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Summary: 
  

Blends of polycarbonate (PC), polytrimethylene terephthalate (PTT) and poly butylene terephthalate 

(PBT) are an important class of commercial blends with numerous applications providing good 

chemical resistance, impact resistance even at low temperatures, and improved flow characteristics 

compared to the neat polymers. Polycarbonate/polyester blends are known to react during thermal 

processing causing the formation of copolymers to have new mechanical and thermal properties.  

The aim of this project was to study the crystallization, mechanical, rheological and degradation 

behavior of blends of PC, PTT and PBT and explain these behaviors in terms of transesterification and 

other plausible mechanisms.  

PC, PTT and PBT (50:25:25 wt/wt ratio) were melt-blended in a single screw extruder and the 

extruded blends were pelletized.  Non isothermal crystallization kinetics of the blend and neat 

polymers were investigated using a Perkin Elmer diamond DSC instrument having a fast response 

time.  This thermoplastic blend was able to crystallize rapidly from the melt.  Non isothermal 

crystallization kinetic parameters were analyzed using different numerical methods.  The parameters 

of the blend lay between those of PTT and PBT.  The cause of this behavior could be due to the nature 

of PC as an amorphous polymer. 

Rheological properties of the blends were also studied at different temperatures.  Rheological 

measurements were conducted to study the storage modulus, loss modulus, and viscosity values vis a 

vis the neat materials.  Changes in complex viscosity (*) and shear viscosity () were attributed to 

transesterification.  The study presented in this work showed two fundamental issues that have never 

been addressed in the literature: one is the synthesis of a novel tricomponent system and other is how 

transesterification during polymer processing might affect the degradation and rheological properties 

of the tricomponent blend.   
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Effect of blending on mechanical properties was carried out using tensile tests revealing a higher yield 

strength and elastic modulus of the blend.  The morphology of the blend and neat polymers was 

studied using Scanning electron microscope (SEM), showing immiscibility of the blend components.  

X ray analysis was carried out to determine the crystalline nature of the blend vis a vis neat polymers.  

Existence of PTT and PBT peaks proved the immiscible nature of the system.   

Polymer blends can undergo, during processing, degradation because of the presence of both 

temperature and mechanical stresses.  Compared to neat polymers, degradation of polymer blends 

shows distinct features because of the interaction between the different chemical species. These 

interactions can give rise to degradation or to the formation of copolymers which act as stabilizing 

agents.  This latter phenomenon is particularly important in the processing of condensation polymers. 

The non isothermal degradation kinetics of the blend and neat polymers were studied using dynamic 

thermogravimetry.  The thermal stability of the polymers in air was studied and compared to that in 

nitrogen.  The kinetic parameters were analyzed using different numerical methods.  The solid state 

degradation is found to occur by a phase boundary controlled reaction mechanism both for the neat 

polymers and the blend. 

Polymers normally transesterify, above their melting points and interchange reactions commonly 

occur between polyester moieties or among polyester and polycarbonate entities.  The 

transesterification occurring in the blend was analyzed with the help of Fourier Transform Infra- Red 

(FTIR) using spectral features based on changes of infra red bands.  Solubility and infrared absorption 

studies indicate the occurrence of exchange reactions between PC, PTT and PBT leading to formation 

of possible transesterified products ( PTTC and PBTC).  In these products PC is soluble, whereas 

PTTC and PBTC remain insoluble.  

Properties of a blend which are important for industrial application include thermal, mechanical 

and processing conditions.  Areas of fundamental interest in polymer blends include the later 
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properties and physical properties like morphology, crystallization, chemical structure and of most 

compatibility.  The morphology study using SEM indicates non compatibility between the 

polyester and PC.  Melting point and crystallization behavior data are consistent with SEM 

conclusion and suggest that very little if any interchange reactions occur between the ester and 

carbonate groups during melt mixing.  Wide angle x-ray scattering (WAXD) has been used to 

observe liquid –induced crystallization in PC/PTT/PBT blends.  From studies of crystallization 

kinetics, it was concluded that transesterification to a little extent occurs in this blend.  FTIR has 

also been used to analyze ester interchange in this blend and the results obtained support the 

occurrence of trans reaction.  Due to reasonably good interfacial adhesion between PC and the 

polyester the blend is found to have better yield stress and modulus among the tensile properties.  

Thermogravimetric analysis indicates that the thermogravimetric stability of the tricomponent 

blend improved compared to the polyesters possibly due to trans reactions occurring at elevated 

temperatures.  The blends developed using PC/PTT/PBT if blended with modifier like 

polyester/EPDM could find applications in the automotive industry.  This blend can meet specific 

demands like dimensional stability under heat, rigidity, fuel resistance and of all easy 

processability.  These blends can be used for automotive body applications.         

The novelty of this work is the development of PC/PTT/PBT blend which achieves good modulus 

and thermal properties compared to the neat polyesters through the addition of a third 

thermoplastic ingredient i.e, PC. 
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CHAPTER 1  INTRODUCTION 
 

 

 

1.1 Purpose and scope 
 

Polymer blending was industrially started in the early 1866 by Alexander Parkes who 

mixed natural rubber with gutta percha to obtain materials suitable for water proofing cloth.  

From that day, onward polymer reaction and blends aroused interest around the globe.  

With today's advancement in polymer science, their significant technological importance 

arises from the fact that blending of materials with specific properties is cheaper than the 

new polymer produced by chemical synthesis.  In addition, polymer blends have many 

other benefits that can be cited e.g.  (i) providing material with full set of desired properties 

at the lowest price. (ii) extending the engineering resins' performance. (iii) improving 

specific properties, viz impact strength or solvent resistance. (iv) offering the means for 

industrial and/or municipal plastic waste recycling.  Blending also benefits the 

manufacturer by offering (i) improved processability, product uniformity, and scarp 

reduction in processing temperatures. (ii) quick formulation changes, (iii) plant flexibility 

and high productivity. (iv) reduction of the number of grades that need to be manufactured 

and stored. (v) inherent recyclability, etc. 

General Electric company found that by blending polystyrene with polyphenylene oxide, 

the polystyrene allows the viscous polyphenylene oxide to be melt-processable.  In ternary 

blends, a third component is usually added to an immiscible pair to achieve miscibility in 

cases where the third component is miscible with each of the other two polymers as a result 

of hydrogen bonding or van der Waals physical forces [1].  Additionally, miscibility and 
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phase homogeneity in polymer blends are enhanced owing to chemical interactions in the 

ternary blends.  Ternary blends consisting of [PC/PBT]/LCP in the ratio [60/40]/10 wt% 

has been synthesized by Tjong et al., [2].  Here a solid epoxy resin (Bisphenol type –A) has 

been used as a compatibilizer for the composites.  In this research work, PC/PBT blend is 

incorporated into a liquid crystal polymer to improve the fibrillation of the LCP in the 

matrix and also improve adhesion between matrix and LCP.  Thus, the modulii of the 

ternary PC/PBT/LCP composites are higher than those of PC/LCP blends.  This blend can 

be used to make a myriad of products, including CDs and CD-ROMs and also be used for 

large exterior parts in automotive industry.  

It is well known that the physical and mechanical properties of semicrystalline polymers 

depend to a great extent on the degree of crystallization, which in turn was affected by the 

crystallization conditions.  The crystal structure and morphology are established during the 

solidification process that takes place through the nucleation and spherulite development.  

Isothermal crystallization measurements are usually used to study the crystallization 

behavior of polymers while non isothermal crystallization approaches simulate closely the 

industrial conditions of polymer processing such as extrusion molding and melt-spinning of 

synthetic fibers.  To control the rate of crystallization and the degree of crystallinity and to 

obtain materials with better physical properties, a great deal of effort has been devoted into 

studying the crystallization kinetics and determining the change in material properties [3, 

4].  

Zhu et al., [5] studied the morphological properties of microbially synthesized poly(3-

hydroxybutyrate-co-4-hydroxybutyrate)s, P(3HB-co-4HB)s, with different molecular 

weights and 4HB compositions.  Oscillatory shear measurements have been carried out to 
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characterize the flow behavior of these biopolyesters as a function of temperature at 

different flow conditions.  The rheological characteristics of these samples show that the 

4HB content does not appear to strongly affect the critical molecular weight (Me) for chain 

entanglement.  Under low stresses during creep measurements, the shear viscosity of the 

sample with low 4HB content diverges abruptly in a narrow temperature range due to 

polymer crystallization.  Apart from the creep measurements, the crystallization behavior 

of the semicrystalline sample has been further characterized using stress-controlled 

oscillatory shear measurements during a cooling-heating cycle at a constant rate of 

temperature ramping.  The rapid increase and decrease of the dynamic viscosity and 

storage modulus are interpreted as corresponding to crystallization and melting, 

respectively, during the thermal cycle.  It is established that the polymer with sufficiently 

high 4HB content is amorphous and obeys the time-temperature superposition.  Capillary 

flow measurements of all the samples in their molten state have indicated that the variation 

in 4HB content does not significantly alter the value of Me.  Moreover, the viscosity of 

these samples appears to have nearly the same temperature dependence in their molten 

state, indicating that the frictional dynamics are essentially independent of the HB contents.   

Carrot el at., [6] has investigated the rheological behavior of high density polyethylene 

(HDPE) using isothermal crystallization from the melt using dynamic oscillatory 

experiments.  During crystallization, the molten and crystallizing polymer provides a useful 

model for filled polymers, the crystalline phase being the filler and the liquid phase being 

the matrix.  Owing to the amorphous phase linking liquid and crystallites, the adhesion 

between matrix and filler in the system is perfect.  The rheological results have been 

compared to those obtained from differential scanning calorimetry (DSC) under identical 
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conditions.  The relative sensitivity of various rheological parameters (storage and loss 

moduli, loss angle) to structural changes of the liquids has been studied. 

It was found that during isothermal crystallization from the melt, the fraction of growing 

spherulites changes continuously with time and the adhesion with the matrix is found to be 

perfect.  Plots of storage, loss and tan () plots as function of time at a frequency of 1 rad/s 

indicates that these parameters are very susceptible to structural changes in the fluid.  The 

decrease in tangent of the loss angle versus increasing filler content indicates a sensitivity 

of the storage modulus, from this point of view, it was concluded that the loss modulus 

governing the change of elastic parameter and viscosity parameters are different.     

The rate of polymer crystallization depends on temperature, and shear rate.  Dynamic 

rheology can give a more detailed understanding of the mechanism of crystal growth and 

orientation, and their effect on the ultimate properties of the product.  The literature clearly 

shows the effect of thermo-mechanical history on the morphology and physical properties 

of semi-crystalline polymers [7, 8].  

The systematic study of polymer degradation reactions, which has continued to the present 

time, only started about 1930 with the birth of the modern synthetic plastics industry.  

Processing polymers involve melting the material so that it is subjected to high 

temperatures and shear forces necessary to form usable parts.  This condition often results 

in changes in polymer molecular weight, either through chain scission or 

transesterification.  Consequently, properties of blend polymers are almost universally 

inferior to those of neat polymers.  In addition, polymer blends generally undergo the same 

degradation reactions as the original polymers, but in most cases the rate of degradation 
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changes, depending on the nature of the polymer added, or on the degree of miscibility of 

the polymer pair or on the interaction of degradation products.  

FTIR is a useful tool to study the conformations and conformation regularities of polymers, 

intra-and intermolecular interactions of polymer chains (e.g. by hydrogen bonds) and 

chemical reactions.  Additionally, semicrystalline polymers show infrared bands which 

correlate to the crystallinity, as inferred by, for example, DSC or using an analytical tool 

like TGA.  The existence of regular ordered sequences (conformation) promotes the 

crystallizability.  With the FTIR method alone it is difficult to distinguish between the 

influences of conformation and crystallinity on IR bands.  The melt blend of 

semicrystalline poly (butylene terephthalate) (PBT), poly (trimethylene terephthalate)(PTT)  

and amorphous polycarbonate (PC), a technologically interesting blend, is a system with 

many possible influences on the vibration behavior of its components by chemical 

reactions.  Exchange reactions could take place between PC, PTT and PBT during thermal 

treatment.  Transesterification is the process in which diesters undergo transformation with 

diols to form macromolecules.  Devaux et al., [9] have postulated transesterification to be 

the most important exchange reaction occurring between PBT and PC, resulting in a new 

chemical structure of copolymers with IR bands of the aromatic ester at 1740 and 1070  

cm-1 and of the aromatic aliphatic carbonate at 1770 cm-1.  The IR band of the formed 

aliphatic-aliphatic carbonate at 1763 cm-1 was assigned according to Berti et al., [10]. 

Poly (butylene terephthalate)/bisphenol A polycarbonate blends are known to undergo 

transesterification reactions when they are heated to temperatures greater than 270oC  

[9, 11, 12].   
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The transesterification pathways yield two main transesterification products, the aromatic 

ester (C=O stretch at 1740 cm-1 in IR) and the aliphatic-aromatic carbonate (C=O at 1770  

cm-1 in IR).  The aromatic ester also gives rise to a new band in the IR at 1070 cm-1.  These 

transesterification products have previously been indentified with IR but previous work at 

GE Plastics [13] was unable to show the presence of the aliphatic-aromatic carbonate in 

heated PBT/PC blends although evidence for the presence of the aromatic ester was found.  

The aim of this study is to prepare poly (trimethylene terephthalate)(PTT) –poly butylene 

terephthalate)(PBT) – polycarbonate(PC) blends to provide a combination of toughness, 

strength, and environmental resistance, from these potentially compatible but immiscible 

polymers, and to interpret their morphology and properties by comparison with analogous 

polyesters and reference to polymer blend theory. 

 

1.2 Aim and Objectives. 

The aim of this project was to study the crystallization, mechanical, rheological and 

degradation behaviors of blend of PC, PTT and PBT and explain these behaviors in terms 

of miscibility, transesterification and other plausible mechanisms.  

 

The objectives were: 

A. To prepare PC, PTT, PBT blend in the ratio of (50:25:25 wt %) using a single screw 

extruder. 

B. To study miscibility of the blends by measurement of variation in the glass transition 

temperatures of the component polymers and to determine whether PC will cause 

nucleation of PTT (or PBT) crystallization.  
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C. To extrude the samples and do injection molding to obtain test specimens by injection 

molding for the determination of tensile strength according to ASTM (D-638) 

D. To interpret the crystal structure of neat materials and blend using X-ray analysis. 

E. To investigate the phase morphology of the samples using a scanning electron 

microscope (SEM). 

F. To study rheological properties of the blend and relate rheological properties to 

crystallization behavior under shear.  

G. To measure the degradation of the blend and neat polymers in nitrogen and air.  A 

plausible mechanism based on phase boundary controlled reaction will be explained 

for the solid state reaction occurring on degradation. 

H. To study possible transesterification reactions which occur in the tricomponent blend 

using Fourier Transform Infrared Spectroscopy (FTIR). 

The thesis is divided into five chapters; A thorough literature review is given in chapter 2.  

The review includes polymer crystallization (isothermal and non isothermal), morphology 

(SEM and WAXD), mechanical properties (tensile), rheological properties and non 

isothermal degradation.   Materials and experimental techniques are described in chapter 3.  

This includes polycarbonate (PC), poly (trimethylene terephthalate), (PTT) and poly 

(butylene terephthalate), (PBT) as materials.  The techniques used in the experiments are:  

 Differential scanning calorimeter measurements for conducting experiments 

related to crystallization kinetics of neat polymers and the blend. 

 Scanning electron microscope (SEM) measurements, X-ray measurements and 

Fourier transform infrared spectrometer (FTIR) measurements for conducting 

experiments related to morphology of the neat polymers and the blend. 
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 Tensile measurements for conducting experiments related to mechanical 

properties of the neat polymers and the blend. 

 Cone and plate rheometer measurements for conducting experiments related to 

rheology of the neat polymers and the blends. 

 Thermogravimetric analysis measurements for conducting experiments related to 

degradation of neat polymer and the blends.  

 
Chapter 4 deals with the study of non isothermal and isothermal crystallization studies of 

neat polymers and blend.  It also includes scanning electron microscopic (SEM) 

measurements, x-ray analysis, measurement of mechanical properties and rheology of the 

neat polymers and the blend. Fourier transform infra red analysis (FTIR) and non 

isothermal degradation study also form a part of this chapter. Chapter 5 deals with the 

general conclusion of each study discussed in the chapter 4. 
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CHAPTER 2 REVIEW OF RELEVANT LITERATURE 

 

 2.1 Polymer Crystallization. 

Guijuan et al. [14], investigated the crystallization kinetics after reactive blending of a 

binary system consisting of poly(trimethylene terephthalate) (PTT)/poly(butylene 

terephthalate) (PBT).  The blends of PTT/PBT were in the ratio: 10/90, 25/75, 40/60, 

50/50, 60//40 and 75/25 (w/w%) respectively.  The crystallization kinetics of the binary 

blends were studied using a Perkin-Elmer differential scanning calorimeter (DSC).  All the 

runs were performed under nitrogen atmosphere to prevent extensive thermal degradation.  

The samples, sealed in aluminum pans, were heated from room temperature to 280C at a 

heating rate of 20 C/minute and the samples were kept at that temperature for 1 minute.  

The temperature was then reduced to 20C at a cooling rate of 10C/minute and kept at 

30C for 1 minute.  The exothermic curve was recorded as a function of temperature.  From 

the crystallization studies, it was found that there are two crystallization peaks when the 

ratio of PTT and PBT is 40:60 or 50:50; the double peaks were attributed to the two 

components crystallizing and melting independently in the crystalline regions.  This 

phenomenon suggests that PTT/ PBT forms a nonhomogeneous phase system.  In the 

amorphous part of the nonhomogeneous phase system, PTT and PBT molecular chains 

were miscible. 

Xue et al., [15], investigated the influence of Polycarbonate (PC) and compatibilizer 

Ethylene-propylene-diene copolymer graft glycidyl methacrylate (EPDM-g-GMA) and 
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epoxy resin, E-03 (609) on the crystallization behavior of PTT using DSC.  Blends of 

(PC/PTT) in the ratio of: (100/0), (75/25), (50/50) , (25/75) and (0/100) (w/w%) were 

considered for the studies.  He found that the crystallization behavior of PC/PTT blends 

were interfered by the presence of PC, the interference increasing with PC content.  The 

EPDM-g-GMA had little effect on the nucleation and spherical growth mechanism, 

presence of an epoxy made a positive contribution to the PTT crystallization.  Moreover, 

the influence of epoxy on the crystallization behavior of PC/PTT blends were correlated 

with percent of epoxy added. 

