k1+1) fd,t

K + fd,t
×

(k3+1) fq,t
k3+ fq,t

, where (2.3)

wt = ln

(

N− ft +0.5
ft +0.5

)

, K = k1×

(

(1−b)+
b× |Dd|

|Davg|

)

, and

• |Davg| is the average document length, and

• b, k1 andk3 are free parameters.

In this formula,wt implements inverse document frequency,(k1+1) fd,t
K+ fd,t

implements term frequency,

andK implements inverse document length.

Parametersb, k1 andk3 are used to modify the effect of inverse document length, document-

term frequency, and query-term frequency respectively. Parameters b andk1 are commonly assigned

valuesb= 0.75 andk1 = 1.2 [Robertson and Walker, 1999]. Parameterk3 is assignedk3 = 0 for short

queries such as web queries, otherwise a large number is used such ask3 = 7 or k3 = 1,000, which is

“effectively infinite” [Robertson and Walker, 1999].

Okapi BM25 [Robertson and Walker, 1999; Sparck-Jones et al., 2000a;b] has been developed in

the Text REtrieval Conference (TREC) competitions [National Institute of Standards and Technology,

2010] with known relevance judgements. The formula given above is the one to be used in the absence

of relevance judgements [Sparck-Jones et al., 2000a;b].

Language Modelling with Dirichlet Smoothing

Dirichlet smoothing is a method to smooth a language model. The idea of language modelling ap-

proaches “is to estimate a language model for each document, and to then rank documents by the

likelihood of the query according to the estimated language model” [Zhai and Lafferty, 2004]. Based

46

2.5. INFORMATION RETRIEVAL FUNDAMENTALS

upon the earlier work by Ponte and Croft [1998] and Zhai and Lafferty [2004], we provide the defini-

tion that best uses our notation from Appendix A.2 by Bernstein et al. [2005] whom define the model

as:

log(P(Q|Dd)) = |Q| × ln

(

µ

µ+ |Dd|

)

+
∑

t∈Q∩Dd

ln

(

F × fd,t
µ×Ft

+1

)

, where (2.4)

• µ is the smoothing parameter.

The smoothing parameter is used to provide a mechanism to compensate for words that do not

appear in documents [Zhai and Lafferty, 2004]. This can occur regularly for short documents in

particular. Therefore, the smoothing parameter creates a balance between the language model of the

document and the language model of the whole collection. The Dirichlet smoothing parameter isµ,

which has been shown to produce effective results when set to 1,500 [Bernstein et al., 2005].

Pivoted Cosine

Singhal et al. [1996] noted that “better retrieval effectiveness results when a normalisation strategy

retrieves documents with chances similar to their probability of relevance”. The balance between

probability of relevance and probability of retrieval can be upset in the Cosine measure, for exam-

ple, due to “the long held belief that Cosine normalisation tends to favour short documents in re-

trieval” [Singhal et al., 1996]. Therefore, apivot is a applied to correct the imbalance on the existing

normalisation scheme, by tilting the normalisation scheme at the pivot point so thatthe scheme is

boosted on one side of the pivot, and reduced on the other. For example,the normalisation scheme in

the Cosine measure iswq,t ×wd,t, therefore the pivoted normalisation for Cosine can become:

PivotedNormalisation= (1− slope)× pivot+ slope× (wq,t ×wd,t). (2.5)

The slopeis the gradient of the line that passes through the pivot point [Singhal etal., 1996].

The implementation in the Zettair search engine [Search Engine Group, 2009]suggests using a pivot

of 0.2.

2.5.4 Effectiveness Quantification

Having covered indexing, querying, and search engines in general, itis now necessary to discuss how

to measure search engine effectiveness. Effectiveness is measured by the quality of search engine

results as judged by users or determined by relevance judgements. Numerous measurements are

47

CHAPTER 2. BACKGROUND

Y ZX

Retrieved Relevant

W

Figure 2.7: Visual representation of definitions for precision and recall [Moffat and Zobel, 2008].
X is the set of relevant documents that have been retrieved (true positives), Y is the set of retrieved
documents that were not relevant (false positives), Z is the set of relevant documents that were not
retrieved (false negatives), and W is the set of documents that were neither retrieved or deemed
relevant (true negatives). According to this diagram, precision is|X|

|X|+|Y| and recall is |X|
|X|+|Z| .

available for quantifying effectiveness, and this thesis covers precision, recall, reciprocal rank, and

average precision. Other measures such as normalised discounted cumulative gain [Jarvelin and

Kekalainen, 2002], and rank-biased precision [Moffat and Zobel, 2008], are not covered.

Precision and Recall

Precision and recall are simple and commonly used evaluation metrics. Numerous definitions are

available, but perhaps one of the best explained is the Venn-diagram representation by Moffat and

Zobel [2008] reproduced in Figure 2.7.

Figure 2.7 represents a pool of documents, some of which are retrieved by an information retrieval

system (RegionY), and others that are judged relevant (RegionZ). In the perfect scenario, these

two sets will overlap exactly, but this is difficult to achieve. Precision is defined as the proportion

of retrieved documents that are relevant
(

|X|
|X|+|Y|

)

, and recall is defined as the proportion of relevant

documents that are retrieved
(

|X|
|X|+|Z|

)

. RegionW represents irrelevant documents that have not been

retrieved, which does not take part in precision or recall calculations.

A variation of precision is P@X or precision at cutoff X, whereX is a fixed number of retrieved

48

2.6. MACHINE LEARNING FUNDAMENTALS

documents. Common uses are P@10 for evaluating the relevance of the firstpage of results returned

by current, popular Internet search engines, and P@1 for evaluatingjust the correctness of the top

result.

Finally, the F-measure [Rennie, 2004] (orF1 score) is used to generate a value that represents a

compromise between precision and recall:

F1 =
2× precision× recall

precision+ recall
(2.6)

Reciprocal Rank and Mean Reciprocal Rank

Reciprocal rank measures the reciprocal value of the position of the first relevant (or correct) result

from a ranked list. So if the first correct result was position 3, then the reciprocal rank would be13.

Then, Mean Reciprocal Rank (MRR) is used to average multiple reciprocal rank scores to measure

overall system performance.

Average Precision and Mean Average Precision

Average precision measures the precision of every relevant (or correct) result from a ranked list and

takes the average. For example, if correct results are at positions 2, 3,and 9 in a ranked list of ten

documents, then average precision is
(

1
2 +

2
3 +

3
9

)

/3 = 1
2. Similar to MRR, Mean Average Precision

(MAP) is used to average multiple average precision scores to measure overall system performance.

2.6 Machine Learning Fundamentals

Cunningham et al. [1997] described a purpose of machine learning as “to devise algorithms that can

supplement, or supplant, domain experts in knowledge engineering situations”. Cunningham et al.

[1997] also mentioned a key link between information retrieval and machine learning that forms a

significant component of this thesis:

“Using learning algorithms to automate information retrieval processes such as docu-

ment classification ... can alleviate the workload of information workers and reduce in-

consistency introduced by human error.”

This section provides an overview of machine learning to ensure that enough is understood for

classification in authorship attribution. We begin by describing the training andtesting phases for a

typical classification problem. Then we cover cross-validation, feature selection, and discretisation

49

CHAPTER 2. BACKGROUND

topics that specifically arise in this thesis. Numerous text books are availablesuch as the data mining

book by Witten and Frank [2005] for further reading on machine learning.

2.6.1 Training and Testing

This thesis introduces information retrieval ranking for source code authorship attribution in Chap-

ter 5. However, most of the prior source code authorship attribution work(covered in Chapter 4), has

used machine learning classification algorithms to learn how to attribute authorship. Therefore, we

begin by discussing how machine learning algorithms can be used to attribute authorship.

A training phase is needed so that a classification algorithm canlearn how to classify existing

work samples of established authorship. Therefore, when a new sample ispresented, the classification

algorithm can assign authorship to the most likely author based on the learnedtraits. In experimenta-

tion, this step is a separatetestingphase, where the effectiveness of multiple classification algorithms

are often compared to one another, in order to identify the most suitable algorithm for the problem at

hand.

For authorship attribution with machine learning methods, accuracy is definedas the proportion

of times the classification algorithm assigns the testing samples to the correct author. The specific

classification algorithms that appear in this thesis are covered in Section 2.7.

2.6.2 Cross Validation

When classification experiments are organised into training and testing phases, a separate data set

is needed for each component. If accuracy scores were only reported for the trained data, the re-

sults would then beoverfittedto that data, and not representative of results obtained for new unseen

problems.

The simplest way to organise an experiment into training and testing phases is todivide the data

in half, and use one part for training and the other for testing. However,this approach is problematic

for small data sets in particular, as the amount of test data is reduced by half.

A solution is to repeat the above experiment a second time with the roles of the data reversed.

That is, use the testing half for training and the training half for testing for a secondfold, and then

combine the results with the first fold. This approach allows every sample to beused for testing in

turn, which increases the size of the result set. This experiment design is known as two-foldcross

validation[Witten and Frank, 2005, pp. 125–127].

Another problem still persists when using two-fold cross validation. That is, half of the data is

unavailable for training. This is particularly problematic when conducting source code authorship

50

2.6. MACHINE LEARNING FUNDAMENTALS

Fold Instances
1 A1 B1 C1 D1 E1
2 A2 B2 C2 D2 E2
3 A3 B3 C3 D3 E3
4 A4 B4 C4 D4 E4
5 A5 B5 C5 D5 E5
6 A6 B6 C6 D6 E6

Figure 2.8: Thirty instances and five classes (A-E) spread across six folds. All folds have a document
from each class, therefore and all classes are perfectly stratified.

attribution experiments on student programming assignments, for example, as their coding styles

may be still evolving, and only some training samples may be truly helpful when attributing each

sample. It may be particularly difficult if the best samples are in the testing set when each sample in

the training set is classified in turn.

To overcome this second problem, the size of the training fold needs to be increased such that

more samples are available when constructing a model for classification. Thiscan be done by simply

increasing the two-fold experiment design to a larger number of folds, such as ten-fold. In ten-fold

cross validation, nine of the folds are used for training, and the remaining fold is used for testing.

This is then repeated nine more times, where the remaining folds are treated as the test fold in turn.

The size of the training set is therefore increased from 50% to 90% of the samples in the collection.

Another problem concerns collection properties such as the number of samples per author. For

example, consider a scenario with thirty samples in a collection, where the samples belong to five

authors with six samples per author each. Figures 2.8 and 2.9 depict what the folds could look like

when this collection is organised into six folds and ten folds respectively. There is a problem here, in

that when one fold is separated for testing, there is a5
27 chance to identify the author using a six-fold

experiment design (Figure 2.8), and a5
25 chance to identify the author using a ten-fold experiment

design (Figure 2.9), when working by random chance.

To alleviate this third problem, another cross-validation design is available called leave-one-out

cross validation [Witten and Frank, 2005, pp. 127–128]. In this variant,the number of folds is

maximised and set to the number of samples in the collection. This variation causesan efficiency

trade-off, as it can be slower to execute since the number of folds has been maximised.However,

this experiment design maximises the amount of training data, and is more suited to dealing with

collections with a varying number of samples per author, since problems demonstrated in Figures 2.8

and 2.9 cannot occur. The leave-one-out cross validation experimentdesign is used throughout this

thesis.

51

CHAPTER 2. BACKGROUND

Fold Instances
1 A1 B5 D3
2 A2 B6 D4
3 A3 C1 D5
4 A4 C2 D6
5 A5 C3 E1
6 A6 C4 E2
7 B1 C5 E3
8 B2 C6 E4
9 B3 D1 E5

10 B4 D2 E6

Figure 2.9: Thirty instances and five classes (A-E) spread across ten folds. Each fold is only repre-
sented by three of the five classes.

2.6.3 Feature Selection

The purpose of feature selection is to “identify and remove as much irrelevant and redundant informa-

tion as possible prior to learning”, which can generate “enhanced performance, a reduced hypothesis

search space, and, in some cases, reduced storage requirement” [Hall and Smith, 1998]. This is con-

tradictory to the idea of monotonicity that asserts that “increasing the number of features can never

decrease performance” [Hall and Smith, 1998]. However, this often does not apply to machine learn-

ing, since “adding irrelevant or distracting attributes to a dataset often ‘confuses’ machine learning

systems” [Witten and Frank, 2005, pp. 232].

Feature selection algorithms involve processes such as adding or removingone feature at a time

to a model until no further change improves classification accuracy. Alternatively, the value of indi-

vidual features can be evaluated one at a time for possible inclusion in a model.However, we do not

go into this further, as this thesis mostly uses existing feature set classes instead of exploring the use

of feature selection algorithms in detail.

2.6.4 Discretisation

Machine learning algorithms often need to process features with discrete orcontinuous values. Dis-

crete features are categorical. For example, gender as a feature has two categorical values: “male”

and “female”. Conversely, features that require measurement are often continuous such as height.

Continuous features can prove difficult for machine learning algorithms to process, and a solution

is to organise the possible values into a number of fixed ranges. This process is called bucketing,

binning, ordiscretisation[Shevertalov et al., 2009]. For example, when using height as a featurefor

52

2.7. CLASSIFICATION ALGORITHMS

human adults, the bins could be 140-149cm, 150-159cm, 160-169cm, 170-179cm, 180-189cm, 190-

199cm, and so on.

Several methods are available to determine bin boundaries such as therange, frequency, andge-

netic algorithmmethods [Shevertalov et al., 2007]. Range-based discretisation uses fixed boundaries

for the set of possible values such as the height example above. Frequency-based binning uses incon-

sistent ranges to keep the number of items in each bin roughly consistent. Genetic algorithm binning

uses machine learning techniques to determine effective bin combinations. We use range-based dis-

cretisation in Chapter 4 when reimplementing some of the previous work.

2.7 Classification Algorithms

This section presents an overview of the machine learning algorithms that have appeared in previ-

ous source code authorship attribution studies with empirical evaluations. The classifiers covered

are decision trees, nearest neighbour methods, neural networks, case-based reasoning, discriminant

analysis, regression analysis, support vector machines, voting feature intervals, Bayesian networks,

and simplified profile intersection. We do not attempt to cover all classification algorithms exhaus-

tively as there are simply far too many. For example, version 3.5.8 of the Wekamachine learning

toolkit [Holmes et al., 1994; Witten and Frank, 2005] that we use in our experiments has 114 classi-

fication algorithms available. Chapter 4 describes how the classifiers are used in the previous source

code authorship attribution work.

2.7.1 Decision Trees

A decision tree classifier is a tree structure with tests on the internal nodes and classes on the leaf

nodes. A document is classified by executing the tests and following the branches from the root level

until a leaf-level node is reached. Care must be taken that the tree does not become too large, as

lengthy branches may be too specific to be of general use to new unseen cases for classification [Se-

bastiani, 2002]. Numerous learning algorithms are available for decision trees, and this thesis uses

the C4.5 decision tree [Sebastiani, 2002], which has appeared in one previous source code authorship

attribution study [Elenbogen and Seliya, 2008].

2.7.2 Nearest Neighbour Methods

Nearest neighbour methods classify work based on patterns of the nearest sample using a distance

measure in vector space, for example. Storing all available samples can be prohibitive for large

53

CHAPTER 2. BACKGROUND

problems, so improvements to the basic algorithm attempt to reduce the number of stored comparison

samples [Kukolich and Lippmann, 2004].

A variation of the nearest neighbour algorithm is the K-Nearest Neighbour classifier (KNN).

This algorithm considers multiple nearest samples (K samples) instead of just one identified using

the Euclidean distance, and then voting is used to classify the testing sample based on the most

represented class in the set of nearest neighbours analysed [Kukolich and Lippmann, 2004].

2.7.3 Neural Networks

Neural networks are akin to “biological nervous systems” [Kukolich andLippmann, 2004]. Like

the human brain, a neural network is based upon a series of interconnected units where signals can

pass from unit to unit [Gray and MacDonell, 1999]. When implemented as a document classification

algorithm, there are inputs that are the features such as term frequenciesor higher level language

statistics, there are outputs that are the classes of interest (such as candidate authors), and there are

“dependence relations” that are weights for the connections in between [Sebastiani, 2002]. That is,

the term weight data is first populated in the input units, the data flows throughdependence relations

in the network, and the output unit(s) make the authorship decision [Sebastiani, 2002].

2.7.4 Case-Based Reasoning

Case-based reasoning (also known as analogy) involves using “specific knowledge of previously ex-

perienced, concrete problem situations” for solving new similar problems [Aamodt and Plaza, 1994].

A key difference to other machine learning algorithms is that case-based reasoning models are often

developed incrementally, as new cases are tested and added to the pool ofprevious cases [Aamodt

and Plaza, 1994]. This machine learning method also does not require an explicit model, since the

key idea is to determine meaningful features for representing cases [Watson, 1995]. For authorship

attribution, a “case” is an author. Authorship of new unseen samples can be assigned to the “case”

with the most features in common or nearest features.

2.7.5 Discriminant Analysis

Lachenbruch and Goldstein [1979] defined discriminant analysis as assigning “an unknown subject

to one of two or more groups on the basis of a multivariate observation”. In authorship attribution,

the multivariate observation can be a collection of measurements taken from software metrics. When

dealing with more than two candidate authors, the problem is referred to asmultiple discriminant

analysis [MacDonell et al., 1999]. Another variation iscanonicaldiscriminant analysis as used in

54

2.7. CLASSIFICATION ALGORITHMS

previous feature selection research [Ding and Samadzadeh, 2004], where features were reviewed one

at a time for inclusion in a final model, until the addition of further features no longer increased the

effectiveness of the model significantly. Terminating the inclusion of features inthis manner prevents

the model from becoming bloated, which is the fundamental idea ofcanonicaldiscriminant analysis.

Related to discriminant analysis isprincipal component analysis. Principal component analysis

is a method for obtaining meaningful facts from difficult or bloated data [Shlens, 2005]. That is, it

allows high dimensional data to be reduced to fewer and simpler dimensions. This method is again

particularly useful for identifying critical features for authorship attribution tasks.

2.7.6 Regression Analysis

Multiple regression analysis is based on prediction output variables from aseries of input vari-

ables [Stamatatos et al., 2000]. For authorship attribution, we just need the author as the dependent

variable, so (single) regression analysis is applicable here. The ability to examine the model is an

advantage of regression analysis. This could therefore be considered a white-box technique, which

also provides a mechanism to allow the modeller to verify the model [Stamatatos et al., 2000].

2.7.7 Support Vector Machines

Support vector machines can be used to separate work samples using a hyperplane in n-dimensional

space [Diederich et al., 2003]. A margin is used to separate positive and negative samples with the

maximum possible gap. New work samples are confirmed as belonging to an author if they fit on

the correct side of the hyperplane. Diederich et al. [2003] cited scalability as a major advantage for

support vector machines, as they are able to “process many thousand different inputs”.

2.7.8 Voting Feature Intervals

The voting feature interval classification algorithm represents each training sample as a vector with

measurements for each feature and a class label. Then all values for each feature in the training set

are bucketed into fixed intervals. When a new unseen example comes along inthe testing phase,

the candidate classes receive votes each time their feature interval matchesthat of the unseen ex-

ample. Then the class with the most votes is deemed the correct class. See the work by Demiroz

and Guvenir [1997] for more information on the algorithm. This is somewhat similar to coordinate

matching [Uitdenbogerd and Zobel, 2002], with the additional step of organising the feature space

into intervals.

55

CHAPTER 2. BACKGROUND

2.7.9 Bayesian Networks

Bayesian probability is based on the “degree of belief” of an event, rather than statistical deduc-

tion [Heckerman, 1996]. For example, the outcome of a coin flip can be determined statistically,

but the degree of belief in a tennis player winning a major tennis tournament is much harder to

evaluate. Bayesian probability is of use when modelling multiple variables, suchas trying to fig-

ure out the probability a tennis player has of winning a grand slam in any given calendar year. The

Bayesian network can handle this as it can represent a “joint probability distribution” from the vari-

ables involved [Heckerman, 1996]. This classifier has numerous benefits such as the ability to handle

incomplete data [Heckerman, 1996], but it is not one of the most scalable since the “asymptotic cost

is exponential” [Zhao et al., 2006].

2.7.10 Simplified Profile Intersection

The Simplified Profile Intersection (SPI) classification algorithm [Frantzeskou et al., 2005], is also

known as co-ordinate matching in information retrieval literature [Uitdenbogerd and Zobel, 2002].

This measure simply counts the number of features that are common between thetesting sample

and the combined samples of each candidate author. To keep the comparisons fair, the samples are

truncated at a fixed profile lengthL of theL most common features. A disadvantage of this approach

is that theL parameter is collection-sensitive.

To increase the feature space, this method can be applied on n-grams of features, which results

in the number of features in the feature space being increased to the powerof n. This method was

motivated by earlier work on a relative distance metric that included frequency information of the

n-grams [Keselj et al., 2003], however Frantzeskou et al. [2006a] showed that relative distance was

less accurate, particularly for low values ofn.

2.8 Summary

In this chapter, we reviewed the background literature necessary for understanding our contributions

in the remainder of this thesis in Chapters 3 to 7. We have reviewed the definitions of authorship

attribution and related areas, motivated the need for authorship attribution, discussed the differences

in writing and coding style, reviewed methods for measuring style, and covered necessary background

material in information retrieval, machine learning, and classification algorithms.Next, in Chapter 3

we present the comprehensive set of collections used for evaluating allempirical contributions in this

thesis.

56

Chapter 3

Collections

The first step in any authorship attribution study is the gathering of examples and possible collection

construction. Since we are not dealing with the author discrimination problem, the samples obtained

for constructing our collections must foremost be single-author. Moreover, the samples should ideally

be obtained from a source where they are organised by author, insteadof title or year, so that all

samples by any author can be obtained without risk of omitting some.

Obtaining samples for constructing source code collections is more challenging than for natural

language collections, since there are fewer sources of significant single-author samples. For example,

Stamatatos [2008] summarised many significant natural language collections such as the Reuters

collection, TREC collections, and other collections, which were built from newspaper articles, email,

forum messages, and blogs. Moreover, any online service with an author index is helpful for building

new natural language collections, such as browsing e-book authors atProject Gutenberg [Hart, 2010],

or bibliographic services such as the Digital Bibliography and Library Project (DBLP) [Ley, 2010].

Concerning source code samples, the bulk of the previously used collections are academic sam-

ples based on student programming assignments, which cannot be sharedfor intellectual property

reasons. Moreover, large software efforts tend to be collaborative in nature, which limits the avail-

ability of meaningful single-author samples. The collaborative software projects hosted on Source-

Forge [Geeknet Inc., 2010] is a good example of this. Initiatives for structured text such as the

Initiative for Evaluation of XML Retrieval (INEX) [Geva et al., 2009] forXML data exist, but there

is no equivalent for source code.

Given the limitations of existing source code collections, and limited sources to generate new

source code collections, this chapter introduces four new and significant collections for source code

authorship attribution, which are the largest used to date. We make the data asaccessible as we can

by releasing the data that is not covered by copyright or intellectual property concerns. Moreover, we

57

CHAPTER 3. COLLECTIONS

provide detailed statistics concerning the properties of the collections, and we document procedures

for the reproduction of our collections where applicable.

We begin this chapter in Section 3.1 by reviewing good practice of collection construction. We

introduce our four new collections in turn in Section 3.2, showing consideration to the good practice

topics. Next, we provide a summary of all key collection properties of our collections in Section 3.3,

which allows effective evaluation of results between collections in Chapters 4 to 7. The comparison of

our new collections to those used by other researchers follows in Section 3.4, where we demonstrate

the need and value of the collections we have put together. We explain the different purposes of our

collections in Section 3.5, and details concerning collection sharing and recreation in Section 3.6.

We conclude this chapter in Section 3.7, with a summary of the work covered and an introduction to

Chapter 4, where the first experiments that use our new collections appear.

3.1 Important Criteria for Collection Construction

Researchers constructing collections for authorship attribution should consider the following desir-

able properties: number of authors, number of samples per author, samplelengths, chunking avoid-

ance, representativeness, multiple author types, multiple languages, singleauthorship, correct author-

ship, no identifying features, and availability. We now explain each of thesein turn.

Having a highernumber of authorsin an authorship attribution experiment makes the problem

harder. For example, there is a 10% chance to identify the author by random chance in a ten-class

experiment, but the chance is reduced to 1% in a 100-class experiment, hence the naive baseline of

these two experiments differs by 9%. However, having more authors provides more flexibility in

experiment design. For example, having a large number of authors does not imply that all have to be

used at once, which means that random sampling could take place to allow additional runs. This can

in turn lead to more statistically significant outcomes.

Using moresamples per authoris almost always desirable, as this increases the amount of train-

ing data available to model author style. In addition, it is desirable to keep the number of training

samples per author consistent if possible, to eliminate bias towards the most prolific authors. How-

ever, any method to exclude training samples must be carefully considered.For example, simply

removing samples at random could result in some of the best training samples becoming unavailable.

Similar to having more samples per author, having longersample lengthsis also advantageous, as

this property again increases the amount of training data available. Keepingconsistent sample lengths

can reduce bias towards prolific authors, but it is not obvious where samples should be truncated if

this is to take place. Keeping sample lengths consistent may require unusual collection design.

58

3.1. IMPORTANT CRITERIA FOR COLLECTION CONSTRUCTION

Chunkingrefers to breaking complete samples into smaller parts, whether they are fixed-length

at the character or line level, or variable-length at the function or sourcefile level. Chunking in-

troduces a trade-off in that it can increase the number of samples per author whilst reducing the

sample lengths. Both previous empirical contributions in source code authorship attribution with

chunking have shown that authorship attribution accuracy is reduced when chunking is used [Ding

and Samadzadeh, 2004; Kothari et al., 2007]. This is not surprising, since single-author software

projects, such as student programming assignments, are often modest in length, hence reducing the

sample lengths of these samples may adversely affect the amount of training data. This thesis does

not require the use of chunking, since we use a large numbers of samplesper author. However, we

do not dismiss chunking universally, as it has been shown to be effective in other applications such as

passage retrieval [Kaszkiel and Zobel, 1997].

Representativeness[Biber, 1993] is key to maintaining sampling consistency across demographic,

social, and other factors. For example, the student authors identified when building a collection with

a large number of samples per author may not be representative of a typical student author, as the

prolific authors identified are more likely to be students who have done more than one degree, or have

repeated courses. However, representativeness may be unachievable if identifying or demographic

data is not available.

Collections should ideally representmultiple author typessuch as student, freelancer, and pro-

fessional author types. Some researchers have built collections comprising samples from authors

of varying backgrounds combined together [Ding and Samadzadeh, 2004; Krsul and Spafford, 1997;

MacDonell et al., 1999], which may have been necessary in some experiments where data was scarce.

However, we suggest it is preferable to use separate collections for work obtained from multiple au-

thor types, so that varying programmer experience within any individual collection can be removed

as a confound. For example, we would expect student-based collectionsto be more difficult to clas-

sify given the lower skill level and developing programming styles of these individuals. We show

supporting evidence of this in Chapter 6.

Testingmultiple languagesis also important as the features available in each language will de-

termine the authorship markers that can be used. Programming languages that are more feature-rich

will increase the number of authorship markers available, and hence increase the difficulty of an

experiment. Feature-rich languages are those with more language features such as keywords and

operators.

Samples must be ofsingle authorshipfor authorship attribution. Collections with samples of mul-

tiple authorship are only of value in authorship discrimination problems as discussed in Section 2.1.2.

This property can be difficult to satisfy as many software projects are collaborative in nature.

59

CHAPTER 3. COLLECTIONS

Samples must also be ofcorrect authorshipwithout copied, reused, reproduced, or plagiarised

content. This property is sometimes difficult to meet in cases where citation and quotation practices

are poor, such as in student assignment work. Moreover, any sample that has legitimately reused

content should be questioned as to whether the sample should be used at all,since the reused content

is only representative of the cited author. For example, Clough et al. [2002] discussed the METER

collection with legitimate journalistic text reuse, which would be unsatisfactory for an authorship

attribution experiment. Clough and Stevenson [2009] have also created a collection with simulated

plagiarism fragments inserted, but simulating legitimate writing may not be possible.

Collection data must also have noidentifying featuressuch as name, contact details, or affiliations.

Effort is needed to omit these details so that authorship attribution experiments canrely on writing

style alone as intended.

Finally, collectionavailability is also important so that other researchers can reproduce the work

and avoid duplication of effort. This property is challenging to achieve, as copyright and intellectual

property must be considered, permissions must be sought, and some data simply cannot be released

at all due to privacy reasons.

The properties discussed above were identified in our literature review. In the following sections,

we next see how these properties have been accommodated for the collections used in this thesis.

3.2 Collections in the Thesis

The four large collections employed in this thesis are labelled Coll-A, Coll-T, Coll-P, and Coll-J.

In this section, we discuss the sources of the data and the methods for building the collections for

each collection in turn.

3.2.1 CollectionColl-A

We constructed our first collection — Coll-A — based upon previously submitted programming as-

signment work from the School of Computer Science and Information Technology at RMIT Univer-

sity. The school has two main submission repositories, comprising an online learning management

system namedWebLearn[Fernandez, 2001], and Unix-based command-line submission software

namedturnin [Untch et al., 2005]. We obtained our data from the turnin repository for our experi-

ments, as this repository contains the most C programming assignments. We useda snapshot of the

turnin repository spanning 1999 to 2006.

We aimed to build Coll-A by retrieving work samples from the 100 most prolific authors of

C programming assignments represented in the turnin archive. Shell scriptswere used to traverse

60

3.2. COLLECTIONS IN THE THESIS

the submission repository and shortlist the 500 authors with the largest number of samples. Then

we decompressed all of those submissions, and selected the 100 authors with the largest number of

samples containing C source code.

We found that the organisation of the turnin folder was far from ideal. There was a great deal of

redundancy as this space was also used for assignment marking in the past. Therefore, we removed

all byte-identical duplicates to eliminate much of the redundancy.

We also anonymised all samples to comply with the ethical requirements of the HumanResearch

Ethics Committee of our university. This meant removing all comments and output strings from the

source code and renaming all files. The existing file names conveniently contained our authorship

ground truth of the samples with student numbers, and these were modified to use a simple numeric

identifier for each author. Having made these changes, there were no personal details remaining

such as names and student numbers that could bias judgements of the data.

We also note that no discrimination was made between undergraduate assignments, postgraduate

assignments, and year level during collection construction. Therefore Coll-A contains a mixture of

assignments from all levels of ability.

Finally, we mention that we did not attempt to analyse the individual assessmenttasks over the

eight-year snapshot of the turnin archive. Given that some of the assessment tasks were created over a

decade earlier than the time of writing of this thesis, some of the knowledge had unfortunately moved

on with members of staff no longer with the school. This meant that old assignment specifications

could not be retrieved without significant gaps.

In the end, 1,597 assignments were obtained for Coll-A with 14 to 26 samples per author for

the 100 authors. We found that the distribution was left-skewed with 67 of the100 authors having

between 14 and 16 samples each. The number of authors in this collection couldhave been easily

increased, however there would be trade-off with the minimum number of samples per author figure,

since we had already identified the 100 most prolific authors.

We found that Coll-A contained a large range of sample lengths from a near-empty sample with

a single line of code up to a very large sample of 10,789 lines of code. We did not omit outlier

samples of very short or long lengths to ensure the collection still remains representative of real life.

The mean length is 830 lines of code, but we note that the distribution of sample lengths was skewed

towards shorter samples, as we have a median of 650 lines of code.

While some programs in this collection may be plagiarised from other sources, we consider our

collection design to be valid, since much research in information retrieval andauthorship attribution

relies on imperfect ground truth. For example, Amitay et al. [2007] described collections obtained

from online sources where manual verification of data was infeasible, but where some authors may

61

CHAPTER 3. COLLECTIONS

By answering ‘yes’ to the following prompt you agree to the following terms:

1. I/We hold a copy of this assignment, which can be produced if the original is lost/damaged.

2. This assignment is my/our original work and no part of it has been copied from any other
student’s work or from any other source except where due acknowledgement is made.

3. No part of this assignment has been written for me/us by any other person except where such
collaboration has been authorised by the lecturer/teacher concerned.

4. I/We have not previously submitted this work for any other course/unit.

5. This work may be reproduced and/or communicated for the purpose of detecting plagiarism.

6. I/We give permission for a copy of my/our marked work to be retained by the School for review
by external examiners.

I/We agree with and understand the definition of plagiarism presented at http://www.rmit.edu.au/
browse;ID=sg4yfqzod48g1;SECTION=3
Do you agree with the above terms and conditions (yes/no)?

Figure 3.1: A series of terms that all students must agree to when submittingwork electronically in
the School of Computer Science and Information Technology at RMIT University using the turnin
submission software [Untch et al., 2005].

have created work under multiple aliases. In addition, Arwin and Tahaghoghi [2006] described pla-

giarism detection experiment design where an existing plagiarism detection system was treated as

a ground truth baseline to avoid exhaustive manual ground truth work. However, imperfect ground

truth should be minimised, as new students in the School of Computer Science and Information Tech-

nology at RMIT University are required to participate in a workshop providing education concerning

plagiarism, copyright, and academic honesty [Hamilton et al., 2004]. Moreover, all students are re-

quired to acknowledge that their work is original at the time of submission by answering “yes” or

“no” when prompted to agree to a series of terms (Figure 3.1).

After analysing our collection, we suspect there is some bias towards weaker students. For ex-

ample, our collection has many samples from our first semester C programming course entitled Pro-

gramming Techniques [RMIT University, 2010a]. We found that approximately 12% of samples over

nine consecutive summer and normal semesters of Programming Techniqueswere from repeat stu-

dents who submitted in more than one semester. However, we expect some of the strongest students

who pursue further coursework programs to also submit more assignmentsthan average.

62

3.2. COLLECTIONS IN THE THESIS

1 2

Semester 1

Task 1 Task 2

Semester 3

Task 2Task 1

Semester 2

Task 2Task 1

3 4 5 6

Time

Figure 3.2: Timeline showing how the six key assessment tasks are dividedbetween the three course
semesters and two tasks per course.

3.2.2 CollectionColl-T

Our second collection — Coll-T (for temporalanalysis) — was constructed with consideration for

the experiments in Chapter 6 that require timestamp data. Krsul [1994] motivated this area of research

by stating that “further research must be performed to examine the effect that time and experience

has” on authorship attribution effectiveness. This note for future work by Krsul [1994] has not been

undertaken since this statement, hence source code authorship attribution research that uses times-

tamps is still lacking. Therefore, we wanted a new collection with guaranteed relative timestamps

since this was not a consideration for Coll-A.

Coll-T was sourced from the same school assignment archive as Coll-A, and was again consisted

of C programming sources. The school submission archive is known forunreliable timestamps, since

it has historically been used as a working space for assignment marking. Therefore, we instead chose

to approach the problem by building a collection of guaranteedrelativetimestamps.

To guarantee relative timestamps, our collection had to comprise only subject matter that was

known to form part of a pre-requisite chain. We identified Programming Techniques [RMIT Uni-

versity, 2010a], Algorithms and Analysis [RMIT University, 2010b], and Database Systems [RMIT

University, 2010c] that form a chain of three C programming courses that we simply refer to as

Semester 1, Semester 2andSemester 3respectively. Importantly, these three courses form the pre-

requisite chain. That is, Semester 1 is a prerequisite for Semester 2, and Semester 2 is a prerequisite

for Semester 3. This sequence guarantees relative timestamp information.

These courses were also chosen since each generally has two major assignments, and across the

three courses this represents six unique time periods whereby relative timestamps can be established.

Figure 3.2 visually depicts the relationship between the six tasks within the three course semesters.

Constructing Coll-T from our school assignment repository posed additional challenges, since

we needed to organise the work samples by author, course, and task. Wecompiled a comprehensive

63

CHAPTER 3. COLLECTIONS

Collection Average LOC
Coll-T1 667
Coll-T2 1,681
Coll-T3 836
Coll-T4 1,415
Coll-T5 1,138
Coll-T6 898
Coll-T 1,107

Table 3.1: Comparing average lines of code inColl-T to the sub-collectionsColl-T1 to Coll-T6,
which comprise samples of the six assignment tasks respectively.

list of keywords comprising course codes and course name abbreviations that are commonly used to

name the desired course folders. We traversed the archive to identify candidate file paths containing

the desired folders. These folders were examined, and we created another comprehensive list separat-

ing the first and second submissions. In some cases, course semesters had three or more assignment

submissions and we therefore selected two representative assignment samples to form thetasks. For

example, when we had three or four assignments we selected samples one and three and when we

had five or six assignments we selected samples one and four. These decisions allowed us to have a

representative sample from each half of each semester. We label all chosen samples asTask 1and

Task 2within each semester in Figure 3.2 for simplicity.

All candidate samples from the six assessment tasks were stored in temporary folders. We re-

moved all samples for authors that did not have a submission for all six assignment tasks. Then we

removed authors having one or more samples that did not contain C programming sources for assign-

ments that may have only been report-based. We were again mindful of byte-identical duplicates and

the assignments were anonymised to again comply with ethics requirements of ouruniversity.

After all of the above filtering took place, we were left with 1,632 assignmentsbelonging to 272

student authors with exactly 6 samples per author each. The collection comprised an average of 1,107

lines of code per sample. There was some variation between the sub-collections for each assignment

task, with between 667 and 1,681 lines of code on average for the tasks asper Table 3.1.

Having a fixed number of samples per author is a key property of Coll-T. Fixing the number

of samples per author allows us to eliminate bias towards prolific authors, sinceeach author has the

same number of training samples. The trade-off is having fewer training samples per author, but

this is somewhat mitigated by an increased average sample length (1,107 lines ofcode in Coll-T

compared with 830 lines of code in Coll-A).

We also meet the representativeness requirement, since each author is representative of the same

64

3.2. COLLECTIONS IN THE THESIS

six assessment tasks. With each author completing the same tasks at similar times in their academic

careers, we also expect that there is less difference in the ability of the authors in Coll-T compared

to Coll-A. Having many more samples per author in Coll-A may only be representative of multiple-

degree authors and repeating authors.

There is some overlap between the authors in Coll-A and Coll-T (forty-seven authors), and

in these cases the Coll-T samples represent a subset of the author samples in Coll-A. This is an

outcome of the methods that we used to select samples for inclusion in collectionsColl-A and Coll-T

from the assignment repository.

3.2.3 CollectionColl-P

Our third collection — Coll-P (for Planet Source Code) — was built with the goal of extending our

collections to a second author type comprising work from freelance authors from the Planet Source

Code web site [Exhedra Solutions Inc., 2010a]. This community-based website allows users to

register an account, and upload work samples from eleven different programming languages to share

with others. Site members and members can then comment, vote for, and downloadthese samples.

We chose C/C++ work samples to form Coll-P that were organised together on Planet Source

Code. The construction of Coll-P was completed in February 2009 using work samples available on

the web site at that time. When constructing Coll-P, we queried for all C/C++ samples that were

zipped by their authors, and then individually downloaded samples from authors with many samples

from the author profile web pages.

During collection construction, we went through the samples alphabetically and we expect there

to be some bias towards software with names beginning with letters ‘a’–‘d’, since these linked sam-

ples were followed to identify all other samples by that author.

We also only considered samples organised in zip archives and ignored the other content types

(copy-and-paste source code snippets, articles, tutorials, and third party reviews), since we were only

interested in complete software. Some archives were omitted that were not correctly compressed,

or used an alternative extension other than *.zip. We simply chose to avoid attempts to decompress

samples that were compressed with rare or ambiguous file formats.

Samples from authors with public profile web pages were the only ones considered, as these pro-

file web pages have clickable links to find all samples by the author. This meantthat we could process

one author in full at a time. These authors represented fewer than half ofthe entries considered, and

others may belong to authors that chose to not have publicly viewable profiles. Nevertheless, this pro-

cess allowed us to generate a far larger collection than any used by previous researchers for source

code authorship attribution.

65

CHAPTER 3. COLLECTIONS

Finally, we ignored accounts that were clearly shared by multiple authors. For example, we

ignored account names with two clear author names included such as “Name1/Name2”, since author

discrimination is beyond the scope of this thesis.

The downloading of content continued until we had obtained 1,095 samples belonging to 100

authors with between 5 and 57 samples per author. We expect there to be more authors with 5 or

more samples, but at this point we were mostly encountering samples from authors we had already

processed. We omitted a further 120 authors with between 2 and 4 work samples per author to

maintain a reasonable amount of training data per author. The mean programlength was 984 lines of

code with a median of 316, so the sample lengths were heavily left-skewed. Inaddition, byte-identical

samples and samples with no C/C++ sources were omitted and all samples were again anonymised

for consistency with the other collections.

When analysing Coll-P, we observed that the samples represented a wide variety of demograph-

ics. For example, the content is ranked using four tags being “beginner”, “intermediate”, “advanced”,

and “unranked”. In addition, the sampled profile web pages suggested that the samples belong to in-

dividuals such as hobbyists, high school students, higher education students, freelancers, industry

professionals, and occasionally technical text book authors. Some users have used aliases for their

account names representing company names, however in most cases these seem to belong to a single

author, judging by the author descriptions, making them suitable for our experiments.

The subject matter of the work samples varied greatly. Many samples are implementations of

small games such as tic tac toe, snakes, bricks, pong, and so on. Other samples provide implemen-

tations of fundamental algorithms and data structures. Further samples belong to common problems

such as calendars and calculators. We also found some samples that looked like programming as-

signments. Finally, a few samples are larger packages of sometimes unrelatedprograms, where the

authors have not made effort to separate their postings.

We note that the C and C++ content on Planet Source Code is branded together as “C/C++”, as

one of the content categories supported, so we did not attempt to separatethe C and C++ sources.

Moreover, there are some C++ sources that partly or mostly consist of C code regardless, given that

most of C is a subset of C++. Using file name extensions as a definitive label, Coll-P comprises 14%

of C programs and 86% of C++ programs.

Finally, the number of samples that are modest variations of one another should be small, as

users are required to update existing samples instead of posting new variations, as instructed by the

moderators on rules of use pages.

For reference, explicit instructions with screenshots for reproducingColl-P are given in Ap-

pendix B.

66

3.3. ANALYSIS OF THE COLLECTIONS

3.2.4 CollectionColl-J

The final collection — Coll-J — was again generated from Planet Source Code content, but this time

using Java source files. The collection construction was again completed in February 2009 using the

same process described for Coll-P. The collection comprises 453 work samples by 76 authors with

between 3 and 36 samples per author. The Java content was scanned from end-to-end to identify

authors with many samples, but there were less Java samples than C/C++ samples available. As a

result, Coll-J is more modest with fewer authors, total samples, and a lower minimum number of

samples per author than Coll-P. However, this collection still has more authors and more samples

than the collections used by previous researchers, and this collection cansimply be considered a more

difficult problem with fewer samples per author. The mean sample length was 667 lines of code and

the median was 250, thus the sample lengths were heavily left-skewed again similar to Coll-P.

All other steps for the production of Coll-J were the same for Coll-P. For example, we again re-

moved byte-identical duplicates, ignored samples without Java sources, and anonymised the sources.

Therefore, the instructions for reproducing Coll-P in Appendix B also apply for Coll-J.

There is potential for collections to be developed for other programming languages using Planet

Source Code content, provided that there is at least as many Java samplesfor those languages. How-

ever, we have chosen to set the scope to just C, C/C++, and Java for investigating cross-language

effects in this thesis.

3.2.5 CollectionsColl-POand Coll-JO

Coll-A and Coll-T had to be anonymised to comply with ethics requirements of our university by

stripping away source code comments and quoted strings. For consistency, we applied the same

procedures to Coll-P and Coll-J. However, since some of the source code authorship attribution

techniques by previous researchers have used comment-level and character-level software metrics in

making authorship judgements, we also need unmodified versions for at least some of our collections

when reimplementing that work. Therefore, we also use theoriginal versions of Coll-P (named

Coll-PO) and Coll-J (named Coll-JO) for some comparisons in this thesis.

3.3 Analysis of the Collections

Our goal was to have representative collections across multiple programminglanguages and author

types. The collections constructed above met these goals with C, C/C++, and Java sources obtained

from both academic and freelance author types.

67

CHAPTER 3. COLLECTIONS

We stress that the collections are large, and as a result we have only performed limited filtering

of undesirable samples. For example, we would expect some plagiarism incidents in the academic

collections that may mislead some classification decisions in our work. Moreover, we would expect

some authors sharing accounts and using multiple aliases in the freelance collections, however ac-

count sharing was somewhat alleviated by ignoring obvious shared accounts named in a format such

as “Name 1/Name 2”. Importantly, all approaches presented in this thesis (both our ownand those

of previous researchers) are exposed to the same difficulties when compared to one another in bench-

marking experiments. We summarise that all reported results are likely to be slightly conservative, as

classification decisions would be easier if these problems did not exist.

It should be noted that Coll-A and (to a lesser extent) Coll-T are used in the development of our

approach in Chapters 5 and 6, and hence some critics may consider our approach to be overfitted to

these collections. We point out that all experiments in this thesis have been onrandom subsets of our

collections (except Section 6.1.1 (p. 136), which has an experiment usingthe full collection). For

example, there are
(

100
10

)

≈ 1.73×1013 possible subsets for the examination of ten-class author prob-

lems, and for any run it is unlikely that any of the approximately 1013 possible runs have been reused

within any single experiment. Moreover, Coll-P and Coll-J do not take part in the development of

our approach in Chapters 5 and 6.

We expect the quality of the work samples in Coll-P and Coll-J to be higher than Coll-A and

Coll-T. At Planet Source Code, there is motivation for the authors to submit good quality content, as

samples can be rated on a five-point scale from “poor” to “excellent”. These scores are then used for

the “code of the month” competitions and bragging rights. We have observedthat some participants

even plead for votes in their profiles. The academic collections cannot receive that level of exposure

and scrutiny for academic integrity reasons.

Next, we note that Coll-T is remarkable as it is balanced, having exactly the same number of

samples for all authors. For unbalanced collections, we expect the authors with the most samples to

be easier to classify given the extra training data. With the bias removed fromColl-T, this thesis

importantly includes both balanced and unbalanced collections, which allows problems concerning

bias towards prolific authors to be explored.

The data in Table 3.2 provides a side-by-side comparison of all collections used in this thesis. It

is useful in accounting for differences in the accuracy scores between collections.

We have provided additional data regarding the number of samples per author in Figure 3.3 and

the lengths of the programs in Figure 3.4. In Figure 3.3 we show that Coll-A has the highest mini-

mum number of samples per author, and this additional training data may make classification deci-

sions easier when using Coll-A. Next, Coll-P has a minimum of five submissions per author and

68

3.3. ANALYSIS OF THE COLLECTIONS

Property Coll-A Coll-T Coll-P Coll-J
Total Authors 100 272 100 76
Total Samples 1,597 1,632 1,095 453
Minimum Samples 14 6 5 3
Mean Samples 16 6 11 6
Maximum Samples 26 6 57 36
Author Type Student Student Freelance Freelance
Language C C C/C++ Java
Minimum LOC 1 61 8 9
Median LOC 650 849 316 250
Mean LOC 830 1,108 984 667
Maximum LOC 10,789 15,613 58,457 15,057

(a)

Property Coll-A Coll-T Coll-P Coll-PO Coll-J Coll-JO
Total Bytes 23,644,903 34,793,688 21,328,232 30,309,701 7,241,002 9,565,502

(b)

Table 3.2: Key collection properties for all collections.(a) Number of authors, number of samples,
mean and range of work samples per author, author type, programming language, and lines of code
(LOC). CollectionsColl-POandColl-JOhave the same lines of code asColl-PandColl-J respec-
tively, as anonymised lines were replaced with blank lines, hence the numbers of lines of code are not
repeated for these.(b) Sizes of the collections in bytes.

69

CHAPTER 3. COLLECTIONS

Coll-J has just three. Finally, Coll-T is not shown as the distribution is uninteresting with exactly

six samples per author, however this consistency will reduce bias towardsprolific authors.

In Figure 3.4 we show the distribution of sample lengths in hundreds of lines ofcode. Firstly,

this figure reveals that our freelance collections Coll-P and Coll-J have far higher proportions of

trivial samples with fewer than 100 lines of code compared with Coll-A and Coll-T, which may

make classification more difficult for the freelance collections. Figure 3.4 also shows that Coll-T has

a higher concentration of samples at the peak of the graph than in Coll-A, which may reflect more

consistency in the samples in Coll-T, since all authors in that collection completed the same tasks.

