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ABSTRACT 

 

Since the UN Convention on Biological diversity (CBD) held in Rio de Janeiro in 1992, 

conservation of biodiversity has been recognised internationally as critically important for 

sustainability. Forest structure variables have been recognized as a surrogate of biodiversity. 

In Australia, existing vegetation monitoring methods also assess forest structure variables. 

However, these assessments require costly fieldwork, are often logistically difficult and to 

a large degree qualitative. Light Detection and Ranging (LiDAR) is an active sensing 

technology. There is well documented evidence of the utility of LiDAR to extract forest 

structure variables and potential to compliment traditional ecological survey methods.  

In this thesis, the potential of LiDAR to inform landscape biodiversity assessments was 

investigated. The objectives of this research are to examine how LiDAR discrete return and 

full waveform systems can be used to recover forest structure information, how LiDAR 

intensity can be used for biodiversity assessment and whether the utility of LiDAR can 

compliment traditional ecological survey methods. Experiments using LiDAR discrete 

return and full waveform systems were conducted. An eight category forest 

characterisation scheme (FCS) derived from a LiDAR full waveform system was proposed 

and validated using field derived variables. Intensity variables derived from a LiDAR full 

waveform system were explored to determine their utility. The applicability of the 

proposed scheme was also examined by comparing two independent LiDAR full waveform 

datasets of the same area and by comparing the LiDAR derived FCS to commonly used 

field-based biodiversity metrics.  

From these surveys, it was concluded that conventional discrete return systems can be used 



2

to recover forest structure information for forests with an ecologically simple structure (i.e. 

single tree species with no mid- and understorey vegetation except grass and relatively flat 

terrain). Vertically stratified LiDAR intensity, using range information, has potential to 

recover canopy cover, grass cover and the amount of fallen trees. The combination of 

LiDAR intensity mean and standard deviation can be used to differentiate forest structural 

types; sparse canopy with few fallen trees or dense canopy with many fallen trees.  

The LiDAR full waveform system experiment demonstrated that the FCS, which was 

created using pulse types and heights of a full waveform LiDAR, allows for quantification 

of gaps (above bare ground, low vegetation and medium vegetation), canopy cover and its 

vertical density as well as the presence of various canopy strata (low, medium and high). 

Regression analysis showed all LiDAR derived variables were good predictors of field 

recorded variables (e.g. R2 = 0.86, P < 0.05 between LiDAR derived canopy cover and 

field derived canopy cover). The FCS clearly showed the potential of full waveform 

LiDAR to provide information on the complexity of habitat structure.  

The exploratory analysis of intensity derived from a LiDAR full waveform system 

displayed the potential of intensity variables (the standard deviation of intensity and the 

intensity version of FCS) to recover forest structure variables, however it was noted that 

the analysis using intensity variables could be site specific. It was also noted that the 

selection of sensor with appropriate wavelength for the study would be critical to use 

intensity information. Further study is required to account for the utility of intensity 

variables. 

In terms of the applicability of the FCS, a multiple dataset comparison showed that the 

FCS was resilient when recovering canopy cover, openings above the ground and medium 
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vegetation, and presence of mid-storey vegetation and high trees, however it was less so 

when recovering openings above low vegetation, the presence of understorey vegetation 

and vertical canopy density of high trees. These last categories were considered to be 

affected by the difference in the pulse repetition frequency. Obtaining sufficient multiple 

returns by setting an appropriate pulse repetition frequency is the key to maintaining good 

performance of the scheme. The FCS was also found to be incompatible with commonly 

used field-based biodiversity metrics due to the qualitative and subjective measurements 

used in field-based metrics. Refinement in field methodology would be necessary for 

measuring structural variables to maximise the utility of FCS in their metrics. 

This study demonstrated how LiDAR technology (conventional discrete return system and 

full waveform systems) can be used to derive forest structure information for landscape 

biodiversity assessment. The method proposed in this study is versatile, repeatable and 

quantitative, which can provide useful information to inform decisions and conservation 

strategies.   
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CHAPTER 1 INTRODUCTION 

 

This thesis investigates the potential of Light Detection and Ranging (LiDAR) to inform 

landscape biodiversity assessments. In this thesis, biodiversity is defined in accordance 

with the UN Convention on Biological Diversity (CBD) (Articles 7, 8 & 9). This states that 

biodiversity is understood in terms of the variety of species, genetic differences and 

ecosystems, and in a landscape context, in terms of landscape diversity and natural habitat 

(Secretariat of the Convention on Biological Diversity, 2000). The aim of this thesis is to 

develop a methodology to measure a surrogate of biodiversity to inform decisions made at 

a landscape scale, using airborne LiDAR data, field survey data and existing environmental 

information. 

Since the UN CBD, held in Rio de Janeiro in 1992, conservation of biodiversity has been 

recognised internationally as critically important for sustainability. The CBD cited forest 

biodiversity as the most rich of all terrestrial systems holding the vast majority of the 

world’s terrestrial species (Secretariat of the Convention on Biological diversity, 2005). A 

range of national and international initiatives have been established and commitments were 

made by governments for the maintenance of biodiversity through the sustainable 

management of forest ecosystems (McElhinny, 2002). For example, in Canada, a number 

of criteria such as biological diversity and ecosystem condition and productivity, and 

indicators such as area of forest, by type and age class, and wetlands in each ecozone, have 

been developed through the Canadian Council of Forest Ministers Framework of Criteria 

and indicators for sustainable forest management released in 1995. This provides a science-

based framework to define and measure Canada’s progress in the sustainable management 
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of its forests (Canadian Council of Forest Ministers, 2003). In Finland, National Forest 

Programme 2015, which is financed by seven government ministries and private sectors, 

has been proposed to provide new competitive forest products and services with an 

increase in the use of domestic wood and an improvement in forest biodiversity 

(Secretariat of the Convention on Biological Diversity, 2010). As such measurements are 

required at all levels of government from the international scale to the local scale to 

maintain biodiversity and the effectiveness of any management invention (Ahern et al., 

2003). At the landscape level, a robust, practical way of defining and measuring 

biodiversity is a priority for managers (Noss, 1990).  

Forest structure information has been recognised as a surrogate of biodiversity (e.g. Mac 

Nally et al., 2001; Noss, 1990). Many authors have noted the association between 

biodiversity and measures of the variety and/or complexity of arrangement of structural 

components within an ecosystem (e.g. Mac Nally et al., 2001; Sullivan et al., 2001). 

Furthermore, the habitat complexity of a forest structure can be used to predict the 

occurrence of some species, since such information provides locally specific descriptions 

of faunal habitat (Catling and Burt, 1995; Jorgensen, 2002; Psyllakis and Gillingham, 

2009; Tanabe et al., 2001; Verschuyl et al., 2008; Watson et al., 2001). In Australia, 

vegetation condition monitoring is mandated at the state level. These vegetation condition 

monitoring assessments are recognised as biodiversity management tools and assess forest 

structure information. However, these assessments require costly fieldwork and laborious 

processes that presently involve site visits and point based measurements of botanical and 

ecological variables. They are also to a large degree qualitative. An efficient and cost-

effective total sampling assessment tool to compliment these survey methods would be 

ideal. 
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LiDAR is an active sensor technology that propagates its own source of Electromagnetic 

Radiation (EMR) and the timed difference between pulse generation and return allows for 

the measurement of the range distance between sensor and the illuminated object. 

Compared with 2D information derived from passive remote sensing technology, LiDAR 

can provide highly accurate 3D information. The potential for using LiDAR data for 

deriving forest attributes at the level of the forest stand has been widely studied in forestry 

(e.g. Lefsky et al., 1999a; Næsset, 2002; Nelson et al., 1984). There is an increasing 

interest in applying this technology to ecological research (e.g. Goetz et al., 2007; Vehmas 

et al., 2009). In particular, the potential of LiDAR for extracting forest structure 

information for biodiversity assessment and in complimenting traditional survey methods 

is apparent. 

This thesis explores the potential of LiDAR technology for biodiversity assessments. 

LiDAR sensors used in this thesis include a conventional discrete return system and the 

latest full waveform systems. Although the latest systems are more powerful and capable 

of providing detailed information, they have not been widely used in biodiversity research 

and such systems are far less common than conventional discrete return systems. For 

example, large areas in Australia have already been surveyed using conventional discrete 

return systems. Therefore, examining the potential of the conventional system could 

provide practical utility, and exploring the latest systems could show the potential of 

LiDAR for land management agencies and natural resource management groups. The 

information which can be derived from LiDAR data includes intensity of backscattered 

pulses as well as 3D information of the objects. However, to date, the utility of LiDAR 

intensity has been limited due to difficulties with calibration and associated problems in its 

interpretation. The utility of intensity information is another issue to explore for 

determining how we can use LiDAR technology for biodiversity assessments. 
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The objective of this research is to develop a robust, quantifiable and repeatable method 

able to assess biodiversity. In particular, the ability of LiDAR to recover forest structure 

information is modelled. To address these aims, the following research questions are posed. 

Research questions are: 

1. What, if any, forest structure information can be extracted from data produced 

by a LiDAR discrete return system? 

2. Does a LiDAR full waveform system provide additional or higher quality forest 

structure information? 

3. Can LiDAR intensity values be used to recover forest structure information? 

4. Can the utility of LiDAR compliment traditional ecological survey methods? 

In this thesis, following chapters are presented. Chapter 1 provides context and a broad 

overview of the thesis, and presents the objectives of this research. Chapter 2 presents a 

literature review of how forest structure has been attributed and used for biodiversity 

assessments including existing field assessment methods in Australia. Previous work using 

passive remotely sensed methods is summarised. LiDAR technology is also reviewed and 

discussed in the context of its potential for extracting forest structure information. Chapter 

3 evaluates the utility and potential of conventional discrete return systems for biodiversity 

assessment. The work presented in this chapter addresses research questions 1 and 3. 

Chapter 4 provides a background for a LiDAR full waveform system experiment 

describing the study area, the LiDAR data used and the fieldwork protocols developed 

specifically for this LiDAR experiment. Chapter 5 examines whether LiDAR full 
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waveform system data can provide more detailed forest structure information relative to 

conventional discrete return systems. An eight category of forest characterisation scheme 

derived from LiDAR data is proposed to characterise the ecological structure of a dry 

Eucalypt forest landscape and validated using field derived variables. This work addresses 

research question 2. Chapter 6 explores the utility of the return intensity derived from a 

LiDAR full waveform system. The intensity variables are examined to determine whether 

they can give more insights into intensity response of full waveform data from forested 

landscape and enhance the potential of LiDAR data to recover forest structure variables. 

The work reported in this chapter addresses research question 3. Chapter 7 assesses the 

applicability of the previously proposed LiDAR based forest characterisation scheme. The 

robustness of the proposed scheme is examined by comparing two independently acquired 

LiDAR datasets of the same area. The scheme is also tested for compatibility with 

commonly used field-based biodiversity metrics. The work exhibited in this chapter 

addresses research questions 2 and 4. Chapter 8 summarises and discusses the work 

presented in this thesis, and presents concluding commentary on the utility of LiDAR for 

landscape biodiversity assessment. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction 

Conservation of biodiversity has been recognised internationally as critically important for 

sustainability since the UN Convention on Biological diversity (CBD) in 1992 as stated in 

Chapter 1. Many authors have recognized forest structure information as surrogates of 

biodiversity (e.g. Noss, 1990). In this chapter, the details are presented how forest structure 

has been recognised and used for biodiversity assessment including existing field 

assessment methods in Australia. The previous work using passive remotely sensed 

methods is also discussed. Finally, Light Detection and Ranging (LiDAR) technology is 

reviewed and discussed its potential for extracting forest structure information. 

 

2.2 Forest structure as an index of biodiversity 

2.2.1 Forest structure 

Forests are complex spatial structures. The often intricate architecture of the plant species 

they contain creates an environment that is difficult to characterise, record and study 

analytically. Forest structure, the architectural arrangement of plant material, has received 

less attention than species composition in terms of description and/or classification, yet 

diagnostically structure is considered just as important in characterising a forest as its 

composition (Florence, 1996; Spies, 1998; Stone and Porter, 1998). Early attempts at 

modelling structure proposed a vertical stratification suggesting forests had two photic 
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zones (Richards, 1939). It was argued that two highly different environments for biotic 

existence were evident: a euphotic layer (or canopy stratum) which intercepts sunlight 

directly and the oligophotic layer (or understorey stratum) which intercepts sunflecks, 

scattered and transmitted radiation. Longman and Jenik (1987) and Klinge et al. (1975), 

amongst others, expanded this vertical stratification concept to describe three, or more 

vertical layers. Other researchers (e.g. Cain et al., 1956; Grubb et al., 1963) report 

problems in the identification of strata however, and some authors (e.g. Gordon et al., 

1974) have even discredited the notion of distinct layers in forests altogether. The fact 

remains however that from the perspective of energy capture, such delineation has merit.  

Structural analysis of individual trees within forests was recognized as an ecologically 

useful tool for the assessment of plant interaction by Hallé et al. (1978). This approach to 

assess gross morphological diversity was based on the idea that each individual species has 

a precise and genetically determined growth plan, i.e. architectural model, which 

development stage is represented as the architecture of the plant. Morphological analysis is 

important since morphology is the visible representation of the growth success of a tree 

species in the highly competitive environment of the forest (Tomlinson, 1983). For 

example, morphological analysis such as profiling of a forest (Fig. 2-1) can provide critical 

information for studies of physiology of trees, production ecology and faunal distribution 

(Tomlinson, 1983). Some features of forest structure, such as horizontal distribution of 

vegetation, have also been considered to have relationship with environmental factors 

(Bourgeron, 1983). Webb et al. (1970) found that the structural features of forests, such as 

the type of tree branching and the bark characteristics, are related with altitudinal gradient 

and efficient tools for the classification of vegetation in eastern Australia. The ecological 

significance of forest structure was also presented by Franklin et al. (1981). These authors 

characterised old-growth coniferous forests and distinguished them from young-growth 
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Figure 2-1 Example of forest profile diagrams. Diagrams were obtained from transects of 5 m width (Oliveira-
Filho et al., 1990 p. 111).  
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 forests in terms of species composition, function (rate and paths of energy flow and 

nutrient and water cycling) and structure. They identified four structural components; large 

live trees, large snags (standing remnant of a dead tree), large logs on land and large logs in 

streams, as key diagnostic indicators of old-growth forests. Gutiérrez et al. (2009) similarly 

suggested that old-growth forests have a distinctive structural variability as well as floristic 

diversity. This analogy was also used by Noss (1990) who suggested that vegetation 

condition, when assessed in the context of biodiversity, should be considered in terms of: 

structure, composition, and function. Spies (1998) described the essential attributes of 

forest structure as structural type, size, shape, and spatial distribution (vertical and 

horizontal) of components (summarised in Table 2-1) and examined their roles and 

importance to the functioning and diversity of ecosystems. For example, foliage layering or 

vertical foliage distribution is a component of forest structure that plays important roles in 

absorption of solar radiation, the microclimate of the forest and in providing wildlife 

habitat. Many authors have noted the association between biodiversity and measures of the 

variety and/or complexity of arrangement of structural components within an ecosystem 

(e.g. Mac Nally et al., 2001; Sullivan et al., 2001). Furthermore, the habitat complexity of a 

forest structure can be used to predict the occurrence of some species, since such 

information provides locally specific descriptions of faunal habitat (Catling and Burt, 

1995; Jorgensen, 2002; Psyllakis and Gillingham, 2009; Tanabe et al., 2001; Verschuyl et 

al., 2008; Watson et al., 2001). 

Most forest stand structure descriptors are traditionally based on measures easily 

obtainable from the ground level (e.g. Diameter at Breast Height (DBH), stem density or 

ground assessed canopy cover). General descriptions such as ‘patchy’, ‘dense’, ‘multi-

storied’ offer a useful picture suggesting a horizontal and vertical organization but may not  
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Table 2-1 Components of forest structure (After Spies, 1998). 
 

1. Foliage 5. Wood Tissues 9. Forest Floor and Organic Layers
Leaf area Volume Depth 
Vertical distribution Biomass Decay state 
Leaf shape, density Type (e.g. sapwood, heartwood) 10. Pit and Mound Topography 
Canopy gaps and horizontal pattern 6. Standing Dead Trees Area 
2. Tree Crowns Diameter Height/depth 
Shepe  Height 11. Roots 
Length Decay state Size 
Life form (e.g. decidous, 
coniferous) 

Volume, mass  
Cavities 

Density, decay state  
Biomass 

Diameter, area, density 7. Fallen Trees Spatial pattern 
Position in stands Diameter 12. Soil Structure 
Branch characteristics Height Aggregations 
Cavities, breakage, decay Decay state Organic matter distribution 
3. Tree Bark Volume, mass 13. Landscape Structure 
Texture 8. Shrub, Herb, and Moss Layers Stand/patch type distribution 
Thickness Biomass, volume Patch size 
4. Tree Boles Height Patch shape 
Diameter Life form Habitat connectivity 
Height Spatial pattern Edge density 
Cavities, breakage, decay   
Gaps and spatial pattern  
Age distribution   

be competent for many operational uses (Stone and Porter, 1998). The most utilised tool to 

assess vertical stratification of forests is the profile-diagram (e.g. Davis and Richards, 

1933). An example is shown in Fig. 2-1. The vertical structure of stands is represented by 

illustration drawing the stand naturalistically along real transects (e.g. Lamprecht, 1969) or 

as idealized and standardized profile (e.g. Holdridge, 1970). Profiles are very informative, 

however, the main use is the illustrative characterisation of actual stand structure and 

limited to qualitative understanding (Brunig, 1983). In ecological studies, quantitative data 

of forest structure are critical for research such as habitat modelling, however, the data are 

often qualitative, merely descriptive (Jorgensen, 2002). The early attempt to quantitatively 

measure vertical structure was presented by Klinge (1973). The author assessed the 

proportion of the basal area in each vertical layer of the canopy: the emergent trees of the A 

layer, main canopy trees B layer, the C layer and the ground layers D and E. The issue of 
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such methods is the time-consuming data collection, which leads a lack of analysis of 

pattern and variances between plots and transects (Brunig, 1983). Rapid, repeatable and 

quantitative measurement tools to assess vertical forest structure are desired. Currently, 

appraisal or scoring methods for structural complexity require a laborious process that 

involves site visits and many logistically expensive point based measurements. An 

automated or semi-automated method, which could rapidly and quantitatively assess forest 

structure with high-area coverage yet reduce the manpower, would be ideal.  

There is much anecdotal evidence that such a technique is required. For example, Watson 

et al. (2001) measured the vegetation structural complexity of remnant patches including 

area and isolation to test the effects of loss of habitat structure, increased isolation and loss 

of habitat area on woodland birds. The authors calculated a habitat complexity score 

modified from the one developed by Catling and Burt (1995) assessing the percent cover 

for the different forest components; canopy, tall shrubs, low shrubs, ground herbage, logs 

and fallen branches and litter, and found that the mean habitat complexity score of each 

remnant explained a significant portion of the deviance of presence/absence for 20 bird 

species. This method has been used to develop and strengthen conservation strategies but is 

prohibitively time-consuming to apply at a large area or landscape level. If a technique 

could automate this process then significant advantage in terms of conservation planning 

would be realised. 

 

2.2.2 Existing assessment methods for forest structure 

In Australia, vegetation condition monitoring is mandated at the state level. Various 

methods to assess vegetation condition have been published (e.g. Eyre et al., 2006; 
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Freudenberger, 1999; Gibbons et al., 2004; Parks et al., 2003). These methods are ground-

based and also assessing the forest structure information. In this section, vegetation 

condition monitoring methods in Victoria, Tasmania and New South Wales are reviewed 

since the vegetation community and their monitoring methods are relevant to this study.  

The ‘Habitat Hectares’ (Parks et al., 2003) approach in the state of Victoria is a method 

which assesses vegetation condition by comparing it to the same vegetation type in the 

absence of major ecosystem changes and aims to identify an integrated view of the habitat 

for all the indigenous species that can be expected in a site. This consists of seven 

components for the site condition (large trees, tree/canopy cover, understorey strata, lack of 

weeds, recruitment, organic litter and logs) and three components for the landscape context 

assessments (patch size, neighbourhood and distance to core area). Vegetation communities 

and their interactions with each other and other biophysical or anthropogenic systems are 

mapped using Ecological Vegetation Class (EVC) (Department of Sustainability and 

Environment, 2004). The assessment area or unit is one stand, which is the combination of 

one vegetation type and condition state, within a native vegetation patch. The assessed 

structural variables, which are large trees, tree/canopy cover, understorey strata, organic 

litter and logs, account for 50 % of over all habitat score. Particularly, the component of 

understorey strata has the highest weighting (25 %). This is based on the assertion that 

understorey components can be useful indicators of site disturbance and are important for 

recognising and verifying future improvements in site condition (Parks et al., 2003).   

The condition of native vegetation is also assessed in Tasmania using a similar 

methodology, Tasmanian Vegetation Condition Assessment (VCA), which is based on the 

above mentioned ‘Habitat Hectares’ approach (Parks et al., 2003). The same variables 

(large trees, tree/canopy cover, understorey life forms, lack of weeds, recruitment, organic 



17 

litter and logs) are visually assessed and compared to TASVEG, which is an integrated 

vegetation map for Tasmania, vegetation community benchmarks to give scores for the site 

condition and landscape contexts, which yield the final habitat score (Michaels, 2006).  

The ‘Biometric’ tool (Gibbons et al., 2004) in New South Wales  assesses native vegetation 

condition as terrestrial biodiversity at the scale of the patch, paddock or property. This aims 

to provide a quantitative assessment of either positive or negative impacts to terrestrial 

biodiversity of management activities. Nested 20 x 50 m and 20 x 20 m plots are 

established within relatively homogeneous or discrete zones for assessments. Measured 

variables include indigenous plant species richness, native over-storey cover, native mid-

storey cover, native ground cover (grasses, shrubs and other), exotic plant cover, the 

number of trees with hollows, proportion of over-storey species occurring as regeneration, 

the total length of fallen logs and the number of stems in specified diameter classes. These 

measurements are compared against benchmarks and scored to produce site values.  

In the following sub-sections, the methods for measuring each structural variable out of 

assessed variables in the above mentioned vegetation condition assessments are detailed. 

 

2.2.2.1 Large trees 

The number of large trees (alive and dead) is assessed in ‘Habitat Hectares’ (Parks et al., 

2003) and TASVEG VCA (Michaels, 2006). Large trees can be a representative of remnant 

native vegetation and are important habitat features since they provide food resources and 

habitats to many organisms. Such trees are often old and difficult to replace once they are 

lost (Parks et al., 2003).  In these two assessment methods, a large tree is defined by DBH, 



18 

which is measured at 1.5 m in ‘Habitat Hectares’ and at 1.3 m in TASVEG VCA above the 

ground. The assessment procedure is basically the same between these two methods. First, 

the large tree DBH and expected number of large trees/ha are referred to the community 

benchmark. In the assessment area or zone which is the combination of one vegetation type 

and condition state within a native vegetation patch, the number of large trees/ha is 

estimated and compared to the community benchmark. Then the result is placed in the 

appropriate category in the table (Table 2-2). Finally, the health of large trees is assessed 

estimating canopy cover in the three categories; more than 70 %, between 30 and 70 % and 

less than 30 %. The final score for large trees is determined from the table (Table 2-2). The 

assessments could be subjective since the number of large trees/ha and the category of 

canopy cover in an entire assessment area are based on the assessor’s visual estimation. 

Referring to the community benchmark to calculate a score would be a time-consuming in 

the fieldwork. 

 

Table 2-2 Criteria and scores for the number of large trees for ‘Habitat Hectares’ (Parks et al., 2003) and 
TASVEG VCA (Michaels, 2006) (After Michaels, 2006). 
 

Large trees Canopy Health (%) 

>70% 30-70% <30% 

None present 0 0 0 

>0 to 20% of the benchmark number of large trees/ha 3 2 1 

>20% to 40% of the benchmark number of large trees/ha 4 3 2 

>40% to 70% of the benchmark number of large trees/ha 6 5 4 

>70% to 100% of the benchmark number of large trees/ha 8 7 6 

≥ the benchmark number of large trees/ha 10 9 8 

2.2.2.2 Canopy cover 

This variable is assessed in ‘Habitat Hectares’ (Parks et al., 2003), TASVEG VCA 

(Michaels, 2006) and ‘Biometric’ (Gibbons et al., 2004). The first two methods utilise the 
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same approach. Tree canopy cover is defined as those canopy tree species reaching more 

than 80 % of mature height in these methods. The projective foliage cover of canopy trees 

is estimated using the image guideline of different levels of projective foliage cover 

(Walker and Hopkins, 1990) in an assessment area. Projective foliage cover is averaged 

over the area. This is compared to the benchmark percentage cover (EVC and TASVEG, 

respectively) and scored according to the health of the canopy (Table 2-3).  The health of 

the canopy is assessed in the same way as the health of the large tree in ‘Habitat Hectares’ 

and TASVEG VCA. This assessment requires a laborious process that an assessor firstly 

needs to identify the canopy tree species to measure canopy cover referring to the 

benchmark tree height. Then the projective foliage cover is estimated using the image 

guideline and the average foliage cover over the area is computed. Finally the value is 

compared with the bench mark tree cover. The assessed foliage cover could be subjective 

and biased since the location and the number of assessment points in the area depend on 

the site and assessors. 

In ‘Biometric’ (Gibbons et al., 2004), native over-storey is defined as the tallest woody 

stratum present above 1 m from the ground. Therefore different vegetation communities 

have different over-storey vegetation such as the tree layer for a woodland community and 

the tallest shrub layer for a shrubland community. The percent foliage cover is estimated 

directly overhead using the image guideline (Walker and Hopkins, 1990) at 10 points along 

a 50 m transect within a 20 x 50 m plot. Final foliage cover is calculated as a mean within 

a plot. This is compared to the benchmark and scored for Site value (Table 2-4). This 

method could be also subjective since the “tallest woody stratum” is site dependant and 

prone to observer bias. 
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Table 2-3 Criteria and scores for tree canopy cover for ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG 
VCA (Michaels, 2006) (After Michaels, 2006). 
 

Tree canopy cover Canopy Health (%) 

>70% 30-70% <30% 

<10% of the benchmark tree cover 0 0 0 

<50% or >150% of the benchmark tree cover 3 2 1 

≥50% or ≤150% of the benchmark tree cover 5 4 3 

Table 2-4 Scoring methods for vegetation cover and logs in BioMetric (After Gibbons et al., 2004). 
 