Semicrystalline polymers can crystallize between their glass-transition temperature (Tg) and 

their apparent melting temperature (Tm).  The bulk crystallization process can be classified 

into two categories, depending on the initial state from which the polymers are brought to 

crystallize.  If the polymers are brought to crystallize from the molten state (i.e., from a 

temperature higher than (Tm)), it is called melt-crystallization.  On the contrary, if the 

polymers are brought to crystallize from glassy state i.e., from a temperature lower than 

(Tg), it is called cold-crystallization.  Both physical and mechanical properties of semi-

crystalline polymers strongly depend on the extent of crystallization and the morphology 

developed during processing; studies related to crystallization kinetics provide key 

information for gaining an understanding of the relationship among the processing 

conditions, the developed structure, and the properties of the final products.  Studies related 

to the kinetics of polymer crystallization are of great importance in polymer processing, 

due to the fact that the resulting physical properties are strongly dependent on the 

morphology formed and the extent of crystallization occurring during processing.  It is 

therefore very important to understand the processing–structure–property interrelationships 
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of the studied materials, which, in this case, are PTT, PBT, and PC.  The overall 

crystallization process in semicrystalline polymers can be divided into two main processes: 

primary crystallization and secondary crystallization.  The primary crystallization process 

is a macroscopic development of crystallinity as a result of two consecutive microscopic 

mechanisms: primary nucleation and secondary nucleation (i.e., subsequent crystal 

growth).  The secondary crystallization process is mainly concerned with the crystallization 

of interfibrillar melt, which was rejected and trapped between the fibrillar structure formed 

during the growth of crystalline aggregates (e.g., axialites, spherulites, etc.) [16-18]. 

If the crystallization time becomes very long, other types of secondary crystallization (i.e., 

crystal perfection and crystal thickening) may become significant enough to increase the 

ultimate absolute crystallinity.  For the purpose of describing the evolution of crystallinity 

under isothermal conditions, a number of mathematical models [19-25] has been proposed, 

based primarily on the notion of primary nucleation and subsequent crystal growth 

microscopic mechanisms, The contributions from Kolmogoroff [19], Johnson et al., [20], 

Avrami [21-23], and Evans [24] are essentially similar, it is the work of Avrami that has 

received the most attention.  Based on different approaches, Tobin [25 -27] and Malkin et 

al., [28] arrived at different mathematical models, which are also different from the Avrami 

model.  Unlike the Avrami model, the use of the Tobin and Malkin models for the analysis 

of the isothermal crystallization data of semicrystalline polymers, is scarce. Critical 

descriptive comparisons between the Avrami and Tobin models were performed on the 

isothermal crystallization data of poly(ethylene terephthalate) (PET), poly(phenylene 

sulfide) (PPS) [29], medium-density polyethylene (MDPE), and poly(oxymethylene) 

(POM) [30].  Critical descriptive comparisons between the Avrami and Malkin models 
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were performed on isothermal crystallization data of polyethylene (PE), isotactic 

polypropylene (iPP), PET, poly(propylene oxide) (PPO), and polyurethane (PU) [28]. 

 

2.1.1 Isothermal crystallization 

 

In the study of isothermal crystallization using differential scanning calorimetry DSC, the 

rate of evolution of the heat of crystallization as a function of time and the relative extent of 

crystallization (t) (or relative crystallinity) are related to one another according to the 

following equation: 
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where t represents an arbitrary time during the course of isothermal crystallization process, 

dHc is the enthalpy of crystallization released during an infinitesimal time interval dt, and 

Hc is the overall enthalpy of crystallization for a specific crystallization temperature Tc.  

The overall crystallization kinetics of polymers is usually analyzed using the Avrami 

equation (21–23).  In DSC study, it is assumed that the differential area under the 

crystallization curve with time corresponds to the dynamic changes in the conversion of 

mass from the melt phase to the solid phase.  If  and t are the maximum crystallinity 

obtained for particular crystallization condition and the dynamic crystallinity at arbitrary 

time t for the same crystallization condition, respectively, then the governing Avrami 

equation can be written as 
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where (t) denotes the relative crystallinity as a function of time, kA is the Avrami 

crystallization rate constant, and nA is the Avrami exponent of time.  Both kA and nA are 

constants typical of a given crystalline morphology and type of nucleation for a particular 

crystallization condition [31].  The data analysis based on the Avrami macrokinetic 

equation was carried out through the direct fitting of the experimental  (t) function to 

equation (2.2).  Aiming at improving the Avrami model, Tobin [25–27] proposed a 

different expression describing phase transformation kinetics with growth site 

impingement.  The original theory was written in the form of: 

T
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where (t) is the relative crystallinity as a function of time, kT is the Tobin crystallization 

rate constant, and nT is the Tobin exponent.  Based on this proposition, the Tobin exponent 

of time nT need not be integral [26, 27], and it is governed directly by different types of 

nucleation and growth mechanisms.  The data analysis based on the Tobin macrokinetic 

equation was carried out by the direct fitting of the experimental (t) functions to equation 

(2.3).  Tobin kinetic parameters (i.e., kT and nT), along with the ASE values, were obtained 

from the best fits.  Malkin et al., [28] proposed a totally different form of a macrokinetic 

equation:  

)(exp(

)1(
1)(

10

0

tCC

C
t




                                                                                                (2.4) 

440  MnC                                                                                                                     (2.5)                             

                             

(                                                                         (2.6) 

 

M
M

n
Mn k

C

1

1 )2(ln
)24ln( 












  14

where (t) is the relative crystallinity as a function of time. C0 relates directly to the ratio 

of the linear growth rate G to the nucleation rate N (i.e., C0  G/N), and C1 relates directly 

to the overall crystallization rate (i.e., C1 = aN + b.G, where a and b are specific 

constants).  nM represents Avrami exponent (nA) in Malkin equation.  Both C0 and C1 are 

temperature-dependent constants.  The data analysis based on Malkin macrokinetic 

equation was carried out by the direct fitting of the experimental (t) function to equation 

(2.4).  The Malkin kinetic parameters (i.e., kM and nM), along with the ASE values were 

obtained from the best fits.  

Xue et al., [15] studied the crystallization behavior of PTT of compatibilized and un 

compatibilized PTT/ Polycarbonate (PC) blends.  DSC results in the study show that 

crystallization behavior of PTT/PC blend is sensitive to PC content.  The Avrami exponent 

(n) has been found to decrease from 4.3 to 3.6 as the PC content increased, suggesting that 

nucleation mechanism exhibits the tendency of changing gradually from themal nucleation 

to a non thermal mode although the growth mechanism still remains three dimensional.  

These authors have not investigated the occurrence of transesterification.     

 

2.1.2 Non isothermal crystallization  

 

The energy released during non isothermal crystallization is a function of temperature.  It is 

a function of time in case of isothermal crystallization.  The relative crystallinity as a 

function of temperature, (T), is a modification of equation (2.1) and it can be written as 

follows: 
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where To and T represent the onset temperature and an arbitrary temperature, respectively, 

dHc is the enthalpy of crystallization released during an infinitesimal temperature change 

(dT) and Hc is the total enthalpy of crystallization for a specific cooling (i.e., for non 

isothermal melt-crystallization) or heating (i.e., for non isothermal cold crystallization) 

condition.  Equation (2.1) is used with an assumption that each sample in a DSC cell 

experiences a similar thermal history.  This could be realized when the lag between the 

temperatures of the samples and the furnace was minimal.  If this assumption is valid, the 

relation between the crystallization time (t) and the sample temperature (T) can be written 

as follows: 

       


TT
t


 0                                                                (2.8) 

where T0 is an arbitrary reference temperature and  is the cooling or heating rate.  

According to equation (2.8), the horizontal temperature axis observed in a DSC 

thermogram for the non isothermal crystallization data can be transformed into the time 

domain.  

The kinetics of non isothermal crystallization of three different types of linear aromatic 

polyesters PTT, PBT and PET was investigated by Supaphol el at., [32] using (DSC).  

Analysis of the data was carried out based on the Avrami, Tobin and Ozawa, models.  It 

was found that the Avrami model provided a more satisfactorily good fit to the 

experimental data for these polyesters than did the Tobin model.  The Ozawa model was 

found to describe the experimental data fairly well. The Ziabicki’s kinetic crystallizability 
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parameter, G, for these polyesters was found to be of the following order: PBT > PTT > 

PET.  The effective energy barrier for non isothermal crystallization process of these 

polyesters, determined by the Friedman method, was found to increase as a function of the 

relative degree of crystallinity.  These authors have not checked the occurrence of 

transesterification in this system.  The rheology of this ternary system has not been 

investigated.  

2.2 Rheology of blends 

The properties of blends strongly depend on the structure and morphology of the system, 

and they are determined by their rheological characteristics.  Dynamic rheology testing is 

thought to be a preferential method for investigating the structure/morphology of materials 

because the structure of materials exposed to the testing processes is not destroyed under 

small strain amplitude [33].   The rheology and morphology of multiphase polymer blends 

are strongly affected by interfacial characteristics.  Several models have been proposed to 

describe the phase behavior of binary polymer blends, such as the time– temperature 

superposition principle [34-37], Han plots (log G’vs log G”, where G’ is the dynamic 

storage modulus and G” is the dynamic loss modulus).  Polymer rheological properties help 

to formulate a polymer system in respect to its processing characteristics.  These also give 

an insight into the physical properties and morphology of the system because there is an 

inter-play between the processing conditions, structures, and properties [38].  In an article 

by Varma el at., [38], the terpolymer ethylene-butyl acrylate-glycidyl methacrylate 

(EBAGMA) was used as the reactive compatibilizer to HDPE/PET blends, and melt 

rheological properties of the blends were studied by means of a capillary rheometer.  

Varma et al., [38] has discussed the morphology of the later blends and effects of the 
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compatibilizer content, shear rate, and temperature on melt viscosity of the blends.  Wu el 

at., [39] studied the rheological behavior of PBT/montmorillonite (MMT) nanocomposites 

prepared by melt intercalation using parallel plate rheometer.  In the linear viscoelastic 

measurements, PBT/MMT displays a strain-sensitive linear behavior region much narrower 

than that of polymer matrix.  The temperature independence of G'-G" for PBT/MMT 

suggests that the relaxation of the interaction between tactoids themselves is not sensitive 

to the experimental condition in the narrow region of linear viscoelasticity of the 

nanocomposites.   

Xu el at [40] has studied the dynamic rheological behavior of ethylene-butene copolymers 

and their blends with low density polyethylene.  Compared with the conventional ethylene 

copolymers, the metallocene-based copolymers exhibit the following dynamic rheological 

features: (1) lower viscoelastic moduli and viscosity at small frequencies, but larger 

viscoelastic moduli and viscosity at large frequencies, thus a small shear thinning effect; (2) 

larger values of flow activation energy; (3) a relatively fast relaxation rate.  These features 

are the results of simultaneous absence of high molecular weight tails and low molecular 

weight tails in the metallocene-based copolymers.  The dynamic rheological properties of 

blends of various ethylene–butene copolymers with LDPE were also investigated.  It is 

found that the addition of LDPE can raise the viscosity at low frequencies but lower the 

viscosity and elasticity at higher frequencies, and retard the relaxation rate of the 

metallocene-based ethylene copolymers.  However, the improvement in rheological 

properties by LDPE varies with the polymer samples and there is no improvement for the 

conventional copolymer. 
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Hong el at., [41] studied the rheology and physical properties of ternary blends containing 

polyarylate (PAR) U-Polymer 100, a thermotropic liquid crystalline copolyester (LCP) 

Vectra A950 and a block copolyesterether Hytrel 7246.  Addition of Hytrel to the 

PAR/LPC blend decreased both with dynamic viscosity and storage modulus over the 

normal processing temperature range.   

2.2.1 Rheology and transesterification of PC/PTT/PBT blend. 

Reaction between p-acetoxybenzoic acid (ABA) and poly ethylene terephthalate (PET) is 

primarily an acidolysis reaction [42].  Hamb [43] and the others had observed that 

acidolysis and esterolysis both occur readily when PET is heated at 275oC with terephthalic 

acid and 4,4'-isoproplyidene diphenol diacetate with the formation of acetic acid.  The 

effect of shear on the melt viscosities of these copolymers at 275oC is dependent on the 

ABA content.  As the ABA content increases, the polymer becomes shear sensitive at low 

shear rates.  One of the most important properties of these copolymers is that the melt 

viscosities are shear rate dependent.  As the shear rate increases melt viscosities are found 

to decrease possibly due to the formation of liquid crystalline structure found due to 

transesterification reactions.  Berti et al., [44] studied different reactions that take place in 

melt blending of PC-PET in presence of titanium tetrabutoxide, Ti(OBu)4, as catalyst that is 

effective in promoting ester/carbonate exchange reactions.  They found that volatile cyclic 

ethylene carbonate introduced strong changes in the resulting chemical reaction.  Wilkinson 

et al., [45] prepared PC-PBT blend with adding alkyl titanium as transesterification 

catalyst.  As the degree of transesterification increased the blend changed from block 

copolymer to random copolymer.  It is clear from the literature that extent of 
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transesterification reactions are strongly influenced by catalyst and reaction conditions.  

The effect of extend of reaction on blending PC/PTT/PBT has not received any attention.  

This thesis aims at studying the rheological behavior of melt blend containing 

PC/PTT/PBT.  The polyesters used in this work have residual catalyst in them and could 

activate exchange reactions. 

2.2.2 Rheometry 

Rheology is the science of deformation and flow of matter.  Deformation is the relative 

displacement of points of a body.  It can be divided into two types: flow and elasticity.  

Flow is irreversible deformation; when the stress is removed, the material does not revert to 

its original form.  This means that work is converted to heat.  Elasticity is reversible 

deformation; the deformed body recovers its original shape, and the applied work is largely 

recoverable.  Viscoelastic materials show both flow and elasticity.  A good example is Silly 

Putty, which bounces like a rubber ball when dropped, but slowly flows when allowed to 

stand.  Viscoelastic materials provide special challenges in terms of modeling behavior and 

devising measurement techniques. 

In cone and plate viscometer, a low angle (≤ 3) cone rotates against a flat plate with the 

fluid sample between them.  The cone-plate instrument is a simple, straightforward device 

that is easy to use and extremely easy to clean.  It is well suited to routine work because 

measurements are rapid and no tedious calculations are necessary.  In most rotational 

viscometers the rate of shear varies with the distance from a wall or the axis of rotation. 

However, in a cone – plate viscometer the rate of shear across the conical gap is essentially 

constant because the linear velocity and the gap between the cone and the plate both 
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increase with increasing distance from the axis.  The relevant equations for velocity, shear 

stress, and shear rate at small angle  of Newtonian fluids are equations (2.9), (2.10), and 

(2.11), respectively, where mtr is the torque, rc the radius of the cone, v the linear velocity, 

and r the distance from the axis. 

 = 3  mtr / 2 rc
3                                                                                                           (2.9)

3 mtr / 2 rc
3                                                                                                             (2.10) 

 
dv / dr  =  /                                                                                                          (2.11)      

 

Cone-plate geometry has several advantages over concentric cylinder geometry, including a 

smaller sample size, a homogenous shear rate, and easy conversion of data.  Disadvantages 

are the need for precise adjustment of the gap, including resetting when the temperature is 

changed, also specimen drying, solvent evaporating, slinging of material from the gap, and 

the possibility of viscous heating, particularly at high shear rates.   

2.3 Mechanical properties of blends 

Anton et al., [46] analyzed the mechanical properties of a binary blend of poly (ethylene 

terephthalate) (PET)/poly (butylene terephthalate) (PBT) (PES) and ternary blends of 

polypropylene (PP)/(PES) fibers containing 8 wt % of polyester as dispersed phase.  He 

characterized the (PET/PBT) and PP/(PES) blends using an Instron (Type 1112).  Fiber 

tensile strength was evaluated from 30 measurements.  The impact of PET/PBT 

composition on tensile strength at break of the PP/PES blend fibers (8 wt % PES) indicate 

the contribution of higher compatibility of the PET/PBT blend with PP.  Superior tensile 

strength of the fibers with higher content of PBT could be probably due to higher molecular 
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weight of PBT, higher adhesion bonds at interphase, and stiffening of PBT in presence of 

PET component.  Remiror et al., [47] studied the mechanical properties of poly(butylene 

terephthalate) (PBT)/bisphenol-A-polycarbonate (PC)/poly(hydroxyether of bisphenol-A) 

(phenoxy) ternary blends, with PBT contents varying from 0 to 30%.  Tensile tests were 

conducted on specimens of (PBT)/PC/(phenoxy) using (ASTM D 638) [48].  The tests were 

carried out at 23  2 °C in an Instron Tensile Chamber Tester at 10 mm/minute. Young's 

modulus, yield stress, tensile strength and deformation at break were obtained from the 

load-time plot.  At least eight values were computed for each property.  The average 

standard deviations of Young's modulus, yield stress, tensile strength and deformation at 

break were 85MPa, 1 MPa, 2.9MPa and 12% respectively.  Kim et al., [49] measured 

the tensile and flexural properties of PBT/ nylon 6 (PA6)/MAH-grafted EVA (EVA-g-

MAH) ternary blends.  A universal testing machine (Instron Tester, Model 3367) was 

operated at room temperature according to the ASTM D638 and ASTM D790 methods, 

respectively.  A crosshead speed of 50 mm/minute and 5 mm/minute for tensile and 

flexural properties were used, respectively.  Notched Izod impact tests were carried out 

using an Izod impact tester (Uheshima, IM-103) at room temperature.  The impact strength 

of the PBT/PA6 blends increased with increasing EVA-g-MAH content regardless of PA6 

content.  The impact strength of PBT decreased with increasing PA6 content in general.  

The flexural strength of the PBT/PA6/EVA-g-MAH ternary blends was lower than those of 

PBT/EVA-g-MAH blends without PA6.  A similar result was observed in the case of 

tensile strength.  Although pure PBT showed much higher elongation at break because of 

its inherent ductile property in comparison to that of PBT/PA6 blends, the elongation at 
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break showed similar trends as that of the impact strength as a result of the toughening 

effect of the EVA-g-MAH. 

Mechanical properties of plastics can be determined by short, single-point quality control 

tests, generally multipoint or multiple condition procedures that relate to fundamental 

polymer properties.  Single-point tests include tensile, compressive, flexural, shear, and 

impact properties of plastics; creep, heat aging, creep rupture, and environmental stress-

cracking tests usually result in multipoint curves or tables for comparison of the original 

response to post-exposure response.  

Tensile properties are those of a plastic being pulled in an uniaxial direction until sufficient 

stress is applied to yield or break the material.  Standard tests are ASTM D33 and ISO 527.  

For many materials, Hooke's law is valid for a portion of the stress-strain curve.  If stress is 

relieved during this portion of the testing, any strain that has occurred is fully recovered.  

Elastomers generally do not show this linear response.  Tensile curves can be used as an 

indication of polymer strength and toughness.  The relationship normally observed is that 

high stress is necessary for yield or break with strength, whereas high elongation beyond 

yield is due to ductility (toughness).   Similar curves can be generated for tests for 

comparison with flex, shear, and some form of impacts. 

Mechanical properties are determined on solid polymers in arbitrary forms defined 

precisely by standard test method in ISO, ASTM, or other national standards organizations.  

Parts are formed by either injection molding, compression molding, or milling from 

extruded sheet or molded plaques.  Viscoelasticity of polymers dictates that the technique 

used to make the parts must have a significant effect on the mechanical behavior of the 
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polymer.  For valid comparison of materials, they should be prepared similarly and 

conditioned under the same environment.  Viscoelastic effects are also the reason for the 

rate of strain effects on the modulus values of materials under tensile, flexural, and 

compressive testing. 