3.4 Comparison of Our Collections to Collections in Previous Work

Table 3.3 provides a comparison of the collections used in this thesis, and the collections used in all

eight previous source code authorship attribution contributions by other researchers that have pub-

lished empirical results in this field. Prior to the creation of our collections, the collection by Mac-

Donell et al. [1999] had the largest number of work samples (351), andthe collection by Ding and

Samadzadeh [2004] had the largest number of authors (46). We have exceeded both of these with our

collections. In contrast, Lange and Mancoridis [2007] still have the largest average sample length in

their collection (11,166 lines of code), however the collection is otherwise modest with only 60 work

samples. The comparison given in Table 3.3 demonstrates that our collectionsare very suitable for

advancing the field.

Finally, we summarise the desirable properties of collections discussed in Section 3.1, which we

have been able to meet, partly meet, or not meet at all in relation to the collections by the other

researchers. For reference, the properties are number of authors, number of samples per author,

sample lengths, chunking avoidance, representativeness, multiple authortypes, multiple languages,

single authorship, correct authorship, identifying features, and availability, which we now summarise

in turn.

• We have met thenumber of authorsrequirement, as we have more authors in our collections

than any previous contribution in source code authorship attribution.

• We have met thenumber of samples per authorrequirement for Coll-A, as this collection has

the highest minimum number of samples figure of any collection as shown in Table3.3.

• We have met thesample lengthsrequirement for Coll-A and Coll-T, as these collections have

the longest average sample lengths amongst all of the academic collections. We were not able

70

3.4. COMPARISON OF OUR COLLECTIONS TO COLLECTIONS IN PREVIOUS WORK

5 10 15 20 25 30

Samples per author

0

5

10

15

20

25

30

N
um

be
r

of
 A

ut
ho

rs

(a) Coll-A

5 10 15 20 25 30

Samples per author

0

5

10

15

20

25

30

N
um

be
r

of
 A

ut
ho

rs

5 10 15 20 25 30

Samples per author

0

5

10

15

20

25

30

N
um

be
r

of
 A

ut
ho

rs

(b) Coll-P (c) Coll-J

Figure 3.3: Histograms depicting the number of samples for each author forColl-A, Coll-P, and
Coll-J respectively.Coll-T is not shown asColl-T has exactly six samples for each author.(a)
Coll-A: All 100 authors are shown.(b) Coll-P: Five authors with thirty-two, thirty-nine, forty-two,
forty-four and fifty-seven samples are not shown for brevity.(c) Coll-J: One author with thirty-six
samples is not shown for brevity.

71

CHAPTER 3. COLLECTIONS

0 5 10 15 20 25 30 35 40 45 50

Sample length in hundreds of lines

0
20
40
60
80

100
120
140
160
180
200
220
240

N
um

be
r

of
 S

am
pl

es

0 5 10 15 20 25 30 35 40 45 50

Sample length in hundreds of lines

0
20
40
60
80

100
120
140
160
180
200
220
240

N
um

be
r

of
 S

am
pl

es

(a) Coll-A (b) Coll-T

0 5 10 15 20 25 30 35 40 45 50

Sample length in hundreds of lines

0
20
40
60
80

100
120
140
160
180
200
220
240

N
um

be
r

of
 S

am
pl

es

0 5 10 15 20 25 30 35 40 45 50

Sample length in hundreds of lines

0
20
40
60
80

100
120
140
160
180
200
220
240

N
um

be
r

of
 S

am
pl

es

(c) Coll-P (d) Coll-J

Figure 3.4: Distribution of sample lengths in all collections in hundreds of linesof code, truncated to
the nearest 100 lines. CollectionsColl-POandColl-JOhave the same lines of code asColl-P and
Coll-J respectively, as anonymised lines were replaced with blank lines, hence they are not shown.
Note that samples with more than 5,000 lines of code are omitted from the graphfor brevity: (a)
Coll-A: Four samples are not shown with the largest being 10,789 lines of code.(b) Coll-T: Six
samples are not shown with the largest being 15,613 lines of code.(c) Coll-P: Twenty-nine samples
are not shown with the largest being 58,487 lines of code.(d) Coll-J: Five samples are not shown
with the largest being 15,057 lines of code.

72

3.4. COMPARISON OF OUR COLLECTIONS TO COLLECTIONS IN PREVIOUS WORK

ID Num Range Total Range LOC Average Exper- Lang-
Auth Work Work LOC ience uage

M07 7 5–114 351 †1–1,179 †148 Mixed C++
F08a 8 6–8 54 36–258 129 Low Java
F08b 8 4–29 107 23–760 145 High Java
F08c 8 2–5 35 49–906 240 High Lisp
F08d 8 4–5 35 52–519 184 High Java
T08 8 3–3 24 ‡200–2,000 ‡450 Low Java
E12 12 6–7 83 ‡50–400 ‡100 Low C++†
T12 12 3–4 ‡42 ‡100–10,000 ‡3,500 High Java
L20 20 3–3 60 †336–80,131 11,166 High Java
S20 20 3–3 60 †336–80,131 †11,166 High Java
K29 29 — 88 — — Mixed C
F30 30 4–29 333 20–980 172 High Java
D46 46 4–10 225 — — Mixed Java
Coll-J 76 3–36 453 9–15,057 667 High Java
Coll-P 100 5–57 1,095 8–58,457 984 High C/C++
Coll-A 100 14–26 1,597 1–10,789 830 Low C
Coll-T 272 6–6 1,632 61–15,613 1,109 Low C

Table 3.3: Comparison of our collections to those used by eight other research groups. Codes
are given in the first column indicating a surname initial and problem size: (M07) MacDonell
et al. [1999], (F08a) Frantzeskou et al. [2006a;b], (F08b) Frantzeskou et al. [2005; 2006b],
(F08c) Frantzeskou et al. [2008]; Frantzeskou [2007], (F08d) Frantzeskou et al. [2008]; Frantzeskou
[2007], (T08) Kothari et al. [2007], (E12) Elenbogen and Seliya [2008], (T12) Kothari et al. [2007],
(L20) Lange and Mancoridis [2007], (S20) Shevertalov et al. [2009], (K29) Krsul [1994]; Krsul and
Spafford [1996; 1997], (F30) Frantzeskou et al. [2006a;b], (D46) Ding and Samadzadeh [2004],
(Coll-J) Burrows et al., (Coll-P) Burrows et al., (Coll-A) Burrows and Tahaghoghi [2007]; Bur-
rows et al. [2009a]; Burrows et al., and (Coll-T) Burrows et al. [2009b]; Burrows et al.. For each
collection the remaining seven columns respectively represent the problem difficulty (number of au-
thors), range and total number of work samples, range and averagelines of code of the samples,
level of programming experience of the sample owners (“low” for students, “high” for professionals,
and “mixed” for a hybrid collection), and programming language. To represent incomplete data, we
marked unobtainable data with a dash (—), and data obtained from personal communication with a
dagger (†), or double dagger (‡), where estimates were provided.

73

CHAPTER 3. COLLECTIONS

to achieve this with our freelance collections, since many large projects tend tocomprise team

efforts with multiple authors.

• We have been able to avoid the need tochunkour samples in any way.

• Our collections arerepresentativein multiple respects. First, we have not removed outlier

samples of very short or long lengths, so that the full range of samples is represented. Moreover,

Coll-T is particularly representative, as every author has completed the same six tasks.

• We also havemultiple author types(academic and freelance),multiple programming languages

(C, C/C++, and Java), noidentifying featuresin the source code, and we have taken every

possible step to make the collectionsavailable.

The only remaining two properties that we cannot guarantee aresingle authorshipandcorrect

authorship, as these relate to the honesty of the individuals. These properties could potentially be

met if the authors of the samples could be surveyed or interviewed, however this is likely to come

at the expense of the collection size, and therefore is a trade-off. However, we still consider the

experiment results presented in this thesis to be valid, as most large collectionscannot be guaranteed

to be error-free, and margins for error must be considered when analysing results.

3.5 Roles of the Collections

Collections Coll-A, Coll-T, Coll-P, and Coll-J have been developed for different purposes. They

have also been used in different places in this thesis, which we explain here.

First, Coll-A is the training collection used when developing our information retrieval approach

for source code authorship attribution, and is used exclusively in Chapters 5 and Sections 6.1 (p. 135)

to 6.3. We only use one collection for developing our approach to avoid overfitting. That is, we

still want to have some unseen collections for reporting accuracy scoresthat are independent of the

developmentof our work.

Second, Coll-T is used for exploring the effect of timestamps on authorship attribution accuracy

in Sections 6.4 (p. 147) to 6.7. This work is also restricted to one collection as we deliberately limited

the number of samples per author we used in building Coll-T, to obtain a collection with reliable

timestamps. In all other collections we maximised the number of training samples per author, which

is generally preferable.

That leaves Coll-P and Coll-J exclusively for benchmarking experiments, which make up much

of the work in Sections 4.4 to 4.5 and Chapter 7. Nevertheless, we still report Coll-A and Coll-T

74

3.6. AVAILABILITY OF THE COLLECTIONS

results in these chapters for completeness. We believe that our random sampling experiment design

(discussed in Section 5.1, p. 110) essentially eliminates overfitting problems, as we have large collec-

tions available to sample. Therefore, we are not forced to use a whole collection for any individual

run, unlike all previous researchers in source code authorship attribution reviewed in Section 4.3.

3.6 Availability of the Collections

Given that benchmarking studies and reproducing the work of other researchers is a very time con-

suming exercise, we now discuss how we can share our collections with other researchers to reduce

future effort.

Concerning the academic Coll-A and Coll-T collections, we initially approached university staff

from the alumni office to contact past students, whose work appeared in those collections, toobtain

permission for use of their code for research purposes. This provedunsuccessful and we only ob-

tained a 4% response rate after waiting a few months.

We then explored how we could share the work samples in a way obfuscatedenough such that

copyright is not breached. A safe approach is to sharestatisticsabout the number of each token

found in each sample and an identifier number for the author of that sample. We can also share

bigram statistics in a similar fashion, but we believe that any n-gram size greater thann = 2 would

risk the originals being reproducible. This means that only some of our workis reproducible for

Coll-A and Coll-T. The data is publicly available at http://hdl.handle.net/102.100.100/166.

Concerning the freelance Coll-P and Coll-J collections, the Planet Source Code web site terms

and conditions [Exhedra Solutions Inc., 2010b] stipulate that the content cannot be redistributed

without the permission of the original authors. Given that the Planet SourceCode content spans

many years, we felt that trying to exhaustively contact individual authors using the email links on the

author profile pages would be similarly unsuccessful to our attempts with the alumni.

We also considered sharing lists of hyperlinks to the individual profile pages so that others could

collect samples from the same authors that we used. This is allowable since theterms and conditions

state that any “user may link to any of the pages in the site”, with the only exception being that

“linking may not be done when encased in a frame, without express written permission” of the web

site owner [Exhedra Solutions Inc., 2010b]. Providing links to the author profile pages would allow

fairly close replication of Coll-P and Coll-J, with the exception of dead links where profiles are

terminated or samples are removed. Moreover, this is an active web site and authors continue to

share their work and new authors continue to join often, therefore new samples will continue to

appear.

75

CHAPTER 3. COLLECTIONS

Given the above problems, we suggest that researchers wishing to usecollections similar to

Coll-P and Coll-J start afresh. In Appendix B we provide detailed instructions and screenshots on

how to reproduce these collections at Planet Source Code using the most up to date samples. More-

over, we have again released unigram and bigram statistics at http://hdl.handle.net/102.100.100/166.

Finally, we have recorded details of our collections on the Australian National Data Service

(ANDS) at http://services.ands.org.au/home/orca/rda/view.php?key=102.100.100/166. This service

maintains searchable content for collections of research data for Australian researchers.

3.7 Summary

In this chapter, we introduced the collections used in this thesis. In particular, we summarised impor-

tant criteria for collection construction, introduced the four collections in turn, compared the collec-

tions to one another and to those used by previous researchers, discussed the roles that each collection

plays, and provided details concerning the availability of our data. In short, we demonstrated that

these collections are highly suitable for the source code authorship attribution work in the remainder

of this thesis. Next, in Chapter 4 we review the previous work and compare the previous source code

authorship attribution approaches against one another.

76

Chapter 4

Benchmarking Previous Contributions

There is a vast amount of previous work in authorship attribution and closely related areas. We have

covered the necessary background material in Chapter 2, which leavesthe individual contributions

from the previous work for review in this chapter. This chapter includes aliterature review, followed

by our first experiments. First, we review the previous work in the field paying particular attention

to the individual methods, results, and outcomes. Second, we benchmark all previous source code

authorship attribution contributions using our collections introduced in Chapter 3 as a common set.

We begin the review in Section 4.1 by evaluating the approaches and results for related areas clos-

est to our work: plagiarism detection and genre classification. In Section 4.2, we review many natural

language authorship attribution approaches and their results. Then, all eight previous source code au-

thorship attribution approaches are reviewed in detail in Section 4.3. In Section 4.4, we explain our

methodology and how we reimplemented all the previous source code authorship attribution contribu-

tions to allow a fair comparison using our collections. The benchmarks for our information retrieval

approach presented in Chapter 5 are set in Section 4.5. We conclude this chapter in Section 4.6

by summarising our findings, and by highlighting the gap in the previous work for an information

retrieval approach for source code authorship attribution.

4.1 Related Areas

Two related areas introduced in Section 2.1.4 (p. 15) are of particular relevance to source code au-

thorship attribution research: plagiarism detection and genre classification.Plagiarism detection is

of interest as the use of software metrics has been popular in making both plagiarism and author-

ship decisions. For example, counting and complexity metrics have been usedin both plagiarism

detection and authorship attribution. Genre classification is of interest as both the genre classification

77

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

and authorship attribution problems have to deal with topic. For example, whendistinguishing blog

and newspaper genres, it becomes important to not allow different topics such as sport, business, and

weather, to interfere with authorship decisions. We review each of these areas in turn paying attention

to the methods, results, and outcomes.

4.1.1 Plagiarism Detection

Frantzeskou et al. [2004] extended the source code authorship analysis four-heading taxonomy (au-

thorship identification, authorship characterisation, author intent determination, and author discrimi-

nation) by Gray et al. [1997], with a fifth category —plagiarism detection— to highlight the common

ground between authorship attribution and plagiarism detection. Plagiarism detection is concerned

with finding matching segments in work samples, whereas authorship attribution isconcerned with

identifying the author of work samples using a trained model. The common ground between these ar-

eas is the use of metrics. Metric-based implementations have been used to analyse both stylistic traits

in authorship attribution and content similarity for plagiarism detection. However, comparison of au-

thorship attribution strategies to structure-based plagiarism detection systemssuch as JPlag [Prechelt

et al., 2002], is not appropriate, as these systems match contiguous work sample fragments against

one another. These approaches are not helpful in identifying authorship unless there are also non-

trivial chunks of matching content.

There are many tools to detect plagiarism in both natural language and source code. In particular,

source code approaches have been divided in the literature accordingto metric-basedandstructure-

basedapproaches [Verco and Wise, 1996]. We now review natural language plagiarism detection,

metric-based source code plagiarism detection, and structure-based source code plagiarism detection.

Natural Language Plagiarism Detection

Natural language plagiarism detection tools have been used on work suchas essays and reports for

academic and corporate text-based domains. Hoad and Zobel [2002] described two methods for de-

tecting plagiarised text documents: ranking and fingerprinting.Rankinginvolves presenting the user

with a list of candidate answers sorted by similarity to a query; this approach iscommonly used by

search engines to retrieve multiple answers to a query where there is not necessarily a single correct

answer. Ranking requires fast lookup of candidate documents using keywords through the use of an

inverted index. A similarity measure is employed to give a score for candidate documents [Witten

et al., 1999].

78

4.1. RELATED AREAS

Fingerprintinginvolves the computation of compact descriptions of documents, typically numeric

representations generated using a hash function.Selective fingerprintingcan be used [Heintze, 1996]

to make the representation even more compact and hence more scalable. Selective fingerprinting can

be implemented with either fixed length fingerprints, where each fingerprint size is independent of

document length, or variable length fingerprints, where the fingerprints are relative to the size of the

full fingerprint. However, the selection of the document components that make up the fingerprint

is non-trivial. Fingerprint hashes can be chosen using random selection, which produces poor re-

sults [Heintze, 1996]. A better selection strategy is one that returns similar fingerprints for similar

documents by picking a fixed number of hashes with the lowest values [Heintze, 1996].

Concerning specific systems, Turnitin [iParadigms, 2007b] and iThenticate[iParadigms, 2007a]

are well-known text plagiarism detection tools. These systems compare submitted samples against

repositories of documents obtained from the Web and other sources. However, details of the inner-

workings of these systems are difficult to obtain due to commercialisation.

The EVE (Essay Verification Engine) plagiarism detection system [Stevensand Jamieson, 2002]

works similarly to Turnitin, as it compares documents to online sources. However, the comparison

is done using current versions of Web documents on the fly, instead of downloading the content into

a database. This means that although the content is fresh, the process is less efficient. Niezgoda and

Way [2006] alleviated this problem by identifying document passages with high average word lengths

in suspect documents, which were submitted as queries to the Google Web APIfor similarity analysis

to online documents. This approach is advantageous as only the most relevant candidate documents

are returned. However, there is an upper limit on the number of queries that can be processed from a

Google Web API account per day, so scalability is limited.

Concerning scalability, the repetition of a single sentence may be enough to indicate wrong-

doing or at least inappropriate or missing citation or quoting in plagiarism investigations. However,

scalability is a challenge in authorship attribution, as reasonable amounts of content are needed to

establish an authorial style. The exact amount is uncertain, as previous work has simply indicated

that increasing the amount of training data increases accuracy in general [Zhao and Zobel, 2005].

Scalability is also relevant when checking for plagiarism outside of a collection. An example

is comparing a collection of student essays to content that could have beencopied online. There is

no authorship attribution software that is as scalable as existing out-of-collection plagiarism detec-

tion services, such as Turnitin [iParadigms, 2007b], which suggests thatthe scalability of authorship

attribution algorithms could be improved.

Plagiarism detection systems also need to be sensitive to proactive attempts to disguise inci-

dents. Mozgovoy [2007] used semantic analysis to gain an understandingof document parts of

79

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

speech, and then substituted them with tokens indicating the presence of nouns, verbs, places, people,

(and other placeholders) to detect simple substitutions. However, we suggest that dissolving docu-

ments to parts of speech and other more generalised formats is unlikely to be helpful in authorship

attribution as individual word choices are important. For example, Kacmarcikand Gamon [2006] ex-

plained how the simple choice of “while” versus “whilst” represented good evidence in determining

the authorship of the Federalist papers [Mosteller and Wallace, 1963]. Reducing these words to a part

of speech (for instance, a conjunction token), would result in the loss ofthis stylistic trait.

Metric-Based Source Code Plagiarism Detection

Metric-based source code plagiarism detection systems use quantitative software measurements to

identify potentially plagiarised samples. The two most recent contributions in thisarea are the works

by Jones [2001] and Engels et al. [2007], which we now review.

Jones [2001] described an unnamed system based on a vector comprisinga hybrid of three phys-

ical metrics (line, word, and character counts) and three Halstead metrics [Halstead, 1972] (token

occurrences, unique tokens, and Halstead volume) to characterise code. The Euclidean distance mea-

sure was used on normalised vectors of these measurements to score program closeness.

The Plague Doctor presented by Engels et al. [2007] is the only metric-based plagiarism detec-

tion system we have seen that has employed machine learning techniques. The key idea is to combine

the textual analysis techniques of widely accepted structure-based plagiarism detection tools, such as

MOSS (Measure of Software Similarity) [Schleimer et al., 2003] and JPlag [Prechelt et al., 2002],

with “cues that instructors themselves use when visually scanning two assignments for signs of pla-

giarism”, such as use of comments and white space that MOSS and JPlag ignore [Engels et al., 2007].

They proposed twelve software metrics that were used to train a neural network classifier for making

plagiarism decisions. The first metric is the output score of MOSS, which is the only representation of

a structure-based plagiarism detection system. The remaining metrics concerned differences between

duplicate source lines, misspelled words in comments, submission lengths, constants, string literals,

looping constructs, white space characters, and a random number as a sanity checking mechanism.

The work by Jones [2001] and Engels et al. [2007] are the only source code plagiarism detec-

tion systems using software metrics to appear more recently. The emphasis hassince largely moved

towards structure-based systems. The earliest metric-based systems were amongst the first that im-

plemented electronic plagiarism detection, and some measured archaic features that are less relevant

to modern-day programming languages. However, the software metrics in thisolder literature are

still of interest, as these have driven almost all source code authorship attribution research to date.

80

4.1. RELATED AREAS

The other metric-based systems have employed between four and twenty-four metrics. The ear-

liest work is that of Ottenstein [1976], which used then1, n2, N1 andN2 Halstead metrics [Halstead,

1972] (defined in Section 2.4.1, p. 36) to indicate possible plagiarised Fortran programs when the

four values were the same. Robinson and Soffa [1980] calculated the number of blocks, number of

statements per block, control structures used, and data types used in datastructures, to eliminate pro-

gram pairs from contention that did not have measurement differences within heuristic ranges. Grier

[1981] built on the work of Ottenstein [1976] for Pascal programs with theintroduction of three

new metrics: lines of code, variables used, and number of control statements. Dissimilarity of the

programs was then computed using the sum of the differences in the seven measurements. Whale

[1986] used a three-pass procedure to detect plagiarism in Pascal and Prolog programs; first, the

complexity of each source code block was computed with a complexity measure based on the indi-

vidual statements in the block; second, candidate samples were shortlisted witha nearest-neighbour

measure; and third, a variation of the longest common subsequence algorithm [Hirschberg, 1975]

was computed (a structure-based plagiarism detection component), to identify a final set of programs

for inspection. Finally, Faidhi and Robinson [1987] evaluated twenty-four counting metrics andin-

trinsic metrics (such as those dealing with flow control and modularisation), and found that the latter

category contributed more towards plagiarism detection.

All of the above approaches are relevant to authorship attribution due to the use of software

metrics. Even features that are easy to modify by plagiarists such as commentsare of interest in au-

thorship attribution. These features are conversely a limitation in existing plagiarism detection work

such as that by Faidhi and Robinson [1987], as these are easy to modifyto hide plagiarism. More-

over, authorship attribution features would benefit from being insensitive to program length, so that

measurements are not biased towards short or long programs. This is unlike the work by Donald-

son et al. [1981], which presented a metric-based plagiarism detection system for Fortran code with

summation metrics that are sensitive to program length.

Structure-Based Source Code Plagiarism Detection

Mozgovoy [2007] reviewed three kinds of structure-based plagiarismdetection systems: fingerprint-

ing systems, string matching systems, and parse tree systems, which we now review in turn.

The fingerprinting approach has been demonstrated in the MOSS software [Schleimer et al.,

2003], which hashes n-gram representations of source code to singleintegers. The complete set of

hashed values is the initial fingerprint. The pool of hashed values is then reduced in size by applying

a fingerprint selection algorithm calledwinnowing. In this algorithm, a sliding window of sizew is

positioned over each value in the sequence of hash values in turn, and thesmallest value is selected

81

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

provided that it was not present in one of the previous windows. The rightmost value is selected in

the event of duplicates. The final fingerprint is therefore highly compressible, since the smallest hash

values have been selected.

Prechelt et al. [2002] described the JPlag structure-based plagiarismdetection system withstring

matching. First, the source code samples are parsed and converted into token streams. Second, the

token streams are compared in an exhaustive pairwise fashion using the greedy string tiling algorithm,

as used in the YAP (Yet Another Plague) plagiarism detection system [Wise,1996]. Collections of

maximally overlapping token streams above a threshold length are stored and given a similarity score.

Program pairs with similarity scores above a threshold percentage are madeavailable to the user, with

links to pairs of interest for manual side-by-side inspection, as shown in Figure 4.1.

Parse treecomparison refers to making use of the hierarchy of programs for similarity calculation.

This has been demonstrated by Gitchell and Tran [1999] in thesimplagiarism detection tool that tries

to best align each program module between two programs and compare their similarity using global

alignment [Needleman and Wunsch, 1970]. Belkhouche et al. [2004] essentially implemented parse

trees by transforming the source code into tree-like structure charts. They then identified highly cou-

pled regions and compared the structural similarities of these regions with those of other programs.

Mozgovoy [2007] compared the speed and reliability of fingerprinting, greedy string tiling, and

tree-matching methods. They have expressed the performance of these categories as a trade-off be-

tween speed and reliability. The speed was expressed in terms of the runtime complexity of the

software that they analysed in each category. They suggested that fingerprinting is the fastest, fol-

lowed by string matching and tree matching respectively. Their observation was that speed comes

with a reliability trade-off, and hence the order of these categories for reliability is reversed.

In other work, Burrows et al. [2006] described a scalable code similarityapproach that uses the

Zettair search engine [Search Engine Group, 2009], to index n-grams of tokens extracted from the

parsed program source code. At search time, the index is queried usingthe n-gram representations

of each program to identify candidate results. Candidate results above a similarity threshold are

then filtered using the local alignment approximate string matching technique [Smithand Waterman,

1981]. Burrows et al. [2006] showed that their work is competitive and highly scalable compared to

MOSS and JPlag.

Generally speaking, structure-based plagiarism detection systems such as the ones reviewed

above are unsuited to verify authorship, as they aim to identify functionally equivalent code, rather

than stylistically consistent code. However, since n-grams are typically used to represent small pat-

terns of adjacent features, their use can indicate general preference of features that regularly occur

near one another. Therefore, the use of n-grams is the construct we take from the above structure-

82

4.1. RELATED AREAS

Figure 4.1: The JPlag plagiarism detection system interface showing the similarity scores of various
program pairs with student numbers marked as “0000000”. Permission to use a JPlag screenshot
was provided by JPlag creator Guido Malpohl on 11 May 2010.

83

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

based plagiarism detection literature for our information retrieval approach to source code authorship

attribution in Chapter 5. Moreover, since the work by Burrows et al. [2006] has demonstrated suc-

cessful use of information retrieval together with plagiarism detection, it raises the question on how

well information retrieval can be used with source code authorship attribution.

4.1.2 Genre Classification

Genre classification is of interest to our research, as it is another classification problem like authorship

attribution that has to go through similar key steps: collection construction, feature selection, training,

and classification.

Koppel et al. [2002] addressed the binary gender-classification andfiction/non-fiction classifi-

cation problems. Using function words and parts-of-speech n-grams together with the Balanced

Winnow classifier [Littlestone, 1988], they achieved “approximately 80%” accuracy for gender clas-

sification, and 98% accuracy for fiction/non-fiction classification.

Dalkilic et al. [2006] addressed the binary problem of distinguishing text written by people from

text generated by machines. Machine-generated text indexed by search engines is problematic, as

it can inflate search engine rankings and consume resources. Human-authored texts were obtained

from online journal archives, and machine-generated texts were created from a random paper gener-

ator and random permutations of the authentic texts. Using a support vectormachine and either term

frequency or compression ratios as features, they classified authentic texts from samples generated

by a computer science random paper generator with at least 99.8% accuracy, but had mixed results

for their artificial documents based on character, word, and block-level transformations of legitimate

documents, with a few lower than the 50% random chance threshold. The strong result in distinguish-

ing authentic texts from the computer science random paper generator textsmay be due to limited

variability exhibited in those samples.

Drucker et al. [1999] addressed the binary spam-detection problem. This problem is similar

to machine-generated text detection, but spam can also be written by people, hence they used a

collection of 3,000 email messages containing 850 spam messages, word occurrence features, and

boosting for classification. They achieved 98.76% classification accuracy for the full messages. Parts

of the messages were then explored in isolation such as the subject or body, but these variations were

less effective.

Abou-Assaleh et al. [2004b] addressed a typical binary genre classification for source code: mali-

cious code detection. They used a collection of Internet worms and a collection of binary executable

viruses, each mixed with benign code. An average of 91% classification accuracy was achieved

across both collections using the Common N-Grams (CNG) method. This method compares lists of

84

4.2. NATURAL LANGUAGE AUTHORSHIP ATTRIBUTION

the most common byte-level n-grams truncated at a fixed profile length. This method is based on the

work by Keselj et al. [2003], and is reviewed in Section 4.2.

Meyer zu Eissen and Stein [2004] conducted an eight-class genre classification experiment on a

collection containing the following web page genres: help, article, discussion, non-private portrayal,

private portrayal, link collection, and download, as mentioned in Section 2.1.4(p. 22). They used

thirty-five features comprising ratios of HTML tags, closed word sets (such as average numbers of

currency, date, and name symbols), punctuation symbols, and parts of speech, using a support vector

machine classifier. They achieved “about 70%” accuracy.

Santini [2007] used a mixture of stop words, parts of speech tags, and HTML tags as features

for seven and eight-class genre classification of web pages. The eight-class collection and categories

are those by Meyer zu Eissen and Stein [2004] above. The seven-class categories are: blog, e-shop,

frequently asked question, online newspaper frontpage, listing, personal home page, and search page

mentioned in Section 2.1.4 (p. 22). Using a support vector machine classifier, they achieved 90.6%

accuracy for the seven-class problem and 68.9% accuracy for the eight-class problem.

Kanaris and Stamatatos [2007] used character-level n-grams and HTMLtag frequency informa-

tion on the same seven-class and eight-class problems investigated by Santini[2007]. They achieved

96.5% accuracy on the seven-class problem and 84.1% accuracy on theeight-class problem, improv-

ing upon the previous benchmarks. These results are directly comparableto the work of Santini

[2007] due to the reuse of the collections.

The multi-class problems are of more interest when used to confirm the authorship of student

assignments than the binary problems reviewed above in this thesis, as the multi-class scenario has

to scale to many candidate authors. However, the two-class (or one-classauthorship verification)

problem is also of interest, as it is applicable to legal proceedings where it can be applied to copy-

right infringement claims. Moreover, the multi-class and binary classificationis often combined

when multi-class classification is implemented with multiple binary classifiers [Voloshynovskiy et al.,

2009].

4.2 Natural Language Authorship Attribution

Natural language authorship attribution is an extensive field, but too largefor an exhaustive review

in this thesis. Instead, we now review several representative contributions in this area to allow us to

make some insightful comparisons to the source code authorship attribution literature.

Juola and Baayen [2005] collated seventy-two custom written texts belonging to eight student

authors in a prescribed set of genres (fiction, argumentative writing, and descriptive writing) and top-

85

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

ics (such as telling a detective story, arguing the health risks of smoking, and providing a description

of soccer). Using a two-class experiment design for all author pairs, they achieved 86.9% accuracy

using cross-entropy. They found this technique to be more effective than comparable previous studies

using principal component analysis and linear discriminant analysis. Theyargued that the method

is valuable as only modest amounts of training data are required. In particular, they claimed that

“authorship of a disputed document can be determined using less than a page of data” [Juola and

Baayen, 2005].

Argamon et al. [2003b] conducted authorship attribution experiments usingonline discussion

board postings from three types of newsgroups, consisting of arts literature, computational theory,

and C programming content. This is a much more difficult problem, as newsgroup postings tend to be

quite short, and the average length for the postings was between 61 and 167 words, depending on the

collection. A further problem was quoted content, which had to be removed.Argamon et al. [2003b]

used function words, Internet abbreviations, capitalisation, word positioning/placement, word length,

and line length features, with the exponentiated gradient algorithm [Kivinenand Warmuth, 1997]

for classification. They achieved 66%, 73%, and 99% classification accuracy for the arts literature,

computational theory, and C programming collections respectively for the two-class problem, and the

scores degraded to 20%, 19%, and 33% respectively for the twenty-class problem.

Next, Grieve [2007] conducted a comprehensive study to evaluate the effectiveness of thirty-

nine types of features falling under the following headings: word length, sentence length, vocabu-

lary richness, character frequency, word frequency, punctuationfrequency, word-level n-grams, and

character-level n-grams. A collection of newspaper opinion articles from forty authors was collected

for their experiments, which allowed the author to attempt several problem sizes ranging from two-

class to forty-class. Using a Chi-square statistic for classification acrossall feature sets, Grieve [2007]

found that the word and punctuation mark profile was the most effective with 95% accuracy for two-

class attribution, down to 63% accuracy for forty-class attribution. Some ofthe n-gram profiles for

character-level n-grams were nearly as effective, with then= 2 andn= 3 sizes being the most effec-

tive.

Grieve [2007] concluded with an experiment that combined sixteen of the individual feature sets,

which comprised seven of the most effective individual sets and nine other sets representative of the

categories tested. Two voting models were tested to classify the work samples.In the first model,

authorship was attributed to the author that received the most votes from thesixteen systems, with

each vote having the same weight. In the second model, the vote weights were proportional to the

effectiveness of the individual feature sets evaluated previously. Both voting models were more effec-

tive than all of the individual models, with the weighted voting model achieving the highest accuracy

86

4.2. NATURAL LANGUAGE AUTHORSHIP ATTRIBUTION

scores with 97% for two-class attribution, down to 69% for forty-class attribution. This combined

feature set was the only aggregation, so an obvious experiment for future work is to combine all

thirty-nine together or as many as applicable.

In other work, a series of ten-class experiments were conducted on the same collections of Greek

newspaper articles in several papers [Stamatatos et al., 1999; 2000; 2001; Keselj et al., 2003; Peng

et al., 2003; 2004; Stamatatos, 2006], making comparison of those competingapproaches possible.

The first collection comprises twenty samples of work from each of ten authors of journalistic arti-

cles, such as reports and editorials. These 200 samples are stratified into 100 for training and 100

for testing. Similarly, the second collection also comprises 200 samples from thesame newspaper

containing scholarly articles, typically authored by writers of academic, rather than journalistic back-

ground, covering areas such as culture, history, and science. We refer to the first collection as the

journalisticcollection, and the second collection as theacademiccollection henceforth.

In the first contribution [Stamatatos et al., 1999], the authors extracted twenty-two features con-

cerning use of sentences, punctuation, parts of speech, and higher-level language statistics. We refer

to these features as thenon-lexicalfeature set henceforth, as inferred by Stamatatos et al. [2001].

They achieved 69% accuracy using multivariate linear multiple regression onthe journalistic collec-

tion.

Stamatatos et al. [2000] extended the above work with the introduction of an additional classifi-

cation algorithm (discriminant analysis), the remaining collection (academic), and three new feature

sets. The first feature set comprised five vocabulary richness measures taken from five separate schol-

arly works, as summarised by Stamatatos et al. [2000]. The remaining two feature sets comprised

vectors of frequencies of the thirty and fifty most common words in the collections normalised by

sample length. They found that the non-lexical feature set resulted in the highest accuracy score when

used with discriminant analysis, with 72% accuracy on the journalistic collectionand 70% accuracy

on the academic collection, which represents a modest improvement on the earlier controbution [Sta-

matatos et al., 1999].

Stamatatos et al. [2001] then repeated some of the above work on the academic collection using

a discriminant analysis classifier paired with the fifty most common words or the non-lexical feature

set. The fifty most common words received 74% accuracy, the non-lexical feature set received 81%

accuracy, and these feature setscombinedreceived 87% accuracy. This finding that combining fea-

ture sets results in higher accuracy is consistent with the work by Grieve [2007] discussed above.

In other work by Spracklin et al. [2008] using ratio and entropy-basedfeatures, the finding was fur-

ther corroborated. Yet further agreement was found in the work by Zheng et al. [2003] for three

classification algorithms evaluated on collections of email and newsgroup messages.

87

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

Peng et al. [2003] used a language model with character-level n-gramson the same collection

of Greek journalistic and academic articles. They increased the accuracyto 74% and 90% for these

collections respectively for these ten-class problems. Peng et al. [2003] reported that the journalistic

and academic Greek newspaper article collections are more heterogeneous and homogeneous respec-

tively, suggesting that language modelling on homogeneous collections is an effective approach based

on the 90% accuracy result. Peng et al. [2004] followed up with another incremental improvement

with 96% accuracy on the academic collection using a naive Bayes classifier, word-level n-grams as

features, and the n-gram length set ton ∈ 1,2,3,4.

Keselj et al. [2003] explored the Common N-Grams method (CNG) (the pre-cursor to the Simpli-

fied Profile Intersection (SPI) metric covered in Section 2.7.10, p. 56), which incorporatednormalised

frequencies of n-gram occurrence measurements. Using the same Greek newspaper article data sets,

they achieved the highest accuracy score on the journalistic collection of 85% when using n-gram

size n = 3 and profile lengthL = 4,000. When using the academic collection, they achieved the

highest accuracy of 97% when using n-gram sizen = 4 and profile lengthL = 5,000. The profile

lengthL = 5,000 was the maximum length tested, so it is not clear if larger profile lengths will lead

to even higher accuracy scores. Moreover, it is unclear which combinations of n-gram length and

profile length are statistically insignificant from one another, as no statisticalsignificance tests were

reported.

Next, Stamatatos [2006] also used common n-grams like Keselj et al. [2003] above, but instead of

simply counting the number of n-grams in common regardless of normalisation, they instead treated

each common n-gram and its frequency as a feature for linear discriminantanalysis. Normally, up to

10,000 features as used in this work is prohibitive for many classifiers, sothey used a process called

exhaustive disjoint subspacing, where the pool of features is divided into a number of equal-sized

parts, and the inclusion of each feature in each part is chosen randomly.The smaller feature sets are

used for classification in turn, and the outcomes are combined to determine the overall most likely

author. Stamatatos [2006] again used the journalistic and academic Greek newspaper collections

described above. They showed that their approach was more effective than a support vector machine

baseline and indeed the other contributions above. The highest accuracy results were generally for

3-grams and feature set sizes of 6,000 to 10,000 n-grams, where they achieved 96% accuracy for the

journalistic collection and 100% accuracy for the academic collection. However like Keselj et al.

[2003] above, they also did not attempt to generalise their results and determine a single combination

of n-gram lengthn and number of features (or profile lengthL) that is effective in general. This makes

the choice of these parameters difficult for unseen problems.

Stamatatos [2007] proposed new variations of the CNG method including a variant labelledd2,

88

4.2. NATURAL LANGUAGE AUTHORSHIP ATTRIBUTION

which incorporates anaverage profileof all the training samples concatenated in its calculations.

This variant is advantageous as it can assign higher weight towards specific n-grams that deviate

more from the typical profile. Using Reuters collection data [Lewis et al., 2004], they concluded that

this alternative is preferred over SPI and CNG, particularly for the longest tested profile lengths of up

to L = 10,000. However, this contribution again did not explore beyond this boundary.

Next, the thesis by Zhao [2007] is a major benchmarking contribution for natural language au-

thorship attribution. The first paper incorporated in this thesis by Zhao andZobel [2005], used a

collection of newswire articles from Associated Press that formed part ofthe TREC-2 evaluation

framework [Harman, 1995]. Effectiveness and scalability of naive Bayesian, Bayesian network, near-

est neighbour, k-nearest neighbour, and decision tree classifiers were evaluated using 365 function

words as features. In two-class to five-class experiments with either 50 or300 samples per au-

thor, Zhao and Zobel [2005] found that the Bayesian network classified the samples most accurately,

whilst the decision tree classified the samples least accurately, and was mostsensitive to changes

in the number of authors and number of samples per author. Results were also given for one-class

classification where a fixed number of positive samples (25 or 300) were mixed with increasing num-

bers of negative samples up to 1,600. The results showed that accuracydeclined steadily as noise

increased, that the nearest neighbour classifier was most accurate when 25 positive samples were

used. The Bayesian network and both nearest neighbour classifiers were most accurate when 300

positive samples were used. Finally, they performed some timing experiments and found that the

fastest classifiers were the least accurate, so the choice of classifier isapplication dependent.

In their follow-up paper, Zhao et al. [2006] introduced Kullback-Leibler divergence and a support

vector machine to attribute authorship. They used book chapters from the Gutenberg project [Hart,

2010], and newswire articles from Reuters [Lewis et al., 2004], to formadditional collections to

complement the Associated Press collection from the previous contribution [Zhao and Zobel, 2005].

They also introduced punctuation and parts of speech features to complement the existing function

word feature set. The Bayesian Network (the best performing classifierfrom the previous paper), was

inferior to both Kullback-Leibler divergence and the support vector machine, but the most effective

choice of these was dependent on problem size. Function words remained the most effective feature

set. The above results were for two-class classification, and the support vector machine was not

continued in the multi-class experiments as Zhao et al. [2006] claimed that “theycannot be directly

applied to multi-class classification”, but this has been shown to be untrue in other research for genre

classification [Meyer zu Eissen and Stein, 2004] and authorship attribution[Stamatatos, 2006]. Other

researchers have praised the use of support vector machines, with Joachims [1998] concluding that

they are ideal for problems with large feature spaces, and Diederich et al. [2003] going so far as

89

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

stating that support vector machines are “currently the method of choice for authorship attribution”.

In remaining work, Zhao and Vines [2007] implemented a voting model based upon the results of

multiple classifiers and authorship is attributed to the author receiving the most votes. This combined

approach was shown to be more effective than the existing approaches. In the next paper, Zhao and

Zobel [2007b] explored theauthorship searchproblem, where high scalability is needed to identify

other documents of the same authorship as query documents in very large collections. The best result

was 44.2% accuracy using P@10 on a collection of 500,000 documents. Thefinal paper of Zhao and

Zobel [2007a] explored some classic literary questions such as whetheror not Marlowe wrote any of

the works of Shakespeare, to which the conclusion was negative.

Recently, Koppel et al. [2009] proposed the use of meta-learning to address the scalability prob-

lem, or as they call it, the “needle in a haystack” problem. Using a collection of blogs from 10,000

authors, they achieved 56% accuracy using the 1,000 most frequent content features and the Cosine

measure to compute similarity. With random chance being just 0.01%, this result may seem remark-

able, but in practice a 56% success rate is not very helpful. Thereforethey proposed a meta-learning

approach using a model based upon successful and unsuccessfulsample/author pairs. Then, they

measured the closeness of new unseen pairs to the trained successful and unsuccessful groups, to ob-

tain a measure of confidence for attribution. Results showed that the 30% ofthe attributions closest

to the success group were correct 94% of the time, and when increasing recall to 40% they found

that those samples were attributed correctly 87% of the time. Other samples can be tagged as “do not

know”. The benefit of this approach is that it gives high confidence to asignificant proportion of the

samples for this very large problem. Future work remains for further processing the “do not know”

cases.

One of the key findings of this section is that the combination of existing featuresets into larger

sets is generally more effective than the individual parts. However, this section is by no means an

exhaustive review of the natural language authorship attribution literature. For further reading on

natural language contributions, we refer readers to the appendix material by Koppel et al. [2009],

whom summarise seventy-four contributions spanning 1887 to 2008.

4.3 Source Code Authorship Attribution Contributions

The general process adopted by all previous contributions is outlined bythe four-step diagram in

Figure 4.2. Step 1 is the collection construction step, where samples of code from many authors

are gathered to help classify new unseen samples. Step 2 is the feature selection and extraction

step, where suitable authorship markers are chosen and extracted fromthe samples. Step 3 is the

90

4.3. SOURCE CODE AUTHORSHIP ATTRIBUTION CONTRIBUTIONS

Contentious
code samples

(queries)

Samples of code
from authors
(collection)

Feature
selection

Classification

Training
or

indexing

Authorship
at t r ibut ion

- C/C++
- Java
- Lisp

- Byte n-grams
- Token n-grams
- Software metrics

- Sim. measure
- IR engine
- ML classifier

- Top ranked
- Voting schemes

Figure 4.2: General structure of a practical source code attribution system organised into four steps
for collection construction, feature selection, training and attribution. The bullet points under each
stage indicate the techniques that have appeared in the literature to date for theproblem.

classification step that involves training a machine learning classification algorithm to classify the

new samples. Alternatively, similarity measurements can be used as distance measures between

sample pairs whether or not it is in the context of an information retrieval engine as per our work.

Step 4 is the attribution step, where authorship decisions are made based on the top ranked result, or

some voting scheme that combines several candidate results to assign authorship based on popularity.

We have identified works by eight other research groups for source code authorship attribution

that we now review. These are the works by Ding and Samadzadeh [2004] (canonical discriminant

analysis), Elenbogen and Seliya [2008] (C4.5 decision trees), Frantzeskou et al. [2006b] (nearest

neighbour measurement), Kothari et al. [2007] (Bayesian networks and voting feature intervals), Kr-

sul and Spafford [1997] (discriminant analysis), Lange and Mancoridis [2007] (nearest neighbour

measurement), MacDonell et al. [1999] (case-based reasoning, discriminant analysis, and neural net-

works), and Shevertalov et al. [2009] (nearest neighbour measurement). These contributions are later

treated as baselines in Section 4.5.

The majority of the previous studies outlined above used software metrics as features, such as

cyclomatic complexity [McCabe, 1976], Halstead metrics [Halstead, 1972], and object-oriented met-

rics [Ding and Samadzadeh, 2004], to capture stylistic traits. A collection of metrics is used as the

input to a classification algorithm to make authorship decisions, but the combinations of metrics have

91

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

varied greatly in the literature. In this section we review the metrics and classification algorithms

deployed in the seven metric-based approaches [Ding and Samadzadeh,2004; Elenbogen and Seliya,

2008; Kothari et al., 2007; Krsul and Spafford, 1997; Lange and Mancoridis, 2007; MacDonell et al.,

1999; Shevertalov et al., 2009].

For the eighth approach, Frantzeskou et al. [2006a] used n-gram features instead of software

metrics. In this work, the topL most frequently occurring byte-level n-grams were used to form a

profile for each author for comparison using the SPI measure reviewed in Section2.7.10 (p. 56).

In sections 4.3.1 to 4.3.8 we chronologically describe in detail the methodologiesof the eight

contributions above including their use of the classification algorithms and features. We make brief

remarks about other source code related work in Section 4.3.9. Finally, given that the approaches

also vary in terms of number of authors, number of samples per author, average program length,

programming language, and level of programming experience of the authors who contributed the

work samples, we also summarise the accuracy scores in Section 4.3.10 in consideration of these

variables.

4.3.1 Krsul and Spafford

Krsul [1994] created a taxonomy of sixty metrics derived from severalsources on metric, style rule

and best practice topics. The taxonomy was divided into three parts comprising programming lay-

out metrics (such as white space use and placement of brackets),programming stylemetrics (such

as average comment length and average variable length), andprogramming structuremetrics (such

as average function length and usage of common data structures). It is clear that some of the Krsul

metrics are provided for documentation and completeness purposes only. For example, some met-

rics required the programs to be executed to measure program correctness, however these metrics

are not helpful for non-compiling programs. Others required manual human intervention, such as

determining if the comments agree with the code, however this task would be too resource intensive

for large collections.

Using the above metrics, Krsul [1994] conducted a study using eighty-eight programs from

twenty-nine students, staff, and faculty members. Sixty-one of the programs were from student

projects, twenty-four were developed specifically for the initial pilot studyphase of the project (eigh-

teen by students and six by experienced programmers), and the remaining seven were miscellaneous

samples created by faculty members. Krsul and Spafford [1996] reported that the programs devel-

oped by the faculty members averaged 300 lines of code each, but no datais provided about the

other groups. Krsul and Spafford [1996] achieved 73% accuracy using discriminant analysis. They

also tested all classification methods in the LNKnet software [Kukolich and Lippmann, 2004] and

92

4.3. SOURCE CODE AUTHORSHIP ATTRIBUTION CONTRIBUTIONS

achieved 100% accuracy for a Multi-Layer Perceptron neural network. However, we believe that the

methodology for this later component is questionable, as they used four-fold cross validation with

approximately three samples of work per author. Some folds will thus have nodata at all, which

may cause the classifier to function incorrectly. Therefore, we record the accuracy of this baseline

system as 73% from the discriminant analysis result alone (Table 4.1). Achieving 73% accuracy is

nevertheless a very good result given such a small collection, and it remains to be seen if this result

is repeatable for similar collections.

4.3.2 MacDonell et al.

MacDonell et al. [1999] used a collection of twenty-six metrics. Fourteen of these calculate the

number of instances of a particular feature per line of code. Several others deal with white space and

character-level metrics, such as the proportion of uppercase characters. The IDENTIFIED custom-

built software package was used to capture the metrics [Gray et al., 1998;Sallis et al., 1997].

Using the above metrics, MacDonell et al. [1999] used feed-forward neural networks, multiple

discriminant analysis, and case-based reasoning on a collection of 351 C++ programs by 7 authors.

