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ABSTRACT

Since the UN Convention on Biological diversity (CBD) held in Rio de Janeiro in 1992,
conservation of biodiversity has been recognised internationally as critically important for
sustainability. Forest structure variables have been recognized as a surrogate of biodiversity.
In Australia, existing vegetation monitoring methods also assess forest structure variables.
However, these assessments require costly fieldwork, are often logistically difficult and to
a large degree qualitative. Light Detection and Ranging (LiDAR) is an active sensing
technology. There is well documented evidence of the utility of LiIDAR to extract forest

structure variables and potential to compliment traditional ecological survey methods.

In this thesis, the potential of LiDAR to inform landscape biodiversity assessments was
investigated. The objectives of this research are to examine how LiDAR discrete return and
full waveform systems can be used to recover forest structure information, how LiDAR
intensity can be used for biodiversity assessment and whether the utility of LiDAR can
compliment traditional ecological survey methods. Experiments using LiDAR discrete
return and full waveform systems were conducted. An eight category forest
characterisation scheme (FCS) derived from a LiDAR full waveform system was proposed
and validated using field derived variables. Intensity variables derived from a LiDAR full
waveform system were explored to determine their utility. The applicability of the
proposed scheme was also examined by comparing two independent LiDAR full waveform
datasets of the same area and by comparing the LiDAR derived FCS to commonly used

field-based biodiversity metrics.

From these surveys, it was concluded that conventional discrete return systems can be used



to recover forest structure information for forests with an ecologically simple structure (i.e.
single tree species with no mid- and understorey vegetation except grass and relatively flat
terrain). Vertically stratified LiDAR intensity, using range information, has potential to
recover canopy cover, grass cover and the amount of fallen trees. The combination of
LiDAR intensity mean and standard deviation can be used to differentiate forest structural

types; sparse canopy with few fallen trees or dense canopy with many fallen trees.

The LiDAR full waveform system experiment demonstrated that the FCS, which was
created using pulse types and heights of a full waveform LiDAR, allows for quantification
of gaps (above bare ground, low vegetation and medium vegetation), canopy cover and its
vertical density as well as the presence of various canopy strata (low, medium and high).
Regression analysis showed all LiDAR derived variables were good predictors of field
recorded variables (e.g. R* = 0.86, P < 0.05 between LiDAR derived canopy cover and
field derived canopy cover). The FCS clearly showed the potential of full waveform

LiDAR to provide information on the complexity of habitat structure.

The exploratory analysis of intensity derived from a LiDAR full waveform system
displayed the potential of intensity variables (the standard deviation of intensity and the
intensity version of FCS) to recover forest structure variables, however it was noted that
the analysis using intensity variables could be site specific. It was also noted that the
selection of sensor with appropriate wavelength for the study would be critical to use
intensity information. Further study is required to account for the utility of intensity

variables.

In terms of the applicability of the FCS, a multiple dataset comparison showed that the

FCS was resilient when recovering canopy cover, openings above the ground and medium



vegetation, and presence of mid-storey vegetation and high trees, however it was less so
when recovering openings above low vegetation, the presence of understorey vegetation
and vertical canopy density of high trees. These last categories were considered to be
affected by the difference in the pulse repetition frequency. Obtaining sufficient multiple
returns by setting an appropriate pulse repetition frequency is the key to maintaining good
performance of the scheme. The FCS was also found to be incompatible with commonly
used field-based biodiversity metrics due to the qualitative and subjective measurements
used in field-based metrics. Refinement in field methodology would be necessary for

measuring structural variables to maximise the utility of FCS in their metrics.

This study demonstrated how LiDAR technology (conventional discrete return system and
full waveform systems) can be used to derive forest structure information for landscape
biodiversity assessment. The method proposed in this study is versatile, repeatable and
quantitative, which can provide useful information to inform decisions and conservation

strategies.






CHAPTER 1 INTRODUCTION

This thesis investigates the potential of Light Detection and Ranging (LiDAR) to inform
landscape biodiversity assessments. In this thesis, biodiversity is defined in accordance
with the UN Convention on Biological Diversity (CBD) (Articles 7, 8 & 9). This states that
biodiversity is understood in terms of the variety of species, genetic differences and
ecosystems, and in a landscape context, in terms of landscape diversity and natural habitat
(Secretariat of the Convention on Biological Diversity, 2000). The aim of this thesis is to
develop a methodology to measure a surrogate of biodiversity to inform decisions made at
a landscape scale, using airborne LiDAR data, field survey data and existing environmental

information.

Since the UN CBD, held in Rio de Janeiro in 1992, conservation of biodiversity has been
recognised internationally as critically important for sustainability. The CBD cited forest
biodiversity as the most rich of all terrestrial systems holding the vast majority of the
world’s terrestrial species (Secretariat of the Convention on Biological diversity, 2005). A
range of national and international initiatives have been established and commitments were
made by governments for the maintenance of biodiversity through the sustainable
management of forest ecosystems (McElhinny, 2002). For example, in Canada, a number
of criteria such as biological diversity and ecosystem condition and productivity, and
indicators such as area of forest, by type and age class, and wetlands in each ecozone, have
been developed through the Canadian Council of Forest Ministers Framework of Criteria
and indicators for sustainable forest management released in 1995. This provides a science-

based framework to define and measure Canada’s progress in the sustainable management



of its forests (Canadian Council of Forest Ministers, 2003). In Finland, National Forest
Programme 2015, which is financed by seven government ministries and private sectors,
has been proposed to provide new competitive forest products and services with an
increase in the use of domestic wood and an improvement in forest biodiversity
(Secretariat of the Convention on Biological Diversity, 2010). As such measurements are
required at all levels of government from the international scale to the local scale to
maintain biodiversity and the effectiveness of any management invention (Ahern et al.,
2003). At the landscape level, a robust, practical way of defining and measuring

biodiversity is a priority for managers (Noss, 1990).

Forest structure information has been recognised as a surrogate of biodiversity (e.g. Mac
Nally et al.,, 2001; Noss, 1990). Many authors have noted the association between
biodiversity and measures of the variety and/or complexity of arrangement of structural
components within an ecosystem (e.g. Mac Nally et al., 2001; Sullivan et al., 2001).
Furthermore, the habitat complexity of a forest structure can be used to predict the
occurrence of some species, since such information provides locally specific descriptions
of faunal habitat (Catling and Burt, 1995; Jorgensen, 2002; Psyllakis and Gillingham,
2009; Tanabe et al., 2001; Verschuyl et al., 2008; Watson et al., 2001). In Australia,
vegetation condition monitoring is mandated at the state level. These vegetation condition
monitoring assessments are recognised as biodiversity management tools and assess forest
structure information. However, these assessments require costly fieldwork and laborious
processes that presently involve site visits and point based measurements of botanical and
ecological variables. They are also to a large degree qualitative. An efficient and cost-
effective total sampling assessment tool to compliment these survey methods would be

ideal.



LiDAR is an active sensor technology that propagates its own source of Electromagnetic
Radiation (EMR) and the timed difference between pulse generation and return allows for
the measurement of the range distance between sensor and the illuminated object.
Compared with 2D information derived from passive remote sensing technology, LiDAR
can provide highly accurate 3D information. The potential for using LiDAR data for
deriving forest attributes at the level of the forest stand has been widely studied in forestry
(e.g. Lefsky et al., 1999a; Nasset, 2002; Nelson et al., 1984). There is an increasing
interest in applying this technology to ecological research (e.g. Goetz et al., 2007; Vehmas
et al., 2009). In particular, the potential of LiDAR for extracting forest structure
information for biodiversity assessment and in complimenting traditional survey methods

1s apparent.

This thesis explores the potential of LiDAR technology for biodiversity assessments.
LiDAR sensors used in this thesis include a conventional discrete return system and the
latest full waveform systems. Although the latest systems are more powerful and capable
of providing detailed information, they have not been widely used in biodiversity research
and such systems are far less common than conventional discrete return systems. For
example, large areas in Australia have already been surveyed using conventional discrete
return systems. Therefore, examining the potential of the conventional system could
provide practical utility, and exploring the latest systems could show the potential of
LiDAR for land management agencies and natural resource management groups. The
information which can be derived from LiDAR data includes intensity of backscattered
pulses as well as 3D information of the objects. However, to date, the utility of LiIDAR
intensity has been limited due to difficulties with calibration and associated problems in its
interpretation. The utility of intensity information is another issue to explore for

determining how we can use LiDAR technology for biodiversity assessments.



The objective of this research is to develop a robust, quantifiable and repeatable method
able to assess biodiversity. In particular, the ability of LIDAR to recover forest structure

information is modelled. To address these aims, the following research questions are posed.

Research questions are:

1. What, if any, forest structure information can be extracted from data produced

by a LiDAR discrete return system?

2. Does a LiDAR full waveform system provide additional or higher quality forest

structure information?

3. Can LiDAR intensity values be used to recover forest structure information?

4. Can the utility of LIDAR compliment traditional ecological survey methods?

In this thesis, following chapters are presented. Chapter 1 provides context and a broad
overview of the thesis, and presents the objectives of this research. Chapter 2 presents a
literature review of how forest structure has been attributed and used for biodiversity
assessments including existing field assessment methods in Australia. Previous work using
passive remotely sensed methods is summarised. LiDAR technology is also reviewed and
discussed in the context of its potential for extracting forest structure information. Chapter
3 evaluates the utility and potential of conventional discrete return systems for biodiversity
assessment. The work presented in this chapter addresses research questions 1 and 3.
Chapter 4 provides a background for a LiDAR full waveform system experiment
describing the study area, the LiDAR data used and the fieldwork protocols developed

specifically for this LiDAR experiment. Chapter 5 examines whether LiDAR full



waveform system data can provide more detailed forest structure information relative to
conventional discrete return systems. An eight category of forest characterisation scheme
derived from LiDAR data is proposed to characterise the ecological structure of a dry
Eucalypt forest landscape and validated using field derived variables. This work addresses
research question 2. Chapter 6 explores the utility of the return intensity derived from a
LiDAR full waveform system. The intensity variables are examined to determine whether
they can give more insights into intensity response of full waveform data from forested
landscape and enhance the potential of LiIDAR data to recover forest structure variables.
The work reported in this chapter addresses research question 3. Chapter 7 assesses the
applicability of the previously proposed LiDAR based forest characterisation scheme. The
robustness of the proposed scheme is examined by comparing two independently acquired
LiDAR datasets of the same area. The scheme is also tested for compatibility with
commonly used field-based biodiversity metrics. The work exhibited in this chapter
addresses research questions 2 and 4. Chapter 8 summarises and discusses the work
presented in this thesis, and presents concluding commentary on the utility of LiDAR for

landscape biodiversity assessment.



CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Conservation of biodiversity has been recognised internationally as critically important for
sustainability since the UN Convention on Biological diversity (CBD) in 1992 as stated in
Chapter 1. Many authors have recognized forest structure information as surrogates of
biodiversity (e.g. Noss, 1990). In this chapter, the details are presented how forest structure
has been recognised and used for biodiversity assessment including existing field
assessment methods in Australia. The previous work using passive remotely sensed
methods is also discussed. Finally, Light Detection and Ranging (LiDAR) technology is

reviewed and discussed its potential for extracting forest structure information.

