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Abstract 
 
 
The bacterial meningitis caused by Neisseria meningitidis is responsible for 

considerable morbidity and mortality throughout the world. Given the limitations of 

existing diagnostic tests and the severity of the illness associated with the disease, 

there is a clear requirement for a rapid and specific diagnostic assay. This thesis 

describes the development of nanoparticle based tests for the detection of Neisseria 

meningitidis specific cell surface markers. 

 

The highly conserved outer membrane protein 85 (OMP85) antigen was selected as 

initial target antigen for the development of the diagnostic assays. A recombinant 

form of OMP85 with an attached hexa his-tag was cloned and expressed in E. coli and 

purified successfully by the use of various methods including Ni-NTA metal affinity 

column chromatography and a sonic gel extraction method. Within the OMP85 

protein sequence, a predicted antigenic sequence between residues 720 and 745 was 

identified and found to be unique to this organism. This amino acid sequence was 

synthesised as peptide (SR1) with a gly-gly-cysteine spacer sequence at the N-

terminus using t-boc chemistry. Also, the major virulence factor, capsular 

polysaccharide of N. meningitidis serogroup B bacteria was purified by a simple 

procedure developed during the course of this work. 

 

Polyclonal antibodies were raised against purified OMP85 antigen in rabbits and 

against SR1 peptide and also against formalin inactivated N. meningitidis serogroup B 

whole cell bacteria in sheep. Commercial anti-capsular monoclonal antibodies were 

shown to be equally reactive both with the bacteria and the purified capsular 
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polysaccharide. In addition, screening of an Immunoglobulin New Antigen Receptor 

(IgNAR) library was attempted to identify novel receptors against OMP85 and other 

antigens for use in the diagnostic tests. This panel of different antibodies were 

examined for cross reactivity against a range of closely related Gram negative 

bacteria. Based on these cross-reactivity studies, a highly specific anti-NM antibody 

was developed following purification of the anti-SR1 antiserum by immuno-affinity 

chromatography.  

 

Monodisperse 13 nm gold nanoparticles were synthesised by the Turkevich citrate 

reduction method. Larger particles (30nm, 40 nm, 50 nm and 60 nm) were purchased 

from British Biocell, UK for use in these studies. Coupling of the gold nanoparticles 

results in a shift of the the respective surface plasmon peak toward longer 

wavelengths resulting in a change of the colour of the colloidal suspension from red 

to purple to blue. Purified OMP85 antigen and protein A purified anti-OMP85 

antibody were successfully conjugated on 13, 30, 40, 50 and 60 nm gold nanoparticles 

by an electrostatic adsorption method.  

  

An attempt was made to develop a rapid diagnostic assay based on gold 

nanoparticle induced colour shift assay for N. meningitidis by utilising the specific 

interaction of OMP85 and anti-OMP85 antibody conjugated to gold nanoparticles as 

a model system. This interaction between 50 nm gold nanoparticles conjugated with 

OMP85 and anti-OMP85 antibody resulted in an increase in absorbance in the range 

of 600-800 nm, with a resulting colour shift. However, this system was not 
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reproducible and is likely to be due to problems with stability of gold nanoparticles 

during the conjugation process. 

 

As an alternative approach, a highly selective quartz crystal microbalance (QCM)-

based immunosensor was designed using the OMP85/anti-OMP85 antibody system 

as a model diagnostic test for meningococcal infection. Following initial attempts 

with self-assembled monolayer model experiments, a method was developed using 

polyvinylidene fluoride (PVDF) coated QCM crystals with protein A for for the 

directional orientation of the antibodies. The resonant frequency of the sensor 

decreased over time due to the binding of OMP85 antigen onto the immobilised 

antibodies, within a time frame of 5 to 10 minutes. 

 

To further enhance the sensitivity of the test, OMP85-conjugated gold nanoparticles 

were used as signal amplification probes for the reproducible detection of the target 

down to 300 ng/mL, corresponding to a five fold increase in sensitivity compared to 

detection of OMP85 antigen alone. In addition, the immunosensor was successfully 

regenerated using glycine-HCl solution pH 3.0 to release antigen–antibody 

complexes from the protein A layer, thus enabling the immunosensor to be used 

multiple times. Also, this sensor has successfully been employed to detect whole cell 

bacteria at a concentration as low as 100 cfu/mL. Thus, in this study using the real-

time QCM measurements, a novel strategy has been developed for the sensitive 

detection of both N. meningitidis bacteria and the protein antigen at very low 

concentrations, using gold nanoparticles as signal amplification probes. This work 
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advances the design and evaluation of a QCM based model biosensor for the rapid 

diagnosis of meningococcal meningitidis. 
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Chapter 1 
 
 

Introduction and Review of Literature 
 
 
 
1.1. Neisseria meningitidis – A role in meningococcal disease 
The meninges, the membranes that line the brain and the spinal cord can become 

inflamed leading to the potentially fatal disease known as meningitis (Rosenstein, 

Perkins et al. 2001).  Most cases of meningitis are due to bacterial infections that start 

elsewhere in the body and spread to the brain or spinal cord via the bloodstream. 

Bacterial pathogens that may cause meningitis include Haemophilus influenzae 

(Hubert, Watier et al. 1992), Escherichia coli (Glode, Sutton et al. 1977; Yang, Lu et al. 

2005), Streptococcus pneumoniae (Hirst, Gosai et al. 2003) and Neisseria meningitidis 

(Nadel and Kroll 2007). Other types of meningitis which occur less commonly 

include cryptococcal meningitis (Bicanic and Harrison 2004), syphilitic meningitis 

(Hsieh, Hung et al. 1996), pneumococcal meningitis (Wasier, Chevret et al. 2005), 

staphylococcal meningitis (Perez-Camarero, Escalante-Boleas et al. 2000), tuberculous 

meningitis (Theron, Andronikou et al. 2006) and aseptic meningitis (Lee and Davies 

2007). Meningitis can also be caused by a number of other factors including viruses 

(Chadwick 2005), chemical irritation (Marinac 1992), or tumors (Lee, Cromwell et al. 

2005). Although, different cocci cause meningitis, the term meningococcus is retained 

for the Neisseria meningitidis (N. meningitidis), a Gram-negative, diplococcus bean-

shaped bacterium. 

  

Reports of illness resembling meningococcal infection dates back to the 16th century. 

Vieusseux in 1805, described an outbreak of meningococcal disease which caused 33 
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deaths in the vicinity of Geneva, Switzerland (Rosenstein, Perkins et al. 2001). The 

Italian pathologists Marchiafava and Celli (1884) first described the presence of 

intracellular oval micrococci in a sample of cerebrospinal fluid (CSF) (Marchiafava 

and Celli 1884). However, the first bacterium known to cause meningococcal disease 

was first identified in CSF by Anton Weichselbaum in 1887, which he detected in six 

out of eight patients suffering  from bacterial meningitis and this bacterium was 

named Neisseria intracellularis (Manchanda, Gupta et al. 2006). It was later named as 

Neisseria meningitidis.   

 
 
1.1.1. Structure and Classification 

Based on genome sequencing studies, Neisseria meningitidis is categorised as 

belonging to the family Neisseriaceae and class α-proteobacteria related to the genera 

Bordetella, Moraxella, Burkoholderia, Kingella and Methylomonas and more distantly 

related to Vibrio, Haemophilus and Escherichia coli (Manchanda, Gupta et al. 2006). The 

genus Neisseria includes two important human pathogens, N. gonorrhoeae which 

causes gonorrhoea and N. meningitidis (Todar 2006), which is responsible for acute 

bacterial meningitis. These are Gram-negative, bean-shaped aerobic diplococci are 

isolated on chocolate/blood agar and infect humans exclusively. Like most other 

members of its genus Neisseriae, these organisms are aerobic, non-motile, produce 

catalase, oxidase positive, susceptible to drying while their growth is stimulated by 

CO2 and humidity and their growth is inhibited by free fatty acids (Platt and Snell 

1976; Manchanda, Gupta et al. 2006). N. meningitidis is surrounded by an outer 

membrane composed of lipids, outer membrane proteins (OMPs) and 
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lipopolysaccharides. Pathogenic meningococci bacteria are enveloped by a 

polysaccharide capsule attached to this outer membrane. 

 

The capsular polysaccharide (CPS), lipo-oligosaccharide (LOS) and outer membrane 

proteins (OMPs) are considered as important virulence factors in meningitis. The 

main distinguishing structural feature between N. meningitidis and N. gonorrhoeae is 

the presence of an anti-phagocytic polysaccharide capsule in the former (Spinosa, 

Prodiga et al. 2007). As the name suggests, the anti-phagocytic capsular 

polysaccharide helps in evading phagocytosis as well as providing the basis for 

grouping of the organism. The chemical composition of these capsular 

polysaccharide types is known. Based on this capsular structure, 13 serogroups in 

total have been identified and designated as serogroups A, B, C, H, I, K, L, M, X, Y, Z, 

29E, and W135 (Sippel 1981; Frasch, Zollinger et al. 1985). The most important 

serogroups associated with the disease in humans are A, B, C, Y, and W135. 

Meningococci reveal more genetic diversity than most other pathogenic human 

bacteria and this is explained partly by horizontal intra-species recombination and 

incorporation from closely related Neisseria species (Caugant 1998).  

 

Meningococci are further subdivided (Table 1) into 20 serotypes (on the basis of class 

2 or class 3 OMP antigens), 10 subtypes (based on class 1 OMP antigen differences) 

and 13 immunotypes (based on differences in lipooligosaccharide antigens) 

(Mandrell and Zollinger 1977; Frasch, Zollinger et al. 1985; Scholten, Kuipers et al. 

1994). 
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Component Function Classification 
System 

Number 
of 

Groups 

Names 

Capsule Protects against complement 
dependent bacteriolysis and 
phagocytosis 

Serogroups 13 A, B, C, E-29, 
K, I, K, L, M, 
W-135, X, Y, 
Z 

Outer membrane 
proteins (Porins) 

Creates pores through which 
small hydrophilic solute 
pass, cation selective or 
anion selective 

   

Por A (Class1 OMP)  Subserotypes 10 P1.1, P1.2, 
P1.3……P1.10 

Por B (Class 2/3 
OMP) 

 Serotypes 20 1, 2a, 2b, ….2l 

Lipooligosaccharide 
(LOS) 

Has potent immunotoxic 
activity 

Immunotypes 13 L1, L2,…..L13 

Pili Promotes initial adherence to 
epithelial/ehdothelial cells 
and red blood cells  

 2 I, II 

 

Table 1.1.: Classification based on outer-membrane components of N. meningitidis 
(Manchanda, Gupta et al. 2006) 

 
The bacterial outer membrane proteins of N. meningitidis have been classified from 

class 1 to class 5 proteins. Although meningococcal outer membranes contain as 

many as five major proteins, much of the observed serotype specificity can be 

attributed to class 2 and class 3 proteins, both of which are mutually exclusive within 

different meningococcal strains (Frasch, Zollinger et al. 1985). The class 2 and 3 

proteins function as porins, which function as molecular sieves in Gram-negative 

bacteria where they mediate the aqueous diffusion of solutes through the water-filled 

channels derived from their unique folding assembly (Nikaido 1994; Minetti, Tai et al. 

1997). Serogroups B and C meningococci have been further subdivided on the basis 

of subtype determinants located on the class 2 and 3 porin proteins. Most of the 

known serogroup A strains have the same protein serotype antigens in the outer 

membrane. Another serotyping system exists based on the antigenic diversity of 

meningococcal lipo-oligosaccharide (LOS) (Tsang, Law et al. 2001).  
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1.1.2. Incidence and risk factors 

Viral meningitis is a mild form of meningitis and occurs more commonly than 

bacterial meningitis. It usually develops in the winter and affects people under 30 

(Durand, Calderwood et al. 1993) with 70% of the infections occurring in children 

under the age of 5 years.  

 

In the case of bacterial meningitis caused by N. meningitidis, the meningococcus 

organism usually inhabits the human nasopharynx resulting in an asymptomatic 

carrier state, prior to invasion of the central nervous system via the bloodstream with 

a rapid onset of signs and symptoms at this stage (Nowak, Boehmer et al. 2003). Most 

individuals in close contact with a person suffering from meningococcal meningitis 

become carriers of the organism. This carrier state, which may last from a few days to 

months is important because it not only provides a reservoir for meningococcal 

infection but also stimulates host immunity and leads to exposure to asymptomatic 

carriers and is responsible for 10-25% of infections (Manchanda, Gupta et al. 2006). 

This carrier rate may reach 20% of the total population before the first case is 

recognized, and may reach up to 80% at the height of an epidemic. Transmission rate 

is 500- to 800- fold greater among household contacts than among the general 

population due to their close association with infected individuals. Between 5% and 

30% of normal individuals are carriers at any given time, yet few develop 

meningococcal disease. Attack rates are highest in infants, usually less than one year 

old while carriage rates are highest in older children and young adults. The infection 

typically occurs in winter or spring, and may cause local epidemics at, for example 
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boarding schools or military bases. Meningococci spread via respiratory droplets, 

and transmission requires aspiration of infective particles. 

 

1.1.3. Virulence Factors 

Meningococci are diverse organisms and are usually commensal bacteria present in 

the nasopharynx of humans with only a minority of the nasopharyngeal isolates 

causing invasive disease. Studies on strains from African epidemic outbreaks show 

that clonal characteristics of carrier and disease isolates are similar (Greenwood, 

Bradley et al. 1985). For a time, the virulence of Neisseria meningitidis was attributed to 

the production of an exotoxin that was later found out to be the released parts of 

their cell walls in a soluble form. Hence, a major factor in the virulence of the 

organism is the release of outer-membrane vesicles that consist of 

lipooligosaccharide (endotoxin), outer-membrane proteins, phospholipids and 

capsular polysaccharides (Rosenstein, Perkins et al. 2001).  

 

The endotoxin of N. meningitidis is structurally different from the lipooligosaccharide 

of enteric Gram negative bacteria. Lipid A molecules of lipooligosaccharide (LOS) act 

as endotoxins and their effects are due to the interaction with innate immune 

receptors (Manchanda, Gupta et al. 2006). Purified meningococcal LOS is found to be 

highly toxic and lethal for mice similar to the LOS of E. coli and Salmonella 

typhimurium. However, meningococcal LOS is 5 to 10 times more effective than 

enteric LPS in eliciting dermal haemorrhages due to endothelial damage and 

haemorrhages and microthrombi in small vessels (Sanarelli-Shwartzman reaction) in 

rabbits (Quakyi, Hochstein et al. 1997). The lesions are a reflection of the endotoxin 
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mediated upregulation of activated neutrophils (van Deuren, Brandtzaeg et al. 2000). 

Also, up to 16% of the cells present in the nasal mucosa are monocytes and 

inflammation increases polymorpho nuclear (PMN) leukocyte infiltration. 

Meningococcal LOS has also been shown to suppress leukotriene B4 synthesis in 

human polymorphonuclear (PMN) leukocytes (Salari, DeVoe et al. 1982). The loss of 

leukotriene B4 deprives the leukocytes of a strong chemokinetic and chemotactic 

factor (Virji 1996). The other important determinants of virulence of N. meningitidis 

include its antiphagocytic polysaccharide capsule, pili , IgA protease and opacity 

proteins (Opa and Opc) (Virji, Kayhty et al. 1991; Lorenzen, Dux et al. 1999).  

 

N. meningitidis associated with invasive disease has a capsule, which provides 

protection from desiccation during transmission and aids in the evasion of host 

immune mechanisms. The capsule and sialylated lipopolysaccharides (LPS) are 

expressed in disseminated isolates and are believed to protect the organism against 

antibody/complement and phagocytic killing (Vogel, Hammerschmidt et al. 1996). 

The LPS of carrier strains tend to be structurally different and often asialylated but, 

sialylation of LPS has functional consequences similar to the capsule as it imparts 

resistance to immune mechanisms of the host and in doing so, masks the functions of 

many outer membrane proteins (Estabrook, Christopher et al. 1992). The relationship 

between surface polysaccharides and various adhesins and invasins is a complex 

area of investigation, while other components like antigenicity and phase variation 

adds further complexity (Virji, Makepeace et al. 1995).  
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In studies to determine bacterial factors that increase phagocyte interactions, it was 

shown that capsulate bacteria resist phagocytosis in the absence of opsonins, but 

acapsulate bacteria are internalized and the bacterial opacity proteins Opa and Opc 

mediate bacterial uptake (Ward, Fleer et al. 1987). Pili proteins which are involved in 

adhesion to glycoconjugate structures in the host epithelial cells, were ineffective in 

mediating interactions with phagocytic cells (McNeil and Virji 1997). Meningococcal 

phase variable opacity proteins (Opc, Opa) and pili are widely expressed in case 

isolates (McNeil, Virji et al. 1994; McNeil and Virji 1997). Bacterial components that 

mediate cellular interactions in the absence of added opsonins are of importance 

from the point of view that immunocompromised phagocytes acts as potential 

‘Trojan Horse’ carriers of bacteria (Gagnon, Duclos et al. 2002). 

 

Pili also may target the CD46 receptor, a host cell membrane cofactor protein and 

subsequently the opacity-associated proteins, Opa and Opc, bind to CD66 and 

heparan sulphate proteoglycan receptors respectively (Rosenstein, Perkins et al. 

2001). Other differences may include the expression of distinct porins (class 1 / 2 / 3) 

which have been implicated in impairment of host cell functions (Wetzler, Ho et al. 

1996). Putative toxic factors (e.g. RTX-like proteins) have been reported in some 

meningococcal strains (Osicka, Kalmusova et al. 2001). These are environmentally 

regulated and their expression could also increase the pathogenic potential of a 

strain.  

 

Invitro investigations on the toxicity of carrier and case isolates indicate that both 

possess the capacity to damage human endothelial cells. In addition, specific 
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nutrient-acquisition factors, especially mechanisms for acquiring iron from human 

lactoferrin, transferrin and hemoglobin, enhance their pathogenic potential 

(Rosenstein, Perkins et al. 2001; Donna, Melanie et al. 2004). Multiple meningococcal 

components (pili and LPS) act together to destroy endothelial integrity characteristic 

of meningococcal septicemia (Virji, Makepeace et al. 1995). Finally, the expression of 

pili, class 5 OMPs, capsule and LOS is highly variable and subject to phase switching 

(on/off) and antigenic variation (van Deuren, Brandtzaeg et al. 2000) and this means 

can be used by the bacterium to circumvent host immunity. 

 

1.1.4. Host factors and Pathogenesis of meningitis 

In the case of invasive meningococcal disease, although the majority will recover 

fully, 10-15% of those infected will die, and around 20% will have permanent 

disabilities, ranging from learning difficulties, sight and hearing problems, to liver 

and kidney failure, scarring caused by skin grafts as well as loss of fingers, toes and 

limbs (Maiden 2004). Various pathological outcomes associated with the meningitis 

are influenced by different factors like type of bacteria, environmental and social 

conditions, preceding or concomitant to viral infections as well as the immune status 

of the person (Manchanda, Gupta et al. 2006). 

 

The integrity of the nasopharyngeal epithelium appears is important in protection 

against invasive disease. Any factors that cause damage to mucosa such as chronic 

irritation of the mucosa due to dust or low humidity, a concurrent upper respiratory 

infection (Mycoplasma pneumoniae or influenza A virus), smoking (active or passive), 

chronic underlying illness such as hepatic failure, systemic lupus erythematosis, 
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multiple myeloma and prior infection of the host etc. may be predisposing factors for 

invasive disease and increased host susceptibility (Kleemola and Kayhty 1982; 2000; 

Booy, Iskander et al. 2007). For nasopharyngeal colonization of bacteria, it requires 

equilibrium between the host and bacteria and in most individuals; it results in 

acquisition of serum bactericidal antibodies (Goldschneider, Gotschlich et al. 1969; 

Stephens 1999). At the age of 6 to 24 months, the incidence of meningococcal disease 

is highest due to the disappearance of maternal antibodies (Goldschneider, 

Gotschlich et al. 1969; Moore, Reeves et al. 1989).  

 

Because of the shared antigenic determinants, individuals who are infected with non-

groupable strains (without a capsule) also develop high titres of antibody against 

groupable strains (Goldschneider, Gotschlich et al. 1969; Gold 1983; Moore, Reeves et 

al. 1989). For example, Bacillus pumilus and Escherichia coli K1 possess the capsule that 

is structurally and immunologically identical to the capsule of serogroup A and 

serogroup B meningococci respectively (Grados and Ewing 1970; Vann, Liu et al. 

1976). This type of response does not necessarily eliminate the carrier state, but it 

may protect them from obvious disease by the induction of cross-reacting antibodies 

(Vann, Liu et al. 1976). The time of exposure to meningococci and cross reacting 

enteric bacteria may be critical in determining the fate of disease in each individual. 

Despite having the protective antibody response, persons with complement 

deficiencies (C5, C6, C7, or C8) may also develop meningococcaemia (Mandrell, 

Azmi et al. 1995; Borrow, Balmer et al. 2005). 
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Meningococci overcome host defences and attach by fimbriae to the microvillous 

surface of non-ciliated columnar mucosal epithelial cells of the nasopharynx, where 

they colonise (Stephens, Hoffman et al. 1983). Events involved after bloodstream 

invasion and how the meningococcus enters the central nervous system are not clear. 

The brain capillary endothelial cells (ECs) which make the blood-brain barrier (BBB), 

limits the paracellular flux by the formation of the tight junctions. It was suggested 

that, the possible routes for bacteria to traverse this barrier include, a transcytosis 

event and the bacteria may undergo fimbrial phase variation and cross the blood 

brain barrier (Collier, Balows et al. 1996).  

 

Others have reported that, the bacteria cross the blood brain barrier by internalising 

themselves in phagocytes (Nassif, Bourdoulous et al. 2002). The subarachnoid space 

in phagocytic cells lacks the principal humoral and cellular host defense mechanisms. 

It was suggested that, bacteria may gain access to this subarachnoid space, where an 

uncontrolled proliferation of meningococci may occur (Collier, Balows et al. 1996). 

This in turn elicits compartmentalised activation of proinflammatory cytokines 

(Waage, Halstensen et al. 1989), which ultimately contributes to the development of 

clinically overt meningitis. The functional ability of a phagocyte to deal with 

internalised bacteria may also depend on the number of bacteria engulfed (Ison, 

Heyderman et al. 1995). Studies on the infant rat model of Haemophilus influenzae, 

have shown that bacteraemia may arise due to the survival of even a single organism 

in the blood stream (Moxon and Murphy 1978). Meningeal infection, resulting from 

haematogenous route, occurs in about 50 to 55% percent of patients and in about 75% 
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of the patients N. meningitidis was be isolated from the bloodstream (Connolly and 

Noah 1999). 

 

Different bacterial strains vary in their capacity to invade the nasopharynx. 

Serogroups A, B and C are more invasive than other serogroups of meningococci. 

However, experimental problems in determining the intracellular survival of 

meningococci are considerable since they often grow more rapidly extracellularly 

(Spinosa, Progida et al. 2007). Another characteristic of human pathogenic Neisseriae 

is the production of an immunoglobulin IgA1-specific protease that cleaves 

preferentially human IgA1 and thus helps in survival in epithelial cells (Lorenzen, 

Dux et al. 1999; Rosenstein, Perkins et al. 2001). 

 

Other factors responsible for increased risk of sporadic meningococcal disease 

include infection with the human immunodeficiency virus and Streptococcus 

pneumoniae (Rosenstein, Perkins et al. 2001). Also, any genetic immune defects 

including, polymorphisms in the genes encoding mannose-binding lectin and tumor 

necrosis factor-alpha, may also affect the susceptibility to meningococcal disease 

(Rosenstein, Perkins et al. 2001). Factors influencing the outcome of the disease 

depend on the duration of disease before treatment; the site, severity and the 

prognosis. 

 

1.1.5. Clinical manifestations of N. meningitidis infection 

During meningococcal infection, the patients can be classified into one of following 

clinically recognisable groups (i) bacteraemia without shock (acute mild 
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meningococcaemia), (ii) bacteraemia with shock but no meningitis (fulminant 

meningococcaemia), (iii) shock and meningitis, (iv) meningitis alone and (v) chronic 

benign meningococcemia (D’Alessandro 2006; Manchanda, Gupta et al. 2006). After 

tolerating the potentially lethal bacteria for several weeks in the bloodstream, about 

20% will later develop meningitis. 

 

Infection with N. meningitidis may result in meningitis or as septicaemia (blood 

poisoning), or as a combination of both, depending on which part of the body the 

bacteria invade (Riordan, Marzouk et al. 1995). The mildest form of the disease is 

characterised by transient bacteraemic illness with fever and malaise and symptoms 

resolve spontaneously in 1 to 2 days. Meningococcaemia is characterised by skin 

lesions, which may appear more prominently in areas of the skin subjected to 

pressure, such as the axillary folds, the belt line, or the back (Beek, Gans et al. 2004).  

 

The most serious form is the fulminant disease complicated further by meningitis. 

Fulminant meningicoccaemia disease (with or without meningitis) is characterised 

by multisystem involvement and high mortality (Edwards 1971). Fulminant 

meningococcaemia which occurs in 5 to 15% of patients, begins abruptly (Singh and 

Arrieta 2004). Typically, signs of meningitis may not be present. Pulmonary 

insufficiency develops within a few hours, and septicaemia can lead to death within 

24 hours of being hospitalized despite giving appropriate antibiotic therapy (Devoe 

1982; Hameed and Riordan 2002). Sometimes the disease is responsible for 

permanent neurological damage in the event of late diagnosis. Increasing antibiotic 
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resistance, which is being observed worldwide, further adds grounds to the concern 

(Quagliarello and Scheld 1997). 

 

The rapid symptoms of meningococcal meningitis in children include irritability and 

refusal to take food and vomiting leading to dehydration (Augustine 2005). Fever 

may not be observed in children younger than 2 months of age, but hypothermia is 

more common in neonates. In 30 to 60% of patients with meningococcal disease, with 

or without meningitis, the appearance of petechiae or purpura occurs from the first 

to the third day of illness. As the disease progresses, symptoms like high fever, 

severe headache, nausea and vomiting, sensitivity to light (photophobia), altered 

mental status, apnoea, seizures and coma due to disturbances in motor tone may 

develop (Beek, Gans et al. 2004; Milonovich 2007). In older children and adults, 

chronic benign meningococcaemia with one or more specific symptoms and signs, 

with spiking fever and altered mental status, arthralgia, or arthritis and a recurrent 

rash may occur (van Deuren, Brandtzaeg et al. 2000).  

 

The examination of CSF may show normal chemistry and cell counts but signs of 

meningeal irritation such as spinal rigidity, hamstring spasms and exaggerated 

reflexes are commonly observed (Goldschneider, Gotschlich et al. 1969). Additional 

symptoms that may be associated with this disease are: speech impairment, stiff 

neck, muscle pain, hallucinations, facial paralysis, brain damage, eye lid drooping, 

drowsiness, consciousness decreased, rapid breathing, agitation, positive Babinski's 

reflex (occurs when the great toe flexes toward the top of the foot and the other toes 

fan out after the sole of the foot has been firmly stroked (Milonovich 2007). In 
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addition, bulging of the fontanelles, opisthotonos (a condition of abnormal posturing 

characterised by rigidity and severe arching of the back, with the head thrown 

backward), deafness, paralysis of various muscles, and loss of vision may be seen 

(Voss, Lennon et al. 1989; Milonovich 2007). 

 

1.1.6. Complications associated with N. meningitidis infection 

Complications such as arthritis or pericarditis, cellulitis and endophthalmitis can 

develop (Blaser, Reingold et al. 1984; Lin, Parekh et al. 1995; Wells and Gibbons 1997). 

Other complications associated with meningococcal infection include multiple organ 

damage due to insufficient blood flow (shock), increased intracerebral pressure, 

myocarditis and hydrocephalus. Additionally, primary meningococcal conjunctivitis, 

pneumonia, adnexitis, or pelvic inflammatory disease may be seen (Lin, Parekh et al. 

1995). Meningococcal pneumonia is generally uncommon and may occur in 

immunocompromised or elderly patients (Stephens, Hajjeh et al. 1995). 

 

1.1.7. Treatment and Prognosis 

The symptoms of disease caused by N. meningitis ranges from occult bacteremia, 

which clears spontaneously, to fulminant sepsis resulting in serious complication 

which may lead to death within a few hours after the first symptoms, occur. This 

latter occurrence explains much of the challenge and anxiety surrounding the 

diagnosis, since early symptoms may be difficult to distinguish clinically from more 

common but less serious illnesses (Wang, Malley et al. 2000). Before the 1920s, 

meningococcal disease was fatal in up to 70 percent of cases (Flexner 1913). 
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In the case of bacterial meningitis, due to the high risk of complications involved, 

anti-microbial therapy must be started immediately (Wang, Malley et al. 2000). 

Therapy with horse serum containing anti-NM antibodies, introduced at the 

beginning of this century by Jochmann in Germany and Flexner in the United States, 

reduced the mortality rate from nearly 100% to 30% (Jochmann 1906; Flexner 1913). 

Antibiotics are prescribed for bacterial meningitis and the type varies depending on 

the infecting organism (Fitch and Beek 2007). Penicillin is the drug of choice in the 

treatment of meningococcaemia and meningococcal meningitis (Wang, Malley et al. 

2000). Under normal conditions, penicillin does not penetrate the normal blood-brain 

barrier, but it readily penetrates the blood-brain barrier when the meninges are 

acutely inflamed.  

 

The discovery of sulphonamides and other antimicrobial agents led to a further 

decline in fatality rates (Suntur, Yurtseven et al. 2005). Sulphonamides were the 

chemoprophylactic agent of choice until the emergence of sulphonamide-resistant 

meningococci (Moore, Reeves et al. 1989; Paap and Bosso 1992). Nearly 25% of 

clinical isolates of N. meningitidis in the United States appear to be resistant to 

sulphonamides. Either chloramphenicol or third-generation cephalosporins such as 

cefotaxime, ceftriaxone or rifampin are used in patients allergic to penicillins (Smith 

and Ryan 1987; Paap and Bosso 1992). Intravenous mannitol administration can be 

used to treat the complications arising from the increased intracerebral pressure. 