Their best result came from a case-based reasoning model where theyachieved 88% classification

accuracy. They also reported 81.1% accuracy from the other two methods. However, the collection is

problematic as the samples come from three different sources again: three programming text books

authors, three experienced commercial programmers, and a C++ compiler author. MacDonell et al.

[1999] provided data concerning the successful classification rates of the individual authors, but this

study had the smallest number of authors of all, and it remains to be seen if these good results are

repeatable with different authors. A further problem is the greatly varying number of samplesper

author, as the authors created 5, 12, 26, 42, 68, 84, and 114 work samples respectively. We believe

this imbalance generates artificially inflated results, as the author with 114 samples will be easier to

classify given the large volume of work available. However, the author withfive work samples will

be very difficult to classify, but this will hardly impact the overall reported success rate given the very

small number of work samples tested.

4.3.3 Ding and Samadzadeh

Ding and Samadzadeh [2004] used the same taxonomy as Krsul and Spafford [1996] to organise

candidate metrics under the programming layout, programming style, and programming structure

headings. The metrics obtained were from Krsul and Spafford [1996] and MacDonell et al. [1999] as

above, plus metrics described by Gray et al. [1998] in their paper aboutthe IDENTIFIED software.

93

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

These papers were all written about C and C++ metrics, so some language-specific metrics were

adapted for their Java collection. Ding and Samadzadeh [2004] used a stepwise discriminant analysis

feature selection algorithm to identify and remove metrics that contributed little or nothing towards

classification. However, the authors did not provide the final feature subsets in full or attempt to rank

all features, so it is difficult for other researchers to know which to use from this study. However,

they remarked that the layout metrics generally performed better than the styleand structure metrics.

Using the above features, Ding and Samadzadeh [2004] used a collectionof 225 Java programs

from 46 authors for fingerprint-based authorship attribution. They do not give exact figures concern-

ing the length of programs, but say that “the lengths of all of the sample programs in the collection

ranged from several hundred to several thousand lines of Java source code”. Moreover, the samples

belonging to the forty-six authors contained three distinct groups: forty authors were students from

computer science classes, five were creators of Internet shareware, and the final author was a gradu-

ate student. Ding and Samadzadeh [2004] commented that samples from the shareware and graduate

student groups exhibited high classification accuracy, but more work is required in this area given

that there were only five shareware authors and one graduate studentauthor. They used canonical

discriminant analysis for classification, and in the best of their approaches, they achieved 62.7% ac-

curacy when separating individual source files within programs. Accuracy increased to 67.2% when

source files were kept together. The collection described predominantly contained computer science

assignments, so it is possible that they are first year projects, which may bedifficult to classify due to

underdeveloped programming style.

4.3.4 Frantzeskou et al.

Frantzeskou et al. [2006a] distinguished themselves by implementing byte-level n-grams instead of

software metrics. This approach has the advantage of having a feature set that is independent of

programming language. That is, to apply the technique to programs in anotherlanguage, the system

merely needs to generate n-grams for the collection, without consideration of the language constructs.

The authors experimented with a number of n-gram sizes andprofile lengthswhen measuring

classification accuracy. They described a profile lengthL as being theL most frequent unique n-

grams, which means they are effectively comparing feature vectors truncated at lengthL. Therefore,

anauthor profileis created for each author, which is simply a list of theL most frequent n-grams in

the training data for that author. Authorship is attributed to the author whose profile has the highest

number of common n-grams from the profile of the query document; that is, theprofile with the

highest SPI score (see Section 2.7.10, p. 56).

94

4.3. SOURCE CODE AUTHORSHIP ATTRIBUTION CONTRIBUTIONS

The authors evaluated two similarity measures for classification, which were the Relative Dis-

tance (RD) measure by Keselj et al. [2003] and the SPI measure developed by themselves. They

found SPI to be effective particularly for the longest profile lengths evaluated, which wasL = 3,000

reported in the paper by Frantzeskou et al. [2006a].

The experiment methodology separates each collection into training and testingparts of roughly

equal size, taking care to stratify the work samples as evenly as possible. The collections tested

contained between 34 [Frantzeskou et al., 2008] and 333 [Frantzeskou et al., 2006a] samples, with

varying programming language (C++, Java and Lisp), problem difficultly (from six-class to thirty-

class), and sources (student assignments and industry sources) [Frantzeskou et al., 2006a]. The re-

sults were best summarised by Frantzeskou et al. [2006b], where they explained that their method

achieved 88.5% accuracy on an eight-class student problem, 100% accuracy on an eight-class indus-

try collection problem, and 96.9% accuracy on a thirty-class industry collection problem. A problem

exists in that many n-gram sizes and profile lengths are tested and the most effective combinations

do not agree with one another between collections. Nevertheless, these classification rates are quite

exceptional, especially given that collections had modest mean program lengths of 129, 145, and 172

lines of code respectively.

The authors tested a range of values of n-gram lengthn and profile lengthL [Frantzeskou et al.,

2005; 2006a;b; 2007; 2008]. Depending on the experiment, different conclusions were drawn about

the most appropriate choices for these parameters, with values aroundL = 2,000 andn = 6 being

more common. The specific conclusions across five publications were as follows:1

• “... 4 < n < 7 and 1,000< L < 3,000 provide the best accuracy results.” [Frantzeskou et al.,

2005];

• “The best result corresponds to profile size of 1,500” and n-gram length n = 7 [Frantzeskou

et al., 2006a];

• “... the best classification models are acquired for n-gram size 6 or 7 and profile size 1,500

or 2,000.” [Frantzeskou et al., 2006b];

• “The experimental results presented here indicate that the best classification models are ac-

quired for n-gram size 6 or 7 and profile size 1,500 or 2,000.” [Frantzeskou et al., 2007];

• The most accurate results were for 6< n< 10 and 3,000< L < 8,000 [Frantzeskou et al., 2008].

1Usage of the ‘<’ symbol was incorrect in these publications, and the recommendations should be read as though ‘≤’
was used instead.

95

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

The values tested were in the ranges 2≤ n ≤ 10 and 200≤ L ≤ 10,000 across all publications

combined, but we suspect that the most accurate combinations are still unclear, as there were multiple

results reporting 100% accuracy in the experiments, and some were on the boundaries of then andL

ranges listed above. This is addressed in Section 7.2 (p. 175).

A limitation of this approach is the existence of the profile length parameterL that must be

tuned to each individual problem. For example, some profiles may be shorterthan a chosenL,

indicating that some samples will be truncated while others are left alone. This creates bias towards

the truncated profiles of maximum length. Additionally, profile lengths longer thanthe largest profile

are superfluous unless this is intended as a way to avoid truncating profiles. Therefore, statistics about

the distribution of profile lengths in a collection are needed up front.

4.3.5 Kothari et al.

Kothari et al. [2007] tested two sets of metrics on two classifiers. The firstset of metrics consisted

of feature histograms based on six metric classes. However, the number ofmeasurements for each

class are unbounded and depend upon the collection content. For example, the “leading spaces” class

counts the number of times each level of indentation occurs. The bounds depend upon the values

that appear at least once, which indicates there may be thousands of measurements made on each

program. For example, an indentation metric would have individual measurements for lines that have

zero, one, two, three (and so on) spaces for indentation. The number of measurements required for

this indentation metric could be very large, since any indentation level is allowed. Six metric classes

were chosen consisting of the distributions of leading spaces, line length, underscores per line, tokens

(or words) per line, semicolons per line, and commas per line.

The second metric set measures occurrences of byte-level n-grams. So it is similar to Frantzeskou

et al. [2006a] above, but the approach measures occurrences of the metrics instead of matching co-

ordinates. The n-gram lengthn= 4 was derived empirically. Byte-level 4-grams that did not appear

in at least two author profiles were omitted from consideration, and with eight-class and twelve-class

problems in their work, this represents about 20% of the authors in the general case. For our col-

lections, there are 6,184 (Coll-A), 3,610 (Coll-T), 3,713 (Coll-P), and 2,954 (Coll-J) candidate

byte-level 4-grams that appear in 20% or more of the author profiles for the collections respectively,

as summarised in Figure 4.3.

These numbers of features are clearly too many, thus Kothari et al. [2007] used entropy to identify

the fifty most discerning metrics for each author. Entropy was calculated for the frequency of occur-

rence of each feature for the samples belonging to each author, and the author profiles in the whole

collection. The author entropy scores were divided by the whole collection entropy scores for each

96

4.3. SOURCE CODE AUTHORSHIP ATTRIBUTION CONTRIBUTIONS

20 40 60 80 1001e
+

00
1e

+
02

1e
+

04
1e

+
06 Byte−Level 4−Gram Occurrences

Number of Profiles

F
re

qu
en

cy

50 100 150 200 2501e
+

00
1e

+
02

1e
+

04
1e

+
06 Byte−Level 4−Gram Occurrences

Number of Profiles
F

re
qu

en
cy

(a) Coll-A (b) Coll-T

20 40 60 80 1001e
+

00
1e

+
02

1e
+

04
1e

+
06 Byte−Level 4−Gram Occurrences

Number of Profiles

F
re

qu
en

cy

10 20 30 40 50 60 701e
+

00
1e

+
02

1e
+

04
1e

+
06 Byte−Level 4−Gram Occurrences

Number of Profiles

F
re

qu
en

cy

(c) Coll-P (d) Coll-J

Figure 4.3: Frequency of byte-level 4-grams in author profiles. Note the maximum x-axis values
vary according to the number of authors in the collection. We note that somevalues forColl-T and
Coll-Pcould not be plotted due to some zero-frequency points and the use of logarithmic scales.

97

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

metric, and the top fifty were selected. In a ten-class experiment, this results inthe pool of metrics

being set to 500 for example.

Kothari et al. [2007] did not combine the fifty metrics per author together. Instead, the sets of fifty

metrics are kept separate, with classification taking place on each set. Confidence scores are taken

for the results belonging to the author of the metrics used for each classifier. The confidence scores

are then pooled and ranked, with the highest result being used for eachattribution.

This approach is possibly the least scalable of all the previous studies we have evaluated. For

example, if the problem size increases from 10-class to 100-class, then the number of classification

steps increases proportionally. The Kothari et al. [2007] work is the only approach we have seen that

requires an increase in the number of classification models as the pool of authors increases.

Concerning collections, two Java collections were used in the study. The first was a collection of

single-author projects by twelve authors, with three to four samples per author. The other collection

consisted of samples from eight undergraduate students with each contributing three assignments.

Finally, the two sets of metrics were passed through naive Bayes and votingfeature interval

classifiers in the Weka machine learning toolkit [Witten and Frank, 2005]. The accuracy results for

the byte-level n-gram metrics were higher than the class-based metrics, sowe just report the former

here. However, the byte-level n-gram results were split between the twoclassifiers. For the open

source collection, 61% accuracy was achieved for the naive Bayes classifier, and 76% accuracy was

achieved for the voting feature interval classifier. For the student collection, the naive Bayes classifier

achieved 69% accuracy and the voting feature interval classifier achieved 59% accuracy.

4.3.6 Lange and Mancoridis

Lange and Mancoridis [2007] used eighteen metric classes for generating feature histograms for

comparison. Each class contained a group of related features, such asthe number of times each

flow control construct appears, hence they can be represented as histograms. The chosen metrics

included program features at the text level, where the code is simply treatedas a series of strings,

and at the software metric level, where a full understanding of the programs is needed. Some of

the metric classes are finite such as the “comment” category, which counts the number of each type

of Java comment (inline, block, or JavaDoc), but others are somewhat unbounded; for example, the

indentation categories count the number of times each level of indentation occurs for spaces and tabs

similar to the work by Kothari et al. [2007] above. The metric classes used are almost a superset of

those used by Kothari et al. [2007], except for the semicolons per line and commas per line classes.

The full list consists of the use of access statements, brace positions, comment tokens, control flow

statements, spaces/tabs for indentation, inline spaces/tabs, trailing spaces/tabs, periods, underscores,

98

4.3. SOURCE CODE AUTHORSHIP ATTRIBUTION CONTRIBUTIONS

switch statements, switch/case blocks, words per line, first character of words, word length, and line

length.

Using the above metric classes, Lange and Mancoridis [2007] used a nearest neighbour classifica-

tion method on histogram representations of these metrics, where each bar isa counter for the number

of times that a particular measurement appears in a given sample. The aboveprocess is then refined

with the use of genetic algorithms to reduce the feature space. The most effective feature combination

derived from the genetic algorithm consisted of eight of the metric classes and gave a classification

accuracy of 55%, which is fairly low. Considering the low number of trainingsamples per author,

we believe that the SourceForge projects may have been a problematic choice, since it is likely that

the creators of these samples reused code from publicly available sources, which would weaken in-

dividual authorship traits. Such code reuse may be less prevalent in academic student projects, for

example, where students are given explicit instructions to avoid plagiarism and code reuse.

4.3.7 Elenbogen and Seliya

The work by Elenbogen and Seliya [2008] is perhaps best described as a proof of concept. It in-

corporates just six metrics chosen from heuristic knowledge and personal experience: lines of code,

number of comments, average variable name length, number of variables, fraction of for-loop con-

structs compared with all looping constructs, and number of bits in the compressed program using

the WinZip compression software [WinZip Computing, 2009].

Elenbogen and Seliya [2008] used a C4.5 decision tree for classification and a collection contain-

ing samples belonging to twelve students with seven samples per author, except for one that had six

samples. They achieved 74.7% classification accuracy, but they noted thepreliminary nature of this

study, and future work is suggested for constructing larger collections.

4.3.8 Shevertalov et al.

Shevertalov et al. [2009] took four of the Lange and Mancoridis [2007] metrics classes (leading

spaces, leading tabs, line length, and words per line), and used genetic algorithms to determine the

most effective way to discretise the measurements. The major contribution of this work is regard-

ing how to implement discretisation with genetic algorithms. Using a nearest-neighbour classifier

in Weka, they reduced 2,044 bins down to 163, but they did not provide details on this final set,

nor how they are shared between the metric classes. Using the SourceForge collection of Lange

and Mancoridis [2007], they achieved 75% classification accuracy. This was more effective than

99

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

frequency-based discretisation (70% accuracy), range-based discretisation (65% accuracy), and us-

ing no discretisation at all (60% accuracy).

This contribution used a very small collection of sixty samples, of which twenty were used for

testing and no cross-validation was used. Therefore, just one different result would change an accu-

racy score by 5% alone. To mitigate this, Shevertalov et al. [2009] repeated the above experiments

with the samples in each project separated at the source file level to create additional training sam-

ples. Ding and Samadzadeh [2004] already demonstrated that this approach results in reduced accu-

racy, but Shevertalov et al. [2009] used this to confirm their earlier results and found that the results

of the file-level experiment came out in the same order as the previous experiment.

4.3.9 Other Work

Kilgour et al. [1997] described an approach using fuzzy logic metrics for authorship analysis, how-

ever this is only a preliminary analysis using just eight samples of work, so wedo not report these

results, as meaningful trends cannot be discerned with this amount of data.

We found no further literature containing experiment results for source code authorship attribu-

tion, and to the best of our knowledge the eight contributions reviewed in Sections 4.3.1 to 4.3.8

above represent all of the empirical research towards source code authorship attribution to date by

other research groups. Related research has focused on other areas, such as providing a discussion on

the authorship attribution process for source code in general [Gray etal., 1997], or tools that facilitate

the extraction of metrics only [Gray et al., 1998].

4.3.10 Comparison of Published Results

We now summarise the reported results from the eight contributors reviewedin Sections 4.3.1 to 4.3.8

in Table 4.1, which is a variation of Table 3.3 that now includes reported accuracy scores. There are

many variables that must be considered when accounting for the differences, such as the properties

of the test collections, level of ability of the authors who contributed the worksamples, choice of

programming language, and the features/classifiers used. Therefore, we do not think it is possible to

select any approach as being strictly more effective than another from this table alone.

For now, we observe that all of the Frantzeskou contributions have higher accuracy scores than

the remaining contributions. This observation is somewhat meaningful as theirwork was conducted

on the largest variety of collections. However, the potential overfitting of the n-gram length and

profile length parameters used in this approach could be detrimental. Therefore, a more precise

comparison of the features and classification algorithms can only be performed if the contributions

100

4.3. SOURCE CODE AUTHORSHIP ATTRIBUTION CONTRIBUTIONS

ID Num Range Total Range LOC Average Exper- Lang-Accu-
Auth Work Work LOC ience uage racy

M07 7 5–114 351 †1–1,179 †148 Mixed C++ 88.0%
F08a 8 6–8 54 36–258 129 Low Java 88.5%
F08b 8 4–29 107 23–760 145 High Java 100.0%
F08c 8 2–5 35 49–906 240 High Lisp 89.5%
F08d 8 4–5 35 52–519 184 High Java 100.0%
T08 8 3–3 24 ‡200–2,000 ‡450 Low Java 69.0%
E12 12 6–7 83 ‡50–400 ‡100 Low C++† 74.7%
T12 12 3–4 ‡42 ‡100–10,000 ‡3,500 High Java 76.0%
L20 20 3–3 60 †336–80,131 11,166 High Java 55.0%
S20 20 3–3 60 †336–80,131 †11,166 High Java 75.0%
K29 29 — 88 — — Mixed C 73.0%
F30 30 4–29 333 20–980 172 High Java 96.9%
D46 46 4–10 225 — — Mixed Java 67.2%

Table 4.1: An extension of Table 3.3 providing a comparison of previouslypublished results in
source code authorship attribution. Codes are given in the first column indicating a surname
initial and problem size: (M07) MacDonell et al. [1999], (F08a) Frantzeskou et al. [2006a;b],
(F08b) Frantzeskou et al. [2005; 2006b], (F08c) Frantzeskou etal. [2008]; Frantzeskou [2007],
(F08d) Frantzeskou et al. [2008]; Frantzeskou [2007], (T08) Kothari et al. [2007], (E12) Elenbogen
and Seliya [2008], (T12) Kothari et al. [2007], (L20) Lange and Mancoridis [2007], (S20) Shever-
talov et al. [2009], (K29) Krsul [1994]; Krsul and Spafford [1996; 1997], (F30) Frantzeskou et al.
[2006a;b], and (D46) Ding and Samadzadeh [2004]. For each baseline the remaining eight columns
respectively represent the problem difficulty (number of authors), range and total number of work
samples, range and average lines of code of the samples, level of programming experience of the
sample authors (“low” for students, “high” for professionals, and “mixed” for a hybrid collection),
programming language, and the reported accuracy score. To represent incomplete data, we marked
non-obtainable data with a dash (—), and data obtained from personal communication with a dagger
(†), or double dagger (‡), where estimates were provided.

101

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

are reimplemented and then evaluated using the same test collections. We explainthis methodology

and the results obtained in the remaining sections of this chapter.

4.4 Benchmarking Methodology

The eight approaches above were implemented between 1994 [Krsul, 1994] and 2009 [Shevertalov

et al., 2009] using either custom-built programs or off-the-shelf software. Many decisions were

needed in reimplementing this previous work. For Frantzeskou et al. [2006a], we were required

to make some carefully considered decisions about the choice of n-gram length and profile length

from their recommendations that spanned multiple publications. For the metric-based contributions,

we were required to make some decisions about the reimplementation of potentiallythousands of

software measurements and a choice of common framework for the classification algorithms. We

review the Frantzeskou reimplementation decisions first in Section 4.4.1, followed by the metric-

based reimplementation decisions in Section 4.4.2. The remaining methodology thatis common to

all approaches is then given in Section 4.4.3.

4.4.1 Reimplementation of Frantzeskou Approach

The choice of n-gram lengthn and profile lengthL were the main considerations for the reimple-

mentation of the Frantzeskou work. As discussed in Section 4.3.4, valuesL = 2,000 andn= 6 were

common recommendations, so these values were selected. These values were chosen for the initial

benchmark only, and we note that the Frantzeskou work is revisited later in Section 7.2 (p. 175).

For generating the profiles, we used the Text::NGrams software [Keselj, 2008] as per the previous

work and truncated the samples atL = 2,000. After that, only join operations are needed to determine

the number of n-grams in common between the query and author profiles.

4.4.2 Reimplementation of Metric-Based Approaches with Weka

For the metric-based approaches, we had many classification algorithms to test, so the Weka machine

learning toolkit [Witten and Frank, 2005] version 3.5.8 was chosen to be a common framework. Three

of the prior contributions already used Weka, which we repeated, and in the other cases we chose the

closest available classification algorithm in Weka.

First, since Elenbogen and Seliya [2008] also used Weka for a C4.5 decision tree implementation,

we choose theweka.classifiers.trees.J48Weka classification algorithm implementation. Other prior

contributions that used Weka were a Bayesian Network classifier [Kothari et al., 2007] for which

102

4.4. BENCHMARKING METHODOLOGY

we chose theweka.classifiers.bayes.NaiveBayesimplementation, a Voting Feature Interval classi-

fier [Kothari et al., 2007] for which we chose theweka.classifiers.misc.VFIimplementation, and a

nearest neighbour classifier [Shevertalov et al., 2009] for which we chose theweka.classifiers.lazy.IB1

implementation.

Other baselines were not previously implemented in Weka, so alternatives were sought. We im-

plemented the nearest neighbour search of Lange and Mancoridis [2007] asweka.classifiers.lazy.IB1.

For the case-based reasoning model implemented by MacDonell et al. [1999] in the IDENTIFIED

package [Gray et al., 1998], we chose theweka.classifiers.lazy.IBkclassifier. Rodriguez et al. [2006]

noted the similarity between a variation named the connectionist fuzzy case-based reasoning model

and the k-nearest neighbour classifier: “the Connectionist Fuzzy Case-Based Reasoning model was

compared with a closely related method: the standard k-NN classifier (IBk in the Weka package)”.

We also chose twenty nearest neighbours for our implementation (k = 20) as the defaultk = 1 is

synonymous with theweka.classifiers.lazy.IB1classifier above. Usingk = 20 represents 33% of the

instances for one run of Coll-T and a lower portion for the other collections. This was the only

occasion where we deviated from the default Weka classifier parameters.

For the neural network classifier used in the work by MacDonell et al. [1999], we selected the

weka.classifiers.functions.MultilayerPerceptronclassifier. Widrow and Lehr [1990] described the per-

ceptron rule as one of the first neural network implementations first published in 1960.

To represent discriminant analysis as implemented by Krsul and Spafford [1997], MacDonell

et al. [1999], and Ding and Samadzadeh [2004], we used regressionanalysis. Meyers et al. [2005]

commented on the similarity of logistic regression (a form of regression analysis) to discriminant

analysis: “Discriminant function analysis is similar to logistic regression in that we use it to develop a

weighted linear composite to predict membership in two or more groups.” In Weka, several regression

classifiers are implemented includingweka.classifiers.meta.ClassificationViaRegression, which we

select for our baseline comparison.

Additional steps were needed for reimplementing the Kothari et al. [2007] work. This involved

training separate classification models for each author of each run and generating confidence scores

so that these scores could be pooled and ranked. A summary of all classification algorithms is given

in Table 4.2.

The remaining work required the exhaustive reimplementation of the softwaremetrics that ap-

peared in the seven metric-based contributions. We collapsed the metric classes from the three con-

tributions from Drexel University by Kothari et al. [2007], Lange andMancoridis [2007], and Shev-

ertalov et al. [2009], as there is much overlap in the metric classes. The setof eighteen metric classes

by Lange and Mancoridis [2007] was the most comprehensive, as the contribution by Kothari et al.

103

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

Contribution Classifier Weka Implementation
Krsul and Spafford [1997] Regression Analysis meta.ClassificationViaRegression
MacDonell et al. [1999] Case-Based Reasoninglazy.IBk
MacDonell et al. [1999] Neural Network functions.MultilayerPerceptron
MacDonell et al. [1999] Regression Analysis meta.ClassificationViaRegression
Ding and Samadzadeh [2004] Regression Analysis meta.ClassificationViaRegression
Kothari et al. [2007] Bayesian Network bayes.NaiveBayes
Kothari et al. [2007] Voting Feature Intervalsmisc.VFI
Lange and Mancoridis [2007] Nearest Neighbour lazy.IB1
Elenbogen and Seliya [2008] C4.5 Decision Tree trees.J48
Shevertalov et al. [2009] Nearest Neighbour lazy.IB1

Table 4.2: List of all Weka classifiers used in this thesis. Note that the Weka implementations all
begin with the common “weka.classifiers.” prefix.

[2007] only had two new classes out of six, and the four classes contributed by Shevertalov et al.

[2009] was a strict subset of those by Lange and Mancoridis [2007].

We note that some recommendations were given in the literature that subsets ofsome metric sets

generated more accurate results than the full sets. Krsul [1994] gave multiple recommendations con-

cerning the best metric subset without providing a recommendation for the best overall subset. Lange

and Mancoridis [2007] also gave multiple recommendations concerning the use of the top-ranked au-

thor for attribution or longer lists. Additionally, Ding and Samadzadeh [2004]reported results from

a subset without publishing the final list. Given the imprecise details concerning the composition of

such subsets, we simply use the full sets of published metrics in these cases.

Therefore, we now say that there aresix feature sets for the metric-based contributions, and we

refer to the metric class contributions from Drexel University with the Langeand Mancoridis [2007]

citation from now on since their work represents most of the metric classes. The full metric sets are

documented in Appendix C.

Other decisions for implementation of the metrics are also described in AppendixC. This discus-

sion highlights metrics with difficult or impractical implementation requirements, language-specific

content, modifications that were required to avoid previously unconsidered error scenarios, and the

metrics that appear in multiple studies. Excluding the duplicates, we have reimplemented 172 metrics

altogether.

4.4.3 Methodology Common to All Approaches

We chose the ten-class problem for reporting our results. This was an arbitrary decision, but one

that is kept consistent throughout this thesis such that results between experiments can be easily

104

4.4. BENCHMARKING METHODOLOGY

compared. One exception is given later in Section 6.1.1 (p. 136). After randomly selecting all samples

by ten authors for a run, we can process more classification decisions byrepeating this many times,

which increases the statistical power of the experiments. All previous contributions in source code

authorship attribution have generally used modest collections, where the whole collection was used

at once for the experiments. This design limits statistically significant trends thatmay be observed.

With 1,597 samples in Coll-A, one run using this collection will contain about 10% of the col-

lection or about 160 samples. For Coll-A, a full experiment consists of100 runsor about 16,000

samples. The exact number of results depends on the authors that make upeach run.2 For the other

collections, we processed 250 runs for Coll-T, 150 runs for Coll-P, and 250 runs for Coll-J, so that

similar numbers of results would be available for comparison between collections.

We expect there to be some overlap between the authors chosen for eachrun, however it is ex-

tremely unlikely that any two runs in an experiment are identical. Using Coll-A as an example, there

are
(

100
10

)

≈ 1.73×1013 possible author subsets for selection for the one-in-ten problem, as explained

in Section 3.3. Duplication is extremely unlikely since, for example, we are using100 randomly

generated subsets for Coll-A.

We also consistently use a leave-one-out cross validation experiment design to maximise the

amount of training data per author. This was done using the command-line version of Weka where

we set the number of folds parameter to match the number of instances of eachrun. We considered the

Weka experimenter module with its graphical user interface, which makes it easy to queue multiple

classifiers and datasets. However, this Weka module does not accommodatea varying number of

folds as the interface only accepts constant input for this parameter, which makes leave-one-out cross

validation experiments cumbersome for our data.

Finally, we mention that we use accuracy as the sole measure for reporting our results, since this

thesis has a very large number of experiments. Use of a second measure such as error rates becomes

important in binary classification, for example, where the naive baseline is 50% accuracy assuming

that the number of samples in each class is equal.

In summary, it is clear that there is little agreement between the feature sets andclassification

algorithms in the previous studies. However, benchmarking them against one another using our

framework will allow the formulation of a baseline. The results of this work follow in Section 4.5.
2Coll-T is an exception as it has exactly six samples per author.

105

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

4.5 Benchmarking Results

Results for the baseline reimplementations are shown in Figure 4.4. It is clear that some collections

represent more difficult problems than others, since the highest accuracy scores were generally for

Coll-P first, Coll-J second, Coll-A third, and Coll-T fourth. This observation is reiterated with

the average scores obtained for each set of twelve bars, which were 63.01%, 59.92%, 49.26%, and

42.33% respectively.

The results shown in Figure 4.4 demonstrate that the Frantzeskou approach (bars marked ‘f’) is

the most effective for all collections, with 66.40% accuracy for Coll-A, 67.57% for Coll-T, 85.74%

for Coll-P, and 82.96% for Coll-J. These scores therefore form the benchmark for our Information

Retrieval approach presented next in Chapter 5.

With the exception of the results for Lange and Mancoridis [2007], we notethat the scores

achieved are much lower than those summarised in Table 4.1. We note that this is adifficult compari-

son to make given that the results for the previous methods were obtained using different collections.

However, we suspect that overfitting may account for some of the differences given the generally

small collections that were used in the previous work.

When repeating experiments as necessary, we found that successiverepetitions of our multi-run

experiment design generally caused our results to vary by around 0.1% inaccuracy. We note that this

observation is an estimate only. This could be improved by reporting the standard deviation or vari-

ance, however a large number of multi-run experiments would be required,which is impractical given

that each individual multi-run experiment is large. Nevertheless, around0.1% variation accuracy was

rarely sufficient to change any key recommendation from our experiments.

4.6 Summary

In this chapter, we first reviewed all prior contributions from related research areas such as plagiarism

detection, genre classification, and natural language authorship attribution. We then described in

detail the metrics, classification algorithms, and general approaches of thesource code authorship

attribution contributions from eight research efforts. Following this, we reimplemented and evaluated

the prior work on large collections to verify the state-of-the-art and create reliable benchmarks for

our own contributions. We identified that the leading baseline is the work usingprofiles of byte-

level n-grams by Frantzeskou et al. [2005]. Next, in Chapter 5 we present the development of our

information retrieval prototype for source code authorship attribution.

106

4.6. SUMMARY

a b c d e f g h i j k l

Comparison of Baseline Approaches

Contributions ‘a’ to ‘l’ (described below)

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

90

100

Coll−A
Coll−T
Coll−P
Coll−J

Figure 4.4: Comparison of all reimplemented prior contributions:(a) Krsul [1994] (regression anal-
ysis and 42 features),(b) MacDonell et al. [1999] (k-nearest neighbour and 26 features),(c) Mac-
Donell et al. [1999] (neural network and 26 features),(d) MacDonell et al. [1999] (regression
analysis and 26 features),(e) Ding and Samadzadeh [2004] (regression analysis and 56 features),
(f) Frantzeskou et al. [2006a] (simplified profile intersection (L= 2,000) and byte-level 6-grams),
(g) Lange and Mancoridis [2007] and colleagues (nearest neighbour and 56 features),(h) Lange
and Mancoridis [2007] and colleagues (Bayesian network and 56 features), (i) Lange and Man-
coridis [2007] and colleagues (voting feature intervals and 56 features),(j) Kothari et al. [2007]
(Bayesian network and 50 features per author),(k) Kothari et al. [2007] (voting feature intervals
and 50 features per author), and(l) Elenbogen and Seliya [2008] (decision tree and 6 features).

107

CHAPTER 4. BENCHMARKING PREVIOUS CONTRIBUTIONS

108

Chapter 5

Applying Information Retrieval

Our review of previous contributions in Chapter 4 has identified eight approaches in source code au-

thorship attribution with published empirical results. Seven of these were metric-based approaches,

and the eighth approach used coordinate matching on n-grams. Our reviewof the published empir-

ical results suggested that the coordinate matching approach was the most accurate, and our bench-

marking experiment confirmed this finding when all previous approaches were reimplemented and

evaluated using our collections described in Chapter 3.

With a single non-metric approach providing the most accurate scores of allprevious approaches,

an obvious next step is to try other non-metric approaches. In this chapter, we introduce ourinfor-

mation retrieval approach. This approach was initially motivated by the application of information

retrieval to source code plagiarism detection by Burrows et al. [2006].

In Section 5.1, we introduce our seven-step methodology comprising collection construction,

anonymisation, tokenisation, n-gram construction, indexing, querying, and measuring accuracy. Sec-

tion 5.2 gives results of initial experiments to identify a suitable n-gram size andsimilarity measure

for our initial model containing programming language operator and keyword features. We provide

a second increment of our model in Section 5.3 using a revised feature setchosen empirically. In

Section 5.4, we provide our first classification results, which replaces theprevious results based on

reciprocal rank and average precision measurements, which were simplyused to indicate the quality

of the ranked lists. The work in Section 5.5 explores the accuracy and efficiency trade-off of two

index construction methods. Finally, we conclude this chapter in Section 5.6 witha summary of the

contribution and a link to the chapter that follows.

109

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

5.1 Methodology

To determine the author of a document in our information retrieval approachto authorship attribution,

we treat the document as a search engine query — thequery document, written by thequery author—

on an indexed collection with known authors. Our approach produces a list of all documents in the

collection ranked by estimated similarity to the query document. Ideally, all documents by the query

author would appear at the top of the ranked list, followed by all other documents.

Specifically, the methodology follows seven steps. The first two steps concern collection con-

struction, which are common to authorship attribution in general. The next four steps concern our

information retrieval methodology. Then the final step is evaluation. The steps are as follows:

1. Construct a collection (or collections).

2. Anonymise the data by renaming files and directories, and removing commentsand string

literals from the source code.

3. Tokenise stylistic features from the source files, such as operators and keywords.

4. Convert each token stream into an n-gram representation by sliding a window of sizen one po-

sition at a time across the token stream. Therefore, a token stream of lengtht tokens generates

t−n+1 n-grams.

5. Index all n-gram samples belonging to ten randomly selected authors using the Zettair search

engine [Search Engine Group, 2009]. Repeat for many indexes.

6. Use contentious samples as queries against the indexed samples in each index, producing a

ranked list of the closest matching samples.

7. Measure effectiveness of the approach using MRR (mean reciprocal rank) and MAP (mean

average precision) on the ranked lists of results over many queries.

Next, we describe each of these steps in detail.

5.1.1 Collection Construction and Anonymisation

The first step in any authorship attribution work is collection construction. InChapter 3, we explained

how Coll-A, Coll-T, Coll-P, and Coll-J were constructed. In this chapter we only use Coll-A for

developing our approach to avoid overfitting concerns. Overfitting refers to tailoring an experiment

to produce good results for only limited data, and not applying more broadly.The other collections

110

5.1. METHODOLOGY

1 int main(void) /* Linked list driver. */

2 {

3 IntList il;

4 int anInt;

5 ListMake(&il);

6 while (scanf("%d", &anInt) == 1) /* All input. */

7 {

8 if (!ListInsert(&il, anInt))

9 {

10 fprintf(stderr, "Error!\n");

11 break;

12 }

13 }

14 ListDisplay(&il);

15 ListFree(&il);

16 exit(EXIT_SUCCESS);

17 }

Figure 5.1: The code sample is anonymised by removing all comments andstring literals as high-
lighted. This is a modified sample from the Programming Techniques courseware [RMIT University,
2010a] at our university.

are used for other purposes as described in Section 3.5 (p. 74).

Next, our collections were anonymised by renaming files and directories, and removing com-

ments and string literals from the source code as previously described in Chapter 3. Figure 5.1 shows

a short source code sample to provide an example of the content that is removed during the anonymi-

sation step. The removed content is highlighted. This sample is used throughout Section 5.1 as the

running example.

5.1.2 Tokenisation

Recent plain-text authorship attribution work has demonstrated that commonlyoccurringfunction

words(such as “and”, “or”, and “but”) are strong markers of individual style [Zhao et al., 2006]. In

keeping with this approach, we next prepared surrogates of our data based on common components

of the source code samples in preparation for experimentation. We chose an initial representation

based only on the keywords and operators in the samples with all other content removed. We used

the flex lexical analysis tool [Flex Project, 2008] for generating these representations. We note that

the reduction was done at a lexical level, rather than with reference to the Clanguage grammar, and

111

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

1 int main (void)

2 { Keywords

3 IntList il; Operators

4 int anInt;

5 ListMake(&il);

6 while (scanf("", &anInt) == 1)

7 {

8 if (!ListInsert(&il, anInt))

9 {

10 fprintf(stderr, "");

11 break;

12 }

13 }

14 ListDisplay(&il);

15 ListFree(&il);

16 exit(EXIT_SUCCESS);

17 }

Figure 5.2: The Figure 5.1 code sample is tokenised by extracting all keywords and operators as
highlighted. Operators that occur in pairs (such as parentheses) are only processed once.

so overloaded tokens are not treated differently in this thesis. For example, the C language asterisk

character (‘*’) is used for both multiplication and pointer dereferencing. Following our working

example, the keywords and operators that would be extracted from the Figure 5.1 example are shown

in Figure 5.2.

All possible C language operators and keywords that could be extractedfrom Coll-A are refer-

enced in Table D.1 (p. 230) in Appendix D.1

5.1.3 N-Gram Construction

The extracted operator and keyword features are next converted inton-grams. The n-gram representa-

tion is used since n-grams capture the context of tokens by including theirn−1 rightmost neighbours.

Prior to conversion to n-gram form, the tokens are first transformed into atwo-character al-

phabetic code as shown in the example in Figure 5.3. This format is chosen since document pre-

processing in search engine indexing (described next in Section 5.1.4) typically strips away most

characters that are not alphanumeric.

1Appendix D also has listings of operators and keywords relevant for Coll-P (C/C++ language) and Coll-J (Java lan-
guage) in Tables D.2 (p. 231) and D.3 (p. 232) respectively. A separate table is not needed for Coll-T, as this collection
uses the same C language features as Coll-A.

112

5.1. METHODOLOGY

Figure 5.3 also shows the final transformation for our n-gram construction process. Here, the

twenty-six tokens extracted from the Figure 5.2 example are converted into twenty-one 6-grams. We

note that many candidate n-gram sizes are considered later in Section 5.2, and n = 6 is shown in

Figure 5.3 as an example only.

A problem arises when there are not enough tokens to make up at least one n-gram of the desired

length. In these cases, we had to remove those samples from further processing. This scenario

occurred for two samples in Coll-A, but not for the other collections.

5.1.4 Indexing

For our experiments, we reiterate that we chose to process many runs percollection, instead of having

one single large run, as explained in Section 4.4.3. That is, we chose not toindex the samples from

all 100 authors in Coll-A at once. Instead, we indexed all samples belonging to 10 random authors,

and then repeated this 100 times to generate 100 indexes. This design allows us to generate larger

result sets for analysis.

Figure 5.4 shows a partial example of an inverted index for one run. The lexicon contains all

unique n-grams that were derived in Figure 5.3, which have been sortedlexicographically. The

inverted lists contain the statistics about the occurrences of the n-grams in theindexed samples as

explained in Section 2.5.2 (p. 42).

The Zettair search engine was chosen for all indexing and querying tasks. Zettair is desirable as

it is open source, fast, highly scalable, and it supports ranked querying [Search Engine Group, 2009].

5.1.5 Querying

When querying, each of the approximately 160 samples from a run is treatedas a query in turn,

and is queried against the whole index. Figure 5.5 provides an example, where we have chosen to

represent the document identifier numbers using letters ‘A’ to ‘J’ to represent the ten authors, and a

natural number to indicate the sample number. Similarity between a query and each indexed sample

is computed with an information retrieval similarity measure such as those reviewed in Section 2.5.3

(p. 42). These are ranked in order of most similar to least similar to help us identify samples that are

of most interest stylistically.

5.1.6 Measuring Effectiveness

To evaluate the effectiveness of our work, we must measure the relative quality of the ranked lists

returned from the querying step in Section 5.1.5 above. We first measure effectiveness using the re-

113

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

int (void int (& while ((, & == if (! (& , (, break (& (& (

⇓

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

in pa vo in pa am wh pa pa co am eq if pa no pa am co pa co br pa am pa am pa

⇓

1 in pa vo in pa am

2 pa vo in pa am wh

3 vo in pa am wh pa

4 in pa am wh pa pa

5 pa am wh pa pa co

6 am wh pa pa co am

7 wh pa pa co am eq

8 pa pa co am eq if

9 pa co am eq if pa

10 co am eq if pa no

11 am eq if pa no pa

12 eq if pa no pa am

13 if pa no pa am co

14 pa no pa am co pa

15 no pa am co pa co

16 pa am co pa co br

17 am co pa co br pa

18 co pa co br pa am

19 pa co br pa am pa

20 co br pa am pa am

21 br pa am pa am pa

Figure 5.3: The features extracted from the Figure 5.2 code sample are all converted into a two-
character code. Then, a window of size six is moved across the token stream one position at a time
and the token-level 6-gram at each position is recorded. That is, a sequence of twenty-six unigrams
is transformed into a sequence of twenty-one 6-grams. Note that the spaces within each 6-gram
displayed are for readability only.

114

5.1. METHODOLOGY

amcopacobrpa

ameqifpanopa

amwhpapacoam

brpaampaampa

coameqifpano

cobrpaampaam

copacobrpaam

eqifpanopaam

ifpanopaamco

inpaamwhpapa

inpavoinpaam

nopaamcopaco

paamcopacobr

paamwhpapaco

pacoameqifpa

pacobrpaampa

panopaamcopa

papacoameqif

pavoinpaamwh

voinpaamwhpa

whpapacoameq

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

1: <A1,1>

Lexicon Inverted Lists

Collection
Frequency

Document
Frequency

Document
ID

1: <A1,1>

1: <A1,1>

Figure 5.4: An example of an inverted index after the n-grams from Figure 5.3 have been inserted,
assuming the sample is given the document identifier “A1”. The inverted index contains the lexicon
of unique n-grams, and the inverted lists contain statistics about the occurrences of the n-grams in
the indexed data. The inverted lists for this one-sample index are trivial, but they generally increase
in length as additional samples are indexed. Another example of an inverted index was given in
Figure 2.6 (p. 43).

115

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

A1

A1

...

...

...

...

... ...

...

A2 A3 A14 A15 A16

B14B3B2B1

C1 C2 C3 C14 C15 C16 C17

J15J14J3J2J1

Query

− − − − − − − − − − − − − − Indexed Content − − − − − − − − − − − − − −

Figure 5.5: Each indexed sample in a run is treated as a query in turn and evaluated for stylistic
similarity using an information retrieval similarity measure. The results are ranked from most similar
to least similar for identification of the samples that are of most interest. In thisexample, Sample A1
is currently the query for comparison to the approximately 160 samples in a run forColl-A.

116

5.1. METHODOLOGY

Query A3 (poor result): Query A4 (good result):
Rank : Result Rank : Result

1 : A3 1 : A4

2 : B1 2 : A6

3 : J12 3 : E1

4 : A9 4 : A2

5 : B5 5 : D14

.. : : ..

160 : C4 160 : J3

Figure 5.6: Two ranked lists of samples. The left ranked list shows a poorer result than the right
ranked list when measured with reciprocal rank. Both ranked lists of results omit the query sample
from the list, which is normally at the first-ranked position.

ciprocal rank of the first correct author match for each query. We also measure effectiveness of whole

ranked lists using average precision. We can then compare competing approaches explored in this

chapter using Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP) (see Section 2.5.4,

p. 47) expressed as percentages over all queries considered in 100runs. We use this approach in Sec-

tions 5.2 and 5.3 while developing our model with an appropriate n-gram size,similarity measure,

and feature set.

Figure 5.6 provides two partial ranked lists as examples for evaluating the effectiveness of our

ranked lists using reciprocal rank. First, this figure highlights that the query documents must be

manually removed from the ranked lists. These are indicated with strike-through font. We expect

these to be at the top of the ranked lists, since a query sample matched againstitself normally gives

a 100% similarity score for standard information retrieval similarity metrics. Note that we discuss

the implications of manually removing the query documents from the ranked lists (compared with

leaving them out of the indexes completely) in Section 5.5.

With the query samples removed from the ranked lists, we can then evaluate reciprocal rank using

the remainder of the ranked lists (about 159 samples for Coll-A). The left example in Figure 5.6 with

Query A3 shows the highest ranked sample from Author A as ranked thirdfrom the top (Sample A9),

so reciprocal rank is13 or 33.33%. However, the right example with Query A4 is an encouraging result

as Sample A6 is ranked highest, so reciprocal rank is1
1 or 100%. When MRR is used to average

results over about 16,000 queries, we should be able to discern statisticallysignificant differences

between candidate n-gram sizes, similarity measures, and feature sets. Average precision and MAP

are used similarly to verify results.

117

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

Finally, we note that this final step is forevaluatingour methodology. It should not be confused

with the tokenisation, n-gram construction, indexing, and querying steps,which formour approach

to source code authorship attribution.

5.2 N-Gram Size and Similarity Measure

For the first increment of our model, we were required to choose an appropriate n-gram size and

similarity measure. For the n-gram size, we explored sixteen representations of our document sur-

rogates usingn ∈ {1,2,4,6,8,10,12,14,16,18,20,30,40,50,70,90} to determine whether shorter or

longer patterns of tokens are good indicators of authorship.

For the similarity measure, we tested five different ranking schemes: Cosine [Witten et al., 1999],

Pivoted Cosine [Singhal et al., 1996], language modelling with Dirichlet smoothing [Zhai and Laf-

ferty, 2004], Okapi BM25 [Sparck-Jones et al., 2000a;b], and ourown scheme named Author1 [Bur-

rows and Tahaghoghi, 2007]. The first four ranking schemes were already incorporated into the

Zettair search engine, and we left the default free parameters unchanged. For Okapi BM25, we kept

b= 0.75,k1 = 1.2, andk3 = 1010. For Pivoted Cosine, we left the pivot value at 0.2. For the language

modelling approach with Dirichlet smoothing,µ was left set to 2,000. Finally, Cosine does not have

free parameters.

The fifth metric that we named Author1, is related to the relative frequency model by Shivakumar

and Garcia-Molina [1995] and Garcia-Molina et al. [1996]. This measure is based on the idea that

the term frequency in a query and a document should be similar when the query is a document. We

define this measure as:

Author1(Q,Dd) =
∑

t∈Q∪Dd

1

min
(∣

∣

∣ fq,t − fd,t
∣

∣

∣ ,0.5
) . (5.1)

In Table 5.1, we illustrate the effectiveness of each combination of the five similarity measures

and sixteen different values ofn. We found that the Okapi BM25 similarity measure combined

with 8-grams was most effective when measured in MRR (76.39%), and Okapi BM25 with 6-grams

was most effective when measured in MAP (26.70%). These results are underlined in Table 5.1.

We also examined the statistical significance of differences in MRR and MAP at the 95% con-

fidence level using a permutation test. A non-parametric test was needed, since the distribution of

reciprocal rank scores are very skewed towards 1.00. We chose thenull hypothesis to be “no differ-

ence from the most effective MRR or MAP result”, and tested 2-gram up to 14-gram results for all

five similarity measures. Pivoted Cosine with 8-grams (75.89%;p= 0.24) and Okapi BM25 with 6-

grams (75.59%;p = 0.06) were the next two highest MRR results and the differences were found

118

5.2. N-GRAM SIZE AND SIMILARITY MEASURE

Gram Similarity Measure MRR% Similarity Measure MAP%
Size Au1 Cos Dir Oka P.Co Au1 Cos Dir Oka P.Co

1 51.53 59.41 23.36 42.66 28.49 17.05 19.85 12.22 17.72 13.31
2 65.80 68.44 28.33 67.34 53.33 20.73 22.50 12.98 23.24 18.25
4 72.00 74.10 53.43 75.52 72.79 23.91 25.10 19.33 26.00 23.70
6 73.85 74.42 59.42 75.59 74.70 25.71 25.82 20.44 26.70 25.52
8 75.49 74.94 61.17 76.39 75.89 24.96 24.65 19.58 25.61 25.00
10 73.72 73.35 60.44 74.95 74.69 22.78 22.73 17.76 23.47 23.25
12 74.17 73.45 61.39 74.95 74.55 21.57 21.42 16.95 22.01 21.75
14 72.77 72.20 62.41 73.51 73.32 19.09 18.93 15.74 19.38 19.28
16 71.63 71.12 63.55 72.20 72.25 16.81 16.71 14.73 16.98 16.97
18 70.41 70.14 64.21 70.81 70.86 14.59 14.65 13.31 14.79 14.81
20 67.96 67.92 64.48 68.27 68.33 13.36 13.41 12.66 13.53 13.54
30 60.40 60.37 60.11 60.53 60.50 9.92 9.91 9.78 9.94 9.95
40 54.48 54.40 54.39 54.48 54.48 8.51 8.51 8.49 8.52 8.52
50 50.82 50.93 50.84 50.92 50.93 7.76 7.76 7.73 7.77 7.76
70 45.98 46.00 45.78 46.04 46.03 6.44 6.45 6.43 6.45 6.44
90 42.98 43.00 42.85 43.02 43.01 5.72 5.73 5.72 5.73 5.73

Table 5.1: Effect of varying the n-gram size and similarity measure. Five similarity measures are
tested using sixteen different n-gram representations. The similarity measures are Author1 (Au1),
Cosine (Cos), language modelling with Dirichlet smoothing (Dir), Okapi BM25 (Oka), and Pivoted
Cosine (P.Co). Okapi BM25 with 8-grams for MRR and Okapi BM25 with 6-grams for MAP were
the most effective results and are underlined. Two further MRR results are renderedin boldface that
were not statistically different from Okapi BM25 with 8-grams at the 95% confidence level.