Variable Score in BioMetric 
0 1 2 3

Native over-storey 
cover 

0-10% or >200% of 
benchmark 

10-50% or 100-
150% of 
benchmark 

50-100% or 150-
200% of 
benchmark 

Within benchmark 

Native mid-storey 
cover 

0-10% or >200% of 
benchmark 

10-50% or 100-
150% of 
benchmark 

50-100% or 150-
200% of 
benchmark 

Within benchmark 

Native ground cover 
(grasses) 

0-10% or >200% of 
benchmark 

10-50% or 100-
150% of 
benchmark 

50-100% or 150-
200% of 
benchmark 

Within benchmark 

Native ground cover 
(shrubs) 

0-10% or >200% of 
benchmark 

10-50% or 100-
150% of 
benchmark 

50-100% or 150-
200% of 
benchmark 

Within benchmark 

Native ground cover 
(other) 

0-10% or >200% of 
benchmark 

10-50% or 100-
150% of 
benchmark 

50-100% or 150-
200% of 
benchmark 

Within benchmark 

Lack of exotic plant 
cover  

>66% 33-66% 5-33% 0-5% 

Total length of fallen 
logs 

0-10% of 
benchmark 

0-50% of 
benchmark 

50-100% of 
benchmark 

≥benchmark 

2.2.2.3 Mid-storey and understorey cover 

Understorey vegetation is very important since the greatest richness and diversity of plant 

species are almost always found in a variety of shrub and herb strata, and they can be 

useful indicators of site disturbance (Parks et al., 2003). The definition of understorey 

vegetation is slightly different between vegetation assessment methods, however all the 

methods basically assess the indigenous plant species between canopy layer and the ground. 

 ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006) define  
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Table 2-5 Criteria and scores for understorey lifeform for ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG 
VCA (Michaels, 2006) (After Michaels, 2006). 
 

Understorey lifeform   

Category 1 Category 2 Score 

All strata and life forms effectively absent  0 

Up to 50% of life forms present  5 

≥50% -90% of life forms present Of those present ≥50% substantially modified 10 

 Of those present <50% substantially modified 15 

≥90% of life forms present Of those present ≥50% substantially modified 15 

 Of those present <50% substantially modified 20 

 Of those present, none substantially modified 25 

understorey vegetation as ‘understorey’ which includes all indigenous species present 

under canopy trees (e.g. sub-canopy tree, tall shrub, small shrub, immature trees, herbs and 

mosses). The assessment procedure includes two steps. First the range of lifeforms present 

are recognised and compared to those expected (i.e. benchmark understorey life forms), 

and then the diversity and cover within each lifeform (i.e. degree of modification) are 

assessed and scored (Table 2-5). This assessment is more qualitative rather than 

quantitative since the focus is species diversity and its modification. 

 ‘Biometric’ (Gibbons et al., 2004) defines understorey vegetation as ‘mid-storey’ which 

contains all native vegetation between the over-storey stratum and 1 m in height. Unlike  

‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006), vegetation 

less than 1 m in height is assessed in different categories as ground cover (see Section 

2.2.2.5 Ground cover). Percentage of foliage cover in mid-storey stratum is assessed in one 

of the two ways. 1) Visually estimate per cent foliage cover in a 20 m x 20 m plot. 2) 

Visually estimate per cent foliage cover at 10 points along the 50 m transect within a 20 m 

x 50 m plot and average the total per cent. This is compared to the benchmark and scored 

for Site value (Table 2-4). This method assesses understorey vegetation more quantitatively 
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compared to ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006). 

However, what is assessed as mid-storey is not clear and could be subjective since the 

definition of the over-storey stratum is site and assessor dependant (see Section 2.2.2.2 

Canopy cover). 

 

2.2.2.4 Weed cover 

Weeds are a threat to native vegetation species since they can successfully compete and 

may change the site condition. In ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG 

VCA (Michaels, 2006), weed cover includes all introduced species and non-indigenous 

native weed species, and is assessed by the averaged total projective foliage cover across 

the area and the proportion of this cover due to high threat weeds. Categories of weed 

foliage cover and their scores are slightly different between these two vegetation condition 

assessments (Table 2-6 and 2-7). Similar to the assessment of canopy cover (Section 

2.2.2.2), the location and the number of assessment point in the area depend on the site and 

assessors. The assessment could be biased. 

‘Biometric’ (Gibbons et al., 2004) defines weed cover as ‘Exotic plant cover’, which are 

vascular plants not native to Australia. The assessment method is similar to ‘Habitat 

Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006), which uses the total 

per cent foliage cover of all extotics in all strata within 20 m x 20 m plot or at 50 points 

along a 50 m transect within 20 m x 50 m plot. This is compared to the benchmark and 

scored for Site value (Table 2-4). 
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Table 2-6 Criteria and scores for weed cover for ‘Habitat Hectares’ (After Parks et al., 2003).  
 

Weed cover High threat weeds (%) 

None ≤50% >50% 

>50% cover of weeds 4 2 0 

25-50% cover of weeds 7 6 4 

5-25% cover of weeds 11 9 7 

<5% cover of weeds 15 13 11 

Table 2-7 Criteria and scores for weed cover for TASVEG VCA (After Michaels, 2006). 
 

Weed cover High threat weeds (%) 

None ≤50% >50% 

>75% cover of weeds 0 0 0 

25-75% cover of weeds 4 2 0 

10-25% cover of weeds 7 6 4 

5-10% cover of weeds 11 9 7 

<5% cover of weeds 15 13 11 

2.2.2.5 Ground cover 

‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006) do not utilise 

vertical stratification under canopy trees. Most ground cover components except organic 

litter and logs (see Section 2.2.2.6 Logs) are included in understorey lifeforms (see Section 

2.2.2.3 Mid-storey and understorey cover). In these two vegetation condition assessments, 

organic litter is defined as dead organic material and both fine and coarse plant debris less 

than 10 cm diameter on the ground. The percentage cover of the organic litter in the area is 

estimated and compared to the benchmark. The final score is determined according to the 

proportion of this litter comprised of material from native species. Categories of litter 

cover are slightly different between the two assessments (Table 2-8 and 2-9).  

In ‘Biometric’ (Gibbons et al., 2004), ground components, which include all native 
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vegetation below 1 m in height, are assessed separately for grasses, shrubs and other. It is 

defined that grasses as native grasses, shrubs as native woody vegetation and other as non-

woody native vegetation that is not grass. Percentage cover of these components is 

estimated either one of the two ways. 1) Visually estimate per cent cover in a 20 m x 20 m 

plot. 2) Visually estimate per cent cover at 10 points along the 50 m transect within a 20 m 

x 50 m plot and average the total per cent. This is compared to the benchmark and scored 

for Site value (Table 2-4). 

Table 2-8 Criteria and scores for organic litter cover for ‘Habitat Hectares’ (After Parks et al., 2003). 
 

Organic litter cover Organic litter cover due to native species (%) 

≥50% <50% 

<10% of the benchmark organic litter cover 0 0 

<50% or >150% of the benchmark organic litter cover 3 2 

≥50% or ≤150% of the benchmark organic litter cover 5 4 

Table 2-9 Criteria and scores for organic litter cover for TASVEG VCA (After Michaels, 2006). 
 

Organic litter cover Organic litter cover due to native species (%) 

≥50% <50% 

<10% of the benchmark organic litter cover 0 0 

<50% of the benchmark organic litter cover 3 2 

≥50% of the benchmark organic litter cover 5 4 

2.2.2.6 Logs 

In ‘Habitat Hectares’ (Parks et al., 2003), TASVEG VCA (Michaels, 2006) and ‘Biometric’ 

(Gibbons et al., 2004), logs are assessed as the total length of fallen trees that have at least 

10 cm diameter (and 0.5 m long for ‘Biometric’ (Gibbons et al., 2004)). This is compared 

to the benchmark and scored. Criteria and scores for log assessments are summarised in 

Table 2-10 for ‘Habitat Hectares’ (Parks et al., 2003) , in Table 2-11 for TASVEG VCA 
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(Michaels, 2006)  and in Table 2-4 for ‘Biometric’ (Gibbons et al., 2004). ‘Habitat 

Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006) do not set up a fixed 

area plot to survey, however, it is recommended for logs components to be assessed in one 

or more 0.1 ha sample areas (e.g. 20 m x 50 m rectangle or 18 m radius circle) as 

‘Biometric’ (Gibbons et al., 2004) assesses logs in a 20 m x 50 m plot. Dead cut stumps of 

a height less than 0.5 m for ‘Habitat Hectares’ (Parks et al., 2003) and 1.3 m for TASVEG 

VCA (Michaels, 2006), which are assigned a default length of 0.5 m per stump, are 

included in log assessments.  

All of the above mentioned assessments require costly fieldwork. The assessment process 

is often time-consuming and laborious referring to the bench mark and identifying the 

appropriate categories in the field. In terms of measuring forest structural components, they 

are to a large degree qualitative and subjective. An efficient and cost-effective assessment 

tool, which can be carried out in objective and quantitative way, to compliment these 

survey methods is necessary. 

Table 2-10 Criteria and scores for logs for ‘Habitat Hectares’ (After Parks et al., 2003). 
 

Total length of logs Proportion of log length more than half of the 
bench mark large tree DBH 

≥25% <25% 

<10% of the benchmark length 0 0 

<50% or >150% of the benchmark length 3 2 

≥50% or ≤150% of the benchmark lenght 5 4 

Table 2-11 Criteria and scores for logs for TASVEG VCA (After Michaels, 2006). 
 

Total length of logs Proportion of log length more than half of the 
bench mark large tree DBH 

≥25% <25% 

<10% of the benchmark length 0 0 

<50% of the benchmark length 3 2 

≥50% of the benchmark length 5 4 
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2.3 Passive remote sensing methods for forest structure 

Remote sensing data derived from satellite and airborne sensors is superior to field survey 

data in terms of high-spatial coverage, near simultaneous acquisition, repeated regional 

accounting and cost. To date, most natural resource remote sensing has been undertaken 

using passive sensing technologies, mainly in the visible/shortwave infrared red portions of 

the electro-magnetic spectrum. The Normalised Difference Vegetation Index (NDVI) 

computed from these portions of the electro-magnetic spectrum is one of the most widely 

used techniques to make quantitative estimates of vegetation properties (e.g. Liang, 2004; 

Tucker, 1979). The attempts to estimate forest structure using 2D information has been 

reported. For example, Lévesque and King (1999) examined airborne multispectral digital 

camera images to identify the type of forest canopy, individual tree crown structure and 

health information analysing semivariograms at the tree spatial information of the images; 

0.25 m, 0.5 m and 1.0 m. The results showed that 1 m pixel semivariograms were best 

related to forest canopy closure, stem density and a visually derived tree stress index, and 

0.5 m pixel semivariograms were related better to tree crown size and tree height at the 

canopy level, while 0.25 m pixel semivariograms were well related to tree crown closure at 

the tree crown level. However, it was noted that the study was done in a very homogeneous 

forest stand with basically one overstorey species and small ranges of forest structural 

parameters. Therefore, the algorithm used in this study might not be applicable to more 

complex forest stands such as natural forests. Muinonen et al. (2001) investigated the aerial 

photo, which was scanned, orthorectified and resampled to a 0.8 m pixel size, to estimate 

forest stand characteristics. As the result of combining the information on variograms with 

image interpretation by using a nonparametric method based on a distance-weighted mean 

of most similar neighbors, the stand volume was estimated with the root mean square error 

(RMSE) of 27.67 m3/ha (17.9 %) and a bias of -0.97 m3/ha (-0.63%).  However, this 
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technique requires a priori information of the forest stand borders. It was also reported that 

the calibration problem originated from imaging geometry might become bottleneck in 

aerial photo image analysis due to a central projection of the photographed area (i.e. 

objects such as trees bend away from the centre of the image and this may have impact on 

the spatial indicator attributes). 

In the studies using high spatial resolution satellite imagery, Lamonaca et al. (2008) 

examined a multi-resolution segmentation of a QuickBird image to determine whether it 

can detect the spatial heterogeneity in forest structure: trees spatial distribution, tree sizes, 

tree species mingling and occurrence of forest canopy gaps, and presented promising 

results. These authors also reported that the geometric and heterogeneity of QuickBird 

imagery was most closely related with the tree species mingling, which is a quite 

understandable outcome. Song (2007) estimated the mean tree crown diameter on a stand 

basis with an Ikonos image, using the disc scene model that the ratio of image variances at 

two spatial resolutions is determined by the scene structure only. The author found the ratio 

of image variances at 2 m and 3 m spatial resolutions best estimated conifer tree crown 

diameter, however, it did not work well for hardwood stands because of the continuity in 

canopy structure. These two studies showed the potential of multispectral high spatial 

resolution imagery to extract forest structure. However the biophysical parameters were 

limited to horizontal structure in these studies.  

In the studies using larger spatial resolution imagery than QuickBird and Ikonos, Wolter et 

al. (2009) extended the Song (2007) approach from stand-level to pixel-level estimation of 

mean crown diameter and other forest structural attributes (bole diameter at breast height, 

tree height, crown closure, vertical length of live crown and basal area) with SPOT-5 data. 

The authors reported better performance of the model for conifers compared to the model 
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for hardwoods, and attributed it to greater overall contrast between the sunlit and shaded 

components of conifer canopies in the image. This implies that the results could be affected 

under different illumination conditions. Furthermore, the authors compared the results of 

the partial least squares regression model used in the study with similar parameter 

estimates made using LiDAR data. It was reported the SPOT-5 results were better than 

their LiDAR derived counterparts in terms of R2 and/or RMSE for conifer and hardwood 

canopy diameter and bole diameter at breast height. On the other hand, LiDAR derived 

models outperformed SPOT in tree height, canopy closure, vertical length of live crown 

and basal area estimation, particularly for hardwood. This study displayed the prospective 

use of multispectral imagery for estimation of forest structure, however LiDAR would be 

more precise particularly when the attributes are measured in mixed species forests. 

Another example of using SPOT images to detect forest structure was presented by de 

Wasseige and Defourny (2002). These authors analysed the spatial variation in an image 

and bi-directional reflectance distribution function (Jupp and Walker, 1997) of three 

tropical forest sites, where forest structure and species composition are different from each 

other, using a time-series of six SPOT-HRVIR images including various viewing zenith 

angles and under various illumination conditions. In this study, a single geometric-optical 

gap model explained more than 80 % of the variability of near-infrared red reflectance 

standard deviation as a function of the viewing zenith angle, which was directly related to 

the structure of the forest. However, a very specific configuration of sensor observation, 

such as near-nadir viewing zenith angle, solar zenith angle higher than 20 º and solar 

azimuth angle aligned with one of the four directions of the grid, were required for this 

forest structure detection. This would restrict analysis over limited areas. Lathrop Jr and 

Pierce (1991) examined the relationship between ground-based canopy transmittance and 

Landsat Thematic Mapper near-infrared/red radiance ratio data for estimating forest 
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canopy structure in Montana. The results indicated that both ground-based canopy 

transmittance and satellite-based measurements responded to the same general trends in 

forest canopy structure. These authors, however, reported that there was still significant 

amount of unexplained variation in the relationship between ground-based canopy 

transmittance and Landsat Thematic Mapper near-infrared/red ratio, which could be 

affected by differences in species’ canopy geometry, stand canopy closure, slope/sun angle 

interactions and background reflectance. Significant difference in scale of the two 

measurements (e.g. the ceptometer at 9 m2 and the Landsat Thematic Mapper at 900 m2)

were also stated as another problem. Similar problems were reported by Gemmell and 

Varjo (1999) in their study for testing the inversion of a forest reflectance model (FLIM; 

Rosema et al., 1992) to estimate cover and crown transmittance in a boreal forest of 

Finland using Landsat Thematic Mapper data. Marsden et al. (2009) examined the 

relationships between NDVI time-series of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and stand structural characteristics; stem volume, dominant 

height and mean annual increment, over even-aged forest plantations. The authors 

concluded that cumulative NDVI was a good predictor of stem volume and dominant 

height. This would be useful application in forestry for large plantation areas. However, it 

would be difficult to apply for other purposes such as ecological application, due to the low 

spatial resolution (250 m) and limited forest attributes.  

In summary, passive remote sensing technology can offer some biophysical parameters of 

forest structure, however they are limited to either horizontal parameters or homogeneous 

species.  
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2.4 LiDAR 

Active remote sensing technology refers to a sensor system that supplies its own source of 

energy. Light Detection and Ranging (LiDAR) is an active sensor technology that 

illuminates the object using the sensor unit and measures the range distance between 

sensor and the illuminated object. LiDAR instruments utilise light amplification by 

stimulated emission of radiation (laser) as illumination source. LiDAR instruments include 

laser ranging, laser profiling and laser scanning instruments on various platforms such as 

terrestrial and airbourne. The application of this technology for extracting forest structure 

information is promising. The basic LiDAR technology and systems are reviewed as well 

as their various applications. 

 

2.4.1 LiDAR technology 

Laser scanning is a relatively new technology. After the invention of laser in the early 

1960s, it was developed through the 1970s and 1980s with an early NASA system and 

other attempts in the USA and Canada (Ackermann, 1999). NASA contributed a great deal 

in LiDAR technology and applications from the 1960’s starting with the development of 

ground-based satellite ranging systems for studying crustal dynamics and plate tectonics 

(Einaudi et al., 2004). However, a lack of supporting technologies delayed the application 

of laser scanning technology for topographic mapping until early 1990s. By then, direct 

geo-referencing technology, the Global Positioning System (GPS), facilitated the 

development of commercial airborne laser profiling and scanning systems for topographic 

mapping (HyyppÃ et al., 2008). By the mid-1990s, the commercial availability of a 

medium/high performance Inertial Measurement Unit (IMU) along with GPS enabled 
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integrated GPS/IMU geo-reference systems provided airborne platform position and 

attitude data at an accuracy of 4-7 cm and 20-60 arc-seconds, respectively (Petrie and Toth, 

2009a). Airborne laser scanning has developed very rapidly since then, delivering highly 

accurate geo-referenced three-dimensional points, and adopted for various uses such as 

forest inventory and feature extraction in urban areas. 

In terms of the basic principles, laser scanners evolved from laser profilers, which in turn 

were upgraded from laser ranging instruments: laser rangers or laser rangefinders. A 

comprehensive review of these technologies is provided in Petrie and Toth (2009a). In the 

following sub-sections, much of this material has been collected and the discussion around 

the elements of the technology has been focused, which are useful in the context of this 

research. 

 

2.4.1.1 Laser ranging 

Laser ranging measures the distance or range based on the precise measurement of time. 

One of the main methods is the timed pulse or the time-of-flight (TOF) method. A very 

short but intense pulse of laser radiation is emitted by the laser ranging instrument to 

illuminate the object and the reflected pulse is returned from the object to the instrument. 

The laser ranging instrument calculates the precise time interval that has passed between 

the emitted pulse from the instrument and the returned pulse reflected from the object. This 

is expressed as follows. 
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2/tvR ⋅= (2-1) 

Where, R denotes the slant distance or range, v denotes the speed of electromagnetic 

radiation, which is a known value, and t denotes the measured time interval.  

In this method, if a series of reflections is returned back to the sensor from a specific object 

such as a tree, the time taken for each of the returned pulses, such as the first and last 

pulses, is measured. The complete waveform of the entire return signal can be also 

measured as an alternative. The actual length of the pulse emitted by the laser ranging has a 

significant effect on how multiple returns can be delivered or differentiated, since the 

measuring resolution is determined by the length of the emitted pulse. For a given energy, 

if the pulse duration is shorter, the pulse power becomes higher, which results in smaller 

pulse detection error (Baltsavias, 1999). The pulse repetition frequency (PRF), which is 

how frequently a pulse is emitted by the laser source, may also have an impact on multiple 

return properties, since laser systems from the early 2000s increased their PRF at the cost 

of reducing the energy of the emitted pulse, thus the ranging accuracy was decreased 

because of the less distinct signal-to-noise ratio (Næsset, 2009). It is noted that up-to-date 

laser supplies are more powerful with the increased power supply on an aircraft, therefore 

this is not an issue for the latest systems as of 2009 (Petrie and Toth, 2009a). 

Another method of laser ranging is the phase comparison technique, which utilises a 

continuous beam of laser radiation, referred to as a CW laser, instead of discrete pulses. 

The range value is computed by comparing the transmitted and received versions of the 

sinusoidal wave pattern and calculated the phase difference between them. A digital pulse 

counting technique is generally used for this phase measurement, which gives the 

fractional part of the total distance (∆λ). The integer number of wavelengths (M) is fixed 
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by altering the modulation pattern and added to the fractional values to deliver the final 

slant range (R). 

)( 2/λλ ∆+= MR (2-2) 

Where, M denotes the integer number of wavelengths, λ denotes the known value of the 

wavelength and ∆λ denotes the fractional part of the wavelength = (φ/2π) · λ, where φ is the 

phase angle.  

This method is often used in short-range terrestrial laser scanners due to the limited power 

of the CW laser. The signal strength is lost as the distance to objects is increased. The 

actual operation in airborne and spaceborne is rare (Heritage and Large, 2009; Petrie and 

Toth, 2009a). 

 

2.4.1.2 Laser Profiling 

Laser profiling utilises a reflectorless ranger and measures the distance to a series of 

closely spaced points along a line on the ground. This provides a two-dimensional profile 

or vertical section from the ground up. When a terrestrial laser ranger is used, the terrain 

profile is measured by a series of steps with the successive measured distances and vertical 

angles (V) to each sampled point (Fig. 2-2(a)). With the digitally recorded and stored data, 

the profile of the terrain along the line can be obtained as follows (Fig. 2-2(b)). 

VRD cos= (2-3) 

Where, D denotes horizontal distance, R denotes the measured slant range and V denotes 

the measured vertical angle. 
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VRH sin=∆ (2-4) 

Where, ∆H denotes the difference in height between the laser ranger and the point being 

measured. 

When an airborne or spaceborne platform is used for a simple laser profiler, the laser 

ranger is pointed vertically toward the ground providing a rapid series of measurements of 

the distances to the ground from the successive positions of the moving platform. If the 

positions and altitudes of the platform at these successive positions in the air or in space 

can be obtained utilising a GPS/IMU system for an airborne platform or a star-tracker for a 

spaceborne platform, the corresponding ranges measured at these points enable the 

calculation of their ground elevation values. The terrain profile along the flight line can be 

delivered (Petrie and Toth, 2009a). 

 

Figure 2-2 (a) Measurement of slant ranges (R) and vertical angles by a rangefinder located at A to a series of 
successive points located along a line on the ground to form a profile. (b) The measured slant ranges (R) and 
vertical angles (V) are used to compute the horizontal distances and differences in height between the 
rangefinder at A and each of the ground objects at B. (Petrie and Toth, 2009a p.6) 
 

2.4.1.3 Laser Scanning 

An additional scanning mechanism such as a rotating mirror or prism enabled a laser 

profiler to be upgraded to a laser scanner, increasing the point density of the sample 

thereby providing detailed topographic features of an area. A terrestrial or ground-based 
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laser scanner moves in two directions; the vertical motion caused by the rotating mirror or 

prism and a controlled motion in the azimuth direction given by a motor drive. This 

measures a series of profiles around the vertical axis of the laser ranger, which gives the 

position and elevation data. Thus, a 3D model of the terrain and the objects on the ground 

are formed. An airborne or spaceborne laser scanner measures a series of profiles in the 

direction perpendicular to the flight line as the platform moves forward providing the 

second dimension. The angular rotation values for the reflective mirror or prism are 

continuously and precisely obtained using an angular encoder. This provides the additional 

profiles of the terrain to be measured by the laser ranger in cross-track direction, and 

supplements the longitudinal profile being measured in the along-track direction of the 

flight line. Through a series of these profiles, the locations and elevations of a mesh of 

points, which are called a LiDAR point cloud, are produced for an area of the terrain 

(Large and Heritage, 2009; Petrie and Toth, 2009a). 

 

2.4.1.4 Other features of LiDAR technology 

Other features of LiDAR technology to understand include the laser beam. It is particularly 

important in successful data acquisitions. The laser beam or pulse spreads to illuminate a 

circular area when it reaches the ground or the object on the ground.  The diameter of the 

circular area is called the footprint. If the ground is uneven elevation, the return signal will 

be the average of the mixture of reflectance within a footprint. If the scan angle is fixed, 

the footprint becomes larger as the range increases (Goodwin et al., 2006). Therefore, to 

obtain useful signal with high flying heights, the beam divergence should be decreased and 

the transmitted power and the receiver optics dimensions increased (Baltsavias, 1999).  

Another significant aspect that one should consider in terms of the ranging performance is 
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the laser beam reflectance. The reflectance is defined as the ratio of the incident radiation 

on a specific surface to the reflected radiation from that surface. When the strength of the 

reflected radiation is too weak to detect, the range needs to be reduced. Therefore, the 

backscattering properties of the object are important. For a diffuse reflector object, the 

reflected radiation is scattered into a hemispherical pattern (Fig. 2-3). The maximum 

reflection occurs perpendicular to the target plane with the intensity decreasing to each side. 

Furthermore, the reflectance of the target is different in accordance with the laser 

wavelength (Baltsavias, 1999; Petrie and Toth, 2009a). Thus, one should select the 

appropriate laser wavelength for the object measured. The reflectance of laser radiation is 

also affected by the angle that the object makes with the incident pulse or beam. When an 

airborne laser scanner is used to measure the terrain, the highly reflective surface on the 

ground that is not at right angles to the incident laser pulse or beam will not return the 

pulse to the laser ranger due to reflecting its radiation off to the side. In case of a forest 

canopy, the emitted laser pulse in nadir direction will be able to penetrate the gaps in the 

canopy and the return signal from the ground below the canopy can travel back to the 

 

Figure 2-3 Reflectivity of a diffuse target (Petrie and Toth, 2009a p.23). 
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sensor. However, this penetration will decrease significantly as the scan angles are 

increased away from the nadir direction (Holmgren et al., 2003). 

 

2.4.2 Positioning of LiDAR 

The laser scanning data is 2-Dimensional without the position and orientation of the laser 

system being known according to a coordinate system. To archive 3-Dimensional position 

of the points and accurate range measurements, an airborne laser scanning system needs 

components both in the airborne and the ground segments (Fig. 2-4). The airborne segment 

comprises an airborne platform, a laser scanner and a Position and Orientation System 

(POS). The ground segment includes GPS reference stations and the processing hardware 

and software for synchronization and registration which is carried out off-line. While a 

laser scanner samples the line-of-site slant ranges with respect to the laser coordinate 

system, a POS independently stores GPS data including carrier phase information and 

orientation data from the IMU. The IMU defines the roll, pitch and yaw of the scanner and 

the angle encoder determines the angular position of the scanner mechanism deflecting the 

laser beam. Simultaneously, the ground GPS stations store GPS data and GPS carrier phase 

data at known earth fixed positions for later off-line computing of differential GPS (DGPS) 

positions of the airborne platform. An integrated POS consisting of a DGPS and an IMU 

allows the positional accuracy to be computed with centimetre to decimetre accuracy and 

its orientation to be determined better than one-hundredth of a degree. Since the position 

and orientation data is stored as a function of GPS time as well as the laser scanner data is 

stored with timestamps derived from the received GPS signal, the POS data and the laser 

data can be synchronised. The synchronisation enables the laser vector for each sampled 

ground point to be directly transformed into an earth fixed coordinate system such as 
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World Geodetic System 1984 (WGS84). Thus geocoded laser data is obtained. The 

accuracy of the data is depends on the accuracy of POS. With the latest system, the 

accuracy better than 10 cm in 3-Dimensional space is possible (Wehr, 2009; Wehr and Lohr, 

1999). 