2.2 Forest structure as an index of biodiversity

2.2.1 Forest structure

Forests are complex spatial structures. The often intricate architecture of the plant species
they contain creates an environment that is difficult to characterise, record and study
analytically. Forest structure, the architectural arrangement of plant material, has received
less attention than species composition in terms of description and/or classification, yet
diagnostically structure is considered just as important in characterising a forest as its
composition (Florence, 1996; Spies, 1998; Stone and Porter, 1998). Early attempts at

modelling structure proposed a vertical stratification suggesting forests had two photic
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zones (Richards, 1939). It was argued that two highly different environments for biotic
existence were evident: a euphotic layer (or canopy stratum) which intercepts sunlight
directly and the oligophotic layer (or understorey stratum) which intercepts sunflecks,
scattered and transmitted radiation. Longman and Jenik (1987) and Klinge et al. (1975),
amongst others, expanded this vertical stratification concept to describe three, or more
vertical layers. Other researchers (e.g. Cain et al., 1956; Grubb et al., 1963) report
problems in the identification of strata however, and some authors (e.g. Gordon et al.,
1974) have even discredited the notion of distinct layers in forests altogether. The fact

remains however that from the perspective of energy capture, such delineation has merit.

Structural analysis of individual trees within forests was recognized as an ecologically
useful tool for the assessment of plant interaction by Hallé et al. (1978). This approach to
assess gross morphological diversity was based on the idea that each individual species has
a precise and genetically determined growth plan, i.e. architectural model, which
development stage is represented as the architecture of the plant. Morphological analysis is
important since morphology is the visible representation of the growth success of a tree
species in the highly competitive environment of the forest (Tomlinson, 1983). For
example, morphological analysis such as profiling of a forest (Fig. 2-1) can provide critical
information for studies of physiology of trees, production ecology and faunal distribution
(Tomlinson, 1983). Some features of forest structure, such as horizontal distribution of
vegetation, have also been considered to have relationship with environmental factors
(Bourgeron, 1983). Webb et al. (1970) found that the structural features of forests, such as
the type of tree branching and the bark characteristics, are related with altitudinal gradient
and efficient tools for the classification of vegetation in eastern Australia. The ecological
significance of forest structure was also presented by Franklin et al. (1981). These authors

characterised old-growth coniferous forests and distinguished them from young-growth
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Figure 2-1 Example of forest profile diagrams. Diagrams were obtained from transects of 5 m width (Oliveira-
Filho et al., 1990 p. 111).
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forests in terms of species composition, function (rate and paths of energy flow and
nutrient and water cycling) and structure. They identified four structural components; large
live trees, large snags (standing remnant of a dead tree), large logs on land and large logs in
streams, as key diagnostic indicators of old-growth forests. Gutiérrez et al. (2009) similarly
suggested that old-growth forests have a distinctive structural variability as well as floristic
diversity. This analogy was also used by Noss (1990) who suggested that vegetation
condition, when assessed in the context of biodiversity, should be considered in terms of:
structure, composition, and function. Spies (1998) described the essential attributes of
forest structure as structural type, size, shape, and spatial distribution (vertical and
horizontal) of components (summarised in Table 2-1) and examined their roles and
importance to the functioning and diversity of ecosystems. For example, foliage layering or
vertical foliage distribution is a component of forest structure that plays important roles in
absorption of solar radiation, the microclimate of the forest and in providing wildlife
habitat. Many authors have noted the association between biodiversity and measures of the
variety and/or complexity of arrangement of structural components within an ecosystem
(e.g. Mac Nally et al., 2001; Sullivan et al., 2001). Furthermore, the habitat complexity of a
forest structure can be used to predict the occurrence of some species, since such
information provides locally specific descriptions of faunal habitat (Catling and Burt,
1995; Jorgensen, 2002; Psyllakis and Gillingham, 2009; Tanabe et al., 2001; Verschuyl et

al., 2008; Watson et al., 2001).

Most forest stand structure descriptors are traditionally based on measures easily
obtainable from the ground level (e.g. Diameter at Breast Height (DBH), stem density or
ground assessed canopy cover). General descriptions such as ‘patchy’, ‘dense’, ‘multi-

storied’ offer a useful picture suggesting a horizontal and vertical organization but may not
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Table 2-1 Components of forest structure (After Spies, 1998).

1. Foliage

Leaf area

Vertical distribution
Leaf shape, density
Canopy gaps and horizontal pattern
2. Tree Crowns

Shepe

Length

Life form (e.g. decidous,
coniferous)

Diameter, area, density
Position in stands
Branch characteristics
Cavities, breakage, decay
3. Tree Bark

Texture

Thickness

4. Tree Boles

Diameter

Height

Cavities, breakage, decay
Gaps and spatial pattern
Age distribution

5. Wood Tissues

Volume

Biomass

Type (e.g. sapwood, heartwood)
6. Standing Dead Trees
Diameter

Height

Decay state

Volume, mass

Cavities

7. Fallen Trees

Diameter

Height

Decay state

Volume, mass

8. Shrub, Herb, and Moss Layers
Biomass, volume

Height

Life form

Spatial pattern

9. Forest Floor and Organic Layers

Depth

Decay state

10. Pit and Mound Topography
Area

Height/depth

11. Roots

Size

Density, decay state
Biomass

Spatial pattern

12. Soil Structure
Aggregations

Organic matter distribution
13. Landscape Structure
Stand/patch type distribution
Patch size

Patch shape

Habitat connectivity

Edge density

be competent for many operational uses (Stone and Porter, 1998). The most utilised tool to
assess vertical stratification of forests is the profile-diagram (e.g. Davis and Richards,
1933). An example is shown in Fig. 2-1. The vertical structure of stands is represented by
illustration drawing the stand naturalistically along real transects (e.g. Lamprecht, 1969) or
as idealized and standardized profile (e.g. Holdridge, 1970). Profiles are very informative,
however, the main use is the illustrative characterisation of actual stand structure and
limited to qualitative understanding (Brunig, 1983). In ecological studies, quantitative data
of forest structure are critical for research such as habitat modelling, however, the data are
often qualitative, merely descriptive (Jorgensen, 2002). The early attempt to quantitatively
measure vertical structure was presented by Klinge (1973). The author assessed the
proportion of the basal area in each vertical layer of the canopy: the emergent trees of the A

layer, main canopy trees B layer, the C layer and the ground layers D and E. The issue of
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such methods is the time-consuming data collection, which leads a lack of analysis of
pattern and variances between plots and transects (Brunig, 1983). Rapid, repeatable and
quantitative measurement tools to assess vertical forest structure are desired. Currently,
appraisal or scoring methods for structural complexity require a laborious process that
involves site visits and many logistically expensive point based measurements. An
automated or semi-automated method, which could rapidly and quantitatively assess forest

structure with high-area coverage yet reduce the manpower, would be ideal.

There is much anecdotal evidence that such a technique is required. For example, Watson
et al. (2001) measured the vegetation structural complexity of remnant patches including
area and isolation to test the effects of loss of habitat structure, increased isolation and loss
of habitat area on woodland birds. The authors calculated a habitat complexity score
modified from the one developed by Catling and Burt (1995) assessing the percent cover
for the different forest components; canopy, tall shrubs, low shrubs, ground herbage, logs
and fallen branches and litter, and found that the mean habitat complexity score of each
remnant explained a significant portion of the deviance of presence/absence for 20 bird
species. This method has been used to develop and strengthen conservation strategies but is
prohibitively time-consuming to apply at a large area or landscape level. If a technique
could automate this process then significant advantage in terms of conservation planning

would be realised.

2.2.2 Existing assessment methods for forest structure

In Australia, vegetation condition monitoring is mandated at the state level. Various

methods to assess vegetation condition have been published (e.g. Eyre et al., 2006;
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Freudenberger, 1999; Gibbons et al., 2004; Parks et al., 2003). These methods are ground-
based and also assessing the forest structure information. In this section, vegetation
condition monitoring methods in Victoria, Tasmania and New South Wales are reviewed

since the vegetation community and their monitoring methods are relevant to this study.

The ‘Habitat Hectares’ (Parks et al., 2003) approach in the state of Victoria is a method
which assesses vegetation condition by comparing it to the same vegetation type in the
absence of major ecosystem changes and aims to identify an integrated view of the habitat
for all the indigenous species that can be expected in a site. This consists of seven
components for the site condition (large trees, tree/canopy cover, understorey strata, lack of
weeds, recruitment, organic litter and logs) and three components for the landscape context
assessments (patch size, neighbourhood and distance to core area). Vegetation communities
and their interactions with each other and other biophysical or anthropogenic systems are
mapped using Ecological Vegetation Class (EVC) (Department of Sustainability and
Environment, 2004). The assessment area or unit is one stand, which is the combination of
one vegetation type and condition state, within a native vegetation patch. The assessed
structural variables, which are large trees, tree/canopy cover, understorey strata, organic
litter and logs, account for 50 % of over all habitat score. Particularly, the component of
understorey strata has the highest weighting (25 %). This is based on the assertion that
understorey components can be useful indicators of site disturbance and are important for

recognising and verifying future improvements in site condition (Parks et al., 2003).

The condition of native vegetation is also assessed in Tasmania using a similar
methodology, Tasmanian Vegetation Condition Assessment (VCA), which is based on the
above mentioned ‘Habitat Hectares’ approach (Parks et al., 2003). The same variables

(large trees, tree/canopy cover, understorey life forms, lack of weeds, recruitment, organic
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litter and logs) are visually assessed and compared to TASVEG, which is an integrated
vegetation map for Tasmania, vegetation community benchmarks to give scores for the site

condition and landscape contexts, which yield the final habitat score (Michaels, 2006).

The ‘Biometric’ tool (Gibbons et al., 2004) in New South Wales assesses native vegetation
condition as terrestrial biodiversity at the scale of the patch, paddock or property. This aims
to provide a quantitative assessment of either positive or negative impacts to terrestrial
biodiversity of management activities. Nested 20 x 50 m and 20 x 20 m plots are
established within relatively homogeneous or discrete zones for assessments. Measured
variables include indigenous plant species richness, native over-storey cover, native mid-
storey cover, native ground cover (grasses, shrubs and other), exotic plant cover, the
number of trees with hollows, proportion of over-storey species occurring as regeneration,
the total length of fallen logs and the number of stems in specified diameter classes. These

measurements are compared against benchmarks and scored to produce site values.

In the following sub-sections, the methods for measuring each structural variable out of

assessed variables in the above mentioned vegetation condition assessments are detailed.

2.2.2.1 Large trees

The number of large trees (alive and dead) is assessed in ‘Habitat Hectares’ (Parks et al.,
2003) and TASVEG VCA (Michaels, 2006). Large trees can be a representative of remnant
native vegetation and are important habitat features since they provide food resources and
habitats to many organisms. Such trees are often old and difficult to replace once they are

lost (Parks et al., 2003). In these two assessment methods, a large tree is defined by DBH,
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which is measured at 1.5 m in ‘Habitat Hectares’ and at 1.3 m in TASVEG VCA above the
ground. The assessment procedure is basically the same between these two methods. First,
the large tree DBH and expected number of large trees/ha are referred to the community
benchmark. In the assessment area or zone which is the combination of one vegetation type
and condition state within a native vegetation patch, the number of large trees/ha is
estimated and compared to the community benchmark. Then the result is placed in the
appropriate category in the table (Table 2-2). Finally, the health of large trees is assessed
estimating canopy cover in the three categories; more than 70 %, between 30 and 70 % and
less than 30 %. The final score for large trees is determined from the table (Table 2-2). The
assessments could be subjective since the number of large trees/ha and the category of
canopy cover in an entire assessment area are based on the assessor’s visual estimation.