Sometimes systemic corticosteroids are also used. 
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Viral meningitis is usually not serious and symptoms disappear within 2 weeks with 

no residual complications. Antibiotics are ineffective in viral meningitis but the 

treatment of secondary symptoms including brain swelling, shock, and seizures will 

require other medications and intravenous fluids (Chitkara, Ryan et al. 2002). 

Hospitalisation may be needed depending on the severity of the illness. 

 

1.1.8. Prevention of meningitis 
The transmission of meningitis from one person to another occurs by direct contact 

or via inhalation of respiratory droplets (van Deuren, Brandtzaeg et al. 2000). Apart 

from avoiding the direct contact with infected people, other preventive measures 

may be taken to avoid serious infection.   

 

N. meningitidis serogroups A, C, Y, and W135 capsular polysaccharide vaccines are 

available (Robbins, Schneerson et al. 2003). However, these vaccines are ineffective in 

very young children (under 1 year old) since antibody levels decline rapidly after 

immunisation. Also, it has been shown that the duration of protection is limited in 

children vaccinated at 1 to 4 years of age (Ramsay, Andrews et al. 2001).  As the risk 

of infection is low in this age group, routine vaccination is not currently 

recommended before the age of 5. Also, these meningococcal capsular 

polysaccharide vaccines are not effective against group B (the most common isolate) 

because of its poor immunogenic profile. The group B capsular polysaccharide is a 

homopolymer of sialic acid and is not immunogenic in humans due to the antigenic 

mimicry with the polysialosyl gangliosides and glycoproteins in fetal and adult 

neural and extra-neural tissues (Park, Choi et al. 2004). A group B meningococcal 

vaccine consisting of outer membrane protein antigens has recently been developed 
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(Boslego, Garcia et al. 1995). Though, an overall efficacy of 51% was observed, a 

substantial drop in the antibody levels was observed by 6 months time. 

 

1.1.9. Epidemiology 
Meningococcal infections occur worldwide as an endemic disease with mortality rate 

at times reaching upto 85% (Moore, Reeves et al. 1989; Schwartz, Moore et al. 1989; 

Caugant 1998). Epidemiological studies by modern molecular methods have 

revealed a multifaceted picture of pathogenic meningococcal clones spreading 

worldwide. Of the five common serogroups (A, B, C, Y and W135) responsible for 

about 90% of infections caused by N. meningitidis, serogroups A, B and C are more 

often associated with disease than other serogroups or acapsulate bacteria. With the 

highest incidence during late winter and early spring, N. meningitidis infections occur 

both sporadically (serogroups B and C) and in epidemics (mainly serogroup A). For 

the past 200 years, epidemics of meningococcal infection have been occurred in 

Europe, Africa, Asia, the United States, and New Zealand. In USA alone, about 5000 

cases of new bacterial meningitis occur each year, a 50% increase in incidence 

compared to the number of cases recorded in the last decade. Although, it is classed 

as a rare disease in Australia, 700 people are affected each year approximately, (Jelfs 

and Munro 2001; Rosenstein, Perkins et al. 2001; Skull and Butler 2001).  

 

Serogroup A and C predominate throughout Asia and Africa and are responsible for 

epidemic spread, whereas serogroups B and C prevail in the Europe and West 

(Caugant, Kristiansen et al. 1988; Schwartz, Moore et al. 1989; Rosenstein, Perkins et 

al. 1999; Pollard 2004). Serogroup B strains related infections are common in 

developing countries (Caugant 1998). In recent years (1996-98), one third of reported 
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infections in United States were due to serogroup Y (Rosenstein, Perkins et al. 1999). 

Israel and Sweden are the other countries that have reported an increase in 

serogroup Y disease (ET-508) (Connolly and Noah 1999). The serogroup W-135 

infections were reduced from 15-20% between 1978 and 1980 to only 4% of currect 

cases in the United States (Band, Chamberland et al. 1983). During 2002-2003, 

serogroup W135 has been associated with a large epidemic in Burkina Faso (Vogel 

2003). 

  

In the last 30 years, major epidemics of meningococcal disease have occurred 

through out Asia (China 1979 and 1980, Vietnam 1977, Mongolia 1973-1974 and 1994-

1995, Saudi Arabia 1987, Yemen 1988) (van Deuren, Brandtzaeg et al. 2000). One of 

the largest outbreaks, which originated in China and later became global, was caused 

by two clones of serogroup A (Schwartz, Moore et al. 1989; Caugant 1998; van 

Deuren, Brandtzaeg et al. 2000). One of these clones, after causing an outbreak in the 

Indian subcontinent during 1983 to 1987, reached African countries through the 

Middle East between 1987 to 1996, causing epidemic among pilgrims during the Haj 

in Mecca (Schwartz, Moore et al. 1989; Caugant 1998; van Deuren, Brandtzaeg et al. 

2000). Between September 1985 and March 1986, Bhutan was also hit by meningitis 

with 247 cases and 41 deaths (WHO 2005). In the Kathmandu valley in Nepal, 1475 

cases occurred during 1982-1984, especially in children less than one year of age 

(Caugant 1998). 

 

The semi-arid area of sub-Saharan Africa has a special epidemiological pattern. A 

region of savannah that extends from Ethiopia in the east to Senegal in the west, 
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designated the “meningitis belt”, was first described by Lapeyssonnie in 1963 and 

comprised of 10 countries i.e., Burkina Faso, Ghana, Togo, Benin, Niger, Nigeria, 

Chad, Cameroon, Central African Republic, and The Sudan (Lapeyssonnie 1963). The 

“expanded meningitis belt” includes three more countries, Ethiopia, Mali, Guinea, 

Senegal, and the Gambia (Riedo, Plikaytis et al. 1995). Over 100 years, serogroup A 

meningococcal disease had been a continuous threat to public health in this region 

(Greenwood, Bradley et al. 1985). In 1996, the largest outbreak ever reported occurred 

with a total number of cases 152,813 was reported, with 15,783 deaths (WHO 1997). 

Following these large outbreak in Africa, the International Coordinating Group (ICG) 

for Vaccine Provision for Epidemic Meningitis Control was established in 1997, to 

ensure rapid and equal access to vaccines and antibiotics. The ICG was established 

by partners from the UN, including WHO, non-governmental organisations and the 

private sector. 

 

Epidemic rates of meningococcal disease vary between different nations and the 

precise bacterial factors responsible for these geographic differences are not clear 

(Stephens 1999; van Deuren, Brandtzaeg et al. 2000). Despite the development of the 

vaccines for serogroups A and C) and appropriate treatment available, the overall 

case fatality rates have remained relatively stable over the past 20 years, at 9 to 12%, 

while the rate rises up to 40 % among patients with meningococcal sepsis (Rosenstein 

and Perkins 2000). 

 

1.1.10. Methods for Diagnosis of meningococcal infection 

Current methods of diagnosis of meningococcal infection in patients with 
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meningococcal disease include Gram staining of a CSF sample, direct antigen 

detection using latex agglutination, CSF smear or bacteriological culture of CSF and 

blood growing meningococci culture. In addition, molecular diagnostic methods are 

available including amplification of a meningococcal serotype specific gene by 

polymerase chain reaction (PCR) and CSF serology to detect meningococci antigen. 

Radiological examination including X-ray of the skull, sinuses, chest and head CT 

scan can detect abscess or swelling (Daoud, Omari et al. 1998; De Gaspari 2000; Berry, 

Boese et al. 2005; Fernandez-Rodriguez, Vazquez et al. 2005; Martin, McCallum et al. 

2005; Bronska, Kalmusova et al. 2006; Jolley, Brehony et al. 2007). 

 

N. meningitidis are oxidase-positive, Gram-negative diplococci. These are fastidious 

and fragile bacteria and the clinical material must be examined as soon as possible 

after collection to increase the isolation rates (CDCP 1998; WHO 1998). Gram staining 

is still considered as an important method for rapid detection of N. meningitidis. 

Direct examination of the CSF or a skin lesion biopsy specimen reveals the presence 

of Gram-negative diplococci both inside and outside of polymorphonuclear cells 

(Dunbar, Eason et al. 1998). Heavily capsulated strains may be seen with a distinct 

pink halo around the cells.  

 

Meningococcal capsular polysaccharide in CSF, serum or urine may be detected 

using specific antibodies. This method is rapid and can provide a serogroup-specific 

diagnosis. However, false negative results are common, especially in cases of 

serogroup B disease due to the shared structural similarity with the host tissues as 

described previously (Zollinger and Boslego 1997). Antigen tests of urine or serum 
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are found to be less reliable for the diagnosis of meningococcal disease. Negative 

Gram staining or antigen detection does not necessarily rule out the meningococcal 

disease and so confirmation of meningococcal infection requires bacteriologic 

culture.  

 

N. meningitidis may be recovered from CSF, blood and aspirates and may be cultured 

on a selective Thayer-Martin agar or in a peptone-blood base medium or other 

suitable non-selective media like chocolate agar and sheep blood agar with 

incubation in 5-10% CO2 at 37 oC for 48-72 hours (Zollinger and Boslego 1997). 

Positive colonies of N. meningitidis appear as gray coloured, low convex colonies, 

with entire smooth moist edge and glistening surface with a size of approximately 

1mm in diameter. However, prior antibiotic therapy reduces the sensitivity and 

jeopardises the recovery of bacteria from cultures of blood and CSF but not from skin 

biopsy specimens (van Deuren, van Dijke et al. 1993). Following initiation of 

antibiotic therapy, analysis of blood or CSF samples by PCR is performed as it is not 

affected by prior antibiotic therapy (Fernandez-Rodriguez, Vazquez et al. 2005). 

 

Molecular diagnosis of N. meningitidis specific DNA by PCR analysis offers the 

advantages such as serogroup-specific detection and may not require live organisms. 

A study comparing the results of Gram staining and culture of CSF with a rapid PCR 

assay (2 hours) of 281 cases of suspected showed that PCR had a sensitivity of 97% 

compared to a 55 % sensitivity for culture (Richardson, Louie et al. 2003). PCR for the 

identification of N. meningitidis, based on various primers encoding ctr A, por A, crgA, 

16S rRNA, siaD and nsp A genes have been developed (Mothershed, Sacchi et al. 2004; 
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de Filippis, do Nascimento et al. 2005; Fernandez-Rodriguez, Vazquez et al. 2005; 

Jordens and Heckels 2005; Taha, Alonso et al. 2005). Real-time PCR analysis of the 

capsule transfer gene ( ctrA ) has also been reported, but fails to detect non-capsular 

strains associated with nasopharyngeal carriage (Jordens and Heckels 2005). The 

same authors have developed a novel porA-based TaqMan assay that is more 

sensitive than the ctrA assay for detecting meningococcal carriage (Jordens and 

Heckels 2005). A multiplex PCR assay for the simultaneous detection of N. 

meningitidis, Streptococcus pneumoniae and Haemophilus influenzae type B, has also been 

developed based on the ctrA, ply and bex gene targets respectively, and this has 

enabled the detection of 5-10 pg bacterial DNA (Tzanakaki, Tsopanomichalou et al. 

2005). 

 

Other molecular typing techniques that may be used for detection include Restriction 

fragment length polymorphism (RFLP), rRNA probe technology (ribotyping), PCR 

amplification and restriction endonuclease analysis of chromosomal dhps 

(dihydropteroate synthase), pil A, pil B and porA genes of N. meningitidis, repetitive 

sequence-based PCR and pulsed-field gel electrophoresis (PFGE) (Janda and Knapp 

2003; Healy, Huong et al. 2005). Antimicrobial susceptibility testing using minimum 

inhibitory concentration (MIC) determination is also the method of choice in case the 

patient doesn’t demonstrate an appropriate response to the antimicrobial agents 

(Hughes, Biedenbach et al. 1993; Institute 2005; Vazquez 2007).  

 

This disease may also alter CSF glucose levels and CSF cell count. N. gonorrhoeae 

oxidises glucose only whereas N. meningitidis oxidises both glucose and maltose and 
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tests may be performed to analyse these levels (Fox, Taha et al. 2007). Thus, 

carbohydrate utilisation tests may be used for confirmation of isolates as N. 

meningitidis. Also, Kovac's oxidase test may be performed on the growth of a blood 

agar plate and then the serogroup may be identified (Prevention 1998). 

 

Skin lesions and blood cultures may not always be revealing but CSF samples are 

generally positive (van Deuren, Brandtzaeg et al. 2000; Arend, Lavrijsen et al. 2006). 

In summary, the current methods of diagnosis used to identify the causative 

organism rely upon time consuming methods such as culture of organisms from 

cerebrospinal fluid (CSF) (Olcen, Kjellander et al. 1979) and blood samples followed 

by confirmation using techniques such as PCR for meningococcal serotype specific 

gene (Taha 2000; Freeman, Mai et al. 2004). These are rather time-consuming relative 

to the rapid pathogenesis of the disease itself. Although the introduction of 

antibiotics made it curable, morbidity and mortality rates from the disease remain 

unacceptably high.  

 

CSF culture will definitely identify the bacteria involved, but it is a very time 

consuming test indicating the need for a rapid, accurate and uncomplicated detection 

technique. The key to successful treatment of bacterial meningitis is rapid diagnosis 

followed by appropriate antibiotic therapy (Chanteau, Dartevelle et al. 2006). In light 

of the rapid onset of the disease and its devastating effects, it is critical to diagnose 

and implement appropriate treatment as soon as possible to monitor and control the 

disease. Early detection, and prompt treatment with antibiotics is essential to prevent 

permanent neurological damage, and it can mean the difference between life and 
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death (Brennan, Somerset et al. 2003). Thus there is a need for a rapid (in minutes), 

sensitive and accurate diagnostic technique to detect the presence of meningococci in 

patients. 

 

The main objective of this research project is to develop a rapid but simple, sensitive 

and highly specific diagnostic test for the detection of Neisseria meningitidis, the most 

common causative pathogen of meningitis. The proposed research plan involved a 

combination of techniques spanning biotechnology, chemistry and nanotechnology 

to develop novel detection systems involving nanoparticles and binding through 

specific biomolecular interactions between bacterial cell surface antigens and cognate 

receptors.  
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1.2. A History of Colloidal Gold Nanoparticles 

Gold is a rare metallic element with a melting point of 1064 °C and a boiling point of 

2808 °C. Several properties of gold such as its excellent conductive properties and its 

inability to react with water or oxygen, have made it very useful to mankind over 

time. During the 5th millennium B.C., the extraction of gold started near Varna 

(Bulgaria) and it is believed that “soluble” gold appeared around the 5th or 4th 

century B.C. in Egypt and China. The marvellous statue of Touthankamon, which 

was constructed around that time stands as proof. It was referred with different 

names such as soluble gold and drinkable gold, before the term “colloid” (from the 

French word, colle) was coined by Graham in 1861 (Graham 1861).  

 

Colloidal gold and its beautiful ruby-red colour has fascinated people for many 

centuries, that can be traced back to ancient times. It was used extensively for 

cosmetic, decorative as well as for medicinal purposes (Kunckels 1676; Zsigmondy 

1926; Savage 1973). In the Middle Ages, “Aurum potabile” or “drinkable gold” was 

used to cure diseases like arthritis and heart problems, venereal diseases, dysentery, 

epilepsy and tumours and also for the diagnosis of syphilis, a method which 

remained in use until the 20th century (Kahn 1928; Hauser 1952; Brown and Smith 

1980; Daniel and Astruc 2004). 

 

The use of colloidal gold as the name of soluble gold for therapeutic purposes was 

well detailed in a book on soluble gold, published by the philosopher and medical 

doctor Francisci Antonii in 1618 (Francisci 1618). The authour had briefly described 

the formation of colloidal gold suspensions and their medical uses, including 
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successful practical cases. By the end of 16th century, colloidal gold was routinely 

used to make ruby glass and for colouring ceramics, methods that are still in use 

now. The most famous examples of the use of colloidal gold in ruby glass are the 

Lycurgus Cup that was manufactured in the 5th to 4th century B.C. and  the “Purple 

of Cassius”, that has been known since the 17th century (Savage 1973). The Lycurgus 

Cup appears ruby red in transmitted light and turns green in reflected light, due to 

the presence of gold colloids. In 1794, Mrs. Fuhlame reported that she had used 

colloidal gold to dye silk (Fulhame 1794). Thus it appears that, these kinds of ideas 

about colloidal gold were common in the 18th century. 

 

Ostwald carried out several studies on metal colloids and subsequently wrote a book 

titled “The World of Neglected Dimensions” (Ostwald 1915). Nearly half a century 

later, Feynman visualised the field of nanotechnology quoted that “There’s plenty of 

room at the bottom” (Feynman 1959). Since then, with availability of several 

sophisticated tools, this area of research has shown tremendous progress (Cushing, 

Kolesnichenko et al. 2004; Daniel and Astruc 2004; Burda, Chen et al. 2005; Love, 

Estroff et al. 2005). 

 

Being the subject of one of the most ancient themes of investigation in science, gold 

and its past glory now leads to an exponentially increasing number of applications, 

especially in the context of emerging nanoscience and nanotechnology. Metallic gold 

can be reduced to gold nanoparticles by a variety of reducing agents. By definition, 

nanoparticles can range in size from 1 to 100 nanometers (Cervellino, Giannini et al. 

2005). The nanoparticles have highly interesting optical, electronic, and catalytic 
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properties, which are very different from those of the corresponding bulk materials 

(Zharov, Galitovsky et al. 2003). 

 

Colloidal gold nanoparticles present interesting aspects such as, the behavior of the 

individual particles, size-related electronic and optical properties, and their 

applications to catalysis and biology. The possibility to control and tune these unique 

optical and electronic properties, can allow these gold nanoparticles to be used as 

versatile analytical probes. Due to the promises offered by the nanotechnology, these 

nanoparticles are becoming key materials and building blocks in the 21st century.  

 

1.2.1. Synthesis of gold nanoparticles 
Nanoparticles from various materials can be prepared by relatively simple methods. 

During the past few decades, a variety of different methods have been reported and 

reviewed for synthesizing gold colloids of monodisperse and uniform sizes particles 

(Turkevich, Stevenson et al. 1951; Frens 1973; Hayat 1991; Schmid 1992; Watson, Zhu 

et al. 1999). Currently, there are two kinds of approaches generally carried out to 

prepare nanoparticles, (a) The “top down approach”, which involves the constant 

division of bulk metals into nanoparticles and (b) The “bottom-up approach”, which 

involves the building up of nanoparticles from the atomic level.   

 

1.2.1.1. Top- Down Approach 
This method is based on dissolution of metallic gold and various methods included 

in the “top- down” approach are laser ablation methods, evaporation under high 

vacuum (Aiyer, Vijayakrishnan et al. 1994), solvated metal atom dispersion (SMAD) 

methods (Lin, Franklin et al. 1986; Smetana, Klabunde et al. 2005), an electric arc 
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reduction method (Bradley, Schmid et al. 2005) and electrochemical reduction 

methods (Reetz and Helbig 1994).  

 

In the SMAD method (Lin, Franklin et al. 1986), the gold suspension is vapourised 

under vacuum and the metal atoms are co-deposited with a vapour such as acetone 

on the walls of a reactor. This method helps to stabilise the particles sterically as well 

as electrostatically. Using this method, silver and copper nanoparticles have also 

been prepared (Smetana, Klabunde et al. 2005). Gold and siver nanoparticles have 

also been prepared by electric arc reduction of metal filings (Bradley, Schmid et al. 

2005). Reetz and Helbig (Reetz and Helbig 1994) have described the preparation of 

palladium nanoparticles by an electrochemical reduction method. Sibbald et al.. 

reported about the laser ablation method to generate silver nanoparticles (Sibbald, 

Chumanov et al. 1996). 

 

1.2.1.2. Bottom- Up Approach 
This method is based on preparation of colloid particles from gold halides such as 

tetrachloroauric acid, HAuCl4 (Dykman, Lyakhov et al. 1998). The bottom- up 

approach of preparing nanoparticles has become very popular, because one can have 

a good control on size and monodispersity of the nanoparticles (Toshima and 

Yonezawab 1998). Cushing and co- workers published a review in which they 

discussed about various preparative strategies in detail (Cushing, Kolesnichenko et 

al. 2004). In this approach, different reducing agents such as sodium borohydride, 

trisodium citrate, tannic acid, hydrazine, ascorbic acid and tartaric acid are used to 

reduce the metal ions into nanoparticles (Cushing, Kolesnichenko et al. 2004). 

Nanoparticles from metals such as Au, Ag, Pt, Pd and Rh, having high positive redox 
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potentials (E0>0.7V) can be prepared using mild reducing agents under ordinary 

conditions, whereas electronegative metals (E0< -0.2V) requires strong reducing 

agents with extreme reaction conditions (Goia and Matijevi 1998). Daniel and Astruc 

have reviewed the methods available for the preparation of Au nanoparticles (Daniel 

and Astruc 2004). 

 

 

1.2.1.2.1. Citrate Reduction 
For many biological applications, it is desirable to have the nanoparticles suspended 

in water with no loss of physical and chemical properties (Lewis 1993). At first, 

Faraday prepared aqueous colloidal Au suspensions using phosphorous vapour as 

the reducing agent (Faraday 1857) and stated that these suspensions contained 

metallic particles in a “highly divided state”. The Austrian Nobel laureate Zsigmondy 

said that “A colloidal mixture may sometimes behave like a chemical compound and has 

frequently simulated one” (Zsigmondy 1926). Initially, Zsigmondy described about the 

colloidal gold synthesis methods with different particle size using H2O2, formalin 

and white phosphorus as the reducing agents. 

 

Among the various methods described, the trisodium citrate reduction method at 

elevated temperatures, initiated by Turkevich and co-workers (Turkevich, Stevenson 

et al. 1951), is the most widely method. They have proposed the mechanism of 

synthesis of monodisperse colloidal gold hydrosols by the controlled reduction of an 

aqueous solution of tetrachloroauric acid. The Au3+ ions are reduced by the 

multidentate chelating agent (trisodium citrate) to produce clusters of supersaturated 

Au0 nuclei. As the Au0 concentration increases, they form seeds of nuclei and the 
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particle growth occurs by further deposition of metallic gold upon the nuclei. Small 

metal particles with a negative charge are formed in which case; the negative charge 

is believed to arise from dichlorogold (I) ions on their outer surface. Here, the citrate 

anion acts both as a capping as well as reducing agent. This technique leads to gold 

nanoparticles of an average core size of 20 nm.  

 

The paticle size obtained by this method is inversely proportional to the ratio 

between citrate: tetrachloroauric acid, resulting in particles in the range, 20 to 100 nm 

(Englebienne 1999). In 1973, Frens reported that, pre-selected size between 16 and 147 

nm were obtained via controlled formation, by varying the ratio between the 

reducing/stabilising agents (the trisodium citrate-to gold ratio) (Frens 1973). The 

sodium citrate reduction method produces a uniform size distribution of 

nanoparticles but with a slightly different mean size with every synthesis (Link, 

Wang et al. 1999). 

 

Synthesis of smaller particles requires the use of strong reductants such as white 

phosphorus or sodium borohydride. They produce a great number of nuclei and 

hence the small particles with average diameter of 2 to 10 nm are produced 

depending on the synthetic conditions (Hyning and Zukoski 1998). Gold, silver and 

platinum nanoparticles have been prepared using this method (Turkevich, Stevenson 

et al. 1951; Frens 1973; Lewis 1993; Chow and Zukoski 1994; Henglein 1997). 

Additives, such as tannic acid, may be used to stabilise and to control their size. 
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1.2.1.2.2. Two-Phase Synthesis and Stabilisation by Thiols 
The two-phase procedure that has revolutionised the field of nanoparticle synthesis 

involves the phase transfer of metal ions from water into an organic toluene medium 

using phase transfer reagents such as tetraoctyl ammonium bromide (TOABr) (Brust, 

Walker et al. 1994). Subsequently, the metal ions are reduced using reducing agents 

such as NaBH4, in the presence of capping agents such as dodecanethiols (Brust, 

Walker et al. 1994) and amines (Leff, Brandt et al. 1996) that have great affinity for 

noble metal surfaces. Once the organic phase changes colour from orange to deep 

brown, the solvent is evaporated to yield particles. These particles can be made 

soluble in different solvents depending on the polarity of the capping agent. The 

advantage of this procedure is that the method yields highly stable and capped 

nanoparticles which can be repeatedly isolated and re-dissolved in common organic 

solvents without irreversible aggregation or decomposition. 

  

The above synthesis technique was inspired by Faraday’s two-phase system and uses 

the thiol ligands as capping agents that strongly bind gold due to the soft character of 

both Au and S (Faraday 1857; Brust, Fink et al. 1995). Brust et al.. extended this 

synthesis to p-mercaptophenol-stabilised gold nanoparticles in a single phase system, 

which opened an avenue to the synthesis of monolayer protected clusters (MPCs) of 

gold nanoparticles stabilised by a variety of functional thiol ligands (Brust, Fink et al. 

1995; Kang and Kim 1998; Chen 1999). The synthetic procedures have been further 

refined to obtain highly monodisperse nanoparticles (Hicks, Miles et al. 2002).  

 

Nanoparticles are generally better dispersed in organic solvents than aqueous 

solvents. Giersig and Mulvaney converted the citrate- capped gold nanoparticle sols 
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into thiol- capped particles by substitution in a phase transfer experiment from 

aqueous to organic phase (Giersig and Mulvaney 1993). These thiol- capped particles 

were subsequently redispersed in non-polar solvents. Schmid and co- workers 

(Schmid, Lehnert et al. 1991) have prepared Au clusters capped with 

triphenylphosphine derivatives and due to the polar nature of the capping agent, 

these particles can be redispersed in aqueous solutions. Methods to transfer the 

nanoparticles from organic to aqueous media were also reported which is of 

particular interest for biological applications (Gittins and Caruso 2002). Superhydride 

and hexadecylaniline have been used as alternative reagents to NaBH4 for the 

reduction of gold (III) in the synthesis of thiol-stabilised gold nanoparticles (Yee, 

Jordan et al. 1999; Selvakannan, Mandal et al. 2002). 

 

1.2.1.2.3. Seeding Growth and Other methods 
Although the seeding-growth procedure is an age old technique, recent studies have 

successfully led to control of the particle size distribution, by manipulating the ratio 

of seed to metal salt (Jana, Gearheart et al. 2001; Meltzer, Resch et al. 2001). 

Nanoparticles in the size range of 5-40 nm were successfully prepared using this 

method. It was reported that, step-by-step particle enlargement is more effective than 

a one-step seeding method since it avoids secondary nucleation (Carrot, Valmalette et 

al. 1998). 

 

The use of microemulsions (Aliotta, Arcoleo et al. 1995; Chen, Xu et al. 2003) 

copolymer micelles (Carrot, Valmalette et al. 1998; Bronstein, Chernyshov et al. 1999) 

reverse micelles (Lisiecki and Piled 1995), surfactants adsorbed (Markowitz, Dunn et 

al. 1999; Aslan and Perez-Luna 2002), membranes and other amphiphile based 
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techniques for the synthesis of stabilised nanoparticles in the presence or in the 

absence of thiol ligands has been reported. The syntheses involve a two-phase system 

with a surfactant that causes the formation of the microemulsion or the micelle 

maintaining a favorable microenvironment, and the thiols that interact with 

nanoparticles surface and stabilise the particles. This provides an advantage over the 

conventional two-phase systems that control both the growth and stabilisation of the 

gold nanoparticles. 

 

Common surfactants such as cetyl trimethylammoniumbromide (CTAB) and sodium 

bis (2-ethylhexyl) sulphosuccinate (NaAOT) are used to form reverse micelles (Chen, 

Xu et al. 2003). The metal salts are dissolved in the water and volume of the water 

pool inside a reverse micelle can be carefully controlled. The addition of a second 

reverse micelle containing a suitable reducing agent causes the reduction of metal 

ions to nanoparticles and their size is predetermined by the micellar core where the 

water is trapped. Phospholipids were also used in particular as dispersants, for the 

preparation of gold nanoparticles (Chow, Markowitz et al. 1996; Bhattacharya and 

Srivastava 2003). 

 

Colloidal dispersions of noble metals have been prepared by reducing the metal ions 

under reflux conditions in methanol/water in the presence of polyvinyl pyrollidine 

(Hirai, Nakao et al. 1978). The sol- gel processing of materials, where the metallic 

particles can be stabilised in both liquid and solid matrices (Epifani, Giannini et al. 

2000), is a versatile method for making particles at room temperatures. Very stable 

dispersions of the Au, Ag, Pd and Pt nanoparticles were synthesised in the form of 
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sols, gels and monoliths in a single step by a sol-gel process (Bharathi, Fishelson et al. 

1999). 

 

Spontaneous formation of gold nanoparticles have been observed in aqueous 

suspensions of sugar-persubstituted PAMAM dendrimers without the addition of 

additional reductant (Esumi, Hosoya et al. 2000). Gold nanoparticles were prepared 

in both aqueous and organic systems by reducing HAuCl4 with o-anisidine in the 

presence of 1:1 N-methyl-2-pyrrolidone/toluene (Dai, Tan et al. 2002).  

 

Metal nanoparticles have also been synthesised by techniques such as sonochemical 

(Pol, Gedanken et al. 2003), radiolytic, UV irradiation, Near-IR laser irradiation 

(Mallick, Wang et al. 2001), ϒ-irradiation  (Dawson and Kamat 2000), laser photolysis 

(Sau, Pal et al. 2001), electrochemistry and microwave reduction methods in the 

presence of suitable stabilisers. Radiolysis has been used to synthesise and to control 

the size of gold nanoparticle. Irradiation by UV light in conjuction with seed growth 

method was shown to improve the quality of the gold nanoparticles (Meltzer, Resch 

et al. 2001; Sau, Pal et al. 2001). Sonochemistry has also been also used for the 

synthesis of gold nanoparticles and Au/Pd bimetallic particles within the pores of 

silica substrate. Laser ablation is another technique of gold nanoparticle synthesis, 

wherein size can be controlled by the laser (Mafune, Kohno et al. 2002).  