2.4 Wide angle-x-ray diffraction 

 

To observe the effect of mixing time (occurrence of transesterification reaction or not) on 

the PTT crystal structure developed in the blends, Chiu et al., [50] have examined the 

WAXD patterns of PTT/PC-75/25 using wide-angle X-ray diffraction (WAXD).  They 

used Siemens D5005 X-ray unit at room temperature.  The X-ray used was CuK radiation 

with a wavelength of 0.154 nm.  The 2 scan ranged from 101 to 351, and the scanning rate 

was set at 0.021/s with the X-ray generator operated at 40 kV and 30mA.  The patterns 

show that the locations of the characteristic diffraction peaks for PTT crystals in the pure 

state and in the blends could be differentiated.  They observed that as the mixing time 

increases, the peak intensity for PTT decreases, indicating reduction in crystallinity of PTT.  

The X-ray results indicate that the crystal structure of PTT is mainly independent of the 

incorporation of PC counterpart.  Su et al., [1] studied the WAXD patterns of poly(ethylene 

2,6-naphthalate)/ poly(trimethylene terephthalate)/poly(ether imide) (PEN/PTT/PEI) 

blends.  The experiments were performed with a Shimadzu XRD-6000 X-ray 

diffractometer with Cu K X-rays at a voltage of 40 kV and a 30 mA current in the 2h 

range of 5–35C with a step scanning of 2C/minute.  He found that for 

PEN/PTT/PEI=33/33/33% (w/w%) blends, the scattering patterns contain features of both 

PEN and PTT when the peak positions of the two polymers were mixed.  Peak position 
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shifting was not observed in blends crystallized at 280 °C.  The arrangement of unit cells 

remained the same as in the original PEN and PTT sequences, and co-crystallization did 

not occur in the PEN/PTT/PEI blends. 

A knowledge of the crystal structure of materials is essential in understanding its properties 

and how to identify them, their behavior under various conditions, and for the 

characterization of material at all stages of its preparation.  The reproduction of materials 

with tightly controlled properties often requires x-ray analysis.  Although single crystals are 

preferred for determining crystal structures of new materials, some materials are available 

only as small polycrystals.  In recent years, there have been important advances in using 

powders for crystal structure determination and refinement.  Many structures are already 

known and this information is used with the powder method in many types of studies that 

are essential for characterizing and analyzing materials.  The importance of these 

techniques to materials science will be appreciated from the following list, all of which can 

be best performed by the x-ray powder method.  The principal uses of the x-ray powder 

method are: 

a) Identification of crystalline phases including qualitative and quantitative analysis of        

mixtures of phases; 

b) Distinguishing between mixtures, various types of solid solutions and polymorphs;  

c) Distinguishing between the amorphous and crystalline states; 

d) Precision measurement of lattice parameters and thermal expansion; 

e) Determination of the degree of preferred orientation and crystalline texture; 
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f) Measurement of certain physical characteristics, such as small crystallite sizes, 

strain, perfection, lattice disorder and damage; 

g) Determination of phases and properties as a function of specimen environment 

either in situ or after treatment at  temperatures from liquid helium to about 2000 

oC, and pressures up to several hundred Kbar, in air, vacuum or selected gas. 

Bragg’s law defines the conditions for obtaining x-ray diffraction from a crystalline 

material, equation (2.12): 

     n=2d sin 

where n is a small integer indicating the order of diffraction;  is the wavelength of the 

characteristic line x-rays from the x-ray tube and is usually the CuK double with = 

1.540562 A; d is the distance (A) between a set of parallel lattice planes, and  is the 

angel between the incident collimated x-ray beam and an atomic lattice plane in the 

crystal.  The term reflection generally refers to the individual diffractions and should not 

be confused with the total reflection of x-rays as very small angle from highly polished 

surfaces. 

Virtually all solid polymers contain fluctuations in electron density which scatter x-rays 

at small angle.  Structures which can be studied by small angle x-ray scattering (SAXS), 

detected at scattering 2  between 20o and 2o, have dimensions in the range 2-1000 nm; 

the features responsible for this scattering may be compositional fluctuations (block 

copolymers or blend), or density fluctuations associated with crystallite, voids or 

additives.  
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The principal application of wide-angle x ray scattering (WAXS) in the characterization 

of polymeric materials is the determination of crystallinity and information relating to 

crystallite size and perfection.  In rheooptical studies, WAXS is used to determine the 

crystal orientation.  

2.5 Transesterification analysis 
 
 
Esters react with alcohol in an acid or base catalyzed transformation to achieve 

transesterification.  It allows for direct conversion of one ester into another without 

proceeding through the free acids, equation (2.13).  

                                               (2.13) 
 

In equation (2.13), R' and R" correspond to alkyl groups.   
 
Acids can catalyse the reaction by donating a proton to the carbonyl group, thus making it 

more reactive, while bases can catalyse the reaction by removing a proton from the alcohol, 

thus making it more reactive. 

Transesterification is used in the synthesis of polyester, in which diesters undergo 

transesterification with diols to form macromolecules.  For example, dimethyl 

terephthalate and ethylene glycol react to form polyethylene terephthalate and methanol, 

which is evaporated to drive the reaction forward.  The reverse reaction (methanolysis) is 

also an example of transesterification, and has been used to recycle polyesters into 

individual monomers. 
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2.6 Determination of transesterification using FTIR 
 

It is well established that in the absence of transesterification reactions between PC and 

PET such systems are normally immiscible [51-53].  It is understood that when 

transesterification reactions occur, the rate of conversion is greatest in the PC rich blends 

with the highest overall ratios occurring in a 50PET/50PC blend [54].  This route of 

achieving miscibility for such transesterification reactions are typically limited and 

generally absent, unless excess catalyst from the PET polymerization process is present 

or additional catalyst is introduced to promote copolymer formation/miscibility (via 

catalysis of the ester carbonate transesterification reaction) [53, 55].  The occurrence of 

exchange reaction between molten PC, PTT and PBT was indirectly established using 

solubility test coupled with infrared analysis.  Soluble mixture of PC, PTT and the 

insoluble components containing  exchange reaction products of PTT and PC (PTTC) and 

PBT and PC (PBTC) (polybutylene terephthalate) were analyzed at room temperature 

[55].  The reaction products were extracted with methyl chloride.  In this solvent, PC is 

completely soluble, where as PTTP and PBTP remain practically insoluble.  Structural 

changes corresponding to the soluble and insoluble components in methyl chloride were 

detected by infra-red spectroscopy.   

When examining transesterification via IR spectroscopy, three distinct bands are of 

particular interest: (a) the 1775cm-1 band that corresponds to the carbonyl stretching of an 

amorphous  aromatic carbonate (PC), (b) the 1720cm-1 band associated with the carbonyl 

stretching of an aliphatic ester PET), and (c) the 1740cm-1  band associated with the  
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stretching of a mixed aliphatic-aromatic carbonate, which is a product of the ester-

carbonate transesterification reaction [51, 56, 57], Figure 2.1. 

Transesterification in PC/PET was also monitored via ATR-FTIR, Figure 2.1. When 

copolymer formation occurs the PC peak (1780 cm-1) decreases in intensity while the PET 

peak (1720 cm-1) increases in intensity and a new peak develops at the 1740 cm-1 band 

associated with the stretching of a mixed aliphatic-aromatic carbonate, which is a product 

of the ester-carbonate transesterification reaction.  Transesterification of PC/PET/ 

montmorillonite (mmt) nanocomposite blends were investigated by Mathew [58]. 

A commercially available organo-mmt, Cloisite 25A (C25A), with a CEC of 0.95 

meq/g modified with dimethyl, hydrogenated-tallow, 2-ethylhexyl quaternary ammonium 

surfactant was used in this work.  He observed significant enhancements in poly(ethylene 

terephthalate) nanocomposites material properties  with respect to thermal stability, 

relative modulus, and crystallization behaviors, at low filler loadings, without observing, 

severe penalty in the composite ductility, especially when high thermal stability 

surfactant modification were applied to the  layered silicate.  

When comparing the carbonyl stretching of the aliphatic ester in the PET (1720 cm-1) in 

the PET rich blend (75PET/25PC) to the corresponding nanocomposites, no significant 

intensity deviation was observed and no peak splitting was found to occur.  
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        Polycarbonate       Poly (ethylene terephthalate)
 

 
 
         
        Figure 2.1: The products of the PC/PET ester-carbonate transesterification reaction    
                           leading to copolymer formation [54, 56]. 

 
 

If transesterification in the nanocomposites had occurred to a greater extent than in the 

unfilled blends, the intensity of the peak would have increased dramatically and would 

have shifted/split, with the new peak corresponding to the stretching of a mixed aliphatic-

aromatic carbonate.  Likewise, similar behaviors are found to occur in the equivalent 

blends (50PET/50PC) and the PC rich blends (25PET/75PC) in which no significant 

intensity deviations or peak splitting occurs.  Thus, the result of the ATR-FTIR indicates 

that independent of blend concentration, phase morphology, or if the sample contains filler; 

no distinct differences in the transesterification behaviors are observed.  Therefore, Mathew 

[58] concludes that any transesterification in the nanocomposite blends is no greater than 
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what occurs in the unfilled blends – and in general, any amount of transesterification that 

may be occurring is undetectable in the ATR-FTIR. 

 

2.7 Degradation of polymers 

 

The chemical reactions occurring during thermal processing of blends have been 

thoroughly examined [59].  In polycarbonate/polyester blends, transesterification reactions 

are known to start in the temperature range 250-300C [56, 60].  Transesterification 

reactions could occur due to a variety of reasons like dipole-dipole forces, acid-base 

attraction, ion-ion interaction or hydrogen bonding [61, 62]. Transesterification in polyester 

blends depends strongly on the components’ initial compatibility and on the blending 

conditions, including temperature, duration of mixing and preparation method [63].  As 

polyesters readily transesterify near and above their melting points, interchange reactions 

commonly occur between blend constituents [64, 65].  Blends of PC and PBT are slightly 

miscible since interchain reactions between the carbonate and ester are possible.  More 

miscible systems can be obtained at temperatures greater than 270C [12, 66]. 

Transesterification between PTT and PC have been reported by Yuvari et al., [67].  DMA 

and DSC analysis for the transesterification between PTT and PC indicated two partially 

miscible phases in which the degree of crystallinity is reduced by increasing PC content.  It 

was also concluded that annealing at 300C causes the constituents to form a complex 

system of block copolymers with different block lengths [67].  Reports on PTT/PBT blends 

indicate that such systems are completely miscible and exhibit a single glass transition 

temperature dependent on the amount of PTT [68].  A ternary miscible blend system 
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comprising of PET, PTT and PBT was developed by Woo et al., [69].  The ternary 

miscibility in this blend was essentially physical and no chemical transesterifications      

took place. 

The study of degradation kinetics is important in understanding the mechanism of the 

degradation process.  Both thermogravimetric analysis (TG) and differential thermal 

analysis (DTA) have been applied to determine the degradation kinetics of neat polyesters 

and polycarbonate [70, 71].  Generally, TG is the preferred technique for such 

determinations, since the relevant mass changes are easier to measure than the associated 

heat effects [72].  Few methods are cited in the literature for the study of solid thermal 

decomposition kinetics.  These methods utilize mechanisms like Avrami-Erofeev and 

Prout-Tompkins. Most degradation studies describe such reactions with the nth order 

reaction mechanism [73-75]. 

Some authors have described the decomposition of a solid as a heterogenous process [76, 

77].  These studies have also established that thermogravimetric data of solid thermal 

decomposition reactions fit well with nth order reaction mechanism. This is because 

thermogravimetric data under non isothermal conditions are analyzed with kinetic 

equations specific to heterogenous processes, which in turn fit well with those used to 

characterize nth order reactions. 

The degradation kinetics of this tricomponent blend has not yet been reported in the 

literature.  The TG data obtained under nitrogen and air for the neat polymers and blend at 

several heating rates has been analyzed using Kissinger [78], Ozawa [79], Friedman [80] 

and Chang [81] models.  Earlier studies [82] show that TG data follow Prout-Tompkins or 
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Avrami-Erofeev mechanisms, at a constant heating rate, and originate from first-order 

reaction.  Other researchers [83, 84] evaluated experimental degradation data using 

reference theoretical curves called "master plot".    

Kinetic information can be extracted from dynamic experiments by means of various 

methods like DSC and TG.  All kinetic studies assume that the isothermal rate of 

conversion d / dt , is a linear function of the temperature-dependent rate constant, k(T), 

and a temperature-dependent function of the conversion, f ( ) , that is: 

         
d

k(T)f ( )
dt


                           (2.14) 

 

  being the fractional extent of reaction.  In equation (2.14), f ( )  depends on the 

particular decomposition mechanism.  According to Arrhenius equation: 

 

k(T) = Ae-E/RT                            (2.15) 

 

Where A is the pre-exponential factor, that is assumed to be independent of temperature, E 

is the activation energy, T the absolute temperature, and R is the gas constant.  Combining 

equations (2.14) and (2.15) we have 

 

d E
A exp f ( )

dt RT

     
 

                                               (2.16) 

 

If  is rate of heating then for non isothermal measurements at constant heating 

rate dT / dt  , equation (2.16) transforms to 
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d E
A exp f ( )

dT RT

      
 

                        (2.17) 

 

Activation energy E can be calculated by various methods.  The first one is based on 

Kissinger’s method [78].  It is used in the literature in order to determine activation energy 

from plots of the logarithm of the heating rate versus the inverse of the temperature, in 

constant heating rate experiments.   

The methods proposed by Kissinger [78] relies on experiments carried out at different 

heating rates,  , and is expressed by: 

 

2
p p

E
ln const

T RT

 
    

 
                        (2.18) 

 

Where   is heating rate, Tp is temperature corresponding to inflection point obtained from 

thermal differential degradation curve which correspond to maximum reaction rate, and R 

is the gas constant. 

The thermal decomposition kinetics of copolymer can be also analyzed by the Ozawa 

method using the following kinetic equation (2.19): 

 

nd E
A exp (1 )

dt RT

     
                        (2.19) 

 

 

where,   is weight loss of the polymer undergoing degradation at time t, d / dt  denotes 

weight-loss rate, A is the frequency factor, n represents decomposition reaction order, E 

stands for the activation energy of the thermal decomposition, R is gas constant, and T 
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symbolizes absolute temperature.  For non isothermal thermogravimetry, if the heating 

rate is  i.e. dT / dt , equation. (2.14) can be modified as follows: 

 

nd A E
exp (1 )

dT RT

      
                        (2.20) 

 

Ozawa technique [79] is a multiple heating-rate treatment method for TGA and DTG 

curves to obtain the kinetic parameters of thermal decomposition.  The Ozawa equation 

can be represented as follows: 

 

 
AE E

log log 1.052
Rf RT

  


                       (2.21) 

 

where 
n

0

d
f ( )

(1 )

 
 

 .  Therefore, from a plot of log   against 1/T, the value of E can 

be determined from the slope.   

The third method is also an isoconventional one based on equation (2.14) and Arrhenius 

equation (2.15).  Friedman [80] proposed to apply the logarithm of the conversion rate 

d / dt  as a function of the reciprocal temperature.  He proposed an equation of the form: 

 

d A E
ln ln ln(f ( ))

dT RT

            
                  (2.22) 

 

It is obvious from equation (2.15) that the function (f ( )) ln(A / )    is a constant.  By 

plotting ln(d / dt)  against 1/T, the value of the –E/R for a given value of   can be 
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obtained.  Using this equation, it is possible to obtain values for E over a wide range of 

conversions. 

Chang technique is a single heating-rate treatment method for TG and DTG curves.  It 

can be used to determine the kinetic parameters of thermal decomposition: 

 

       n
Ln d / dt / 1 Ln z E / R.T            (2.23) 

 

According to Chang method [81], a plot of     n
Ln d / dt / 1     against 1/T yields a 

straight line if the decomposition order n is selected correctly.  The slope and intercept of 

this line can provide the –E/R and Ln (z) values, respectively [85].  In this model, the 

value of n is assumed to be unity [85]. 

If the temperature of the sample undergoing thermal degradation increases at a constant 

rate, , equation (2.16) can be integrated [38] into the following expression: 

 

)/exp()(
2

RTE
E

ART
g 


                       (2.24) 

 

From (2.16) and (2.24) we obtain: 

 

)(

1
)(

2







fdt

d

E

RT
g                                    (2. 25)  

 

for which, at α = 0.5 becomes: 
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g 










            (2.26) 

 

Where T0.5 and 
5.0









dt

d
are the temperature and the rate when α = 0.5, respectively.  

From equations (2.25) and (2.26), the following relationship is developed: 

 

 
  )()(

5.0

2

5.0





gfa

dt
d

dt
d

T

T









            (2.27) 

 

where 
)5.0(

1
).5.0(

f
ga   is a constant for a given mechanism. 

 

 

2.8 Summary of the review on polymer blends                                                                                             

 

Polymer blending is an attractive alternative for producing new polymeric materials with 

desirable properties without having to synthesize a totally new material.  Other 

advantages for polymer blends are versatility, simplicity, and inexpensiveness.  

Numerous published articles related to various aspects of binary blends of polyesters are 

available in the open literature.  Some of these are, for example, blends of PET and PBT 

[86-89], PBT and an amorphous co-polyester of cyclohexane dimethanol, ethylene 

glycol, and terephthalic acid (PETG) [90], and PTT and poly(ether imide) (PEI) [91]. 

In PET/PBT blends, Escala et al., [92] reported that the blends showed a single and 

composition-dependent glass transition temperature at all compositions, suggesting that 
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PET and PBT were miscible in the amorphous state.  Similar results were also reported 

by others [93, 94].  Based on various experimental techniques, Escala et al., [93] reported 

that, upon crystallization, PET and PBT did not co-crystallize.  Avramova [94] confirmed 

such findings and added that, even though each component formed its own crystalline 

phase upon crystallization, both components could crystallize concurrently at all com-

positions of the blends and the presence of one crystalline phase did not deter or enhance 

the crystallization rates of the other.                                                                           

Recently, Huang et al., [95] studied miscibility, melting, and crystallization behavior of 

PTT/PEI blends.  They observed that the blends showed a single and composition 

dependent glass transition temperature over the entire compositional range studied, 

indicating that the blends were fully miscible in the amorphous state.  They also reported 

that recrystallization of PTT during a heating scan in a differential scanning calorimeter 

(DSC) was either retarded or fully inhibited by the presence of PEI component, a direct 

result of decreased segmental diffusion of PTT molecules onto an existing growth face. 

Godard et al., [96] have concluded that the most likely degradation mechanism to appear 

in poly (bisphenol A carbonate)/poly (butylene terephthalate) (PC-PBT) 

transesterification, in the molten state, is a reversible ester-ester exchange reaction, which 

produces a random four-component copolyester.  Polycarbonate in a blend exhibits 

excellent mechanical properties like high and low temperature toughness.  It also has 

limiting oxygen index (LOI) value of 27 and produces large fractions of char upon 

combustion [97].  These materials can meet the demanding chemical and electrical/ 

electronic needs of engineering thermoplastics.                           
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The chemical reactions occurring in the thermal processing of blends have received 

continued attention in the literature [96, 98-101].  In the case of polycarbonate/polyester 

blends, reactions are known to start in the range of 250-300°C [60, 102], eventually 

causing the formation of copolymers to have new mechanical and thermal properties.                                      

In order to obtain a better understanding of the degradation kinetics of 

polycarbonate/polyester blend and the nature of interaction between the components, a 

detailed study of the kinetics of thermal degradation of the novel blend PC/PTT/PBT 

(50:25:25 w/w%) has been carried out using the non isothermal TG approach.  Also the 

applicability of such master plots in determining the reaction mechanism for the solid 

state decomposition of PC, PTT, PBT and the tricomponent blend will be discussed. 