Referring to the community benchmark to calculate a score would be a time-consuming in

the fieldwork.

Table 2-2 Criteria and scores for the number of large trees for ‘Habitat Hectares’ (Parks et al., 2003) and
TASVEG VCA (Michaels, 2006) (After Michaels, 2006).

Large trees Canopy Health (%)
>70% 30-70% <30%
None present 0 0
>0 to 20% of the benchmark number of large trees/ha 3 2 1
>20% to 40% of the benchmark number of large trees/ha 4 3 2
>40% to 70% of the benchmark number of large trees/ha 6 5 4
>70% to 100% of the benchmark number of large trees/ha 8 7 6
> the benchmark number of large trees/ha 10 9 8
2.2.2.2 Canopy cover

This variable is assessed in ‘Habitat Hectares’ (Parks et al., 2003), TASVEG VCA

(Michaels, 2006) and ‘Biometric’ (Gibbons et al., 2004). The first two methods utilise the
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same approach. Tree canopy cover is defined as those canopy tree species reaching more
than 80 % of mature height in these methods. The projective foliage cover of canopy trees
is estimated using the image guideline of different levels of projective foliage cover
(Walker and Hopkins, 1990) in an assessment area. Projective foliage cover is averaged
over the area. This is compared to the benchmark percentage cover (EVC and TASVEG,
respectively) and scored according to the health of the canopy (Table 2-3). The health of
the canopy is assessed in the same way as the health of the large tree in ‘Habitat Hectares’
and TASVEG VCA. This assessment requires a laborious process that an assessor firstly
needs to identify the canopy tree species to measure canopy cover referring to the
benchmark tree height. Then the projective foliage cover is estimated using the image
guideline and the average foliage cover over the area is computed. Finally the value is
compared with the bench mark tree cover. The assessed foliage cover could be subjective
and biased since the location and the number of assessment points in the area depend on

the site and assessors.

In ‘Biometric’ (Gibbons et al., 2004), native over-storey is defined as the tallest woody
stratum present above 1 m from the ground. Therefore different vegetation communities
have different over-storey vegetation such as the tree layer for a woodland community and
the tallest shrub layer for a shrubland community. The percent foliage cover is estimated
directly overhead using the image guideline (Walker and Hopkins, 1990) at 10 points along
a 50 m transect within a 20 x 50 m plot. Final foliage cover is calculated as a mean within
a plot. This is compared to the benchmark and scored for Site value (Table 2-4). This
method could be also subjective since the “tallest woody stratum” is site dependant and

prone to observer bias.
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Table 2-3 Criteria and scores for tree canopy cover for ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG
VCA (Michaels, 2006) (After Michaels, 2006).

Tree canopy cover Canopy Health (%)

>70% 30-70% <30%
<10% of the benchmark tree cover 0 0 0
<50% or >150% of the benchmark tree cover 3 2 1
>50% or <150% of the benchmark tree cover 5 4 3

Table 2-4 Scoring methods for vegetation cover and logs in BioMetric (After Gibbons et al., 2004).

Variable Score in BioMetric
0 1 2 3

Native over-storey 0-10% or >200% of  10-50% or 100- 50-100% or 150- Within benchmark
cover benchmark 150% of 200% of

benchmark benchmark
Native mid-storey 0-10% or >200% of  10-50% or 100- 50-100% or 150- Within benchmark
cover benchmark 150% of 200% of

benchmark benchmark
Native ground cover ~ 0-10% or >200% of  10-50% or 100- 50-100% or 150- Within benchmark
(grasses) benchmark 150% of 200% of

benchmark benchmark
Native ground cover ~ 0-10% or >200% of  10-50% or 100- 50-100% or 150- Within benchmark
(shrubs) benchmark 150% of 200% of

benchmark benchmark
Native ground cover ~ 0-10% or >200% of  10-50% or 100- 50-100% or 150- Within benchmark
(other) benchmark 150% of 200% of

benchmark benchmark
Lack of exotic plant >66% 33-66% 5-33% 0-5%
cover
Total length of fallen ~ 0-10% of 0-50% of 50-100% of >benchmark
logs benchmark benchmark benchmark

2.2.2.3 Mid-storey and understorey cover

Understorey vegetation is very important since the greatest richness and diversity of plant
species are almost always found in a variety of shrub and herb strata, and they can be
useful indicators of site disturbance (Parks et al., 2003). The definition of understorey
vegetation is slightly different between vegetation assessment methods, however all the

methods basically assess the indigenous plant species between canopy layer and the ground.

‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006) define
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Table 2-5 Criteria and scores for understorey lifeform for ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG
VCA (Michaels, 2006) (After Michaels, 2006).

Understorey lifeform

Category 1 Category 2 Score

All strata and life forms effectively absent 0

Up to 50% of life forms present 5

>50% -90% of life forms present Of those present >50% substantially modified 10
Of those present <50% substantially modified 15

>90% of life forms present Of those present >50% substantially modified 15
Of those present <50% substantially modified 20
Of those present, none substantially modified 25

understorey vegetation as ‘understorey’ which includes all indigenous species present
under canopy trees (e.g. sub-canopy tree, tall shrub, small shrub, immature trees, herbs and
mosses). The assessment procedure includes two steps. First the range of lifeforms present
are recognised and compared to those expected (i.e. benchmark understorey life forms),
and then the diversity and cover within each lifeform (i.e. degree of modification) are
assessed and scored (Table 2-5). This assessment is more qualitative rather than

quantitative since the focus is species diversity and its modification.

‘Biometric’ (Gibbons et al., 2004) defines understorey vegetation as ‘mid-storey’ which
contains all native vegetation between the over-storey stratum and 1 m in height. Unlike
‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006), vegetation
less than 1 m in height is assessed in different categories as ground cover (see Section
2.2.2.5 Ground cover). Percentage of foliage cover in mid-storey stratum is assessed in one
of the two ways. 1) Visually estimate per cent foliage cover in a 20 m x 20 m plot. 2)
Visually estimate per cent foliage cover at 10 points along the 50 m transect within a 20 m
x 50 m plot and average the total per cent. This is compared to the benchmark and scored

for Site value (Table 2-4). This method assesses understorey vegetation more quantitatively
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compared to ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006).
However, what is assessed as mid-storey is not clear and could be subjective since the
definition of the over-storey stratum is site and assessor dependant (see Section 2.2.2.2

Canopy cover).

2.2.2.4 Weed cover

Weeds are a threat to native vegetation species since they can successfully compete and
may change the site condition. In ‘Habitat Hectares’ (Parks et al., 2003) and TASVEG
VCA (Michaels, 2006), weed cover includes all introduced species and non-indigenous
native weed species, and is assessed by the averaged total projective foliage cover across
the area and the proportion of this cover due to high threat weeds. Categories of weed
foliage cover and their scores are slightly different between these two vegetation condition
assessments (Table 2-6 and 2-7). Similar to the assessment of canopy cover (Section
2.2.2.2), the location and the number of assessment point in the area depend on the site and

assessors. The assessment could be biased.

‘Biometric’ (Gibbons et al., 2004) defines weed cover as ‘Exotic plant cover’, which are
vascular plants not native to Australia. The assessment method is similar to ‘Habitat
Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006), which uses the total
per cent foliage cover of all extotics in all strata within 20 m x 20 m plot or at 50 points
along a 50 m transect within 20 m x 50 m plot. This is compared to the benchmark and

scored for Site value (Table 2-4).
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Table 2-6 Criteria and scores for weed cover for ‘Habitat Hectares’ (After Parks et al., 2003).

Weed cover High threat weeds (%)

None <50% >50%
>50% cover of weeds 4 2 0
25-50% cover of weeds 7 6 4
5-25% cover of weeds 11 9 7
<5% cover of weeds 15 13 11

Table 2-7 Criteria and scores for weed cover for TASVEG VCA (After Michaels, 2006).

Weed cover High threat weeds (%)

None <50% >50%
>75% cover of weeds 0 0 0
25-75% cover of weeds 4 2 0
10-25% cover of weeds 7 6 4
5-10% cover of weeds 11 9 7
<5% cover of weeds 15 13 11

2.2.2.5 Ground cover

‘Habitat Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006) do not utilise
vertical stratification under canopy trees. Most ground cover components except organic
litter and logs (see Section 2.2.2.6 Logs) are included in understorey lifeforms (see Section
2.2.2.3 Mid-storey and understorey cover). In these two vegetation condition assessments,
organic litter is defined as dead organic material and both fine and coarse plant debris less
than 10 cm diameter on the ground. The percentage cover of the organic litter in the area is
estimated and compared to the benchmark. The final score is determined according to the
proportion of this litter comprised of material from native species. Categories of litter

cover are slightly different between the two assessments (Table 2-8 and 2-9).

In ‘Biometric’ (Gibbons et al., 2004), ground components, which include all native
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vegetation below 1 m in height, are assessed separately for grasses, shrubs and other. It is
defined that grasses as native grasses, shrubs as native woody vegetation and other as non-
woody native vegetation that is not grass. Percentage cover of these components is
estimated either one of the two ways. 1) Visually estimate per cent cover in a 20 m x 20 m
plot. 2) Visually estimate per cent cover at 10 points along the 50 m transect within a 20 m
x 50 m plot and average the total per cent. This is compared to the benchmark and scored

for Site value (Table 2-4).

Table 2-8 Criteria and scores for organic litter cover for ‘Habitat Hectares’ (After Parks et al., 2003).

Organic litter cover Organic litter cover due to native species (%)
>50% <50%

<10% of the benchmark organic litter cover 0 0

<50% or >150% of the benchmark organic litter cover 3 2

>50% or <150% of the benchmark organic litter cover 5 4

Table 2-9 Criteria and scores for organic litter cover for TASVEG VCA (After Michaels, 2006).

Organic litter cover Organic litter cover due to native species (%)
>50% <50%

<10% of the benchmark organic litter cover 0 0

<50% of the benchmark organic litter cover 3 2

>50% of the benchmark organic litter cover 5 4

2.2.2.6 Logs

In ‘Habitat Hectares’ (Parks et al., 2003), TASVEG VCA (Michaels, 2006) and ‘Biometric’
(Gibbons et al., 2004), logs are assessed as the total length of fallen trees that have at least
10 cm diameter (and 0.5 m long for ‘Biometric’ (Gibbons et al., 2004)). This is compared
to the benchmark and scored. Criteria and scores for log assessments are summarised in

Table 2-10 for ‘Habitat Hectares’ (Parks et al., 2003) , in Table 2-11 for TASVEG VCA
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(Michaels, 2006) and in Table 2-4 for ‘Biometric’ (Gibbons et al., 2004). ‘Habitat
Hectares’ (Parks et al., 2003) and TASVEG VCA (Michaels, 2006) do not set up a fixed
area plot to survey, however, it is recommended for logs components to be assessed in one
or more 0.1 ha sample areas (e.g. 20 m x 50 m rectangle or 18 m radius circle) as
‘Biometric’ (Gibbons et al., 2004) assesses logs in a 20 m x 50 m plot. Dead cut stumps of
a height less than 0.5 m for ‘Habitat Hectares’ (Parks et al., 2003) and 1.3 m for TASVEG
VCA (Michaels, 2006), which are assigned a default length of 0.5 m per stump, are

included in log assessments.