 

1.2.1.2.4. Gold nanoparticle biosynthesis 
Since there is a growing need to develop non-toxic, environment friendly synthetic 

procedures, biochemical preparation methods of gold nanoparticles have been 

reported whereby biological organisms play the roles of reductant, protecting agent, 
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and precipitating agent (Li, Chung et al. 2003). Microorganisms like bacteria and 

fungi as well as plant extracts, have been successfully employed to stabilise Au 

nanoparticles (Torresdey, Tiemann et al. 1999; Hillyer and Albrecht 2001; Mukherjee, 

Ahmad et al. 2001; Torresdey, Parsons et al. 2002). 

 

Reaction of AuCl4– ions with the extract of geranium leaves and an endophytic 

fungus, Colletotrichum sp., present in the leaves, leads to the formation of gold 

nanoparticles (Ascencio, Mejia et al. 2003; ShivShankar, Ahmad et al. 2003). This is 

described as sort of biomineralisation process, in which protein components control 

the formation of nanoparticles by specifically interacting with the growing particles. 

 

1.2.1.2.5. Bimetallic Nanoparticles 
Bimetallic nanoparticles containing gold as one of the elements have been 

synthesised in a variety of ways. Bimetallic gold nanoparticles have been reported 

with Ag, Pd, Pt, Ti, Fe, Zn, Cu, Zr, CdS and Eu (Schmid, Lehnert et al. 1991; Vacassy, 

Valmalette et al. 1998; Cao, Jin et al. 2001; Kolny, Kornowski et al. 2002; Moskovits, 

Sloufova et al. 2002; Ravel, Carpenter et al. 2002; Schierhorn and Marzan 2002; 

Shibata, Bunker et al. 2002; Shon, Dawson et al. 2002; Mandal, Selvakannan et al. 2003; 

Yang, Shi et al. 2003). The molar ratios of metals both in and on the surface of the 

bimetallic cores differed significantly from the metal: salt ratio used in the bimetallic 

particle synthesis (Hunter 1993).  

 

1.2.2. Control of size of metal nanoparticles 
Almost all properties of nanoparticles are dependent on shape and size (Burda, Chen 

et al. 2005) and nucleation and growth are two closely inter-linked processes that 
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manage the size and shape of controlled synthesis of metal nanoparticles (Turkevich, 

Stevenson et al. 1951; Toshima and Yonezawab 1998) The size of the nanoparticles is 

generally governed by factors such as the ratio of the capping agent to the reductant 

(Frens 1973; Brust, Fink et al. 1995), the nature of the reducing and capping agents 

(Chow and Zukoski 1994), temperature (Hostetler, Wingate et al. 1998) and the rate of 

addition of the reducing agent (Tsai and Dye 1991). Strong reducing agents such as 

alkali metal anions (alkalides) (Brust, Walker et al. 1994; Brust, Fink et al. 1995), 

borohydrides and superhydrides (Yee, Jordan et al. 1999) induce the formation of 

nucleation centres which then grow into small clusters whose final size is determined 

by the nature of the capping agent. In the case of weak reducing agents such as 

hydrazine (Nickel, Castell et al. 2000), ascorbic acid (Sau, Pal et al. 2001), tartarate 

(Tan, Dai et al. 2003) and trisodium citrate (Turkevich, Stevenson et al. 1951), the rate 

of reduction is slow. Hence, it is growth of the particle and not the nucleation process 

that dominates, resulting in large-sized particles. Methods used to prepare large 

particles of size 50 nm and above directly, result in high polydispersity and varied 

shapes (Brown, Walter et al. 2000). Methods such as ‘seed growth’ have  the 

advantage of eliminating nucleation and promoting only the growth process and is 

used to increase particle size in a uniform manner (Brown, Walter et al. 2000).  

 

1.2.3. Stability of gold nanoparticles 
As noted, nanoparticles prepared by aqueous chemistry techniques, are often formed 

in the presence of a surface-capping/stabilising ligand that also control the final 

dimensions of the nanoparticles. In the absence of suitable stabilising agents, 

colloidal particles would be attracted to each other by van der Waals forces, 

ultimately resulting in the aggregation and precipitation of the particles (Brust, Fink 
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et al. 1995). This is prevented by this use of a stabiliser/ capping agent, (Templeton, 

Chen et al. 1999; Yao, Momozawa et al. 2001) which establishes a repulsive barrier 

between the approaching particles. Many capping systems are available which 

includes, hydrophobic monolayers, (Miyazaki and Nakano 2000), hydrophilic 

monolayers (Bradley 1994), which provide electrostatic stabilisation and polymer 

layers which provide steric stabilisation (Figure 1.2) (Bradley 1994).  

 

 

C  

Figure 1.1. Schematic representation of the stabilisation forces in colloidal particles 
(A) Electrostatic (B) Steric (Bradley 1994) and (C) Citrate reduced colloidal gold 
particle ("Inorganic Colloid Chemistry;" by Weiser, H. B) (Reyerson 1939). 

 
 
 
The electrostatic stabilisation involves the use of charged capping agents such as 

sodium citrate, where the negatively charged citrate-capped nanoparticles attract 

positively charged counter-cations from the surrounding solution. This results in the 

formation of a diffuse electrical double layer, which creates a Coulombic repulsion 

between the particles. This electrostatic repulsion between the particles will prevent 
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aggregation, as long as the electric potential associated with the double layer is 

sufficiently high (Figure 1.1.). However, the double layer is very sensitive to changes 

in ionic strength of the solution. An increase in the ionic strength by the addition of a 

salt which causes a compression of the double layer and displacement of the 

adsorbed citrate anions on the colloid by the addition of a strongly binding 

adsorbate, would result in aggregation (Brust, Walker et al. 1994; Brust, Fink et al. 

1995).  

 

Large molecules or ligands like polymers (Schmid 1992; Bradley 1994) and long chain 

thiols (Schmid 1992; Bradley 1994) provides steric stabilisation to the nanoparticles. 

When particles adsorbed with such molecules approach each other, a reduction in 

the conformational freedom of the adsorbate molecules occurs due to the 

interpenetration of the ligand chains. As the local concentration of the the adsorbate 

increases, the solvent tries to counteract this effect by diluting the concentration of 

the adsorbate and thereby causes the particles to move apart (Bradley 1994). This is 

especially useful in organic solvents, where electrostatic effects are small. Thus, a 

highly monodisperse and uniform sized particles can be synthesised in organic 

solvents and can be stabilised at relatively high concentrations. 

 

1.2.3.1. Stabilisation by Sulfur and Non-Sulfur Ligands 
Sulphur-containing ligands, such as xanthates (Tzhayik, Sawant et al. 2002), 

disulphides (Porter, Ji et al. 1998; Tan, Li et al. 2002), di- and trithiols (Tan, Li et al. 

2002) and resorcinarene tetrathiols (Balasubramanian, Kim et al. 2002), have also been 

used to stabilise gold nanoparticles. Thiols are better stabilising agents than 

disulfides and thioethers (Shelley, Ryan et al. 2002), whereas the use of polythioethers 
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circumvented this problem (Maye, Chun et al. 2002). Other gold complexes, in 

particular gold(I) amine complexes, have been used as precursors for the synthesis of 

amine-stabilised gold nanoparticles (Leff, Brandt et al. 1996). Microemulsions, 

micelles and reverse micelles have been used to trap and stabilise the nanoparticles 

(Niemeyer 2001; Sohn, Choi et al. 2003).  

 

1.2.3.2. Stabilisation by using Polymers 
In 1718, Hans Heinrich Helcher, stated that the use of boiled starch in drinkable gold 

preparations noticeably enhanced its stability (Helcher 1718). Two centuries later, 

such materials were recognised as polymers, since then there has been a revival of 

activity in the field of polymer-stabilised gold nanoparticles (Napper 1983; Hayat 

1991; Tuzar and Kratochvil 1993; Schulz, Schulz et al. 2002). Poly (N-vinyl-2-

pyrrolidone) (PVP) is one of the most commonly used polymers for the stabilisation 

of gold nanoparticles in water. The greatest stability is obtained with polymers 

possessing hydrophobic backbones and side groups, allowing interactions with the 

AuCl4- ion (Mayer and Mark 1998).  

 

Functionalised polymers such as poly(ethylene glycol)-based polymer have also been 

used as stabilisers (Otsuka, Akiyama et al. 2001). Hollow polymer spheres have been 

synthesised with movable gold nanoparticles at their core interiors (Kamata, Lu et al. 

2003). An amine functionalised polymer was used to simultaneously assemble 

carboxylic acid functionalised gold and silica naoparticles into extended aggregates 

(Chechik and Crooks 1999; Wang, Neoh et al. 2001). Mangeney et al.. reported that, 

disulphide-bearing polymers have shown only a slightly larger affinity for the gold 
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surface than those that do not have the disulphide groups (Mangeney, Ferrage et al. 

2002).  

 

1.2.3.3. Stabilisation by using Dendrimers 
Gold nanoparticles have been stabilised in the presence of excess polyamidoamine 

(PAMAM) dendrimers in solution. Thiol functionalized PAMAM dendrimers acted 

as both a stabiliser and a ligand (Chechik and Crooks 1999). PAMAM dendrimers 

were also functionalised with hydrophobic groups for solubilisation of the gold 

nanoparticles in organic solvents (Esumi, Hosoya et al. 2000). These dendrimer-gold 

nanoparticle assemblies have been deposited as films on sensor surfaces (Krasteva, 

Krustev et al. 2003). Another important observation was the use of that PAMAM 

dendrimers to stabilise  gold nanoparticles allowed the control of the interparticle 

distance (Frankamp, Boal et al. 2002). 

 

1.2.4. Characterisation of gold nanoparticles 
The most common technique for characterisation of gold nanoparticles is high-

resolution transmission electron microscopy (HRTEM), which generates a 

photomicrograph of the gold core of the gold nanoparticles, providing the size 

distribution and dispersity of the sample. The mean number of gold atoms can be 

calculated form the mean diameter, d, of the cores. The core dimensions of the 

metallic nanoparticles have also been characterised using alternative techniques 

based on microscopy (scanning electron microscopy-SEM, scanning tunneling 

microscopy-STM, atomic force microscopy-AFM), X-ray methods (small-angle X-ray 

scattering-SAXS, Extended X-ray absorption fine structure-EXAFS, X-ray 

photoelectron spectroscopy- XPS, X-ray diffraction- XRD), optical spectroscopy (UV-
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Visible spectroscopy), electrochemistry, infrared (IR), Raman and nuclear magnetic 

resonance (NMR), thermogravimetric analysis (TGA),  laser desorption ionisation 

mass spectrometry (LDI-MS), or high-resolution time-of-flight mass spectroscopy 

analysis. (Toshima and Yonezawab 1998). 

  

The localised elemental composition on the nanoparticles can be obtained from 

Energy Dispersive X- ray microanalysis (EDX) in conjunction with TEM. However, 

the disadvantage associated with TEM, is that the high energy of the beam can cause 

phase transitions and desorption of the protective ligands (Bovin and Malm 1991). 

Scanning tunneling microscopy (STM) is a useful technique for determining particle 

size, which also includes the size of the ligand shell as well (Reetz, Helbig et al. 1995).  

 

UV-Visible spectroscopy is used for analysis of the intensely coloured colloidal 

dispersions having characteristic surface plasmon absorption. In a given preparation 

of gold nanoparticles, there is usually a mixture of different size nanoparticles. 

Different size nanoparticles have characteristic surface plasmon resonance peaks and 

thus the UV-Visible spectra of the different nanoparticles are also usually 

significantly different, which may also helps in determining the particle size. The 

UV-Visible together with infrared (IR) spectra provides an identification of the ligand 

that is also confirmed by nuclear magnetic resonance (NMR) spectroscopy. The 

detection of order-disorder transitions in gold nanoparticles in the solid state has ben 

achieved using by IR and NMR spectroscopy techniques together with differential 

scanning calorimetry (DSC). The results suggested that the energetic states and the 
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dimensions of the gold nanoparticles are influenced by both the radii and 

concentrations of the stabilising groups. 

 

The information on the inter-atomic distances and coordination numbers of the metal 

atom in colloids can be obtained using Extended X-ray Absorption Fine Structure 

(EXAFS) sprecroscopy and thus allowing investigation of the size-dependent 

distance contraction in thiol-stabilised gold nanoparticles. X- ray diffraction is used 

to investigate the structure and size of metal nanoparticles. Surface-enhanced Raman 

scattering (SERS) and X-ray photoelectron spectroscopy (XPS) are used to determine 

the chemisorptive properties of tetrathiol ligands and the oxidation states of metallic 

nanoparticles. The oxidation state of the gold atoms and the interaction of thiols with 

gold have been studied by Brust et al.. and confirmed using 1H NMR measurements 

(Brust, Walker et al. 1994). Capillary zone electrophoresis has also been used to 

determine the core radius and size of the nanoparticles based on the mobility of gold 

nanoparticles in acetate buffer (Hwang, Lee et al. 2003). 

 

1.2.5. Optical Properties of gold nanoparticles 
Gold nanoparticles have a remarkably low melting temperature (300 - 400°C), 

compared to that of bulk gold (1064 °C). During the reduction process, the properties 

of the bulk metal begin to change dramatically because more of inner atoms move to 

the surface and the electrons begin to suffer the quantum effects. The resulting 

physical properties are neither those of bulk metal nor those of molecular 

compounds, but they strongly depend on the factors such as particle size, shape, 

interparticle distance and nature of the protecting group. This makes nanoparticles 

different from bulk gold as well as the atomic state of the metal (Katz and Willner 
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2004). Thus the properties of nanoparticles such as optical, electronic, chemical, 

magnetic and mechanical are affected by these factors (Hövel, Fritz et al. 1993). The 

optical properties of nanoparticles such as surface plasmon resonance, are strikingly 

different from that of bulk gold. This section details only about the surface plasmon 

resonance (SPR) property (Underwood and Mulvaney 1994; Link and El-Sayed 1999) 

since it is relevant to the present study. 

 

1.2.5.1. Surface Plasmon Resonance 
Certain metal colloids like Au, Ag and Cu, exhibit strong absorption bands in the 

visible region and are therefore intensely coloured. Gustav Mie (Mie 1908) 

determined that these intense colours associated with metal colloids is a consequence 

of the absorption and scattering of light and described a theoretical explanation for 

the colour of the colloidal gold. He solved Maxwell’s equations for the absorption 

and scattering of electromagnetic radiation by spherical particles and proposed an 

equation (Mie 1908) to calculate the extinction spectra of the particles. Later, Mie’s 

theory was extended by Gans to prolate and oblate spheroidal particles averaged 

over all orientations (Gans 1915). However, all subsequent reports that describe the 

spectroscopic behavior of gold nanoparticles continued to correlate with the Mie 

theory. 

 

An absorption band of metallic nanoparticles induced by an interacting 

electromagnetic field, is referred as the “surface plasmon band”, (Kreibig and 

Vollmer 1995). This phenomenon appears in the absorption spectrum of the 

nanoparticles due to the collective coherent oscillation of the free conduction band 

electrons occupying energy states just above the Fermi level. In the case of gold 
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nanoparticles, it is due to plasmon oscillation of 6s electrons of the conduction band. 

The deep-red colour of gold nanoparticles in water and glasses reflects the surface 

plasmon band (SPB), a broad absorption band in the visible region around 520 nm. In 

general, the surface plasmon values of gold, silver and copper nanoparticles with a 

diameter below 20 nm, lie close to 520 nm, 400 nm and 570 nm respectively 

(Creighton and Eadon 1991) and for larger particles, the peak shifts to longer 

wavelength (e.g., 529 nm for 50 nm nanoparticles). Thus, the SPB provides 

information on the development of the band structure in specific metals and has been 

the subject of extensive study. 

 

The position of the surface plasmon depends on and is sensitive to several factors 

such as particle size, shape, stabilising agent and temperature as well as nature of the 

surrounding medium (Hövel, Fritz et al. 1993; Underwood and Mulvaney 1994; 

Kreibig and Vollmer 1995; Link, Wang et al. 1999). Kreibig and Fragstein (Kreibig and 

Fragstein 1969) and several other groups have shown, that the plasmon bandwidth is 

proportional to 1/R, where R refers to the radius of the particle. When the diameter 

of the particle becomes smaller than the mean free path of the conduction electrons 

(approximately 3 nm) electron scattering occurs at the particle boundaries resulting 

in broadening and damping of the surface plasmons. That is the reason why SPB is 

absent for gold nanoparticles with core diameter less than 2 nm, as well as for bulk 

gold.  

 

The plasmon bandwidth increases with decreasing size in the intrinsic size region 

(mean diameter smaller than 25 nm) (Link, Wang et al. 1999), and also increases with 
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increasing size in the extrinsic size region (mean diameter larger than 25 nm) (Link, 

Wang et al. 1999) and is found to follow the predicted behavior of quantum size 

effects. The surface plasmon resonance shows a red- shift in the extrinsic size region 

and as the particle size increases, the gold nanoparticles colour changes from ruby 

red to purple and finally blue. However, in the intrinsic size region, the changes in 

surface plasmon position are not very clear (Link, Wang et al. 1999). It has been found 

that the plasmon resonance absorption obtained often deviate from the predictions of 

the Mie theory, and the discrepancies are attributed to the complex physical and 

chemical influences of the capping agent. 

 

As the particle shape changes from a sphere to a spheroid, ellipse or a rod, a 

significant change in the absorption spectrum is observed (Link, Wang et al. 1999). 

With elliptical particles, the SPB is shifted to higher wavelength as the spacing 

between particles is reduced, and this shift is well described as an exponential 

function of the gap between the two particles (Blatchford, Campbell et al. 1982). A 

similar phenomenon is observed in the case of particles that are in close contact with 

each other. This is due to coupling between the plasmon modes of the individual 

particles (Blatchford, Campbell et al. 1982). Gans (Gans 1915; Link, Wang et al. 1999) 

has calculated the extinction coefficient of nanorods and good agreement between 

theoretical and experimental data has been observed. For rod like particles, the 

extinction maximum polarised along the long axis occurs at a longer wavelength 

than the SPB maximum for polarisation along the particle radius.  
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The presence of a ligand shell or group alters the refractive index and causes either a 

red or blue shift, so that the spectroscopic data obtained often deviate from the 

prediction of Mie theory that deals with naked nanoparticles. The agreement with 

Mie theory is obtained only when the shift induced by this ligand shell is taken into 

account. Another influential parameter is the core charge. Excess electronic charge 

causes shifts to higher energies, whereas electron deficiency causes a corresponding 

shift to lower energy. The effect of temperature was also found to have a smaller 

effect.  

 

The refractive index of the solvent has been shown to induce a shift of the SPB, as 

predicted by the Mie theory. For instance, suspensions of dodecanethiolate capped 

gold nanoparticles of 5.2 nm average diameter reveal an 8-nm shift in SPB as the 

solvent refractive index is varied from 1.33 to 1.55. Therefore, impurities in the 

system can be easily detected since the refractive index of gold nanoparticles greatly 

differs from that of gold oxide or gold chloride. The SPR wavelength and width of 

nanoparticles also depend on the dielectric constant of the surrounding medium and 

hence on their average diameter. Underwood and Mulvaney (Underwood and 

Mulvaney 1994) have demonstrated that, an increase in the refractive index of the 

gold nanoparticle suspension leads to a corresponding red-shift of the surface 

plasmon peak. A red shift was also observed with an increase of the solvent dielectric 

constant with solvents that do not coordinate the gold core, but the SPB is unaffected 

in polar solvents that do not bind to the core. 
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The SPB was used to study the degree of dispersion of gold nanoparticles in a variety 

of solvents. Formation of large aggregates caused a reversible change in colour of the 

gold nanoparticle suspension from red to violet due to coupling to surface plasmons 

in aggregated colloids. Apart from colloidal suspensions of Au, Ag and Cu, alkali 

and alkaline earth metals such as, cadmium and thallium also exhibit distinct 

absorption bands. Most other metal colloidal suspensions are usually brown in 

colour, do not show strong absorption bands in the visible region, and the absorption 

spectra appear flat and featureless (Creighton and Eadon 1991). 

 

 

1.2.6. Biological Applications of gold nanoparticles 
 

1.2.6.1. Biomolecule-directed nanoparticle organisation - Nanoparticles as 
biolabels 
The dimensions of the metal nanoparticles are similar to those of biomolecules such 

as proteins (enzymes, antigens, antibodies) or DNA whose dimensions are in the 

range of 2-20 nm (Service 1997; Mirkin and Taton 2000; Niemeyer 2001). 

Immibilisation of biomolecules onto nanoparticles to yield novel hybrid nano-

biomolecules, has been achieved by a variety of techniques including physical 

adsorption, electrostatic binding, specific recognition, and covalent coupling (Katz 

and Willner 2004). Under appropriate conditions, noncovalent bonding is a general 

strategy to bind colloidal gold and macromolecules, with little or no change in the 

specific activity of the bound macromolecule. This interaction is influenced by a 

number of factors including ionic concentration, pH conditions (in correlation with 

the protein pI values) and protein/DNA stabilising levels. 
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In the case of citrate capped nanoparticles, biomolecules can be linked directly by 

exchange reactions with stronger binding ligands (Niemeyer 2001). For example, the 

coating of colloidal gold with proteins such as immunoglobulins and serum albumin, 

which have cysteine residues. If the native proteins doesn’t have the cysteine 

residues, thiol groups can be incorporated by chemical modification (Tarentino, 

Phelan et al. 1993) or by genetic engineering. DNA molecules can also be synthesised 

with alkylthiol groups at either the 3'- or 5'-end to facilitate binding to gold 

nanoparticles (Tarentino, Phelan et al. 1993).  

 

By utilising the advantage of specific receptor-ligand ineractions, various 

nanoparticle assemblies have been generated. Analogous to the interactions between 

the amino acid side chains and the metal atoms in many reaction centres of enzymes, 

the interaction between biomelcules and the surface of an inorganic nanoparticle 

provides the way for the coupling of biomolecular recognition systems to generate 

novel materials. The two sets of nanoparticles are functionalised with individual 

recognition groups that are either directly complementary to each other, or else are 

complementary to a molecular linker (Niemeyer 2001). The bio-recognition elements 

such as proteins/enzymes, antigens/antibodies, and DNA/oligonucleotides, in 

conjunction with nanoparticles, have been used for various biotechnological 

applications including, affinity separations, biosensing, bioreactors, and the 

construction of biofuel cells.  

 

1.2.6.2. DNA-gold nanoparticles assemblies and sensors  
Negatively charged DNA was found to substitute citrate ions around gold 

nanoparticles to form a DNA-nanoparticle probe, which was confirmed by 
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electrophoresis and fluorescence (Cushing, Kolesnichenko et al. 2004). DNA 

functionalised gold and semiconductor nanoparticles have been prepared using the 

n-alkylthiolated DNA and also using DNA containing several adenosyl 

phosphothioate residues at their ends (Niemeyer 2001). Nucleic acids are superior for 

the functionalisation of nanoparticles, since the possible programmability of DNA 

base-pairing to organise nanoparticles in space and the range of techniques available 

for the detection of precise DNA sequences (Castaneda, Merkoci et al. 2007). 

 

DNA conjugated to the nanoparticles is able to hybridise with complementary DNA 

and is thermally reversible (Mirkin, Letsinger et al. 1996). In the presence of 

complementary strands, the coupled nanoparticles are released at high temperatures 

due to the “melting” transition of the complementary DNA strand (Qin and Yung 

2007).  

 

In recent times, the fabrications of DNA-driven assemblies of two-dimensional arrays 

and three-dimensional networks of gold and silver nanoparticles have indeed 

attracted considerable interest. The Mirkin group have used DNA as a linker to form 

macroscopic assemblies of 13-nm gold nanoparticles (Mirkin, Letsinger et al. 1996). 

Alivisatos et al.. have used DNA as a template to prepare nanocrystal chains 

consisting of two or three 1.4 nm particles on a single oligonucleotides strand 

(Alivisatos, Johnsson et al. 1996). 

 

Conjugates of gold nanoparticles-oligonucleotides are of great interest for detection 

of DNA hybridisation, because of its application in the diagnosis of pathogenic and 
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genetic diseases (Castaneda, Merkoci et al. 2007). Most of the DNA hybridisation 

techniques utilize fluorescent, chemiluminescent, or radioactively labelled probes or 

requiring special instrumentation or both (Kim, Rajamohan et al. 2006). A significant 

enhancement of the shift (40 nm) of the transmission surface plasmon resonance (T-

SPR) absorption band of the gold nanoislands, was observed, when a self assembled 

monolayer of a single-stranded DNA deposited onto a glass microscopic slide is 

hybridised by its complementary DNA functionalised to gold nanoparticles (Garcia 

and Garcia 2000; Hutter and Pileni 2003). The sensitivity of SPR biosensing of DNA 

hybridisation on continuous Au film was greatly enhanced by using Au 

nanoparticles (Hutter and Pileni 2003). Indeed, conductivity changes in gold 

nanoparticle labelled DNA arrays have recently been employed for selective 

molecular recognition of targets present in low concentration (Tirelli 2006). 

 

The SPB phenomenon has led to the development of a highly selective diagnostic 

method for DNA, based on the distance-related properties of gold nanoparticles. 

Aggregation of gold nanoparticles linked by the oligonucleotides mediates a red-to-

blue colour change (red shift from 520 to 620 nm of the SPB) and this property is 

utilised in the DNA-sensing method. The effect of the length of the DNA strands that 

control the interparticle distance has been studied, and it was found that the SPB 

frequency changes are inversely dependent on the oligonucleotides linker length 

(Fischler and Simon 2007). A new colorimetric technique based on the sensitivity of 

the surface plasmon band (SPB) has been designed to monitor the sequence specific 

DNA modifications (Li, Chu et al. 2005). 
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Stable, water-soluble, hydroxycapped quantum dots-oligonucleotide conjugates have 

been used as labels in fluorescence in situ hybridization (FISH) studies (Wu, Zhao et 

al. 2006). Biosensors based on gold nanoparticle-DNA interactions have enabled 

detection within minutes, and quantitative data obtained (Yáñez-Sedeño and 

Pingarrón 2005). Thus, applications in the fields of biosensors, disease diagnosis, and 

gene expression using gold nanoparticle-DNA conjugate probes are clearly called for.   

 

1.2.6.3. Protein-based recognition systems: Enhanced immuno sensing 
Biomolecules and inorganic nanoparticles are conjugated by means of various 

conjugation methods that allow the preparation of well-defined bioconjugate hybrid 

nanoparticles (Niemeyer 2001). Though, a large number of complementary binding 

pairs are available, nucleic acid based conjugation might offer advantages over 

protein based assembly, since the physicochemical properties of a single 20-mer 

oligonucleotide represents 420 (=1012) different recognition elements (Mann, Shenton 

et al. 2000). However, it was suggested that extensive use of protein-based assembly 

may lead to a ”factory of the future”, directed by multiple highly specific 

biomolecular recognition elements such as, antibodies that are specific against 

various antigens (Mann, Shenton et al. 2000). These biomolecule based coupling 

systems were useful in various diagnostic applications and for generating inorganic 

nanoparticle networks (Niemeyer 2001). 

 

The conjugation of proteins on colloidal gold nanoparticles is achieved by the 

electrostatic interactions between negatively charged citrate on surfaces of gold 

nanoparticles and positively charged groups of the proteins (Xiao, Ju et al. 1999). The 

strong interaction between the protein and the colloidal gold nanoparticle surface 
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may increase the surface density of the adsorbed protein, and small size of the 

colloidal gold particles gives the protein molecules more freedom in orientation (Liu, 

Leech et al. 2003). Enzymatic activity of fungal protease-gold nanoparticle 

bioconjugates was reported (Phadtare, Kausik et al. 2004). Assembly of gold 

nanoparticles on polyurethane spheres were used to immobilise enzymes such as 

pepsin and these bioconjugate catalysts were reused as free enzymes (Phadtare, 

Kumar et al. 2003). 

 

The conjugation of antigens and antibodies on colloidal gold has been used for the 

development of immunological detection methods (Lin, Sabri et al. 2005). The 

experimental gold nanoparticle-protein conjugate architectures involves either direct 

binding of antigen-gold nanoparticle bioconjugates to an antibody modified surface 

or the exposure of an antibody derived surface to free antigen and then to a 

secondary antibody-gold nanoparticle conjugate. Recently, a unique, sensitive and 

highly specific immunoassay system for antibodies using gold nanoparticles has 

been developed (Thanh and Rosenzweig 2002). 

 

Biosensors for immunoassays in human serum have been developed (Jianrong, 

Yuqing et al. 2004). An electrochemical method to monitor biotin-streptavidin (STV) 

interactions has been established using colloidal gold as an electrochemical label 

(Garci, Sanchez et al. 2000). The Biotin-STV system is a versatile system for 

developing novel strategies for assembling nanoparticles in suspension or on a 

substrate and the conjugates form the basis of many diagnostic and analytical tests 

(Niemeyer 2001). The STV - biotin interaction was also used to organise gold colloids 
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that were functionalised by chemisorptive coupling to a disulphide biotin analogue 

(Connolly and Fitzmaurice 1999). Niemeyer and Ceyhan prepared biofunctionalised 

nanoparticles by DNA-directed conjugation of proteins (Niemeyer and Ceyhan 

2001). These studies demonstrate the emergence of a new field of application for 

colloidal gold in protein immobilisation and biosensing. 