119

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

to be statistically insignificant from Okapi BM25 with 8-grams. These results are also rendered in

boldface in Table 5.1. Moreover, the most effective MAP result (Okapi BM25 with 6-grams) was

found to have a statistically significant difference compared to all other tested MAP results. For ex-

ample, for the next best result using Okapi BM25 with 4-grams, the p-value p= 2.52×10−5 indicates

a statistically significant difference.2 We carried forward Okapi BM25 with 6-grams over 8-grams

for all following experiments for this reason, and also due to these representations having lower disk

space requirements.

The results for 6-grams using the Okapi BM25 measure are shown in further detail in Figure 5.7

for ten runs. Here, the results for each author are organised by decreasing mean reciprocal rank.

We note that there are few perfect results or complete failures in this data, as we observed only one

author with a MRR score of less than 50%, and only one author with a perfect MRR score of 100%.

Therefore, these results suggest that we do not have many authors withperfect or seemingly random

coding styles that will make authorship attribution easier or more difficult respectively.

Our results show that larger n-gram sizes are needed for source code authorship attribution than

for natural language authorship attribution. Character-level n-grams of lengths of two or three have

been shown to be most effective in natural language authorship attribution [Grieve, 2007]. In com-

parison, we note that there are about 4.14 characters per token in Coll-A using Coll-A data from

Tables 3.2 and 6.4, or effectively 4.14×6 = 24.84≈ 25 characters per feature-level 6-gram that we

use in our approach. We believe that this difference is due to the limitations imposed on source code

by programming language, which requires more evidence to distinguish between authors. We also

suggest that the information content (orentropy) of the source code n-grams is lower than the natural

language n-grams, and the source code n-grams need to be longer to compensate.

The poorest n-gram results were for the lowest and highest n-gram sizes. Interestingly, the differ-

ence is more pronounced for the smaller n-gram sizes. We expect the larger n-gram sizes to be more

suitable for near-duplicate detection.

For the similarity measure results, the language model with Dirichlet smoothing is clearly inferior

to the other four measures. Cosine was most effective for the smallest n-gram sizes, however Okapi

BM25 was clearly best with the highest MRR score for nine of the sixteen n-gram results for both

MRR and MAP.

We do not report timings for our results in this thesis as the focus is on effectiveness. However,

we point out that the data structures chosen are naturally efficient. For example, the inverted index is

a highly efficient query-time data structure provided that the indexes can be reused.

2We do not adjust statistical significance thresholds using the Bonferronicorrection [Abdi, 2006] or similar when
reporting on the statistical significance of our results. We instead simply provide the p-values where applicable.

120

5.2. N-GRAM SIZE AND SIMILARITY MEASURE

Author Number

R
ec

ip
ro

ca
l R

an
k

(%
)

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

Author Number

R
ec

ip
ro

ca
l R

an
k

(%
)

50 55 60 65 70 75 80 85 90 95 100

0

20

40

60

80

100

Figure 5.7: A sunflower plot showing the reciprocal rank scores for 100 authors from 10 runs of 10
authors each. Results for the authors are sorted by MRR in descending order. The strokes projecting
from each solid point (the “petals” of the “sunflowers”) represent additional points plotted at the
same positions.

121

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

5.3 Selecting Source Code Features

Feature selection is non-trivial for authorship attribution and other classification problems. Work

by Oman and Cook [1990] alone provided 236 language-independent style rules compiled from 7

sources. It is clear that no researcher has explored all combinations of these exhaustively for the

purposes of source code authorship attribution given the number of combinations possible. Moreover,

the markers that are chosen in the literature are often arbitrary.

In this section, we improve our initial information retrieval model from Section 5.2 by introduc-

ing a more effective feature set. Supplanting the initial keyword and operator set, we first try remov-

ing unnecessary features in Section 5.3.1 using backwards feature selection to determine whether

removing bloat from our model improves effectiveness. Then we try the opposite and introduce in-

put/output keywords, function words, white space features, and literal features in Section 5.3.2, to

determine whether these can improve effectiveness.

5.3.1 Backwards Feature Selection

In this section, we perform backward feature selection to determine whether any keywords or oper-

ators can be omitted from the feature set without significantly reducing effectiveness. The goal is to

determine whether unnecessary noise caused by the use of all keywords and operators is adversely

impacting effectiveness. The set of keywords and operators that we used in our initial model are given

in Table D.1 (p. 230) from Appendix D.

We identify candidate features for removal based upon their total contributed weight to the Okapi

BM25 similarity measure. We implement backwards feature selection by progressively removing

features one at a time starting with the features with the smallest weight.

We found that backwards feature selection caused our MRR scores to degrade steadily. We

conjecture that this was caused by Coll-A having many small programs, since some of the programs

were reduced to no tokens after only a small number of features were removed. With no evidence

left to match query to document, such results were recorded as failures witha reciprocal rank of zero

assigned. We conclude that longer samples with more of the features present are needed for this type

of experiment to be effective. Therefore, we do not pursue backwards feature selection further.

5.3.2 Evaluating Feature Classes from the Literature

The Section 5.2 experiment used C language operators and keywords asan initial feature set. Then

in Section 5.3.1, we found that removing potentially unnecessary features did not help. Therefore,

we now consider introducing other types of features based on style guidelines from the literature.

122

5.3. SELECTING SOURCE CODE FEATURES

Much work is available that defines good programming style. For example, Cannon et al. [1997]

defined coding style guidelines such as commenting, white space, declarations, naming conventions,

and file organisation. Oman and Cook [1990] argued that many authors demonstrate personal pref-

erence, but suggested that empirical evidence is lacking to suggest thatvarious guidelines offer

improvements over alternatives to readability, portability, maintenance effort, and so on. There-

fore Oman and Cook [1990] argued that a common paradigm is needed. They collated programming

style guidelines from many sources and organised them in a taxonomy, whichwe use as a basis for

categorising style features in our work. The taxonomy contains three main categories.Typographic

stylerefers to all aspects of code that do not affect program execution, such as commenting, nam-

ing characteristics, and layout (spaces, tabs, and new lines). Next,control structure stylerefers to

flow control tokens that affect algorithm implementation decisions, such as operators, keywords, and

standard library functions. Finally,information structure stylerefers to the organisation of program

memory, input and output such as data structures, and input/output functions such asprintf and

scanf.

Based upon the above taxonomy, we create six classes of features for experimentation. From the

typographic style category, we experiment with white space features to represent the layout category,

and literal features to represent the naming characteristics category. Wedo not experiment with

comments, as we were required to strip these to comply with research ethics guidelines. From the

control structure category, we introduce standard header library keywords (such as constants, macros,

and function names) [Huss, 1997], which we collectively refer to asfunction words. We also retain

operators and keywords that were our starting point in Section 5.2. Fromthe information structure

style category, we experiment with standard header library keywords from stdio.h to represent

input/output functions [Huss, 1997]. We ensure that these are excluded from the function words

category described above. TheNULL and size_t tokens are also included that overlap with the

function words category. We do not experiment with data structure keywords, as we expect these

features to be infrequent. Moreover, there is some overlap with our literalscategory here. We provide

a summary of the number of tokens in each class in the top two rows of Table 5.2 with the complete

listings given in Tables D.4 (p. 233) and D.5 (p. 234) from Appendix D. The remainder of Table 5.2

shows the volume of tokens in Coll-A for each feature class. This data shows that white space

features dominate, followed by operators and literals. We also provide marked-up examples of all six

feature classes in Figure 5.8 based on our original code sample from Figure 5.1.

We experiment with all sixty-three (26−1) possible combinations of these feature classes, with

each combination forming afeature set. That is, we create 6-gram program representations with each

feature set in turn for our experiment design of 100 runs.

123

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

1 int main(void)

2 {

3 IntList il;

4 int anInt;

5 ListMake(&il);

6 while (scanf("", &anInt) == 1)

7 {

8 if (!ListInsert(&il, anInt))

9 {

10 fprintf(stderr, "");

11 break;

12 }

13 }

14 ListDisplay(&il);

15 ListFree(&il);

16 exit(EXIT_SUCCESS);

17 }

(a)

1 int main(void)

2 {

3 IntList il;

4 int anInt;

5 ListMake(&il);

6 while (scanf("", &anInt) == 1)

7 {

8 if (!ListInsert(&il, anInt))

9 {

10 fprintf(stderr, "");

11 break;

12 }

13 }

14 ListDisplay(&il);

15 ListFree(&il);

16 exit(EXIT_SUCCESS);

17 }

(c)

1 int•main(void)¶

2 {¶

3 •••IntList•il;¶

4 •••int•anInt;¶

5 •••ListMake(&il);¶

6 •••while•(scanf("",•&anInt)•==•1)¶

7 •••{¶

8 ••••••if•(!ListInsert(&il,•anInt))¶

9 ••••••{¶

10 •••••••••fprintf(stderr,•"");¶

11 •••••••••break;¶

12 ••••••}¶

13 •••}¶

14 •••ListDisplay(&il);¶

15 •••ListFree(&il);¶

16 •••exit(EXIT_SUCCESS);¶

17 }¶

(e)

1 int main(void)

2 {

3 IntList il;

4 int anInt;

5 ListMake(&il);

6 while (scanf("", &anInt) == 1)

7 {

8 if (!ListInsert(&il, anInt))

9 {

10 fprintf(stderr, "");

11 break;

12 }

13 }

14 ListDisplay(&il);

15 ListFree(&il);

16 exit(EXIT_SUCCESS);

17 }

(b)

1 int main(void)

2 {

3 IntList il;

4 int anInt;

5 ListMake(&il);

6 while (scanf("", &anInt) == 1)

7 {

8 if (!ListInsert(&il, anInt))

9 {

10 fprintf(stderr, "");

11 break;

12 }

13 }

14 ListDisplay(&il);

15 ListFree(&il);

16 exit(EXIT_SUCCESS);

17 }

(d)

1 int main(void)

2 {

3 IntList il;

4 int anInt;

5 ListMake(&il);

6 while (scanf("", &anInt) == 1)

7 {

8 if (!ListInsert(&il, anInt))

9 {

10 fprintf(stderr, "");

11 break;

12 }

13 }

14 ListDisplay(&il);

15 ListFree(&il);

16 exit(EXIT_SUCCESS);

17 }

(f)

Figure 5.8: A code sample showing six feature classes for consideration in our model.(a) Operators.
(b) Keywords.(c) Input/output tokens.(d) Function tokens.(e) White space tokens.(f) Literal tokens.

124

5.3. SELECTING SOURCE CODE FEATURES

WS Op Lit KW I/O Fn Total
Features 4 39 5 32 60 185 325
Percent 1.23 12.00 1.54 9.85 18.46 56.92 100.00
Tokens 8,109,257 1,495,730 1,409,749 384,718 143,691 76,355 11,619,500
Percent 69.79 12.87 12.13 3.31 1.24 0.66 100.00

Table 5.2: Number of unique features in each feature class, and the distribution of tokens inColl-A.
The six feature classes are white space tokens (WS), operators (Op), literal tokens (Lit), keywords
(KW), input/output tokens (I/O), and function tokens (Fn).

The top six rows of Table 5.3 provide a summary of the top performing featuresets (all of which

have a statistically insignificant MRR from Feature Set 50 (the top row) usinga permutation test at the

p= 0.05 level). The bottom six rows show the performance of the six feature classes in isolation. As

can be seen, using feature sets that contain a single feature class leads toa poor ranking of documents

by the same author as the query, whereas selecting white space, operator, and keyword features

(Feature Set 50) leads to a high ranking of similarly authored documents.

Koppel et al. [2003] discussed that for text categorisation, “frequent but unstable features are

especially useful”, so we would expect the most frequent and diversefeature sets to be of most value.

White space features were the most prevalent as shown in Table 5.2 representing 69.79% of all tokens.

We believe they are especially useful as white space placement is a strong marker of programming

style. For example, the following two for-loop declarations are functionally equivalent, but the use of

white space can be helpful in distinguishing authorship:

for(i=0; i<limit; i++); for (i = 0; i < limit; i++);

In Figure 5.9 we plot the volume of tokens against the MRR score of each feature set. The feature

sets containing white space are separated (right hand side of six million tokens) from those that do

not (left hand side of six million tokens), as it is the class that contains the mostnumber of tokens

in the collection (refer to Table 5.2). Our results show that the most effective feature set without

white space features had a MRR score of 4.49% less than the most effective feature set. This is

a statistically significant difference as shown by a permutation test at the 95% confidence interval

using the reciprocal ranks of the queries (p= 2.20×10−16).

We also show each half of the graph separated into three smaller parts. In each half, the rightmost

part contains both operator and literal features, the middle part contains one of these, and the leftmost

part contains neither. The part with neither is clearly the least effective in both halves of the graphs,

further supporting the observation that using more features enhances ranking effectiveness, as these

are the two most frequent classes of tokens after white space.

125

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

F. Set Op KW I/O Fn WS Lit MRR MAP
50 Yes Yes Yes 82.28 41.33
58 Yes Yes Yes Yes 82.20 40.36
55 Yes Yes Yes Yes Yes 81.98 39.22
51 Yes Yes Yes Yes 81.74 39.74
54 Yes Yes Yes Yes 81.68 41.13
62 Yes Yes Yes Yes Yes 81.61 39.90
...
32 Yes 74.78 26.19
...
16 Yes 69.40 20.33
...
01 Yes 65.73 23.10
08 Yes 62.07 16.79
04 Yes 56.98 9.91
02 Yes 43.26 22.15

Table 5.3: Effectiveness of twelve of sixty-three tested feature sets sorted by MRR score. The six
feature classes are operators (Op), keywords (KW), input/output tokens (I/O), function tokens (Fn),
white space tokens (WS), and literal tokens (Lit) respectively. We omit the remaining fifty-one results
for brevity. These results shown demonstrate that operators, keywords, and white space features
together are strong markers of authorship. Note that the left-most columnis a numeric identifier that
we refer to in the text to identify the feature set.

126

5.3. SELECTING SOURCE CODE FEATURES

0 1 2 3 4 5 6 7 8 9 10 11 12

40

45

50

55

60

65

70

75

80

85

Token Volume Versus MRR for All 63 Feature Sets

Millions of tokens

M
R

R
 (

%
) 1

2

3

4

5
6

7

8

9 10

11

12

13
14

15

16

17

18

19

20
21

22

23

24
25

26
27

28
29

30
31

32
33

34 35

36 37

38 39

40

41

42 43

44 45

46 47

48
49

50 51

52
53

54 55

56
57

58
59

60
61

62 63

Figure 5.9: Token volume plotted against classification effectiveness measured as MRR. The individ-
ual feature sets are divided into six rough areas caused by the prevalence of some classes of features
over others. White space tokens, operators, and literal tokens are the most dominant. Therefore the
six regions from left to right respectively represent: (1) none of these, (2) operators or literals, (3)
operators and literals, (4) white space, (5) white space and operators,or white space and literals,
(6) white space, operators, and literals. For example, the fifth region of the graph includes Feature
Set 50 as discussed in the text. This feature set has operators, keywords, and white space tokens, but
no literals. Note that the boxed region in the top-right corner is expanded inFigure 5.10 for clarity.

127

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

74

75

76

77

78

79

80

81

82

83

84

Token Volume Versus MRR for 29 of 63 Feature Sets

Millions of tokens

M
R

R
 (

%
)

3

7 11

14

15

18

19

22

23

26

2730

31
34

35
38

39
42

43

46 47

50

5154
55

58

59
62

63

Figure 5.10: An expanded view of the boxed region from the top-right corner of Figure 5.9 showing
MRR scores for twenty-nine of the sixty-three evaluated feature sets. Feature Set 50 is the most
effective with 82.28% MRR.

128

5.4. CLASSIFICATION

Key observations were made when inspecting the volumes of each individual token. For example,

the ratio of new lines to carriage returns was found to be 16:1. This suggests that at least one out

of sixteen samples was not developed in our predominantly Unix-based environment, and this gives

a useful authorship marker concerning choice of operating system forprogramming assignment de-

velopment. The white space and literal tokens were all found in large quantities, as the nine tokens

that make up these categories were all within the top fifteen when totalling the volume of each token.

Of the remaining token classes, the parenthesis was the most prevalent operator token,int was the

most prevalent keyword,NULL was the most prevalent input/output token, andstrlen was the most

prevalent function token.

In summary, in this section we have explored sixty-three feature sets, and we found that the white

space, operator, and keyword classes were most effective. In particular, this combination of classes

(named “Feature Set 50”) was also the most effective combination of all those evaluated. The MRR

score increased from 75.59% to 82.28% (+6.69%) and the MAP score increased from 26.70% to

41.33% (+14.63%) compared to the previous scores from Section 5.2. Therefore,this feature set is

carried forward for all experiments that follow.

5.4 Classification

The experiments in Sections 5.2 and 5.3 have used MRR and MAP to evaluate thequality of the

ranked lists. These scores have allowed us to make decisions for key parameters in our model,

such as choice of n-gram size, choice of information retrieval similarity measure, and choice of

feature set. Having made these decisions, the next step is to make actual authorship classification

decisions to measure the accuracy level of our model. In this section, we evaluate three methods for

deciding authorship, followed by a comparison of our accuracy scoresto the reimplemented baselines

presented in Chapter 4.

5.4.1 Overall Results

In this section, we evaluate three metrics for determining classification accuracy. Therefore, the MRR

and MAP measurements that were only used to compare the quality of ranked lists in Sections 5.2

and 5.3 are no longer used.

First, thesingle best resultmetric attributes authorship to the author of the top ranked document.

The proportion of times that this is correct is used to calculate overall accuracy. This metric is the

only one that uses asingle documentfrom the ranked list for the authorship decision.

129

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

Sample Sample Similarity Classified Author Single Best Result
Rank Author Score A 1.0

1 A1 0.8 B 0.0
2 B1 0.5 C 0.0
3 B2 0.5 Classified Author Average Scaled Score
4 C1 0.5 A (0.8+ 0.2+ 0.2+ 0.2+ 0.2) / 5 = 0.32
5 B3 0.5 B (0.5+ 0.5+ 0.5+ 0.2) / 4 = 0.43
6 B4 0.2 C (0.5) / 1= 0.5
7 A2 0.2 Classified Author Average Precision
8 A3 0.2 A (1/1 + 2/7 + 3/8 + 4/9 + 5/10) / 5 = 0.52
9 A4 0.2 B (1/2+ 2/3+ 3/5+ 4/6) / 4= 0.61
10 A5 0.2 C (1/1) / 4 = 0.25

Table 5.4: A ranked list of ten samples (left) and how the single best result, average scaled score and
average precision measurements vary depending on the order of samples in the ranked list and the
similarity scores (right).

Next, theaverage scaled scoremetric uses the Okapi BM25 similarity scores returned by the

search engine. The scores are first normalised against the score from the top-ranked document,

which is otherwise not considered in the ranked list. Then the normalised scores for each author are

averaged, and authorship is assigned to the author with the highest average score. Overall accuracy

is again the proportion of times that this is correct. This is the only metric that usesthe absolute

similarity measurements of the search engine.

Finally with theaverage precisionmetric, we calculate the average precision for the documents of

each candidate author in turn, and assign authorship to the author with the highest average precision

score. Again, the proportion of times this is correct is used for calculating overall accuracy. This

metric is the only one that uses therelativesimilarity measurements of the search engine.

Table 5.4 provides example calculations of the three metrics on a dummy ranked list, comprising

samples from three authors named Author A, Author B, and Author C. This example demonstrates

scores that each metric would generate for the dummy ranked list. The authorwith the highest score

is classified as the correct author. Therefore according to the scoresshown, the query sample (not

shown) is classified as Author A for the single best result metric, Author B for the average precision

metric, and Author C for the average scaled score metric. Then accuracyis the proportion of times

that the classified author matches the actual author of the query sample.

We present our classification experiment results in Table 5.5. When using the “single best result”

classification method, we correctly classified work in 76.78% of cases for the ten-class problem.

This is the best of our methods compared to “average scaled score” (76.47%, p= 0.52) and “average

130

5.4. CLASSIFICATION

Num Single Best Result Average Scaled Score Average Precision
Auth Correct Percent Correct Percent Correct Percent

7 8,773/ 11,153 78.66% 8,795/ 11,153 78.86% 8,561/ 11,153 76.76%
8 9,954/ 12,686 78.46% 9,977/ 12,686 78.65% 9,739/ 12,686 76.77%
10 12,261/ 15,969 76.78% 12,212/ 15,969 76.47% 11,925/ 15,969 74.68%
12 14,381/ 19,110 75.25% 14,127/ 19,110 73.92% 13,909/ 19,110 72.78%
20 23,087/ 31,859 72.47% 21,885/ 31,859 68.69% 21,725/ 31,859 68.19%
29 32,782/ 46,387 70.67% 30,210/ 46,387 65.13% 30,469/ 46,387 65.68%
30 33,677/ 47,785 70.48% 30,864/ 47,785 64.59% 31,224/ 47,785 65.34%
46 50,309/ 73,362 68.58% 44,723/ 73,362 60.96% 46,200/ 73,362 62.98%

Table 5.5: Overall comparison of the three classification methods. Varying problem sizes are shown
including the ten-class problem that is largely used in our work, and other problem sizes from seven-
class to forty-six-class that have been used by other researchers (see Table 3.3, p. 73).

precision” (74.68%,p = 1.23×10−5), but the difference was not statistically significant in the first

case as indicated.

In Table 5.5, we also present results for seven other problem sizes ranging from seven-class to

forty-six-class, which have been used in previous source code authorship attribution approaches, as

reviewed in Section 3.4 (p. 70). The motivation for repeating our experiment on the other problem

sizes is to consider whether the length of the ranked lists affects the three metrics evaluated. We

found that the “single best result” method was again most effective for the harder authorship attribu-

tion problems (twelve-class up to forty-six-class), however the “average scaled score” results were

marginally higher for the seven-class and eight-class problems by 0.20% and 0.21% respectively.

Most interestingly, the single best result metric produces the best results for the larger problem sizes,

possibly due to the other metrics being forced to process many potentially unhelpful results.

In summary, the “single best result” metric is most effective for most of the problem sizes consid-

ered, and we carry this forward for all experiments that follow. The other metrics are not used in the

remainder of this thesis. We also note that additional metrics could have been considered, but these

have been left for future work. In particular, a voting model could be implemented where the results

of multiple metrics are combined, and authorship is attributed to the author with the highest score for

the greatest number of metrics.

5.4.2 Comparing Accuracy to the Reimplemented Work

Figure 5.11 shows our ten-class result from Table 5.5 (using the single best result metric) against

the reimplemented baseline results from Section 4.5 for Coll-A. Our 76.78% classification accuracy

score is 10.38% above the next best accuracy score of 66.40% by Frantzeskou et al. [2006a]. We

131

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

only show Coll-A results for now as this collection is used for developing our approach.More

improvements follow in Chapter 6, which resulted from our investigation of factors that affect the

accuracy of our approach. The full comparison is given later in Section7.1 (p. 173).

An interesting result from Figure 5.11 is the general drop in results from the other researchers

compared to those reported in their original publications as summarised in Table4.1. We have reim-

plemented the previous work as closely as possible as explained in Section 4.4, however the problem

sizes are of course different. This is demonstrated in Figure 5.11, which uses the ten-class problem

consistently, but Table 4.1 uses the problem sizes in the publications from seven-class to forty-six-

class. However, a surprising trend is that all of the larger problem size results in Table 4.1 are higher

than the ten-class results in Figure 5.11, with the exception of Lange and Mancoridis [2007]. The

discrepancy could be explained by the previous problems being easier based on the collections cho-

sen, or possible statistical anomalies from the use of modest collections. There is scope to further

explore this area by repeating the Figure 5.11 experiment for other problem sizes, but this remains as

future work, as the aim of this thesis is provide results consistently for the ten-class problem, given

the time requirements for each experiment. However, we briefly explore multipleproblem sizes in

Section 6.1.1.

5.5 Managing the Number of Indexes

When implementing our methodology described in Section 5.1, the query documents were left in our

inverted indexes, but later omitted from the result lists as shown in Figure 5.6.A consequence of this

decision is that the indexed query document tokens still play a part in the calculation of the Okapi

BM25 formula. Specifically, raw document frequency (ft), average document length (|Davg|), and the

number of documents (N) are affected.

However, the decision to leave the query document in the index was designed to improve the

efficiency of our index construction step and reduce disk space requirements. If the query document

is omitted, then the index for each query in a run will be different. Therefore, a run that normally

requires a single index will instead require approximately 160 indexes for Coll-A. Since the purpose

of an inverted index is to resolve queries efficiently, it is undesirable to make the most expensive step

approximately 160 times more expensive.

We decided to compare the accuracy scores of both approaches to ensure that our more efficient

choice did not adversely impact accuracy. For the more efficient option, we achieved 76.78% ac-

curacy for the one-in-ten classification problem, as shown previously in Figure 5.5 (12,261 queries

correct out of 15,969). For the less efficient option, we achieved a score of 76.52% accuracy (12,205

132

5.5. MANAGING THE NUMBER OF INDEXES

Burrows a b c d e f g h i j k l

Comparison of Our Work to Baseline Approaches

Burrows contribution and contributions ‘a’ to ‘l’ (described below)

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

90

100

Figure 5.11: Accuracy score of our model compared with the accuracy scores of the reimple-
mented prior contributions:(a) Krsul [1994] (regression analysis and 42 features),(b) MacDonell
et al. [1999] (k-nearest neighbour and 26 features),(c) MacDonell et al. [1999] (neural network
and 26 features),(d) MacDonell et al. [1999] (regression analysis and 26 features),(e) Ding and
Samadzadeh [2004] (regression analysis and 56 features),(f) Frantzeskou et al. [2006a] (simpli-
fied profile intersection (L= 2,000) and byte-level 6-grams),(g) Lange and Mancoridis [2007] and
colleagues (nearest neighbour and 56 features),(h) Lange and Mancoridis [2007] and colleagues
(Bayesian network and 56 features),(i) Lange and Mancoridis [2007] and colleagues (voting feature
intervals and 56 features),(j) Kothari et al. [2007] (Bayesian network and 50 features per author),
(k) Kothari et al. [2007] (voting feature intervals and 50 features per author), and(l) Elenbogen and
Seliya [2008] (decision tree and 6 features).

133

CHAPTER 5. APPLYING INFORMATION RETRIEVAL

queries correct out of 15,950). We evaluated the significance of this difference using a Z-test for

the two proportions given. The p-value wasp = 0.59, and this very high p-value tells us that these

proportions are not significantly different.

With this result, we remark that it is satisfactory to use either of these methods, since in practice

the query document is available. In Chapter 6, we continue to use the efficient variation as we have

done in this chapter for exploring factors that affect accuracy of our information retrieval approach.

However, we switch to the less efficient option in Chapter 7, to be consistent with the methods used

to reimplement the baselines in this thesis. This final contribution chapter is the only chapter where

we benchmark the accuracy of our work to all previous contributions using all four of our collec-

tions, including our Coll-P and Coll-J benchmarking-only collections. Therefore, the final results

in Chapter 7 are the ones that should be considered definitive for the purposes of other researchers

benchmarking our work in the future.

5.6 Summary

In this chapter, we have presented our information retrieval model to source code authorship attribu-

tion. We have shown that combining modest n-gram sizes (n = 6) of operator, keyword, and white

space tokens with the Okapi BM25 similarity metric is very effective. We have also demonstrated

that leaving the query samples in the indexes does not adversely impact accuracy, but instead leads

to reduced index construction time and index disk space by a factor equal tothe number of samples

in one experiment run. Our authorship attribution accuracy score is 76.78% for the one-in-ten prob-

lem for Coll-A, which is more than 10% above the most effective baseline we have reimplemented.

Next, in Chapter 6 we investigate several factors that affect the accuracy of our approach including

the amount of training data, code quality, timestamps, and entropy.

134

Chapter 6

Effectiveness Parameters

In Chapter 5, we presented an information retrieval approach to sourcecode authorship attribution

using a search engine to index and query n-gram representations of source code samples. It remains

to be seen how our approach handles problems with variations to the number of authors, number

of samples per author, sample size, author stylistic strength, and sample timestampthat were not

explored in Chapter 5.

In this chapter, we explore each of these factors in turn for our approach. In Section 6.1, we

begin by exploring the effect of problem size concerning the number of authors, and the number of

samples per author. Next, we look at the effect of sample length on accuracy scores in Section 6.2.

We present some results for evaluating stylistic strength and its relationship withour accuracy scores

in Section 6.3. The remainder of the chapter concerns experiments using Coll-T to explore the effect

of timestamp and topic in Sections 6.4 and 6.5, and to identify the individual features that are the

strongest contributors towards making authorship decisions in Sections 6.6and 6.7. A summary of

this chapter is given in Section 6.8 with links to the chapter that follows.

6.1 Problem Size

An authorship attribution problem size concerns the total number of samples ina collection. These

samples can be divided in any number of ways concerning the number of authors, and the number

of samples per author. For example, a collection of 100 samples could be constructed from samples

belonging to 10 authors with 10 samples each, 5 authors with 20 samples each,or any other combi-

nation either stratified or otherwise. We next explore how our approach isaffected to variations in the

number of authors and number of samples per author.

135

CHAPTER 6. EFFECTIVENESS PARAMETERS

Number Accuracy Percentage
of Our Method Zhao [2007]

Authors Okapi BM25 DecTr KNNei NNei Bayes BayNt KLD (µ = 10)
2 89.18 77.1 84.6 85.5 85.1 86.0 89.7
3 85.51 70.5 74.6 76.0 77.5 79.5 83.9
4 83.20 63.1 70.6 71.6 69.9 75.8 79.9
5 81.35 58.9 66.2 69.5 66.4 71.7 76.2
10 76.78 — — — — — —
20 72.86 — — — — — —
50 68.38 — — — — — —
100 65.89 — — — — — —

Table 6.1: Effect of modifying the number of authors compared with external benchmarks for natu-
ral language authorship attribution. Our work is reported for 6-grams ofsource code tokens using
Okapi BM25 onColl-A. The Zhao [2007, Tables 3.10 and 4.7] benchmarks are for a subcollection of
the TREC collection [Harman, 1995] comprising newswire articles from Associated Press. Function
words were used as features, and the collection comprised fifty documentsper author. The classifiers
evaluated by Zhao [2007] comprised the decision tree (DecTr), k-nearest neighbour (KNNei), near-
est neighbour (NNei), Naive Bayes (Bayes), Bayesian Network (BayNt) and Kullback-Leibler Diver-
gence (KLD) classification methods — all abbreviations of this form are summarised in Appendix A.3
(p. 209). Results for ten-class problems sizes and above were not published by Zhao [2007], and are
marked with dashes (—). Permission to reproduce the Zhao [2007] datawas provided by author Ying
Zhao on 12 August 2010.

6.1.1 Number of Authors

The results presented so far were for a 10-class problem, so we next explored problem sizes from 2-

class to 100-class. These results are presented in Table 6.1 for eight problem sizes. The results show

that our previously reported 10-class result (78.78%) degrades by 10.89% when increased by a factor

of 10 to 100-class. We expect results to continue to degrade for even larger problems.

The compromise between accuracy and the number of authors problem sizeis an unavoidable

trade-off. To demonstrate this, we have repeated previously published results by Zhao [2007] side by

side with ours in Table 6.1 for their reported problem sizes. These results also show degradation as

the number of authors is increased.

The previous source code authorship attribution research reviewed in Section 4.3 (p. 90) did not

include similar experiments showing rates of degradation similar to Table 6.1, so itis difficult to make

remarks about whether our level of degradation is reasonable. The best comparison we could find was

the natural language authorship attribution results by Zhao [2007], as reproduced in Table 6.1. The

work by Zhao [2007] was reviewed in detail in Section 4.2 (p. 85), and thisbody of work is perhaps

136

6.1. PROBLEM SIZE

one of the most comprehensive benchmarking studies for natural language authorship attribution.

We stress that no absolute comparison of our results and the natural language authorship attribu-

tion baseline in Table 6.1 is suitable, as there are many different experiment parameters that could

not be reproduced. The collections are not the same, as Zhao [2007] used a subcollection of the

TREC [Harman, 1995] collection using newswire articles from Associated Press. Moreover, our col-

lection was not large enough to have fifty samples per author as used in the natural language work.

Furthermore, we have not changed our leave-one-out cross validation experiment design decision to

ten-fold as used in the natural language work, to allow our results in Table 6.1 to be compared easily

to the other results in this thesis.

Putting all the above comparison problems aside, it is perhaps most appropriate to compare the

rate of degradation for the problem size results reported by both contributions. Our work degraded

from 89.18% to 81.35% when the problem size increased from two-class to five-class, which was a

loss of 7.83%. In comparison, the natural language scores degraded by between 13.9% and 21.4%

depending on the classification algorithm.1 This included their best-performing Kullback-Leibler

Divergence (KLD) classification algorithm, which degraded by 16.0%, which is more than twice the

rate of ours. These results show that our work is promising for dealing withlarge numbers of authors.

Despite this pleasing result, any decline in accuracy in general is still undesirable. A method

for managing this problem may be to publish confidence scores for each classification decision, in

addition to just declaring the most likely author. For example, if a classification outcome was that

Author A was correct with 51% confidence, and that Author B was correct with 49% confidence for a

two-class problem, then Author A would be classified as correct, even though we would be incorrect

on 49% of the occasions. These borderline classification decisions are unhelpful, and it may be more

appropriate to simply declare these as “unsure”. Therefore a good wayto advance this idea is to

simply declare some classifications as “unsure” for confidence scores below an established threshold.

This idea can be explored for future work in the field of source code authorship attribution, although

there is some previous work in natural language authorship attribution in this area, such as the paper

by Koppel et al. [2009].

6.1.2 Number of Samples per Author

We next explored modifying the number of samples per author. We could onlydecrease the number

of samples per author compared with previous experiments, as we were already using all samples

by each author. The full amount is sixteen samples per authoron averagefor Coll-A, with the

exact number varying between fourteen and twenty-six. We also explored twelve, eight, four, and

1Results from Zhao [2007] are only reported to one decimal place.

137

CHAPTER 6. EFFECTIVENESS PARAMETERS

Samples Accuracy Percentage for Two-Class Experiments
per Our Method Zhao [2007]

Author Okapi BM25 DecTr KNNei NNei Bayes BayNt KLD (µ = 10)
600 — 84.5 85.5 85.8 85.5 90.5 92.7
400 — 84.8 85.6 85.3 85.6 90.1 92.8
200 — 82.9 84.1 84.3 85.8 89.3 92.4
100 — 80.3 82.9 83.4 85.9 89.7 91.8
50 — 77.1 84.6 85.5 85.1 86.0 89.7
25 — 69.5 80.2 81.0 81.2 81.4 —
16 89.18 — — — — — —
12 86.21 — — — — — —
8 87.38 — — — — — —
4 82.00 — — — — — —
2 62.50 — — — — — —

Table 6.2: Effect of modifying the number of samples per author compared with external benchmarks
for natural language authorship attribution. Reported results are for two-class experiments. Our
work is reported for 6-grams of source code tokens using Okapi BM25on Coll-A. The Zhao [2007,
Tables 3.5 and 4.4] benchmarks are for a subcollection of the TREC collection [Harman, 1995]
comprising newswire articles from Associated Press. Function words were used as features and the
collection comprised fifty documents per author. The classifiers evaluatedby Zhao [2007] comprised
the decision tree (DecTr), k-nearest neighbour (KNNei), nearest neighbour (NNei), Naive Bayes
(Bayes), Bayesian Network (BayNt) and Kullback-Leibler Divergence(KLD). Results for the various
number of samples per author figures are not available for side-by-side comparison, asColl-A is
not large enough. These cases are marked with dashes (—). However, the results demonstrate that
increasing the number of samples per author to very large numbers onlyincreases the accuracy
scores by a few extra percentage points in many cases. Permission to reproduce the Zhao [2007]
data was provided by author Ying Zhao on 12 August 2010.

two samples per authorexactly. Samples from each author were removed at random to meet these

quotas. Table 6.2 shows the results for this experiment for atwo-classproblem. We chose a two-class

problem for comparison to work by Zhao [2007], who also reported two-class results for a somewhat

similar experiment.

Our accuracy results only drop by 1.80% when the number of samples per author drops by half,

from sixteen on average to exactly eight samples per author, which is pleasing. We expect that

choosing a “single best result” (Section 5.4.1) is working well here, as taking away half of the samples

still leaves a good chance that there will be at least one strong stylistic match for classification. The

results only begin to drop off significantly for the lowest numbers of samples per author.

Similar trends are observed for the results reported by Zhao [2007]. However, we were not able

to compare results for equivalent numbers of samples per author as Coll-A does not have sufficient

138

6.1. PROBLEM SIZE

Samples Accuracy
per Our Method Our Method

Author 2-class 10-class
16 89.18% 76.78%
12 86.21% 72.97%
8 87.38% 66.29%
4 82.00% 51.78%
2 62.50% 31.40%

Table 6.3: Effect of modifying the number of samples per author for the two-class problem (from
Table 6.2) and the ten-class problem. Results decline more steadily for the ten-class problem. Note
that the first result for sixteen samples per author is the average numberof samples, as all ofColl-A
is used here. The remaining samples per author figures are exact.

samples, and the natural language authorship attribution results were not reported with less than

twenty-five samples per author.

The newswire articles lengths are also likely to affect the comparison. Zhao [2007] reported that

the Associated Press collection has an average of 724 words per sample,or around 4,344 bytes per

sample assuming 6 bytes per word including delimiters. Using data from Table 3.2(p. 69), we

note that our collections by comparison have 14,806 (Coll-A), 21,320 (Coll-T), 19,478 (Coll-P),

and 15,985 (Coll-J) bytes per sample for the four collections respectively. However, thisdifference

may not be very important, as the variation of the byte patterns in our samples is lower due to the

patterns that naturally appear in source code, hence the natural language samples have higher infor-

mation content (or entropy), which may compensate for at least some of the difference.

We decided not to rely on the two-class results alone, therefore we repeated our above experiment

for the ten-class problem. The new results are presented in Table 6.3. These results show that the

ten-class accuracy scores drop offmuch more sharply than the two-class accuracy scores. We suspect

that the decision to reduce the training set size by removing samplesat randommay be a contributing

factor. Intuitively, it more sense to instead retain training samples created ata similar time to the

query samples, as these will most accurately represent style at that time. This is an experiment that

could be conducted using Coll-T as future work, considering that this collection has reliable relative

timestamp data.

We could also consider an experiment where the number of samples per author is plotted against

classification accuracy as an extension to this section. Note that our collections may not be very

suitable for this experiment, as there are only a few numbers of samples per author that have non-

trivial amounts of data as shown in Figure 3.3a (p. 71). Moreover, Coll-T could not be used for this

experiment at all since it uses exactly six samples for every author. This experiment is left for future

139

CHAPTER 6. EFFECTIVENESS PARAMETERS

Property Coll-A Coll-T Coll-P Coll-J
(a) Mean Tokens 3,575 4,952 5,839 4,220
(b) Mean LOC 830 1,108 984 667
(c) (a)/(b) 4.31 4.14 5.93 6.33

Table 6.4: Collection properties for our collections: the mean number of feature-level tokens ex-
tracted with our approach, the mean number of lines of code, and the ratiobetween these two num-
bers.

work.

Finally, we remark that the results in this section do not make it clear how much training data

per author should be used, as there are many variables for consideration. We simply conclude that as

much training data as practical should be used.

6.2 Sample Length

We next explore the effects of varying query length towards the effectiveness of source code author-

ship attribution. That is, to record the query length in number of tokens against the accuracy scores.

This will allow us to investigate how effective source code authorship attribution is for trivial or

somewhat incomplete source code samples.

We also wanted a simple baseline for our reported results. Therefore, wedecided to compare the

best of our feature sets (Feature Set 50), to the average of all sixty-three feature sets. Feature Set 50

was chosen in Section 5.3 to be carried forward for all following experiments, as it was deemed to

produce highly accurate results. The goal is to show how the selection of our strong feature set can

increase accuracy particularly for the smallest queries.

We summarise the results for our query length investigation in Figure 6.1. Our results are par-

titioned into program lengths with intervals of 100 tokens initially (0–99, 100–199, 200–299, and

so on). Samples are then partitioned into intervals of 1,000 tokens for sampleswith 1,000 or more

tokens, given that we have fewer of these. The final partition is marked as 20,000, which represents

all programs with at least 20,000 tokens up to the maximum in Coll-A (95,889 tokens). Figure 3.4a

(p. 72) gave some indication of the actual distribution expressed as lines ofcode. When considering

the distribution in tokens instead, it should be noted that there are approximately four tokens per line

of code in Coll-A, as shown in Table 6.4.

The trends in Figure 6.1 show that shorter queries are markedly less effective in attributing au-

thorship when averaged across all feature sets, compared to Feature Set 50 alone. Accuracy drops

off considerably for queries with fewer than than 5,000 tokens, for all feature sets averaged. The

140

6.2. SAMPLE LENGTH

Query Length Versus Accuracy for Feature Set 50 and All Features

Number of Tokens

A
cc

ur
ac

y
(%

)

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

0

10

20

30

40

50

60

70

80

90

100

Accuracy Feature Set 50
Mean Accuracy All Feature Sets

Figure 6.1: Accuracy of Feature Set 50 compared to the average of allfeature sets. Results are
partitioned based upon thirty-one query length intervals on the x-axis. Theintervals are 100 tokens
initially (0–99, 100–199, ..., up to 1,000), then intervals of 1,000 tokens (1,000–1,999, 2,000–2,999,
..., up to 20,000), then 20,000 or more for the final interval. These results show a downward trend for
the line representing all feature sets alone for queries with fewer than 5,000 tokens, but results are
more consistent for Feature Set 50.

141

CHAPTER 6. EFFECTIVENESS PARAMETERS

implication of these results is that we can largely retain authorship attribution effectiveness for short

queries, provided that an appropriate feature set is selected.

We note that an expansion of Figure 6.1 was considered to also include the maximum accuracy

score for any feature set, to show how Feature Set 50 performs against the best obtainable result.

However, this is not possible for this particular experiment, as samples generated by some feature sets

were empty, meaning that we would not have enough data for some feature sets. Such insufficient

data would cause spurious results.

6.3 Strength of Style

We next study the coding style of some individual authors to learn what makes them particularly easy

or difficult to classify. Initially, we investigate whether authors who follow good coding practices are

easier to classify based on code inspections to assess coding practices.We next automate the analysis

so that can be extended to all authors. Both of these investigations follow.

6.3.1 Analysis of Outlier Results

In Section 5.4, we averaged the accuracy scores for all authors and calculated an overall accuracy

score of 76.78%. However, classification correctness varied significantly for individual authors. In

this experiment, we also found that ten authors were correctly classified 90% of the time or more,

while three authors were classified correctly less than 50% of the time, including an extreme case

that was classified correctly only 27% of the time.

We next decided to identify the outlier cases in our results. That is, we grouped all results by

author to identify outlier authors that were found to be either very easy or difficult to classify. We

can afford to partition our results in this way given the large volume of queries that weprocess in 100

runs.

It might be thought that there is a relationship between average lines of code and classification

accuracy, but this relationship was surprisingly weak as shown in Figure6.2. On this graph, the

authors classified with highest accuracy were Authors 66, 6, 4, 32, and 31 respectively. These authors

had highly varying average lines of code figures. For example, Author 66 had an average of 962

lines of code per sample, whereas Author 6 only had 575 lines of code persample. We observed a

large variance again for Authors 68, 96, 92, 45, and 82, which were classified with lowest accuracy

respectively. Author 68 had an average of 357 lines of code per worksample, whereas Author 96

had 864 lines of code. A calculated correlation coefficient confirmed a weak trend with value 0.39

(Spearman’s rho), which was a statistically significant trend (p= 5.93×10−5).

142

6.3. STRENGTH OF STYLE

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

20

30

40

50

60

70

80

90

100

Program Length Versus Classification Accuracy for the 100 Coll−A Authors

Average program length (lines of code)

A
cc

ur
ac

y
(%

)

12

3

4

5

6

7

8 9

10

11

12

13

14
15

1617

18
19

20
21

2223
24

25

26

27
28

29

30

3132

3334

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4950

51

52

53

5455

56

57
58

59

60

61
62

63
64

65
66

67

68

69

70

71

72

73

74

75
76

77

78

79
80

81

82

83

84

85

86
87

88

89

90

91

92

93
94

95

96

97
98

99

100

Figure 6.2: Classification accuracy plotted against average lines of codefor all 100 authors of
Coll-A. This graph shows that the relationship between classification accuracy and average lines of
code is quite weak. Authors 3, 4, 68 and 82 (circled) are discussed in more detail in this section.

143

CHAPTER 6. EFFECTIVENESS PARAMETERS

ID Criteria Good style (1 point) Poor style (0 points)
1 Header files Used Not used
2 File comments used At least 50% Less than 50%
3 Block comments used At least 50% Less than 50%
4 Indentation characters used Spaces or tabs Spaces and tabs
5 Indentation consistency Consistent Not always consistent
6 Line lengths Meets 80 character limit Exceeds 80 character limit
7 Global variables Never used Sometimes used
8 Meaningful identifiers used At least 90% Less than 90%
9 Magic numbers None Some

10 Consistent brace placement Always Not always

Table 6.5: Ten boolean criteria used to measure programming style. Eachassessed program is given
one point for each criterion that is met, and zero points for each criterion that is not met for a total
score out of ten points.

We chose to manually inspect the contents of five work samples belonging to each of four out-

lier authors, to offer insights on individual coding styles that may contribute towards classification

accuracy scores. First, the authors with the shortest and longest average program lengths (Authors 68

and 3) were chosen, which also have low and high accuracy scores respectively. We also chose two

other authors near the remaining two corners of Figure 6.2, namely Author 4 (low average program

length and high accuracy) and Author 82 (higher average program length and low accuracy).

We developed ten basic criteria to assess the programming style of each of twenty samples that

we outline in Table 6.5. The criteria are based on stylistic aspects of source code that are commonly

assessed in C programming courses in our school: header file use, commenting2, indentation, code

line lengths, global variables, identifiers, magic numbers, and curly braces. We treated each criterion

as boolean for simplicity.

As shown in Table 6.6, we found that the authors that were the easiest to classify demonstrated

better coding styles than the others as measured by our scoring. Furthermore, Authors 68 and 82 had

at least one style trait that was consistently poor with a score of zero for all samples.

We can offer several remarks about these results even though we only inspected twenty samples.

First, we confirmed that some truncated samples we found belonging to Authors 4 and 68, were not

mistakenly modified through work of our own, such as anomalous scripts. The incomplete samples

consisted of two samples from Author 4 and one sample from Author 68. Despite there being less

code in these samples, there was still strong separation in their style scores and classification accuracy

2We used placeholder content substituted in for comments, so that the authors remain unidentified to comply with ethics
requirements.

144

6.3. STRENGTH OF STYLE

Author Sample Criteria 1–10 Total Average
Number Number 1 2 3 4 5 6 7 8 9 10 Score Score

3 1 1 1 1 1 1 0 1 1 0 1 8 9.0
2 1 1 1 1 1 1 1 1 0 1 9
3 1 1 1 1 1 1 1 1 1 1 10
4 0 1 1 1 1 1 1 1 1 1 9
5 1 1 1 1 1 0 1 1 1 1 9

4 1 1 1 1 1 1 0 1 1 1 1 9 7.2
2 1 0 0 1 1 1 1 1 1 1 8
3 1 1 1 0 1 0 1 0 0 1 6
4 1 1 1 0 1 0 1 0 0 1 6
5 1 1 1 0 1 1 1 0 0 1 7

68 1 0 1 0 1 1 1 0 0 0 1 5 5.4
2 0 1 0 1 1 1 1 0 0 1 6
3 1 0 0 1 1 0 1 0 0 1 5
4 0 0 0 1 1 1 1 0 1 1 6
5 0 1 0 1 0 1 1 0 0 1 5

82 1 0 0 1 1 0 1 1 0 1 0 5 6.2
2 1 1 1 0 1 1 1 1 0 0 7
3 0 1 1 1 1 0 1 0 1 0 6
4 1 1 1 1 1 1 1 0 1 0 8
5 1 1 1 0 1 0 1 0 0 0 5

Table 6.6: Style scores using the ten criteria from Table 6.5 for twenty assignments belonging to four
outlier authors (3, 4, 68, and 82) as shown in Figure 6.2. The authors that were easiest to classify (3
and 4) demonstrated the strongest programming style.