All of the above mentioned assessments require costly fieldwork. The assessment process
is often time-consuming and laborious referring to the bench mark and identifying the
appropriate categories in the field. In terms of measuring forest structural components, they
are to a large degree qualitative and subjective. An efficient and cost-effective assessment
tool, which can be carried out in objective and quantitative way, to compliment these

survey methods is necessary.

Table 2-10 Criteria and scores for logs for ‘Habitat Hectares’ (After Parks et al., 2003).

Total length of logs Proportion of log length more than half of the
bench mark large tree DBH
>25% <25%

<10% of the benchmark length 0 0

<50% or >150% of the benchmark length 3 2

>50% or <150% of the benchmark lenght 5 4

Table 2-11 Criteria and scores for logs for TASVEG VCA (After Michaels, 2006).

Total length of logs Proportion of log length more than half of the
bench mark large tree DBH
>25% <25%

<10% of the benchmark length 0 0

<50% of the benchmark length 3 2

>50% of the benchmark length 5 4

25



2.3 Passive remote sensing methods for forest structure

Remote sensing data derived from satellite and airborne sensors is superior to field survey
data in terms of high-spatial coverage, near simultaneous acquisition, repeated regional
accounting and cost. To date, most natural resource remote sensing has been undertaken
using passive sensing technologies, mainly in the visible/shortwave infrared red portions of
the electro-magnetic spectrum. The Normalised Difference Vegetation Index (NDVI)
computed from these portions of the electro-magnetic spectrum is one of the most widely
used techniques to make quantitative estimates of vegetation properties (e.g. Liang, 2004;
Tucker, 1979). The attempts to estimate forest structure using 2D information has been
reported. For example, Lévesque and King (1999) examined airborne multispectral digital
camera images to identify the type of forest canopy, individual tree crown structure and
health information analysing semivariograms at the tree spatial information of the images;
0.25 m, 0.5 m and 1.0 m. The results showed that 1 m pixel semivariograms were best
related to forest canopy closure, stem density and a visually derived tree stress index, and
0.5 m pixel semivariograms were related better to tree crown size and tree height at the
canopy level, while 0.25 m pixel semivariograms were well related to tree crown closure at
the tree crown level. However, it was noted that the study was done in a very homogeneous
forest stand with basically one overstorey species and small ranges of forest structural
parameters. Therefore, the algorithm used in this study might not be applicable to more
complex forest stands such as natural forests. Muinonen et al. (2001) investigated the aerial
photo, which was scanned, orthorectified and resampled to a 0.8 m pixel size, to estimate
forest stand characteristics. As the result of combining the information on variograms with
image interpretation by using a nonparametric method based on a distance-weighted mean
of most similar neighbors, the stand volume was estimated with the root mean square error

(RMSE) of 27.67 m’/ha (17.9 %) and a bias of -0.97 m’/ha (-0.63%). However, this
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technique requires a priori information of the forest stand borders. It was also reported that
the calibration problem originated from imaging geometry might become bottleneck in
aerial photo image analysis due to a central projection of the photographed area (i.e.
objects such as trees bend away from the centre of the image and this may have impact on

the spatial indicator attributes).

In the studies using high spatial resolution satellite imagery, Lamonaca et al. (2008)
examined a multi-resolution segmentation of a QuickBird image to determine whether it
can detect the spatial heterogeneity in forest structure: trees spatial distribution, tree sizes,
tree species mingling and occurrence of forest canopy gaps, and presented promising
results. These authors also reported that the geometric and heterogeneity of QuickBird
imagery was most closely related with the tree species mingling, which is a quite
understandable outcome. Song (2007) estimated the mean tree crown diameter on a stand
basis with an Ikonos image, using the disc scene model that the ratio of image variances at
two spatial resolutions is determined by the scene structure only. The author found the ratio
of image variances at 2 m and 3 m spatial resolutions best estimated conifer tree crown
diameter, however, it did not work well for hardwood stands because of the continuity in
canopy structure. These two studies showed the potential of multispectral high spatial
resolution imagery to extract forest structure. However the biophysical parameters were

limited to horizontal structure in these studies.

In the studies using larger spatial resolution imagery than QuickBird and Ikonos, Wolter et
al. (2009) extended the Song (2007) approach from stand-level to pixel-level estimation of
mean crown diameter and other forest structural attributes (bole diameter at breast height,
tree height, crown closure, vertical length of live crown and basal area) with SPOT-5 data.

The authors reported better performance of the model for conifers compared to the model
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for hardwoods, and attributed it to greater overall contrast between the sunlit and shaded
components of conifer canopies in the image. This implies that the results could be aftected
under different illumination conditions. Furthermore, the authors compared the results of
the partial least squares regression model used in the study with similar parameter
estimates made using LiDAR data. It was reported the SPOT-5 results were better than
their LIDAR derived counterparts in terms of R* and/or RMSE for conifer and hardwood
canopy diameter and bole diameter at breast height. On the other hand, LiDAR derived
models outperformed SPOT in tree height, canopy closure, vertical length of live crown
and basal area estimation, particularly for hardwood. This study displayed the prospective
use of multispectral imagery for estimation of forest structure, however LIDAR would be
more precise particularly when the attributes are measured in mixed species forests.
Another example of using SPOT images to detect forest structure was presented by de
Wasseige and Defourny (2002). These authors analysed the spatial variation in an image
and bi-directional reflectance distribution function (Jupp and Walker, 1997) of three
tropical forest sites, where forest structure and species composition are different from each
other, using a time-series of six SPOT-HRVIR images including various viewing zenith
angles and under various illumination conditions. In this study, a single geometric-optical
gap model explained more than 80 % of the variability of near-infrared red reflectance
standard deviation as a function of the viewing zenith angle, which was directly related to
the structure of the forest. However, a very specific configuration of sensor observation,
such as near-nadir viewing zenith angle, solar zenith angle higher than 20 ° and solar
azimuth angle aligned with one of the four directions of the grid, were required for this
forest structure detection. This would restrict analysis over limited areas. Lathrop Jr and
Pierce (1991) examined the relationship between ground-based canopy transmittance and

Landsat Thematic Mapper near-infrared/red radiance ratio data for estimating forest
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canopy structure in Montana. The results indicated that both ground-based canopy
transmittance and satellite-based measurements responded to the same general trends in
forest canopy structure. These authors, however, reported that there was still significant
amount of unexplained variation in the relationship between ground-based canopy
transmittance and Landsat Thematic Mapper near-infrared/red ratio, which could be
affected by differences in species’ canopy geometry, stand canopy closure, slope/sun angle
interactions and background reflectance. Significant difference in scale of the two
measurements (e.g. the ceptometer at 9 m” and the Landsat Thematic Mapper at 900 m?)
were also stated as another problem. Similar problems were reported by Gemmell and
Varjo (1999) in their study for testing the inversion of a forest reflectance model (FLIM;
Rosema et al., 1992) to estimate cover and crown transmittance in a boreal forest of
Finland using Landsat Thematic Mapper data. Marsden et al. (2009) examined the
relationships between NDVI time-series of the Moderate Resolution Imaging
Spectroradiometer (MODIS) and stand structural characteristics; stem volume, dominant
height and mean annual increment, over even-aged forest plantations. The authors
concluded that cumulative NDVI was a good predictor of stem volume and dominant
height. This would be useful application in forestry for large plantation areas. However, it
would be difficult to apply for other purposes such as ecological application, due to the low

spatial resolution (250 m) and limited forest attributes.

In summary, passive remote sensing technology can offer some biophysical parameters of
forest structure, however they are limited to either horizontal parameters or homogeneous

species.
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2.4 LiDAR

Active remote sensing technology refers to a sensor system that supplies its own source of
energy. Light Detection and Ranging (LiDAR) is an active sensor technology that
illuminates the object using the sensor unit and measures the range distance between
sensor and the illuminated object. LiDAR instruments utilise light amplification by
stimulated emission of radiation (laser) as illumination source. LIDAR instruments include
laser ranging, laser profiling and laser scanning instruments on various platforms such as
terrestrial and airbourne. The application of this technology for extracting forest structure
information is promising. The basic LiDAR technology and systems are reviewed as well

as their various applications.

2.4.1 LiDAR technology

Laser scanning is a relatively new technology. After the invention of laser in the early
1960s, it was developed through the 1970s and 1980s with an early NASA system and
other attempts in the USA and Canada (Ackermann, 1999). NASA contributed a great deal
in LiDAR technology and applications from the 1960’s starting with the development of
ground-based satellite ranging systems for studying crustal dynamics and plate tectonics
(Einaudi et al., 2004). However, a lack of supporting technologies delayed the application
of laser scanning technology for topographic mapping until early 1990s. By then, direct
geo-referencing technology, the Global Positioning System (GPS), facilitated the
development of commercial airborne laser profiling and scanning systems for topographic
mapping (HyyppA et al., 2008). By the mid-1990s, the commercial availability of a

medium/high performance Inertial Measurement Unit (IMU) along with GPS enabled
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integrated GPS/IMU geo-reference systems provided airborne platform position and
attitude data at an accuracy of 4-7 cm and 20-60 arc-seconds, respectively (Petrie and Toth,
2009a). Airborne laser scanning has developed very rapidly since then, delivering highly
accurate geo-referenced three-dimensional points, and adopted for various uses such as

forest inventory and feature extraction in urban areas.

In terms of the basic principles, laser scanners evolved from laser profilers, which in turn
were upgraded from laser ranging instruments: laser rangers or laser rangefinders. A
comprehensive review of these technologies is provided in Petrie and Toth (2009a). In the
following sub-sections, much of this material has been collected and the discussion around
the elements of the technology has been focused, which are useful in the context of this

research.

2.4.1.1 Laser ranging

Laser ranging measures the distance or range based on the precise measurement of time.
One of the main methods is the timed pulse or the time-of-flight (TOF) method. A very
short but intense pulse of laser radiation is emitted by the laser ranging instrument to
illuminate the object and the reflected pulse is returned from the object to the instrument.
The laser ranging instrument calculates the precise time interval that has passed between
the emitted pulse from the instrument and the returned pulse reflected from the object. This

1s expressed as follows.
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R=v-1/2 (2-1)

Where, R denotes the slant distance or range, v denotes the speed of electromagnetic

radiation, which is a known value, and ¢ denotes the measured time interval.

