

A Framework for Real Time Collaborative Editing in a

Mobile Replicated Architecture

A thesis submitted for the degree of

Doctor of Philosophy

Sandy Citro, M. Tech (IT),

School of Computer Science and Information technology,

Science, Engineering, and Technology Portfolio,

RMIT University,

Melbourne, Victoria, Australia

15th June, 2007

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify for

any other academic award; the content of the thesis is the result of work which has been

carried out since the official commencement date of the approved research program; and,

any editorial work, paid or unpaid, carried out by a third party is acknowledged.

Sandy Citro

School of Computer Science and Information Technology

Royal Melbourne Institute of Technology

15th June, 2007

ii

Acknowledgements

This thesis is the result of three and half years of work whereby I have been accompanied

and supported by many people. It is a pleasure that I have now the opportunity to express

my gratitude for all of them.

I would like to thank my supervisors, Assoc. Prof. Jim McGovern and Dr. Caspar Ryan. I

could not have imagined having better advisors and mentors for my PhD, and without their

common-sense, knowledge, perceptiveness and clear direction, I would never have

finished. Since I started my research, both of them have never stopped showing their

enthusiasm and inspiration which have kept me going. Throughout my thesis-writing

period, they have provided much encouragement, sound advice, and lots of good ideas.

I wish to thank my extended family for providing support and encouragement throughout

my study: my dad, my mom, and all my brothers and sisters. Although they are overseas,

they have not stopped giving me encouragement in whatever way they can.

I wish also to thank my own family for providing such a loving and caring environment for

me. I would like to thank my beautiful wife, Maria, for giving me a full support for my

study, for sacrificially taking care of our children during my research, and most

importantly for constantly loving me. I would like to thank my gorgeous children,

iii

Jochebed and Jochanan, for continually giving me incomprehensible joy throughout my

study.

Lastly, and most importantly, I wish to thank my personal Saviour and Lord, Jesus Christ.

He created me in His own image, forgives me, saves me, supports me, gives me joy, and

He loves me. To only my Maker, my Father, my Savior, my Redeemer, my Rewarder, to

only a God like You do I give my praise. To Him I dedicate this thesis.

“The LORD is my shepherd, I shall not be in want.”- Psalm 23:1

iv

Credits

Portions of the material in this thesis have previously appeared in the following

publications:

• S. Citro, J. McGovern and C. Ryan, An efficient consistency management algorithm

for real-time mobile collaboration, In Proceedings of the Fifth International

Conference on Quality Software (QSIC 2005), pp. 287-294, 2005

• S. Citro, J. McGovern and C. Ryan, Handling and Resolving Conflicts in Real Time

Mobile Collaboration, in R. Meersman, Z. Tari and P. Herrero, eds., On the Move

to Meaningful Internet Systems 2006: OTM 2006 Workshops, Springer-Verlag,

Montpellier, France, 2006, pp. 21-22.

• S. Citro, J. McGovern and C. Ryan, Extending Real Time Mobile Collaboration

Algorithm to Handle Membership Events in an Ad-Hoc Mobile Network, In

Proceedings of The 2nd International Conference on Collaborative Computing:

Networking, Applications and Worksharing, Atlanta, Georgia, 2006.

• S. Citro, J. McGovern and C. Ryan, Conflict Management For Real-Time

Collaborative Editing in Mobile Replicated Architectures, In Thirtieth Australasian

Computer Science Conference (ACSC2007), pp. 115-124, Ballarat Australia. ACS,

2007

v

This work was supported by the Australian Telecommunications Cooperative Research

Centre and the Distributed Systems group at RMIT University.

Note

Unless otherwise stated, all fractional results have been rounded to the displayed number

of decimal figures.

vi

Contents

Abstract.. 1

1. Introduction ... 4

1.1. Background.. 4

1.2. Motivation ... 5

1.3. Research Questions ... 7

1.4. Methodology.. 9

1.4.1. Literature Review .. 9

1.4.2. Algorithm Construction... 9

1.4.3. Testing and Performance Evaluation... 10

1.5. Thesis Organisation ... 11

2. Mobile CSCW ... 13

2.1. Real-Time Collaborative Editing (Group Editor).. 17

2.1.1. Groupware Application Transparency... 17

2.1.2. Groupware Architecture .. 20

vii

2.1.3. Group Editor Requirements... 26

2.2. Real Time Collaborative Editing in Mobile Ad-Hoc Networks 29

2.2.1. Mobile ad-hoc network characteristics.. 32

2.2.2. Real-Time Mobile Collaborative Editing Requirements............................. 35

2.3. Existing Work.. 38

2.3.1. Centralised Architecture .. 39

2.3.2. Replicated Architecture ... 41

2.3.3. Groupware Systems in Mobile Networks.. 48

2.4. Summary.. 54

3. Consistency Management.. 57

3.1. Introduction ... 57

3.2. Group Editors Model ... 59

3.2.1. Document Model ... 60

3.2.2. Operation Model.. 64

Lamport’s Logical Clock... 68

State Vector ... 71

3.3. Related Work... 74

3.3.1. Pessimistic Concurrency Control (Pre-Locking)... 75

3.3.2. Optimistic Concurrency Control ... 76

viii

Optimistic Locking.. 76

ORESTE .. 79

3.3.3. Operational Transformation Framework ... 82

dOPT.. 84

Jupiter .. 92

adOPTed .. 93

LICRA ... 94

SOCT2... 95

SOCT3... 101

SOCT4... 103

GOT... 104

GOTO .. 105

State Difference based Transformation (SDT).. 106

Time Interval Based OT (TIBOT)... 110

TreeOPT .. 112

3.4. Some Recent Related Work... 114

3.4.1. Tombstone Transformation Functions (TTF).. 115

3.4.2. WithOut Operational Transformation (WOOT).. 117

3.4.3. Context-based Operation Transformation (COT) 118

3.5. Proposed Algorithm... 119

ix

3.5.1. Proposed Operation Integration Algorithm ... 121

Local Operation Execution.. 129

Remote Operation Reception .. 130

Remote Operation Execution .. 131

3.5.2. Proposed Operation Transformation Rules ... 134

Swapping of Deletion and Insertion Operations.. 135

Identical Operations... 142

3.6. Performance Evaluation .. 151

3.6.1. Independent Variables ... 153

3.6.2. Dependent Variables and Expected Outcomes.. 153

3.6.3. Results ... 154

3.7. Conclusion... 160

4. Conflict Management .. 163

4.1. Introduction ... 163

4.2. Conflict Problem ... 165

4.3. Related Work... 167

4.3.1. Locking Approach ... 168

4.3.2. Operational Transformation Approach.. 169

4.3.3. Multi-versioning Approach ... 171

x

4.3.4. Conflict Resolution Strategies ... 175

4.4. Proposed Algorithm... 176

4.4.1. User Intention Completion .. 179

Manual UI-Lock .. 180

Automatic UI-Lock.. 182

4.4.2. Conflict Management .. 184

Participants .. 184

State Vector ... 184

Conflict Table .. 184

Conflict Table Garbage Collector.. 193

4.4.3. Conflict Resolution.. 193

4.5. Conclusion... 196

5. Membership Management ... 198

5.1. Introduction ... 198

5.2. Membership Problems... 201

5.2.1. Disconnection .. 201

5.2.2. Late Join .. 203

5.2.3. Leaving the Session ... 205

5.3. Related Work... 208

xi

5.3.1. Group Membership Service... 209

5.3.2. IP Multicast ... 215

5.3.3. Session Management Model.. 216

YCAB .. 219

SOCT2... 220

CoWord ... 222

5.4. Algorithm .. 223

5.4.1. Late Join .. 224

5.4.2. Concurrent Late Join ... 229

5.4.3. Missing Operations.. 236

5.4.4. Quitting a Session.. 241

5.4.5. Conclusion... 244

5.5. Implementation.. 247

5.5.1. Storing the original form of operations ... 247

5.5.2. Requesting operations from a site other than the originator...................... 249

5.5.3. Remote Operation Queue .. 250

5.5.4. Duplicate Operation Requests ... 252

5.6. Performance Evaluation .. 253

xii

5.7. Conclusion... 260

6. Document Partitioning... 262

6.1. Introduction ... 262

6.2. Document Partitioning Problem .. 265

6.3. Related work.. 269

6.4. The Model ... 273

6.5. Proposed Algorithm... 278

6.5.1. Local Operation Generation .. 280

6.5.2. Remote Operation Reception .. 282

6.5.3. Joining a Section.. 285

6.5.4. Leaving a Section .. 287

6.5.5. Creating a New Section ... 289

6.6. Performance Analysis.. 289

6.6.1. Theoretical Performance Analysis... 290

6.6.2. Empirical Performance Analysis ... 291

6.7. Conclusion... 297

7. Application .. 300

7.1. Introduction ... 300

7.2. System Architecture .. 300

xiii

7.3. A Collaborative Editing Scenario.. 307

7.4. Conclusion... 314

8. Summary and Conclusion.. 315

Bibliography .. 322

xiv

List of figures

Figure 2-1 Groupware Dimensions, adopted from [21] .. 14

Figure 3-1 Dependent-object document .. 61

Figure 3-2 Independent-object document.. 61

Figure 3-3 Document operation... 66

Figure 3-4 Causal precedence.. 67

Figure 3-5 Concurrent operations.. 68

Figure 3-6 Logical clock unable to detect causality and concurrency 71

Figure 3-7 State vector .. 73

Figure 3-8 Undo and redo in ORESTE ... 80

Figure 3-9 User intention not respected .. 81

Figure 3-10 Causality preservation.. 85

Figure 3-11 Document convergence.. 86

Figure 3-12 Forward transformation rules used in dOPT ... 88

Figure 3-13 The dOPT puzzle ... 89

Figure 3-14 Operation context in forward transformation .. 91

xv

Figure 3-15 History separation in SOCT2... 96

Figure 3-16 Operation context in backward transformation ... 97

Figure 3-17 Backward transformation rules.. 98

Figure 3-18 Swapping two operations using operation transformations............................. 99

Figure 3-19 SOCT2 uses history reordering to solve the dOPT puzzle 99

Figure 3-20 The TP2 puzzle ... 100

Figure 3-21 History reordering in SOCT3 .. 102

Figure 3-22 SOCT3 solves the TP2 puzzle .. 103

Figure 3-23 Preserving operation effects, adopted from [137] ... 107

Figure 3-24 The operation effects relation violation (ERV) puzzle.................................. 108

Figure 3-25 Preserving operation effects... 109

Figure 3-26 Solving the ERV puzzle... 110

Figure 3-27 History trimming procedure... 124

Figure 3-28 Separating the operations history using partial history copy......................... 127

Figure 3-29 Partial history copy procedure ... 128

Figure 3-30 Local operation execution procedure... 130

Figure 3-31 Remote operation reception procedure .. 131

Figure 3-32 History separation procedure ... 132

Figure 3-33 Remote operation execution procedure ... 134

Figure 3-34 Correct backward transformation .. 136

Figure 3-35 Incorrect backward transformation.. 137

xvi

Figure 3-36 Transformation of an insert against a delete operation.................................. 138

Figure 3-37 Correct backward transformation .. 139

Figure 3-38 Backward transformation of insert against delete operation 141

Figure 3-39 Identical operations.. 143

Figure 3-40 Backward transformation of identical operations.. 144

Figure 3-41 Identical operations lead to inconsistent states .. 145

Figure 3-42 Identical operations lead to consistent states ... 146

Figure 3-43 Identical operations signified by dup operations ... 149

Figure 3-44 Backward transformation of a dup operation .. 150

Figure 3-45 Backward transformations of dup operations .. 150

Figure 3-46 Average overall execution time ... 155

Figure 3-47 The size of the history size after operation execution 156

Figure 3-48 Execution time vs. number of sites.. 156

Figure 3-49 Execution time vs. number of operations .. 157

Figure 3-50 Execution time vs. broadcast delay.. 157

Figure 3-51 The size of the history copy for history separation purpose 159

Figure 4-1 User intentions ... 174

Figure 4-2 Conflicting operations ... 180

Figure 4-3 Manual user intention lock .. 181

Figure 4-4 Automatic user intention lock.. 183

Figure 4-5 Handling a conflict using a conflict table .. 190

xvii

Figure 4-6 Conflict checking procedure.. 191

Figure 4-7 Resolving conflict .. 192

Figure 5-1 A site joins a session.. 226

Figure 5-2 After joining a session ... 226

Figure 5-3 Late join procedure .. 228

Figure 5-4 Concurrent late join ... 230

Figure 5-5 Late join procedure to handle concurrent late join .. 232

Figure 5-6 Checking for a new site ... 234

Figure 5-7 Determining operations precedence using state map....................................... 234

Figure 5-8 The updated history trimming procedure... 236

Figure 5-9 Disconnection scenario .. 238

Figure 5-10 Remote operation reception procedure .. 239

Figure 5-11 Operation request reception procedure .. 240

Figure 5-12 Sending the 'quit' notification .. 242

Figure 5-13 Receiving the 'quit' notification ... 242

Figure 5-14 Implicit 'quit' notification from another site .. 243

Figure 5-15 The complete remote operation reception procedure 246

Figure 5-16 Lost operations... 255

Figure 5-17 Operation requests ... 256

Figure 5-18 Sent messages .. 256

Figure 5-19 Processing time required to handle membership events................................ 257

xviii

Figure 5-20 Processing time for 20 operations.. 259

Figure 5-21 Processing time for 40 operations.. 259

Figure 6-1 Local operation generation .. 280

Figure 6-2 Remote operation reception and execution.. 284

Figure 6-3 Joining a section .. 286

Figure 6-4 Leaving a section ... 288

Figure 6-5 Maximum history size - 3 participants .. 293

Figure 6-6 Maximum history size - 5 participants .. 293

Figure 6-7: Maximum history size – 10 participants... 294

Figure 6-8: Average processing time .. 295

Figure 6-9: State map table size .. 296

Figure 6-10: Transferred messages ... 297

Figure 7-1 System architecture.. 302

Figure 7-2 Document... 303

Figure 7-3 Connection manager .. 304

Figure 7-4 Collaboration engine.. 304

Figure 7-5 Conflict manager ... 305

Figure 7-6 Membership manager .. 305

Figure 7-8 Initial states of Alice's and Bob's devices .. 308

Figure 7-9 Alice and Bob are collaborative over a wireless connection 310

Figure 7-10 Alice's and Bob's sites after the second meeting ... 311

xix

Figure 7-11 Alice's and Cameron's sites after Cameron joins... 312

Figure 7-12 The states of the three participants at the third meeting 313

xx

List of tables

Table 2-1 Comparison of various existing collaboration systems....................................... 54

Table 6-1 Resource consumption .. 290

Abstract

Mobile collaborative work is a developing sub-area of Computer Supported Collaborative

Work (CSCW). The future of this field will be marked by a significant increase in mobile

device usage as a tool for co-workers to cooperate, collaborate and work on a shared

workspace in real-time to produce artefacts such as diagrams, text and graphics regardless

of their geographical locations.

 A real-time collaboration editor can utilise a centralised or a replicated architecture.

In a centralised architecture, a central server holds the shared document as well as manages

the various aspects of the collaboration, such as the document consistency, ordering of

updates, resolving conflicts and the session membership. Every user’s action needs to be

propagated to the central server, and the server will apply it to the document to ensure it

results in the intended document state. Alternatively, a decentralised or replicated

architecture can be used where there is no central server to store the shared document.

Every participating site contains a copy of the shared document (replica) to work on

separately. Using this architecture, every user’s action needs to be broadcast to all

participating sites so each site can update their replicas accordingly.

 (June 15, 2007) 2

The replicated architecture is attractive for such applications, especially in wireless

and ad-hoc networks, since it does not rely on a central server and a user can continue to

work on his or her own local document replica even during disconnection period. However,

in the absence of a dedicated server, the collaboration is managed by individual devices.

This presents challenges to implement collaborative editors in a replicated architecture,

especially in a mobile network which is characterised by limited resource reliability and

availability.

This thesis addresses challenges and requirements to implement group editors in

wireless ad-hoc network environments where resources are scarce and the network is

significantly less stable and less robust than wired fixed networks. The major contribution

of this thesis is a proposed framework that comprises the proposed algorithms and

techniques to allow each device to manage the important aspects of collaboration such as

document consistency, conflict handling and resolution, session membership and document

partitioning. Firstly, the proposed document consistency algorithm ensures the document

replicas held by each device are kept consistent despite the concurrent updates by the

collaboration participants while taking into account the limited resource of mobile devices

and mobile networks. Secondly, the proposed conflict management technique provides

users with conflict status and information so that users can handle and resolve conflicts

appropriately. Thirdly, the proposed membership management algorithm ensures all

participants receive all necessary updates and allows users to join a currently active

collaboration session. Fourthly, the proposed document partitioning algorithm provides

 (June 15, 2007) 3

flexibility for users to work on selected parts of the document and reduces the resource

consumption. Finally, a basic implementation of the framework is presented to show how

it can support a real time collaboration scenario.

1. Introduction

Chapter 1

Introduction

1.1. Background

Alice, Bob and Cameron are three scientists working together to produce a conference

paper. When computers were not networked, they would have written the document on a

disk, which is passed on from one scientist to another to be updated accordingly.

Alternatively, they can sit together in front of one computer to write the paper together or

they can handwrite the paper and then type it to the computer.

The development of the computer network technology allows users, using their

own computers, to collaboratively edit a shared document over the network. The early

technology of computer supported collaborative editing requires Alice, Bob and Cameron

to be located at a common meeting room [123]. Each author, using an allocated

workstation, updates the shared document that appears on a large digital whiteboard in

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 5

front of them. The workstations and the digital whiteboard are on a computer network such

that the updates can be sent to the digital whiteboard over the network.

The advancement of computer network opens up the opportunity for real-time

collaborative editing where Alice, Bob and Cameron are no longer required to be in the

same location. Each user has the real-time access to the shared document at his/her

computer without having to see each other. In a real-time collaboration session, users work

on a local device which communicates with the individual devices of other users via

message passing. Each user interacts with the shared document (as it appears on his or her

device) with changes propagated to other users as soon as possible so as to reduce the

possibility of update conflicts.

Many collaborative editing systems have existed to support real-time collaborative

editing. Real-time collaborative editing can adopt a centralised architecture [28, 97, 125] or

a replicated architecture [46, 113, 119]. In a centralised architecture, only a single copy of

the document exists on a central server, with participants updating it directly in a

synchronous manner. In a replicated architecture, on the other hand, each device holds a

replica of the shared document. Each update of one user is propagated directly to the other

users without having to go through a central server.

1.2. Motivation

In the past few years, with the advancement of mobile computing technology,

mobile devices have significantly added to the richness of distributed computing. Mobile

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 6

devices are becoming increasingly powerful allowing implementation of the applications

that were able to be seen only in PCs and laptops [93]. Mobile technology and the ability to

connect to other devices afford the opportunity to extend existing applications into new

realms, so that mobile device users are able to communicate, process and present

information as much as do users of desktop devices. Given the ability to work on their

portable devices anytime, anywhere, users are becoming more mobile, and the ability to

connect to other devices opens up the possibility of extending collaboration to a wider

range of users and circumstances.

Although many real-time collaborative editing systems exist [35, 54, 94, 118], they

are not applicable to mobile environments. Although Alice, Bob and Cameron may work

on their own mobile devices, the existing collaboration systems either assume the use of a

dedicated central server where they have to be connected to be able to collaborate or

assume the use of personal computers with large available resources such as memory,

storage capacity and network bandwidth. The existing collaboration systems that utilise a

replicated architecture may in principal be suitable for mobile networks. However, since

they are designed not for mobile environments, they do not take the resource consumption

into account in the design of their algorithms.

The most powerful forms of collaboration, but also the most challenging, will be

those that require real-time synchronous collaboration in environments where there is peer

to peer communication with no central servers, intermittent connection and low capacity

devices. This research aims to explore such applications and to provide the basis for

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 7

providing powerful new mobile applications but also improving collaboration support and

usability of groupware in general.

1.3. Research Questions

The aim of this project is to devise a model or a framework to support and satisfy the

requirements for real-time collaborative editing application in a mobile replicated

architecture while addressing the limitations of mobile network environments. This project

is divided into a number of smaller sub-projects, each of which addresses the above

requirements.

This project will investigate the real time collaborative behaviour of object based

editing applications in mobile environments. Key challenges in mobile environments are

reduced processing power, memory capacity and lower bandwidth and connectivity. If new

applications are to be developed for or migrated to mobile environments, then research is

needed to extend current collaborative techniques to such environments. This project will

propose new strategies, algorithms and models to address issues and challenges in such

collaboration applications. These proposed techniques will then be combined into a

comprehensive framework to allow real-time collaboration applications to run successfully

in a range of ad-hoc mobile environments. This project will address the following research

questions:

1. How can document consistency among mobile devices be efficiently enforced in a

mobile replicated architecture?

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 8

This project aims to devise a consistency management algorithm that will work in a

replicated architecture while taking into account the limitations of mobile devices

and mobile network environments.

2. How can the existing methods be adapted to handle and resolve conflicts in a real

time mobile collaborative editing application?

As opposed to collaborations with a central server as the central collaboration

manager, peer to peer collaborative applications have to able to handle conflicts

without the presence of a central server. As an extension to the devised consistency

management algorithm, this project also discusses the various potential conflicts

and devises a strategy to manage and handle conflicts consistently in a replicated

architecture.

3. How can the collaboration session participants be managed in a mobile

collaborative environment?

Taking into account the dynamic membership events in an ad-hoc mobile network

environment, this project aims to devise a strategy that transparently let users

continue to collaborate smoothly in the midst of sites joining, leaving,

disconnecting and missing operations.

4. How can document partitioning be used to enable collaboration on large

documents and to reduce resource consumption in mobile devices?

As mobile devices have limited display and/or memory capacity, users may decide

not to work on all parts of the document. This project aims to devise a strategy to

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 9

allow the document to be divided into several partitions in order to allow users to

flexibly work on selected parts of the document and to reduce resource

consumption at the same time.

1.4. Methodology

1.4.1. Literature Review

An overall literature review focusing on real-time collaboration in a replicated architecture

is provided in Chapter 2. Each of the above 4 questions are addressed in each chapter,

which will include a further review of issues relevant to that research question.

1.4.2. Algorithm Construction

Firstly, a document consistency algorithm is devised to ensure consistency of the shared

document. Then, for each sub-project, the devised algorithm is built on top of the

algorithm devised in the previous sub-project. This ensures that the algorithm achieves the

intended functionality while still achieving the goal of the previous sub-project. In other

words, the conflict management algorithm is built on top of the devised consistency

management algorithm to ensure that the document consistency is still maintained, the

membership management algorithm is built on top of the consistency and conflict

management algorithm to ensure that the document consistency and conflicts are properly

handled while handling the various membership events, and finally, the document

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 10

partitioning is built on top of all of them so as to maintain all achieved functionality while

allowing users to divide the document into partitions.

1.4.3. Testing and Performance Evaluation

The testing and the performance evaluation will mainly be done using a software

simulation written in the JAVA programming language. Each algorithm has been tested for

its correctness in a simulation environment. Simulation methodology is chosen over

implementation because this thesis focuses more on the performance and correctness of the

algorithm than the actual implementation of the collaboration. Furthermore, the simulation

methodology is more flexible and can easily be configured to represent various

collaboration scenarios.

Firstly, for the consistency management algorithm, collaborating sites run through

various scenarios to ensure the consistent views among them. The algorithm is then

compared against existing algorithms to measure its performance. Storage space,

bandwidth, and processing power usage are the parameters to be used to determine how

well the algorithm performs. Secondly, for the conflict management algorithm, the

algorithm is tested using a prototype application to ensure all types of conflicts can be

properly handled consistently at all sites. Thirdly, for the membership management,

collaboration sites run through scenarios consisting of combinations of disconnections,

reconnections and late-joins. The devised strategy is deemed to be correct if all sites can

resume collaboration despite those limitations of mobile network and all sites eventually

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 11

end up at a consistent state. Finally, the document partitioning algorithm is tested for its

correctness in a simulation with different number of partitions and its performance is

measured against the non-partitioned document. Storage space, bandwidth, and processing

power usage are used as the parameters to be used to determine how well the algorithm

performs.

1.5. Thesis Organisation

This thesis is organised such that each sub project (each research question) is discussed in

each separate chapter. This thesis is organised as follows.

1. Chapter 2 discusses the general development of computer supported collaborative work

both in non-mobile and mobile networks.

2. A document consistency management algorithm is proposed in Chapter 3 to ensure the

consistency of the collaboration document. The algorithm takes into account the

limited resource of mobile environments. The performance of the algorithm is also

analysed to determine the most efficient implementation of the algorithm.

3. In addition to ensuring document consistency in the midst of concurrent updates, in

Chapter 4, a conflict management technique is proposed to handle and help users

resolve conflicts. The proposed conflict management technique can be used with any

conflict resolution strategy.

4. In order to support the membership events in mobile networks, a membership

management algorithm is proposed in Chapter 5 to ensure the collaboration continues

CHAPTER 1. INTRODUCTION

 (June 15, 2007) 12

smoothly regardless of the membership events. The performance of the proposed

algorithm is analysed and it shows that the algorithm is able to handle the various

membership events without consuming significant additional resource.

5. In Chapter 6, a document partitioning algorithm is proposed to provide users with

flexibility to work on different parts of the document and to avoid unnecessary

resource consumption. The performance of the proposed algorithm is analysed to

determine under what conditions the proposed algorithm can be used to reduce the

resource consumption.

6. Chapter 7 presents the application architecture of the collaborative editor and a sample

scenario of how the proposed framework can support real time collaboration.

7. Finally Chapter 8 provides the summary and the conclusion of the thesis, and outlines

the future work.

2. Mobile CSCW

Chapter 2

Mobile CSCW

Collaborative editing is a part of Computer Supported Collaborative Work (CSCW), which

has been a major research area in computer science for over two decades. This chapter

briefly reviews the background of CSCW, extensively reviews various existing work in the

area of real-time collaborative editing, and discusses the challenges in implementing

practical real-time collaborative editing in mobile ad-hoc network environments.

CSCW is defined as the study of how people work together or collaborate using

computer technology [20]. In other words, it is a generic term which combines the

understanding of the way people work in groups with the enabling technologies of

computer networking, and associated hardware, software, services and techniques [145]. It

includes emails, hypertext that includes awareness of the activities of other users,

videoconferencing, chat systems, and real-time shared applications, such as collaborative

writing or drawing.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 14

Groupware is a common term for systems that support CSCW. Ellis et al [46]

defines groupware as computer-based systems that support groups of people engaged in a

common task (or goal) and that provide an interface to a shared environment. This

technology may be used to communicate, cooperate, coordinate, solve problems, compete,

or negotiate. While traditional technologies like the telephone can also be used to

communicate, cooperate, and solve problems, the term groupware refers to technologies

relying on modern computer networks, such as email, newsgroups, videophones, or chat.

Figure 2-1 Groupware Dimensions, adopted from [21]

Groupware technologies can typically be categorized into two dimensions [58]:

1. Time

a. Synchronously/real-time - communication occurs at the same time

b. Asynchronously/different time - communication occurs at different times.

Voting,
Meeting Room,

Presentation
Support

Shared

Computers

Email, Workflow,
Information
Management

System

Same Time
“Synchronous”

Different Time
“Asynchronous”

Same Place

Different Place

Continuous
Video Conferencing, Multi-
player game.
Discrete
Chat, Group Editors.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 15

2. Place

a. Same place - the participants can see each other physically.

b. Different place - the participants are widely dispersed and can not see each

other physically.

In synchronous (real-time) collaboration, participants are connected at the same

time, and can communicate with each other while working on the document. The

document update of one user is propagated immediately so that the other users can view

the update as soon as possible. Some examples of synchronous groupware are chat

applications, video conferencing applications and group editors, such as GRACE [130],

GroupKit [119], Groupgraphics [109] and GroupDesign [74]. The collaboration can

happen with users at the same place or at different places. A meeting room is an example

of collaborating at the same place, while email is an example of collaborating from

different places.

Synchronous collaboration can be further categorised into: continuous collaboration

and discrete collaboration. In a discrete collaboration, such as a collaborative document

editing, the updates are sent from time to time as soon as the user makes changes to the

shared document. The updates are not continuous hence the updates are not continuously

streamed. In a continuous collaboration such as video conferencing and multi-player first-

person shooter games, however, the updates are continuous since all users need to know

what is happening with other users at all time. The updates are sent, or rather streamed,

continuously to capture all changes, movements, and events.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 16

This thesis focuses on discrete synchronous groupware that allows users to

collaboratively edit the same document from different places. For continuous applications,

such as video conferencing and multi-player games, readers can refer to relevant work,

such as [28], [27], [87], [88], [91], [92], [107] and [143]. Discrete synchronous groupware

for users in different locations is referred to in this thesis as Real Time Collaborative

Editors or simply Group Editors. Unlike most existing work, however, this thesis focuses

on addressing challenges and requirement to implement group editors in mobile ad-hoc

network environments where resources are scarce and the network is significantly less

stable and less robust than wired fixed networks.

The remainder of this chapter is organised as follows. Firstly, section 2.1 discusses

the real-time collaborative editing (group editors) in general and the requirements that need

to be met by group editors. Secondly, section 2.2 discusses the proliferation of mobile ad-

hoc networks, their characteristics and consequently the requirements for group editors to

be implemented in mobile ad-hoc networks. Thirdly, section 2.3 reviews the existing work

in group editors both in non-mobile and mobile networks, discusses their limitations and

drawbacks. Finally, section 2.4 concludes the literature review and briefly points to how

the challenges and limitations of the existing group editors are addressed in this research

project.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 17

2.1. Real-Time Collaborative Editing (Group Editor)

A real-time collaborative editing application (group editor) falls into the

synchronous groupware application category and can be defined as an application that

allows two or more people, using their own devices, working together on a shared

document at the same time regardless on their geographical location, in order to produce a

group-intended final document. Basically, a group editor is a system that allows several

users to simultaneously edit a document without the need for physical proximity and

allows them to synchronously observe each others’ changes [111]. It enhances

collaboration by providing a shared workspace in which users can carry out tasks such as

organising ideas, jointly preparing papers, and brainstorming. The document may range

from a simple text document, with characters and simple operation primitives, to a

complex multimedia document, with objects and more sophisticated operation primitives.

At some level of abstraction, any collaborative application can be considered a generalized

editor [39]: a text editor edits a text file, a debugger edits a debugging history, a graphic

editor edits a graphic file, a spreadsheet edits a worksheet file, an online whiteboard edits

composite objects, a computer based training tool manipulates training document and a

CASE tool edits a document with predefined objects.

2.1.1. Groupware Application Transparency

There are two general approaches to providing computer support for synchronous

collaboration [16]: collaboration awareness and collaboration transparency. The

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 18

collaboration awareness approach designs an application specifically to support

cooperative work. On the other hand, collaboration transparency approach considers that

single-user applications are pervasive and therefore provides a mechanism for sharing and

leveraging legacy single-user applications for multi-user collaboration [147, 134]. The

mechanism is unknown, or transparent, to the original application and its developers.

 In the collaboration awareness approach, a collaborative editing application is

specifically designed and purposely built from scratch to satisfy the specific collaboration

requirements. All existing groupware systems described in section 2.3 were built using a

collaboration awareness approach. The main reason is that by using the collaboration

awareness approach, the system can be built specifically and purposefully to satisfy the

requirements of a given research project. This approach has a few drawbacks: relatively

higher cost to develop as compared to the latter approach as it has to be built from scratch

and the fact that users might not be familiar with the newly built system unlike the

commonly known pervasive single-user applications.

In the collaboration transparency approach, there is typically a collaboration

enabling application that invokes a single-user document editing application such that all

modifications done to the document are sent to other participants (they should also use the

same collaboration enabling application, open the same document editing application and

join in the same collaborative session). Some examples of collaboration-transparent

systems include XTV [9], HP SharedX [54], SharedApp [5] for the X Window System,

and NetMeeting, a collaboration-transparent system for the Windows platform [2].

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 19

Although the collaboration-transparency approach imposes an inflexible, tightly-

coupled style of collaboration, it does not adequately support some key groupware

principles [15]. Firstly, conventional collaboration-transparent systems do not allow input

from more than one person at a time; therefore it does not promote concurrency. Secondly,

in conventional collaboration-transparent systems, all participants see exactly the same

view at the same time - What You See Is What I See (WYSIWIS) [122]. Although this

enforces consistency, it does not give users flexibility to navigate to different parts of the

document. Thirdly, since the collaboration transparency approach builds on the current

single-user application, it does not provide adequate group awareness. Fourthly, due to the

use of centralized display-broadcasting architectures, conventional collaboration-

transparent systems generally require higher network bandwidth than collaboration-aware

applications, which are typically replicated.

Another way to build collaboration transparent systems is to replace some

components of the single-user application at run-time, such as Flexible JAMM (Java

Applet Made Multiuser) [15]. Flexible JAMM replaces the single-user objects in the

otherwise single-user Swing-based application with their multi-user object counterparts.

Using dynamic binding, the run-time resolution of a function invocation or data retrieval

allows an instance of one class to function in place of another, thus a single-user interface

object may be replaced at run time by a multi-user version. Since the application source

code is not modified, the substitution is transparent to the shared application. Flexible

JAMM, however, can not be applied to all application platforms. In many object-oriented

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 20

environments, such as Smalltalk and Java, dynamic binding is the norm, whereas in others,

such as C++, dynamic binding must be explicitly programmed [15]. Furthermore, Flexible

JAMM can only be applied to serialisable Swing-based Java applications. AWT-based

Java applications have some constraints that do not allow Flexible JAMM to be

implemented.

 A recent work on collaboration transparency, CoWord [147], uses a different

approach namely Transparent Adaptation approach. Although this approach does not

require any changes to the single-user application's source code, it requires the

application's API to be adaptable to the data and operational models of the underlying

concurrency control technique. Combined with a replicated architecture, the transparent

adaptation approach is able to achieve high responsiveness, concurrent work, relaxed

WYSIWIS, and group awareness.

This thesis uses the collaboration awareness approach since its focus is on devising

algorithms that provide essential functionality in real-time mobile group editors, not

developing the collaboration application itself. The algorithms devised in this thesis,

however, can be used by developers that wish to leverage existing single-user applications

for real-time multi-user collaboration.

2.1.2. Groupware Architecture

In terms of the application architecture, real-time collaborative editing applications,

like other distributed systems ranges from centralised, where a central server or process

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 21

maintains the shared data and processes any updates or modifications to the shared data, to

fully replicated, where each participant maintains a copy of the shared data, processes the

updates locally and notifies the other participants about the updates.

In a centralised architecture, clients connect to a server to join in a collaboration

session, and all updates in the client machines are sent to the server so all other clients can

get the updated document from the server. The central server is responsible for managing

the concurrent updates by the participants and maintaining the consistency of the shared

document. The server holds the main document and each participant (client) device either

holds a synchronised copy (thick client) or a view of the main document (thin client).

In a thin-client centralised architecture, each client machine does not hold a

document copy. It simply receives and displays the document view or representation from

the server. It does not need to know the underlying data structure of the document [110].

The client machine needs to be able to capture user inputs as the user modifies the

document at his/her local device display. The user input is sent to the server to be

processed by the server. Once the document in the server is updated, the participant will

retrieve the updated view or representation of the main document in the server so as to

display the latest document state. Most of the existing centralised architecture collaborative

editing applications fall into this category, such as Rendezvous [108], WebEx [7],

GoToMeeting [1], and WebArrow [6].

In a thick-client centralised architecture, each client machine holds a copy or a

cache of the document for better responsiveness. It also holds local state or local context

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 22

that allows the participant to locally change the view or presentations of the document and

to do any client-side processing. Every update generated by each collaboration session

participant that affects the document state is sent to a central server. This architecture is

suitable for high-performance or complex group collaboration software such as multi-

player online games (e.g. World of Warcraft [8], Half-life [17] and Halo 2 [23]), and some

group editors such as Dolphin [124] and Tivoli [96].

Regardless of the ‘thickness’ of the client in a centralised architecture, the

communication happens only between each participant and the server, and participants do

not communicate directly with each other. The centralised architecture provides simpler

maintenance of the document since the server is the one machine which is responsible for

managing the document updates and each device does not need to handle concurrent

updates to the document. Moreover, the server can easily ensure the consistency of the

document as the server holds the main document and each device synchronises with the

server regularly. This approach does however have a number of drawbacks. Firstly, the

application is less responsive since the user does not view his/her changes immediately due

to the round-trip latency as the user interaction must travel to and from the central server.

Secondly, a central server must be present and running at all times, thus introducing a

single point of failure whereby the entire collaboration session ceases when the server is

down. Thirdly, if an individual device is unable to connect to the server, whether due to

total network failure or low bandwidth or sporadic disconnection, that user cannot

participate in the session. Fourthly, in a wireless mobile network environment, the

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 23

presence of a server is not guaranteed, especially in an ad-hoc wireless environment where

two or more devices can start a session wherever they are as long as they are within a

wireless transmission range of each other (either directly or indirectly through packet

forwarders). Finally, depending on the implementation, the network usage may be high

since all operations must be directed through a central server even when a thick client is

used and a local copy of the document exists. Nevertheless, this architecture can be simple

and effective in a local area network where these factors can be more readily controlled. In

contrast, the centralised approach is not readily suited for mobile networking environments

which are characterised by high network delays, frequent disconnection and reduced

bandwidth and relatively high communication cost.

In contrast to centralised architectures, in a replicated architecture, each participant

holds a replica of the shared data and each participant is responsible for processing all the

changes to the replica that it holds. Each user makes changes to his/her local replica, and

then notifies other users about the changes by broadcasting messages or updates without

going through a server. In the replicated architecture, each site acts as both a client that

interfaces with the user, and a server that manages the actual collaboration. Replicated

architecture, however, can further be categorised into: semi-replicated architectures and

fully replicated architectures.

As the name implies, the participants in a fully replicated architecture hold replicas

of the document and they communicate solely with each other without the presence of a

dedicated server. In a distributed environment with nondeterministic communication

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 24

latency, a fully replicated architecture is usually adopted for the storage of a shared

document in order to meet the requirement for high responsiveness [39]. Some examples of

group editors that employ a fully replicated architecture are Colab [123] GROVE (GRoup

Outline Viewing Editor) [47], REDUCE (REal-time Distributed Unconstrained

Cooperating Editing) [131, 132], GroupDesign [74] GRACE (GRAphics Collaborative

Editing) [130], and Draw-together [65]

Similar to the fully replicated architecture, each participant in a semi-replicated

architecture also hold a replica of the document. The difference is that the presence of a

server is required in the semi-replicated architecture. The server, however, does not

manage the document nor does it manage the document updates. Instead, the server

simplifies the collaboration by providing some particular centralised service, such as

participant registration, session management, or centralised sequencing/ordering. DistView

[113] and GroupKit [118] are examples of group editors in this category.

Compared to the centralised architecture, the replicated architecture has several

advantages. Firstly, when compared to the thin-client centralised architecture, replicated

architecture potentially requires less bandwidth since each participant processes his/her

own replica, thus each user needs to notify only the changes to the shared data. It also

provides faster response to the user input as the local replica is updated immediately before

the changes are sent and applied at the remote replicas. Secondly, when compared to the

thick-client centralised architecture, replicated architecture requires more or less the same

bandwidth and comparable responsiveness since each participant device holds the

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 25

document replica and only updates of the document are sent out either to the server or to

the other participants. However, with the exception of the semi-replicated architecture, a

central server is not required in a replicated architecture, and therefore, there is no single

point of failure. If a site is disconnected, that user can continue working on his or her local

replica while other sites can still collaborate with all of the sites to which they have the

connectivity. Upon reconnection, the previously disconnected site can re-synchronise with

other sites to bring its document up to date. Finally, replicated architecture promotes

concurrency as each participant can modify their document replica anytime they want to,

without the presence of or regardless of the status of the server. This ability to work

concurrently and independently of a central server, and to operate while disconnected from

other sites, makes the replicated architecture attractive for real-time collaborative editing,

especially in mobile ad-hoc networks. However, compared to the centralised architecture,

the replicated architecture has a few disadvantages. It increases the storage requirement

since each device holds a document replica. It also requires each device to manage the

various aspects of the collaboration such as consistency management and membership

management in the absence of a dedicated server. Therefore, this thesis aims to devise the

framework to manage the collaboration in a mobile replicated architecture while taking

into account the limited resource of mobile devices and mobile networks.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 26

2.1.3. Group Editor Requirements

The process of developing a collaborative application is considered to consist of

three main steps [39]: 1) design the functionality, 2) decompose the application into

components, and 3) use tools for implementing the components. This thesis focuses on the

functionality definition and proposes algorithms to achieve the desired functionalities

while taking into account mobile network constraints. This thesis also presents the

collaboration framework components showing the role of each component in a real-time

collaboration and the basic implementation of the framework. This thesis however does not

discuss the collaboration awareness and the social aspect of the CSCW. A number of

researchers describe application decomposition and the groupware implementation tools

[39, 43, 56, 118, 119], while the collaboration awareness and the social aspect of

groupware systems are covered in other work [13, 14, 60, 61, 63, 114, 139, 140].

Ellis et al. [46] and Kanawati [72] outline some features required from a real-time

collaborative editing application including the following:

1. Document Consistency.

The document that appears at one participant’s device must be consistent with all other

documents that appear at other participants’ devices.

In conventional collaboration systems, all participants see exactly the same view

at the same time in a manner referred to as strict What You See Is What I See

(WYSIWIS) [122]. There are several advantages of WYSIWIS as follows.

• It is ideal for meetings that require very close collaboration.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 27

• Each user knows exactly what other users are seeing.

• It can be defined in an application-independent fashion, whereby the users do

not have to be aware that they are interacting with other users.

Strict WYSIWIS however imposes some disadvantages: it can lead to dispute

whenever users are forced to share changes that they do not want to share or view the

document portions that they do not want to view.

An alternative to WYSIWIS is WYSINWIS (What You See Is Not What I See)

[30] or relaxed WYSIWIS [122], where each user can define his/her own logical view

of the overall document space based on his/her own interest and responsibility. Relaxed

WYSIWIS is attractive as it gives users flexibility to view the document in the way

(format) they want, and it is easier to implement across multiple platforms. In relaxed

WYSIWIS, the consistency is not imposed on the actual document appearance, but it is

imposed on the document data structure and, consequently, the semantic meaning of

the document. The document may appear differently on different devices, but as long

as the actual data structures are consistent, each user will be able to understand the

other users’ intention or the meaning of the other users’ updates.

2. Interactivity or Responsiveness.

The collaboration must be as responsive or as interactive as possible to improve the

user’s collaboration experience. The changes made by a user must be reflected as soon

as possible on the document as it appears at his/her local device, and the changes made

by a user must also be reflected as soon as possible on the documents that appear at the

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 28

other users’ devices. Furthermore, each user should be allowed to modify any part of

the document at any given time.

3. Dynamic Membership.

A single-user application starts as soon as a user starts it, and it ends as soon as the user

quits. In contrast, multi-user applications must support a richer regime [108]. A session

may be started by someone, e.g., a conference administrator, and in a typical

collaboration session, due to various reasons, participants could come and go during a

collaboration session. Users will arbitrarily join and will leave as necessary without

halting the session. Additionally, sessions may or may not be terminated by the

departure of the last user. Real-time collaborative editing systems must support

dynamic membership events, such as users joining the collaboration session or users

leaving the session temporarily or permanently. On the occurrence of such events, the

session must be able to resume as smoothly as possible without intervention from users.

These aspects of session management are necessary if multi-user applications are to be

readily accessible to their users.

4. Document Availability.

The shared document must be available at all times so that users can get access to

necessary document when they need to, regardless of the users’ location.

While those requirements may be satisfied by some collaborative applications

developed for fixed PC networks, they present a set of new challenges when implemented

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 29

in mobile networks, especially mobile ad-hoc networks. The characteristics of mobile ad-

hoc networks, and the challenges and requirements of real time collaborative editing in

mobile ad-hoc networks are discussed in the next section.

2.2. Real Time Collaborative Editing in Mobile Ad-Hoc Networks

Mobile devices have significantly added to the richness of distributed computing in the

past few years. Mobile devices range from laptop computers with the equivalent memory

and processing power of a desktop machine, through to Personal Digital Assistants PDAs,

and programmable smart-phones with considerably less memory, processing power and

display capability [93].

Mobile devices were initially designed for personal use with a few personal

applications such as calendar, to-do list and other various personal organisers to serve as an

electronic personal assistant to the owner. With the advance of technology, however,

mobile devices are becoming increasingly powerful. Mobile technology gradually allows

applications, which were able to be seen only in PCs and laptops, to be ported into smaller

size mobile devices such as PDAs. Applications such as word processors, spreadsheets,

and even games are quite commonly found in mobile devices [93]. Furthermore, the ability

to synchronise the mobile data with the data in a workstation or a server allows users to

bring the data out of the office, work on it anywhere and synchronise it back to the main

repository once they are back at the office. Hence, users are becoming more mobile given

the ability to work on their mobile devices anytime, anywhere.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 30

The proliferation of wireless networks, such as infra-red, Bluetooth, GPRS and

802.11 standards, has resulted in mobile devices becoming increasingly connected.

Networking applications such as email clients and web browsers can be found in mobile

devices and can be used to asynchronously collaborate with the other colleague by

exchanging email messages and/or downloading files from servers. Users will be able to

access company information remotely and to collaborate with colleagues from any location,

whenever necessary [52]. Furthermore, different mobile devices, being within a particular

proximity, can establish a connection and start communicating with each other. Users of

these connected mobile devices can choose to exchange messages, data or files in real time

(synchronously) over the wireless network. This opens up the opportunity to develop

applications that enable users to collaboratively work on the same document at the same

time without the presence of a fixed network infrastructure.

Implementation of the synchronous collaborative editing applications in mobile

network environments, especially ad-hoc networks, will open up even greater flexibility

and greater potential of anytime-anywhere collaboration. The following are just some of

the possible scenarios for ad-hoc collaboration in mobile networks [22]:

• Emergency search and rescue in areas where a wired infrastructure is not available.

• Groups attending a conference can share ideas and data anywhere by conducting

"virtual" meetings.

• Field survey operations in remote areas.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 31

• Cooperative group carrying out activities where there is no visual contact, such as

in hunting.

• A team of construction workers on a site without a network infrastructure can share

blueprints and schematics.

• Staff and security of large events such as concerts, or sporting events can more

easily coordinate crowd control and security.

• Military intelligence and strike teams can be more easily coordinated to provide

quicker response time.

• Collaborative software engineering.

As reflected in the above scenarios, the collaboration documents do not necessarily have to

be a text or worded document. They can be graphic documents, architectural drawing,

diagram or real-time maps. Regardless of the type of the documents, the implementation of

such real-time collaborative editing application will give greater flexibility in various

application domains.

Implementing real time collaborative editing in mobile ad-hoc networks, however,

is more difficult than in wired PC networks. The characteristics of mobile ad-hoc network

and the limitations of mobile devices present some challenges to be addressed before

successfully implementing collaboration in mobile environments.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 32

2.2.1. Mobile ad-hoc network characteristics

A mobile ad-hoc network is defined as an autonomous and self-organising system that

consists of wireless nodes/devices that dynamically establish connection [78]. One of the

biggest advantages of ad-hoc networks is that they can be quickly created without the need

for a fixed network infrastructure. However, due to the hostile characteristics of such a

network environment, collaborations over a mobile ad-hoc network have additional

requirements as compared to collaborations in a fixed-network environment. Mobile ad-

hoc networks have the following characteristics:

• Dynamically Formed. Mobile devices move freely in a random and unpredictable

manner. When two or more nodes are within a wireless transmission range, they

can start establishing connections and communicate with each other.

• Dynamic Network Topology. Mobile devices can easily connect and reconnect with

each other depending on their proximity to each other. This will result in the

frequent change in the number of mobile nodes currently participating in the

network, thus the network topology would dynamically and rapidly change without

prior notification.

• Wired/fixed communication infrastructure is not necessary. Mobile nodes come and

go from one place to another, unattached to any static cabling. They are able to

establish communication with each other anytime and anywhere, even without the

presence of fixed communication infrastructure.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 33

• Low and fluctuating bandwidth and high latency. The network connectivity of

mobile devices depends on radio frequency technologies to transmit and receive

data. As a result, the available bandwidth will vary from location to location

depending on factors such as the physical structures of the locations and radio

frequency interference. This will cause high latency in places where the bandwidth

is low.

• Frequent disconnection. The mobility of mobile devices will mean that they keep

moving from within the wireless transmission range to outside of range. Each

participating node will have to continuously update which nodes are currently

participating in the collaboration session. This creates a challenge in the

membership management of collaborative work.

The dynamic nature of a mobile ad-hoc network plays a major role in designing the

software used for collaboration. Furthermore, compared to fixed PC workstations, mobile

devices have the following limitations:

• Limited display capabilities. Not only do mobile devices, such as PDAs or smart-

phones, have an obviously smaller display screen size, they also have a lower

screen resolution and, in some cases, reduced colour depth. They often have to

display a large amount of information, such as a large document or a large diagram

using paging or scrolling. Displaying a complex graphical image is also a problem

due to low screen resolution and lower colour depth.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 34

• Reduced processing power. Mobile devices processing power has reached the stage

of PCs processing power a few years ago. However, it is still much lower than

current PCs processor technology (e.g. 400MHz of a PDA as opposed to

approximately 3 GHz of a PC).

• Reduced memory size. This will not only affect the performance (responsiveness) of

running applications on mobile devices, but will also make it difficult for mobile

devices to display and manipulate sophisticated documents and large graphic

images.

• Battery dependency. Unlike stationary PCs, mobile devices depend on battery life.

Processing power and wireless transmission reduce battery life. Increasing the

battery life can mean a bigger battery size that will decrease the portability of the

device itself.

While many existing software systems fulfil the synchronous collaboration editing

requirements, most of them are designed to run on stable and permanently fixed networks

where the quality of service is much higher and the state of the network is more predictable

[103]. The key characteristics that make the existing collaboration software or algorithms

ill suited for ad-hoc networks are their single point of failure, and their assumption of

reliable network and large available resources. The current generation of software is very

resource intensive in terms of both memory and processor requirements [22].

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 35

2.2.2. Real-Time Mobile Collaborative Editing Requirements

While there have been some groupware systems developed for mobile network

environments, due to mobile network limitations, there has not been a groupware system

that allows seamless synchronous collaborative editing in mobile replicated (ad-hoc)

network. Several algorithms have been developed to meet various collaborative editing

application requirements. However, implementation of such applications (and algorithms)

in mobile networks is not easy, as there are other requirements needed to be satisfied in

order to successfully support mobile collaborative editing and there are limitations in

mobile network that have not been addressed or taken into account by existing algorithms.

As mentioned in section 2.1, the replicated architecture is well suited to mobile

collaborative editing where mobile devices can still continue working on their local

devices while disconnected and a central server is not required for collaboration. In a

replicated architecture, collaboration starts when a user begins a collaboration session,

joined by the other participants. The participants will start the collaboration with each

holding the same shared document, either a blank document or a previously saved

document. Each user makes changes or modifications to the document as it appears at

his/her device, and the updates will have to be reflected on the other participants’

document. During the session, due to various reasons, a participant could leave the session,

either temporarily or permanently, and another participant may join the session while the

session is still running. Looking at this typical collaboration session, a collaborative editing

application must satisfy some minimum requirements.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 36

Due to the nature of the replicated architecture, every participant can update their

own local replica whenever they want. While it provides flexibility and a greater degree of

concurrency, the implementation of mobile real-time collaborative editing applications in a

replicated architecture presents some complexities and challenges to the requirements that

are mentioned in section 2.1.3. Furthermore, the characteristics of ad-hoc mobile networks

mentioned in section 2.2.1 have to be taken into account in the requirements for mobile

real-time collaborative editing applications.