145

CHAPTER 6. EFFECTIVENESS PARAMETERS

to differentiate between these authors. We do not know if these samples were either incomplete or

already damaged when we obtained them, however if these samples were indeed incomplete, we

speculate that these students ran out of time to complete the remainder of these assignments. Had

these assignments been finished, we may have been able to plot Authors 4 and 68 closer to Authors 3

and 82 in Figure 6.2.

Other evidence we found may suggest that Authors 68 and 82 have not taken enough time to

master the tools of their trade, such as the use of advanced program editors. For example, Author 68

used carriage-return line endings in three of five samples examined, and Author 82 used these once

whilst also switching between the use of spaces and tabs for indentation. Itis plausible that these

students have made these mistakes due to the lack of mastery of programming toolsand that their

programming style may improve after investing more time to learn these tools.

Finally, we cannot rule out the possibility that Authors 68 and 82 were difficult to classify simply

due to plagiarism. That is, they received some sort of help that resulted in amixture of programming

styles from a number of authors. We expect there to besomeplagiarised work in Coll-A.

6.3.2 Automation of Style Analysis

In Section 6.3.1, we showed some evidence that authors with good programming style are easier to

classify based upon a manual code inspection of twenty programs. We nowattempt to support this

claim by automating the style analysis for all samples in Coll-A.

We modified the style criteria from Table 6.5 to support an automated analysis ofthe programs.

These are again a mixture of criteria used in assessment in our home institution and criteria from the

literature [Krsul, 1994; Oman and Cook, 1990]. The criteria are as follows:

1. Use of file header block comments? Y/N

2. Use of header files? Y/N

3. Spaces and tabs never interchanged for indentation? Y/N

4. New lines and carriage returns never interchanged for line endings?Y/N

5. Line lengths not greater than eighty characters? Y/N

6. Own-line and same-line open-curly-brace styles never interchanged? Y/N

7. Avoidance of unstructured flow control (goto andcontinue)? Y/N

8. Indentation never deeper than five tabs or fifteen spaces? Y/N

146

6.4. TIMESTAMPS

9. Percentage of comment and blank lines at least 10%? Y/N

10. Platform-dependent code never used (system() function)? Y/N

A calculated correlation coefficient did not confirm a trend. The Spearman’s rho correlation

coefficient value was -0.05, which was not a statistically significant trend (p= 0.62). In analysing this

result, we believe that Coll-A is not the best choice for automated style analysis, as our knowledge

about the samples in the collection is somewhat limited — Coll-A was constructed based solely upon

authors with a large presence in a school assignment submission repository. Therefore we repeat this

experiment using Coll-T, as more is known about the samples that make up the collection.

The results for the repeated automatic style analysis of Coll-T are presented in Figure 6.3. Com-

pared to Coll-A, we note that the authors that make up Coll-T demonstrate stronger coding style

as the average author score for Coll-A was 7.17, compared to 8.52 for Coll-T. Figure 6.3 also

shows few authors with both high accuracy and high style scores. A calculated correlation coeffi-

cient showed a weak trend with value 0.11 (Spearman’s rho), which was only borderline in terms of

statistical significance (p= 0.06). From this result we can suggest that authors demonstrating good

coding practices and style are not necessarily easier to classify. Therefore, we can suggest that both

authors with and without good coding practices demonstrate habits that can lead to correct authorship

decisions. With this conclusion, we decided to next explore sample timestamp as afactor, since there

was little correlation between good coding practices and classification accuracy.

6.4 Timestamps

Most of our experiments up to this point used Coll-A to help us determine important parameters such

as n-gram size, similarity measure, and feature set. This collection was then used to explore factors

affecting the accuracy of our work, including the number of authors, numberof samples per author,

sample lengths, and stylistic strength. However, Coll-A does not include reliable file timestamp

information, as the timestamps are often unreliable in the original data source. Therefore Coll-A is

not suitable for investigating timestamp as a factor. This led to the creation of Coll-T as described

in Section 3.2.2 (p. 63). We assume that the choices we have made in developing our information

retrieval approach to authorship attribution so far hold for Coll-T, to avoid overfitting.

In this section, we describe authorship attribution experiments on Coll-T, and report the classi-

fication accuracy overalland at each of the six individual time intervals. These baseline results are

used as a point of comparison when analysing samples from separate time periods in the next section.

147

CHAPTER 6. EFFECTIVENESS PARAMETERS

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

30

40

50

60

70

80

90

100

Average Style Score Versus Classification Accuracy for All 272 Authors

Average Style Score (Out of 10)

A
cc

ur
ac

y
(%

)

Figure 6.3: Classification accuracy plotted against average style score for all 272 authors forColl-T.
A calculated correlation coefficient only showed a weak trend with value 0.11 (Spearman’s rho),
which was a borderline result in terms of statistical significance (p= 0.06). Note that the individual
authors are not labelled in this graph, as the purpose is to attempt to view anyoverall trend, which
does not really exist for this experiment.

148

6.4. TIMESTAMPS

A1

......

A2

...

A5A3

B5

A6

B2 B3

C1

B1

C3C2 C6C5

J5 J6J2 J3

...

J1

C4

A4

B4

J4

B6

Figure 6.4: An example run usingColl-T. The ten randomly selected authors are labelled ‘A’ to
‘J’ and each sample is numbered 1 to 6. Then if Sample A3 is treated as a query, there are five cor-
rect matches out of fifty-nine when using the “single best result” measure for determining accuracy
(discussed in Section 5.4.1).

6.4.1 Timestamp Collection Methodology

The methodology is essentially the same for Coll-T as described for Coll-A in Section 5.1. How-

ever, there are a few small differences that we point out. First, since we have 272 authors in Coll-T,

our random sampling technique will have even less overlap between runs compared with Coll-A.

However, each run will have fewer samples since we only have six samplesper author. This will

mean exactly 60 samples per run for Coll-T compared with approximately 160 samples per run for

Coll-A.

Furthermore, 100 runs is no longer sufficient for comparing the results to those of Coll-A since

each run is smaller. Therefore, we use 250 runs for each experiment using Coll-T, to allow us to

generate a similar number of queries. Figure 6.4 provides a visual depictionof one run. We note that

variations of this figure are used throughout Section 6.5 when expandingon the baseline.

149

CHAPTER 6. EFFECTIVENESS PARAMETERS

6.4.2 Timestamp Collection Baseline Results

We now investigate timestamp data in Coll-T and its effect on source code authorship attribution

accuracy. We ran the 15,000 queries against 250 indexes that each consisted of all 6 work samples

from 10 randomly selected authors in Coll-T (250×10×6= 15,000) as described above. Of those

queries, 11,778 were classified correctly (78.52%), and this result is 1.74% more accurate than the

Coll-A result from Section 5.4.1.

We expect that there is a combination of both topical and temporal effects contributing towards

this result.Topical effectsarise from authors using features dictated by the subject matter, such as a

class of university students studying the same course. For example, a course may consist of material

requiring the implementation of fundamental computer science data structures,and students may be

asked to implement several assignments on this topic, each requiring dynamic memory allocation

constructs.

Temporal effectsarise from the evolving and maturing coding style of individuals. For exam-

ple, early-career programmers may imitate coding practices from examples in the early stages of

their studies before settling on their own coding practices. This is supportedby the Anderson et al.

[1984] study, where three novice programmers were analysed over thefirst thirty hours of learning

to program. Anderson et al. [1984] concluded that example and analogyinitially drove programming

behaviour. Therefore some of the earliest work samples may be poor indicators of later coding style.

Classification accuracy for the six tasks is plotted in Figure 6.5. Success rates were lowest

at 63.80% and 53.84% respectively for the first two tasks. The lowest result for the second task

may seem surprising. If topic influence is important, then second task queries should match first task

candidates frequently, but this is difficult if the first task samples demonstrate poorest programming

style. Hence these initial results suggest that both topical and temporal effects are apparent, which

motivates the investigations into these effects later in Section 6.5.

Accuracy peaked at 96.48% and 93.80% respectively for Semester 2 queries (third and fourth

tasks). Accuracy for Semester 3 queries (fifth and sixth tasks) then dropped off to 79.44% and 83.76%

respectively. The nature of some of the assignment tasks for Semester 2 could partially account for

the spike in this semester. For example, authorship attribution would be simpler if students were

permitted to extend a previous assignment for an assessment task instead ofstarting fresh.

Results from Figure 6.5 are also presented as confusion matrices in Table 6.7. Table 6.7a contains

all 15,000 results, whereas Tables 6.7b and 6.7c show successful andfailed cases separately. For

example, Table 6.7c reveals that theincorrect Task 2 queries were found to be most stylistically

similar to Task 2 samples by other authors on 85.01% of occasions.

Results in Table 6.7a show how queries organised by assignment task wereclassified against

150

6.4. TIMESTAMPS

Assignment Task Number

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

All Matches (78.52%)

Figure 6.5: Accuracy scores for the six tasks ofColl-T are shown. The accuracy scores dip for the
second task before picking up for the remaining tasks. This trend warrantsfurther exploration in
Section 6.5.

151

CHAPTER 6. EFFECTIVENESS PARAMETERS

Query Classified as Total Count
1 2 3 4 5 6

1 17.20% 68.80% 2.16% 3.44% 4.88% 3.52% 100.00% (2,500)
2 25.40% 39.24% 6.36% 21.68% 3.68% 3.64% 100.00% (2,500)
3 0.24% 2.48% 0.44% 95.20% 0.64% 1.00% 100.00% (2,500)
4 0.44% 2.96% 91.56% 2.68% 0.52% 1.84% 100.00% (2,500)
5 1.56% 8.12% 1.48% 5.48% 13.20% 70.16% 100.00% (2,500)
6 1.28% 8.20% 4.00% 14.24% 64.16% 8.12% 100.00% (2,500)

All 7.69% 21.63% 17.67% 23.79% 14.51% 14.71% 100.00% (15,000)

(a) All queries.

Query Classified as Total Count
1 2 3 4 5 6

1 — 89.78% 1.50% 2.38% 3.82% 2.51% 100.00% (1,595)
2 45.32% — 10.33% 34.84% 5.20% 4.31% 100.00% (1,346)
3 0.04% 1.62% — 97.10% 0.46% 0.79% 100.00% (2,412)
4 0.00% 2.05% 96.72% — 0.38% 0.85% 100.00% (2,345)
5 0.96% 7.30% 1.26% 5.49% — 84.99% 100.00% (1,986)
6 0.81% 5.87% 4.06% 14.61% 74.64% — 100.00% (2,094)

All 5.49% 15.17% 21.57% 27.71% 14.55% 15.49% 100.00% (11,778)

(b) Successful queries.

Query Classified as Total Count
1 2 3 4 5 6

1 47.51% 31.82% 3.31% 5.30% 6.74% 5.30% 100.00% (905)
2 2.17% 85.01% 1.73% 6.33% 1.91% 2.86% 100.00% (1,154)
3 5.68% 26.14% 12.50% 43.18% 5.68% 6.82% 100.00% (88)
4 7.10% 16.77% 13.55% 43.23% 2.58% 16.77% 100.00% (155)
5 3.89% 11.28% 2.33% 5.45% 64.20% 12.84% 100.00% (514)
6 3.69% 20.20% 3.69% 12.32% 10.10% 50.00% 100.00% (406)

All 15.70% 45.25% 3.38% 9.44% 14.37% 11.86% 100.00% (3,222)

(c) Failed queries.

Table 6.7: Separated classification results from the six assignment tasks present inColl-T for all
queries, successful queries, and failed queries respectively. Blank cells (—) represent impossible
cases based on the experiment design.

152

6.4. TIMESTAMPS

Query Classified as
1 2 3 4 5 6

1 — 0.00 0.00 0.00 0.00 0.00
2 0.00 — 0.42 0.10 0.86 0.00
3 0.00 0.42 — 0.00 0.53 0.19
4 0.00 0.10 0.00 — 0.54 0.38
5 0.00 0.86 0.53 0.54 — 0.00
6 0.00 0.00 0.19 0.38 0.00 —

Table 6.8: Statistical significance results between query-document and classified-document pairs for
Table 6.7a. The first assignment results are statistically different than all others at 99.5% confidence.
Most other pairs are not statistically different.

the other work samples. From these results, we suggest that the first sample of an author is not very

helpful for authorship attribution, as only 7.69% of results (column 1) werechosen from the collection

as being from the same author as the query, when 16.67% would have beenchosen assuming an

even spread. In addition, assignments for the second and fourth tasks had the most work samples

chosen from the collection as being from the same author as the query (21.63% and 23.79% of

samples respectively), which also have the largest average program lengths. These results confirm

the importance of having non-trivial programs for performing authorshipattribution.

We performed an analysis of variance on the Table 6.7a results to demonstrate the effect of the

query sample and the classified sample on accuracy. The query sample, classified sample, and these

two factors together, were all found to make statistically significant contributions on the outcome

(p< 1.00×10−15 for all).

We also performed Pearson’s Chi-squared tests for count data on the Table 6.7a results to high-

light the query set and classified sample set proportions that are significantly different from one

another. These results are presented in Table 6.8. First, redundant tests along the diagonal are marked

with a dash (—), and the symmetry across the diagonal should be noted. Results are rounded to

two decimal places, therefore the most statistically significant results (markedas 0.00) should be

interpreted to have a p-value of less than 0.005 (or 99.5% confidence thatthe result is statistically

significant). From this table, the stand-out observation is that the first assignment results are statisti-

cally different from all others at 99.5% confidence. Most other results are notstatistically significant.

The successful cases in Table 6.7b demonstrate that the earliest samples are particularly difficult

to classify. In particular, the Semester 1 tasks were the most difficult to classify (63.80% and 53.84%

respectively), then accuracy increased to 96.48% and 93.80% for Semester 2 tasks. We speculate

that this is due to students still learning their craft, and that programming style requires at least one

153

CHAPTER 6. EFFECTIVENESS PARAMETERS

semester to mature. We also note that six cells are marked blank (—), as successful queries cannot

be classified to the query document itself when omitted from the result lists.

In Table 6.7c, the majority of the failed queries occur along the top-left to bottom-right diagonal

of the confusion matrix, showing that many incorrect matches were attributedto samples by other

authors for the same task. This anomaly suggests a number of possibilities. First, there could be

some plagiarism in our collection. Second, there is likely to be some boiler-plate content that is being

picked up in the similarity measurements. Finally, topic influence is also a likely cause. We suspect

that some combination of each of these three factors are contributing to this result, but we cannot

comment further given the ethical and logistical requirements that restrict us from obtaining data that

would allow us to investigate further.

Considering Table 6.7b again, we observe more evidence to suggest thattopic influence con-

tributes towards authorship classification. For all three topics, the majority ofcorrect classifications

arise from matches in the other task of the same semester for every task, except for the second task

of the first semester. In this case, it is most difficult to obtain correct classifications against the first

task since this represents the least mature work sample.

The results in Table 6.7 demonstrate that matches after the timestamp of the query are quite ac-

curate; that is, the “futuristic” or “clairvoyant” matches. For example, the first tasks for Semester 2

and Semester 3 courses demonstrated 96.48% and 79.44% classification accuracy, which is largely

credited to futuristic matches against the second task for those semesters. In practice however, per-

forming futuristic matching may be impractical. For example, allowing new work samples to build

up for a retrospective academic misconduct investigation might only be usedin the most serious of

circumstances, as the individuals concerned would find it difficult to defend themselves based upon

events long past. For example, at RMIT University the head of school must determine if a formal

hearing is to take place within thirty days of being notified of suspected plagiarism, or the case will

lapse [RMIT University, 2002]. Therefore many types of practical authorship investigations may

only consider previous samples of work. As mentioned earlier, the baselinesource code authorship

attribution solutions that we have previously compared our work against in Section 4.5 (p. 106) do

not consider futuristic matches, therefore we explore this area next.

6.5 Using Timestamps to Explore Topical and Temporal Effects

The results from the previous section have made it clear that there are manytopical and temporal

factors that affect classification accuracy. In this section we explore six combinations of these factors:

• Past matches;

154

6.5. USING TIMESTAMPS TO EXPLORE TOPICAL AND TEMPORAL EFFECTS

• Topical effects in isolation;

• Temporal effects in isolation;

• Past matches and current topic matches together;

• Future matches; and

• Future matches and current topic matches together.

By doing this, these experiments allow us to model a real-life authorship attribution scenario by

excluding futuristic matches. This is an experiment that has not been attemptedbefore, as explained

next.

6.5.1 Ignoring Futuristic Matches

The first variation of the Figure 6.5 baseline that we use for exploring the effect of timestamps is to

omit all results that were created after the time period of the query sample. Forexample, Figure 6.6a

shows a scenario where Sample A3 is the query, and all samples for successive tasks are omitted

from consideration. We chose to model this scenario first, as it best represents the real-life scenario

where there is no access to the samples that have not yet been created. This is unlike other authorship

attribution experiments where all samples are simply pooled together for consideration. We would

expect this variation to show that the real-life scenario is more difficult than the baseline experiment,

as all later (and more mature and reliable) samples are omitted.

Results from the Figure 6.6a experiment design are given in Figure 6.6b (dot-dashed line with

diamonds). Overall accuracy dropped to 52.83% from the 78.52% baseline. In particular, queries

for the first task cannot be attributed at all, which accounted for 16.67% of the overall accuracy

drop. Moreover, accuracy for the second task dropped from 53.84% to 38.12%, as these queries had

to exclusively rely on the first assignment, which may often be unreliable forearly career authors.

These results demonstrate a temporal effect, since accuracy is improving rapidly for the first few

tasks.

The varying results for Semester 2 and Semester 3 tasks are of particular interest. Accuracy

dropped by 42.16% and 32.52% for the third to fourth and fifth to sixth tasks respectively compared

to the baseline. However, there was only one fewer success for the fourth task, and accuracy remained

unchanged for the sixth task compared to the baseline. These results demonstrate a topical effect, as

there is a similar pattern for both Semester 2 and Semseter 3.

Having made observations about topical and temporal effects in this experiment, it is of interest

to investigate these separately. We do this next in Sections 6.5.2 and 6.5.3. Moreover, these results

155

CHAPTER 6. EFFECTIVENESS PARAMETERS

show potential for applying source code authorship attribution techniquesin a real-life setting where

future work samples cannot be waited upon, however the accuracy rates clearly need improvement

for the tasks at the beginning of each semester after the first. These improvements are described later

in Section 6.5.4.

Managing the Number of Indexes Again

We also decided to repeat the Figure 6.6 experiment using the index construction method that omits

the ineligible results from the index instead of just the ranked lists as discussed in Section 5.5. This

decision was made as the Figure 6.6 experiment is the first opportunity to compare our index con-

struction methods, where the omission of more than one sample is required.

We found that accuracy dropped by 1.96% from 7,924/15,000 correct classifications (52.83%) to

7,630/15,000 correct classifications (50.87%). The difference was found to be statistically significant

(p = 7.10× 104) using a two-sample test for equality of proportions without continuity correction.

However, we also mention that the effect size is small. The Cohen’sd effect size is 0.04, which is

very small according to the definition by Cohen [1988] whom describedd = 0.2 as small,d = 0.5 as

medium, andd = 0.8 as large. This measurement is important as it isnot affected by sample size,

which contrasts with statistical significance tests [Becker, 2000]. Therefore, we were still able to

discern trends of interest for reporting our timestamp investigation results in this section.

6.5.2 Topical Matches

Much of the discussion in Section 6.4.2 revolved around topical and temporaleffects on authorship

attribution accuracy. So we now begin to explore these separately beginning with topical effects.

Perhaps the best way to explore topical effects is to only allow matches within the same topic. We

essentially have three topics in Coll-T that are three course offerings from three academic semesters.

For example, Figure 6.7a shows a scenario where Sample A3 is the query and all samples from the

third and fourth tasks from the middle semester are the only ones given consideration.

The current topic variation is more effective than the baseline for five of the six data points, as

shown in Figure 6.7b (dashed line with squares), indicating that the topic hasa strong effect on the

ability to attribute authorship. However, accuracy is lower for the second task, as we would expect

matches against the first task to be the most difficult. Overall classification accuracy is 79.59%

compared to 78.52% for the baseline, which was significant (p= 0.02).

156

6.5. USING TIMESTAMPS TO EXPLORE TOPICAL AND TEMPORAL EFFECTS

A1

......

A2

...

A5A3

B5

A6

B2 B3

C1

B1

C3C2 C6C5

J5 J6J2 J3

...

J1

C4

A4

B4

J4

B6

(a)

Assignment Task Number

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

All Matches (78.52%)
Past/Current Assignment Matches (52.83%)

(b)

Figure 6.6: (a) A variation of the Figure 6.4 baseline with samples omitted that were created after
the time period of the query.(b) Accuracy is stable only for Tasks 4 and 6 compared to the baseline.

157

CHAPTER 6. EFFECTIVENESS PARAMETERS

A1

......

A2

...

A5A3

B5

A6

B2 B3

C1

B1

C3C2 C6C5

J5 J6J2 J3

...

J1

C4

A4

B4

J4

B6

(a)

Assignment Task Number

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

All Matches (78.52%)
Current Semester Matches (79.59%)

(b)

Figure 6.7: (a) Another variation of the Figure 6.4 baseline with samples outside the currenttopic
omitted.(b) Accuracy improves for five of the six tasks compared to the baseline.

158

6.5. USING TIMESTAMPS TO EXPLORE TOPICAL AND TEMPORAL EFFECTS

6.5.3 Temporal Matches

The inverse of the Section 6.5.2 experiment is required in order to next explore temporal effects.

That is, removing all candidate matches from the current topic will only allow matches from other

semesters. Figure 6.8a demonstrates this for a scenario where Sample A3 is the query, and all samples

from that middle semester are omitted from consideration.

Results for this variation are given in Figure 6.8b (dotted line with triangles). Overall accuracy

dropped to 72.07% from the 78.52% baseline. We note that accuracy for five of the six assignments

is below the baseline, providing further evidence that topic has a strong influence on classification.

However, unlike the baseline and current-topic variants, there is an increase in accuracy from

the first to second and second to third tasks. Little variation exists between theremaining tasks.

As topic influence is removed from this experiment, we can suggest that individual programming

styles improve rapidly across the first semester, resulting in the increasing accuracy we observe up

to the start of the second semester, when style begins to stabilise. Therefore, we speculate that

programming work samples created in the first six months of learning to program are particularly

unreliable as markers of authorial style.

6.5.4 Semester-Based Matches

It is clear that the results obtained from the real-life scenario in Section 6.5.1are quite unsatisfactory,

where only work completed prior to the date of the query was allowed for matching. The baseline is

much better, where all samples are allowed. However, this baseline is impractical for real academic

integrity investigations, as wrongdoing effectively cannot be prosecuted until the end of a program of

study, at which point it is already too late.

A compromise may be to postpone authorship attribution investigations until the endof each

semester. This scenario would additionally make use of all current-topic samples, which we expect

to be strong since topical effects have been shown to be strong in Section 6.5.2. This would allow

misdemeanours to be identified before a student progresses onto followingsubjects. Figure 6.9a

shows the Sample A3 example again, but this time all matches from the middle semester(other than

the query itself) are applicable, unlike the Figure 6.6a scenario.

Results of this variation are plotted in Figure 6.9a (long-dashed line with inverted triangles).

Overall accuracy is 75.31%, which is only 3.21% less than the 78.52% baseline. Most of the dif-

ference is attributed to the second task queries, as they again can only be matched to the first task

samples. Accuracy for these queries dropped to 37.72% from the 53.84%baseline. Therefore we

remark that implementing source code authorship attribution solutions including results up to the end

159

CHAPTER 6. EFFECTIVENESS PARAMETERS

A1

...

A2

...

A5 A6A3

B3B2 B5

C1 C2

B1

C5 C6C3

J5J3 J6J1

...

J2

C4

J4

A4

B6B4

(a)

Assignment Task Number

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

All Matches (78.52%)
Current Semester Matches (79.59%)
Other Semester Matches (72.07%)

(b)

Figure 6.8: (a) Another variation of the Figure 6.4 baseline with current topic samples omitted. (b)
Accuracy improves over the first few time periods, then plateaus out.

160

6.5. USING TIMESTAMPS TO EXPLORE TOPICAL AND TEMPORAL EFFECTS

A1

......

A2

...

A5A3

B5

A6

B2 B3

C1

B1

C3C2 C6C5

J5 J6J2 J3

...

J1

C4

A4

B4

J4

B6

(a)

Assignment Task Number

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

All Matches (78.52%)
Past/Current Assignment Matches (52.83%)
Past/Current Semester Matches (75.31%)

(b)

Figure 6.9: (a) Another variation of the Figure 6.4 baseline with future semester results omitted. (b)
Baseline accuracy is maintained for most of the tasks.

161

CHAPTER 6. EFFECTIVENESS PARAMETERS

of the university semester is nearly as good as having access to all assignments belonging to each

student at the completion of degrees.

6.5.5 Other Types of Matches

For completeness and curiosity, we provide two more variations of omitting results from the ranked

lists. First, we provide the inverse of the Section 6.5.1 variation that ignored futuristic matches and

instead ignore past matches. An example of this is provided in Figure 6.10a for the Sample A3

example. The other variation is the inverse of the Section 6.5.4 variation that ignored matches from

semesters after the current semester, which now instead ignores matches from semesters before the

current semester. No example is provided for this scenario as it happensto be the same as Figure 6.10a

for Sample A3.

The first variation is provided in Figure 6.10b. The pattern (dotted line with crossed squares) is

largely the inverse of its counterpart as shown, and it is difficult to visually discern the more accurate

result. Accuracy is 55.81%, which is higher than its counterpart (52.83%)but still far behind the

baseline (78.52%). However, this stronger result is further evidence suggesting that maturing of

programming style aids source code authorship attribution effectiveness, since this variation allows

matches to the more mature samples, instead of the less mature samples compared withthe query.

The final variation is provided in Figure 6.11 (dotted line with stars). Accuracy (81.90%) is

higher than both the baseline (78.52%) and the counterpart variation (75.31%). Results for this

variation are more accurate than the baseline for five of the six tasks, providing yet further evidence

that strengthening programming style improves source code authorship attribution accuracy.

In summary, the six variations to the baseline experiment presented in this section have high-

lighted both topical and temporal influences upon accuracy scores that need to be carefully con-

sidered when applying source code authorship attribution to real-life scenarios. In particular, the

Section 6.5.4 variation was found to be highly practical for the real-life academic scenario, whilst

maintaining close accuracy scores to the baseline.

6.6 Using Entropy to Identify Highly Discriminating Features

Sections 6.4 and 6.5 provided a high level analysis showing authorship attribution accuracy across

the six tasks for Coll-T. Between tasks, we would expect the use of many programming constructs to

either increase or decrease depending on the demands of the assessment tasks and growing knowledge

of the individuals. We now provide a feature-level analysis to show how the usage of individual

162

6.6. USING ENTROPY TO IDENTIFY HIGHLY DISCRIMINATING FEATURES

A1

......

A2

...

A5A3

B5

A6

B2 B3

C1

B1

C3C2 C6C5

J5 J6J2 J3

...

J1

C4

A4

B4

J4

B6

(a)

Assignment Task Number

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

All Matches (78.52%)
Past/Current Assignment Matches (52.83%)
Current/Future Assignment Matches (55.81%)

(b)

Figure 6.10: (a) Inverse of the Figure 6.6a variation with past matches omitted.(b) Accuracy is
2.98% higher overall.

163

CHAPTER 6. EFFECTIVENESS PARAMETERS

Assignment Task Number

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

All Matches (78.52%)
Past/Curr Semester Matches (75.31%)
Curr/Future Semester Matches (81.90%)

Figure 6.11: Inverse of the Figure 6.9a variation with matches to past semesters omitted. Accuracy
is 6.59% higher overall.

features is evolving in Coll-T, and discuss how this can be applied to improve authorship attribution

accuracy.

In Section 5.3, we investigated how combinations of six classes of features impact the accuracy of

source code authorship attribution tasks. We now examine how these features vary between both indi-

vidual tasks and individual authors. For authorship attribution, we wouldexpect the most remarkable

features to have low between-task dispersion, which whole cohorts use or do not use consistently,

and high between-author dispersion, indicating traits that best identify individual programming pref-

erences. High between-task dispersion would indicate topic influences.

Several options were considered for measuring between-task and between-author dispersion.

Variance and standard deviation were possibilities, but results are cumbersome to compare when

total feature counts vary greatly. We also considered Kolmogorov-Smirnov normality tests, which

generate a value in the range[0,1] indicating how closely the data follows a normal distribution. For

example, skewed data returns a result closer to 0 whilst normally distributed data returns a result

closer to 1. However, there were too many perfect 0 and 1 cases in our data to properly discern

results. We settled on entropy for measuring between-task and between-author dispersion [Shannon,

1948]:

164

6.6. USING ENTROPY TO IDENTIFY HIGHLY DISCRIMINATING FEATURES

Entropy= −
s

∑

i=1

pi log2 pi , where (6.1)

• pi is the probability of a symbol occurring, and

• s is the number of symbols.

Entropy is often thought of as a measure of information content. For example, low entropy

indicates that there is little information. In the extreme case of zero entropy, thedata being measured

is entirely predictable, such as the case where every data item is identical. The other extreme is

where all possible occurrences are equally likely. For example, if there are eight possibilities of

equal likelihood, then the entropy value is 3, which is also the number of bits required to store the

information.

In the case of our data, we are measuring the information content for eachspecific feature in

relation to samples from different authors and different tasks — a symbol if the information was to

be coded in binary. If there is a relationship between the occurrence of aprogramming feature and

the author of the program, then there should be low entropy for that feature. If the same feature in

relation to the different programming tasks has a high entropy, then it has little relationship to the

assignment tasks, making it a potentially useful feature for predicting authorship. For our data, the

maximum possible entropy values are− log2
1
6 = 2.58 between tasks, and− log2

1
272 = 8.09 between

authors. Table 6.9 shows the entropy scores for all features that haveat least fifty instances per sample

on average. The three cases with lowest between-task (“En–Task”) and between-author (“En-Auth”)

entropy values marked in bold are now discussed.

Table 6.9 shows that tabs (‘\t’) and carriage returns (‘\r’) have a high between-task entropy and a

low between-author entropy, indicating their potential for predicting program authorship. Conversely,

the indirect member access (‘->’) and titlecase literalsymbols have low between-task entropy and a

relatively high between-author entropy, making them a better predictor of topic than author.

Concerning the square-bracket token in Table 6.9, the low values were found to be unremarkable

due to a single outlier file that contained 29,232 opening square bracket tokens out of 102,318 tokens

total, which distorted the results. The offending file shown in Figure 6.12 demonstrates a function

that initialises a two-dimensional array using an unnecessary amount of source code, which could be

rewritten using loops. It is hard to explain how this anomalous scenario came tobe. It is plausible that

this code could have been generated by a script. Regardless, it shows avery extreme trait. Perhaps a

more reasonable example concerns a preference where square brackets are not used at all. Figure 6.13

presents a code sample showing how preference towards arrays or pointers respectively could greatly

affect style through the absence of square brackets.

165

CHAPTER 6. EFFECTIVENESS PARAMETERS

Token Count En–Task En–Auth
"SPACE" 10,232,897 2.49 7.93
"\n" 1,808,827 2.52 8.01
Lowercase literal 938,219 2.50 7.99
"(" 622,548 2.51 8.01
Camelcase literal 504,263 2.48 7.78
"\t" 443,138 2.53 6.71
"," 335,086 2.46 7.97
"=" 270,022 2.52 7.85
Other literal 236,174 2.52 7.81
"->" 166,478 2.02 7.96
"[" 158,671 2.31 7.10
"*" 144,188 2.43 7.89
Titlecase literal 118,777 2.20 7.86
Uppercase literal 114,434 2.42 7.68
if 109,837 2.47 8.00
int 108,436 2.52 7.93
"\r" 102,873 2.50 5.92
"." 84,297 2.44 7.70
Maximum 2.58 8.09

Table 6.9: Entropy of feature distribution for the six tasks (En–Task) and the272 authors (En–Auth)
for all features averaging at least fifty instances per sample inColl-T. Lower entropy values indicate
larger variation (dispersion) within task or author groups. Bold cases are discussed in the text.

166

6.6. USING ENTROPY TO IDENTIFY HIGHLY DISCRIMINATING FEATURES

1 void initialiseLookup(int pageArray[256][256])

2 {

3 pageArray[65][98]=0;

4 pageArray[65][99]=1;

5 pageArray[65][100]=1;

6 pageArray[65][101]=2;

7 pageArray[65][102]=2;

8 pageArray[65][103]=3;

9 pageArray[65][104]=3;

10 pageArray[65][105]=3;

...

14610 pageArray[122][113]=250;

14611 pageArray[122][114]=250;

14612 pageArray[122][115]=250;

14613 pageArray[122][116]=250;

14614 pageArray[122][117]=250;

14615 pageArray[122][118]=251;

14616 pageArray[122][119]=251;

14617 pageArray[122][120]=252;

14618 }

Figure 6.12: Part of a remarkable source code file that contained 29,232 opening square bracket
tokens out of 102,318 tokens total inColl-T. The file contained a single function that initialised a
large two-dimensional array one value at a time.

int i; int* p;

int values[10]; int* values = calloc(10, sizeof(int));

for (i = 0; i < 10; i++) { for (p = values; p < values + 10; p++) {

values[i] = rand(); *p = rand();

} }

Figure 6.13: Equivalent C program code with and without square brackets for a trivial task involving
the storage of ten random numbers in an array. These examples show how individual preferences can
have a large impact on programming style.

167

CHAPTER 6. EFFECTIVENESS PARAMETERS

Figure 6.14 shows how contrasting between-author entropy scores cameabout for the carriage

return and parenthesis tokens. The parenthesis tokens demonstrate a normal distribution with no

zero-score or high outliers. However, the carriage return tokens demonstrate a skewed distribution

with many zero-score values and a much larger range. Features with a low entropy like the carriage

return feature demonstrate stronger potential as authorship attribution markers.

We believe indentation should be one of the strongest markers of authorship, but this is not ob-

vious from the results in Table 6.9 for the “SPACE” token, as we would expect the between-author

entropy score to be closer to that of the tab (‘\t’) token, given that both tokens are used for indenta-

tion. From these results, we realised that we had not distinguished betweenspaces used to separate

operators and operands (usually a single space), and spaces used for indentation (usually many spaces

at once). Many 6-grams containing spaces only are expected for indentation, and there is no mech-

anism to detect deeper indentation instances. Therefore we explore a refinement in the use of white

space next.

6.7 Improving Accuracy with Highly Discriminating Features

Up to this point, white space has been managed by a single feature, which needs improvement for

capturing indentation information as concluded in the previous section. We now consider forty white

space tokens representing contiguous sequences of one to forty white spaces to better represent deep

levels of indentation. Similar to Table 6.9, in Table 6.10 we show how the entropy of these new

features varies between tasks and authors, for all white space features with at least ten instances per

sample average.

The “SPACE01” token is still most prevalent but has now been reduced to16.38% of its prior

volume. Space tokens in multiples of three come next (“SPACE03”, “SPACE06”, “SPACE09”,

“SPACE12”), indicating the strong preference for code blocks to be indented in multiples of three

spaces. The “SPACE15” and “SPACE18” tokens are not the next mostprevalent, but have the next

highest between-author entropy scores. Of most interest is the drop in between-author entropy scores

for the remaining five white space features (“SPACE02”, “SPACE04”, “SPACE08”, “SPACE07” and

“SPACE05”), indicating a wider spread of scores and good choices for authorship markers. The

“SPACE02” token had the lowest entropy of all, but we found that the sameoutlier sample shown in

Figure 6.12 partly contributed to this score.

When analysing the spread of scores for the “SPACE02” token similar to Figure 6.14, we again

noticed the extreme contribution of the same outlier discussed in Figure 6.12, but in this case the trend

still held after omitting this program, unlike the square-bracket token case demonstrated in Table 6.9.

168

6.7. IMPROVING ACCURACY WITH HIGHLY DISCRIMINATING FEATURES

0 1 2 3 4 5 6 7 8 9 10 11 12

Parenthesis Usage

Percentage of total tokens used

N
um

be
r

of
 in

st
an

ce
s

0

20

40

60

80

100

120

140

160

180

200

220

0 1 2 3 4 5 6 7 8 9 10 11 12

Carriage Return Usage

Percentage of total tokens used

N
um

be
r

of
 in

st
an

ce
s

0

20

40

60

80

100

120

140

160

180

200

220

Figure 6.14: Comparison of the use of parenthesis and carriage returnfeatures over all authors in
Coll-T. Parenthesis use follows a normal distribution whereas carriage return use is heavily skewed.

169

CHAPTER 6. EFFECTIVENESS PARAMETERS

Token Count En–Task En–Auth
"SPACE01" 1,675,961 2.51 7.98
"SPACE03" 366,565 2.50 7.89
"SPACE06" 229,320 2.48 7.88
"SPACE09" 131,577 2.46 7.76
"SPACE12" 88,908 2.47 7.71
"SPACE02" 68,845 2.42 6.03
"SPACE04" 64,918 2.53 7.05
"SPACE15" 47,415 2.46 7.48
"SPACE18" 25,261 2.44 7.28
"SPACE08" 24,078 2.53 6.65
"SPACE07" 22,958 2.49 6.91
"SPACE05" 17,344 2.49 6.74
Maximum 2.58 8.09

Table 6.10: Entropy of feature distribution for the six tasks (En–Task) and the 272 authors (En–Auth)
for white space features with at least ten instances per work sample on average. Smaller entropy
values indicate larger variation (dispersion) within task and author groups. Bold cases are discussed
in the text.

Next we note that we have 2,918 instances of the “SPACE40” token indicating that there may

still be some indentation more than 40 spaces deep, which were treated as a “SPACE40” token plus

another quantity of spaces. However, this amount represents only one totwo instances per sample on

average, so we do not try to introduce more features.

Using the new white space features, we repeated our ten-class authorship attribution experiment

on Coll-T, and found that accuracy jumped from 78.52% (11,700/15,000) to 82.35% (12,352/15,000)

with this feature change alone. We also repeated the experiment on Coll-A and found that accuracy

jumped by a similar margin from 76.78% (12,261/15,969) to 79.66% (12,700/15,943). Both of these

results are statistically significant at the 95% confidence interval using a two-sample test for equality

of proportions with continuity correction (p= 2.20×10−16 andp= 1.50×10−10 respectively). Further

feature refinements like the one presented may yield more effective results, but we would expect

these improvements to be more subtle, as the change made with white space affected the feature

represented by the largest number of tokens in Coll-T. Another reasonable refinement could be to

interpret literals differently to identify authors who use short or long identifier names, but we leave

these refinements for future work.

170

6.8. SUMMARY

6.8 Summary

In this chapter, we explored several factors that affect the accuracy of our approach. These factors

comprised the number of authors, number of samples per author, sample lengths, stylistic strength,

timestamp, and entropy. A key finding is that it takes about one semester for student coding style to

stabilise according to our data, which has implications for practitioners who deal with source code

quality control. The end result for our final model was a statistically significant improvement in

accuracy compared with the version from the previous chapter. Next, in Chapter 7 we compare our

final model to the identified baselines, and investigate improvements to those baselines.

171

CHAPTER 6. EFFECTIVENESS PARAMETERS

172

Chapter 7

Improving Contributions in the Field

The work presented in Chapter 5 introduced our information retrieval approach and the choice of key

parameters including similarity measure, n-gram size, and feature set, usingthe data in Coll-A. Then

in Chapter 6 we explored several factors that affect the accuracy of our approach, including topical

and temporal patterns in the data. The timestamp experiments using Coll-T identified a further

improvement to our feature set involving how white space is used. It remainsto be seen how our

approach performs on a variety of programming languages in a variety of settings, as the experiments

to this point in our approach have used C programming assignments only.

In Section 7.1, we provide accuracy results for our approach on all ofthe collections introduced

in Chapter 3. We then benchmark these against the reimplemented approaches from Section 4.5

(p. 106), to show how much our work has improved the state-of-the-art insource code authorship

attribution accuracy. In Sections 7.2 and 7.3, we next implement some extensions for the previous

approaches that used n-grams and software metrics respectively. Finally, we summarise all of the key

results for this thesis in Section 7.4 before summarising the chapter in Section 7.5.

7.1 Overall Results for the Information Retrieval Approach

When reporting our results for collections Coll-A, Coll-T, Coll-P, and Coll-J, we first reiterate

that a different number of runs is used depending on the collection. For example, in the Section 5.1

(p. 110) methodology based on Coll-A, we described how the experiment is repeated for100 runs,

with each run using a random subset of 10 authors. We have taken carethat roughly the same number

of queries are processed for each collection, however this will never be exact, as the total number of

queries depends upon the authors that are randomly selected for each run. This is as a result of the

number of samples per author greatly varying, as shown in Figure 3.2 (p. 69). The only exception is

173

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

Coll-T, which has exactly six samples for every author. In short, we used 100 runs for Coll-A, 250

runs for Coll-T, 150 runs for Coll-P, and 250 runs for Coll-J.

To enable us to make some generalisations about the differences between our accuracy scores,

we performed a post-hoc analysis to obtain an estimate of the statistical power of these experiments.

Assuming we want high power (0.8, meaning an 80% chance of avoiding a Type 2 error) at 95%

confidence, we have 15,000 queries, and accuracy is 80% for a given method, then our tests are

powerful enough to reject a false null hypothesis for a second method,with a difference in accuracy

of 1.28% or more. We note that this statistical power will remain fairly constant as each experiment

has a similar number of queries.

We report two sets of results in this section concerning the index construction methods reviewed

in this thesis. The first variation was presented in Section 5.1 (p. 110), where the query document

is indexed, but is removed from the results list (presumably the first rank). This variation was used

throughout Chapters 5 and 6 in order to reduce the number of indexes required when developing our

approach.

The second variation from Section 5.5 (p. 132) uses a strict separation of the training and testing

data, where all samples except the query sample are indexed for each run, and each sample is treated

as the query in turn. This variation requires one index per query instead of one index per run, hence

it is much slower. However, since this variation uses astrict leave-one-out cross validation design, it

more closely models the previous work, and is therefore more appropriate for comparison purposes.

The first variation is referred to aslenient leave-one-out(or Lenient), and the second variation is

labelledstrict leave-one-out(or Strict) henceforth. The Lenient approach achieved 80.59% accuracy

for Coll-A, 81.88% for Coll-T, 88.81% for Coll-P, and 81.87% for Coll-J. The Strict approach

achieved 79.70% accuracy for Coll-A, 81.29% for Coll-T, 89.34% for Coll-P, and 80.76% for

Coll-J. These results are summarised in Table 7.1 with the p-values for Z-tests for two proportions.

In absolute values, the Strict variation accuracy results were higher for Coll-P, and the Lenient

variation accuracy results were higher for the other collections. However, considering the p-values

at the 95% confidence level, we note that two of the four differences are statistically insignificant,

and the Coll-A result is borderline (p = 0.05). Therefore we remark that it is satisfactory to use

either of these methods. This finding is consistent with the conclusion in Section5.5 (p. 132) drawn

from Coll-A alone. For the remainder of this chapter, we use the slower Strict variation as it is

more consistent with the previous work reviewed in Section 4.3 (p. 90). TheLenient variation is not

discussed further in this chapter.

Next, it is remarkable to note the higher accuracy obtained for the freelance collections (Strict).

Coll-P accuracy results were around 7% higher than the academic collection accuracy results, and the

174

7.2. IMPROVING N-GRAM APPROACHES

Collection Runs Strict Strict Lenient Lenient p-value
Queries Accuracy Queries Accuracy

Coll-A 100 16,046 79.70% 15,931 80.59% 0.05
Coll-T 250 15,000 81.29% 15,000 81.88% 0.19
Coll-P 150 16,270 89.34% 16,581 88.81% 0.13
Coll-J 250 14,873 80.76% 15,234 81.87% 0.01

Table 7.1: Number of runs and queries to generate results for all four collections.Strict andLenient
variations (discussed in the text) are given with statistical significance results. The accuracy scores
for the freelance collections are good compared with those in the academic collections considering
the number of samples per author in each collection.

Coll-J accuracy results were similar to the academic collection accuracy results,but this result was

achieved with the smallest minimum number of training samples per author. Figure 3.3 (p. 71) shows

the actual distributions. We believe the individuals from the freelance collections are motivated to

produce good work for sharing with the Planet Source Code community. Moreover, given that these

authors are not all from a common institution, it is more likely that these authors have more variation

in their coding styles, compared with students from the same institution who may have adopted some

similar traits.

Finally, we extend the Figure 4.4 (p. 107) comparison to also include our results (Strict) in

Figure 7.1. These results show that our accuracy scores are highestexcept when compared to

the Frantzeskou et al. [2006a] baseline for Coll-J. Therefore, our work is state-of-the-art compared

to the previous work, as indicated by the results for three of the four collections.

Having evaluated our work against the previous contributions, we next investigate ways to also

improve the previous contributions starting with Frantzeskou et al. [2006a].

7.2 Improving N-Gram Approaches

Apart from our work, the contribution by Frantzeskou et al. [2006a] isthe only other that uses n-

grams for source code authorship attribution. We leave the n-gram work by Kothari et al. [2007] to

Section 7.3, as the n-gram frequencies used as machine learning features are essentially just another

form of software metric. The core component of the Frantzeskou approach is the production of lists

of unique byte-level n-grams ordered by frequency, and truncated at a fixed profile length. Table 7.2

shows the lengths of the query and author profiles generated using this approach for our collections.

This table first shows the minimum, median, mean, and maximum query lengths for thetest samples.

The same statistics are repeated for the author profiles (or training data), which are generated from

175

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

Burrows a b c d e f g h i j k l

Comparison of Burrows and Baseline Approaches

Burrows and Contributions ‘a’ to ‘l’ (described below)

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

90

100

Coll−A
Coll−T
Coll−P
Coll−J

Figure 7.1: Extension of Figure 4.4 (p. 107) showing a comparison of our work (Burrows) to all
reimplemented prior contributions:(a) Krsul [1994] (regression analysis and 42 features),(b) Mac-
Donell et al. [1999] (k-nearest neighbour and 26 features),(c) MacDonell et al. [1999] (neural
network and 26 features),(d) MacDonell et al. [1999] (regression analysis and 26 features),(e) Ding
and Samadzadeh [2004] (regression analysis and 56 features),(f) Frantzeskou et al. [2006a] (simpli-
fied profile intersection (L= 2,000) and byte-level 6-grams),(g) Lange and Mancoridis [2007] and
colleagues (nearest neighbour and 56 features),(h) Lange and Mancoridis [2007] and colleagues
(Bayesian network and 56 features),(i) Lange and Mancoridis [2007] and colleagues (voting feature
intervals and 56 features),(j) Kothari et al. [2007] (Bayesian network and 50 features per author),
(k) Kothari et al. [2007] (voting feature intervals and 50 features per author), and(l) Elenbogen and
Seliya [2008] (decision tree and 6 features).

176

7.2. IMPROVING N-GRAM APPROACHES

Statistic Coll-A Coll-T Coll-P Coll-J
Minimum Query Profile Length 4 345 1 166
Median Query Profile Length 2,524 3,050 2,030 1,805
Mean Query Profile Length 2,882 3,384 4,162 3,092
Maximum Query Profile Length 30,322 22,394 143,223 38,530
Minimum Author Profile Length 12,038 7,546 1,335 1,107
Median Author Profile Length 22,325 13,376 14,148 8,340
Mean Author Profile Length 24,803 13,972 25,805 14,320
Maximum Author Profile Length 51,797 38,697 201,334 46,814

Table 7.2: Byte-level n-gram statistics of all four collections comprising the number of unique 6-gram
entries in the query profiles and author profiles.

the combined samples of each author. The statistics for the full profiles are reported here, but the

query content is omitted when a query sample belonging to that author is currently in use.