In this method, if a series of reflections is returned back to the sensor from a specific object
such as a tree, the time taken for each of the returned pulses, such as the first and last
pulses, is measured. The complete waveform of the entire return signal can be also
measured as an alternative. The actual length of the pulse emitted by the laser ranging has a
significant effect on how multiple returns can be delivered or differentiated, since the
measuring resolution is determined by the length of the emitted pulse. For a given energy,
if the pulse duration is shorter, the pulse power becomes higher, which results in smaller
pulse detection error (Baltsavias, 1999). The pulse repetition frequency (PRF), which is
how frequently a pulse is emitted by the laser source, may also have an impact on multiple
return properties, since laser systems from the early 2000s increased their PRF at the cost
of reducing the energy of the emitted pulse, thus the ranging accuracy was decreased
because of the less distinct signal-to-noise ratio (Naesset, 2009). It is noted that up-to-date
laser supplies are more powerful with the increased power supply on an aircraft, therefore

this is not an issue for the latest systems as of 2009 (Petrie and Toth, 2009a).

Another method of laser ranging is the phase comparison technique, which utilises a
continuous beam of laser radiation, referred to as a CW laser, instead of discrete pulses.
The range value is computed by comparing the transmitted and received versions of the
sinusoidal wave pattern and calculated the phase difference between them. A digital pulse
counting technique is generally used for this phase measurement, which gives the

fractional part of the total distance (A4). The integer number of wavelengths (M) is fixed
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by altering the modulation pattern and added to the fractional values to deliver the final

slant range (R).

R=(MA+AL)/2 (2-2)

Where, M denotes the integer number of wavelengths, A denotes the known value of the
wavelength and A4 denotes the fractional part of the wavelength = (¢p/27) - A, where ¢ is the

phase angle.

This method is often used in short-range terrestrial laser scanners due to the limited power
of the CW laser. The signal strength is lost as the distance to objects is increased. The
actual operation in airborne and spaceborne is rare (Heritage and Large, 2009; Petrie and

Toth, 2009a).

2.4.1.2 Laser Profiling

Laser profiling utilises a reflectorless ranger and measures the distance to a series of
closely spaced points along a line on the ground. This provides a two-dimensional profile
or vertical section from the ground up. When a terrestrial laser ranger is used, the terrain
profile is measured by a series of steps with the successive measured distances and vertical
angles (V) to each sampled point (Fig. 2-2(a)). With the digitally recorded and stored data,

the profile of the terrain along the line can be obtained as follows (Fig. 2-2(b)).
D = RcosV (2-3)

Where, D denotes horizontal distance, R denotes the measured slant range and V" denotes

the measured vertical angle.
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AH = RsinV (2-4)

Where, AH denotes the difference in height between the laser ranger and the point being

measured.

When an airborne or spaceborne platform is used for a simple laser profiler, the laser
ranger is pointed vertically toward the ground providing a rapid series of measurements of
the distances to the ground from the successive positions of the moving platform. If the
positions and altitudes of the platform at these successive positions in the air or in space
can be obtained utilising a GPS/IMU system for an airborne platform or a star-tracker for a
spaceborne platform, the corresponding ranges measured at these points enable the
calculation of their ground elevation values. The terrain profile along the flight line can be

delivered (Petrie and Toth, 2009a).
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Figure 2-2 (a) Measurement of slant ranges (R) and vertical angles by a rangefinder located at A to a series of
successive points located along a line on the ground to form a profile. (b) The measured slant ranges (R) and
vertical angles (V) are used to compute the horizontal distances and differences in height between the
rangefinder at A and each of the ground objects at B. (Petrie and Toth, 2009a p.6)

2.4.1.3 Laser Scanning
An additional scanning mechanism such as a rotating mirror or prism enabled a laser
profiler to be upgraded to a laser scanner, increasing the point density of the sample

thereby providing detailed topographic features of an area. A terrestrial or ground-based

34



laser scanner moves in two directions; the vertical motion caused by the rotating mirror or
prism and a controlled motion in the azimuth direction given by a motor drive. This
measures a series of profiles around the vertical axis of the laser ranger, which gives the
position and elevation data. Thus, a 3D model of the terrain and the objects on the ground
are formed. An airborne or spaceborne laser scanner measures a series of profiles in the
direction perpendicular to the flight line as the platform moves forward providing the
second dimension. The angular rotation values for the reflective mirror or prism are
continuously and precisely obtained using an angular encoder. This provides the additional
profiles of the terrain to be measured by the laser ranger in cross-track direction, and
supplements the longitudinal profile being measured in the along-track direction of the
flight line. Through a series of these profiles, the locations and elevations of a mesh of
points, which are called a LiDAR point cloud, are produced for an area of the terrain

(Large and Heritage, 2009; Petrie and Toth, 2009a).

2.4.1.4 Other features of LiDAR technology

Other features of LiIDAR technology to understand include the laser beam. It is particularly
important in successful data acquisitions. The laser beam or pulse spreads to illuminate a
circular area when it reaches the ground or the object on the ground. The diameter of the
circular area is called the footprint. If the ground is uneven elevation, the return signal will
be the average of the mixture of reflectance within a footprint. If the scan angle is fixed,
the footprint becomes larger as the range increases (Goodwin et al., 2006). Therefore, to
obtain useful signal with high flying heights, the beam divergence should be decreased and

the transmitted power and the receiver optics dimensions increased (Baltsavias, 1999).

Another significant aspect that one should consider in terms of the ranging performance is
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the laser beam reflectance. The reflectance is defined as the ratio of the incident radiation
on a specific surface to the reflected radiation from that surface. When the strength of the
reflected radiation is too weak to detect, the range needs to be reduced. Therefore, the
backscattering properties of the object are important. For a diffuse reflector object, the
reflected radiation is scattered into a hemispherical pattern (Fig. 2-3). The maximum
reflection occurs perpendicular to the target plane with the intensity decreasing to each side.
Furthermore, the reflectance of the target is different in accordance with the laser
wavelength (Baltsavias, 1999; Petrie and Toth, 2009a). Thus, one should select the
appropriate laser wavelength for the object measured. The reflectance of laser radiation is
also affected by the angle that the object makes with the incident pulse or beam. When an
airborne laser scanner is used to measure the terrain, the highly reflective surface on the
ground that is not at right angles to the incident laser pulse or beam will not return the
pulse to the laser ranger due to reflecting its radiation off to the side. In case of a forest
canopy, the emitted laser pulse in nadir direction will be able to penetrate the gaps in the

canopy and the return signal from the ground below the canopy can travel back to the
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Figure 2-3 Reflectivity of a diffuse target (Petrie and Toth, 2009a p.23).
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sensor. However, this penetration will decrease significantly as the scan angles are

increased away from the nadir direction (Holmgren et al., 2003).

2.4.2 Positioning of LIDAR

The laser scanning data is 2-Dimensional without the position and orientation of the laser
system being known according to a coordinate system. To archive 3-Dimensional position
of the points and accurate range measurements, an airborne laser scanning system needs
components both in the airborne and the ground segments (Fig. 2-4). The airborne segment
comprises an airborne platform, a laser scanner and a Position and Orientation System
(POS). The ground segment includes GPS reference stations and the processing hardware
and software for synchronization and registration which is carried out off-line. While a
laser scanner samples the line-of-site slant ranges with respect to the laser coordinate
system, a POS independently stores GPS data including carrier phase information and
orientation data from the IMU. The IMU defines the roll, pitch and yaw of the scanner and
the angle encoder determines the angular position of the scanner mechanism deflecting the
laser beam. Simultaneously, the ground GPS stations store GPS data and GPS carrier phase
data at known earth fixed positions for later off-line computing of differential GPS (DGPS)
positions of the airborne platform. An integrated POS consisting of a DGPS and an IMU
allows the positional accuracy to be computed with centimetre to decimetre accuracy and
its orientation to be determined better than one-hundredth of a degree. Since the position
and orientation data is stored as a function of GPS time as well as the laser scanner data is
stored with timestamps derived from the received GPS signal, the POS data and the laser
data can be synchronised. The synchronisation enables the laser vector for each sampled

ground point to be directly transformed into an earth fixed coordinate system such as
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World Geodetic System 1984 (WGS84). Thus geocoded laser data is obtained. The
accuracy of the data is depends on the accuracy of POS. With the latest system, the

accuracy better than 10 cm in 3-Dimensional space is possible (Wehr, 2009; Wehr and Lohr,

1999).
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Figure 2-4 LiDAR system (airborne and ground segment) (Wehr, 2009 p.131).

2.4.3 Platform for LiDAR technology

Platforms on which to mount laser rangers include terrestrial instruments, spaceborne
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satellites and airborne fixed wing airplanes and helicopters. Terrestrial or ground-based
laser rangers have been well adopted in land and engineering surveying for the last 30
years and used for various applications such as measuring topographic mapping, complex
industrial facilities, open-cast mines and the facades of buildings within urban areas
operated either from a static position such as being mounted on a tripod on the ground, or a
dynamic platform such as a van or truck (Large and Heritage, 2009; Petrie and Toth,
2009b). Spaceborne laser rangers are limited mainly by the large distances (100 — 1000
km) implied when using an Earth-orbiting satellites. This requires the use of a high power
laser. Current spaceborne laser profilers include the Geoscience Laser Altimeter System
(GLAS) aboard the Ice, Cloud, and land Elevation (ICESat) satellite launched in 2003,
which was designed to measure ice-sheet topography and associated temporal changes, as
well as cloud and atmospheric properties by NASA. Cloud Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CLIPSO) is a joint NASA (USA) and CNES (France)
satellite launched in 2006 to supply a unique set of atmosphere vertical profiles measured

by a Lidar on-board a satellite.

Airborne laser scanners have become wide-spread, being used today in many applications
such as topographic mapping, forest inventory and urban planning. Many commercial and
research laser scanners are aboard either on a fixed-wing airplane or a helicopter. An
airplane flies faster than a helicopter, at approximately 200 km/h, and can cover large areas
quickly. On the other hand, the helicopter has more flexibility in its flight, and therefore, is
better suited for flying over particular areas such as power lines and steep slopes on

mountains (Airborne Laser Survey Working Group, 2004).

39



2.4.4 LiDAR Systems

Current airborne laser scanning systems have two major configurations, discrete return
systems and full waveform systems. In the following sub-sections, these two systems are

detailed.

2.4.4.1 Discrete return system

The LiDAR discrete return system has been commercially available from mid-1990s. An
essential feature of the system is the number of returns that can be recorded per emitted
laser pulse. Assuming that the emitted laser pulse is entirely coherent with phased emission
of photons of light at an almost constant known energy state, this supposition is used to set
the threshold for recording of return energy (Heritage and Large, 2009). In this system,
returns are identified with distinct peaks in amplitude, which exceed a detection threshold
that triggers data recording. Earlier systems recorded only one return by setting the
threshold to record either the highest detected distinct peak or the lowest peak. Later
systems recorded two returns (both the highest and lowest peak), and then multiple returns
up to a maximum of five returns. The instrument dead-time, the time that is necessary in-
between two returns for them to be recorded as separate returns is another important
property in this system. This time can be translated into the vertical distance, which is
related to the duration of the emitted laser pulse, and is at least half the pulse length of the
emitted pulse. For example, an airborne laser scanning utilising a laser pulse of 10 ns,
which is equivalent to approximately 3 m, in length, the minimum detectable spacing that
can be measured by one laser shot would be 1.5 m. This is often explained by the lack of

returns between the lower part of a vegetation canopy and the ground (Danson et al., 2009).
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Figure 2-5 lllustration of discrete return system and full waveform system, recording emitted laser pulses and
returned signals from multiple surfaces of vegetation canopy.