 

Figure 2-4 LiDAR system (airborne and ground segment) (Wehr, 2009 p.131). 
 

2.4.3 Platform for LiDAR technology  

Platforms on which to mount laser rangers include terrestrial instruments, spaceborne 
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satellites and airborne fixed wing airplanes and helicopters. Terrestrial or ground-based 

laser rangers have been well adopted in land and engineering surveying for the last 30 

years and used for various applications such as measuring topographic mapping, complex 

industrial facilities, open-cast mines and the facades of buildings within urban areas 

operated either from a static position such as being mounted on a tripod on the ground, or a 

dynamic platform such as a van or truck (Large and Heritage, 2009; Petrie and Toth, 

2009b). Spaceborne laser rangers are limited mainly by the large distances (100 – 1000 

km) implied when using an Earth-orbiting satellites. This requires the use of a high power 

laser. Current spaceborne laser profilers include the Geoscience Laser Altimeter System 

(GLAS) aboard the Ice, Cloud, and land Elevation (ICESat) satellite launched in 2003, 

which was designed to measure ice-sheet topography and associated temporal changes, as 

well as cloud and atmospheric properties by NASA. Cloud Aerosol Lidar and Infrared 

Pathfinder Satellite Observations (CLIPSO) is a joint NASA (USA) and CNES (France) 

satellite launched in 2006 to supply a unique set of atmosphere vertical profiles measured 

by a Lidar on-board a satellite.   

Airborne laser scanners have become wide-spread, being used today in many applications 

such as topographic mapping, forest inventory and urban planning. Many commercial and 

research laser scanners are aboard either on a fixed-wing airplane or a helicopter. An 

airplane flies faster than a helicopter, at approximately 200 km/h, and can cover large areas 

quickly. On the other hand, the helicopter has more flexibility in its flight, and therefore, is 

better suited for flying over particular areas such as power lines and steep slopes on 

mountains (Airborne Laser Survey Working Group, 2004). 
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2.4.4 LiDAR Systems 

Current airborne laser scanning systems have two major configurations, discrete return 

systems and full waveform systems. In the following sub-sections, these two systems are 

detailed.  

 

2.4.4.1 Discrete return system 

The LiDAR discrete return system has been commercially available from mid-1990s. An 

essential feature of the system is the number of returns that can be recorded per emitted 

laser pulse. Assuming that the emitted laser pulse is entirely coherent with phased emission 

of photons of light at an almost constant known energy state, this supposition is used to set 

the threshold for recording of return energy (Heritage and Large, 2009). In this system, 

returns are identified with distinct peaks in amplitude, which exceed a detection threshold 

that triggers data recording. Earlier systems recorded only one return by setting the 

threshold to record either the highest detected distinct peak or the lowest peak. Later 

systems recorded two returns (both the highest and lowest peak), and then multiple returns 

up to a maximum of five returns. The instrument dead-time, the time that is necessary in-

between two returns for them to be recorded as separate returns is another important 

property in this system. This time can be translated into the vertical distance, which is 

related to the duration of the emitted laser pulse, and is at least half the pulse length of the 

emitted pulse. For example, an airborne laser scanning utilising a laser pulse of 10 ns, 

which is equivalent to approximately 3 m, in length, the minimum detectable spacing that 

can be measured by one laser shot would be 1.5 m. This is often explained by the lack of 

returns between the lower part of a vegetation canopy and the ground (Danson et al., 2009).  



41 

Figure 2-5 Illustration of discrete return system and full waveform system, recording emitted laser pulses and 
returned signals from multiple surfaces of vegetation canopy. 

 

Fig. 2-5 illustrates the laser ranging methods of the discrete return system and full 

waveform system. Recent systems (e.g. Optech ALTM 1225 and successive systems) can 

also record the return amplitude or intensity associated with each discrete return, which can 

be used to differentiate targets. It is noted that the intensity is affected by the wavelength 

and energy of the transmitted pulse, the distance to the target, the reflectance of the target, 

the transmission of the atmosphere, the area of the receiver aperture, the throughput 

efficiency of the receiver, the sensitivity of the detector and the amplification gain applied 

to the detector output if analog detection is selected (Harding, 2009). Generally, small 

footprints (<1 m) are favoured in intercepting multiple surfaces, which enables high-

resolution mapping of topography and canopy structure. Compared to the full waveform 
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system, an advantage of the discrete system is smaller volume of recorded data, however a 

disadvantage is the highly instrument-dependant representations of multiple returns. The 

ability to identify separate returns from closely spaced surfaces depends on instrument 

parameters such as the laser pulse width, detector sensitivity and response time, the system 

signal to noise performance, the detection threshold and the ranging electronics 

implementation. Therefore, one should be aware that measurements of canopy variables 

such as height, canopy depth or the distribution of understorey vegetation and gaps using 

different discrete return systems are not always the same (Harding, 2009). 

 

2.4.4.2 Full waveform system 

The LiDAR full waveform system is a new system which emerged in mid-2000s. The 

innovative feature of this system is to record the full waveform of an emitted pulse, which 

enables full characterisation of the vertical structure of the target. In the full waveform 

system, both the transmitted pulse shape and the received pulse shape are digitized and 

recorded. This is the result of digitization of the waveform with an analog-to-digital 

converter (Fig. 2-6). When this system is used for distributed objects such as vegetation 

canopies, vertically distributed multiple surfaces are illuminated by a single laser pulse and 

a complex shape of the received signal can be digitized (Fig. 2-5). The signal represents the 

height distribution of illuminated surfaces weighted by the spatial distribution of laser 

energy within the footprint and the reflectivity of the surfaces at a given laser pulse 

wavelength (Harding, 2009; Harding et al., 2001). The pulse shape is an important feature 

as it can provide information about different surface attributes. Typical surface attributes to 

extract from a full waveform signal include range, elevation variation and reflectance, 

corresponding to the waveform attributes of time, width and amplitude. To extract the 
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Figure 2-6 Example of the waveform digitizer system developed by Optech Inc. of Canada and the Unit for 
Landscape Modelling, University of Cambridge (Devereux and Amable, 2009 p.57). 

 

attributes, one needs to be aware that the received waveform is dependent on the 

transmitted waveform, the impulse response of the receiver, the spatial distribution of the 

laser pulse beam and the geometric and reflectance properties of the illuminated surface. 

The width of the pulse can be used to measure the elevation variation of the surface since a 

rough surface will broaden the reflected laser pulse. Furthermore, the broadening of the 

pulse results in spreading of the reflected photons over a greater amount of time, which 

reduces the peak amplitude. Therefore, the pulse width and amplitude need to be known to 

estimate the elevation variation or reflectance attributes of a surface. The range to a surface 

can be determined in various schemes such as peak detection, leading edge ranging, 
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constant fraction detection, centre of gravity detection and Gaussian decomposition and 

deconvolution. It is noted that the different processes may impact the shape of the 

waveform (Stilla and Jutzi, 2009).  

 

2.4.5 LiDAR Applications 

LiDAR, especially airborne laser scanning has become wide-spread, being used today in 

many applications such as topographic mapping, forest inventory and urban planning. In 

this section, topographic mapping, forestry and ecological application of airborne laser 

scanning are reviewed and discussed. 

 

2.4.5.1 DEM (Digital Elevation Model) 

Assessing topographic features is the largest area of application for airborne laser scanning. 

After the first commercial projects to acquire terrain data in Europe in mid-1990s (Pfeifer 

and Mandlburger, 2009), survey companies aggressively started using this emerging 

technology  to obtain a Digital Elevation Model (DEM) otherwise called a Digital Terrain 

Model (DTM), which is derived from a Digital Surface Model (DSM) using filtering 

techniques (Flood and Gutelius, 1997). Fig. 2-7 illustrates an example of original point 

cloud derived from laser scanning data, created DSM and DTM. DSM includes any objects 

such as buildings, clouds and vegetation in the path of the laser pulse. To determine the 

terrain surface from laser scanning data, filtering is necessary to eliminate those points that 

are not on the terrain surface (Lefsky et al., 2002). Numerous filter algorithms such as the 

“Morphological Filter” (Vosselman, 2000) and progressive densification (Axelsson, 1999) 
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Figure 2-7 Example of original point cloud, DSM and DTM (Pfeifer and Mandlburger, 2009 p.313). (a) Original 
point cloud in perspective view from the side. (b) DSM of the same dataset. (c) Classified point set: ground 
points (black) and off-terrain points (gray). (d) Z-coding superimposed to shading of the DTM, plan view. (e) A 
shaded view of a DSM detail together with the original points and a profile of 85 m length. 

 

have been reported. Compared with the traditional survey and photogrammetric techniques 

to determine the terrain, data acquisition of airborne laser scanning can be performed at 

night time (independent of sun position) and over difficult areas such as forests where the 

ground is not visible (e.g. Kraus and Pfeifer, 1998), and wetland and coastal dune where is 

low relief and texture (e.g. Irish and Lillycrop, 1999), with high accuracy and cost-
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performance. Therefore, traditional methods are gradually being replaced by airborne laser 

scanning (Flood and Gutelius, 1997; Lefsky et al., 2002; Pfeifer and Mandlburger, 2009).  

 

2.4.5.2 Forestry 

The concept of producing forest stand profiles with laser profilers was introduced around 

1980 (e.g. Nelson et al., 1984; Schreier et al., 1985). A background to the application of 

airborne laser scanning in forestry can be found in HyyppÃ et al. (2009). Numerous papers 

have documented the utility of LiDAR for the estimation of forest attributes in forestry. 

Recent studies are summarised in Table 2-12 which shows derived forest attributes with 

used LiDAR sensors and authors of the work. Since the primary interest in forestry is the 

assessment of timber volume, airborne laser scanning started being applied to estimating 

biomass and stand structure (e.g. Lefsky et al., 1999a; Lefsky et al., 1999b; Means et al., 

1999; Nelson et al., 1988). In the following sub-sections, forest attributes derived from 

airborne laser scanning is detailed. 

 

2.4.5.2.1 Tree height 

Tree height and related attributes are the major area of airborne laser scanning, since it can 

measure the tree height with high accuracy. The most commonly used technique to extract 

tree height is the canopy height model (CHM) approach (e.g. Hill and Thomson, 2005; 

Hopkinson et al., 2008; Yu et al., 2004). This creates a DSM relevant to tree tops by 

classifying the highest returns and interpolating missing points, and then subtracts the 

DTM from the corresponding DSM. Consequently, the tree height is expressed as a mean 
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height. To obtain individual tree top height, the segmentation of individual trees is 

necessary, which usually requires high resolution data (e.g. Persson et al., 2002). For 

estimating height related attributes, computing percentiles of the distribution of laser 

canopy heights is another major approach (e.g. Næsset, 2002). In this method, canopy 

height metrics utilise quantiles equivalent to the 0, 10, 20, …, 90 percentiles of the first 

return laser canopy heights and corresponding statistics. Canopy density metrics use 

corresponding proportions of both the first and last returns above the 0, 10, 20, …, 90 

quantiles to total number of laser returns. In terms of the accuracy of the estimation of tree 

height, Persson et al. (2002) reported an RMSE of 0.63 m for Norway spruce and Scots 

pine dominated forests and Hirata et al. (2009) demonstrated RMSE of 0.65 m for 

moderate thinning (30.4 %) Japanese cypress forests. In the studies of estimating forest 

growth based on the tree height, Yu et al. (2008) obtained the mean height growth with R2

value of 0.86 and standard deviation of residuals of 0.15 m. It has been reported that tree 

height is underestimated by airborne laser scanning (e.g. Nelson et al., 1988; Persson et al., 

2002). The tree height will be underestimated if the tree top and/or the ground are not 

detected by the sensor (HyyppÃ et al., 2008). Therefore, a sufficient density of laser pulses 

with sufficient energy to return signals is required to detect the tree top and penetrate the 

canopy to ground level (Lefsky et al., 2002).  

 

2.4.5.2.2 Biomass 

Measuring biomass has been another major area of interests in forestry since it measures 

tree materials that can be utilised as a source of energy. It is also becoming globally 

important in terms of carbon sequestration in forests. Most of previous studies using 

airborne laser scanning to estimate biomass have been conducted in temperate forests 
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Table 2-12 Recent studies using airborne/spaceborne LiDAR for forest attributes. 
 
Forest attributes LiDAR sensor 

(Airborne/Spaceborne)
Other sensor data 
used 

Recent study 

LAI Optech ALTM 1233  Solberg et al. (2009) 
Leica ALS 40  Zhao and Popescu (2009) 
Falcon II  Morsdorf et al. (2006) 
Optech ALTM 3100C  Solberg et al. (2006) 
Optech ALTM 1210  Roberts et al. (2005) 
TopoSys-II  Riaño et al. (2004) 

Tree height 
(including 
height metrics 
and height 
profile) 

Optech ALTM 30  Falkowski et al. (2009) 
Optech ALTM 3100  Hirata et al. (2009) 
Riegl LMS-Q560  Müller et al. (2009) 
Optech ALTM 3100  Ørka et al. (2009) 
Leica ALS 40  Zhao et al. (2009) 
Optech ALTM 1225, 
2050, 3100 

Hopkinson et al.  (2008) 

TopoSys-I, II  Yu et al. (2008) 
GLAS Simard et al. (2008) 
GLAS Rosette et al. (2008) 
GLAS, LVIS  Sun et al . (2008) 
Optech ALTM 2033 Aerial photograph Packalén and Maltamo  (2007) 
LVIS  Goetz et al. (2007) 
Terra Remote Sensing’s 
instrument 

 Coops et al. (2007) 

Optech ALTM 3100C  Næsset and Nelson (2007) 
LVIS  Anderson et al. (2006) 
Optech ALTM 1210  Bradbury et al. (2005) 
LVIS  Hyde et al. (2005) 
SLICER  Lefsky et al. (2005) 
Optech ALTM 1210  Roberts et al. (2005) 
TopoSys-I  Yu et al. (2004) 
TopoSys-I  Riano et al. (2003) 
TopEye  Brandtberg et al. (2003) 
Aeroscan lidar system  Zimble et al. (2003) 
TopEye  Persson et al. (2002) 
Optech ALTM 1210  Næsset (2002) 
SLICER  Harding et al. (2001) 

Biomass Leica ALS 40  Zhao et al. (2009) 
Leica ALS 50 Phase II  Kim et al. (2009) 
GLAS Simard et al. (2008) 
TopoSys-I, II  Yu et al. (2008) 
Optech ALTM 1210, 
1233, 3100, Leica ALS 
50-I 

 Næsset and Gobakken (2008) 

LVIS AVIRIS  Anderson et al. (2008) 
Optech ALTM 3025  Goodwin et al. (2007) 
TopEye SPOT Wallerman and Holmgren  (2007) 
Optech ALTM 2033 Aerial photograph Packalén and Maltamo  (2007) 
LVIS  Anderson et al. (2006) 
Spectrum mapping, 
LLC DATIS II 

 van Aardt et al. (2006) 

LVIS  Hyde et al. (2005) 
TopoSys-I  Riano et al. (2003) 
Optech ALTM 1210  Næsset (2002) 

Stem number Optech ALTM 2033 Aerial photograph Packalén and Maltamo  (2007) 
Optech ALTM 1210  Næsset (2002) 
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Forest attributes LiDAR sensor 

(Airborne/Spaceborne)
Other sensor data 
used 

Recent study 

Stem diameter LVIS AVIRIS  Anderson et al. (2008) 
LVIS  Anderson et al. (2006) 

Stem density TopEye SPOT Wallerman and Holmgren  (2007) 
Basal area LVIS AVIRIS  Anderson et al. (2008) 

Optech ALTM 2033 Aerial photograph Packalén and Maltamo  (2007) 
Optech ALTM 1210  Næsset (2002) 

Canopy cover 
(including 
volume 
profile/density) 

Optech ALTM 2050, 
3100 

 Hopkinson and Chasmer  (2009) 

Optech ALTM 30  Falkowski et al. (2009) 
Optech ALTM 3100  Ørka et al. (2009) 
Optech ALTM 3025  Goodwin et al. (2007) 
Terra Remote Sensing’s 
instrument 

 Coops et al. (2007) 

Falcon II  Morsdorf et al. (2006) 
LVIS  Hyde et al. (2005) 
SLICER  Lefsky et al. (2005) 
TopoSys-II  Riaño et al. (2004) 
TopoSys-I  Riano et al. (2003) 

Crown shape Optech ALTM 3100  Kato et al. (2009) 
Optech ALTM 3100  Hirata et al. (2009) 
Optech ALTM 1210  Roberts et al. (2005) 
TopEye  Brandtberg et al. (2003) 
TopEye  Persson et al. (2002) 

Understorey 
vegetation 

Optech ALTM 3100  Vehmas et al. (2009) 
TopoSys Falcon  Maltamo et al. (2005) 

Coarse woody 
debris (CWD) 

Optech ALTM 3100  Pesonen et al. (2008) 
Aeroscan lidar system  Seielstad and Queen (2003) 

Tree species Optech ALTM 3100  Ørka et al. (2009) 
TopEye MkII Multi-spectral 

image by digital 
camera 

Holmgren et al. (2008) 

TopEye  Brandtberg (2007) 
Optech ALTM 1020  Moffiet et al. (2005) 
TopEye  Holmgren and Persson (2004) 
TopEye  Brandtberg et al. (2003) 

dominated by deciduous tree species and the estimation is based on a strong relationship 

between above-ground biomass components and amount of foliage, which can be detected 

by laser pulses (Næsset and Gobakken, 2008). One major approach to estimating biomass 

is to use the percentile of canopy height distribution as a predictor and determine the 

regression with related in-situ measurements (e.g. Næsset and Gobakken, 2008; Yu et al., 

2008; Zhao et al., 2009).  
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2.4.5.2.3 LAI 

Leaf area index (LAI) is generally defined as the one-sided leaf area per unit of ground 

area (e.g. Chen and Black, 1992; Danson et al., 2009; Watson, 1947). In the studies using 

airborne laser scanning, effective LAI (e.g. Solberg et al., 2006) or LAI proxy (e.g. 

Morsdorf et al., 2006) is often computed since these include the area of stems and branches, 

which are intercepted by the laser pulses as well as leaves. The theory of Beer-Lambert 

Law in chemistry, which states that the absorbance of a light beam transmitted and sent 

through the solution is determined by the concentration and path length in the solution, has 

been often applied to the transmission of laser pulses through the canopy, i.e. gap fraction 

(e.g. Gower et al., 1999; Riaño et al., 2004; Solberg et al., 2006; Zhao and Popescu, 2009). 

In this theory, LAI is determined by the transmission of laser pulses through the canopy 

and an extinction coefficient that depends on the foliage inclination angle distribution and 

the reflectivity of the foliage (Solberg et al., 2006). A major approach for estimations of 

LAI involves examining LiDAR metrics and regression analysis with related in-situ LAI 

values measured by hemispherical photographs or other optical sensors such as LAI2000 

of LI-COR, Inc. (e.g. Morsdorf et al., 2006; Riaño et al., 2004; Solberg et al., 2009; 

Solberg et al., 2006; Zhao and Popescu, 2009). Riaño et al. (2004) estimated LAI using 50, 

75, and 95 percentile of heights, average height, maximum height and percentage of 

canopy hits as LiDAR predictive variables in oak and Scots pine forests in Spain. These 

authors found that the percentage of canopy hits was the best estimator. Zhao and Popescu 

(2009) examined various LiDAR metrics such as laser penetration metrics (return number-

based ratio), height-related metrics and foliage-density proxies for estimation of LAI in a 

pine-dominant eastern Texas forest. These authors concluded that laser penetration metrics 

with logarithm models were more effective than height-related metrics. 
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2.4.5.2.4 Canopy cover 

Canopy cover has also been a focus for LiDAR based forestry assessments. Canopy cover 

is the inverse of gap fraction and also called as fractional cover in some studies (e.g. 

Hopkinson and Chasmer, 2009; Morsdorf et al., 2006). For example, Næsset (1997) 

showed the potential of LiDAR to estimate fractional cover. Fractional cover was derived 

from LiDAR as the ratio of canopy returns to the total number of returns per unit area. 

Similar methods utilising the point density of LiDAR returns to estimate fractional cover 

were presented in other studies (Coops et al., 2007; Hopkinson and Chasmer, 2007; 2009; 

Morsdorf et al., 2006; Riaño et al., 2004; Solberg et al., 2006) and showed promising 

results. Hopkinson and Chasmer (2007; 2009) also incorporated the intensity of LiDAR 

returns into their algorithm. These authors estimated canopy fractional cover calculating 

the ratio of the sum of all canopy level return intensities to the sum of total return intensity, 

and achieved a high correlation with fractional cover recovered from ground-based digital 

hemispherical photography.  

 

2.4.5.2.5 Crown shape 

To obtain information on crown shape, the segmentation of individual trees is required. 

Roberts et al. (2005) used interpolated canopy surface models from a LiDAR point cloud 

and identified the location of individual trees by assuming that the pixel related to the top 

of a tree will be higher than surrounding pixels. These authors then estimated crown 

diameter by identifying the crown edge in each cardinal direction from the located tree top 

pixel in the canopy surface model. It was reported that crown diameter derived from 

LiDAR was underestimated due to asymmetrical shape of crowns with irregular edges, 
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although the comparison with field measured crown diameters achieved R2 value of 0.55. 

Hirata et al. (2009) located individual tree crowns from a LiDAR derived digital canopy 

model by the watershed segmentation method and the identification rates achieved were 

95.3% for heavy thinning (the thinning ratio of the basal area, 38%), 89.2% for moderate 

thinning (30.4%) and 60% for no thinning, respectively.  Kato et al.(2009) developed a 

‘wrapped surface reconstruction’ method to capture tree crown formation. In this method, 

an individual tree was identified either by a marker controlled segmentation method or by a 

density or height variance dependent segmentation method from LiDAR derived digital 

canopy height models. Then, crown surface points were selected and ‘wrapped’ using 

Radial Basis Functions and an isosurface algorithm (Angel, 2003). In their study, the 

comparison between tree crown parameters derived from the wrapped surface and ground-

based variables reported a R2 value of 0.80 for coniferous trees and 0.75 for deciduous 

trees in crown width, R2 value of 0.92 for coniferous trees and 0.53 for deciduous trees in 

crown base, R2 value of 0.72 for coniferous trees and 0.51 for deciduous trees in height of 

the lowest branch, and R2 value of 0.84 for coniferous trees and 0.89 for deciduous trees in 

crown volume. 

 

2.4.5.2.6 Stem and basal area 

In the recent studies of estimating basal area and stem related attributes such as stem 

number and its diameter, synthetic use of LiDAR data and other optical sensor data has 

been reported. Packalén and Maltamo (2007) estimated stem number, basal area and basal 

area median diameter for Scots pine, Norway spruce and deciduous trees using the 

combination of LiDAR derived height distribution variables, which include percentiles of 

canopy height and proportions of canopy hits, and spectral and textural features from aerial 
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photographs in a multivariate non-parametric k-MSN approach. These authors found that 

the RMSEs for basal area estimation were 27.05 % for pine trees and 31.30 % for spruce 

trees, which were acceptable, compared to a conventional field inventories in Finland. 

They also reported that the estimated stem numbers were even better than those of 

conventional field inventories. Wallerman and Holmgren (2007) combined LiDAR derived 

height distribution variables with the four SPOT-5 HRG spectral bands to predict forest 

stand variables in a managed forest dominated by Scots pine, Norway spruce and birch. 

These authors achieved RMSE of 19 % (1145 st ha-1) for estimation of stem density and 

RMSE of 19 % (0.195 m) for mean diameter. Anderson et al. (2008) used integrated 

datasets of high spectral resolution imagery (Airborne Visible/Infrared Imaging 

Spectrometer; AVIRIS) and waveform LiDAR to estimate  basal area, above-ground 

biomass and quadratic mean stem diameter in a experimental forest in the US. Canopy 

height, the height of median energy, the relative height at 25 % energy and the relative 

height at 75 % energy derived from waveform data and 24 AVRIS bands variables were 

compared with field derived variables in a stepwise mixed linear regression analysis. These 

authors concluded that the integrated datasets estimated the forest measurements better 

than the use of either data set alone.  

 

2.4.5.2.7 Tree species 

LiDAR data has been also used to discriminate between coniferous and deciduous tree 

species (Ørka et al., 2009) and individual tree species (Brandtberg, 2007; Brandtberg et al., 

2003; Holmgren and Persson, 2004; Holmgren et al., 2008; Moffiet et al., 2005). Most of 

studies utilise tree shape and intensity information derived from LiDAR data. This is based 

on the concept that these information are different between tree species. Holmgren and 
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Persson (2004) classified Scots pine, Norway spruce and deciduous trees using LiDAR 

derived variables: proportion of canopy returns, standard deviation of the intensity of the 

returned pulses, mean intensity of the surface returns, proportion of first returns, proportion 

of surface hits, mean value of the parameters of the parabolic surface, relative standard 

deviation of laser heights and height percentile divided with the estimated tree height. 

These authors accomplished the classification accuracy of 95% with six of these variables. 

They also reported high classification accuracies were achieved by using the proportion of 

first returns and the standard deviation of the intensity. Holmgren et al. (2008) took the 

similar approach using the combination of LiDAR data and multi-spectral images and 

obtained an overall accuracy of 88 % to classify Norway spruce, Scots pine and deciduous 

trees. Ørka et al. (2009) analysed the differences in structural and intensity features 

between coniferous (Norway spruce) and deciduous (birch and aspen) trees and tested 

classification performance of the structural and intensity features. The highest 

classification accuracy of 88 % for large trees was achieved by combining eight variables: 

the kurtosis of the laser height distributions, maximum intensity from first returns, mean 

height, the skewness of the laser height distributions, crown density in 9th layer from 1.3 m 

vantage point from single returns, coefficient of variation for the laser height values, crown 

density in 9th layer from 1.3 m height and mean intensity from last returns. These authors 

reported that the return categories (first, single or last) were critical information to select 

the candidate feature for successful classification.   

 As described above, LiDAR based forest inventory studies show promising results. Recent 

forest inventory applications deal with various topics such as recreation, wildlife and 

watershed management in natural forests as well as plantation forests. However,  the main 

focus is still on acquiring information on the volume and growth of trees, forest plots and 

stands (HyyppÃ et al., 2009). It should be also noted that many of them have been 
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conducted in Scandinavia or North America and have local or species specific methods. 

Careful consideration and modification would be necessary to apply their methods to other 

areas where other types of ecosystems exist. 