Using these profiles, experiments that follow include the verification of the profile lengthL and

n-gram sizen parameters explored in the Frantzeskou work. Next, we report on the changes in accu-

racy both before and after anonymisation techniques are applied, giventhat different anonymisation

techniques are used for our work and Frantzeskou’s work. Finally, we extend our work with the byte-

level and feature-level n-gram approaches by comparing them both using the Okapi BM25 and SPI

similarity scores used in our work and Frantzeskou’s work respectively.

7.2.1 Profile Length

The profile length parameterL is used in the Frantzeskou approach to denote the length that query

and author profiles are consistently truncated at. This parameter is volatile in that it depends upon

collection sample lengths, as discussed in Section 4.3.4 (p. 94).

The Frantzeskou experiment design simply splits the collections in half into test and training

sets. Therefore the Frantzeskou methodology effectively made classification decisions with only

half-profiles in the previous work. We chose an unequal collection split for our experiment design by

creating author profiles that containall data except for each individual query sample. This approach

maximises the amount of training data available. We believe this experiment designdecision is more

appropriate, as our work in Section 6.1.2 showed that discarding contentresults in severe degradation

of accuracy scores. Moreover, by doing this we have used a leave-one-out cross validation experiment

design, which is consistent with our other experiments.

In Figure 7.2 we present the accuracy scores for a wide range of values ofL from 10≤ L ≤ 56,234

to allow for the length of the longest profile of Coll-A, which is 51,797 byte-level 6-grams. Each

177

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

Frantzeskou Approach Accuracy for Coll−A

Profile Length (L)

A
cc

ur
ac

y
(%

)

101 101.5 102 102.5 103 103.5 104 104.5
0

10

20

30

40

50

60

70

80

90

100

Figure 7.2: Classification accuracy of all four collections for Frantzeskou’s profile length L parame-
ter using nineteen profile lengths from10≤ L ≤ 56,234.

data point is the mean accuracy score of 100 runs for Coll-A as used in Section 5.1 (p. 110), hence

the plotted line represents approximately 1,900 runs. The n-gram lengthn was kept constant atn= 6,

as this was a common conclusion in an earlier experiment (Section 4.3.4, p. 94).

Accuracy is poorest for the lower values ofL, and accuracy is always increasing withL for

Coll-A. We note that the curve plateaus out for the last few values ofL. This is a result ofL

eventually reaching the longest profile length, thus increasingL after this point does not change the

accuracy scores. This behaviour is expected to occur at a different point for each collection, as the

length of the longest profile differs for each collection (Table 7.2).

Given these results, a suitable modification is to use an infinite profile length anduse the full

set of n-grams as the profile. As an aside, we note that this technique is equivalent toco-ordinate

matching, a ranking technique used in some information retrieval systems [Witten et al., 1999], and

also successfully applied in music information retrieval [Uitdenbogerd and Zobel, 2002]. This is the

approach we adopt in the remainder of this chapter, giving an accuracyusing 6-grams of 75.48% for

178

7.2. IMPROVING N-GRAM APPROACHES

Coll-A, 75.51% for Coll-T, 91.84% for Coll-P, and 82.30% for Coll-J.

7.2.2 N-Gram Size

The work above suggests that truncating author profiles is not helpful, therefore we use full profiles

from this point onwards. We next decided to verify the n-gram length parametern.

As discussed in Section 4.3.4 (p. 94), Frantzeskou tested values ofn for 2≤ n≤ 10, wheren= 6

was a common value resulting in highest accuracy. However, our work onfeature-level n-grams in

Section 5.2 (p. 118) has also foundn= 6 to be the most accurate. Given that each feature-level n-gram

represents more content than each byte-level n-gram on average, wewould expect the best byte-level

n to be much larger than the best feature-leveln.

We explored fourteen n-gram sizes from 1≤ n≤ 50 to confirm these settings for our benchmark-

ing work, with the results shown in Figure 7.3 for Coll-A. The figure shows that the Frantzeskou

method performs better withn = 14, much higher thann = 6 reported previously. We believe that

the difference is due to the small collections used in the experiments, and the fact thatthey did not

test pastn= 10. Adoptingn= 14 represents a modest improvement to the Frantzeskou baseline. In

this experiment, 6-grams achieved 75.48%, but 14-grams achieved 79.11%(+3.83%). This is a sta-

tistically significant difference when using a Z-test (p = 1.09×10−14). With this result, we decided

to switch to 14-grams for the remaining collections and accuracy scores areas follows: Coll-T be-

came 80.71% (+5.20%,p= 2.20×10−16), Coll-P became 91.88% (+0.04%,p= 0.90), and Coll-J

became 86.07% (+3.77%,p= 2.20×10−16).

7.2.3 Anonymisation Effects

Our method is based on tokens that exclude comments and string literals, while theFrantzeskou

approach uses byte-level n-grams that capture such information if available. As we have versions

of collections Coll-P and Coll-J that contain comments and strings that we can use (Coll-PO and

Coll-JO), we can test the effect on accuracy when including such data. Table 7.3 shows the mean ac-

curacy of Coll-P, Coll-PO, Coll-J, and Coll-JO for the two methods. Interestingly, the Frantzeskou

method only benefits significantly for the Java collection, which may be explained by the JavaDoc

commenting convention encouraging more complete commenting throughout the Java programs in

Coll-JO.

179

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

Comparing N−Gram Length in Burrows and Frantzeskou Work for Coll−A

N−gram Size

A
cc

ur
ac

y
(%

)

1 2 4 6 8 10 12 14 16 18 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Burrows
Frantzeskou

Figure 7.3: Comparison of the accuracy scores for our approach andthe Frantzeskou et al. [2005]
work for fourteen n-gram lengths onColl-A. Accuracy peaks earlier for our approach than the
Frantzeskou approach due to the difference in the amount of data captured in a feature-level token
compared with a byte.

Method Coll-P Coll-PO Change Coll-J Coll-JO Change
Burrows 88.81% 90.07% +1.26% 81.87% 82.85%+0.98%
Frantzeskou 91.91% 92.34%+0.43% 81.31% 86.39%+5.08%

Table 7.3: Mean accuracy for our method and the Frantzeskou method oncollections where com-
ments and quoted strings are both included (Coll-P and Coll-J) and excluded (Coll-PO and
Coll-JO).

180

7.2. IMPROVING N-GRAM APPROACHES

Byte−Level vs Feature−Level N−Gram Results using Okapi BM25

N−gram Size

A
cc

ur
ac

y
(%

)

1 2 4 6 8 10 12 14 16 18 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Feature−Level N−grams
Byte−Level N−grams

Figure 7.4: Okapi BM25 results using both feature-level n-grams and byte-level n-grams onColl-A.

7.2.4 N-Gram Composition

Results reported in this chapter so far have used feature-level 6-gramsfor our work, and byte-level 14-

grams for the Frantzeskou work. In this section, we examine the effect of swapping the composition

of n-grams for the two methods. That is, we use byte-level n-grams with ourwork, and token-level n-

grams with the Frantzeskou work. To selectn in each case, we repeated the method used to generate

Figure 7.3 on Coll-A. Results are shown in Figure 7.4 for Okapi BM25 and Figure 7.5 for SPI.

The Okapi BM25 similarity scheme achieved highest accuracy of 79.26% when using feature-

level n-grams (n = 6), compared with 76.58% when using byte-level n-grams (n = 18) (2.68% dif-

ference). The SPI similarity scheme achieved highest accuracy of 81.88% when using feature-level

n-grams (n= 10), compared with 79.11% when using byte-level n-grams (n= 14) (2.77% difference).

These comparisons were statistically significant in both cases (p= 8.39×10−8 andp= 4.55×10−10

respectively).

Using thesen values, we next repeated the experiments on the remaining collections with results

181

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

Byte−Level vs Feature−Level N−Gram Profile Results using SPI

N−gram Size

A
cc

ur
ac

y
(%

)

1 2 4 6 8 10 12 14 16 18 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Feature−Level N−gram Profiles
Byte−Level N−gram Profiles

Figure 7.5: SPI results using both feature-level n-grams and byte-leveln-grams onColl-A.

182

7.3. IMPROVING METRIC-BASED APPROACHES

Okapi BM25 Results SPI Results
Feature-Level Byte-Level Feature-Level Byte-Level

Collection 6-Grams 18-Grams 10-Grams 14-Grams
Coll-A 79.70% 76.58% 81.88% 79.11%
Coll-T 81.29% 80.80% 80.00% 80.71%
Coll-P 89.34% 91.25% 86.83% 91.88%
Coll-J 80.76% 86.98% 82.38% 86.07%

Table 7.4: Okapi BM25 results using feature-level 6-grams and byte-level 18-grams, and SPI results
using feature-level 10-grams and byte-level 14-grams. The best result for each row depends upon the
collection, making the accuracy of the methods very close.

shown in Table 7.4. Most remarkably, there seems to be little separating the Okapi BM25 and SPI

ranking schemes, and the feature-level and byte-level n-gram methods. To demonstrate this, we

highlighted the best result for each collection in Table 7.4 in bold. SPI with feature-level n-grams was

most accurate for Coll-A, Okapi BM25 with feature-level n-grams was most accurate for Coll-T, SPI

with byte-level n-grams was most accurate for Coll-P, and Okapi BM25 with byte-level n-grams was

most accurate for Coll-J. For now we consider these methods equally effective and discuss possible

future improvements in Chapter 8, but stress that we are using the modifiedL andn parameters to

represent the Frantzeskou work here.

7.3 Improving Metric-Based Approaches

All of the previous approaches to source code authorship attribution thatused software metrics as

features, also used machine learning classifiers in the classification step. In this section, we combine

some of the existing machine learning ideas with one another, and then with our own. We first explore

all untested combinations of feature set and classification algorithm for completeness. Next, we adapt

our own feature set developed in Section 5.3 (p. 122) to the machine learning algorithms used in this

thesis, and then extend this to n-grams of features.

7.3.1 Evaluating Combinations of Metrics and Classifiers

Several combinations of classification algorithm and feature set have been proposed in the literature,

as reviewed in Section 4.3 (p. 90). However, it is not obvious if the appropriate feature sets have been

paired with the appropriate classification algorithms since there are many possible combinations. We

resolve this problem by exploring all possible combinations from the previous work in this section.

183

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

We also introduce a support vector machine (SVM) classifier, as this classifier has been mentioned

many times in the literature for natural language authorship attribution in Section 4.2 (p. 85). Support

vector machines are known to be effective when dealing with large numbers of features [Colas et al.,

2007]. Several implementations of support vector machines are available inWeka, however some

do not handle multi-valued nominal classes, or assume that the input is in a specific format that is

not suitable for our experiments. We used theweka.classifiers.functions.SMOclassifier, which trains

a support vector classifier using the sequential minimal optimisation algorithm [Platt, 1998]. With

the inclusion of the support vector machine with the existing classification algorithms from Table 4.2

(p. 104), we now haveeightclassification algorithms.

Concerning feature sets, we have six feature sets so far as discussedin Section 4.4.2 (p. 102).

One further option is to pool all feature sets (except for Kothari et al. [2007]) into a combined feature

set. We name this setKMDLE in reference to the initials of the five authors. The aim here is to

explore how well the individual contributions work together. Note that we have deliberately omitted

the Kothari et al. [2007] features from the pool, as these features areoptimised for each individual

author, which are not compatible with the methodology for deriving the other sets. Combining the

other 5 feature sets resulted in the new feature set having 168 metrics afterredundancy was removed.

With the inclusion of the combined feature set, we now havesevenfeature sets.

Together, we now havefifty-six (8×7) combinations of classification algorithm and feature set,

and only results for the previously published combinations have been explored and reimplemented

in our experiment in Figure 4.4 (p. 107). Figure 7.6 shows the mean accuracy scores over all four

collections of all combinations of classification algorithm and feature set. Generally, the more metrics

used as features, the better the performance of each classifier. An exception is the MacDonell metric

set (twenty-six metrics), which performed marginally better than the Krsul metric set (forty-two

metrics), however this may be due to the fact that the Krsul [1994] work was the first contribution in

the field.

Figure 7.6 results show that the accuracy for the neural network classifier was highest for six of

the seven metric sets. The only exception was the Elenbogen metric set wherethe nearest neighbour

accuracy score was 0.11% above the neural network accuracy score. However, this high accuracy

comes at a cost. From anecdotal evidence, we simply mention that the neuralnetwork classifier was

the slowest of all, therefore an alternative may be required if speed is important.

Figure 7.6 also shows that the KMDLE and Kothari feature sets almost always have the highest

accuracy scores. Accuracy for the Kothari set was highest for sixof the classifiers, and accuracy for

the KMDLE set was highest for the remaining two classifiers. This result again represents a time

versus accuracy trade-off, as these two sets are the largest.

184

7.3. IMPROVING METRIC-BASED APPROACHES

NeuNt NNei KNNei Regre DecTr SVM Bayes VFI

Average of Coll−A/T/P/J Accuracy for All Feature Sets and Classifiers

Classifier

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

90

100

Krsul
MacDonell
Ding
Lange
Elenbogen
KMDLE
Kothari

Figure 7.6: Accuracy scores for the eight classifiers and seven metric sets averaged acrossColl-A,
Coll-T, Coll-P, and Coll-J. The classifiers are the neural network (NeuNt), nearest neighbour
(NNei), k-nearest neighbour (KNN), regression analysis (Regre), decision tree (DecTr), support vec-
tor machine (SVM), Naive Bayes (Bayes), and voting feature interval (VFI) classifiers. The metric
sets are named after the respective authors from Table C.1 (p. 221) in Appendix C, with “KMDLE”
representing the combined metric set of the first five authors from the appendix. Complete and un-
averaged results are given later in Table 7.8 from Section 7.4.

185

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

Classifier NeuNt NNei KNNei Regre DecTr SVM Bayes VFI
Accuracy 60.42% 56.37% 34.29% 52.31% 51.15% 53.64% 51.35% 46.91%

Table 7.5: Averaged results from Figure 7.6 for all classification algorithms (neural network, nearest
neighbour, k-nearest neighbour, regression analysis, decision tree, support vector machine, Naive
Bayes, and voting feature intervals).

Of particular interest is the result ordering of accuracy for the seven metric sets for each clas-

sification algorithm, which vary little. These results demonstrate the importance ofchoosing an

appropriate set of features regardless of the classification algorithm in use. Moreover, the order gen-

erally follows the chronological order of the contributions. The only exceptions are the Elenbogen

metrics that have the lowest accuracy scores for all classifiers and the support vector machine results

mentioned already. That is, the Krsul [1994] results are poorer than theMacDonell et al. [1999]

results, which in turn are poorer than the Ding and Samadzadeh [2004] results, which are poorer than

the Lange and Mancoridis [2007] results, which are poorer than the Kothari et al. [2007] and KM-

DLE results. The results generally demonstrate a gradual increase in the accuracy scores since 1994,

which is encouraging.

Next, we note that there are a few common themes from Appendix C, which could impact the ac-

curacy scores for the individual metrics sets. First, there are some features that are language specific.

For example, the object-oriented metrics are less likely to be effective for the C-based collections

(Coll-A and Coll-T). We do not attempt to address this shortcoming as we wish to reimplement the

metric sets as closely as possible. However, the contributions that used more language independent

metrics (such as those that deal with white space usage, for example), should provide more consistent

accuracy scores.

We also anticipate some poorer results for the metric sets with larger proportions of metrics

based on comments for our collections. This is a result of anonymising Coll-A, Coll-T, Coll-P, and

Coll-J, which resulted in no comments remaining in the code.

In Tables 7.5 and 7.6, we average the results from Figure 7.6 over all classifiers and metric sets

respectively. Overall, the Kothari feature set is the most accurate, andthe neural network is the most

accurate classifier. The support vector machine was a close second throughout our study, however the

aggregation of results pushes the SVM down to third, as there were some poor results for the metric

sets with only a small number of metrics. We remark that SVMs should be avoidedfor small feature

sets.

186

7.3. IMPROVING METRIC-BASED APPROACHES

Feature Set Krsul MacD Ding Lange Elenb KMDLE Kothari
Accuracy 49.09% 49.33% 57.43% 59.50% 28.28% 64.55% 67.21%

Table 7.6: Averaged results from Figure 7.6 for all feature sets (Krsul, MacDonell, Ding, Lange,
Elenbogen, KMDLE, and Kothari).

Property Coll-A Coll-T Coll-P Coll-PO Coll-J Coll-JO
(a) Total 6-grams 5,700,748 8,073,427 6,388,394 9,594,049 1,909,534 2,564,762
(b) Unique 6-grams 454,378 622,112 387,227 490,761 110,893 151,587
(c) (a)/(b) 12.55 12.98 16.50 19.55 17.22 16.92

Table 7.7: Key collection properties for all collections concerning feature-level 6-grams extracted
with our approach. The total number of 6-grams, number of unique 6-grams, and the ratio between
these are shown.

7.3.2 Machine Learning with N-Gram Features

In Section 7.2.4, we recommended either 6-grams of tokens or 14-grams of bytes as features when

using information retrieval techniques for matching. However, the featurespace of n-grams this size

would be too large for most machine learning classifiers to handle. Table 7.7 shows that there are

over 100,000 distinct feature-level 6-grams in each of the collections. Hence we use unigrams as

features and explore the performance of the classifiers from the previous section. As a first step

using the operator, keyword, and white space features, as selected in Sections 5.3 and 6.7, we end

up with 114 C features, 148 C/C++ features, and 132 Java features. These features are based upon

operator and keyword charts from programming text books and international standards as summarised

in Tables D.1, D.2, and D.3 in Appendix D. The feature counts for each sample are normalised against

the average number of tokens in the sample and rounded to the nearest integer.

Figure 7.7 gives the accuracy scores for all eight of the tested classifiers for each of the four col-

lections. The support vector machine gave the most accurate result of allcollections with 80.37% for

Coll-P. The neural network classifier was second with 79.90% (p= 0.28). However, the neural net-

work classifier was more accurate than the support vector machine for thethree remaining collections:

Coll-A was 65.46% (+1.61%,p= 2.58×10−3), Coll-T was 59.11% (+1.94%,p= 6.89×10−4), and

Coll-J was 71.28% (+0.66%,p= 0.22). Two of the differences are statistically significant in favour

of the neural network classifier at 95% confidence using a Z-test.

The least accurate algorithm was the k-nearest neighbour classifier, thus we extended our work

for values ofk other thank= 20 (k ∈ {1,2,3,4,5,10,20,30}). We found that accuracy degraded for all

successive values ofk, so we remark that the k-nearest neighbour classifier is inferior to the nearest

187

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

NeuNt NNei KNNei Regre DecTr SVM Bayes VFI

Comparison of Eight Weka Classifiers with Normalised Token Count Features

Classifier

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

90

100

Coll−A
Coll−T
Coll−P
Coll−J

Figure 7.7: Comparison of eight Weka classifiers (neural network, nearest neighbour, k-nearest
neighbour, regression analysis, decision tree, support vector machine, Naive Bayes, and voting fea-
ture intervals) using unigram tokens as features, leave-one-out crossvalidation, and default param-
eters in Weka except for the k-nearest neighbour classifier where K=20 was used.

188

7.4. SUMMARY OF RESULTS

neighbour classifier for our problem domain.

A comparison can be made on these results using normalised counts of unigrams as features,

compared with the unigram results for our approach and the Frantzeskouapproach previously given

in Figure 7.3 — 36.37% for our approach and 11.34% for Frantzeskou. These results are clearly

inferior to the accuracy achieved using the machine learning classifiers, however it is also obvious

that our work and the Frantzeskou work is not intended to be effective on unigrams. This is explored

in our next experiment using n-gram based metrics other than unigrams.

First, increasingn creates a problem in that it leads to an exponential increase in the number of

features. Therefore, to test larger values ofn with the machine classifiers, we chose to truncate the

feature space, and only use the most commonly occurring n-grams based on collection-wide statistics.

Figure 7.8 provides the accuracy scores for 6-gram representationswith the number of features cut-

off at 9 different points from 10 to 1,000 features for Coll-A. The leading neural network and support

vector machine classifiers are shown only for brevity. The results using unigrams from Figure 7.7

are shown as the baseline at the far right of the graph for each method for comparison. These results

demonstrate that classification accuracy generally increases as more 6-gram features are included.

This trend is particularly strong for the support vector machine classifier,which is also the weakest

for the smallest feature sets. Interestingly, these results show that it only takes around 56 n-gram

features to meet the unigram baseline for each classifier, and results generally continue to improve

further up to the final data point at 1,000 features.

These results can motivate new research using n-gram features combined with classifiers. How-

ever, this type of experiment does not scale well, and a high performancecomputing cluster was

needed to produce the results for the 178 to 1,000 feature data points for some of the classification

algorithms. Future work is needed to identify classifiers with the best compromise between time

requirements and accuracy. One option is to explore other implementations of neural networks and

support vector machines in Weka.

7.4 Summary of Results

Figure 7.9 gives the accuracy scores for the leading approaches forall four collections. That is, our

approach, the Frantzeskou approach with modified parameters, and the neural network coupled with

the Kothari and KMDLE feature sets. Accuracy scores for the machine learning approaches trail the

other approaches for all collections except for the neural network withthe Kothari feature set, which

is 2.83% higher than our work for Coll-J only. Using selected n-grams as features for the machine

learning classifiers showed promise in Section 7.3.2, however scalability problems remain.

189

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

Machine Learning Results with 6−Gram and Unigram Features

Number of 6−Gram Features and Unigram Baseline

A
cc

ur
ac

y
(%

)

10 18 32 56 100 178 316 562 1000 baseline
0

10

20

30

40

50

60

70

80

90

100

Neural Network
Support Vector Machine

Figure 7.8: Comparison of the neural network and support vector machine algorithms using 10
to 1,000 of the most common n-gram features (in logarithmic increments) against the baseline from
Figure 7.7 (rightmost data point) using only unigrams. Results are forColl-A only, and the other
classifiers are omitted for brevity.

190

7.4. SUMMARY OF RESULTS

Burrows Modified.Frantz NeuNt.Kothari NeuNt.KMDLE

Comparison of Four Leading Approaches

Baseline

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

90

100
Coll−A
Coll−T

Coll−P
Coll−J

Figure 7.9: Accuracy scores of four leading source code authorship attribution approaches. Our
approach and the modified Frantzeskou approach (“Modified.Frantz”) are very close, and the neu-
ral network with the Kothari and KMDLE feature sets are not far behind (NeuNt.Kothari and Ne-
uNt.KMDLE respectively).

191

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

The accuracy scores for our approach and the modified Frantzeskouapproach are close. The

reported results for our method are for 6-grams with the Okapi BM25 similaritymeasure using op-

erators, keywords, and white space tokens as features. The Frantzeskou results are for 14-grams of

bytes without using the profile lengthL parameter. Our approach was more accurate than the mod-

ified Frantzeskou approach for Coll-A with 79.70% accuracy (+0.59%), and Coll-T with 81.29%

accuracy (+0.58%). The modified Frantzeskou approach was more accurate for Coll-P with 91.91%

accuracy (+2.54%) and Coll-J with 86.07% accuracy (+5.31%). In short, our approach was more

accurate for the academic collections, and the modified Frantzeskou approach was more accurate for

the freelance collections.

The properties of the academic collections compared to the freelance collections may contribute

to the differing results between the types of collections. In particular, Table 3.2 (p. 69) shows that

the median lines of code for the freelance samples is less than half that of the academic samples.

Future work using our approach could attempt to bridge or further explainthis gap by exploring

several choices for the document length weighting parameter other than thedefaultb= 0.75. Addi-

tionally, other similarity metrics in Zettair that do not have inbuilt document length weighting (such

as Cosine), could be explored to determine whether document length weighting in our work is over-

compensated. Finally, we could experiment with subsets of our collections, such that the collection

properties between the academic and freelance collections become closer.

Table 7.8 gives accuracy scores for all of the methods executed on ourcollections as a reference

to other researchers and for benchmarking any future techniques. Toour knowledge, this is the

first ever attempt to test all existing source code attribution techniques on thesame collections. The

top-left portion of the table gives results for all combinations of Okapi BM25 and SPI similarity

measures, and feature-level and byte-level n-grams for the similarity measurement methods as given

in Table 7.4. The bottom-right portion of the table gives results for all combinations of the classifiers

and metric sets in the literature, including the SVM classifier and KMDLE metric setfor the machine

learning methods as given in Figure 7.6.

The top-right portion of Table 7.8 uses normalised counts of n-gram occurrences as features.

Some results from Figure 7.8 for 1,000 6-gram token-level features areincluded in italics. As dis-

cussed in Section 7.3.2, the number of features to process increases exponentially for n-grams of

features. Given this, it becomes necessary to truncate the feature space and only use the most com-

monly occurring n-grams. We found that our use of the Weka framework did not scale to a suitably

large number of features to find the most effective number of features. Accuracy scores were still in-

creasing at 1,000 features for most classification algorithms, which was thelargest amount we could

test on the high-performance computing cluster. When a suitable alternativeis found to process the

192

7.4. SUMMARY OF RESULTS

Feature Collection Ranking Method Classifier
Set Okapi SPI NeuNt NNei KNNei Regre DecTr SVM Bayes VFI
Burrows Coll-A 79.70 81.88 76.46 66.08 37.01 60.54 56.61 77.23 73.24 56.44
Feature Coll-T 81.29 80.00
6-grams Coll-P 89.34 86.83
(Okapi), Coll-PO 90.07 86.93
10-grams Coll-J 80.76 82.38
(SPI) Coll-JO 82.85 83.21
Frantzeskou Coll-A 76.58 79.11
Byte Coll-T 80.80 80.71
18-grams Coll-P 91.25 91.88
(Okapi), Coll-PO 92.65 93.86
14-grams Coll-J 86.98 86.07
(SPI) Coll-JO 89.03 88.36
42 Coll-A 54.48 46.98 27.71 48.68 44.25 45.82 45.40 41.96
Krsul Coll-T 42.79 32.71 13.85 35.38 34.33 37.41 35.55 30.87
Metrics Coll-P 69.65 65.69 50.05 62.34 59.21 69.17 62.88 54.79

Coll-PO 71.71 65.66 50.88 63.35 59.91 70.88 65.71 55.77
Coll-J 64.84 58.83 37.06 57.13 58.17 61.69 59.21 52.81
Coll-JO 69.31 62.52 38.46 61.09 61.16 66.51 62.45 57.06

26 Coll-A 54.74 52.57 36.77 48.35 44.29 39.86 43.41 42.78
MacDonell Coll-T 48.93 42.11 16.41 40.95 38.69 25.43 39.67 36.49
Metrics Coll-P 69.53 66.55 47.41 63.32 60.44 59.12 64.44 56.53

Coll-PO 72.10 69.41 48.85 64.99 60.24 65.34 68.02 59.37
Coll-J 64.68 63.31 37.69 57.52 55.82 49.33 58.78 55.52
Coll-JO 69.51 67.32 39.60 60.63 59.61 55.59 62.12 59.68

56 Coll-A 65.88 62.07 39.35 56.76 52.94 53.97 51.78 49.32
Ding Coll-T 59.10 55.59 20.68 46.17 46.29 50.56 48.79 40.13
Metrics Coll-P 74.37 71.28 49.93 67.02 64.52 72.92 67.52 61.02

Coll-PO 76.79 72.06 51.89 68.69 64.18 76.03 68.72 63.68
Coll-J 71.66 67.25 37.71 60.49 63.74 68.13 62.85 57.65
Coll-JO 74.83 70.67 39.75 63.74 66.17 73.28 64.05 60.66

52 Coll-A 64.83 62.56 40.15 58.03 55.84 59.83 51.46 51.54
Lange Coll-T 60.53 54.47 19.07 45.84 47.88 55.00 52.14 42.93
Metrics Coll-P 76.88 73.11 52.45 67.00 64.66 77.26 66.13 63.01

Coll-PO 79.77 76.55 53.22 69.28 64.79 80.31 69.52 64.75
Coll-J 76.04 74.88 37.83 63.43 64.11 76.26 63.71 59.74
Coll-JO 79.48 78.01 39.93 66.00 66.16 79.37 66.56 63.72

6 Coll-A 25.41 28.09 18.62 24.23 24.02 13.67 19.21 21.15
Elenbogen Coll-T 12.93 12.03 7.31 13.44 12.65 1.08 12.69 13.47
Metrics Coll-P 41.58 40.29 34.03 41.47 40.85 31.69 35.25 30.47

Coll-PO 44.08 43.24 36.12 46.32 44.69 35.34 38.12 33.30
Coll-J 46.03 46.00 33.39 46.39 46.57 36.95 42.78 40.08
Coll-JO 47.75 45.14 32.16 48.77 48.17 36.52 42.96 42.17

168 Coll-A 72.37 62.47 44.15 63.40 59.99 70.81 58.89 54.50
KMDLE Coll-T 69.63 57.78 21.92 50.55 52.25 67.96 54.67 44.82
Metrics Coll-P 84.09 80.15 57.30 72.10 69.45 84.75 70.95 64.72

Coll-PO 85.84 81.81 58.03 70.84 68.78 86.18 72.70 65.65
Coll-J 79.02 76.08 42.14 65.33 66.58 78.76 64.70 59.48
Coll-JO 81.74 78.14 41.99 66.00 66.20 80.86 67.53 60.85

50 Coll-A 74.71 63.62 48.26 63.37 53.41 68.67 63.34 51.21
Kothari Coll-T 80.37 65.55 31.43 60.46 55.75 73.63 61.64 47.63
Metrics Coll-P 83.19 74.79 57.63 73.67 68.17 77.89 71.46 63.41
(per Coll-PO 84.60 75.56 60.32 75.51 68.80 79.85 71.92 65.34
author) Coll-J 83.59 77.70 48.28 74.78 72.66 81.37 65.95 54.09

Coll-JO 83.86 78.22 49.26 76.75 74.70 82.57 67.45 53.67

Table 7.8: Summary scores for our work, baselines, and other variations from this chapter. Some
results from Figure 7.8 for 1,000 6-grams are also given in the top-right section in italics. Note that
having values in the bottom-left section would be nonsensical as discussedin the text.

193

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

large number of features required, follow-up experiments are needed toverify if n = 6 is the most

suitable value for this problem.

The bottom-left portion of the Table 7.8 remains blank since no one has yet applied information

retrieval style ranking to sets of metric measurements. It is not obvious how (or even why) one would

implement this.

Some curious outlier results are present in Table 7.8. For example, the result for the SVM clas-

sifier and the Elenbogen feature set for Coll-T shows just 1.08% accuracy, which is well below

the 10% random chance threshold. The remaining results for the Elenbogen feature set are around

random chance for Coll-T, being between 7.31% and 13.47%. Moreover, Coll-A results are not

much higher with scores between 13.67% and 28.09%. We do not believe these poor accuracy results

are collection-specific, as the result trends for all collections on all metric-based results are almost al-

ways the same: Coll-T results are the lowest, Coll-A results are the second lowest, and the freelance

collections results are the highest. The only exception is the Naive Bayes classifier for the Lange

metrics for Coll-A and Coll-T. The remaining considerations are the choice of metric set and clas-

sifier. Concerning the metrics, it is clear that the Elenbogen metrics have the lowest accuracy scores

in general, but this does not explain why the 1.08% result is so far below random chance. We would

expect a poor choice of metrics to provide around 10% accuracy if they were not more helpful than

guesswork. So we expect that there is some anomalous behaviour in the classifier. We have already

shown in Figure 7.8 that the support vector machine is poor for low numbersof features. We remark

that one of the six Elenbogen features is completely useless for the (anonymised) Coll-T collection

(Appendix C – E02: “number of comments”). Therefore, we suggest that the combination of a low

number of features and having a completely redundant feature is causinganomalous behaviour in the

support vector machine, and almost always incorrect results.

Finally, we remark that Table 7.8 represents the largest empirical contribution on source code

authorship attribution to the best of our knowledge. Assuming 15,000 queries per measurement are

reported, and with 368 measurements, this represents around 5,520,000 queries in total. These results

provide a clear set of benchmarks for further advancing the field. Moreover, the purpose of this table

is to make clear what has and has not been done in the field of source codeauthorship attribution for

future advancement of the field. By presenting all combinations of the previous work, the table also

discourages frivolous pairings of just another classifier with just another metric set, which should

encourage more work on the n-gram approaches in the future. These are the results that are leading

the field.

194

7.5. SUMMARY

7.5 Summary

In addition to our information retrieval contribution to source code authorship attribution, at least

eight other research groups have published in this area, but relative accuracy was unclear given

varying collections and evaluation methodologies. This chapter has brought all the previous work

together for a comprehensive comparison. The results suggested that our work and our extension of

Frantzeskou’s work are leading the field. Next, in Chapter 8 we summarise the findings in this thesis

and outline areas for future work.

195

CHAPTER 7. IMPROVING CONTRIBUTIONS IN THE FIELD

196

Chapter 8

Conclusions

Authorship attribution is the process of assigning samples of work to their authors based on style

traits in training data. This problem has been extensively studied in relation to natural language, but

is far less developed in relation to source code. The source code authorship attribution contributions

of this thesis fall within five themes, and we now summarise the key results and their significance in

turn, followed by future work and a summary.

8.1 Collections

The collections used in the research described in this thesis were designedto be large enough such that

we did not need to use any whole collection at once. Instead, we were ableto randomly sample parts

of the whole collections to form many runs, which allowed us to perform many more classifications

than in the previous work. The importance of this methodology is that we had sufficient queries for

statistical significance tests, which was lacking in previous work, due to the modest collection sizes

used.

In developing our collections and reviewing the collections in previous work, we developed a list

of eleven properties for effective use of authorship attribution collections. We demonstrated that we

have met these properties for our collections, with the exceptions of not being about to guarantee

that authorship is always correct and never shared due to plagiarism and similar problems. The

consequence is that imperfect ground truth may reduce the accuracy obtainable, therefore our results

should be considered slightly conservative, compared with collections where ground truth is known

to be perfect. The eleven properties can also act as a checklist for the benefit of other researchers,

and we recommend its use for future collection construction.

The remaining contribution concerning collections is availability. We have released statistics

197

CHAPTER 8. CONCLUSIONS

about token frequencies in the collections, which does not have intellectual property problems, unlike

any release of the original collections. These statistics are suitable for measuring the frequency of

tokens that can be used to reimplement many of the software metrics reviewed inthis thesis. We also

provided a full explanation for reproducing the freelance collections based upon the original online

source data.

8.2 Benchmarking Previous Contributions

The review of previous contributions began with plagiarism detection and genre classification, as

these areas are closely related to those of previous work. The common methodologies used in au-

thorship attribution were highlighted. We next described the similarities and differences between

authorship attribution for natural language and source code. The choice of features for natural lan-

guage authorship attribution is obviously different, but several of the classification algorithms are

shared.

The review of the previous work in the field of source code authorship attribution identified

eight contributions. It was clear that there was little agreement between keychoices of feature set,

classifier, and similarity metric, and the lack of agreement was exacerbated by the few benchmarking

experiments.

Given the above shortcomings, our first experiment was to reimplement andcompare the eight

contributions using our collections. Our results suggested that the Frantzeskou approach [Frantzeskou

et al., 2006a] using the simplified profile intersection similarity measure on authorprofiles of byte-

level n-grams, is more effective than the machine learning and software metric contributions. The

results also provided a comprehensive set of benchmark scores for comparison with our own infor-

mation retrieval contribution. This contribution is significant, as it is the first full evaluation of all

published source code authorship attribution contributions.

8.3 Applying Information Retrieval

The review of previous contributions made it clear that the use of n-grams and similarity measures,

such as coordinate matching, was underexplored for source code authorship attribution. We proposed

an information retrieval approach motivated by the previous source codeplagiarism detection work

of Burrows et al. [2006].

From the initial experiments using an information retrieval approach, we identified an appropriate

n-gram length, similarity measure, and feature set. Results for the choice ofn-gram length showed

that n = 6 is suitable. Concerning the similarity measure, Okapi BM25 was shown to be more ef-

198

8.4. EFFECTIVENESS PARAMETERS

fective than cosine, pivoted cosine, language modelling with Dirichlet smoothing, and Author1 that

we developed ourselves. Six feature classes were evaluated consistingof operators, keywords, white

space tokens, literal tokens, input/output tokens, and function tokens. The combination of opera-

tors, keywords, and white space tokens, was identified as being highly effective. These experiments

used mean reciprocal rank and mean average precision information retrieval evaluation measures, to

quantify the quality of the ranked lists returned by the search engine.

When investigating the method for making authorship decisions, we found thatusing the author

of the top ranked sample was more effective than using ranked lists as a whole, whether using the

positions in the ranked lists (average precision), or normalised weights. This result suggests that some

samples may be less helpful markers of authorship than others, since all but one result was discarded

for each decision.

Omitting the query sample from the index results in a very large increase in running time, as a new

index is needed for each successive query to ensure there is no bias when comparing techniques. We

investigated leaving the query sample in the index, and instead omitting it from the returned ranked

lists of results. This has the benefit of reducing the number of indexes from one per query to one per

run. While this variation affects the term data in the index, we showed that the difference in results

between this faster design and the alternative is statistically insignificant, and hence acceptable.

The conclusion in Chapter 5 is the comparison of our initial model to the benchmarks evaluated

in Chapter 4. The initial results using Coll-A already indicated that our work performs better than

previously published methods at this point.

8.4 Effectiveness Parameters

When developing the initial model described above, some other key factorshad to be kept constant,

such as the number of authors and number of samples per author. We found that there is no bench-

mark for these factors for source code authorship attribution, but we were able to demonstrate the

good scalability of our approach in terms of number of authors compared witha natural language

authorship attribution benchmark.

We next explored the effect of sample size, and showed that our model performed similarly on

short and long query samples. We also explored the stylistic strength of the samples as measured with

criteria common to computer science assessment, and found that a correlationdoes not exist between

stylistic strength and authorship attribution accuracy. This implies that samples with both good and

poor quality coding styles can be attributed with similar levels of accuracy.

An important contribution in Chapter 6 concerned sample timestamp as a confound. We inves-

199

CHAPTER 8. CONCLUSIONS

tigated topical and temporal effects in turn and showed that both strongly affect accuracy. That is,

accuracy increases if there is topical data available, and accuracy is higher for later query samples

than earlier ones.

We also demonstrated that accuracy scores for typical authorship attribution experiments and

the real-life scenario of attributing authorship of student programs in educational institutions differ

greatly. In the real-life scenario, samples dated after the query sample obviously do not yet exist,

and should therefore be discounted from training. We found that the greatly reduced accuracy scores

were unacceptable for the real-life scenario. However, we found thatallowing all matches from the

current semester in addition to the previous samples is nearly as effective as allowing the full set.

The key finding from the timestamp investigation is that accuracy scores plateaued roughly from

the third task of six when exploring timestamps in isolation. We suggest this indicates the amount of

time for coding style to stabilise. This finding has implications for those developingcoding standards,

and monitoring compliance within organisations.

We concluded Chapter 6 by investigating how the use of individual features changes between

individual authors and tasks using entropy. We found that capturing white space in blocks was more

effective than processing spaces individually.

8.5 Improving Contributions in the Field

The previous work in source code authorship attribution lacked a benchmarking study to bring all the

work in the field together for an overall comparison, which was a problem we have now addressed.

We also implemented some obvious variations of the previous work, such as exchanging the types of

n-grams used in our work and that of Frantzeskou et al. [2006a], evaluating untested combinations of

classifier algorithms and software metrics as features, and exploring normalised counts of n-grams as

machine learning features.

The conclusions from our comparison are five-fold.

1. For a one-in-ten problem, the best results for our largest freelancecollection show that accuracy

for our approach is around 90%, accuracy for the Frantzeskou approach is around 85%, and

accuracy for the leading metric-based approaches is around 75%.

2. When considering the modified baselines in Sections 7.2 and 7.3 for a one-in-ten problem, the

best results for our largest freelance collection show that accuracy for the modified Frantzeskou

approach increases to around 90%, and accuracy for the leading modified metric-based ap-

proaches increases to around 85%.

200

8.6. FUTURE WORK

3. The Frantzeskou work requires a largern for the n-gram length than previously published, and

the practice of truncating author profiles at uncertain lengths can be safely ignored.

4. Of those evaluated, the neural network and support vector machine are the most accurate ma-

chine learning classification algorithms for source code authorship attribution, however the

support vector machine is poorer for small feature sets.

5. Using n-gram features in machine learning shows promise, but is not scalable to largen.

In summary, the results showed that the n-gram and similarity measure approaches are more

effective than the software metric and machine learning approaches, and arehence currently the state-

of-the-art. We believe that preserving adjacent features with the construction of n-grams is important

for authorship attribution, and that the machine learning approaches with software metrics were less

accurate, as they do not preserve locality, unless n-grams themselves are the features, such as in the

work by Kothari et al. [2007].

8.6 Future Work

In this section we describe future work for our approach, the approach by Frantzeskou et al. [2006a],

the metric-based approaches, and related problems to source code authorship attribution in general.

8.6.1 Information Retrieval Approach

For our approach, further investigation into the choice of similarity measure and feature set is war-

ranted. Concerning similarity measure, five measures were evaluated, butthere are many more that

can be explored. For example, the work by Zobel and Moffat [1998] provided a comprehensive

overview of candidate similarity measures. For feature selection, we explored sixty-three combina-

tions of six feature classes based on a taxonomy in the literature [Oman and Cook, 1990], but we

later discovered that a few key features did not fall within the taxonomy, including curly braces,

semicolons, and preprocessor directives, which resulted in their omission. Additional work with

these features may push the accuracy scores of our approach abovethe modified Frantzeskou et al.

[2006a] approach.

Further improvement may be obtained by altering the extraction of feature tokens from the source

code. We used the flex lexical analysis tool [Flex Project, 2008], but problems exist when tokens

have multiple meanings due to overloading. Moreover, our reimplementation of literals treated all

local variables, global variables, function names, function parameter names, and type definitions, as

generic identifiers, with labels for uppercase, lowercase, titlecase, camelcase, and other case literals.

201

CHAPTER 8. CONCLUSIONS

We considered parsers and compiler suites, but these have problems forsamples that do not compile

due to anonymisation from renamed source files and errors in syntax. Future work remains in better

distinguishing these types of tokens, particularly for erroneous and damaged source code samples.

Concerning timestamps, our temporal collection Coll-T could be used in combination with our

experiment exploring the number of samples per author as a confound (see Section 6.1.2, p. 137). In

this experiment, we removed samples at random, and this could be extended to remove samples by

any combination of timestamps, which we have already partially explored when investigating topical

and temporal effects on authorship attribution accuracy. Removing samples at random may result in

some of the best training samples becoming unavailable.

Next, it is well known that some students try to hide incidents of plagiarism. Future work is

needed to investigate how code style obfuscation affects authorship attribution accuracy. This may

be simulated by passing the code samples through code formatting tools (or “pretty printers”), to

make some markers of style constant such as use of white space and braces. Moreover, if programs

are written using a professional integrated development environment which allows adherence to a

company coding style, then our approach for determining authorship should be highly effective at the

organisational level.

Finally, it would be of interest to know the amount of plagiarism in our collections, as reported

levels of plagiarism in the literature vary considerably. These statistics couldbe estimated in future

work by passing our collections through a source code plagiarism detection tool.

8.6.2 Frantzeskou Approach

Frantzeskou et al. [2006a] proposed the simplified profile intersection measure for computing the

similarity of n-gram profiles, which is a form of coordinate matching. Several possible alternatives

similar to coordinate matching could be evaluated. For example, Stamatatos [2007] proposed two

variations of relative distance and simplified profile intersection, of which thed2 variation was shown

to be the most effective. We suggest that investigation of the resemblance measure described by

Broder [1998] would also be worthwhile.

Another extension and combination of multiple ideas, is to consider normalised counts of byte-

level n-grams as features for machine learning classification. However,we expect there to be scalabil-

ity problems as experienced with the equivalent experiment for feature-level n-grams in Section 7.3.2.

202

8.6. FUTURE WORK

8.6.3 Metric-Based Approaches with Machine Learning

For the metric-based approaches, we first note that we had to make a compromise when reimple-

menting the Lange and Mancoridis [2007] feature set, as individual measurements from histograms

of feature classes are too numerous when used as a set of features in Weka. Therefore, we had to

apply some basic discretisation as described in Appendix C. The Shevertalov et al. [2009] paper

represents the only discretisation contribution for source code authorship attribution to date, leaving

more room for future work in this area.

For the Kothari et al. [2007] approach, we noted that they used fifty metrics per author, without

reporting results for other numbers of authors. Future work is needed toinvestigate how this approach

scales in terms of accuracy and time for other metric set sizes.

Next, we note that our reimplementation work covered all classification algorithms from previous

source code authorship attribution literature, but there are still many that remain from other domains.

A good example is Kullback-Leibler Divergence as a measure of relative entropy [Kullback and

Leibler, 1951], which was shown to be effective in the work by Zhao et al. [2006]. Yet further work

in this area is possible if existing classifiers are combined by means of voting, such as bagging and

boosting [Bauer and Kohavi, 1999].

We also note that the feature selection work in this thesis has been limited to Sections 5.3 and 6.7

only for our work, and pre-processing is needed to cut features, particularly for those experiments

that use n-grams as features such as in Section 7.3.2. In this thesis, we have simply allowed the clas-

sification algorithms to manage features themselves that may contribute little towardsclassification

decisions. This is a large area of machine learning with scalability implications, and we leave this for

future work.

8.6.4 Related Problems

With experiments such as those from Section 7.3.2 that push the size of our feature sets to the limit, it

is important to establish which classification algorithms have the best compromise between accuracy

and time in order to continue this research. We have found that the neural network and the support

vector machine are currently the most effective, but our anecdotal evidence has shown that these are

the two most time consuming respectively. Results from future experiments in thisarea should ideally

be graphed expressing accuracy versus time to establish the best compromises.

Another interesting area of research is to be able to better process borderline classification de-

cisions. For example, if a correct classification between two authors is deemed to have probability

of 51% and 49% respectively, then this is uninteresting as the attribution is madealmost by random

203

CHAPTER 8. CONCLUSIONS

chance. The attribution would be much more interesting if the probability was 90%to 10% instead.

The idea is to assign confidence scores to each attribution in order for uninteresting cases to be la-

belled appropriately. This has been approached with meta-learning by Koppel et al. [2009] to date,

and future work remains for assigning confidence scores for sourcecode authorship attributions.

Applying source code and natural language authorship attribution together is another area for

future work. This is applicable to source code authorship attribution for samples with large amounts

of commenting. It is also of interest to try authorship attribution for otherstructured languagessuch

as mathematical equations, chemical formulae, Z specifications, UML, SQL, XML, HTML, LATEX,

assembly language, and so forth. Building sufficient collections remains a challenge. Suggestions

include sourcing content from specialised evaluation forums, such as INEX [Geva et al., 2009] for

XML data, or performing a web crawl for specialised types of content.

Other significant and related areas for source code research includethe authorship verification

and discrimination problems.

8.7 Summary

Source code authorship attribution is an underexplored problem compared with natural language au-

thorship attribution, and in this thesis we have advanced the state-of-the-art. Previous published work

in the field has been reviewed, and the previous contributions were reimplemented and benchmarked

against one another using four significant collections. Then, we presented the novel information re-

trieval approach, which was developed and evaluated for source code authorship attribution. Several

variables that affect the accuracy of our approach were then explored, including timestamp as a con-

found, and experiment results revealed that coding style is unstable in the first academic semester for

students. Finally, for the one-in-ten problem using the largest freelancecollection, the results showed

that our approach is the state-of-the-art with around 90% accuracy, compared with the reimplemented

approaches that were around 85% accurate for the Frantzeskou approach, and 75% accurate for the

leading metric-based approach. When our modifications and other explored variations were taken

into account, the modified Frantzeskou approach achieved similar accuracy to our work, and the

leading metric-based variation was around 85% accurate.

There is more that could be explored to advance the techniques for source code authorship at-

tribution. However, if a practical system were to be implemented today, our recommendation based

on our experiments and the relative efficiency of the different approaches is to use an information

retrieval approach by extending an existing search engine, whether it be Zettair or another. For any

software targeted towards an everyday user, additional work is needed to document how their sam-

204

8.7. SUMMARY

ples of work should be best organised in common file systems for convenience, and a well-designed

front-end is required.