Fig. 2-5 illustrates the laser ranging methods of the discrete return system and full
waveform system. Recent systems (e.g. Optech ALTM 1225 and successive systems) can
also record the return amplitude or intensity associated with each discrete return, which can
be used to differentiate targets. It is noted that the intensity is affected by the wavelength
and energy of the transmitted pulse, the distance to the target, the reflectance of the target,
the transmission of the atmosphere, the area of the receiver aperture, the throughput
efficiency of the receiver, the sensitivity of the detector and the amplification gain applied
to the detector output if analog detection is selected (Harding, 2009). Generally, small
footprints (<1 m) are favoured in intercepting multiple surfaces, which enables high-

resolution mapping of topography and canopy structure. Compared to the full waveform
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system, an advantage of the discrete system is smaller volume of recorded data, however a
disadvantage is the highly instrument-dependant representations of multiple returns. The
ability to identify separate returns from closely spaced surfaces depends on instrument
parameters such as the laser pulse width, detector sensitivity and response time, the system
signal to noise performance, the detection threshold and the ranging -electronics
implementation. Therefore, one should be aware that measurements of canopy variables
such as height, canopy depth or the distribution of understorey vegetation and gaps using

different discrete return systems are not always the same (Harding, 2009).

2.4.4.2 Full waveform system

The LiDAR full waveform system is a new system which emerged in mid-2000s. The
innovative feature of this system is to record the full waveform of an emitted pulse, which
enables full characterisation of the vertical structure of the target. In the full waveform
system, both the transmitted pulse shape and the received pulse shape are digitized and
recorded. This is the result of digitization of the waveform with an analog-to-digital
converter (Fig. 2-6). When this system is used for distributed objects such as vegetation
canopies, vertically distributed multiple surfaces are illuminated by a single laser pulse and
a complex shape of the received signal can be digitized (Fig. 2-5). The signal represents the
height distribution of illuminated surfaces weighted by the spatial distribution of laser
energy within the footprint and the reflectivity of the surfaces at a given laser pulse
wavelength (Harding, 2009; Harding et al., 2001). The pulse shape is an important feature
as it can provide information about different surface attributes. Typical surface attributes to
extract from a full waveform signal include range, elevation variation and reflectance,

corresponding to the waveform attributes of time, width and amplitude. To extract the
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Figure 2-6 Example of the waveform digitizer system developed by Optech Inc. of Canada and the Unit for
Landscape Modelling, University of Cambridge (Devereux and Amable, 2009 p.57).

attributes, one needs to be aware that the received waveform is dependent on the
transmitted waveform, the impulse response of the receiver, the spatial distribution of the
laser pulse beam and the geometric and reflectance properties of the illuminated surface.
The width of the pulse can be used to measure the elevation variation of the surface since a
rough surface will broaden the reflected laser pulse. Furthermore, the broadening of the
pulse results in spreading of the reflected photons over a greater amount of time, which
reduces the peak amplitude. Therefore, the pulse width and amplitude need to be known to
estimate the elevation variation or reflectance attributes of a surface. The range to a surface

can be determined in various schemes such as peak detection, leading edge ranging,
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constant fraction detection, centre of gravity detection and Gaussian decomposition and
deconvolution. It is noted that the different processes may impact the shape of the

waveform (Stilla and Jutzi, 2009).

2.4.5 LiDAR Applications

LiDAR, especially airborne laser scanning has become wide-spread, being used today in
many applications such as topographic mapping, forest inventory and urban planning. In
this section, topographic mapping, forestry and ecological application of airborne laser

scanning are reviewed and discussed.

2.4.5.1 DEM (Digital Elevation Model)

Assessing topographic features is the largest area of application for airborne laser scanning.
After the first commercial projects to acquire terrain data in Europe in mid-1990s (Pfeifer
and Mandlburger, 2009), survey companies aggressively started using this emerging
technology to obtain a Digital Elevation Model (DEM) otherwise called a Digital Terrain
Model (DTM), which is derived from a Digital Surface Model (DSM) using filtering
techniques (Flood and Gutelius, 1997). Fig. 2-7 illustrates an example of original point
cloud derived from laser scanning data, created DSM and DTM. DSM includes any objects
such as buildings, clouds and vegetation in the path of the laser pulse. To determine the
terrain surface from laser scanning data, filtering is necessary to eliminate those points that
are not on the terrain surface (Lefsky et al., 2002). Numerous filter algorithms such as the

“Morphological Filter” (Vosselman, 2000) and progressive densification (Axelsson, 1999)
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Figure 2-7 Example of original point cloud, DSM and DTM (Pfeifer and Mandlburger, 2009 p.313). (a) Original
point cloud in perspective view from the side. (b) DSM of the same dataset. (c) Classified point set: ground
points (black) and off-terrain points (gray). (d) Z-coding superimposed to shading of the DTM, plan view. (e) A
shaded view of a DSM detail together with the original points and a profile of 85 m length.

have been reported. Compared with the traditional survey and photogrammetric techniques
to determine the terrain, data acquisition of airborne laser scanning can be performed at
night time (independent of sun position) and over difficult areas such as forests where the
ground is not visible (e.g. Kraus and Pfeifer, 1998), and wetland and coastal dune where is

low relief and texture (e.g. Irish and Lillycrop, 1999), with high accuracy and cost-
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performance. Therefore, traditional methods are gradually being replaced by airborne laser

scanning (Flood and Gutelius, 1997; Lefsky et al., 2002; Pfeifer and Mandlburger, 2009).

2.4.5.2 Forestry

The concept of producing forest stand profiles with laser profilers was introduced around
1980 (e.g. Nelson et al., 1984; Schreier et al., 1985). A background to the application of
airborne laser scanning in forestry can be found in HyyppA et al. (2009). Numerous papers
have documented the utility of LiDAR for the estimation of forest attributes in forestry.
Recent studies are summarised in Table 2-12 which shows derived forest attributes with
used LiDAR sensors and authors of the work. Since the primary interest in forestry is the
assessment of timber volume, airborne laser scanning started being applied to estimating
biomass and stand structure (e.g. Lefsky et al., 1999a; Lefsky et al., 1999b; Means et al.,
1999; Nelson et al., 1988). In the following sub-sections, forest attributes derived from

airborne laser scanning is detailed.

2.4.5.2.1 Tree height

Tree height and related attributes are the major area of airborne laser scanning, since it can
measure the tree height with high accuracy. The most commonly used technique to extract
tree height is the canopy height model (CHM) approach (e.g. Hill and Thomson, 2005;
Hopkinson et al., 2008; Yu et al., 2004). This creates a DSM relevant to tree tops by
classifying the highest returns and interpolating missing points, and then subtracts the

DTM from the corresponding DSM. Consequently, the tree height is expressed as a mean
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height. To obtain individual tree top height, the segmentation of individual trees is
necessary, which usually requires high resolution data (e.g. Persson et al., 2002). For
estimating height related attributes, computing percentiles of the distribution of laser
canopy heights is another major approach (e.g. Nasset, 2002). In this method, canopy
height metrics utilise quantiles equivalent to the 0, 10, 20, ..., 90 percentiles of the first
return laser canopy heights and corresponding statistics. Canopy density metrics use
corresponding proportions of both the first and last returns above the 0, 10, 20, ..., 90
quantiles to total number of laser returns. In terms of the accuracy of the estimation of tree
height, Persson et al. (2002) reported an RMSE of 0.63 m for Norway spruce and Scots
pine dominated forests and Hirata et al. (2009) demonstrated RMSE of 0.65 m for
moderate thinning (30.4 %) Japanese cypress forests. In the studies of estimating forest
growth based on the tree height, Yu et al. (2008) obtained the mean height growth with R?
value of 0.86 and standard deviation of residuals of 0.15 m. It has been reported that tree
height is underestimated by airborne laser scanning (e.g. Nelson et al., 1988; Persson et al.,
2002). The tree height will be underestimated if the tree top and/or the ground are not
detected by the sensor (HyyppA et al., 2008). Therefore, a sufficient density of laser pulses
with sufficient energy to return signals is required to detect the tree top and penetrate the

canopy to ground level (Lefsky et al., 2002).

2.4.5.2.2 Biomass

Measuring biomass has been another major area of interests in forestry since it measures
tree materials that can be utilised as a source of energy. It is also becoming globally
important in terms of carbon sequestration in forests. Most of previous studies using

airborne laser scanning to estimate biomass have been conducted in temperate forests
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Table 2-12 Recent studies using airborne/spaceborne LiDAR for forest attributes.

Forest attributes | LiDAR sensor Other sensor data Recent study
(Airborne/Spaceborne) | used

LAI Optech ALTM 1233 Solberg et al. (2009)
Leica ALS 40 Zhao and Popescu (2009)
Falcon II Morsdorf et al. (2006)
Optech ALTM 3100C Solberg et al. (2006)
Optech ALTM 1210 Roberts et al. (2005)
TopoSys-II Riafio et al. (2004)

Tree height Optech ALTM 30 Falkowski et al. (2009)

(including Optech ALTM 3100 Hirata et al. (2009)

height metrics Riegl LMS-Q560 Miiller et al. (2009)

and height Optech ALTM 3100 Orka et al. (2009)

profile) Leica ALS 40 Zhao et al. (2009)
Optech ALTM 1225, Hopkinson et al. (2008)
2050, 3100
TopoSys-1, 11 Yu et al. (2008)
GLAS Simard et al. (2008)
GLAS Rosette et al. (2008)
GLAS, LVIS Sun et al . (2008)
Optech ALTM 2033 Aerial photograph | Packalén and Maltamo (2007)
LVIS Goetz et al. (2007)
Terra Remote Sensing’s Coops et al. (2007)
instrument
Optech ALTM 3100C Nesset and Nelson (2007)
LVIS Anderson et al. (2006)
Optech ALTM 1210 Bradbury et al. (2005)
LVIS Hyde et al. (2005)
SLICER Lefsky et al. (2005)
Optech ALTM 1210 Roberts et al. (2005)
TopoSys-1 Yu et al. (2004)
TopoSys-I Riano et al. (2003)
TopEye Brandtberg et al. (2003)
Acroscan lidar system Zimble et al. (2003)
TopEye Persson et al. (2002)
Optech ALTM 1210 Nasset (2002)
SLICER Harding et al. (2001)

Biomass Leica ALS 40 Zhao et al. (2009)
Leica ALS 50 Phase 11 Kim et al. (2009)
GLAS Simard et al. (2008)
TopoSys-1, 1 Yu et al. (2008)
Optech ALTM 1210, Nesset and Gobakken (2008)
1233, 3100, Leica ALS
50-1
LVIS AVIRIS Anderson et al. (2008)
Optech ALTM 3025 Goodwin et al. (2007)
TopEye SPOT Wallerman and Holmgren (2007)
Optech ALTM 2033 Aecrial photograph | Packalén and Maltamo (2007)
LVIS Anderson et al. (2006)
Spectrum mapping, van Aardt et al. (2006)
LLC DATIS I
LVIS Hyde et al. (2005)
TopoSys-1 Riano et al. (2003)
Optech ALTM 1210 Nasset (2002)