Therefore, a successful implementation of a real-time collaborative editing

application in mobile replicated architecture requires the general group editor requirements

mentioned in section 2.1.3 to be extended as follows:

1. Document Consistency.

In the group editor requirements previously mentioned, the document that appears at

one participant’s device must be consistent with all other documents that appear at

other participants’ devices. For implementation in mobile ad-hoc networks, the

resource consumption must be taken into account, i.e. due to limitations in mobile ad-

hoc network environments, the memory, processing power and network bandwidth

consumed to ensure consistency among document replicas must be significantly

reduced.

2. Interactivity or Responsiveness.

As mentioned previously, the collaboration must be as responsive or as interactive as

possible to improve the user’s collaboration experience. The changes made by a user

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 37

must be reflected as soon as possible on his/her local replica as well as on the other

users’ replicas. For implementation in mobile ad-hoc networks, not only does the

resource consumption have to be taken into account, the collaboration must still be

interactive and responsive despite the frequent disconnections in mobile networks.

Users must be able to work on the document even though they are disconnected, and

once they are re-connected, the document must be brought up to date as soon as

possible.

3. Dynamic Membership.

As mentioned previously, real-time collaborative editing systems must support

dynamic membership events, such as users joining the collaboration session or users

leaving the session temporarily or permanently. On the occurrence of such events, the

session must be able to resume as smoothly as possible without intervention from users.

In a fixed PC network environment, a dedicated server is readily available to handle

these events. Users joining and leaving the session can easily notify the server and the

server can handle these events and notify other participants accordingly. In contrast,

mobile ad-hoc networks do not guarantee a presence of a dedicated server for

managing membership. Therefore, in mobile ad-hoc networks, each participant is

responsible for handling membership events such as arbitrary joining and leaving.

Furthermore, disconnection occurs frequently and unpredictably in mobile ad-hoc

networks, and it has to be handled individually and consistently by each participant.

4. Document Availability.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 38

The shared document must be available at all times so that users can get access to

necessary data when they need to, regardless of the users’ location. In mobile ad-hoc

networks where a dedicated server is not necessarily present, each device must store a

document replica so users can get access to the document even though they are

disconnected. Depending on the type of the document, its size can grow too large for

mobile devices capacity (either its display screen or its storage space). In a fixed PC

network environment, given that the available bandwidth is large and the PC’s display

capability is significantly higher than mobile devices, the user can more easily view the

whole document and receive updates on all parts of the document. In a mobile network

environment, however, bandwidth is relatively scarce and mobile devices might not be

able to store and/or view the whole document at one time. To reduce resource

consumption, users need to be able to select and work only on desired parts of the

document.

2.3. Existing Work

This section presents a review of various existing group editor implementations. The

systems that were designed for fixed PC networks, organised by their application

architecture, are discussed first followed by existing systems designed for mobile, though

not necessarily ad-hoc, networks. For each system, a description of its contributions and

shortcomings is outlined. A description of its limitations with regards to the

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 39

implementation in mobile ad-hoc networks is also discussed in order to underscore the

significance of the work presented in this thesis.

2.3.1. Centralised Architecture

In Rendezvous [108], the virtual terminals of the connected users all communicate

with one centralized process that controls the application. The central process contains the

underlying objects for the application, provides support for session management, and

generally facilitates the coordination among users.

Dolphin [124] is another example of a graphical group editor for supporting joint

work and brainstorming with users not having to reside at the same place or meeting room.

DOLPHIN supports the creation and manipulation of unstructured graphics (e.g., freehand

drawings, handwritten scribbles), structured graphics (e.g., hypermedia documents with

typed nodes and links), their coexistence, and their transformation. DOLPHIN utilises a

centralised architecture to allow multiple distributed clients to share common hypermedia

objects stored in the cooperative hypermedia engine server.

Tivoli [96], similar to DOLPHIN, provides whiteboard–like functionality, with an

added flip-chart capability to handle multiple sheets that can be printed or saved for later

use. However, being group editors that utilise centralised architecture and pessimistic

concurrency control, DOLPHIN and Tivoli suffer from the same set of limitations as

Rendezvous.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 40

Jupiter [101] is another multi-user, multimedia virtual world intended to support

long-term remote collaboration on shared documents, shared tools, and, optionally, live

audio/video communication. Jupiter also utilises a centralised architecture: Jupiter’s users

run the client on their local workstation. It makes a TCP connection to the server, running

on a central machine. Jupiter’s central server stores the state of virtual objects and executes

all of their associated program code, while the clients simply manage their local

input/output hardware on behalf of the server and the user.

The use of the centralised architecture makes document consistency easy to manage

since the document only resides on the central server. However, as mentioned in section

2.1.2, this architecture has several drawbacks: it has a single point of failure, it imposes

relatively high bandwidth consumption, each client has to always be connected to

participate in collaboration, and it is not applicable in mobile ad-hoc networks since the

presence of a dedicated server is not guaranteed in such environments. Furthermore, with

the exception of Jupiter, the above systems utilise a pessimistic concurrency control

(locking) such that only one user may provide input and that all others are blocked. This

not only diminishes concurrency, the use of locks in mobile, especially ad-hoc, networks

imposes additional overhead to manage the locks. Jupiter adopts an optimistic concurrency

control as introduced by GROVE [46] where users can edit the document concurrently.

The fact that Jupiter utilises a centralised architecture makes concurrency control

substantially simpler than its replicated architecture counterpart. However, having utilised

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 41

centralised architecture, Jupiter still suffers from limitations and drawbacks of centralised

architecture as described in section 2.1.2.

Centralised architecture offers a simple collaboration management, and imposes

very little resource consumption in the client side. However, due to the limitations of the

centralised architecture and the increasing power of personal computers, the replicated

architecture is becoming more attractive.

2.3.2. Replicated Architecture

As mentioned in section 2.1.2, replicated architecture can be categorised into: fully

replicated and semi-replicated. A fully replicated architecture replicates the collaboration

process and the shared document, and does not require a central server. The semi-

replicated architecture also replicates the process and the shared document, but it requires a

server for membership, registration, and/or shared objects registry purposes.

Colab [123], an experimental meeting room developed by Xerox PARC, is one of

the earliest use of computers to support collaborative work. Colab is designed for small

working groups of two to six persons using personal computers connected over a local area

network with the aim of making meetings among computer scientists more effective. Colab

is a replicated architecture group editor that employs a distributed database: each machine

has a copy of the database and changes are installed by broadcasting each modification

without any synchronization. Since Colab is designed for a meeting room setting, the

participants use verbal negotiation with other group members before altering shared data.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 42

Colab has a few meeting tools: (1) Boardnoter, which closely imitates the functionality of a

chalkboard; (2) Cognoter, a tool for organizing ideas to plan a presentation; and (3)

Argnoter, a tool for considering and evaluating alternate proposals. As an early work in

CSCW, Colab uses a rather naïve concurrency control strategy: if two participants make

changes to the same data simultaneously, there is a race to see which change will take

effect first, and the result can be different on different machines. Colab relies on the fact

that the end results are independent on the order of the concurrent updates and the use of

verbal cues of the users to coordinate their behaviour. Furthermore, Colab also uses

locking to prevent two users working at the same document part at the same time, hence

reducing the ability to work concurrently.

One example of group editors that employ a semi-replicated architecture is

DistView [113]. Intended for supporting synchronous collaboration over wide-area

networks, DistView supports the building of collaborative multi-window applications

allowing some of the user’s application windows to be shared with other users at a fine-

level of granularity while still keeping other application windows private. DistView uses

an object-level replication scheme in which the application and interface objects that need

to be shared among users are replicated to keep bandwidth requirements low and to

maintain the responsiveness of the groupware system.

A user may export a window to the group when s/he observes something interesting.

DistView, however, requires a server as the registrar of the shared windows. Exported

windows will be registered in the shared window server and other users can inspect the list

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 43

of remote windows available to be imported. The other users may then individually import

the shared window to observe and modify its content. When a window is imported,

DistView replicates all the objects of the window and the window object itself from an

export window manager of the originator site (the site that exports the window) to an

import window manager of the destination site (the site that imports the window). For

correct replication, the state transfer includes the window type (class), its type-specific

internal state, its references to other objects, and its location within its parent window.

DistView uses locking mechanisms so that simultaneous interactions by users can be

supported, without leading to undesirable or inconsistent results: all user operations must

acquire appropriate locks to ensure that interface and application objects, when updated

concurrently, lead to correct results and consistent replicas. Since it uses locks and requires

a central server for shared window registry, DistView is not well suited to mobile ad-hoc

networks.

GroupKit [118], another example of a synchronous group editor that utilises a

semi-replicated architecture, is a groupware toolkit that lets developers build applications

for synchronous and distributed computer-based conferencing. Its runtime infrastructure

consists of three types of processes: registrar, session managers, and conference

applications. The registrar is the first and centralised process created in a GroupKit session.

There is usually one registrar for a community of conference users, and its address is “well

known” in that other processes know how to reach it. The session manager is replicated,

and once it is created, it connects to the registrar to locate existing conference processes.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 44

The conference application is invoked by the user, managed by the session manager, and it

consists of groupware tools such as a shared editor, whiteboard, and group chat. The

conference applications utilise remote procedure calls (RPC) to communicate, share

information, and trigger program execution between replicated application processes in a

session. Based on the belief that no one concurrency control works in all groupware

systems [55], unlike DistView, GroupKit does not implement a specific concurrency

control to allow the developer to implement the appropriate concurrency control depending

on the conference application.

Group editors that employ semi-replicated architecture are not readily suited to

mobile ad-hoc networks since they require a server to be present for handling some

collaboration functionalities.

One of the earliest groupware editors that utilises fully replicated architecture and

supports collaboration for geographically dispersed group members is GROVE (GRoup

Outline Viewing Editor) [47]. GROVE is an outline editor intended for use by a group of

people simultaneously working on a textual outline. Participants can modify the underlying

outline by performing editing operations, such as insert, delete, cut, and paste in the

window, they may also open and close parts of the outline (using the small buttons on the

left side) or change the read and write permissions of outline items. In addition to

displaying views, group windows also indicate who is using the window.

Without the presence of a central server, GROVE could not use traditional

concurrency control such as locking and/or transactional processing as those methods

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 45

require a server to manage the locks and/or the transactions. GROVE, therefore, is the first

groupware system that uses the notion of Operational Transformation (OT) [46] to ensure

document consistency in the presence of concurrent updates. Since GROVE, operational

transformation has been used and developed by various researchers to ensure document

consistency in a replicated architecture. The technical aspect and the development of

operation transformation will be discussed in more detail in section 3.3.3.

REDUCE (REal-time Distributed Unconstrained Cooperating Editing) [131] is

another collaborative editing application that uses fully replicated architecture. Similar to

GROVE, it uses operation transformation for its concurrency control. However, the

algorithm implemented by REDUCE (either GOT [137] or GOTO [131]) fixes the

shortcomings of GROVE’s dOPT algorithm. The shortcomings and the detail of the

algorithms are discussed in greater detail in section 3.3.3.

An example from another application domain is GroupDesign [74], a multi-user

drawing tool for structured graphics that runs in a heterogeneous environment comprising a

network of Apple Macintosh computers and Unix workstations. Similar to Cognoter and

Argnoter [123], the members of a group can simultaneously edit a diagram. GroupDesign

uses a relaxed WYSIWIS (What-You-See-Is-What-I-See) paradigm [122], since a strict

WYSIWIS approach would not have allowed users to work independently on different

diagram areas. The document is the same for all replicas but each user has his or her

individual view of the diagram. For example, users have an independent control over the

scroll bars and window placement. Similar to GROVE, GroupDesign uses a replicated

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 46

architecture: an instance of the application (a replica) runs on the computer of each user.

GroupDesign does not use any central process for the coordination of the replicas, nor does

it give a special role to the user who first launches a session. However, unlike GROVE,

GroupDesign uses simpler concurrency control than the operation transformation approach

used by GROVE. As a drawing tool, the events always commute or mask. For example, if a

user moves an object and another user changes its colour, the order of execution of these

actions is irrelevant. In other words, events carrying these actions commute. On the other

hand, if a user changes the colour of an object to red and another user then changes it to

green, the corresponding events do not commute. However, if ‘change to green’ has been

received and executed by a replica and ’change to red’ arrives later, the latter can simply be

discarded. In other words, the second event (in the total order) has masked the first one.

Therefore, since events always commute or mask, they are always handled immediately

providing the best response time possible for the interface. However, the decision to mask

one of the conflicting operations does not preserve all users’ intentions. The masked

operation is simply discarded, and consequently, the intention is never noticed by other

users.

Aiming to preserve both conflicting operations, GRACE (GRAphics Collaborative

Editing) [130], an internet-based prototype system developed using the Java programming

language, uses the multi-versioning technique to keep both intentions in separate object

versions. GRACE has a system architecture resembling the architecture of the (text-

oriented) REDUCE system [131], where multiple collaborating sites are directly connected

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 47

via TCP connections over the Internet. Each collaborating site runs a replicated GRACE

process which takes care of operation generation, processing and propagation, and

document management. GRACE has a graphics editing interface and uses the multi-

versioning technique for consistency maintenance, whereas REDUCE has a text editing

interface and uses operational transformation for consistency maintenance. Both multi-

versioning technique and operational transformation are useful to ensure document

consistency. Multi-versioning technique is discussed in more detail in section 4.3.3.

Recently, a collaborative graphic editor called Draw-together [65] was proposed.

Like GRACE, it uses a replicated architecture where each user works on a copy of the

document. Local operations are executed on the local copy of the document immediately

after their generation and then broadcast to the other sites. When a remote operation arrives

at a site, some of the operations that have been performed at that site might be undone and

re-executed together with the remote operation in order to satisfy a combined effect of the

concurrent operations. The differences between GRACE and Draw-together are the

document structures and the way it resolves conflicts. The document structure of Draw-

together is not only object-based, but it also shows the hierarchical object grouping. A

document consists of pages, each page consists of layers, each layer consists of several

composite objects (groups of objects), and each group may consist of either several objects

or several other groups. Furthermore, unlike GRACE, it attempts to resolve conflict by

using an operation serialisation algorithm based on the reordering of nodes in a graph. Two

types of conflicting operations are defined: real and resolvable conflicting operations; and

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 48

two directed graphs are introduced to help resolve the conflicting operations. However, the

conflict resolution strategy proposed in Draw-together is only applicable to graphic editors.

Consequently, Ignat et al [68] has proposed a flexible conflict definition and resolution to

handle conflict in generic document editors with hierarchical document structure, which is

discussed in section 4.3.2.

Although fully replicated architecture group editors do not introduce a single point

of failure, the existing systems assume a known number of participants and do not

generally address how dynamic membership events are handled. Although DistView and

GroupKit are able to manage session membership, they require a central server to do so;

hence it is not readily applicable to mobile ad-hoc networks.

2.3.3. Groupware Systems in Mobile Networks

Sync [98], a Java framework for mobile collaborative application, is based on object-

oriented replication and offers high-level synchronization-aware classes that developers

may easily tailor to the synchronization needs of their application. The Sync framework

employs a centralised architecture that requires a server to do the synchronisation of

replicas. Each change in the client side must be synchronised to the server, and the central

synchronization server accepts synchronization requests from remote replicas, collects all

changes received by the server since the remote replica’s last synchronization, and merges

them with the replica’s changes included in the replica’s synchronisation request. Of the

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 49

merged set of changes, those originating from the replica are applied to the server’s replica,

and those originating from the server are sent to the remote replica.

Another example of a groupware system in mobile network that employs

centralised architecture is QuickStep [120]. The major difference is that Sync allows

asynchronous collaboration between mobile users, while QuickStep allows synchronous

collaboration between mobile users using handheld devices. QuickStep uses the database

paradigm and stores application data as records. Each handheld device has its own local

database which contains the application’s records. Only the owner can add, change or

remove local records. The QuickStep server has a copy of each local database, the mirror

database. The mirror database is incrementally updated each time a handheld device is

connected to the server.

As opposed to Sync and Quickstep that employ centralised architecture, YCab [22]

is a framework proposed for use by collaborative services in a wireless ad-hoc network.

YCab offers services such as text chat, shared whiteboard, shared images, and global

positioning system navigation. Specifically, Ycab is a collaborative environment and a

framework API suited towards ad-hoc networks of small mobile devices. It was designed

having realised that conventional collaborative tools are not suited to the demands of

portable computers and mobile networks, especially in situations in which no fixed-

network infrastructure is present.

YCab has support for decentralised session control and decentralised

communication managers. The framework consists of: (1) Communication and service

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 50

managers, (2) Session and election services, (3) State recovery manager, and (4) GUI

components. The framework provides an environment for services on one client to

communicate and share information with services on other clients in an ad hoc network.

The framework also implements various decentralised protocols, such as session

registration protocols, leader election protocols, and state recovery protocols.

While YCab discusses the various implication of mobile ad-hoc network to the

requirements of mobile real-time collaborative editing application, such as mobile devices

joining and leaving the session, it does not discuss how it maintains the consistency of the

shared document in the midst of concurrent updates and out-of-order operations arrival.

Furthermore, it relies on a session coordinator for state recovery process and the joining

process requires all existing members to be connected. The shortcoming of YCab in

handling dynamic membership events is discussed in greater detail in Chapter 5.

 DSC [89] is another peer-to-peer groupware system that uses decentralised

topology. The DSC system is implemented using the JXTA platform providing a pure P2P

architecture and a dynamically created ad hoc network without central control or server.

DSC offers a set of protocols and a series of services that let peers find each other, form

groups and directly exchange messages across firewalls and NATs [3]. DSC provides three

shared objects in terms of a web browser, file viewer and drawing pad as well as a text chat

tool. The DSC system software consists of five parts: group agent, message handler, data

recorder, shared spaced controller and shared objects.

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 51

 DSC faces some challenges and limitations. Due to the distributed advertisement

publishing and searching mechanism in JXTA, it takes about 1 to 10 minutes to know the

existing peers and groups using the search function provided by the JXTA discovery

service [89]. DSC employs WYSIWIS mode which restrict users’ ability to navigate

through different parts of the shared document. Furthermore, it lacks coordination control

policies and mechanisms to keep the collaboration harmonious and the document

consistent. Chapter 5 of this thesis presents algorithms to handle dynamic memberships in

mobile ad-hoc network, and the concurrency control policies to handle different types of

conflicts are presented in Chapter 3.

 Speakeasy [45] is also a peer-to-peer system built for ad-hoc collaboration.

Speakeasy allows users to create converspace, a shared space where users can drag and

drop any resource to be shared and once a resource is in the converspace, the other peers

will be able to access the shared resource from their local converspace view.

Architecturally, it is comparable to JXTA as it provides a service to let peers share

resource, discover shared resource and access resources from the converspace. Although it

supports P2P collaboration and resource sharing, it does not support synchronous

collaborative editing.

 It is also worth mentioning the use of publish/subscribe systems for achieving

collaborative work. Systems such as YACO [25] and MOTION [77] provide services such

as file sharing, distributed artefacts, resource sharing and searching, messaging, and system

event subscribing. YACO (Yet Another Framework for Collaborative Work) exploits

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 52

capabilities of the SIENA publish/subscribe system [26] with support for mobile users

using MOBIKIT, a support service for mobile publish/subscribe applications [24], for

providing services to support collaborative work.

A publish/subscribe system, although providing capabilities to share file and

artefacts, is not built to support synchronous collaborative work. It is suitable for

asynchronous collaborative work where documents are viewed and edited by one person at

one time. Furthermore, it relies on an established network of message routers to distribute

messages and artefacts from the publisher to the client or vice versa.

The following Table 2-1 provides the summary of the collaboration systems

described above.

Group
Editors

Architecture Features and/or advantages Limitations and/or
disadvantages

Randezvous Centralised One centralized process
controls the application;
hence it is simple to manage.

Single point of failure

Dolphin and
Tivoli

Centralised Supports joint work and
brainstorming with users not
having to reside at the same
place or meeting room.

Single point of failure

Jupiter Centralised Document consistency is easy
to manage since the document
only resides on the central
server.

Single point of failure.
Relatively high bandwidth
consumption.
Each client has to always be
connected to participate in
collaboration.
It is not applicable in mobile ad-
hoc networks since the presence
of a dedicated server is not
guaranteed in such
environments.

Colab Replicated One of the earliest uses of
computers to support
collaborative work.

Naïve concurrency control
strategy: concurrent updates are
not handled appropriately;

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 53

hence the document state can be
different on different machines.

DistView Semi-
replicated

Supports collaborative multi-
window applications.
Low bandwidth requirements.
Maintains the responsiveness
of the groupware system.

It uses locks and requires a
central server for shared
window registry; hence it is not
well suited to mobile ad-hoc
networks.

GroupKit Semi-
replicated

A groupware toolkit that lets
developers build applications
for synchronous and
distributed computer-based
conferencing

It does not implement a specific
concurrency control.
It requires a server to be present
for handling some collaboration
functionalities.

GROVE Replicated GROVE is the first groupware
system that uses the notion of
Operational Transformation to
ensure document consistency
in the presence of concurrent
updates.

The dOPT algorithm used by
GROVE is unable to maintain
consistency in all scenarios.
Further discussion is presented
at Chapter 3.

REDUCE Replicated The algorithm implemented
by REDUCE fixes the
shortcomings of GROVE’s
dOPT algorithm.

The shortcomings and the detail
of the algorithms are discussed
in greater detail in section 3.3.3.

GroupDesign Replicated A multi-user drawing tool for
structured graphics.
Runs in a heterogeneous
environment

The decision to mask one of the
conflicting operations does not
preserve all users’ intentions.

GRACE Replicated GRACE has a graphics
editing interface and uses the
multi-versioning technique for
consistency maintenance.

Multi-versioning technique is
discussed in more detail in
section 4.3.3.

Draw-
together

Replicated Hierarchical document
structure.

The conflict resolution strategy
proposed in Draw-together is
only applicable to graphic
editors.

Sync Centralised A Java framework for mobile
collaborative application

It requires a server to do the
synchronisation of replicas.
It allows only asynchronous
collaboration.

QuickStep Centralised QuickStep allows
synchronous collaboration
between mobile users using
handheld devices.

It requires a server to do the
synchronisation of replicas.

YCab Replicated Supports collaborations in
wireless ad-hoc networks.

It does not discuss how it
maintains the consistency of the
shared document in the midst of

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 54

concurrent updates and out-of-
order operations arrival.

DSC Replicated The DSC system is
implemented using the JXTA
platform providing a pure P2P
architecture and a
dynamically created ad hoc
network without central
control or server.

DSC employs WYSIWIS mode
which restrict users’ ability to
navigate through different parts
of the shared document.

Speakeasy Replicated It supports P2P collaboration
and resource sharing

It does not support synchronous
collaborative editing

Table 2-1 Comparison of various existing collaboration systems

2.4. Summary

Synchronous groupware systems allow two or more users to work on a shared document at

the same time regardless of their physical location. There have been many groupware

systems developed to support real-time collaborative editing in various environments,

ranging from the ones designed for fixed PC networks to the ones designed for mobile

networks. In this chapter, the requirements for real-time mobile collaborative editing

have been discussed. Although the existing groupware systems can support real-time

collaborative editing in fixed PC networks, they have shortcomings with regards to

satisfying the requirements for mobile networks.

 The shortcomings of the existing groupware systems and how they are addressed in

this thesis can be summarised as follows.

1. The existing concurrency controls or the document consistency algorithms either rely

on a central server, assume a reliable network, or assume unlimited resources; hence

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 55

they are not well suited to mobile ad-hoc architecture. Chapter 3 of this thesis presents

a consistency algorithm that is fully replicated, consumes considerably less resources

(memory, storage space and processing power) and still works in unreliable mobile

networks. Chapter 4 discusses conflicts in real-time mobile collaborative editing and

presents a conflict management algorithm to handle the conflict and facilitate conflict

resolution.

2. The existing groupware systems either assume a fixed number of participants or utilise

a central server to manage session membership, neither of which is suited to mobile ad-

hoc network characteristics. Consequently, Chapter 5 presents a mechanism to handle

dynamic membership events while still ensuring the consistency of the shared

document.

3. The existing replicated architecture group editors assume the whole document is

replicated. As mentioned previously in section 2.2.2, this consumes large bandwidth

since all updates have to be sent to all participants and mobile devices may not

necessarily be able to accommodate a large document. Chapter 6 discusses the idea of

dividing the shared document into document partitions and presents a mechanism that

allows users to work on desired partitions.

 As mentioned in section 2.1.1, this thesis uses the collaboration awareness

approach since its focus is on devising algorithms that provide essential functionality in

real-time mobile group editors, not developing the collaboration application itself. The

algorithms devised in this thesis, however, can be used by developers that wish to use a

CHAPTER 2. MOBILE CSCW

 (June 15, 2007) 56

collaboration transparency approach to leverage single-user application for real-time multi-

user collaboration.

3. Consistency Management

Chapter 3

Consistency Management

3.1. Introduction

As discussed in the previous chapter, the replicated architecture is well suited to real-time

collaborative editing in mobile ad-hoc networks. In a centralised architecture, the main

document is held by the server, and the document is always convergent since the server

applies all the updates to the document and all participants retrieve the updated document

state from the server. In a replicated architecture, however, since there is no dedicated

server, each mobile device maintains a replica (local replica) of the shared document.

Consequently, each user has full access to his/her local replica, thus promoting

concurrency and interactivity. Each update of a user has to be broadcast to all other

participants such that all participants can view the update reflected in their local replicas.

Each update is broadcast as an operation that realise the intention of the user who initiates

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 58

the update, such that when the operation is executed in another document replica, the

update is reflected correctly.

Due to the concurrency of the operations generated at each site and the fluctuating

bandwidth in mobile networks, operations may arrive at one site in a different order to that

in which they arrive at another site. Furthermore, due to concurrency, the operation that

arrives at one site may have not been generated from the same document context as the

context of the current document replica at the recipient site. The document consistency

requirement needs to ensure that the end results of all replicas are consistent regardless of

the concurrent updates and regardless of the arrival order of those updates. Without proper

consistency management, the convergence of the document copies cannot be assured,

which means after a certain period of time one site may have a different document state

from the others. The consistency management algorithm is also commonly known as the

concurrency control algorithm, and therefore those two terms are used interchangeably

throughout this thesis.

This chapter presents the document consistency problem and presents a document

consistency algorithm that supports real-time group editors in mobile ad-hoc networks. The

proposed consistency algorithm not only supports real time mobile groupware, it is also

applicable to non-replicated architecture and it incorporates some novel techniques to

improve its efficiency. Furthermore, it also incorporates some corrections to the existing

technique so that it is able to ensure document consistency in scenarios where existing

algorithms fail to do so. This chapter focuses on presenting a concurrency control

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 59

mechanism that allows non-conflicting concurrent updates to be applied to the document

replicas so as to maintain their consistency. The mechanism and algorithm for handling

conflicting concurrent updates will be addressed in Chapter 4. The remainder of this

chapter is organised as follows: section 3.2 presents a general model of a real-time

collaboration system as used by many existing consistency management algorithms [46,

126, 142, 135, 136]; section 3.3 discusses existing consistency algorithms, their

contributions and their shortcomings in regards to implementation in real-time mobile

collaborative editing; section 3.4 presents and provides comments on the two most recent

work in document consistency; section 3.5 presents the proposed consistency algorithm

including the proposed operation transformation rules; section 3.6 shows the results of the

performance evaluation of the proposed algorithm; and finally, section 3.7 concludes the

chapter and outlines some future work.

3.2. Group Editors Model

In replicated architecture, the shared document that users are working on is

replicated so that each user works on the local replica that exists on each site. A user at

each site works on the shared document by applying an operation to the local replica, each

of which will change the document state. To allow all sites to get the latest state of the

document, any operation generated at one site has to be broadcast to all other sites. A local

operation is an operation generated by the local site, whereas a remote operation is an

operation generated by another site and received as a result of the operation broadcast. Due

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 60

to concurrency of the generated operations and the unpredictable fluctuating network delay,

remote operations may arrive out of order. Each participant has to process the operations

(local and remote) in such a way that the document replicas are consistent and the

intentions of the users are respected.

This section presents the generic model of real-time collaborative editing systems.

Section 3.2.1 describes the model of the document to be used throughout this thesis. The

document model aims to be as generic as possible such that the algorithms devised in this

thesis can be used in most application domains. Section 3.2.2 describes the operation

model to represent the updates made by users in a collaboration session.

3.2.1. Document Model

All documents can be considered to be composed of objects. A simple text document

consists of letters, an XML document consists of nodes, and a complicated multimedia

document may consist of hundreds or even thousands of graphical and composite objects.

Users work on a document by adding objects to the document, modifying the existing

objects in the document, and deleting objects from the document. An addition, a

modification, or a deletion of an object may or may not affect the existing document

objects. For example, in a text document (Figure 3-1), when a user inserts a letter on the

text at a certain position, all letters after that position will be shifted to the right; and if a

user deletes a letter, all other letters after it will be shifted to the left. This is called a

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 61

dependent-object document, where an operation done to an object affects the positions or

attributes of existing objects.

Figure 3-1 Dependent-object document

An independent-object document, on the other hand, is a document where an

operation done to an object (insertion, deletion, or modification of an object) in the

document will not affect the existing objects. An example for this type of document is a

simple drawing document (Figure 3-2), such as Microsoft® Paint document. If a user adds

an object to the document, the other objects will stay where they are, and if there is an

overlap, then one object will be on top of the other object.

Figure 3-2 Independent-object document

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 62

In a dependent-object document, applying an operation to an object might affect

some other objects. On the other hand, applying an operation to an object in an

independent-object document will not affect any other object. Thus, if an algorithm works

for dependent-object documents by considering the operation effect on one object on

another, the same algorithm will also work for independent-object documents by excluding

the operation effect. Consequently, independent object documents can be considered as a

subset of dependent-object documents, and an algorithm that works for dependent-object

documents can be easily adjusted to cater for independent-object documents. Therefore, in

this thesis, the focus is on developing algorithms that work for the more challenging case

of dependent-object documents.

Much of the existing work on consistency management algorithms [46, 126, 132,

142] uses a plain text document model to develop the algorithm. While it is simple and

serves its purpose for developing the algorithm, it does not reflect the data/document

structure of the current pervasive applications. Furthermore, it is not adequate to reflect the

two main types of conflicts: exclusive and non-exclusive conflicts (readers can refer to

section 4.1 for conflicts definitions). On the other hand, object based documents are

common at the present time, and therefore this thesis addresses algorithms that work both

on simple character-based text documents and on complex object based documents.

Therefore, an object-based text document is assumed throughout this thesis due to

the following properties.

• It is general enough to represent most application domains.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 63

• It is simple enough to provide an understanding of collaborating on object based

documents.

• It is broad enough in scope to show the two main types of conflicts that can occur in

real-time collaborative editing (refer to section 4.1 for conflicts definitions), and

consequently, how they are handled by the proposed algorithm.

The text document consists of character objects that are identified by an object

identifier (objId) and have a number attributes, such as its position in the document (pos),

its size (fontSize) and its colour (fontColor). The pos attribute, with 1 being the first

position, is dependent on the position of other objects and thus the insertion or deletion of

one object might affect the position of another, meaning that this is a dependent object

document. Changing the other attributes, however, does not affect other objects and thus

the document also shows independent object characteristics, thereby allowing the

algorithm presented in this thesis to be tested for both dependent and independent object

cases. It could be argued that an object-based text document is too simple and is not as

useful as more pervasive applications. However, as the focus of this thesis is to offer

essential functionalities to support group editors, not to develop a pervasive group editing

application, object-based text documents are adequate to demonstrate the proposed

algorithms. Although the proposed algorithms are designed with object based text

documents as the example, they can be adjusted to support collaboration on more complex

documents.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 64

The notion of a multi-level document structure in a general text editor has also been

used in [67, 37, 134, 147], where a document consists of several chapters, each chapter

consists of several paragraphs, each paragraph consists of several sentences, which consists

of several words and, at the bottommost of the level, characters. Unlike their work, this

thesis assumes a simple single-level document (a text document consists of many character

objects). Although, multi-level document structure may represent the document better, it

can be argued that the way conflicts and concurrency are handled are similar to the single-

level document structure. Section 3.3.3 discusses the proposed treeOPT algorithm by Ignat

et al. [67] and furthermore, section 6.3 (as part of the Chapter 6 – document partitioning)

discusses and compares the document structuring of treeOPT with the document

structuring of the proposed document partitioning algorithm.

3.2.2. Operation Model

A user works on a document by adding, modifying, and deleting objects of the document.

Every update intended by the user is realised by an operation. The term ‘user intention’ and

‘operation intention’ are used interchangeably throughout this thesis to represent the

document update intended by the user who generates the operation. In an object based text

document, the three generic operation primitives used in the document are:

• insert(objId, pos, char, attrSet): inserts character char with object id objId at

position pos with an initial attribute set of attrSet,

• delete(objId, pos): deletes object with object id objId at position pos, and

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 65

• changeAttr(objId, attr, value): change an attribute attr of object objId to a new

value of value.

Since changeAttr operation commutes with both insert and delete operations (the

effect of a changeAttr operation does not change regardless of whether it is executed after

or before an insert or delete operation), it is not included in the discussion in this chapter.

Furthermore, the position of the character (pos) and the character itself (char) are the two

parameters that should be taken into account in the presence of concurrent operations. On

the other hand, the object id and the attribute set are not of interest in the concurrency

control discussion of this chapter since they are not affected by the concurrency of

operations except in the case of conflicting changeAttr operations when two users

changing the attribute set of an object to two different values. Therefore, without losing

generality, the insert operation can simply be represented as insert(pos, char) and the

delete operation can simply be represented as delete(pos), while the object id and attribute

set parameters, and the changeAttr operation, will be included in Chapter 4 where a

conflict management mechanism for handling conflicting changeAttr operations is

discussed.

Figure 3-3 illustrates a simple diagram of operation execution and operation

propagation from one site to another. First, the user at site 1 makes a change on the

document by inserting a character ’X’ after ’A’. This is realised by an operation

insert(2, ’X’). This operation is then sent to site 2 so that site 2 can make the same update

to its document. Second, the user at site 2 deletes character ’B’ from the document, by

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 66

executing an operation delete(3). This operation is then sent to site 1 so that site 1 can

apply the same change to its local replica.

Figure 3-3 Document operation

Suppose opi is an operation generated at site
iopS and opj is generated at site

jopS ,

there are two possible relationships between opi and opj - one operation causally precedes

another, or they are concurrent to each other [80]. One operation causally precedes another

if the former is executed at a site before the generation of the latter at the same site. They

are concurrent if neither of them precedes the other. Formal definitions of both relations

are as follows.

Definition 3-1. Causal precedence operations relation “→”

opi causally precedes opj (opi → opj) iff:

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 67

•
iopS =

jopS and opj is generated after opi (Figure 3-4a), or

•
iopS ≠

jopS and
jopS has received and executed opi before generating opj (Figure

3-4b), or

• There exists an operation opk, such that opi → opk and opk → opj (Figure 3-4c and

Figure 3-4d).

Figure 3-4 Causal precedence

Definition 3-2. Concurrent operations relation “||”

As illustrated in Figure 3-5, opi is concurrent to opj (opi || opj) iff:

•
iopS ≠

jopS , and

•
iopS has already generated opi before receiving remote operation opj, and

•
jopS has already generated opj before receiving remote operation opi.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 68

Figure 3-5 Concurrent operations

Additionally, another type of relation – the ‘happened before’ relation – has also

been defined for events in distributed systems. This relation can be deduced by examining

the operations’ generation time, knowing that each operation is generated by a particular

site at a specific time. By looking at the physical time (real clock) they are generated, one

can infer which operation ’happened before’ the other. However, such clocks are not

guaranteed to be accurate and there are problems on how to synchronize the real clocks of

the sites in a distributed system. Alternatively, the ’happened before’ relation can be

determined by using Lamport’s logical clock [80]. The use of Lamport’s logical clock to

determine the ’happened before’ relation and the use of state vector to determine the

‘causal precedence’ relation of two operations are described in the following subsections.

Lamport’s Logical Clock

Lamport [80] describes a distributed algorithm for synchronizing a system of

logical clocks which can be used to totally order events. Each event (i.e. operation) is

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 69

timestamped with a logical clock C, and for any events a, b: if a → b then C(a) < C(b).

This is defined by Lamport as the Clock Condition. Each site Si maintains a logical clock

iSC that will be assigned to any operation generated by that site. If site Si generates an

operation opi, opi will be timestamped with C(opi) where C(opi) = iSC . Let us consider the

illustration in Figure 3-4b. If
iopS is S1 and

jopS is S2, with
1SC and

2SC are their logical

clocks respectively, opi and opj will be timestamped C(opi) and C(opj) respectively.

Following the Clock Condition, since opi → opj, therefore C(opi) < C(opj). To ensure the

Clock condition is satisfied, the following two rules must be followed:

1. Site Si increments
iSC after generating each operation. If opi and opj are generated by

Si, and opi is generated before opj, opi will bear a timestamp less than opj (C(opi) <

C(opj)) because
iSC is incremented after opi is generated.

2. Suppose opj is an operation generated by Sj bearing a timestamp C(opj). When site Si

receives opj, site Si sets
iSC greater than or equal to its present value and greater than

C(opj). This is to make sure that any other future operation will bear a greater

timestamp.

A total ordering scheme can be achieved simply by ordering the events based on

their logical clock. If two operations bear the same logical clock values, the total ordering

of the sites are used to break ties. The total ordering of sites can be based on the site IDs,

site IP addresses or any other unique attribute of sites. For example, if site ids are used,

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 70

then Si < Sj if id(Si) < id(Sj). The following definition (Definition 3-3) outlines the total

ordering relationship of two operations.

Definition 3-3. Total ordering relation “⇒”

Let opi be generated by Si and opj by Sj , then opi ⇒ opj if and only if: (1) C(opi) < C(opj),

or (2) C(opi) = C(opj) and Si < Sj.

Although the logical clock can be used to totally order operations, it can not be

used to determine causality. The clock condition is not bidirectional: while a → b means

that C(a) < C(b), C(a) < C(b) does not necessarily mean that a → b.

Figure 3-6 depicts how Lamport’s logical clock cannot be used to determine

causality and concurrency. It is obvious that op1 → op3 and op2 → op4, thus C(op1) <

C(op3) and C(op2) < C(op4). Even though C(op1) < C(op4), op1 does not causally precede

op4 (op1 →/ op4). The same case also applies for op2 and op3. Furthermore, while op1 and

op3 are concurrent to op2 and op4, there is no way to infer concurrency using the logical

clock. In other words, Lamport’s logical clock is useful to determine the total ordering

relationship of operations but not their causality relationship. To detect causality and

concurrency, the state vector technique should be used instead.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 71

Figure 3-6 Logical clock unable to detect causality and concurrency

State Vector

A state vector, a modification to the clock vector introduced by Mattern [90], is an N-sized

vector where N is the number of the participating sites. Each site Si maintains a state vector

iSV = (]1[
iSV ,]2[

iSV , …,][NV
iS), where][jV

iS holds the number of operations

generated by site Sj that have been executed by site Si. For example, if site Si has already

received and executed 3 operations generated by site 2, then]2[
iSV = 3. The size of a state

vector is the same as the number of participating sites, therefore the more sites participate,

the bigger the size of the state vector.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 72

Each operation is piggybacked with the state vector of the generator site to signify

the state when the operation is generated. If opi is generated by site Si, then opi will bear a

state vector
iopV , which is equivalent to

iSV right before
iSV generates opi.

Figure 3-7 illustrates the use of the state vector. Initially, site S1 and S2 have not

executed any operations and their state vectors
1SV and

2SV are equal (0, 0). Operations

op1 and op2 are the first operations generated by each site, thus they bear the same state

vector
1opV =

2opV = (0, 0). After generating and executing op1, site S1 updates its state

vector with 1]1[]1[
11

+= SS VV , which indicates that S1 has just executed an operation

generated by S1 (
1SV = (1, 0)). Then S1 generates another operation op3 and op3 bears a

state vector
3opV =

1SV = (1, 0). Since op1 is generated by S1, the fact that]1[]1[
13 opop VV >

indicates that op3 is generated after the execution of op1, or in other words, op1 causally

precedes op3. After receiving op2, S1 generates op4 with
4opV = (2, 1), which means op4 is

generated when S1 has already executed two operations from S1 (op1 and op3) and one

operation from S2 (op2). Thus, op4 happens after op1 and op3, deduced from

]1[]1[
14 opop VV > and]1[]1[

34 opop VV > respectively. Operation op4 also happens after op2

since]2[]2[
24 opop VV > . Therefore, operation opi causally precedes opj (opi → opj) iff

][][
ijii opopopop SVSV < , where

iopS and
jopS are the sites that generate opi and opj

respectively. Consequently, opi and opj are concurrent if opi →/ opj and opj →/ opi.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 73

Figure 3-7 State vector

Unlike Lamport’s logical clock, the state vector technique is able to detect causality

and concurrency. The state vector technique has also been used by REDUCE [137] to

determine total ordering relation of operations by comparing the total of the state vector

elements. Formal definitions of both relations are as follows.

Definition 3-4. Causal precedence operations relation “→”

If opi and opj are operations generated by Si and Sj respectively, opi causally precedes opj

(opi → opj) iff][][iViV
ji opop <

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 74

Definition 3-5. Total ordering relation

Let opi and opj, be two operations generated at sites Si and Sj respectively. If
iopV and

jopV are the state vectors of opi and opj respectively, and sum(
iopV) and sum(

jopV) are the

sum of the elements of
iopV and

jopV respectively, then opi ⇒ opj iff:

• sum(
iopV) < sum(

jopV), or

• sum(
iopV) = sum(

jopV) and Si < Sj .

It is worth mentioning that in order to improve scalability, Sun et al. [129] proposed

a technique to compress the state vector from a variable size N to a fixed size 2. However,

the proposed technique relies on the presence of one site that acts as a notifier site (S0). The

size of the state vector maintained by S0 is N while the other sites hold state vectors of size

2. Every operation generated from other sites has to be sent to S0 before being propagated

to other sites by S0. This technique not only introduces a single point of failure, it also

means that S0 needs to have adequate processing power to handle all operation

propagations. Therefore, this technique is not suitable for group editors in mobile ad-hoc

networks.

3.3. Related Work

There has been much existing work in consistency management (or concurrency control)

algorithm for collaborative editors, ranging from the pessimistic concurrency control to the

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 75

optimistic counterpart. The pessimistic concurrency control (locking) is preventative where

the shared document (or a particular part of the shared document) can only be modified by

one person at a time. The optimistic concurrency control, on the other hand, considers that

users rarely modify the same part of the document at the same time, hence allowing users

to modify any part of the document at any time. When two or more users modify the same

part of the document, the algorithm makes sure that the intentions of the users are

preserved and reflected consistently in all document replicas. The pessimistic concurrency

control (locking) is discussed in section 3.3.1 along with its limitations, followed by the

optimistic concurrency control in section 3.3.2. Section 3.3.3 discusses a commonly used

optimistic concurrency control, namely Operational Transformation (OT), its development

and the limitations of the existing OT-based algorithms.

3.3.1. Pessimistic Concurrency Control (Pre-Locking)

Locking is a pessimistic concurrency control that prevents conflicts in distributed systems

and database systems by prohibiting concurrent updates on shared data objects. The

traditional locking is also called pre-locking meaning that whenever a user wants to edit a

part of the document, s/he has to request and be granted an exclusive lock for that part.

Pre-locking has been applied to various group editors for consistency management [94, 97,

100, 108, 113]. However, pre-locking is undesirable for the following reasons. Firstly, it

imposes overheads in the lock requesting, granting and releasing procedures, especially in

replicated architectures where there is no machine dedicated to managing the lock(s).

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 76

Secondly, it diminishes concurrency since users cannot modify the locked part of the

document. Although the concurrency level can be increased by using a finer lock

granularity, the finer the lock granularity, the more locks need to be managed creating

more overhead in lock management. Thirdly, although locking prevents conflicting updates

from occurring, it has not prevented divergence in a document where the objects are not

independent [133]. Finally, locking is not suitable for mobile networks as the frequent

disconnections in mobile networks can either prevent applications from obtaining locks on

data objects or prevent them from releasing the locks for long periods of time [98].

3.3.2. Optimistic Concurrency Control

Optimistic Locking

A number of variants of locking have been developed by various researchers,

including compulsory optimistic locking [55], optional optimistic locking [32], shared

locking [133], tentative optional locking [127], and post locking [149]. They are

categorised as optimistic locking: either the user does not need to explicitly request a lock

or the user does not have to wait for the lock to be granted before s/he can edit a particular

part of the document. Due to its non-blocking and responsive nature, optimistic locking is

regarded as better suited to an environment where communication latency is high but

conflicts are rare [55]. This section discusses optimistic locking, optional optimistic

locking, shared locking, and tentative optional locking. Post locking will be discussed in

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 77

Chapter 4 since it is not used for concurrency control purposes, but is directly related to the

creation of document or object versions in the occurrence of a conflict.

In compulsory optimistic locking [55], if the locking request is successful, the user

is able to continue editing the object. If the locking request finally fails, the user is not

allowed to continue editing this object, and what they have done while waiting for the lock

will be undone. Optional optimistic locking [32], on the other hand, allows users to update

any unlocked object without necessarily requesting a lock on it. If no lock is held for that

object, the update is valid. If, however, there is a lock on that object, the update is undone.

Although they are considered as optimistic and promote more concurrency, both

approaches above still need a robust protocol for lock requesting/granting or for checking

the availability of the lock on a particular object. This protocol imposes additional

overheads if applied in mobile networks, and it also requires all sites to be online for the

protocol to work successfully.

In an effort to reduce message roundtrips in the lock requesting and granting

process, shared locking uses a local locking table to facilitate the process of checking the

availability of the lock. In shared locking [133], whenever a user wants to edit a part of the

document, s/he generates a locking operation. If the locking operation does not conflict

with any locks in the locking table, the locking operation passed the check and it is sent to

all other sites. The user can then start editing the part of the document. If the locking

operation conflicts with any locks in the locking table, the locking operation does not pass

the check, hence the user cannot edit that part of the document. Upon receiving the locking

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 78

operation (remote locking operation) from another site, the locking operation is executed

and stored in the local locking table. The remote locking operation is always valid, but if it

conflicts/overlaps with any of the current locks in the locking table, the

conflicting/overlapping locks becomes shared locks where both owners can edit the

overlapping region concurrently.

Tentative optional locking [127] works similarly to shared locking. The only

difference is the way it handles the overlapping locking operations. Instead of using shared

locks where both owners of the overlapping locking operations are allowed to update the

document concurrently, only one of the overlapping locking operations is accepted (the

one with higher priority), while the other is rejected. If there have been concurrent updates

on the document due to two or more users concurrently locking and updating the same part

of the document, all the updates are preserved (none of them are nullified or undone

automatically), and the user whose lock is finally committed decides the end result of the

locked region (s/he might incorporate some of the updates from other users if s/he thinks

the updates are appropriate). Tentative optional locking has the following drawbacks: it

still needs to wait for the lock to be resolved (if there are concurrent locks on the same

region) to know whether their updates are to be kept or to be undone, and it requires

additional operational transformation based rules for the locking operations to make sure

the concurrent locking operations are applied consistently at all sites.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 79

ORESTE

An optimistic concurrency control algorithm for distributed groupware applications called

ORESTE has been proposed by Karsenty et al. [73] to ensure consistency of document

replicas by ordering the concurrent operations. Similar to operational transformation based

algorithms, local operations are immediately executed at the local site to ensure the

responsiveness of the application. Unlike the operational transformation approach,

however, each remote operation that arrives is executed immediately without waiting for it

to be causally ready (i.e. all preceding operations have been executed). It uses Lamport’s

logical clock for total ordering and undo-redo mechanism to execute out-of-order

operations. A remote operation that arrives at one site is executed as soon as possible even

if the site has not executed some operations that ’happened before’ it. The basic idea of the

algorithm is that if the operation arrives out of order, then the operations in the history

that ’happened after’ the arriving operations will be undone. Then the arriving operation is

executed before redoing the undone operations. The operations will eventually be executed

at the same order at all sites. Suppose in Figure 3-8 there are four operations, op1, op2, op3

and op4 with the total order of the operations such that op1 ⇒ op2 ⇒ op3 ⇒ op4. When op2

arrives at site S1, site S1 needs to undo op3 and op4 since they ’happen after’ op2. After

undoing the two operations, op2 is then executed before the undone operations are redone.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 80

Figure 3-8 Undo and redo in ORESTE

Basically, if an operation opj happens to be executed earlier than opi at one

particular site (opi ⇒ opj), opj has to be undone before opi gets executed and then opj is

redone after the execution opj. However, the undo and redo of the operations may violate

user intentions. The newly inserted operation may alter the context of the document, thus

the redone operations may not represent the original intentions of the users. Furthermore,

messages arriving out of order is a normal case, thus operations need to be undone and

redone quite frequently. Not only does this cause the user experience to suffer, it also

consumes processing power since it needs to undo and redo operations. The more

operations generated locally before receiving a remote operation, the greater the

probability of undoing and redoing operations. Another drawback of ORESTE is that

Lamport’s clock cannot be used to detect causality and concurrency (refer to section 3.2.2).

Furthermore, ORESTE does not provide any way to preserve the user intention.

Consequently, the document might end up with a state that violates the user intention. In

the example illustrated by Figure 3-9, the user at site 2 intends to insert ’A’ between ’E’

and ’T’, realised by operation op2 = insert(3,’A’). However, due to the undo and redo of

the operation without user intention preservation, the document ends up with a state that

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 81

violates the user intention (character ’A’ is eventually inserted between ’R’ and ’E’

instead). Therefore, ORESTE is not applicable to dependent-object documents.

Figure 3-9 User intention not respected

ORESTE, however, is one of the earliest algorithms that tries to conserve device

storage space by regularly trimming the operation history. However, since ORESTE is

designed for independent-object documents, it simply deletes the old (obsolete) operations

from the history. History trimming in dependent-object documents is much more

complicated since an operation can only be removed from the history if all operations that

are concurrent to it have been executed locally. A more detailed discussion on history

trimming for dependent-object document is presented in section 3.5.1.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 82

3.3.3. Operational Transformation Framework

As an alternative to the locking approach, operational transformation was first introduced

by Ellis and Gibbs [46] in the dOPT algorithm used by GROVE to allow concurrent

updates on document replicas without using locks and without the need for a coordinator

site. Operational transformation is attractive to real-time collaborative editing for several

reasons: it is suited to replicated architecture as it does not require a central coordinator; it

allows users to concurrently edit the same part of the document; and it does not require

locks, hence does not impose unnecessary overheads in requesting/granting the lock.

In the operational transformation framework, each site typically goes through the

following phases:

1. Local operation generation

When a user modifies his/her local replica, a local operation is generated to realise

the intention of the user. To ensure responsiveness, the local operation is executed

immediately on the local replica so that the user can immediately view the effect of

his/her modification on the local document. The operation is then stored in the

operations history. This history is necessary since some of the executed operations

are necessary for transforming incoming operations.

2. Operation broadcast

The generated local operation is then broadcast to all other participants to notify

them of the update made to the document. Each local operation that is broadcast

becomes a remote operation to other sites.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 83

3. Remote operation reception

The remote operation being broadcast by a site will eventually arrive at another site.