 

The specific interaction between antibodies and low molecular weight organic 

compounds, the so-called hapten groups, has been used to cross-link nanoparticles 

(Shenton, Davis et al. 1999). Shenton et al. functionalised gold and silver nanoparticles 

with the immunoglobulins IgG and IgE, which had a specificity directed against 

either the d-biotin or the dinitrophenyl (DNP) group respectively (Shenton, Davis et 

al. 1999). 

 

Gold nanoparticles have been immobilised in the gaps of microelectrodes through 

biospecific interactions and then the silver enhancement of gold nanoparticles has 

been applied for the electrical sensing of biological binding events (Velev and Kaler 

1999). These gold colloids serve as catalytic cores for the reductive deposition of a 

conducting layer of silver, which short circuits the two electrodes. This ultimately 

resulted in decrease in ohmic resistance which is used as a positive signal for the 

sensing of the biospecific interactions (Velev and Kaler 1999). Biosensors for the 

electrocatalytic detection of hydrogen peroxide were prepared by adsorption of the 

horse-radish peroxidase enzyme onto electrode-immobilised layers of gold colloids 

(Patolsky, Gabriel et al. 1999; Xiao, Ju et al. 1999).  
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In another example, conjugates of nanocrystals with IgG molecules were prepared 

and subjected to immuno-precipitation by using a complementary antibody with 

binding specificity for the particle-bound proteins. The widespread aggregation 

observed in this experiment clearly indicated that the nanocrystals were suitable for 

the sensitive immunoassays and the attachment of nanocrystals does not interfere 

with the intrinsic functionality of the biomolecule (Chan and Nie 1998). In 

continuation to this work, Han et al.. tagged the micrometre-sized polymer particles 

with various quantum dots to achieve an optical barcode for biomolecules (Han, Gao 

et al. 2001). 

 

The great sensitivity of the surface plasmon band (SPB) by gold nanoparticle 

adsorption has also led to their use in bioassay applications (Daniel and Astruc 2004). 

Gold nanoparticles were also applied to enhance the detection limits in SPR-based 

biospecific interaction analysis (Lyon, Musick et al. 1998). The dramatic enhancement 

of SPR biosensing with colloidal Au was observed in a sandwich immunoassay in 

which Au nanoparticles were coupled to a secondary antibody , thereby allowing 

picomolar detection of the antigen (Lyon, Musick et al. 1998).  

 

1.2.6.4. Drug delivery 
Nanoparticles can easily enter cells although the mechanism(s) involved are not well 

understood. Dai and co-workers (2005) suggested that the nanoparticle influx occurs 

by endocytosis (Shi Kam, O'Connell et al. 2005).  In contrast, Bianco et al.. suggested 

that the particles are inserted and diffused through the lipid bilayer of the cell 

membrane (Bianco, Kostarelos et al. 2005).   Furthermore, these nanoparticles were 

shown to be able to enter the cells even after linkage to proteins such as antibodies 
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(Shi Kam, O'Connell et al. 2005). Nanoparticles conjugated with antibodies against 

exclusive cancer cell surface receptors have been used to specifically bind with 

cancerous cells (Shi Kam, O'Connell et al. 2005). 

 

The functionalised nanoparticles have also been used for targeted entry into cells 

(Jiang, Kim et al. 2007). Phthalocyanine-stabilised gold nanoparticles have ben shown 

to be a potential delivery vehicle for photodynamic therapy (Hone, Walker et al. 

2002). gold nanoparticles with a size of 20 nm have been conjugated to various 

cellular targeting peptides to provide functional nanoparticles that penetrate the 

biological membrane and target the nucleus (Katz and Willner 2004). Various 

nanoparticles have also applied as targeted biomarkers and drug-delivery agents for 

diagnosis and medical treatment of cancers (Katz and Willner 2004). 

 

1.2.6.5. Cytochemical labels and other applications 
Colloidal gold nanoparticles prepared in sizes from 1 to 25 nm, are electron dense 

due to the high atomic number of the gold atoms and, this makes them ideal for 

electron microscopy. Specific sites in a biological specimen may be visualised by 

introducing antibody conjugated colloidal gold particles (Hainfeld 1992; Takizawa, 

Suzuki et al. 1998). Small gold clusters with a diameter of 0.8 or 1.4 nm, stabilised 

with arylphosphanes have been routeinly used as probes for the site-specific labeling 

of biological macromolecules in histological applications (Hainfeld and Furuya 1992).   

 

Colloidal gold nanoparticles are also used as cytochemical labels for the study of 

macromolecules with transmission and scanning electron microscopy (Garcia and 

Garcia 2000), light microscopy (Csaki, Moller et al. 2002) and freeze-etch electron 
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microscopy (Garcia and Garcia 2000) and to enhance the signals of both surface 

enhanced Raman spectroscopy (Manimaran and Jana 2007) and surface plasmon 

resonance (Lyon, Musick et al. 1999).  

 

Specific binding of mannose-encapsulated gold nanoparticles to FimH adhesin of 

bacterial type 1 pili in Escherichia coli, have been shown by TEM (Lin, Yeh et al. 2002). 

The method used in these studies labelled specific proteins on the cell surface using 

carbohydrate-conjugated gold nanoparticles, and the visualisation of the target 

receptor was easily accomplished with an electron microscope. 

 

Colloidal gold, with an indirect digoxigenin-tagged nucleotide and an anti-

digoxigenin probe, was used for in situ hybridisation studies using an electron 

microscope (Jin and Lloyd 1997). Both a gold nanoparticle label and a fluorescein tag 

are attached to an antibody to yield a single probe for imaging a specimen both by 

fluorescence and electron microscopy (Thompson and Swanson 1998).  A further 

advantage of using the colloidal gold marker is that the colloidal gold nanoparticles 

can be easily be counted and thus the cytochemical signal may be evaluated 

quantitatively. Several procedures such as silver enhancement have been developed 

to amplify the final signal which makes the techniques more sensitive. 

 

Separation of acidic and basic proteins was achieved by nanoparticle-filled capillary 

electrophoresis (Yu, Su et al. 2006). gold nanoparticles have been used to manipulate 

the selectivity between solutes in capillary electrophoresis (Neiman, Grushka et al. 

2001). Thus, gold nanoparticles serve as large surface area platforms for organo-
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functional groups that interact with the capillary surface, the analytes, or both. The 

use of gold nanoparticles in conjunction with chip-based capillary electrophoresis to 

improve the selectivities between solutes and to increase the efficiency of the 

separation has been reported (Pumera, Wang et al. 2001). In summary, gold 

nanoparticles that are functionalised with proteins have long been used as tools in 

the biosciences. Moreover, the synthesis of well defined nanoparticle-biomolecule 

complexes is particularly important to generate well defined nanoarchitectures. 

 

The primary aim of this project is to design and develop a rapid, specific and highly 

sensitive diagnostic assay for Neisseria meningitidis using OMP85 and anti-OMP85 

antibody as a model system. In the following chapters, details about the preparation 

of different target antigens including expression and purification of the recombinant 

OMP85 antigen are discussed. Polyclonal antibodies were raised against these 

antigens. Methods were optimised for successful conjugation of both antigens and 

antibodies to gold nanoparticles. Gold nanoparticles were utilised both as colour 

reporting agents and also as the signal amplification probes for the detection of the 

antigen. 
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Chapter 2 
 

 

The detection system - Potential biomarker targets and 
receptors 

 
 
 
2.1. Potential biomarkers and target antigens 
There are several target antigen molecules on the surface of Neisseria meningitidis 

including the bacterial outer membrane proteins (OMP’s) such as OMP85, anti-

phagocytic polysaccharide capsule and lipo-oligosaccharides, which are being used 

for immunodiagnostic and therapeutic purposes (Figure 2.1. and 2.2.) (Granoff, 

Bartoloni et al. 1998; Vipond, Suker et al. 2006). 

 

 

Figure 2.1. Cross-sectional view of the Meningococcal Cell Membrane (Rosenstein, 
Perkins et al. 2001) 
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Figure 2.2. Structural representation of meningococcal cell envelope (Morley and 
Pollard 2001). 

 
 
2.1.1. Neisseria meningitidis OMP85 

The cell membrane of Gram negative bacteria consists of an outer membrane and an 

inner membrane, separated by the periplasm. The inner membrane is a phospholipid 

bilayer, whereas the outer membrane is an asymmetric structure which consists of 

phospholipids and lipopolysaccharides (LPS) in its inner and outer leaflets, 

respectively (Voulhoux, Bos et al. 2003). Even though the integral proteins are present 

in both the outer and inner membranes, the main structural difference between the 

two membranes is that the integral proteins of inner membrane are mostly α-helical 

and that of outer membrane proteins (OMPs) are the β-barrel proteins. 

 

OMPs with an NH2-terminal signal sequence are synthesised in the cytoplasm. After 

inner membrane translocation (Voulhoux, Bos et al. 2003), the signal sequence is 

cleaved off, releasing the mature OMP protein into the periplasm. In the periplasm, 
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LPS stimulates the OMP’s to fold into their native tertiary conformation and then 

inserted into the outer membrane (Voulhoux and Tommassen 2004). There have been 

reports that describe other factors which also mediate OMP folding, such as the 

periplasmic chaperones SurA and Skp proteins (Voulhoux, Bos et al. 2003). Very little 

information is available about the subsequent steps in OMP biogenesis (Gentle, 

Gabriel et al. 2004).  

 

Meningococcal OMP85 which fulfill the above criteria to some extent, is a highly 

conserved protein amongst Gram-negative bacteria, and sequence analysis reveals 

that it has close similarities with other OMP’s from other bacteria including OMP 85 

protein of Neisseria gonorrhoeae (95% sequence identity), Haemophilus influenzae D-15-

Ag (31.5% sequence identity) and Pasteurella multocida Oma87 (31.6% sequence 

identity) (Manning, Reschke et al. 1998). Several hypothetical proteins similar to 

OMP85 have also been identified  (Fitzpatrick and McInerney 2005). Southern blot 

analysis has shown that omp85 is present as a single copy both in N. gonorrhoeae and 

N. meningitidis (Bronska, Kalmusova et al. 2006). The gene in N. meningitidis encodes a 

797 amino acid OMP85 protein with a predicted molecular weight. of 88.5 kDa and 

NH2- terminal signal peptide. After cleaving the signal peptide, it yields a mature 

protein with 85.8 kDa predicted molecular weight. A carboxy-terminal phenylalanine 

residue  is also present in the mature protein, which is characteristic of Gram 

negative bacterial outer membrane proteins (Judd and Manning 2003). 

 

 OMP85 of N. meningitidis is an essential protein for growth and also for various 

other functions such as outer membrane protein assembly (Gentle, Gabriel et al. 
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2004), host-pathogen interactions and lipid transport from the inner membrane to the 

outer membrane (Genevrois, Steeghs et al. 2003). Unsuccessful attempts by Voulhoux 

et al.. to delete the structural gene for the homologous protein in Haemophilus ducreyi 

and Synechocystis sp., indicates that OMP85 is an essential protein (Voulhoux, Bos et 

al. 2003). The same authors reported that deletion of the omp85 homologoue gene 

resulted in the accumulation of various outer membrane proteins in the periplasm, 

suggesting that OMP85 is also essential for translocation into the outer membrane 

(Voulhoux, Bos et al. 2003).  

 

To demonstrate that the presence of OMP85 is essential for viability, Gentle et al.. 

constructed a meningococcal strain in which OMP85 expression could be switched 

on or off through a tac promoter-controlled OMP85 gene, (Gentle, Gabriel et al. 2004). 

This experiment also proved that the absence of OMP85 expression leads to the 

accumulation of electron-dense amorphous material and some vesicular structures in 

the periplasm. 

  

Another essential function of the OMP85 protein is the lipid transport from the inner 

membrane to the outer membrane (Genevrois, Steeghs et al. 2003). However, it is still 

not clear how the lipopolysaccharides and phospholipids synthesised at the inner 

membrane are subsequently transported to the outer membrane. A possible 

explanation for the role of OMP85 in this regard is that both the omp85 gene and the 

genes involved in lipid biosynthesis are co-transcribed and thus may be involved in 

the lipid transport (Genevrois, Steeghs et al. 2003). Another interesting observation was 

that upon depletion of OMP85 expression, the lipopolysaccharide and phospholipids 
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mostly disappeared from the outer membrane and they were not transported from 

the inner membrane (Genevrois, Steeghs et al. 2003). These results explain the role for 

OMP85 in lipid transport to the outer membrane and thus in outer membrane 

protein assembly. 

 

 Sequence analysis reveals that proteins homologous to OMP85 are found in other 

Gram negative bacteria and also in the outer membrane of mitochondria in 

eukaryotes from plants to humans (Gentle, Gabriel et al. 2004). The outer membrane 

protein, Toc75, a plastid protein translocator of the chloroplast protein-import 

machinery is a plant homologue of the OMP85 protein (Gentle, Burri et al. 2005). 

Toc75 is involved in protein transportation into chloroplasts and this suggests a 

common evolutionary origin (Surana, Grass et al. 2004). 

 

 In eukaryotes, OMP85 is present in the mitochondrial outer membrane is essential 

for outer membrane biogenesis (Gentle, Gabriel et al. 2004) including protein 

transport and mitochondrial fission. In metazoans, OMP85 is also involved in 

mitochondrial aspects of programmed cell death (Leuenberger, Curran et al. 2005). 

Antibodies against yeast recombinant OMP85 were conjugated to gold nanoparticles 

and used to decorate thin sections of cryo-preserved yeast cells (Gentle, Burri et al. 

2005). Accumulation of the gold nanoparticles indicate the presence of OMP85 on the 

surface of mitochondria (Gentle, Burri et al. 2005). 

 

Bacterial outer membrane proteins (OMP’s) can be used as targets for 

immunodiagnostic and therapeutic purposes because of their easy access and they 
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perform a variety of different functions. Antibodies to these outer membrane 

proteins (D-15-Ag and Oma87) have been shown to be protective against infectious 

challenge in animal models (Manning, Reschke et al. 1998), which in turn suggests 

that these proteins play an important role in host-pathogen interactions and thus in 

pathogenesis (Judd and Manning 2003). Thus OMP85 protein has been selected as 

the initial target antigen in the first phase of this project. 

 

 

2.1.2. Identification of a specific peptide sequence in OMP85 
The meningococcal omp85 gene was found to encode a 797 amino acid polypeptide 

(Figure 2.3.) with a predicted molecular weight of 88.5 kDa (Judd and Manning 

2002). Meningococcal OMP85 is a highly conserved protein in Gram-negative 

bacteria and specially the regions between residues 360-395 and 643-662 of the 

protein sequence (OMP85 2002). Though it is a conserved protein, it can serve as a 

useful marker since the predicted antigenic sequence between residues 720 and 745 is 

unique to this organism (Judd and Manning 2003).  Also, there are five additional 

amino acids at the N-terminus which distinguishes it from other related outer 

membrane proteins (Judd and Manning 2003). A useful approach will be to target 

these specific sequences as selective epitopes for immunodiagnosis of Neisseria 

meningitidis. 
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MKLKQIASALMMLGISPLAFADFTIQDIRVEGLQRTEPSTVFNYLPVKVGDTYNDTHGSAIIKSLYAT

GFFDDVRVETADGQLLLTVIERPTIGSLNITGAKMLQNDAIKKNLESFGLAQSQYFNQATLNQAVA

GLKEEYLGRGKLNIQITPKVTKLARNRVDIDITIDEGKSAKITDIEFEGNQVYSDRKLMRQMSLTEGGI

WTWLTRSNQFNEQKFAQDMEKVTDFYQNNGYFDFRILDTDIQTNEDKTKQTIKITVHEGGRFRWG

KVSIEGDTNEVPKAELEKLLTMKPGKWYERQQMTAVLGEIQNRMGSAGYAYSEISVQPLPNAETKT

VDFVLHIEPGRKIYVNEIHITGNNKTRDEVVRRELRQMESAPYDTSKLQRSKERVELLGYFDNVQFD

AVPLAGTPDKVDLNMSLTERSTGSLDLSAGWVQDTGLVMSAGVSQDNLFGTGKSAALRASRSKTT

LNGSLSFTDPYFTADGVSLGYDVYGKAFDPRKASTSIKQYKTTTAGAGIRMSVPVTEYDRVNFGLVA

EHLTVNTYNKAPKHYADFIKKYGKTDGTDGSFKGWLYKGTVGWGRNKTDSALWPTRGYLTGVN

AEIALPGSKLQYYSATHNQTWFFPLSKTFTLMLGGEVGIAGGYGRTKEIPFFENFYGGGLGSVRGYES

GTLGPKVYDEYGEKISYGGNKKANVSAELLFPMPGAKDARTVRLSLFADAGSVWDGKTYDDNSSS

ATGGRVQNIYGAGNTHKSTFTNELRYSAGGAVTWLSPLGPMKFRYAYPLKKKPEDEIQRFQFQLGT

TF 

Figure 2.3. OMP85 protein sequence of Neisseria meningitidis with the highlighted 
specific peptide sequence 

 

 

According to the topology predictions (Voulhoux and Tommassen 2004), the OMP85 

protein consist of two domains, the N-terminal periplasmic domain until residue 483 

and the C-terminal β-barrel domain, with 12 β-strands in the outer membrane. The 

specific region between residues, 720-745 is a surface exposed domain which makes 

it easily accessible (Figure 2.4.).  
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Figure 2.4. Topology prediction of Neisserial OMP85 (Voulhoux, Bos et al. 2003; 
Voulhoux and Tommassen 2004). Periplasmic domains are represented by dashed 
lines. Exposed domains are represented by solid lines. The first and last amino acids 
of each β-strand are indicated. The specific peptide region between 720-745 amino 
acid residues are shown as a surface exposed domain. The amino (N) and carboxy 
(C) termini of the protein are indicated. 

 

In order to develop Neisseria meningitidis specific anti-peptide antibody, the specific 

region between 720-745 amino acid residues designated as SR1 was synthesized 

using t-Boc chemistry. 

 

2.1.2A. Peptide Synthesis and Analysis 
The first peptide was synthesised by Fischer in the early 1900’s by the use of solution 

phase peptide synthesis (Fischer and Fourneau 1901). Peptide synthesis was 

revolutionised by Merrifield who introduced solid phase peptide synthesis (SPPS) in 

1963 (Merrifield 1963). This technique is less labour intensive, allows the synthesis of 

much longer peptides and is suitable for automation, considerably reducing the time 

required for synthesis.  
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Two main methods are used in which either the acid-labile Nα-t-butyloxy carbonyl 

group (t-Boc) (Merrifield 1963) or the base-labile 9-fluorenylmethoxycarbonyl group 

(Fmoc) (Atherton, Gait et al. 1979) is the protecting group on the α-amino group of 

the amino acids (Figure 2. 5). 

  

 

 

 

 

Figure 2.5. Structure of α-amino protecting groups. (a) t-Boc (b) Fmoc 

 

Kent et al.. developed a highly optimised form of the t-Boc chemistry (Kent and 

Clark-Lewis 1985; Schnolzer and Kent 1992). This method increases the coupling of 

amino acids and reduces the time each cycle takes and later this has been adapted for 

automation by (Fecondo 1996). 

 

SPPS involves the covalent attachment of the C-terminal amino acid to a solid 

support and the addition of the following amino acids to assemble the sequence. The 

main advantage of SPPS is that reactants can be used in excess to drive the reactions 

forward and can then be separated by simple filtration and washing with respective 

solvents.  

 

A mBHA resin containing 1% divinyl benzene such as 4-methylbenzhydrylamine 

(mBHA-HCl) (Figure 2.6) has been used as the solid phase support in t-Boc synthesis. 
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The synthetic cycle (Figure 2.7) involves the anchorage of the first amino acid to the 

resin by activating it as an active ester using a reagent such as 2-(1H-benzotriazol-1-

yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or a mixture of HBTU 

and 1-hydroxybenzotriazole (HOBT). The bond is very stable and can only be 

cleaved using a strong acid such as hydrogen fluoride (HF) or 

trifluromethanesulphonic acid (TFMSA). The amino acids used have a t-Boc 

protecting group on the α-amino group, which can be removed with an acid such as 

trifluoroacetic acid (TFA) and may have side chain protecting groups that are more 

stable and are removed by only a strong acid. After deprotection by TFA, the peptide 

resin needs to be neutralised using a tertiary amine, usually N, N-

diisopropylethylamine (DIEA). Alternatively, the next activated amino acid can be 

coupled in the presence of DIEA (in situ neutralisation) (Schnolzer 1992).  

 

 

 

 

 

Figure 2.6. Structure of linker on mBHA-HCl resin 

 

This reduces the time required for each cycle of the synthesis. After all the amino 

acids have been added, the peptide is completely deprotected and cleaved from the 

resin using anhydrous HF. 

 

The purity of the final product is usually evaluated using reverse-phase high 

performance liquid chromatography (RP-HPLC) with a C8 or C18 column and with an 

C
H

NH2

CH3

Resin 
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acetonitrile gradient. The composition can be analysed using mass spectrometry. 

Usually analysis by matrix assisted laser desorption/ionisation-time of flight 

(MALDI-TOF), provides the monoisotopic mass which is sufficient to determine 

whether the desired peptide has been synthesised. 
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Figure 2.7. Overview of cycle used for peptide synthesis (S. Thoduka, Unpublished). 
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2.1.3. The Capsule of Neisseria meningitidis 
In case of certain infectious diseases, especially those caused by some invasive Gram-

negative bacteria (Frosch, Gorgen et al. 1985), poorly immunogenic bacterial capsules 

are responsible for the weak humoral immune response. This occurs mainly either 

because they interfere with cellular events that results in induction of an antibody 

response (Taylor, Stashak et al. 1983) or because of their chemical resemblance to 

those of host determinants (antigenic mimicry) and as a result they are not 

recognised as foreign (Mauel 1982). This mechanism results in the ability of bacteria 

to evade host defences. 

 

The capsular polysaccharide of meningococci is a major virulence factor, consisting 

of sialic acid derivatives of mono, di, or trisaccharide repeating units as a 

homopolymer (serogroup B and C) or a heteropolymer (serogroup Y and W135) 

units (Tone 2005). The serogroup B capsule is composed of (α2→8)-linked N-acetyl 

neuraminic acid (NANA), whereas the serogroup C capsule composed of partly O-

acetylated repeating units of sialic acid, linked with 2-->9 glycosidic bonds, mostly 

over 100,000 Dalton (100 kDa) in weight (Henriques, Jessouroun et al. 2006). The 

serogroup Y consists of partly O-acetylated alternating units of D-glucose and 

NANA, linked with 2-->6 and 1-->4 glycosidic bonds and the serogroup W-135 

capsule consists of partly O-acetylated alternating units of sialic acid and D-

galactose, linked with 2-->6 and 1-->4 glycosidic bonds (Spinosa, Progida et al. 2007).  

 

Apart from serogroup A, other serogroup capsules are composed of sialic acid (N- 

acetyl neuraminic acid, NANA) derivatives (Figure 2.8.). The serogroup A capsule 

consists of repeating units of N -acetyl- O-acetyl mannosamine-1-phosphate (O-
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acetylated repeating units of N-acetylmannosamine, linked with 1-->6 

phosphodiester bonds) and is encoded by a four gene biosynthesis cassette unique to 

this group (Spinosa, Progida et al. 2007). The differences in sialic acid capsule 

composition are due to the distinct polysialyl transferases encoded by the fourth 

gene of the capsule biosynthesis operon and which also forms the basis for capsule 

specific PCR (Hammerschmidt, Muller et al. 1996). 

 

Figure 2.8. N-acetyl neuraminic acid (NANA) 

 
An enzyme, sialic acid synthase NeuB in N. meningitidis directly converts 

phosphoenolpyruvate (PEP) and N-acetylmannosamine (Man- NAc) into N-

acetylneuraminic acid (NeuNAc, or sialic acid) (Masson and Holbein 1983; Gunawan, 

Simard et al. 2005). These nine carbon 3-deoxy-2-keto sugars are found as a series of 

repeating units on the boundary of the secreted and cell surface glycoproteins and 

glycolipids on bacterial organisms. The gene siaD is responsible for polymerisation of 

monomers into the homopolymer or heteropolymer to form the capsule (Frosch and 

Vogel 2006). Several species of pathogenic bacteria, such as Escherichia coli and 

Neisseria meningitidis, produce sialylated capsular polysaccharides to avert host 

defenses and thereby leading to poor antibody responses (Gunawan, Simard et al. 

2005).  
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Meningococcal polysaccharide vaccines contain cultured, inactivated, and purified 

capsular polysaccharides from N. meningitidis groups A, C, Y and W-135, 

respectively, either alone or in combination (Fisseha, Chen et al. 2005). The bacterial 

polysaccharide components, together with calcium ions and residual moisture, 

account for nearly all of the mass of these vaccines. Immunogenicity of the 

polysaccharide polymers increases with their molecular weight (Stephens, 

Gudlavalleti et al. 2006). Meningococci also have the capacity to exchange the genetic 

material responsible for capsule production and thereby switch from serogroup B to 

C or vice versa (Swartley, Marfin et al. 1997). Capsule switching may become an 

important mechanism of virulence with the widespread use of vaccines that provide 

serogroup-specific protection (Swartley, Marfin et al. 1997). Serotyping is very 

important for the development of vaccination strategies and the current methods 

involving the serotyping of meningococcal infection utilise the capsule specific 

monoclonal antibodies (Popovic, Ajello et al. 1999).  

 

 

2.2. Development of receptors against target antigens 
 

2.2.1. Monoclonal and polyclonal antibodies against target antigens 
A range of receptors targeted against the selected antigens from the surface of 

Neisseria meningitidis were developed including polyclonal antibodies against the 

whole organism, purified OMP85, a ‘unique’ peptide sequence derived from OMP85 

and a polysaccharide capsule component together with commercially available 

monoclonal antibodies that recognise capsule epitopes on the bacterial cell surface.  

Rabbit anti-OMP 85 polyclonal antibodies (RMIT University), sheep anti-SR1 peptide 
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and anti-N. meningitidis polyclonal antibodies were made (Institute of Medical and 

Veterinary Science (IMVS), Australia). Mouse anti-NM type B monoclonal antibodies 

were purchased from the National Institute for Biological Standards and Control 

(NIBSC), UK. In addition, attempts were made to define novel and specific receptors 

known as IgNAR’s (immunoglobulin-like new antigen receptors) by screening 

recombinant antibody fragment libraries in collaboration with Dr Stewart Nuttall’s 

group at CSIRO Molecular and Health Technologies in Parkville.  These IgNAR 

receptors were considered to be the smallest antibody fragment capable of full 

antigen-binding capacity and specificity but with greater thermal stability and 

production efficiency. 

 

 

2.2.2. Immunoglobulin  New Antigen Receptors (IgNAR’s) as novel 
receptors 
In the adaptive immune system, the antigen receptors, Immunoglobulins (Igs) and T 

cell receptors (TCRs) are generated for the recognition of pathogens (Roux, 

Greenberg et al. 1998). The typical immunoglobulin receptor is composed of two 

heavy (H) and two light (L) polypeptide chains. Each chain, in turn, is composed of a 

single, variable (V) domain at the N-terminal end followed by one to seven constant 

(C) domains (Roux, Greenberg et al. 1998). Normally, constant domains define the 

effector functions characteristic of a given class of Ig whereas V domains each display 

a unique sequence and structure defining antigen specificity. Igs can be subdivided 

further into Fab and Fc fragments, responsible for antigen binding and effector 

functions (Roux, Greenberg et al. 1998). The V region contains frame work (FR) 

regions and hypervariable sequences known as complimentarity-determining 

regions (CDR’s). FR’s are responsible for protein folding and CDR’s are responsible 
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for antigen interactions. The evolutionary origin of antigen receptors is unknown, 

but the first indication of their emergence phylogenetically is in cartilaginous fish 

(sharks, skates, and rays), where at least three types of Ig (Greenberg, Avila et al. 

1995) and four TCR isotypes are found (Rast and Litman 1994; Rast, Anderson et al. 

1997).  

 

One of the goals of antibody engineering has been to reduce the size of the minimum 

antibody fragment whilst retaining binding affinity and specificity (Nuttall, Krishnan 

et al. 2001).  Until recently Fv fragments, composed of only the heavy and light chain 

variable (VH and VL) domains were considered to be the smallest antibody fragment 

capable of full antigen-binding capacity. Recently, an alternate type of antigen 

receptor in nurse sharks (Orectolobus maculates and Ginglymostoma cirratum), called 

IgNAR (Immunoglobulin-like New Antigen Receptor) (Roux, Greenberg et al. 1998; 

Nuttall, Krishnan et al. 2001) that is secreted by splenocytes but does not associate 

with Ig light (L) chains had been identified (Greenberg, Avila et al. 1995).  

 

The IgNAR protein has been shown to be a homodimeric heavy-chain complex with 

each chain composed of one V and five C domains (Greenberg, Avila et al. 1995). 

IgNAR’s V region undergoes high levels of somatic mutation and is equally 

divergent from both Ig and T cell receptors and thus may be an evolutionary 

intermediate (Diaz, Greenberg et al. 1998). The NAR V region conforms to the model 

of prototypic Ig super family domains with an exceptionally small CDR2  region 

(Williams and Barclay 1988; Greenberg, Avila et al. 1995). By electron microscopy, it 

was shown that NAR V regions, unlike those of conventional Ig and TCR, do not 
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form dimers but rather are independent, flexible domains function as a bivalent 

antigen-binding site (Roux, Greenberg et al. 1998). This unusual feature is analogous 

to bona fide camelid IgG in which modifications of Ig heavy chain V (VH) sequences 

prevent dimer formation with L chains (Roux, Greenberg et al. 1998). In camelid 

species (camels and llamas), a significant proportion of the serum immunoglobulin 

consists of antibodies naturally devoid of light chains (Casterman, Atarhouch et al. 

1993) and the unassociated VH domains interact with antigen as monomers (Spinelli, 

Frenken et al. 1996).  