 

2.4.5.3 Ecology 

Compared to forest inventory studies, ecological applications require an assessment of 

complexity of habitat structure at a landscape scale. During the last decade, ecologists 

started recognising LiDAR as useful technology in providing valuable information for 

modelling relationships between landscape variables such as vegetation structure and 

organisms. LiDAR has great utility in this since it can offer data with high vertical 

resolution as well as sufficient area coverage required for valid statistical modelling 

(Müller et al., 2009). In the following sub-sections, forest attributes derived from LiDAR, 

which are particularly important in the ecological context, are detailed. 

 

2.4.5.3.1 Vertical vegetation structure 

Extracting vertical vegetation structure information is important but challenging in 

ecological applications since unlike managed forests, natural forests are more structurally 

complex, containing mixed vegetation species with different characteristics including ages. 

The individual tree approach is not realistic in such forests. The main approach is focused 

on identifying vegetation layers in forest stands using height information (e.g. Maltamo et 

al., 2005; Zimble et al., 2003). Zimble et al. (2003) used LiDAR derived tree height 

variance to differentiate single-storey and multi-storey vertical structural classes with a 
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97% accuracy. Riaño et al. (2003) used a cluster analysis of LiDAR height information to 

discriminate between overstorey and understorey canopies. Maltamo et al. (2005) tested 

the presence and the number of understorey trees by analysing the height distribution of 

LiDAR returns. These authors found that multi-layered stand structures can be recognised 

and quantified, however, the accuracy of the results varied greatly depending on the 

density of the dominant tree layer.  

Understorey vegetation is another important attribute to identify. Vehmas et al. (2009) 

located the mature herb-rich forest stands, where are the main habitats for many 

endangered species, based on crown structure and vertical profile derived from LiDAR 

data.  

 

2.4.5.3.2 Coarse woody debris (CWD) 

Coarse woody debris (CWD) is important for nutrient cycling and habitation for species in 

forests. Small number of studies has been published to estimate the amount of CWD using 

LiDAR (e.g. Pesonen et al., 2008; Seielstad and Queen, 2003). In the study of fuel models 

in the closed-canopy conifer forests of the western United States, Seielstad and Queen 

(2003) showed the possibility of estimating CWD loads using a surface roughness metric 

and obstacle density, which was defined as the number of non-ground points less than 6 

feet in height per square meter, normalized by the total number of ground and points 

greater than 6 feet. Pesonen et al. (2008) estimated downed dead wood volume using the 

predictive variables of canopy height distribution, cumulative proportional canopy 

densities, the laser pulse intensities accumulating in percentiles, the average intensity value 

of above-ground hits, the proportion of ground hits versus canopy hits and the average 
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height and standard deviation of the above-ground hits derived from first and last laser 

returns respectively. These authors found that the standard deviation of first return laser 

heights was the most significant variable in the models, and achieved the adjusted multiple 

correlation coefficient of 0.6099 with the combination of the standard deviation of first 

return laser heights and last return laser pulse intensity accumulating in 10th percentile as 

predictors. 

The vertical vegetation structure information derived from LiDAR has been used as a 

surrogate for habitat structure to predict population of a mammal (Nelson et al., 2005), 

bird’s distribution and demography (Bradbury et al., 2005), bird’s species richness and 

abundance (Goetz et al., 2007), chick mass (Hinsley et al., 2002) and bird’s abundance and 

composition of assemblages (Müller et al., 2009). Hyde et al. (2005) characterised montane 

forest canopy structure; canopy height, canopy cover and biomass, as a prerequisite for 

large area habitat mapping for California spotted owls.  

They showed the potential of LiDAR in integrating with ecological studies. More 

application of LiDAR for ecology is anticipated. 

 

2.5 Conclusion 

Conservation of biodiversity has been recognised internationally as critically important for 

sustainability. Measurements for the maintenance of biodiversity are required at all levels 

of government from the international scale to the local scale. At the landscape level, a 

practical way of defining and measuring biodiversity is necessary for managers. Forest 

structure has been internationally recognised as a surrogate of biodiversity since an 



58 

association is often found between biodiversity and measures of the variety and/or 

complexity of arrangement of structural components within an ecosystem. In Australia, 

forest structure variables are also measured in mandated vegetation monitoring systems. 

However, the current methods to assess forest structure information are often qualitative 

and require a laborious process that involves site visits and many logistically expensive 

point based measurements. An efficient and cost-effective assessment tool to compliment 

these survey methods is necessary. Remote sensing data derived from satellite and airborne 

sensors is superior to field survey data in providing high-spatial coverage, near 

simultaneous acquisition, repeated regional accounting and cost effectiveness. To date, 

most natural resource remote sensing has been undertaken using passive sensing 

technologies, which provide 2D information. Passive remote sensing technology can offer 

some biophysical parameters of forest structure, however these are often limited to either 

horizontal parameters or homogeneous species. LiDAR is an active sensor technology that 

illuminates the object using the sensor unit and measures the range distance between 

sensor and the illuminated target providing highly accurate 3D information of the objects. 

LiDAR has great potential in extracting forest structure information. Numerous papers 

have documented the utility of LiDAR, especially airborne laser scanning for the 

estimation of forest attributes in forestry applications and shown promising results. 

However, many of these studies have been conducted in Scandinavia or North America and 

have local or species specific methods. Careful consideration and modification would be 

necessary to apply their methods to other areas where other types of ecosystems exist. 

Ecologists also recently started recognising LiDAR as useful technology providing 

valuable information for modelling relationships between landscape variables such as 

vegetation structure and organisms. Ecological applications require an assessment of the 

complexity of habitat structure at a landscape scale. Innovative methods and more 
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application of LiDAR technology are anticipated in extracting forest structure information 

for biodiversity assessments.  
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CHAPTER 3 LIDAR DISCRETE RETURN SYSTEM 

EXPERIMENT 

 

3.1 Introduction 

The importance of forest structure information as a surrogate of biodiversity is widely 

acknowledged (Section 2.2). The application of LiDAR technology for extracting forest 

attributes was reviewed in Section 2.4.5.2 and Section 2.4.5.3. In this chapter, a LiDAR 

discrete return system experiment is conducted. Although the latest laser scanning systems 

can record several returns or a full waveform of returned signals, they have not been 

widely used in biodiversity research and such systems are far less common than 

conventional discrete return systems, which record only the first and last returns. This 

chapter evaluates the utility and potential of conventional discrete return systems for 

biodiversity assessment.  

 

3.2 LiDAR intensity 

LiDAR has been used to extract forest attributes such as canopy cover and biomass. The 

most commonly adopted approach is to use the height information derived from LiDAR 

data, computing, for example, percentiles of the distribution of laser pulses (Section 

2.4.5.2.1). Some discrete return systems also record the intensity of the backscattered laser 

pulses. There have been few studies to date that utilise LiDAR intensity. This is because 

there is lack of calibration and the difficulty in interpreting the intensity information (see, 
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Section 2.4.4.1). However, the few studies that have utilised intensity information have 

shown promising results (e.g. Brandtberg et al., 2003; Means et al., 1999; van Aardt et al., 

2006). The following is a comprehensive review of LiDAR intensity in extracting forest 

attributes to date.  

Means et al. (1999) found that foliage biomass in coniferous forests was highly correlated 

with LiDAR derived metrics which included the sum of canopy intensity, ground intensity 

and canopy closure calculated from intensity. These authors found that tree foliage biomass 

was best predicted by a canopy intensity integration sum. Van Aardt et al. (2006) used 

intensity-based parameters such as mean and median intensity of return to estimate forest 

volume and above ground biomass in a mixed forest. Their results indicate that the number 

of returns and the intensity associated with each of these LiDAR interactions are necessary 

for effective modelling of biomass variations in structurally complex forests. For tree 

species classification, Brandtberg et al. (2003) note that the intensity of return ‘maximum 

value’, kurtosis and skewness, for individual leaf-off tree crowns, performed well for tree-

based variables. These authors conclude that return intensity distributions were 

significantly different for different tree species. Holmgren and Persson (2004) tested a 

species classification algorithm, of Scots pine versus Norway spruce, at an individual tree 

level using two types of variables; those derived from the shape of trees resulting from a 

segmentation and variables derived directly from laser data. They achieved the highest 

classification accuracies by using the combination of six variables, but found that the 

proportion of first returns and the standard deviation of the return intensity provided a 

major contribution to successful species classification. This also suggested these variables 

could be used for estimation of tree species proportions on plots and in forest stands where 

the LiDAR returns are too few to allow identification of individual trees. Moffiet et al. 

(2005) examined how LiDAR intensity interacts with the forest canopy to produce 
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intensity return signals. Similarly to Van Aardt et al. (2006), these authors note that average 

LiDAR return intensity and intensity variation may be useful variables to assist with 

species discrimination. They also note intensity of return values can be affected by forest 

structure and the reflective properties of the vegetation. Hopkinson and Chasmer (2007; 

2009) estimated canopy fractional cover calculating the ratio of the sum of all canopy level 

return intensities to the sum of total return intensity, and achieved a high correlation with 

fractional cover recovered from ground-based digital hemispherical photography. Pesonen 

et al. (2008) estimated downed dead wood volume (RMSE 51.6%) using the standard 

deviation in height distribution and laser pulse intensities accumulating in percentiles. Kim 

et al. (2009) estimated live and dead standing tree biomass and concluded intensity was 

key variable. 

In this analysis, a conventional discrete return system is examined to determine whether it 

can extract forest structure information in an Australian Eucalyptus forest. In particular, the 

utility of LiDAR return intensity information is highlighted. Classification of forest 

structure types is also attempted using intensity information. 

 

3.3 Study area 

The study area for this experiment (Upper left S 35˚46', E 144˚52'; Lower right S 36˚0', E 

145˚0') is situated in the Barmah Millewa Forest, located on the border of New South 

Wales (NSW) and Victoria (VIC) in Australia (Fig. 3-1).  The area is a riparian complex 

which comprises approximately 70,000 ha of wetland and forests (Fig. 3-2).  This system 

has a variety of land tenures including areas of national park and state forest reserves. In 

the latter, logging operations exist which can hinder the monitoring process. The area is  
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Figure 3-1 Study area is displayed in the rectangle on the satellite imagery; Landsat-7 ETM+ (Blue; band 1, 
Green; band 2, Red; band 4). 
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Figure 3-2 Photograph of study area. The area is a riparian complex which comprises approximately 70,000 
ha of wetland and forests. 
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Table 3-1 LiDAR acquisition specifications. 
 

Scanner Model ALTM 1225 (now ALTM 3025) 

Sampling intensity 11000 Hz and 12500 Hz 

Flying height 1100 m 

Laser swath width 800 m gross, 600 m net (25% overlap between 
swathes) 

Laser wavelength  1.047 microns  

Laser footprint 0.22 m  

Vertical Accuracy 0.15 m (1 sigma) 

ALS Internal precision 0.05 m 

Acquisition Date July 2001 

important since it represents the largest remaining river red gum (Eucalyptus 

camaldulensis ssp. obtusa Dehnh) forest in the world (Bacon et al., 1993).  This landscape 

contains important rare and endangered Flora and Fauna (Harris and Rawson, 1992). The 

Barmah-Millewa Forests are recognised as a significant habitat for migratory birds in 

international treaties such as the Ramsar convention, the Japan-Australia Migratory Birds 

Agreement and the China-Australia Migratory Birds Agreement (Chong, 2003). 

Conservation of biodiversity is therefore critical in this area. 

 

3.4 Materials 

3.4.1 LiDAR data 

The LiDAR data used in this research was gathered in July 2001 and acquired by the 

Murray Darling Basin Commission, using ALTM, Optech airborne laser scanning system 

(small footprint and discrete return).  Table 3-1 details the specifications of the sensor at 

the time of acquisition.  The data provided comprises three data sets: First return pulse, 
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Last return pulse “ground” and Last return pulse “non-ground”.  Each data set contains two 

variables: elevation information and an intensity of return value. 

 

3.4.2 Field data 

In July and September, 2005 a field survey was completed specifically to explore and 

validate the ecological content of the LiDAR dataset.  The four year time difference 

between LiDAR acquisition date and field observation is unfortunate. However, the 

research team confirmed there was no major logging or wild fires during this period, and 

the forest condition was similar. Twenty five plots were positioned throughout the forest 

with a caveat of accessibility. Surveys were established as two hectare circular plots (Fig. 

3-3, grey area). A plot was established by defining a centre point and taking a hand-held 

GPS (eTrex of GARMIN Corporation) measurement. This includes resident positional 

error of x y, ± 7 m on average. Tree height (m) was determined using a clinometer. Canopy 

and understorey cover (%) such as grass, leaf and bare ground, were assessed with the 

reference photography after the method of Walker and Hopkins (1990).  

These measurements were conducted at the plot centre and three of the four peripheral 

points (Fig. 3-3, numbered 1-4). The quantity of fallen trees was also assessed over each 

plot in four classes; absent, 1-5 logs, 6-15 logs and more than 15 logs. 

 

3.5 Methods 

Data for the 2 ha plots was extracted from the three LiDAR point cloud data sets: (First  
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Figure 3-3 The grey area shows the survey area of the circular two hectare plot. Measurements of tree height, 
canopy cover, shrub cover, grass cover, leaf cover and bare ground cover were conducted at the plot centre 
and three of the four peripheral points (numbered 1-4). The quantity of fallen trees was assessed over each 
plot. Plot centre was located with a GPS. Tree height was measured with clinometers. Canopy and ground 
cover were assessed with the reference photography. The peripheral points were located approximately 60 m 
from the centre. 

 

data - first pulse returns; Ground data - last pulse returns; and Non-ground data - last pulse 

returns). To account for positioning inaccuracies in locating the plot areas a 10 % area was 

added to each plot yielding an amended plot size of 2.2 ha (84 m radius circular plot (Fig. 

3-3)). The first stage in processing was to group the three data sets (First data, Ground data 

and Non-ground data) into a single combined point cloud. This was then reclassified into 

two strata; Canopy and Ground. This was achieved using the maximum elevation value of 

the Ground dataset as a threshold (derived from Ground return statistics on a plot by plot 

basis -Fig. 3-4(b)). This was necessary since there were pronounced variations in ground 

elevation between plots which required a local definition of what constitutes ground. 
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Subsequently, the data in each stratum was reclassified into two groups; First return and 

Last return, to determine if there was any difference between these two interactions. This 

yielded four data sets that correspond to elevation and intensity information for two strata; 

canopy and ground, with First pulse returns and Last pulse returns recorded for each (Fig. 

3-4(a)). 

In order to assess the forest structure information content of the LiDAR data, the mean 

values for a range of ecological variables were calculated. Canopy, grass, leaf and bare-

ground cover information were summed in each plot and presented as a mean. As the 

quantity of fallen trees was assessed over each plot in four classes; absent, 1-5 logs, 6-15 

logs and more than 15 logs, these class values were used as a categorical variable.  

For comparison with field data, mean LiDAR intensity and standard deviation of intensity 

were calculated for the classified groups; First return intensity in Canopy stratum (FRI_C), 

Last return intensity in Canopy stratum (LRI_C), First return intensity in Ground stratum 

(FRI_G) and Last return intensity in Ground stratum (LRI_G). These intensity values were 

utilised without any calibration. To examine the relationship between LiDAR data and 

collected ecological variables, the Pearson correlation coefficient was calculated to test the 

relationship between intensity values; mean intensity and standard deviation of intensity, 

and mean canopy cover, mean grass cover, mean leaf cover and mean bare-ground cover. 

The Pearson correlation coefficient estimates the degree of linear association between two 

variables in the parametric context (Sprent and Smeeton, 2001). The Spearman rank 

correlation coefficient, which is often referred to as Spearman’s rho (Sprent and Smeeton, 

2001), was used to evaluate the relationship between intensity values and the amount of 

fallen trees since the amount of fallen trees is an ordinal data. 
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a) Flow chart 
 

b) Example of LiDAR data within a two hectare plot 
 

Figure 3-4 LiDAR data classification. a) Illustrates the algorithm of LiDAR data classification. LiDAR data was 
extracted within a two hectare plot. Original pre-processed data set; First data, Ground data and Non-ground 
data (b; upper diagram), were combined and reclassified into Canopy stratum and Ground stratum (b; below 
diagram) using maximum elevation value of Ground data as a threshold. This was calculated on a plot-by-plot 
basis. Then, these data were reclassified into two groups; First and Last pulse returns. Mean intensity and 
standard deviation of intensity were calculated in the classified groups; First return intensity in Canopy stratum 
(FRI_C), Last return intensity in Canopy stratum (LRI_C), First return intensity in Ground stratum (FRI_G) and 
Last return intensity in Ground stratum (LRI_G). 

 

Determine maximum elevation value of Ground data & reclassify 

First data (First pulse returns) Non-ground data (Last pulse returns) Ground data (Last pulse returns) 

Combined data

Canopy Ground stratum

Canopy stratum 
(First pulse returns) 
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The combination of mean and standard deviation of intensity are also tested whether they 

can be an index to characterise the plot condition. 

 

3.6 Results 

The results of initial investigation of the standard deviation and mean intensity in different 

groups in each plot are presented in Fig. 3-5 and 3-6. They demonstrate some return 

intensity characteristics. LRI_G showed highest standard deviation in most plots, followed 

by LRI_C, FRI_C and FRI_G in this order (Fig. 3-5). Higher standard deviation of 

intensity was observed more in the last return (LRI_C and LRI_G) than in the first return 

(FRI_C and FRI_G) (Fig. 3-5). FRI_G exhibited highest mean intensity in most plots, 

followed by LRI_G, LRI_C and FRI_C in this order (Fig. 3-6). Mean intensity of the first 

return (FRI_G) is higher than the last return (LRI_G) in Ground stratum, however the 

value of FRI_C is lower than LRI_C in Canopy stratum (Fig. 3-6). 

The results of comparison between LiDAR intensity variables and field variables are 

shown in Table 3-2. FRI_C exhibited a strong negative correlation with canopy cover (R = 

0.509, P < 0.01) and a significant positive relationship with grass cover (R = 0.620, P < 

0.01). FRI_G displayed a high positive association with canopy cover (R = 0.580, P < 

0.01) and a strong positive correlation with the amount of fallen trees (R = 0.698, P < 0.01), 

which was shown in Table 3-3. The standard deviation of FRI_G displayed a negative 

correlation with canopy cover (R = -0.519, P < 0.01, Table 3-4) and the amount of fallen 

trees (R = -0.686, P < 0.01, Table 3-5). The results for LRI_C and LRI_G did not show 

significant relationship with field data (Table 3-2, 3-3, 3-4 and 3-5). 
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Figure 3-5 Standard deviation of intensity in different groups in each plot. Higher standard deviation of intensity 
was observed more in the last return (LRI_C and LRI_G) than in the first return (FRI_C and FRI_G). 

 

Figure 3-6 Mean intensity in different groups in each plot. Mean intensity of the first return (FRI_G) is higher 
than the last return (LRI_G) in Ground stratum, however the value of FRI_C is lower than LRI_C in Canopy 
stratum. 
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Table 3-2 Correlations between mean intensity; First return intensity in Canopy stratum (FRI_C), Last return 
intensity in Canopy stratum (LRI_C), First return intensity in Ground stratum (FRI_G) and Last return intensity 
in Ground stratum (LRI_G), and field data; mean canopy cover, mean grass cover, mean leaf cover and mean 
bare-ground cover in 25 plots.  
 

Table 3-3 Correlation between mean intensity and the amount of fallen trees in four classes; absent, 1-5 logs, 
6-15 logs and more than 15 logs. 
 

FRI_C LRI_C FRI_G LRI_G 
Spearman's 
rho fallen trees Correlation Coefficient -.450(*) -0.251 .698(**) 0.126

Sig. (2-tailed) 0.024 0.225 0 0.549
N 25 25 25 25

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 3-4 Correlations between standard deviation of intensity and field data; mean canopy cover, mean grass 
cover, mean leaf cover and mean bare-ground cover in 25 plots. 
 

FRI_C 
STDEV 

LRI_C 
STDEV 

FRI_G 
STDEV 

LRI_G 
STDEV 

mean canopy cover 
Pearson 
Correlation 0.085 0.134 -.519(**) 0.133
Sig. (2-tailed) 0.686 0.522 0.008 0.526
N 25 25 25 25

mean grass cover 
Pearson 
Correlation 0.003 0.27 0.287 0.202
Sig. (2-tailed) 0.988 0.192 0.164 0.332
N 25 25 25 25

mean leaf cover 
Pearson 
Correlation -0.091 -0.319 -0.302 -0.241
Sig. (2-tailed) 0.666 0.12 0.143 0.245
N 25 25 25 25

mean bare-ground 
cover 

Pearson 
Correlation -0.037 -0.223 0.177 -0.189
Sig. (2-tailed) 0.859 0.284 0.398 0.366
N 25 25 25 25

** Correlation is significant at the 0.01 level (2-tailed). 

FRI_C LRI_C FRI_G LRI_G 
mean canopy cover Pearson Correlation -.509(**) 0.077 .580(**) 0.045

Sig. (2-tailed) 0.009 0.713 0.002 0.829
N 25 25 25 25

mean grass cover Pearson Correlation .620(**) 0.367 -.429(*) .424(*)
Sig. (2-tailed) 0.001 0.071 0.032 0.035
N 25 25 25 25

mean leaf cover Pearson Correlation -.435(*) -0.346 0.33 -0.355
Sig. (2-tailed) 0.03 0.09 0.107 0.081
N 25 25 25 25

mean bare-ground 
cover Pearson Correlation -0.309 -0.235 0.02 -.406(*)

Sig. (2-tailed) 0.133 0.257 0.924 0.044
N 25 25 25 25

** Correlation is significant at the 0.01 level (2-tailed).  
* Correlation is significant at the 0.05 level (2-tailed).  
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Table 3-5 Correlation between standard deviation of intensity and the amount of fallen trees. 
 

FRI_C 
STDEV 

LRI_C 
STDEV

FRI_G 
STDEV 

LRI_G 
STDEV 

Spearman's 
rho fallen trees Correlation Coefficient 0.301 0.288 -.686(**) 0.352

Sig. (2-tailed) 0.144 0.163 0 0.084
N 25 25 25 25

** Correlation is significant at the 0.01 level (2-tailed).   

Table 3-6 Correlation between canopy cover and grass cover. 
 

mean grass cover
mean canopy 
cover Pearson Correlation -0.542 (**) 

Sig. (2-tailed) 0.005
N 25

** Correlation is significant at the 0.01 level (2-tailed).

Table 3-7 Correlation between canopy cover and sampled average tree height. 
 

mean canopy cover  
Sampled 
average  Pearson Correlation 0.423 (*) 
tree height Sig. (2-tailed) 0.035

N 25
* Correlation is significant at the 0.05 level (2-tailed).

The combination of mean and standard deviation of intensity is presented in Fig. 3-7. It 

demonstrates the plots can be classified into three groups; group A, group B and group C, 

using FRI_G and standard deviation of FRI_G. Group A includes plots with low FRI_G 

and high standard deviation of FRI_G. Group B has plots with high FRI_G and low 

standard deviation of FRI_G. Group C has only one plot which has high FRI_G and high 

standard deviation of FRI_G. Fig. 3-8 shows the field measured canopy cover and fallen 

tree class for these groups. Plots in group A have lower canopy cover and fewer fallen trees. 

Higher canopy cover and many fallen trees are found in plots in group B. Group C shows 

in-between plot characteristics between group A and B: moderate canopy cover and fallen 

trees.  
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Figure 3-7 Scatter plot of first return intensity from ground stratum (FRI_G) and standard deviation of first 
return intensity from ground stratum (FRI_G STDEV). The sites can be classified into three groups; group A, 
group B and group C. 
 

Figure 3-8 Field measured canopy cover and fallen tree class for group A, B and C. 
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3.7 Discussion 

3.7.1 First return intensity in Canopy stratum (FRI_C) 

FRI_C shows a strong negative correlation with canopy cover (Table 3-2). In other words, 

where canopy cover is high, first return intensity in the canopy stratum is low. The 

following scenario is hypothesised. At 1.047 µm, reflectance and transmittance 

components are the dominant radiation transfer processes (Bauer et al., 1986; Curran, 

1985; Lillesand et al., 2004). However, emitted laser pulse is randomized on the interaction 

with the canopy layer due to small reflective areas and angles of leaves. Therefore weak 

pulses are often returned to the LiDAR sensor. On the other hand, where the canopy is 

present but with sparse foliage, laser pulses are much less likely to interact with canopy 

objects but when they do, the nature of the interaction is different. The pulse is more likely 

to interact with solid materials such as branches and boles, and stronger returned pulses 

therefore result.  

FRI_C also displays a strong positive relationship with grass cover (Table 3-2). This 

provides strong anecdotal evidence since one would expect more grass growth where the 

canopy is sparse, if light is a limiting growth factor. In other words, grass does not grow 

thickly where canopy is dense, because the fraction of Photosynthetically Active Radiation 

(fPAR) is reduced. Although the correlation between mean leaf cover and FRI_C is only 

significant at the 0.05 level, a similar relationship was observed. Our field data also shows 

a negative relationship between canopy cover and grass cover (Table 3-6). 
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3.7.2 First return intensity in Ground stratum (FRI_G) 

FRI_G also exhibits significant positive association with canopy cover (Table 3-2). It is 

hypothesised: where canopy cover is high, the first return intensity in the ground stratum is 

high. Our field data demonstrates a positive association between large trees and dense 

canopies (Table 3-7). Large fallen trees and debris are more likely to be on the ground and 

stronger ground return pulses result.  FRI_G also shows a strong positive correlation with 

the amount of fallen trees (Table 3-3), which suggests where fallen trees are abundant, first 

return intensity in ground stratum is high. Again, it is hypothesised that when laser pulses 

hit solid materials such as logs and fallen trees, strong pulses are returned.  

The standard deviation of FRI_G displays a negative correlation with canopy cover (Table 

3-4) and the amount of fallen trees (Table 3-5). This can be explained as where canopy 

cover is high (fallen trees are abundant), the standard deviation of first return intensity in 

the ground stratum is low. The standard deviation of intensity is a measure of variation in 

intensity values. Assuming that each component on the ground has a distinct interaction 

with the laser pulse, standard deviation of FRI_G could be used as an index of 

heterogeneity of ground cover. A high standard deviation of FRI_G indicates 

heterogeneous ground cover, and lower standard deviation of FRI_G suggests 

homogeneous ground. Where the canopy is dense or fallen trees are abundant, ground is 

more likely homogeneous. Furthermore, this is an efficient way of using intensity data and 

avoiding calibration issues. 

 

3.7.3 First return intensity and last return intensity 

The results of the analysis revealed that the last return intensity for both canopy and 
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ground returns (LRI_C and LRI_G) does not show significant correlation with the field 

based ecological variables (Table 3-2 and 3-4). This fits with the results of Brandtberg et al.  

(2003) who report lower accuracy in classifying species when using last return information. 