Once a remote operation is received, it may not be executed immediately. Due to

concurrency, the remote operation might be put into a remote operation queue

waiting for execution in the correct order.

4. Remote operation execution

Once a remote operation in the queue is ready to be executed, it is applied on the

local document replica. The remote operation is also stored in the operations

history.

Whenever a remote operation arrives at a site, the site has to process and apply the

operation to its local replica in such a way so as to preserve the intention of the user who

generates the operation as well as to ensure that the document replicas are consistent at all

sites.

The operational transformation framework adopts the following consistency model

[131, 135]: a real-time collaborative editing system is said to be consistent if it satisfies the

following consistency properties:

1. Convergence property. It requires that all copies of the same document are

identical after executing the same collection of operations.

2. Causality preservation property. It requires that, for any pair of operations Oi and

Oj, if Oi→Oj, then Oi is executed before Oj at all sites.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 84

3. Intention preservation property. It requires that, for any operation O, the effects

of executing O at all sites are the same as the intention of operation O, and the

effect of executing O does not change the effects of other concurrent operations.

dOPT

Operational transformation was first used in the dOPT algorithm [46]. In dOPT,

Ellis et al. defined two properties that have to be satisfied by a synchronous groupware

system. The first property is called the precedence property (or also known as causality

preservation). It states that if operation o causally precedes p, then at each site o is

executed before p, and dOPT uses a state vector to achieve this property (section 3.2.2

discusses how state vectors can be used to determine causality of two operations) . When a

remote operation arrives at a site, the site has to wait until the remote operation is causally

ready before it can be executed. An operation is causally ready at a particular site if all

other operations that precede it have been executed at that site. Figure 3-10a shows that the

document states are consistent when operations arrive in order, while Figure 3-10b shows

otherwise. Therefore, causality preservation is important to maintain consistency.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 85

Figure 3-10 Causality preservation

The second property is the convergence property, which states that the document

replicas are identical at all sites when all sites have executed all generated operations.

Operation transformation is used by dOPT to ensure convergence, where the received

remote operation is transformed against all concurrent operations in the history before it is

executed. Consider the example of Figure 3-11a, where two sites generate concurrent

operations on the same object ”ABC”. Site 1 generates op1 = insert(2, ’X’) with the

intention of inserting ’X’ between ’A’ and ’B’, and site 2 generates op2 = delete(2) with the

intention of deleting ’B’. When this operation is broadcast and executed at site 1, the new

state is ”ABC”, which is not what was intended by op2. To preserve the intention of op2,

operation delete(2) should be transformed to become delete(3), since ’B’ is now in position

3 after site 1 executes op1 (Figure 3-11b).

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 86

Figure 3-11 Document convergence

Forward transformation (FT) is used to transform an operation to include the effect

of any other previously executed operations. Forward transformation is also known as

Inclusive Transformation (IT) [132]. Let Oi be a document state and Oi • op is the

document state after applying op on Oi. Transforming operation op2 against op1 means

transforming op2 into its variant 1
2

opop such that the effect of op2 on Oi is the same as the

effect of 1
2

opop on Oi • op1. It is defined as follows:

FT (op2, op1) = 1
2

opop , such that Intention (1
2

opop , Oi • op1) = Intention (op2, Oi)

Forward transforming an operation against a sequence of operations (L) simply

means transforming the operation against the operations in the sequence consecutively. It

is defined as follows:

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 87

FT (op, L) = FT (... (FT (FT (op, L[1]),L[2]), ...L[n]) = opL

In Figure 3-11b, operation delete(2) is transformed forward in site 1 to become

delete(3) to take into account the effect of the concurrent operation insert(2,’X’) that was

previously executed. The intention of delete(2) on ”ABC” is the same as the intention of

delete(3) on ”AXC”, which is deleting character ’C’. Operation delete(3) is defined by the

following transformation: FT(delete(2), insert(2,’X’)) = delete(3).

Each operation has to be able to be transformed against all other operations. In

dOPT, only two operations are defined, thus there are 2×2 possible forward

transformations. Given two concurrent operations op1 and op2, with priority

1opp and
1opp respectively, the forward transformation rules are outlined in Figure 3-12.

The priority of the operation can be arbitrarily determined, such as using the site id or its

timestamp, as long as it is consistent across all sites and it is unique, such that one can

determine which operation has more priority over the other.

Since this algorithm does not implement any locking, the responsiveness is good

and it is possible for users to modify the document concurrently. The operations initiated

by the users are performed immediately on their respective sites and users can modify the

document anytime. This algorithm is fully distributed so that when any one site fails, other

sites can resume the collaboration without interruption.

An operation does not need to be transformed against the operations that precede it

since it has already had the effect of those operations. Thus, when a site receives a remote

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 88

operation, the site only needs to forward transform the operation against concurrent

operations in the history.

Figure 3-12 Forward transformation rules used in dOPT

The major drawback of dOPT is that it naively transforms every remote operation

against concurrent operations in the history without taking the user intention into account.

A few researchers, such as Guerraoui et al. in [59], have proven that dOPT is incapable of

maintaining document consistency under some scenarios, particularly when operations are

not generated at the same state. Consider the example in Figure 3-13 where site 1 generates

FT (op1 = insert(x1, a1), op2 = insert(x2, a2)) = op1’, where
if x1 > x2 then op1’ = insert(x1 + 1, a1);
if x1 < x2 then op1’ = insert(x1, a1);
if x1 = x2 then

if a1 = a2 then op1’ = id;
if a1 ≠ a2 then

if
1opp >

2opp , op1’ = insert(x1, a1);

if
1opp <

2opp , op1’ = insert(x1 + 1, a1);
endif;

endif;

FT (op1 = insert(x1, a1), op2 = delete(x2)) = op1’, where

if x1 > x2 then op1’ = insert(x1 – 1, a1) else op1’ = insert(x1, a1);

FT (op1 = delete(x1), op2 = insert(x2, a2),) = op1’, where

if x1 ≥ x2 then op1’ = delete(x1 + 1) else op1’ = delete(x1);

FT (op1 = delete(x1), op2 = delete(x2)) = op1’, where

if x1 > x2 then op1’ = delete(x1 – 1);
if x1 < x2 then op1’ = delete(x1);
if x1 = x2 then op1’ = id;

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 89

two operations op1 and op3 and site 2 generates op2. When site 2 receives op1, it is forward

transformed against op2 since op1||op2, and 2
1
opop is executed instead (2

1
opop = FT(op1,

op2)). Consecutively, when site 2 receives op3, by the same reason, it is forward

transformed against op2 and 2
3
opop gets executed in site 2. Meanwhile, site 1 transform

op2 against op1 and op3 to become 31
2

opopop • (FT(op2, op1 • op3) = 31
2

opopop • = FT(1
2

opop ,

op3)). Unfortunately, using this simple forward transformation strategy, both sites end with

inconsistent states. When op3 is generated, it has already included the effect of op1 (since

op1→op3) that another character has been inserted as the result of op1. On the other hand,

op2 does not include any effect of op1, hence simply transforming op3 against op2 will not

preserve the correct user-intention.

Figure 3-13 The dOPT puzzle

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 90

This particular problem is commonly known as the dOPT puzzle, and later work

[131, 132] has identified that the cause of this problem is that op3 is not defined at the same

state as op2, or in other words, op3 is not context-equivalent to op2. Sun et al. [137]

provides the formal definition of operation context and the context equivalent relation, and

explains the precondition and postcondition of a forward transformation as follows.

Definition 3-6. Generation context of an operation

An operation op, originated at site S is said to be generated at context GC(op) if GC(op) is

the list of operations that has been executed by site S when op is generated (GC(op) = [op1,

op2, ..., opk], where op1 is the first operation executed by site S, and opk is the last operation

executed by site S before generating op).

Definition 3-7. Context equivalent relation

Let opi and opj be two operations with GC(opi) and GC(opj) are their respective context,

jci opop ≡ iff GC(opi) = GC(opj).

Definition 3-8. Precondition and postcondition of a forward transformation

FT(opi, opj) = opi’ correctly preserves user intention if the following conditions are

satisfied:

Precondition: jci opop ≡ , and

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 91

Postcondition: GC(opi’) = GC(opj)+[opj] and Intention(opi,GC(opi)) =

Intention(opi’,GC(opi’)).

Figure 3-14 Operation context in forward transformation

 Since the dOPT puzzle was discovered, it has been realised that operational

transformation framework needs more than just the operation transformation rules to

maintain document consistency. Each remote operation must be processed, the current

document state may need to be modified, and the operations history may need to be

reorganised before the remote operation is actually transformed against the concurrent

operations in the history. The operational transformation framework, therefore, consists of

two major components: the operation transformations rules and the operation integration

algorithm. The former defines the variant result of an operation when transformed against

another operation. The latter defines the procedure and the necessary process for

integrating each operation (local and remote). It determines how local operations are

executed, what a site does when it receives a remote operation, and what a site does before

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 92

each remote operation is actually transformed. It also determines which operations the

remote operation needs to be transformed against. The operation integration algorithm is

also known as the control algorithm in some work [83, 84, 85].

Jupiter

The consistency management algorithm of Jupiter [101] is derived from the dOPT

optimistic algorithm. The main difference is that since Jupiter utilises a central server, the

algorithm is substantially simplified. The server and the clients hold document replicas.

Although each client holds a document replica, the communication happens only between

the server and the client. Each operation generated by a client is sent to the server. The

server transforms the operation accordingly, applies it to its document replica, and

broadcasts it to all other participants. Upon receiving the operation from the server, each

client may further transform the operation depending on the previously executed

operations. Jupiter uses a 2 dimensional state space graph to keep track of all possible

operation transformation paths, and it ensures that operations that are involved in a

transformation must originate from the same point in the graph. This combination of a

centralized architecture and optimistic concurrency control provides both easy

serialisability of concurrent update streams and fast response to user actions. However,

since Jupiter requires a central server, it is not suited to mobile ad-hoc networks.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 93

adOPTed

Ressel et al. [115] proposed the adOPTed algorithm to solve the dOPT puzzle. The

adOPTed algorithm constructs an N-dimensional interaction graph (where N is the number

of collaborating sites) that contains all operations in various possible transformation

variants, and each site chooses a path to bring the document to the end state. This

algorithm allows the concurrent operations to be executed and transformed correctly

according to its generation and execution context. This algorithm, however, requires each

site to construct a new graph every time a remote operation is received and thus as the

number of concurrent operations and participating sites increases, so does the complexity

of the graph. This makes it difficult to manage the graph over long collaboration sessions,

particularly on resource constrained mobile devices.

They also introduced two transformation properties that have to be satisfied by any

transformation functions: TP1 and TP2. TP1 states that if there are two concurrent

operations, op1 and op2, the transformation function must ensure that the document state is

the same regardless of which operation is executed first. Executing op1 followed by

2
1
opop should yield the same document state as executing op2 followed by 1

2
opop . TP2

states that if there is another operation op3 (concurrent to op1 and op2) and op3 is to be

executed after a site executes op1 and op2, the transformation of op3 against op1 and op2 has

to be the same regardless of the execution order of op1 and op2. The transformation

properties are formally defined as follows.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 94

LICRA

LICRA [72] is introduced with a proposition that neither locks nor clocks nor global

information are required to establish data consistency. For causality, LICRA uses direct

dependencies of generated operations. Each generated operation is piggybacked with the id

of the previously generated operation, so when the recipient site receives the operation, the

site is able to preserve causality by making sure the previous operation has been executed

locally. For user intention preservation, it uses operation transformations. Although direct

dependencies of generated operations can be used to preserve causality, it can only be used

for operations that are generated from the same site. There is no way to determine if an

operation generated from one site is concurrent to an operation from another site. Upon

receiving an operation, LICRA transforms the received operation against all operations in

the history, including the operations that precede it. Naturally, an operation has already

included the effect of preceding operations. Reapplying the transformation will ’double’

the effect on op, thus violates the user intention.

Transformation Property 1 (TP1):

opi • iop
jop ≡ opj • jop

iop OR opi • FT (opj, opi) ≡ opj • FT (opi, opj)

Transformation Property 2 (TP2):

iop
ji opop

kop • =
jop

ij opop
kop • OR FT(opk, FT (opj, opi)) = FT(opk, FT (opi, opj))

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 95

SOCT2

Suleiman et al. [126] presents SOCT2 (Sérialisation des Opérations Concurrentes par

transformation or “serialization of concurrent operations by transformation”) algorithm

that solves the dOPT puzzle and aims to manage document consistency while respecting

user intention without operations undo and redo. Like dOPT, once an operation is

generated, it is executed immediately to guarantee a minimum response time and then

broadcast as a remote operation. A remote operation is received by another site and its

causality is preserved by using the state vector technique. The received remote operation is

then executed and added to the operation history. Before execution, the operation needs to

be transformed to respect the user intention.

SOCT2 introduces a remote operation integration algorithm. Unlike dOPT that

simply transforms the remote operation against all concurrent operations in the history, the

integration algorithm of SOCT2 ensures that the remote operation is transformed correctly

and executed at the correct state. SOCT2 uses the idea of dividing the history into two

groups as introduced by Sun et al [136] whereby before processing the remote operation,

SOCT2 separates the history into two sequences (Figure 3-15): the first sequence consists

of the operations that precede the to-be-integrated operation and the second sequence

consists of the operations concurrent to it. The remote operation is then forward

transformed against the operations in the second sequence before it gets executed.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 96

≺ ≺ ≺ ≺ ≺ ≺ ≺

≺ ≺ ≺ ≺ ≺ ≺

Figure 3-15 History separation in SOCT2

The separation of the history involves backward transformations to shift all

preceding operations backward to the beginning, and all concurrent operations to the end

of the history. Backward transformation, the opposite of the forward transformation as the

name implies, is used to transform an operation to exclude the effect of any other

previously executed operations. Backward transformation is also known as Exclusive

Transformation (ET) [132]. Let Oi be a document state and Oi • op is the document state

after applying op on Oi. Transforming operation op2 backward against op1 means

transforming op2 into its variant 2
1opop such that the effect of op2 on Oi • op1 is the same

as the effect of 2
1opop on Oi. It is defined as follows:

BT (op1, op2) = 1
2 opop , such that Intention (1

2 opop , Oi) = Intention (op1, Oi • op2)

Figure 3-16 illustrates a backward transformation of opj against opi to exclude the

effect of opi to become opj’. If site S has not executed opi, opj’ would be the operation

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 97

executed on GC(opi) to realise the same user intention as opj. In Definition 3-9, the

precondition and postcondition of a backward transformation are defined as in [137], and

similar to forward transformations, backward transformation rules as defined in Figure

3-17.

Figure 3-16 Operation context in backward transformation

Definition 3-9. Precondition and postcondition of a backward transformation

BT (opj, opi) = opj’ correctly preserves user intention if:

Precondition: GC(opj) = GC(opi) + [opi], and

Postcondition: opj’ c≡ opi and Intention (opj, GC(opj)) = Intention (opj’, GC(opj’)).

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 98

Figure 3-17 Backward transformation rules

Backward transformation, together with forward transformation, can be used to

swap the execution order of a pair of operations without violating the intention of both

operations, to ensure it still results in the same state as the previous order (Figure 3-18).

The swap function [112] is useful to re-organise the operations in history according to a

certain ordering scheme while preserving the intentions of all operations in the history and

consequently resulting in the same document state. The swap function is defined as follows.

swap(op1, op2) = (op2’, op1’), where

op1’ = FT (op1, op2’) and op2’ = BT (op2, op1), such that op1 • op2 = op2’ • op1’.

BT (op1 = insert(x1, a1), op2 = insert(x2, a2)) = op1’, where
if x1 > x2 then op1’ = insert(x1 – 1 , a1)
else op1’ = insert(x1, a1);

BT (op1 = insert(x1, a1), op2 = delete(x2)) = op1’, where

if x1 > x2 then op1’ = insert(x1 + 1, a1)
else op1’ = insert(x1, a1);

BT (op1 = delete(x1), op2 = insert(x2, a2),) = op1’, where

if x1 > x2 then op1’ = delete(x1 – 1);
if x1 < x2 then op1’ = delete(x1);
if x1 = x2 then op1’ = ø;

BT (op1 = delete(x1), op2 = delete(x2)) = op1’, where
if x1 ≥ x2 then op1’ = delete(x1 + 1)
else op1’ = delete(x1);

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 99

Figure 3-18 Swapping two operations using operation transformations

Using backward transformation to swap operations in the operation history, SOCT2

ensures that the remote operation is transformed against concurrent operations that have

been generated at the same context. Figure 3-19 depicts how SOCT2 solves the dOPT

puzzle presented earlier in Figure 3-13.

Figure 3-19 SOCT2 uses history reordering to solve the dOPT puzzle

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 100

Although SOCT2 solves the dOPT puzzle and aims to ensure document

consistency and respect user intention, there are some cases where transformation

condition TP2 is violated and consequently two sites end up in different states [142].

Guerraoui et al. [59] has shown that in certain scenarios, it can lead to inconsistency of the

replicas as shown in Figure 3-20. This problem is commonly known as the TP2 puzzle,

where
iop

ji opop
kop • ≠

jop
ij opop

kop • .

Figure 3-20 The TP2 puzzle

As illustrated in Figure 3-20, the TP2 puzzle occurs when there are three concurrent

operations generated by three different sites and one operation is transformed against the

other two operations in different orders. Suleiman et al. [126] attempt to solve the TP2

puzzle by introducing modified operation transformation rules. Two parameters are added

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 101

to each insertion operations, each of which contains the set of operations that have deleted

a character before (and respectively after) the inserted character. The proposed

transformation rules, however, can only solve the TP2 puzzle when the two operations

insert the same character at the same position.

SOCT3

Vidot et al. [142] introduced SOCT3 with the intention of ensuring document consistency

under all scenarios. SOCT3 eliminates the need to satisfy the TP2 condition, hence

avoiding the TP2 puzzle, by ordering operations in the history according to a specific total

ordering scheme such that if opi ⇒ opj, opi appears before opj in the histories of all sites.

The total order of the operations is achieved by timestamping each operation with a

unique sequence number, assigned by a global sequencer, to each operation. As soon as Si

generates an operation opi, it sends a request to the global sequencer to ask for a sequence

number. The sequence number is then returned to the Si, and opi is timestamped with the

received sequence number before it is broadcast to other sites. Like SOCT2, the recipient

site Sj will integrate opi into its history by firstly reordering the history into two sequences

and then forward transforming opi against the second sequence. However, unlike SOCT2

that places the executed operation at the end of the history, SOCT3 places the integrated

operation at its designated position in the history based on its sequence number.

As illustrated in Figure 3-21, a remote operation with sequence number k is

executed and placed at the end of the history as opn+1. Then the operation is shifted

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 102

backward using backward transformation to its appropriate position (position k) based on

its sequence number. This extra step is to ensure the operations in the history are totally

ordered. SOCT3 preserves causality by implementing the state vector technique; it

preserves user intention using the operation transformation technique; and it enforces

convergence by totally ordering the operations in the history. Figure 3-22 shows how

SOCT3 solves the TP2 puzzle by reordering the operations in the history based on a

predefined total ordering scheme.

≺ ≺ ≺ ≺ ≺ ≺

≺ ≺ ≺ ≺ ≺ ≺ ≺

Figure 3-21 History reordering in SOCT3

Although SOCT3 is proven to be correct [59], it has a few drawbacks. It relies on

the global sequencer for its total ordering scheme, hence is not suitable for mobile ad-hoc

networks. Additionally, since it uses a centralised sequencing scheme, the collaboration

cannot be partial: either all sites collaborate (or are connected) or each one works

separately. Furthermore, like SOCT2, SOCT3 requires the history to be copied before the

history is reorganised and separated into two sequences, leaving the original history in a

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 103

proper total order. This process requires additional processing power and memory which

may not be suitable for constrained mobile devices.

Figure 3-22 SOCT3 solves the TP2 puzzle

SOCT4

The SOCT4 [142] algorithm works similarly to SOCT3 algorithm. However, instead of

immediately broadcasting the generated operation, the originator site defers the broadcast

until all operations that precede it have been received and executed by that site. The

operation is then forward transformed against all concurrent operations in the local history

just before it is broadcast so that the recipient site needs only to transform the operation

against the local operations that are waiting to be broadcast (i.e. operations with greater

sequence numbers). The operations, once delivered, are no longer needed since they are

not involved in any future transformations.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 104

SOCT4 has the following advantages:

1. It removes the need for state vectors. Causality is preserved by deferring the

operation broadcast.

2. Since the integrated operation has the highest sequence number, it does not have to

perform any backward transformation to shift the integrated operation to its correct

position in the history.

3. The history can be kept small since the delivered operation is no longer needed and

can be discarded.

However, like SOCT3, it relies on the global sequencer which means that it has a

single point of failure, and the collaboration cannot be partial. Furthermore, since the

generated operation will not be broadcast immediately, it will stay at the originator site for

quite some time. In mobile network environments, where the delay is quite significant and

disconnection is frequent, the operation may be held indefinitely at the originator site. It

may also hold the other sites since the other sites have to defer the operation broadcast

until all operations with smaller sequence numbers have been received.

GOT

Sun et al. [137] introduced an alternative algorithm named GOT (Generic Operation

Transformation) to ensure replica consistency by preserving causality and user intention.

GOT is similar to SOCT2 in the following ways.

• It ensures responsiveness by immediately executing local operations.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 105

• It is fully replicated and does not need any central server to collaborate.

• Users at any site can freely edit their own replica at any time.

• It preserves causality.

• It preserves user intentions by implementing operation transformations.

Like SOCT3, GOT imposes a total ordering scheme such that all operations

eventually appear at the same order at all sites’ history. However, the handling of the

remote operation in GOT is different from SOCT3 as mentioned. When a site S receives a

remote operation op, all operations in the history that ’happen after’ op (∀i: op ⇒ opi) are

undone. Operation op is then transformed against the remaining concurrent operations

before it is executed. Finally, the undone operations are redone by transforming them

according to the new context (i.e. to include the newly executed operation). While the

undoing/redoing mechanism easily ensures that operations get executed at the same order

at all sites, this algorithm is computationally expensive since it requires a large number of

undo and redo operations (and their resulting transformations) and is thus not immediately

suitable for use on mobile devices with limited processing power and battery life.

Furthermore, undo operations have to be defined for each operation primitive.

GOTO

GOTO (GOT Optimized) [131] algorithm was introduced to optimize GOT. GOTO

optimizes GOT by eliminating the need to undo and redo the operations. GOTO is similar

to SOCT2 where the history is separated into two sequences: the first one contains the

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 106

preceding operations and the other contains the concurrent operations, and the remote

operation is transformed against the second sequence. Similar to SOCT2, GOTO does not

impose any total ordering scheme thus there are some cases where condition TP2 is

violated.

State Difference based Transformation (SDT)

Although SOCT3/4 and GOT solve the TP2 puzzle and ensure content consistency by

totally ordering the execution of the operations, Li et al. [84, 83] in their recent work

discovered that they do not necessarily ensure intention consistency (in other words, they

might violate the user intentions even though the replicas are consistent), especially in the

case where the transformation involves two operations that insert different characters at

the same position.

Consider the scenario outlined in Figure 3-23. The user at site 1 inserts character

‘X’ after ‘B’ (op1), the user at site 2 inserts character ‘Y’ before ‘B’ (op2), and the user at

site 3 deletes character ‘B’ (op3) concurrently. If op2 and op3 in site 2 and site 3 are ordered

in such a way that op2 ⇒ op3, op1 will be transformed accordingly such that the document

replicas will end up consistently with character ‘Y’ appearing before character ‘X’. When

op3 arrives at site 2, it will be transformed to become op3’ = delete(2) since character ‘B’

has been shifted forward as a result of op2. When op2 arrives at site 3, it will be

transformed, executed and reordered such that op2 ⇒ op3. Therefore, when op1 = insert

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 107

(2,’X’) arrives at either site 2 or site 3, it is correctly transformed against op2 =

insert(1,‘Y’) and op3’ = delete(2).

Figure 3-23 Preserving operation effects, adopted from [137]

However, due to implementation of different total ordering scheme, the different

site id, or due to an arbitrary reason, op2 and op3 might be totally ordered differently.

Figure 3-24 shows how the user intentions are violated when op3 ⇒ op2. Unlike the

scenario in Figure 3-23, op1’ = insert(1,’X’) has to be transformed against op2’ =

insert(1,’Y’), which causes the ERV since eventually character ‘X’ is placed before

character ‘Y’. This anomaly is termed as the operation Effects Relation Violation (ERV)

puzzle.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 108

Figure 3-24 The operation effects relation violation (ERV) puzzle

 Consequently state difference based transformation (SDT) was proposed in order to

solve the ERV puzzle. The original intention of each operation is recovered by computing

its β value against a well known document state (the latest synchronization point). The β

values of two operations are then compared during a transformation. The fixes to the

forward and backward transformation functions rely on the definition and computation of β

and δ values. The detail of the how to compute those values are given by Li and Li [83].

Although the algorithm is able to recover the original intention of the transformed

operation, the computation of β and δ rely on a common previous state or a well-known

document state (the latest synchronization point). However, in real time collaboration

where operations are generated by sites independently, two sites might not have one

common state. Due to concurrent operations from one and other sites, sites may only be in

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 109

the same state when there is no operation generated for some time and sites reach

quiescence. Furthermore, even when there is one common state, it is difficult for a site to

determine the common state of two operations.

Alternatively, the modification to the forward and backward transformation, which

is able to solve the ERV puzzle, is presented in section 3.5.2 of this thesis. Compared to

SDT, it is considerably simpler, hence requiring less processing and memory overhead.

The following figures show how the proposed solution can solve the ERV puzzle. (Figure

3-25 shows the operation effects preservation in the same scenario as the one in Figure

3-23, while Figure 3-26 solves the problem with the scenario presented in Figure 3-24).

Figure 3-25 Preserving operation effects

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 110

Figure 3-26 Solving the ERV puzzle

Time Interval Based OT (TIBOT)

Li et al. [86], aiming to solve the TP2 puzzle and to reduce the algorithm complexity,

proposed a Time Interval Based Operational Transformation (TIBOT) algorithm. In

TIBOT, every site maintains a linear logical clock and all clocks are initialized to a

common value, e.g., 0. Clocks at different sites may tick at different speeds but must take

the same sequence of values, e.g., 0, 1, 2, 3,... . A time interval is the period between two

consecutive clock ticks. The length of intervals between two consecutive clock ticks is

chosen based on the principle that there are editing operations in as many time intervals as

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 111

possible. Hence in general logical clocks should tick no faster than the keyboard response

time.

The operation propagation rule in TIBOT ensures that a site can only broadcast a

locally generated operation after it receives all operations generated by other sites at the

previous time intervals. Furthermore, TIBOT ensures that any operation must be

transformed against all operations carrying earlier timestamps before it is propagated. So

when an operation arrives at a remote site, it only needs to be transformed against all

executed operations carrying the same or later timestamps at that site.

TIBOT has several advantages. Firstly, it does not use a state vector. Secondly, the

operation context is easily determined by examining the timestamp of the operation.

Thirdly, backward transformation is not necessary in TIBOT. Fourthly, TIBOT also solves

the dOPT puzzle and the TP2 puzzle by imposing certain synchronization and propagation

rules. Finally, the time complexity of TIBOT is O(n) (as compared to O(n2) in GOTO).

However, TIBOT has several drawbacks that make it unsuitable for mobile

networks. The problem of this algorithm lies on the fact that each site has to broadcast at

least one message at any given time interval, be it an operation or a zero-operation message.

Sites can be blocked for an indefinite time if one of these events occurs: (1) one or more

sites crash or get disconnected, (2) one or more operations are missing during transmission,

or (3) one or more zero-operation messages are missing during transmission. The above

events however are common in mobile network environments. There is another problem

for this algorithm due to the fact that a site can only broadcast the local operation after it

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 112

has received all operations generated from other sites at the previous time intervals. Sites

can generate more than one operation at one time interval. Therefore, it is difficult for a

site to know whether it has received all operations generated from other sites at the

previous time intervals. This algorithm might be fixed by forcing every site to send an

additional message at the end of the time interval to indicate that no more operations will

be generated in that time interval. However, even with this scheme, the algorithm still fails

in the event of site crashes, or site disconnection, and missing operations.

TreeOPT

Most of the existing work on collaborative text editing employs linear representation of the

document. Using linear document representation, various OT approaches have been

developed to ensure document consistency amidst concurrent operation. Ignat et al. [67]

pointed out that a linear representation is not adequate to represent the common pervasive

rich editing applications. Furthermore, linear document representation requires each site to

maintain a single and potentially large operation history. Every time a remote operation

arrives, it has to trace through the history to determine operation concurrency and the need

to transform it against concurrent operations. Therefore, a tree-like hierarchical document

representation is employed and an algorithm called treeOPT is introduced to recursively

transform operations at various document levels whenever a remote operation arrives. An

operation can be defined in terms of different granularity levels. If a user inserts a word,

then the operation is defined at the word level. If a user inserts a character, then it is

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 113

defined at the character level. If an operation is defined at the character level, the operation

must include the position of the character in all document levels, i.e. the position of the

character in a word, the position of the word in a sentence, the position of the sentence in a

paragraph and the position of the paragraph in the whole document. The greater the

number of granularity levels in the document hierarchy, the more relative positions must be

included in the operation definition. Therefore, when a character insertion operation arrives

at a site, it has to be transformed at the paragraph level, at the sentence level, at the word

level and eventually at the character level.

In terms of performance, treeOPT has better complexity – O(spannedHistory)2 – as

compared to the existing OT algorithms for single-level documents, such as GOT, SOCT2,

SOCT3 (O(N2)). The spanned history is the history distributed on a single path of the tree,

which is significantly smaller than the single history buffer as maintained by previous OT

algorithms.

However, maintaining the document using a tree-like hierarchical representation

has some limitations, especially related to splitting nodes and merging two nodes. In a

linear representation, inserting a '.' in a sentence is simply inserting a character, and any

other concurrent operations can easily be transformed accordingly to preserve user

intentions. On the other hand, in a hierarchical structure, inserting a '.' means splitting a

node into two nodes, and some concurrent operations are not easily transformed to

preserve user intentions and document structure. Splitting a node happens in events such as

when a user inserts a space (‘ ‘) in a word, a user inserts a dot ('.') in a sentence or a user

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 114

splits a paragraph into two. Joining a node happens in events such as when a user deletes a

space character between two words, a user deletes a '.' character, or a user deletes a newline

character between two paragraphs.

Although a few possible solutions were presented by Ignat et al. [67], they could

not completely address and solve the problem related to splitting and merging nodes. Ignat

et al. [67] eventually employ an alternative solution, "no splitting", which means that if a

user wants to split a sentence into two sentences by inserting a '.', the two new sentences

are still represented as one large sentence with a '.' in the same node (no new node is

created). This approach, although it works, does not maintain the document structure

correctly. Furthermore, if splitting and joining (deleting a space character between two

words) happen often, which is the case for text editing, the document hierarchical structure

no longer represents the correct document structure.

3.4. Some Recent Related Work

Three algorithms were recently proposed to support consistency maintenance in real time

group editors: Tombstone Transformation Function (TTF) [104], WithOut Operation

Transformation (WOOT) [105] and Context-based Operation Transformation (COT) [138].

These algorithms propose novel concepts and principles in ensuring document consistency

that have not been used by earlier work. However, due to their very recent publication

dates, this thesis only provides informations and claims made by these algorithms.

Thorough and empirical evaluation of these algorithms are part of future work, therefore

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 115

the proposed algorithm presented in this thesis only considers concepts or principles

introduced by earlier algorithms. This section discusses the three algorithms and provides

comments about their contributions.

3.4.1. Tombstone Transformation Functions (TTF)

It has been shown that OT fails to maintain document convergence in scenarios where

insert and delete operations are involved at the same time. Both the TP2 and ERV puzzles

are caused by concurrent insert and delete operations. The TP2 puzzle is caused by

different order execution of concurrent insertion and deletion operations. The ERV puzzle

is caused by a wrong backward transformation of an insert operation against a delete

operation.

Existing algorithms have tried to solve the TP2 puzzle by various methods, for

example SOCT3 and SOCT4 uses a central sequencer, and GOT uses an undo/do/redo

scheme. However, each of them has a few drawbacks as mentioned previously. They either

assume high resource availability or present a single point of failure.

The main idea of Tombstone Transformation Functions (TTF) [104] is to keep

deleted characters as tombstones, similar to the ideas proposed by He et al. [62] and Wu et

al. [146]. The characters that have been deleted are not removed from the document. They

are however not shown to users making them appear to be deleted. A delete operation is

practically a ‘hide’ operation since it only hides a character instead of actually deleting it.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 116

Hence, the tombstones are kept so that the conflict between delete/insert operations is not

ambiguous.

 Therefore, as opposed to traditional transformation functions, the TTF are

monotonic transformations of the effect position of operations since they only compute

additions. The position of one character will grow monotonically to the same value

independently of the equivalent transformation path taken. This monotonic property has

another interesting consequence: TTF preserves order relationships between characters

which is considered in [84] as an instantiation of the intention preservation criterion

defined by Sun et al [132].

 The paper also discusses inverse-TTF to be used for backward transformation. An

optimised TTF is also proposed where each visible character keeps an integer value equals

to 1 + the number of invisible characters located between it and the visible character

preceding it. The idea is that the deleted characters need not be kept, but each character

needs to take into account the number of deleted characters directly preceding it.

 The original TTF retains deleted characters as tombstones. Therefore the space

requirement will grow indefinitely. This is not suitable for mobile devices. The optimised

TTF, on the other hand, reduces/minimises the space requirement by actually deleting the

deleted characters and letting the visible characters take into account the number of deleted

characters.

 However, TTF is only a set of transformation functions; hence it cannot be used

alone in ensuring document consistency. Oster et al. [104] stated that TTF can be used with

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 117

any existing operation integration algorithm to maintain document consistency in

synchronous groupware systems. However, based on the discussion above, the existing

integration algorithms have shortcomings that make them unsuitable for mobile replicated

architecture. Section 3.5.1 therefore presents the proposed operation integration algorithm

that is suited to mobile replicated architecture.

3.4.2. WithOut Operational Transformation (WOOT)

WOOT [105] is a new framework that ensures intention consistency but without

operational transformations, without vector clocks and without central sites. As the

operation transformation approach becomes more complex and difficult to prove, WOOT

provides a new direction for collaborative editing without operation transformations.

WOOT is claimed to be particularly adapted to very large peer-to-peer networks,

drastically simpler than SDT [84] and easy to implement. Instead of re-computing the

orderings at reception using vector clocks, in WOOT the ordering is sent with the

operation as this information is known when operations was generated. For example, if a

user inserts an ‘X’ between ‘A’ and ‘B’, instead of executing and broadcasting

insert(2,’X’) as in OT algorithms, WOOT executes insert(2,"X") and broadcast

insert(‘A’<’X’<’B’).

One apparent limitation of WOOT is that it keeps all operations and all characters

even though they have been deleted, hence adding up to the space requirement. However,

as it is a very recent work, the precise analysis of WOOT algorithm is left to future work.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 118

3.4.3. Context-based Operation Transformation (COT)

COT [138] is motivated by its claim that the theory of causality, which has been the

foundation of all prior OT systems, is inadequate to capture essential correctness

requirements. It outlines some of the major drawbacks of the theory of causality (i.e. the

use of the state vector technique):

1. The theory of causality is not adequate to solve the dOPT puzzle.

2. The concurrency relation does not capture the essential condition for a correct

transformation: the two input operations must be defined on the same document

state.

3. State vector is only capable of representing original normal editing operations, and

not inverse operations.

COT defines the theory of operation context to replace the theory of causality. The

operation context theory is similar to the one defined by Sun et al. [132], with the addition

of the definition of an inverse operation context. To replace the state vector, COT uses a

context vector. An operation context vector (CV(O)) consists of all operations that have

been executed prior to generating operation O. COT also introduces a unique way of

distinguishing the inverse operation in the context vector.

The algorithm COT-DO has the same idea as previous algorithms that are based on

total ordering of operations in the history buffer (GOT, SOCT3). It properly transforms

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 119

incoming operations by making sure that the incoming operation is transformed against

concurrent operations in the correct context. The context vector simplifies the algorithm as

it keeps the record of the preceding operations as the context, and therefore, with simple

operation set calculation, it is easy to find which operations it needs to be transformed

against.

Advantages of COT are as follows: (1) unlike GOT, COT-DO does not involve

undoing and redoing the already executed operation, (2) unlike SOCT3, COT-DO does not

require a central sequencer for its total ordering mechanism, (3) unlike SOCT2 and SOCT3,

COT-DO does not require history reordering, and (4) unlike GOTO-ANYUNDO, the basic

COT algorithm does not use ET (Exclusion Transformation) functions [128], thus avoiding

the requirement of the Reversibility Property (RP) between IT and ET functions [128].

One apparent limitation of COT is that it introduces more overhead as compared to

the use of state vectors. State vectors simply denote the 'number' of executed operations

from each site rather than recording all operations that have been executed. In COT, since

every operation bears a context vector, the space consumed for the context vector may be

higher than its state vector counterpart. However, more work needs to be done to precisely

analyse the COT algorithm, and as it is a very recent work, this is left to future work.

3.5. Proposed Algorithm

 Based on the discussion above, this thesis aims to develop a consistency

management algorithm that is suitable for a mobile replicated architecture. The algorithm

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 120

should ensure the intention and the content consistency of the document replicas (by

addressing the dOPT, TP2 and ERV puzzles previous described). Furthermore, the

algorithm must reduce the resource consumption requirement such that it can be

implemented on mobile devices with their limited capacity.

SOCT4 has the following advantages:

1. It removes the need for state vectors. Causality is preserved by deferring the

operation broadcast.

2. Since the integrated operation has the highest sequence number, it does not have to

perform any backward transformation to shift the integrated operation to its correct

position in the history.

3. The history can be kept small since the delivered operation is no longer needed and

can be discarded.

However, like SOCT3, it relies on the global sequencer which means that it has a

single point of failure, and the collaboration cannot be partial. Furthermore, since the

generated operation will not be broadcast immediately, it will stay at the originator site for

quite some time. In mobile network environments, where the delay is quite significant and

disconnection is frequent, the operation may be held indefinitely at the originator site. It

may also hold the other sites since the other sites have to defer the operation broadcast

until all operations with smaller sequence numbers have been received.

 Section 3.5.1 presents the proposed operation integration algorithm, which

describes how each operation (local or remote) is processed and executed. Based on the

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 121

discussion in the previous section, the proposed operation integration algorithm is based on

SOCT3, hence it is capable of solving the dOPT and TP2 puzzles, and it includes novel

techniques to make it suited to mobile networks. Although SOCT4 is an improved version

of SOCT3 and has several advantages over SOCT3 as described in the previous section,

SOCT4 relies on the global sequencer which means that it has a single point of failure, and

the collaboration cannot be partial. Furthremore, its deferred broadcast mechanism might

cause operations to be held indefinitely waiting to be broadcast at the originator site.

Therefore, the proposed algorithm is based on SOCT3 since it is more suited to mobile

replicated architecture. Section 3.5.2 describes the limitations of the existing operation

transformation rules and proposed operation transformation rules such that it is able to

handle identical operations and it is able to solve the ERV puzzle.

3.5.1. Proposed Operation Integration Algorithm

SOCT3 with its use of history separation, total ordering and operation shifting,

serves as a suitable basis for application in a mobile context. SOCT3 is capable of solving

the dOPT and TP2 puzzles, and each device holds its own local replica making it suitable

for a replicated architecture. Furthermore, SOCT3 does not use many resources as other

existing algorithms with the same capabilities.

Nevertheless, SOCT3 has a number of drawbacks. Firstly, it relies on a central

sequencer for its total ordering mechanism. Secondly, it does not control history size and

thus the longer a collaboration session runs, the more memory and/or storage space is

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 122

consumed. Finally, the history separation step requires that the whole history be copied,

with the separation performed on the copy so that the original history is left intact. This

results in increased memory usage which, as discussed previously, is problematic on

constrained mobile devices.

The first problem - the problem of centralised total ordering scheme - can be

resolved by using an existing non-centralised total ordering strategy such as using the state

vector technique as implemented by GOT, or the Lamport logical clock (LC) approach as

used by ORESTE (the use of state vector and Lamport’s logical clock to determine total

ordering relation of operations are discussed in section 3.2.2). Either one of them can be

used to determine the order of the operations in the history to ensure all operations are

stored in the same order at all sites. Section 3.6 will evaluate the performance of the

algorithm and compare the use of a state vector and a logical clock to determine their

efficiency.

The second problem – the problem of history size - can be addressed by

implementing a history trimming algorithm that prevents the history from growing

indefinitely. Such a technique has been introduced in a non-mobile context by Sun et al.

[132]. However, since this algorithm is fully distributed and can be applied independently

at each site, it appears to be suitable for use in a mobile context.

The history trimming technique basically aims to remove all unnecessary

operations from the operations history. In the context of operational transformation,

operations are kept in the history because each remote operation needs to be transformed

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 123

against all concurrent operations to include their effects before it is executed on the current

state of the document replica. An operation opi in the history, therefore, is no longer

required when there are no longer future operations that are concurrent to or precede it. In

other words, a site, say Sj,, has to make sure that all other sites have already executed opi

before opi can be deleted from the history of Sj. For this purpose, each site maintains a state

vector table (VT) which contains information about the state vectors of all other sites. Let

VTi[j] (1 ≤ j ≤ N) be the state vector of site Sj as known by site Si, and VTi[j][k] be the

number of operations generated from site Sk that have been executed by site Sj as known by

site Si. Whenever a remote operation op from site Sj is executed at site Si (note that Vop

=
jSV at the time op was generated), VTi[j] is updated to be equal to Vop to ensure VTi[j] is

up to date as much as possible with
jSV . Let opa be an operation generated from site Sk.

Sites that have already executed opa will have][][kVkV
aopS ≥ , thus all operations opi that

opa precedes will have][][kVkV
ai opop ≥ . If site Si receives an operation opx from site Sm,

site Si will know that site Sm has already executed op if][][kVkV opopx
≥ .

Each site also maintains a Minimum State Vector (MSV). MSVi reflects the

knowledge of site Si about the number of operations which have been executed at every

site (MSVi[j] = the number of operations generated by site Sj that have been executed by

every site as known by Si). Initially MSVi[j] = 0, ∀j∈{0,...,N-1}. After executing an

operation and updating other elements of the VTi, site Si updates MSVi[j] as follows:

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 124

MSVi[j] = min(VTi[k][j]), ∀k∈{0,...,N-1}. If the value MSVi[j] = m, then the first m

operations generated at site Sj must have been executed at all sites.

Therefore, if an operation op is generated from site Sk, op can be deleted from the

history of Si if][][kMSVkV iop ≤ or, in other words, }1,...,0{],][[][−∈∀≤ NjkjVTkV iop .

Figure 3-27 outlines the history trimming procedure.

Figure 3-27 History trimming procedure

The history trimming technique obviously requires additional memory to maintain

VT and more processing cycles to perform the trimming operation. However, over time,

this technique is expected to both reduce memory usage and improve performance due to

the smaller size of the history being processed. The detail of its performance evaluation is

presented in section 3.6.

void trim_history() {
n = size of HS;

for i = 1 to n do

<opi, iopLC ,
iopV ,

iopS >= HS [i];
deleted = false;

if][][kMSVkV iop ≤ then

HS = HS - HS[i];
deleted = true;

 endif;

 if deleted = false then exit;

endfor;
}

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 125

While the first two problems can be resolved by adopting existing techniques, the

third problem – the problem of history copying – has not been addressed, and thus a novel

technique called Partial History Copy is introduced to minimize the size of the history

copy.

Let iSH be the operation history of site Si and][jH
iS be the j-th operation in iSH .

Operations in the history are totally ordered such that]1[][+< jHjH
ii SS . When a remote

operation op arrives at Si, using the history separation step of SOCT3, the history is

separated into two sequences: seq1 and seq2 (
iSH = seq1 + seq2). All operations in seq1

precede op and all operations in seq2 are concurrent to op. This is done on the copy of the

history so that the original order of the history is preserved, hence a copy of the history is

created every time a remote operation arrives and is discarded after the execution of the

remote operation. Since copying the entire history consumes both memory space and

processing power, a partial history copy technique is proposed so that only the necessary

portion of the history is copied. The proposed technique aims to find an operation opm in

the history where all other operations located to the right of opm (∀i: opm ⇒ opi) are

concurrent to op. If opm is identified, then only operations that totally precede opm (∀i: opi

⇒ opm) need to be copied and rearranged since they consist of operations that precede op

and operations concurrent with op. The following Lemmas are introduced to help find the

appropriate opm.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 126

Lemma 3-1. If opi → opj , then opi ⇒ opj .

Proof. According to

Definition 3-1, there are two possible cases where opi → opj:

1. Operations opi and opj are generated by the same site and opi is generated before

opj.

If Lamport’s clock is used for total ordering, then C(opi) < C(opj) since opj is

generated after opi. On the other hand, if state vector is used for total ordering, then

sum(
iopV) < sum(

jopV) since the elements of
jopV is greater than or equal to the

elements of
iopV . Therefore opi ⇒ opj no matter what technique is used for total

ordering.

2. Operations opi and opj are generated by different sites and opj is generated by site

jopS after opi is received by
jopS .

If Lamport’s clock is used,
jopS will update its logical clock

jSC upon receiving

opi such that
jSC > C(opi), thus C(opj) > C(opi), which means opi ⇒ opj. On the

other hand, if state vector is used, site Sj will only execute opi if][][kVkV
ij opS ≥

(∀k: 1 ≤ k ≤ N). Thus, after executing opi, sum(
jSV) > sum(

iopV). opj will bear

state vector
jopV , equal to

jSV , which makes sum(
jopV) > sum(

iopV) and

therefore opi ⇒ opj. Therefore opi ⇒ opj no matter what technique is used for total

ordering.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 127

Therefore in either case (opi and opj are generated at the same site or not), if opi → opj,

then opi ⇒ opj. �

Lemma 3-2. If opj ⇒ opi, then opi→/ opj.

Proof. The inverse of Lemma 3-1 is true that if opi ⇒/ opj, then opi →/ opj.

Since opi ⇒/ opj is equivalent to opj ⇒ opi, the inverse can be restated as: if opj ⇒ opi,

then opi →/ opj . �

≺ ≺ ≺ ≺ ≺ ≺ ≺

≺ ≺ ≺ ≺

≺ ≺ ≺ ≺

≺ ≺

Figure 3-28 Separating the operations history using partial history copy

When a remote operation op arrives at site Si, there is opm in the history such that

opm ⇒ op ⇒ opm+1. Since op ⇒ opm+1, opm+1 and all other operations after opm+1 do not

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 128

precede op (Lemma 3-2), they stay at their respective position in the history and only

[op1 . . . opm] needs to be rearranged and therefore copied (Figure 3-28). In other words,

only operations that totally precede op (∀i: opi ⇒ op) need to be copied. The total

ordering mechanism defined in Section 3.2.2 is used to determine the total precedence (opi

⇒ op). The partial history copy procedure is outlined in Figure 3-29.

Figure 3-29 Partial history copy procedure

Although this technique is expected to minimise memory and processing usage

over time, it consumes additional processing power when tracing the history to find the opm.

Therefore this technique is compared with the full history copy approach in the empirical

study presented in section 3.6 to quantitatively evaluate this algorithm.

Based on the above discussion, the following subsections present the detail of the

proposed operation integration algorithm. Each subsection describes the procedure of each

of the following phases: local operation execution, remote operation reception, and remote

partial_ history_copy (HS, op) {
HS’ = []; /∗ Initialize an empty history copy ∗/
j = 1;
while (opj ⇒ op AND j ≤ N) {

HS’ = HS’ + [opj];
j = j + 1;

}
return HS’;

}

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 129

operation execution. The performance evaluation of the proposed algorithm is presented

later in section 3.6.

Local Operation Execution

When a user updates the local replica, the site generates an operation that realizes the

user’s intention. The generated operation is timestamped with the site’s logical clock,

opSop LCLC = , and it will carry the state vector Vop for causality preservation purposes.

The operation is immediately executed at the local replica. It is then broadcast as a tuple

<op, LCop, Vop, Sop>, where op is the operation, LCop is the logical clock of the operation

(equal to the logical clock of the site when the operation is generated), Vop is the state

vector of the originator site when the operation is generated and Sop is the id of the

originator site. Figure 3-30 presents the procedure invoked by a site during this phase.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 130

Figure 3-30 Local operation execution procedure

Remote Operation Reception

Ellis et al. [46] defined:
iSV ≥

jSV if each component of
iSV is greater than or equal to the

corresponding component in
jSV (

iSV [k] ≥
jSV [k], ∀k: 1 ≤ k ≤ N). This means that site Si

has already executed all operations that have been executed by site Sj. To preserve

causality, a remote operation op that arrives at site S will only be executed if all operations

that causally precede it have already been executed by site S. In other words, site S will

only execute op when VS ≥ Vop. The following procedure (Figure 3-31) is invoked by a site

during this phase.

void execute_local_operation(op) {
LCop = LCS;
LCS++; /∗ Increment logical clock of site S ∗/

Vop = VS;
VS[S]++; /∗ Update the state vector ∗/

execute(op);
broadcast(<op, LCop, Vop, Sop>);

/∗ append operation into the site history ∗/
HS = HS + <op, LCop, Vop, Sop>;

}

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 131

Figure 3-31 Remote operation reception procedure

Remote Operation Execution

This phase is invoked when the remote operation op is causally ready. The remote

operation reception procedure ensures that there is no operation in HS that op causally

precedes. Operations in HS fall into two categories: operations that causally precede op and

operations that are concurrent to op. Based on SOCT3, the execution of remote operation

op involves four steps:

1. Transform op to take into account all concurrent operations in HS.

2. Execute op and place it at the end of HS.

3. Re-order HS based on the total ordering scheme (opi ⇒ opi+1).

4. Trim the operation history.

In step 1, the history HS has to be separated into two sequences HS,p and HS,c such

that HS,p consists of operations that causally precede op, HS,c consists of operations

concurrent to op, and HS,p • HS,c = HS. Backward transpositions are used to move preceding

operations backward in HS so that all preceding operations appear before the concurrent

operations (Figure 3-15). Operation op is then forward transposed against all operations in

void rcv_remote_op(<op, LCop, Vop, Sop>) {
wait until VS[i] ≥ Vop[i], (�i: 1 ≤ i ≤ N);

/∗ execute remote operation by calling

 ∗ the procedure defined in the next phase ∗/
execute_remote_op(<op, LCop, Vop, Sop>);

}

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 132

HS,c to become op’= cycc opopopop ••• K21 . The procedure for separating history, adopted

from SOCT3, is outlined in Figure 3-32.