205

CHAPTER 8. CONCLUSIONS

206

Appendix A

Glossary

Appendices A.1, A.2, and A.3 list commonly appearing symbols and their definitions for this thesis.

A.1 Authorship Attribution Glossary

n: An n-gram length.

L: A profile length used in coordinate matching.

CNG: Common N-Gram.

S PI: Simplified Profile Intersection.

207

APPENDIX A. GLOSSARY

A.2 Information Retrieval Glossary

t: A term.

q: A query identifier.

Q: A query.

|Q|: Query length (number of terms in queryQ).

d: A document identifier.

Dd: A document with identifierd.

|Dd|: Document length (number of terms in documentDd).

N: Number of documents in the collection.

fq,t: Within-query frequency (number of occurrences of termt in queryq).

fd,t: Within-document frequency (number of occurrences of termt in documentd).

ft: Raw document frequency (number of documents in which termt appears).

Ft: Collection frequency (number of occurrences of termt in the collection).

F: Total number of terms in the collection.

MRR: Mean Reciprocal Rank.

MAP: Mean Average Precision.

208

A.3. MACHINE LEARNING GLOSSARY

A.3 Machine Learning Glossary

BayNt: Bayesian Network abbreviation.

DecTr: Decision Tree abbreviation.

KLD: Kullback-Leibler Divergence abbreviation.

KNNei: K-Nearest Neighbour abbreviation.

NeuNt: Neural Network abbreviation.

Bayes: Naive Bayes abbreviation.

NNei: Nearest Neighbour abbreviation.

Regre: Regression Analysis abbreviation.

S VM: Support Vector Machine abbreviation.

VFI: Voting Feature Intervals abbreviation.

209

APPENDIX A. GLOSSARY

210

Appendix B

Reconstruction of Freelance Collections

This appendix describes how others can reproduce collections similar to Coll-P and Coll-J from the

Planet Source Code web site [Exhedra Solutions Inc., 2010a]. This is necessary as the web site terms

and conditions prevent the sharing of the Planet Source Code content we downloaded with others.

Therefore, other researchers wishing to replicate the Planet Source Code collections used in this thesis

are advised to obtain the content directly from the web site. The terms and conditions [Exhedra

Solutions Inc., 2010b] state that users have the right to “freely view all submitted content as well

as use all content in their own programs without restriction”, however redistribution is not allowed

without written permission from all original copyright holders. The steps for reproducing either of

our freelance collections are as follows:

1. From the Planet Source Code homepage at http://www.planet-source-code.com, select the pro-

gramming language (for example, C/C++) from the top menu bar (Figure B.1).

2. Follow the “Advanced Category Browse” link at the bottom of the page (Figure B.2).

3. Select the following options on the search form provided (Figure B.3):

• “Choose a category to browse”: All

• “Code type”: .Zip files (for convenience)

• “Code difficulty level”: Unranked, beginner, intermediate, and advanced (all fourcate-

gories)

• “Thorough search – scans actual code contents”: No (unnecessary)

• “Display in”: Alphabetical order

• “Maximum number of entries to view (per page)”: 50 (the maximum)

211

APPENDIX B. RECONSTRUCTION OF FREELANCE COLLECTIONS

Figure B.1: Coll-P andColl-J collection construction step 1 at Planet Source Code. Permission to
use this screenshot was provided by Ian Ippolito from Exhedra Solutionson 7 May 2010.

4. Browse the result page and click on the name of any author (Figure B.4).

5. Click the “All submission(s) by this author” link (Figure B.5).

6. Check that the author has sufficient samples for your needs, and click the (zipped) work sample

links to download the samples (Figure B.6).

7. Repeat steps 4–6 above for any number of authors. Take care to record the names (or aliases) of

the authors processed to avoid duplication of effort. Use a separate folder to store the samples

for each author.

212

Figure B.2: Coll-P andColl-J collection construction step 2 at Planet Source Code. Permission to
use this screenshot was provided by Ian Ippolito from Exhedra Solutionson 7 May 2010.

213

APPENDIX B. RECONSTRUCTION OF FREELANCE COLLECTIONS

Figure B.3: Coll-P andColl-J collection construction step 3 at Planet Source Code. Permission to
use this screenshot was provided by Ian Ippolito from Exhedra Solutionson 7 May 2010.

214

Figure B.4: Coll-P andColl-J collection construction step 4 at Planet Source Code. Permission to
use this screenshot was provided by Ian Ippolito from Exhedra Solutionson 7 May 2010.

215

APPENDIX B. RECONSTRUCTION OF FREELANCE COLLECTIONS

Figure B.5: Coll-P andColl-J collection construction step 5 at Planet Source Code. Permission to
use this screenshot was provided by Ian Ippolito from Exhedra Solutionson 7 May 2010.

216

Figure B.6: Coll-P andColl-J collection construction step 6 at Planet Source Code. Permission to
use this screenshot was provided by Ian Ippolito from Exhedra Solutionson 7 May 2010.

217

APPENDIX B. RECONSTRUCTION OF FREELANCE COLLECTIONS

218

Appendix C

Features from the Literature

The source code features used in previous studies with empirical contributions are organised chrono-

logically in Table C.1. We acknowledge that the feature descriptions have either been reproduced or

paraphrased for readability from the respective publications as necessary.

Table C.1 is organised into five columns. The first column contains an identification number, used

for cross-referencing purposes, consisting of the first letter of the author surname, plus a sequential

natural number.

The second column contains the identifying number (or code) used in the literature. Four of the

six contributions listed have identifying codes. Krsul [1994] and Ding andSamadzadeh [2004] used

similar numbering schemes to differentiate layout metrics, style metrics and structure metrics. Lange

and Mancoridis [2007] used metric classes such asline-len-N for calculating the percentage of

times code line lengths ofN characters appear. DiscretisingN at carefully considered lengths was

necessary for two reasons. First, we need to have a consistent value of N across all collections.

Second, these metric classes otherwise generated impractical numbers of metrics as input to the

classification algorithms. MacDonell et al. [1999] used a naming conventionsimilar to the description

of the metrics. Elenbogen and Seliya [2008] did not use codes, so we repeated the first column

identification numbers here. Kothari et al. [2007] did not use codes either, as the individual byte-

level n-grams selected do not have meaningful descriptions.

The third column contains complete descriptions of the metrics as described in theoriginal pub-

lications and modified for readability where necessary.

The fourth column documents the type of measurement for each metric. The five types of mea-

surements are: percentage measurement, integer number, real number, boolean measurement, and

one-of-many sets (or enumerations). For features with nominal measurements (boolean and set), we

chose the first-listed class descriptor in the event of measurement ties. In addition, some metrics are

219

APPENDIX C. FEATURES FROM THE LITERATURE

normalised whilst others are not. We respected the original decisions of theauthors here, even though

we believe normalisation is preferable when working with programs of varying lengths. Moreover,

we chose normalised metrics when the implementation decision is not clear.

The fifth and final column provides some tags for common notes that would otherwise be repeated

for each instance in the table. First, some of the Lange and Mancoridis [2007] metric classes such

asword-len-N have been tagged with the values ofN used. In the literature, Lange and Mancoridis

[2007] used every value ofN applicable to the collection in the study. However, the histogram-based

method proposed does not scale to a machine learning implementation with one feature for each mea-

surement. Thousands of measurements are potentially required dependingon each collection. For

example, with theline-len-N metric there could be hundreds of different line lengths in a collec-

tion, hence this metric would require hundreds of measurements in itself. Therefore we frequently

group some values ofN together (discretisation). For example, theline-len-N metric has been

documented as “N ∈ {0−19,20− ...}”, which indicates one measurement for lines of zero to nineteen

characters, and another for lines with twenty or more characters.

Some metrics require more than a shallow lexicographic parsing of the sourcecode to differen-

tiate identifiers such as local variables, global variables, function names,function parameter names,

and type definitions. Determining higher level labels for source code constructs requires success-

ful parsing of the code, and relies on correct syntax for the languagegrammar used. Given that

our anonymisation process disrupted some syntax, and that many of the source files from students

contained syntax errors anyway, we felt that parsing to identify high level features could not be suc-

cessfully automated for our collections. Use of compiler suites is a common methodfor tagging

different kinds of identifiers. For example, the Java command “javac -Xprint filename.java”

gives a list of Java methods and class variables that could be helpful forsome metrics dealing with

identifiers. We note that compiler suites are not helpful in conjunction with syntactically incorrect

samples. All collections used in this thesis are too large to be processed manually, having more work

samples than any of the previous source code authorship attribution studies, and we could not gen-

eralise their compilation for use with compiler suites. This is due to the academic collections being

selected from many semesters and courses over an eight year period, and the freelance collections

come from completely unrelated authors. For example, samples with missing compilation scripts

(such as a Makefile) could not be compiled, especially if a program requires special compilation flags

or generates multiple executables. The anonymisation process also interfered with compilation, as it

renamed all file and folder names, which consequentially broke file inclusions or similar constructs.

Finally, other samples simply contain syntax errors. We felt that any attempt atimplementing a cus-

tom parser capable of tagging all identifier types in potentially malformed software would not be

220

without error. Therefore we simply tagged all identifiers in the source code with a generic identifier

token. This meant that metrics such as “average characters per functionname” become “average

characters per identifier”. All affected metrics are flagged with the “Identifier” tag.

Some metrics were in a form such as “ratio of interfaces to classes”. In this example, a divide-by-

zero problem can occur if a sample contains no classes. Metrics similar to this have been modified

to avoid divide-by-zero problems. The above example has been changed to “ratio of interfaces to

interfaces and classes”, for example. These are flagged with the “Div-0” tag.

Some metrics appear multiple times under two or more of the metric sets. The duplicateshave

been flagged with the “Duplicate{ID}” tag, including a metric identifier number for reference in place

of “ {ID}”. We have 172 unique metrics and 14 duplicate metrics in total.

The remaining categories in the fifth column are flagged as “Development”, “Inspection”, “Com-

pilable”, or “Runnable”, and those metrics have not been implemented in this thesis. Development

metrics require knowledge about development environments such as the tools used, and this knowl-

edge is not available.Compilableandrunnablemetrics require the successful compilation or running

of the software, and we do not expect all programs to run yet alone compile as described previously.

Inspectionmetrics can only be calculated with a source code human inspection, which is not scalable

to the collections used in this thesis. We note that all of these four categories representing unimple-

mented metrics are for metrics by Krsul [1994] only. Putting these categoriesaside, we were able

to reimplement forty-two of the sixty Krsul metrics. The Krsul [1994] work was written to describe

all metrics that they found, and they have not separated the metrics that arereasonable to implement

from the ones that are provided for completeness, hence this decision.

Table C.1: Source code features used in the previous work with contributionsorganised chronologi-
cally. We acknowledge that the listings have either been reproduced or paraphrased for readability
from the respective publications as necessary.

ID Code Description Type Notes
Krsul [1994] — 42/60 metrics implemented1

K01 STY1a Most common indentation level of statements within
surrounding blocks. {zero spaces, one space, two
spaces, three spaces, four spaces, five+ spaces, tab}.
See Ranade and Nash [1992, p68–69].

set Inspection

K02 STY1b Percentage of open curly brackets alone on a line. percentDuplicate: D01
K03 STY1c Percentage of open curly brackets at start of line. percent Duplicate: D02
K04 STY1d Percentage of open curly brackets at end of line. percentDuplicate: D03
K05 STY1e Percentage of close curly brackets alone on a line. percentDuplicate: D04
K06 STY1f Percentage of close curly brackets at start of line. percent Duplicate: D05

Continued on next page

1Eighteen metrics were not implemented for the reasons discussed in the Appendix C introduction.

221

APPENDIX C. FEATURES FROM THE LITERATURE

Table C.1 – continued from previous page

ID Code Description Type Notes
K07 STY1g Percentage of close curly brackets at end of line. percentDuplicate: D06
K08 STY1h Most common indentation of open curly brack-

ets. {existing line, zero spaces, one space, two
spaces, three spaces, four spaces, five+ spaces, tab}.
See Ranade and Nash [1992, p68–69].

set Inspection

K09 STY1i Most common indentation of close curly brack-
ets. {existing line, zero spaces, one space, two
spaces, three spaces, four spaces, five+ spaces, tab}.
See Ranade and Nash [1992, p68–69].

set Inspection

K10 STY2 Most common indentation style of “else” statements.
{own-line, not own-line}.

set —

K11 STY3 Any variable names indented to a fixed column in vari-
able declarations?

boolean Identifier,
Inspection

K12 STY4 Separator between function names and parameter lists
in function declarations. {spaces, carriage returns,
none, mixture}.

set Identifier,
Inspection

K13 STY5 Separator between function return type and function
name in function declarations.{spaces, carriage re-
turns, mixture}.

set Identifier,
Inspection

K14 STY6a Borders used to highlight any comments? boolean —
K15 STY6b Percentage of lines of code with inline comments. percent Duplicate: M12
K16 STY6c Percentage of block style comment lines to lines of

code.
percent —

K17 STY7 Percentage of blank lines to lines of code. percent Duplicate: D14,
Duplicate: M01

K18 PRO1 Average characters per line. real Duplicate: M06
K19 PRO2a Average characters per local variable. real Identifier
K20 PRO2b Average characters per global variable. real Identifier
K21 PRO2c Average characters per function name. real Duplicate: D19,

Identifier
K22 PRO2d Average characters per function parameter name. real Identifier
K23 PRO3a Any variable names use the underscore character? boolean Identifier
K24 PRO3b Use of any temporary variables “temp”, “tmp”, or

“xxx” (case-insensitive).
boolean Identifier

K25 PRO3c Percentage of variable names starting with an upper-
case letter.

percent Identifier

K26 PRO3d Percentage of function names starting with an upper-
case letter.

percent Identifier

K27 PRO4 Percentage of global variables to all variables. percent Identifier,
Div-0

K28 PRO5 Ratio of local variables to lines of code. real Identifier
K29 PRO6 Any use of ‘#ifdef’? boolean —
K30 PRO7 Most common looping construct.{for, while, do}.

(Assume “while” not counted in “do-while”.)
set —

K31 PRO8 Use of any comments that near-mimic the code? boolean Inspection
K32 PRO9 Most common function parameter declaration type.

{Standard C, ANSI C Java}.
set Compilable

K33 PSM1 Percentage of “int” function definitions to all. percent Identifier
K34 PSM2 Percentage of “void” function definitions to all. percent Identifier
K35 PSM3 Use of any debugging symbols “debug” or “dbg”

(case-insensitive)?
boolean —

Continued on next page

222

Table C.1 – continued from previous page

ID Code Description Type Notes
K36 PSM4 Any use of assert() macro? boolean —
K37 PSM5 Average lines of code per function. real —
K38 PSM6 Ratio of variables to lines of code. real Identifier
K39 PSM7 Percentage of static global variables to global vari-

ables.
percent Identifier

K40 PSM8 Ratio of decision statements to lines of code.{if,
switch, ‘?’, do, for, while}.

real —

K41 PSM9 Goto used at all? boolean —
K42 PSM10a Cyclomatic complexity number. See McCabe [1976]. int Duplicate: M22
K43 PSM10b Program volume. See Halstead [1972]. real —
K44 PSM10c Number of function input parameters, local variables,

and output statements. See Conte et al. [1986, p47–
48].

int Identifier

K45 PSM10d Average number of live variables per statement. Conte
et al. [1986] summarise three interpretations of this
metric by Dunsmore and Gannon [1979]. We imple-
ment the simple variation where variables are consid-
ered to be live from beginning to end of procedures.

real Identifier

K46 PSM10e Average lines of code (or span) between variable ref-
erences. For example, the average span of variable “x”
referenced at lines 12, 22, and 43 is 15.5 lines. Do not
count variables with only one reference. See Conte
et al. [1986, p55–56].

real Identifier

K47 PSM11a Any error results from memory-related routines ig-
nored?{malloc(), calloc(), realloc(), memalign(), val-
loc(), alloca(), free()}.

boolean —

K48 PSM11b Any error results from input/output routines ig-
nored?{open(), close(), dup(), lseek(), read(), write(),
fopen(), fclose(), fwrite(), fread(), fseek(), getc(),
putc(), gets(), puts(), printf(), scanf()}.

boolean —

K49 PSM11c Any error results from system routines ignored?
{chdir(), mkdir(), unlink(), socket()}.

boolean —

K50 PSM12a Does the programmer rely on the internal representa-
tion of data objects such as the size of primitive data
types using “sizeof” at all?

boolean —

K51 PSM12b Does the programmer rely on the internal representa-
tion of data objects such as the byte order of primitive
data types at all?

boolean Inspection

K52 PSM13 Do all functions do “nothing” successfully? For ex-
ample, when checking empty input and data outside
of expected conditions?

boolean Runnable

K53 PSM14 Do all comments and code agree? boolean Inspection
K54 PSM15a Are comments made before, during, or after coding?

{before, during, after, mixed}.
set Development

K55 PSM15b What editor is used?{(Editors undefined.)} set Development
K56 PSM15c What compiler is used?{(Compilers undefined.)} set Development
K57 PSM15d Are revision control systems used at all? boolean Development
K58 PSM15e Are any other development tools used? boolean Development
K59 PSM16a Are any software development standards used? booleanDevelopment

Continued on next page

223

APPENDIX C. FEATURES FROM THE LITERATURE

Table C.1 – continued from previous page

ID Code Description Type Notes
K60 PSM16b Is the software deemed high quality by measurement

of reliability and robustness quality metrics? (Metrics
undefined.)

boolean Runnable

MacDonell et al. [1999] — 26 metrics implemented
M01 WHITE Percentage of lines that are blank. percent Duplicate: D14,

Duplicate: K17
M02 SPACE-1 Percentage of operators with white space on both

sides.
percent —

M03 SPACE-2 Percentage of operators with white space on left side
only.

percent —

M04 SPACE-3 Percentage of operators with white space on right side
only.

percent —

M05 SPACE-4 Percentage of operators with white space on neither
side.

percent —

M06 LOCCHARS Average characters per line. real Duplicate: K18
M07 CAPS Percentage of letters that are uppercase. percent —
M08 LOC Non-whitespace lines of code (LOC). int —
M09 DBUGSYM Debug variables (“debug” or “dbg”, case-insensitive)

per LOC.
real —

M10 DBUGPRN Commented out print statements per LOC.{print, put,
cout}.

real —

M11 COM Percentage of LOC that are purely comment lines. percent Duplicate: D15
M12 INLCOM Percentage of LOC that have inline comments. percent Duplicate: K15
M13 ENDCOM Percentage of end-of-block braces labelled with com-

ments.
percent —

M14 GOTO Ratio of goto statements per non-comment lines of
code (NCLOC).

real —

M15 COND-1 Ratio of #if per NCLOC. real —
M16 COND-2 Ratio of #elif per NCLOC. real —
M17 COND-3 Ratio of #ifdef per NCLOC. real —
M18 COND-4 Ratio of #ifndef per NCLOC. real —
M19 COND-5 Ratio of #else per NCLOC. real —
M20 COND-6 Ratio of #endif per NCLOC. real —
M21 COND Ratio of compilation keywords per NCLOC.{#if,

#elif, #ifdef, #ifndef, #else, #endif}.
real —

M22 CCN McCabe’s cyclomatic complexity number. See Mc-
Cabe [1976].

int Duplicate: K42

M23 DEC-IF Ratio of “if” statements per NCLOC. real —
M24 DEC-SWITCH Ratio of “switch” statements per NCLOC. real —
M25 DEC-WHILE Ratio of “while” statements per NCLOC. real —
M26 DEC Ratio of decision statements per NCLOC.{if, switch,

‘?’, do, for, while}.
real —

Ding and Samadzadeh [2004] — 56 metrics implemented
D01 STY1a Percentage of open curly brackets alone on a line. percentDuplicate: K02
D02 STY1b Percentage of open curly brackets at start of line. percent Duplicate: K03
D03 STY1c Percentage of open curly brackets at end of line. percentDuplicate: K04
D04 STY1d Percentage of close curly brackets alone on a line. percentDuplicate: K05
D05 STY1e Percentage of close curly brackets at start of line. percent Duplicate: K06
D06 STY1f Percentage of close curly brackets at end of line. percentDuplicate: K07
D07 STY1g Average indentation in white spaces after open braces. real —

Continued on next page

224

Table C.1 – continued from previous page

ID Code Description Type Notes
D08 STY1h Average indentation in tabs after open braces. real —
D09 STY2a Percentage of pure comment lines to lines containing

comments.
percent —

D10 STY2b Percentage of ‘//’ style comments to ‘//’ and ‘/*’ style
comments.

percent —

D11 STY3 Percentage of condition lines where the statements are
on the same line as the condition.

percent —

D12 STY4 Average white space to the left side of operators.{+,
-, *, /%,=, +=, -=, *=, /=, %=, ==}.

real —

D13 STY5 Average white space to the right side of operators.{+,
-, *, /%,=, +=, -=, *=, /=, %=, ==}.

real —

D14 STY6 Percentage of blank lines to all lines. percent Duplicate: K17,
Duplicate: M01

D15 STY7 Percentage of comment lines to LOC. (Comment lines
are pure comment lines. Non-comment lines include
lines with inline comments.)

percent Duplicate: M11,
Div-0

D16 STY8 Ratio of code lines containing comment to NCLOC. real —
D17 PRO1 Number of characters. int —
D18 PRO2a Average characters per variable for primitive and

string variables.
real Identifier

D19 PRO2b Average characters per function name. real Duplicate: K21,
Identifier

D20 PRO3a Percentage of identifiers beginning with an uppercase
character.

percent —

D21 PRO3b Percentage of identifiers beginning with a lowercase
character.

percent —

D22 PRO3c Percentage of identifiers beginning with an under-
score.

percent —

D23 PRO3d Percentage of identifiers beginning with a dollar sign. percent—
D24 PRO4a Percentage of “while” in total of “while”, “for” and

“do”. (Assume “while” not counted in “do-while”.)
percent —

D25 PRO4b Percentage of “for” in total of “while”, “for” and “do”.
(Assume “while” not counted in “do-while”.)

percent Duplicate: E05

D26 PRO4c Percentage of “do” in total of “while”, “for” and “do”.
(Assume “while” not counted in “do-while”.)

percent —

D27 PRO5a Percentage of “if” and “else” in total of “if”, “else”,
“switch”, and “case”.

percent —

D28 PRO5b Percentage of “switch” and “case” in total of “if”,
“else”, “switch”, and “case”.

percent —

D29 PRO5c Percentage of “if” in total of “if” and “else”. percent —
D30 PRO5d Percentage of “switch” in total of “switch” and “case”. percent —
D31 PSM1 Average non-comment lines per class or interface. real —
D32 PSM2 Average number of primitive variables per class or in-

terface.
real Identifier

D33 PSM3 Average number of functions per class or interface. real Identifier
D34 PSM4 Ratio of interfaces to interfaces and classes. percent Div-0
D35 PSM5 Ratio of primitive variables to NCLOC. real Identifier
D36 PSM6 Ratio of functions to NCLOC. real Identifier
D37 PSM7a Ratio of keyword “static” to NCLOC. real —
D38 PSM7b Ratio of keyword “extends” to NCLOC. real —

Continued on next page

225

APPENDIX C. FEATURES FROM THE LITERATURE

Table C.1 – continued from previous page

ID Code Description Type Notes
D39 PSM7c Ratio of keyword “class” to NCLOC. real —
D40 PSM7d Ratio of keyword “abstract” to NCLOC. real —
D41 PSM7e Ratio of keyword “implements” to NCLOC. real —
D42 PSM7f Ratio of keyword “import” to NCLOC. real —
D43 PSM7g Ratio of keyword “instanceof” to NCLOC. real —
D44 PSM7h Ratio of keyword “interface” to NCLOC. real —
D45 PSM7i Ratio of keyword “native” to NCLOC. real —
D46 PSM7j Ratio of keyword “new” to NCLOC. real —
D47 PSM7k Ratio of keyword “package” to NCLOC. real —
D48 PSM7l Ratio of keyword “private” to NCLOC. real —
D49 PSM7m Ratio of keyword “public” to NCLOC. real —
D50 PSM7n Ratio of keyword “protected” to NCLOC. real —
D51 PSM7o Ratio of keyword “this” to NCLOC. real —
D52 PSM7p Ratio of keyword “super” to NCLOC. real —
D53 PSM7q Ratio of keyword “try” to NCLOC. real —
D54 PSM7r Ratio of keyword “throw” to NCLOC. real —
D55 PSM7s Ratio of keyword “catch” to NCLOC. real —
D56 PSM7t Ratio of keyword “final” to NCLOC. real —

Lange and Mancoridis [2007] — 56 metrics implemented2

L01 access-1 Percent of keyword “public” to all access statements. percent Div-0
L02 access-2 Percent of keyword “protected” to all access state-

ments.
percent Div-0

L03 access-3 Percent of keyword “private” to all access statements. percent Div-0
L04 brace-pos-1 Percentage of open curly brace on own line to all brace

position placements.
percent Div-0

L05 brace-pos-2 Percentage of open curly brace as the leftmost non-
whitespace character on a line to all brace position
placements.

percent Div-0

L06 brace-pos-3 Percentage of open curly brace on the interior of non-
whitespace characters on a line to all brace position
placements.

percent Div-0

L07 brace-pos-4 Percentage of open curly brace as the rightmost non-
whitespace character on a line to all brace position
placements.

percent Div-0

L08 brace-pos-5 Percentage of close curly brace on own line to all
brace position placements.

percent Div-0

L09 brace-pos-6 Percentage of close curly brace as the leftmost non-
whitespace character on a line to all brace position
placements.

percent Div-0

L10 brace-pos-7 Percentage of close curly brace on the interior of non-
whitespace characters on a line to all brace position
placements.

percent Div-0

L11 brace-pos-8 Percentage of close curly brace as the rightmost non-
whitespace character on a line to all brace position
placements.

percent Div-0

Continued on next page

2Some of these metrics are in the formatname-N. Taking line-len-N for example,N represents the normalised
frequency of all recorded line lengths for 0..N characters. Therefore we document these in groups (or classes) for brevity.
In addition, the maximum value forN depends on the data, but we have only implemented thirty metrics from the fourteen
metric classes. We grouped many values ofN together to keep the feature space manageable. This process is known as
discretisation.

226

Table C.1 – continued from previous page

ID Code Description Type Notes
L12 comment-1 Percentage of block comments to all comments. percent—
L13 comment-2 Percentage of line comments to all comments. percent —
L14 comment-3 Percentage of JavaDoc comments to all comments. percent —
L15 control-flow-1 Percentage of “for” statement to all control flow state-

ments.
percent Div-0

L16 control-flow-2 Percentage of “foreach” statement to all control flow
statements.

percent Div-0

L17 control-flow-3 Percentage of “while” statement to all control flow
statements.

percent Div-0

L18 control-flow-4 Percentage of “do” statement to all control flow state-
ments.

percent Div-0

L19 control-flow-5 Percentage of “if” statement to all control flow state-
ments.

percent Div-0

L20 control-flow-6 Percentage of “switch” statement to all control flow
statements.

percent Div-0

L21 control-flow-7 Percentage of “throw” statement to all control flow
statements.

percent Div-0

L22 control-flow-8 Percentage of function calls to all control flow state-
ments.

percent Identifier,
Div-0

L23N indent-space-N Normalised frequency of chunks of N spaces for in-
dentation at start of line.

percent N ∈ {0,1− ...}

L24N indent-tab-N Normalised frequency of chunks of N tabs for inden-
tation at start of line.

percent N ∈ {0,1− ...}

L25N inline-space-N Normalised frequency of chunks of N spaces for inter-
nal spacing purposes.

percent N ∈ {1,2− ...}

L26N inline-tab-N Normalised frequency of chunks of N tabs for internal
spacing purposes.

percent N ∈ {1,2− ...}

L27N trail-space-N Normalised frequency of chunks of N spaces at end of
line.

percent N ∈ {0,1− ...}

L28N trail-tab-N Normalised frequency of chunks of N tabs at end of
line.

percent N ∈ {0,1− ...}

L29N period-N Normalised frequency of periods in single logical
identifiers. Example: a.b.c().d().

percent N ∈ {1,2− ...}

L30N underscore-N Normalised frequency of identifiers with N under-
scores.

percent N ∈ {1,2− ...}

L31N switch-N Normalised frequency of “switch” blocks with N
“case” groups.

percent N ∈ {1−2,3− ...}

L32N switch-case-N Normalised frequency of “switch” blocks with N
“case” statements.

percent N ∈ {1−2,3− ...}

L33N line-words-N Normalised frequency of lines with N words. (Aword
is a sequence of characters separated by white space.)

percent N ∈ {0−2,3− ...}

L34N word-first-char-N Normalised frequency of identifiers beginning with
the integer value N of the first character. Fifty-four
metrics could be implemented for the applicable char-
acters:{a-z, A-Z, , $}. Our implementation uses four
metrics representing character classes for lowercase
characters (N = 1), uppercase characters (N = 2), un-
derscores (N = 3), and dollar signs (N = 4) to reduce
the number or metrics.

percent N ∈ {1,2,3,4}

L35N word-len-N Normalised frequency of identifiers of length N. percent N ∈ {1−5,6− ...}
Continued on next page

227

APPENDIX C. FEATURES FROM THE LITERATURE

Table C.1 – continued from previous page

ID Code Description Type Notes
L36N line-len-N Normalised frequency of lines of length N. percentN ∈ {1−19,20− ...}
K01N commas-N Normalised frequency of lines with N commas. percentN ∈ {0,1− ...}
K02N semicolons-N Normalised frequency of lines with N semicolons. percent N ∈ {0,1− ...}

Elenbogen and Seliya [2008] — 6 metrics implemented
E01 1 Number of lines of code. int —
E02 2 Number of comments. int —
E03 3 Average length of variable names. real —
E04 4 Number of variables. int —
E05 5 Percent of “for” loop constructs to all looping con-

structs. (Assume “while” not counted in “do-while”.)
percent Duplicate: D25

E06 6 Number of bits in the zipped program using WinZip.
We used a Unix-based zip implementation.

int —

Kothari et al. [2007] — 168 metrics implemented
The metric set comprises the normalised frequencies of the 50 most common byte-level n-grams for each author.

228

Appendix D

Programming Language Feature Tables

Tables D.1, D.2, and D.3 present operator and keyword tables for C, C++, and Java respectively,

as used for source code features as discussed in Section 5.1.2 (p. 111). Overloaded operators are

only listed once using their most common form. Tables D.4 and D.5 additionally present C lan-

guage input/output keywords, function words, white space tokens, and literal features as discussed in

Section 5.3 (p. 122).

229

APPENDIX D. PROGRAMMING LANGUAGE FEATURE TABLES

Operators
(parenthesis != not equals
[bracket & bitwise and
-> indirect member access ˆ bitwise xor
. member access | bitwise or
++ increment && boolean and
-- decrement || boolean or
! not ? conditional
˜ complement = equals
* multiply += plus equals
/ divide -= minus equals
% modulo *= multiply equals
+ plus /= divide equals
- minus %= modulo equals
<< left shift <<= left shift equals
>> right shift >>= right shift equals
< less than &= bitwise and equals
> greater than ˆ= bitwise xor equals
<= less than equals |= bitwise or equals
>= greater than equals , comma
== equality

Keywords
auto do goto signed unsigned

break double if sizeof void

case else int static volatile

char enum long struct while

const extern register switch

continue float return typedef

default for short union

Table D.1: C language operators and keywords [Kelly and Pohl, 1997] preserved in samples in
Coll-A andColl-T.

230

Operators
->* bind pointer to member by pointer :: scope resolution
.* bind pointer to member by reference

Keywords
asm export private true

bool false protected try

catch friend public typeid

class inline reinterpret_cast typename

const_cast mutable static_cast using

delete namespace template virtual

dynamic_cast new this wchar_t

explicit operator throw

Table D.2: C++ operators [Farrell, 2008] and keywords [International Standardization Organization
and International Electrotechnical Commission, 1998] preserved in samples inColl-P. This table
does not duplicate operators and keywords that appear in both C and C++ languages as documented
in Table D.1.

231

APPENDIX D. PROGRAMMING LANGUAGE FEATURE TABLES

Operators
(parenthesis != not equals
[bracket & bitwise and
. member access ˆ bitwise xor
++ increment | bitwise or
-- decrement && boolean and
! not || boolean or
˜ complement ? conditional
* multiply = equals
/ divide += plus equals
% modulo -= minus equals
+ plus *= multiply equals
- minus /= divide equals
<< left shift %= modulo equals
>> right shift† <<= left shift equals
>>> right shift‡ >>= right shift equals†

< less than >>>= right shift equals‡

> greater than &= bitwise and equals
<= less than equals ˆ= bitwise xor equals
>= greater than equals |= bitwise or equals
== equality

Keywords
abstract continue float new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char for interface static void

class final long strictfp volatile

const finally native super while

Table D.3: Java operators [Liang, 2006] and keywords [Lindsey et al., 2005] preserved in samples
in Coll-J. (†Right shift with sign extension.‡Right shift with zero extension.)

232

Feature Class 1: Keywords
See Table D.1.

Feature Class 2: Operators
See Table D.1.

Feature Class 3: Input/Output Keywords [Huss, 1997]
BUFSIZ FILE fscanf _IONBF rewind stderr

clearerr FILENAME_MAX fseek L_tmpnam scanf stdin

EOF fopen fsetpos NULL SEEK_CUR stdout

fclose FOPEN_MAX ftell perror SEEK_END tmpfile

feof fpos_t fwrite printf SEEK_SET TMP_MAX

ferror fprintf getc putc setbuf tmpnam

fflush fputc getchar putchar setvbuf ungetc

fgetc fputs gets puts size_t vfprintf

fgetpos fread _IOFBF remove sprintf vprintf

fgets freopen _IOLBF rename sscanf vsprintf

Feature Class 4: Function Words
See Table D.5.

Feature Class 5: White Space Tokens
‘ ’ space ‘\t’ tab ‘\r’ carriage return ‘\n’ new line

Feature Class 6: Literals
Regular expression Literal name Example
[a-z]+ Lowercase literal thisisanexample

[A-Z]+ Uppercase literal THISISANEXAMPLE

[a-z][a-zA-Z]+ Camelcase literal thisIsAnExample

[A-Z][a-zA-Z]+ Titlecase literal ThisIsAnExample

[a-zA-Z_][a-zA-Z0-9_]+ Other literal _this_IS_anEXAMPLE_123

Table D.4: Six feature classes and corresponding features that were used in feature selection experi-
ments in Section 5.3 (p. 122).

233

APPENDIX D. PROGRAMMING LANGUAGE FEATURE TABLES

Feature Class 4: Function Words
abort ERANGE isxdigit memcpy strcmp

abs errno jmp_buf memmove strcoll

acos exit labs memset strcpy

asctime EXIT_FAILURE LC_ALL mktime strcspn

asin EXIT_SUCCESS LC_COLLATE modf strerror

assert exp LC_CTYPE NDEBUG strftime

atan fabs LC_MONETARY offsetof strlen

atan2 floor LC_NUMERIC pow strncat

atexit FLT_DIG lconv ptrdiff_t strncmp

atof FLT_EPSILON LC_TIME qsort strncpy

atoi FLT_MANT_DIG LDBL_DIG raise strpbrk

atol FLT_MAX LDBL_EPSILON rand strrchr

bsearch FLT_MAX_10_EXP LDBL_MANT_DIG RAND_MAX strspn

calloc FLT_MAX_EXP LDBL_MAX realloc strstr

ceil FLT_MIN LDBL_MAX_10_EXP SCHAR_MAX strtod

CHAR_BIT FLT_MIN_10_EXP LDBL_MAX_EXP SCHAR_MIN strtok

CHAR_MAX FLT_MIN_EXP LDBL_MIN setjmp strtol

CHAR_MIN FLT_RADIX LDBL_MIN_10_EXP setlocale strtoul

clock FLT_ROUNDS LDBL_MIN_EXP SHRT_MAX strxfrm

CLOCKS_PER_SEC fmod ldexp SHRT_MIN system

clock_t free ldiv SIGABRT tan

cos frexp ldiv_t sig_atomic_t tanh

cosh getenv localeconv SIG_DFL time

ctime gmtime localtime SIG_ERR tm

DBL_DIG HUGE_VAL log SIGFPE tolower

DBL_EPSILON INT_MAX log10 SIG_IGN toupper

DBL_MANT_DIG INT_MIN longjmp SIGILL UCHAR_MAX

DBL_MAX isalnum LONG_MAX SIGINT UINT_MAX

DBL_MAX_10_EXP isalpha LONG_MIN signal ULONG_MAX

DBL_MAX_EXP iscntrl malloc SIGSEGV USHRT_MAX

DBL_MIN isdigit MB_CUR_MAX SIGTERM va_arg

DBL_MIN_10_EXP isgraph mblen sin va_end

DBL_MIN_EXP islower MB_LEN_MAX sinh va_list

difftime isprint mbstowcs sqrt va_start

div ispunct mbtowc srand wchar_t

div_t isspace memchr strcat wcstombs

EDOM isupper memcmp strchr wctomb

Table D.5: “Feature Class 4: Function Words” content [Huss, 1997] referenced in Table D.4 moved
here for space.

234

Bibliography

A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological variations, and

system approaches.AI Communications, 7(1):39–59, March 1994.

H. Abdi. The bonferonni and sidak corrections for multiple comparisons.In N. J. Salkind, editor,

Encyclopedia of Measurement and Statistics, pages 103–107. Sage Publications Inc., Thousand

Oaks, California, October 2006.

T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan. N-gram-based detection of new malicious

code. In P. Cheung, E. Wong, and K. Kanoun, editors,Proceedings of the Twenty-Eighth Annual

IEEE International Computer Software and Applications Conference, pages 41–42, Hong Kong,

China, September 2004a. IEEE Computer Society Press.

T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan. Detection ofnew malicious code using

n-grams signatures. In E. Keizer, G. Sprague, and S. Marsh, editors, Proceedings of the Second

Annual Conference on Privacy, Security and Trust, pages 193–196, Fredericton, Canada, October

2004b. University of New Brunswick.

T. Abraham and O. de Vel. Investigative profiling with computer forensic log data and association

rules. In N. Zhong, P. S. Yu, V. Kumar, and S. Tsumoto, editors,Proceedings of the Second IEEE

International Conference on Data Mining, pages 11–18, Maebashi, Japan, December 2002. IEEE

Computer Society Press.

A. Adelsbach and A. Reza Sadeghi. Advanced techniques for dispute resolving and authorship proofs

on digital works. In E. J. Delp and P. W. Wong, editors,Proceedings of the Fifth Conference

on Security and Watermarking of Multimedia Contents, pages 677–688, Santa Clara, California,

January 2003. International Society for Optical Engineering.

235

BIBLIOGRAPHY

A. Alemozafar. Online software battles plagiarism at Stanford. The Stanford Daily, February 2003.

URL: http://www.stanforddaily.com/2003/02/12/online-software-battles-plagiarism-at-stanford

[Accessed 16 August 2010].

American Psychological Association.Publication Manual of the American Psychological Associa-

tion. American Psychological Association, Washington, D.C., sixth edition, July 2009.

E. Amitay, S. Yogev, and E. Yom-Tov. Serial sharers: Detecting split identities of web authors. In

B. Stein, M. Koppel, and E. Stamatatos, editors,Proceedings of the First International Workshop

on Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection, pages 11–18,

Amsterdam, Netherlands, July 2007. CEUR Workshop Proceedings.

J. R. Anderson, R. Farrell, and R. Sauers. Learning to program in Lisp. Cognitive Science, 8(2):

87–129, April 1984.

V. N. Anh and A. Moffat. Inverted index compression using word-aligned binary codes.Information

Retrieval, 8(1):151–166, January 2005.

A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan.Searching the web.ACM Trans-

actions on Internet Technology, 1(1):2–43, August 2001.

S. Argamon, M. Koppel, J. Fine, and A. R. Shimoni. Gender, genre, andwriting style in formal

written texts.Text — Interdisciplinary Journal for the Study of Discourse, 23(3):321–346, August

2003a.

S. Argamon, M. Saric, and S. S. Stein. Style mining of electronic messages for multiple authorship

discrimination: First results. In L. Getoor, T. Senator, P. Domingos, and C. Faloutsos, editors,

Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 475–480, Washington, D.C., August 2003b. ACM Press.

C. Arwin and S. M. M. Tahaghoghi. Plagiarism detection across programming languages. In

V. Estivill-Castro and G. Dobbie, editors,Proceedings of the Twenty-Ninth Australasian Com-

puter Science Conference, pages 277–286, Hobart, Australia, January 2006. Australian Computer

Society.

Assignment Centre. Australia’s & NZ leading education assignments help company, June 2009.

URL: http://www.assignmentcentre.com.au [Accessed 23 February 2010].

Y. Bae Lee and S. H. Myaeng. Text genre classification with genre-revealing and subject-revealing

features. In K. Jarvelin, M. Beaulieu, R. Baeza-Yates, and S. H. Myaeng, editors,Proceedings of

236

BIBLIOGRAPHY

the Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 145–150, Tampere, Finland, August 2002. ACM Press.

R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison Wesley Longman,

Reading, Massachusetts, first edition, May 1999.

D. Bahle, H. E. Williams, and J. Zobel. Efficient phrase querying with an auxiliary index. In

K. Jarvelin, M. Beaulieu, R. Baeza-Yates, and S. H. Myaeng, editors,Proceedings of the Twenty-

Fifth Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 215–221, Tampere, Finland, August 2002. ACM Press.

P. Bame. McCabe-style function complexity and line counting for C and C++, March 2010.

URL: http://www.parisc-linux.org/∼bame/pmccabe [Accessed 1 March 2010].

A. Barron-Cedeno, P. Rosso, and J. Miguel Benedi. Reducing the plagiarism detection search space

on the basis of the Kullback-Leibler distance. In A. Gelbukh, editor,Proceedings of the Tenth Inter-

national Conference on Computational Linguistics and Intelligent Text Processing, pages 523–534,

Mexico City, Mexico, March 2009. Springer.

E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging,

boosting, and variants.Machine Learning, 36(2):105–139, August 1999.

L. A. Becker. Effect size, March 2000. URL: http://www.uccs.edu/∼faculty/lbecker/es.htm [Accessed

2 September 2010].

B. Belkhouche, A. Nix, and J. Hassell. Plagiarism detection in software designs. In S. Moo Yoo and

L. H. Etzkorn, editors,Proceedings of the Forty-Second Annual Southeast Regional Conference,

pages 207–211, Huntsville, Alabama, April 2004. ACM Press.

C. H. Bennett, M. Li, and B. Ma. Chain letters & evolutionary histories.Scientific American, 288(6):

76–81, June 2003.

Y. Bernstein, B. Billerbeck, S. Garcia, N. Lester, F. Scholer, J. Zobel, and W. Webber. RMIT Uni-

versity at TREC 2005: Terabyte and robust track. In E. M. Voorheesand L. P. Buckland, editors,

Proceedings of the Fourteenth Text Retrieval Conference, pages 1–12, Gaithersburg, Maryland,

November 2005. National Institute of Standards and Technology.

D. Biber. Representativeness in corpus design.Literary and Linguistic Computing, 8(4):243–257,

December 1993.

237

BIBLIOGRAPHY

B. Bollag. Edward waters college loses accreditation following plagiarism scandal. The Chronicle of

Higher Education, December 2004. URL: http://chronicle.com/prm/daily/2004/12/2004120904n.

htm [Accessed 8 October 2007].

R. A. Bosch and J. A. Smith. Separating hyperplanes and the authorship of the disputed Federalist

papers.The American Mathematical Monthly, 105(7):601–608, August 1998.

K. W. Bowyer and L. O. Hall. Experience using MOSS to detect cheating onprogramming assign-

ments. In D. Budny, R. V. Espinosa, L. G. Richards, and T. L. Skvarenina, editors,Proceedings of

the Twenty-Ninth ASEE/IEEE Frontiers in Education Conference, pages 18–22, San Juan, Puerto

Rico, November 1999. IEEE Computer Society Press.

M. D. S. Braine. The ontogeny of English phrase structure: The first phase.Language, 39(1):1–13,

January 1963.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In H. Ashman

and P. Thistlewaite, editors,Proceedings of the Seventh International World Wide Web Conference,

pages 107–117, Brisbane, Australia, April 1998. Elsevier Science Publishers Ltd.

A. Z. Broder. On the resemblance and containment of documents. In B. Carpentieri, A. De Santis,

U. Vaccaro, and J. A. Storer, editors,Proceedings of the First International Conference on Com-

pression and Complexity of Sequences, pages 21–29, Positano, Italy, June 1998. IEEE Computer

Society Press.

A. Z. Broder. Identifying and filtering near-duplicate documents. In R. Giancarlo and D. Sankoff,

editors,Proceedings of the Eleventh Annual Symposium on Combinatorial Pattern Matching, pages

1–10, Montreal, Canada, June 2000. Springer.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent permuta-

tions. In J. Vitter, editor,Proceedings of the Thirtieth Annual ACM Symposium on the Theory of

Computing, pages 327–336, Dallas, Texas, May 1998. ACM Press.

J. Bull, C. Collins, E. Coughlin, and D. Sharp. Technical review of plagiarism detection software

report. Technical Report LU1 3JU, Computer Assisted Assessment Centre, University of Luton,

Bedfordshire, United Kingdom, July 2002.

J. D. Burger and J. C. Henderson. An exploration of observable features related to blogger age. In

N. Nicolov, F. Salvetti, M. Liberman, and J. H. Martin, editors,Proceedings of the Fourteenth

238

BIBLIOGRAPHY

AAAI Spring Symposium on Computational Approaches to Analysing Weblogs, pages 15–20, Palo

Alto, California, March 2006. Association for the Advancement of Artificial Intelligence.

S. Burrows and S. M. M. Tahaghoghi. Source code authorship attribution using n-grams. In A. Spink,

A. Turpin, and M. Wu, editors,Proceedings of the Twelfth Australasian Document Computing

Symposium, pages 32–39, Melbourne, Australia, December 2007. RMIT University.

S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Authorship attribution of source code. In submission.

S. Burrows, S. M. M. Tahaghoghi, and J. Zobel. Efficient plagiarism detection for large code reposi-

tories.Software: Practice and Experience, 37(2):151–175, September 2006.

S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Application of information retrieval techniques

for source code authorship attribution. In X. Zhou, H. Yokota, R. Kotagiri, and X. Lin, editors,

Proceedings of the Fourteenth International Conference on Database Systems for Advanced Ap-

plications, pages 699–713, Brisbane, Australia, April 2009a. Springer.

S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Temporally robust software features for authorship

attribution. In T. Hey, E. Bertino, V. Getov, and L. Liu, editors,Proceedings of the Thirty-Third An-

nual IEEE International Computer Software and Applications Conference, pages 599–606, Seattle,

Washington, July 2009b. IEEE Computer Society Press.

F. Can and J. M. Patton. Change of writing style with time.Computers and the Humanities, 38(1):

61–82, February 2004.

L. W. Cannon, R. A. Elliott, L. W. Kirchhoff, J. H. Miller, J. M. Miller, R. W. Mitze, E. P. Schan,

N. O. Whittington, H. Spencer, D. Keppel, and M. Brader. Recommended Cstyle and coding

standards. Technical Report Version 6.0, Bell Labs, Murray Hill, NewJersey, University of

Toronto, Toronto, Canada, University of Washington, Seattle, Washington, and SoftQuad Incor-

porated, Toronto, Canada, February 1997.

W. B. Cavnar and J. M. Trenkle. N-gram-based text categorisation. InProceedings of the Third

Annual Symposium on Document Analysis and Information Retrieval, pages 161–175, Las Vegas,

Nevada, April 1994. Center of Excellence for Document Analysis and Recognition.

P. Clough and M. Stevenson. Creating a corpus of plagiarised academic texts. In M. Mahlberg, editor,

Proceedings of the Fifth Corpus Linguistics Conference, pages 1–14, Liverpool, United Kingdom,

July 2009. University of Liverpool.

239

BIBLIOGRAPHY

P. Clough, R. Gaizauskas, and S. L. Piao. Building and annotating a corpus for the study of jour-

nalistic text reuse. In A. Zampolli, editor,Proceedings of the Third International Conference on

Language Resources and Evaluation, pages 1678–1691, Los Palmas, Spain, May 2002. European

Language Resources Association.

J. Cohen.Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates Inc.,

Hillsdale, New Jersey, second edition, January 1988.