Stem number Optech ALTM 2033 Aerial photograph | Packalén and Maltamo (2007)

Optech ALTM 1210

Nasset (2002)
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Forest attributes | LiDAR sensor Other sensor data Recent study
(Airborne/Spaceborne) | used
Stem diameter LVIS AVIRIS Anderson et al. (2008)
LVIS Anderson et al. (2006)
Stem density TopEye SPOT Wallerman and Holmgren (2007)
Basal arca LVIS AVIRIS Anderson et al. (2008)
Optech ALTM 2033 Aerial photograph | Packalén and Maltamo (2007)
Optech ALTM 1210 Nasset (2002)
Canopy cover Optech ALTM 2050, Hopkinson and Chasmer (2009)
(including 3100
volume Optech ALTM 30 Falkowski et al. (2009)
profile/density) | Optech ALTM 3100 Orka et al. (2009)
Optech ALTM 3025 Goodwin et al. (2007)

Terra Remote Sensing’s
instrument

Coops et al. (2007)

Falcon II Morsdorf et al. (2006)
LVIS Hyde et al. (2005)
SLICER Lefsky et al. (2005)
TopoSys-II Riafio et al. (2004)
TopoSys-I Riano et al. (2003)
Crown shape Optech ALTM 3100 Kato et al. (2009)
Optech ALTM 3100 Hirata et al. (2009)
Optech ALTM 1210 Roberts et al. (2005)
TopEye Brandtberg et al. (2003)
TopEye Persson et al. (2002)
Understorey Optech ALTM 3100 Vehmas et al. (2009)
vegetation TopoSys Falcon Maltamo et al. (2005)
Coarse woody Optech ALTM 3100 Pesonen et al. (2008)
debris (CWD) Acroscan lidar system Seielstad and Queen (2003)
Tree species Optech ALTM 3100 Orka et al. (2009)
TopEye MKII Multi-spectral Holmgren et al. (2008)
image by digital
camera
TopEye Brandtberg (2007)
Optech ALTM 1020 Moffiet et al. (2005)
TopEye Holmgren and Persson (2004)
TopEye Brandtberg et al. (2003)

dominated by deciduous tree species and the estimation is based on a strong relationship
between above-ground biomass components and amount of foliage, which can be detected
by laser pulses (Naesset and Gobakken, 2008). One major approach to estimating biomass
i1s to use the percentile of canopy height distribution as a predictor and determine the

regression with related in-situ measurements (e.g. Nasset and Gobakken, 2008; Yu et al.,

2008; Zhao et al., 2009).

49




2.4.5.2.3 LAI

Leaf area index (LAI) is generally defined as the one-sided leaf area per unit of ground
area (e.g. Chen and Black, 1992; Danson et al., 2009; Watson, 1947). In the studies using
airborne laser scanning, effective LAI (e.g. Solberg et al., 2006) or LAI proxy (e.g.
Morsdorf et al., 2006) is often computed since these include the area of stems and branches,
which are intercepted by the laser pulses as well as leaves. The theory of Beer-Lambert
Law in chemistry, which states that the absorbance of a light beam transmitted and sent
through the solution is determined by the concentration and path length in the solution, has
been often applied to the transmission of laser pulses through the canopy, i.e. gap fraction
(e.g. Gower et al., 1999; Riafio et al., 2004; Solberg et al., 2006; Zhao and Popescu, 2009).
In this theory, LAI is determined by the transmission of laser pulses through the canopy
and an extinction coefficient that depends on the foliage inclination angle distribution and
the reflectivity of the foliage (Solberg et al., 2006). A major approach for estimations of
LAI involves examining LiDAR metrics and regression analysis with related in-situ LAI
values measured by hemispherical photographs or other optical sensors such as LAI2000
of LI-COR, Inc. (e.g. Morsdorf et al., 2006; Riafio et al., 2004; Solberg et al., 2009;
Solberg et al., 2006; Zhao and Popescu, 2009). Riafio et al. (2004) estimated LAI using 50,
75, and 95 percentile of heights, average height, maximum height and percentage of
canopy hits as LiIDAR predictive variables in oak and Scots pine forests in Spain. These
authors found that the percentage of canopy hits was the best estimator. Zhao and Popescu
(2009) examined various LiDAR metrics such as laser penetration metrics (return number-
based ratio), height-related metrics and foliage-density proxies for estimation of LAl in a
pine-dominant eastern Texas forest. These authors concluded that laser penetration metrics

with logarithm models were more effective than height-related metrics.
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2.4.5.2.4 Canopy cover

Canopy cover has also been a focus for LIDAR based forestry assessments. Canopy cover
is the inverse of gap fraction and also called as fractional cover in some studies (e.g.
Hopkinson and Chasmer, 2009; Morsdorf et al., 2006). For example, Nasset (1997)
showed the potential of LiDAR to estimate fractional cover. Fractional cover was derived
from LiDAR as the ratio of canopy returns to the total number of returns per unit area.
Similar methods utilising the point density of LiDAR returns to estimate fractional cover
were presented in other studies (Coops et al., 2007; Hopkinson and Chasmer, 2007; 2009;
Morsdorf et al., 2006; Riafio et al., 2004; Solberg et al., 2006) and showed promising
results. Hopkinson and Chasmer (2007; 2009) also incorporated the intensity of LiDAR
returns into their algorithm. These authors estimated canopy fractional cover calculating
the ratio of the sum of all canopy level return intensities to the sum of total return intensity,
and achieved a high correlation with fractional cover recovered from ground-based digital

hemispherical photography.

2.4.5.2.5 Crown shape

To obtain information on crown shape, the segmentation of individual trees is required.
Roberts et al. (2005) used interpolated canopy surface models from a LiDAR point cloud
and identified the location of individual trees by assuming that the pixel related to the top
of a tree will be higher than surrounding pixels. These authors then estimated crown
diameter by identifying the crown edge in each cardinal direction from the located tree top
pixel in the canopy surface model. It was reported that crown diameter derived from

LiDAR was underestimated due to asymmetrical shape of crowns with irregular edges,
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although the comparison with field measured crown diameters achieved R* value of 0.55.
Hirata et al. (2009) located individual tree crowns from a LiDAR derived digital canopy
model by the watershed segmentation method and the identification rates achieved were
95.3% for heavy thinning (the thinning ratio of the basal area, 38%), 89.2% for moderate
thinning (30.4%) and 60% for no thinning, respectively. Kato et al.(2009) developed a
‘wrapped surface reconstruction’ method to capture tree crown formation. In this method,
an individual tree was identified either by a marker controlled segmentation method or by a
density or height variance dependent segmentation method from LiDAR derived digital
canopy height models. Then, crown surface points were selected and ‘wrapped’ using
Radial Basis Functions and an isosurface algorithm (Angel, 2003). In their study, the
comparison between tree crown parameters derived from the wrapped surface and ground-
based variables reported a R* value of 0.80 for coniferous trees and 0.75 for deciduous
trees in crown width, R? value of 0.92 for coniferous trees and 0.53 for deciduous trees in
crown base, R” value of 0.72 for coniferous trees and 0.51 for deciduous trees in height of
the lowest branch, and R? value of 0.84 for coniferous trees and 0.89 for deciduous trees in

crown volume.

2.4.5.2.6 Stem and basal area

In the recent studies of estimating basal area and stem related attributes such as stem
number and its diameter, synthetic use of LiDAR data and other optical sensor data has
been reported. Packalén and Maltamo (2007) estimated stem number, basal area and basal
area median diameter for Scots pine, Norway spruce and deciduous trees using the
combination of LiDAR derived height distribution variables, which include percentiles of

canopy height and proportions of canopy hits, and spectral and textural features from aerial
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photographs in a multivariate non-parametric k-MSN approach. These authors found that
the RMSEs for basal area estimation were 27.05 % for pine trees and 31.30 % for spruce
trees, which were acceptable, compared to a conventional field inventories in Finland.
They also reported that the estimated stem numbers were even better than those of
conventional field inventories. Wallerman and Holmgren (2007) combined LiDAR derived
height distribution variables with the four SPOT-5 HRG spectral bands to predict forest
stand variables in a managed forest dominated by Scots pine, Norway spruce and birch.
These authors achieved RMSE of 19 % (1145 st ha™) for estimation of stem density and
RMSE of 19 % (0.195 m) for mean diameter. Anderson et al. (2008) used integrated
datasets of high spectral resolution imagery (Airborne Visible/Infrared Imaging
Spectrometer; AVIRIS) and waveform LiDAR to estimate basal area, above-ground
biomass and quadratic mean stem diameter in a experimental forest in the US. Canopy
height, the height of median energy, the relative height at 25 % energy and the relative
height at 75 % energy derived from waveform data and 24 AVRIS bands variables were
compared with field derived variables in a stepwise mixed linear regression analysis. These
authors concluded that the integrated datasets estimated the forest measurements better

than the use of either data set alone.

2.4.5.2.7 Tree species

LiDAR data has been also used to discriminate between coniferous and deciduous tree
species (Drka et al., 2009) and individual tree species (Brandtberg, 2007; Brandtberg et al.,
2003; Holmgren and Persson, 2004; Holmgren et al., 2008; Moffiet et al., 2005). Most of
studies utilise tree shape and intensity information derived from LiDAR data. This is based

on the concept that these information are different between tree species. Holmgren and
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Persson (2004) classified Scots pine, Norway spruce and deciduous trees using LiDAR
derived variables: proportion of canopy returns, standard deviation of the intensity of the
returned pulses, mean intensity of the surface returns, proportion of first returns, proportion
of surface hits, mean value of the parameters of the parabolic surface, relative standard
deviation of laser heights and height percentile divided with the estimated tree height.
These authors accomplished the classification accuracy of 95% with six of these variables.
They also reported high classification accuracies were achieved by using the proportion of
first returns and the standard deviation of the intensity. Holmgren et al. (2008) took the
similar approach using the combination of LiDAR data and multi-spectral images and
obtained an overall accuracy of 88 % to classify Norway spruce, Scots pine and deciduous
trees. Orka et al. (2009) analysed the differences in structural and intensity features
between coniferous (Norway spruce) and deciduous (birch and aspen) trees and tested
classification performance of the structural and intensity features. The highest
classification accuracy of 88 % for large trees was achieved by combining eight variables:
the kurtosis of the laser height distributions, maximum intensity from first returns, mean
height, the skewness of the laser height distributions, crown density in 9" layer from 1.3 m
vantage point from single returns, coefficient of variation for the laser height values, crown
density in 9" layer from 1.3 m height and mean intensity from last returns. These authors
reported that the return categories (first, single or last) were critical information to select

the candidate feature for successful classification.

As described above, LiDAR based forest inventory studies show promising results. Recent
forest inventory applications deal with various topics such as recreation, wildlife and
watershed management in natural forests as well as plantation forests. However, the main
focus is still on acquiring information on the volume and growth of trees, forest plots and

stands (HyyppA et al., 2009). It should be also noted that many of them have been
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conducted in Scandinavia or North America and have local or species specific methods.
Careful consideration and modification would be necessary to apply their methods to other

areas where other types of ecosystems exist.