 

2.9 Objectives of the present work 

A novel partially miscible ternary blend consisting of PC, PTT, PBT in the presence of 

possible trans reactions has been reported in this work.  This is a novel work which 

synthesizes a partially immiscible ternary blend in which the constituents comprise of 

amorphous and semi crystalline polymers.  Based on the literature review, the following 

objectives have been chosen for this work. 

A. To develop blends of PC/PTT/PBT (50:25:25 wt/wt % ratio) using a single screw 

extruder. 

B. To study miscibility of the blend by measuring variations (if any) in the glass 

transition temperatures of the component polymers. 
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C.  To extrude the samples and conduct injection molding to obtain test specimens 

for tensile strength according to ASTM (D-638). 

D. To determine the percentage crystallinity of the neat polymers and blend using   

X-ray analysis.  

E. To study particle sizes for the dispersed phase in the polymer blends using 

scanning electron microscope (SEM),   

F. To study rheological properties of the blend and relate rheological properties to 

crystallization behavior under shear.  

G. To investigate the thermal decomposition kinetics of polyester polycarbonate 

blends and to establish its activation energy values through a dynamic 

thermogravimetric analysis in air and nitrogen atmosphere.   

H. To study possible transesterification reactions which occur in the tricomponent 

blend using Fourier Transform Infrared Spectroscopy (FTIR). 
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Chapter 3 MATERIALS AND EXPERIMENTAL TECHNIQUES 

 

 

3.1 Materials 

 

3.1.1  Polycarbonate, (PC)  

 

Polycarbonate (PC) used in this work was obtained from Century Enka Pvt Ltd., Pune, 

India.  Average molecular weight of this resin provided by company was 28,000 g/mol.  

It is an unusual and extremely useful class of polymers.  The vast majority of 

polycarbonate are based on bisphenol A (BPA) and sold under the trade names Lexan 

(GE), Makrolon (Bayer). 

 

BPA polycarbonates, having glass-transition temperatures in range of 145-155C, are 

widely regarded for optical clarity and exceptional impact resistance and ductility at room 

temperature and below.   

The Tg of polycarbonate is around 150C, which is unusually high compared to other 

thermoplastics such as polystyrene (100C), polyethylene terephthalate) (69C), and 

nylon-6,6 (45C).  The high glass-transition temperature can be attributed to the bulky 

structure of the polymer, which restricts conformational changes, and to the fact that the  
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monomer has a higher molecular weight than the monomer of most polymers.  The high 

Tg is important for the utility of polycarbonate in many applications, because, as the point 

which marks the onset of molecular mobility, it determines many of polymer's properties 

such as dimensional stability, resistance to creep, and ultimate use temperature.  

Polycarbonates of different structures have significantly higher or lower glass-transition 

temperatures.  In addition, PC itself exhibits flame retardancy and produces a large 

fraction of char upon combustion [99].  Davis et al., [103] assigned CO2, phenol and 

bisphenol A as the main volatile products, together with a small amount of CO, alkyl 

phenols and diphenyl carbonate.  They speculated that the carbonate group undergoes 

rearrangements, along with hydrolysis and alcholysis; they also proposed the formation 

of a xanthone unit during thermal degradation of PC [103-105].  McNeill et al., [106, 

108] investigated the thermal degradation mechanism of PC using thermal volatilization 

analysis (TVA) in nitrogen.  They assigned some cyclic oligomers of bisphenol A 

carbonate and different phenol structures having masses less than 228 using gas 

chromatograph/mass spectrometry (GC/MS) and suggested a homolytic chain scission 

mechanism for the degradation of PC.  

 
3.1.2  Poly (trimethylene terephthalate), (PTT)  
 
 
Poly (trimethylene terephthalate) (PTT) was supplied in pellet form by Century Enka Pvt. 

Ltd., Pune, India.  The weight-average and number-average molecular weight of this 

resin were provided by the company to be 78,000 and 34,700 g/mol, respectively.  It had 
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a melting temperature (Tm) of 257 °C.  It is a linear aromatic polyester and a member of 

the polyester family, with three methylene units in its chemical structure.  

 

Uses for PTT are in areas such as fibers, films, and engineering thermoplastics.  PTT has 

recently been introduced commercially by Shell Chemicals under the tradename Cortera.  

Numerous studies on crystal structure and mechanical properties of PTT have been 

reported [108-111].  Analysis of the crystalline structure of PTT shows that the aliphatic 

part of PTT takes a highly coiled structure of gauche– gauche conformation.  PTT has a 

triclinic crystalline structure.  Ward et al., [109] performed a comparison study of three 

polyester fibers and found that PTT has a very good tensile elastic recovery property.  It 

was ranked in the unexpected descending order of PTT, PBT and PET.  Jakeways et al., 

[108] studied the deformation of crystalline structure of PTT and PBT by drawing mono-

filaments in situ in a wide-angle diffractometer, where changes in the fiber period d 

spacing along the c-axis were measured as a function of strain.  They found that the 

deformation was reversible in both PBT and PTT below their critical strains, on the order 

of about several percent.   

Poly (trimethylene terephthalate)(PTT), synthesized using 1,3-propandiol as a diol, is a 

high crystalline polymer.  Its melting temperature is lower than that of PET by 20–30°C.  

Therefore, the processibility of PTT is superior to that of PET.  Furthermore, the highly 

flexible PTT fibers are obtained as a result of its low initial modulus.  The elasticity and 

dyeability of PTT are better than those of PET or poly(butylene terephthalate) (PBT), 

which makes it possible to use PTT as engineering plastics, films carpets, and clothing  
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materials.  For these reasons, PTT is considered as the most promising candidate for a 

replacement of PET.  It is well known that the number of methylene unit influences the 

physical properties of many polycondensation polymers such as polyamide and polyester, 

which is called the odd-even effect.  PTT has a conformation with bonds of the –

O(CH2)3O– unit having the sequence of trans– gauche–gauche trans, leading to a 

concentration of the repeating unit.  The opposite inclinations of successive phenylene 

groups along the chain force the molecular chains to take on an extended zigzag shape. 

Investigations related to the chain conformation, crystal structure, and morphology of 

PTT have been carried out and reported in recent years [112, 113].  A few studies related 

to isothermal melt-crystallization kinetics of PTT include Avrami crystallization kinetics 

[114-116] and the kinetics of linear spherulitic growth rates [22, 23, 26].    

The mechanical properties of PTT lie roughly between those of poly(ethylene 

terephthalate) (PET) and poly(butylene terephthalate) (PBT).  PTT shows better tensile 

elastic recovery and lower modulus than PET and PBT [110].  These two properties are 

very desirable for making soft, stretchable fabrics with good toughness [117]. 

 

3.1.3  Poly (butylene terephthalate), (PBT) 

 

Poly(butylene terephthalate) (PBT) used in this study was purchased from RTP Co. 

(United States).  It had number- and weight-average molecular weights of 68,250 and 

29,400 g/mol, respectively.  It contained 0.063 equiv/kg of hydroxyl groups and 0.041 

equiv/kg of carboxylic groups at chain ends.  It had a melting temperature (Tm) 223 °C.   
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The thermoplastic (PBT) is prepared by polycondensation of 1,4-butanediol with 

dimethyl terephthalate.  

 

Because of its very easy processing and rapid crystallization, injection-moldable PBT 

compounds quickly became more popular than PET compounds.  PBT (as well as PET) 

resins are high-performance materials that can be converted to various functional 

components and structural parts that used to be made of metal or thermosets.  Property 

combinations such as high mechanical strength, high heat distortion temperature (up to 

215°C for glass fiber-reinforced PBT), continuous use temperature of 140°C, dimensional 

and chemical stability and short cycle times in injection molding are primarily 

responsible for the success of this engineering plastic.  The properties of PBT are strongly 

dependent on the crystalline portion and resulting morphology after processing.  PBT is a 

prominent member of the engineering thermoplastics and is characterized by (i) high 

stiffness and strength, (ii) high toughness at low temperatures, (iii) high heat-deflection 

temperature, (iv) high stress-cracking resistance, (v) high resistance to fuels, oils, fats and 

many solvents, (vi) low coefficient of linear expansion, (viii) low water absorption. (viii) 

good friction and wear characteristics, and (ix) good processability.  PBT is highly 

suitable for electrical applications, automotive, telecommunication, machine components, 

food and medical applications.  PBT is polymerized in a two-stage process.  In the first 

stage (the transesterification stage) bishydroxybutyl terephthalate (BHBT) is formed  
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through the transesterification of 4 dimethyl terephthalate (DMT) with 1,4-butanediol.  In 

the second stage, the polycondesation, the BHBT is polycondensed into PBT with  

elimination of 1,4-butanediol.  Solid-state polycondensation is used when a high 

molecular weight PBT is required.  The properties of PBT can be modified in many ways 

to meet the requirements of specific fields of application, as is the case with most 

engineering plastics.  Copolymerization, blending with other polymers (e.g., rubber, PC, 

ASA) and the addition of reinforcements, flame retardants, stabilizers, etc., during 

compounding are different ways to modify the properties of PBT.  PBT is blended with 

amorphous polymers to reduce shrinkage and to increase dimensional stability. 

 

 

3.2     Experimental approach for conducting experiments related to  

                     crystallization kinetics of neat polymers and the blend 

 

 

3.2.1  Sample preparation 

 

PTT, PBT and PC resins were dried in a vacuum oven at 110°C for 5 hours prior to use.  

PC/PTT/PBT (50:25:25 wt/wt %) pellets were placed in plastic zipper bags, mixed by 

vigorous shaking, and mechanically blended in a single-screw extruder at a screw speed 

of 100 rpm with extruder barrel temperature zones of 220, 250, 255, and 235 °C.  The 

strands from the extruder were cooled in a water bath and pelletized.  Pellets of PTT, 

PBT, PC and PC/PTT/PBT (50:25:25 wt/wt %)  were crushed into fine powder by using a 

Retsch (ZM- 200) mill operating at a speed of 18000 rpm for X-ray, SEM and FTIR 

analysis. 
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3.2.2  Differential scanning calorimeter measurements 

A Diamond DSC (Perkin–Elmer) was used to record non isothermal melting endotherms 

and the subsequent crystallization exotherms of these polymers.  Calibration for the 

temperature scale was carried out using pure indium standard (having a melting 

temperature of 156.6oC and enthalpy value of 28.5 Jg-1) on every run to ensure accuracy 

and reliability of the data obtained.  The temperature sensor is providing an indication of 

the specimen temperature to ± 0.01C.  Another calibration is a software correction 

routine where several materials, (indium, lead and zinc alloy) with melting temperature of 

327 C and 419 C, are stored as a file.  The enthalpy values of lead and zinc were 179 

and 115 kJ/mole, respectively.  The sample data file is then corrected using the 

calibration file.  This procedure is covered in the Perkin Elmer instruction manual.  To 

minimize thermal lag between the polymer sample and the DSC furnace, each sample 

holder was loaded with polymer samples weighing around 7.0 ± 0.5mg.  Each sample 

was used only once and all the runs were carried out under a flow of nitrogen (20 ±5 

ml/minute) to prevent thermal degradation.  Experiments started with heating each 

sample from 30°C at a heating rate of 100 ± 0.1°C/min to a desired fusion temperature Tf 

(290°C).  To ensure complete melting, the sample was kept at the respective Tf  for a 

holding period of 5 minutes.                             

For the study of non isothermal crystallization, some samples were cooled at the desired 

cooling rate ( (5, 10, 15, and 20°C min−1) to 30°C.  The non isothermal crystallization 

exotherms were analyzed according to the models mentioned above.  For the study of 

isothermal crystallization, the prepared samples were cooled to a desired crystallization 
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temperature (Tc).  Identical temperatures for the polymers could not be maintained since 

PTT crystallized between 129 to 159 °C, PBT between 168 to 177°C and the blend 

between 170 to 183°C.  Based in this temperatures, the (Tc) values chosen were 130, 138, 

147, and 158 °C for PTT, 169,171,173 and 176°C for PBT polymer and  171, 173,176, 

and 182°C for the blend of PC/PTT/PBT (50:25:25 wt/wt %).  The samples were kept at 

the isothermal temperatures to completely develop the isothermal crystallization peak.  It 

was assumed that the crystallization was finished when the isothermal curve converged 

with the horizontal base line.  The crystallization isotherms were recorded for further 

analysis.  

3.3  Experimental approach for conducting experiments related to   

                     morphology and mechanical properties of neat polymers and blend 

 

3.3.1  Scanning electron microscope (SEM) measurements 

 

Morphology depends mainly on rheological and interfacial properties, the blending 

conditions and the volume ratio of the components.  In this study, the phase morphology 

of the samples was investigated by a scanning electron microscope (JEOL JSM-410).  

Fractured surfaces of the blended samples were prepared, and gold coated and observed 

under 3500 ± 100 m magnification. 

 
3.3.2  X-ray measurements 
 
The crystal structure study, was conducted using a wide angle x-ray diffractometer 

(WAXD)( SIEMENS, D-5000).  The X-ray source was Cu k radiation, and the  

wavelength was  = 1.54Ao.  The 2 scan ranged from 10° to 35°, and the scan rate was 

set at 0.02°/s with the x-ray generator operating at 40 kV and 30 mA.  
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Precision: Test results were obtained by this procedure are expected to differ in absolute 

value by less than 2.772 S, where 2.772 S is the 95% probability interval limit on the 

difference between two test results and S is the appropriate estimate of standard 

deviation. 

 

3.3.3  Tensile measurements 

  

The test methods were according to (ASTM D-638), Type I specimen standards.  The 

properties were measured on Instron (Type 1112).  Samples were strained at constant 

speed rates of 50 mm/minute.  All tests were carried out at constant temperature of        

23 ± 1°C and constant relative humidity of 35 ± 1%. 

 

3.4     Experimental approach for conducting experiments related to rheology  

                     of neat polymers and blend 

 

3.4.1  Sample preparation for rheological analysis 

 

PC, PTT and PBT resins were dried in a vacuum oven at 110°C for 5 hours prior to use.  

PC/PTT/PBT (50:25:25 wt/wt %) pellets were placed in plastic zipper bags, mixed by 

vigorous shaking, and mechanically blended in a single-screw extruder at a screw speed 

of 100 rpm with extruder barrel temperature zones of 220, 250, 255, and 235 °C.  The 

strands from the extruder were cooled in a water bath, pelletized and dried for 5 hours at 

120°C.  Samples of neat PC, PTT, PBT and blend in pellet shape were melt-pressed into 

circular disks of 3.0 mm in thickness and 25 mm in diameter.  The sample disks were 

dried in a vacuum oven at 70°C for 5 hours prior to use.  The sample discs were kept in 
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the desiccators to avoid any moisture.  The samples were removed from the desiccators 

and loaded into the instrument furnace maintained at 260°C for rheological analysis. 

 

3.4.2  Cone and plate rheometer measurements 

 

Rheological measurements were carried out on a rheometer (Gemini 200 rheometer, 

Bohlin instrument Co., UK) equipped with a parallel plate geometry using 25 mm 

diameter plates.  In the linear viscoelastic measurements, small amplitude oscillatory 

shear was applied, and the dynamic strain scan measurements and the dynamic frequency 

scan measurements were carried out.  Before each measurement, the rheometer was 

heated up to 260 °C and the gap between the cone and plate was set at 1.55 mm, with 

accuracy of < 1m.  The maximum error in controlling the cone and plate temperatures is 

±1 °C.  For a steady rate sweep test, the shear viscosity of the materials was determined 

as a function of shear rate.  In the case of a dynamic measurement, the strain values were 

chosen such that the experiments could be performed in the linear viscoelastic region.  

Torques measured are typically in the range 3.0 x 103 - 1.5 x 107 dyn cm, requiring a 

maximum deflection of the plate through an angle of 0.6 mrad, so that the correction for 

the reduction of the shear due to this small amount of plate rotation is negligible in 

comparison to the total shear introduced into the material and the total error is within 

±1%. 

Melt viscosity  (Pa s) as a function of shear rate,  (1/s), and the dynamic properties, 

i.e., storage modulus G (Pa), loss modulus G (Pa), and phase angle tan ( )= G /G  as a 

function of frequency  (rad/s) were measured.  The shear rate range was varied from 

0.10 to10 s-1 and similarly the frequency of oscillation was varied from 0.10 to 10.0 Hz. 
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3.5     Experimental approach for conducting experiments related to  

                     degradation of neat polymers and blend 

 

3.5.1  Sample preparation for degradation studies. 

 

PTT and PBT were weighed and dried at 110°C for 5 hours while PC was weighed and 

dried at 120°C for 5 hours.  The three polymers were placed in plastic zipper bags, mixed 

by vigorous shaking then mechanically blended, in the weight ratio PC/PTT/PBT 

(50:25:25 wt/wt%), in a single-screw extruder at a screw speed of 50 rpm and extruder 

barrel temperature zones of 230, 265, 295 and 270°C from hopper to die.  The strands 

from the extruder were cooled in a water bath, pelletized and dried for 5 hours at 120°C. 

 

3.5.2  Thermogravimetric Analysis measurements  

 

Thermogravimetric analysis was carried out with a TA instrument TA-SDT system, 2960.  

For a typical experiment 11 ±0.5 mg of PC, PTT, PBT and blend were weighed and dried 

at 110°C for 6 hours while PC was weighed and dried at 120°C for 6 hours Samples then 

were placed in alumina crucibles.  An empty crucible was used as reference.  Samples 

were heated from ambient temperature to 650°C in a 20 ±5 ml/minute flow of 99.9% pure 

N2 and air based on the atmosphere chosen for the study.  The temperature sensor is 

providing an indication of the specimen temperature to ± 0.1C.  Heating rates of 5, 10, 

15 and 20°C/minute were used and continuous records of sample temperature, sample 

weight loss, its first and second derivative and heat flow were measured. 
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Chapter 4 RESULTS AND DISCUSSION 

 

This chapter begins with the study of non isothermal crystallization kinetics of neat 

polymers and blend.  The Avrami, Tobin and Malkin analysis were carried out to 

determine the crystallization kinetic parameters.  The SEM analysis was used to 

determine the morphology of the polymers after blending PC/PTT/PBT in the weight 

ratio 50:25:25.  X-ray analysis was carried out to check if the blend was crystalline in 

nature. The tensile properties were measured using a Instron (Type 1112) machine.  The 

elongation at break, tensile strength break, yield point, elastic modulus and yield strength 

were also determined.  The crystallization kinetic parameters were determined using 

Avrami, Tobin and Malkin analysis for the isothermal crystallization analysis.  

Rheological analysis was also carried out to check if trans-reaction occurred during the 

course of blending.  The FTIR characterization of the blend and neat polymers were also 

carried out at room temperature to check the occurrence of trans-exchange reactions. 