 

The development of phage display has allowed the generation of libraries of Fv 

fragments and engineered derivatives such as scFv, dsFv from which many antigen 

specific binders have been isolated (Winter, Griffiths et al. 1994; Hoogenboom and 

Chames 2000). To decrease the size of the minimal binding unit below that of the Fv, 

it was generally accepted that the antibody fragment must be composed of a single 

domain.  

 

Based on this IgNAR variable domain region, a single domain library has been 

created by the successful cloning and generation of a bacterial phage-display library 

in E. coli (Nuttall, Krishnan et al. 2001). This library was based upon the antibody 

fragments V region sequence from the wobbegong shark (Orectolobus maculates) 

which, like the nurse shark, is a member of the shark family Orectolobidae. The 

library was constructed so as to incorporate a randomised, synthetic CDR3 of either 

16 or 18 aa. Selection on a number of proteinaceous antigens resulted in the selection 
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of anti-Kgp protease clones which were able to bind both specifically and with good 

affinity (Nuttall, Krishnan et al. 2001; Nuttall, Krishnan et al. 2002). 

 

Screening of such a library generated from nurse sharks (Ginglymostoma cirratum) 

immunised with the model antigen hen egg-white lysozyme (HEL) facilitated the 

successful isolation of intact antigen-specific binders matured in vivo (Dooley, Flajnik 

et al. 2003). The selected variable domains were shown to be functionally expressed 

in Escherichia coli, selection from this library resulted in the isolation of clones highly 

specific for antigen, binding with nanomolar affinity and showing great resistance to 

irreversible thermal denaturation (Dooley, Flajnik et al. 2003). This approach can 

therefore be considered as an alternative route for the isolation of minimal antigen-

binding fragments with favourable characteristics.  

 

This chapter mainly delas with the preparation of various Neisseria meningitidis cell 

surface antigens and generation respective monoclonal and polyclonal antibodies. 

These reagents were utilized for designing a model immuassay for N. meningitidis.  
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2.3. Materials and Methods 

All chemicals used were of analytical grade laboratory reagents. All solutions were 

prepared with deionised water obtained from a Millipore Milli-Q water system 

excluding media, which was prepared with distilled water (dH2O). All glassware 

was washed with Proneg detergent (Diversey-Lever, Pty. Ltd., Australia), rinsed in 

tap water and then in deionised water.  

 

Finnpipette pipetters (Thermo Labsystems) were used for dispensing all solutions. 

Volumes of 1.5 mL or less were centrifuged with the Eppendorf microcentrifuge 

5415C. Larger volumes upto 50 mL were centrifuged in the Beckman J2-21 M/E 

centrifuge. For high-speed centrifugation, Beckman Allgra 21R and Beckman J2-21 

M/E Super model centrifuges, both from Beckman Coulter, USA were used. 

Sartorius analytical top-loading balance was used for weighing the reagents.  

 

Materials 

Neisseria meningitides, Escherichia coli and other bacteria were obtained from RMIT 

microorganisms stock. E. coli TG1 bacteria were obtained from Stratagene, USA. 

Luria-Bertani (LB) media, 2 YT (Yeast extract-tryptone) media, 

ampicillin/glucose/yeast extract-tryptone (Amp/glc/YT) plates were prepared 

according to the standard microbiology protocols. Nickel-nitrilotriacetic acid (Ni-

NTA) sepharose resin, protein A sepharose and protein G Sepharose Fast Flow resin 

were obtained from Amersham Biosciences Ltd. UK. Sodium dodecyl sulphate (SDS) 

and dithiothreitol were purchased from Bio-Rad, USA. Also, 0.22 µm and 0.45 µm 
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pore size polypropylene membrane filters and Centricon 4.0 mL 30 kDa cut-off 

concentrators were purchased from Millipore, USA.  

 

Isopropyl β-D-1-thiogalactopyranoside (IPTG), phenylmethanesulphonylfluoride 

(PMSF), sulfosuccinimidyl 4-N-maleimidomethyl cyclohexane-1-carboxylate 

(SMCC), polyethylene glycol 8000, triton X 100, tween-20, DNAse, RNAse, reduced 

glutathione, oxidised glutathione, glycerol, lysozyme, tricine, thimerosal, proteinase 

K, cyanuric chloride, phenolphthalein indicator, poly-L-lysine (type VIII; mol. Wt. 

30,000-70,000), ampicillin, kanamycin, chloramphenicol, Freund’s 

complete/incomplete adjuvant, Keyhole limpet haemocyanin, urea, p-cresol, p-

thiocresol and triethylamine were purchased from Sigma-Aldrich Ltd., USA. Anti-

rabbit, anti-mice and anti-sheep IgG-HRP (horsh raddish peroxidase) antibodies was 

obtained from Millipore, USA, where as HRP substrate, BD OPTia TMB substrate 

reagent was purchased from BD Biosciences, USA. India ink stain was purchased 

from Pro Art, USA. 

 

The resin used for the synthesis of the peptides was 4-methylbenzylhydrylamine (p-

mBHA), with a substitution level of 0. 89 meq/g and was obtained from Peptide 

Institute Inc, Osaka, Japan. All the amino acids used were Boc protected with benzyl-

based side chain protection. The aspartic acid (Boc-Butyloxycarbonyl- L- Aspartic 

Acid b- Benzyl Ester), arginine (Nα- Boc- Ng- Tosyl- L- Arginine), glutamic acid (Boc- 

L- Glutamic Acid g- Benzyl Ester) and cysteine (t- Boc- S- Benzyl- L- Cysteine) were 

obtained from Peptide Institute Inc, Osaka, Japan. The histidine (Boc-L-His (Dnp)-
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OH.isopropanol) was obtained from Auspep, Melbourne. All other amino acids used 

were obtained from Bachem Inc, California. 

 

Solvents including N,N-dimethyl formamide (DMF), trifluoroacetic acid (TFA), 

ninhydrin reagent, O-benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-

phosphate (HBTU), N-hydroxybenzotriazole (HOBT) and (N, N-

diisopropylethylamine (DIEA), which were peptide synthesis grade, were obtained 

together with HBTU from Auspep. Hydrogen fluoride (HF) was obtained from 

Matheson Gases, USA. HPLC grade dicholoromethane (DCM) and far UV grade 

acetonitrile (ACN), were obtained from Mallickrodt. Other reagents were analytical 

grade unless otherwise stated. 

 

Equipment: 

HF manifold reaction vessel    Peptide Institute Inc, Japan 

Heto cold trap      Thermo Electron Corporation, 

        USA  

Javac DDL 300 vacuum pump     Javac, Australia  

Perkin Elmer Series 200 HPLC pump    PerkinElmer, USA 

C18 column 4.6x30 mm      Applied Biosystems, USA  

785A Programmable Absorbance Detector  

with a PE Nelson 900 Series Interface   Applied Biosystems, USA  

Voyager-DE RP mass spectrometer    Applied Biosystems, USA 

Ultrasonicator      Branson Sonic Power Co., USA 

Rotary shaker      Ratek, Australia  
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Analytical Balance      Sartorius, Germany 

Bio-Rad Model 680XR Microplate reader   Bio-Rad Laboratories, USA 

Eppendorf 5414C bench top centrifuge   Eppendorf, Germany 

Beckman Allegra 21R centrifuge    Beckman Coulter, USA 

Beckman J2-21 M/E Super centrifuge   Beckman Coulter, USA 

Electrophoresis PowerPac 300    Bio-Rad Laboratories, USA 

Bio-Rad mini-PROTEAN III system    Bio-Rad Laboratories, USA 

Bio-Rad PROTEAN II xi cell apparatus    Bio-Rad Laboratories, USA 

Electro elution chamber      Bio-Rad Laboratories, USA 

Western blot module     Bio-Rad Laboratories, USA 

Hitachi U2000 UV-visible absorption spectrophotometer    

        Hitachi Ltd., Japan 

PhilipsEM400 Transmission electron microscopy Philips, Netherlands 
 

 

 

2.3.1. Expression and purification of the recombinant OMP85 antigen 
in E. Coli 
 

Recombinant OMP85 was expressed and extracted from E. coli, and purified by Ni-

NTA chromatography and sonic extraction (Takahashi, Sandberg et al. 1997; Qiagen 

2000).  
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Figure 2.9. Map of pRSNMO85-2 

 
 
2.3.1A. Recombinant OMP 85 protein expression 
A single colony of E. coli cells containing pRSNMO87 plasmid with omp85 gene and 

hexa histidine tag gene inserts (Figure 2.9.) was inoculated in 10 mL LB medium 

containing 100 µg/mL ampicillin in a 50 mL flask. Cultures were grown overnight at 

37°C with shaking. 200 mL of pre-warmed media (with antibiotics) was inoculated 

with 10.0 mL of the overnight cultures and incubated at 37°C, with vigorous shaking 

(300 rpm). Incubation was continued until the OD at 600nm reached 0.5-0.7 

(approximately 4 hours). To induce protein expression, IPTG to a final concentration 

of 1 mM was added. Cultures were grown for an additional 4 hours at 37°C. Then the 

cells were harvested by centrifuging at 5,000 x g for 15 min and the pellet was 

weighed. The cell pellet was stored at -20°C overnight. 
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2.3.1B. Protein Extraction and purification 
Cell pellet was subjected to freeze/thaw cycles 4 times to improve the lysis 

efficiency. Then the cell pellet was resuspended in 10 mL of chilled lysis buffer (20 

mM Tris-HCl pH 8.0 containing 200 mM NaCl, 5mM DTT, 5% (v/v) Glycerol, 

0.35mg/mL lysozyme and 1% (w/v) Triton X-100). 1mM PMSF was added just 

before experiment.  

 

The cell lysis suspension was incubated for 15 minutes at room temperature, with 

gentle shaking. It was then subjected to ultrasonication at 250 W with 6X10s with 

intervals of 30 sec for cooling. The suspension was then cooled on ice for 10 minutes 

Then, 5 µl of 1M MgCl2 and 1 µl DNase solution (1 mg/mL) per mL of the lysate was 

added and incubated for 30 min at room temperature. 

 

The cell debris was removed by centrifugation at 30,000 xg for 25 minutes at 4 °C. 

The supernatant fluid was removed and then 5 µl of 2x SDS-PAGE sample buffer 

was added to 20 µl supernatant and stored at –20°C for SDS-PAGE analysis. The 

pellet was retained and thoroughly washed twice by spinning at 30 000 xg for 30min 

at 4°C with TBS or PBS containing 1% triton X 100. 

 

The pellet was then solubilized in 2 mL of solubilisation/extraction buffer (50 mM 

Tris-HCl pH 7.5 containing 8 M urea, 1 mM DTT, 2 mM reduced glutathione, 0.2 mM 

oxidised glutathione, 1 mM PMSF) by incubating for 1h at room temperature. Once 

the pellet was dissolved, an equal amount of sterile deionised water was added, and 

mixed gently by vortexing.  
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Insoluble material that may clog the Ni-NTA column (45-165 µm) was removed by 

centrifugation at 100,000g for 30 minutes. Then the protein sample was filtered 

through a 0.45 µm filter). The protein concentration was determined by Bradford 

assay and adjusted to 1mg/mL using solubilisation buffer. It was followed by Ni-

NTA column (45-165 µm) purification. Alternatively, the supernatant was stored at 

4°C overnight. 

 

2.3.1C. Ni-NTA Chromatography 
Extracted recombinant OMP85 protein was loaded on to a Ni-NTA column for 

purification. After a number of trials, protein elution conditions were optimised to 

achieve a >70% reasonable purity. Aliquots (1.0 mL) were collected and the aliquots 

containing the desired His-tagged protein were determined by using Bradford assay 

(Bradford 1976).  

 

For analysis of the protein profile, 5.0 µl of SDS-PAGE sample buffer was added to 20 

µl of purified OMP85 protein and heated for 10 min at 95°C, followed by loading of 

the protein samples onto an 8% SDS-PAGE gel (0.75 mm and 1.0 mm thick gels).  

Electrophoresis was performed using Bio-Rad mini-PROTEAN III electrophoresis 

system at 80/120 V for 3 hours. It was followed by Coomassie blue staining to check 

the purity of the protein of interest. 

 

2.3.2. Extraction of protein bands from polyacrylamide gels 
As the protein purified by Ni-NTA column chromatography was not pure, two 

different approaches (1) sonic gel extraction and (2) electro elution were used to 
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further increase the purity the OMP 85 protein. A slightly modified sonic extraction 

method was followed (Takahashi, Sandberg et al. 1997).  

 

2.3.2.1. Identifying and excising the band of interest 
Maxi-gels (16 x 16 cm) were made and run using Bio-Rad PROTEAN II xi cell 

apparatus to maximise the yield of pure protein. After gel electrophoresis (at 120 V 

overnight with central cooling core's recirculation ports connected to a refrigerated 

water bath), a strip containing the protein band was excised from the gel using a 

scalpel. The cut strip of gel was stained using Coomassie Blue R-250 to identify the 

portion of the protein band.  

 

The stained gel strip was aligned with the unstained gel portion and the band of gel 

just above and below the region presumed to contain the protein of interest was also 

excised and processed. The remaining portion of the gel after excising the protein 

band was stained with Coomassie blue staining to determine the accuracy of 

excision. Then the protein of interest was eluted from the gel matrix either by sonic 

extraction or electro elution methods. 

 

2.3.2.2. Elution of the protein from the gel matrix 
 

2.3.2.2A. Passive elution of proteins by sonic extraction 

The excised gel pieces were placed in a clean screw-cap culture or microcentrifuge 

tube and washed three times for 5 mins with 2.0 mL of 250 mM Tris buffer 

containing 250 mM EDTA, pH 7.4, followed by three washes for 5 minutes each with 

distilled water. 
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After removing the distilled water with a pasteur pipette, elution buffer (50 mM Tris-

HCl, 150 mM NaCl and 0.1 mM EDTA; pH 7.5) containing 0.1% (v/v) SDS was 

added, so that the gel pieces were completely immersed (approx. 2:1 ratio of buffer 

and gel pieces) .  

 

The sample was then kept in an ice bath and sonicated for 3 min (6 passes of 30 secs) 

with a 3.0 mm probe sonicator (high-intensity ultrasonic processor, 50-W model). It 

was followed by mixing of the sample overnight, on a rotary shaker at room 

temperature. 

 

The extract was centrifuged at 7,500 Xg for 10 minutes and the supernatant fluid was 

pipetted into a new microcentrifuge tube. An aliquot of the supernatant was tested 

for the presence of protein by SDS-PAGE (Tris buffer with or without SDS) and for 

quantitation. Finally, the purified protein samples were stored at -20 °C.  

 

2.3.2.2B. Electro elution of proteins from polyacrylamide gel pieces 
In this technique, protein containing gel pieces were placed in an electro elution 

chamber (Bio-Rad), where the proteins were eluted from the gel matrix into a buffer 

solution using an electrical field and captured against a dialysis membrane with a 12 

kDa molecular weight cut off. 

 

2.3.3. Rabbit anti-OMP85 polyclonal antibodies 
To assess the immunogenicity of the purified OMP85 antigen, polyclonal antibodies 

were raised in rabbit. Antigen was injected at regular intervals (Table 1) and 

antibody titre was estimated using ELISA method. 
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The Rabbit antiserum was produced as follows. Two New Zealand white rabbits 

were injected with four doses of antigen at 2 week intervals subcutaneously with 

purified OMP85 antigen (100 µg/0.35 mL), emulsified with an equal volume of 

Freund’s complete adjuvant for the initial dose and with Freund’s incomplete 

adjuvant for the booster doses. At the end of week 12, terminal bleeds were 

performed on the rabbits (Table 2.1.). Antiserum was separated from the collected 

blood by centrifugation at 2000 x g for 20 min and stored at -20 °C. 

 

Standard Protocol  

Prebleed Week 0 

Primary Inoculation Week 0 

1st Booster Week 3 

2nd Booster Week 6 

Test Bleed Week 7.5 

3rd Booster Week 9 

Bleed out  Week 12 

    

Table 2.1. Rabbit immunisation schedule for raising polyclonal antibodies 

 
 
2.3.4. Western blot analysis of anti-OMP85 polyclonal antibodies 
The immunogenic specificity of the rabbit anti-OMP85 antibodies against both crude 

and purified OMP85 antigen were assessed by the western blot analysis. SDS-PAGE 

gel electrophoresis was performed with purified OMP85 antigen and then 

transferred onto a nitrocellulose membrane. The membranes were blocked overnight 

in phosphate-buffered saline (PBS, pH 7.6), 1% (w/v) non-fat dried milk, 0.01% (v/v) 

Tween-20-PBS. It was followed by incubation for 1 hour with primary antibodies 

against OMP85 antigen in blocking buffer. The antibody was removed and the 
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membrane was washed three times with 0.01% (v/v) Tween PBS. The membrane was 

probed by incubating with anti-Rabbit IgG-HRP (horsh raddish peroxidase) 

antibodies (1 in 5,000) in blocking buffer, for one hour. Finally, the blot was 

developed using HRP substrate reagent (BD Biosciences, USA). 

 

2.3.5. Synthesis of SR1 peptide specific to N. meningitidis type B 

 

 
2.3.5A. Resin preparation 
The peptides were synthesised at a 0.5 m mol scale. Approximately 0.5 mmol of the 

p-mBHA-HCl resin with a substitution level of 0. 89 meq/g, was weighed out and 

placed in the reaction vessel. The resin was prepared by flow washing with DMF for 

20 seconds. It was neutralised with 1 mL DIEA for 1 minute and flow washed again 

with DMF. The neutralisation and the resin flow wash steps were repeated. 

 

2.3.5B. Synthetic cycles 
The 2 mmol of the Boc-protected amino acid derivatives were weighed out into clean, 

glass scintillation vials. It was activated using 4 mL of 0.5 M HBTU dissolved in DMF 

or, in the case of R, N or Q, 4 mL of 0.5M HBTU and 4 mL of 0.5M HOBT dissolved in 

DMF. Immediately after addition of the activation agent(s), 470 µL of DIEA was 

added for in situ neutralisation.  

 

The activated amino acid was added to the resin and allowed to couple by mixing for 

10-15 minutes. After coupling, ninhydrin analysis was performed to calculate the 

coupling effeciency. Where the coupling percentage was below 99.0%, a double 

coupling was done, in which a second 2 mmol aliquot of the same protected amino 

acid was activated, neutralised and coupled. After double coupling, a ninhydrin 



 93

analysis was repeated. The solution was then drained and flow-washed with DMF 

for 30 sec prior to starting a new synthesis cycle.  

 

While the amino acid was activated, the previous amino acid on resin was 

deprotected by mixing with 10 mL of anhydrous TFA for 1 minute. The TFA was 

drained and the deprotection step was repeated for a further minute. After removal 

of TFA, the reaction vessel was filled with DMF and drained. The resin was 

vigorously flow washed with DMF for 30 seconds after which the activated amino 

acid was added for next coupling. 

 

The cycle of deprotection, activation, neutralisation and coupling were followed for 

each amino acid that was added (GKTYDDNSSSATGGRVQNIYGAGNTH). Double 

couplings were carried out when required. 

 

2.3.5C. Ninhydrin Analysis 
Approximately 5 mg of resin was removed at the end of each coupling to calculate 

the coupling percentage according to the procedure described by Sarin et al.. (Sarin, 

Kent et al. 1981). The resin was washed three times with 50:50 DCM : Methanol 

mixture and then dried under vacuum. The dried resin was placed in a culture tube 

and weighed. 2 drops of phenol solution, 4 drops of 20 mM KCN solution and 2 

drops of ninhydrin solution were added to the resin prior to heating at 100 °C for 5 

minutes together with a reagent blank tube.  

 

After 5 minutes, the tubes were removed from the heating block and 3 mL of 60% 

ethanol was added. After the resin was allowed to settle at the bottom of the tube, the 
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absorbance of the solution was measured against the blank at 570 nm. The weight of 

the resin and absorbance of the solution were entered into Pepmate (Fecondo, 

unpublished) to determine the coupling percentage.  

 

2.3.5D. Deprotection prior to HF cleavage 
Approximately 360 mg of the resin-peptide was weighed out to be deprotected and 

cleaved. The protecting group on the side chain of Histidine, 2,4-Dinitrophenol 

(DNP), was removed using 10mL of 20% (v/v) 2-mercaptoethanol : 10% (v/v) DIEA 

in DMF, which was mixed for 30 minutes. This was repeated three times until the 

solution was clear. The resin was then washed with DMF. 

 

The N α-terminal Boc protecting group was removed by the addition of 10 mL 

anhydrous TFA and mixed for 1 minute. The resin was then flow washed with DCM 

for 30 seconds, followed by a second 10 mL anhydrous TFA deprotection step for 1 

minute. Following a further 30 sec flow wash with DMF, the resin was neutralised 

with approximately 10 mL of 10% (v/v) DIEA in DCM for 1 minute, followed by 1 

minute DCM flow wash. The resin was dried under vacuum. 

 

2.3.5E. Hydrogen Fluoride cleavage of the peptide-resin 
Aliquots (0.5 mL) of the scavengers’ p-cresol and p-thiocresol were melted and added 

to the dried peptide-resin in the small reaction vessels of the HF manifold (Peptide 

Institute Inc) reaction vessel. Vacuum pressure was maintained in the apparatus at -

330 mm Hg and about 25 mL of anhydrous HF was released from the cylinder and 

condensed into the reservoir using liquid nitrogen. Water heated to about 50 oC was 

used to evaporate the HF collected, which was allowed to condense into the reaction 
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vessels. The peptide was completely deprotected and cleaved from the resin by 

reacting with anhydrous HF, for 1 hour at 0 oC under vacuum. HF was then removed 

by aspiration. 

 

2.3.5F. Extraction of the cleaved peptide 
The peptide-resin mixture was washed twice with 40 mL of anhydrous ethyl ether to 

remove the scavengers and all traces of HF. The peptide was extracted with a 

minimal volume of 10-20% acetic acid (Sigma) and collected into round-bottomed 

flasks under vacuum. The peptide was lyophilised overnight with a Heto cold trap 

fitted with a Javac DDL 300 vacuum pump (Javac, Australia). The freeze-dried 

peptides were stored at –20oC. 

 

2.3.6. Analysis of peptides 
 

2.3.6A. High Performance Liquid Chromatography (HPLC) 
Approximately 100 µg of the SR1 peptide was dissolved in 0.5 ml of 0.1% TFA in 

Milli Q water. A Perkin Elmer Series 200 HPLC pump was used with a C18 column 

4.6x30 mm (Brownlee Labs, Applied Biosystems, USA) and 20 µl of the peptide 

solution was injected.  

 

The mobile phase gradient used was 0-60% ACN / 0.1% TFA over 30 minutes with a 

flow rate of 1 mL/minutes The absorbance was monitored at 214 nm using an 

Applied Biosystems 785A Programmable Absorbance Detector. The data was 

acquired using Turbochrom software (Perkin Elmer) with a PE Nelson 900 Series 

Interface.  
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2.3.6B. Mass spectrometry 
MALDI-TOF was performed in reflector mode using a Voyager-DE RP mass 

spectrometer with a horizontal tube of 2 m in length. The matrix used was α-cyano-4-

hydroxycinnamic acid (10 mg/mL in 60% ACN / 0.3% TFA). Samples were 

irradiated at 337 nm with 2 nsec pulses from a nitrogen laser at a frequency of 20 Hz. 

The resultant ions were then accelerated to 20 kV, recorded at a digitisation rate of 

500 MHz and reflected to a dual micro channel plate detector. The signal from a 

minimum of 200 shots was then summed to achieve the reported intensities. The data 

was examined on Data Explorer 4.0 software. 

 

2.3.7. Keyhole limpet haemocyanin (KLH) – SR1 peptide conjugation 
To assess the immunogenic specificity of the SR1 peptide, polyclonal antibodies were 

raised in sheep. The SR1 peptide was conjugated to keyhole limpet haemocyanin 

(KLH) prior to immunisation given the relatively low molecular weight of the 

peptide. 

 

2.3.7A. Column Pre-swelling and Equilibration 

Approximately 300mg of Sephadex G10 gel filtration media was weighed out into a 

small eppendorf tube and added an excess of 2M Gu.HCl in PBS, pH 7.4 for pre-

swelling.  It was allowed to equilibrate with three buffer changes. 

 

2.3.7B. KLH/SMCC Preparation 
While allowing time for the column media to equilibrate in the eppendorf tube, the 

entire contents of 1 vial of KLH (20mg) was reconstituted in 2mL of milliQ H2O to 

obtain a 10 mg/mL solution. An aliquot (600 µL) of this mixture was transferred into 
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an eppendorf tube. In another eppendorf tube, 0.8mg of SMCC was weighed out and 

dissolved in 30µL of DMF solvent. Then 400 µL of PBS, pH 7.3 was added to this 

eppendorf tube and mixed thoroughly. Later, 600mL aliquot of KLH was added to 

the eppendorf tube containing the SMCC cross linker and mixed gently for 30 min at 

room temperature.  

 

2.3.7C. Peptide Preparation 
Approximately 12 mg of peptide was dissolved in 300 µl of 2 M Gu. HCl in PBS, pH 

3-4 solution. Once the crude peptide material was dissolved, an equimolar amount of 

solid dithiothreitol (7-7.5 mg of DTT) was added and mixed gently until solubilised 

and allowed to stand for 10 minutes. 

 

2.3.7D. Column arrangement 
The top of Bio-rad mini prep column was cut so that the column could fit into a 15mL 

centrifuge tube and filled with pre-swelled 300mg of Sephadex G10 gel filtration 

media. 

 

An empty eppendorf tube was wedged (with lid removed and hole pierced on the 

side) to the tip of the column and placed this apparatus in a 15mL centrifuge tube. 

Then the column was spun in a centrifuge at 1000 x g for 2 min in order to remove 

excess buffer. 

 

2.3.7E. Peptide Conjugation to KLH/SMCC Carrier Complex  
Once excess buffer had been removed, the wedged eppendorf tube at the tip of the 

column was replaced with the eppendorf tube containing the KLH/SMCC mixture. 

A one step gel filtration and coupling was performed by placing the KLH-SMCC 
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solution to a receiving bottom tube with the peptide solution applied to G-10 

centrifuge column (i.e. spin column). The entire column setup was placed in a 15mL 

centrifuge tube and spun at 4000xg for 3min to allow for the peptide to elute from the 

column into the receiving bottom tube. 

 

The spin column was rinsed twice with 300 µl 2M PBS-Gu.HCl (pH 3.5) and 

centrifuged for 3 minutes at 4000 x g in order to recover as much of the peptide as 

possible. The peptide-KLH conjugate mixture was transferred the entire contents into 

another sealable eppendorf tube. The pH of the contents was adjusted to 7.5 with 2 M 

NaOH. The conjugate sample was allowed to mix i.e. end over end mixing for 3 

hours at room temperature for complete conjugation. Finally 30 µL of 1% Thimerosal 

in PBS was added to the conjugate sample and stored at 4 °C until required. 

 

2.3.8. Sheep anti-SR1 and anti-NM serotype B polyclonal antibodies 
SR1 peptide conjugated with Keyhole Limpet Haemocyanine (KLH) was used to 

raise the sheep polyclonal antibodies (Institute of Medical and Veterinary Science 

(IMVS), Australia). Antibodies were also raised in sheep against the formaldehyde 

treated whole cell N. meningitidis bacteria.  A standard immunisation protocol was 

followed, antigens were injected at regular intervals and antibody titre was estimated 

as described in table 2.2. 
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Antigen ID Amount 

mg/dose/animal 

Details  Number of 
animals 

Species 

SR-1 Peptide 2.5 mg (in 0.5 mL KLH-
peptide solution) / dose mixed 
this dose with 0.5 mL CFA/IFA 

KLH conjugated Peptide (2.8kD) via 
SMCC, in PBS 

 1 Sheep 

NM-B 

 

109 cells / 0.5 mL of PBS 
mix this dose with 0.5 mL 
CFA/IFA 

Neisseria meningitidis Serogroup 
B Inactivated by treatment with 
2% Formaldehyde , in PBS at 2 
x109 cfu/mL 

 1 Sheep 

 

Table 2.2. Sheep immunisation details for raising polyclonal antibodies against the 
SR1 peptide and N. meningitidis bacteria. 

  

2.3.9. Preparation of capsular polysaccharide (CPS) from Neisseria 
meningitidis serotype B 
The following steps were followed in the preparation of the capsular polysaccharide 

from Neisseria meningitidis bacteria. A bacterial culture grown overnight was chilled 

rapidly on ice. The cells were harvested by centrifugation at 13,600 x g for 15 minutes 

and the pellet was washed 3 times with sterile ice cold saline (pH 7.2).  

 

The supernatant liquid containing the released soft fibrillar capsular material was 

collected and stored on ice. The bacterial pellet was then suspended in 0.01% (w/v) 

SDS in PBS at room temperature until the capsule was released as monitored by 

India ink staining. Bacteria were then pelleted by centrifugation at 13,600 x g for 15 

minutes at 4°C. The supernatant was collected and mixed with the initial supernatant 

collected. The whole supernatant mixture was then filtered through a 0.22 µm pore 

size membrane filter and kept on ice. 

 

The bacterial pellet from the above separation was resuspended in 500 µl of lysis 

buffer containing 31.25 mM Tris-HCl (pH 6.8), 4% (w/v) SDS, 20% (v/v) glycerol. 

Samples were then heated at 100 °C for 5 minutes. The cell debris along with the 
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remaining capsular material was pelleted by centrifugation at 13, 600 x g for 30 

minutes at 4°C. 

 

Proteinase K (15 units/mL) was then added to the filtered capsular material and 

incubated at 56 °C for 1 hour, followed by addition of 2 volumes of ice cold ethanol 

to precipitate the carbohydrates. The precipitated capsular material was 

subsequently washed with a mixture of cold ethanol-saline (3:1). The purified 

capsule was solubilised in sterile distilled water and NaCl was added to a final 

concentration of 0.9 % (w/v). Finally, the capsule was treated with DNase and RNase 

(10 µg/mL) for 2 hours at 37 °C, and the absorbance was measured at 260 and 280 

nm. The polysaccharide capsule was then lyophilised and resuspended in Tris buffer 

(0.01M Tris-HCl, pH 7.5). This solution was lyophilised again and stored at -20 0C 

until required. 