Figure 3-32 History separation procedure

In step 2, site S executes op’ instead of op and places it at the end of HS as opn+1. In

step 3, using backward transformation, opn+1 is then shifted backward in the history until it

reaches position k where opk−1 ⇒ op ⇒ opk+1 (Figure 3-21). After the remote operation is

void transpose_backward(j) {
/* Get operation in position j and j-1 in the history */
< opj, jopLC ,

jopV ,
jopS >= HS[j];

< opj−1, 1−jopLC ,
1−jopV ,

1−jopS >= HS [j−1];

/* Swap operations in position j and j-1 in the history */
 (opj , opj−1) = swap(opj−1, opj);
HS [j−1] =<opj, jopLC ,

jopV ,
jopS >;

HS [j] =< opj−1, 1−jopLC ,
1−jopV ,

1−jopS >;

}

int separate(HS, <op, LCop, Vop, Sop>) {

n1 = 0;
n = size of HS;
for i = 1 to n do

<opi, iopLC ,
iopV ,

iopS >= HS [i];

if][][
iii opopopop SVSV < then /∗ opi prec. op ∗/

for j = i downto n1 + 2 do
transpose_backward(j);

endfor;
n1 = n1 + 1;

endif;
endfor;
return n1;

}

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 133

executed and placed in the history, the history trimming may be executed. It does not have

to be executed after every remote operation execution (its frequency may be configured

depending on the implementation). The more often it is invoked, the lesser is the average

history size, but the more computations the device needs to make (hence more processing

power consumed). As the number of participating sites increases, the less often the history

trimming procedure needs to be invoked since the more concurrent operations may be

generated at one given time. The complete procedure invoked for this phase is outlined in

Figure 3-33.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 134

Figure 3-33 Remote operation execution procedure

3.5.2. Proposed Operation Transformation Rules

As discussed above, the operational transformation framework consists of two major

elements: the operation transformation rules and the operation integration algorithm.

void execute_remote_op(<op, LCop, Vop, Sop>){
HS’ = partial_history_copy(HS, op); /∗ partially copy HS in HS’∗/
n1 = separate(HS’, <op, LCop, Vop, Sop>);
n = size of HS;

for i = n1 + 1 to n do

<opi, iopLC ,
iopV ,

iopS >= HS’[i];
op = forward_transform(opi, op);

endfor;

execute(op);
HS = HS + <op, LCop, Vop, Sop>;
n = n + 1;

VS[Sop]++; /∗ Update the state vector ∗/
VTS[Sop] = Vop; /* Update the vector table for history trimming purpose */
VTS[Sop][Sop] ++;
LCop = max(LCS, LCop + 1); /∗ Update the logical clock ∗/
j = n;

/* Place the remote operation in its proper location in the history */
while (opj ⇒ opj−1) {

/∗ Shift op backward until pos. k where opk−1 ⇒ op ⇒ opk+1 �/
transpose_backward(j);
j = j − 1;

}

/* Trim the history as necessary */
trim_history();

}

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 135

Although much has been done to improve the operation integration algorithm for

processing remote operations, there has not been much discussion or evaluation on the

correctness of the existing operation transformation rules. During the development and the

evaluation of the proposed operation integration algorithm presented in this thesis (section

3.5.1), two problems were identified that may cause operations to be incorrectly

transformed in some scenarios. The first problem occurs in a scenario that involves

swapping a delete operation with an insert operation. The solution to this problem can also

be used to solve the ERV puzzle. The second problem occurs when two or more users

generate identical (duplicate) operations (operations with the same intentions). In each of

the following sections, each problem is discussed with a simple scenario and the solution is

proposed to handle each respective problem.

Swapping of Deletion and Insertion Operations

Suppose there are two sites, site 1 and site 2, participating in a collaboration session

(Figure 3-34). The user at site 1 generates an operation op1 = insert(3,’X’) with intention to

insert ’X’ between ’B’ and ’C’. Concurrently, the user at site 2 generates an operation op2

= delete(3) to delete character ’C’. When op1 arrives at site 2, it is forward transformed

against op2 to become insert(3,’X’): FT(insert(3,’X’), delete(3)) = insert(3,’X’). The user

at site 1 then generates another operation op3 = insert(4,’Y’). Site 2 needs to reorder op2

and op1 to allow op3 to be forward transformed against op2 at the correct context.

Reordering op2 and op1 means swapping the two operations as follows:

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 136

swap(op2 = delete(3), op1 = insert(3,’X’)) = (op1’, op2’), where

op1’ = BT(op1, op2) = BT(insert(3,’X’), delete(3)) = insert(3,’X’), and

op2’ = FT(op2, op1’) = FT(delete(3), insert(3,’X’)) = delete(4).

Thus, when op3 arrives at site 2, it is forward transformed against the final variant

of op2, which is delete(4), to become insert(4,’Y’). Figure 3-34 shows that both sites result

in a consistent state.

Figure 3-34 Correct backward transformation

However, if the user at site 1 generates op1 = insert(4,’X’) instead of insert(3,’X’)

(Figure 3-35), op1 will also arrive at site 2 and be transformed to become insert(3,’X’):

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 137

FT(insert(4,’X’), delete(3)) = insert(3,’X’). Thus when site 2 swaps op2 and op1, the result

is the same as the above example (Figure 3-34) as follows:

swap(op2 = delete(3), op1 = insert(3,’X’)) = (op1’, op2’), where

op1’ = BT(op1, op2) = BT(insert(3,’X’), delete(3)) = insert(3,’X’) and

op2’ = FT(op2, op1’) = FT(delete(3), insert(3,’X’)) = delete(4).

After swapping, op1 becomes insert(3,’X’) violating the intention of the user of site 1.

Furthermore, when op3 arrives at site 2, it is transformed against op2 to become

insert(3,’X’) and that leads site 2 to a state inconsistent with site 1.

Figure 3-35 Incorrect backward transformation

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 138

This problem occurs because two different insertion operations (insert(4,’X’) and

insert(3,’X’)), transformed forward against delete(3), are transformed into the same

operation insert(3,’X’) (Figure 3-36). Therefore, the backward transformation needs to

ensure that an operation, which was previously transformed forward, will revert to its

original operation after being transformed backward. In the case of Figure 3-35, op1 is

originally insert(4,’X’). After forward transformation against op2, it becomes insert(3,’X’).

Then after swapping with op1, instead of reverting to its original form of insert(4,’X’), it

becomes insert(3,’X’) which violates the user intention. A correct backward transformation

needs to ensure that op1 becomes its original form of insert(4,’X’) as illustrated in Figure

3-37.

Figure 3-36 Transformation of an insert against a delete operation

In Figure 3-36a, the intention of operation op1 is to insert ’X’ after ’B’ and

before ’C’, while in Figure 3-36b, the intention is to insert ’X’ after ’C’ and before ’D’.

However, since site 2 deletes ’C’, both insert operations end up inserting ’X’ at the same

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 139

position, which is after ’B’ and before ’D’. In order to distinguish the two different

scenarios, op1 needs to have the information whether op2 deletes a character before or after

the inserted character. In Figure 3-36a, op2 deletes a character after the inserted character.

Meanwhile in Figure 3-36b, op2 deletes a character before the inserted character. To store

this information, each insertion operation will have two extra parameters, p and q, where p

is a set of ids of operations that delete a character before the inserted character and q is a

set of ids of operations that delete a character after the inserted character, thus the new

insertion operation is written as insert(xi, ai, pi, qi). This technique was first introduced by

Suleiman et al. [126] to solve the conflict between two insertion operations of a character

at the same position. However, they did not mention this problem and they did not discuss

any further applicability of this technique for solving this problem, nor did they provide the

backward transformation algorithm for swapping operations in the history.

Figure 3-37 Correct backward transformation

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 140

Using the new insertion operation (with the additional two parameters, p and q),

some of the forward transformation rules and the corresponding backward transformation

rules, especially the ones that involve insert operation, are modified as follows:

FT(op1 = insert(x1, a1, p1, q1), op2 = delete(x2)) = op1’, where
if x1 > x2 then op1’ = insert(x1 -1, a1, p1 + [opj], q1)
else op1’ = insert(x1, a1, p1, q1 + [op2]);

FT(op1 = insert(x1, a1, p1, q1), op2 = insert(x2, a2, p2, q2)) = op1’, where

if x1 > x2 then op1’ = insert(x1 + 1, a1, p1, q1);
if x1 < x2 then op1’ = insert(x1, a1, p1, q1);
if x1 = x2 then

if p1 ∩ q2 ≠ Ø then op1’ = insert(x1 + 1, a1, p1, q1);
else if p2 ∩ q1 ≠ Ø then op1’ = insert(x1, a1, p1, q1);
else if a1 = a2 then op1’ = id;
else if a1 ≠ a2 then

if
1opp >

2opp , then op1’ = insert(x1, a1, p1, q1);

if
1opp <

2opp , then op1’ = insert(x1 + 1, a1, p1, q1);
endif;

endif;

BT(op1 = insert(x1, a1, p1, q1), op2 = delete(x2)) = op1’, where
if x1 > x2 then op1’ = insert(x1 + 1, a1, p1 − [op2], q1);
if x1 < x2 then op1’ = insert(x1, a1, p1, q1 − [op2]);
if x1 = x2 then

if op2 ∈ p1 then op1’ = insert(x1 + 1, a1, p1 − [op2], q1);
if op2 ∈ q1 then op1’ = insert(x1, a1, p1, q1 − [op2]);
if op2 ∉ p1 AND op2 ∉q1 then op1’ = insert(x1, a1, p1, q1);

 endif;

BT(op1 = insert(x1, a1, p1, q1), op2 = insert(x2, a2, p2, q2)) = op1’, where

if x1 > x2 then op1’ = insert(x1 − 1, a1, p1, q1)
else op1’ = insert(x1, a1, p1, q1);

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 141

Figure 3-38 illustrates the use of the newly defined forward and backward

transformation rules, and shows that the transformations lead to consistent states and are

able to bring the transformed operation back into its original form. The new parameters, p

and q, provide information to the insert operation of whether it inserts the character before

or after the deleted character, so it can be transformed backward correctly against the

delete operation.

Figure 3-38 Backward transformation of insert against delete operation

This solution also solves the ERV puzzle: it retains the original intention of the

insert operation by storing all concurrent operations that delete any characters before or

after the inserted character. Figure 3-25 and Figure 3-26 show how the proposed technique

is able to solve the ERV puzzle.

This problem has previously been identified and called ‘lossy transformation’ by

Sun et al [128]. A solution was also provided to recover the lost transformation

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 142

information caused by operations deleting overlapping characters. To correctly backward-

transform op1 against op2 (BT(op1, op2)) requires: (1) detecting whether the transformation

of the two operations are ‘lossy’, (2) copying the history starting from the first operation

concurrent to op1, (3) shifting op2 forward in the history copy to the right most position,

and finally (4) transforming the original version of op1 against the previously organised

history copy. The idea was to redo the forward transformation of the original form of op1

against all concurrent operations in the history excluding op2. This solution, however, may

impose more overhead as compared to the proposed transformation rules since the

proposed transformation rules simply transform the operations with the help of two

additional parameters without the need of lossy detection, history copying and redoing the

original forward transformation.

Identical Operations

The other problem with the existing operation transformation rules involves two identical

operations. An operation is identical to the other operation if both of them realise the same

user intention. Formally, two operations are identical (duplicating) if:

• they are concurrent to each other, and

• the former carries out the same operation as the latter (both are deletions or

insertions), and

• they delete/insert the same character at the same position in the same context.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 143

In Figure 3-39a, op1 and op2 are identical operations: they delete the same character

at the same position (they are both delete(3)), they are concurrent to each other, and they

are generated at the same context. In Figure 3-39b, however, even though op1 and op3 have

different syntax, they are identical because they realise the same user intention, which is

inserting character ’X’ between ’C’ and ’D’. Their syntaxes are different due to different

generation context. If op3 were generated before op2 (GC(op3) = GC(op1) consequently),

op3 would have been insert(4,’X’), which is the same as op1.

Figure 3-39 Identical operations

The way to handle identical operations has not been discussed in existing work.

When a site receives a remote operation, it will be forward transformed against all

concurrent operations in the history. When an operation is found to be identical to the

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 144

remote operation, the remote operation is simply nullified. The forward transformations for

identical operations are defined as follows:

FT(op1 = insert(x1, a1), op2 = insert(x2, a2)) = op1’ where
if x1 = x2 and a1 = a2 then op1’ = id;

FT(delete(x1), delete(x2)) =

if x1 = x2 then return op1’ = id;

Using the previously defined forward transformations rules, it can be seen in Figure

3-40 that site 1 transformed op2 against op1 to become op2 = id, site 2 transformed op1 to

become op1 = id, and both sites end up in consistent states. However, if the history is to be

reordered at site 2 based on the total ordering scheme, op2 and op1 need to be swapped:

swap(op2, op1) = (op1’, op2’), where op1’ = BT(op1, op2) and op2’ = FT(op2, op1’).

Backward transformation rules that involve operation id have never been discussed;

therefore the result of the backward transformation of op1 is unknown.

Figure 3-40 Backward transformation of identical operations

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 145

In Figure 3-40, it is assumed that operation id will stay as it is, and site 2 still leads

to the correct state after reordering. In Figure 3-41 however, site 1 leads to an inconsistent

state after the backward transformation that involves operation id. When site 1 receives op3,

op3 needs to be transformed against op1 since op1|| op3. Since op2 →op3 and op1|| op3, op1

and op2 need to be swapped so that op3 has the same context as op1 before site 1 transforms

op3. After swapping operations, op3 is transformed against op1 to become insert(3,’X’).

However, the execution of this operation leads site 1 to a different state from site 2.

Therefore, it is necessary to formulate the correct operation transformations rules for

identical operations.

Figure 3-41 Identical operations lead to inconsistent states

Consistency can only be reached if the history can properly be reordered such that

GC(op1) = GC(op3). It is obvious that GC(op3) includes op2 (delete(3) operation), which is

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 146

identical to op1. Thus when op3 is received at site 1, site 1 has to reorder the history such

that GC(op1) = GC(op3), which means that GC(op1) has to include the delete(3) operation.

A proper operations swap is illustrated in Figure 3-42 where both sites end in a consistent

state.

Figure 3-42 Identical operations lead to consistent states

However, the id operation is generic and there is no way the site can know which

operation it is identical to. Therefore, to solve this problem, the identical operation once

transformed has to have the information of which operation it is identical to. In a multi-

user collaboration session, two or more users may generate identical operations

concurrently. Hence, the transformed operation may contain a list of operations which it is

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 147

identical to, and a new operation named dup(ops) is proposed, where ops is the unique ids

of the operations that it is identical to. When an operation is transformed against an

identical operation, say opx, it will become operation dup([opx]) where ops contains

operation opz. The forward transformation rules for identical operations are therefore

modified as follows.

FT(op1 = insert(x1, a1), op2 = insert(x2, a2)) = op1’ where
if x1 = x2 and a1 = a2 then op1’ = dup([op2]);

FT(op1 = delete(x1), op2 = delete(x2)) = op1’ where

if x1 = x2 then op1’ = dup([op2]);

Since dup is a new operation, forward transformation rules need to be defined to

properly transform dup operation against another operation or vice versa. There are a few

possible transformation scenarios that involve dup operations.

1. Transformation of a dup operation against an operation that is not a dup operation.

2. Transformation of a non dup operation against a dup operation.

3. Transformation of a dup operation against another dup operation and they are not

identical (i.e. their original operations realise different user intentions).

4. Transformation of a dup operation against another dup operation and they are identical

(i.e. their original operations realise the same user intention).

In the first, second, and third scenarios, the transformation will not change the

operation that is being transformed. The operation that is being transformed will remain the

same. In the fourth scenario, however, both dup operations involved are identical; therefore

they will add each other into their lists of identical operations. This is to make sure each

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 148

dup operation has the information of what operations it is identical to so that it can be

backward transformed correctly against its identical operation.

Therefore, the transformation rules that involve dup operations are defined as

follows.

FT(op1, op2 = dup(ops1)) = op1’, where op1’ = op1;

FT(op1 = dup(ops1), op2) = op1’, where

if op2 is not a dup operation, op1’ = op1;
if op2 = dup(ops2), then

if ops1 ∩ ops2 = Ø then op1’ = op1;
if ops1 ∩ ops2 ≠ Ø then

op1’ = op1; ops1 = ops1 + [op2]; ops2 = ops2 + [op1];

Figure 3-43 illustrates forward transformation of an operation against its identical

operation. When site 1 receives op2, it is transformed to become dup([op1]) since op2 is

identical to op1. When op3 arrives at site 1, it is first transformed against op1 to become

dup([op1]). Then it is transformed against op2 causing both op2 and op3 to become dup([op1,

op2]). By this time, op3 and op2 know that they are identical to each other and they are

identical to op1.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 149

Figure 3-43 Identical operations signified by dup operations

Similarly, it is necessary to define more backward transformation rules that involve

a dup operation, as follows:

BT(op1 = dup(ops1), op2 = dup(ops2)) = op1’, where op1’ = op1;

BT(op1, op2 = dup(ops2)) = op1’, where op1’ = op1;

BT(op1 = dup(ops1), op2) =

if op2 ∈ops1, then op1’ = op2
else op1’ = op1;

Using the backward transformation rules, an operation received out of order can be

reorganised in the history such that operations in the history are totally ordered (Figure

3-44). The scenario depicted in Figure 3-45 is the same as the one in Figure 3-41 but the

proposed backward transformation rule is used to reorder the history. When site 1 receives

op3, op1 and op3 have to be swapped to ensure op1 has the same context as op3 before

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 150

transforming op3 against op1. The swapping is done such that the actual operation has to

appear before the other identical operation(s) in history. So when op1 is swapped with op2,

op2 becomes delete(3) and op1 becomes identical to op2.

Figure 3-44 Backward transformation of a dup operation

Figure 3-45 Backward transformations of dup operations

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 151

3.6. Performance Evaluation

The proposed algorithm can be summarised as follows: (1) it is based on SOCT3 algorithm

which uses history separation to solve the dOPT puzzle and history reordering to avoid the

TP2 puzzle, (2) it uses a fully distributed total ordering scheme, (3) it applies a history

trimming procedure to reduce the space requirement, (4) it introduces a partial history copy

procedure to reduce the memory requirement during the execution of remote operations,

and (5) it uses modified operation transformation rules to ensure operations are

transformed correctly to preserve user intentions.

The proposed operation integration algorithm, however, has alternatives for

implementation. Therefore, the impact on storage and processing of each of the alternatives

has been quantitatively evaluated to determine the most efficient design alternative. Firstly,

the fully distributed total ordering scheme can be achieved using the state vector technique

or Lamport’s logical clock. Secondly, the algorithm works with or without history

trimming. With history trimming, the algorithm reduces the space requirement to maintain

the operation history. However, it requires additional processing power. Therefore, an

empirical evaluation is necessary to justify the use of the history trimming procedure.

Thirdly, the partial history copy reduces the memory requirement during each remote

operation execution. However, like the history trimming technique, it requires additional

processing power.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 152

The design factors and alternative implementations discussed in this section can be

summarised as follows:

1. State Vector(SV) vs. Lamport’s Clock(LC),

2. History Trimming(HT) vs. No History Trimming (NoHT), and

3. Full History Copy (FC) vs. Partial Copy (PC).

Based on those aspects, the following eight algorithm designs are possible from

combinations of the above techniques:

1. SV, NoHT, and FC

2. LC, NoHT, and FC

3. SV, HT, and FC

4. LC, HT, and FC

5. SV, NoHT, and PC

6. LC, NoHT, and PC

7. SV, HT, and PC

8. LC, HT, and PC

This section presents an empirical study which compares a number of candidate

algorithm variations in order to determine which one is most efficient in terms of

performance and resource utilisation and thus most suitable for use in a mobile context.

The experiments were based on simulations written in the Java programming language and

were run on a 1.6GHz PC with each site is represented by a Java thread.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 153

3.6.1. Independent Variables

Three independent variables are manipulated for each of the eight algorithm combinations

identified in the previous section: number of sites, number of operations and broadcast

delay. The higher the number of sites, the greater is the number of remote operations and

thus concurrent operations. The higher the number of generated operations at each site, the

larger is the history size. The impact of history trimming is expected to be more significant

as the number of operations, and thus the history size, increases. The number of concurrent

operations increases as this delay increases. The chosen broadcast delays are intended to be

representative of realistic delays in a mobile environment, with the main intention being to

investigate the trend in algorithm performance as delay increases.

3.6.2. Dependent Variables and Expected Outcomes

ISO 9126-1 [70] considers efficiency as a quality attribute comprising the capability of

software to provide appropriate response and processing times (performance characteristic)

and the capability of software to use appropriate amounts and types of resource during its

execution (resource utilisation characteristic).

The efficiency characteristic of performance is operationally defined as the dependent

variable execution time measured in seconds. The algorithm with the highest performance

is the one with the lowest processing time, which relates to reduced power consumption

and an enhanced user experience. The following are expected outcomes in terms of

performance:

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 154

• P-1: LC will be faster than SV, since SV requires additional processing effort for

the summation of the state vector elements.

• P-2: HT will be faster than NoHT. HT reduces history size, thus the remote

operation process is expected to be faster.

• P-3: PC will be faster than FC. PC copies only part of the history and thus the time

taken to perform history separation will be shorter.

The second efficiency characteristic of resource utilisation is operationally defined

using two variables, history size after operation execution and history copy size during

operation execution, both of which relate to memory usage.

The following are expected outcomes with regards to the resource utilisation:

• M-1: History size after operation execution is less for HT since HT regularly trims

the history.

• M-2: PC uses less memory during an operation execution, since it does not copy

the entire history.

Furthermore, the expected outcomes for the performance characteristic (P-1, P-2,

and P-3) also indirectly influence resource utilisation since the reduced processing

overhead of an operation results in lower processor utilisation.

3.6.3. Results

Figure 3-46 shows the results in terms of performance, demonstrating that P-2 is satisfied.

The design alternatives involving history trimming (HT) perform better in terms of

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 155

execution time than those without (NoHT). On average, HT reduces the execution time by

almost 40% (Figure 3-46) with the difference increasing as the number of sites and number

of generated operations (and thus the total number of operations being exchanged)

increases.

The longer the collaboration runs, the greater is the difference in history size

between HT and NoHT (Figure 3-47), thus the execution time difference between HT and

NoHT also increases (Figure 3-48 and Figure 3-49). However, as the broadcast delay

increases, the performance of HT gets closer to NoHT Figure 3-50).

Figure 3-46 Average overall execution time

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 156

Figure 3-47 The size of the history size after operation execution

Figure 3-48 Execution time vs. number of sites

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 157

Figure 3-49 Execution time vs. number of operations

Figure 3-50 Execution time vs. broadcast delay

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 158

When the delay is 300ms, the difference is approximately 50% and when the delay

is 8000ms, the difference is less than 20%. This is because the longer the broadcast delay,

the less often the history gets trimmed. An operation in the history of a site can only be

trimmed if that site knows that all other sites have already executed that operation, as

derived from the state vector of the received operations (see section 3.4). Consequently,

when the network delay is high, this information arrives later, thus the history is trimmed

later than when the network delay is low.

While P-2 is strongly displayed by the graphs, expected outcome P-1 does not hold

since there are situations where SV is better than LC, and vice versa. Therefore, based on

execution time, there is no clear reason to favour SV or LC for total ordering. The same is

true with P-3 where PC does not improve the performance in terms of execution time.

Although PC saves processing power by not copying the entire history, it involves

additional condition checking while copying the history and thus does not improve

processor usage overall. Therefore, to help determine which total ordering technique is

better overall, the resource utilisation of each technique in terms of memory usage must be

considered.

Figure 3-47 supports the prediction that without trimming, history size grows

linearly towards infinity since each executed operation is stored in the history for the entire

duration of the collaboration session. Depending upon the implementation, this may also

impact on storage requirements and increase processing overhead as parts of the history are

paged to and from permanent storage. In contrast, the designs that implement History

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 159

Trimming prevent this from happening, thus supporting M-1 when either SV or LC is used

for total ordering. Of particular interest is that history trimming is more effective when SV

is used in preference to LC. Therefore given that SV and LC exhibit similar performance

characteristics in terms of execution time, SV is more efficient, and thus a better solution

overall, since it results in less memory utilisation.

Figure 3-51 supports the expectation M-2 that PC reduces the size of the history

copy and thus requires less memory to process remote operations regardless of whether or

not HT is used. Therefore, since PC is neutral in terms of performance, as measured by

execution time, due to its reduced memory utilisation it is superior in terms of efficiency to

FC.

Figure 3-51 The size of the history copy for history separation purpose

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 160

In summary, HT saves processing power and consumes less memory and is thus a

clear choice in comparison to NoHT. For total ordering, SV is better than Lamport since

even though they are similar in terms of performance, SV has lower memory utilisation

requirements. Similarly, although PC is not superior in terms of performance, it reduces

memory usage as compared to FC. Therefore in summary, the algorithm design alternative

that implements History Trimming and Partial History Copy, and uses State Vector for

total ordering, is the most efficient and thus best choice for implementing a real-time

collaboration algorithm in a mobile environment. This design alternative is also applicable

to non-mobile environments making it usable by groupware systems in all types of

network environments to efficiently maintain document consistency.

3.7. Conclusion

This chapter has addressed the design of consistency management algorithms for use in a

real-time mobile collaboration application. Various existing work and their limitations

have been described. This chapter presents a new consistency management (or concurrency

control) algorithm that addresses the limitations of existing work and is more efficient in

terms of performance and resource utilisation, and is thus more suitable for use in a mobile

context.

The concepts of SOCT3 are used as a basis for the operation integration algorithm

as it has been proven to be correct. The dependence of the algorithm on a central server is

removed by incorporating known total ordering techniques so that it is applicable in a

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 161

purely replicated mobile network. To reduce resource consumption, the history trimming

technique is applied to reduce the memory space taken by the operation history.

Furthermore, a novel partial history copying technique is introduced to reduce processing

power consumption and memory space requirements during each remote operation

processing.

The empirical testing indicates that the combination of history trimming, partial

history copy and state vector for total ordering produces the most efficient design for use in

a mobile environment. Not only does this algorithm reduce overall execution time, it also

reduces resource utilisation in terms of memory or fixed storage usage thus serving as a

benchmark for comparison in any further research on this topic.

During the development of the proposed algorithm, two problems to the existing

operation transformation rules have been discovered: the swapping deletion and insertion

operation, and the transformation of identical operations. Therefore, both problems and

their proposed solutions have also been presented in this chapter.

While the proposed consistency algorithm has been evaluated based on its

efficiency, future work could involve the testing of additional ISO 9126-1 quality

characteristics such as reliability and security. Such work would involve further use of

simulation and possibly live testing using a real application, in addition to revised

experimental designs based on the derivation and operational definition of a new set of

variables to quantify the effects on the different quality attributes.

CHAPTER 3. CONSISTENCY MANAGEMENT

 (June 15, 2007) 162

As mentioned in section 3.4, future work may also involve a detailed evaluation of

the most recently published work such as TTF and COT which include an empirical

comparison with the proposed algorithm, and possibly an improvement to the proposed

algorithm based on the newly derived concepts/principles.

4. Conflict Management

Chapter 4

Conflict Management

4.1. Introduction

As described in the previous chapter, a document consistency management algorithm is an

important element in real-time mobile collaborative editing, especially in a peer-to-peer

network (replicated architecture). Each device holds a document replica and can

concurrently generate operations. The concurrent operations have to be applied correctly in

each document replica such that all replicas are consistent.

While the consistency management algorithm proposed in Chapter 3 is able to

ensure consistency of the replicas, it only works when all the concurrent operations can be

executed at the document replica. However, depending on the intention of the users that

generate the concurrent operations, the operation may be conflicting with one or more

concurrent operations. If the intention of one operation conflicts with the intention of

another concurrent operation, each site has to process and resolve the conflict consistently.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 164

In a centralised architecture, the server carries out the conflict management and

resolution, and the participants may only be involved if voting is required. In a replicated

architecture, on the contrary, each site has to carry out conflict management consistently

and each site is involved in the conflict resolution process. Consequently, the conflicting

operations need to be properly detected and each conflict has to be resolved consistently

across all sites.

Conflicts can be categorised into two types: exclusive and non-exclusive conflicts.

An exclusive conflict occurs when the conflicting operations cannot be realised at the same

time, and if serially executed, the effect of the later operation will override the earlier

operation. In contrast, a non-exclusive conflict occurs when the conflicting operations can

be realised at the same time and both operations can be applied to the target without one

being overridden by the other.

 The consistency management algorithm proposed in the previous chapter is able to

handle non-exclusive conflicts by properly transforming the conflicting operations.

Therefore, the aim of this chapter is to discuss the problem of an exclusive conflict and to

propose a conflict management algorithm that allows conflicts to be detected, managed,

and resolved consistently across all sites in a mobile replicated architecture while

respecting user intention. The remainder of this chapter is organised as follows: section 4.2

describes the conflict problem; section 4.3 outlines the existing work in conflict

management; section 4.4 presents the proposed conflict management algorithm; and

section 4.5 concludes the chapter and outlines future work.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 165

4.2. Conflict Problem

A conflict occurs when two or more users have different intentions for editing the

same part of the replicated document, for example, two users change the size of a textbox

differently, or two users insert different words in a sentence. In practice, the definition of a

conflict is application dependent, with possible factors being domain specific semantics,

implementation details, document granularity and desired level of concurrency. A

particular application may consider insertions of two different letters in the same word as a

conflict while another application may not. Nevertheless, in the general case, in an object

based document, a conflict occurs when two or more users are concurrently modifying the

same object.

An object in a document, however, may comprise other objects. Therefore,

conflicts may be defined in different levels of the object hierarchy. For example, conflict

might only occur when the object being modified is the lowest in the object hierarchy. To

further promote concurrency, a conflict can be defined to occur only when operations are

concurrently modifying the same attribute of the same object to different values [130].

Regardless of the application domain, a conflict can generally be defined as the following:

a conflict occurs when two or more users concurrently modify the same target with

different intentions. The target is application-specific and could be an object, an object

attribute, a word in a document, a letter in a document, a paragraph, or even a whole

document.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 166

 As mentioned previously, conflict can be categorised into two types: exclusive and

non-exclusive conflicts. Suppose Alice and Bob are currently collaborating on an object-

based text document, with words being the targets, and they are concurrently modifying a

word "and". Alice is adding a letter 'h' to make the word "hand" while Bob is changing the

letter 'd' to 't' to make the word "ant". The operations are conflicting as they have different

intentions, but they can be realised at the same time resulting in the word "hant". The word

may then be marked as being in conflict and the conflict can then be resolved. This is an

example of a non-exclusive conflict where the conflicting operations can be realised in the

same document at the same time and both operations can be applied to the target without

overriding each other. However, if Alice is changing the font size of the word to size 12

and Bob is changing the font size to size 14, an exclusive conflict occurs. Both operations

cannot be realised together, and one operation will override the other depending on the

execution order. In other words, an exclusive conflict happens if the operations causing the

conflict are non-transformable against each other.

Non-exclusive conflicts can be resolved by using the proposed algorithm as

described in Chapter 3 where operational transformation is used to transform one of the

conflicting operations against the other to preserve both intentions. Not only does it ensure

consistency in the presence of transformable operations, it also minimises resource usage,

making it suitable for use in mobile environments. Users can then choose to keep all

operations or to undo some operations or to generate operations to fix errors created by the

conflict. Exclusive conflicts, on the contrary, cannot be resolved using the operation

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 167

transformation technique since concurrent operations are transformed and executed in a

serialised manner. Therefore one of the intentions may be overridden by the other. For

example, in SpeakEasy [45], synchronization conflicts – such as two users adding the same

component, or one offline member removing a component while another adds it—are dealt

with in a very simplistic way. The update with the latest timestamp “wins” and it provides

a user interface to undo any undesired synchronization changes. This violates the intention

of at least one user.

This chapter, therefore, discusses the problem of exclusive conflicts and proposes a

conflict management technique to handle exclusive conflicts and consequently facilitate

users to resolve the conflict.

4.3. Related Work

Transactional processing has been a major topic in dealing with concurrent updates to a

document/database [36]. However, transactional processing uses a centralised server and it

is used mainly in database applications where users read the document from the server

before they make changes and write back to the server. Transactional concurrency control

focuses on grouping the operations together into an atomic transaction and serializing the

transactions. However, in real time collaborations, each operation is processed as it arrives

at the local replica so as to promote concurrency.

In replicated architecture real-time group editor research, the approaches adopted

by the existing consistency management algorithms, including conflict resolution, can be

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 168

categorised into: (1) locking approaches, (2) operational transformation approaches, and

(3) multi-versioning approaches. Each of the following subsections outlines the existing

work in each approach and explains their limitations and challenges.

4.3.1. Locking Approach

Locking is a pessimistic approach that prevents conflicts in distributed systems by

prohibiting concurrent updates on shared data objects. The locking approach is a conflict

prevention approach rather than a conflict resolution approach, and it does not promote

concurrency as only one person can modify an object at one time. Most existing

collaborative graphics editing systems have adopted a conflict prevention approach based

on locking. Example systems based on locking include: Aspects [144], Ensemble [100],

Group-Draw [57], and GroupGraphics [109]. In these systems, the user has to place a lock

on an object before editing it, thus preventing other users from generating conflicting

operations on the same object. Locking has also been applied to group text editors for

consistency management [94, 97]. However, locking is undesirable for the following

reasons. Firstly, it imposes overheads in the lock requesting, granting and releasing

procedures, especially in replicated architectures where there is no machine dedicated to

lock management. Secondly, it diminishes concurrency since users cannot modify the

locked part of the document. Finally, the locking technique itself has not prevented

divergence from occurring in a document where the objects are not independent [127].

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 169

More optimistic locking strategies such as optimistic shared-locking [133] and

tentative optional locking [127] have also been proposed. Their non-blocking property

allows users to continue updating the document while waiting for the lock. However,

eventually they still need to wait for the lock to be resolved (if there are concurrent locks

on the same region) to know whether their updates are to be kept or to be undone.

Furthermore, they require additional operational transformation based rules for the locking

operations to make sure the concurrent locking operations are applied consistently at all

sites. Locking and its optimistic variants are discussed in great detail in section 3.3.1 and

section 3.3.2.

4.3.2. Operational Transformation Approach

Operational transformation was first introduced by Ellis and Gibbs [46] in the

dOPT algorithm to allow concurrent updates on document replicas. It possesses three

consistency properties: convergence, causal preservation and intention preservation. It

preserves causality by implementing vector clocks, and preserves user intention by

transforming concurrent operations consistently at all sites thereby enforcing document

convergence. Most operational transformation based algorithms [34, 126, 132, 142]

serialise concurrent operations: concurrent operations are executed sequentially with the

later operations being transformed to include the effect of the earlier operation according to

a certain total order scheme. They use different strategies to serialise the concurrent

operations: undo/do/redo [132], history separation [126], global sequencer [142] and

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 170

distributed total ordering schemes [34]. The operation transformation technique together

with its development over time is described in detail in section 3.3.3.

The operational transformation approach is optimistic and is able to handle non-

exclusive conflicts by transforming concurrent operations. However, the operational

transformation approach in itself cannot handle exclusive conflicts. The existing

operational transformation based algorithms transform and serialise concurrent operations,

including the conflicting ones. By serialising the concurrent operations, non-exclusive

conflicts are preserved and the operations are applied to the document even though doing

so may create semantic errors in the document state and realise neither user’s intention.

The users can then resolve the error by deleting one character or undoing an operation.

Serialising exclusive conflicting operations, however, means that the operation executed

later overrides the effect of the operation executed earlier thereby explicitly violating the

intention of at least one user.

Recently, Ignat et al. [68] proposed a flexible conflict definition and resolution

approach to be applied with the treeOPT algorithm. TreeOPT is an OT based algorithm

that maintains consistency in a multi-level document structure. At each granularity level,

the operations are transformed, serialised and executed to maintain consistency. With the

multi-level document structure, the conflict can be detected in an appropriate document

node hence it can handle exclusive conflicts. TreeOPT however uses a document

repository similar to CVS where the shared document is checked-out, modified and

committed, making it not suitable for mobile replicated architecture. During the commit

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 171

phase, the conflict is detected and merged either automatically or with user intervention.

As an effort to handle conflicts in mobile network, Ignat et al. proposed a P2P version of

the algorithm [66]. The proposed strategy utilises the Tombstone Transformation

Framework (TTF) algorithm to simplify its consistency maintenance algorithm and to

allow implementation in peer to peer networks, hence also in mobile replicated

architecture. Since TTF is beyond the scope of this paper and is left to future work, the

conflict management proposed by Ignat et al. [66] is to be discussed and evaluated in

future work.

4.3.3. Multi-versioning Approach

As an alternative to serialising conflicting operations using operational

transformation, a multi-versioning approach is used to preserve the effect of both

conflicting operations. The multi-versioning approach handles exclusive conflicts by

creating multiple versions of the document and executing the operations in parallel,

applying each operation to the different versions of the document [31, 130]. This approach

is attractive as it preserves the intentions of all users and can be used in various conflict

resolution strategies, such as voting or priority based authorization [149].

GRACE [130] was among the first to implement a multi-versioning scheme in a

collaborative editing context. When two conflicting concurrent operations, op1 and op2,

are targeting an object X, the all-operation-effect is achieved by means of multiple

versioning: two versions of X (X1 and X2) are created, with op1 and op2 being applied to

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 172

X1 and X2 respectively. The effects of both operations are accommodated in two separate

versions. In the case of exclusive conflict, preserving all users’ work is better than

discarding any user’s work. This system-level multi-versioning scheme provides better

feedback to the users, helps the users to better understand the nature of their conflict, and

to better adjust and coordinate their actions accordingly. The users can then choose by

means of a conflict resolution strategy, either by voting or a group leader decision, which

object version to be the final version.

Whenever a conflict occurs (and thus object versions are created) and is resolved,

the unnecessary object versions are discarded and the object reverts to a single copy.

However, if the conflict is left unresolved for a period of time, the object versions will

remain until it is resolved. If any user generates an operation on that object during this

time, then it has to be determined which object versions are affected by the operation. In

GRACE, a Consistent Object IDentification scheme (COID) was implemented to make

sure correct object versions are affected consistently. The longer the object in conflict is

left unresolved and the more concurrent operations are generated on that object, the more

complicated the object versioning will become since further versions may be created on a

particular object versions creating some sub-versions and sub-sub-versions and so on. Not

only does this increase processing requirements which is undesirable in a mobile

environment, it also potentially consumes large memory space to store all object versions

(and their subversions).

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 173

In an effort to restrict the number of versions created in a multi-versioning

approach, Xue et al. [149] introduced the notion of conflict control locking to restrict the

number of versions that can be created, to manage the created versions, and to facilitate the

resolution of the conflicts. When an exclusive conflict occurs at a site, two versions of the

targeted object will be created. As soon as the object versions are created, the system locks

the object (and all its versions). After that, the user at that site is not allowed to generate

any further operation targeting either of the object versions. This conflict control is also

known as post-locking since the lock is applied after a conflict occurs. Due to

communication delays, operations may arrive in different orders at different sites, hence

newly arrived operations may be independent of both or one of the conflicting operations.

If the new operation is conflicting with existing conflicting operations, a new version is

created and is locked by the system. If it is not conflicting, it should be applied to all the

current versions. Post-locking reduces the complexity caused by multiple version creation.

Post-locking has been used in systems such as POLO [148] and LOVOT [150].

POLO is applicable to independent-object documents, whereas LOVOT is applicable to

dependent-object documents. Whenever a site receives a conflicting operation, once the

object versions are created they are locked locally by the system until the conflict is

resolved, with the intention that the user can modify other objects in the meantime. Note

that the object versions are not necessarily post-locked at the same time at all sites since

the post-lock is not propagated to other sites, but rather invoked on a case by case basis by

the individual sites as they receive the conflicting operations. While post-locking simplifies

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 174

the conflict resolution process by locking versions to protect them from further

modification, it suffers from a partial intention problem. That is, the object being modified

is automatically locked whenever a conflict occurs, and the user might not have fully

realised his/her intention on the target object.

Consider the example in Figure 4-1 where Alice and Bob are collaborating on a

graphic editor. As shown in Figure 4-1a, Alice’s intention is realised by operations op1 and

op2: to move an object X to a certain position and to change the caption of X. Bob, on the

other hand, generates op3 and op4 to move X to another position and change the size of X.

Due to concurrency, op1 arrives to Bob before he can generate op4 and op3 arrives to Alice

before she generates op2. As shown in Figure 4-1b, post-locking will lock object X before

Alice and Bob can generate the second operations to fully realise their intentions, hence,

they will not know what is the full intention of the other party (moving an object may not

necessarily be enough to show the complete intention of the user).

Figure 4-1 User intentions

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 175

Therefore, conflicts could be better resolved if the conflicting intentions have been

completely realised and thus every user can see the full intention of all other users.

Furthermore, post locking relies on a lock synchronization process. It requires the lock to

be synchronised before conflicts can be resolved meaning that in mobile network

environments, which are characterised by frequent disconnections, sites might have to wait

indefinitely for the lock to be synchronized. The conflict resolution procedure can only be

invoked if the locks are synchronized, meaning that all sites have received all conflicting

operations and thus have access to the document versions created by those operations. Due

to concurrency and network latency, the locks might not be synchronised at the same time

at all sites and thus the conflict resolution procedure might never occur if one or more sites

miss even a single conflicting operation.

To solve this problem, section 4.4.1 in this thesis presents a novel way to utilize the

post-locking mechanism to restrict the number of object versions while at the same time

allowing users to generate enough operations to fully realise their intentions on a particular

object. Furthermore, with the use of a conflict table, a certain conflict resolution strategy

can be employed such that the lock synchronization is not necessary to resolve the conflict.

4.3.4. Conflict Resolution Strategies

Unlike operation transformation which arbitrarily serialises conflicting operations, multi-

versioning handles user intention conflicts by creating document or object versions.

Consequently, users must eventually resolve the conflict by deciding which version is to be

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 176

selected as the correct group-intended version. A simple way of resolving conflict is

priority based authorization, which gives specific members, such as a group leader or

administration group, the right to resolve conflicts. Although this approach reduces

network usage due to messages round-trips, it introduces additional points of failure and

may not be the most effective working strategy from a usability point of view [149].

Alternatively, conflicts can be resolved by negotiation [33] or reaching consensus amongst

the group. For example, voting [149] aims to reach a group intended version where the

decision is supported by at least the majority of users. Implementing such strategies in a

distributed system is not easy, especially in a peer-to-peer mobile network environment

[53]. In particular, such strategies require complex semantics, consume considerable

bandwidth, and require good connectivity among devices. Furthermore, negotiation may

continue indefinitely if a consensus or suitable outcome is never reached. Although the

conflict management technique presented in section 4.4.2 is generic and can be used with

various conflict resolution strategies, section 4.4.3 of this thesis presents one such conflict

resolution strategy that requires only sites involved in the conflict to be involved in the

conflict resolution (i.e. does not require all sites to resolve the conflict), and does not

depend on a particular group leader.

4.4. Proposed Algorithm

This section proposes a conflict management algorithm that handles exclusive conflicts,

while respecting user intention at the semantic level. The algorithm presented in this

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 177

section detects and handles the conflict and keep the users informed of the conflict status.

The algorithm is generic, meaning that it can be used with any kind of conflict resolution

strategy. The next section (section 4.4.3), however, presents one possible conflict

resolution strategy that is suitable for mobile replicated architecture. The detail of the

algorithm is as follows.

Firstly, a multi-versioning approach, in which each user's intention is realised in a

different version of the document object, is implemented. Note that the application may,

however, choose to use a multi-versioning approach to handle some non-exclusive

conflicts as shown in the following example. Suppose Alice, Bob and Cameron are

collaborating and they are concurrently modifying the word "and". Alice is trying to create

the word "strand", Bob is making the word "grand", and Cameron is changing the word

into "errand". Using operational transformation approach, these operations can be

transformed and executed at all sites without having to create object versions. However,

depending on the current site states and operation timestamps, the new word would contain

all the changes and become something like "sgetrrand" or "stgerrand". The conflict is

technically non-exclusive as the conflicting operations can be realised together consistently

in the same object using operation transformation approach. However, Alice would not be

able to determine what Bob and Cameron are trying to do. Alice would not have any idea if

Bob is trying to make a word "grand". Furthermore, she would not know whether Bob is

typing his letters concurrently with or after hers. Therefore, in this scenario, the conflict is

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 178

better treated as an exclusive one and user intentions are better preserved using the multi-

versioning approach.

Secondly, the proposed algorithm implements a variation of post-locking called

delayed post-locking, which addresses the partial-intention problem described in section

4.3.3. In general, whenever object versions are created, whether it is due to an exclusive or

non-exclusive conflict, the object in conflict must be locked to avoid further update and to

trigger conflict resolution. A post-lock can be placed either at the object level or at the

object's attribute level depending on the application. If an application uses the attribute of

an object as the base of the conflict (target), it may choose to lock the attribute of the

object rather than the whole object, leaving the other attributes editable by the users. The

finer the granularity of the lock, the higher the level of the concurrency supported, however

the less likely a conflict will be noticed, thereby increasing the potential difficulty of

resolving it. The specifics of delayed post locking, which are unique to the newly proposed

algorithm, are described in section 4.4.1.

Finally, the novel use of a conflict table to store all conflict information for the

purpose of facilitating conflict resolution is also described in section 4.4.2 as part of the

description of the general scheme for managing the storage and resolution of conflicts in

order to support different conflict resolution strategies, with section 4.4.3 presenting one

such strategy that is suitable for mobile environments.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 179

4.4.1. User Intention Completion

A conflict can only be resolved properly when the intentions of all users involved in the

conflict are completely realised (i.e. the users have finished generating all necessary

operations to the object and the other users have received all of them). A practical example

scenario of an incomplete intention (partial intention) has been mentioned in section 4.3.3.

This section presents the problem theoretically and proposes a solution to the problem of

partial intention.

Suppose Alice at site S1 and Bob at site S2, concurrently update an object X (Figure

4-2a). To realise her intention, Alice needs to execute (generate) three operations on X: op1,

op2 and op3 sequentially. Concurrently, Bob generates operations op4 and op5 to realise his

own intention on X. Using the conventional post-locking approach [149], when op4, which

conflicts with op1, arrives at S1 before Alice generates op2, X is automatically locked,

therefore Alice cannot fully realise her intention (Figure 4-2b). Consequently, Bob will not

have the complete picture of what Alice intends to do. The conflict could be better resolved

semantically if Alice's intention is fully realised (i.e. Bob fully knows what Alice wants to

do). This also happens if op1 arrives at S2 before op5 is generated and op1 is conflicting

with op5, causing Alice not to fully know what Bob intends to do.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 180

a) Concurrent Updates b) Partial User Intention

Figure 4-2 Conflicting operations

Therefore, a strategy called delayed post-locking is proposed as the solution to this

problem. This strategy allows users to completely realise their intention without being

interrupted by incoming conflicting operations. The delayed post-locking technique uses a

lock called a user intention lock (UI-Lock) to prevent any interruption from incoming

operations, thereby allowing the user to fully realise his/her intention. The rest of this

subsection proposes two alternatives for implementing user intention locks.

Manual UI-Lock

Each user is able to apply a UI-Lock to his/her document when s/he wants to

generate more than one operation to realise an intention. When a UI-Lock is placed on a

certain object, all incoming remote operations that target the UI-Locked object are held in

the remote operation queue even though they are causally ready. When the UI-Lock is

released, the operations waiting in the remote queue can then be executed accordingly.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 181

Using the above example, Alice places a UI-Lock on X and generates op1, op2 and

op3. Although op4 arrives before op2 is generated, it cannot be executed because X is UI-

Locked (Figure 4-3). This gives Alice time to generate necessary operations, op2 and op3,

before being interrupted by incoming remote operations (and potentially post-locked due to

conflict). The operations generated during the application of the UI-Lock are technically

concurrent with the incoming remote operations even though op4 arrives at S1 before op2 is

generated. When op1 arrives at S2, Bob knows that there are more than one operation

concurrent and conflicting with op4, therefore the conflict can be resolved after all

operations have been received and it can be better resolved since Bob will know the full

intention of Alice. A UI-Lock is a local and temporary lock, that when Alice places a UI-

Lock on object X, Bob does not know anything about it and Bob only knows that op1 and

op2 are concurrent with op4.

Figure 4-3 Manual user intention lock

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 182

Automatic UI-Lock

The manual UI-Lock described above requires manual intervention from the user. In

practice, the application of the UI-Lock can be automated. One option is to automatically

place the UI-Lock on an object whenever there is an incoming conflicting operation that

targets the same object. Using the previous example, object X is UI-Locked automatically

when op4 arrives and op4 is held in the remote queue (Figure 4-4). Alice is then notified

that there is a conflicting incoming operation in the remote queue and Alice is given chance

to complete any necessary operations on object X before the object is post-locked due to

conflict. After generating op2 and op3, Alice can then release the UI-Lock to allow the

remote operations to be executed as usual. A timeout period can also be applied to the UI-

Lock that when the timeout has elapsed and the user does not do anything to the object, the

UI-Lock is automatically released so as not to hold up the remote operations in the queue.

Without losing generalities, this scheme of automatic UI-Lock is used for the rest of the

thesis. Another possible option is to automatically place a UI-Lock on the object currently

being modified. Any conflicting remote operation targeting the object is held up in the

queue. Once the user modifies another object, the UI-Lock on the object is released and the

remote operation can be released from the queue.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 183

Figure 4-4 Automatic user intention lock

Nevertheless, regardless of when the UI-Lock is placed and released, this strategy

ensures that when a conflict on an object arises, the user has already generated all

necessary operations on that object. This strategy can also be extended to allow a user to

inspect the incoming operations before generating additional operations. When X is

locally-locked automatically and op4 is in the remote queue, Alice can choose to have op4

executed to see what op4 is trying to do. If Alice is happy with op4 and does not want to

generate further operations, Alice can undo op1 and release the UI-Lock, and op4 is taken

out from the remote queue. Otherwise, Alice can undo op4 and store op4 back to the remote

queue and then generates op2 and op3 before the local lock is released. This gives

flexibility on the user to either realise his/her intention or pre-empt his/her intention

knowing that the intention of the other user is more desirable.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 184

4.4.2. Conflict Management

This section describes the general data structures and techniques required to manage the

storage and resolution of conflicts, in order to support different conflict resolution

strategies, as described in the following section.

Participants

Each site maintains a list of participants (PLS = participant list of site S) that stores the ids

of the other sites as well as other information, such as site name and site connectivity

information (IP address and port number).

State Vector

Besides its own state vector, each site maintains a state vector table (VT) that consists of N

state vectors, one per site. Each site also maintains a minimum state vector (MSV) to reflect

the number of operations generated by each site that have been executed at every site. State

vector, state vector table and minimum state vector have been used to support consistency

management (refer to section 3.5.1), and they can also be used in the conflict management

algorithm presented in this section. Hence they do not impose an additional storage

overhead.

Conflict Table

Whenever a conflict occurs, the object in conflict is locked, the user is notified (e.g. by

highlighting the object), and only the operations causing the conflict are stored in a conflict

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 185

table. This reduces memory consumption compared with existing solutions because the

object versions can either be inferred by looking at the operations involved, or explicitly by

executing the operations on a temporary document copy which can be discarded following

the inspection.

Each site maintains a Conflict Table (CT) to store the conflict information.

Whenever a remote operation arrives at a site, the site checks whether the remote operation

is conflicting with any concurrent operation that has been executed. If it does (a conflict

occurs), each conflicting operation is stored in the conflict table to signify the different

possible object states realised by each operation involved in the conflict. Due to concurrent

operation generation, a user of a particular site may generate more than one operation on a

particular object to realise his/her full intention. Hence, operations from the same site are

grouped together to represent one object version.

Each entry in CTk (Conflict Table of site Sk) is a tuple representing the conflicting

object version: CTk[i] = <target, siteId, opIds, status, res>. CTk[i][target] is the target

object on which the conflict occurs. Two operations are conflicting if they have the same

target but modify it differently. Depending on the definition of the conflict (application

specific), CTk[i][target] can be the object id or the combination of the object id and object

attribute. For example, CTk[i][target] = <X, FontSize> if two or more operations are

modifying the font size of object X to different values. Based on the document model

mentioned in section 3.2.1 and the previously stated assumption, this thesis defines:

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 186

1. CTk[i][target] = <objId, attr> if the operations are modifying the same object's

attribute, and

2. CTk[i][target] = <objId> if the operations are inserting characters at the same position

of the same word.