Thermogravimetric analysis of the neat polymers and the blend was carried out to obtain 

the degradation kinetic parameters.    

 

4.1       Non isothermal crystallization kinetics of neat polymers and blend  

 

4.1.1       Non isothermal crystallization 

 

The non isothermal crystallization exotherms of PTT, PBT and the blend PC/PTT/PBT 

(50:25:25 wt/wt %) recorded at four cooling rates, 5, 10, 15, and 20oC min-1 respectively,  
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are presented in Figures 4.1 to 4.3.  For PTT, Figure 4.1, it is noticed that the 

crystallization exotherm becomes wider and shifts to a lower temperature with increasing 

cooling rate.  For PBT, Figure 4.2, it is noticed that with increasing cooling rate, the 

curves shift to lower temperatures.  This behavior can be related to the amount of 

methylene groups in the polyester.  With higher cooling rates, the peaks exhibited by the 

blend remain unchanged and no shift in peak temperatures is observed. 

 

 

 

 

 

 

 

 

Figure 4.1: Non isothermal crystallization of PTT at four different cooling   
                   rates; 5, 10, 15 and 20 oC /min. 



  53

 

 

 

 

 

 

    Figure 4.2: Non isothermal crystallization of PBT at four different cooling  
                       rates 5, 10, 15 and 20 oC /min. 

Figure 4.3: Non isothermal crystallization of blend at four different cooling       
                  rates; 5, 10, 15 and 20 oC /min. 
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To obtain quantitative kinetic information, the exotherms were converted into (T) 

values using equation (2.1).  The temperature at 1% relative crystallinity (T0.01), the 

temperature at the maximum crystallization rate or the peak temperature (Tp) and the 

temperature at 99% relative crystallinity (T0.99), were obtained.  T0.01 and T0.99 values 

represent the apparent onset and ending temperatures of the non isothermal crystallization 

process.  These values are summarized in Table 4.1.  T0.01, Tp and T0.99 values shift 

towards lower temperatures when the cooling rate increases.  This observation is noted 

for the neat polymers but not for blend.   

For non isothermal crystallization, the blend crystallization temperature does not shift 

much with the rate of cooling plausibly because the mobility of the molecules of PTT and 

PBT is restrained by the presence of PC which leads to long and varied relaxation times 

causing intermediate crystallization temperatures with increasing cooling rates.  

This could possibly be due to transesterification reactions occurring between the neat 

polymers to form a new structure having thermal characteristics different compared to the 

parent polymers.   

The onset (T0.01 ºC), peak (Tp ºC) and endset (T0.99 ºC) for PTT, PBT and the blend given 

in Table 4.1 indicate that the majority of the later values of the blend lies between PTT 

and PBT for heating rates 10 ºC /min  and above.  These observations indicate the 

contribution of PC as a nucleating agent in the crystallization process.  In the blend, the 

polyesters form the continuous phase and PC form the dispersed phase [118].  At heating 

rate ≥ 10 ºC /min, the dispersed phase might become more interconnected to form 
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interpenetrating networks. This complicated interpenetration of the three polymers which 

develops during phase separation may be causing hindrance to the growth of PTT and 

PBT lamellae.  This can also be attributed to the melt miscibility effect between PBT and 

PC as well as the dilution effect to the crystallizable component PTT and PBT in the 

presence of PC.  The miscibility of polyester and poly carbonate phases in the melt state 

leads to increase of molecular motions of the crystalline and non crystalline components 

in the blend leading to a decrease in the crystallization rate and level of crystallinity of 

PTT and PBT.  

The data can be further analyzed by converting the temperature scale of the  (T) function 

into time scale, using equation (2.2).  The converted curves are illustrated in Figure 4.4.  

It is clear that the higher the cooling rate, the shorter the time required for the completion 

of the crystallization process possibly due to exchange reactions.  The T0.01 and T0.99 

values are qualitative measures of the onset and end of the non isothermal crystallization 

process.  From these two values, the apparent total crystallization period (t) could be 

calculated (i.e., t = t0.99 - t0.01), and the resulting values are summarized in Table 4.2.  As 

seen in Table 4.2, with increasing cooling rate t values decrease.  This indicates that the 

crystallization time decreases with increasing cooling rate.  This suggests that non 

isothermal melt crystallization proceeds faster with increase in cooling rate.  This 

behavior has been noted for PTT [68].  Another point observed is that t values for the 

blend lie between those of PTT and PBT.  This could possibly be due to the presence of 

PC in the blend.  
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4.1.1.1  Avrami analysis 

 

The data analysis based on Avrami macrokinetic equation was carried out through the 

direct fitting of the experimental  (t) values to equation (2.3).  Avrami kinetic 

parameters (i.e., kA and nA) were accordingly estimated.  The average sum of errors (ASE) 

signifies the model’s adherence to the experimental data.  These parameters are 

summarized in Table 4.3.  The nA value of PTT ranged from 2.3 to 3.0 with an average 

value of 2.7.  nA for PBT ranged from about 4.4 to 6.8, average value being 5.6 while that 

of the blend ranged between 4.0 to 4.6 having the average value of 4.3.  The value of nA 

of the blend lies between that of PTT and PBT.  The value of n is a general indication of 

dimensionality (e.g n = 1 for rod, n = 2 for disk and n = 3 for sphere).  Ding and Spruiell 

[119] suggest that for n values greater than 4, primary nucleation could occur, 

accompanied by increasing nucleation rate.  The crystallization rate constant, kA, 

increased with increasing cooling rate.  Another parameter that can be used to indicate the 

rate of reaction is the half-time of crystallization, 
2

1t which is defined as: 

  
n

k

Ln
t

1

2
1

)2(






                                               (4.1) 

 

Where k and n are the rate constant and order of crystallization.  The values obtained 

using Avrami kinetics parameters are summarized in Table 4.3.  These values are found 

to be increase with increasing cooling rate. 
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Figure 4.4: Comparison of the models fitting to the experimental data for PBT at different cooling      
rates, (a) 5 oC/min, (b) 10 oC/min, 15 oC/min, 20 oC/min. 
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Table 4.1: Characteristic data of non isothermal crystallization of PTT, PBT and the blend.  

 PTT PBT Blend 

oC.min-1 5 10 15 20 5 10 15 20 5 10 15 20 

0.01(
oC) 181.2 180 173.2 169.6 197.8 190.6 195.7 184.2 176.2 177.9 175.2 176.2 

P(oC) 167.6 157 152.7 147.7 183.9 183.9 179.3 172.2 164.3 168.3 165.5 164.9 

0.99(
oC) 158.3 137 133.7 114 172.2 170.5 176.7 160.2 150.5 157.6 153.5 151.3 

 

Table 4.2: Quantitative analysis of the relative crystallinity functions of time converted   
                  from non isothermal crystallization of PTT, PBT and the blend.  
 

  
PBT 
  

PTT 
  
Blend 
  Heating Rate  

oC/min 
t0.001 t0.99 t t0.001 t0.99 t t0.001 t0.99 t

5 0.22 5.17 4.96 0.5 6.55 6.05 1.702 7.51 5.80 

10 0.18 4.71 4.54 0.23 2.58 2.35 0.316 3.33 3.02 

15 0.1 2.91 2.81 0.12 1.65 1.53 0.284 1.97 1.68 

20 0.07 2.99 2.93 0.08 1.43 1.35 0.166 1.70 1.53 
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Table 4.3: Non isothermal crystallization kinetics for PTT, PBT and the blend based on Avrami analysis.  

PTT PBT Blend Heating  
Rate 
oC/min 

t0.5
-1 kA nA ASE t0.5

-1 kA nA ASE t0.5
-1 kA nA ASE 

5 0.25 0.02  3.08  1.59E-04 0.25 0.002  6.81  1.81E-04 0.20 0.0004  4.65  1.79E-04 

10 0.62 0.05  2.83  1.07E-04 0.38 0.05  5.35  6.51E-05 0.60 0.09  4.02  4.55E-04 

15 0.91 0.18  2.69  1.58E-04 0.61 0.39  5.98  9.79E-05 0.83 0.33  4.11  5.70E-04 

20 1.25 0.27 2.30 2.44E-02 0.66 1.87 4.45 8.17E-03 0.98 0.63 4.50 8.82E-03 
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4.1.1.2  Tobin analysis 

 

The data analysis based on the Tobin macrokinetic equation was carried out by fitting of 

the experimental (t) data to equation (2.3).  Tobin kinetic parameters (i.e., kT and nT), 

along with the ASE values, were obtained from the best fits, and the values of these 

parameters are summarized in Table 4.4.  According to Table 4.4, nT for PTT ranged 

from about 3.5 to 4.6 with the average value being 4.1, PBT ranged between 6.7 to 10, 

with an average value being 8.2, and for blend ranged from 6.0 to 6.9 with the average 

value of around 6.5.  The nT values of PTT are found to be lower than those of PBT and 

the blend.  nT values for the blend also lie between those of PBT and PTT.  Tobin 

crystallization rate constant kT is found to increase with increasing cooling rate. 

 

4.1.1.3  Malkin analysis 

 

Unlike the Avrami and Tobin models there is no direct analytical procedure to find the 

Malkin kinetic parameters.  The Malkin kinetic parameters Co and C1 were found using 

the Avrami kinetic parameters (nA and kA).  The Malkin kinetic parameters (i.e., Co and 

C1) were obtained using equations (2.5) and (2.6) and are summarized in Table 4.5.  The 

ASE parameters were obtained using equation (2.7).  Co values for PBT were found to be 

in the range 711 to 18947.  The Co values for PTT ranged from 21 to 84 while those of 

the blend varied between 387 and 1069.  Malkin crystallization rate constant C1 is found 

to generally increase with increasing cooling rate.  
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Table 4.4: Non isothermal crystallization kinetics for PTT, PBT and the blend based on Tobin analysis.  
 

PTT PBT Blend 
Heating 
Rate 

oC/min 
t0.5

-1 kT nT ASE t0.5
-1 kT nT ASE t0.5

-1 kT nT ASE 

5 0.85 0.34 4.62 1.49E-03 0.90 0.249 10.03 7.36E-04 0.84 0.21 6.98 2.01E-04 

10 0.88 0.39 4.34 1.38E-03 0.99 0.688 8.50 1.36E-01 0.98 0.61 6.03 4.43E-05 

15 0.98 0.63 4.15 1.43E-03 1.07 1.136 7.37 5.87E-04 1.03 0.87 6.83 1.95E-04 

20 1.00 0.69 3.56 8.88E-02 1.09 1.27 6.72 5.13E-02 1.05 0.99 6.80 2.64E-04 
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Table 4.5: Non isothermal crystallization kinetics for PTT, PBT and the blend based on Malkin analysis.  

PTT PBT Blend 

Heating Rate 
oC/min 

Co C1 ASE Co C1 ASE Co C1 ASE 

5 84.32  1.46  2.80E-04 18,947  2.44  2.18E-04 1,069  1.43  1.09E-04 

10 46.90  1.48  1.81E-04 2,588  4.87  1.20E-04 387.78  3.65  2.10E-04 

15 39.48  2.29  6.84E-05 6,312  8.01  1.62E-04 777.89  5.76  2.04E-05 

20 21.77 2.11 3.67E-02 711.93 8.25 5.50E-03 725.69  6.59 4.90E-06 
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4.1.1.4  Comparison of modeling results 

 

Avrami and Malkin models are found to exhibit the lowest ASE values.  The kinetic 

parameters obtained using Malkin model is found to be high compared to that of Avrami 

and Tobin.  This could possibly be due to the equations proposed by Malkin. The 

differences in kinetic parameters are not believed to be due to experimental error, as all 

the data points were counterchecked.  PTT exhibits the highest crystallization rate 

constant, followed by the blend and then PBT.  The presence of PC in the blend could 

possibly be the reason behind the low rate constant values of the blend.  The increase in 

rate constant values with increasing cooling rate for all the models and systems shows 

the effects of cooling on crystallization.  This suggests that polyesters crystallize faster at 

greater cooling rate. 

 

4.1.2  Scanning electron microscope (SEM) measurements 

 

Blend morphology depends mainly on rheological and interfacial properties, blending 

conditions and volume ratio of the components.  In this study, the blend specimens and the 

neat samples were prepared by extrusion and injection molding.  The morphology of the 

blends was investigated by Scanning Electron Microscopy (SEM).  Figure 4.5 shows the 

fractured samples of the PC, PTT, PBT and the blend specimens at 10 μm.  Uniform 

fracture surfaces are seen for PC PTT, and PBT samples.  The blend shows surface 

cleavage, indicating immiscibility of its constituents.  No holes are seen in the fractured 

surfaces of the injection molded specimens of the blend samples. 

 
4.1.3  X-ray analysis 
 
The crystal structure of PTT is observed at scattering angles (2 ) of 17.00 and 25.65.  

For PBT, the (2 ) is displayed at 13.95, 17.50, 24 and 24.00 and for PC, it appears at 
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17.55.  The blend showed peaks at 17.00, 23.75, and 25.48, Figure 4.6.  WAXD was 

carried out to validate the existence of unreacted soluble PC presented after blending the 

polyester and polycarbonate.  Pure PC shows a reflection around 17 degree which 

corresponds to the amorphous phase.  Compared with pure PC and the polyesters, the 

blend exhibits a sharp reflection at 17.00.  These changes in WAXD spectra of the blend 

containing high percentage of unreacted PC leads to an increase in the crystallinity of PC 

in the blend. 

Apart from the peak of the pure components, no new peaks were observed in the 

diffraction patterns of the blend sample, indicating that PTT and PBT crystallized 

separately.  This is another indication of the immiscibility of the blend.  
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                                               a 

 
                                     b 

 
                                               c 

  
                                                d 
        Fig 4.5: Scanning Electron microscope of the fractured surfaces of (a) PC, (b)   

PTT, (c) PBT and (d) the blend.   
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Figure 4.6: Wide-angle x-ray diffractograms for PTT, PBT, PC and the blend. 
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4.1.4  Tensile properties  

 

Table 4.6 summarizes tensile properties of PC, PTT, PBT and blend measured using 

an Instron (Type 1112) machine. The ASTM standard used to measure the 

mechanical properties was ASTM D638-08.  PC shows higher values of elongation at 

break (88.44 %), tensile strength (61.1Mpa) and elongation at yield (6.6%).  The yield 

strength of the blend is higher than polyesters and polycarbonate.  The elastic 

modulus of the blend is also higher than that of polyester and the polycarbonate.  

Knowledge of the yield point is vital when designing a component since it generally 

represents an upper limit to the load that can be applied.  It is also important for the 

control of many materials production techniques such as forging, rolling, or pressing. 

 

 

 

 

  Table 4.6: Mechanical properties of neat polymers and the blend. 

Polymer 
Elongation at 
Break (%) 

Tensile Strength at 
Break (MPa) 

Elongation at 
Yield (%) 

Elastic Modulus 
(GPa) 

Yield Strength 
(MPa) 

PC   88.44 (± 0.9)     61.06 (± 0.3)   6.64 (± 0.2)   1.18 (± 0.3)   61.35 (± 0.6) 

 PTT   6.72 (± 0.2)     58.05 (± 0.2)   4.57 (± 0.4)   1.40 (± 0.1)   61.49 (± 0.2) 

 PBT    26.10 (± 0.3)     20.46 (± 0.2)    4.65 (± .02)   1.36 (± 0.1)    56.18 (± 0.3) 

 Blend   16.27 (± 0.5)       36.41 (± 0.3)     5.11 (± 0.1)      1.52 (± 0.2)      64.08 (± 0.4) 
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Ester interchange reactions may be useful in very limited amounts in determining the 

blend performance [11, 12].  Such reactions are not easily controlled and excessive 

reaction can result in a loss in mechanical properties. Interchange reactions normally 

reduce the ability of the blend to form PTT and PBT crystalline phase owing to 

copolymer formation in transesterification reactions.  The yield strength of the blend 

is found to be the highest possibly because of the strong interfacial adhesion between 

the polyesters and PC domain.  The PC-PTT-PBT interfacial adhesion plays a critical 

role in determining the tensile properties of the blend.  This is because PC is a stress-

rate sensitive material and undergoes brittle fracture when it is subjected to plane 

strain condition where PTT and PBT are strain –rate sensitive polyesters and tends to 

have higher rigidity and lower fracture toughness when deformation rate is high.  

Figure 4.7 shows the stress- strain curves of the neat polymers and the blend at 26 ºC 

and 50 mm/min cross head speed.  The tensile stress shows a definite upper yield 

point followed by load drop for the blend and the polymers.  For PBT and PC a slight 

strain-hardening region is found before ultimate rupture.  The blend has higher yield 

strength.  PC has the highest elongation at break, tensile strength at break and wider 

cold drawing region, Figure 4.7. 

The values of tensile strength at break for the blend is low compared to PC and PTT 

indicating that PC does not induce a proper reinforcement.  
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4.2 Isothermal crystallization kinetics of neat polymers and blend  

 

4.2.1  Isothermal crystallization 

 

Identical temperatures for the polymers could not be maintained since PTT 

crystallized between 129 and 159 °C, PBT between 168 and 177°C and the blend 

between 170 and 183°C.  Based in these temperatures, the Tc values chosen were 130, 

138, 147 and 158°C for PTT, 169,171,173 and 176°C for PBT and 171, 173, 176 and 

182°C for the blend.  Common crystallization temperatures for PTT and PBT could 

not be obtained because of large differences seen in the crystallization temperatures 

of each polymer.  Similar behavior was noted for PTT and the blend.  Common 

Figure 4.7: The stress and strain relation of PC, PTT, PBT and blend. 
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crystallization temperatures were noted for PBT and the blend Table 4.7.  The high 

percentage of PC (50wt %) is found to influence the crystallization temperature for 

the blend.  Figure 4.8 illustrates the sigmoidal nature of the time-dependent relative  

crystallinity function, θ(t), of the blend crystallized at four different temperatures (i.e., 

171, 173, 176 and 182°C, respectively).  

  

The behavior noted by Xue et al [120] in PTT/PC blends was also detected in the 

tricomponent blend.  They noted that the crystallization time of PC/PTT blends 

increased with increasing concentration of PC.  Within the temperature range studied, 

the time to reach ultimate crystallinity (i.e. complete crystallization) increased with 

increasing crystallization temperature Tc.  An important crystallization kinetic 

parameter which can be determined from the θ(t) data is the half-time of 

crystallization ( 5.0t ), equation 4.1.  It is obvious that for the blend the crystallization 

half time increases with crystallization temperature.  Similar trend has been noted for 

neat PBT, Figure 4.9.  The analysis of half time of crystallization demonstrates that 

Table 4.7: The Isothermal crystallization temperatures obtained using DSC. 

PTT PBT Blend 

130 °C 169 °C 171 °C 

138 °C 171 °C 173 °C 

147 °C 173 °C 176 °C 

158 °C 176 °C 182 °C 
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the presence of PC in the blend leads to some kind of retardation of the PTT, PBT 

crystallization.  This behavior could possibly be caused by the decreasing segmental 

mobility of the polyester olefinic chains in the presence of PC.  