 

 

2.3.10. Analysis of the purity of N. meningitidis type B specific 
capsular polysaccharide 
 

2.3.10A. Gels 
The purity of the capsular polysaccharide preparation was visualised by loading 

onto a Tricine SDS-PAGE gel.  A sample of the polysaccharide preparation was 

dissolved in 2 ml of sample buffer (0.125 M Tris base, 10% (v/v) glycerol, pH 6.8), 

loaded onto the gel. A running buffer containing 0.1 M Tris, 0.1 M tricine, 0.1% (w/v) 

SDS, pH 8.25 was used and run at a constant voltage of 120 V. Siver staining was 

performed to visualise the capsule. 
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2.3.10B. High Performance Liquid Chromatography (HPLC) 
Approximately 100 µg of the polysaccharide capsule was dissolved in 200 µl milli Q 

water. A Perkin Elmer Series 200 HPLC pump was used with a C8 column 4.6x30 mm 

(Applied Biosystems) and 20 µl of the capsule solution was injected.  

 

Analysis was performed using the elution conditions, 0-60% ACN / 0.1% (v/v) TFA 

over 30 minutes with a flow rate of 1 mL/minutes The absorbance was read at 214 

nm using an Applied Biosystems 785A Programmable Absorbance Detector. The 

data was acquired using Turbochrom software (Perkin Elmer) with a PE Nelson 900 

Series Interface.  

 

 
2.3.11. Anti-NM serotype B capsular monoclonal antibodies 
Anti-NM serogroup B Capsular monoclonal antibodies were purchased from 

National Institute for Biological Standards and Control (NIBSC), UK. These 

antibodies were tested for the specificity and titre against the whole cell bacteria and 

the purified capsular preparation by ELISA method. 

 

2.3.12. BLAST search to identify related organisms-cross reactivity 
A BLAST search of OMP 85 protein antigen sequence using NCBI/ BLAST/ blastp 

program (protein-protein BLAST) against 5,815,196 sequences, produced a broad list 

of different Gram negative bacteria with varying similarity (Table 2.3.). From the list, 

the bacteria which are more likely to be associated with human infections were short 

listed. Out of that list, 21 bacteria were available from the RMIT microbiology stocks 

(Table 2.3.). Cross reactivity experiment was done with the panel of antibodies 

against the 21 bacteria. 
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     Sequence  Percentage  

     Identities  of identity 

� Neisseria meningitidis   797/797  100% 

� Neisseria meningitidis MC58   795/797                  99% 

� Neisseria gonorrhoeae   758/797   95% 

� Chromobacterium violaceum ATCC 12472  404/800    50% 

� Bordetella pertussis    285/783  36% 

� Acinetobacter sp.     283/816   34% 

� Escherichia coli    273/830   33% 

� Pseudomonas fluorescens    263/790  33% 

� Pseudomonas aeruginosa    266/799  33% 

� Salmonella Paratyphi     276/824   33% 

� Salmonella Typhi    276/824   33% 

� Vibrio alginolyticus     275/826   33% 

� Vibrio vulnificus     273/817   33% 

� Shigella dysenteriae     273/830   32% 

� Vibrio cholerae    265/817   32% 

� Vibrio parahaemolyticus    265/817   32% 

� Vibrio sp.      267/817   32% 

� Haemophilus influenzae   261/823   31% 

� Legionella pneumophila    244/783   31% 

� Pasteurella multocida    257/813   31% 

� Brucella abortus    217/821   26% 

 
Table 2.3. List of Bacteria used for cros reactivity study against the panel of prepared 
antibodies. The sequence identities varied from 26% to 100%. 
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2.3.13. Purification of polyclonal antibodies 
 
 
2.3.13.A. Protein A sepharose antibody purification procedure 
A five mL column was packed with 1.0 mL of Protein A (Protein G in case of sheep 

antibodies) Sepharose Fast Flow (Amersham Biosciences) resin. The column was 

washed 10 column volumes with PBS (binding buffer). An aliquot of anti-serum (1.0 

mL) obtained from rabbits was filtered using syringe through a 0.45 µm filter and 

centrifuged for 5 minutes at 5000 x g. Then the serum was diluted into 5.0 mL PBS 

and this was then filtered through a 0.45 µ filter. 

 

The diluted anti-serum was loaded onto the column and the flow through was 

collected. Unbound protein was washed out with 10 column volumes of PBS or until 

the UV absorption at 280 nm measured reached to near zero. After a flat base line 

was achieved with binding buffer, antibodies were eluted with 0.1 M glycine pH 3.0 

(elution buffer). Eluted antibody was collected in 500 µl aliquots into 1.0 mL 

eppendorf tubes containing 500 µL of 1.0M Tris-HCl, pH 7.0, to neutralise the acidic 

elution buffer. All fractions were mixed and kept on ice. The fractions were pooled 

and concentrated into 0.1 M PBS, pH 7.4, using a Millipore Centricon 4.0 mL 30 kDa 

cut-off concentrator according to the manufacturer’s instructions. Then, UV 

absorption of each aliquot at 280 nm was measured and the IgG concentration was 

determined using an absorptivity constant of 1.4 mg-1. mL. cm-1. 

 

The Protein A sepharose was regenerated by washing with additional 3-4 column 

volumes of elution buffer followed by re-equilibration with 3-4 column volumes of 

PBS. 
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2.3.13.B. Protein G sepharose antibody purification procedure-Isolation of 
sheep antibody 
Polyclonal antibody was purified from sheep serum using Protein G sepharose beads 

(Amersham Biosciences, USA). The pH of the 500µl fractions eluted using 0.1M 

Glycine (pH 3.0) was raised to 7.4 by mixing each of the fractions with 500µl of 1.0 M 

Tris-HCl buffer (pH 7.4). All 1.0 mL fractions were pooled together and the protein 

quantity was estimated. 

 

2.3.14. Monospecificity of anti-SR1 antibodies 
The protein G purified sheep anti-SR1 antibody was further purified by affinity 

purification and then tested for cross reactivity against the previously tested panel of 

bacteria by ELISA method. 

 
 
2.3.15. ELISA analysis of bacterial polysaccharide antigens 

ELISA with the purified capsule was performed according to the published 

procedure (Gray 1979). Three glass vails containing, 0.5 mL of 0.01N NaOH with 

0.001% phenolphthalein indicator, 0.5 mg of Cyanuric chloride crystals and 0.1 mL of 

0.1% poly-L-lysine (type VIII; mol. Wt. 30,000-70,000) were taken. Alkalinisation of 

polysaccharide antigen was done by adding 0.1mL of capsule antigen (1.0 mg/mL) 

in distilled water, to the tube containing 0.5 mL of 0.01N NaOH with 0.001% 

phenolphthalein indicator and mixed for 10 sec (solution was pink at this stage). 

 

The contents of the above vial were pipetted into the vail containg 0.5 mg of cyanuric 

chloride crystals and mixed for approximately 10 sec, and the solution became 

colourless as the pH dropped to 8.0 – 8.2 (mixed gently as the vigorous mixing could 
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release more HCl into solution and pH might drop below 8.0). Then to couple the the 

polysaccharide antigen to poly-L-lysine, the entire solution was transferred into a 

vial containing 0.1 mL of 0.1% poly-L-lysine (type VIII; mol. Wt. 30,000-70,000), 

mixed and refrigerated at 4 °C for 2 hrs. 

 

The protein coujugated polysaccharide antigen was then diluted in 0.01M PBS pH 7.4 

to approximately 1.0 µg/mL and coated the ELISA wells overnight. Then, the normal 

ELISA procedure was followed. 

 

2.3.16. IgNAR’s as novel receptors- protocol for phage rescue and 
panning 
Selection from IgNAR library resulted in the isolation of clones highly specific for a 

range of antigens, binding with nanomolar affinity and showing great resistance to 

irreversible thermal denaturation.  In this project, OMP85 protein (0.156 mg/mL of 

purified OMP85), SR1 paptide (0.05 mg/mL crude peptide) and 10.0 µg/mL capsular 

polysaccharide antigens were screened against the IgNAR library to identify suitable 

IgNAR receptor molecules and to characterise them in terms of binding specificity 

and affinity for their cognate antigen. 

 
 
DAY 1  

2.3.16.1. Phage rescue from library glycerol stock 
All 2 YT media was prewarmed to 37 °C. Each 1mL of library stock (~109 cells), was 

inoculated into 20mL of prewarmed 2YT in a small flask, followed by incubation 

with shaking at 37°C for 30 minutes Then, another 20mL of 2YT/Amp100 (to a final 

conc. of Ampicillin 50 µg/mL) was added and incubated with shaking at 37°C for 1 

hour.  
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It was then transferred to a 500mL baffled flask, and added another 40mL of 

2YT/Amp 100 and incubated with shaking at 37 °C for 45 minutes. It was followed 

by further incubated at 37 °C for 15 min without shaking to allow formation of F pili. 

At this stage, helper phage (MOI phage/E. coli = 20:1) was added and incubated the 

culture for 15 min at 37 °C without shaking. Then, another 90 mL of 2YT/Amp100 

was added and incubated with shaking at 37 °C for 2 hours. Finally, Kanamycin (25 

µg/mL) was added and incubated overnight at 28 °C with shaking. 

 

2.3.16.2. Coating immunotubes 
For each antigen prepared, a pre-absorption of immunotubes was carried out to 

eliminate non-specific high affinity binders present in the library, which may bind to 

either the modified polystyrene surface (Maxisorp) of the immunotube or to the 

blocking reagent. 

 

Approximately 10 µg of each antigen was diluted in appropriate coating buffer (1 x 

PBS, 0.1 M sodium carbonate) and added to individual immunotubes. Pre-absorption 

tubes were coated with 2% (w/v) MPBS solution and incubated the tubes at 4°C 

overnight. 

 

DAY 2  

2.3.16.3. Washing and blocking immunotubes 
Each immunotube was washed 3 times with 1 x PBS. The tubes were filled with 2% 

MPBS, capped and then incubated at RT for 2 h to block. Prior to adding precipitated 

phage, each tube was washed 3 times with 1 x PBS. 
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2.3.16.4. Rescue and Panning 
Overnight cultures were centrifuged at 6500 x g for 10 minutes The supernatant fluid 

(containing phage) was transferred into an ice-cold 250 mL centrifuge bottle and 1/5 

volume of ice cold 20 % (w/v) PEG 8000/15% (w/v) NaCl was added. The phage 

was incubated on ice for 1 h with intermittent shaking. 

 

The cell pellet was resuspended in a small volume of 2YT and prepared 2-3 glycerol 

stocks to recover the library at a later stage if necessary.  Alternatively, the phagemid 

was purified and transformed into competent cells for future use.   

 

The phage was centrifuged in 20 % PEG (w/v) 8000 / 15% (w/v) NaCl at 9500 x g for 

45 minutes. Supernatant was discarded and the bottle was drained upside down on a 

tray lined with a Teri wipe.  Phage was visible on the side of flasks as a white smear. 

Then the phage was resuspended in 3 mL of 1 x PBS and transferred to 1.5 mL tubes. 

It was followed by a centrifugation at 14000 x g for 10 min at 4°C. The phage was 

filtered through a 0.22 µm filter and then stored at 4°C. This phage stock was used 

for polyclonal phage ELISAs after the 3rd - 4th panning rounds.  

 

To titre amplified phage, 990 µL of TG1 cells were infected with 10 µL of precipitated 

phage then incubated at 37 °C without shaking for 15-20 minutes  The infected cells 

were diluted to 10-3, 10-5, 10-7 and 10-9 then 100 µL of each dilution was plated on 

YT/Amp/glucose plates.   
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2.3.16.5. Panning 
Two millilitres of precipitated phage was transferred to each (washed) pre-

absorption immunotube, then added 2.0 mL of 4 % (w/v) MPBS and incubated for 

15-30 min at RT. Following pre-absorption, phage was transferred into immunotubes 

coated with antigen, then incubated for 30 min at room temperature rotating 

continuously, and then stood for at least 90 min at room temperature. The pre-

absorption tubes were discarded. The immunotubes were washed 3 times with 1 x 

PBS/ 0.1% (v/v) Tween-20 and then same number of times with 1 x PBS. For second 

and subsequent panning rounds the number of washes were increased to 4 times. 

 

Excess PBS was drained from immunotubes. The phage was eluted with 1 mL of 

freshly prepared 100 mM triethylamine by rotating continuously for 10 min, then 

neutralised with 0.5 mL Tris-HCl pH 7.4 buffer.  Aliquotes (100 µL) of Tris-HCl 

buffer (pH 7.4) was added to each immunotube and all phage samples were stored at 

4°C for using in next round of panning. An overnight culture of TG1 from a minimal 

media plate was set up for the next round of rescue and panning. 

 

DAY 3. 

2.3.16.6. Phage rescue 
An overnight TG1 culture (1/100) was inoculated into 100 mL of 2YT media and 

grown until mid log phase.  TG1 cells (5.0 mL) along with half of the eluted phage 

from the previous pan were added to a sterile 50 mL tube. 4.0 mL of the TG1 cells 

were added to each immunotube (from the previous panning round). Both were 

incubated at 37°C for 15-20 min without shaking.  
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Both the cultures from the 50 mL tube and the immunotube were pooled into a 0.5 L 

flask. 100 µL from this was taken for titration and plated 100 µL of 10-1, 10-3, 10-5, 10-7 

dilutions on Amp/glc/YT plates and next day, colony count was performed. 

  

Next, 15 mL of 2YT, Amp 40 µg/mL was added into the above flask and incubated 

for 1 h at 37 °C with shaking. It was followed by addition of 30 mL 2YT, Amp 100 

µg/mL into the flask and incubated for 1 h at 37 °C with shaking. Helper phage 

(MOI = 20:1; phage: E. coli) was added, swirled to mix and left in the incubator at 37 

°C for 15 min without shaking. Then, 110 mL of 2YT and Amp to 100 µg/mL was 

added and incubated for 2 h at 30 °C with shaking. Finally, 25 µg/mL of Kanamycin 

was added and incubated overnight at 28°C. 

 

2.3.16.7. Preparation of DNA for cloning 
An overnight TG1 culture was grown and inoculated with a single colony taken from 

a minimal media plate of less than 1 week old. Then, the overnight TG1 culture was 

diluted 1/100 into 50 mL of 2YT and grown until mid log growth phase (A595 OD 0.2-

0.5). This step was followed by incubation at 37 °C for 15-20 min without shaking to 

allow the formation of F pili. The, 10.0 mL TG1 cells were inoculated with 1 mL 

eluted phage in a 0.5 L flask and incubated at 37 °C for 15 - 20 min without shaking. 

100 µL from this for titration was taken: plated 100 µL each of 10-1, 10-3, and 10-5 

dilutions on Amp/glc/YT plates.  Colonies on these titration plates could be used for 

monoclonal phage ELISAs.  

 

Then, 10.0 mL of 2YT with Amp 40 µg/mL (8 µL of 100 mg/mL stock) and glucose 2 

% (w/v) were added and incubated for 1 h at 37°C with shaking. Then, 100 mL of 
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2YT and 100 µg/mL Amp and 2 % (w/v) glucose was added and incubated at 37 °C 

until the end of the day. To prepare glycerol stocks, 20 mL of the culture was 

separated and incubated overnight at 28°C. To the remaining culture, 

chloramphenicol was added to a final concentration of 170 µg/mL and the growth 

continued overnight at 28°C. This latter culture was used for isolation of amplified 

phagemid.   
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2.4. Results 

2.4.1. Purification of recombinant OMP85 protein 

Recombinant OMP85 was expressed and purified to raise anti-OMP85 polyclonal 

antibodies. Overexpression of recombinant hexa-his tagged OMP85 in bulk 

quantities in E. coli, was achieved. It was difficult to purify the protein using Ni-NTA 

column chromatography. Many other proteins were eluted along with the OMP85 

protein. Electro elution as an additional purification step yielded very low quantities 

(70% loss) of the protein. Then, the modified sonic extraction method from maxi gels 

(16 x 16 cm) using Bio-Rad PROTEAN II xi cell apparatus was adopted (Figure 2.10.). 

The protein was purified to apparent homogeneity as indicated by a single band on 

the gel by Coomassie blue R-250 staining with increased yield (Figure 2. 11). 

 

 

 

Figure 2.10. A Coomassie blue R-250 stained maxi-gel image showing the excised OMP85 
protein band.  
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                                                    a               b                c                d                 f 

           

 

Figure 2.11. OMP85 Protein purified by sonic extraction Method. (a). Crude OMP85 
protein (b). OMP85 by Ni-NTA chromatography, (c). OMP85 by electro elution (d). 
OMP85 by sonic gel extraction, and (f) Protein marker.  
 
  

 

2.4.2. Titration of rabbit anti-OMP 85 polyclonal antibodies 
Rabbit polyclonal antibodies were raised against OMP-85 antigen in the RMIT 

animal facility. A standard procedure for polyclonal antibody production was 

followed (Section 2.2.2A.). By serial dilution of serum, between 1/10 and 1/1032, a 

sigmoidal curve was plotted with the absorbance on the y-axis against the related 

titre on the x-axis. The antibody titre for rabbit anti-OMP 85 polyclonal antiserum 

was determined 1 in 10-4 (Figure 2.12. (a)). In ELISA, the anti-OMP85 antiserum 

recognised the N. meningitidis bacteria equally as like sheep anti-NM antisera (Figure 

2.12. (b)).    
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   (a)      (b) 

Figure 2.12. Rabbit anti-OMP85 antisera-Terminal bleed (a). Assay to determine the 
anti-OMP85 antibody titre (b). Comparison between anti-OMP Ab and anti-NM 
antibody against whole cells.  

 

2.4.3. Western blot analysis of anti_OMP85 antibodies   
The rabbit anti-OMP85 antiserum was used to probe western blots containing protein 

extracts of from cell lysates of E. coli DH5a, E. coli DH5a/pOMP85 and the purified 

OMP85 protein (Figure 2.13.). The anti-OMP85 serum reacted with the recombinant 

OMP85 protein produced by E. coli DH5a/pOMP85 as well as with other proteins 

due to the polyclonal specificity. The purified protein was equally reactive with the 

antibodies suggesting that OMP 85 was expressed in its active conformation. These 

results also suggest that OMP85 is a highly conserved protein. Pre-clearing of the 

antiserum with E. coli removed the majority of cross-reactive antibodies, but 

complete removal of all reactive antibodies was not possible. 
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Figure 2.13. Western Blot: Rabbit polyclonal antibodies against crude and purified 
OMP 85 Protein antigen 

 
 
2.4.4. Synthesis of the SR1 peptide specific to N. meningitidis type B 

 

2.4.4.1. Coupling 
The ninhydrin analysis results are shown in Figure 2. 14. The average coupling 

achieved per residue was 99.33%. The overall theoretical yield was calculated to be 

99.34%, which indicates a theoretical yield 719.91 mg of deprotected peptide for each 

gram of dried peptide-resin used.  

 

Given that the sequence was relatively long (29 aa’s), the coupling of a number of 

residues required double or triple couplings to achieve a coupling efficiency of 

>99.5%. Out of the 29 amino acids in the complete sequence (including the gly-gly-

cys spacer sequence), 15 residues required double coupling. However, as can be seen 

in Figure 2.14. , the coupling percentage of a number of amino acid residues did not 

reach the 99.5% coupling. The triple couplings were required for residues 7 (N), 15 
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(R) and 18 (N) which had a final coupling percentages of 97.83, 98.96 and 97.90% 

respectively. Although the first cysteine and the two glycine residues were not part 

of the original sequence, they were added to facilitate binding of the peptide to the 

gold nanoparticles via the thiol group and also to act as a spacer arm.  
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Figure 2.14. Coupling efficiency of the synthesis of the SR1 peptide sequence. 
Ninhydrin analysis data was used to quantify the coupling using the Pepmate 
program (J. Fecondo, unpublished). 

 

2.4.4.2. Peptide-resin yield 
 
Resin used 559.24 mg 

Peptide-resin 2183 mg 

Table 2.4. Peptide-resin yield 

 
Peptide-resin used 359.20 mg 

Peptide extracted 130.14 mg 

Table 2.5. Crude peptide yield from second cleavage 
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2.4.4.3. HPLC analysis 
Figure 2.15. shows the crude peptide chromatogram developed on the analytical 

HPLC system. The highest peak that is eluted at 13 minutes is the expected peptide.  

 

From the chromatogram, it can be seen that there are impurities in the crude peptide. 

But this is expected because of the deletion peptides that are formed due to 

incomplete coupling and also truncated peptides. During extraction of the peptide, 

not all the scavengers and the protecting groups can be removed and these will also 

appear on the chromatogram.  Although HPLC analysis indicates the purity of the 

peptide, mass spectrometry is needed to verify if the desired peptide has been 

synthesised. 
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2.4.4.4. Mass Spectrometry 
Figure 2.16. shows the MALDI-TOF analysis of SR1. One of the highest peaks is 

the most abundant compound the crude peptide and it had a mass, m/z of 2887. 

The calculated monoisotopic mass of SR1 (Peptide Mass Calculator, 

PeptideSynthetics, UK) is 2886.248. A second major peak with an m/z of 2993 

(+106) was also observed. This peptide derivative is most likely due to a 

combination of oxidation and formation of a thiocresyl adduct during HF 

cleavage (ABRF) (Fields, Angeletti et al. 1994). It was reported that, during the 

cleavage and side-chain deprotection of peptide-resins, oxidation and scavenger 

alkylation of the peptide were primary causes of poor quality products and this 

can be minimized by optimizing HF concentration and/or temperature during 

peptide resin cleavage (Feinberg and Merrifield 1975). 

 





  
12

0 

27
00

28
00

29
00

30
00

31
00

m
/z

20
0

40
0

60
0

80
0

10
00

In
te

ns
.

28
87

27
73

29
93

29
44

29
27

30
33

 

F
ig

u
re

 2
.1

6.
 M

A
L

D
I-

T
O

F 
an

al
ys

is
 o

f S
R

1.
 T

he
 m

os
t a

bu
nd

an
t c

om
p

on
en

t i
n 

th
e 

pe
p

ti
d

e 
m

ix
tu

re
 h

as
 a

 m
on

oi
so

to
pi

c 
m

as
s 

of
 2

88
7 



 

 121

2.4.5. Characterisation of sheep anti-SR1 and anti-NM 
polyclonal antibodies 
Sheep polyclonal antibodies were raised against SR1 peptide antigen and the 

whole cell N. meningitidis bacteria. Formalin (2% v/v) treated whole cells and 

SR1-peptide-KLH conjugate were injected into sheep to raise antibodies against 

N. meningitidis serogroup B bacteria and SR1 peptide respectively. By serial 

dilution of serum, between 1 in 10 and 1 in 1032, a sigmoidal curve was plotted 

with the absorbance on the y-axis against the related titre on the x-axis. The 

antibody titres for both the anti-SR1 and anti-NM polyclonal antisera were 

turned out to be 1 in 10-4. 

 

Both anti-NM and anti-SR1 polyclonal antisera were tested against SR1 peptide 

and the whole cell bacteria (Figure 2. 17). Anti-NM and anti-SR1 antisera 

recognised their respective antigens at a high titre value (1 in 10-4). Interestingly, 

anti-SR1 antibodies recognised the bacteria (Figure 2. 17. a) more strongly than 

the anti-NM antibodies with SR1 peptide (Figure 2. 17. b). Rabbit anti-OMP85 

antiserum reacted with the SR1 peptide (Figure 2.17. c). Another interesting 

observation is the anti-SR1 and anti-NM antibodies purified by protein G column 

chromatography recognised the whole cell bacteria equally (Figure 2. 17. d). 
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(c) (d) 

Figure 2.17. Reaction of antisera against the SR1 peptide and the whole cell 
Neisseria bacteria. (a). anti-SR1 and anti-NM antisera against the SR1 peptide (b). 
anti-SR1 and anti-NM antisera against the whole cell bacteria antiserum (c). 
Rabbit anti-OMP85 antiserum against SR1 peptide (d). protein G purified anti-
NM and anti-SR1 antibodies against NM.  
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2.4.6. Capsule purification and Tricine SDS-PAGE 
analysis 

Analysis of the polysaccharide capsule extract from Neisseria meningitidis using a 

Tricine-SDS PAGE gel revealed diffuse bands, commonly observed with 

polysaccharide analysis in SDS-PAGE gels (Figure 2.18.). 

 

 

Figure 2.18. Capsular preparation on Tricine SDS-PAGE gel. All of the lanes in 
the gel were loaded with the same capsular polysaccharide. 

 

2.4.6.1. HPLC analysis of Polysaccharide analysis 
Figure 2.19. shows the extracted and purified polysaccharide capsule 

chromatogram developed on the analytical HPLC system. The highest peak that 

is eluted at 21 minutes is the expected peak, which indicates that the capsule 

preparation was pure.  

Polysaccharide 
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Figure 2.19. HPLC chromatogram of the capsular polysaccharide. The peak 
eluted at 21 minutes is the extracted capsule. 

 

2.4.7. Anti-NM serotype B capsular specific monoclonal 
antibodies 
N. meningitidis serogroup B capsule specific monoclonal antibodies (MAbs) were 

purchased from National Institue for Biological Standards and Control (NIBSC), 

UK. These MAbs were evaluated for their specificity and sensitivity against the 

whole cell bacteria as well as against the purified capsular preparation by ELISA 
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method (Figure 2.20.). The monoclonal antibodies recognised the whole cell 

bacteria with a titre of 1 in 10-4 and to a lesser extent with the poly-L-lysine 

conjugated purified capsular polysaccharide. By serial dilution of the antibody 

solution, between 1/10 and 1/1032, a sigmoidal curve was plotted with the 

absorbance on the y-axis against the related titre on the x-axis.  

 

 

Anti- N. meningitides serogroup B Capsular monoclonal
antibodies

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

N. meningitides serogroup B
Poly-Lysine Coupled Capsule

-Log 10[Serum]

A
bs

or
ba

nc
e 

@
 4

50
nm

 

Figure 2.20. Reaction of anti-NM serogroup B capsule specific monoclonal 
antibodies with the whole cell bacteria and the purified capsule. 
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2.4.8. Cross reactivity assay against different Gram 
negative bacteria 
The panel of antibodies against the different Gram negative bacteria examined 

showed varying degree of cross reactivity (Figure 2.21.). Anti-NM capsular 

monoclonal antibody was highly specific against the Neisseria meningitidis 

serogroup B bacteria. All other polyclonal antibodies including rabbit anti-

OMP85 antibody, sheep anti-SR1 antibody and sheep anti-NM antibody were 

highly cross-reactive against different analysed bacteria. All bacteria except 

Legionella pneumophila, Pasteurella multocida, Brucella abortus had shown varying 

degree of cross reactivity. The results are summarised in table 2.6., where 4+ 

indicates the highest reactivity and + indicates least or no reactivity. 
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Figure 2.21. Cross reactivity with different closely related bacteria against the 
panel of antibodies. 

 

 

 

 

 

 

 

 

 

 



 

 133

 

 Identity 
With 
OMP 85 

Anti-
OMP85 

Anti-
SR1 
Peptide 

Anti-
NM poly 

Anti-
NM 
mono 

Neisseria meningitidis  100% 3+ 2+ 4+ 4+ 
Neisseria meningitidis MC 
58 

99% 3+ 2+ 4+ 4+ 

Neisseria gonorrhoeae 95% 2+ 2+ 3+ + 
Chromobacterium 
violaceum HB Agar 

50% 2+ 1+ 2+ + 

Chromobacterium 
violaceum LB Agar 

50% 1+ 1+ 2+ + 

Bordetella pertussis 36% 3+ 3+ 3+ + 
Acinetobactor Sp. 34% + 1+ 1+ + 
Escherichia coli 33% 1+ 3+ 2+ + 
Pseudomonas flourescens 33% 3+ 2+ 2+ + 
Pseudomonas aeruginosa 33% 3+ 2+ 3+ + 
Salmonella typhi 33% 3+ 2+ 3+ + 
Salmonella paratyphi 33% 3+ 2+ 3+ + 
Vibrio vulnificus 33% 2+ 2+ 2+ + 
Vibrio alginolyticus 33% 2+ 1+ 2+ + 
Vibrio cholerae 32% 3+ 2+ 4+ + 
Vibrio parahaemolyticus 32% 2+ 1+ 2+ + 
Vibrio Sp. 32% 2+ 1+ 3+ + 
Shigella dysenteriae 32% 1+ 1+ 2+ + 
Haemophilus influnzae 31% 1+ 1+ 2+ + 
Legionella pneumophila 31% + + + + 
Pasteurella multocida 31% + + + + 
Brucella abortus HB agar 26% + + + + 
Brucella abortus Chocolate 
agar 

26% + + + + 

 

Table 2.6. Summary of data from cross-reactivity studies: A panel of different 
antibodies were assessed for their cross reactivity against different bacteria. In 
this summary, 4+ indicates highest reactivity and + indicates least or no 
reactivity. 

 



 

 134

2.4.9. Protein A / Protein G sepharose purification of 
polyclonal antisera 
All of the antibody preparations were purified by affinity column 

chromatography. Rabbit IgG antibodies were purified by using protein A 

sepharose column and the sheep IgG antibodies were purified by using protein 

G sepharose column using the method described in section 2.3.13. Figure 2. 22. 

represents the typical antibody purification experiment by immunoaffinity 

chromatography. 
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Figure 2.22. Protein G sepharose purification of sheep anti-SR1 polyclonal 
antiserum 

 

2.4.10. Monospecificity of anti-SR1 antibodies 
As expected, the affinity purification of SR1 specific antibodies removed the 

cross-reactive antibodies to make the antibody monospecific (Figure 2.23.). The 

purified antibody showed no cross reactive response against all of the bacteria 

examined except vibrio sp. (Figure 2.24.).  