CTk[i][objId] is the id of the target object and CTk[i][attr] is the attribute of objId

being modified. CTk[i][siteId], CTk[i][opIds], CTk[i][status], and CTk[i][res] are the site id,

operation ids, status and the resolution of CTk[i] respectively. The following definitions are

used to help in explaining the proposed algorithm.

Definition 4-1 Conflict Relation

CTk[i] and CTk[j] are conflicting, CTk[i] ct⊗ CTk[j] iff CTk[i][target] = CTk[j][target].

Definition 4-2 Site's involvement in a conflict

Site Sk is involved in CTk[i], Sk S
ct∈ CTk[i] iff there exists CTk[j] such that CTk[j] ct⊗ CTk[i]

and CTk[j][siteId] = Sk.

Definition 4-3 Operation's involvement in a conflict

Operation opx is involved in CTk[i], opx op
ct∈ CTk[i] iff there exists CTk[j] such that CTk[j]

ct⊗ CTk[i] and opx ∈ CTk[j][opIds].

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 187

CTk[i][status] signifies whether or not the intention on the particular object version

has been completely realised. This information allows users to make better conflict

resolution decisions in terms of which document version should be accepted. CTk[i][status]

can be one of the following values:

1. Partial. CTk[i][status] = partial if it is in neither complete nor resolvable. This

signifies that this entry has been recently created, and the user of site CTk[i][siteId]

might not have generated all necessary operations to fully realise his/her intention

(partial intention problem).

2. Complete. CTk[i][status] = complete if site CTk[i][siteId] has finished generating

conflicting operations. In other words, site CTk[i][siteId] has already executed at

least one of the conflicting operations (∃opx ∈{CTk[j][opIds], ∀CTk[j] ct⊗ CTk[i]

and CTk[j][siteId] ≠ CTk[i][siteId]}). Suppose Sj = CTk[i][siteId], as soon as Sj

executes one of the conflicting operations, the target object in Sj is locked, therefore

Sj cannot generate further operations on the object, thus Sj has finished generating

conflicting operations.

3. Resolvable. CTk[i][status] = resolvable iff site Sk has the right to resolve the conflict

(i.e. potentially accept CTk[i]). Although a conflict can be resolved by various

conflict resolution strategies (as mentioned in section 4.3.4), a conflict is eventually

resolved by one mobile site Sk selecting one of the Conflict Table entries CTk[i] to

be the final version for that particular object. This decision is then broadcast to all

other sites. Note that the criteria to determine whether any particular site should be

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 188

allowed to choose a solution (i.e. CTk[i][status] = resolvable) is referred to in this

thesis as a conflict resolution strategy, with one such strategy being presented in

section 4.4.3.

CTk[i][res] denotes whether CTk[i] is accepted as the final version. CTk[i][res] = accept if

CTk[i] is accepted as the final version, reject if it is rejected or none if the conflict has not

been resolved.

From the above example (Figure 4-3 or Figure 4-4), when op4 is executed at site S1,

two entries in CT1 are created:

1. CT1[0] = <X, S1, [op1, op2, op3], complete, none>, and

2. CT1[1] = <X, S2, [op4], partial, none>.

When a conflicting remote operation arrives from a site, and there is already a CT entry of

that site, the operation is simply appended to the opIds for that CT entry. For example,

when op5 arrives and is executed in site S1, op5 is simply added to CT1[1] to become <X, S2,

[op4, op5], partial, none>. Both entries are conflict-related since they are involved in the

same conflict (i.e. they have the same target). Sites S1 and S2 are involved in CT1[0] and

CT1[1] because they generate the conflicting operations. Operations op1, op2, op3, op4 and

op5 are involved in CT1[0] and CT1[1] as they are the conflicting operations.

Figure 4-5 illustrates the creation and modifications of CT entries when the sites

receive each of the conflicting operations. Using delayed post-locking discussed in section

4.4.1, the first conflicting remote operations, op4 and op1, will be executed only after the

local site generates all necessary operations (i.e. op1 is processed at S2 after op5 is

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 189

generated and op4 is processed at S1 after op3). When op1 arrives at S2, S2 realises that op1

is conflicting with op4 and op5; therefore two conflict entries are created in the conflict

table (one entry for each site). Notice that when the conflict table entry is just created, the

status of the conflict table entry associated with S1 is still partial since S2 is not sure

whether op1 is the only conflicting operation from S1. When op2 and op3 arrive at S2, there

is no need to create a new conflict table entry since a conflict entry that targets object X

and associated with S1 has already been created; or in other words, there exists a version of

object X initiated by S1. Operation op2 and op3 are simply appended to the existing conflict

table entry. Notice that until this point, the status is still partial since S2 cannot determine

whether op3 is the last conflicting operation from S1. However, when op7 arrives at S2, S2

realises that S1 has finished generating the operation on object X based on the state vector

of op7, therefore the status of the respective conflict table entry CT2 is changed to complete.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 190

Figure 4-5 Handling a conflict using a conflict table

Figure 4-6 outlines the check_conflict(op) procedure that (1) checks whether or not

an incoming operation op causes, or is involved in, a conflict in site S, and (2) adds the op

into a CT entry accordingly. Note that without losing generality, automatic UI-Lock is

being used as an example in this procedure.

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 191

Figure 4-6 Conflict checking procedure

As previously stated, a conflict is eventually resolved by selecting one Conflict

Table entry to be the final version for that particular conflict. If CTk[i] is selected to be the

desired version, a Conflict Resolution Operation (CRO), opr = accept(opx), is generated

where opx is one of the operations in CTk[i][opIds]. If CTk[i] is accepted, then CTk[i][res] =

accept, and the CT entries that are conflict-related to CTk[i] are rejected (CTk[j][res] =

reject, ∀CTk[j] ct⊗ CTk[i]). The CRO is then broadcast to all other sites and when it arrives

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 192

at a site, that site will accept the Conflict Table entry which opx belongs to, and reject the

other conflict-related Conflict Table entries.

Figure 4-7 Resolving conflict

Figure 4-7 illustrates an example of a conflict resolution process, with op6 being the

opr, and the changes made to the conflict table entries. Note that while the proposed

conflict management strategy can be used with various conflict resolution strategies,

Figure 4-7 illustrates one example of a possible conflict resolution strategy as discussed in

section 4.4.3. The CRO opr is then appended to CTk[i][opIds] for garbage-collection

purposes. Since the conflicting operations are non-transformable, all operations that are in

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 193

conflict to CTk[i][opIds] are simply undone (if they have been executed) and operations

CTk[i][opIds] are executed and stored in the history replacing the undone operations.

Conflict Table Garbage Collector

An entry in CTk[i] needs to be kept in CTk until site Sk is confident that the conflict has

been resolved and the entry is not needed anymore to process future operations. If CTk[i] is

rejected, then site Sk can remove CTk[i] if Sk is confident that there will not be any future

conflicting operation coming from site CTk[i][siteId] (i.e. CTk[i][status] is complete or

resolvable). If CTk[i] is accepted, however, CTk[i] can only be removed if all sites have

executed all operation in CTk[i][opIds] including the CRO (CRO is appended to

CTk[i][opIds] once it is accepted), which also means that all sites have received results of

the conflict resolution. In summary, CTk[i] can be removed from CTk iff:

1. (CTk[i][res] = reject) AND ((CTk[i][status] = complete) OR (CTk[i][status] =

resolvable)), OR

2. (CTk[i][res] = accept) AND (][][
xxx opopop SVSMSV > , ∀opx ∈ CTk[i][opIds]).

4.4.3. Conflict Resolution

Having described in the previous section a general conflict management mechanism, this

section presents an example of a specific conflict resolution strategy. Compared to a voting

strategy (consensus reaching strategy), the conflict resolution strategy presented in this

section uses less resources as it requires less message roundtrips and does not require a

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 194

complicated consensus reaching algorithm. As such, it is suitable for mobile network

environments. In addition, conflict is resolved without waiting for all sites to receive the

conflicting operations thereby increasing user responsiveness. However, despite these

advantages the algorithm does not facilitate negotiation or the reaching of consensus, as

such this is left to future work.

Under this strategy, each site has a conflict resolution priority level (
kSPR = priority

level of site Sk), which is ordinal relative to other sites. The sites' priorities can be static

(e.g. based on siteId) or dynamic (e.g. based on which site generated the conflicting

operation the earliest). To avoid relying on a single site for conflict resolution (usually the

site with the highest priority), only the priority level of the sites actually involved in a

given conflict are considered. In other words, the user at site Sk has the right to resolve

conflict if site Sk is involved in the conflict and site Sk has the highest priority among all

sites involved in the conflict. If there is another site that has a higher priority than Sk, say

Sr, site Sk still has the right to resolve the conflict if Sk is sure that Sr is not involved in the

conflict.

Therefore, more formally, site Sk has the right to resolve conflict (generate opr =

accept(opx), where opx ∈ CTk[i][opIds])iff:

1. Sk is involved in the conflict (Sk S
ct∈ CTk[i]) and

xk SS PRPR ≥ , AND

2.
kSPR is the highest among all sites involved in the conflict (Sx ∈{CTk[j][siteId],

∀CTk[j] ct⊗ CTk[i]}), AND

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 195

3. Sites with higher priority (if any) are not involved in the conflict. In other words,

sites with higher priority have executed at least one of the operations involved in

the conflict. For all Sx ∈ PLk and
xk SS PRPR ≥ , there exists opj such that

][]][[
jjj opopopk SVSxVT > and opj

op
ct∈ CTk[i].

When CTk[i][status] = complete and the user at site Sk has the right to resolve the conflict,

the status of CTk becomes CTk[i][status] = resolvable. As described in the previous section,

once CTk[i] has been accepted, a CRO is generated and broadcast to all other sites.

The conflict resolution strategy described above has the following advantages.

Firstly, when a site has the right to resolve conflict, it can resolve the conflict anytime

without having to wait until all sites receive all conflicting operations. Secondly, sites that

are not involved in the conflict do not need to resolve conflict; therefore it does not always

have to be a pre-determined or delegated group member who resolves conflicts. Thirdly,

the rightful site can resolve conflict anytime without having to wait for the lock to be

synchronized. A site whose priority is not the highest still has to make sure that the higher-

priority sites are not involved in the conflict. This can be determined by the state vector of

the operations generated by those sites (note that each operation carries the state vector of

the originator site at the time it is generated). Therefore, it has to wait for operations to be

generated by higher-priority sites before it can conclude that it has the right to resolve

conflict. This is, however, still preferable to having to wait for all sites to receive all

conflicting operations, and this process can be expedited by sending a state vector request

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 196

to higher-priority sites so they can send their state vector update without having to generate

operations.

4.5. Conclusion

In contrast to a centralised architecture where the server carries out the conflict

management, in a replicated architecture each site has to carry out the conflict management

consistently. Consequently, conflicts have to be properly detected and resolved

consistently across all sites.

The algorithm presented in this chapter has built upon the multi-versioning

approach to more effectively handle conflicts in replicated object based collaboration

applications. In particular the concepts of delayed post-locking and conflict tables have

been introduced to address shortcomings in existing approaches.

Delayed post-locking uses user intention locks (UI-Lock) to locally lock the object

being edited so that while the UI-Lock is in place, all incoming operations that target that

object will be held in the queue until the UI-Lock is released. This gives time for the user

to generate necessary operations to fully realise his/her intention on the object so that more

complete information is available to other users to assist in the conflict management

process.

Furthermore, each site maintains a conflict table, which facilitates the user in

dealing with conflict by letting him or her know whether other users have fully realised

their intention on the object in conflict. The conflict table allows conflicts to be better

CHAPTER 4. CONFLICT MANAGEMENT

 (June 15, 2007) 197

organised, supports a simpler and more flexible conflict resolution process, and keeps users

better informed of the status of the conflict. It also informs the user when s/he has the right

to resolve the conflict, insofar as being allowed to select the final version of the object.

Most importantly, the proposed algorithm satisfies the following conditions: it does

not suffer from a partial-intention problem; it does not need to depend on a group leader or

other pre-specified conflict resolution roles; the conflict can potentially be resolved

without having to wait for all sites to receive all conflicting operations (dependent upon the

chosen conflict resolution strategy); and finally, the algorithm provides better information

to users so that they can resolve the conflict knowing the status of the conflict. Combined

with the consistency management algorithm presented in Chapter 3, non-exclusive and

exclusive conflicts can be handled effectively.

Future work will also look at alternative conflict resolution strategies, such as

voting and/or group leader’s decision with particular emphasis on their effectiveness from

a usability point of view, and their performance and impact on resource consumption

within a mobile environment. As mentioned in section 4.3.2, future work will also evaluate

the conflict definition and resolution in multi-level document proposed in [66] and extend

the algorithm proposed in this thesis to handle conflicts in hierarchical documents.

5. Membership Management

Chapter 5

Membership Management

5.1. Introduction

In Chapter 3, a consistency management algorithm has been proposed to ensure

consistency of document replicas across all mobile collaboration participants. The devised

consistency management algorithm takes advantage of the operation transformation

technique that allows each operation to be broadcast independently without the need for a

centralised server or any dedicated machine to do the centralised consistency management.

In Chapter 4, a conflict management algorithm was proposed to handle exclusive conflicts

and to facilitate users in resolving conflicts.

However, the devised algorithms, like most existing algorithms that work in wired

networks, still assume the following.

• The number of participants is fixed.

• Participants join the collaboration in the beginning of the collaboration session.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 199

• Participants leave the collaboration voluntarily only when they want to quit the

session.

Those membership behaviours however do not hold in wireless network environments,

especially in mobile ad-hoc network environments. A site (participant) can join the session

any time during the session whenever it is within the transmission range of a current

session participant and it decides to join the session. Sites frequently get disconnected from

other sites because they rely on the radio frequency based wireless transmission to connect

to other sites. This causes fluctuation in the number of currently active participants. A site

can leave the session voluntarily (with adequate notification) and involuntarily (sudden

disconnection) and it is impossible to distinguish a crashed process from one that is just

very slow [53] since there is no way to determine how long that site will be disconnected.

In a centralised architecture, whenever a site wants to join a collaboration session,

it simply contacts the server and sends a joining request to get the latest state of the

document, and can then start collaborating. There is nothing that the other sites need to do

to accommodate the new site. The server can easily include the new site in the session by

accepting updates from the new site and sending the document state to the new site

whenever the document state is changed. If a site decides to leave the session, it simply

notifies the server and leaves the collaboration. Depending on the applied algorithm and

collaboration workflow, the other sites may not need to know about this and they can

continue collaborating. In contrast, in a fully replicated architecture, there is no server that

can easily manage the membership. Each client device has to adjust its behaviour every

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 200

time there is a membership change since the participants need to know all sites that they

must inform of document updates. Whenever a site joins the session, all other participants

need to know about the new site so that all future updates will also be sent to the new site

and the new site can be considered during the process of each remote operation (i.e. to

determine the precedence and concurrency of operations). Furthermore, mobile networks

are characterised by fluctuating bandwidth and frequent disconnections, causing messages

to be lost or corrupted during transfer. The application has to ensure all messages arrive at

all intended destinations despite these characteristics.

This chapter aims to explore the requirements of a membership management

algorithm and to devise an algorithm that is capable of handling the various membership

events in a mobile real-time collaboration environment while still maintaining document

consistency across all participants.

The remainder of this chapter is structured as follows. Section 5.2 discusses the

membership problems in wireless networks in detail. Section 5.3 presents existing work

that has been done and why it is not suitable for mobile real-time collaboration. Section 5.4

outlines the algorithm proposed to handle all dynamic membership issues while

maintaining document consistency. Section 5.5 discusses some possible variations in the

implementation of the proposed algorithm. Section 5.6 reports the result of evaluating the

performance of the proposed algorithm. Finally, Section 5.7 concludes this chapter and

discusses some future work.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 201

5.2. Membership Problems

This section discusses the various events that affect group membership, including the cause

of each event, how each event should be handled, and how the impact of each event adds

to the requirement of the proposed algorithm.

5.2.1. Disconnection

In a mobile network environment, a mobile device is connected to another device if it is

within the wireless transmission range of the other device, or if there is any intermediate

device that is willing to route the packet from one device to another. Disconnection in

wireless networks can be caused by the following reasons.

• User mobility. Mobile users are naturally mobile and if the mobile user moves out

of the transmission range of the other device, it is disconnected from that device.

Due to user mobility, a mobile user can move between connected and disconnected

states quite rapidly.

• Available bandwidth. Disconnection can also be caused by fluctuating bandwidth.

Wireless transmission relies on the strength of the radio frequency. Any noise in the

radio frequency can affect the signal strength, thus affecting the bandwidth

available for the wireless transmission. This causes the bandwidth to fluctuate over

time and if the noise is severe, the signal could fade away and cause disconnection.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 202

• Device failure. If a device crashes, then it cannot receive and send messages until it

is restored, thus it is disconnected.

Unfortunately, whenever a device is disconnected from the other device, it is

difficult, if not impossible, to determine the cause of the disconnection. There is no way to

distinguish whether the disconnection is caused by a device being outside the transmission

range, unavailable bandwidth or the failure of the other device [53].

When a site S0 is disconnected, it stops receiving messages from the devices it is

disconnected from. Site S0 is not able to broadcast messages to the other devices either. In

a collaboration session, this would mean that the disconnected site S0 will miss some

operations that are being broadcast while it is disconnected. This case is called a "missing

operation". Not only that site S0 misses the operation while it is disconnected, the other

devices also miss some operations that site S0 generates during the disconnection period.

Therefore, the algorithm must ensure that an operation generated by one site will

eventually arrive at all participants no matter the condition of the wireless network.

The requirements are formally outlined as follows. Requirement 5-1 ensures that all

operations are delivered to all participants while Requirement 5-2 implies that if an

operation is generated while a device is disconnected, the device will have to be able to get

the missing operation after it is reconnected.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 203

Requirement 5-1. Delivery guarantee

Let opi be an operation generated by site Si, all other sites Sj (∀j: 1 ≤ j ≤ N) will eventually

receive opi.

Requirement 5-2. Missing Operation

Let opi be an operation generated by site Si while Si is disconnected from Sj, Sj will

eventually receive opi after Si is reconnected.

5.2.2. Late Join

In wireless network environments, especially in ad-hoc environments, two or more sites

can start a session as soon as they are connected to each other (they are within the

transmission range of each other). They do not need an established infrastructure to start

communicating. This provides a greater flexibility in wireless communication. However,

this also means that a device can arbitrarily join a currently running session whenever it is

within the transmission range of any of the current participants. This is a case of a "late

join".

Although there are many ways for a site to discover a currently running

collaboration session, the discovery protocol is beyond the scope of this thesis; therefore it

is assumed that a new site Si decides to join the session after contacting a current

collaboration participant Sj.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 204

A correct membership management algorithm has to ensure that Si is brought up to

speed with the other participants such that it is able to correctly participate in the

collaboration session (Requirement 5-3). A correct membership management algorithm

also needs to ensure that all other participants know that there is a new site joining and

therefore make necessary adjustment so that the collaboration session can accommodate

the new site correctly (Requirement 5-4). In other words, when a new site joins a currently

running session, the membership management algorithm has to ensure that the

collaboration session eventually comprises the current participants and the new participant

and they can collaborate in the session correctly as if all of the participants, including the

new one, have been in the session from the start of the session.

Requirement 5-3. New Joining Site

Let Si be a new site that joins a currently running collaboration session, Si has to satisfy the

following requirements:

• Si has to acquire the latest state of the document, and

• Si has to be able to process all future incoming operations while maintaining

document consistency, and

• Si has to know other sites that should receive all locally generated operations.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 205

Requirement 5-4. Adding a new site

Let Si be a new site that joins a currently running collaboration session, all other

participants have to ensure the following:

• they have to eventually know that there is a new site Si, and

• they have to add Si to their list of participants such that they will send the future

operations to all other participants, including Si, and

• they have to add a new element associated with Si into their state vector such that

they could take Si into account in determining operations precedence and

concurrency in order to correctly preserve user intentions.

5.2.3. Leaving the Session

A site Si may decide to leave the session when it is no longer interested in the session.

Commonly, the site that decided to quit will send a 'quit' notification to the rest of the

participants indicating that it is leaving the group. Upon receiving the notification, a site

will remove the quitting participant from its participants list and delete the element

associated with the quitting site from the state vector. Eventually, the session will go on

with one less participant, and the other participants can resume collaboration correctly after

making the necessary adjustment.

This event is easily handled in wired network environments, where an adequate

'quit' notification is broadcast whenever a site leaves the group and the 'quit' notification is

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 206

highly-likely to arrive at all participants. This however would not be the case for mobile

network environments. Firstly, the 'quit' notification is not guaranteed to be received by all

participants, thus not all participants will know about this event and thus might not be able

to adjust themselves accordingly. Secondly, there might not even be an adequate 'quit'

notification at all. In a wired network, the sites are always connected, thus Si could send an

adequate 'quit' notification. On the other hand, in a wireless network, connectivity is not

guaranteed, therefore Si might not be able to send the 'quit' notification in the first place.

Furthermore, a site may get disconnected indefinitely and thus the user of that site might

decide to stop participating due to frustration or other reasons. Thus, if Sj has not received

any operation from Si for a considerably long period, Sj will not have any idea whether Si

has left the group, Si is being disconnected from the group, or the user at Si is simply

inactive.

To correctly handle this event, the following requirement (Requirement 5-5) has to

be satisfied by a membership management algorithm.

Requirement 5-5. Quitting Site

Let Si be a site that decides to leave the group, the following must hold:

• all sites eventually know that Si has left the group, and remove Si from their list of

participants, and

• all sites continue the session correctly without Si.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 207

Requirement 5-5 requires that when Si quits the session, all sites must agree that Si

has left the group. However, in a wireless network, this kind of agreement is not

necessarily easy to reach. The following are possible scenarios in regards to Si leaving the

session.

1. Si broadcasts a 'quit' notification and all participants receive the notification.

2. Si broadcasts a 'quit' notification and not all participants receive the notification.

3. Si does not broadcast a 'quit' notification at all.

In the best scenario, scenario 1, all sites will know that site Si has left and therefore adjust

their states accordingly. On the other hand, in scenario 3, no site knows that Si has left. The

collaboration can still continue even though the bandwidth may be wasted trying to send

operations to Si. In scenario 2, however, some sites know that Si has left the group and have

removed Si from their data structures accordingly, while some other sites still assume Si is

still in the groups.

 Therefore, when site Sj receives the quit notification of site Si, Sj will remove Si

from its participant list and eventually all sites must receive the quit notification, either

directly from Si or indirectly from Sj. During this period, however, the collaboration must

still continue without any interruption. This process is formally stated in the following

Requirement 5-6.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 208

Requirement 5-6. Removing a Site

If site Si has assumed that site Sj has left the group and removes Sj from its internal data

structure, then:

• all other sites will eventually remove Sj from their participant lists, and

• the collaboration still continues correctly during and after the removal process.

5.3. Related Work

The two major approaches to managing group communication (and membership) in

distributed system environment are Group Membership Services (GMS) [10, 11, 41, 42, 50,

71, 75, 76, 99, 116, 117] and IP Multicast [40]. While IP Multicast manages the group

membership in the network layer where each site needs to send messages to only one

multicast address, GMS works in the application layer where each site is aware of who the

other members are and sends messages to a targeted group id. The first two subsections

discuss these two areas of existing work and outlines why they are not suitable for mobile

real-time collaboration.

The following subsection discusses two session management techniques: explicit

and the implicit session management. It also discusses how a site discovers and joins a

collaboration session under each session management technique. Finally, the last

subsection discusses some of the groupware systems that are known to have mechanisms

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 209

to handle membership problems and explains why they are not applicable to mobile

replicated architecture.

5.3.1. Group Membership Service

GMS provides multipoint-to-multipoint group communication by organizing

processes/sites into groups. Whenever a site needs to communicate with the other group

members, it sends a message targeted to the group and GMS delivers the message to the

group members [75]. A process becomes a group member by requesting to join the group

and it can cease being a member by requesting to leave the group or by failing. Roman et

al [117] defines the group membership maintenance problem as the requirement for each

host to have knowledge of what other hosts are members of its group and for such

knowledge to be consistent across the entire group at all times.

A group membership service is responsible for ensuring that the above requirement

is met by capturing any changes in the group membership and notifying all group members

of the new membership configuration. Coulouris et al [36] outlines the main tasks of a

GMS as follows:

• Providing an interface for group membership changes

The membership of a group is dynamic due to sites that voluntarily join and leave

the group, those that need to be excluded due to failures and those that need to be

included after repairs [12]. To be able to capture any dynamic changes in the group

membership, the GMS has to provide a means for the group members to notify the

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 210

GMS when a member needs to create or destroy process groups and when a

member needs to be added into a group or a member decides to withdraw from the

group.

• Implementing a failure detector

One of the important elements of a GMS is a failure detector to monitor the group

members and to correctly detect when a group member crashes or becomes

unreachable due to a network failure. In either case, such group member would not

be able to use the interface provided by the GMS as mentioned above. Therefore

GMS needs to have some mechanism to detect this so that it captures the correct

network conditions at any given time.

• Notifying members of group membership changes

After receiving any notification from any particular member and/or detecting some

unreported events (i.e. disconnection or site crash), GMS constructs a report to be

sent to the other group members. This report is called a view. A view basically

consists of a view identifier and a list of current active members. If two members

receive the same view, they are thought to have the same perception of the group

membership [76]. Therefore, a GMS tracks changes in group membership and

transforms them into views that are agreed upon as defining the group's current

composition [12].

In terms of membership, the distributed system configuration is categorized into

two: primary-partition system and partitionable system. In primary-partition systems,

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 211

there can be at most one view of the group active at any time [121]. In contrast to a

primary-partition system, a partitionable system is defined as a system that allows multiple

views of the same group to exist concurrently, i.e. several different views of the

membership of the group may evolve concurrently and independently from each other [11,

41, 42, 50, 71]. In such systems, membership of a group may change dynamically not only

due to individual process failures and recoveries, but also due to subsets of correct

processes becoming isolated and later re-merging [12].

Implementing a GMS in a LAN environment is feasible due to the stability

provided by LANs. However, implementing a GMS in a less stable environment is a

challenging task. Keidar et al. [75] pointed out the following issues that need to be

addressed to successfully implement a GMS in a wide area network (WAN):

• High latency. Message latency tends to be large and highly unpredictable in a

WAN, as compared to a LAN. In addition, message loss is quite common in WANs.

Each time a message is lost, the message needs to be retransmitted, thus delaying

the message even further. In order to reach a consensus or agreement, sites

repeatedly exchange messages, be they notification messages or acknowledgement

messages. The higher the latency, the more difficult, if not impossible, for this to be

done. Furthermore, the message might be out of date by the time it reaches the

destination. A GMS needs to ensure that it still works well in such a hostile

network environment.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 212

• Frequent changes. Connectivity changes are more likely in a WAN than in a LAN.

The membership algorithm needs to capture these changes and construct a new

view to reflect the changes. The more frequent the changes are, the more frequent

the views change and the more resources needed by sites to engage in membership

changes.

• Instability. Bandwidth fluctuation and path congestion contribute to instability in a

WAN. A group membership algorithm should be able to handle such network

instability that occurs unpredictably and indefinitely.

Those challenges are even more severe in mobile network environments, especially

since mobile users periodically move from one place to another which creates further

instability and frequent disconnection. In addition to those challenges, GMS has some

characteristics that are inapplicable in wireless networks, especially ad hoc networks such

as the following.

• It requires sites to periodically broadcast beacons to signify their presence to other

sites. This beacon is useful in determining whether one site is currently reachable

from (i.e. connected to) another site. For example, Roman et al. [117] requires

every host to periodically broadcast a 'hello' message that contains its location

information and its group id. This requires adequate available bandwidth to allow

the regular broadcast and good connectivity for successful beacon delivery. Such

requirements however are not necessarily satisfied in wireless network.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 213

• It requires a membership server [75] or a site to serve as the group leader [117].

The leader of a group frequently checks the status of the members. If there are any

changes to the group membership configuration, the server or the leader sends

notifications to the members. This will only work if the presence of a dedicated

server is guaranteed and if the connectivity between the server and the members is

stable, which are not the common case in wireless networks especially ad hoc

wireless network environments.

• It is almost, if not, impossible to maintain a consistent view of group membership in

asynchronous systems, especially in the presence of unannounced disconnections

[117]. However, unannounced disconnections commonly occur in ad hoc wireless

networks. Some existing work [10, 40, 41, 50, 116] claims that if an unannounced

disconnection occurs, the group membership problem can be solved by removing or

killing the processes that are suspected to have crashed. However, Chandra et al.

[29] prove that the primary partition group membership problem cannot be solved

in asynchronous systems with unannounced failures (either due to crashes or

sudden disconnection), even if the faulty processes (or those suspected to be faulty)

are removed or killed. Neiger [99] propose a primary partition group membership

specification that is solvable in asynchronous systems when there is a process crash.

However, with the proposed specification, all other processes are blocked whenever

a single process crashes. Therefore, the proposed specification does not promote

liveness and is not fault-tolerant. In fact, it is impossible to create a GMS that is

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 214

able to always inform members of the correct state of the membership and to

always agree on the views delivered to different members [29] and in order for

“useful” communication to happen, group members must be given the same views

[76]. It is possible for a host that is still in the old configuration to receive a

message from a host that has already reached the new configuration. In such a case,

the recipient must postpone the processing of this "future" message until the new

configuration is established, thus pretending that the message is "received" in the

new configuration.

• The view agreement is only reached when the network becomes stable. When the

network is unstable, the membership changes constantly, thus making it difficult to

reflect the correct membership at any given time. However, in a mobile network

environment, the network might never become stable. Moreover, all of the existing

algorithms require servers to know that an agreement has been reached before

generating the new view. This requires multiple rounds of message exchanges [76],

and due to network instability, the actual group membership might have already

changed before the agreement on the previous view is reached.

• One important element of GMS is a notification service that is responsible for

monitoring sites and detecting any site failures. However, it is impossible to

distinguish a crashed process from one that is just very slow or currently

disconnected and Fischer et al. [53] show that any problem requiring "all correct

processes" to take some action cannot be solved deterministically.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 215

5.3.2. IP Multicast

IP multicast is a weak case of a group membership service [76]. It does not provide group

members with the information about who the other members are. Each site needs to know

only one multicast address to send messages to. IGMP is the protocol used to manage the

membership of the group.

The main aim of IP multicast is to provide communication channel transparency to

the members such that the members would not have to worry about sending messages to

multiple destinations, instead it sends messages to only one multicast address and the

network routers will do the rest ensuring the messages arrive at all desired destinations. In

order for IP multicast to work, there needs to be some routers that are willing to forward

multicast messages and are running a certain IP multicast algorithm such that it ensures all

desired destinations receive the messages. Furthermore, these routers have to always be

connected so that the packet forwarding will work well and the packet can be forwarded

through to the final destinations. However, the presence of such routers is not necessarily

guaranteed in mobile network environments, and not all mobile devices are willing to route

packets. Moreover, even when routers are present, they are not necessarily connected all

the time.

In ad hoc wireless network environment, each device has to build a multicast tree

that represents the current network topology so that each packet that is sent knows what

path it has to take to go through to all group members. If there are changes in router

connectivity (changes in topology), all devices have to rebuild their multicast trees to

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 216

represent the current topology. Unfortunately, due to mobility and frequent disconnection,

the wireless network topology changes rapidly. This not only requires the devices to

constantly monitor the changes in topology, it also forces each wireless device to

frequently rebuild its tree every time the topology changes. If the topology changes very

frequently, the mobile device ends up wasting its resources and time building and

rebuilding the tree, and it is not able to fully participate in a collaboration session.

5.3.3. Session Management Model

A session management model defines the manner in which people can join together in

collaboration systems [108]. Session management models can be categorised into implicit

and explicit session management. In an explicit session management model, the

participants in the collaboration are required to take some action and time to join the

session. The implicit form of session management, on the other hand, requires less initial

overhead.

Most collaborative applications built to date have employed explicit session

management [44]. The two common approaches to explicit session management are

initiator-based and joiner-based. In an initiator-based session management, the initiating

participant invites other users to the collaboration session. The initiator site notifies users

of the existence of the collaboration session and provides a means for collaborating with

the others in the session. In contrast, in joiner based session management, users who want

to join a session must find the session by discovering currently active sessions or by

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 217

knowing a priori that the session is or will be taking place. The characteristics of

collaboration that uses explicit session management are usually planned, long-term and the

session is properly named so the users recognise the session that they want to join.

 The implicit session management, however, is usually serendipitous, spontaneous,

transient and unnamed. For example, to collaboratively edit a file, users would simply edit

the same file. The system would detect the potential for collaboration inherent knowing

that multiple users are working on the same object. There is no need for naming sessions or

browsing lists of sessions to join the session. The implicit session management obviously

avoids the overhead of the explicit session creation, naming, and browsing phase. In

contrast to the explicit forms of session management (initiator-based and joiner-based),

there are three forms of implicit session management models [79].

• Artifact based models assume that people wish to join together in sessions when

they use the same artifact or document (e.g. the session management described in

[44]).

• Activity based models assume that people wish to join together in sessions when

they are involved in the same activity, e.g., using the same system (e.g., Piazza[69],

Hummingbird [64], Meme Tags [19], and Hocman [48, 49]).

• Place based models assume that people wish to join together in sessions when they

are at the same gathering point (e.g., Teamrooms [120]).

Although the implicit session management model requires less overhead than the

explicit counterpart when a user wants to join in a session, it imposes additional resource

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 218

consumption in detecting and discovering the peer or the other collaboration participant

(group awareness). Hummingbird [64] uses a special device to monitor the presence of

other Hummingbirds in the close proximity. GroupWear [18] uses an active badge system

that lets user share and compare their answers to a set of multiple-choice questions. The

Meme Tags System [19] also provides mechanisms to monitor other users’ presence, but at

a shorter range than the Hummingbird device. In cruise mode upon discovering a new peer,

Hocman [48, 49] will perform an automatic background download of a predefined index-

page. In explore mode, Hocman provides group awareness. Whenever the users are in the

vicinity of each other, they will be appended in each other’s list of accessible peers. In

Pirates! [51], in addition to the WLAN adapters, each handheld device is fitted with

custom-made proximity sensors, used to determine the players' location in physical space.

Furthermore, some use a dedicated server as the session manager that coordinates the

joining [151]. Finally, in the artifact based model, two different sessions may have the

same document or artifact name causing a user to join the wrong collaboration session. A

similar mistake can also happen with the place-based model, where two or more users are

at the same gathering point but they do not intend to collaborate with each other.

Therefore, this research assumes the use of an explicit session management model

where the user who wants to join a session will contact a current participant. This thesis,

however, does not discuss the detail of how users discover sessions and other participants.

An existing discovery protocol can be adopted for this process.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 219

YCab [22], SOCT2 [126], and CoWord [134] are three examples of real-time

collaborative editors that implement explicit group membership and session management

algorithms.

YCAB

YCab handles packet loss by slowing down the rate of operation broadcast. Each

site implements a method to adjust the rate of transmission to accommodate varying

bandwidth and latency, although ideally, the client should adjust the send delay

automatically according to the network condition. By adjusting the send delay, YCab could

self-adapt to the network conditions in order to reduce packet loss.

With regards to late join in YCab, one of the members in the session (the

coordinator of the session) is given the responsibility of bringing the new client up to speed.

To join a session, a new site, say site Si, broadcasts the join request to all existing members

and has to wait for their replies. Once all replies are received, Si will assign itself a rank

(id) equivalent to 1 + the highest rank in the received replies. Si then broadcasts the join

session message with its assigned rank and then all existing members will process the join

session message and add Si accordingly. This procedure, however, requires all members to

be connected during the join session process. If one or more existing members are

disconnected during the joining, the new client will not receive all necessary replies, hence,

will derive a wrong rank (id). Furthermore, if the new client does not receive replies from

anyone within a specific period of time, it will create a new session even though that is not

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 220

necessarily what it wants. YCab also requires a session coordinator during a state recovery

process to bring up any client up to speed with the current session state, therefore,

introduces a single point of failure.

Although YCab, by adjusting the send delay, could self-adapt to the network

conditions in order to reduce packet loss without manual configuration, it does not discuss

how to recover lost messages and how to ensure that the messages will eventually be

received by all intended recipients. Relying on the session coordinator to execute state

recovery will add to the burden of the session coordinator and increase the severity of the

single point of failure.

SOCT2

In SOCT2, Suleiman et al. [126] introduces the applicability of the algorithm to mobile

sites by presenting disconnection and reconnection procedures. If a mobile site is about to

disconnect, it will notify the other sites that it is disconnected, and then the user of the

disconnected site will continue to work on the local replica. The reconnection of a site

involves two sub-procedures:

• Updating other sites of its modification during the disconnection period. This is

done by simply broadcasting the operations done during the disconnection period to

other sites.

• Getting updates from other sites. This can be done either by collecting operations

done by other sites during the disconnection period or by nominating one site to

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 221

send across its local replica and its history. The latter is selected due to its

simplicity. The reconnected site S designates another live site Sv to send its

document state to. Before sending it, Sv has to be sure that it has already received

and executed all operations generated by other sites. This is done by receiving an

acknowledgement from all other sites that they have received the reconnection

message from S. All other operations that arrive to Sv after the acknowledgement

will not be executed until the end of this reconnection phase.

They however only discuss the event of voluntary disconnection with notification. What

commonly occurs in mobile network environments is an involuntary disconnection without

notification. The disconnected site does not have a chance to send notifications to other

sites that it is about to be disconnected. Moreover, the disconnections occur frequently,

thus it is difficult to determine which operations are done during a disconnection period.

During the reconnection phase, not only is sending of reconnection and acknowledgement

messages expensive, it is also difficult for S and Sv to determine which sites are currently

connected, thus S might end up sending reconnection messages to currently disconnected

sites and Sv might wait for acknowledgement from the disconnected sites for an indefinite

period. However, this initial approach provides a good basis for handling this limitation of

mobile network environments, which will be further discussed in section 5.4.1.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 222

CoWord

Sun et al. [134] proposed a quiescence based approach to accommodate late comer in

CoWord and CoPowerPoint. The quiescence-based approach depends on all sites to reach

a quiescence state, where all sites have received and executed all generated operations, and

hence all sites are in a consistent state. The quiescence state is achieved by broadcasting

synchronization messages to push all operations to arrive and be executed at destinations,

and temporarily blocking the users from generating new operations. Under the quiescent

condition, all existing CoWord/CoPowerPoint instances are guaranteed to have consistent

and identical document replicas. Consequently, initializing a late-comer is done simply by

transferring the copy of the current document to the late-comer, and initializing the state

vectors and history buffer to empty.

 This approach, however, can only happen if the it is assumed that (1) each

operation will always arrive at destination once it is sent, (2) all sites are connected when

the late-comer is joining, (3) the synchronisation message arrives at all sites, and (4) there

is a way to confidently determine that all sites are no longer sending any operation after the

synchronisation message is sent. In mobile replicated architecture, however, none of the

above can be assumed, hence waiting for quiescence state before a late comer can be

accommodated can mean all sites are held up indefinitely and/or some sites are not

necessarily in their quiescence state consistent with other sites. This thesis propose a

technique to accommodate late comer by taking into account the above limitations of

mobile environments.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 223

5.4. Algorithm

Based on the above discussion, this section proposes a membership management algorithm

to handle membership events in real-time mobile collaboration systems. The proposed

algorithm is built on top of the consistency and conflict management algorithms presented

in the previous chapters.

The following are requirements that need to be met by the proposed algorithm in

order to function effectively in mobile real-time collaboration environments.

1. The algorithm must not require a group leader or dedicated server to avoid a single

point of failure and to promote ad hoc collaboration.

2. The algorithm must not rely on beacon broadcasts for determining the connectivity

among the sites, i.e. each device does not need to detect any changes in network

topology, thus focusing its resources primarily on participating in the session.

3. The algorithm must not constantly monitor and maintain the current view of who

the other members are (refer to section 5.3.1)

4. The algorithm must ensure that all sites eventually receive all operations.

5. The algorithm must ensure that document consistency across all sites is maintained

(i.e. the algorithm is built on top of the previously proposed consistency

management algorithm)

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 224

As mentioned in section 5.2, there are three membership cases to be handled: (1)

Late Join, (2) Missing Operations, and (3) Quitting Site cases. The proposed algorithm is

constructed by addressing each membership case separately. A solution for each case is

first proposed, and then combined into one complete algorithm that is able to handle all the

different membership events. Due to the nature of the solution, this section begins by

discussing and solving the late join case (Section 5.4.1 discusses the single late join and

Section 5.4.2 discusses the concurrent late joins), followed by the missing operation case

and the quitting site case.

5.4.1. Late Join

Due to concurrency and various membership events, each site will be in a different state at

the time Si decides to join the session. Each site will maintain its own current state of the

document replica, which is not necessarily the same as the state of the other sites' replicas.

In addition to that, each site will have its own current site state (i.e. state vector) which is

not necessarily the same as other sites. This means that in order for a new site Si to

participate in the session, Si has to:

• acquire an updated document from the contacted site (Sj), and

• acquire the complete operations history of Sj so that this new site is able to process

any future incoming operations (i.e. correctly transform remote operations such that

user intentions are preserved to ensure document consistency), and

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 225

• acquire the latest state of the contacted site Sj so that the new site Si can resume the

collaboration just as Sj resumes the collaboration after the joining process.

In other words, this new site has to be an exact replica of one of the current participants (i.e.

Sj). If Si gets the document from Sj, Si has to acquire the operation history and other

information from Sj. If Si gets the operation history from a site other than Sj, site Si might

not be able to correctly transform future remote operations, thus the replica held by Si will

not be consistent with other replicas.

Therefore, whenever a new site Si joins a collaboration session via Sj, the following

procedure has to be executed:

1. Sj constructs a state message (
jSσ) that consists of:

• The latest version of the replica held by Sj (jSR), and

• the operations history of Sj (jSH), and

• the list of current participants (
jSP), and

• the current site state of Sj that consists of the logical clock (
jSLC) and state

vector of Sj (jSV)

2. Sj sends the state message to Si.

3. Upon receiving the state message, Si adjusts its state with the information provided

by the state message.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 226

4. An element in the state vector associated with Si is added at the end of the state

vector of Si and Sj.

Consider the scenario depicted in Figure 5-1, where there are currently 7 sites in the

session (the sites that are within one grey coloured area are connected to each other). If site

8 decides to join the session via site 7, then site 8 will do the above procedure and become

the exact replica of site 8, and only site 7 and site 8 know that site 8 has just joined the

session (Figure 5-2).

Figure 5-1 A site joins a session

Figure 5-2 After joining a session

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 227

The above procedure requires each site to be able to: send a join request to other

sites (send_join_req), receive a join request from a new site (rcv_join_req), and receive the

state message from another site (rcv_state_msg). Those functions are outlined in Figure

5-3.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 228

Figure 5-3 Late join procedure

After completing the late join procedure, the newly joined site Si becomes an exact

replica of the contacted site Sj. Only Si and Sj know that there is Si in the session. The other

sites do not know this as yet. Si can explicitly send notifications to all other sites that it has

void send_join_req(Sj) {
/*send join request to Sj*/
send_join_req(Sj);

}

void rcv_join_req(Si) {
 /*construct state message to be sent to Si */

σS = < RS, HS, PS, LCS, VS >;

 /* send state message to Si */

send(Si, σS);

 /* update state vector */
 /* add an element associated with Si */

VS = VS + {0};

/* add Si to the list of participants */
PS = PS + {Si};

}

void rcv_state_msg(

jSσ) {

 /* explode state message */
< RS, HS, PS, LCS, VS > =

jSσ

 /* update state vector */
 /* add an element associated with Si */

VS = VS + {0};

/* add Sj to the list of participants */
PS = PS + {Sj};

}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 229

joined the session, or it can do this implicitly. In the future, all operations generated by Si

and Sj will have an extra element in their state vector. This element will implicitly 'tell'

other sites that there is a new site in the session. When the other sites know that there is a

new site, then they add a new element to their state vectors and all future generated

operations.

5.4.2. Concurrent Late Join

The above procedure solves the late join problem when only one site decides to join at a

time. The new element of the state vector associated with the new site is appended at the

end of the vector (VS[N]). However, if there are two or more sites wanting to join at the

same time, the addition of the new element of the state vector is not as easy as appending it

to the end of the vector.

Consider the scenario in Figure 5-4 where site 8 and site 9 want to join the session

concurrently through different participants. Following the above procedure, site 7

replicates itself to site 8 and site 3 to site 9. Before the join process, site 7 and site 3 have

their state vector as V7 = {V7[0], V7[1], …, V7[6]} and V3 = {V3[0], V3[1], ..., V3[6]}

respectively. After the join process, site 7 will add an element in its state vector such that

V7[7] represents site 8. However, concurrently, site 3 will add an element in its state vector

such that V3[7] represents site 9. When, sometime in the future, site 7 receives a message

from site 3 and deduces that there is a new site, site 9, then site 7 will add an element in its

state vector such that V7[8] represents site 9. The same thing happens when site 3 receives

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 230

a message from site 7, such that V3[8] represents site 8. This causes conflict, and the

precedence and concurrency could not be determined properly, potentially causing

document inconsistency. The core of the problem here is that the site naively adds an

element to the end of the state vector to represent a new site, where the other site might be

doing the same thing concurrently for another new site. Therefore, a technique called state

map is proposed to ensure that the contacted site can add an element to the state

mechanism without causing conflict with other sites.

Figure 5-4 Concurrent late join

A state map, similar to a state vector, is a data structure that records the number of

executed operations. If a state vector is in the form of an array (vector), where each

element is indexed by an integer number, each element of a state map is mapped by keys

(not necessarily an integer number). Using a state vector, each element of the state vector

has to be associated with the respective site using an integer index. The first site in the

session is associated with the first element in the state vector; the second site has the

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 231

second element and so on. A new site will be assigned an index one greater than the

current largest index in the session. However if there is more than one site joining at the

same time, it is difficult to determine which new site is assigned to which element in the

state vector. Using a state map, each site is assigned a place in the map without having to

worry about the position in the map. A site needs only to choose a unique key to represent

itself in the map. The key does not have to be an integer and it can be as simple as the site's

IP address or the sites hostname or even the hash value (e.g. Md5sum) of either one.

In Figure 5-4, when site 7 grants the 'join' request of site 8, site 7 will add 8 into its

list of participants, and site 7 will also add an entry in its state map with the key of site 8

(might be the IP address of site 8) and zero as its initial value. At the same time, site 9 joins

via site 3, thus site 3 will add an entry in its state map with the key of site 9. When the

information of these two newly joined sites is disseminated to all sites, the state map will

uniquely identify each new site. For example, the state map of site 7 before the join process

is M7 = {key(S1) ⇒ val(S1), key(S2) ⇒ val(S2), …, key(S7) ⇒ val(S7)}, where key(s1) is the

unique key of site 1 and val(s1) is the number of operations generated by site 1 that have

been executed by site 7. After the join process, its state map becomes M7 = {key(S1)

⇒ val(S1), key(S2) ⇒ val(S2), …, key(S7) ⇒ val(S7), key(S8) ⇒ val(S8)}. Concurrently,

after site 9 joins through site 3, M3 = {key(S1) ⇒ val(S1), key(S2) ⇒ val(S2), …, key(S7) ⇒

val(S7), key(S9) ⇒ val(S9)}. Notice that the new element of each state map is appended at

the end of the state map, but they have different keys such that they do not need to be

placed in a particular location in the state map. Eventually, both sites will end up with M =

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 232

{ key(S1) ⇒ val(S1), ..., key(S8) ⇒ val(S8), key(S9) ⇒ val(S9)}. Figure 5-5 outlines the

updated procedure to accommodate concurrent late joins.

Figure 5-5 Late join procedure to handle concurrent late join

void send_join_req(Sj) {
/*send join request to Sj*/
send (Sj, JOIN);

}

void rcv_join_req(Si) {
 /*construct state message to be sent to Si */

σS = < RS, HS, PS, LCS, MS >;
 /* send state message to Si */

send(Si, σS);

 /* update state map */
 /* add an element associated with Si */

MS = MS + {key(Si) ⇒ 0};
/* add Si to the list of participants */
PS = PS + {Si};

}

void rcv_state_msg(

jSσ) {

 /* explode state message */
< RS, HS, PS, LCS, MS > =

jSσ

 /* update state vector */
 /* add an element associated with Si */

MS = MS + {key(Si) ⇒ 0};

/* add Sj to the list of participants */
PS = PS + {Sj};

}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 233

The other sites might not establish that there are new sites in the session until they

receive an operation that originates from either the new site or from another site that

already knows about the new sites. For example, site 7 generates and broadcasts an

operation opi after site 8 joins the session. Operation opi will bear a state map with an extra

element associated with site 8 ([])(8SkeyM
iop). When opi arrives at site 4, site 4 will be

able to determine that there is an additional element in the state map of opi, [])(8SkeyM
iop .

Hence, site 4 knows that there is a new site, and adds the new element into its state map

([] 0)(84
=SkeyMS), and adds site 8 into its participants list. From this point onwards, all

operations that originate from site 4 will bear a new element in their state map associated

with site 8. This procedure has to be executed whenever a site receives a remote operation

as outlined in Figure 5-6.

Therefore, to allow the algorithm to handle a concurrent late join, the state map

technique is used, replacing the state vector. Consequently, every site maintains a state

map instead of a state vector and each operation will carry a state map which is equal to the

state map of the originator site when the operation was generated. With the use of state

maps, the procedure to determine precedence and concurrency is modified as in Figure 5-7.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 234

Figure 5-6 Checking for a new site

Figure 5-7 Determining operations precedence using state map

void rcv_remote_op(< op, LCop, Mop, Sop >) {
 /* check for any new site */

for (all k ∈ keysOf(Mop) {
/* check if this site has element k */
if (MS[k] = Ø) {

 /* add a new element with key k and value 0 */
MS = MS + {k ⇒ 0};

 /* add the new site to participants list */

PS = PS + {Sk};
 }
 }

 /* check if Sop has not known S */

if (Mop[key(S)] = Ø) {
 /* treat op as if it has Mop[key(S)]=0 */

Mop = Mop + {key{S} ⇒ 0};
 }

:
:
:

}

boolean does_precede(opi, opj) {
if ()]([)]([

iiij opopopop SkeyMSkeyM >) {

 /* opi precedes opj */
return true;

}

/* otherwise opi does not precede opj */
return false;

}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 235

 It is worth pointing out that the history trimming presented in Chapter 3, as part of

the document consistency management algorithm, uses the state vector and the state vector

table to determine which operations can be removed from the operation history. With the

introduction of the state map in place of the state vector, the history trimming procedure

must be modified for the state map technique. Similar to the state vector technique, each

site maintains a state map table (MT) that contains information about the state maps of all

other sites. MTi[j] (1 ≤ j ≤ N) is the state map of site Sj as known by site Si, and

MTi[j][key(Sk)] is the number of operations generated from site Sk that have been executed

by site Sj as known by site Si. Whenever a remote operation op from site Sj is executed at

site Si (note that Mop =
jSM at the time op was generated), MTi[j] is updated to be equal to

Mop to ensure MTi[j] is as up to date as possible. Let opa be an operation generated from

site Sk. Sites that have already executed opa will have)]([)]([kopkS SkeyMSkeyM
a

≥ , thus

all operations opi that opa precedes will have)]([)]([kopkop SkeyMSkeyM
ai

≥ . If site Si

receives an operation opx from site Sm, site Si will know that site Sm has already executed

op if)]([)]([kopkop SkeyMSkeyM
x

≥ .