PC is a non crystalline amorphous thermoplastic polymer.  It has good engineering 

properties over a temperature ranged (-140) to 200 ºC.  The crystallizable 

characteristics of PTT and PBT may improve some of the properties of PC.  Referring 

to Table 4.8 the t1/2 value of each polyester and the blend increased with temperature 

of crystallization. The polyesters are found to crystallize at a faster rate than the 

blends.  In the blend, PC might be inhibiting the crystallization of the polyesters.  The 

reduction in crystallization rate could be due to a physical characteristics relating to 

the growth of PC domains.  Density results have shown that the presence of PC 

hinders the crystallization process of polyesters [121].  Thus, PC affects the 

crystallization kinetics of polyesters leading to the formation of more stable 

spherulites when it is present in sufficient quantities in the blend causing an effect on 

the isothermal crystallization properties of the blend.  

This indicates that transesterification reaction plays an important role in controlling 

the thermal properties of PC/PTT/PBT blends.  Another conclusion that can be drawn 

is that there is at least partial dissolution of the polyesters in the PC, the amorphous 

polymer.  Another plausible conclusion is that the polyester component can dissolve 

to a higher degree in the PC rich phase than for the PC component to dissolve in the 

polyester rich phase exhibiting a higher Tg and Tc for the blend.   

The analysis of half time of crystallization demonstrates that the presence of PC in the 

blend leads to some kind of retardation of the PTT, PBT crystallization. This behavior 
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could be possibly caused by the decreasing segmental mobility of the polyester 

olefinic chains in the presence of PC.  

 

 
  

 

Figure 4.8: Relative crystallinity as a function of time for blend at 182 °C, 176 °C,  
                  173 °C and 171°C. 

Figure 4.9: Relative crystallinity as a function of time for PBT and blend at  
                   171°C and 173°C. 
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4.2.1.1 Avrami analysis  

 

The analysis of kinetic data based on the Avrami model was done by fitting the θ(t) 

function obtained for each crystallization temperature to equation (2.2).  The Avrami 

exponent, nA, and the Avrami rate constant, kA, obtained using solver program, are 

summarized in Table 4.8.  The exponent nA for the crystallization process was found 

to range from 1.58 to 2.32 for PTT, 1.59 to 2.23 for PBT, and 1.91 to 2.12 for blend, 

respectively.  These values possibly correspond to a two dimensional growth with a 

combination of thermal and athermal nucleation [122].  The temperature dependence 

of the exponent na, within the nucleation-controlled region, should be such that na 

decreases with decreasing crystallization temperature.  This may be explained based 

on the fact that the number of athermal nuclei increases as the temperature decreases 

[123, 124].   In other words, as the crystallization temperature decreases, the number 

of athermal nuclei that become stable at that temperature also increased, resulting in 

the nucleation mechanism becoming more instantaneous in time and causing the 

Avrami exponent, na, to decrease.  Similar observation was noted also for the blend.  

The na average value of the blend is similar to PTT.  It was also noted that the half 

life time of blend was higher than that of neat polymers.  Similar observation was 

noted for PET/PC isothermal crystallization studies by Kong et al., [125].  The 

crystallization rate constant, kA, increased monotonically with decreasing 

crystallization temperatures, and this was in general agreement with the values of the 

reciprocal half-time of crystallization (t0.5 
-1), which are also summarized in Table 4.8. 
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Table 4.8: The overall crystallization kinetic data for PTT, PBT and the blend based on Avrami, Tobin, and Malkin models. 
 

t1/2 t1/2
-1 kA kT     ASE  

  
  

   T 
oC (min) (min-1)  

nA nT 
 

C0 C1 
 Avrami Tobin Malkin 

130 0.37 2.70 5.73 2.78  2.13 3.36  17.42 7.90  5.58E-06 9.12E-04 4.76E-05 

138 0.48 2.08 3.26 2.12  2.16 3.33  18.92 6.16  3.68E-04 3.36E-04 5.87E-04 

147 0.55 1.82 1.77 1.88  1.58 2.47  4.76 3.39  6.36E-04 2.74E-03 4.02E-04 
PTT 

158 1.20 0.83 0.44 0.85  2.32 3.66  25.52 2.73  6.09E-05 2.94E-04 6.39E-05 

     Average  2.05 3.21        

169 0.10 10.00 29.95 10.53  1.59 2.60  5.00 19.41  3.35E-05 4.67E-04 7.33E-05 

171 0.29 3.45 8.69 3.47  2.08 3.32  16.18 9.65  1.70E-04 4.30E-04 1.55E-04 

173 0.42 2.38 4.30 2.43  2.12 3.37  16.73 6.85  3.99E-04 1.51E-03 1.85E-04 
PBT 

176 0.68 1.47 1.63 1.51  2.23 3.45  21.05 2.23  3.75E-05 7.44E-04 1.07E-04 

     Average  2.01 3.18        

171 0.46 2.17 3.46 2.24  2.08 3.31  15.92 6.18  4.19E-05 3.98E-04 1.00E-04 

173 0.52 1.92 2.34 1.96  1.91 3.00  10.79 4.76  1.57E-05 9.63E-04 1.18E-04 

176 1.00 1.00 0.69 1.03  2.12 3.31  17.15 2.91  3.90E-06 8.57E-04 8.56E-05 
Blend 

182 1.89 0.53 0.180 0.54  2.08 3.30  15.36 1.49  1.48E-04 1.50E-03 8.47E-05 

     Average  2.05 3.21        
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4.2.1.2 Tobin Analysis 

 

The analysis based on the Tobin model can be performed by fitting the θ(t) function 

obtained for each crystallization temperature to equation (2.3).  Table 4.8 summarizes the 

Tobin kinetic parameters nT and kT, as well as the ASE parameter.  The Tobin exponent, nT, 

for crystallization was found to range from 2.47 to 3.66 for PTT, 2.60 to 3.45 for PBT, and 

3.00 to 3.31 for blend.  The nT values of PBT are lower than that of PTT and the blend.  The 

nT value for the blend is higher than both PBT and PTT.  The Tobin crystallization rate 

constant kT is found to increase with increasing crystallization temperatures.  Comparison 

between Avrami and Tobin models, reveal that, at an arbitrary crystallization temperature, 

the Avrami exponent, nA, is lower in value than the Tobin exponent, nT.  By taking the 

average value of the difference between the two values, (nA and nT) we are able to conclude, 

(based on our experimental observation), that nT ≈ nA + 1.2, which is in general accordance 

with previous observations [126].   

 

4.2.1.3 Malkin Analysis 

 

The analysis based on the Malkin model can be carried out by fitting the θ(t) function 

obtained for each crystallization temperature to equation (2.4).  The kinetic parameters 

specific to the Malkin model, C0 and C1, as well as ASE parameter, are listed in Table 4.8.  

The C0 parameter was found in the range of 4.76 to 25.52 for PTT, 5.00 to 21.05 for PBT 

and 10.79 to 15.92 for blend.  Unlike the Avrami and the Tobin models, there is no direct 

analytical procedure for the determination of the Malkin kinetic parameters.  The Malkin 

exponent C0 is directly related to the Avrami exponent nA.  According to equation (2.5), it 
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should exhibit similar temperature dependence to that of Avrami exponent, nA.  According 

to the data presented in Table 4.8, the Malkin rate constant C1 exhibited temperature 

dependence in a similar fashion as the crystallization rate constant of the Avrami and Tobin 

models.  This is not surprising since the Malkin rate constant C1 relates to the Avrami 

kinetic parameters (i.e. nA and kA) according to the equation (2.6) [28]. 

 

4.2.1.4  Comparison of modeling results  

 

The quality of each macrokinetic equation in describing the experimental data θ(t) is 

quantitatively represented by not only the ASE  parameter obtained for the best fit of the 

data, but also the quality of the prediction in comparison with the experimental data such as 

those shown in Figure 4.10.  From the comparison of the model predictions of the 

experimental data and the comparison of the values of the ASE parameter summarized in 

Table 4.8, it is clear that the Avrami and Malkin models provide very good correlation of 

the experimental data, while the Tobin model was not satisfactory in describing the 

experimental data.                              

In the case where t0.5 data can be measured accurately over the whole temperature range in 

which polymers can crystallize, the plot of the t0.5
−1 versus ΔT (Tm-Tc) is expected to exhibit 

the typical bell-shaped curve, which is characterized by the nucleation-controlled character 

at “high” Tc or “low” ΔT values and the diffusion-controlled one at “low” Tc or “high” ΔT 

values [127, 128].  From the results shown in Figure 4.11, it is apparent that, within the Tc 

range studied, PBT and blend within the nucleation-controlled region while PTT does not 

show this behavior.  This could be due to the longer butyl chains present in PBT. 
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Figure 4.10: Relative crystallinity as a function of time for blend with the Avrami, Tobin  
                  and Malkin models at 171 oC, 173 oC, 176 oC and 182 oC. 

Figure 4.11: Reciprocal half-time of crystallization t0.5
-1 as a function of degree of   

                    undercooling for PTT, PBT and blend. 
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4.3 Results and discussion of study of rheology of neat polymers and blend 

 

4.3.1  Rheology 

 

Viscosity is a property of fluids that indicates resistance to flow.  Viscosity is defined as 

proportionality constant of the shear stress to the shear strain rate.  Increasing the 

concentration of dispersed substance generally gives rise to increase in viscosity.                             

Interfacial interaction caused by transesterification reaction of ternary blend plays an 

important rule in its rheological behavior.  For the ternary blend investigated in the 

study, the processing time in an extruder and possible residual catalyst present in the 

commercial polyester could cause sufficient degree of transesterification.  The variation 

of different rheological viscosities of neat polymers and the blend will be investigated in 

this research work.  The rheological behavior of molten polymers is of importance as it 

is relates to their microstructure and governs their processing characteristics.  Small 

amplitude oscillatory shear experiments are employed to measure to storage (G'), which 

are related to the elastic and viscous character of the material and the complex viscosity 

() as function of angular frequency.  Three different temperatures 255, 260 and 265 oC 

were used in the rheological studies of the neat polymers and the blend.  No color 

change or degradation was noted in the blend or the neat polymers at the highest 

temperature, 265 oC, employed in this study.  For the isothermal measurements, 260 oC 

was chosen as a safe operating temperature to prevent any possible degradation 

reactions.  
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Figures 4.12 and 4.13 both show the shear viscosity and shear stress versus the shear rate 

of the blend PC/PTT/PBT at three different temperatures.  With the increase of shear 

rate, the shear viscosity decreases and the shear stress increases.  At low shear rate 

region, Figure 4.13, the slope of the curve is higher than at the high shear rate. But at 

high shear rate (over 8 s-1), the shear stress increases and shear viscosity decreases with 

increase of shear rate.  This is typical for all the polymer melt exhibiting a shear thinning 

phenomenon.  It is obvious from these plots that the polymer melts are pseudo plastic 

fluids, which correspond with power law model.  The higher the temperature of the 

polymer melt, the lower the shear stress and shear viscosity at constant shear rate.  The 

shear stress versus shear rate curve is commonly used to identify the existence of the 

melt fracture and the wall slip. 

 
Figure 4.12: Log shear viscosity versus log shear rate of the blend measured at  
                    different temperatures. 
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Figure 4.13 shows the melt flow curves of PTT, PBT, PC and blend at 260C a 

temperature considered to be approximately the temperatures of melt inside the cylinders 

in the extrusion process and injection molding process of this study.  Melt flow curves are 

thought to be important in polymer processes because together with thermal properties, 

they determine both extrudability and moldability.  The polyesters show almost 

comparable viscosities.  The shear viscosity of blend is found to be greater than the 

polyesters but lower than that of polycarbonate.  This could possibly be due to 

transesterification between polycarbonate and polyesters in the blend leading to olefinic 

carbonates.  The curves given in Figure 4.14 show a mild shear thinning behavior at low 

shear rate.  At high shear rates, the flow curves of all polymers and blend show a distinct 

shear thinning behavior.  The viscosity of all the polymers show generally a gradual 

decreasing behavior.  According to Onogi et al., [129] in the plateau region, the flow does 

Figure 4.13: Log shear stress versus log shear rate of the blend measured at  
                    different temperatures. 
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not change the structure whereas at high shear rates, the flow orients the macromolecules 

in a single direction, thus changing the structure from polydomain to monodomain.  The 

monodomain structure easily orients in the shear direction (very low viscosity).  As far as 

transesterification is concerned, rheological properties of PC/PTT/PBT blend essentially 

depend on miscibility between PC and the polyesters, and morphology of the dispersed 

polyester phase.  An enhancement in miscibility and a size reduction of polyester droplets 

during transesterification decrease the viscosity of PC/PTT/PBT blend compared to PC.  

The apparent effects of transesterification on rheological properties of PC/PTT/PBT 

blends depend on the 'struggle' among the three.  Figure 4.15 describes the relation 

between complex viscosity (η*) versus frequency (ω) for neat PC, PTT, PBT and the 

blend.  The figure indicates that both neat polymers and the blend exhibit nearly a 

Newtonian behavior in the experimental frequency range studied.  The complex viscosity 

(η*) of the blend is found to be higher than that of the polyesters.  This is presumably due 

to plausible transesterification reactions between PC and the polyesters.  This could also 

be due to the formation of new polycarbonate-polyester molecular sequences which have 

relatively lower viscosities compared to that of polycarbonate.  Storage modulus (G') and 

loss modulus (G") are linear viscoelastic material functions.  The storage modulus is the 

elastic contribution of the material.  It is a measure of energy storage.  The loss modulus is 

the viscous contribution or a measure of energy dissipation.  Melt rheological behavior of 

the neat and blend polymers were studied in order to get an idea of the microstructure in 

the melt state.   
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Figure 4.14:  Log viscosity ) versus log shear rate of PC, PTT, PBT,   
and blend at 260 oC.

Figure 4.15: Log complex viscosity (*) versus log () for PC, PTT, PBT  
                    and blend at 260oC. 
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                Figure 4.16: Log (G') versus log () for PC, PTT, PBT and blend at 260oC. 

                Figure 4.17: Log (G") versus log () for PC, PTT, PBT and blend at 260oC. 
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Melt rheological behavior is also important from processing point of view.   Storage modulus 

(G') and loss modulus (G") of the neat and blend polymers are shown in Figures 4.16 and 

4.17.  It is observed from these figures that G' and G" of the polycarbonate is higher compared 

to that of blend and polyesters.  These figures also show that the blend has higher G' and G" 

compared to that of the polyesters.  The increase in modulus of the blend is prominent at high 

frequency range.  Thus, at higher frequencies, the rheological behavior of the blend is 

dominated by each of the individual components in the blend.  The storage modulus and loss 

modulus of the blend increased with increasing frequencies.  This is due to unraveling of the 

entanglements so that a large amount of relaxation occurs.  It is observed from Figure 4.16 

that the storage modulus of blend is higher than that of polyester moreover the slope of G' of 

the blend is almost similar to that of other polymers.  This could be an indication of the 

formation of a complex chemical structure in the blend due to transesterification reaction.  

The slope of loss modulus of blend in Figure 4.17 is higher than that of the polyesters at 

higher frequencies.  This indicates that the dispersed polyesters in blend significantly 

contribute to the rheological behavior of the blend especially at higher frequencies of the 

blend.  Figures 4.16 and 4.17 also indicate that G' and G" in the lower and higher frequencies 

regions of the blend are larger compared to that of the polyesters.  This indicates that 

polycarbonate in the blend behaves almost like a solid in the frequency range investigated.  

This solid like behavior of polycarbonate in the blend shows that a highly complex chemical 

structure comprising of PC, PTT and PBT is formed when the three components are melt 

mixed.  This complex structure may consist of tran-exchanged products of PC, PTT and PBT 

with possible structure as shown Figure 4.18.  
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Figure 4.18: The probable structures present in PC/PTT/PBT blend after transesterification   
reaction, with terephthalate groups as central unit A1, A2, B1, C1 are tetramethylene, 
trimethylene terephthalate units.
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Another general observation noted is that the enthalpy values of PTT, PBT and the blend 

obtained using a DSC at a typical rate of 20C/minute are 53, 42 and 23 J/g respectively.  

The storage and loss modulus value for the blend are found to be lower than that of PC 

and higher than that of the polyesters.  In the Figure 4.17, the loss modulus for blend is 

almost same or even slightly higher than that of PC at low frequency.  This could 

plausibly be related to shape relaxation of the blend and also the amount of interfacial area 

(morphological characteristic) occupied by the blend on the melting.  The increased 

sensitivity of the trans-exchange products formed in the blend at 260 C leading to slightly 

higher G" values compared to PC at low frequencies could also be due to interfacial 

tension effect and this is found for many polymer blend systems [130] 

Possibly transesterification reaction between PC and PBT could lead to random 

copolymers which are amorphous in nature.   Therefore, crystallinity and enthalpy 

value of the blend is lower compared to polyesters.  This also means that the blend 

could have attained a more amorphous character compared to the polyesters indirectly 

meaning that the crystallinity of blend is lower than that of polyesters. 

Figure 4.19 gives G′ versus G″ plots for neat PC, PTT, PBT and blend. G' versus G" 

plots are sensitive to morphological state of polymer.  To explore the effect of complex 

chemical structure on the viscoelastic properties of the blend, the curves of G' versus G" 

in the oscillatory shear measurement mode at constant strain of 0.0954 and a 

temperature of 260C is plotted in Figure 4.19.  The figure shows that all the polymers 

are dependant on the chemical nature of each material till 4000 Pa (G"), after this value 

of (G"), the chemical structure becomes independent of chemical nature of different 
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polymers, indirectly meaning that the complex nature of three different polymers in the 

blend remain independent of structure after 4000 Pa.  The G' versus G" plot also reveal 

the different morphological state of blend compared to neat polymers.  The plot also 

reflects that the blend is heterogeneous at 260 C compared to the isotropic neat 

polymers. 

   

 

From Figure 4.19, the viscoelastic dependence of molecular structure of the neat 

polymers and blend for flexible polymers is discernible till G” value of 4000Pa.  Above 

G” value of 4000Pa, the dependence of molecular structure for all the materials is not 

discernible in this plot.  As seen in Figure 4.19, the blend is seen to have the highest G’ 

value till around G” equals to 4000Pa.  The physically miscible blend comprising of 

three different polymers (heterogeneous state) and transesterifed, has elastic deformation 

Figure 4.19: Plot of log (G") versus log (G") for PC, PTT, PBT and blend at constant  
                    strain and a temperature of 260°C. 
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which is accompanied with high storage of energy with individual structure of the blend 

and slippage which involves less input of viscous energy till G” equals 4000Pa. 

 

4.3.2  FTIR analysis 

Infrared (IR) spectra were recorded on a Fourier Transform Infrared spectrometer 

(FTIR) (Perkin-Elmer 16PC) and scans were collected with a spectral resolution of         

2 cm-1.  The solution of neat polymers and blend (2% w/v, in phenol/tetrachloroethane 

(1:6)) was cast onto potassium bromide (KBr) disk.  Film thickness was adjusted such 

that the maximum absorbance of any band was less than 1.0 at which the Beer-Lambert 

law is valid.  It was slowly dried for 24 hours in fume hood until most of the solvent 

evaporated and then dried at 50 C for two days in a vacuum oven.  Samples were then 

stored in a desiccator until it was used.                             