Moffiet et al. (2005) explained that the last return intensity is affected by the pulse energy 

remaining within the portion of footprint as well as reflective surface properties. This can 

have a profound impact. In other words, the return is a result not just of the ground cover 

but also the amount of energy remaining in the pulse. In our study, this was explained by 

the standard deviation of intensity in each plot. A higher standard deviation of intensity 

was observed in the last return (LRI_C and LRI_G) as compared to the first return (FRI_C 

and FRI_G) (Fig. 3-5), indicating the last return has greater variation in intensity. This is 

especially salient since there is no species difference in Canopy stratum. We propose the 

difference in intensity variation between first return and last return in canopy stratum 

(FRI_C and LRI_C) could be due to the amount of pulse energy that remains to interact 

with the vegetation component in the canopy stratum. However, the results are contrary to 

this. Mean intensity of LRI_C is higher than FRI_C in all plots (Fig. 3-6). It is possible, but 

unlikely, that the emitted pulse is intercepted by a vegetation component initially, but the 

majority of pulse energy retained for the next vegetation interaction.  As our data set can 

not identify whether FRI_C is singular or the first return out of two returns, we can not 

conclude if this is the case. It is also possible that the last return interacts with a solid 

material such as a branch or a large fallen tree on the ground, since most of LRI_C were 

found in lower level of Canopy stratum. This might explain why mean intensity in LRI_C 

was higher than FRI_C.  

Identification of the return property for the ground returns is simpler. We can safely assume 

that FRI_G is singular return as it is the first return from the ground. The mean intensity of 

FRI_G is higher than LRI_G in most plots (Fig. 3-6). This is because FRI_G is the first 
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return and therefore did not lose any energy before it interacted with the ground, while the 

pulse energy of LRI_G was reduced after being partially intercepted by vegetation 

components in Canopy stratum. 

 

3.7.4 Relationship between mean intensity and standard deviation of intensity 

Mean intensity and standard deviation of intensity exhibit a strong correlation with some of 

ecological variables. Using FRI_G and standard deviation of FRI_G, it was demonstrated 

that the combination of these values can be an index to characterise the plot condition (Fig. 

3-7). Using the scenario of FRI_G and standard deviation of FRI_G discussed in Section 

3.7.2, the plots in group A are assumed to have sparse canopy and few fallen trees. The 

plots in group B would have dense canopy and many fallen trees. Field observations 

actually support this assumption (Fig. 3-8).  All plots in group A have lower canopy cover 

and fewer fallen trees compared with plots in group B. 

 

3.8 Conclusion 

Conventional discrete (first and last) return systems are still more common and available to 

natural resource managers than the latest laser scanning systems such as full waveform 

LiDAR. In this chapter, a conventional discrete return system was examined to determine 

whether it can extract forest structure information. As a result of a LiDAR discrete return 

system experiment, it was concluded that conventional discrete return systems can be used 

to recover forest structure information for forests with an ecologically simple structure (i.e. 

single tree species with no mid- and understorey vegetation except grass and relatively flat 
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terrain). LiDAR intensity, vertically stratified using range information, has potential to 

recover canopy cover, grass cover and the amount of fallen trees. The combination of 

LiDAR intensity mean and standard deviation can be used to differentiate forest structural 

types; sparse canopy with few fallen trees or dense canopy with many fallen trees. 

Utilising standard deviation of intensity as a variable could be one solution in using 

intensity data since it avoids the intensity calibration issues. It was noted that first returns 

are better variables for analysis, since last returns were affected by the remaining energy in 

the pulse and did not show as significant correlation with field variables as the first returns. 

In terms of data preparation, it is recommended that LiDAR point data should be 

accompanied by information regarding its return properties such as singular returns or first 

of many returns since these properties could have the impact on the results. 
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CHAPTER 4 BACKGROUND FOR LIDAR FULL 

WAVEFORM SYSTEM EXPERIMENT 

 

4.1 Introduction 

The utility and potential of conventional discrete return systems for biodiversity were 

evaluated in Chapter 3. This chapter provides a background for a LiDAR full waveform 

system experiment, which will be presented in the following chapters, Chapter 5 and 6. 

The study area and the LiDAR data used are described. Fieldwork protocols developed 

specifically for this LiDAR experiment are also explained. 

 

4.2 Study area 

The study area for the LiDAR full waveform experiment (Upper left S 41.12º, E 146.45º; 

Lower right S 41.32º, E 146.58º) is located in the Rubicon catchment of the Cradle Coast 

Region of Tasmania, Australia and is approximately 20,000 ha (Fig. 4-1). The area is 

classified as Eucalyptus amygdalina coastal forest and woodland. The forests are dry 

sclerophyll communities dominated by E. amygdalina and have heathy, sedgy and shrubby 

understorey variants (Harris and Kitchener, 2005), and the forest structure varies (Fig. 4-2). 

In this area, the human population is growing in coastal towns such as Devonport, which is 

one of the two major centres in this region. Most people are employed in primary 

industries (agriculture, mining, forestry and fishing), manufacturing, retail and tourism. As  
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Figure 4-1 Study area is located in the Rubicon catchment of the Cradle Coast Region of Tasmania, Australia 
(SPOT 5, Blue; band 3, Green; band 2, Red; band 1). 
 

Tasmania
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Figure 4-2 Photograph of the study area. Forest structure varies. Some area has thick mid-storey vegetation 
(top) or understorey vegetation (middle) and other area is more open (bottom). 
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the population grows, change in land use, such as land clearing for grazing, and conversion 

of native forest to plantations is causing terrestrial habitat loss or modification. 

Subdivision of land for residential or industrial development in areas of high vegetation 

conservation value has become an issue. This is the major threat to biodiversity in this area 

(The Cradle Coast Natural Resource Management Committee, 2005). An assessment of the 

present state of ecological structure in forests is useful in forming and implementing a 

conservation strategy. 

 

4.3 LiDAR data 

LiDAR data was acquired over the study area using a RIEGL LMS-Q560 sensor in 

February 2007. The data was custom flown by Airborne Research Australia for the 

Landscape Logic project supported by the Australian Commonwealth Environment 

Research Fund. This is a full waveform system. Table 4-1 shows the specifications for this 

data acquisition. The data provided was decomposed in up to six returns for this study. The 

scan angle for this mission was set to ± 22.5º. The flying height was 500 m above the 

ground, yielding an individual return footprint of approximately 20 cm in diameter. For 

this study, the pulse repetition frequency was 100 kHz and the wavelength of interaction 

was 1550 nm. The overall survey was coordinated using static and rapid static GPS 

methods. This was undertaken to establish a small accurate network of control points to 

position the field sites and validate the LiDAR positional accuracy.   
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Table 4-1 Specifications for the data acquisition. 
 

Sensor RIEGL LMS-Q560 

System Full waveform 

Pulse repetition frequency 100 kHz 

Scan angle ± 22.5º 

Platform altitude 500 m 

Beam divergence angle 0.5 mrad 

Footprint 20 cm 

Pulse width at half maximum 4ns 

Pulse energy 8µJ

Wavelength 1550 nm 

Acquisition date February 2007 

4.4 Field work to support full waveform LiDAR 

Fieldwork was conducted in February 2008. It was conducted in an anniversary (one year) 

of the data capture. It was unfortunate to have one year time difference between LiDAR 

data acquisition and fieldwork. However, no major logging or bush fires were confirmed 

by the research team during this period and the forest condition was similar. 

In this fieldwork, ecological structural information was collected with a newly developed 

method for validation of the LiDAR data. The LiDAR data contains highly accurate 3D 

information, therefore precise and yet practical quantitative method in the field is required. 

The collected field variables include canopy, low vegetation (vegetation up to 1 m from the 

ground), bare ground, grass and litter cover, Leaf Area Index (LAI) for low vegetation, tree 

top height and height to the first branch. The detailed method is explained in the following 

sections. 
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4.4.1 Field plots 

Fig. 4-3 illustrates an example of a plot. At each site a 25 m radius circular plot (0.2 ha) 

was established by defining a centre point and taking a hand-held GPS (eTrex of GARMIN 

Corporation) measurement. This includes a possibility of an average x, y positional error of 

± 5.5 m. The study sites are all natural forests. Some sites have very dense mid- and 

understorey vegetation, which restricts field survey. The hand-held GPS is the only GPS 

instrument we can use in this context, since other techniques such as Real Time Kinematic 

(RTK) and rapid static are not logistically possible. A 0.2 ha sample area was chosen since 

this is a manageable area in natural forests for detailed survey and an equivalent to a 

survey site (i.e. two survey plots) utilised in ‘Biometric’ (Gibbons et al., 2004). A circular 

plot was used since it is easier to set up a plot in the field.  

In this method, five transects, running from East to West, parallel to each other were 

deployed in each plot. Assessment points were located every 7 m along each transect 

comprising a total of 27 assessment points in each plot. Assessment areas of a 3.5 m radius 

circle at each assessment point were used for ground and low vegetation cover assessment. 

In this way, the survey covers most areas within a plot and measurements are carried out 

systematically reducing a sampling bias within a plot and between plots. 

Fourteen plots were established and surveyed in the study area (Fig. 4-4). The plot 

locations were selected by Landscape Logic project team scientists in terms of the plant 

community and the degree of human disturbance. All plots were established in natural 

forests/remnant forest patches of Eucalyptus amygdalina coastal forest and woodland, and 

without any silvicultural practice. They are the representative of the plant community in 

this region. 
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Figure 4-3 Each field plot comprises five transects running from East to West, parallel to each other yielding 
27 assessment points for each (0.2 ha) plot. Small circles (only two shown for clarity) indicate the 3.5 m radius 
assessment areas for understorey cover measurement (these were recorded for each assessment point). 
 

4.4.2 Canopy cover 

Canopy Cover (CC) as a percentage was recorded in two ways. The first method (CC_1)

assessed only photosynthetic elements and was conducted in situ with the aide of 

benchmarked reference photographs (Walker and Hopkins, 1990) at each assessment point. 

This is the similar approach taken by ‘Habitat Hectares’ (Parks et al., 2003), TASVEG 

VCA (Michaels, 2006) and ‘Biometric’ (Gibbons et al., 2004), which were explained in 

Section 2.2.2.2.  

The second method (CC_2) assessed both photosynthetic and non-photosynthetic facets. 

Vertical images from a 1.7 m vantage point at each assessment point were taken by Canon  
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Figure 4-4 Surveyed plots. Fourteen plots were established and surveyed in the study area in February 2008. 
 

EOS20D digital camera. The proportion of photosynthetic and non-photosynthetic facets in 

these images was visually assessed later in the laboratory to calculate CC. The assessment 

process is similar to those of ‘Habitat Hectares’ (Parks et al., 2003), TASVEG VCA 

(Michaels, 2006) and ‘Biometric’ (Gibbons et al., 2004), however, this method includes 

non-photosynthetic facets as well as photosynthetic facets in the calculation. This 
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assessment is important when compared to LiDAR analysis since laser pulses interact with 

both woody components (non-photosynthetic) and foliage (photosynthetic). 

 

4.4.3 Low vegetation  

In this research, low vegetation (Low veg) is defined as vegetation up to 1 m from the 

ground to assess understorey vegetation. Assessment of Low veg was carried out in two 

ways. The first method utilises visual estimation of projected cover of Low veg in a 3.5 m 

radius assessment area at each assessment point.  

The second method measures the LAI for Low veg. This was measured using the LAI2000 

Plant Canopy Analyzer of LI-COR, Inc. at each assessment point. Above-canopy (i.e. at 1 

m from the ground) and below-canopy (i.e. on the ground) of Low veg readings were 

obtained at five zenith angles (0-13˚, 16-28˚, 32-43˚, 47-58˚ and 61-74˚) simultaneously, 

which assesses LAI of Low veg within an approximately 3 m radius circular area. It should 

be noted that the LAI values recorded using this instrument include non-leaf elements such 

as stems and branches.  

 

4.4.4 Ground cover 

Bare ground cover, grass cover and litter cover were recorded visually as a percentage 

within a 3.5 m radius of each assessment point. This followed the standard approach in 

‘Habitat Hectares’ (Parks et al., 2003), TASVEG VCA (Michaels, 2006) and ‘Biometric’ 

(Gibbons et al., 2004), however the number of assessments were greater than the existing 

methods in the same way as the assessment of canopy cover. 
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4.4.5 Coarse woody debris 

Coarse woody debris (CWD) on the ground (defined as woody components ≥ 10 cm in 

diameter) was recorded noting diameter and length of every woody element on each 

transect within a plot. The values of diameter and length are used later for volume 

calculation of CWD. The total volume is considered appropriate in representing the 

amount of CWD, as seen in published studies (e.g. Jonsson and Jonsson, 2007; Pesonen et 

al., 2008). 

 

4.4.6 Tree height 

Tree top height and the height to the first branch were measured using a Total Station, 

TCR705 (Leica Geosystems) for every tree within a plot. Diameter at breast height (DBH) 

was also recorded using a measuring tape. This quantitative measurement is particularly 

important when making comparisons to the LiDAR data. To make the most of accurate 3D 

information from the LiDAR data, quantitative tree height measurement is critical. 

 

4.4.7 Derived field variables 

To assess the structural information of the LiDAR data, field variables were calculated. 

Canopy, bare ground, grass, litter and low vegetation cover information and LAI values 

from each assessment point were summed for each (0.2 ha) plot and presented as a mean. 

To quantify the amount of CWD, the total volume of CWD was calculated for each plot. 

Tree height information was used to calculate vertical canopy depth by subtracting the 
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height to the first branch from tree top height. Canopy depth was weighted by DBH and 

divided into two categories (vegetation between 1 m and 5 m, and vegetation greater than 5 

m). Weighted canopy depth was summed in these categories in each plot. It should be 

noted that the height to the first branch was not recorded for all trees due to the field of 

view being obscured at times. In this case, canopy depth was estimated using the 

regression model (Fig. 4-5) derived from other tree height information which recorded the 

height to the first branch. To quantify the gap (i.e. openings) in high canopy stratum, the 

sum of DBH weighted canopy depth in vegetation greater than 5 m was subtracted from 

the sum of DBH weighted canopy depth in vegetation between 1 m and 5 m. A high value 

for this index is indicative of large gaps in the high canopy stratum. 

 

Figure 4-5 Linear regression between field measured tree top height and canopy depth with 95% mean 
prediction interval. 
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4.5 Conclusion 

In this chapter, a background for a LiDAR full waveform system experiment was provided. 

The study area located in the Rubicon catchment of the Cradle Coast Region of Tasmania, 

Australia was described. The LiDAR system used in this experiment is a full waveform 

system and its specifications of data acquisition were summarised. This LiDAR data 

contains highly accurate and more detailed 3D information than the conventional discrete 

return systems. Therefore precise and yet practical quantitative methods in the field were 

required to validate the information derived from the LiDAR data. New fieldwork 

protocols developed specifically for this LiDAR experiment were detailed and derived 

field variables were also explained. 
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CHAPTER 5 FOREST STRUCTURE ANALYSIS FOR LIDAR 

FULL WAVEFORM SYSTEM EXPERIMENT 

 

5.1 Introduction 

The importance of forest structure information as a surrogate of biodiversity was discussed 

in Section 2.2. The application of LiDAR technology for extracting forest attributes was 

reviewed in Section 2.4.5.2 and 2.4.5.3. The utility and potential of conventional discrete 

return systems for biodiversity were evaluated in Chapter 3. In this chapter, a LiDAR full 

waveform system experiment is conducted to examine whether full waveform system data 

can provide more detailed forest structure information. An eight category forest 

characterisation scheme derived from the LiDAR data is proposed to characterise the 

ecological structure of a dry Eucalypt forest landscape, and validated using field derived 

variables presented in Section 4.4.  

The contents of this chapter have been substantially published as Miura, N. and Jones, S.D., 

2010. Characterizing forest ecological structure using pulse types and heights of airborne 

laser scanning. Remote Sensing of Environment, 114(5): 1069-1076. 

5.2 Forest vertical stratification 

Since the light environment is the primary constraint on energy partition and processing 

(photosynthesis) in forests, a vertical stratification is a logical first-order simplification of 
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the vegetation structure. A vertical stratification is also used in the definition of forests 

internationally (e.g. Intergovernmental Panel on Climate Change, 2003). The study area 

has structurally complex forests dominated by Eucalyptus amygdalina with heathy, sedgy 

and shrubby understorey variants (Harris and Kitchener, 2005). The definition of forest and 

woodland in terms of vertical stratification of vegetation in this area can be found in Harris 

and Kitchener (2005). This defines the forest and woodland as single stem trees greater 

than 5 m in height with more than 5 % projected canopy cover in the area. Although the 

TASVEG VCA (Michaels, 2006)  assesses large trees by referring to the bench mark DBH 

and does not have the definition for forests in terms of height, defining forests using the 5 

m height threshold is considered a critical step in determining the TASVEG ecological 

vegetation community type (Michaels, pers. comm.). For some understorey life form 

categories, TASVEG VCA (Michaels, 2006) has definitions using height. This is 

summarised in Table 5-1. For example, it defines tree (sub-canopy) or large shrub as 

woody plants greater than 2 m in height, medium shrub/small shrub as woody plants up to 

2 m in height, large tussock grass as a robust grass greater than 30 cm in height and 

medium to small tussock grass as a grass between 5 cm and 30 cm in height.  

In this analysis, a 1 m and 5 m threshold was chosen for the vertical stratification of 

vegetation in terms of simplifying these vegetation categories. The minimum vertical 

resolution of the LiDAR data is also an important consideration. The minimum pulse 

interaction gap between two adjacent interactions is approximately 50 cm for this data. 

Therefore it is not sensible to define a forest vertical stratification with classes less than 50 

cm. Vegetation up to 1 m in height includes all grass categories of the TASVEG VCA 

(Michaels, 2006). Similarly, vegetation between 1 m and 5 m in height includes all shrub 

categories. Vegetation greater than 5 m in height represents the canopy of forests. It is 

considered that integrated vegetation categories could show forest structure in this area.  
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Table 5-1 Understorey life form categories that have height definitions in the TASVEG VCA (After Michaels, 
2006). 
 

Life Form Definitions 
Immature tree Tree canopy species greater than 2m in height but less than two thirds of the mature 

canopy height 

Tree (sub-canopy) or large 
shrub 

Woody plants greater than 2 m in height that never form part of tree canopy 

Medium shrub/small shrub Woody plants up to 2 m in height 

Tussock grass A robust grass, usually with more than one flower stalk and large numbers of leaves 
arising from a common, often broad base or clump, greater than 5 cm in height. 

Large tussock grass A robust grass, usually with more than one flower stalk and large numbers of leaves 
arising from a common, often broad base or clump, greater than 30 cm in height 

Medium to small tussock grass A grass, usually with more than one flower stalk and large numbers of leaves arising 
from a common, often broad base or clump, between 5 cm and 30 cm in height 

Non-tussock grass A grass with leaves arranged along single, erect flower stalks, which in turn arise from 
rhizomes or stolons, greater than 5 cm in height  

Medium to small 
sedge/ruch/sagg/lily 

A small sedge or rush or lily with erect flower stalks, from 5 cm to 30 cm in height 

Ground fern and Fern allies A fern-like non-flowering plant, usually with several to many fronds arising from a 
common base, and usually growing to less than 1m in height 

5.3 Methods 

5.3.1 Registration between LiDAR data and field plots  

The hand-held GPS measurements used to locate the plots include a possibility of an 

average x, y positional error of ± 5.5 m as discussed in Section 4.4.1. To compensate for 

this GPS error, and to obtain a better registration between LiDAR data and the field plot 

area, the plots were manually relocated when necessary. First, 25 m radius plot circles were 

created using the plot centre coordinates derived from GPS. The plot circles were then 

placed over LiDAR point cloud using TerraScan software. Individual trees and paths in the 

forest were visible in the viewer. The location of them was used to find true location of the 

plots. The plots were shifted manually if necessary. The maximum shifting of the plots 

were found to be approximately 1.5-2.0 m in this dataset. 
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5.3.2 Proposed forest characterisation scheme 

In order to create a scheme to characterise forest ecological structure, the LiDAR point 

cloud data was first classified into four vertical layers; Ground, Low vegetation (Low veg,

0-1 m from the ground), Medium vegetation (Medium veg, 1-5 m from the ground) and 

High vegetation (High veg, >5 m) using TerraScan software of Terrasolid, Ltd. This is 

shown in Fig. 5-1(a). In this process, ground returns were defined first as Ground using the 

progressive Triangular Irregular Network (TIN) densification algorithm (Axelsson, 1999). 

The height above the ground for each return was calculated by subtracting the TIN height 

from its height value. Subsequently, LiDAR returns from each of these layers were sorted 

into “Types”. In this study, four types of LiDAR returns are defined. Type 1 are singular 

returns, which is to say that only one return was recorded from each emitted pulse of 

energy. Type 2 are first of many returns, that is, part of the pulse of incident energy has 

interacted with a plant facet and been reflected back to the sensor but much of the energy 

has continued through the tree interacting with other structural elements along its path. 

Type 3 are intermediate returns, which are the subsequent interactions of the pulse 

described in Type 2. Type 4 are the last of many returns, which is the last returned pulse 

back to the sensor from an incident pulse. This is shown in Fig. 5-1(b). The total number of 

returns over a sample plot, T is expressed: 

∑∑
=

= =

=
4

1

4

1

i

i j
ijRT (5-1) 

Where R denotes the LiDAR returns, i denotes the classified four layers (1 = High veg, 2 =

Medium veg, 3 = Low veg and 4 = Ground) and j denotes the return types (1 = Type 1, 2 = 

Type 2, 3 = Type 3 and 4 = Type 4). 
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Figure 5-1 LiDAR point cloud classification. (a) LiDAR point cloud data was first classified into four layers; 
Ground, Low vegetation (Low veg, 0-1 m from the ground), Medium vegetation (Medium veg, 1-5 m from the 
ground) and High vegetation (High veg, >5 m). (b) Four types of LiDAR returns; Type 1 (singular returns), 
Type 2 (first of many returns), Type 3 (intermediate returns) and Type 4 (last of many returns). 
 

The number of returns for each Type was calculated for each of the four layers. This 

number was divided by the total number of returns in each plot, resulting in a ratio. Type 1 

and Type 2 returns are the result of the first interaction with objects, which suggests that 

there is opening above this pulse interaction (that is, no interaction above these points). 

The number of returns in Low veg, Medium veg and High veg layers suggests the presence 
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of vegetation in each of these strata. Of particular importance is the presence of Type 3 and 

Type 4 returns in High veg strata, since these indicate the presence of a vertically dense 

canopy. Using the calculated ratios, the following forest characterisation scheme is 

proposed. This is shown in Table 5-2. Where:  

1) Category 1 comprises Type 1 returns from the Ground layer; this represents openings 

above the ground, OG:

T
ROG

41= (5-2) 

2) Category 2 comprises Type 1 and Type 2 from the Low veg layer; this represents 

openings above low vegetation, OL:

T
RROL

3231 +
= (5-3) 

3) Category 3 contains all return types (Type 1, 2, 3 & 4) from the Low veg layer; this 

indicates the presence of understorey vegetation, VL:

T

R

T
RRRRV j

j

L
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1
3

34333231 (5-4)  

4) Category 4 comprises Type 1 and Type 2 from the Medium veg and High veg layers; this 

represents canopy cover, CC:

( ) )(
) ) )((( 12112221323141

12112221

RRRRRRR
RRRRCC

++++++
+++

= (5-5)                
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Since the canopy projected area is calculated, only Type 1 and Type 2 returns are used in 

this equation. It is noted that points lower than 1.7 m from the ground were excluded in 

this calculation to match with the field measurement in canopy cover. 

5) Category 5 comprises Type 1 and Type 2 returns from the Medium veg layer; this 

represents openings above medium vegetation, OM:

T
RROM

2221 +
= (5-6) 

6) Category 6 contains all return types (Type 1, 2, 3 & 4) from the Medium veg layer; this 

indicates the presence of mid-storey vegetation, VM:

T
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7) Category 7 contains all return types (Type 1, 2, 3 & 4) from the High veg layer; this 

indicates the presence of high trees, VH:

T

R

T
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H
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14131211 (5-8) 

8) As a refinement of category 7, category 8 quantifies the vertical density of the high tree 

canopy using only Type 3 and Type 4 returns from the High veg layer; this suggests 

vertically dense canopy of high trees, DH:

T
RRDH

1413 +
= (5-9) 
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Table 5-2 Forest characterisation scheme (FCS). 
 

Category Description LiDAR return ratio 

1 OG opening above the ground Ground Type 1 

2 OL opening above low vegetation Low veg Types 1 and 2 

3 VL presence of understorey vegetation Low veg total (Types 1, 2, 3 and 4) 

4 CC canopy cover Medium veg Types 1 and 2 and High veg Types 1 and 2 

5 OM opening above medium vegetation Medium veg Types 1 and 2 

6 VM presence of mid-storey vegetation Medium veg total (Types 1, 2, 3 and 4) 

7 VH presence of high trees High veg total (Types 1, 2, 3 and 4) 

8 DH vertically dense canopy of high trees High veg Types 3 and 4 

Note that while LiDAR derived VH measures the amount of foliage in the high canopy 

stratum regardless of the spatial distribution of the canopy, LiDAR derived DH estimates 

the vertical density of the high canopy stratum and LiDAR derived CC measures the 

horizontal density of foliage in medium and high canopy strata, using different laser pulse 

return properties. This is further demonstrated in Fig. 5-2. In these simplified forest 

structures, LiDAR derived VH is the same between A and B since VH includes all types of 

returns in High veg stratum. LiDAR derived DH is greater in B because DH uses only Type 

3 and 4 in High veg stratum. On the other hand, LiDAR derived CC is greater in A since 

CC is computed with only Type 1 and 2 in Medium and High veg strata. 

This scheme was subsequently compared to the field variables to validate its utility in 

characterising ecological structure. 
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Figure 5-2 Illustration of forest characterisation scheme for different forest structures A (sparse foliage or low 
optical canopy depth) and B (dense foliage or high optical canopy depth). LiDAR returns are symbolised 
circles as Type 1, triangles as Type 2, crosses as Type 3 and squares as Type 4. VH is the same between A 
and B, however DH is greater in B and CC is greater in A. 
 

5.4 Results 

The LiDAR derived variables were compared to field derived variables over 14 plots in the 

study area. LiDAR derived VL (category 3; presence of understorey vegetation) was a good 

predictor of field recorded LAI for vegetation less than 1 m (R2 = 0.82, P < 0.05), and 

exhibited a moderate correlation with field recorded mean Low veg cover (R2 = 0.58, P <

0.05) shown respectively in Fig. 5-3(a) and (b). As can be seen in Fig. 5-3(a), LiDAR 

derived VL and Field LAI for Low veg were significantly correlated across a range of LAI 

values. Comparison between LiDAR derived VL and field recorded mean Low veg cover 

show a similar trend but reveals that plot 13a was underestimated in the LiDAR.  