F. Colas, P. Paclik, J. N. Kok, and P. Brazdil. Does SVM really scale up tolarge bag of words feature

spaces? In M. R. Berthold, J. Shawe-Taylor, and N. Lavrac, editors, Proceedings of the Sev-

enth International Symposium on Intelligent Data Analysis, pages 296–307, Ljubljana, Slovenia,

September 2007. Springer.

C. Collberg and S. Kobourov. Self-plagiarism in computer science.Communications of the ACM, 48

(4):88–94, April 2005.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen.Software Engineering Metrics and Models. Ben-

jamin/Cummings Publishing Inc., Redwood City, California, first edition, March 1986.

M. Cook. Experimenting to produce a software tool for authorship attribution. Technical Report

COM3021, Department of Computer Science, University of Sheffield, Sheffield, United Kingdom,

May 2003.

F. Culwin, A. MacLeod, and T. Lancaster. Source code plagiarism in UK HE computing schools:

Issues, attitudes and tools. Technical Report SBU-CISM-01-01, South Bank University School of

Computing, Information Systems and Mathematics, London, United Kingdom, September 2001.

S. J. Cunningham, J. Littin, and I. H. Witten. Applications of machine learning ininformation re-

trieval. Working Paper Series, 97(6):1–48, February 1997.

Custom Writing. Custom essay writing service, February 2009. URL: http://custom-writing.org

[Accessed 24 February 2009].

M. M. Dalkilic, W. T. Clark, J. C. Costello, and P. Radivojac. Using compression to identify classes

of inauthentic texts. In J. Ghosh, D. Lambert, D. Skillicorn, and J. Srivastava, editors,Proceedings

of the Sixth SIAM International Conference on Data Mining, pages 604–608, Bethesda, Maryland,

April 2006. Society for Industrial and Applied Mathematics.

C. Daly and J. Horgan. A technique for detecting plagiarism in computer code. The Computer

Journal, 48(6):662–666, November 2005.

240

BIBLIOGRAPHY

O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content for author identification

forensics.SIGMOD Record, 30(4):55–64, December 2001.

G. Demiroz and H. A. Guvenir. Classification by voting feature intervals. InM. van Someren and

G. Widmer, editors,Proceedings of the Ninth European Conference on Machine Learning, pages

85–92, Prague, Czech Republic, April 1997. Springer.

M. Dick, J. Sheard, C. Bareiss, J. Carter, D. Joyce, T. Harding, and C. Laxer. Addressing student

cheating: Definitions and solutions.ACM SIGCSE Bulletin, 35(2):172–184, June 2003.

J. Diederich, J. Kindermann, E. Leopold, and G. Paass. Authorship attribution with support vector

machines.Applied Intelligence, 19(1–2):109–123, May 2003.

E. W. Dijkstra. Go to statement considered harmful.Communications of the ACM, 11(3):147–148,

March 1968.

H. Ding and M. H. Samadzadeh. Extraction of Java program fingerprintsfor software authorship

identification.Journal of Systems and Software, 72(1):49–57, June 2004.

J. L. Donaldson, A. Marie Lancaster, and P. H. Sposato. A plagiarism detection system. In K. I.

Magel, F. G. Walters, and N. B. Dale, editors,Proceedings of the Twelfth SIGCSE Technical Sym-

posium on Computer Science Education, pages 21–25, St. Louis, Missouri, February 1981. ACM

Press.

H. Drucker, D. Wu, and V. N. Vapnik. Support vector machines for spam categorisation.IEEE

Transactions on Neural Networks, 10(5):1048–1054, September 1999.

D. D’Souza, M. Hamilton, and M. Harris. Software development marketplaces — implications for

plagiarism. In S. Mann and Simon, editors,Proceedings of the Ninth Australasian Computing Ed-

ucation Conference, pages 27–33, Ballarat, Australia, January 2007. Australian Computer Society.

H. E. Dunsmore and J. D. Gannon. Data referencing: An empirical investigation. Computing, 12

(12):50–59, December 1979.

B. S. Elenbogen and N. Seliya. Detecting outsourced student programmingassignments.Journal of

Computing Sciences in Colleges, 23(3):50–57, January 2008.

W. E. Y. Elliott and R. J. Valenza. Was the Earl of Oxford the true Shakespeare? A computer-aided

analysis.Notes and Queries, 38(4):501–506, December 1991.

241

BIBLIOGRAPHY

W. E. Y. Elliott and R. J. Valenza. And then there were none: Winnowing theshakespeare claimants.

Computers and the Humanities, 30(3):191–245, May 1996.

S. Engels, V. Lakshmanan, and M. Craig. Plagiarism detection using feature-based neural networks.

In I. Russell, S. Haller, J. P. Dougherty, and S. Rodger, editors,Proceedings of the Thirty-Eighth

SIGCSE Technical Symposium on Computer Science Education, pages 34–38, Covington, Ken-

tucky, March 2007. ACM Press.

Essay Dom. Essay, custom essay help by Essay Dom UK, February 2010. URL: http://www.

essaydom.co.uk [Accessed 25 February 2009].

Exhedra Solutions Inc. Planet Source Code, March 2010a. URL: http://www.planet-source-code.com

[Accessed 11 March 2010].

Exhedra Solutions Inc. Planet Source Code site terms and conditions, March 2010b.

URL: http://www.planet-source-code.com/vb/scripts/TermsAndConditions.asp?lngWId=-1 [Ac-

cessed 15 March 2010].

Exhedra Solutions Inc. Rent A Coder: How software gets done — home ofthe worlds’ largest

number of completed software projects, April 2010c. URL: http://www.rentacoder.com [Accessed

16 April 2009].

Facebook. Find your friends on FaceBook, February 2010. URL: http://www.facebook.com/

find-friends [Accessed 25 February 2010].

J. A. W. Faidhi and S. K. Robinson. An empirical approach for detectingprogram similarity and

plagiarism within a university programming environment.Computers and Education, 11(1):11–

19, January 1987.

J. Farrell. Object Oriented Programming using C++. Course Technology, Boston, Massachusetts,

fourth edition, June 2008.

G. Fernandez. WebLearn: A Common Gateway Interface (CGI)-basedenvironment for interactive

learning.Journal of Interactive Learning Research, 12(2–3):265–280, June 2001.

Flex Project. flex: The fast lexical analyser, February 2008. URL: http://www.flex.sourceforge.net

[Accessed 31 May 2010].

G. Frantzeskou.The Source Code Author Profile (SCAP) Method: An Empirical Software Engineer-

ing Approach. PhD thesis, Department of Information and Communication Systems, University of

the Aegean, Mytilene, Greece, November 2007.

242

BIBLIOGRAPHY

G. Frantzeskou, S. Gritzalis, and S. G. MacDonell. Source code authorship analysis for supporting

the cybercrime investigation process. In J. Filipe, C. Belo, and L. Vasiu, editors,Proceedings of

the First International Conference on E-business and Telecommunication Networks, pages 85–92,

Setubal, Portugal, August 2004. Kluwer Academic Publishers.

G. Frantzeskou, E. Stamatatos, and S. Gritzalis. Supporting the cybercrimeinvestigation process:

Effective discrimination of source code authors based on byte-level information. In J. Filipe and

L. Vasiu, editors,Proceedings of the Second International Conference on E-business and Telecom-

munication Networks, pages 283–290, Reading, United Kingdom, October 2005. INSTICC Press.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas. Source code author identification based

on n-gram author profiles. In I. G. Maglogiannis, K. Karpouzis, and M. Bramer, editors,Artificial

Intelligence Applications and Innovations, pages 508–515. Springer, New York City, New York,

August 2006a.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas. Effective identification of source code

authors using byte-level information. In L. J. Osterweil, D. Rombach, andM. L. Soffa, editors,

Proceedings of the Twenty-Eighth International Conference on SoftwareEngineering, pages 893–

896, Shanghai, China, May 2006b. ACM Press.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, C. E. Chaski, and B. S. Howald. Identifying authorship

by byte-level n-grams: The source code author profile (SCAP) method.International Journal of

Digital Evidence, 6(1):1–18, January 2007.

G. Frantzeskou, S. G. MacDonell, E. Stamatatos, and S. Gritzalis. Examiningthe significance of

high-level programming features in source code author classification.Journal of Systems and

Software, 81(3):447–460, March 2008.

H. Garcia-Molina, L. Gravano, and N. Shivakumar. dSCAM: Finding document copies across mul-

tiple databases. In W. Sun, J. Naughton, and G. Weikum, editors,Proceedings of the Fourth

International Conference on Parallel and Distributed Information Systems, pages 68–79, Miami

Beach, Florida, December 1996. IEEE Computer Society Press.

Geeknet Inc. SourceForge, March 2010. URL: http://sourceforge.net [Accessed 8 March 2010].

Geotechnical Software Services.C++ Programming Style Guidelines. Stavanger, Norway, 4.7 edi-

tion, October 2008. URL: http://geosoft.no/development/cppstyle.html [Accessed 6 December

2008].

243

BIBLIOGRAPHY

S. Geva, J. Kamps, and A. Trotman, editors.INEX 2009 Workshop Pre-proceedings, Ipswich, Aus-

tralia, December 2009. Initiative for the Evaluation of XML Retrieval, IR Publications.

D. Gitchell and N. Tran. Sim: A utility for detecting similarity in computer programs. In J. C. Prey

and B. Noonan, editors,Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer

Science Education, pages 266–270, New Orleans, Louisiana, March 1999. ACM Press.

R. L. Glass. Special feature: Software theft.IEEE Software, 2(4):82–85, July 1985.

L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Constructing computer virus

phylogenies.Journal of Algorithms, 26(1):188–208, January 1998.

A. R. Gray and S. G. MacDonell. Applications of fuzzy logic to software metric models for devel-

opment effort estimation. In C. Isik and V. Cross, editors,Proceedings of the Seventeenth Annual

Meeting of the North American Fuzzy Information Processing Society, pages 394–399, Syracuse,

New York, September 1997. IEEE Computer Society Press.

A. R. Gray and S. G. MacDonell. Software metrics data analysis — exploringthe relative perfor-

mance of some commonly used modelling techniques.Empirical Software Engineering, 4(4):

297–316, December 1999.

A. R. Gray, P. J. Sallis, and S. G. MacDonell. Software forensics: Extending authorship analysis

techniques to computer programs. In B. K. Dumas, editor,Proceedings of the Third Biannual

Conference of the International Association of Forensic Linguists, pages 1–8, Durham, North Car-

olina, September 1997. CEUR Workshop Proceedings.

A. R. Gray, P. J. Sallis, and S. G. MacDonell. IDENTIFIED (integrated dictionary-based extrac-

tion of non-language-dependent token information for forensic identification, examination, and

discrimination): A dictionary-based system for extracting source code metrics for software foren-

sics. In M. Purvis, S. Cranefield, and S. G. MacDonell, editors,Proceedings of the Third Software

Engineering: Education and Practice International Conference, pages 252–259, Dunedin, New

Zealand, January 1998. Technical Communication Services.

S. Grier. A tool that detects plagiarism in Pascal programs. In K. I. Magel, F. G. Walters, and N. B.

Dale, editors,Proceedings of the Twelfth SIGCSE Technical Symposium on Computer Science

Education, pages 15–20, St. Louis, Missouri, February 1981. ACM Press.

J. W. Grieve. Quantitative authorship attribution: A history and evaluation of techniques. Masters

thesis, Department of Linguistics, Simon Fraser University, Burnaby, Canada, June 2005.

244

BIBLIOGRAPHY

J. W. Grieve. Quantitative authorship attribution: An evaluation of techniques.Literary and Linguistic

Computing, 22(3):251–270, July 2007.

C. Grozea, C. Gohl, and M. Popescu. ENCOPLOT: Pairwise sequencematching in linear time applied

to plagiarism detection. In B. Stein, P. Rosso, E. Stamatatos, M. Koppel, andE. Agirre, editors,

Proceedings of the Third PAN Workshop on Uncovering Plagiarism, Authorship and Social Soft-

ware Misuse, pages 10–18, San Sebastian, Spain, September 2009. CEUR Workshop Proceedings.

Z. Gyongyi and H. Garcia-Molina. Web spam taxonomy. In B. D. Davison, editor,Proceedings of the

First International Workshop on Adversarial Information Retrieval onthe Web, pages 1–9, Chiba,

Japan, May 2005. Lehigh University.

A. Halavais. How to cheat good. A Thaumaturgical Compendium, May 2006.URL: http://alex.

halavais.net/how-to-cheat-good [Accessed 24 February 2009].

G. A. Hall and W. P. Davis. Toward defining the intersection of forensicsand information technology.

International Journal of Digital Evidence, 4(1):1–20, September 2005.

M. A. Hall and L. A. Smith. Practical feature subset selection for machine learning. In C. McDonald,

editor,Proceedings of the Twenty-First Australian Computer Science Conference, pages 181–191,

Perth, Australia, February 1998. Springer.

M. H. Halstead. Natural laws controlling algorithm structure?ACM SIGPLAN Notices, 7(2):19–26,

February 1972.

M. Hamilton, S. M. M. Tahaghoghi, and C. Walker. Educating students about plagiarism avoidance

— a computer science perspective. In E. McKay, editor,Proceedings of the Twelfth International

Conference on Computers in Education, pages 1275–1284, Melbourne, Australia, November 2004.

Asia-Pacific Society for Computers in Education.

D. Harman. Overview of the second text retrieval conference (TREC-2). In T. Saracevic and D. Har-

man, editors,Proceedings of the Second Text Retrieval Conference, pages 271–289, Washington,

D.C., August 1995. Pergamon Press Inc.

F. G. Harold. Experimental evaluation of program quality using external metrics. In E. Soloway

and S. Iyengar, editors,Proceedings of the First Workshop on Empirical Studies of Programmers,

pages 153–167, Washington, D.C., January 1986. Ablex Publishing Corp.

M. Hart. Project Gutenberg, March 2010. URL: http://www.gutenberg.org [Accessed 8 March 2010].

245

BIBLIOGRAPHY

D. Heckerman. A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06,

Microsoft Research, Microsoft Corporation, Redmond, Washington,November 1996.

N. Heintze. Scalable document fingerprinting. In M. Harkavy, A. Myers, J. D. Tygar, A. Whitten,

and H. C. Wong, editors,Proceedings of the Second USENIX Workshop on Electronic Commerce,

pages 191–200, Oakland, California, November 1996. Carnegie MellonUniversity.

D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.Commu-

nications of the ACM, 18(6):341–343, June 1975.

T. C. Hoad and J. Zobel. Methods for identifying versioned and plagiarised documents.Journal of

the American Society for Information Science and Technology, 54(3):203–215, February 2002.

D. Holmes and F. Tweedie. Forensic stylometry: A review of the Cusum controversy. Revue Infor-

matique et Statistique dans les Sciences Humaines, 31(1–4):19–47, January 1995.

D. I. Holmes. Authorship attribution.Computers and the Humanities, 28(2):87–106, April 1994.

G. Holmes, A. Donkin, and I. H. Witten. Weka: A machine learning workbench. In J. Sitte, edi-

tor, Proceedings of the Second Australia and New Zealand Conference on Intelligent Information

Systems, pages 357–361, Brisbane, Australia, November 1994. IEEE ComputerSociety Press.

E. Huss. The C Library Reference Guide. Association for Computing Machinery, Urbana-

Champaign, Illinois, first edition, September 1997. URL: http://www.acm.uiuc.edu/webmonkeys/

book/c guide [Accessed 24 September 2008].

International Standardization Organization and International Electrotechnical Commission. Program-

ming languages — C++. International Standard 14882, Information Technology Industry Council,

New York City, New York, September 1998.

iParadigms. iThenticate questions and answers, October 2007a. URL: http://www.ithenticate.com/

static/training.html [Accessed 4 October 2007].

iParadigms. Turnitin plagiarism prevention, October 2007b. URL: http://www.turnitin.com/static/

plagiarism.html [Accessed 3 July 2008].

iParadigms. What is plagiarism?, August 2010. URL: http://www.plagiarism.org/plag article what

is plagiarism.html [Accessed 2 March 2010].

K. Jarvelin and J. Kekalainen. Cumulated gain-based evaluation of IR techniques.ACM Transactions

on Information Systems, 20(4):422–446, October 2002.

246

BIBLIOGRAPHY

T. Joachims. Text categorisation with support vector machines: Learningwith many relevant features.

Technical Report LS-8 23, Computer Science Department, University ofDortmund, Dortmund,

Germany, April 1998.

J. H. Johnson. Identifying redundancy in source code using fingerprints. In A. Gawman, E. Kidd, and

P. Ake Larson, editors,Proceedings of the Third Conference of the Centre for Advanced Studieson

Collaborative Research, pages 171–183, Toronto, Canada, October 1993. IBM Press.

E. L. Jones. Metrics based plagiarism monitoring. In J. G. Meinke, editor,Proceedings of the Sixth

Annual CCSC Northeastern Conference on The Journal of Computing inSmall Colleges, pages

253–261, Middlebury, Vermont, April 2001. Consortium for Computing Sciences in Colleges.

M. Joy and M. Luck. Plagiarism in programming assignments.IEEE Transactions on Education, 42

(2):129–133, May 1999.

P. Juola. Authorship attribution.Foundations and Trends in Information Retrieval, 1(3):233–334,

December 2006.

P. Juola. JGAAP wiki, March 2010. URL: http://www.jgaap.com [Accessed 11 March 2010].

P. Juola and R. H. Baayen. A controlled-corpus experiment in authorship identification by cross-

entropy.Literary and Linguistic Computing, 20(1):59–67, June 2005.

P. Juola and J. Sofko. Proving and improving authorship attribution technologies. In G. Rockwell and

T. Butler, editors,Proceedings of the Third Canadian Symposium on Text Analysis, pages 45–52,

Hamilton, Canada, November 2004. McMaster University.

P. Juola, J. Sofko, and P. Brennan. A prototype for authorship attribution studies. Literary and

Linguistic Computing, 21(2):169–178, June 2006.

G. Kacmarcik and M. Gamon. Obfuscating document stylometry to preserve author anonymity. In

N. Calzolari, C. Cardie, and P. Isabelle, editors,Proceedings of the Twenty-First International

Conference on Computational Linguistics and Forty-Fourth Annual Meeting of the Association for

Computational Linguistics Main Conference Poster Sessions, pages 444–451, Sydney, Australia,

July 2006. Association for Computing Linguistics.

I. Kanaris and E. Stamatatos. Webpage genre identification using variable-length character n-grams.

In I. Hatziligeroudis, C. Tien Lu, and S. M. Chung, editors,Proceedings of the Nineteenth IEEE In-

ternational Conference on Tools with Artificial Intelligence, pages 3–10, Dayton, Ohio, November

2007. IEEE Computer Society Press.

247

BIBLIOGRAPHY

D. C. Kar. Automatic characterisation of computer programming assignments for style and doc-

umentation. In O. Gaede, A. Canas, and D. D. Walker, editors,Proceedings of the Nineteenth

Annual International Conference on Technology and Education, pages 1–3, Tallahassee, Florida,

May 2001. International Conference on Technology and Education.

M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida. Malware phylogeny generation using

permutations of code.Journal in Computer Virology, 1(1–2):13–23, November 2005.

M. Kaszkiel and J. Zobel. Passage retrieval revisited. In F. Can, E. Voorhees, N. J. Belkin, A. D.

Narasimhalu, P. Willett, and W. Hersh, editors,Proceedings of the Twentieth Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages 178–185,

Philadelphia, Pennsylvania, July 1997. ACM Press.

B. Kelk. Top 1000 words, February 2010. URL: http://www.bckelk.ukfsn.org/words/uk1000n.html

[Accessed 26 February 2010].

A. Kelly and I. Pohl. A Book on C. Addison Wesley Longman, Reading, Massachusetts, fourth

edition, December 1997.

C. F. Kemerer. An empirical validation of software cost models.Communications of the ACM, 30

(5):416–429, May 1987.

C. F. Kemerer and S. Slaughter. An empirical approach to studying software evolution.IEEE Trans-

actions on Software Engineering, 25(4):493–509, July 1999.

V. Keselj. Text::Ngrams Perl package version 2.003, October 2008. URL: http://vlado.keselj.net/

srcperl/Ngrams/ngrams.pl-2.003 [Accessed 30 August 2010].

V. Keselj, F. Peng, N. Cercone, and C. Thomas. N-gram-based authorprofiles for authorship attri-

bution. In V. Keselj and T. Endo, editors,Proceedings of the Sixth Pacific Association for Com-

putational Linguistics Conference, pages 255–264, Nova Scotia, Canada, August 2003. Pacific

Association for Computational Linguistics.

M. Ketchell. The third degree. The Age, May 2003. URL: http://www.theage.com.au/articles/2003/

05/26/1053801319696.html [Accessed 4 October 2007].

R. I. Kilgour, A. R. Gray, P. J. Sallis, and S. G. MacDonell. A fuzzy logicapproach to computer

software source code authorship analysis. InProceedings of the Fourth International Conference

on Neural Information Processing and Intelligent Information Systems, pages 865–868, Dunedin,

New Zealand, November 1997. Springer.

248

BIBLIOGRAPHY

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradientdescent for linear predictors.

Information and Computation, 132(1):1–63, January 1997.

G. Kolata. Shakespeare’s new poem: An ode to statistics.Science, 231(4736):335–336, January

1986.

M. Koppel and J. Schler. Authorship verification as a one-class classification problem. In C. Brodley,

editor,Proceedings of the Twenty-First International Conference on MachineLearning, page 62,

Alberta, Canada, July 2004. ACM Press.

M. Koppel, S. Argamon, and A. R. Shimoni. Automatically categorising written texts by author

gender.Literary and Linguistic Computing, 17(4):401–412, November 2002.

M. Koppel, N. Akiva, and I. Dagan. A corpus-independent featureset for style-based text categori-

sation. In S. Argamon, editor,Proceedings of the First Workshop on Computational Approaches

to Style Analysis and Synthesis, pages 61–67, Acapulco, Mexico, August 2003. Illinois Institute of

Technology.

M. Koppel, J. Schler, and E. Bonchek-Dokow. Measuring differentiability: Unmasking pseudony-

mous authors.Journal of Machine Learning Research, 8(1):1261–1276, December 2007.

M. Koppel, J. Schler, and S. Argamon. Computational methods in authorshipattribution.Journal of

the American Society for Information Science and Technology, 60(1):9–26, January 2009.

J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis. A probabilistic approach to source code au-

thorship identification. In S. Latifi, editor,Proceedings of the Fourth International Conference on

Information Technology, pages 243–248, Las Vegas, Nevada, April 2007. IEEE Computer Society

Press.

I. Krsul. Authorship analysis: Identifying the author of a program. Technical Report CSD-TR-94-

030, Department of Computer Sciences, Purdue University, West Lafayette, Indiana, May 1994.

I. Krsul and E. H. Spafford. Authorship analysis: Identifying the author of a program. Technical

Report TR-96-052, Department of Computer Sciences, Purdue University, West Lafayette, Indiana,

September 1996.

I. Krsul and E. H. Spafford. Authorship analysis: Identifying the author of a program.Computers

and Security, 16(3):233–257, 1997.

249

BIBLIOGRAPHY

L. Kukolich and R. Lippmann.LNKnet User’s Guide. MIT Lincoln Laboratory, Lexington, Mas-

sachusetts, fourth edition, February 2004. URL: http://www.ll.mit.edu/mission/communications/

ist/lnknet/usersguide.pdf [Accessed 18 August 2010].

S. Kullback and R. A. Leibler. On information and sufficiency.The Annals of Mathematical Statistics,

22(1):79–86, March 1951.

P. A. Lachenbruch and M. Goldstein. Discriminant analysis.Biometrics, 35(1):69–85, March 1979.

R. C. Lange and S. Mancoridis. Using code metric histograms and genetic algorithms to perform

author identification for software forensics. In D. Thierens, editor,Proceedings of the Ninth An-

nual Conference on Genetic and Evolutionary Computation, pages 2082–2089, London, United

Kingdom, July 2007. ACM Press.

T. Lavergne. Unnatural language detection. InProceedings of the 2006 Young Scientists’ Conference

on Information Retrieval, pages 383–388, Lyon, France, March 2006. Institut de Recherche en

Informatique de Toulouse.

D. Lederman. Edward Waters College regains accreditation. Inside Higher Ed, June 2005. URL: http:

//www.insidehighered.com/news/2005/06/24/waters [Accessed 8 October 2007].

A. M. Lesk. Introduction to Bioinformatics. Oxford University Press, Oxford, United Kingdom, first

edition, May 2002.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorisa-

tion research.Journal of Machine Learning Research, 5(1):361–397, December 2004.

M. Ley. DBLP computer science bibliography, March 2010. URL: http://www.informatik.uni-trier.

de/∼ley/db [Accessed 8 March 2010].

Y. D. Liang. Introduction to Java Programming: Comprehensive Version. Pearson Education Inc.,

Upper Saddle River, New Jersey, sixth edition, July 2006.

C. S. Lindsey, J. S. Tolliver, and T. Lindblad.JavaTech: An Introduction to Scientific and Techni-

cal Computing with Java. Cambridge University Press, New York City, New York, first edition,

November 2005.

J. Ling. Number of words in the English language, March 2001. URL: http://hypertextbook.com/

facts/2001/JohnnyLing.shtml [Accessed 1 March 2010].

250

BIBLIOGRAPHY

C. Lioma.Part of Speech N-Grams for Information Retrieval. PhD thesis, Department of Computing

Science, University of Glasgow, Glasgow, United Kingdom, December 2007.

T. Littlefair. C and C++ code counter, March 2010. URL: http://sourceforge.net/projects/cccc [Ac-

cessed 11 March 2010].

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.

Machine Learning, 2(4):285–318, April 1988.

T. A. Longstaff and E. E. Schultz. Beyond preliminary analysis of the WANK and OILZ worms: A

case study of malicious code.Computers and Security, 12(1):61–77, February 1993.

S. G. MacDonell, A. R. Gray, G. MacLennan, and P. J. Sallis. Softwareforensics for discriminating

between program authors using case-based reasoning, feed-forward neural networks and multi-

ple discriminant analysis. In T. Gedeon, P. Wong, S. Halgamuge, N. Kasabov, D. Nauck, and

K. Fukushima, editors,Proceedings of the Sixth International Conference on Neural Information

Processing, pages 66–71, Perth, Australia, November 1999. IEEE Computer SocietyPress.

S. G. MacDonell, D. Buckingham, A. R. Gray, and P. J. Sallis. Software forensics: Extending

authorship analysis techniques to computer programs.Journal of Law and Information Science,

13(1):1–30, August 2004.

M. A. Maloof and J. Z. Kolter. Learning to detect malicious executables in thewild. In W. Kim,

R. Kohavi, J. Gehrke, and W. DuMouchel, editors,Proceedings of the Tenth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 470–478, Seattle, Wash-

ington, August 2004. ACM Press.

C. D. Manning, P. Raghavan, and H. Schutze.An Introduction to Information Retrieval. Cambridge

University Press, Cambridge, United Kingdom, first edition, July 2009.

J. Marc Jezequel and B. Meyer. Design by contract: The lessons of ariane.Computer, 30(2):129–130,

January 1997.

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval approach to concept

location in source code. In L. Moonen, A. De Lucia, and E. Stroulia, editors, Proceedings of

the Eleventh Working Conference on Reverse Engineering, pages 214–223, Delft, Netherlands,

November 2004. IEEE Computer Society Press.

251

BIBLIOGRAPHY

H. Marsden, M. Carroll, and J. T. Neill. Who cheats at university? A self-report study of dishonest

academic behaviours in a sample of Australian university students.Australian Journal of Psychol-

ogy, 57(1):1–10, May 2005.

T. J. McCabe. A complexity measure.IEEE Transactions on Software Engineering, SE-2(4):308–

320, December 1976.

S. Meyer zu Eissen and B. Stein. Genre classification of web pages: User study and feasibility

analysis. In S. Biundo, T. Fruhwirth, and G. Palm, editors,Proceedings of the Twenty-Seventh

Annual German Conference on Artificial Intelligence, pages 256–269, Ulm, Germany, July 2004.

Springer.

S. Meyer zu Eissen and B. Stein. Intrinsic plagiarism detection. In M. Lalmas, A. MacFarlane,

S. M. Ruger, A. Tombros, T. Tsikrika, and A. Yavlinsky, editors,Proceedings of the Twenty-Eighth

European Conference on IR Research, pages 565–569, London, United Kingdom, April 2006.

Springer.

L. S. Meyers, G. C. Gamst, and A. J. Guarino.Applied Multivariate Research: Design and Interpre-

tation. Sage Publications Inc., Thousand Oaks, California, second edition, September 2005.

G. Michaelson. Automatic analysis of functional program style. In H. W. Schmidt and P. A. Bailes,

editors,Proceedings of the Ninth Australian Software Engineering Conference, page 38, Mel-

bourne, Australia, July 1996. IEEE Computer Society Press.

G. Mishne and M. de Rijke. Source code retrieval using conceptual similarity. In C. Fluhr, G. Grefen-

stette, and W. B. Croft, editors,Proceedings of the Seventh International Conference on Computer-

Assisted Information Retrieval, pages 539–554, Avignon, France, April 2004. Centre de Hautes

Etudes Internationales d’Informatique Documentaire.

A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effectiveness.ACM

Transactions on Information Systems, 27(1):1–27, December 2008.

F. Mosteller and D. L. Wallace. Inference in an authorship problem.Journal of the American Statis-

tical Association, 58(302):275–309, June 1963.

M. Mozgovoy. Enhancing Computer-Aided Plagiarism Detection. PhD thesis, Department of Com-

puter Science and Statistics, University of Joensuu, Joensuu, Finland,November 2007.

M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen. Fastplagiarism detection system.

In M. P. Consens and G. Navarro, editors,Proceedings of the Twelfth International Conference on

252

BIBLIOGRAPHY

String Processing and Information Retrieval, pages 267–270, Buenos Aires, Argentina, November

2005. Springer.

National Institute of Standards and Technology. Text retrieval conference, March 2010. URL: http:

//trec.nist.gov [Accessed 11 March 2010].

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the

amino acid sequence of two proteins.Journal of Molecular Biology, 48(3):443–453, March 1970.

S. Niezgoda and T. P. Way. SNITCH: A software tool for detecting cut and paste plagiarism. In

D. Baldwin, P. Tymann, S. Haller, and I. Russell, editors,Proceedings of the Thirty-Seventh

SIGCSE Technical Symposium on Computer Science Education, pages 51–55, Houston, Texas,

March 2006. ACM Press.

P. W. Oman and C. R. Cook. A paradigm for programming style research.ACM SIGPLAN Notices,

23(12):69–78, December 1988.

P. W. Oman and C. R. Cook. A taxonomy for programming style. In A. Sood, editor, Proceedings

of the Eighteenth ACM Annual Conference on Cooperation, pages 244–250, New York City, New

York, February 1990. ACM Press.

K. J. Ottenstein. An algorithmic approach to the detection and prevention of plagiarism. ACM

SIGCSE Bulletin, 8(4):30–41, December 1976.

Y. Palkovskii. Counter plagiarism detection software and counter counterplagiarism detection meth-

ods. In B. Stein, P. Rosso, E. Stamatatos, M. Koppel, and E. Agirre, editors, Proceedings of the

Third PAN Workshop on Uncovering Plagiarism, Authorship and Social Software Misuse, pages

67–68, San Sebastian, Spain, September 2009. Bauhaus University Weimar.

F. Peng, D. Schuurmans, V. Keselj, and S. Wang. Language independent authorship attribution using

character level language models. In A. Copestake and J. Hajic, editors,Proceedings of the Tenth

Conference on European Chapter of the Association for Computational Linguistics, pages 267–

274, Budapest, Hungary, April 2003. Association for Computing Linguistics.

F. Peng, D. Schuurmans, and S. Wang. Augmenting Naive Bayes classifiers with statistical language

models.Information Retrieval, 7(3–4):317–345, September 2004.

J. W. Pennebaker and L. D. Stone. Words of wisdom: Language use over the life span.Journal of

Personality and Social Psychology, 85(2):291–301, August 2003.

253

BIBLIOGRAPHY

J. C. Platt. Sequential minimal optimisation: A fast algorithm for training supportvector machines.

Technical Report MSR-TR-98-14, Microsoft Research, Microsoft Corporation, Redmond, Wash-

ington, April 1998.

J. M. Ponte and W. B. Croft. A language modelling approach to information retrieval. In W. B. Croft,

A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors,Proceedings of the Twenty-

First Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 275–281, Melbourne, Australia, August 1998. ACM Press.

M. Potthast, B. Stein, A. Eiselt, A. Barron-Cedeno, and P. Rosso. Overview of the first interna-

tional competition on plagiarism detection. In B. Stein, P. Rosso, E. Stamatatos,M. Koppel, and

E. Agirre, editors,Proceedings of the Third PAN Workshop on Uncovering Plagiarism, Authorship

and Social Software Misuse, pages 1–9, San Sebastian, Spain, September 2009. Bauhaus Univer-

sity Weimar.

Power Software. Essential Metrics, March 2010. URL: http://www.powersoftware.com/em [Ac-

cessed 11 March 2010].

L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of programs with JPlag.

Journal of Universal Computer Science, 8(11):1016–1038, November 2002.

J. Ranade and A. Nash.The Elements of C Programming Style. R. R. Donnelley & Sons, New York

City, New York, first edition, October 1992.

J. D. M. Rennie. Derivation of the F-Measure, February 2004. URL:http://people.csail.mit.edu/

jrennie/writing/fmeasure.pdf [Accessed 7 April 2010].

RMIT University. RMIT Plagiarism Policy 2003. Melbourne, Australia, 1.1 edition, December 2002.

URL: http://www.rmit.edu.au/browse;ID=sg4yfqzod48g1 [Accessed 1 September 2010].

RMIT University. Programming Techniques course guide, March 2010a. URL: http://www.rmit.edu.

au/courses/004301 [Accessed 18 March 2010].

RMIT University. Algorithms and Analysis course guide, March 2010b. URL: http://www.rmit.edu.

au/courses/004302 [Accessed 18 March 2010].

RMIT University. Database Systems course guide, March 2010c. URL:http://www.rmit.edu.au/

courses/039983 [Accessed 18 March 2010].

254

BIBLIOGRAPHY

S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In E. Voorhees and D. Harman, editors,

Proceedings of the Eighth Text Retrieval Conference, pages 151–162, Gaithersburg, Maryland,

November 1999. National Institute of Standards and Technology.

S. S. Robinson and M. L. Soffa. An instructional aid for student programs. In V. Wallentine and

W. Bulgren, editors,Proceedings of the Eleventh SIGCSE Technical Symposium on Computer

Science Education, pages 118–129, Kansas City, Missouri, February 1980. ACM Press.

Y. Rodriguez, M. M. Garcia, B. De Baets, C. Morell, and R. Bello. A connectionist fuzzy case-based

reasoning model. In A. Gelbukh and C. A. Reyes-Garcia, editors,Proceedings of the Fifth Mexican

International Conference on Artificial Intelligence, pages 176–185, Apizaco, Mexico, November

2006. Springer.

P. J. Sallis, S. G. MacDonell, G. MacLennan, A. R. Gray, and R. Kilgour. IDENTIFIED: Software

authorship analysis with case-based reasoning. In N. Kasabov, editor, Proceedings of the Fourth

International Conference on Neural Information Processing and Intelligent Information Systems,

pages 53–56, Dunedin, New Zealand, November 1997. IEEE Computer Society Press.

M. Santini. Automatic Identification of Genre in Web Pages. PhD thesis, School of Computing,

Engineering and Mathematics, University of Brighton, Brighton, United Kingdom, January 2007.

S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for document finger-

printing. In Z. Ives, Y. Papakonstantinou, and A. Halevy, editors,Proceedings of the Twenty-Ninth

ACM SIGMOD International Conference on Management of Data, pages 76–85, San Diego, Cali-

fornia, June 2003. ACM Press.

School Sucks. SchoolSucks.com — free homework, term papers, essays, research papers, and book

notes, March 2010. URL: http://www.schoolsucks.com [Accessed 2 March 2010].

Search Engine Group. About Zettair. RMIT University, October 2009.URL: http://www.seg.rmit.

edu.au/zettair/about.html [Accessed 27 April 2010].

F. Sebastiani. Machine learning in automated text categorisation.ACM Computing Surveys, 34(1):

1–47, March 2002.

S. Shankland. SCO sues Big Blue over Unix, Linux. CNET News.com, March 2003. URL: http:

//news.com.com/2100-1016-991464.html [Accessed 4 October 2007].

C. E. Shannon. A mathematical theory of communication.The Bell Systems Technical Journal, 27

(1):379–423, 623–656, July 1948.

255

BIBLIOGRAPHY

M. Shevertalov, E. Stehle, and S. Mancoridis. A genetic algorithm for solving the binning problem

in networked applications detection. In K. C. Tan, J. Xin Xu, D. Srinivasan, and L. Wang, editors,

Proceedings of the Ninth IEEE Congress on Evolutionary Computation, pages 713–720, Singapore

City, Singapore, September 2007. IEEE Computer Society Press.

M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis. On the use of discretised source code metrics

for author identification. In M. Harman, M. Di Penta, and S. Poulding, editors,Proceedings of the

First International Symposium on Search Based Software Engineering, pages 69–78, Windsor,

United Kingdom, May 2009. IEEE Computer Society Press.

N. Shivakumar and H. Garcia-Molina. SCAM: A copy detection mechanism for digital documents. In

D. M. Levy and R. Furuta, editors,Proceedings of the Second International Conference in Theory

and Practice of Digital Libraries, pages 1–13, Austin, Texas, June 1995.

J. Shlens. A tutorial on principal component analysis. Tutorial 2, SystemsNeurobiology Laboratory,

Salk Institute for Biological Studies, La Jolla, California, December 2005.

A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalisation. In H. Peter Frei,

D. Harman, P. Schaubie, and R. Wilkinson, editors,Proceedings of the Nineteenth Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval, pages

21–29, Zurich, Switzerland, August 1996. ACM Press.

R. M. Slade.Software Forensics: Collecting Evidence from the Scene of a Digital Crime. McGraw

Hill Professional, New York City, New York, first edition, January 2004.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of

Molecular Biology, 147(1):195–197, March 1981.

Software Freedom Law Centre. Software freedom law centre, March 2010. URL: http://www.

softwarefreedom.org [Accessed 4 March 2010].

E. Soloway. Learning to program= learning to construct mechanisms and explanations.Communi-

cations of the ACM, 29(9):850–859, September 1986.

E. H. Spafford. The internet worm program: An analysis.ACM SIGCOMM Computer Communica-

tion Review, 19(1):17–57, January 1989a.

E. H. Spafford. The internet worm: Crisis and aftermath.Communications of the ACM, 32(6):

678–687, January 1989b.

256

BIBLIOGRAPHY

K. Sparck-Jones, S. G. Walker, and S. E. Robertson. A probabilistic model of information retrieval:

Development and comparative experiments part 1.Information Processing and Management, 36

(6):779–808, November 2000a.

K. Sparck-Jones, S. G. Walker, and S. E. Robertson. A probabilistic model of information retrieval:

Development and comparative experiments part 2.Information Processing and Management, 36

(6):809–840, November 2000b.

D. Spinellis. Job security.IEEE Software, 26(5):14–15, August 2009.

L. Spracklin, D. Inkpen, and A. Nayak. Using the complexity of the distribution of lexical elements as

a feature in authorship attribution. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odjik,

S. Piperidis, and D. Tapias, editors,Proceedings of the Sixth International Conference on Lan-

guage Resources and Evaluation, pages 3506–3513, Marrakech, Morocco, May 2008. European

Language Resources Association.

E. Stamatatos. Ensemble-based author identification using character n-grams. In B. Stein and O. Kao,

editors,Proceedings of the Third International Workshop on Text-Based Information Retrieval,

pages 41–46, Riva del Garda, Italy, August 2006. Bauhaus University Weimar.

E. Stamatatos. Author identification using imbalanced and limited training texts. In R.Wagner,

N. Revell, and G. Pernul, editors,Proceedings of the Eighteenth International Conference on Data-

base and Expert Systems Applications, pages 237–241, Regensburg, Germany, September 2007.

IEEE Computer Society Press.

E. Stamatatos. A survey of modern authorship attribution methods.Journal of the American Society

for Information Science and Technology, 60(3):538–556, March 2008.

E. Stamatatos, N. Fakotakis, and G. Kokkinakis. Automatic authorship attribution. In H. S. Thomp-

son and A. Lascarides, editors,Proceedings of the Ninth Conference on European Chapter of the

Association for Computational Linguistics, pages 158–164, Bergen, Norway, June 1999. Associa-

tion for Computing Linguistics.

E. Stamatatos, N. Fakotakis, and G. Kokkinakis. Automatic text categorisationin terms of genre and

author.Computational Linguistics, 26(4):471–495, December 2000.

E. Stamatatos, N. Fakotakis, and G. Kokkinakis. Computer-based authorship attribution without

lexical measures.Computers and the Humanities, 35(2):193–214, May 2001.

257

BIBLIOGRAPHY

B. Stein and S. Meyer zu Eissen. Intrinsic plagiarism analysis with meta learning. In B. Stein,

M. Koppel, and E. Stamatatos, editors,Proceedings of the First International Workshop on Plagia-

rism Analysis, Authorship Identification, and Near-Duplicate Detection, pages 45–50, Amsterdam,

Netherlands, July 2007. CEUR Workshop Proceedings.

B. Stein, M. Koppel, and E. Stamatatos. Plagiarism analysis, authorship identification and near-

duplicate detection.ACM SIGIR Forum, 41(2):68–71, December 2007.

K. Stevens and R. Jamieson. The introduction and assessment of three teaching tools (WebCT,

Mindtrail, EVE) into a post graduate course.Journal of Information Technology Education, 1(4):

233–252, December 2002.

Sun Microsystems.Java Code Conventions. Mountain View, California, September 1997. URL: http:

//java.sun.com/docs/codeconv/CodeConventions.pdf [Accessed 15 December 2008].

A. L. Uitdenbogerd and J. Zobel. Music ranking techniques evaluated. In M. Oudshoorn and R. Pose,

editors,Proceedings of the Twenty-Fifth Australasian Computer Science Conference, pages 275–

283, Melbourne, Australia, January 2002. Australian Computer Society.

R. H. Untch, R. Butler, and C. C. Pettey. A small and secure submission system for Unix systems. In

V. A. Clincy, editor,Proceedings of the Forty-Third Annual Southeast Regional Conference, pages

341–344, Kennesaw, Georgia, March 2005. ACM Press.

P. Vamplew and J. Dermoudy. An anti-plagiarism editor for software development courses. In

A. Young and D. Tolhurst, editors,Proceedings of the Seventh Australasian Conference on Com-

puting Education, pages 83–90, Newcastle, Australia, January 2005. Australian Computer Society.

K. L. Verco and M. J. Wise. Software for detecting suspected plagiarism:Comparing structure and

attribute-counting systems. In A. Fekete and J. Rosenberg, editors,Proceedings of the First Aus-

tralian Conference on Computer Science Education, pages 81–88, Sydney, Australia, July 1996.

ACM Press.

S. Voloshynovskiy, O. Koval, F. Beekhof, and T. Holotyak. Multiclass classification based on binary

classifiers: On coding matrix design, reliability and maximum number of classes.In Proceedings

of the Nineteenth IEEE International Workshop on Machine Learning for Signal Processing, pages

1–6, Grenoble, France, September 2009. IEEE Computer Society Press.

G. A. Wang, S. Kaza, S. Joshi, K. Chang, C. Tseng, H. Atabakhsh, and H. Chen. The Arizona ID-

Matcher: Developing an identity matching tool for law enforcement. In J. B. Cushing, T. A. Pardo,

258

BIBLIOGRAPHY

A. Borning, and M. Janssen, editors,Proceedings of the Eighth Annual International Conference

on Digital Government Research: Bridging Disciplines and Domains, pages 304–305, Philadel-

phia, Pennsylvania, May 2007. Digital Government Society of North America.

I. D. Watson. An introduction to case-based reasoning. In I. D. Watson, editor, Proceedings of

the First United Kingdom Workshop on Progress in Case-Based Reasoning, pages 3–16, Salford,

United Kingdom, January 1995. Springer.

D. R. Westhead, J. H. Parish, and R. M. Twyman.Bioinformatics. BIOS Scientific Publishers Ltd.,

Oxford, United Kingdom, first edition, October 2002.

G. Whale. Detection of plagiarism in student programs. In G. Gerrity, V. Gledhill, B. Johnstone,

B. Molinari, and R. Stanton, editors,Proceedings of the Ninth Australian Computer Science Con-

ference, pages 231–241, Canberra, Australia, January 1986. Australian National University.

B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: Perceptron, madaline, and back-

propagation.Proceedings of the IEEE, 78(9):1415–1442, September 1990.

Wikimedia Foundation. Wikipedia, July 2010. URL: http://www.wikipedia.org [Accessed 24 July

2010].

WinZip Computing. Winzip — the zip file utility for windows, May 2009. URL: http://www.winzip.

com [Accessed 12 May 2009].

M. J. Wise. YAP3: Improved detection of similarities in computer program and other texts. In

J. Impagliazzo, E. S. Adams, and K. J. Klee, editors,Proceedings of the Twenty-Seventh SIGCSE

Technical Symposium on Computer Science Education, pages 130–134, Philadelphia, Pennsylva-

nia, February 1996. ACM Press.

I. H. Witten and E. Frank.Data Mining: Practical Machine Learning Tools and Techniques. Morgan

Kaufmann Publishers, San Francisco, California, second edition, June2005.

I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes: Compressing and Indexing Documents

and Images. Morgan Kaufmann Publishers, San Francisco, California, second edition, May 1999.

M. Wong. New software detects plagiarised passages. The Associated Press, April 2004. URL: http://

www.usatoday.com/tech/news/2004-04-06-revealing-copycatsx.htm [Accessed 4 October 2007].

C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information

retrieval.ACM Transactions on Information Systems, 22(2):179–214, April 2004.

259

BIBLIOGRAPHY

Y. Zhao. Effective Authorship Attribution in Large Document Collections. PhD thesis, School of

Computer Science and Information Technology, RMIT University, Melbourne, Australia, Decem-

ber 2007.

Y. Zhao and P. Vines. Authorship attribution via combination of evidence. InG. Amati, C. Carpineto,

and G. Romano, editors,Proceedings of the Twenty-Ninth European Conference on IR Research,

pages 661–669, Rome, Italy, April 2007. Springer.

Y. Zhao and J. Zobel. Effective and scalable authorship attribution using function words. In G. G.

Lee, A. Yamada, H. Meng, and S. H. Myaeng, editors,Proceedings of the Second AIRS Asian In-

formation Retrieval Symposium, pages 174–189, Jeju Island, South Korea, October 2005. Springer.

Y. Zhao and J. Zobel. Searching with style: Authorship attribution in classic literature. In G. Dobbie,

editor,Proceedings of the Thirtieth Australasian Conference on Computer Science, pages 59–68,

Ballarat, Australia, January 2007a. Australian Computer Society.

Y. Zhao and J. Zobel. Entropy-based authorship search in large document collections. In G. Amati,

C. Carpineto, and G. Romano, editors,Proceedings of the Twenty-Ninth European Conference on

IR Research, pages 381–392, Rome, Italy, April 2007b. Springer.

Y. Zhao, J. Zobel, and P. Vines. Using relative entropy for authorshipattribution. In H. T. Ng, M. Kew

Leong, M. Yen Kan, and D. Ji, editors,Proceedings of the Third AIRS Asian Information Retrieval

Symposium, pages 92–105, Singapore City, Singapore, October 2006. Springer.

R. Zheng, Y. Qin, Z. Huang, and H. Chen. Authorship analysis in cybercrime investigation. In

H. Chen, R. Miranda, D. Zeng, C. Demchak, J. Schroeder, and T. Madhusudan, editors,Pro-

ceedings of the First NSF/NIJ Symposium on Intelligence and Security Informatics, pages 59–73,

Tucson, Arizona, June 2003. Springer.

J. Zobel. “Uni cheats racket”: A case study in plagiarism investigation. InR. Lister and A. Young,

editors,Proceedings of the Sixth Australasian Computing Education Conference, pages 357–365,

Dunedin, New Zealand, January 2004a. Australian Computer Society.

J. Zobel.Writing for Computer Science. Springer, London, United Kingdom, second edition, April

2004b.

J. Zobel and A. Moffat. Exploring the similarity space.ACM SIGIR Forum, 32(1):18–34, April 1998.

260