All subtractions were carried out using standard Ominic software.  Selected IR bands 

were resolved using a peak fitting program (Galactic) to determine the area under the 

peaks, the precision of the wavenumbers are ± 0.1 cm-1.  The bands were assumed to be 

Lorentzian in shape with a linear baseline.  Peak area of the isolated vibrational bands 

were measured using "peak area tool" of the "Omnic software".  The FTIR peaks 

corresponding to PC, PTT, PBT and blend are indicated in Figures 4.20, 4.21, 4.22 and 

4.23 respectively.  
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Figure 4.20: FTIR peaks corresponding to PC  
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Figure 4.21: FTIR peaks corresponding to PTT 
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Figure 4.23: FTIR peaks corresponding to blend (PC, PTT, PBT). 
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Figure 4.22: FTIR peaks corresponding to PBT 
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FTIR spectroscopy has been used to analyze ester interchange reaction in PC/PTT/PBT 

blends.  Transesterification is reported to occur in blends containing antimony catalyst 

and is facilitated and accelerated by the presence of titanium catalyst [102, 131].  

Transesterification is dependent upon the temperature and mixing time.  Higher 

temperature and longer mixing time increase the extent of ester interchange [102, 131, 

132].  The 633cm-1, Table 4.9, band is used as a reference peak, since it is due to the 

bending motion of the phenyl ring and all homopolymers contain phenyl ring.  It is 

observed that the percentage transmission for the neat polymer is observed between 94 

to 98 while for the blend, the percentage transmission decreased to 93.  The aromatic C-

H out of plane vibration for para disubstituted aromatic polycarbonate occurs around 

827 cm-1 and in the blend around 830 cm-1.  These blends correspond to the aromatic 

carbon-hydrogen out of plane vibration, which implies that para disubstituted aromatic 

compounds are formed in the blend.  This complex aromatic nature becomes more 

pronounced for the blend as depicted by the percentage transmission decreasing from 86 

(polycarbonate) to 69 (blend).  The peak at 1191cm-1 corresponds to isopropylidene 

vibration of polycarbonate [133].  Polyesters (PTT and PBT) do not show absorption in 

this range.  In the blend, a strong absorption is seen corresponding to this molecular unit, 

at 1192 cm-1.  The percentage transmission of polycarbonate which is around 79 

decreases to 51 in the blend indicating that the blend has acquired this structural group 

due to exchange reaction.  C-H band stretching occurs at 1159 cm-1 in PC and aromatic 

ether stretching occurs at 1160cm-1.  The absorbance occurring at 1409 cm-1 in 

polycarbonate, polyester and the blend corresponds to CH2 bending and wagging 

vibrations.  Absorbance of band at 1506, 1503 and 1504 cm-1 are attributed to aromatic 

ring vibration in polyester and polycarbonate.  This effect is noticed at 1506cm-1 in the 
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blend.  These bands can be used to investigate structural changes if occurring due to 

exchange reaction in the polyesters.  The reduction in percentage transmission to 53 for 

the blend from 80 and 91 in PC and polyester confirms that the blend acquires a mixed 

character of PC and the polyesters.  In PTT and PBT, wavenumber occurring at 725 cm-1 

corresponds to coupled vibration of carbonyl out of plane ring deformation of phenyl 

group.  

An occurrence of exchange reaction between PC/PTT/PBT (50:25:25 wt/wt %) mixture 

was established using solubility test. The wavelength of IR spectroscopy from 1700 to 

1800 cm-1 was studied for PC/PTT/PBT (50:25:25 wt/wt %) mixture.  PC sequences 

characterized by their C=O stretching absorbance at 1775 cm-1 progressively appear in 

soluble fraction while PTTC and PBTC blocks with their C=O band at 1720 cm-1 are 

identified in the insoluble part.  C=O stretching vibrations are found to occur at 1720 

cm-1 and 1714 cm-1 in PTT and PBT and for the blend it occurs around 1718 cm-1.  The 

absorbance at 1777cm-1 results from the C=O stretching of aliphatic aromatic carbonate 

and the structure could be as follows: 

 

 
 

From this study on solubility and IR absorption exchange reaction, it is found that 

exchange reaction takes place between PC, PTT and PBT.  The possible products due to 

exchange reactions are shown in Figure 4.18 
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Table 4.9: IR absorption for PC, PTT, PBT and the blend at room temperature. 

 

Band 
Assignment 

PC 
(cm-1)* 

%T** 
PTT 
(cm-1)* 

%T** 
PBT 
(cm-1)* 

%T** 
Blend 
(cm-1)* 

%T** 

bending motion of 
phenyl ring  

633 95 633 98 633 94 633 93 

coupled vibration of 
carbonyl out of 
plane deformation 
of phenyl group 

- - 725 88 725 83 725 55 

aromatic C-H out of 
plane vibration 

827 86 - - - - 830 69 

Isopropylidene 
vibration 

1191 79 - - - - 1192 51 

C-H stretching 1159 80 - - - - 1160 54 

s C-O-C in-
plane ring 
deformation 

- - 1259 85 1268 81 1271 47 

aromatic ring 
vibration of C-C 
group 

1504 80 1506 91 1503 91 1506 53 

C-C band 
stretching in 
benzene ring 
stretching 

1600 88 - - - - 1609 79 

C=O stretching 
vibration 

- - 1720 83 1719 78 1718 43 

C=O stretching 
absorption  

1775 78 - - - - 1777 53 

*wavenumber  
**%T is percentage transmission 
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4.4 Results and discussion of study of degradation of neat polymers               

and blend  

 

4.4.1  DSC analysis 

 

PTT and PBT had a Tm of 257 and 223 C, respectively, while Tg for both was observed 

around 71 C.  PC depicted a Tg of 160 C.  The blend showed a Tm of 226C and two 

diffuse Tg’s around 84 and 116C, indicating the low compatibility of the blend. 

 

4.4.2  Thermogravimetric analysis 

 

The thermal degradation kinetics of PC, PTT, PBT and the blend were characterized by 

modeling mass loss during heating.  The TG curves of the blend run at different heating 

rates from room temperature to 700°C in air atmosphere are presented in Figure 4.24.  It 

is noted that the curves shift to higher temperatures as the heating rate increases from 5 

to 20°C/min.  

By analyzing the TG and DTG curves of PC, PTT, PBT and the blend, it is possible to 

notice the competing processes of destruction that accompany the pyrolysis of a 

polymeric material.  
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The predominance of the destruction process leads to full disintegration of the initial 

material to monomers (depolymerization process) and simple compounds and to a 

carbon frame representing the carbonized product  (raw carbon) [99].  Generally, the TG 

curves show that the blend and neat polymers, degrade in two stages and nearly crumble 

between 600-650°C (char yield around 2.4%).  This reveals that all the polymer mass 

turns into gaseous product at 600-700°C.  The decomposition pathway of a polyester 

composed of glycol and diacid are described in literature as a three stage process.  The 

first stage is elimination of terephthalic acid.  The second stage, around 350°C, is 

possibly caused by the release of styrene and a complex mixture of other materials, 

while the third stage above, 500°C, relates to the loss of high boiling  

 

Figure 4.24: TG curves of blend (PC, PTT, PBT) at different heating rates in   
                          air atmosphere  
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tars and oxidation of the char formed [134].  This observation is relevant to the 

degradation mechanism for PTT and PBT used in our study. 

This work will be focused on the first stage of the thermal degradation for the 

polycarbonate and polyesters.  The first stage of degradation of PC, determined from the 

TG curve, extends over the temperature range 430 to 550°C, while for PTT it is 

observed to start at 330°C and end at 430°C.  For PBT, the first stage of degradation was 

found to fall in the range 310 – 440°C.  For the blend, the first stage of degradation 

began at 330°C and ended at 440°C.  DTG curve for the blend PC/PTT/PBT shows one 

shoulder, characteristic of an overlap of different degradation process [120].  The first 

stage of sharp loss in mass for the polyesters is mostly attributed to degradation of the 

aromatic components.  During the break down of polymers, nucleophilic terminal 

hydroxyl groups are replaced with less reactive groups like alkyl group [120].  

 

The degradation temperatures of the blend and the neat polymers in nitrogen and air at 

different conversions are shown in Table 4.10.  It can be seen that the degradation 

temperatures of the neat end-capped polyesters and polycarbonate in nitrogen are higher 

than those in air.  This indicates that oxygen has a noticeable effect on the 

decomposition of polymers due to oxidation reactions occurring in the system. 
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Table 4.10: Thermal degradation characteristics for neat PC, PTT, PBT and the blend in air and N2 atmosphere. 

T=10% (oC) T30% (oC) T50% (oC) Tmax 
Polymer 
 

 
Heating Rate oC/min 
 

Air N2 Air N2 Air N2 Air N2 

5 405 449 438 478 454 496 441 492 

10 430 469 460 495 481 513 480 512 

15 444 477 479 504 491 520 497 519 
PC 

20 460 489 499 514 516 528 515 527 

5 351 356 369 372 379 382 383 384 

10 366 370 383 386 393 394 393 396 

15 374 379 390 393 401 403 402 408 
PTT 

20 383 383 399 399 408 408 410 412 

5 343 358 364 371 375 380 379 381 

10 357 371 377 384 389 393 390 396 

15 366 378 386 392 397 401 399 403 
PBT 

20 371 385 392 399 403 407 404 410 

5 344 351 364 370 385 397 357 362 

10 364 366 382 388 404 417 379 377 

15 372 373 392 396 414 421 389 390 
Blend 

20 379 382 400 402 421 426 392 398 
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From the TG curves, it can be seen that PC, PTT and PBT show relatively good thermal 

stability, since no significant weight loss (only 1.2%) occurs until the temperature reaches 

305°C.  Early weight loss was observed in poly(propylene terephthalate) (PPT) with low 

number-average molecular weights, ranging between 13,000 and 23,000 g/mol, where the 

first decomposition step corresponded to small weight loss (2-4%) of PTT.  The weight 

loss was attributed to the volatilization of small molecules, residual catalysts, and 1,3-

propanediol and carbon dioxide that evolved from chain ends [135].  Thus, the 

temperature at maximum weight-loss rate at this stage increases significantly with 

molecular weight while the weight loss decreases steadily.    

The TG and DTG curves of all polymers at 10°C/min in air and nitrogen are shown in 

Figures 4.25 and 4.26.  Temperatures of maximum degradation Tmax increase in the 

following sequence: PC > PTT > PBT > blend.  As seen in Figures 4.25 and 4.26, 

degradation occurs at slightly higher temperatures in nitrogen than in air.  The peak 

temperatures, Tmax, extracted from the DTG curves are listed in Table 4.10.  From the 

table it can be seen that the peak temperatures of the pure polymers are higher than those 

of the blend.  The DTG curves of PC have a shoulder in the range 470 to 500 °C, 

however PTT and PBT do not show this behavior.  This implies that the degradation of 

PC and polyesters follow different mechanisms.  Chain unzipping mainly contributes to 

the degradation of PC till the first Tmax.  In both air and nitrogen, the DTG curves of the 

blend exhibit shoulders around 390 and 410°C.  

Referring to Table 4.10, as the heating rate increases, Tmax increases and as the 

conversion increases, the degradation temperature is also found to increase, in both air 



  99

and nitrogen.  In general, the peak temperature for the degradation of PC is found to be 

the highest.  

 

 

 

 

 Figure 4.26: TG and DTG curves of PC, PTT, PBT and blend at 10oC/minute  
                     in nitrogen atmosphere.

Figure 4.25: TG and DTG curves of PC, PTT, PBT and blend at 10oC/minute  
                     in air atmosphere. 
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For PTT and PBT, the maximum temperature for degradation appears at around 400°C. 

The volatile matter evolved at Tmax is around 58% for both in nitrogen and around 42% and 

52%, respectively, in air.  This is indicated in Figures 4.25 and 4.26.  Tmax values are 

comparable to decomposition temperatures reported for aromatic polyesters of terephthalic 

(PET, PBT, PPT) and naphthalic acid like poly (ethylene naphthalate) (PEN)[29]. 

Even if the shape of the mass loss curves does not change and exhibits the same starting 

temperature of decomposition, Figure 4.27 shows that the maximum temperature of 

degradation obtained for polyesters is shifted to higher values as the heating rate increases. 

A similar observation is noted for PC and the blend, with PC degrading at higher 

temperatures, as shown in Figure 4.28. 

 

 

 

 

 

Figure 4.27: DTG curves of PTT and PBT at different heating rates in N2 atmosphere. 
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Second Derivative Thermogravimetric (DDTG) curves (indicated in Figures 4.29 and 

4.30) were used to identify overlapping peaks, determine peak maxima and detect small 

endothermic deflections.  The DDTG curves for the blend at different heating rates lie 

between 315 and 460°C for thermal degradation in air, and between 325 and 450°C for 

thermal degradation in nitrogen.  Peaks appearing before 460°C have only been 

considered since they correspond to the first stage of degradation.  

The activation energy of degradation was estimated using Kissinger method [78].  As 

reported previously [78], it is assumed that the instantaneous value of peak temperature is 

directly proportional to the degradation process rate and that this process obeys a first-

order rate equation.  The peak temperatures Tmax at a given heating rate were reproducible 

to about +1%.  

Figure 4.28: DTG curves of PC and blend at different heating rates in N2 atmosphere 
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The plots for Kissinger method are presented in Figures 4.31 and 4.32.  The values of E 

and A obtained are presented in Table 4.11.  Though Kissinger method fittings resulted in 

Figure 4.29: DDTG curves of blend at different heating rates in air atmosphere 

Figure 4.30: DDTG curves of blend at different heating rates in N2 atmosphere 
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r2 values greater than 0.98, the model remains questionable due to the large difference 

between E values obtained for degradation in air and nitrogen for PTT.  PBT comprises 

of an extra methylene group compared to PTT.  Comparison of the E values of PTT and 

PBT in air raises doubt on the validity of the model for evaluating degradation 

parameters. 

 

 

 

Another observation noted is that activation energy E of some polymers in air is higher 

than that in nitrogen.  This contradicts the chemical reaction hypothesis in which oxygen 

reacts with the polymer in air atmosphere, leading to accelerated degradation.  Figures 

4.29 and 4.30 represent a sample of the curves used in estimating the reaction order n 

following Kissinger method.  Small shoulders seen on the endothermic and exothermic 

peaks are attributed to electronic noise.  This behavior may be related to heat transfer 

problems between sample and instrument.  The n values of polyesters in air are greater 

than those in nitrogen, as shown in Table 4.11.  

 

Figure 4.31: Application of Kissinger method to the degradation of PC, PTT,  
                     PBT and the blend in air atmosphere. 
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This plausibly signifies that the degradation mechanism in air is more complex.  In 

general, the kinetic parameters indicated in Table 4.11 reveal that the properties of the 

neat polymers are better compared to the blend, arising from differences in degradation 

mechanisms.  Ozawa method was employed in determining the activation energy at 

different conversion values by plotting log   versus 1/T, as shown in Figures 4.33 and 

4.34.  The order of degradation n determined from Kissinger method was used in this 

method.  Ozawa plots show straight lines with high correlation coefficient, thus 

indicating the applicability of Ozawa method to the first stage of the degradation process 

of the blend and its components. 

 

 

 

Figure 4.32: Application of Kissinger method to the degradation of PC, PTT, PBT  
                     and the blend in N2 atmosphere.
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Table 4.11: Kinetic Constants of neat PC, PTT, PBT and the blend calculated using Kissinger model  
under air atmosphere.  

n E (kJ/mol) ln(A)   (min-1) r2 
Polymer    

Heating 
Rate oC/min 

Air N2 Air N2 Air N2 Air N2 

5 

10 

15 
PC 

20 

1.14 1.64 188.55 165.23 32.83 28.47 0.979 0.988 

5 

10 

15 
PTT 

20 

2.06 1.89 81.89 196.16 32.91 28.95 0.994 0.981 

5 

10 

15 
 PBT 

20 

2.43 1.75 177.57 175.74 31.14 30.53 0.998 0.996 

5 

10 

15 
Blend  

20 

1.58 2.89 137.48 130.59 23.85 18.32 0.97 0.993 

 

Ozawa plots show straight lines with high correlation coefficient, thus indicating the 

applicability of Ozawa method to the first stage of the degradation process of the blend 

and its components.  The results extracted from this model are summarized in Table 4.12. 

The degradation temperature profiles of the polymers at 50% conversion are observed as 

follows: PC>blend>PTT>PBT.  The high percentage of PC in the blend might have 

influenced the increase in degradation temperature of the blend compared to that of the 

polyesters.  The E and A values in nitrogen are greater than those in air.  The highest E 

value observed (around 184 kJ/mol) is for PC in nitrogen. 
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Figure 4. 33: Ozawa plot of ln () as function of inverse temperature (1/T) at  =50%   

                      for PC, PTT, PBT neat polymers and the blend in air atmosphere. 

Figure 4.34: Ozawa plot of ln () as function of inverse temperature (1/T) at  =50%      
                       for PC, PTT, PBT neat polymers and the blend in N2 atmosphere. 
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Based on Ozawa’s analysis for the degradation in air of the polymers studied, the change 

in the values of E with respect to is minimal till as represented in Figure 4.35. 

The dependence of E on  is then shifted to a monotonous increase.  As for the 

polyesters, E displays an increasing trend over the range studied.  This observation 

supports the assumption that PC and the blend experience multiple degradation 

mechanisms, while the degradation of PTT and PBT follow one mechanism.  The case is 

a bit different when degradation takes place as presented in Figure 4.36, in nitrogen.  The 

blend shows an average constant value of E.  PBT displays two distinct regions, the first 

extends to equal to and E is characterized with a slightly increasing trend, and the 

second shows constant E value.  Both PC and PTT have two regions with increasing 

trends of E, each with a different intensity. 

 

 

 

 

Figure 4.35: Dependence of Ozawa's activation energy as function of       
                     conversion for thermal degradation in air atmosphere. 
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Plots of )/(ln dtd versus 1/T according to Friedman method are presented in Figure 4.37 

and 4.38.  The activation energies and pre-exponential factors are indicated in Table 4.13.  

The E and A values for the neat polymers and the blend are greater in nitrogen compared to 

those in air.  The value of n is obtained by plotting ln (1-) versus 1/T.  The highest value of 

n (about 5.5) is observed for the degradation of the blend in nitrogen.  No definite trend in E 

or ln A values was observed.  It is also obvious that as E increases, the value of ln A also 

increases.  The kinetic parameters calculated using Friedman method are slightly higher than 

those obtained using Ozawa.  The E values for all polymers are lower in air than in nitrogen.  

The E values for PBT are greater than those of PTT, in both air and nitrogen.  PBT 

degradation in nitrogen is found to have the highest E value of 327 kJ/mol.  The r2 values 

obtained are all above 0.99, indicating the validity of the model to analyze the polymers 

studied. 

Figure 4.36: Dependence of activation energy on the different conversion values  
                    for neat polymers and blend in N2 atmosphere.  
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Table 4.12: Kinetic parameters of thermal degradation for PC, PTT, PBT and the blend calculated using Ozawa  
                   model in air and N2 atmospheres. 
 