Fig. 5-3(c) and (d) illustrate LiDAR derived CC (category 4; canopy cover) was 

significantly correlated with the two ground-based measures of CC 
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R-Square = 0.86 R-Square = 0.84

(c) (d) 

LiDAR CC LiDAR CC 

R-Square = 0.73

(f) 

LiDAR DH

R-Square = 0.68

(e) 

LiDAR VM

R-Square = 0.82

(a)

LiDAR VL

R-Square = 0.58 

(b) 

LiDAR VL
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Figure 5-3 Linear regression results between LiDAR derived Forest Characterisation Scheme (FCS) 
categories and field variables with 95 % mean prediction interval. The labels are surveyed plot names. 

 

(photosynthetic/photosynthetic and non-photosynthetic), with R2 = 0.86 and 0.84, P < 0.05 

respectively. As displayed in Fig. 5-3(c) and (d), LiDAR CC and Field CC were highly 

correlated across a broad range of CC values. It was noted that, in absolute terms, the 

ground-based measures consistently reported a lower CC than LiDAR derived measures.  

LiDAR derived VM (category 6; presence of mid-storey vegetation) displayed a good 

correlation with field derived sum of DBH weighted canopy depth in Medium veg (R2 =

0.68, P < 0.05). This is shown in Fig. 5-3(e). LiDAR derived DH (category 8; vertically 

dense canopy of high trees) and LiDAR derived VH (category 7; presence of high trees) 

showed strong correlations with field derived sum of DBH weighted canopy depth in High 

veg with R2 = 0.73 and 0.71, P < 0.05 respectively. These are displayed in Fig. 5-3(f) and 

(g). Again, these associations were observed across a range of canopy depths in both 

medium vegetation (1-5 m) and high vegetation (> 5 m). 

R-Square = 0.73 

(h) 

LiDAR OM

R-Square = 0.71

(g) 

LiDAR VH
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LiDAR derived OM (category 5; opening above medium vegetation) was strongly 

correlated with field derived opening above Medium veg with R2 = 0.73, P < 0.05 (Fig. 5-

3(h)). 

LiDAR derived OG (category 1; opening above the ground) and OL (category 2; opening 

above low vegetation) showed some correlations with field variables (Table 5-3). Field 

measured total volume of CWD was positively correlated with LiDAR derived OG (R = 

0.542, P < 0.05) and LiDAR derived DH (R = 0.609, P < 0.05). In other words, where there 

is a vertically dense canopy in the high tree layer and an opening above the ground, more 

CWD is expected. The two ground-based measures of CC have negative correlations with 

LiDAR derived OG (R = -0.674 and -0.679, P < 0.01 respectively) and OL (R = -0.909 and -

0.896, P < 0.01 respectively). This suggests that there are fewer openings above the ground 

and low vegetation where canopy cover is high.  

 

Table 5-3 Pearson correlation coefficients between LiDAR derived variables and field variables. 
 

Field total volume 
of CWD 

Field mean 
CC_1 

Field mean 
CC_2 

LiDAR Opening above Ground (OG) .542(*) -.674(**) -.679(**)

LiDAR Opening above Low veg (OL) 0.196 -.909(**) -.896(**)

LiDAR vertically dense canopy of high trees (DH) .609(*) 0.396 0.455

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 

5.5 Discussion 

Of the eight proposed FCS categories, all showed good association when compared against 

field-based metrics. LiDAR derived CC and the two field measured CC assessments all 
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displayed strong positive correlations. Interestingly, the two different assessment methods 

of canopy cover, described in Section 4.4.2, showed similar results (R2 = 0.86 and 0.84). 

One would expect higher correlation between LiDAR CC and Field CC_2, since both 

variables measure all perturbing canopy objects from laser pulse or sun light, while Field 

CC_1 measures only the photosynthetic portion of these objects. In our study site, the 

vegetation community of the canopy strata is evergreen and dominated by an erectophyle 

Eucalypt species. The ratio of leaf area to non-photosynthetic elements (stems and 

branches) should be consistent unless there is defoliation caused by disease. In fact, further 

investigation revealed that CC_1 and CC_2 were significantly correlated with each other 

presenting a Pearson Correlation Coefficient value 0.903 (P < 0.01). In terms of CC values, 

Field CC reports a consistently lower absolute value than LiDAR CC. It is possible that 

ground based measurements misrepresent “true” CC to some degree, as field derived 

measures are based on twenty seven independent observations over a 0.2 ha plot area, 

while LiDAR derived measures are based on more than seven thousand returns in the same 

0.2 ha plot. It is expected then that the LiDAR derived estimates would be more capable of 

assessing CC at a landscape scale.  

The proposed LiDAR derived FCS categories demonstrated the ability of characterising 

spatial distribution of the canopy. LiDAR derived CC estimates the horizontal density of 

foliage in medium and high canopy strata and showed high correlation with field measured 

canopy cover in this strata (Fig. 5-3(c) and (d)). LiDAR derived DH measures the vertical 

density of the high canopy stratum and is well correlated with the field measured canopy 

depth in this stratum (Fig. 5-3(f)). However, DH did not display significant correlation with 

field measured canopy cover (Table5-3). As DH measures the vertical density of the canopy, 

this also explains why DH did not show the correlation with Field CC (Table 5-3), which is 

more dependent on the horizontal distribution of the canopy.  
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Some anomalies are noteworthy, however, if only to illustrate the sensitivity of the 

proposed technology and method. In the comparison between LiDAR derived VL and field 

recorded mean Low veg cover, plot 13a was underestimated using the LiDAR technique. 

Plot 13a has grass and blackberry dominated understorey. It was noted in the field that the 

southern half of the plot was covered with very short (grazed) grass (Fig. 5-4). This could 

lead to misclassification of LiDAR returns. The grass is too short to be classified as Low 

veg and the LAI2000 is not designed to measure such low vegetation. 

In terms of estimating CWD volume, LiDAR derived OG and DH have some potential. The 

positive correlations between these variables suggest that in a forest where large amount of 

CWD is found, large trees with vertically dense canopies and gaps from the ground to 

canopy are present. This is considered logical in natural forests since when a mature tree 

dies and falls, it will create a gap in this area. The relationship between CWD volume and 

the canopy gap also fits with the findings of Pesonen et al. (2008). These authors found 

that the standard deviation in height pulses was the most significant predictor for CWD 

volume, and explained that higher variations in height distribution would result from gaps, 

i.e. tree falls.   

 

5.6 Conclusion 

In conclusion, the proposed FCS method has the ability to characterise some elements of 

the ecological structure of a dry Eucalypt forest landscape. Regression analysis showed 

LiDAR derived variables were good predictors of field recorded variables across a range of 

forest structural types. The proposed scheme demonstrated the potential of different laser 

pulse return properties from a full waveform LiDAR to provide information on the 
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Figure 5-4 Photograph of plot 13a. The top photograph is the southern area of the plot, which was covered 
with very short (grazed) grass.  The bottom photograph is the northern area of the plot. The camera was set at 
the height of 0.5 m from the ground. 
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 complexity of habitat structure in an efficient and cost-effective manner. Detailed forest 

structure information can be extracted. In terms of Spies (1998) proposed components of 

forest structure (Table 2-1), the FCS effectively reports on all elements of component 1 

(foliage) as well as elements of component 4 (tree boles), the volume of fallen trees 

(component 7) and potentially the biomass element of component 8 (Shrub, Herb, and 

Moss Layers). The FCS however is ‘tuneable’ to any designed 3D ecological 

characterisation scheme. It is anticipated that the FCS may have wide applicability in 

characterising forest structure over a range of scales from patch to landscape although this 

assertion clearly requires further investigation.   
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CHAPTER 6 INTENSITY EXPLORATORY ANALYSIS FOR 

LIDAR FULL WAVEFORM SYSTEM EXPERIMENT 

 

6.1 Introduction 

The proposed forest characterisation scheme (FCS) method, using a LiDAR full waveform 

system, to characterise forest structure was demonstrated in Chapter 5. This chapter poses 

the question: can the return intensity of a full waveform system be used to provide further 

forest structure information? Furthermore, is this information common too, or distinct from 

the point density information?  

To date, the utility of LiDAR intensity has been limited due to difficulties with calibration 

and associated problems in interpretation as described in Section 2.4.4.1. The potential to 

use intensity from LiDAR discrete return systems for recovering forest structure 

information was shown in Chapter 3. In this chapter, the return intensity of a LiDAR full 

waveform system is explored. Since the Tasmanian study site contains forests that are 

structurally more complex than those from the previous discrete return system experiment, 

more variation in return intensity is expected. There has been little research to date on 

intensity response of full waveform data from forested landscape.  

In this experiment, the return intensity of LiDAR full waveform system is statistically 

examined first. Then the modified algorithm with LiDAR discrete return system 

experiment (Chapter 3) is applied to LiDAR full waveform system to examine whether 

LiDAR intensity of this system can also recover forest structure variables. Finally, a 

modified FCS is applied incorporating return intensity into this algorithm to test whether it 

can enhance the ability to extract forest structure information.  
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6.2 Methods 

6.2.1 Intensity data 

The LiDAR data used in this analysis is full waveform system data described in Section 

4.3. Note that the data provided was already decomposed in up to six discrete returns. For 

extracting individual return pulses from waveform signals, a Gaussian Pulse Fitting (GPF) 

method was used with the default advanced parameters in the RiANALYZE 560 software 

of RIEGL (RIEGL, 2006). Therefore, the intensity data analysed in this chapter were not 

full waveform signals but the individual peak amplitude (i.e. intensity) of the determined 

return pulses. The detailed decomposition process of this method is found in Wagner et al. 

(2008; 2006). In this analysis, the intensity values were used as sensor outputs without any 

calibration. 

 

6.2.2 Intensity statistics 

In order to have better understanding of LiDAR intensity response from the forested 

landscape, the return intensity was stratified and statistically examined. The LiDAR point 

cloud data was first classified into four vertical layers; Ground, Low vegetation (Low veg,

0-1 m from the ground), Medium vegetation (Medium veg, 1-5 m from the ground) and 

High vegetation (High veg, >5 m), and then LiDAR returns from each of these layers were 

sorted into Types as described in Section 5.3.2. Mean and standard deviation of each type 

in the four layers were calculated for each plot and analysed. 
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6.2.3 The application of algorithm developed using LiDAR discrete return system  

The LiDAR discrete return system experiment demonstrated the potential of LiDAR 

intensity (mean and standard deviation), which were vertically stratified using range 

information and classified utilising return properties, to recover forest structure variables 

(Chapter 3). The combination of mean and standard deviation of first return intensity from 

the ground were also found to be useful to differentiate forest structural types (Chapter 3). 

In this chapter, these algorithms were applied to LiDAR full waveform data. The LiDAR 

intensity variables, which were vertically stratified using range information and classified 

according to return properties as explained in Section 6.2.2, were compared with field 

variables (see Section 4.4) to examine whether there is any correlation. The combination of 

mean and standard deviation of first return intensity from the ground was also tested to 

determine if it can differentiate forest structural types in the study area for the LiDAR full 

waveform experiment (see Section 4.2). 

 

6.2.4 The application of FCS derived from LiDAR full waveform system 

A modified FCS was applied incorporating return intensity into this algorithm. Hopkinson 

and Chasmer (2007; 2009) estimated canopy fractional cover by calculating the ratio of 

the sum of all canopy level return intensities to the sum of total return intensity, and 

achieved a high correlation with fractional cover recovered from ground-based digital 

hemispherical photography. This algorithm, the ‘intensity ratio’ method (Hopkinson and 

Chasmer, 2009) was applied to all categories of FCS. The sum of all return intensity over a 

sample plot, TInt is expressed: 
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Where RInt denotes LiDAR return intensity, i denotes the classified four layers (1 = High 

veg, 2 = Medium veg, 3 = Low veg and 4 = Ground) and j denotes the return types (1 = 

Type 1, 2 = Type 2, 3 = Type 3 and 4 = Type 4).  

The sum of intensity for each Type was calculated for each of the four layers. This sum 

was divided by the sum of all return intensity in each plot, resulting in a ratio. 

Consequently, all categories of FCS are expressed as follows. 

1) Category 1 comprises Type 1 return intensity from the Ground layer; OGInt:

Int

Int
GInt T

R
O 41= (6-2) 

2) Category 2 comprises Type 1 and Type 2 return intensity from the Low veg layer; OLInt:
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3) Category 3 contains intensity of all return types (Type 1, 2, 3 & 4) from the Low veg 

layer; VLInt:

Int

j
jInt

Int

IntIntIntInt
LInt T

R

T
RRRR

V
∑

==
+++

=

4

1
3

34333231 (6-4)  

4) Category 4 comprises Type 1 and Type 2 return intensity from the Medium veg and High 

veg layers; CCInt:
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5) Category 5 comprises Type 1 and Type 2 return intensity from the Medium veg layer; 

OMInt:
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6) Category 6 contains intensity of all return types (Type 1, 2, 3 & 4) from the Medium veg 

layer; VMInt:
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7) Category 7 contains intensity of all return types (Type 1, 2, 3 & 4) from the High veg 

layer; VHInt:
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8) Category 8 contains only Type 3 and Type 4 return intensity from the High veg layer; 

DHInt:

Int

IntInt
HInt T

RR
D 1413 +

= (6-9) 

This intensity version of the scheme was subsequently compared to the field variables (see 
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Section 4.4) to examine whether it can enhance utility of FCS in characterising ecological 

structure. 

 

6.3 Results 

6.3.1 Mean and standard deviation of intensity 

Fig. 6-1(left) illustrates mean intensity for each Type for the four vertical strata in each plot. 

It demonstrates some return intensity characteristics. Type 1 returned highest intensity in 

every vegetation stratum, followed by Type 4, Type 2 and Type 3 in this order (Fig. 6-1, 

left). In terms of the four vegetation layers, High veg stratum returns lowest intensity in all 

plots (Fig. 6-1, left). Mean intensity was found to be slightly higher in Medium veg stratum 

than in High veg stratum (Fig. 6-1, left). Ground stratum returned the highest intensity (Fig. 

6-1, left). It is noted that Ground and Low veg strata had similar trend and mean intensity 

values (Fig. 6-1, left). The difference in mean intensity between types was found to be 

small in High veg stratum, and elevated in Medium veg, Low veg and Ground strata in this 

order (Fig. 6-1, left). Distinctive peaks were found in Plot 10b and 17a in every stratum 

(Fig. 6-1, left). Plot 5b in Medium veg stratum and Plot 13a in Low veg and Ground strata 

also displayed high intensity values (Fig. 6-1, left). 

Fig. 6-1(right) shows standard deviation of intensity for each Type for the four vertical 

strata in each plot. The standard deviation of Type 1 and Type 4 had similar range values in 

Ground and Low veg strata. These were found to be higher than the standard deviation of 

Type 2 and Type 3 in Low veg and Medium veg strata (Fig. 6-1, right). In High veg stratum, 

all types exhibited a similar range of standard deviations (Fig. 6-1, right). Type 2 and Type 
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3 showed a similar range of standard deviation in all strata except Ground which contains 

no Type 2 and Type 3 (Fig. 6-1, right).  

 

6.3.2 Correlation with field variables 

Table 6-1 shows the Pearson correlation coefficients between LiDAR intensity variables 

(mean and standard deviation of intensity for each Type in the four vegetation strata) and 

field variables. Several variables displayed significant correlations. For example, standard 

deviation of Ground Type 1 and Low veg Type 1 were highly negatively correlated with 

Field LAI for Low veg (R = -0.828 and R = -0.853, P < 0.01 respectively) and with Field 

mean Low veg cover (R = -0.722, P < 0.01 and R = -0.608, P < 0.05 respectively), and 

positively correlated with Field CC-1 and Field CC-2 (R = 0.811 and R = 0.757, R = 0.673 

and R = 0.717, P < 0.01 respectively). Standard deviation of High veg Type 1 showed 

significant and positive correlation with Field total volume of CWD (R = 0.785, P < 0.01), 

Field mean tree height (R = 0.698, P < 0.01) and Field sum of DBH weighted canopy depth 

in High veg (R = 0.723, P < 0.01). 

 

6.3.3 Combination of mean and standard deviation of first return intensity from the 

ground 

Fig. 6-2 shows the scatter plot of first return intensity from ground stratum (Mean Ground 

Type 1) and standard deviation of first return intensity from ground stratum (SD Ground 

Type 1). The results did not display the trend found in the LiDAR discrete return system 

experiment (Section 3.7.4), but showed different classification potential. Plots in group A 
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Figure 6-1 Mean intensity (left) and standard deviation of intensity (right) for each Type for Ground, Low veg,
Medium veg and High veg in each plot. 
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Field LAI for
Low veg

Field total volume
of CWD

Field mean
CC_1

Field mean
CC_2

Field mean bare
ground cover

Field mean
grass cover

Field mean
litter cover

Field mean Low
veg cover

Field mean
tree height

Field opening above
Medium veg

Field sum of DBH weighted
canopy depth in High veg

Field sum of DBH weighted
canopy depth in Medium veg

Mean Ground Type 1 -.652* 0.403 0.438 .546* 0.176 0.163 -0.163 -0.459 0.363 -0.185 0.380 -0.077

Mean Ground Type 4 -.615* 0.449 0.326 0.439 0.111 0.094 -0.126 -0.441 0.369 -0.147 0.277 -0.061

Mean Low veg Type 1 -.649* 0.389 0.423 0.527 0.165 0.248 -0.196 -0.453 0.336 -0.193 0.320 -0.020

Mean Low veg Type 2 -0.326 .596* 0.173 0.279 -0.066 -0.031 -0.022 -0.324 0.321 -0.141 0.295 -0.139

Mean Low veg Type 3 -0.274 -0.088 -0.162 -0.192 -0.198 -0.087 0.127 -0.163 -0.204 0.006 -0.448 -0.037

Mean Low veg Type 4 -.611* 0.430 0.328 0.422 0.154 0.190 -0.192 -0.444 0.341 -0.201 0.241 -0.043

Mean Medium veg Type 1 -0.433 0.473 0.101 0.179 -0.026 0.031 -0.034 -0.317 0.447 -0.314 0.225 -0.239

Mean Medium veg Type 2 -.598* 0.129 0.203 0.238 0.056 -0.127 0.029 -0.354 0.236 -0.150 0.088 -0.146

Mean Medium veg Type 3 -0.105 .806** 0.005 0.138 0.056 0.050 -0.092 -0.123 .692** -0.256 0.530 -0.268

Mean Medium veg Type 4 -0.462 0.413 -0.041 0.018 -0.075 -0.139 0.163 -0.235 0.521 -0.252 0.118 -0.204

Mean High veg Type 1 -0.414 0.487 0.222 0.349 -0.005 0.065 -0.053 -0.371 0.369 -0.256 0.287 -0.200

Mean High veg Type 2 -0.454 0.460 0.233 0.335 -0.039 -0.021 0.060 -0.432 0.341 -0.239 0.237 -0.197

Mean High veg Type 3 -0.225 0.397 0.026 0.109 -0.302 -0.231 0.336 -0.263 0.330 -0.300 0.127 -0.334

Mean High veg Type 4 -0.282 .650* 0.102 0.176 -0.001 -0.079 0.040 -0.403 0.428 -0.178 0.284 -0.180

SD Ground Type 1 -.828** -0.126 .811** .757** 0.338 -0.290 0.285 -.722** -0.002 0.211 0.262 0.285

SD Ground Type 4 -.630* 0.464 0.356 0.459 0.123 0.155 -0.143 -0.425 0.404 -0.242 0.344 -0.156

SD Low veg Type 1 -.853** 0.162 .673** .717** 0.323 0.055 -0.065 -.608* 0.214 -0.085 0.371 0.002

SD Low veg Type 2 -0.266 0.345 0.015 0.053 -0.254 0.452 -0.315 -0.116 -0.012 -0.214 -0.076 -0.003

SD Low veg Type 3 -.691* 0.319 0.268 0.270 0.189 -0.075 -0.094 -0.489 -0.170 -0.049 -0.261 0.033

SD Low veg Type 4 -.639* 0.426 0.415 0.506 0.180 0.156 -0.131 -0.478 0.381 -0.232 0.344 -0.095

SD Medium veg Type 1 -0.484 0.271 0.029 0.035 -0.137 0.101 -0.021 -0.219 0.272 -0.360 0.013 -0.239

SD Medium veg Type 2 -.570* 0.102 0.049 0.023 -0.069 -0.228 0.211 -0.292 0.214 -0.238 -0.069 -0.216

SD Medium veg Type 3 -0.515 -0.240 0.250 0.372 -0.005 -0.464 0.384 -0.429 0.072 0.033 -0.143 -0.076

SD Medium veg Type 4 -0.498 0.342 0.087 0.124 -0.036 -0.125 0.135 -0.329 0.456 -0.307 0.120 -0.184

SD High veg Type 1 -0.239 .785** 0.224 0.281 0.048 0.209 -0.079 -0.253 .698** -0.313 .723** -0.268

SD High veg Type 2 -0.375 .655* 0.213 0.266 -0.090 -0.014 0.189 -0.426 .533* -0.229 0.484 -0.284

SD High veg Type 3 -0.396 .548* 0.253 0.344 -0.061 0.042 0.273 -0.390 .537* -0.155 0.510 -0.223

SD High veg Type 4 -0.286 .746** 0.174 0.228 0.080 0.237 -0.116 -0.370 0.460 -0.145 0.504 -0.183
**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Table 6-1 Pearson correlation coefficients between LiDAR intensity variables and field variables.
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(Fig. 6-2) have a high canopy cover and low LAI/cover for low vegetation. Plots in group 

B (Fig. 6-2) have low canopy cover and high LAI/cover for low vegetation. Plot 6a has 

similar site characteristics with group B, however displayed very low mean and standard 

deviation of first return intensity from ground stratum. Plot 10b, 13a and 17a were found to 

have little in common in terms of plot characteristics except they have high mean intensity 

values. Plot 10b has high canopy cover and low LAI/cover for low vegetation, while Plot 

13a has high to moderate canopy cover and high cover for low vegetation, and Plot 17a has 

high canopy cover and moderate LAI/cover for low vegetation. 

 

Figure 6-2 Scatter plot of first return intensity from ground stratum (Mean Ground Type 1) and standard 
deviation of first return intensity from ground stratum (SD Ground Type 1). Labels are surveyed plot names. 
Plots can be classified into three groups; group A, B and other. 
 

A. 

B. 
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Table 6-2 Pearson correlation coefficients between LiDAR derived intensity version of FCS categories and 
field variables. 
 

Field total volume 
of CWD 

Field mean 
CC_1 

Field mean 
CC_2 

LiDAR intensity Opening above Ground (OGInt) .566(*) -.405 -.445

LiDAR intensity Opening above Low veg (OLInt) 0.180 -.896(**) -.879(**)

LiDAR intensity vertically dense canopy of high trees 
(DHInt)

.408 .605(*) .637(*)

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 

6.3.4 FCS intensity 

Fig. 6-3 presents linear regression results between LiDAR derived intensity version of FCS 

categories and field variables. LiDAR intensity derived VLInt (category 3; presence of 

understorey vegetation) showed good correlation with Field LAI for Low veg (R2 = 0.692, 

P < 0.05, Fig.6-3(a)) and moderate correlation with field recorded mean Low veg cover (R2

= 0.56, P < 0.05, Fig 6-3(b)). Fig. 6-3(c) and (d) displayed that LiDAR intensity derived 

CCInt (category 4; canopy cover) were moderately correlated with two field measures of 

CC (R2 = 0.514 and R2 = 0.577, P < 0.05 respectively). LiDAR intensity derived VMInt 

(category 6; presence of mid-storey vegetation) also displayed moderate correlation with 

field derived sum of DBH weighted canopy depth in Medium veg (R2 = 0.555, P < 0.05). 

This is shown in Fig. 6-3(e). LiDAR intensity derived DHInt (category 8; vertically dense 

canopy of high trees) showed a good correlation with field derived sum of DBH weighted 

canopy depth in High veg with R2 = 0.636, P < 0.05 (Fig. 6-3(f)). LiDAR intensity derived 

VHInt (category 7; presence of high trees) was moderately correlated with sum of DBH 

weighted canopy depth in High veg with R2 = 0.465, P < 0.05 (Fig. 6-3(g)). LiDAR 

intensity derived OMInt (category 5; opening above medium vegetation) was strongly 

correlated with field derived opening above Medium veg with R2 = 0.773, P < 0.05 (Fig. 6-
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3(h)). 

Table 6-2 displays the Pearson correlation coefficients between LiDAR derived intensity 

version of FCS categories and the field variables. LiDAR intensity derived OGInt (category 

1; opening above the ground) was positively correlated with field measured total volume of 

CWD (R = 0.566, P < 0.05).  The two field measures of CC showed a negative correlation 

with LiDAR intensity derived OLInt (category 2; opening above low vegetation) with R = -

0.896 and R = -0.879, P < 0.01 respectively and positive correlation with LiDAR intensity 

derived DHInt (category 8; vertically dense canopy of high trees) with R = 0.605 and R = 

0.637, P < 0.05 respectively. 

 

6.4 Discussion 

Intensity information classified according to return types and vertical strata contained 

important and distinct response from the forested landscape. In terms of return types, Type 

1 returned the highest intensity in every vegetation stratum when compared to other types. 

This is expected since Type 1 returns are singular returns and result only from the first 

interaction with objects. They therefore contain the highest return energy. This supports 

previous findings from the discrete return system experiment (Section 3.7.3) and Moffiet et 

al. (2005). The difference in returned intensity between vegetation layers (Fig. 6-1) could 

result from the different composition of components present in each layer. Fig. 6-4 

illustrates typical spectral reflectance curves for vegetation, dry soil and water. The LiDAR 

system, RIEGL LMS-Q560 sensor, used in this study operates at a wavelength of 1550 nm. 

At this wavelength, the reflectance of an individual green leaf is approximately 30 %, and 

less than that of dry soil (approximately 45 %). Since High veg stratum contains the 
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canopy (mainly leaves of high trees), less reflectance from this stratum is expected 

compared to Ground stratum at this wavelength. Furthermore, multiple scattering of laser 

pulses occurs in High veg stratum where the average facet size will be much smaller due to 

leaves. Therefore only low intensity values are recorded for returns from this stratum. It is 

likely that Medium and Low veg strata have more components, such as shrubs, as well as 

leaves of trees. Therefore laser pulses might interact more with larger and more substantial 

woody materials and stronger intensity values are returned. In fact, the standard deviation 

of intensity for Type 1 in Medium and Low veg strata (Fig. 6-1, right) showed greater 

variation than that in High veg stratum. This means that these strata are most likely 

heterogeneous and contains various reflective mediums. It was noted that Low veg and 

Ground strata have similar range and trend of intensity values (Fig. 6-1, left). This could be 

due to misclassification of LiDAR returns. Low veg stratum might contain some Ground 

points. It is always challenge to obtain highly accurate terrain in densely vegetated areas 

and over uneven grounds. Improvements in point classification accuracy would perhaps 

emphasise the differences between Low veg and Ground strata. However, robust methods 

to distinguish these strata could not be developed in the time frame of this research. 