2.4.5.3 Ecology

Compared to forest inventory studies, ecological applications require an assessment of
complexity of habitat structure at a landscape scale. During the last decade, ecologists
started recognising LiDAR as useful technology in providing valuable information for
modelling relationships between landscape variables such as vegetation structure and
organisms. LiDAR has great utility in this since it can offer data with high vertical
resolution as well as sufficient area coverage required for valid statistical modelling
(Miiller et al., 2009). In the following sub-sections, forest attributes derived from LiDAR,

which are particularly important in the ecological context, are detailed.

2.4.5.3.1 Vertical vegetation structure

Extracting vertical vegetation structure information is important but challenging in
ecological applications since unlike managed forests, natural forests are more structurally
complex, containing mixed vegetation species with different characteristics including ages.
The individual tree approach is not realistic in such forests. The main approach is focused
on identifying vegetation layers in forest stands using height information (e.g. Maltamo et
al., 2005; Zimble et al., 2003). Zimble et al. (2003) used LiDAR derived tree height

variance to differentiate single-storey and multi-storey vertical structural classes with a
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97% accuracy. Riafio et al. (2003) used a cluster analysis of LiDAR height information to
discriminate between overstorey and understorey canopies. Maltamo et al. (2005) tested
the presence and the number of understorey trees by analysing the height distribution of
LiDAR returns. These authors found that multi-layered stand structures can be recognised
and quantified, however, the accuracy of the results varied greatly depending on the

density of the dominant tree layer.

Understorey vegetation is another important attribute to identify. Vehmas et al. (2009)
located the mature herb-rich forest stands, where are the main habitats for many
endangered species, based on crown structure and vertical profile derived from LiDAR

data.

2.4.5.3.2 Coarse woody debris (CWD)

Coarse woody debris (CWD) is important for nutrient cycling and habitation for species in
forests. Small number of studies has been published to estimate the amount of CWD using
LiDAR (e.g. Pesonen et al., 2008; Seielstad and Queen, 2003). In the study of fuel models
in the closed-canopy conifer forests of the western United States, Seielstad and Queen
(2003) showed the possibility of estimating CWD loads using a surface roughness metric
and obstacle density, which was defined as the number of non-ground points less than 6
feet in height per square meter, normalized by the total number of ground and points
greater than 6 feet. Pesonen et al. (2008) estimated downed dead wood volume using the
predictive variables of canopy height distribution, cumulative proportional canopy
densities, the laser pulse intensities accumulating in percentiles, the average intensity value

of above-ground hits, the proportion of ground hits versus canopy hits and the average
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height and standard deviation of the above-ground hits derived from first and last laser
returns respectively. These authors found that the standard deviation of first return laser
heights was the most significant variable in the models, and achieved the adjusted multiple
correlation coefficient of 0.6099 with the combination of the standard deviation of first
return laser heights and last return laser pulse intensity accumulating in 10" percentile as

predictors.

The vertical vegetation structure information derived from LiDAR has been used as a
surrogate for habitat structure to predict population of a mammal (Nelson et al., 2005),
bird’s distribution and demography (Bradbury et al., 2005), bird’s species richness and
abundance (Goetz et al., 2007), chick mass (Hinsley et al., 2002) and bird’s abundance and
composition of assemblages (Miiller et al., 2009). Hyde et al. (2005) characterised montane
forest canopy structure; canopy height, canopy cover and biomass, as a prerequisite for

large area habitat mapping for California spotted owls.

They showed the potential of LiDAR in integrating with ecological studies. More

application of LiDAR for ecology is anticipated.

2.5 Conclusion

Conservation of biodiversity has been recognised internationally as critically important for
sustainability. Measurements for the maintenance of biodiversity are required at all levels
of government from the international scale to the local scale. At the landscape level, a
practical way of defining and measuring biodiversity is necessary for managers. Forest

structure has been internationally recognised as a surrogate of biodiversity since an
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association is often found between biodiversity and measures of the variety and/or
complexity of arrangement of structural components within an ecosystem. In Australia,
forest structure variables are also measured in mandated vegetation monitoring systems.
However, the current methods to assess forest structure information are often qualitative
and require a laborious process that involves site visits and many logistically expensive
point based measurements. An efficient and cost-effective assessment tool to compliment
these survey methods is necessary. Remote sensing data derived from satellite and airborne
sensors 1s superior to field survey data in providing high-spatial coverage, near
simultaneous acquisition, repeated regional accounting and cost effectiveness. To date,
most natural resource remote sensing has been undertaken using passive sensing
technologies, which provide 2D information. Passive remote sensing technology can offer
some biophysical parameters of forest structure, however these are often limited to either
horizontal parameters or homogeneous species. LIDAR is an active sensor technology that
illuminates the object using the sensor unit and measures the range distance between
sensor and the illuminated target providing highly accurate 3D information of the objects.
LiDAR has great potential in extracting forest structure information. Numerous papers
have documented the utility of LiDAR, especially airborne laser scanning for the
estimation of forest attributes in forestry applications and shown promising results.
However, many of these studies have been conducted in Scandinavia or North America and
have local or species specific methods. Careful consideration and modification would be
necessary to apply their methods to other areas where other types of ecosystems exist.
Ecologists also recently started recognising LiDAR as useful technology providing
valuable information for modelling relationships between landscape variables such as
vegetation structure and organisms. Ecological applications require an assessment of the

complexity of habitat structure at a landscape scale. Innovative methods and more
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application of LiDAR technology are anticipated in extracting forest structure information

for biodiversity assessments.
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CHAPTER 3 LIDAR DISCRETE RETURN SYSTEM

EXPERIMENT

3.1 Introduction

The importance of forest structure information as a surrogate of biodiversity is widely
acknowledged (Section 2.2). The application of LiDAR technology for extracting forest
attributes was reviewed in Section 2.4.5.2 and Section 2.4.5.3. In this chapter, a LiDAR
discrete return system experiment is conducted. Although the latest laser scanning systems
can record several returns or a full waveform of returned signals, they have not been
widely used in biodiversity research and such systems are far less common than
conventional discrete return systems, which record only the first and last returns. This
chapter evaluates the utility and potential of conventional discrete return systems for

biodiversity assessment.

3.2 LiDAR intensity

LiDAR has been used to extract forest attributes such as canopy cover and biomass. The
most commonly adopted approach is to use the height information derived from LiDAR
data, computing, for example, percentiles of the distribution of laser pulses (Section
2.4.5.2.1). Some discrete return systems also record the intensity of the backscattered laser
pulses. There have been few studies to date that utilise LIDAR intensity. This is because

there is lack of calibration and the difficulty in interpreting the intensity information (see,
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Section 2.4.4.1). However, the few studies that have utilised intensity information have
shown promising results (e.g. Brandtberg et al., 2003; Means et al., 1999; van Aardt et al.,
2006). The following is a comprehensive review of LiDAR intensity in extracting forest

attributes to date.

Means et al. (1999) found that foliage biomass in coniferous forests was highly correlated
with LiDAR derived metrics which included the sum of canopy intensity, ground intensity
and canopy closure calculated from intensity. These authors found that tree foliage biomass
was best predicted by a canopy intensity integration sum. Van Aardt et al. (2006) used
intensity-based parameters such as mean and median intensity of return to estimate forest
volume and above ground biomass in a mixed forest. Their results indicate that the number
of returns and the intensity associated with each of these LiIDAR interactions are necessary
for effective modelling of biomass variations in structurally complex forests. For tree
species classification, Brandtberg et al. (2003) note that the intensity of return ‘maximum
value’, kurtosis and skewness, for individual leaf-off tree crowns, performed well for tree-
based variables. These authors conclude that return intensity distributions were
significantly different for different tree species. Holmgren and Persson (2004) tested a
species classification algorithm, of Scots pine versus Norway spruce, at an individual tree
level using two types of variables; those derived from the shape of trees resulting from a
segmentation and variables derived directly from laser data. They achieved the highest
classification accuracies by using the combination of six variables, but found that the
proportion of first returns and the standard deviation of the return intensity provided a
major contribution to successful species classification. This also suggested these variables
could be used for estimation of tree species proportions on plots and in forest stands where
the LiDAR returns are too few to allow identification of individual trees. Moffiet et al.

(2005) examined how LiDAR intensity interacts with the forest canopy to produce
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intensity return signals. Similarly to Van Aardt et al. (2006), these authors note that average
LiDAR return intensity and intensity variation may be useful variables to assist with
species discrimination. They also note intensity of return values can be affected by forest
structure and the reflective properties of the vegetation. Hopkinson and Chasmer (2007;
2009) estimated canopy fractional cover calculating the ratio of the sum of all canopy level
return intensities to the sum of total return intensity, and achieved a high correlation with
fractional cover recovered from ground-based digital hemispherical photography. Pesonen
et al. (2008) estimated downed dead wood volume (RMSE 51.6%) using the standard
deviation in height distribution and laser pulse intensities accumulating in percentiles. Kim
et al. (2009) estimated live and dead standing tree biomass and concluded intensity was

key variable.

In this analysis, a conventional discrete return system is examined to determine whether it
can extract forest structure information in an Australian Eucalyptus forest. In particular, the
utility of LiDAR return intensity information is highlighted. Classification of forest

structure types is also attempted using intensity information.

3.3 Study area

The study area for this experiment (Upper left S 35°46', E 144°52'; Lower right S 36°0', E
145°0") is situated in the Barmah Millewa Forest, located on the border of New South
Wales (NSW) and Victoria (VIC) in Australia (Fig. 3-1). The area is a riparian complex
which comprises approximately 70,000 ha of wetland and forests (Fig. 3-2). This system
has a variety of land tenures including areas of national park and state forest reserves. In

the latter, logging operations exist which can hinder the monitoring process. The area is
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Figure 3-1 Study area is displayed in the rectangle on the satellite imagery; Landsat-7 ETM+ (Blue; band 1,
Green; band 2, Red; band 4).
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Figure 3-2 Photograph of study area. The area is a riparian complex which comprises approximately 70,000
ha of wetland and forests.
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Table 3-1 LiDAR acquisition specifications.

Scanner Model ALTM 1225 (now ALTM 3025)

Sampling intensity 11000 Hz and 12500 Hz

Flying height 1100 m

Laser swath width S\?v(;trr?eggoss, 600 m net (25% overlap between
Laser wavelength 1.047 microns

Laser footprint 0.22m

Vertical Accuracy 0.15 m (1 sigma)

ALS Internal precision 0.05m

Acquisition Date July 2001

important since it represents the largest remaining river red gum (Eucalyptus
camaldulensis ssp. obtusa Dehnh) forest in the world (Bacon et al., 1993). This landscape
contains important rare and endangered Flora and Fauna (Harris and Rawson, 1992). The
Barmah-Millewa Forests are recognised as a significant habitat for migratory birds in
international treaties such as the Ramsar convention, the Japan-Australia Migratory Birds
Agreement and the China-Australia Migratory Birds Agreement (Chong, 2003).

Conservation of biodiversity is therefore critical in this area.

3.4 Materials

3.4.1 LiDAR data

The LiDAR data used in 