 
Fractional 
Conversion 
 

E 
(kJ/mol) 

ln(A) 
(min-1) r2 

E 
(kJ/mol) 

ln (A) 
(min-1) r2 

E 
(kJ/mol) 

ln (A) 
(min-1) r2 

E 
(kJ/mol) 

ln (A) 
(min-1) r2 

  PC PTT PBT Blend 

0.1 100 18.71 0.997 147 29.59 0.998 155 31.48 1.000 130 26.76 0.987 

0.2 98 18.58 0.975 157 31.87 0.998 162 32.87 0.999 127 26.6 0.994 

0.3 99 18.94 0.985 160 32.65 0.998 162 33.19 0.999 131 27.33 0.998 

0.4 101 19.47 0.991 163 33.27 0.998 168 34.42 1.000 140 28.69 0.998 

0.5 106 20.4 0.994 164 33.58 0.993 171 34.85 0.999 143 29.16 0.996 

 
 
Air 
 
 
 

Mean 101 19.22 0.989 158 32.19 0.997 164 33.36 0.999 134 27.71 0.995 

0.1 160 27.83 0.998 161 32.24 0.997 164 32.94 0.998 159 32.14 0.994 

0.2 167 28.79 0.993 164 33.19 0.999 162 32.91 0.999 161 32.84 0.989 

0.3 170 29.33 0.99 172 34.82 0.997 172 34.80 0.998 152 26.35 0.988 

0.4 200 33.95 0.997 173 35.12 0.999 175 35.49 0.996 165 28.47 0.979 

0.5 221 37.11 0.998 178 36.02 0.999 171 30.25 0.998 167 28.51 0.967 

 
 
N2 
 
 
 

Mean 184 31.4 0.995 170 34.28 0.998 169 33.28 0.998 161 29.66 0.983 
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The values of the thermal degradation activation energies, E, are summarized in Table 4.13.  In 

general E values tend to increase with an increase in the –CH2- group content for polyesters.  A 

high value of E reflects better thermal stability of polymeric sample as is shown in Table 4.13.  

For the degradation reaction order, n, an order of zero has been known for rapid degradation and 

an increase in this degradation parameter reflects a slow degradation process.  In Table 4.13 the 

blend shows the highest average n value, indicating very slow degradation. 

 

 

 

 

 

 

Figure 4.37: Friedman plots of ln(d/dt) and ln(1-) as a function of 1/T for the blend   
                    at different heating rates in air atmosphere. 
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Figures 4.39 and 4.40 present plots in accordance with the Chang model, in which n is assumed to 

be one.  The corresponding degradation kinetic parameters are reported in Table 4.14.  It was 

found that for the polyesters, the kinetic parameters tend to increase with the increase in heating 

rate.  A values in nitrogen are higher than those in air.  The high E values observed for degradation 

of PBT in nitrogen are almost similar to those given by the Friedman model.  The r2 values are 

greater than 0.99.  ln A for the blend shows the highest value of 47, indicating that the chemical 

mechanism of degradation is highly complex.  Furthermore, it is been known that the variation in 

kinetic parameters should reflect the change in thermal degradation mechanism i.e., the thermal  

degradation transferring from diffusion-controlled kinetics to the degradation-controlled kinetics, 

or vice versa [136]. 

Figure 4.38: Friedman plots of ln(d/dt) and ln(1-) vs.1/T for estimation of E  
                    and n of the blend at different heating rate in N2 atmosphere. 
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Table 4.13: Characteristic temperatures and kinetic parameters of the first thermal degradation stage for   
                   PC, PTT, PBT and blend in air and N2 atmosphere using Friedman model. 
 

Air N2 
Polymer     

Heating 
Rate  
(°C/min) 

E 
(kJ/mol) 

n 
ln(A) 
(min-1) 

r2 
E 
(kJ/mol)

n 
ln(A) 
(min-1) 

r2 

5 107 2.459 19.41 0.997 167 2.843 28.02 0.99 

10 168 3.218 30.24 0.995 170 3.232 24.44 0.993 

15 111 2.144 19.92 0.998 321 2.507 53.87 0.991 

20 129 2.148 22.98 0.995 176 1.294 29.58 0.994 

PC 

Average 129 2.492 23.14 0.996 208 2.469 33.98 0.992 

5 184 0.973 36.24 0.994 257 1.156 50.42 0.997 

10 193 0.864 37.97 0.99 286 1.105 55.49 0.998 

15 241 1.072 47.03 0.997 278 1.154 53.70 0.998 

20 282 1.321 54.44 0.996 304 1.268 58.34 0.995 

PTT 

Average 225 1.058 43.92 0.994 281 1.171 54.49 0.997 

5 253 1.617 50.63 0.996 255 0.987 59.92 0.991 

10 237 1.559 47.37 0.9997 400 2.198 64.22 0.99 

15 260 1.676 51.41 0.993 330 1.304 63.06 0.998 

20 265 1.873 52.27 0.993 321 1.235 61.45 0.993 

PBT 

Average 254 1.681 50.42 0.995 327 1.431 62.16 0.993 

5 188 3.864 37.52 0.993 275 6.173 54.59 0.993 

10 225 3.920 44.54 0.9925 262 5.823 51.38 0.9927 

15 275 4.956 56.69 0.99 271 5.394 53.02 0.99 

20 270 4.635 53.29 0.994 266 4.701 51.66 0.997 

Blend 

Average 239 4.344 48.01 0.992 269 5.523 52.66 0.993 
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For the polyesters, at lower heating rate, the physical diffusion of degradation intermediate 

products does not apparently influence the kinetics of the degradation process, so the kinetic 

parameter values tend to be low.  Therefore, for polyesters at a low heating rate, thermal 

degradation would proceed under the diffusion-controlled mechanism.  Accordingly, higher kinetic 

parameters were observed with increasing heating rate [137].  This is observed in Table 4.14. 

Among the above four analytical models, Friedman model was found to give the highest 

degradation activation energy E and the highest degradation reaction order parameter n.  The 

activation energy and pre-exponential factor values given by Friedman and Chang are almost 

identical.  These values obtained by Friedman and Chang do not match with those of Kissinger and 

Ozawa.  This behavior has also been reported earlier [137].  This suggests that the kinetic 

parameters would vary more or less with the experimental temperature, even though we assumed 

they would not change with temperature in each proposed model [138]. 

Here it could be seen that Chang model actually tends to display good linear relationship in a wide 

temperature range.  However, in this study, the thermal scanning range to achieve good linear 

relationship was indeed found to be wide enough for accurate determination of degradation kinetic 

parameters according to the Friedman, Kissinger and Ozawa methods. 

In general, the values of E in air are found to be lower than those obtained in nitrogen, with PC 

having the lowest value of E in air.  E obtained in nitrogen for both polyesters are found to be 

comparable.  As the value of E increases, the value of ln A is also found to increase.  Based on 

Friedman method, it seems clear that more reproducible results are obtained for the complete 

temperature interval for all heating rates.  Activation energies decrease dramatically with the 

increase in heating rate from 5 to 15°C/min.  This drop is probably caused by the thermal lag in the 

instrument as well as in the sample thermal conductivity. 
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Figure 4.39: Chang plot of ln[(d/dt)/(1-)n] vs.1/T for estimation of E of   
                     the blend at different heating rates in air atmosphere. 

Figure 4.40: Chang plot of ln[(d/dt)/(1-)n] vs.1/T for estimation of E of   
                     the blend at different heating rates in N2 atmosphere. 
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Table 4.14: Characteristic temperatures and kinetic parameters of the first thermal   
                   degradation stage for PTT, PBT, PC and blend in air and N2 atmosphere    
                    using Chang model. 
 

Air N2 
Polymer 

Heating 
Rate  
(°C/min) 

E 
(kJ/mol)

ln(A) r2 
E 
(kJ/mol)

ln(A) r2 

5 183 28.31 0.99 191 28.1 0.99 

10 175 30.42 0.99 259 36.98 0.996 

15 149 22.08 0.996 154 22.13 0.984 

20 159 33.35 0.997 193 28.93 0.997 

PTT 

Average 166 28.54 0.993 199 29.03 0.992 

5 262 46.92 0.998 281 50.47 0.998 

10 271 48.35 0.998 299 53.38 0.998 

15 284 50.46 0.999 309 54.89 0.997 

20 291 51.37 0.999 302 53.32 0.998 

PBT 

Average 277 49.28 0.998 298 53.01 0.997 

5 196 34.79 0.990 316 57.11 0.993 

10 205 36.44 0.995 310 55.34 0.993 

15 230 40.87 0.999 328 60.07 0.999 

20 233 41.29 0.996 343 60.92 0.997 

PC 

Average 216 38.35 0.995 324 58.36 0.995 

5 250 45.45 0.995 281 50.96 0.994 

10 237 42.23 0.994 265 47.22 0.995 

15 297 53.33 0.992 273 48.34 0.989 

20 270 47.99 0.997 255 44.71 0.996 

Blend 

Average 264 47.25 0.995 269 47.80 0.994 

*For Chang model, n is assumed to be 1.   
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Transesterification reactions between polycarbonate and polyester can possibly decrease the 

degradation temperature of the blend compared to the virgin materials (example PC).  In these 

reactions the length of crystallizable segments in the copolyester as well as the chances for it to 

crystallize decrease.  The newly transesterified blend in such cases may tend to have a more 

amorphous character.  Ester interchange reactions occurring between polycarbonate/polyester 

blends are well known to start in the range of 250-300C [135], eventually causing the formation 

of copolymers having mechanical and thermal properties not necessarily coincident with those of 

the neat polymers.  The dynamic technique of TGA can provide a useful impression of the 

mechanisms of thermal degradation.  As seen in Figures 4.24 and 4.25, the blend and neat 

polyesters begin to degrade at a lower temperature compared to PC.  The blend is found to exhibit 

an intermediate behavior between PTT and PBT until 30 percent conversion.  This is a qualitative 

evidence of some exchange reactions occurring between the polyester and polycarbonate.  

Another quantitative approach adopted to check whether transesterification played a role in 

lowering the degradation temperature of the blend, was by determining the amount of char 

remaining after heating blends containing various percentage of PC.  PC was found to form an 

insoluble char upon degradation under air and nitrogen [139].  Two additional blends with the 

compositions PC25/PTT37.5/PBT37.5, and PC75/PTT12.5/PBT12.5, weight/weight percent were 

developed using a single screw extruder under similar conditions discussed in the experimental 

section for PC50/PTT25/PBT25 composition.  This additional work was only carried out to 

establish a relationship between exchange reactions occurring between polyester and 

polycarbonate and amount of char left on blend decomposition.  Figure 4.41 shows the mass 

fraction of the blend at 550C.  If no interchange reactions were to occur between PC and the  
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polyesters, a linear relationship would be expected; however the experimental observations assume 

a slightly curved shape.  This indirectly proves that, addition of polyesters interferes with 

polycarbonate char formation.  Also an examination of Figure 4.24 and 4.25 indicates that the 

presence of polyesters in the blend causes early decomposition of polycarbonate in the blend.  

These observations reveal that some chemical reactions occur between PC and the polyesters.  

Similar observations have been made for other blend systems and have been attributed to free 

radical-initiated exchange processes [140].  

 

 

 

 

The results obtained from the kinetic analysis of the TG data for PTT degraded in air and nitrogen 

atmosphere according to mechanisms An, Rn and D1 to D4, refer Table 4.15, are shown in Figures 

4.42 and 4.43.  If (T/T0.5) in equation is considered close to unity, a plot of [(dα/dt)/(dα/dt)0.5]  

Figure 4.41: Char fraction remaining at 550oC for blend in air and N2. 
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against α gives a series of master curves, Figures 4.42 and 4.43, depend neither on the kinetic 

parameters nor the heating rate but only on the reaction mechanism [141]. 

  

 

 

 

In the present work the functions for f(α) and g(α) used to develop the master curves for the 

phase boundary controlled mechanism for PTT, PBT, PC and the blend are   (1- α)n and 

11 (1 )

1

n

n

  


 respectively where, n is the order of the degradation mechanism.  Solver, an 

optimization tool in Excel was used to optimize the experimental and theoretically generated 

values to determine the value of n.  It is seen that the experimental data, Figures 4.42 and 4.43, 

do not fit well the kinetic models D1 to D4, and An. 

 

Figure 4.42: Determination of reaction mechanism by applying different   
                     curves to neat PTT at 10C/min in air atmosphere. 
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The correlation coefficient (r2) values obtained for the later models are < 0.9. 

Figures 4.42 and 4.43 indicates that the Rn (phase boundary controlled) mechanism gives a good 

match between the experimental data points and the theoretically predicted values.  The best 

values (r2 > 0.99) of n in air and nitrogen for PTT and PBT is 2.0 while, that for PC both in air and 

nitrogen is 1.5.  For the tricomponent blend the best value (r2 > 0.99) of n was found to be 2.5. 

 Figure 4.44 confirms that the solid state degradation of the neat polymers and blend is typical of 

that of a phase boundary controlled process.  In this mechanism, surface nucleation is rapid and is 

controlled by movement of the resulting interface towards the center [142]. 

 

 

 

 

Figure 4.43: Determination of reaction mechanism by applying different   
                     curves to neat PTT at 20C/min in air atmosphere. 
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 Table 4.15:  Algebraic expressions for the functions f(α) and g(α) for the most      

frequently used mechanisms of solid state processes. 
 

Model f(α) g(α) 
Solid state process 
 

An 
 

n(1- α)[-Ln(1- α)]1-1/n 
 

[-Ln(1-α)]1/n 
 

General nucleation and growth 
equation. 

Rn 
 

(1- α)n 
 

11 (1 )

1

n

n

  


 General phase boundary controlled 
reaction. 

D1 
 
 
D2 
 
 
 
 
D3 
 
 
 

D4 
 

1/2α 
 

1

ln(1 ) 
 

 
 

2 / 3

1/ 3

3(1 )

2[1 (1 )]





 

 

 

1/ 3

3

2[(1 )] 1]  
 

α2 
 
 
(1-α)Ln(1-α) + α 
 
 
 
[1-(1-α)1/3]2 
 
 
                                                
(1-2α/3)-(1-α)2/3 

 
Different diffusion controlled 
process 

 

Figure 4.44: Fitting of phase boundary model to the conversion values of the  
                    neat polymers and blend at 15 C/min. 
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Chapter 5 Conclusion 

 

5.1  General conclusion on the study of non isothermal and isothermal crystallization   

                        kinetics, mechanical properties and morphology characterization, rheology and  

                        non isothermal degradation of neat polymers and blend. 

 

The non isothermal crystallization exotherms of PTT and PBT showed that T0.01, TP and T0.99 

shifted towards lower temperature with the increase in cooling rates, while the blend displayed no 

such trend.  A further analysis of the non isothermal crystallization behavior revealed that (t) 

decreased with increasing cooling rate.  

 Avrami, Malkin and Tobin models were used to characterize the non isothermal crystallization 

kinetics.  Two kinetic parameters, rate constant and rate order were determined from each model.  

The kinetic parameters for the blend were found to lie between those of PTT and PBT.  This could 

be due to the presence of PC in the blend.  PC is an amorphous polymer and therefore may hinder 

the crystallization process in the blend.  The SEM analysis of the blend reveals its immiscible 

nature.  X-ray analysis showed the presence of peaks related to PTT and PBT, confirming again 

the immiscible nature of this system. 

The isothermal crystallization kinetics of PTT, PBT, and their blend with PC, PC/PTT/PBT 

(50:25:25 wt/wt %) have been studied.   Three different macrokinetic models namely the Avrami, 

Tobin, and Malkin models were applied.  The crystallization kinetic parameters specific to each 

model were obtained from the best fits of the experimental data.  The crystallization rate 

parameters 1
5.0

t , kA, kT, and C1 were found to be sensitive to changes in the crystallization 
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temperature.  Within the crystallization temperature range studied, the values of these parameters 

for polyesters were found to increase with decreasing temperature, suggesting that these polymers 

crystallize faster at low temperatures than at high temperatures.  It was also shown that kinetic 

parameters (i.e. 1
5.0

t , kA, kT, and C1) have a finite, definable relationship with the crystallization 

temperature Tc.  Based on the ASE values, models of Avrami and Malkin followed by Tobin were 

good fit to the isothermal crystallization data, of the polyesters and the tricomponent blend. 

The polymer melts displayed pseudoplastic behavior.  The higher the temperature of the polymer 

melt, the lower was the shear viscosity at a constant shear rate.  The shear viscosity of the blend is 

found to be lower than that of polycarbonate and greater than that of polyesters.  This could 

possibly be due to transesterification reaction in the blend between polyesters and polycarbonate. 

Steady shear viscosities for pure components and the blend showed slight decrease with increasing 

shear rate within the shear rate studies.  The viscosity of the blend was found to lie in between that 

of PC and the polyesters. A possible enhancement in miscibility between PC and polyesters and a 

reduction in the size of the blend molecular constituents during transesterification could possibly 

lead to decrease in the viscosity of the blend.  

 Blend of PC and the polyester were concluded to be miscible and dynamic measurements in the 

molten state were dominated by PC behavior.  It seems reasonable that for a component to 

dominate the rheological properties, especially, if the PC component is exactly half the weight 

ratio of the total mixture, a level of molecular miscibility is necessary.  Complex viscosities of PC, 

polyesters and the blend displayed nearly Newtonian plateau at low frequencies with blend having 

a higher complex viscosity compared to neat PC. 

This behavior of the blend could be possibly due to transesterification reaction occurring between 

PC and polyesters.   
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Bands in the infrared spectra of PC, PTT and PBT have been assigned to different modes of 

vibrations of the para-disubstituted benzene ring and this has been found common for all three neat 

polymers and the blend.  The differences between the spectra occur on the basis of the degree of 

planarity of the terephthalate residue in the polyester and phenyl carbonate group in the PC.   The 

difference has been noted due to the rotation of the carbonyl group about the carbonyl–phenylene 

group.   

The storage and loss modulus value of the blend is found to be lower than that of polycarbonate 

and higher than that of polyesters, possibly due to attainment of more amorphous nature due to 

transesterification reaction between polyesters and polycarbonate.   

Thermal degradation kinetics study for the blend of PC/PTT/PBT (50:25:25 wt/wt %) leads to the 

following conclusions: 

 

1. TG curves shift to higher temperatures as the heating rate increases.  Slower heating rates 

give more time for the degradation reaction to occur and thus serve as a promoting factor. 

2. Degradation temperatures for PC are higher than those of the polyesters and the blend 

indicating its higher thermal stability. 

3. Degradation temperatures for all polymers are higher in nitrogen than in air.  This 

emphasizes the facilitating role oxygen plays in the degradation process. 

4. The first stage of degradation of PC and the blend is more complex compared to the 

polyesters, as revealed by the DTG curves. 

5. Among those investigated, Friedman and Chang models are probably most suitable for 

determining the kinetic parameters of degradation of the polymers studied.  Chang method 
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assumes constant order (n =1) over the range of conversion.  This means that E varies 

mostly only with heating rate.   

6. These two models better represent the thermal degradation of the polymers studied in this 

work. 

7. No definite trends in activation energy or pre-exponential factor values were observed with 

any of the models examined.  Literature does not give reasons for absence of trends.  This 

observation is worth investigating. 
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