Distinct high values were found in mean intensity for plots, 10b, 13a, 17a and 5b (Fig. 6-1, 

left). The high standard deviation of intensity for these plots means the intensity values are 

very noisy (Fig. 6-1, right). However, logical explanation for these high values could not 

be found. 

The intensity variables calculated for each type in the four vegetation layers showed some 

correlations with field variables (Table 6-1). The results between standard deviation of 

Ground Type 1 and Field LAI for Low veg, Field mean Low veg cover and the two 

measures of field CC suggest that where canopy cover is high, LAI/cover for low 

vegetation is low and the single (first) return standard deviation of intensity in the ground
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Figure 6-3 Linear regression results between LiDAR derived intensity version of FCS categories and field 
variables with 95 % mean prediction interval. The labels are surveyed plot names. 

 

Figure 6-4 Typical spectral reflectance curves for vegetation, dry soil and water (After Davis et al., 1978). 
Arrows show the wavelength for Optech Inc. ALTM and RIEGL LMS-Q560 sensors operation. 
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stratum is high. In other words, where the canopy is horizontally dense, low vegetation 

does not grow thickly and the ground is more likely heterogeneous. The same trend was 

found in the results between standard deviation of Low veg Type 1 and field variables 

(Table 6-1). This trend is different from the results found in the LiDAR discrete return 

system experiment (Section 3.7.1 and 3.7.2), where the results indicate where the canopy is 

dense, grass does not grow thickly and the ground is more likely homogeneous. Since the 

two experiments were conducted in different study sites where forest structures differ 

significantly, diverse outcomes are possible. This means that analysis using intensity 

variables could be site specific. The results between Standard deviation of High veg Type 1 

and field variables (Table 6-1) indicate that where trees are tall, canopy is vertically dense 

or fallen trees are abundant, the high canopy stratum is more likely to be heterogeneous. 

This partially fits with the result found in Section 5.4, which showed significant positive 

correlation between LiDAR derived DH (category 8; vertically dense canopy of high trees) 

and Field total volume of CWD (Table 5-3). Standard deviation of High veg Type 1 can be a 

good predictor for CWD, mean tree height and the canopy depth in high canopy stratum. 

Table 6-1 displayed other significant correlations between intensity variables and field 

variables, however no physical explanation was found, as reported in Pesonen et al. (2008), 

who noted the relationship between the intensity and CWD volume. Further study and 

careful interpretation is required for intensity analysis. 

The combination of mean and standard deviation of first return intensity from the ground 

demonstrated the potential of differentiating forest structural types; sparse canopy with few 

fallen trees or dense canopy with many fallen trees (Section 3.7.4). The same combination 

in this experiment, however, did not show the same ability. The possible reasons are the 

difference in study sites and in systems used. In fact, in the study site for the LiDAR full 

waveform system experiment, more CWD are likely found in the area where large trees 
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with vertically dense canopies and gaps from the ground to canopy are present (Section 

5.5). Different LiDAR variable combinations may be required to recover the same 

structural variable in a different forest landscape. Figure 6-2 displayed the potential to 

classify different forest structural types; high canopy cover and low LAI/cover for the low 

vegetation, and low canopy cover and high LAI/cover for the low vegetation. However, 

this plot characteristic can be obtained using the original FCS easily rather than utilising 

additional intensity information. 

The intensity version of FCS presented promising results (Table 6-2 and Fig. 6-3). 

Category 1, 2 and 8 of intensity version of FCS displayed similar trends with the original 

FCS (Table 5-3), although the degree of significance were slightly different between 

corresponding results (Table 6-2). Category 3 to 8 of the intensity version of FCS showed 

notably similar trends with FCS (Fig. 5-2). This is shown in Fig. 6-3. However, most of the 

linear regression R2 values between intensity version of FCS and field variables displayed 

slightly less correlation than those of the original FCS. In particular, LiDAR derived CCInt 

showed considerably lower correlations with the two measures of field CC (R2 = 0.514 and 

R2 = 0.577, P < 0.05 respectively), compared to significant correlations of LiDAR derived 

CC (R2 = 0.86 and 0.84, P < 0.05 respectively). This is contrary to the findings of 

Hopkinson and Chasmer (2009). These authors estimated the fractional cover across 

multiple forest ecozones using four methods; a canopy cover-to-total first returns ratio, a 

canopy-to-total return ratio, an intensity return ratio and a Beer’s Law modified intensity 

ratio, and found that intensity-based models were better predictors. The difference in 

vegetation species and forest structure in study sites might be one reason for the different 

outcomes. Another reason may be the difference in LiDAR systems used. Hopkinson and 

Chasmer (2009) utilised Optech Inc. ALTM sensors which are discrete return systems and 

operate at a wavelength of 1064 nm. RIEGL LMS-Q560 sensor used in this study operates 
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at a wavelength of 1550 nm. The difference in the wavelength would cause the different 

intensity response. At a wavelength of 1064 nm, green vegetation generally reflects 

approximately 50 % of incident energy and dry soil reflects approximately 35 % of the 

energy (Fig. 6-4). However the reflectance of vegetation drops nearly half, approximately 

30 % and the reflectance of dry soil increases up to approximately 45 % at 1550 nm (Fig. 

6-4). In our dataset, the returned intensity from canopy strata (Medium veg and High veg)

could be too low and the returned intensity from ground stratum (Ground) could be too 

high to compute canopy cover properly due to weaker spectral reflectance of vegetation 

and stronger reflectance of the soil at wavelength of 1550 nm. It might be optimal to utilise 

a wavelength of 1064 nm for recovering green vegetation attributes such as canopy cover. 

However, this needs further study to conclude. The selection of sensor with appropriate 

wavelength for the study would be critical to use intensity information. Different sensor 

and landscape combinations might work to recover particular forest structural information. 

To account for the utility of intensity variables, further application and comparison of 

intensity version of FCS are required.  

 

6.5 Conclusion 

In this chapter, the return intensity of a LiDAR full waveform system was explored to 

examine whether the intensity variables can give an insight into forest structure attributes. 

The exploratory analysis of mean and standard deviation of intensity classified into types 

and vegetation strata revealed that each return type in the four vegetation strata has distinct 

response characteristics. Type 1 returned the highest intensity compared to other types 

regardless of vegetation strata. This was followed by Type 4, 2 and 3 in this order. 
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Returned intensity and its variation were relatively low in the high canopy stratum. The 

highest returned intensity was observed in the ground strata followed by the low and 

medium vegetation strata in this order. Higher intensity variation was found in the medium 

and low vegetation strata. These characteristics would be helpful information to understand 

the intensity response from forested landscape at a given wavelength. Improvements in 

point classification accuracy might be required for better interpretation since the possibility 

of misclassification of the ground points was found. The correlation between intensity 

variables and field variables suggested that standard deviation of Type 1 intensity in the 

ground and the low vegetation strata have the potential to recover LAI/cover for low 

vegetation and canopy cover. Similarly, standard deviation of Type 1 intensity in the high 

canopy stratum displayed the potential to recover CWD amount, mean tree height and 

canopy depth in the high canopy stratum. However, many of significant correlations found 

in the analysis defy physical explanation at this time. It was noted that the analysis using 

intensity variables could be site specific. Further study and careful interpretation are 

required. The algorithm of the LiDAR discrete return system experiment to use the 

combination of mean and standard deviation of first return intensity from the ground for 

forest structural type classification did not work the same way in this analysis. The 

intensity version of FCS clearly showed the potential of recovering field variables, 

however it did not enhance the ability of the original FCS. It was noted that the selection of 

sensor with an appropriate wavelength for the study would be critical to use intensity 

information. Further application of intensity version of FCS is required to account for the 

utility of intensity variables. It is concluded that the original FCS is better option to recover 

forest structure variables at this stage. 
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CHAPTER 7 APPLICATION OF FOREST 

CHARACTERISATION SCHEME  

 

7.1 Introduction 

In this chapter, applications of the previously proposed LiDAR based scheme for 

characterising the ecological structure of a dry Eucalypt forest landscape (FCS) are 

presented. In Section 7.2, the robustness of LiDAR derived FCS is examined by comparing 

two LiDAR datasets of the same area. The scheme is also tested for compatibility with 

commonly used field-based biodiversity metrics. This is discussed in Section 7.3. 

 

7.2 Applicability of forest characterisation scheme for a different LiDAR 

dataset  

7.2.1 Introduction 

Previously proposed FCS categories (see Chapter 5) allowed for quantification of gaps 

(above bare ground, low vegetation and medium vegetation), canopy cover and its density 

as well as the presence of various canopy strata (low, medium and high). The scheme 

demonstrated the potential of full waveform LiDAR to provide information on the 

complexity of habitat structure. This section asks the question: does this scheme work 

equally well using a different LiDAR dataset? It is increasingly common for natural 

resource managers to have multiple LiDAR datasets acquired using different sensors or the 

same sensor with different sensor configurations.  
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It has been reported that different sensors (Næsset, 2009), flying altitude (Goodwin et al., 

2006; Morsdorf et al., 2008; Næsset, 2004; Næsset, 2009), pulse repetition frequencies 

(Chasmer et al., 2006; Næsset, 2005; Næsset, 2009) and scan angle (Goodwin et al., 2006; 

Holmgren et al., 2003) all may affect the point cloud configuration and attributes derived 

from a forest landscape. In studies using discrete return systems, Næsset (2004; 2009) and 

Goodwin et al. (2006) concluded that the different flying altitude was not a major influence 

in recovering forest biophysical properties, however Goodwin et al. (2006) suggests that 

higher flying altitude can reduce the first and last return combinations because of the larger 

footprint size and an insufficient intensity of the laser energy being returned to the sensor. 

A smaller proportion of multiple returns was also reported in higher pulse repetition 

frequency systems due to reduced output energy in emitted laser pulses (Næsset, 2009). 

Holmgren et al. (2003) demonstrated a scanning angle effect in canopy returns. These 

authors reported that the proportion of canopy hits was increased off nadir when the 

scanning angle reaches a critical value for a particular tree species. Similar findings were 

reported by Morsdorf et al. (2008) and Goodwin et al. (2007). The method of decomposing 

full waveform may also have an impact on return properties that can be indentified 

(Wagner et al., 2006). Therefore, it is important to examine the robustness of any proposed 

scheme using the different datasets.  

In this section, the previously proposed FCS is applied to LiDAR data of the same area 

acquired under different specifications and validated using field variables to examine the 

wide applicability and robustness of the proposed scheme. 
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7.2.2 Methods  

7.2.2.1 LiDAR data 

Two LiDAR datasets were used in this study. The initial LiDAR data (LiDAR07) was 

acquired over the study area using a RIEGL LMS-Q560 sensor in February 2007, which 

was described in Section 4.3. This data was used to develop the forest characterisation 

scheme. An additional LiDAR data (LiDAR08) was provided by the State Government of 

Tasmania through the Department of Primary Industries and Water. This was acquired 

using LiteMapper 5600 sensor in March 2008 by the Antarctic Climate & Ecosystems 

Cooperative Research Centre as part of its Climate Futures for Tasmania project. These are 

independently acquired datasets flown by different operators with similar LiDAR systems. 

The specifications for both sensors are summarized in Table 7-1. Note that in both 

specifications the LiDAR systems have the same pulse energy and similar pulse width at 

half maximum. LiDAR08 has a slightly higher pulse repetition frequency (120 kHz), wider 

scan angle (± 30º) and higher platform altitude (800 m) than LiDAR07 (100 kHz, ± 22.5º 

and 500 m, respectively). Although this study utilised full waveform LiDAR systems, each 

data provided was already decomposed in up to six discrete returns by respective data 

providers. For this process, it was confirmed that a Gaussian Pulse Fitting (GPF) method 

for LiDAR07 and a Gaussian Pulse Estimation (GPE) method for LiDAR08 were used 

with the default advanced parameters in RiANALYZE 560 software of RIEGL (RIEGL, 

2006). The accuracy of these methods is nearly identical (RIEGL, 2006). 

 

7.2.2.2 Field data 

The same field data collected in February 2008 and computed, which was presented in 
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Section 4.4, were used for this analysis. 

 
Table 7-1 Specifications for the two LiDAR data acquisition. 
 

LiDAR data LiDAR07 LiDAR08 

Sensor RIEGL LMS-Q560 LiteMapper 5600 (LMS-Q560)

System Waveform Waveform 

Pulse repetition frequency 100 kHz 120 kHz 

Scan angle ± 22.5º ± 30º 

Platform altitude 500 m 800 m 

Beam divergence angle 0.5 mrad 0.5 mrad 

Footprint 20 cm 25 cm 

Pulse width at half maximum 4ns 5ns 

Pulse energy 8µJ 8µJ

Wavelength 1550 nm 1550 nm 

Acquisition date February 2007 March 2008 

7.2.2.3 Forest characterisation scheme (FCS) 

The FCS proposed in Chapter 5 was applied to LiDAR08 and subsequently compared to 

the field variables. Then the results of LiDAR08 were compared to the results of LiDAR07 

to examine applicability and robustness of FCS using the different LiDAR dataset. It 

should be noted that LiDAR derived OG (category 1; opening above the ground) and OL

(category 2; opening above low vegetation) were compared with field derived CC 

according to existing correlations (see Table 5-3). 

 

7.2.3 Results 

The comparison between the LiDAR derived structural characterisation scheme and the 
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field data is shown in Fig. 7-1. LiDAR derived OG (category 1; opening above the ground) 

displayed moderate correlations with field derived CC for both LiDAR07 (Fig. 1(a); R2 =

0.454, P < 0.05) and LiDAR08 (Fig. 1(b); R2 = 0.524, P < 0.05). LiDAR derived CC 

(category 4; canopy cover) was significantly correlated with field derived CC for both 

LiDAR07 (Fig. 1(g); R2 = 0.856, P < 0.05) and LiDAR08 (Fig. 1(h); R2 = 0.826, P < 0.05). 

LiDAR derived OM (category 5; opening above medium vegetation) presented high 

correlations with field derived opening above Medium veg for both LiDAR07 (Fig. 1(i); R2

= 0.731, P < 0.05) and LiDAR08 (Fig. 1(j); R2 = 0.694, P < 0.05). LiDAR derived VM

(category 6; presence of mid-storey vegetation) and the field derived sum of DBH weighted 

canopy depth in Medium veg showed a good correlation for LiDAR07 (Fig. 1(k); R2 =

0.677, P < 0.05) and a moderate correlation with LiDAR08 (Fig. 1(l); R2 = 0.460, P < 0.05). 

LiDAR derived VH (category 7; presence of high trees) was well correlated with field 

derived sum of DBH weighted canopy depth in High veg for both LiDAR07 (Fig. 1(o); R2

= 0.710, P < 0.05) and LiDAR08 (Fig. 1(p); R2 = 0.649, P < 0.05). 

LiDAR derived OL (category 2; opening above low vegetation), VL (category 3; presence of 

understorey vegetation) and DH (category 8; vertically dense canopy of high trees) 

exhibited high correlations with field derived variables for LiDAR07 (Fig. 1(c); R2 = 0.826, 

(e); R2 = 0.823 and (m); R2 = 0.729, P < 0.05, respectively). On the other hand, the same 

categories for LiDAR08 showed similar trends to LiDAR07, however exhibited much 

weaker and not significant correlations (Fig. 1(d); R2 = 0.297, (f); R2 = 0.241 and (n); R2 =

0.307, P < 0.05, respectively). 
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R2 = 0.731 R2 = 0.694 
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Figure 7-1 Linear regression results between LiDAR derived Forest Characterisation Scheme categories of 
LiDAR07 and LiDAR08 and field variables with 95 % mean prediction interval. 

 

7.2.4 Discussion 

The results suggest that Category 1 (opening above the ground), 4 (canopy cover), 5 

(Opening above medium vegetation), 6 (presence of mid-storey vegetation) and 7 

(presence of high trees) are robust and resilient to the different specifications (Table 7-1) of 

these two LiDAR data acquisitions. Category 2 (opening above low vegetation), 3 

LiDAR08 VHLiDAR07 VH

(m) (n) 

(o) (p) 

LiDAR08 DHLiDAR07 DH

R2 = 0.729 R2 = 0.307 

R2 = 0.71 R2 = 0.649 
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(presence of understorey vegetation) and 8 (vertically dense canopy of high trees) are 

considered somewhat susceptible to changes in sensor configurations. Since calculations of 

these categories used all types of Low veg and Type 3 and 4 of High veg, it is possible that 

these particular return type ratios were affected by the difference in LiDAR data 

acquisitions.  

Note also that LiDAR07 and LiDAR08 use different methods for the decomposition of the 

waveform data and have different flying altitudes, pulse repetition frequencies and scan 

angles. The method of decomposing the waveform has been reported to potentially impact 

return properties (Wagner et al., 2006), however, this is unlikely to be the case for our 

datasets, since the two methods are similar and report an identical level of accuracy.  

LiDAR08 was derived at higher flying height, higher pulse repetition frequency and wider 

scan angle than LiDAR07. Previous studies using discrete return systems have reported 

that these specifications may affect the point cloud configuration and attributes derived 

from a forest landscape (e.g. Goodwin et al., 2006; Næsset, 2009). In our datasets, 

LiDAR08 displayed more Type 1 and less Type 2, 3 and 4 than LiDAR07 (Fig 7-2). In 

another words, LiDAR08 has more singular returns and less multiple returns. Since the 

comparison of mean intensity for each plot between LiDAR07 and LiDAR08 showed 

consistently lower intensity in LiDAR08 (Fig. 7-3), it is likely that the increased pulse 

repetition frequency for LiDAR08 caused a reduction in energy per emitted laser pulse, 

resulting in a smaller portion of multiple returns; as reported by Næsset (2009).  

Comparing the proportion of total returns in the four strata: Ground, Low veg, Medium veg 

and High veg, for each plot between LiDAR07 and LiDAR08, it was found that the 

proportion of total returns for LiDAR08 was consistently larger in Ground stratum and 
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smaller in Low veg stratum, while it was nearly identical between the two datasets in 

Medium veg and High veg strata respectively (Fig. 7-4). Fig. 7-5 shows the proportion of 

each return type for each plot in Ground, Low veg, Medium veg and High veg strata for 

LiDAR07 and LiDAR08. In Ground stratum, the proportion of Type 4 exhibited a similar 

range in both the LiDAR07 and LiDAR08; however the proportion of Type 1 was found to 

be much larger in LiDAR08 (Fig. 7-5). In Low veg stratum, the proportion of all types was 

found to be smaller in LiDAR08 (Fig. 7-5). In particular, the proportion of Type 4 was 

found to be much smaller (Fig. 7-5). In the Medium veg and High veg strata, it was found 

that the proportion of Type 1 was larger in LiDAR08, while the proportion of Type 2 was 

larger in LiDAR07 (Fig. 7-5). In these strata, the proportion of Type 3 and 4 was found to 

be much smaller in LiDAR08 (Fig. 7-5). In particular, the proportion of Type 3 was close 

to 0 % in most plots (Fig. 7-5). These results suggest an insufficient proportion of returns 

in the Low veg stratum, particularly a reduced number of Type 4 interactions, and this may 

explain the reason for weaker correlation with field variables in Category 2 (opening above 

low vegetation; OL) and Category 3 (presence of understorey vegetation; VL). Another 

consideration is that the scarce proportion of Type 3 in High veg stratum may explain the 

poor correlation with field variables in Category 8 (vertically dense canopy of high trees; 

DH). 

In terms of the flying altitude, its effect on the portion of single/multiple returns in 

LiDAR08 may be mitigated since the footprint sizes are similar between LiDAR07 and 

LiDAR08. Morsdorf et al. (2008) suggested that the vertical separation of objects was 

dependent on flying altitude contrary to the understanding that minimum vertical distance 

between objects will increase with an increase only in pulse width (Baltsavias, 1999). In 

either case, this effect may not be profound since the minimum separation distance of 

objects within an emitted pulse is fairly small, approximately 30 cm in LiDAR08 
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It has been reported that a greater scan angle (off nadir) increases the proportion of canopy 

returns (e.g. Holmgren et al., 2003). However, our datasets did not show this effect, with 

minimal differences in the proportion of returns in Medium veg and High veg strata (Fig. 7-

4) between different scan angles noted. Furthermore, the FCS Category 4 (canopy cover; 

CC) worked equally well using the wider scanning angle of LiDAR08. The effect of 

scanning angle was not observed in this study. 

 

Figure7-2 Proportion of each return type in LiDAR07 (grey bars) and LiDAR08 (white bars). 

 

Figure7-3 Mean intensity for each plot in LiDAR07 (grey bars) and LiDAR08 (white bars). 
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Figure 7-4 Proportion of total returns for each plot in Ground, Low veg, Medium veg and High veg strata for 
LiDAR07 and LiDAR08. 
 

7.2.5 Summary of applicability of forest characterisation scheme for a different 

LiDAR dataset 

As a result of this multiple dataset comparison, it was concluded the FCS Category 1 

(opening above the ground; OG), Category 4 (canopy cover; CC), Category 5 (opening 

above medium vegetation; OM), Category 6 (presence of mid-storey vegetation; VM) and 

Category 7 (presence of high trees; VH) were robust and resilient to the LiDAR data 

acquired under different specifications. Category 2 (opening above low vegetation; OL), 

Category 3 (presence of understorey vegetation; VL) and Category 8 (vertically dense 

canopy of high trees; DH) were found somewhat susceptible to changes in sensor 

configurations, especially variations in the pulse repetition frequency. To maintain a good  
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Figure 7-5 Proportion of each return type; Type 1 (white bars), Type 2 (grey bars), Type 3 (black bars) and 
Type 4 (stripe bars), for each plot in Ground, Low veg, Medium veg and High veg strata for LiDAR07 and 
LiDAR08. 

LiDAR07 LiDAR08
Ground Ground 

Low veg Low veg 

High veg High veg 

Medium veg Medium veg 
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performance for all categories of the forest characterisation, obtaining sufficient multiple 

returns by setting an appropriate pulse repetition frequency is the key. Next step would be 

to test this scheme in different forest ecosystems. 

 

7.3 Applicability of LiDAR based forest characterisation scheme for 

field-based biodiversity metrics 

7.3.1 Introduction 

Traditional vegetation assessment methods require costly fieldwork and are often laborious, 

having a subjective element such as comparison to the benchmark in the case of 

assessment methods in Australia. Therefore an efficient and cost-effective assessment tool 

to compliment these surveys would be ideal (Section 2.2.2). The proposed forest 

characterisation scheme (FCS) aimed to quantitatively measure surrogates of biodiversity 

and variables widely utilised in vegetation monitoring systems in Australia. The proposed 

FCS was validated against a custom made ground sampling method and showed promising 

results (Chapter 5). This rises a question: can the proposed FCS directly be incorporated 

into and complement traditional survey methods? In this section, the previously proposed 

FCS is tested for compatibility with commonly used field-based biodiversity metrics. 

 

7.3.2 Methods 

7.3.2.1 LiDAR data 

LiDAR data acquired in February 2007 using a RIEGL LMS-Q560 sensor was used for 
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this study. The specification of data acquisition is described and listed in Section 4.3 and 

Section 7.2.2.1. This data was used to develop the FCS presented in Chapter 5. Eight 

categories of the FCS are compared with commonly used field-based biodiversity metrics 

to examine their compatibility. 

 

7.3.2.2 Field-based biodiversity metrics 

Fieldwork was conducted in February 2007, which was synchronised with the LiDAR data 

acquisition date, by the Landscape Logic project team members. In this fieldwork, native 

vegetation condition was assessed using the ‘BioMetric’ tool (Gibbons et al., 2004). As 

presented in Section 2.2.2, this survey method is a plot based and measures indigenous 

plant species, native overstorey, midstorey and ground cover, exotic plant cover, the 

number of trees with hollows, regeneration, total length of fallen logs and number of stems 

in specified diameter classes. Assessed variables and methods used in this fieldwork are 

summarised in Table 7-2. These measurements are scored against the bench mark and 

integrated to produce site values. Although the site value may be a good indication of 

native vegetation condition, scoring methods are locally specific and the integrating 

process may lose much of the detailed information. In terms of biodiversity assessments, 

the utility of the site values would be limited since they are comprehensive scores and do 

not provide individual quantitative measurements which are often required for ecological 

applications such as habitat suitability models. It is also difficult to compare different 

forests in different geographical regions where the bench mark system is not utilised. The 

universal quantitative variables such as the percent cover of canopy and LAI would be able 

to provide more utility. Furthermore, the site values are computed based on individual 

assessments of the variables. It is considered more important to investigate individual 
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variables. In this study, individual variables of field measurements such as overstorey 

cover are used for comparison with LiDAR based FCS. 

 

7.3.2.3 Comparison between LiDAR based forest characterisation scheme and field-based 

biodiversity metrics 

Nine sites were selected due to availability of both LiDAR and field datasets.  One site 

consists of two 20 m ×50 m field plots and a 0.2 ha LiDAR plot (Fig. 7-6). To compare 

with the FCS, field data was calculated. Overstorey cover and Midstorey cover were 

assessed at 20 points within the two plots. These percentage covers were summed and the 

mean was computed. Shrub, Grass and Ground species cover were recorded as presence or 

absence at 100 points within the two plots. They were converted into percent cover 

calculating as the total number of presence divided by the total number of points measured 

(Gibbons et al., 2004). Logs are computed as a total length and total volume in the two 

plots. Crown closure was ranked according to the recorded classes; dense, mid-dense, 

sparse, very sparse and isolated. Mean ranking was calculated for the two plots. The rest of 

the variables were excluded from the comparison due to lack of equivalent categories in 

the FCS. 

 

7.3.3 Results 

Field-based Overstorey showed positive, but not strong correlation with LiDAR derived 

CC (R2 = 0.29, P < 0.05) and moderate correlation with VH (R2 = 0.42, P < 0.05). This is 

shown in Fig. 7-7(a) and (b) respectively. Field-based Midstorey (Fig. 7-7(c)) did not 
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Table 7-2 Assessment variables and methods for the fieldwork in February 2007. The methodology follows the 
BioMetric vegetation condition assessment methods (Gibbons et al., 2004). 
 

Variable Sampling unit Assessment method 

Native species 
richness 

20m x 20m 
quadrat 

Record the number of species found in each of the five listed life-forms 
(canopy, mid-storey, shrubs, grasses and ground species).  Note the dominant 
canopy species across the site and any other dominant species. 
 

Stumps and dead 
trees 

20m x 50m 
plot 
 

Record the number of dead trees and stumps within the plot area. 

Hollow-bearing 
trees 

20m x 50m 
plot 

Record the number of trees present with at least one hollow.  Hollows must 
be at least 5cm in diameter, have visible depth and be at least 1m above the 
ground. 
 

Crown closure 20m x 50m 
plot 

The general level of tree crown closure across the plot area is recorded using 
defined classes; dense (tree crowns touching to overlapping), mid-dense (tree 
crowns touching to slightly separated), sparse (tree crowns clearly separated), 
very sparse (tree crowns well separated) and isolated (tree crowns >100m 
apart). 
 