Each site also maintains a Minimum State Map (MSM). The MSMi reflects the

knowledge of site Si about the number of operations that have been executed at every site

(MSMi[key(Sj)] = the number of operations generated by site Sj that have been executed by

every site as known by Si). Initially MSMi[key(Sj)] = 0, ∀j∈{0,...,N-1}. After executing an

operation and updating other elements of the MTi, site Si updates MSMi[key(Sj)] as follows:

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 236

MSMi[key(Sj)] = min(MTi[k][key(Sj)]), ∀k∈{0,...,N-1}. If the value MSMi[key(Sj)] = m,

then the first m operations generated at site Sj must have been executed at all sites.

Therefore, if an operation op is generated from site Sk, op can be deleted from the

history of Si if)]([)]([kikop SkeyMSMSkeyM ≤ or, in other words,

)],(][[)]([kikop SkeyjMTSkeyM ≤ }1,...,0{ −∈∀ Nj . The following figure (Figure 5-8)

outlines the updated history trimming procedure:

Figure 5-8 The updated history trimming procedure

5.4.3. Missing Operations

Site Si is disconnected from site Sj if Si is unreachable from Sj, whether it is because

of the unavailable bandwidth, Si is not within the transmission range of Sj or Si has crashed.

void trim_history() {
n = size of HS;

for i = 1 to n do

<opi, iopLC ,
iopM ,

iopS >= HS [i];
deleted = false;

if)]([)]([kikop SkeyMSMSkeyM ≤ then

HS = HS - HS[i];
deleted = true;

 endif;

 if deleted = false then exit;

endfor;
}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 237

When Si is disconnected from Sj, any messages generated and broadcast by Sj will not

arrive at Si. Therefore, Si will lose any messages or operations sent by Sj during the

disconnection period.

When site Si reconnects to site Sj, site Si will start receiving operations from site Sj

again. When Si receives an operation op from Sj after being disconnected for a while, Si

might not be able to deliver or execute op straight away because there are some operations

that precede op that were sent while Si was disconnected. Therefore Si needs to identify the

operations that it has missed during its disconnection period and it has to request those

operations be sent to Si. A remote operation op that arrives at Si carries a state map that

tells Si about the state of the originator site when op was generated. By comparing state

map of Si (iSM) and the state map of received operation (Mop), Si will be able to detect

whether there are some missing operations that it needs to request.)]([jS SkeyM
i

 signifies

the number of operations originated from Sj that have already been executed by Si, and

Mop[key(Sj)] signifies the number of operations originated from Sj that have already been

executed by Sj just before op was generated. By comparing)]([jS SkeyM
i

 and Mop[key(Sj)],

site Si is able to deduce that it has been missing some operations from Sj. This situation

also applies when site Sj receives an operation op from site Si. By comparing

)]([iS SkeyM
j

 and Mop[key(Si)], site Sj knows what operations that it has not received from

Si .

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 238

Consider the example in the Figure 5-9, where Si is disconnected right after

receiving op1 from Sj. During disconnection, Sj generates op2 and op3 that are not received

by Si. When Si is reconnected, op4 arrives at Si, with }3,0{
4

⇒⇒= jiop SSM . By looking

at this state map, Si knows that Sj has generated 3 operations before op4 (3][
4

=jop SM).

Since Si has already executed 1 operation from site 2 (1][=jS SM
i

), Si requests Sj to send

two operations generated before op4, by sending a tuple <S1, 1, 2>. When Sj receives this

request, Sj will send operations that satisfy the condition

)2][1(: ≤≤∧=∀ jopjopi SMSSop
ii

.

Figure 5-9 Disconnection scenario

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 239

In order to detect any missing operation, a site needs to compare its state map with

the state map of the incoming operation whenever a remote operation is received.

Therefore, the rcv_remote_op is modified as in Figure 5-10.

Figure 5-10 Remote operation reception procedure

When Si sends a missing operations request to Sj, Sj has to process the request and

eventually sends the operations that site Si asks for. Site Sj then needs to traverse through

its operations history to find the operations that Si requested for and send the matching

operations. However, the operation in the history of Sj may have been transformed, thus it

is not in its original form. To maintain document consistency, the operations that are going

to be sent have to be in their original form as if they are being sent when they were freshly

generated by the originator. Therefore, the operation history needs to store operations in

void rcv_remote_op(<op,LCop, Mop, Sop>) {
 /* compare state maps */

if MS[Sop] < Mop[Sop] then
/* request op from Sop */
send_op_req(Sop, <S, MS[Sop], Mop[Sop]-1>);

endif;

/* causal reception */
wait until MS[k] ≥ Mop[k], (∀k: k ∈ keysOf(MS));

/* execute remote operation by calling
 * the procedure defined in the next phase */
exec_remote_op(<op, LCop, Mop, Sop>);

}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 240

their original form in addition to their transformed variants. In the case of a simple text

editor, where the operations are simply insert and delete, storing the original form of the

operation means simply storing the original position of the inserted or deleted character. As

for other types of applications, the history might need to store the complete original form

of the operation.

Figure 5-11 outlines the procedure receive_op_request executed by every site S to

process an operation request message. When the requested operations arrive at site Si, Si

will treat them as ordinary remote operations by executing the rcv_remote_op procedure,

resuming the collaboration as usual.

Figure 5-11 Operation request reception procedure

void rcv_op_req(<Si, x, y>) {
 /* find operations in HS that satisfy

 *)][()(: ysMxSSop
ii opopi ≤≤∧=∀ */

n = sizeOf (HS)
for i = 1 to n do

<opi, iopLC ,
iopM ,

iopS > = HS[i];

if)][()(ysMxANDSS
ii opop ≤≤= then

 /* send the operations to Si */
 send(Si, <opi, iopLC ,

iopM ,
iopS >);

endif;
 endfor;
}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 241

5.4.4. Quitting a Session

A user at a particular site quits a collaboration session when s/he no longer wants to

participate in the collaboration. When a site decides to quit the collaboration session, there

are three possible scenarios.

The first scenario, the ideal one, is that the quitting site sends a ‘quit’ notification to

all other participants, the notification arrives safely to all participants, and they remove the

quitting site from their participant lists. The second scenario is similar to the first scenario.

However, due to factors such as sudden disconnection and packet loss, the ‘quit’

notification does not arrive to all intended participants, therefore not all sites remove the

quitting site from their participant list. The third scenario is that the quitting site does not

have a chance to send the ‘quit’ notification at all. The quitting site may be disconnected

suddenly or a site that is currently disconnected decides to leave the session permanently.

The following discussion describes a proposed algorithm to handle the first and second

scenarios. For the third scenario, unfortunately, there is no way to distinguish whether it

leaves the session permanently or it is temporarily disconnected. Therefore, until there is

an explicit ‘quit’ notification, a site is still considered to be a member of an active session.

Future work is needed to address the handling of the third scenario.

The following algorithm is proposed such that all sites will eventually remove the

site that has quit from the collaboration session under the first and the second scenarios.

The algorithm is described as follows.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 242

1. When site Si quits a collaboration session, it will broadcast a quit notification to all

other participants (Figure 5-12).

Figure 5-12 Sending the 'quit' notification

2. When a site receives the ‘quit’ notification, it will remove site Si from its participant

lists and it will remove the element in its state map that is associated with Si. From this

point onward, all operations generated from this site will bear a state map without the

element associated with Si (Figure 5-13).

Figure 5-13 Receiving the 'quit' notification

void rcv_quit_notification(Si) {
 /* Assume Si is the quitting site */

 /* update state vector */
 /* add an element associated with Si */

MS = MS – {key(Si)};

/* Remove Si from the list of participants */
PS = PS – {Si};

}

void quit_session() {
 /* send ‘quit’ notification to all sites */

for all Si in PS do

 send(Si, “quit”);
 endfor;
}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 243

3. For the site that does not receive the ‘quit’ notification from Si, it will eventually

remove Si from its participant list after it receives an operation from the site that has

already received the ‘quit’ notification from Si and has removed Si from its participant

lists and its state map. By comparing the state map of the incoming remote operation

and the state map of the site, it can implicitly conclude that site Si has quit the session.

Figure 5-14 outlines the additional procedure to the rcv_remote_op to check for any

site removal.

Figure 5-14 Implicit 'quit' notification from another site

void rcv_remote_op(<op,LCop, Mop, Sop>) {
 /* compare state maps to check for quitting site */

if Mop[k] ≥ MS[k], (∀k: k ∈ keysOf(Mop)) AND then
for (all k ∈ keysOf(Ms) {

if (Mop[k] = Ø) {
 /* site with key k has

 * quit the collaboration*/
MS = MS – {k};

/* Remove the site from participants list */
PS = PS – {Sk};

 }
 }
 }
 :
 :
 :
}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 244

5.4.5. Conclusion

The above sections discuss the impact of each membership event and propose

solutions to each event such that the collaboration session can still continue regardless of

the changes in the membership. The disconnected site is able to resume collaboration when

reconnected and a late joining site is able to participate in the session as if it has been there

since the beginning.

In the late join case, a site must invoke a join request procedure to join the session

via one of the current participants. Then the contacted site will send its latest state to the

new site. After the new site receives the state and applies it, it can start participating in the

session (Figure 5-5). In the disconnection case, a site must ensure that it gets all the

operations that it missed during the disconnection and all other sites must ensure they get

all the operations that they missed from the disconnected site (Figure 5-10).

For the late join case (Figure 5-5), send_join_req, rcv_join_req and rcv_state_msg

procedures were proposed to ensure the new site is brought up to date. Some additions to

the rcv_remote_op procedure are also proposed to allow sites to recognise the presence of

the new site. For the missing operation case, the rcv_remote_op procedure is modified to

allow the detection of the missing operations and the rcv_op_req procedure is used to

process the operation request. The proposed procedures are independent of each other

except for the rcv_remote_op which needs to be modified such that it accommodates the

additions made for the late join case and the missing operation case. Figure 5-15 outlines

the combined rcv_remote_op algorithm to handle those membership problems. Firstly, it

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 245

checks for any site that has quit the collaboration and if there is a new site by examining

the remote operation's state map. Then it compares the state map of the remote operation

and the state map of the recipient site to determine any missing operations and send any

operation request if necessary. Finally, it executes the operation when it is causally ready.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 246

Figure 5-15 The complete remote operation reception procedure

void rcv_remote_op(< op, LCop, Mop, Sop >) {
 /* compare state maps to check for quitting site */

if Mop[k] ≥ MS[k], (∀k: k ∈ keysOf(Mop)) AND then
for (all k ∈ keysOf(Ms) {

if (Mop[k] = Ø) {
 /* site with key k has quit */

MS = MS – {k};
 /* Remove the site from participants list */

PS = PS – {Sk};
 }
 }
 }

 /* check for any new site */

for (all k ∈ keysOf(Mop) {
if (MS[k] = Ø) {

 /* add a new element with key k and value 0 */
MS = MS + {k ⇒ 0};

 /* add the new site to participants list */
PS = PS + {Sk};

 }
 }

 /* check if Sop has not known S */

if (Mop[key(S)] = Ø) {
 /* treat op as if it has Mop[key(S)]=0 */

Mop = Mop + {key{S} ⇒ 0};
}

 /* compare state maps for missing operations*/
if MS[Sop] < Mop[Sop] then

send_op_req(Sop, <S, MS[Sop], Mop[Sop]-1>);
endif;

/* causal reception and execute remote operation */
wait until MS[k] ≥ Mop[k], (∀k: k ∈ keysOf(MS));
exec_remote_op(<op, LCop, Mop, Sop>);

}

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 247

5.5. Implementation

The proposed algorithm covers the ways to handle the various membership problems.

However, the algorithm provides only the core procedures and the implementation of the

algorithm itself may vary depending on the application domain and the amount of available

resources. Some issues in the implementation and their impact on performance are

therefore discussed in this section.

5.5.1. Storing the original form of operations

Each time a site receives a remote operation (op), it has to transform the operation such

that it preserves its original intention. This causes operations, both local and remote, to be

stored in the history not in their original forms (op), but in their transformed variants (op').

The transformation and execution of a remote operation might cause some operations in

the history to be transformed such that it maintains the consistency.

Consider the following scenario involving two sites, Si and Sj. Site Si locally

generates opi = insert(3,'X') and stores opi as opi = insert(3,'X') in its history
iSH . Site Sj

concurrently generates opj = delete(2) and stores opj as opj = delete(2) in
jSH . When opj

arrives at Si as a remote operation, Si has to organise the history and execute opj such that

the intention is preserved. If opj → opi, opi is transformed such that it becomes opi =

insert(2,'X') when it is stored in
iSH . Therefore, opi that was locally generated by Si is

stored in its transformed form. This fact can cause a problem when a missing operation is

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 248

being requested. If Si misses some operations from Sj and sends an operation request to Sj,

Sj has to send the requested operations in their original form as if they are just generated

from Sj. If Sj has executed some local and remote operations, it is highly possible that the

requested operations have been transformed, thus Sj is not able to send the operations in

their original forms.

To solve this problem, there are two possible solutions that can be used: (1) undo

the transformation to get the original operation, or (2) keep the original form of each stored

operation. While the first solution is elegant and seemingly does not need any additional

memory requirement, it is not feasible to implement in practice. To undo the

transformation, the site has to record the state of the site when the operation was generated.

It has to be able to shift the operation to its original position in the history (when it was

first generated) and it has to transform the operation to its original form. It needs extra

memory space to store the original position of the operation in the history, but also requires

extra processing power to do the transformation. The second solution seems to be more

expensive in terms of resource. However, if a site keeps the original form of each stored

operation, the site does not need to transform an operation to get its original form. By

adding extra information in the history, the site does not need to use extra processing

power to do the transformation.

Depending on the type of application, storing the original form of operation might

mean storing the whole operation command and the parameters or simply storing the

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 249

original values of the parameters (if the operation transformation does not change the

operation command).

In the case of missing operations, the site that requires the operations sends requests

to the originator site. Thus, each site needs only to keep the original form of the locally

generated operations. It does not need to worry about maintaining the original form of

remote operations. This does not add much to the storage space consumption. However,

depending on the implementation, sites may be able to request operations from other sites

other than the originator site (i.e. the originator site is disconnected for indefinite period).

In this case, each site needs to maintain the original form of all operations, locally

generated and remote operations. The next section, section 5.5.2 discusses this issue.

5.5.2. Requesting operations from a site other than the originator

When Si misses some operation, it sends an operation request to the originator site Sj to

resend the missing operations. If Si and Sj are not connected (i.e. either one of the sites is

disconnected or unreachable), the requested operation cannot be sent. The request might

not arrive at Sj, thus Sj does not know if there is an operation request, or the operations that

are sent might not arrive at Si. In either case, Si will not receive the requested operations at

all. If they are disconnected for an indefinite period, Si might not receive the missing

operations at all and Si will not be able to continue processing other future remote

operations. This obviously reduces the availability of the data and the ability of sites to

collaborate.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 250

This problem can be solved by allowing Si to send requests to any other sites, other

than Sj, that have the requested operations. When Si receives an operation from another site,

say Sk, Si is able to determine whether Sk has already executed the operations that are

requested. If Sk has executed those operations, Si knows that Sk has the operations and Si

could send the request to Sk instead of Sj.

There are various way of implementing this scheme. Si could send the operation

request to Sj first and wait for Sj to reply. If Si has not received the operations by a certain

timeout period, then Si can send the request to other sites (e.g. Sk). Another possible

strategy is that Si could send the request arbitrarily to any site as long as Si knows that the

site has the requested operations.

This solution, however, provides greater flexibility and availability at the cost of

resources. Sites can request operations from any other connected sites, but it requires all

sites to keep the original form of all operations, the locally generated and the remote

operations. Hence, each site needs extra storage space to store the original form of all

operations. If the connectivity is relatively good, then this solution will only add to the

resource consumption without giving a significant benefit. However, if the connectivity is

relatively poor, then this solution will be a good alternative to handle missing operations.

5.5.3. Remote Operation Queue

Each time a remote operation is received by a particular site, that site will execute

procedure rcv_remote_op. The remote operation will go through a checking process before

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 251

it is executed. One important thing to note is that to maintain consistency, the remote

operation will only be executed if it is causally ready (i.e. there are no other operations,

which precede it, that have not been executed by the site). Until it is causally ready, it waits

in a remote operation queue.

The remote operation queue holds all remote operations that have been received but

are not yet ready to be executed. It is highly probable that when another remote operation

arrives at a site, it has already had some operations in its remote operation queue. This will

affect the way the missing operations are determined. The basic idea is to detect missing

operations by comparing the state map of the received operation with the state map of the

recipient site. However, the state map of a site only shows the operations it has executed,

not the operations it has received that are still in the remote operation queue. Therefore, if a

site wants to check for missing operations, it also has to check its remote operation queue

to determine whether it has received the operation that it suspects to be missing.

Consider the following scenario where there are three sites collaborating: Si, Sj and

Sk. Let opi,n, opj,n, and opk,n be the n-th operation generated by Si, Sj and Sk respectively. Sk

has its state map }6,4,5{ ⇒⇒⇒= kjiS SSSM
k

and Si generates an operation opi,10

where }5,9,9{
7,

⇒⇒⇒= kjiop SSSM
i

. This means that by the time opi,10 was

generated, Si has already executed 6 operations generated by Si, 9 operations generated by

Sj and 5 operations generated by Sk. When opi,7 arrives at Sk, Sk notices that Si has already

generated 9 operations, while Sk has only received 5, thus Sk knows that it has missed some

operations from Si.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 252

Using the proposed algorithm, Sk will send a request to Si to ask for opi,6, opi,7, opi,8,

and opi,9. Si might have already received some of those requested operations previously,

but because of the causal precedence, it cannot execute them as yet and they are stored in a

remote operation queue. Assume opi,7 and opi,8 have already been received and are

currently stored in a remote operation queue. This means Sk will only need to request opi,6

and opi,9. Therefore, the site's state map is not enough to determine the operations to be

requested. The site also needs to search its remote operation queue to see whether some of

the requested operations have been received and are currently stored in the remote

operation queue.

5.5.4. Duplicate Operation Requests

If a site has missed some operations, it will send an operation request to ask for those

operations to be resent. Duplicate operation requests might happen if the site sends the

same operation request to the originator site while it is waiting for the response of the first

request.

Let say site Si and Sj are currently participating in a collaboration session. Site Si

generates an operation opi and broadcasts it to all other participants. Upon receiving opi, Sj

realises that it has missed some operations and it sends the request to Si requesting

operations that it has missed up until operation opi excluding opi. When Si receives the

request, it will respond by sending the requested operations to Sj. If, however, Si generates

another operation opj before responding to the request and sends opj to Sj, Sj will detect that

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 253

it missed some operations (which is the same set of operations that it has requested from Si)

and it will send the request to Si. Therefore, Sj will end up sending two requests for the

same set of missing operations.

This issue can be handled by introducing the use of a timeout between the

subsequent requests. After Sj sends the first operation request, Sj waits for a certain timeout

period before sending another request for the same operations. After the timeout, if Sj has

not received some or all operations that it requested, Sj will send another operation request.

5.6. Performance Evaluation

The algorithm has been evaluated by simulation on varying numbers of sites, numbers of

generated operations, network delays (the time it takes for an operation to arrive at the

destination) and disconnection rates (the probability the operation not arriving at the

destination). The simulation aims to evaluate the resource usage of the introduced

functions (handling missing operation and late joining) by measuring the portion of

processing time used for handling membership events.

The simulation is done using Java and a PC which simulates a number of sites,

generating and receiving operations with various simulated network delays and

disconnection rates. A simulation in a real mobile network environment is not necessary

since the simulation does not aim to represent the actual time taken to run those functions

nor the actual disconnection rates since these vary depending on the platforms and network

configurations, the different implementations, users’ behaviour, and users’ mobility.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 254

However, the simulation does show the resource usage of the additional functions relative

to the existing consistency management algorithm without the membership functions and

the simulation gives the trend of the expected results on various disconnection rates.

Firstly, the number of lost operations, the number of operation requests, and the

total number of messages required to completely send all operations to all destinations are

counted under various disconnection rates in order to determine the ratio of each of them

against the total number of operations that have to be broadcast to all destinations. The

number of lost operations is the number of operations that are sent by a site and lost during

transmission, whereas the number of operation requests is the number of requests sent by a

site because it misses some operations. For example, if there are 4 sites collaborating and

20 local operations generated at each site, one site has to send each of the 20 operations to

3 participants, which means one site has to send 60 operations in total. If, for example, 20

out of these 60 sent operations were lost, the lost operations ratio would be 33%.

Figure 5-16 shows the ratio of lost operations over the total number of operations

sent. As expected, as the disconnection rate increases, the number of lost operations

increases exponentially. This is because some operation requests and resent operations

might get lost during transmission causing the receiver site to send additional operation

requests and thus the number of lost operations increases exponentially. When a sender site

sends operations some of them might be lost during transmission. The receiver site will

then send operation requests to the originator when the operations are lost during

transmission and the originator will send the requested operations to the receiver site.

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 255

Some of these operations might also be lost during transmission, thus additional operation

requests are sent to the originator. This goes on until all sent operations arrived at the

destinations, causing the number of lost operations to increase exponentially.

Lost Operations
 (no. of lost ops / no. of sent ops)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

10% 20% 30% 40%
Disconnection Rate

2 sites
4 sites
8 sites
15 sites

Figure 5-16 Lost operations

Figure 5-17 shows that, again as expected, the number of operation requests

increases as the disconnection rate increases. For example, when two sites are participating

and the disconnection rate is 30%, the number of operation requests is up to 50% of the

number of sent operations. Figure 5-18 shows the correlation between the number of sent

messages and the disconnection rate. The number of sent messages is the average number

of messages being transmitted by a site in order to completely receive all operations. This

number includes the number of operations sent in the first place, the number of operations

being re-sent (due to disconnections), and the number of operation requests. When the

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 256

disconnection rate is 30%, the number of total messages transmitted reaches up to 200% of

the number of operations needed to be transmitted.

Operation Requests
(no. of op reqs / no. of sent ops)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

10% 20% 30% 40%
Disconnection Rate

2 sites
4 sites
8 sites
15 sites

Figure 5-17 Operation requests

Sent Messages
(no. of sent msgs / no. of sent ops)

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

10% 20% 30% 40%

Disconnection Rate

2 sites
4 sites
8 sites
15 sites

Figure 5-18 Sent messages

Secondly, in order to add membership functionality, the proposed algorithm

requires additional overhead in terms of processing time. Before actually executing the

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 257

remote operation, a site needs extra processing time that comprises: (1) time to check

whether or not there is any new site, (2) time to check whether or not the incoming

operation has been received or executed, (3) time to check if there are any missing

operations, (4) time to construct an operation request for any missing operations if

necessary, and (5) time to put the operation request to the outgoing message queue ready to

be sent. Figure 5-19 shows the proportion of total time taken to handle the membership

management processing overhead.

Percentage of Time Used for Handling
Membership Events

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

2 4 8 15
Number of Collaborating Sites

20 Operations
40 Operations
100 Operations

Figure 5-19 Processing time required to handle membership events

When there are two sites collaborating, around 25-35% of the time is used for

handling membership while the remaining 65-75% is used to actually execute operations.

When there are more than 8 sites collaborating, the site requires less than 5% of the time to

handle membership events. As the number of sites increases, the portion of time used for

performing membership functions declines exponentially. This is caused by the fact that

the more sites, the more time required to execute the operation (since executing an

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 258

operation involves tracing the history to find concurrent operations and to do the necessary

operational transformations).

The experiment shows that the time used by the proposed algorithm to perform the

membership functions is constant regardless of the number of participating sites or the

number of generated operations. In the simulation using a PC with 1.8GHz of CPU clock

and 512MB of RAM, the time to execute a remote operation ranges from 1.42ms for two

sites to around 45ms for 15 sites, whereas the time used for these membership functions is

relatively constant around 0.23ms to 0.5ms.

Figure 5-20 and Figure 5-21 show that the time to do this processing is relatively

small at around 1 to 2 ms for each remote operation, and the processing time does not

increase over time. Therefore, the proposed algorithm allows each site to handle the

various membership events with very little processing power.

20 Operations, 2 Sites

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

20 Operations, 4 Sites

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

`

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 259

20 Operations, 8 Sites

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

`

20 Operations, 15 Sites

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

`

Figure 5-20 Processing time for 20 operations

40 Operations, 2 Sites

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 10 20 30 40

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

`

40 Operations, 4 Sites

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

`

40 Operations, 8 Sites

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

`

40 Operations, 15 Sites

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Remote Operation No.

Pr
oc

es
si

ng
 T

im
e

(m
s)

`

Figure 5-21 Processing time for 40 operations

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 260

5.7. Conclusion

This chapter has discussed the need to handle membership events in a fully distributed real

time mobile collaboration system. Frequent disconnections and late joins cause

fluctuations in collaboration session membership. If this is not handled correctly, it may

result in inconsistent document replicas among the collaborating sites.

An algorithm that handles these two major membership events in mobile networks

has been proposed and it is integrated with the proposed consistency management

algorithm (presented in Chapter 3) so as to ensure the consistency among document

replicas. The proposed algorithm detects if there are any missing operations and requests

the originator site should resend to allow a new joining site to blend in the session

smoothly and be able to participate in the session. The algorithm incorporates a novel

technique, called a state map, as a replacement of the state vector technique to allow

concurrent late joins to be handled correctly. Furthermore, the algorithm does not require

new participants to explicitly inform other participants that they have joined the session.

The experiments show that the proposed algorithm provides each collaborating site with

the capability of handling various membership events while maintaining document

consistency with a relatively small overhead (5%-25% of the total processing time).

Future work may include an investigation of how to optimize the algorithm in

terms of minimizing the number of sent messages in the event of disconnections. Some

possible strategies may include sending the missing operations in one message and

CHAPTER 5. MEMBERSHIP MANAGEMENT

 (June 15, 2007) 261

dividing the document into partitions so as to reduce the overall number of messages

needed to be transferred. Group membership events might also be analysed to identify

patterns of behaviour that can be incorporated into the algorithm to help the algorithm

anticipate membership events and to improve the overall performance.

6. Document Partitioning

Chapter 6

Document Partitioning

6.1. Introduction

Methods of dealing with consistency management, conflict management and membership

events in mobile environments have been proposed in previous chapters. Like other

existing algorithms that support mobile real-time collaborative editing [34, 46, 115, 126,

132, 142], they require each device (site) to maintain a local replica, the state of the local

replica (site state map) and store a history of operations to be used to correctly process and

execute concurrent remote operations.

Mobile devices have very limited storage space, thus if the document is large, they

may not be able to hold the complete document replica. In replicated real time

collaboration each device has to store the document replica with its state and the operations

history to fully function. The size of the operation history may grow indefinitely during the

collaboration session. History trimming can be used to minimise memory resources.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 263

However, depending on the concurrency level of the generated operations, the history size

may not be able to be trimmed to zero size. Furthermore, mobile devices have limited

interface (screen) size such that even though the document replica could be stored

completely in the device storage, a user might not be able to see the whole document at

once. Therefore, a user might choose to work only on a particular part (section) of the

document.

For example, consider a group of architects working on a draft of the design of a

health clinic. The draft may be too large to be completely stored or replicated in a mobile

device, and some of them may choose to work on some specific parts of the clinic, leaving

other parts to other team members. When Alice is working on the pathology room, she

might not need to know the immediate updates on the surgery room. When Bob is working

on the reception area, he might not need to know the immediate updates on the

consultation rooms. Another example would be a group of authors working on a book. An

author may choose to work on only some chapters, while another may choose to work on

other chapters. Note that one chapter may be updated by more than one user at a time.

By allowing a document to be partitioned into several sections, users can work only

on desired sections. This not only provides flexibility for users, it also reduces resource

consumption. When Alice is working only on a specific section of the document and is not

interested in updates on other sections, she does not need to receive updates on other

sections, thus reducing bandwidth consumption (since the sites working on other sections

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 264

do not need to send updates to Alice) and reduces processing consumption (Alice’s site

does not need to process any unnecessary incoming updates).

This chapter presents an algorithm to support document partitioning in a replicated

architecture that maintains consistency and provides flexible membership management.

The collaborative document is divided into application-defined sections and users can

choose to work on one or more selected sections. A generated operation may affect one or

more sections and it is broadcast to all sites that work on the affected section(s). The

algorithm ensures that the sections are consistent across all sites, and users receive only

operations that they are interested in, i.e. operations that affect sections that they are

working on. The algorithm also utilises a document index, maintained by all sites, to

ensure that sections are laid out correctly in the complete document. The algorithm allows

users to create new sections whenever necessary and provides mechanism for them to

switch from one section to another section as needed.

The rest of the paper is structured as follows Section 6.2 explains the rationale and

the problem of document partitioning. Section 6.3 discusses related work in document

segmentation and adaptation into mobile environments. Section 6.4 outlines the model of

the document partitioning problem. Section 6.5 presents the proposed algorithm. Section

6.6 presents the results of the performance analysis. Finally, section 6.7 concludes the

paper and outlines some possible future work.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 265

6.2. Document Partitioning Problem

A collaboration session starts when two or more users decide to produce a document

collaboratively. In a replicated mobile environment, a user initiates the session and other

users will join the session. When a user joins a session, s/he will receive the up-to-date

document, document state and other necessary data to ensure that s/he will be able to

participate in the collaboration session as outlined in Chapter 5. Throughout the session,

the document consistency algorithm presented in Chapter 3 is used to ensure that the

consistency of the document replicas is maintained.

The document consistency algorithm, however, requires additional processing

power and storage space. In terms of storage space requirement, the consistency algorithm

requires each site to maintain an operation history. The operation history stores all

executed operations (local and remote) and its size increases indefinitely as the

collaboration session goes on. In order to minimise the storage requirement, document

partitioning allows users to work only on some sections, therefore they do not need to

receive operations on other sections, and thus reducing the size of the history. It can be

argued that the history trimming technique [34, 132] alone can be used to minimise the

history size by garbage collecting the operations that will no longer be used for

transformation purpose. However, due to network delays, operations concurrency and

frequent disconnections, the history may not be able to be cleaned entirely. The length of

the delay, the level of operations concurrency and the frequency of disconnections

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 266

correlates positively with the size of the history [34]. By combining document partitioning

and history trimming, the history size may be further reduced.

In addition to reducing the storage requirement, document partitioning may also

reduce the power consumption. Consistency management algorithms consume processing

power to process incoming remote operations. GOT [137] works by undoing the already

executed operations, executing the remote operation and re-executing the undone

operations; GOTO [131] and SOCT2 [126] attempt to use backward transformation to

ensure the remote operation are transformed at its original state; SOCT3 [142] separates

the history into two sequences, transforming and executing the remote operation, placing

the remote operation in the history and reorganising the history; the algorithm proposed in

Chapter 3 uses a total ordering algorithm to ensure the operations are ordered consistently

across all sites. Regardless of the way the algorithm works, all of them consume processing

power to process an incoming remote operation. By allowing users to work only on some

sections, updates are sent only to interested users. Therefore, users do not need to receive

and consequently process unnecessary operations thus reducing processing power

consumption.

For example, three authors - Alice, Bob and Cameron - are currently participating

in a collaboration session. As the document increases in size, Alice may choose to work

only on the first and second chapters. Another team member, Bob, chooses to work on the

second and the fourth chapter. Meanwhile, Cameron, another team member, is working on

all chapters (chapter one to four). Modifications on chapter four by Bob might not interest

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 267

Alice, neither might Bob be interested in modifications of chapter one by Alice. To reduce

unnecessary resource consumption (network bandwidth, storage space and processing

power), updates on chapter one by Alice need to be sent only to Cameron, updates on

chapter four by Bob need to be sent only to Cameron, updates on chapter two need to be

sent to all members, and updates on chapter three by Cameron need not be broadcast to

anyone. Document partitioning allows each user to be active on his/her selected parts and

not to receive unnecessary updates. Therefore, there is a need for a document partitioning

strategy that allows users to work on desired parts and at the same time minimises resource

consumption.

Document partitioning, however, presents some challenges in real time

collaborative editing in mobile replicated architecture, as follows.

1. Section Boundaries. Boundaries of sections must be clearly defined and agreed by

all users. In an object based document, for example, if an object belongs to a

particular section at a site, that same object must belong to the same section at all

other sites. Furthermore, the objects in one section must comprise a meaningful

piece of work or artefact, such as a chapter of a text document, a page of a class

diagram, and a worksheet of a spreadsheet document.

2. Section Membership. If a site chooses to work on a particular section, that site

must receive all updates generated by all other sites on the section. This implies

that each user has to know all users who are currently working on the same section.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 268

Consequently, a site should not receive operations that do not affect sections that

the site is currently active on.

3. Section Creation. During a session, a document section may increase in size and

there may be a need to either split the section into two sections or to add a new

section into the document. To ensure the collaboration continues correctly and

smoothly, when a new section is created, every user must agree on its boundaries

and, if applicable, its initial components (objects).

4. Joining a Section. During a session, a user on site S1 may choose to join a section

that s/he is not currently active on. In order for S1 to be able to join a section, say

section A, S1 must first contact a site that is currently active on section A to receive

the up to date content of section A with all necessary data. Eventually, after joining

section A, all sites that are currently active on section A must know that site S1 has

joined, thus will send further updates on section A to site S1.

5. Leaving a Section. After working on a section, say section A, a user on site S1 can

choose to stop working on that section. In this case, other users that are working on

section A must eventually know that S1 is no longer active on section A and

therefore will not send any updates on section A to site S1,

The proposed document partitioning algorithm addresses the challenges above in order to

provide flexibility for users to work on their desired sections while still maintaining the

consistency of the document replicas.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 269

6.3. Related work

Much work has been done in porting documents into mobile devices due to the

limitations in mobile network environments [81, 82, 95, 106]. Adaptation and document

decomposition are two common approaches to port the document content into lower

capacity and bandwidth limited network environments.

Duplex [106] uses two concepts: document decomposition and kernel existence.

The document decomposition is similar to the proposed strategy presented in this chapter.

However, Duplex assumes the document segments are totally independent. The kernel

holds the central repository of the document parts and the kernel is replicated for

responsiveness and availability. Duplex, however, works only in asynchronous (non-real-

time) collaboration where users need to download the document parts from the kernel if

they want to edit certain segments and then commit the changes back to the kernel once

they are done with the changes.

Puppeteer [82], a system for adapting applications and content for the mobile

environment, took advantage of the exported APIs of component-based applications to

customize the behaviour of applications based on their environment without modifying the

source code of the original application. Puppeteer transcodes the document

components/segments into a partial fidelity version of the document components to allow

faster download of the document from its native store. However, Puppeteer allows only a

read-only adaptation. Odyssey [102], similar to Puppeteer, also adapts application data to

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 270

the current state of the network connection. However, unlike Puppeteer, which uses public

APIs of applications to manipulate that application’s data files, Odyssey requires

applications to be customized to support its implementation scheme.

Alliance [38] was designed as a cooperative application that allows several users,

distributed on a network, to work on shared structured documents. Documents are

automatically divided into variable sized fragments, which are the sharing units. A

fragment is a continuous part of a document. For maintaining document consistency in the

LAN version, only one copy of each document is stored on disk, whatever the number of

users working on it and the sites from which the users work; but several files are used for

storing a single document, one file for each fragment. These files reside on a volume that is

accessible from all workstations involved in the application. This is achieved by using

Network File System (NFS) [4] which presents all remote files as if they were local. Each

user plays a certain role on each document fragment. However, to maintain document

consistency, each document fragment can only be modified by one person (who has the

writer role) at any given time; thus it does not support concurrency. When a fragment is

updated by a user acting as a writer, this fragment is not automatically sent to all sites

working on the document. Only a short message is sent: it informs the remote sites that an

updated version of the fragment is available. With the replication policy presented above,

communication between sites is needed only to transmit these short messages, to transfer

updated copies to the sites which ask for it, and to get remote user lists.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 271

CoFi [81] extends Puppeteer by implementing adaptation-aware editing and

progressive update propagation mechanisms that enable document authoring and

collaborative work over bandwidth-limited links. Adaptation-aware editing enables editing

adapted documents by differentiating between modifications made by the user and those

that result from adaptation. Progressive update propagation reduces the time and the

resources required to propagate components created or modified at the bandwidth-limited

device by transmitting subsets of the modified components or transcoded versions of those

modifications. CoFi, however, works in semi-centralised architecture and it does not

support synchronous (real-time) collaboration. CoFi requires the clients to propagate the

updates to a remote proxy, and consequently fetch updated document content from remote

proxy as well. The remote proxy will then synchronise the document with the native store

so that another remote proxy can fetch the updated document contents.

Some work has also been done to allow mobile clients to browse web pages while

efficiently using the limited bandwidth. One such example is the work by Yau et al. [152]

which proposed a mechanism that allows a web client to explore the more content-bearing

portion of a web document before deciding to download the whole document. The user is

presented with the main document content before the supplementary information is

presented (downloaded). The mechanism aims to prevent the web client from

downloading unnecessary and/or irrelevant web content, thus reducing unnecessary

bandwidth consumption. This mechanism, however, is only applicable to the web

environment which by nature is very different from a real-time collaboration environment.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 272

Veiga et al. [141] introduced a notion of semantic-chunks, where documents are

segmented into portions of files that have content-derived (instead of offset-derived)

boundaries. Application-based semantic-chunk borders may be defined as sections,

paragraphs, sentences in text documents, cell areas in spreadsheets, objects and geometry

in CAD tools, functions and declaration zones in programming source code editing and so

on. The proposed semantic-chunks middleware provides transparency to the users (i.e.

users are not aware of the chunks) and allows the existing office application to be

fragmented without significantly modifying the off-the-shelf applications. Semantic-

chunks middleware, however, adopts a very simple consistency enforcement strategy

where each update is comprised of a set of modified semantic-chunks and is propagated

either implicitly, whenever two peers meet with neighbouring devices, or explicitly,

whenever two or more peers meet and the file owner broadcasts a new update to explicitly

overwrite all other replicas. This strategy, however, works only when the concurrent

editing on the same chunk is rare, therefore an update by a user or the file owner can

simply overwrite the chunk of other peers. Furthermore, although they mentioned the use

of version-maps, they do not discuss how version-maps are used with regards to

maintaining consistency.

TreeOPT [67], as mentioned in section 3.2.1 and 3.3.3, divides documents into

multiple granularity levels which allows independent document modification on separate

nodes. TreeOPT however is somewhat a multi-level linear representation of the document

and each node, although independent at its level, is not completely independent as they

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 273

belong to the same higher-level node (for example two words in a paragraph are dependent

on each other at the paragraph level). Therefore, treeOPT does not allow the document to

be partitioned.

While much work has been done in the area of adaptation and document

decomposition, none of it directly supports document partitioning in synchronous (real-

time) mobile collaborative editing in a fully replicated architecture.

6.4. The Model

A real time mobile groupware system consists of a set of participant sites (S = {S1, S2…

SN}, N = the number of current participants) connected by a wireless network. A site

corresponds to a mobile device and there is one device per user. Each site holds a

document replica (Ri = replica of site Si). A document consists of document objects (Ri =

{O1, O2,…, Ok}, k = the number of objects in the document). For example, an ER diagram

consists of several entities and relationships as the objects; and a home designer draft

consists of furniture, lightings, and decorations as the objects.

The document is divided into sections Cj. A replica is complete if it contains all

sections (Ri = C1 ∪ C2 ∪ … ∪ Ct, where t is the number of sections in the document). A

site may choose to work on one or more sections at one time. The ability of each site to

choose whether or not to work on a particular section determines the status of each site on

each section as follows.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 274

• Site S1 is active on section C1 if a user at site S1 is able to update section C1 and

receives updates on section C1 from other sites.

• On the contrary, site S1 is passive on section C1, if a user at site S1 decides not to make

any further update on section C1, and not to receive any updates on section C1 from

other sites.

Each section consists of several objects (Cj = {O1, O2, …, Ox}) . An object may belong to

more than one section, especially if the object links two objects on two separate sections.

For an example, in a class diagram, an association line that links two classes on two

separate sections will belong to the two sections so that users can see the association line

even though s/he is working on only one of the sections.

Whenever a user updates the document replica, a local operation op is generated to

realise the user’s intention. In an unpartitioned document, the generated operation is

broadcast to all other sites since all sites are working on the whole document (complete

replicas). In a partitioned document, however, the generated operation needs to be

broadcast only to sites that are active on the same section where the operation has been

generated (sites that are active on the same section). Therefore, each section must maintain

a membership list,
xi ,CSSC = the list of sites that are active on section Cx as known by site Si.

This list tells site Si which sites each generated operation must be sent to. Even though an

operation usually affects only one section, some operations may affect two or more

sections. Suppose Alice is working on two sections, C1 and C2, and Bob is working on

another two sections C2 and C3. If Alice creates an object that links an object in C1 and

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 275

another object in C2, this operation has to be sent to users that work on C1 and/or C2

causing Bob to receive this operation even though Bob is not working on C1. Consequently,

each section must maintain its own history of operations that each local operation and

remote operation can be processed according to the section it belongs to, and stored in the

section’s operations history (
xi ,CSH = operations history of section Cx in site Si).

To maintain causality, each operation bears a state map
iopM to signify the state of

the document when the operation was generated. In an unpartitioned document, the state

map signifies the state of the whole document (how many operations have been executed

from each sites). The state map signifies when it was generated and the state map

technique is useful to determine whether an operation has been generated after, before, or

concurrent to another operation. Note that the state map technique works in a similar way

to the state vector technique. Instead of using an integer index, a state map uses a unique

key to indicate which site each element of the state map is associated with (refer to section

5.4.2). Traditionally, when op is generated by Sop, the operation state map is a map of size

N, Mop = {key(S1) ⇒ val(S1), key(S2) ⇒ val(S2), …, key(SN) ⇒ val(SN)}, where key(Si) is

the key associated with site Si and val(S1) is the number of operations generated by site Si

that have been executed by Sop at the time op was executed. The state map is then used to

determine whether an incoming remote operation can be executed or it has to wait for other

operations that precede it.

However, if this state map technique is applied to a partitioned document, a remote

operation has to wait for other preceding operations, even though the preceding operations

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 276

might not be directly related with the remote operation or the preceding operations are

done at another part of the document. Therefore, in a partitioned document the state map

should signify the state of the section where the operation is generated, instead of the state

of the whole document, to remove dependency (causality) between operations on different

sections. If the state of the whole document is used, whenever a user receives a remote

operation, it has to wait for, receive and execute all operations that causally precede it.

Therefore, if one or more of the preceding operations belong to another section, they will

not be sent to the user and thus the user will not have to wait for those operations

indefinitely. By using a section state map, each section can operate independently and each

section has its own set of operations and therefore its own operation history. The section

state map is represented by
xi ,CSM with each of the element of

xi ,CSM represents the

number of operations, generated by another site targeting Cx, that have been executed by

site Si on its own section Cx.

If an operation belongs to more than one section, it will bear multiple state maps,

one from each section that it affects. This is necessary to ensure that when an operation

arrives at another site, the site can process the operation correctly even though the site has

only one of the affected sections. Therefore, every operation will be time-stamped with a

state map list containing the state maps of the affected sections, MLop = {MLop[1], MLop[2],

… MLop[k]}, where k is the number of the affected sections. Each entry of the MLop is a

state vector of an affected section, MLop[i] = [x,
xop,CM], where x is the id of the affected

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 277

section (Cx) and
xop,CM is the state map of the section Cx in site Sop when op was generated.

As an example, suppose site S1 generates op and op affects two sections: C1 and C3. If the

state maps of the sections are
11,CSM = {S1 ⇒ 3, S2 ⇒ 4 , S3 ⇒ 4} and

31,CSM = {S1 ⇒ 6,

S2 ⇒ 4, S3 ⇒ 9} at the time of the local operation generation, op will bear the state vector

list MLop = {[1, {S1 ⇒ 3, S2 ⇒ 4 , S3 ⇒ 4}], [3, {S1 ⇒ 6, S2 ⇒ 4, S3 ⇒ 9}]}.

Each section maintains its own operation history; therefore each section is

responsible for doing its own garbage collection to remove operations that are no longer

needed. In order to do this, each section must maintain a record on which sites have

executed which operations on that section, therefore each section must maintain a state

map table (
xj CSMT ,) to be used for history trimming. The garbage collection algorithm

using the state map technique is presented in detail in section 5.4.2.

During the course of the collaboration session, there might be a need to create a

new section. For example, an author decides to create a new chapter, an architect decides

to create a new room or a software designer decides to create new classes in a new section.

Each time a section is created, all users must be notified. This is to ensure that if more than

one user is concurrently creating new sections, possible conflicts are resolved, and the new

sections and their relationships with other sections must be correct and consistent in all

document replicas.

A document index and/or layout may be necessary to construct the complete

document when a user has all the sections. In a text document with chapters as the sections,

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 278

a document index is used to provide the order of the chapters. In a 2D document, a

document layout is used to construct the complete draft when all sections are available. For

simplicity, this chapter assumes a single dimensional document index, where sections

(chapters) are ordered linearly with one preceding the other. Adding a new chapter means

creating a new section and adding the section index into the document index at the

appropriate position. A document index at site Si is represented by
iSDI =

{]1[
iSDI ,]2[

iSDI , … ,][mDI
iS } where m is the current total number of the sections. Each

element of
iSDI ,][jDI

iS , is a document section, Cx, and x is not necessarily equal to j

since the sections are dynamically created and inserted in various positions.

6.5. Proposed Algorithm

During a collaboration process, a site typically goes through the following phases: local

operation generation, operation broadcast, and remote operation reception and execution.

In a collaboration that allows document partitioning, a site may go through some other

phases such as adding an active section, removing an active section and creating a new

section. The following are notations to be used in the proposed document partitioning

algorithm:

• Si = site with id i.

• Cx = section with id x.

• Ri = document replica at site Si.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 279

• N = the number of current participants.

• m = the number of current sections in the document

•
xi ,CSSC = the list of sites that are active on section Cx as known by site Si.

•
xi ,CSH = operations history of section Cx in site Si.

•
xi ,CSM = the state map of section Cx in site Si, with each of the elements of

xi ,CSM represents the number of operations, generated by another site targeting Cx,

that have been executed by site Si on its own section Cx.

•
xi CSMT , = the state map table of section Cx in site Si. MTi[j][key(Sk)] is the number

of operations generated from site Sk that have been executed by site Sj as known by

site Si.

• MLop = the state map list of operation op.

• MLop = {MLop[1], MLop[2], … MLop[k]}, where k is the number of the affected

sections.

• MLop[i] = [x,
xop,CM], where x is the id of the affected section (Cx) and

xop,CM is

the state map of the section Cx in site Sop when op was generated.

•
iSDI = document index as known by site Si.

•
iSDI = {]1[

iSDI ,]2[
iSDI , … ,][mDI

iS } where m is the current total number of

sections.

•][jDI
iS is a document section, Cx and x is not necessarily equal to j.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 280

6.5.1. Local Operation Generation

Every time a local operation is generated, it is immediately executed locally, and broadcast

to other sites. The operation will bear one or more timestamps (state maps) depending on

how many sections it affects. For each affected section, the operation will bear the

section’s state map. The operation is then broadcast to all sites working on the affected

sections and is stored in the operation history of the affected sections. Figure 6-1 presents

the procedure gen_local_op(op) that is invoked when a local operation is generated.

Figure 6-1 Local operation generation

void gen_local_op(op) {
 //Assume op is generated at site Si
 MLop = {};
 Sdest = {}; // Sdest is the set of sites to send the op to
 for each affected sections Cx {
 //Adding the section state map
 //to the operation’s state map list
 MLop = MLop + [x,

xi ,CSM];

 //Update the section state map
)]([i,CS SkeyM

xi
=)]([i,CS SkeyM

xi
 + 1;

 //Adding the operation into the
 //section’s operation history

xi ,CSH =
xi,CSH + {op};

 //Gathering the sites to send the op to
 Sdest = Sdest +

xi ,CSSC ;
 }

 send <op, LCop, MLop, Sop> to all sites in Sdest;
}

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 281

When the generated local operation affects more than one section, the originator

site may or may not be active on all the affected sections. If a user creates an object

connecting two objects from different sections, s/he has to have all the affected sections on

his/her device to ensure s/he knows the current state of each section before creating the

connecting object. For example, when Alice wants to create an object X that links two

objects Y and Z that belong to different sections, say C1 and C2, she has to have both

sections to ensure that Y and Z still exist.

However, if a user modifies an object that connects two objects from different

sections, s/he does not necessarily need to have all the affected sections. For example, if

Alice wants to delete object X, she does not necessarily need to be active on both sections.

If she is active on both sections, she can easily determine the participants that should

receive the operation from the section participant lists. However, if she is not active on C1,

she will not have the participant list of the section C1.

There are two options to address this issue. The first option is to allow users to

modify an object that connects two sections only if they have both sections active on their

device. Therefore the connecting object appears as read-only object if a user does not have

both sections. The second option is to allow users to modify an object that connects two

sections regardless. If they modify an object that connects two sections and they don't have

one of the sections, then the device needs to build up a list of recipients which is the union

of the participants that are active on both sections. For the section that the user is active on,

the list of participants is up to date. However, for the section that the user is not active on,

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 282

s/he has to retrieve the list of participants from another user that is currently active on that

section. The user can broadcast a request of the list of participant and another site can reply

with the appropriate list. Then from the combined list of participants, the user sends the

operation to all affected sites.

The first option reduces complexity and is less expensive as it does not need to

request and receive the participant list from another site. While it reduces bandwidth

consumption, it restricts users from updating connecting objects in such case. However, by

restricting such updates, it ensures that the user does not make an uninformed change on the

object. Since the user does not have one of the connected sections, it is probably wise to not

modify the object since the other section may have been updated without the user being

aware of it.

Therefore, it would be up to the user to select which option to use. If the user wants

to reduce resource consumption or the user does not want to risk making an uninformed

update, then the first option should be used. If, however, resource consumption is not an

issue or the user wants the flexibility to update all objects despite the risk of an uninformed

update, then the second option could be used.

6.5.2. Remote Operation Reception

A remote operation may affect one or more sections, therefore a remote operation will

eventually be executed at all affected sections. To maintain causality, in each affected

section the remote operation has to wait for all preceding operations to be executed at the

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 283

section before it is processed and executed (the operation has to be causally-ready). By

comparing the section’s state map with the operation state map, the section is able to

determine whether the operation is causally-ready. Since the operation might bear more

than one state map (one state map for each affected section), the state map used for

comparison is obviously the state map of the respective section where the operation is to be

executed.

Once an operation is causally ready, as in the consistency management algorithm,

the remote operation is then transformed, executed and stored in the history so as to

maintain the consistency of the document replica. The main difference is that the history

being used is not the operation history of the whole document, but rather the operation

history of each affected section.

Figure 6-2 outlines two procedures: procedure rcv_remote_op is invoked when a

remote operation is received and procedure exec_remote_op is invoked to process the

remote operation at each section. Note that procedure exec_remote_op in Figure 6-2 does

not include the consistency management algorithm in detail and readers can refer to section

3.4 for the detail of the consistency management algorithm. The procedure

exec_remote_op could also be used with other consistency management algorithms, such

as SOCT3 [126], and GOTO [131].