Elution buffer 
added 

Binding buffer 
added 



 

 135

 

Figure 2.23. Cross-reactivity studies of anti-SR1 monospecific antibody on 
different species, showing no cross reactivity with bacteria which was positive 
before with the anti-SR1 polyclonal antisera.  

 

 
Figure 2.24. Reactivity of mono-specific anti-SR1 antibody towards different 
Vibrio bacteria. 
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2.4.11. Shark IgNAR phagemid library panning 
After completing 4 rounds of panning the IgNAR library against the different 

target antigens, positive clones were picked from the ELISA experiment (Table 

2.7.). IgNAR specific PCR was positive for the selected clones (Figure 2.25.). After 

DNA sequencing, all clones selected were identified as either non-specific or 

“sticky” clones. 

  

 1      2      3     4            5     6     7            8     9     10           11   12  13                  14 

 

Figure 2.25. PCR reaction showing the IgNAR positive gene (non-specific clone). 
Lane 1: 100 bp DNA ladder, lanes 2-4: semi-pure OMP85 specific IgNAR clones, 
lanes 5-7: pure OMP85 specific IgNAR clones, lanes 8-10: SR1 specific IgNAR 
clones, lanes 11-12: capsule specific clones and lane 14 is the positive control. 
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Antigens 
Screened 

Round 1  
No. of 
Colonies 

Round 2  
No. of 
Colonies 

Round 3  
No. of 
Colonies 

Round 4  
No. of 
Colonies 

IgNAR 
PCR 
+ves 

Tth 
PCR 
+ves 

No. of 
possible 
clones 
picked from 
ELISA 

DNA 
Sequencing 
results                 

OMP85 0 0 2.5 X 104 2.6 X 102 100% 100% 6 Sticky and 
non-specific 
clones 

SR-1 
peptide 

0 0 4.8 X 105 2.6 X 102 100% 100% 4 Sticky and 
non-specific 
clones 

Capsule 2.4X 105 0 4.0 X 105 5.2 X 102 100% 100% 2 Sticky and 
non-specific 
clones 

Table 2.7. Shark IgNAR phagemid library panning. After 4 round of panning, 
different clones which appeared positive from PCR were selected for ELISA. 
After DNA sequencing, all of the selected clones were proved to be non-specific 
clones. 
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2.5. Discussion 
The recombinant OMP 85 protein, polysaccharide capsule component of the 

bacteria and whole bacteria were selected as target antigens. A peptide unique to 

N. meningitidis serogroup B was also synthesised using optimised t-boc 

chemistry. All of the antigens were prepared and their respective antibodies 

were purified using either protein A or protein G-sepharose affinity 

chromatography. 

 

2.5.1. OMP85 and rabbit anti-OMP85 polyclonal antibodies 
The recombinant OMP85 expressed with hexa-His tag was cloned, transformed 

and expressed in E. coli successfully. With Ni-NTA affinity column 

chromatography, other proteins were eluted along with prominent OMP85 

protein. This might be due to the partial affinity of other proteins towards the Ni-

NTA resin because hexa histidine does not exhibit the highest level of specificity. 

The use of transition metal complexes of iminodiacetic and nitrilotriacetic acid 

(NTA) has become commonly used for the efficient purification of hexa-His 

tagged proteins. NTA forms a tetravalent chelate with Ni(II) that subsequently is 

coordinated by basic amino acids such as histidine (Nallamsetty, Austin et al. 

2005). Even after optimising the imidazole concentration to elute more of OMP85 

and less of other proteins, the protein isolated was not homogeneous. 

Accordingly, modified sonic gel extraction procedure from SDS-PAGE maxi gels 

(16X16 cm) was followed, through which pure protein was obtained and the 

yield was much higher than the electro elution technique. Positive western blot 
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results with both crude and purified OMP85 antigen confirmed that the protein 

was expressed in its immunoreactive conformation. 

  

A BLAST search revealed the presence of OMP85 homologues in the complete 

genome sequences of all Gram negative bacteria examined (Surana, Grass et al. 

2004). Manning et al.. (Manning, Reschke et al. 1998) described surface cross-

linking experiments that suggested as OMP85 is surface exposed and interacts 

with other proteins on the bacterial surface. Conservation in the amino acid 

sequences is observed throughout the OMP85 protein. Two highly conserved 

motifs are located between amino acid residues 360-395 and 643-662 of neisserial 

OMP85 protein (OMP85 2002). OMP85 has been suggested as a possible vaccine 

target, as it is highly conserved among the Gram negative bacteria and elicits an 

immune response (Surana, Grass et al. 2004). Information regarding the possible 

binding sites of anti OMP85-antibodies is not available but it may be postulated 

that the two membrane-exposed loops are targets for host antibodies (Surana, 

Grass et al. 2004).  

 

Secondary structure prediction methods, such as PsiPred (Jones 1999) and PHD 

(Rost and Sander 1993), predicted the presence of at least two extracellular 

domains in OMP85 protein. A two-domain model for OMP85 was proposed, 

with a highly conserved NH2-terminal α/β periplasmic domain that includes the 

sequences required for secretion from the bacteria (Manning, Reschke et al. 1998; 
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Voulhoux, Bos et al. 2003) and a 12 stranded β–barrel domain at the COOH 

terminus domain consisting of β-strands and terminal phenyl alanine residue 

and could form a β-barrel for anchorage in the OM (Bredemeier, Schlegel et al. 

2006). The COOH-terminal domain is referred as “surface antigen”, because 

antibodies against this domain are protective against Haemophilus influenzae 

infection in animal models (Loosmore, Yang et al. 1997). 

 

The rabbit anti-OMP 85 polyclonal antibodies showed a higher degree of cross 

reactivity against the range of closely related bacteria. Given that OMP85 is a 

conserved protein amongst Gram negative bacteria (Surana, Grass et al. 2004) 

and that the protein is expressed in E. coli, it would be expected that anti-OMP85 

polyclonal antiserum would have high cross reactivity. There are no known 

commercial monoclonal antibodies available against OMP85 because of its 

conserved nature. Pre clearing the anti-OMP85 polyclonal antibodies with E.coli 

and other bacteria may be utilised to make them more specific to Neisseria 

meningitidis and may be useful as a capture system in ELISA or in quartz crystal 

microbalance (QCM) experiments. 

 

It has been postulated that OMP 85 could be used as an alternate vaccine 

candidate for serogroup B (Romero and Outschoorn 1994). Being a highly 

conserved protein among Gram negative bacteria, the greatest limitation of OMP 

vaccines is the specificity (subtype and serotype) of the protection that they 
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induce. Consequently, they cannot be used worldwide as prevalent 

meningococcal strains vary from region to region (Porritt, Mercer et al. 2000). 

 

2.5.2. SR1 peptide and sheep anti-SR1 polyclonal 
antibodies 
Sequence analysis of the surface antigen domain of OMP85 from N. meningitidis 

suggests it would form a 12- stranded β-barrel structure (Voulhoux, Bos et al. 

2003). Across the prokaryotic and eukaryotic members of the OMP85 family 

(fungi, plants, and animals (including humans)), there is strong sequence 

conservation in the regions predicting as β-strands, with variable intervening 

sequences that might correspond to inter-strand loops (Martelli, Fariselli et al. 

2002; Surana, Grass et al. 2004). These predictors may not sufficiently be reliable 

to determine a valid structural model for OMP85 but, the overall predictions on 

the family suggest a close structural relationship that goes beyond simple 

sequence similarities. 

 

Though it is a conserved protein, it still serves as a useful diagnostic marker and 

may be a potential vaccine candidate, since the predicted antigenic sequence 

between local residues 720 and 745 is unique to this organism (Judd and 

Manning 2003). A BLAST search of this particular sequence against the database 

reveals only as the sequence present in N. meningitidis serotype B bacteria (100% 

sequence identity). Also, there are five additional amino acids at the N-terminus 
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which distinguishes it from other related outer membrane proteins (Judd and 

Manning 2003). A useful approach will be to target these specific sequences as 

selective epitopes for immunodiagnosis of Neisseria meningitidis. By targeting 

these specific regions, OMP85 may be utilised as a more effective diagnostic 

marker. 

 

The selected N. meningitidis specific amino acid sequence (SR1) from OMP85 

protein sequence was synthesised using t-boc chemistry and confirmed by HPLC 

and mass spectrometry. After the synthesis, the SR1 peptide was conjugated to 

Keyhole Limpet Haemocyanine (KLH) as a carrier protein using SMCC as a 

linker molecule. Polyclonal antibodies were raised in sheep against this SR1-KLH 

conjugate. The antiserum was tested for high titre and specificity for the peptide, 

OMP85 protein and the whole cell bacteria. 

  

Anti-SR1 peptide antibodies reacted with the peptide, the OMP85 protein and 

the N. meningitidis bacteria itself. It proved that not only the OMP85 protein, but 

also the peptide sequence itself also is highly immunogenic and the anti-SR1 

peptide antibodies are able to identify whole bacteria. Unfortunately, in initial 

cross reactivity experiments, the anti-SR1 polyclonal antiserum was highly cross 

reactive with other closely associated Gram negative bacteria. The high degree of 

cross-reactivity of sheep anti-SR1 peptide antiserum might be due to the 

background of polyclonal antiserum and may be due to previous environmental 
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exposure to any of the tested organisms. Being a highly specific target against 

Neisseria meningitidis, anti-SR1 antiserum has potential to become a useful 

specific diagnostic marker for this organism.  

 

Purification of monospecific anti-SR1 antibodies by the immuno-affinity 

chromatography removed all cross-reactivity of the anti-SR1 antibodies except 

the Vibrio species. This should not be a limiting factor as the Vibrio sp. is not 

present in the cerebrospinal fluid of the infected person (Blake, Weaver et al. 

1980). In light of the specificity of these antibodies, it may be useful to raise 

monoclonal antibodies against the peptide for commercial application as a 

diagnostic tool for NM serogroup B. 

 

OMP85 is an outer membrane protein that is located beneath a polysaccharide 

capsule (Rosenstein, Perkins et al. 2001).  This may be a limiting factor that would 

affect the accessibility of diagnostic and/or therapeutic reagents that are specific 

to OMP85 or the SR1 peptide. During the life cycle of the N. meningitidis, bacteria 

shreds capsule and thus both capsulate and non-capsulate forms exist at different 

stages. Anti-SR1 antibodies against the non-capsulate bacteria form the potential 

base for the specific and rapid diagnosis of meningitis. Like many other virulence 

factors, the expression of capsular PS is phase variable (Hammerschmidt, Muller 

et al. 1996), allowing the bacteria to vary from adherent, serum sensitive, un-

encapsulated phenotype to a less-adherent, serum resistant encapsulated 
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phenotype. Colonisation is favored by the absence of the capsule, 

unencapsulated mutants adhering to human buccal epithelial cells or 

nasopharyngeal organ cultures in greater numbers than the encapsulated parent 

(Stephens, Spellman et al. 1993). This is in strict contrast to systematic spread: 

encapsulation is a pre-requisite for bacterial survival in the blood. In contrast to 

case isolates that are frequently encapsulated, approximately 40-50% of the 

strains isolated from carrier patients lack the capsule and hence are not grouped 

serologically (Caugant, Kristiansen et al. 1988; Ala'Aldeen, Neal et al. 2000). 

Alternatively, when the patient sample is subjected to treatment with detergents 

such as SDS, NM bacteria shred the capsule under stress conditions which 

exposes the outer membrane proteins.  

 

2.5.3. Capsule and anti-capsular monoclonal antibodies 
With the exception of serogroup A meningococci, all disease associated 

serogroup B, C, Y and W135 have sialic acids in their capsular polysaccharide 

structures (Vogel, Hammerschmidt et al. 1996) and the capsule is the major 

virulence factor of meningococcus bacteria. The poor immunogenicity of the 

Neisseria meningitidis group B polysaccharide capsule, a homopolymer of a sialic 

acid, has been attributed to immunologic tolerance induced by prenatal exposure 

to host polysialyated glycoproteins, such as the neural cell adhesion molecules 

expressed in a variety of host tissues (Orskov, Orskov et al. 1979; Beuvery, van 

Rossum et al. 1982). 
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The capsular polysaccharide of N. meningitidis serogroup B bacteria was purified 

by a simple and slightly modified procedure (Section 2.3.9. ). The purity was 

assessed by Tricine-SDS PAGE gel electrophoresis.  Using Reversed phase HPLC, 

the capsule preparation was observed as a single peak without any impurities. 

Commercial anti-capsular monoclonal antibodies were equally reactive both 

with the bacteria and the purified capsule. The capsule was purified as an 

alternate target antigen for future experiments for the gold nanoparticle based 

experiments as described in chapter 4 and 5.       

 

2.5.4. Cross reactivity assay and monospecificity of anti-
SR1 antibodies 
A panel of different antibodies were examined for cross reactivity against the 

range of closely associated bacteria. The anti-OMP 85 and anti-NM polyclonal 

antibodies showed a higher degree of cross reactivity relative to the anti-SR1 

polyclonal antibodies. It is mainy that the cross-reactivity is due to the nature of 

polyclonal antibodies which contain a multitude of reactive antibodies against a 

broad range of epitopes. Being a highly conserved protein among Gram negative 

bacteria and that the protein was expressed in E. coli, explains why anti-OMP85 

polyclonal antiserum showed high cross reactivity. Pre clearing the anti-OMPP85 

polyclonal antibodies with E.coli and other bacteria may be an idea to make them 

more specific to Neisseria meningitidis and it could be used as in capture system in 

an ELISA or in a QCM immunosensor. 
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2.5.5. Shark IgNAR phagemid library panning 
Screening of IgNAR library to identify OMP85 protein and other antigen specific 

IgNAR’s (at CSIRO Health Sciences and Nutrition, Parkville) was not successful. 

All the psuedopositive clones were finally proven as either non-specific or sticky 

clones. 

 

These target antigens and their antibodies and in particular OMP85 antigen and 

anti-OMP85 antibody were utilized to conjugate to the gold nanoparticles and 

ultimately to develop a model diagnostic assay for the rapid diagnosis of N. 

meningitidis. 
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Chapter 3 
 
 

Gold Nanoparticles: conjugation with proteins 
 
 
3.1. Introduction                                                
For the past few decades, colloidal gold nanoparticles and their attractive and 

unusual solution properties have led to the development of a range of useful 

applications, especially in the biotechnology and nanotechnology fields (Gittins, 

Bethell et al. 2000; Bachtold, Hadley et al. 2001). Nano-scale particles are also 

referred with other names such as, clusters, colloids, hydrosols, nanoparticles 

and nanocrystals. 

 

Attention was drawn to colloidal gold particles because their unique properties 

are very different from the bulk or the atomic state. Despite all the promise about 

the nanotechnology, the control of nanostructures and ordered assemblies of 

nanoparticles to develop a proper nanodiagnostic assay has so far been limited. 

This chapter describes the synthesis of gold nanoparticles and the conjugation of 

biomolecules to the nanoparticles.  

 

For many different biotechnological applications, colloidal gold nanoparticles are 

conjugated with biomolecules. Before proteins can be conjugated to 

nanoparticles, a preliminary titration must be performed to determine the 
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optimum conditions for conjugation to favour protein binding to the gold 

particles. The optimal conjugation ratio can be determined by means of a 

flocculation assay. 

 

Under normal circumstances, the monodisperse gold nanoparticles suspended in 

water are surrounded by a predominantly anionic double layer. This anionic 

coating, which is also referred to as the plane of shear, is usually measured in 

terms of zeta-potential (mV). This helps to stabilise the particles by the repulsive 

forces and can be considered as a direct measure of the stability of the colloid 

(Xie, Tkachenko et al. 2003).  

 

However, due to induced changes in the charges by the addition of millimolar 

concentrations of various electrolytes, the particles can become aggregated as a 

result of the shielding of the repulsive double-layer charges which normally 

stabilise them (Xie, Tkachenko et al. 2003). This irreversible process changes the 

colour of the colloidal solution from red to blue.  

 

Aggregation can be prevented by coating the gold nanoparticles with a protein 

layer as a stabiliser. The amount of stabiliser or protein needed to prevent 

aggregation is determined by increasing the concentration of electrolyte in 

various nanoparticle preparations, previously coated with distinct amounts of 

proteins (Xie, Tkachenko et al. 2003). The aggregation can be conveniently 
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monitored photometrically by the decrease and/or red shift of the plasmon 

absorption band at approximately 520 nm. 

 

The conjugation of a protein to the gold nanoparticle surface may originate from 

both chemical (hydrogen bonding, polarity and charge effects) (Mann 1988) and 

structural (size and morphology) recognition mechanisms (Weissbuch, Addadi et 

al. 1991). Target biomolecules such as proteins, peptides and oligonucleotides 

which usually have a positive charge in solution near neutral pH, can be electro 

statically attached to the negatively charged colloidal gold nanoparticles surface 

for detection and localisation (Sarikaya, Tamerler et al. 2003). In the case of gold 

clusters, biomolecules are attached to nanoparticles by covalent linking. 

 

Colloidal gold nanoparticles are often stabilised by anionic ligands such as 

carboxylic acid derivatives such as citrate, tartrate and lipoic acid (Keating, 

Kovaleski et al. 1998; Peng, Chen et al. 2007). Citrate reduced gold nanoparticles 

have been conjugated with immuniglobulin molececules through non-covalent 

electrostatic interactions at pH values that are slightly above the isoelectric point 

of the citrate ligand (Keating, Kovaleski et al. 1998). This helps in effective 

binding between the positively charged amino acid side chains of the protein and 

the negatively charged citrate groups of the colloids. In addition, colloidal gold 

conjugates can also be stabilised with an inert macromolecule such as bovine 
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serum albumin (BSA), gelatin, carbowax or polyethylene glycol to block the non-

specific binding sites on the nanoparticle surface.  

 

The adsorption of haem-containing redox enzymes on to citrate-stabilised silver 

nanoparticles (Broderick, Natan et al. 1993; Macdonald and Smith 1996) and the 

conjugation of basic leucine zipper proteins to lipoic acid stabilised 

semiconductor particles (Mattoussi, Mauro et al. 2000) are examples of protein 

conjugaton by electrostatic interactions. Biomolecules conjugated by this method 

may not be active and can be readily lost from the surface and thereby lose their 

biocatalytic or biorecognition properties. However, most proteins and enzymes 

have been shown to retain their native structure and activity after they were 

electrostatically conjugated to the nanoparticles and very few conjugations 

resulting in conformational changes and loss of biological activity of the protein 

involved (Keating, Kovaleski et al. 1998).  

 

The problems of non-specific binding of proteins through electrostatic 

interactions may be prevented by covalent attachment of proteins to nanoparticle 

surfaces, thus overcoming the problems of false or background labelling (Jain 

2006). Unlike conventional colloidal gold nanoparticles, gold nanocluster labels 

are coordination complexes and are neutral in nature. Nanoclusters can be 

covalently linked to specific sites or reactive group on biomolecules, for detection 
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and localisation. This gives the covalent linking, a range and versatility which is 

not available in case of ionic interaction of colloidal gold. 

 

Gold nanoparticles can be covalently cross-linked to a specific functional group 

on biomolecules (Jain 2006). For example, monomaleimido-NHS and mono-

sulpho-NHS reagents react only with thiol (sulphydryl) groups and amine groups 

of the proteins respectively (Gregori, Hainfeld et al. 1997). This site-specificity 

allows it to be conjugated at a position remote from the recognition site so that it 

does not interfere with target binding. For example, monomaleimido-gold 

nanoparticles binds antibody Fab' fragments specifically at the hinge region (Lee 

and El-Sayed 2006). The most commonly used functional targeted groups for 

covalent conjugation of the biological compounds to nanoparticles are amine, 

active ester, and maleimide groups and this is achieved by means of 

carbodiimide-mediated esterification and amidation reactions or through 

reactions with thiol groups (Niemeyer 2001). 

 

For generation of biomolecule-nanoparticle conjugates by covalent interaction, 

low-molecular weight bifunctional linkers, with an anchor group for attachment 

to nanoparticle surfaces and a functional group for conjugation to the target 

biomolecules, are used (Niemeyer 2001). A wide variety of terminal functional 

groups such as thiols, disulphides, or phosphine ligands are available in different 

bifunctional linkers for the binding to Au, Ag, CdS, and CdSe nanoparticles. The 
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chemically modified clusters with single functional groups (e.g. active ester or 

amine units) on gold nanoparticles are also available (Malecki, Hsu et al. 2002). 

These structures are helpful for the covalent binding of a single target 

biomolecule per nanoparticle. 

 
 

3.1.1. Reactions of Thiolate-stabilised gold nanoparticles 
The binding of functionalised thiolated molecules, such as oligopeptides to 

nanoparticles is achieved by means of covalent linking (Parak, Pellegrino et al. 

2003). In the case of proteins, thiol groups from cysteine residues that exist in the 

proteins can bind with the nanoparticle surface (Hayat 1991). If thiolated 

residues are not present in the native protein sequence, thiol groups can be 

incorporated by chemical means, for example, with 2-iminothiolane (Traut’s 

reagent) (Hayat 1991) or through genetic engineering (Hong, Jiang et al. 1994).  

 

Alkane thiolate stabilised gold nanoparticles are synthesised directly and also, 

various functional thiols could be partially incorporated into gold nanoparticles 

using a substitution reaction. Various other groups, labels and catalysts have 

been similarly introduced using this ligand-exchange reaction (Hostetler, 

Wingate et al. 1998; Li, Luk et al. 1999; Templeton, Wuelfing et al. 2000; Song and 

Murray 2002; Montalti, Prodi et al. 2003). Apart from the use of thiols and other 

linker molecules, there have been reports that describe the use of gold-binding 

peptides (for example; MHGKTQATSGTIQS) with substantially improved 
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binding compared with native protein binding even in the presence of a 

detergent and at high salt concentrations (Sarikaya, Tamerler et al. 2003). 

 
 Conjugate separation from unlabelled gold or free ligand is usually achieved by 

either centrifugation or by membrane filtration or dialysis or by gel size 

exclusion chromatography (SEC) using HPLC (Wolfe, Warrington et al. 2005). 

SEC is the best method for separating gold nanoparticle labelled conjugates, 

although membrane centrifugation is useful, especially for the labelling of very 

large proteins (Wolfe, Warrington et al. 2005). Density gradient ultracentifugation 

and other separation methods are also often used to separate colloidal gold 

conjugates from non-conjugates. Ion exchange, hydrophobic interaction, or 

reversed-phase chromatography may also be used, if the conjugate biomolecule 

is charged or has very distinct hydrophobic properties.  

 
Gold nanoparticle-biomolecule conjugates may be visualised using native gel 

electrophoresis (Wang, Wu et al. 2006). A gold nanoparticle-labelled molecule 

typically runs higher on the gel due to the added weight of the gold nanoparticle, 

although in practice the observed gel shift may be very small.  

 

Following purification of conjugates, the extent of labelling may be determined 

from analysis of the UV-Visible spectrum of the conjugate (Haiss, Thanh et al. 

2007). Gold labelling of most proteins is best calculated using the molar 

absorptivity constant at 280 nm, where proteins usually absorb strongly and their 
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molar absorptivity constant are known, and 520 nm, where gold nanoparticles 

absorb strongly but most proteins do not. Most proteins do not absorb at all in 

the visible spectrum: therefore, the absorption at 520 nm arises solely from the 

gold nanoparticle (Haiss, Thanh et al. 2007). With antibody labelling, the 

calculation is simplified because these proteins do not absorb at 520 nm. The 

molar absorptivity constant of a typical IgG is 203,000 cm-1M-1 at 280 nm. This 

value may have to be determined for individual proteins. 

 

Numerous challenges including synthesis of the nanoparticles with uniform size 

and shape, controlling their mineralogy, surface structures and chemistry, and 

predicting their spatial distribution need to be addressed before the 

nanoparticles can be successfully implemented for future technological materials 

and devices (Niemeyer 2001).  
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3.2. Materials and Methods 
 
 
Materials 

All glassware was scrupulously clean. Glass and plastic containers and stirrers 

were cleaned in aqua-regia and thoroughly washed in Milli Q water. Aqua regia 

(3:1 HCl:HNO3) was made fresh each time. 13 nm gold nanoparticles were 

prepared by citrate reduction method. The larger size gold nanoparticles (30nm, 

40nm, 50nm and 60nm) used in this chapter were purchased from the British 

Biocell Ltd., UK. 

 

Sodium citrate, aurochloric acid (HAuCl4 ·  3H2O), β-mercaptoethanol, N-acetyl 

cysteine (NAc), mercapto succinic acid (MSA), phenylalanine, Tween-20 and SDS 

were purchased from Sigma-Aldrich Ltd., USA. Bio-Rad Bradford assay reagent 

was used for protein estimation. All reagents were of high quality analytical 

grade and were filtered immediately before use. 

 
 

3.2.1. Synthesis of gold nanoparticles 
A solution of 5.0 x 10-3M HAuCl4 in water was prepared. A 1.0 mL aliquot of 5.0 

x 10-3M HAuCl4 solution was added to 18.0 mL of distilled H2O and heated until 

it began to boil. Once boiling, 1.0 mL of 0.5% (w/v) sodium citrate solution was 

added to gold solution. The reduction of the gold ions by the citrate ions was 

complete after 5 min which was evident by the solution colour change to deep 
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red solution. The boiling was continued for further 30 min (Turkevich, Stevenson 

et al. 1951).  

 

The solution was removed from the heating element and continued to stir until it 

cooled down to room temperature. The solution was topped up to 20 mL to 

account for any loss due to boiling. The colloidal suspension was stored at 4 °C 

in a bottle covered with aluminium foil. The larger size gold nanoparticles 

(30nm, 40nm, 50nm and 60nm) used in this chapter were purchased from the 

British Biocell Ltd., UK. 

 

3.2.2. Characterisation of gold nanoparticles 
 
3.2.2.1. UV-Vis Spectrophotometry   
The synthesised gold nanoparticles were analysed using a Hitachi U2000, UV-

visible absorption spectrophotometer. Each batch synthesised, including the 

commercial gold nanoparticles were analysed by spectral scan in the range of 

400-800 nm to identify the characteristic wavelength peak and for uniform size 

distribution.  

 

3.2.2.2. Transmission electron microscopy (TEM) analysis of gold 
nanoparticles 
Citrate-reduced gold nanoparticles were characterised in terms of uniform size 

distribution by TEM using Philips EM400 microscope at an accelerating voltage 

of 80 kV). Approximately, 20 µL of gold nanoparticles were coated onto a 
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Formvar coated copper EM grid (200 mesh) and dried for at least 30 minutes. The 

suspension on the grid was observed without further treatment.  

 

3.2.2.3. Particle Size - Light scattering 
The 13 nm gold nanoparticles prepared by citrate reduction method and the 

commercial gold particles were analysed by dynamic light scattering (DLS) 

method using Brookhaven 90 Plus particle size analyser and measured with 

scattered 657 nm laser light at 90°. Colloidal suspensions were diluted when 

counts/sec were greater than 600,000 to prevent multiple photon scattering. 

 

3.2.3. Preparation of antigen/antibody–gold nanoparticle conjugates 
The 13 nm lab made citrate capped gold nanoparticles and 30, 40, 50 and 60 nm 

commercial gold nanoparticles from British Biocell were used for conjugation. 

Both the antibody and antigen were affinity purified using protein A sepharose 

and Ni-NTA chromatography respectively. The OMP85 and anti-OMP85 

antibody were conjugated to the gold nanoparticles by identical procedures. 

Critical flocculation concentration (CFC) and the role of different stabilisers were 

evaluated to optimise the conditions for protein-gold nanoparticle conjugation. 

The following scheme was followed in order to determine the critical flocculation 

concentration (CFC) of OMP85 antigen and anti-OMP85 antibody for conjugation 

and stabilisation of the gold nanoparticles. 
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3.2.3.1. Determination of optimal NaCl concentration (CFC) 
Gold nanoparticle-OMP85 protein conjugates (10 mg/mL) were prepared using 

the gold nanoparticle–protein conjugation protocol which is detailed in the later 

part of the protocol. These gold nanoparticle conjugates were dispensed in a 

series (100 µl each) into 96 well ELISA plate. The gold nanoparticle conjugates 

were then exposed in duplicates to 100 µl of different sodium chloride (NaCl) 

concentrations (to a final concentration of 0.001 - 2.0 M NaCl in equal volumes). 

The solutions were agitated for 5 minutes and observed for aggregation to 

determine the maximum concentration of NaCl, after which the conjugates were 

no longer stable. Aggregation was monitored at different wavelengths (490 nm, 

595nm, 620 nm and 650 nm) in an ELISA plate reader (Bio-Rad, USA).  

 

3.2.3.2. Optimum Protein Concentration 
Gold nanoparticle-protein conjugates with varying concentrations of both 

OMP85 antigen and anti-OMP85 antibody (0.01-10 mg/mL) were prepared by 

following the gold nanoparticle – protein conjugation protocol. Having 

determined the optimum salt concentration in the previous experiment, a series 

of 100 µl aliquots of NaCl (one dilution below the optimum concentration) were 

dispensed into a 96 well ELISA plate. 

 

Followed by addition of 100 µl (in duplicates) of different concentrations of gold 

nanoparticle-protein conjugates. Then the solutions were agitated for 5 minutes 

and observed for aggregation to find the minimum amount of protein required 
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to stabilise the particles at that particular NaCl concentration. Aggregation was 

again monitored at four different wavelengths 490 nm, 595 nm, 620 nm and 650 

nm.  

 

3.2.3.3. Effect of different stabilisers 
Folowing the determination of the optimum salt concentration and the minimum 

amount of protein required for successful conjugation, the effect of different 

stabilisers were examined to observe their effect upon stability of the conjugates 

and whether the stabiliser is displacing any bound protein.  