Tree diameter 
classes 

20m x 50m 
plot 

Record the number of tree stems present within given dbh classes.  Classes 
used in this project are: <5cm, 5-20cm, 20-40cm, 40-60cm, 60-80cm >80cm.  
If a tree has multiple stems, measure the largest stem. 
 

Regeneration 20m x 50m 
plot 

Regeneration is measured as the percentage of canopy species present at the 
site that are regenerating.  Regeneration is taken as tree stems with a diameter 
<5cm. 
 

Logs 20m x 50m 
plot 

Record the length and diameter of logs within the plot area.  Logs must have a 
diameter greater than 10cm and be at least 50cm long.  Only those parts of the 
log lying within the plot are measured. 
 

Overstorey cover 50m transect Estimate percent cover at 10 intervals (every 5m) along the transect.  Canopy 
cover and health and mid-storey cover can be estimated using the visual 
guides provided. The average percent cover is then calculated from these 
point assessments. 
 

Overstorey 
health 

50m transect 

Midstorey cover 50m transect 

Shrub cover 50m transect At 50 points (every 1m) along the transect, record the presence or absence of 
each life-form.  Percent cover is the calculated as the total number of present 
divided by the total number of points measured. Grass cover 50m transect 

Ground species 
cover 

50m transect 

Exotic species 
cover 

50m transect 

Organic litter 
cover 

50m transect 

Exposed rock 50m transect 

Bare ground 50m transect 
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Figure 7-6 Two 20 m × 50 m field plots (grey area) and a 0.2 ha LiDAR plot (dashed circle). 
 

exhibit strong correlation with LiDAR VM (R2 = 0.21, P < 0.05). Field-based Shrub was 

moderately correlated with LiDAR derived VL (R2 = 0.42, P < 0.05). This is displayed in 

Fig. 7-7(d). As shown in Fig. 7-7(e) and (f), field-based Grass and Ground species were 

not correlated with LiDAR derived VL (R2 = 0.26 and R2 = 0.22 respectively, P < 0.05). 

Field-based Crown closure did not exhibit correlation with LiDAR derived CC (Table 7-3).  

Table 7-4 displayed correlation between field-based total length of Logs and all of FCS 

categories. None of the correlations was significant between these variables. Field-based 

total volume of Logs was also not significantly correlated with any of the FCS categories 

(Table 7-5). 

 

Table 7-3 Correlation between field-based Crown Closure and LiDAR derived CC.

LiDAR CC

Spearman's rho Crown closure Correlation 
Coefficient 0.225 

40 m 

50 m 
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Figure 7-7 Linear regression results between LiDAR derived FCS and field variables (percentage cover) with 
95% mean prediction interval.  

10.00 20.00 30.00 40.00

LiDAR VH

0.00

10.00

20.00

30.00

40.00

O
ve

rs
to

re
y

W

W

W

W

W

W

W

W

W

10.00 20.00 30.00 40.00

LiDAR CC

-10.00

0.00

10.00

20.00

30.00

40.00

O
ve

rs
to

re
y

W

W

W

W

W

W

W

W

W

(a) (b) 

R-Square = 0.29 R-Square = 0.42

LiDAR CC LiDAR VH

0.00 10.00 20.00 30.00 40.00

LiDAR VM

0.0

10.0

20.0

M
id

st
or

ey

W

W

W

W

W

W
W

W

W

(c) (d) 
20.00 30.00 40.00 50.00

LiDAR VL

0.00

20.00

40.00

60.00

Sh
ru

b
W

W
W

WW
W

W

W

W

R-Square = 0.21 R-Square = 0.42

LiDAR VM LiDAR VL

20.00 30.00 40.00 50.00

LiDAR VL

25.00

50.00

75.00

100.00

G
ra

ss

W

W

W

W

W

W

W

W

W

20.00 30.00 40.00 50.00

LiDAR VL

0.00

25.00

50.00

75.00

G
ro

un
d

sp
ec

ie
s

W

W

W

W

W

W

W

W

W

(e) (f) 

R-Square = 0.26 R-Square = 0.22

LiDAR VL LiDAR VL



146 

 Table 7-4 Correlation between field-based total length of Logs and LiDAR derived forest characterisation 
scheme categories. 
 

Table 7-5 Correlation between field-based total volume of Logs and LiDAR derived FCS. 
 

LiDAR 
OG

LiDAR 
OL

LiDAR 
VL

LiDAR 
CC 

LiDAR 
OM

LiDAR 
VM

LiDAR 
VH

LiDAR 
DH

Total volume 
of Logs 

Pearson 
Correlation -0.190 -0.314 -0.353 0.263 -0.332 -0.273 0.485 0.212 

7.3.4 Discussion 

None of the field-based variables was significantly correlated with the FCS categories. 

Considering the strong correlation between the FCS categories and field variables 

presented in Chapter 5, the weak association in the results could be explained by the field-

based biodiversity metric used in this analysis. Overstorey measurement showed a 

moderate correlation with LiDAR derived VH, but a weak correlation with LiDAR derived 

CC (Fig. 7-7(b) and (a) respectively). In the field methodology of BioMetric Tool (Gibbons 

et al., 2004), Overstorey is defined as the cover of tallest woody stratum above 1 m. The 

“tallest woody stratum” is site dependant and prone to observer bias. LiDAR derived CC 

measures all projected vegetation coverage above 1.7 m and LiDAR derived VH estimates 

the amount of foliage greater than 5 m. Compared to the clear definition of LiDAR derived 

variables, the field-based variable includes a large amount of uncertainty in what is 

assessed. It is likely that Overstorey measures only a part of what LiDAR derived CC and 

VH assess. However, it is not possible to quantify this, therefore making comparison 

difficult. A more quantitative and objective approach is required for the field-based 
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Total length of 
Logs 

Pearson 
Correlation -0.440 -0.489 -0.422 0.539 0.313 0.288 0.177 0.145 
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biodiversity metric. 

This would be also true for the comparison between Midstorey and LiDAR derived VM (Fig. 

7-7(c)). LiDAR derived VM estimates the amount of foliage between 1 m and 5 m from the 

ground. On the other hand, the field-based variable, Midstorey measures vegetation cover 

between overstorey stratum and 1 m in height. Since the overstorey stratum varies, it is 

hard to identify “below the overstorey stratum” and keep consistency in the measurement. 

For Shrub, Grass and Ground species, the definition of vertical stratification is the same as 

LiDAR derived VL, which is the vegetation up to 1 m from the ground. Although the field-

based variables assess the individual vegetation component separately while LiDAR 

derived VL measures all vegetation in the stratum, the computation method in the field-

based variables seems more problematic than the difference in assessed vegetation. The 

percentage cover of Shrub, Grass and Ground species is calculated as the total number of 

presence divided by the total number of points measured. This conversion of the qualitative 

data into quantitative data can be quite misleading, because the presence of particular 

vegetation at assessment points does not necessarily inform how much the particular 

vegetation covers at that point. It could be easily overestimated. In fact, the sum of Shrub,

Grass and Ground species cover exceeds 100 % in some sites. The comparison based on 

this calculation may not be reliable. 

Crown closure represents the degree of tree crowns interlocking/separation in a plot. It 

assesses the same element with LiDAR derived CC, which is horizontal projected coverage 

of canopy. However, the correlation between them was quite weak or absent (Table 7-3). 

Crown closure was assessed on a plot basis. One can imagine that the canopy is 

overlapping each other in some areas as well as being separated in other areas within a plot. 
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Selecting only one class out of five Crown closure classes for a plot is very subjective. It 

could be misinterpreted. 

Neither the total length nor volume of Logs displayed significant correlation with LiDAR 

derived FCS categories as the total volume of CWD showed in Chapter 5. The reason of 

the weak association is difficult to identify. 

 

7.3.5 Summary of applicability of LiDAR based forest characterisation scheme for 

field-based biodiversity metrics 

In conclusion, LiDAR based FCS was not compatible with commonly used field-based 

biodiversity metrics. As discussed above, the main reason is considered to be that the field-

based biodiversity metrics utilised in this study were assessed in more qualitative and 

subjective way compared to LiDAR derived quantitative and objective measurements. The 

field-based biodiversity metrics include important qualitative assessments such as Native 

species richness, Hollow-bearing trees and Regeneration, which are variables LiDAR 

derived FCS is not capable of measurement. However, refinement in field methodology 

would be necessary for measuring structural variables to maximise the utility of LiDAR 

derived FCS in their metrics. Quantitative ground-based measurements, using equipment 

such as laser rangefinders and the LAI2000 Plant Canopy Analyser, are highly 

complementary to LiDAR assessments (Section 4.4 and Chapter 5). It is recommended to 

incorporate their use into the condition monitoring systems themselves. 
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7.4 Conclusion 

LiDAR sensors are evolving quickly, existing sensors are upgraded frequently and the 

number of available datasets is increasing rapidly. Analysis of multi-temporal LiDAR 

datasets is particularly important when the datasets are acquired with different sensors or 

the same sensor with different sensor configurations. This is since these differences may 

affect point cloud configurations and attributes derived from forested landscapes. In 

Section 7.2, the applicability and robustness of a LiDAR based FCS was examined using 

datasets acquired with different sensor specifications. As a result of this multiple dataset 

comparison, it is concluded the FCS Category 1 (opening above the ground; OG), Category 

4 (canopy cover; CC), Category 5 (opening above medium vegetation; OM), Category 6 

(presence of mid-storey vegetation; VM) and Category 8 (presence of high trees; VH) were 

robust and resilient to the LiDAR data acquired under different specifications. Category 2 

(opening above low vegetation; OL), Category 3 (presence of understorey vegetation; VL)

and Category 7 (vertically dense canopy of high trees; DH) were found somewhat 

susceptible to changes in sensor configurations, especially variations in the pulse repetition 

frequency. It is reported that the increased pulse repetition frequency causes a reduction in 

energy per emitted laser pulse, resulting in a smaller portion of multiple returns (Næsset, 

2009). To maintain a good performance for all categories of the forest characterisation, 

obtaining sufficient multiple returns by setting an appropriate pulse repetition frequency is 

the key. 

Traditional vegetation assessment methods require costly fieldwork and are often laborious, 

therefore an efficient and cost-effective assessment tool to compliment these surveys 

would be ideal. The proposed FCS aimed to quantitatively measure surrogates of 

biodiversity and variables widely utilised in vegetation monitoring systems in Australia. 
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The analysis of compatibility, of this LiDAR derived scheme, with commonly used field-

based biodiversity metrics suggested that LiDAR based FCS was not compatible with 

commonly used field-based biodiversity metrics due to the qualitative and subjective 

survey methods of these field-based metrics. Refinement in field methodology would be 

necessary for measuring structural variables to maximise the utility of LiDAR derived FCS 

in their metrics. Quantitative ground-based measurements, using equipment such as laser 

rangefinders and the LAI2000 Plant Canopy Analyser, are highly complementary to 

LiDAR assessments. It is recommended to incorporate their use into the condition 

monitoring systems themselves. It would be then relatively simple to modify field-based 

biodiversity metrics, such as ‘Habitat Hectares’ (Parks et al., 2003) in Victoria, the 

‘Biometric’ tool (Gibbons et al., 2004) in New South Wales and TASVEG VCA (Michaels, 

2006) in Tasmania, to include a LiDAR derived total sample of woody/vegetation 

structural variables, given that suitable LiDAR datasets exist or are planned in all of these 

states in Australia. The field-based biodiversity metrics include important qualitative 

assessments such as Native species richness, Hollow-bearing trees and Regeneration in 

‘Biometric’ tool (Gibbons et al., 2004), which are variables LiDAR derived FCS is not 

capable of measurement. Field survey would still be required. However, the combination 

of the LiDAR derived FCS and field-based biodiversity metrics could minimise costly 

fieldwork saving laborious process, and allow efficient, quantitative total sampling 

assessment with high-spatial coverage in these vegetation condition monitoring systems. 
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CHAPTER 8 THE UTILITY OF LIDAR FOR LANDSCAPE 

BIODIVERSITY ASSESSMENT 

 

8.1 Introduction 

This thesis investigated the potential of Light Detection and Ranging (LiDAR) to inform 

landscape biodiversity assessments. The objective of this research was to develop a robust, 

quantifiable and repeatable method able to measure a surrogate of biodiversity. In 

particular, the ability of LiDAR technology to recover forest structure information was 

examined. In this chapter, research questions are restated and discussed. The results and 

findings presented in this thesis are comprehensively evaluated. The utility of LiDAR for 

landscape biodiversity assessments is assessed as well as a future research agenda set. 

Accordingly, the following research questions were posed. 

1. What, if any, forest structure information can be extracted from data produced 

by a LiDAR discrete return system? 

2. Does a LiDAR full waveform system provide additional or higher quality forest 

structure information? 

3. Can LiDAR intensity values be used to recover forest structure information? 

4. Can the utility of LiDAR compliment traditional ecological survey methods? 

In order to address these questions, experiments using LiDAR discrete return (Chapter 3) 

and full waveform systems (Chapter 5, 6, and 7) were conducted following a 
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comprehensive literature review (Chapter 2). The background and a new fieldwork 

protocol for the full waveform system experiments were also described (Chapter 4). An 

eight category forest characterisation scheme (FCS) derived from a LiDAR full waveform 

system was proposed and validated using field derived variables (Chapter 5). Intensity 

variables derived from LiDAR full waveform were explored to determine their utility 

(Chapter 6). The applicability of the proposed scheme was also examined by comparing 

two independent LiDAR full waveform datasets of the same area and by comparing the 

LiDAR derived FCS to commonly used field-based biodiversity metrics (Chapter 7).  

 

8.2 What, if any, forest structure information can be extracted from data 

produced by a LiDAR discrete return system? 

Conventional LiDAR discrete (first and last) return systems are the most commonly 

deployed airborne laser scanning systems and are widely available to natural resource 

managers. In this thesis, a conventional discrete return system was examined to determine 

whether forest structure information can be extracted from the data (Chapter 3). As a result 

of the LiDAR discrete return system experiment, it was concluded that conventional 

discrete return systems can be used to recover forest structure information for forests with 

an ecologically simple structure (i.e. single tree species with no mid- and understorey 

vegetation except grass and relatively flat terrain). If the study site includes structurally 

complex forests, it would be better options to use the latest discrete (multiple) return 

systems or full waveform systems.  

LiDAR intensity, vertically stratified using range information, has potential to recover 

canopy cover, grass cover and the amount of fallen trees. The combination of LiDAR 
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intensity mean and standard deviation can be used to differentiate forest structural types in 

this study area; sparse canopy with few fallen trees or dense canopy with many fallen trees. 

Utilising standard deviation of intensity as a variable could be one solution in using 

intensity data since it avoids the intensity calibration issues. It was noted that first returns 

are better variables for a conventional discrete (first and last) return system analysis, since 

last returns were affected by the amount of remaining energy in the pulse and did not show 

significant correlation with field variables as the first returns displayed. In terms of data 

preparation, it is recommended that LiDAR point data should be accompanied by 

information regarding its return properties such as singular returns or first of many returns 

since this information could have the impact on the results. 

 

8.3 Does a LiDAR full waveform system provide additional or higher 

quality forest structure information? 

An eight category forest characterisation scheme (FCS) was created using pulse return 

types and range information from a full waveform LiDAR (Chapter 5). The proposed FCS 

successfully showed the potential to quantitatively measure surrogates of biodiversity. This 

method allows for quantification of the vertical gap structure (i.e. gaps above bare ground, 

low vegetation and medium vegetation), canopy cover and its vertical density as well as 

the presence of various canopy strata (low, medium and high). Regression analysis showed 

all LiDAR derived variables were good predictors of field recorded variables (e.g. R2 =

0.86, P < 0.05 between LiDAR derived canopy cover and field derived canopy cover) 

across a range of forest structural types. The proposed scheme demonstrated the potential 

of different laser pulse return properties from a full waveform LiDAR to provide 
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information on the complexity of habitat structure in an efficient and cost-effective manner.  

The FCS was further evaluated using an independently acquired full waveform LiDAR 

dataset of the same area with a slightly different system specification (Section 7.2). 

Analysis of multi-temporal LiDAR datasets is particularly important when the datasets are 

acquired with different sensors or the same sensor with different sensor configurations. 

This is since these differences may affect point cloud configurations and attributes derived 

from forested landscapes. As a result of this multiple dataset comparison, it was concluded 

the FCS Category 1 (opening above the ground; OG), Category 4 (canopy cover; CC), 

Category 5 (opening above medium vegetation; OM), Category 6 (presence of mid-storey 

vegetation; VM) and Category 7 (presence of high trees; VH) were robust and resilient to the 

LiDAR data acquired under different specifications. Category 2 (opening above low 

vegetation; OL), Category 3 (presence of understorey vegetation; VL) and Category 8 

(vertically dense canopy of high trees; DH) were found somewhat susceptible to changes in 

sensor configurations, especially variations in the pulse repetition frequency. To maintain a 

good performance for all categories of the forest characterisation, obtaining sufficient 

multiple returns by setting an appropriate pulse repetition frequency is the key.  

 

8.4 Can LiDAR intensity values be used to recover forest structure 

information? 

The utility of LiDAR intensity to provide forest structure information was examined in the 

two experiments. First experiment using a LiDAR discrete return system showed the 

potential of intensity (mean and standard deviation) variables to recover forest structure 
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information for forests with an ecologically simple structure as described in Chapter 3.  

The second experiment using a LiDAR full waveform system over structurally more 

complex forests (Chapter 6) suggested that the standard deviation of Type 1 intensity in the 

ground and the low vegetation strata have the potential to recover LAI/cover for low 

vegetation and canopy cover. Similarly, standard deviation of Type 1 intensity in the high 

canopy stratum displayed the potential to recover CWD amount, mean tree height and 

canopy depth in the high canopy stratum. The standard deviation of intensity seems to be a 

useful variable in the full waveform system experiment as well as in the discrete return 

system experiment. However, many of the other significant correlations found between 

intensity variables and field variables defy physical explanation at this time. It was noted 

that the analysis using intensity variables could be site specific and therefore not generally 

applicable. The algorithm of the LiDAR discrete return system experiment to use the 

combination of mean and standard deviation of first return intensity from the ground for 

forest structural type classification did not show the same classification results in this 

analysis. The intensity version of FCS clearly showed the potential of recovering field 

variables. Although the results were encouraging, in terms of reporting new structural 

information content, it would have to be concluded that little new information can be 

recovered using this technique. It did not enhance the ability of the original FCS. As such, 

this author can not recommend complicating the FCS method to incorporate intensity at 

this stage. It was noted that the selection of a sensor with an appropriate wavelength for the 

study would be critical to use the intensity information. Further investigation of intensity 

version of FCS is required to account for the utility of intensity variables.  
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8.5 Can the utility of LiDAR compliment traditional ecological survey 

methods? 

The utility of LiDAR can compliment traditional ecological survey methods. Traditional 

vegetation assessment methods require costly fieldwork and are often laborious and 

logistically difficult, therefore an efficient and cost-effective assessment tool to 

compliment these surveys would be ideal. The proposed FCS has the potential to 

quantitatively measure surrogates of biodiversity and variables widely utilised in 

vegetation condition monitoring systems such as ‘Habitat Hectares’ (Parks et al., 2003) in 

Victoria, the ‘Biometric’ tool (Gibbons et al., 2004) in New South Wales and TASVEG 

VCA (Michaels, 2006) in Tasmania, Australia, in an efficient and cost-effective manner. 

However, an analysis of compatibility of this LiDAR derived scheme with commonly used 

field-based biodiversity metrics (Section 7.3) suggested that LiDAR based FCS was not 

compatible with commonly used field-based biodiversity metrics due to qualitative and 

subjective survey methods of these field-based metrics. Therefore, refinement in field 

methodology would be necessary for measuring structural variables to maximise the utility 

of LiDAR derived FCS in their metrics. Quantitative and objective ground-based 

measurements are required. For example, the fieldwork protocols developed in this thesis 

used equipment such as laser rangefinders and the LAI2000 Plant Canopy Analyser, and 

found that they were highly complementary to LiDAR assessments. It is recommended to 

incorporate their use into the condition monitoring systems themselves. It would be then 

relatively simple to modify the above mentioned field-based biodiversity metrics to include 

a LiDAR derived total sample of woody/vegetation structural variables, given that suitable 

LiDAR datasets exist or are planned in all of these states in Australia. The field-based 

biodiversity metrics include important qualitative assessments such as Native species 
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richness, Hollow-bearing trees and Regeneration in ‘Biometric’ tool (Gibbons et al., 2004), 

which are variables LiDAR derived FCS is not capable of measurement. Field survey 

would still be required. However, the combination of the LiDAR derived FCS and field-

based biodiversity metrics could minimise costly fieldwork saving laborious process, and 

allow efficient, quantitative total sampling assessment with high-spatial coverage in these 

vegetation condition monitoring systems. 

 

8.6 Future research 

This study demonstrated how LiDAR technology (conventional discrete return system and 

full waveform systems) can be used to derive forest structure information for landscape 

biodiversity assessment. The method proposed in this study is versatile, repeatable and 

quantitative, which can provide useful information to inform decisions and conservation 

strategies.  There are several other areas which could further extend this work. 

The FCS is ‘tunable’ to any designed 3D ecological characterisation scheme. It is 

anticipated that the FCS may have wide applicability in characterising forest structure over 

different forested landscape. Current restrictions on separating vertical vegetation strata 

include the minimum vertical resolution of the LiDAR data (i.e. the minimum pulse 

interaction gap between two adjacent interactions), which was approximately 50 cm in our 

dataset. It was not sensible to define a forest vertical stratification with classes less than 50 

cm in this study. However, this could be improved by using different data processing 

methods. The minimum vertical resolution of the LiDAR full waveform data depends on 

decomposition methods of points from the waveform rather than the sensor setting. It is 

possible to achieve better than 30 cm of the minimum vertical resolution with improved 
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decomposition methods (Eichstaedt, pers. comm.). The robustness of FCS could be further 

tested. More applications of the intensity version of FCS are also required to determine the 

utility of LiDAR intensity.  

The data synthesis approach may be another topic to explore. LiDAR data contains 

information on height of the illuminated objects, which has been primarily utilized in 

constructing 3D models. On the other hand, high-resolution satellite or airborne optical 

sensor data has spectral information which has been mainly used for classification. If both 

data sources are merged and used for characterising the object, it would extend application 

potential greatly. 

The proposed FCS in this thesis showed the potential to provide information on the 

complexity of habitat structure. This 3D information could be used to develop habitat 

suitability models for the species living in the environment where closed canopy exists, i.e. 

optical sensors cannot provide information underneath the canopy, or where ground-based 

survey is logistically difficult. For example, eastern barred bandicoot (Perameles gunni) in 

Tasmania is a species facing a high risk of extinction in the medium term future, as listed 

in the Environment Protection and Biodiversity Conservation Act 1999 (Australian 

Government, 1999) in Australia. This small marsupial mainly lived in the native grasslands 

and grassy woodlands of the Midlands in Tasmania, however these habitats were already 

cleared for agriculture and grazing (Department of Primary Industries and Water 

Government of Tasmania, 2009). Identifying their suitable habitat and implementing a 

conservation strategy is critical. The proposed FCS could provide information on their key 

habitat, presence and amount of understorey vegetation even in woodlands and forests, in 

an efficient and cost-effective manner and would help in identifying conservation priorities. 

The FCS would present wide applicability in ecological research and could provide a rich 
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contribution to biodiversity assessments. 

This thesis has provided a robust, versatile, and repeatable methodology to quantitatively 

measure a surrogate of biodiversity, i.e. forest structure information, in natural forests 

using LiDAR technology. The practical utility of conventional LiDAR discrete return 

systems and the potential of the latest LiDAR full waveform systems to recover forest 

structure information have been both presented with current limitations and possible future 

work. The potential of LiDAR technology to compliment traditional vegetation survey 

methods has also been discussed with suggestions. It is hoped that the information 

provided from this thesis will help in forming conservation strategies and contribute to 

maintaining biodiversity in our world.  
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APPENDICES 

This section contains the appendices referred to throughout the thesis. The appendices are: 

Photographic guide used to assess per cent foliage cover 

Field data collection fieldwork sheets 
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1. Photographic guide used to assess per cent foliage cover 
 
The photographic guide was used to assess canopy per cent foliage cover at each assessment point: 

“canopy cover” in the LiDAR discrete return system experiment (Chapter 3) and “CC_1” in the 

LiDAR full waveform system experiment (Chapter 4). It provides some level of direction to 

assessors when determining the canopy per cent foliage cover at an assessment point and relate to 

Eucalypt species, which are dominant in the study areas. The photographic guide is a published 

guide and has been used widely in Australia. 

 

Figure 1 Photographic guide used to assess canopy per cent foliage cover (Walker and Hopkins 1990). 
 
Reference 
 
Walker, J. and Hopkins, M.S., 1990. Vegetation. In: R.C. McDonald, R.F. Isbell, J.G. Speight, J. 
Walker and M.S. Hopkins (Editors), Australian Soil and Land Survey. Field Handbook. Inkata 
Press, Melbourne, pp. 58-77. 
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2. Field data collection fieldwork sheets 
 
The following fieldwork sheets were used to record field data information for each assessment 

point in a plot for the LiDAR full waveform experiment (Chapter 4). The recorded data in the 

hardcopy versions of the fieldwork sheets were used to compute field variables later in the lab.
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Assessment points

10m

10m

10m

10m

W

N

E

S

7m

1 2 3 4 5 6 7

8 9 10               11                  12            13           14 

 18            19               20                21                 22            23            24

15                16                  17 

25                26                  27 
Transect

1

2

3

4

5
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Canopy cover assessment

Site  Date  Weather
Assessor Time    

Transect Point Photo ID Coverage % Comments 

1 1

2

3

4

5

6

7

2 8

9

10

11

12

13

14

3 15

16

17

4 18

19

20

21

22

23

24

5 25

26

27

Foliage density recording

Low veg          Medium veg      High veg 
Direction Photo ID Comments Direction Photo ID Comments Direction Photo ID Comments

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
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Ground cover (%) assessment

Site  Date  Weather
Assessor Time    

Transect Point Bare ground Grass Litter Low veg (0-1m) Comments 

1 1

2

3

4

5

6

7

2 8

9

10

11

12

13

14

3 15

16

17

4 18

19

20

21

22

23

24

5 25

26

27
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Coarse Woody debris assessment

Site  Date  Weather
Assessor Time    

Transect Diameter (cm) Length (m) Diameter (cm) Length (m) Comments 
1

2

3

4

5



177 

Vegetation height assessment

Site  Date  Weather
Assessor Time  GPS   

Direction Top (m) 1st branch (m) DBH (cm) Top 1st branch DBH  
N

W

S

E
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Site memo

Date  Site  Assessor

W

N

E

S