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 284

Figure 6-2 Remote operation reception and execution

void rcv_remote_op(<op, LCop, MLop, Sop>) {
 //Sop is the site that generates op
 //Execute op in each affected section
 for each MLop[i] in MLop {

//Cx is the affected section
//

xCopM , is the state map of the
//affected section as carried by op
// Explode MLop[i] to derive x and

xCopM ,

let [x,
xCopM ,] = MLop[i];

//Wait until op is causally ready
//Assume the recipient site is Si.
wait until)]([k,CS SkeyM

xi
 ≥)]([kop,C SkeyM

x
, 0 ≤ k < N;

//Execute exec_remote_op procedure to
//execute op at each affected sections
exec_remote_op(op, Cx, xCopM ,);

}
}

void exec_remote_op(op, Cx, xop,CM) {
//Transform, and execute operation
//as per consistency management algorithm

//Add op into the section’s operations history

xi ,CSH =
xi,CSH + op;

//Rearrange the history as necessary.
 :
 :

//Trim the history as necessary.
:
:

}

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 285

6.5.3. Joining a Section

When a user at a site, Si, decides to work on a section, Cx, the site has to make sure the

section in its local replica is up to date before starting work on the section. The site can

request an updated section and associated operation history data from another site. Site Si

basically requests to join in the section collaboration. However, firstly, the site has to

notify all other sites that are currently working on Cx. Each site should respond to Si

indicating whether or not it is active on Cx and send its respective
xi ,CSM to let Si know the

state of its section Cx. Site Si will then decide which site it will contact to obtain the most

up-to-date version of Cx along with its operation history and section state. The decision can

be automated by choosing the site that has executed the most number of operations on

section Cx. Site Si could also consider other factors such as the corresponding peer-to-peer

network delay to make decision. At a given time some sites may be disconnected, thus site

Si may not receive all necessary replies. Therefore, site Si should be allowed to decide

which site to contact without having to wait for all sites to reply. A timeout may be applied

here to let Si wait for a certain period before making a decision.

Suppose site Sk is the one contacted by Si, Si basically gets a complete copy of

section Cx of Sk in order for it to be able to resume collaboration. Once Si successfully joins

in the section, site Si can either explicitly send a notification to other participants, or let the

other participants know about this by receiving an operation generated by Si on section Cx.

Eventually, the other sites that are active on section Cx will add Si to their membership list

so they will include Si when they send further updates.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 286

Figure 6-3 outlines the procedures involved when a site joins a section: procedure

join_section is invoked by a site to join a section and procedure rcv_join_request is

invoked by another site contacted by the newly joining site.

Figure 6-3 Joining a section

void join_section (Cx) {
//Send notification to all sites that Si wants to join Cx.
send <active,Cx> to all sites;

//Site Si can wait for all replies, or can decide immediately
//which site to contact once there are some replies
Wait for some or all replies until timeout;

//Let Sj is the site chosen to be contacted
send join(Cx) to Sj;

//Wait for reply from Sj, and then
//process all data received from Sj
receive <Cx, xj ,CSH ,

xj,CSSC ,
xj ,CSM > from Sj;

Cx is the new section content of Si;

xi ,CSH =
xi ,CSH ;

xi ,CSSC =
xj,CSSC + Si;

xi ,CSM =
xj ,CSM ;

}

void rcv_join_request (join(Cx)) {
//Assume site Sj receives this join request from Si
send <Cx, xj ,CSH ,

xj,CSSC ,
xj ,CSM > to Si;

//Add Si to its section membership

xj,CSSC =
xj,CSSC + Si;

}

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 287

6.5.4. Leaving a Section

When a user on a site decides to be passive on a section that s/he has been working on, the

site will notify all sites that are working on that section so that they will not need to send

further updates to the newly passive site. The other sites will simply remove the leaving

site from their section membership list.

Suppose site Si is leaving Cx, Si should notify all sites in
xi,CSSC that it is leaving

Cx. Some sites may however be disconnected when site Si is sending the notification;

therefore those sites may not receive the notification. To ensure that those sites will

eventually receive the notification, the notification should be in a form of a proper

operation with an appropriate timestamp (state map). Therefore, when the disconnected

sites reconnect and receive future operations, they may recognise that they have missed the

operation which is the leaving notification from site Si.

Figure 6-4 outlines the procedures involved when a site leaves a section. Procedure

leave_section is invoked by a site to leave section Cx. Since the request to leave a section is

broadcast as an operation, procedure rcv_remote_op is invoked by other sites that are

currently active on section Cx after receiving the leave request. Procedure rcv_remote_op is

the same as the one presented in Figure 6-2. Procedure exec_remote_op is modified so that

it recognises the request to leave and execute the operation accordingly.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 288

Figure 6-4 Leaving a section

void leave_section (Cx) {
//Send notification to all sites that Si wants to leave Cx
op = leave(Cx);
MLop = MLop + [x,

xi ,CSM];

//Update the section state vector

)]([i,CS SkeyM
xi

 =)]([i,CS SkeyM
xi

+ 1;

//Adding the operation into the
//section’s operation history

xi ,CSH =
xi,CSH + {op};

//send the notification
broadcast(<op, LCop, MLop, Sop>) to all sites in

xi,CSSC ;
}

void exec_remote_op(op, Cx, xop,CM) {

//Transform, and execute operation
//as per consistency management algorithm
if (op = leave(Cx)) {

//Remove Si from its section membership

xj,CSSC =
xj,CSSC - [Si];

}

//Add op into the section’s operations history

xj ,CSH =
xj,CSH + op;

//Rearrange the history as necessary and/or
//Trim the history as necessary.
:
:

}

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 289

6.5.5. Creating a New Section

Creating a new section simply involves two things: creating the new section Cnew

and adding Cnew into the document index
iSDI . The challenge is how to add the new

section into the document index when two or more sections are being created concurrently

by different sites.

This problem can be treated in the same way as two or more users modifying a

document concurrently (consistency management algorithm) with the document index

being treated as the document being modified and the section ids as the objects being

inserted. When two or more users are inserting new sections at different positions in the

document index, the new section positions are properly transformed so that the new

sections are placed correctly and consistently across all document indexes. On the other

hand, when new sections are created at the same position, then a conflict resolution

strategy has to be invoked to allow users to agree on the correct order of the new sections.

6.6. Performance Analysis

The performance of the proposed algorithm has been evaluated both theoretically and

empirically to determine whether or not the document partitioning algorithm is worth

implementing and under what scenario the document is best left intact instead of

partitioned into several sections. This section discusses the theoretical resource

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 290

requirement of the document partitioning technique, followed by presentation of the

empirical performance analysis.

6.6.1. Theoretical Performance Analysis

Let T be the number of objects in the document, P be to average number of

generated operations at each site, m be the number of sections in the document, X be the

average number of sections in each site, and B be the number of sites that work on each

section. For simplicity, it is assumed that each section is worked on by the same number of

sites; therefore m
NXB .= . Table 6-1 presents the resource consumption of the proposed

document partitioning technique.

 Unpartitioned

Document

Partitioned Document

No. of objects per site T m
XT ⋅

No. of received ops () PNP −⋅ () PNP m
X −⋅⋅

No. of op broadcast () PNP −⋅ () PNP m
X −⋅⋅

History size (without trimming) NP ⋅ m
XNP ⋅⋅

State map table elements 21 NNN =⋅⋅
2

32
m

X
m

NX
m

NX

N
XBBX

⋅=
⋅⋅=⋅⋅ ⋅⋅

Table 6-1 Resource consumption

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 291

It is obvious that with document partitioning, the number of objects, the number of

operations transmitted (received and broadcast), and the history size are reduced by the

factor of mX . The lower X is, the less resources consumed. The state map table elements,

however, are larger with document partitioning (by the order of 23 mX) since each section

maintains its own state map table for garbage collecting purpose. Therefore, the number of

state map table elements are kept minimum if 123 ≤mX , or in other words, the total size of

the state map table with document partitioning can be reduced if 3
2

mX ≤ . As an example, if

a document is divided into 10 sections (m = 10), each site works only on 4 sections or less

(X ≤ 4) in order to keep the size of the state map table the same as or less than the one in

the unpartitioned counterpart.

6.6.2. Empirical Performance Analysis

The proposed algorithm has been tested in a simulation environment and its

performance parameters have been recorded and analysed. The aim of the empirical

performance analysis is to compare the partitioned document with the unpartitioned

document and to determine whether or not document partitioning reduces resource

consumption while providing users with the flexibility of selecting document parts.

The independent variables are the number of sites (3, 5, and 10 sites), the number

of operations generated by each site (30, 50 and 100), the number of document partitions

(1, 3, 5, 10) and the number of partitions actually held by each site (from 1 to the actual

number of document partitions). The performance parameters (dependent variables) are (1)

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 292

the maximum history size (with and without history trimming), (2) the average processing

time per operation, (3) the size of the state map table, and (4) the total number of messages

transferred.

Firstly, Figure 6-5, Figure 6-6, and Figure 6-7 show the maximum history size of

each participant when there are 3, 5 and 10 participants respectively in the collaboration.

Each site generates either 30, 50 or 100 operations and the chart shows the maximum

history size either with or without history trimming. The axis is a pair of two independent

variables: the number of document partitions and the number of partitions per site. For

example, (5, 3) means that there are 5 partitions in the document and each site holds 3

partitions. Some partitions can be held by more than one site, but not all sites have all the

partitions. The axis of (1, 1) means that there is only one partition and all sites have that 1

partition, in other words, (1, 1) is the unpartitioned document.

It can be seen from the graphs that dividing the document into partitions reduces

the maximum history size in each site (to as little as 15%), provided that each site does not

hold all partitions regardless of whether or not the history trimming is implemented. If

each site holds all partitions, then document partitioning is simply an unnecessary

overhead since the users are collaborating as if there is no partition. However, with history

trimming, the maximum history size can be smaller than the unpartitioned document, since

there are fewer sites that work on each partition; therefore the history is trimmed more

regularly.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 293

Max History Size
3 Participants

0

10000

20000

30000

40000

50000

60000

(1
,1

)

(3
,1

)

(3
,2

)

(3
,3

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

(1
0,

4)

(1
0,

5)

(1
0,

6)

(1
0,

7)

(1
0,

8)

(1
0,

9)

(1
0,

10
)

(No. of Parts, Parts per site)

Si
ze

 (b
yt

es
)

30 Ops per site
50 Ops per site
100 Ops per site
30 Ops per Site (no trimming)
50 Ops per Site (no trimming)
100 ops per site (no trimming)

a

Figure 6-5 Maximum history size - 3 participants

Max History Size
(5 Participants)

0

20000

40000

60000

80000

100000

120000

(1,
1)

(3,
1)

(3,
2)

(3,
3)

(5,
1)

(5,
2)

(5,
3)

(5,
4)

(5,
5)

(10
,2)

(10
,3)

(10
,4)

(10
,5)

(10
,6)

(10
,7)

(10
,8)

(10
,9)

(10
,10

)

(No. of Parts, Parts per site)

Si
ze

 (b
yt

es
)

30 Ops per site
50 Ops per site
100 Ops per site
30 Ops per Site (no trimming)
50 Ops per Site (no trimming)
100 ops per site (no trimming)

Figure 6-6 Maximum history size - 5 participants

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 294

Max History Size
10 Participants

0

50000

100000

150000

200000

250000

300000

350000

400000

(1,
1)

(3,
1)

(3,
2)

(3,
3)

(5,
1)

(5,
2)

(5,
3)

(5,
4)

(5,
5)

(10
,1)

(10
,2)

(10
,3)

(10
,4)

(10
,5)

(10
,6)

(10
,7)

(10
,8)

(10
,9)

(10
,10

)

(No. of Parts, Parts per site)

Si
ze

 (b
yt

es
)

30 Ops per site
50 Ops per site
100 Ops per site
30 Ops per Site (no trimming)
50 Ops per Site (no trimming)
100 ops per site (no trimming)

Figure 6-7: Maximum history size – 10 participants

Secondly, Figure 6-8 displays the average processing time per operation, and it is

obvious that the time to process an operation in a partitioned document is significantly less

than the unpartitioned document. This is because without document partitioning, the

history size is greater and each remote operation processing requires tracing through the

whole history which, in an unpartitioned document, includes all operations whereas in

partitioned document, it only includes the operations involved in that particular partition.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 295

Average Processing Time per Operation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(1,
1)

(3,
1)

(3,
2)

(3,
3)

(5,
1)

(5,
2)

(5,
3)

(5,
4)

(5,
5)

(10
,1)

(10
,2)

(10
,3)

(10
,4)

(10
,5)

(10
,6)

(10
,7)

(10
,8)

(10
,9)

(10
,10

)

(Total Number of Partitions, Partitions per Site)

Ti
m

e
(m

ic
ro

Se
c)

Figure 6-8: Average processing time

Thirdly, Figure 6-9 shows the size of the state map table for various numbers of

document partitions. The state map table size increases as the number or partitions held by

each site increases. However, as expected from the theoretical calculation, the state map

table size is less than or equal to the unpartitioned document if 3
2

mX ≤ , where X is the

number of partitions held by each site and m is the actual number of partitions. Although

the size of the state map table with document partitioning is increasingly larger as the

number of partitions held by each site increases, the storage/memory space saving in the

history size is more than the additional consumption by the state map table. Therefore,

document partitioning reduces the overall storage/memory space consumption.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 296

State Map Table Size

0

5000

10000

15000

20000

25000

(1
,1

)

(3
,1

)

(3
,2

)

(3
,3

)

(5
,1

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

(1
0,

1)

(1
0,

2)

(1
0,

3)

(1
0,

4)

(1
0,

5)

(1
0,

6)

(1
0,

7)

(1
0,

8)

(1
0,

9)

(1
0,

10
)

(No. of Parts, Parts per site)

Si
ze

 (b
yt

es
)

3 Sites

5 Sites

10 Sites

Figure 6-9: State map table size

Finally, bandwidth consumption is also reduced with document partitioning as

expected and is shown by Figure 6-10. It is obvious, and expected theoretically, that the

number of messages transferred will be reduced with document partitioning. It is also

obvious that as the number of partitions held by each site increases, the number of

messages transferred also increases. However, it will not exceed the number of messages

without document partitioning.

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 297

Figure 6-10: Transferred messages

6.7. Conclusion

This chapter has presented the need for a document partitioning algorithm in real time

mobile collaboration systems to provide flexibility for users to work only on a particular

part of the document. There are some reasons a user may choose to be active only on some

sections: the limitation of his/her device interface, s/he is not interested in other sections,

Total Number of Transferred Messages
(5 Participants)

0

500

1000

1500

2000

2500

(1
,1

)

(3
,1

)

(3
,2

)

(3
,3

)

(5
,1

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

(1
0,

2)

(1
0,

3)

(1
0,

4)

(1
0,

5)

(1
0,

6)

(1
0,

7)

(1
0,

8)

(1
0,

9)

(1
0,

10
)

(No. of Parts, Parts per site)

N
o.

 o
f M

es
sa

ge
s

Total Number of Transferred Messages
(3 Participants)

0

100

200

300

400

500

600

700

(1
,1

)

(3
,1

)

(3
,2

)

(3
,3

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

(1
0,

4)

(1
0,

5)

(1
0,

6)

(1
0,

7)

(1
0,

8)

(1
0,

9)

(1
0,

10
)

(No. of Parts, Parts per site)

N
o.

 o
f M

es
sa

ge
s

Total Number of Transferred Messages
(10 Participants)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(1
,1

)

(3
,1

)

(3
,2

)

(3
,3

)

(5
,1

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

(1
0,

1)

(1
0,

2)

(1
0,

3)

(1
0,

4)

(1
0,

5)

(1
0,

6)

(1
0,

7)

(1
0,

8)

(1
0,

9)

(1
0,

10
)

(No. of Parts, Parts per site)

N
o.

 o
f M

es
sa

ge
s

30 Ops per site

50 Ops per site

100 Ops per site

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 298

and/or to minimise resource consumption. The document partitioning, however, presents

some challenges with regards to the section boundaries, section membership, section

creation, and sites joining and leaving a section. This chapter has also presented an

algorithm that provides a mechanism for document partitioning while addressing the above

challenges. By dividing a document into pre-defined sections and adding an independent

membership mechanism to each section, a user can choose to work on his/her desired

sections without having to worry about what happens to other sections.

Furthermore, the performance of the proposed algorithm has been evaluated, both

theoretically and empirically. It has been theoretically shown that by partitioning the

document into several sections and allowing users to work only on selected sections, the

storage space requirement is reduced since the number of objects per site and the size of

the operation history decreases. The bandwidth usage is also reduced as the number of

operations being broadcast is reduced due to the fact that not all sites need to receive all

generated operations. The state map table elements, however, are larger with document

partitioning (by the order of 23 mX) since each section maintains its own state map table

for garbage collecting purpose. The total size of the state map table with document

partitioning is however lower than its unpartitioned counterpart if 3
2

mX ≤ . The empirical

performance analysis has also shown that by partitioning the document, the proposed

strategy reduces resource consumption as follows: (1) it reduces the maximum history size

in each site (to as little as 15%), (2) the time to process an operation in a partitioned

CHAPTER 6. DOCUMENT PARTITIONING

 (June 15, 2007) 299

document is significantly less than the unpartitioned document, and (3) the greater the

number of partitions, the fewer messages are transferred.

Future work may involve extending the algorithm to allow dynamic unpredefined

section creation, such as splitting a section into several sections and merging two or more

sections.

7. Application

Chapter 7

Application

7.1. Introduction

The previous chapters have proposed various algorithms to support real-time collaborative

editing in mobile replicated architecture. This chapter describes an application prototype

that implements the proposed framework. This chapter is organised as follows: section 7.2

describes the system architecture of a collaborative editor, section 7.3 presents an example

of a collaborative editing scenario, and section 7.4 concludes the chapter.

7.2. System Architecture

This section describes the system architecture of the proposed collaborative

framework. Based on the discussions in previous chapters, and as illustrated in Figure 7-1,

each collaboration site consists of the following collaboration framework components:

CHAPTER 7. APPLICATION

 (June 15, 2007) 301

1. Connection Manager, responsible for sending and receiving messages to and from

other collaboration peers.

2. Collaboration Engine, responsible for managing the whole collaboration. It

receives the messages from the connection manager and it forwards each message

to the appropriate component. If it is a join request or an operation request or a

message related to a membership event, it is forwarded to the membership manager.

Every message related to document partitioning is forwarded to the document

partition manager. Any conflict related message is forwarded to be processed by

the conflict manager. The collaboration engine itself contains the consistency

management module that processes ordinary operations to ensure it is processed

and executed appropriately to the shared document.

3. Membership Manager, responsible for managing the session and the membership

events. It maintains the list of the collaboration participants. It also ensures all

operations that the site has missed during disconnection period will be requested

and received when it is reconnected.

4. Document Manager, responsible for managing the document and its partitions. It

maintains the document index as the representation of the complete document. It

also facilitates the joining and the leaving of a particular document partitioning as

desired by the user.

5. Conflict Manager, responsible for managing and handling the conflict, and

enabling users to resolve the conflict.

CHAPTER 7. APPLICATION

 (June 15, 2007) 302

6. Document Replica, the data type and the raw data of the document replica.

7. Editor, contains the tools for editing the shared document.

8. Presentation, responsible for presenting the document and the editor to the user

interface.

9. Input Controller, receives input from the user and translates them into the editor.

Figure 7-1 System architecture

The following are the class diagrams of the collaborative editing application

prototype. Firstly, Figure 7-2 shows the classes that are related to the document. Secondly,

Figure 7-3 shows the connection manager related classes. Thirdly, Figure 7-4 shows the

collaboration engine class that manage the key components of the collaboration. Fourthly,

Figure 7-5 shows the classes involved in handling and resolving conflicts. Fifthly, Figure

CHAPTER 7. APPLICATION

 (June 15, 2007) 303

7-6 shows classes involved in dealing with membership events. Finally, Figure 7-7 shows

the complete class diagram of the collaborative editor.

+ Document()
+ removeDocPartById(docPartId : int) : boolean
+ getDocPartById(docPartId : int) : DocumentPartition

Document

+ document

+ initParticipants(sites : SiteSet) : void
+ addNewParticipant(site : Site) : void
+ DocumentPartition(newId : int, doc : Document)

+ logicalClock : int = 0
+ docPartId : int

DocumentPartition

+ document

+ checkConflict(op : Operation) : void
+ trimHistory(hist : HistoryBuffer) : void
backwardTranspose(op1 : Operation, op2 : Operation) : void
forwardTranspose(op1 : Operation, op2 : Operation) : void
- reorderHistory(hist : HistoryBuffer, j : int) : void
- separate(hist : HistoryBuffer, op : Operation) : int
- executeRemoteOp(oper : Operation) : void
+ receiveRemoteOp(op : String, requested : boolean) : void
+ removeRemoteOp(op : Operation) : void
+ addRemoteOp(op : Operation) : boolean
+ receiveMessage(msg : String) : void
+ executeLocalOperation(op : Operation) : void
+ CollaborationEngine(newSte : SimpleTextEditor, st : Site)

+ LC : int
+ strSiteName : String

CollaborationEngine

+ docPane

+ document

+ changeAttribute(menuSelectionString : String) : void
+ keyReleased(e : KeyEvent) : void
+ keyPressed(e : KeyEvent) : void
+ keyTyped(e : KeyEvent) : void
+ executeRemoteOp(op : Operation) : void
+ setDocumentContent() : void
+ DocumentPane(newSte : SimpleTextEditor, cl : JTextArea)

- isSelected : boolean = false
- selectedTo : int
- selectedFrom : int
- docLength : long
- currCaretPos : int
- prevCaretPos : int
- charTyped : char

DocumentPane

+ stMapTable

+ getSize() : int
+ getSizeInMemory() : long
+ getStateMapBySiteKey(siteKey : String) : StateMap
+ printScreen() : void
+ StateMapTable()

StateMapTable

+ docPart
+ docObjs

+ docObjs

+ insertObj(obj : DocumentObject, loc : int) : void
+ removeObjById(objId : int) : int
+ getDocObjById(objId : int) : DocumentObject
+ getNextObjId() : int
+ DocumentObjects(newSte : SimpleTextEditor)

+ intObjId : int

DocumentObjects

+ setIntAttr(attr : int) : int
+ changeFontColor(newColor : String) : int
+ changeFontSize(newFontSize : String) : int
+ getAttributeSet(attr : int) : AttributeSet
+ getAttributeSet() : AttributeSet
+ setAttributeValue(s : AttributeSet) : int
+ setAttributeValue(col : Color, fontSize : Integer) : int
+ changeAttr(newAttr : int) : int
+ DocumentObject(iId : int, letter : char, attrSet : AttributeSet)
+ DocumentObject(iId : int, letter : char, attr : int)

+ FONT_COLORS_STRING : String = "Red-Green-Blue-Black"
+ FONT_COLORS_ARRAY : String[*] = {"Red","Green","Blue","Black"}
+ FONT_COLOR_DENOM : int = 10
+ FONT_COLOR_BLACK : int = 4
+ FONT_COLOR_BLUE : int = 3
+ FONT_COLOR_GREEN : int = 2
+ FONT_COLOR_RED : int = 1
+ FONT_SIZES_STRING : String = "12-14-16-18"
+ FONT_SIZES_ARRAY : String[*] = {"12","14","16","18"}
+ FONT_SIZE_DENOM : int = 1
+ FONT_SIZE_18 : int = 4
+ FONT_SIZE_16 : int = 3
+ FONT_SIZE_14 : int = 2
+ FONT_SIZE_12 : int = 1
+ intAttrFontColor : int = 0
+ intAttrFontSize : int = 0
+ intAttr : int = 0
+ intId : int
+ chLetter : char

DocumentObject

- currObjBeforeCaret

- currObjAfterCaret

+ stMap

+ hasExecuted(op : Operation) : boolean
getSum() : int
+ getCopy() : StateMap
+ inc(key : String) : void
+ getValue(key : String) : int
+ add(key : String, value : int) : void
+ StateMap(str : String)
+ StateMap()

+ actSize : int

StateMap

+ site

- collSite
+ Site()

+ intPortNum : int
+ strHostName : String
+ strSiteName : String
+ intSiteId : int

Site

Figure 7-2 Document

CHAPTER 7. APPLICATION

 (June 15, 2007) 304

+ run() : void
+ InboundConnection(portNum : int, cm : ConnectionManager)

InboundConnection+ send(msg : String, destHostName : String, destPort : int) : void
+ OutboundConnection(cm : ConnectionManager)

OutboundConnection

backwardTranspose(op1 : Operation, op2 : Operation) : void
forwardTranspose(op1 : Operation, op2 : Operation) : void
- reorderHistory(hist : HistoryBuffer, j : int) : void
- separate(hist : HistoryBuffer, op : Operation) : int
- executeRemoteOp(oper : Operation) : void
+ receiveRemoteOp(op : String, requested : boolean) : void
+ removeRemoteOp(op : Operation) : void
+ addRemoteOp(op : Operation) : boolean
+ receiveMessage(msg : String) : void
+ executeLocally(op : Operation) : void
+ CollaborationEngine(newSte : SimpleTextEditor, st : Site)

+ LC : int = 1
+ strSiteName : String

CollaborationEngine

+ outConn

+ inConn

+ connMan

+ connMan + connMan

+ collEng+ broadcastMsg(msg : String, participants : Sites, exceptedSiteName : String) : void
+ broadcastMsg(msg : String, participants : Sites) : void
+ sendMsg(msg : String, destHostName : String, destPort : int) : void
+ ConnectionManager(newCollEng : CollaborationEngine)

ConnectionManager

Figure 7-3 Connection manager

+ leaveSection(docPartId : int) : void
+ removeMissingOper(opKey : String) : void
+ addMissingOper(opKey : String) : void
+ processOpRequest(reqStr : String) : void
+ processSiteRequest(siteReqStr : String) : void
+ processNewSite(newSiteStr : String) : void
+ requestNewSite(newSiteName : String, targSite : String) : void
+ processJoinRequest(strJoinReq : String) : void
+ joinSection(docPartId : int) : void
+ addParticipant(s : Site) : void
+ MembershipManager(newCollEng : CollaborationEngine)

MembershipManager

+ rcvMsg(msg : String) : void
+ broadcastMsg(msg : String, participants : Sites, exceptedSiteName : String) : void
+ broadcastMsg(msg : String, participants : Sites) : void
+ sendMsg(msg : String, destHostName : String, destPort : int) : void
+ ConnectionManager(newCollEng : CollaborationEngine)

ConnectionManager

+ Site()

+ intPortNum : int
+ strHostName : String
+ strSiteName : String
+ intSiteId : int

Site

+ site

+ memMan

+ connMan

+ collEng

+ collEng

+ checkConflict(op : Operation) : void
+ trimHistory(hist : HistoryBuffer) : void
backwardTranspose(op1 : Operation, op2 : Operation) : void
forwardTranspose(op1 : Operation, op2 : Operation) : void
- reorderHistory(hist : HistoryBuffer, j : int) : void
- separate(hist : HistoryBuffer, op : Operation) : int
- executeRemoteOp(oper : Operation) : void
+ receiveRemoteOp(op : String, requested : boolean) : void
+ removeRemoteOp(op : Operation) : void
+ addRemoteOp(op : Operation) : boolean
+ receiveMessage(msg : String) : void
+ executeLocalOperation(op : Operation) : void
+ CollaborationEngine(newSte : SimpleTextEditor, st : Site)

+ LC : int
+ strSiteName : String

CollaborationEngine

+ conMan

+ collEng

+ registerConflict(op : Operation, obj : DocumentObject) : void
+ ConflictManager(col : CollaborationEngine, confPn : JPanel)

ConflictManager

+ Document()
+ removeDocPartById(docPartId : int) : boolean
+ getDocPartById(docPartId : int) : DocumentPartition

Document

+ document

- collSite

+ site

+ ste

+ collEng

+ updateState() : void
createConfigMenu() : JMenu
createStyleMenu() : JMenu
+ actionPerformed(ae : ActionEvent) : void
+ main(args : String[*]) : void
+ SimpleTextEditor(propFileName : String)

+ opReqInterval : int
+ networkDelay : int
+ discRate : int
+ isEditedRemotely : String = new String()
+ isEditedLocally : String = new String()
+ styleMenuSelectionString : String
+ isStarted : boolean = false
- LOG_FILE : String = "logFile"
- IN_PORT : String = "inPort"
- HEIGHT : String = "height"
- WIDTH : String = "width"
- Y : String = "y"
- X : String = "x"
- SITE_NAME : String = "siteName"
- SITE_ID : String = "siteId"

SimpleTextEditor

Figure 7-4 Collaboration engine

CHAPTER 7. APPLICATION

 (June 15, 2007) 305

+ registerConflict(op : Operation, obj : DocumentObject) : void
+ ConflictManager(col : CollaborationEngine, confPn : JPanel)

ConflictManager

+ conMan

+ collEng

backwardTranspose(op1 : Operation, op2 : Operation) : void
forwardTranspose(op1 : Operation, op2 : Operation) : void
- reorderHistory(hist : HistoryBuffer, j : int) : void
- separate(hist : HistoryBuffer, op : Operation) : int
- executeRemoteOp(oper : Operation) : void
+ receiveRemoteOp(op : String, requested : boolean) : void
+ removeRemoteOp(op : Operation) : void
+ addRemoteOp(op : Operation) : boolean
+ receiveMessage(msg : String) : void
+ executeLocally(op : Operation) : void
+ CollaborationEngine(newSte : SimpleTextEditor, st : Site)

+ LC : int
+ strSiteName : String

CollaborationEngine

+ conMan+ CT

+ getCTEntrySet(tgId : int) : CTEntrySet
+ getCTEntry(tgId : int, sId : int) : CTEntry
+ getOperationInvolved(tgId : int) : Operations
+ checkCTEStatus(currCte : CTEntry) : void
+ addCTEntry(op : Operation, obj : DocumentObject) : CTEntry
+ ConflictTable(conM : ConflictManager)

ConflictTable

- ctEntries

+ addCTEntry(op : Operation, obj : DocumentObject) : CTEntry
+ getCTEntry(sId : int) : CTEntry
+ CTEntrySet(tgId : int)

+ intTargetId : int

CTEntrySet

+ cteSet

+ addOperation(op : Operation) : void
+ CTEntry(op : Operation, obj : DocumentObject, cteS : CTEntrySet)
+ CTEntry()

+ NONE : byte = 3
+ REJECT : byte = 2
+ ACCEPT : byte = 1
+ RESOLVABLE : byte = 4
+ NON_RESOLVABLE : byte = 3
+ COMPLETE : byte = 2
+ PARTIAL : byte = 1
+ res : byte = 3
+ status : byte = 1
+ siteId : int = 0
+ targetId : int = 0

CTEntry

Figure 7-5 Conflict manager

+ leaveSection(docPartId : int) : void
+ removeMissingOper(opKey : String) : void
+ addMissingOper(opKey : String) : void
+ processOpRequest(reqStr : String) : void
+ processSiteRequest(siteReqStr : String) : void
+ processNewSite(newSiteStr : String) : void
+ requestNewSite(newSiteName : String, targSite : String) : void
+ processJoinRequest(strJoinReq : String) : void
+ joinSection(docPartId : int) : void
+ addParticipant(s : Site) : void
+ MembershipManager(newCollEng : CollaborationEngine)

MembershipManager

+ memMan

+ collEng

+ checkConflict(op : Operation) : void
+ trimHistory(hist : HistoryBuffer) : void
backwardTranspose(op1 : Operation, op2 : Operation) : void
forwardTranspose(op1 : Operation, op2 : Operation) : void
- reorderHistory(hist : HistoryBuffer, j : int) : void
- separate(hist : HistoryBuffer, op : Operation) : int
- executeRemoteOp(oper : Operation) : void
+ receiveRemoteOp(op : String, requested : boolean) : void
+ removeRemoteOp(op : Operation) : void
+ addRemoteOp(op : Operation) : boolean
+ receiveMessage(msg : String) : void
+ executeLocalOperation(op : Operation) : void
+ CollaborationEngine(newSte : SimpleTextEditor, st : Site)

+ LC : int
+ strSiteName : String

CollaborationEngine

+ participants

+ getSitesWithHigherPriority(sId : int) : ArrayList
+ getSiteBySiteName(siteName : String) : Site
+ getSiteBySiteId(siteId : int) : Site
+ addSite(s : Site) : void
+ Sites()

Sites

Figure 7-6 Membership manager

CHAPTER 7. APPLICATION

 (June 15, 2007) 306

Fi
gu

re
 7

-7
 C

la
ss

 d
ia

gr
am

+
rc

vM
sg

(m
sg

 : S
tri

ng
) :

 vo
id

+
br

oa
dc

as
tM

sg
(m

sg
 : S

tri
ng

, p
ar

tic
ip

an
ts

: S
ite

s,
ex

ce
pt

ed
Si

te
Na

m
e

: S
tri

ng
) :

 vo
id

+
br

oa
dc

as
tM

sg
(m

sg
 : S

tri
ng

, p
ar

tic
ip

an
ts

: S
ite

s)
 : v

oi
d

+
se

nd
M

sg
(m

sg
 : S

tri
ng

, d
es

tH
os

tN
am

e
: S

tri
ng

, d
es

tP
or

t :
in

t)
: v

oi
d

+
Co

nn
ec

tio
nM

an
ag

er
(n

ew
Co

llE
ng

 : C
ol

la
bo

ra
tio

nE
ng

in
e)

Co
nn

ec
tio

nM
an

ag
er

+
co

nn
M

an
+

co
llE

ng

+
ch

ec
kC

on
flic

t(o
p

: O
pe

ra
tio

n)
 : v

oi
d

+
tri

m
Hi

sto
ry

(h
ist

 : H
ist

or
yB

uf
fe

r)
: v

oi
d

ba

ck
wa

rd
Tr

an
sp

os
e(

op
1

: O
pe

ra
tio

n,
 o

p2
 : O

pe
ra

tio
n)

 : v
oi

d

fo
rw

ar
dT

ra
ns

po
se

(o
p1

 : O
pe

ra
tio

n,
 o

p2
 : O

pe
ra

tio
n)

 : v
oi

d
- r

eo
rd

er
Hi

sto
ry

(h
ist

 : H
ist

or
yB

uf
fe

r,
j :

in
t)

: v
oi

d
- s

ep
ar

at
e(

hi
st

: H
ist

or
yB

uf
fe

r,
op

 : O
pe

ra
tio

n)
 : i

nt
- e

xe
cu

te
Re

m
ot

eO
p(

op
er

 : O
pe

ra
tio

n)
 : v

oi
d

+
re

ce
ive

Re
m

ot
eO

p(
op

 : S
tri

ng
, r

eq
ue

ste
d

: b
oo

le
an

) :
 vo

id
+

re
m

ov
eR

em
ot

eO
p(

op
 : O

pe
ra

tio
n)

 : v
oi

d
+

ad
dR

em
ot

eO
p(

op
 : O

pe
ra

tio
n)

 : b
oo

le
an

+
re

ce
ive

M
es

sa
ge

(m
sg

 : S
tri

ng
) :

 vo
id

+
ex

ec
ut

eL
oc

al
Op

er
at

io
n(

op
 : O

pe
ra

tio
n)

 : v
oi

d
+

Co
lla

bo
ra

tio
nE

ng
in

e(
ne

wS
te

 : S
im

pl
eT

ex
tE

di
to

r,
st

: S
ite

)

+
LC

 : i
nt

+
str

Si
te

Na
m

e
: S

tri
ng

Co
lla

bo
ra

tio
nE

ng
in

e

+
co

llE
ng

+
le

av
eS

ec
tio

n(
do

cP
ar

tId
 : i

nt
) :

 vo
id

+
re

m
ov

eM
iss

in
gO

pe
r(o

pK
ey

 : S
tri

ng
) :

 vo
id

+
ad

dM
iss

in
gO

pe
r(o

pK
ey

 : S
tri

ng
) :

 vo
id

+
pr

oc
es

sO
pR

eq
ue

st(
re

qS
tr

: S
tri

ng
) :

 vo
id

+
pr

oc
es

sS
ite

Re
qu

es
t(s

ite
Re

qS
tr

: S
tri

ng
) :

 vo
id

+
pr

oc
es

sN
ew

Si
te

(n
ew

Si
te

St
r :

 S
tri

ng
) :

 vo
id

+
re

qu
es

tN
ew

Si
te

(n
ew

Si
te

Na
m

e
: S

tri
ng

, ta
rg

Si
te

 : S
tri

ng
) :

 vo
id

+
pr

oc
es

sJ
oi

nR
eq

ue
st(

str
Jo

in
Re

q
: S

tri
ng

) :
 vo

id
+

jo
in

Se
cti

on
(d

oc
Pa

rtI
d

: in
t)

: v
oi

d
+

ad
dP

ar
tic

ip
an

t(s
 : S

ite
) :

 vo
id

+
M

em
be

rs
hi

pM
an

ag
er

(n
ew

Co
llE

ng
 : C

ol
la

bo
ra

tio
nE

ng
in

e)

M
em

be
rs

hi
pM

an
ag

er

+
pa

rti
cip

an
ts

+
ge

tS
ite

sW
ith

Hi
gh

er
Pr

io
rit

y(
sId

 : i
nt

) :
 A

rra
yL

ist
+

ge
tS

ite
By

Si
te

Na
m

e(
sit

eN
am

e
: S

tri
ng

) :
 S

ite
+

ge
tS

ite
By

Si
te

Id
(s

ite
Id

 : i
nt

) :
 S

ite
+

ad
dS

ite
(s

 : S
ite

) :
 vo

id
+

Si
te

s(
)

Si
te

s

+
ch

an
ge

At
tri

bu
te

(m
en

uS
el

ec
tio

nS
tri

ng
 : S

tri
ng

) :
 vo

id
+

ke
yR

el
ea

se
d(

e
: K

ey
Ev

en
t)

: v
oi

d
+

ke
yP

re
ss

ed
(e

 : K
ey

Ev
en

t)
: v

oi
d

+
ke

yT
yp

ed
(e

 : K
ey

Ev
en

t)
: v

oi
d

+
ex

ec
ut

eR
em

ot
eO

p(
op

 : O
pe

ra
tio

n)
 : v

oi
d

+
se

tD
oc

um
en

tC
on

te
nt

()
: v

oi
d

+
Do

cu
m

en
tP

an
e(

ne
wS

te
 : S

im
pl

eT
ex

tE
di

to
r,

cl
: J

Te
xtA

re
a)

- i
sS

el
ec

te
d

: b
oo

le
an

 =
 fa

lse
- s

el
ec

te
dT

o
: in

t
- s

el
ec

te
dF

ro
m

 : i
nt

- d
oc

Le
ng

th
 : l

on
g

- c
ur

rC
ar

et
Po

s :
 in

t
- p

re
vC

ar
et

Po
s :

 in
t

- c
ha

rT
yp

ed
 : c

ha
r

Do
cu

m
en

tP
an

e

+
in

Co
nn

+
co

nn
M

an

+
rc

vM
sg

(m
sg

 : S
tri

ng
) :

 vo
id

+
ru

n(
) :

 vo
id

+
In

bo
un

dC
on

ne
cti

on
(p

or
tN

um
 : i

nt
, c

m
 : C

on
ne

cti
on

M
an

ag
er

)

Inb
ou

nd
Co

nn
ec

tio
n

+
ste

+
up

da
te

St
at

e(
) :

 vo
id

cr

ea
te

Co
nf

ig
M

en
u(

) :
 JM

en
u

cr

ea
te

St
yle

M
en

u(
) :

 JM
en

u
+

ac
tio

nP
er

fo
rm

ed
(a

e
: A

cti
on

Ev
en

t)
: v

oi
d

+
m

ai
n(

ar
gs

 : S
tri

ng
[*]

) :
 vo

id
+

Si
m

pl
eT

ex
tE

di
to

r(p
ro

pF
ile

Na
m

e
: S

tri
ng

)

+
op

Re
qI

nt
er

va
l :

in
t

+
ne

tw
or

kD
el

ay
 : i

nt
+

di
sc

Ra
te

 : i
nt

+
isE

di
te

dR
em

ot
el

y :
 S

tri
ng

 =
 n

ew
 S

tri
ng

()
+

isE
di

te
dL

oc
al

ly
: S

tri
ng

 =
 n

ew
 S

tri
ng

()
+

sty
le

M
en

uS
el

ec
tio

nS
tri

ng
 : S

tri
ng

+
isS

ta
rte

d
: b

oo
le

an
 =

 fa
lse

- L
OG

_F
IL

E
: S

tri
ng

 =
 "l

og
Fi

le
"

- I
N_

PO
RT

 : S
tri

ng
 =

 "i
nP

or
t"

- H
EI

GH
T

: S
tri

ng
 =

 "h
ei

gh
t"

- W
ID

TH
 : S

tri
ng

 =
 "w

id
th

"
- Y

 : S
tri

ng
 =

 "y
"

- X
 : S

tri
ng

 =
 "x

"
- S

IT
E_

NA
M

E
: S

tri
ng

 =
 "s

ite
Na

m
e"

- S
IT

E_
ID

 : S
tri

ng
 =

 "s
ite

Id
"

Si
m

pl
eT

ex
tE

di
to

r

+
se

tIn
tA

ttr
(a

ttr
 : i

nt
) :

 in
t

+
ch

an
ge

Fo
nt

Co
lo

r(n
ew

Co
lo

r :
 S

tri
ng

) :
 in

t
+

ch
an

ge
Fo

nt
Si

ze
(n

ew
Fo

nt
Si

ze
 : S

tri
ng

) :
 in

t
+

ge
tA

ttr
ib

ut
eS

et
(a

ttr
 : i

nt
) :

 A
ttr

ib
ut

eS
et

+
ge

tA
ttr

ib
ut

eS
et

()
: A

ttr
ib

ut
eS

et
+

se
tA

ttr
ib

ut
eV

al
ue

(s
 : A

ttr
ib

ut
eS

et
) :

 in
t

+
se

tA
ttr

ib
ut

eV
al

ue
(c

ol
 : C

ol
or

, fo
nt

Si
ze

 : I
nt

eg
er

) :
 in

t
+

ch
an

ge
At

tr(
ne

wA
ttr

 : i
nt

) :
 in

t
+

Do
cu

m
en

tO
bj

ec
t(i

Id
 : i

nt
, le

tte
r :

 ch
ar

, a
ttr

Se
t :

At
tri

bu
te

Se
t)

+
Do

cu
m

en
tO

bj
ec

t(i
Id

 : i
nt

, le
tte

r :
 ch

ar
, a

ttr
 : i

nt
)

+
FO

NT
_C

OL
OR

S_
ST

RI
NG

 : S
tri

ng
 =

 "R
ed

-G
re

en
-B

lu
e-

Bl
ac

k"
+

FO
NT

_C
OL

OR
S_

AR
RA

Y
: S

tri
ng

[*]
 =

 {"
Re

d"
,"G

re
en

","
Bl

ue
","

Bl
ac

k"
}

+
FO

NT
_C

OL
OR

_D
EN

OM
 : i

nt
 =

 1
0

+
FO

NT
_C

OL
OR

_B
LA

CK
 : i

nt
 =

 4
+

FO
NT

_C
OL

OR
_B

LU
E

: in
t =

 3
+

FO
NT

_C
OL

OR
_G

RE
EN

 : i
nt

 =
 2

+
FO

NT
_C

OL
OR

_R
ED

 : i
nt

 =
 1

+
FO

NT
_S

IZ
ES

_S
TR

IN
G

: S
tri

ng
 =

 "1
2-

14
-1

6-
18

"
+

FO
NT

_S
IZ

ES
_A

RR
AY

 : S
tri

ng
[*]

 =
 {"

12
","

14
","

16
","

18
"}

+
FO

NT
_S

IZ
E_

DE
NO

M
 : i

nt
 =

 1
+

FO
NT

_S
IZ

E_
18

 : i
nt

 =
 4

+
FO

NT
_S

IZ
E_

16
 : i

nt
 =

 3
+

FO
NT

_S
IZ

E_
14

 : i
nt

 =
 2

+
FO

NT
_S

IZ
E_

12
 : i

nt
 =

 1
+

in
tA

ttr
Fo

nt
Co

lo
r :

 in
t =

 0
+

in
tA

ttr
Fo

nt
Si

ze
 : i

nt
 =

 0
+

in
tA

ttr
 : i

nt
 =

 0
+

in
tId

 : i
nt

+
ch

Le
tte

r :
 ch

ar

Do
cu

m
en

tO
bj

ec
t

+
ste

+
do

cO
bj

s

+
in

se
rtO

bj
(o

bj
 : D

oc
um

en
tO

bj
ec

t, l
oc

 : i
nt

) :
 vo

id
+

re
m

ov
eO

bj
By

Id
(o

bj
Id

 : i
nt

) :
 in

t
+

ge
tD

oc
Ob

jB
yId

(o
bj

Id
 : i

nt
) :

 D
oc

um
en

tO
bj

ec
t

+
ge

tN
ex

tO
bj

Id
()

: in
t

+
Do

cu
m

en
tO

bj
ec

ts(
ne

wS
te

 : S
im

pl
eT

ex
tE

di
to

r)

+
in

tO
bj

Id
 : i

nt

Do
cu

m
en

tO
bj

ec
ts

+
Op

er
at

io
ns

()

Op
er

at
ion

s

+
ad

dC
TE

nt
ry

(o
p

: O
pe

ra
tio

n,
 o

bj
 : D

oc
um

en
tO

bj
ec

t)
: C

TE
nt

ry
+

ge
tC

TE
nt

ry
(s

Id
 : i

nt
) :

 C
TE

nt
ry

+
CT

En
try

Se
t(t

gI
d

: in
t)

+
in

tT
ar

ge
tId

 : i
nt

CT
En

try
Se

t

+
op

s

+
do

cO
bj

+
cte

Se
t

+
ad

dO
pe

ra
tio

n(
op

 : O
pe

ra
tio

n)
 : v

oi
d

+
CT

En
try

(o
p

: O
pe

ra
tio

n,
 o

bj
 : D

oc
um

en
tO

bj
ec

t, c
te

S
: C

TE
nt

ry
Se

t)
+

CT
En

try
()

+
NO

NE
 : b

yte
 =

 3
+

RE
JE

CT
 : b

yte
 =

 2
+

AC
CE

PT
 : b

yte
 =

 1
+

RE
SO

LV
AB

LE
 : b

yte
 =

 4
+

NO
N_

RE
SO

LV
AB

LE
 : b

yte
 =

 3
+

CO
M

PL
ET

E
: b

yte
 =

 2
+

PA
RT

IA
L

: b
yte

 =
 1

+
re

s :
 b

yte
+

sta
tu

s :
 b

yte
+

sit
eI

d
: in

t
+

ta
rg

et
Id

 : i
nt

CT
En

try

- a
cti

ve
Pa

rti
cip

an
ts

+
do

cP
ar

t
+

do
cO

bj
s

+
in

itP
ar

tic
ip

an
ts(

sit
es

 : S
ite

Se
t)

: v
oi

d
+

ad
dN

ew
Pa

rti
cip

an
t(s

ite
 : S

ite
) :

 vo
id

+
Do

cu
m

en
tP

ar
titi

on
(n

ew
Id

 : i
nt

, d
oc

 : D
oc

um
en

t)

+
lo

gi
ca

lC
lo

ck
 : i

nt
 =

 0
+

do
cP

ar
tId

 : i
ntDo

cu
m

en
tP

ar
tit

io
n

+
do

cP
ar

t

+
hb

+
ge

tO
pe

ra
tio

nB
yO

pK
ey

(o
pK

ey
 : S

tri
ng

) :
 O

pe
ra

tio
n

+
ge

tO
pe

ra
tio

nB
yO

pI
d(

op
Id

 : i
nt

) :
 O

pe
ra

tio
n

+
ge

tC
op

y(
) :

 H
ist

or
yB

uf
fe

r
+

ge
tO

pe
ra

tio
n(

i :
in

t)
: O

pe
ra

tio
n

+
ad

dO
pe

ra
tio

n(
op

 : O
pe

ra
tio

n)
 : v

oi
d

+
Hi

sto
ry

Bu
ffe

r()

Hi
st

or
yB

uf
fe

r

+
co

nn
M

an
+

se
nd

(m
sg

 : S
tri

ng
, d

es
tH

os
tN

am
e

: S
tri

ng
, d

es
tP

or
t :

in
t)

: v
oi

d
+

Ou
tb

ou
nd

Co
nn

ec
tio

n(
cm

 : C
on

ne
cti

on
M

an
ag

er
)

Ou
tb

ou
nd

Co
nn

ec
tio

n
+

ou
tC

on
n

- c
ur

rO
bj

Af
te

rC
ar

et

- c
ur

rO
bj

Be
fo

re
Ca

re
t

+
ge

tC
TE

nt
ry

Se
t(t

gI
d

: in
t)

: C
TE

nt
ry

Se
t

+
ge

tC
TE

nt
ry

(tg
Id

 : i
nt

, s
Id

 : i
nt

) :
 C

TE
nt

ry
+

ge
tO

pe
ra

tio
nI

nv
ol

ve
d(

tg
Id

 : i
nt

) :
 O

pe
ra

tio
ns

+
ch

ec
kC

TE
St

at
us

(c
ur

rC
te

 : C
TE

nt
ry

) :
 vo

id
+

ad
dC

TE
nt

ry
(o

p
: O

pe
ra

tio
n,

 o
bj

 : D
oc

um
en

tO
bj

ec
t)

: C
TE

nt
ry

+
Co

nf
lic

tT
ab

le
(c

on
M

 : C
on

flic
tM

an
ag

er
)

Co
nf

lic
tT

ab
le

+
co

nM
an

+
co

llE
ng

+
re

gi
ste

rC
on

flic
t(o

p
: O

pe
ra

tio
n,

 o
bj

 : D
oc

um
en

tO
bj

ec
t)

: v
oi

d
+

Co
nf

lic
tM

an
ag

er
(c

ol
 : C

ol
la

bo
ra

tio
nE

ng
in

e,
 co

nf
Pn

 : J
Pa

ne
l)

Co
nf

lic
tM

an
ag

er

+
CT

+
co

nM
an

+
stM

ap

+
ha

sE
xe

cu
te

d(
op

 : O
pe

ra
tio

n)
 : b

oo
le

an

ge
tS

um
()

: in
t

+
ge

tC
op

y(
) :

 S
ta

te
M

ap
+

in
c(

ke
y :

 S
tri

ng
) :

 vo
id

+
ge

tV
al

ue
(k

ey
 : S

tri
ng

) :
 in

t
+

ad
d(

ke
y :

 S
tri

ng
, v

al
ue

 : i
nt

) :
 vo

id
+

St
at

eM
ap

(s
tr

: S
tri

ng
)

+
St

at
eM

ap
()

+
ac

tS
ize

 : i
nt

St
at

eM
ap

- s
tM

ap

+
ge

tC
hL

et
te

r(c
hS

tr
: S

tri
ng

) :
 ch

ar
+

ge
tC

op
y(

) :
 O

pe
ra

tio
n

+
co

nf
lic

tsW
ith

(o
p

: O
pe

ra
tio

n)
 : b

oo
le

an

ha
pp

en
Be

fo
re

(o
p

: O
pe

ra
tio

n,
 is

Sv
To

tO
rd

er
 : b

oo
le

an
) :

 b
oo

le
an

ca

us
al

lyP
re

ce
de

(o
p

: O
pe

ra
tio

n)
 : b

oo
le

an
+

pa
rs

eR
em

ot
eO

pS
tri

ng
(o

p
: S

tri
ng

) :
 vo

id
+

Op
er

at
io

n(
LC

 : i
nt

, s
ite

Id
 : i

nt
, s

ite
Na

m
e

: S
tri

ng
, s

tM
 : S

ta
te

M
ap

)
+

Op
er

at
io

n(
)

+
DU

PL
IC

AT
E

: in
t

+
CH

AN
GE

_A
TT

R
: in

t
+

DE
LE

TE
_C

HA
R

: in
t

+
IN

SE
RT

_C
HA

R
: in

t
+

in
tA

ttr
 : i

nt
+

in
tO

bj
Id

 : i
nt

+
ch

Le
tte

r :
 ch

ar
+

in
tL

oc
 : i

nt
+

in
tC

m
dC

od
e

: in
t =

 0
+

str
Si

te
Na

m
e

: S
tri

ng
+

in
tS

ite
Id

 : i
nt

+
in

tId
 : i

nt
 =

 0

Op
er

at
io

n

+
stM

ap
Ta

bl
e

+
ge

tS
ize

()
: in

t
+

ge
tS

ize
In

M
em

or
y(

) :
 lo

ng
+

ge
tS

ta
te

M
ap

By
Si

te
Ke

y(
sit

eK
ey

 : S
tri

ng
) :

 S
ta

te
M

ap
+

pr
in

tS
cr

ee
n(

) :
 vo

id
+

St
at

eM
ap

Ta
bl

e(
)St

at
eM

ap
Ta

bl
e

+
pn

Do
c

+
ste

+
op

In
vo

lve
d

+
co

llE
ng

+
m

em
M

an

+
do

cu
m

en
t

+
do

cu
m

en
t

+
do

cP
an

e

+
do

cu
m

en
t

+
Do

cu
m

en
t()

+
re

m
ov

eD
oc

Pa
rtB

yId
(d

oc
Pa

rtI
d

: in
t)

: b
oo

le
an

+
ge

tD
oc

Pa
rtB

yId
(d

oc
Pa

rtI
d

: in
t)

: D
oc

um
en

tP
ar

titi
on

Do
cu

m
en

t

+
sit

e

+
sit

e

+
Si

te
()

+
in

tP
or

tN
um

 : i
nt

+
str

Ho
stN

am
e

: S
tri

ng
+

str
Si

te
Na

m
e

: S
tri

ng
+

in
tS

ite
Id

 : i
nt

Si
te

- c
ol

lS
ite

CHAPTER 7. APPLICATION

 (June 15, 2007) 307

7.3. A Collaborative Editing Scenario

This section describes a sample scenario of collaborative editing in mobile replicated

architecture and points out how each of the algorithms proposed in this thesis is used to

support the collaboration.

Suppose Alice and Bob are two authors of a paper to be submitted to an upcoming

conference. They want to be able to contribute to the paper both individually and

collaboratively. At the first meeting, they decide that there will be four chapters in the

paper: (1) introduction, (2) literature review, (3) proposed algorithm and (4) conclusion.

Alice initiates the collaborative paper in her laptop with a new blank copy of the shared

document. Alice then writes the paper title and creates the paper structure, each with empty

content. Bob then joins the collaboration and receives the copy of the shared document

from Alice and stores it as a local replica in his device. They also decide that Alice should

write the draft of the introduction section and literature review section while Bob will write

the proposed algorithm and conclusion sections. With the document partitioning

mechanism presented in Chapter 6, Alice and Bob only focus and work on their selected

sections (Figure 7-8). They will then review the draft collaboratively without having to

meet at a particular place. During this period, they are “disconnected” and they can work

on their local replica independently.

CHAPTER 7. APPLICATION

 (June 15, 2007) 308

Alice

Introduction
Active

Literature Review
Active

Prop. Algorithm
Passive

Conclusion
Passive

Bob

Introduction
Passive

Literature Review
Passive

Prop. Algorithm
Active

Conclusion
Active

Figure 7-8 Initial states of Alice's and Bob's devices

 A week later, Alice and Bob, both at different places, meet again over the wireless

network. When they are connected, Alice and Bob can start collaborating on the shared

document. Alice needs to get the updated document on the two sections that Bob has been

working on, therefore Alice ‘joins’ into those two sections. During the ‘join’ process, Alice

receives the updated sections from Bob, Alice becomes active in those two sections, and

therefore Alice can review and work on those sections. In the same way, Bob ‘joins’ into

the two sections Alice has been working on in order to get the latest state of the sections.

They then review the flow of the paper after the initial content of all sections are put

together (Figure 7-9). During this connected period, both Alice and Bob can make changes

to any part of the document and the changes are synchronously sent to each other so they

can view the changes that take place during the meeting. The consistency maintenance

algorithm presented in Chapter 3 ensures that the concurrent changes are applied

CHAPTER 7. APPLICATION

 (June 15, 2007) 309

appropriately and consistently on both Alice’s and Bob’s local replicas. As an example,

Alice and Bob both being active on the introduction chapter can update this chapter

concurrently: they may concurrently insert or delete some words or characters. The

proposed consistency maintenance algorithm ensures that the updates made by Alice are

received by Bob and are applied correctly at Bob’s replica despite the concurrent updates

made by Bob to his replica. The concurrent updates may however lead to an exclusive

conflict if both Alice and Bob are updating the same object (word or character) with

different intentions. Depending on the application, conflicts may be defined at different

levels of the object hierarchy. For example, Alice and Bob update a word in the paper title

concurrently to different values, or they change the caption of a figure differently.

Exclusive conflicts are detected whenever they occur and each conflict is handled and

resolved consistently using the conflict management presented in Chapter 4. The proposed

conflict management method facilitates the users by giving them adequate information

about the conflict status and about the intention of each participant involved in the conflict.

It also ensures that Alice and Bob have made enough updates to the object to fully

represent their intentions before the conflict can be resolved. Once the conflict is ready to

be resolved, they can resolve the conflict by selecting a version of the object (which

represents the intention of one of the users) either by voting or by other resolution

strategies.

CHAPTER 7. APPLICATION

 (June 15, 2007) 310

Alice

Introduction
Active

Literature Review
Active

Prop. Algorithm
Active

Conclusion
Active

Bob

Introduction
Active

Literature Review
Active

Prop. Algorithm
Active

Conclusion
Active

Wireless
Connection

Figure 7-9 Alice and Bob are collaborative over a wireless connection

 During the collaboration session, due to reasons such as radio frequency noise or a

user going under a tunnel, Alice and Bob may be disconnected from time to time. During

this disconnection period, they can still work on their local replicas. Once they are

reconnected, using the algorithm proposed in Chapter 5, both devices will send and receive

the missed updates, i.e. the operations that have been generated during the disconnection

period.

 Before the meeting is over, they can choose whether they want to be ‘active’ on all

sections of the document or they only want to be ‘active’ on some selected sections.

Suppose they decide that Alice will be ‘active’ on the first three chapters, while Bob will

be ‘active’ on the last two chapters as illustrated in Figure 7-10. Bob has also requested

Alice to invite Cameron to contribute to the paper especially to evaluate the performance

of the algorithm.

CHAPTER 7. APPLICATION

 (June 15, 2007) 311

Alice

Introduction
Active

Literature Review
Active

Prop. Algorithm
Active

Conclusion
Passive

Bob

Introduction
Passive

Literature Review
Passive

Prop. Algorithm
Active

Conclusion
Active

Figure 7-10 Alice's and Bob's sites after the second meeting

 After the second meeting, Alice and Bob are working individually on the active

sections on their own devices. During this period, as agreed, Alice adds a section about the

performance of the algorithm (section 6.5.5) and she invites Cameron to contribute to the

paper as Cameron has some expertise in this area. When Cameron agrees, Cameron joins

in the collaboration session via Alice’s site and, using the late-join algorithm in Chapter 5,

Cameron will receive the most updated document sections and their states from Alice. At

this point, Cameron has joined in the collaboration and Bob’s site is not aware of this

(although Bob has agreed that Alice will invite Cameron into the collaboration). Before

they departed, Cameron decides that he will focus only on the performance analysis section,

therefore leaving the other sections passive.

CHAPTER 7. APPLICATION

 (June 15, 2007) 312

Wireless
Connection

Alice

Introduction
Active

Literature Review
Active

Prop. Algorithm
Active

Conclusion
Passive

Perf Analysis
Passive

Cameron

Introduction
Passive

Literature Review
Passive

Prop. Algorithm
Passive

Conclusion
Passive

Perf Analysis
Active

Figure 7-11 Alice's and Cameron's sites after Cameron joins

 Sometime later, they all meet together for the third meeting. To start the meeting,

they synchronise their documents. During the synchronisation period:

• Alice retrieves the performance analysis section from Cameron and retrieves the

conclusion analysis from Bob,

• Alice and Bob merge the proposed algorithm section with the changes made by

each of them,

• Bob retrieves the introduction and literature review from Alice,

• Bob and Alice retrieve the performance analysis section from Cameron, and

• Cameron retrieves all other sections from Alice and Bob accordingly.

The procedure of a site retrieving an updated state of a section is described in Chapter 6,

particularly section 6.5.3. The process of merging changes of a section by different users

involve: (1) the requesting and sending the missing operations described in section 5.4.3,

CHAPTER 7. APPLICATION

 (June 15, 2007) 313

(2) the consistency maintenance algorithm described in Chapter 3 to ensure all operations

are executed consistently and the conflict management mechanism described in Chapter 4

to handle conflicts that arise during the merging process. Figure 7-12 illustrates the three

sites being in the same state after the synchronisation process.

Figure 7-12 The states of the three participants at the third meeting

 During the meeting, Alice, Bob and Cameron update the document concurrently.

As mentioned above, the consistency management algorithm and the conflict management

algorithm ensure the operations are applied consistently at all sites and all conflicts are

handled and resolved correctly.

CHAPTER 7. APPLICATION

 (June 15, 2007) 314

7.4. Conclusion

This chapter has presented the system architecture of the proposed collaboration

framework. It combines all proposed algorithms into a cohesive framework to support the

major functions of a collaborative editing application. Class diagrams have been presented

and they provide basic implementation of a collaborative editor which can be extended to

build collaborative editor in a specific application domain. A sample scenario has also been

elaborated to show how the framework can support a real-time collaboration. Future work

may include an actual implementation of the proposed framework in a specific real-life

application with a comprehensive assessment to see the effectiveness and the efficiency of

the cohesive framework in.

8. Summary and Conclusion

Chapter 8

Summary and Conclusion

This thesis has discussed and proposed algorithms that support collaborative editing in

limited and constrained mobile environments. In particular, this thesis has described the

framework for supporting real time collaborative editing in a mobile replicated architecture.

A replicated architecture is suited to many mobile collaborative editing situations since it

does not require a dedicated server in order for the collaboration session to work. It allows

mobile users to collaborate in quickly formed networks when there is only basic

communication infrastructure and nothing more than their devices available. Collaboration

in a replicated architecture, however, faces challenges that are not present in a centralised

architecture. The major contributions of this thesis are addressing the challenges of

consistency management, conflict management, the dynamics of membership management,

and partitioning work for mobile devices with limited connectivity, memory and

processing power.

CHAPTER 8. SUMMARY AND CONCLUSION

 (June 15, 2007) 316

Firstly, this thesis has dealt with consistency management. In a replicated

architecture, each mobile device holds a replica of the document since there is no dedicated

server that holds the shared document. To promote concurrency, all sites can update the

shared document any time and every update made by one site is immediately broadcast to

all other participants. In a centralised architecture, concurrent updates are easily handled

since a dedicated server receives all the updates and is able to apply the updates

consistently. In a replicated architecture, however, concurrent updates have to be handled

individually by each site so as to maintain the consistency of the document replicas held by

the participants. Updates may arrive in different order at all sites, and the state of the origin

site at which an operation is generated may not be the same as the state of the destination

site to which the operation arrives. Simply totally ordering the operations at all site does

not necessarily result in consistent replicas. To address and solve this challenge, a

document consistency management method was proposed in Chapter 3 to ensure the

consistency of the document replicas in the midst of the concurrent operations. The

proposed algorithm does not involve locking, hence it promotes concurrency and all sites

can update the document any time. The proposed algorithm is based on the operational

transformation technique and it ensures the consistency of document replicas regardless of

the arrival order of the operations. To improve its efficiency, it incorporates an existing

history trimming technique and a novel partial history copying technique to reduce the

storage consumption. The proposed algorithm also incorporates corrections to the existing

techniques, particularly in dealing with swapping operations and duplicate operations, to

CHAPTER 8. SUMMARY AND CONCLUSION

 (June 15, 2007) 317

ensure that consistency is maintained in all scenarios. Furthermore, an empirical study has

been conducted to demonstrate the efficiency of the proposed technique and to determine

the most efficient implementation of the proposed algorithm given a range of

implementation environments.

Secondly, the proposed consistency management algorithm not only ensures

document consistency in the midst of concurrent updates, it also deals with conflicting

concurrent updates. Conflict can occur when two or more users concurrently update the

same object with different intentions. In replicated architecture, however, handling and

resolving conflicts is not as easy as in a centralised architecture. In a mobile network, due

to fluctuating network delay, each update may not arrive at all sites in the same order.

Furthermore, due to packet loss and/or sudden disconnection, it may not even arrive at

some sites. Not only do conflicts have to be handled and resolved consistently, conflicts

have to be handled and resolved despite not all sites having received all updates. Chapter 4

introduces a means of handling conflicts in a real-time collaboration session and facilitates

users in resolving the conflict. Unlike the existing work, the proposed algorithm utilises a

novel user intention lock to take into account the completeness of each user’s intention

before the conflict can be appropriately handled. It also uses a conflict table to store

conflict information to facilitate users in resolving conflicts by giving them adequate

information on the status of the conflict. It allows users to resolve an exclusive conflict

without requiring all sites to have received all conflicting operations. While the proposed

conflict management algorithm is generic and it can be used with any conflict resolution

CHAPTER 8. SUMMARY AND CONCLUSION

 (June 15, 2007) 318

strategy such as voting or leader’s decision, Chapter 4 also proposes a conflict resolution

strategy that is suited to mobile replicated architecture since it does not require a group

leader and requires fewer message transfers than a voting strategy.

Thirdly, the implementation of collaboration in a mobile replicated architecture has

to take into account the hostile characteristics of mobile networks. Fluctuating bandwidth,

sudden disconnection, voluntary and involuntary disconnection, and arbitrary leaving and

joining characterise a mobile network. In order for the collaborative session to work well

in a mobile replicated architecture, it has to handle such membership events. The

membership management algorithm introduced in Chapter 5 allows the session to continue

smoothly despite changes to site connectivity and membership. The proposed membership

management algorithm is built on top of the consistency and conflict management

algorithm such that it handles various membership events while still ensuring document

consistency and handling conflict accordingly. With the use of the proposed state map

technique, the algorithm ensures that all sites will receive all operations exchanged during

the session and it ensures that the sites that have joined the session late will be brought up

to date so they can fully participate in the collaboration session. The empirical study has

shown that the algorithm is able to handle the membership events without consuming

significant additional resources making it suitable to be used in limited capacity mobile

networks.

Fourthly, the size of the collaborative document may be too large for a mobile

device. A mobile device has a limited display and memory capability such that it may not

CHAPTER 8. SUMMARY AND CONCLUSION

 (June 15, 2007) 319

be able to present or even hold the complete document in its device. Not all users are

interested in all parts of the document and a user may choose to work only on selected

parts of the document. Furthermore, with each user holding a complete document replica,

all updates by all users must be sent to all sites even though some users may not need to

receive updates on some parts of the document. To address this challenge, Chapter 6

introduces a document partitioning algorithm that allows the shared document to be

divided into sections. This provides flexibility for users to choose only the sections they

are interested in and, consequently reduces the bandwidth and resource consumption since

not every site needs to receive all operations. With the use of the membership algorithm

proposed in Chapter 5, users can choose to be active on a particular section and they can

choose to leave a particular section when they want to. The partitioning of the shared

document also allows a mobile device with limited display capacity to participate in the

collaboration session by only selecting some sections to the limit of its display or storage

capability. The theoretical and empirical performance evaluations have shown that

document partitioning reduces resource consumption (storage and/or memory space, and

bandwidth). The proposed algorithm is built on top of the previous algorithm such that it

takes into account the document consistency, the handling of conflicts and the handling of

membership events.

Finally, in Chapter 7, the system architecture and the class diagrams are presented

to provide a basic and generic implementation of the framework comprising the proposed

algorithms that can be extended to build a collaborative editor in a specific application

CHAPTER 8. SUMMARY AND CONCLUSION

 (June 15, 2007) 320

domain. An example of the collaboration scenario is also presented in Chapter 7 giving an

overview of how the proposed framework can support real time collaborative editing.

Although the constructed framework supports important functions/aspects of real

time collaboration, it however does not address some issues that are important to real-time

mobile collaboration. Firstly, it does not discuss the collaboration session discovery

protocol. It assumes that, using an existing technique, a site that wants to join in a

collaboration session knows in advance that there is a session currently running. The site

joins in the session by first contacting a current session participant. Secondly, it does not

discuss the technicalities of mobile network and data communications. It assumes the use

of an existing mobile ad-hoc network and it assumes that the mobile sites are able to

communicate with each other with the available wireless medium. Thirdly, it does not

discuss all kinds of possible collaborative editing applications. It uses a simple notion of an

object-based editor and it aims to be adaptable to other object-based applications. The

transformation rules proposed in Chapter 3 are only applicable to text editors. Additional

or new transformation rules need to be defined for different application domains.

There are also many possible ways of extending this research. Although this

research has discussed the applicability of the proposed algorithms in hierarchical and

graphical documents to some extent, a future work may involve an in-depth discussion and

investigation on how to best support collaboration in such documents. Future work that has

been identified in this thesis include the following: (1) investigating and evaluating of TTF

and COT consistency maintenance algorithms and the possibility of adopting their

CHAPTER 8. SUMMARY AND CONCLUSION

 (June 15, 2007) 321

concepts in the proposed document consistency management algorithm; (2) exploring

alternative conflict resolution strategies focusing on their usability, performance and

impact in a mobile environment; (3) optimising the proposed membership management

algorithm in order to minimise the number of sent messages in the event of disconnections;

and (4) extending the document partitioning algorithm to allow dynamic and unpredefined

section creation such as splitting a section into several sections and merging two or more

sections.

Finally, this research has been an effort to push the boundary of real time

collaboration so that users of small mobile devices working in wireless environments can

use applications that have only been possible in large capacity devices connected by high

capacity, stable wired networks. In the future, users will expect to and be able to

collaborate using their mobile devices in a limited and constrained mobile network

environment without an established network infrastructure other than the wireless

transmitters of their devices. This research has addressed some of the key issues in

developing new generations of such applications that can be adapted to the changing

information technology and communication landscape.

 (June 15, 2007) 322

Bibliography

[1] GoToMeeting, http://www.gotomeeting.com/
[2] Microsoft NetMeeting, http://www.microsoft.com/netmeeting/
[3] Project JXTA, http://www.jxta.org/
[4] RFC 1094 (rfc1094) - NFS: Network File System Protocol specification,

http://www.faqs.org/rfcs/rfc1094.html
[5] ShowMe SharedApp, http://www.sun.com/products-n-

solutions/sw/ShowMe/products/ShowMe_SharedApp.html
[6] WebArrow, www.webarrow.com
[7] WebEx, http://www.webex.com/
[8] World of Warcraft, http://www.worldofwarcraft.com/
[9] H. M. Abdel-Wahab and M. A. Feit, XTV: a framework for sharing X Window

clients in remote synchronous collaboration, In Proceedings of IEEE TRICOMM
pp. 159-167, 1991

[10] Y. Amir, D. Dolev, S. Kramer and D. Malki, Membership Algorithms for Multicast
Communication Groups, In Workshop on Distributed Algorithms, pp. 292-312,
1992

[11] Ö. Babaoğlu, R. Davoli, L.-A. Giachini and M. G. Baker, RELACS: A
communications infrastructure for constructing reliable applications in large-scale
distributed systems, In Proceedings of the 28th Hawaii International Conference on
System Sciences (HICSS'95), pp. 612-621. IEEE Computer Society, 1995

[12] Ö. Babaoğlu, R. Davoli and A. Montresor, Group Membership and View Synchrony
in Partitionable Asynchronous Distributed Systems: Specifications, Operating
Systems Review, 31(2): 11-22, 1997

[13] J. E. Bardram, T. R. Hansen and M. Soegaard, AwareMedia: a shared interactive
display supporting social, temporal, and spatial awareness in surgery, In
Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work, pp. 109 - 118, Banff, Alberta, Canada. ACM Press, 2006

 (June 15, 2007) 323

[14] M. Beaudouin-Lafon and A. Karsenty, Transparency and awareness in a real-time
groupware system, In Proceedings of the 5th annual ACM symposium on User
interface software and technology, pp. 171 - 180, Monteray, California, United
States. ACM Press, 1992

[15] J. Begole, M. B. Rosson and C. A. Shaffer, Flexible collaboration transparency:
supporting worker independence in replicated application-sharing systems, ACM
Transactions on Computer-Human Interaction (TOCHI), 6(2): 95-132, 1999

[16] J. Begole, C. A. Struble and C. A. Shaffer, Leveraging Java applets: toward
collaboration transparency in Java, Internet Computing, IEEE, 1(2): 57-64, 1997

[17] Y. W. Bernier, Latency compensating methods in client/server in-game protocol
design and optimization, In Proceedings of the 15th Games Developers Conference,
San Jose, CA, 2001

[18] R. Borovoy, F. Martin, M. Resnick and B. Silverman, GroupWear: nametags that
tell about relationships, In CHI 98 conference summary on Human factors in
computing systems, pp. 329-330, Los Angeles, California, United States. ACM
Press, 1998

[19] R. Borovoy, F. Martin, S. Vemuri, M. Resnick, B. Silverman and C. Hancock,
Meme tags and community mirrors: moving from conferences to collaboration, In
Proceedings of the 1998 ACM conference on Computer supported cooperative
work (CSCW '98), pp. 159-168, Seattle, Washington, United States. ACM Press,
1998

[20] T. Brinck, Tom's CSCW and Groupware Page,
http://www.infres.enst.fr/~vercken/multicast/cscw.html

[21] T. Brinck, Usability First: Groupware: Introduction,
http://www.usabilityfirst.com/groupware/intro.txl

[22] D. Buszko, W. Lee and A. Helal, Decentralized ad-hoc groupware API and
framework for mobile collaboration, In Proceedings of the 2001 International
ACM SIGGROUP Conference on Supporting Group Work, pp. 5-14, Boulder,
Colorado, USA. ACM Press, 2001

[23] C. Butcher and B. House, Recreating the LAN party online: The networking and
social infrastructure of Halo 2, In Proceedings of the Games Developers
Conference (GDC 2005), 2005

[24] M. Caporuscio, A. Carzaniga and A. L. Wolf, An experience in evaluating
publish/subscribe services in a wireless network, In Third International Workshop
on Software and Performance, pp. 128-133, Rome, Italy, 2002

[25] M. Caporuscio and P. Inverardi, Yet another framework for supporting mobile and
collaborative work, In Proceedings of the Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 81-86,
2003

[26] A. Carzaniga, D. S. Rosenblum and A. L. Wolf, Design and evaluation of a wide-
area event notification service, ACM Transactions on Computer Systems (TOCS),
19(3): 332-383, 2001

 (June 15, 2007) 324

[27] A. Chandler and J. Finney, On the effects of loose causal consistency in mobile
multiplayer games, In Proceedings of 4th ACM SIGCOMM workshop on Network
and system support for games, pp. 1-11, Hawthorne, NY. ACM Press, 2005

[28] A. Chandler and J. Finney, Rendezvous: supporting real-time collaborative mobile
gaming in high latency environments, In Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in computer entertainment technology (ACE
'05), pp. 310-313, Valencia, Spain. ACM Press, 2005

[29] T. D. Chandra, V. Hadzilacos, S. Toueg and B. Charron-Bost, On the impossibility
of group membership, In Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing (PODC '96), pp. 322-330, Philadelphia,
Pennsylvania, United States. ACM Press, 1996

[30] K. H. Chang, Y. Gong, T. Dollar, S. Gajiwala, B. Lee and A. W. Wear, On
computer supported collaborative writing tools for distributed environments, In
Proceedings of the 1995 ACM 23rd annual conference on Computer science, pp.
222-229, Nashville, Tennessee, United States. ACM Press, 1995

[31] D. Chen and C. Sun, A distributed algorithm for graphic objects replication in real-
time group editors, In Proceedings of the international ACM SIGGROUP
conference on Supporting group work, pp. 121-130, Phoenix, Arizona, United
States. ACM Press, 1999

[32] D. Chen and C. Sun, Optional and responsive locking in collaborative graphics
editing systems, ACM SIGGROUP Bulletin, 20(3): 17-20, 1999

[33] J. Chu-Carroll and S. Carberry, Response generation in collaborative negotiation,
In Proceedings of the 33rd annual meeting on Association for Computational
Linguistics, pp. 136-143, Cambridge, Massachusetts. Association for
Computational Linguistics, 1995

[34] S. Citro, J. McGovern and C. Ryan, An efficient consistency management algorithm
for real-time mobile collaboration, In Proceedings of the Fifth International
Conference on Quality Software (QSIC 2005), pp. 287-294, 2005

[35] M. Cohen, R. Fish, R. Kraut and M. Leland, Quilt: A Collaborative Tool for
Cooperative Writing, In Proceedings of ACM SIGOIS Conference, pp. 30-37, 1988

[36] G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems Concepts and
Design, Addison Wesley, 2001.

[37] A. H. Davis, C. Sun and J. Lu, Generalizing operational transformation to the
standard general markup language, In Proceedings of the 2002 ACM conference
on Computer supported cooperative work, pp. 58-67, New Orleans, Louisiana,
USA. ACM Press, 2002

[38] D. Decouchant, V. Quint and M. Romero, Structured and distributed cooperative
editing in large scale network, in R. Rada, ed., Groupware and Authoring,
Academic Press, London, 1996, pp. 265-296.

[39] P. Dewan, Architectures for collaborative applications, in M. Beaudouin-Lafon,
ed., Computer Supported Cooperative Work, John Wiley & Sons, 1999, pp. 169-
193.

 (June 15, 2007) 325

[40] D. Dolev, S. Kramer and D. Malki, Early delivery totally ordered multicast in
asynchronous environment, In Proceedings of the 23th Annual International
Symposium on Fault-Tolerant Computing, pp. 544-553, Toulouse, June 1993

[41] D. Dolev, D. Malki and R. Strong, An asynchronous membership protocol that
tolerates partitions, Technical Report CS94-6, Institute of Computer Science,
Hebrew University, Jerusalem, Israel, 1994

[42] D. Dolev, D. Malki and R. Strong, A framework for partitionable membership
service, Technical Report CS95-4, Institute of Computer Science, The Hebrew
University of Jerusalem, Jerusalem, Israel, 1995

[43] P. Dourish, Software infrastructures, in M. Beaudouin-Lafon, ed., Computer
Supported Cooperative Work, John Wiley & Sons, Chichester, 1999, pp. 195-219.

[44] W. K. Edwards, Session management for collaborative applications, In
Proceedings of the 1994 ACM conference on Computer supported cooperative
work (CSCW '94), pp. 323-330, Chapel Hill, North Carolina, United States. ACM
Press, 1994

[45] W. K. Edwards, M. W. Newman, J. Z. Sedivy, T. F. Smith, D. Balfanz, D. K.
Smetters, H. C. Wong and S. Izadi, Using speakeasy for ad hoc peer-to-peer
collaboration, In Proceedings of the 2002 ACM conference on Computer supported
cooperative work, pp. 256-265, New Orleans, Louisiana, USA. ACM Press, 2002

[46] C. A. Ellis and S. J. Gibbs, Concurrency control in groupware systems, In
Proceedings of the 1989 ACM SIGMOD international conference on Management
of data, pp. 399-407, Portland, Oregon, United States. ACM Press, 1989

[47] C. A. Ellis, S. J. Gibbs and G. L. Rein, Design and Use of a Group Editor, In
Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction, pp. 13-28, Napa Valley, California. Elsevier, 1989

[48] M. Esbjörnsson, O. Juhlin and M. Östergen, Motorcycling and social interaction:
design for the enjoyment of brief traffic encounters, In Proceedings of the 2003
international ACM SIGGROUP conference on Supporting group work (GROUP
'03), pp. 85-94, Sanibel Island, Florida, USA. ACM Press, 2003

[49] M. Esbjörnsson and M. Östergren, Hocman: supporting mobile group
collaboration, In CHI '02 extended abstracts on Human factors in computing
systems, pp. 838-839, Minneapolis, Minnesota, USA. ACM Press, 2002

[50] P. D. Ezhilchelvan, R. A. Macedo and S. K. Shrivastava, Newtop: a fault-tolerant
group communication protocol, In Proceedings of the 15th International
Conference on Distributed Computing Systems (ICDCS'95), pp. 296-306,
Washington, DC, USA. IEEE Computer Society, 1995

[51] J. Falk, P. Ljungstrand, S. Björk and R. Hansson, Pirates: proximity-triggered
interaction in a multi-player game, In CHI '01 extended abstracts on Human
factors in computing systems, pp. 119-120, Seattle, Washington. ACM Press, 2001

[52] B. Federico, P. Agostino and S. Matteo, A collaborative platform for fixed and
mobile networks, Commun. ACM, 45(11): 39-44, 2002

 (June 15, 2007) 326

[53] M. J. Fischer, N. A. Lynch and M. S. Paterson, Impossibility of distributed
consensus with one faulty process, Journal of the ACM (JACM), 32(2): 374-382,
1985

[54] D. Garfinkel, B. Welti and T. Yip., HP SharedX: A tool for real-time collaboration,
HP Journal: 23-36, April 1994

[55] S. Greenberg and D. Marwood, Real time groupware as a distributed system:
concurrency control and its effect on the interface, In Proceedings of the 1994
ACM conference on Computer supported cooperative work, pp. 207-217, Chapel
Hill, North Carolina, United States. ACM Press, 1994

[56] S. Greenberg and M. Roseman, Groupware toolkits for synchronous work, in M.
Beaudouin-Lafon, ed., Computer Supported Cooperative Work, John Wiley & Sons,
Chichester, 1999, pp. 135-168.

[57] S. Greenberg, M. Roseman and D. Webster, Issues and experiences designing and
implementing two group drawing tools, In Proceedings of the 25th Annual Hawaii
Intemational Conference on the System Sciences, pp. 139-250, 1992

[58] J. Grudin, Computer-Supported Cooperative Work, IEEE Computer, 27(5): 19-26,
1994

[59] R. Guerraoui and C. Hari, On the consistency problem in mobile distributed
computing, In Proceedings of the second ACM international workshop on
Principles of mobile computing, pp. 51-57, Toulouse, France. ACM Press, 2002

[60] C. Gutwin and S. Greenberg, The effects of workspace awareness support on the
usability of real-time distributed groupware, ACM Transactions on Computer-
Human Interaction (TOCHI), 6(3): 243-281, 1999

[61] C. Gutwin, S. Greenberg and M. Roseman, Supporting awareness of others in
groupware, In Conference companion on Human factors in computing systems:
common ground, pp. 205, Vancouver, British Columbia, Canada. ACM Press, 1996

[62] H. He, Q. Wu and L. Luo, Document marking scheme for preserving intention of
operation in cooperative editing system, Journal of Software, 10(2): 160-164, 1999

[63] J. Hill and C. Gutwin, Awareness support in a groupware widget toolkit, In
Proceedings of the 2003 international ACM SIGGROUP conference on Supporting
group work, pp. 258-267, Sanibel Island, Florida, USA. ACM Press, 2003

[64] L. E. Holmquist, J. Falk and J. Wigström, Supporting Group Collaboration with
Interpersonal Awareness Devices, Personal and Ubiquitous Computing, 3: 13-21,
1999

[65] C.-L. Ignat and M. C. Norrie, Draw-together: graphical editor for collaborative
drawing, In Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, pp. 269-278, Banff, Alberta, Canada. ACM Press,
2006

[66] C. Ignat, M. Norrie and G. Oster, Handling Conflicts through Multi-level Editing in
Peer-to-peer Environments, In International Workshop on Collaborative Editing
Systems - CEW 2006, Banff, Alberta, Canada, 2006

 (June 15, 2007) 327

[67] C. L. Ignat and M. C. Norrie, Customizable Collaborative Editor Relying on
treeOPT Algorithm, In Proceedings of ECSCW'03, pp. 315-334, Helsinki, Finland,
2003

[68] C. L. Ignat and M. C. Norrie, Flexible Definition and Resolution of Conflicts
through Multi-level Editing, In Proceedings of the 2nd International Conference on
Collaborative Computing: Networking, Applications and Worksharing -
CollaborateCom 2006, Georgia, Atlanta, USA, November 2006

[69] E. A. Isaacs, J. C. Tang and T. Morris, Piazza: a desktop environment supporting
impromptu and planned interactions, In Proceedings of the 1996 ACM conference
on Computer supported cooperative work (CSCW '96), pp. 315-324, Boston,
Massachusetts, United States. ACM Press, 1996

[70] ISO/IEC, FDIS 9126-1 Software Engineering - Product Quality - Part 1: Quality
Model, November 1999.

[71] F. Jahanian, S. Fakhouri and R. Rajkumar, Processor group membership protocols:
specification, design and implementation, In Proceedings of the 12th IEEE
Symposium on Reliable Distributed Systems, pp. 2-11, Princeton, October 1993

[72] R. Kanawati, LICRA: A replicated-data management algorithm for distributed
synchronous groupware applications, Parallel Computing, 22(13): 1733-1746,
1997

[73] A. Karsenty and M. Beaudouin-Lafon, An algorithm for distributed groupware
applications, In Proceedings of the Thirteenth International Conference on
Distributed Computing Systems, pp. 195-202, 1993

[74] A. Karsenty, C. Tronche and M. Beaudouinlafon, GroupDesign: shared editing in a
heterogeneous environment, Usenix Journal of Computing Systems, 6(2): 167-195,
1993

[75] I. Keidar, J. Sussman, K. Marzullo and D. Dolev, Moshe: A group membership
service for WANs, ACM Transactions on Computer Systems, 20(3): 191-238, 2002

[76] R. I. Khazan, Group membership: a novel approach and the first single-round
algorithm, In Proceedings of the twenty-third annual ACM symposium on
Principles of distributed computing (PODC '04), pp. 347-356, St. John's,
Newfoundland, Canada. ACM Press, 2004

[77] E. Kirda, P. Fenkam, G. Reif and H. Gall., A service architecture for mobile
teamwork, In Proceedings of the 14th international conference on Software
engineering and knowledge engineering, pp. 513-518, Ischia, Italy, 2002

[78] G. Kortuem, Proem: a middleware platform for mobile peer-to-peer computing,
ACM SIGMOBILE Mobile Computing and Communications Review, 6(4): 62-64,
2002

[79] S. Kristoffersen and F. Ljungberg, An empirical study of how people establish
interaction: implications for CSCW session management models, In Proceedings of
the SIGCHI conference on Human factors in computing systems (CHI '99), pp. 1-8,
Pittsburgh, Pennsylvania, United States. ACM Press, 1999

 (June 15, 2007) 328

[80] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7): 558-565, 1978

[81] E. d. Lara, R. Kumar, D. S. Wallach and W. Zwaenepoel, Collaboration and
multimedia authoring on mobile devices, In Proceedings of the 1st international
conference on Mobile systems, applications and services (MobiSys '03), pp. 287-
301, San Francisco, California. ACM Press, 2003

[82] E. d. Lara, D. Wallach and W. Zwaenepoel, Puppeteer: component-based
adaptation for mobile computing, In Proceedings of the 3rd USENIX Symposium
on Internet Technologies and Systems (USITS), pp. 159-170, San Francisco,
California, USA, 2001

[83] D. Li and R. Li, Ensuring content and intention consistency in real-time group
editors, In Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS'04), pp. 748-755, 2004

[84] D. Li and R. Li, Preserving operation effects relation in group editors, In
Proceedings of the 2004 ACM conference on Computer supported cooperative
work, pp. 457-466, Chicago, Illinois, USA. ACM Press, 2004

[85] R. Li and D. Li, A landmark-based transformation approach to concurrency
control in group editors, In Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work, pp. 284-293, Sanibel Island,
Florida, USA. ACM Press, 2005

[86] R. Li, D. Li and C. Sun, A Time Interval Based Consistency Control Algorithm for
Interactive Groupware Applications, In Proceedings of the Parallel and
Distributed Systems, Tenth International Conference on (ICPADS'04) pp. 429-436.
IEEE Computer Society, 2004

[87] C. Ling, An adaptive consistency maintenance approach for replicated continuous
applications, In Proceedings of the 11th International Conference on Parallel and
Distributed Systems, pp. 795-801 2005

[88] B. Lubachevsky, A. Schwartz and A. Weiss, An analysis of rollback-based
simulation, ACM Transactions on Modeling and Computer Simulation (TOMACS),
1(2): 154-193, 1991

[89] J. Ma, M. Shizuka, J. Lee and R. Huang, A P2P groupware system with
decentralized topology for supporting synchronous collaborations, In Proceedings
of the 2003 International conference on Cyberworlds (CW'03), pp. 54-61, 2003

[90] F. Mattern, Virtual time and global states of distributed systems, In Proceedings of
the International Workshop on Parallel and Distributed Algorithms,, pp. 215–276.
Elsevier Pub., 1989

[91] M. Mauve, Consistency in replicated continuous interactive media, In Proceedings
of the 2000 ACM conference on Computer supported cooperative work, pp. 181-
190, Philadelphia, Pennsylvania, United States. ACM Press, 2000

[92] M. Mauve, J. Vogel, V. Hilt and W. Effelsberg, Local-lag and timewarp: providing
consistency for replicated continuous applications, IEEE Transactions on
Multimedia, 6(1): 47-57, 2004

 (June 15, 2007) 329

[93] J. McGovern and C. Ryan, Adaptive Consistency Management Support for Limited
Capacity Devices in Ad-hoc Mobile Networks, In Proceedings of 2004
International Symposium on Collaborative Technologies and Systems, pp. 250-256,
San Diego, USA, 2004

[94] L. J. McGuffin and G. M. Olson, ShrEdit: a shared electronic workspace,
Technical Report 45, The University of Michigan, 1992

[95] I. Mohomed, J. C. Cai, S. Chavoshi and E. d. Lara, Context-aware interactive
content adaptation, In Proceedings of the 4th international conference on Mobile
systems, applications and services (MobiSys 2006), pp. 42-55, Uppsala, Sweden.
ACM Press, 2006

[96] T. P. Moran, K. McCall, B. v. Melle, E. R. Pedersen and F. G. H. Halasz, Some
design principles for sharing in Tivoli, a whiteboard meeting support tool, in S.
Greenberg, S. Hayne and R. Rada, eds., Groupware for Realtime Drawing: A
Designer’s guide, McGraw-Hill, 1995, pp. 24-36.

[97] J. Munson and P. Dewan, A concurrency control framework for collaborative
systems, In Proceedings of the 1996 ACM conference on Computer supported
cooperative work, pp. 278-287, Boston, Massachusetts, United States. ACM Press,
1996

[98] J. P. Munson and P. Dewan, Sync: a Java framework for mobile collaborative
applications, IEEE Computer, 30(6): 59-66, 1997

[99] G. Neiger, A new look at membership services (extended abstract), In Proceedings
of the fifteenth annual ACM symposium on Principles of distributed computing
(PODC '96), pp. 331-340, Philadelphia, Pennsylvania, United States. ACM Press,
1996

[100] R. E. Newman-Wolfe, M. L. Webb and M. Montes, Implicit locking in the
ensemble concurrent object-oriented graphics editor, In Proceedings of the 1992
ACM conference on Computer-supported cooperative work, pp. 265-272, Toronto,
Ontario, Canada. ACM Press, 1992

[101] D. A. Nichols, P. Curtis, M. Dixon and J. Lamping, High-latency, low-bandwidth
windowing in the Jupiter collaboration system, In Proceedings of the 8th annual
ACM symposium on User interface and software technology, pp. 111-120,
Pittsburgh, Pennsylvania, United States. ACM Press, 1995

[102] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn and K. R.
Walker, Agile application-aware adaptation for mobility, In Proceedings of the
sixteenth ACM symposium on operating systems principles (SOSP '97), pp. 276-287,
Saint Malo, France. ACM Press}, 1997

[103] J. F. Nunamaker, Collaborative Computing: The Next Millennium, Computer: 66-
71, 1999

[104] G. Oster, P. Molli, P. Urso and A. Imine, Tombstone Transformation Functions for
Ensuring Consistency in Collaborative Editing Systems, In Proceedings of The 2nd
International Conference on Collaborative Computing: Networking, Applications
and Worksharing, Atlanta, Georgia, 2006

 (June 15, 2007) 330

[105] G. Oster, P. Urso, P. Molli and A. Imine, Data consistency for P2P collaborative
editing, In Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, pp. 259-268, Banff, Alberta, Canada. ACM Press,
2006

[106] F. Pacull, A. Sandoz and A. Schiper, Duplex: a distributed collaborative editing
environment in large scale, In Proceedings of the 1994 ACM conference on
Computer supported cooperative work (CSCW '94), pp. 165-173, Chapel Hill,
North Carolina, United States. ACM Press, 1994

[107] L. Pantel and L. C. Wolf, On the impact of delay on real-time multiplayer games,
In Proceedings of the 12th international workshop on Network and operating
systems support for digital audio and video, pp. 23-29, Miami, Florida, USA. ACM
Press, 2002

[108] J. F. Patterson, R. D. Hill, S. L. Rohall and S. W. Meeks, Rendezvous: an
architecture for synchronous multi-user applications, In Proceedings of the 1990
ACM conference on Computer-supported cooperative work, pp. 317-328, Los
Angeles, California, United States. ACM Press, 1990

[109] M. O. Pendergast, GroupGraphics: prototype to product, in S. Greenberg, S. Hayne
and R. Rada, eds., Groupware for Real-time Drawing: A Designer’s guide,
McGraw-Hill, 1995, pp. 209-227.

[110] W. G. Phillips, Quality Analysis of Distribution Architectures for Synchronous
Groupware In Proceedings of the 2nd International Conference on Collaborative
Computing: Networking, Applications and Worksharing Atlanta, Georgia, USA.
IEEE Computer Society, 2006

[111] A. Prakash, Group editors, in M. Beaudouin-Lafon, ed., Computer Supported
Cooperative Work, John Wiley & Sons, 1999, pp. 103-133.

[112] A. Prakash and M. J. Knister, A framework for undoing actions in collaborative
systems, ACM Transactions on Computer-Human Interaction (TOCHI), 1(4): 295-
330, 1994

[113] A. Prakash and H. S. Shim, DistView: support for building efficient collaborative
applications using replicated objects, In Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pp. 153-164, Chapel Hill, North
Carolina, United States. ACM Press, 1994

[114] G. K. Raikundalia and H. Zhang, Newly-discovered group awareness mechanisms
for supporting real-time collaborative authoring, In Proceedings of the Sixth
Australasian conference on User interface - Volume 40, pp. 127-136, Newcastle,
Australia. Australian Computer Society, Inc., 2005

[115] M. Ressel, D. Nitsche-Ruhland and R. Gunzenhäuser, An integrating,
transformation-oriented approach to concurrency control and undo in group
editors, In Proceedings of the 1996 ACM conference on Computer supported
cooperative work, pp. 288-297, Boston, Massachusetts, United States. ACM Press,
1996

 (June 15, 2007) 331

[116] A. M. Ricciardi and K. P. Birman, Using process groups to implement failure
detection in asynchronous environments, In Proceedings of the tenth annual ACM
symposium on Principles of distributed computing (PODC '91), pp. 341-353,
Montreal, Quebec, Canada. ACM Press, 1991

[117] G. C. Roman, Q. Huang and A. Hazemi, Consistent group membership in ad hoc
networks, In Proceedings of the 23rd International Conference on Software
Engineering (ICSE 2001), pp. 381-388, May 2001

[118] M. Roseman and S. Greenberg, Building real-time groupware with GroupKit, a
groupware toolkit, ACM Transactions on Computer-Human Interaction (TOCHI),
3(1): 66-106, 1996

[119] M. Roseman and S. Greenberg, GROUPKIT: a groupware toolkit for building real-
time conferencing applications, In Proceedings of the 1992 ACM conference on
Computer-supported cooperative work, pp. 43-50, Toronto, Ontario, Canada. ACM
Press, 1992

[120] J. Roth and C. Unger, Using Handheld Devices in Synchronous Collaborative
Scenarios, Personal and Ubiquitous Computing, 5(4): 243-252, 2001

[121] A. Schiper and A. Sandoz, Primary Partition Virtually-Synchronous
Communication harder than Consensus, In Proceedings of the 8th International
Workshop on Distributed Algorithms (WDAG-8), pp. 39-52, Terschelling, The
Netherlands. Springer-Verlag, September 1994

[122] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning and D. Tatar, WYSIWIS revised:
early experiences with multiuser interfaces, ACM Transactions on Information
Systems (TOIS), 5(2): 147-167, 1987

[123] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning and L. Suchman, Beyond
the chalkboard: computer support for collaboration and problem solving in
meetings, Communications of the ACM, 30(1): 32-47, 1987

[124] N. A. Streitz, J. Geißler, J. M. Haake and J. Hol, DOLPHIN: integrated meeting
support across local and remote desktop environments and LiveBoards, In
Proceedings of the 1994 ACM conference on Computer supported cooperative
work, Chapel Hill, North Carolina, United States. ACM Press, 1994

[125] N. A. Streitz, J. Geißler, J. M. Haake and H. Jeroen, DOLPHIN: integrated meeting
support across local and remote desktop environments and LiveBoards, In
Proceedings of the 1994 ACM conference on Computer supported cooperative
work, pp. 345-358, Chapel Hill, North Carolina, United States. ACM Press, 1994

[126] M. Suleiman, M. Cart and J. Ferrié, Serialization of concurrent operations in a
distributed collaborative environment, In Proceedings of the international ACM
SIGGROUP conference on Supporting group work: the integration challenge, pp.
435-445, Phoenix, Arizona, United States. ACM Press, 1997

[127] C. Sun, Optional and Responsive Fine-Grain Locking in Internet-Based
Collaborative Systems, IEEE Transactions on Parallel and Distributed Systems,
13(9): 994-1008, 2002

 (June 15, 2007) 332

[128] C. Sun, Undo as concurrent inverse in group editors, ACM Transactions on
Computer-Human Interaction (TOCHI) 9(4): 309-361, 2002

[129] C. Sun and W. Cai, Capturing causality by compressed vector clock in real-time
group editors, In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS’02), pp. 59–66, April 2002

[130] C. Sun and D. Chen, Consistency maintenance in real-time collaborative graphics
editing systems, ACM Transactions on Computer-Human Interaction (TOCHI),
9(1): 1-41, 2002

[131] C. Sun and C. Ellis, Operational transformation in real-time group editors: issues,
algorithms, and achievements, In Proceedings of the 1998 ACM conference on
Computer supported cooperative work, pp. 59-68, Seattle, Washington, United
States. ACM Press, 1998

[132] C. Sun, X. Jia, Y. Zhang, Y. Yang and D. Chen, Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems,
ACM Transactions on Computer-Human Interaction (TOCHI), 5(1): 63-108, 1998

[133] C. Sun and R. Sosič, Optimal locking integrated with operational transformation in
distributed real-time group editors, In Proceedings of the eighteenth annual ACM
symposium on Principles of distributed computing, pp. 43-52, Atlanta, Georgia,
United States. ACM Press, 1999

[134] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen and W. Cai, Transparent adaptation of
single-user applications for multi-user real-time collaboration, ACM Transactions
on Computer-Human Interaction (TOCHI), 13(4): 531 - 582, 2006

[135] C. Sun, Y. Yang, Y. Zhang and D. Chen, A Consistency Model and Supporting
Schemes for Real-time Cooperative Editing Systems, In Proceedings of the 19th
Australian Computer Science Conference, pp. 582-591, Melbourne, Australia, 1996

[136] C. Sun, Y. Yang, Y. Zhang and D. Chen, Distributed Concurrency Control in Real-
time Cooperative Editing Systems, In Proc. of the 1996 Asian Computing Science
Conference, pp. 84-95, Singapore. Springer-Verlag, 1996

[137] C. Sun, Y. Zhang, X. Jia and Y. Yang, A generic operation transformation scheme
for consistency maintenance in real-time cooperative editing systems, In
Proceedings of the international ACM SIGGROUP conference on Supporting
group work: the integration challenge, pp. 425-434, Phoenix, Arizona, United
States. ACM Press, 1997

[138] D. Sun and C. Sun, Operation context and context-based operational
transformation, In Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work, pp. 279-288, Banff, Alberta, Canada. ACM
Press, 2006

[139] K. Tee, S. Greenberg and C. Gutwin, Providing artifact awareness to a distributed
group through screen sharing, In Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pp. 99-108, Banff, Alberta,
Canada. ACM Press, 2006

 (June 15, 2007) 333

[140] M. H. Tran, Y. Yang and G. K. Raikundalia, Extended radar view and modification
director: awareness mechanisms for synchronous collaborative authoring, In
Proceedings of the 7th Australasian User interface conference - Volume 50, pp. 45-
52, Hobart, Australia. Australian Computer Society, Inc., 2006

[141] L. Veiga and P. Ferreira, Semantic-Chunks a middleware for ubiquitous
cooperative work, In Proceedings of the 4th workshop on Reflective and adaptive
middleware systems (ARM '05), Grenoble, France. ACM Press, 2005

[142] N. Vidot, M. Cart, J. Ferrié and M. Suleiman, Copies convergence in a distributed
real-time collaborative environment, In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pp. 171-180, Philadelphia, Pennsylvania,
United States. ACM Press, 2000

[143] J. Vogel and M. Mauve, Consistency control for distributed interactive media, In
Proceedings of the ninth ACM international conference on Multimedia, pp. 221-
230, Ottawa, Canada. ACM Press, 2001

[144] V. von Biel, Groupware Grows Up, MacUser: 207-211, June 1991
[145] P. Wilson, Computer supported cooperative work : an introduction, Kluwer

Academic Publishers, Oxford, England Norwell, MA, 1991.
[146] X. Wu and N. Gu, A concurrency control method based on document marking,

Journal of Computer Research and Development, 39(12): 1662-1667, 2002
[147] S. Xia, D. Sun, C. Sun, D. Chen and H. Shen, Leveraging single-user applications

for multi-user collaboration: the coword approach, In Proceedings of the 2004
ACM conference on Computer supported cooperative work, pp. 162-171, Chicago,
Illinois, USA. ACM Press, 2004

[148] L. Xue, M. Orgun and K. Zhang, A multi-versioning algorithm for intention
preservation in distributed real-time group editors, In Proceedings of the 26th
Australasian computer science conference - Volume 16, pp. 19-28, Adelaide,
Australia. Australian Computer Society, Inc., 2003

[149] L. Xue, K. Zhang and C. Sun, Conflict Control Locking in Distributed Cooperative
Graphics Editors, In Proceedings of the First International Conference on Web
Information Systems Engineering (WISE 2000), pp. 401-408. IEEE Computer
Society, 2000

[150] L. Xue, K. Zhang and C. Sun, An Integrated Post-Locking, Multi-Versioning, and
Transformation Scheme for Consistency Maintenance in Real-Time Group Editors,
In Proceedings of the Fifth International Symposium on Autonomous Decentralized
Systems (ISADS), pp. 57-64, 2001

[151] G. G. Yang, A data management System for replicated application, In Proceedings
of the 4th international conference on Collaborative virtual environments (CVE
'02), pp. 147-148, Bonn, Germany. ACM Press, 2002

[152] S. M. T. Yau, H. V. Leong, D. McLeod and A. Si, On mutli-resolution document
transmission in mobile Web, ACM SIGMOD Record, 28(3): 37-42, 1999