 

3.2.3.3A. Effect of increasing concentration of stabilisers 
Gold nanoparticle-protein conjugates aliquots (100 µl) were dispensed into an 

ELISA plate as described before. Then, 60 µl of NaCl (to a final optimum 

concentration) was added to each well. At this stage, all the suspensions were red 

in colour. 

 

This step was followed by the addition of 40 µl of the different stabilisers (N-

acetyl cysteine, mercapto succinic acid (MSA), phenylalanine, Tween-20 and 

SDS) at varying concentrations. After mixing for 5 minutes, the plates were 

assessed for aggregation to determine the effect of different stabilisers on the 

stability of conjugates. The ELISA plates were centrifuged and the supernatants 

were collected for determination of free protein content using the Bradford assay.  
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3.2.3.3B. With increasing concentration of NaCl 
Gold nanoparticle-protein conjugates were prepared using the optimum 

concentration of the protein. The conjugates were distributed (100 µl aliquots) 

into an ELISA plate as described previously. Then, 40 µl of the different 

stabilisers (N-acetyl cysteine, mercapto succinic acid (MSA), phenylalanine, 

Tween-20 and SDS) of predetermined concentrations were added. Every 

combination was performed in duplicate. 

 

This step was followed by addition of 60 µl of NaCl (increasing from critical 

flocculation concentration) to each well. Following mixing for 5 minutes and 

observed for aggregation to find out whether the presence of any stabilisers 

increased/decreased the stability of conjugates. Aggregation was monitored at 

620 nm wavelength in an ELISA plate reader.  

 
3.2.3.4. Protein-gold nanoparticle Conjugation 
After determining the optimum conditions required for the successful 

conjugation and stabilisation of proteins to the gold nanoparticles, the quantities 

were scaled up. Typical experimental details are described as follows (Figure 

3.1). 

 

The OMP85 antigen and the anti-OMP85 antibody solutions (1.0 µg/µl) were 

resuspended in 5 mM sodium carbonate buffer pH 9.4, by using 30 kDa cut-off 

membrane filters. It was followed by addition of the predetermined amount of 
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antibody/antigen (to a final concentration of 0.25 mg/mL of OMP85 and 0.5 

mg/mL of anti-OMP85 antibody) solution drop wise to the gold nanoparticle 

suspension, while mixing gently. Mixing continued for 30 minutes followed by 

another 30 minutes of incubation at room temperature (without mixing).  

 

Any exposed binding sites on the surface of the gold particles were blocked to 

prevent non-specific binding by addition of 100 µl of filtered 1% (w/v) BSA in 

5mM sodium carbonate buffer pH 9.4 and stirred gently for 15 minutes.  

 
 
3.2.3.5. Purification  
The gold conjugates were purified from excess protein and nanoparticles before 

using for any experiment or storing. To separate any unbound protein and 

nanoparticles, nanoparticle conjugates were washed three times by 

centrifugation at 5000 to 20, 000 x g for 30-60 minutes, depending on the size of 

nanoparticles.  

 

These speeds and times were optimised and determined experimentally. The 

conjugates were centrifuged at different x g forces according to gold particle size:  

 
13nm      20,000 x g   for 1h @ 4 °C  
20nm      16,000 x g   for 1h @ 4 °C  
30nm      12,000 x g   for 1h @ 4 °C  
40nm        8,000 x g   for 1h @ 4 °C  
50nm        6,000 x g   for 1h @ 4 °C 
60nm        5,000 x g   for 1h @ 4 °C 
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The final product was a loose red precipitate. The clear supernatant was 

separated and used to determine the amount of protein adsorbed onto the 

nanoparticles using the Bradford protein assay. The pellet was resuspended and 

stored in 10 mM sodium phosphate buffer pH 7.4 containing 1% (w/v) BSA in 

order to shield any exposed binding sites on the gold surface. The suspensions 

were stable for several months. The conjugates prepared were examined for 

sensitivity and specificity by ELISA against the specific antigen/antibody 

molecules. 

 

Protein coated gold nanoparticle suspensions were stored in vials wrapped with 

aluminum foil and stored in the dark at 4 °C to protect the gold nanoparticles 

from oxidation and light-induced aggregation.  

 

3.2.3.6. Conjugation efficiency 
To determine the amount of OMP85 and anti-OMP85 antibody adsorbed onto 

the nanoparticles, 10 mM mercaptoethanol was added to reduce the sulphur – 

gold bond and to release all conjugated protein into solution. The amount of 

released protein was measured by absorbance at 280 nm and the gold particle 

concentration was measured by optical absorbance in the range of 520 – 535 nm 

according to the size. 
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Figure 3.1. Flow chart of Gold Nanoparticle-Protein Conjugation Protocol 

 

Added 250 µl of protein solution (in sodium carbonate 
buffer) to 6.0 ml of gold nanoparticle in scintillation vial 
and mixed them vigorously in shaker for 30 min at room 
temperature.  

Re-suspended the protein of 
interest in 5 mM Carbonate 
buffer (pH: 9.4 using 30 kDA 
molecular cut-off filters. 
(Note: Final concentration of the 
proteins used was based on CFC 
experiment. 

Transferred 6.0 mL of 50 nm 
gold nanoparticles (obtained 
from BBI, UK) into scintillation 
vials. (These nanoparticles are 
stabilised with citrate/tannic 
acid) 

Added 200 µl of BSA solution (5.0 mg/ml in 5 mM 
sodium carbonate buffer pH 9.4) to the above 
conjugated gold nanoparticle’s in scintillation vial and 
mixed them vigorously in shaker for another 30 min at 
room temperature.  

Washed the conjugation mixture by pelleting down the 
protein conjugated gold nanoparticles by centrifugation 
at 6000 x g for 45 minutes at 4 °C. Discarded the 
supernatant and resuspended the pellet in 10 mM 
sodium phosphate buffer pH: 7.4. Repeated the washing 
step twice to remove any unbound protein/BSA 
molecules. Finally, resuspend the protein conjugated 
gold nanoparticles in 5.0 ml of 10.0 mM sodium 
phosphate buffer containing 1% (w/v) BSA. Store at 4 
°C.  
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3.2.4. Detection of protein-conjugated gold nanoparticles by SDS-
PAGE 
After labelling the gold nanoparticles with proteins, unbound gold particles were 

removed by centrifugation. After separating the unbound proteins and 

nanoparticles, 20 µl of OMP85 conjugated gold nanoparticle suspension was 

mixed with 5.0 µl of modified SDS-PAGE sample buffer (appendix 2). With out 

heating, the samples were loaded in duplicates onto a 6% SDS-PAGE gel and the 

normal gel running procedure was followed (Section 2.3.1C).  

 

Silver staining was performed to develop the gold nanoparticles effectively. 

When optimal staining was reached, further development was stopped by 

rinsing in distilled water. The gel was scanned to visualise the bands pattern.  
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3.3. Results 
 
 
3.3.1. Gold nanoparticle synthesis 
The 13 nm gold nanoparticles were synthesised successfully according to 

standard wet chemical method (Turkevich, Stevenson et al. 1951) using sodium 

citrate as a reducing agent. Figure 3. 2 show the typical reaction of formation 

gold nanoparticles by citrate reduction.   

 

AuCl4
-  (aq) +                H2O/100°C       

 
Figure 3.2. Reduction of HAuCl4 by sodium citrate 

                            
 
 
                                                               
3.3.2. UV-Vis spectral analysis of gold colloidal suspension 
The characteristic surface plasmon band for 13 nm gold nanoparticles at 520 nm 

peak wavelength was observed (Figure 3. 3) in the UV-Visible spectrum, 

confirming the presence of gold nanoparticles.  
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Figure 3.3. UV/Visible absorbance spectrum of 13 nm gold nanoparticles with a 
characteristic peak at 520 nm. 

 

3.3.3. Transmission Electron Microscopy (TEM) analysis 
Both laboratory synthesised 13 nm gold nanoparticles and the commercial 30, 40, 

50 and 60 nm gold nanoparticles were analysed by transmission electron 

microscopy. TEM micrographs (Figure 3. 4) showed the presence of spherical 

gold nanoparticles of approximate size (13 nm and 50 nm) with uniform size 

distribution. Although the actual value of the mean size might vary slightly from 

each preparation, the size distribution was found to be always about 10% 

standard deviation. Size distribution analysis clearly showed that nearly 90% of 

the particles reside within their size range. 
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  (a)       (b) 
Figure 3.4. TEM images of (a) 13 nm gold nanoparticles and (b) 50 nm gold 
nanoparticles. 

 
 

3.3.4. Particle Size – Light Scattering analysis 
Dynamic light scattering measurements showed the average mean diameter of 

the particles. Figure 3. 5 show the light scattering results of the 30nm, 40 nm and 

60 nm gold nanoparticles.  

 
 

(a)     
 

60 nm 60 nm 
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(b)    
 

(c)   
Figure 3.5. Dynamic light scattering measurements of (a) 30nm, (b) 40nm and (c) 
60 nm gold nanoparticle 

 

 
3.3.5. Protein-gold nanoparticle conjugation 

 

3.3.5.1. Critical Flocculation Concentration 
The NaCl solution destabilised the colloid gold nanoparticles and caused 

aggregation. The sample containing gold nanoparticles and no protein was 

destabilised immediately upon the addition of electrolytes.  As the protein 
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concentration increased, the stability of the nanoparticles also increased which 

was reflected by a resistance to change from red to blue colour shift. During the 

flocculation assay, the aggregation was monitored photometrically by the 

decrease and/or red shift of the plasmon absorption band at different 

wavelengths of 490nm, 595 nm, 620 nm and 650 nm. 

 

3.3.5.2. Optimum NaCl Concentration 
The tube containing the minimum amount of salt to keep the particles stable was 

indicated by change from red to blue. In the case of both OMP85 and anti-

OMP85 antibody conjugation experiments, the particles were stable up to a final 

concentration of 0.512 M NaCl. Nanoparticles started to aggregate with any 

concentration of the salt above 0.512 M NaCl (Figure 3. 6).  
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(b)  

CFC using 5.0 mg/m l anti-OMP85 ab conjugated 50 nm AuNP
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Figure 3.6. Critical flocculation concentration of 50 nm gold nanoparticles 
conjugated with (a) OMP 85 protein and (b) anti-OMP85 antibody. Both were 
stable up to a final concentration of 0.512 M NaCl 

 
3.3.5.3. Optimum Protein Concentration 
Though the optimum salt concentration of 0.512 M (from the above experiment) 

was observed, one dilution below that point i.e. 0.256 M NaCl concentration was 

used for determining the optimum protein concentration. The tube containing 

the minimum amount of protein required to stabilise the gold sol was indicated 

by the one in which the colour of the gold sol did not change from red to blue 

upon the addition of NaCl. In the case of both OMP85 and anti-OMP85 antibody 

conjugation experiments, the minimum amount of protein required to keep the 

particles stable was found to be 0.4 mg/mL of final concentration (Figure 3. 7). 

Nanoparticles started to aggregate when the protein concentration used fell 

below 0.3 mg/mL.  
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(a)  

CFC on 50 nm AuNP using 0.01-10 mg/ml OMP85 at 0.25 6 M NaCl
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(b)  

CFC on 50 nm AuNP using 0.002-5.0 mg/ml anti-OMP85 ab at 0.256 M NaCl
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Figure 3.7. Critical flocculation conentration experiment to determine the 
minimum protein concentration required to stabilise the 50 nm gold nanoparticle 
in presence of 0.256 M NaCl. (a) OMP85 conjugated and (b) anti-OMP85 
conjugated.  

 
 
3.3.5.4. Effect of different stabilisers 
The effect of different stabilisers on the increasing or decreasing of stability of 

gold nanoparticle-protein conjugates did not produce any conclusive results.  
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The presence of NAc and MSA led to aggregation of the conjugates resulting in a 

colour change from ruby red to blue, despite the fact that analysis of the 

supernatants using Bradford assay showed that no protein was released or 

displaced from the aggregated conjugates (Figure 3.8). Addition of 

phenylalanine, Tween-20 and SDS resulted in no colour change of the conjugates. 

However, the Bradford assay on the supernatants revealed that, phenylalanine 

and SDS did not displace the bound protein, whereas the particle suspension 

containing Tween-20 appeared to have protein present in the supernatant 

suggesting that protein was released from the nanoparticles.    
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(b)  

Effect of increasing concentration of different sta bilizers on 50 nm AuNP-
anti-OMP85 ab conjugates
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Figure 3.8. Effect of increasing concentration of different stabilisers on the 50 nm 
gold nanoparticle conjugated with (a) OMP85 protein and (b) anti-OMP85 
antibody, in presence of 0.256 M NaCl.  

 
 
 
3.3.5.5. Effect of Sodium Chloride concentration in presence of 
stabilisers 
Presence of NAc and MSA did not increase the stability of the conjugates but 

rather, the conjugates aggregated immediately. However, the stability was 

increased by two fold by the addition of SDS and Tween-20. That is the stability 

of the particles increased from 0.256 M NaCl to 0.512 M NaCl.  However, there 

was no change in the stability of the conjugates in the presence of phenylalanine.  

 

Figure 3. 9. shows the image of a typical CFC experiment of conjugating OMP85 

protein and anti-OMP85 antibody conjugated gold nanoparticles in the presence 

of increasing salt concentration.  
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Figure 3.9. Image of the critical flocculation experiment (CFC) experiment of 50 
nm gold nanoparticle conjugated with OMP 85 protein. Similar experiment was 
performed with anti-OMP85 antibody conjugated 50 nm gold nanoparticles. Both 
were stable up to a final concentration of 0.512 M NaCl. 

 
3.3.5.6. Gold nanoparticle-protein conjugation 
Despite some initial inconsistencies with the gold nanoparticles and protein 

conjugation techniques, conditions were optimised for different sized gold 

nanoparticles to achieve successful conjugation with OMP 85 and anti-OMP 85 

antibodies. Unbound proteins and nanoparticles from the nanoparticle-protein 

conjugates were separated by centrifugation and the conjugated nanoparticles 

were resuspended in 10 mM sodium phosphate buffer pH 7.4 containing 1% 

(w/v) BSA and they remained as a ruby red colour during storage.  

 

A wavelength scan of the conjugated gold nanoparticles showed slight (∼3-5 nm 

shift) or no difference from the naked gold nanoparticles (Figure 3. 10). Although 

conjugated gold nanoparticles are usually more stable, they were stored in a dark 

vial at 4°C to avoid any instability issues associated with high temperatures.   
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Wavelength shift due to conjugation of 50 nm AuNP a nd OMP85 protein
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Figure 3.10. UV-visible absorbance spectrum of the 50 nm naked nanoparticles 
and the OMP85 conjugated gold nanoparticles. (a) Increase in absorbance at 280 
nm indicating the successful conjugation of nanoparticles and OMP85 protein, 
(b) 5 nm red shift due to the conjugation.  

 

Once coated and properly stabilised, the colloidal gold particles in 10mM sodium 

phosphate buffer containing 0.1% (w/v) BSA and 0.05% (w/v) sodium azide, did 

not show any sign of nonspecific agglutination. This helps to prevent bacterial 

contamination and also prevents the protein from adhering to the surfaces of the 

storage vessel. 

 
 

3.3.6. Detection of protein labelled gold nanoparticles on gels  
Nanoparticles were observed as a red band passing through the gel while 

running. Native gold nanoparticles were not stained by Coomassie blue R-250.  

With silver staining, proper gel shift and the difference between conjugated and 

(a) 

(b) 
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unconjugated gold nanoparticles in the gel was noticed. Detected each 

component separately and specifically to confirm labelling. 

  

The molecular wt. of the 13 nm gold nanoparticles appeared to be around 80 

kDa. Molecular wt. of OMP 85 is normally around 85 kDa and the molecular wt. 

of OMP85 conjugated nanoparticles was appeared to be in between 130 kDa to 

170 kDa. Thus there was an observable gel shift (Figure 3. 11). Aggregates of the 

gold nanoparticles did not enter the gel and small amounts of free gold gave 

background staining. 

  

Figure 3.11. OMP85 and anti-OMP85 antibody conjugated 13 nm gold 
nanoparticle in ative polyacrylamide gel electrophoresis (M: Marker; P: OMP85 
protein; Au: 13 nm gold nanoparticle; AuP: gold nanoparticle-OMP85 conjugates; 
AuAb: gold nanoparticle-anti-OMP85 antibody conjugates. Both gels were 
stained using different silver staining methods, resulting in differences in colour.   
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3.4. Discussion 
The most simple method for the synthesis of gold nanoparticles was published 

by J. Turkevitch et al.. in 1951 and which was then refined by G. Frens in 1970s 

(Turkevich, Stevenson et al. 1951; Frens 1973). The sodium citrate initially acts as 

a reducing agent and then the negatively charged citrate ions are adsorbed onto 

the reduced gold nanoparticles surface. This introduced surface charge helps to 

repel the particles to each other and thus helps to prevent them from 

aggregating. It is believed that each particle has an Au0 core and an AuI shell as a 

result of incomplete reduction at the nanoparticle surface (Frens 1973). Citrate 

and chloride ions coordinate to the AuI shell, and thus, each gold nanoparticle 

has an overall negative charge. 

 

The citrate reduction method is generally followed to produce monodisperse 

spherical gold nanoparticles in the range of 10–20 nm in diameter. In this work, 

monodisperse gold nanoparticles with a uniform size of 13 nm were produced. 

These particles had a characteristic surface plasmon wavelength of 520 nm 

indicating that spherical particles were obtained. In general, the red colour of a 

colloidal gold nanoparticle suspension with diameters of 5–20 nm is due to a 

characteristic surface plasmon resonance peak at around 520 nm. 

 

By varying the citrate : gold chloride ratio, larger particles can be produced, but 

this comes at the cost of monodispersity and shape (Haiss, Thanh et al. 2007). For 
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this reason, larger nanoparticles (30nm, 40 nm, 50 nm and 60 nm) were 

purchased from British Biocell and these were made using citrate/tannic acid 

method instead of citrate alone. These particles were fairly uniform in size and 

had characteristic surface plasmon wavelength peaks corresponding to their size 

(Haiss, Thanh et al. 2007).  

 

TEM analysis of the 13 nm particles synthesised in the laboratory and the 

commercial larger particles confirmed the monodispersity and uniform size 

distribution of the nanoparticles (Daniel and Astruc 2004). To further establish 

the near monodispersity and sample uniformity in these materials, samples were 

also studied using dynamic light scattering (DLS) (Storhoff, Lazarides et al. 2000). 

Like TEM, this technique also has inherent limitations such as limited 

measurement range, and may not give particle diameters which are identical to 

the TEM observations. Nonetheless, a major advantage of DLS is that it gives a 

bulk measurement and thus avoids selective sampling as can occur in TEM. As 

such, DLS in combination with TEM and UV-visible measurements can serve as a 

very useful supporting technique (Mukherjee, Bhattacharya et al. 2007). Data 

obtained from DLS analysis of the larger particles supported the TEM results 

indicating that to make larger particles, reduction and stabilisation using 

citrate/tannic acid combination is better than citrate alone. 
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Stabilisation is an essential part of the nanoparticle synthesis process to avoid 

aggregation of the newly formed particles. The stability of aqueous gold 

nanodispersions is influenced by a number of variable factors such as salt 

concentration and pH (Xie, Tkachenko et al. 2003). In general, classical citrate-

stabilised particles exhibit very poor electrostatic stability and may form 

aggregates in the presence of low (10 mM) concentration of electrolyte solutions. 

The colour of colloidal gold depends on the size and the shape of particles, as 

well as the composition of the surrounding medium (Underwood and Mulvaney 

1994; Link and El-Sayed 1999). Aggregation of the nanoparticles shifts the peak 

toward longer wavelength and changes the colour of the colloidal suspension to 

purple to blue (Link and El-Sayed 1999). To prevent the particles from 

aggregating due to addition of small electrolytes, a stabilising agent that 

adsorbes to the nanoparticles surface is usually added. Protein adsorption 

stabilises the metal particles and prevents flocculation (Daniel and Astruc 2004).  

 

The coating of colloidal gold nanoparticles with proteins was performed by an 

electrostatic adsorption method (Peng, Chen et al. 2007). Colloidal gold 

nanoparticles remain negatively charged over a broad pH range. The citrate ions 

being weakly anionic, they can be easily replaced with strong anions. So, the 

OMP85 antigen and anti-OMP85 antibody dissolved in sodium carbonate buffer 

pH 9.4, bound to the gold nanoparticles by replacing the already existing citrate 

ions. 
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Conjugation of proteins to gold nanoparticles mainly depends upon different 

phenomena such as, ionic attraction between the gold nanoparticles and the 

proteins and dative binding between the gold conducting electrons and sulphur 

atoms which are present in cysteine residues (if present) in the protein (Beesley 

1989; Mukherjee, Bhattacharya et al. 2007). In some proteins the sulphydryl 

functionality may be in the form of a disulfide group and in other proteins 

sulphydryl sites may be buried within the protein structure, and therefore 

inaccessible to the gold nanoparticles (Mukherjee, Bhattacharya et al. 2007).  

 

However, studies on peptides binding to gold predicted that the mechanism of 

binding of gold binding peptide (GBP) to inorganic metal surfaces mainly 

involve the polar side chains of serine and threonine (Braun, Sarikaya et al. 2002). 

Interestingly, most of the sequences studied didn’t have cysteine, and only a few 

of them contained histidines, two residues known to bind to transition metal ions 

(Slocik, Moore et al. 2002). On the whole, binding between the protein and the 

nanoparticles may not only occur through the sulphydryl groups but also 

through hydrophobic and hydroxyl group-containing polar amino acids. 

 

Successful conjugation of proteins to gold nanoparticles was established by the 

observed increase in stability of the conjugates in the presence of high salt 

concentrations. The amount of protein needed to prevent aggregation was 
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determined by preliminary titrations in the presence of increasing concentration 

of electrolyte and utilising the red to blue colour change of the various gold 

nanoparticle preparations previously coated with defined amounts of protein. 

This was established by the increased stability (no red to blue colour change) of 

the Au colloid in the presence of a monolayer of surface-attached proteins (Xie, 

Tkachenko et al. 2003). A single monolayer of protein attached to the surface of 

the nanoparticles is often sufficient to stabilise the nanoparticles (Niemeyer 

2001). Thus, exposure of these protein-conjugated gold nanoparticles upto 0.256 

M NaCl revealed no particle growth as shown by UV-vis absorbance 

spectrophotometry (Xie, Tkachenko et al. 2003). A separate titration to determine 

the protein/colloid ratio was performed with every batch of nanoparticles used. 

 

The conjugation of biomolecules to nanoparticles is affected by several factors 

such as solvents, buffers, solubility of the proteins, pH, temperature, ratio of 

reagents etc (Sharma, Brown et al. 2006). It is necessary to determine the 

optimum pH for successful conjugation of proteins to gold nanoparticles (Peng, 

Chen et al. 2007). It is believed that pH can influence the correct orientation of the 

biomolecule on the particle for proper ligand recognition (Broderick, Natan et al. 

1993; Keating, Kovaleski et al. 1998). It has been suggested that the conjugation is 

best performed at or near isoelectric point of the protein. The theoretical 

isoelectric point for OMP85 was predicted to be 8.5 (Swiss-Prot/TrEMBL). The 

optimum pH for OMP85 conjugation was determined by performing a 
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preliminary titration at two different pH values namely, pH 7.4 and 9.2 and 

examining the extent of conjugation by Bradford assay. A pH of above 9.0 was 

found to be more effective for successful conjugation. Whilst the optimal pH for 

coating usually lies around the isoelectric point of the protein, there are no 

general rules and adsorption interaction isotherms should be conducted in each 

case (Broderick, Natan et al. 1993; Keating, Kovaleski et al. 1998). 

 

Optimising the pH also helps to target the amine group for binding (Mandal, 

Phadtare et al. 2005). The pKa of the α-amino group of proteins and peptides at 

the N-terminal region is often slightly lower than that of the side-chain amine 

groups such as ε-NH2 of lysine; therefore, under the right pH conditions, the 

proteins may be preferentially conjugated to the gold nanoparticles (Mandal, 

Phadtare et al. 2005). In order to maintain this amine group in the non-protonated 

form, the conjugation was performed in an alkaline buffer (pH above 9.0). 

 

It was also observed that conjugation of proteins to nanoparticles was higher 

with the concentrated protein solution than diluted one. Protein conjugation 

efficiencies were improved by gentle agitation of the mixture after addition of the 

protein, since generating air bubbles by vigorous agitation may denature the 

protein solution or promote oxidation of thiol groups catalysed by atmospheric 

oxygen (Hainfeld 1988). However, once the optimal conditions were identified, 

the coating process was usually reproducible and was easy to scale-up. 
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An important goal with gold nanoparticle conjugation is isolating the labelled 

conjugate from unbound gold nanoparticles or from unlabelled biomolecule. 

This was done by centrifugation at a predetermined speed (Haiss, Thanh et al. 

2007). Once after isolating gold nanoparticle conjugate, the extent of labelling 

(the number of gold nanoparticles per biomolecule) was calculated using the 

UV/visible absorption spectra of the gold nanoparticle conjugates. OMP85 and 

anti-OMP85 antibody absorb strongly at 280 nm, but have no absorbance at 520 

nm. Therefore in the conjugate spectrum, while any absorbance at 520 nm must 

be due to gold nanoparticles, the absorbance at 280 nm contained a contribution 

from the conjugated protein (Haiss, Thanh et al. 2007).  

 

After conjugation, only a modest shift in the surface plasmon band from 529 to 

534 nm was observed. The surface plasmon resonance (SPR) peak of protein 

conjugated 50 nm gold nanoparticles was about 534 nm with a red shift of 5 nm 

compared to that of original citrate/tannic acid-stabilised gold nanoparticles 

(529 nm). This shift might be due to centrifugation of the protein conjugated gold 

nanoparticles which may affect the particle size distribution due to slight 

aggregation, which in turn could affect the position of the plasmon band (Hayat 

1991). The centrifugation appears to decrease the intensity of the plasmon band 

possibly due to slight aggregation and a decrease in particle concentration. This 

red shift also denotes that protein molecules were adsorbed on to the gold 
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surface by Au–S interaction and a so-formed dielectric monolayer of protein 

around gold nanoparticles resulting in the red colour shift (Nath and Chilkoti 

2002). These assembled protein-gold nanoparticle bioconjugates in aqueous 

suspension maintained their activity with enhanced stability and similar pH 

dependence. 

 

Electrophoresis was perfomed to visualise the successful conjugation of protein 

and nanoparticles. During SDS-PAGE gel electrophoresis, gold nanoparticle 

conjugates may degrade upon exposure to thiols such as β-mercaptoethanol or 

dithiothreitol (DTT) (Beesley 1989). Based on these observations, a non-reducing 

gel was used in these studies. Samples were not heated to avoid any degradation 

of nanoparticle conjugates when heated above 50°C. 

 

Gold nanoparticle-labelled molecules may be separated using gel 

electrophoresis, but one should be cautious in interpreting the results, as gel 

shifts alone are frequently not found to be good indicators of successful 

conjugation (Beesley 1989). Two-thirds of the gold nanoparticle is comprised of 

very dense gold atoms and thus the molecule is actually smaller than a protein or 

other macromolecule of the same weight (Rao, Kulkarni et al. 2000). In gel 

electrophoresis, the gold nanoparticles travel similarly to a protein of smaller 

molecular weight. A gold nanoparticle-labelled molecule typically runs higher 

on the gel due to the added weight of the gold nanoparticle. Conjugates were 
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visualised by usual gel stains (Coomassie and gel silver stains) which detected 

protein present in the samples. 

 

From the gel electrophoresis analysis, the apparent molecular weight of the 13 

nm gold nanoparticles was found to be around 80 kDa based on the assumption 

that these particles had a shape similar to an unfolded globular protein. A band 

around around 160 kDa on the gel, suggested the successful conjugation of 

OMP85 protein (85 kDa) with the 13 nm gold nanoparticles (80 kDa). Another 

band above 200 kDa possibly suggested the presence of 13nm gold nanoparticle-

anti-OMP85 antibody conjugates. 

 

A series of five water-soluble stabiliser ligands with different solubility i.e., N-

acetyl cysteine (NAc)(Gautier and Burgi 2005), phenylalanine (Shao, Jin et al. 

2004), mercaptosuccinic acid (MSA) (Li, Chen et al. 2006) and surfactants like 

Tween-20 (Paciotti, Myer et al. 2004) and sodium dodecyl sulfate (SDS) (Mafune 

2004) were used to enhance the stability of the protein stabilised nanoparticle 

conjugates. The stability of OMP85 and anti-OMP85 antibody conjugated gold 

nanoparticles toward both salt concentration and displacement of the bound 

proteins was investigated. Addition of some of the stabilisers was found to be 

useful in particular applications, as discussed below. 
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For particles stabilised with Tween-20 and SDS, the stability of the preparations 

toward salt concentration was found to increase significantly as the surfactants 

form a monolayer around the particles. However, nanoparticles treated with 

NAc and MSA didn’t show any increase in stability but rather led to aggregation 

of the previously stabilised particles. The conjugate suspension in presence of 

MSA was aggregated which is likely due to hydrogen bonding formation 

between the carboxylic acid and amino acid group (Figure 3. 12) (Choi, Lee et al. 

2003). Presence of phenylalanine as a stabiliser made no difference to the stability 

of the particles. This may be due to the reason that phenylalanine might not be 

binding with the gold surface.  This effect may be primarily due to the end group 

rather than variations in total ligand molecular weight, even though the molar 

masses for this series of ligands were not all identical. It is not clear at this stage 

whether this difference in results is due to the mode of binding to the gold 

surface or the fact that Tween-20 and SDS form a micelle structure around the 

nanoparticles. 

    

Figure 3.12. Structure of the precipitated MSA capped Ag colloids (Choi, Lee et 
al. 2003).  
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Once stabilised, the gold nanoparticle-protein conjugates were stable to wide 

ranges of pH and ionic strength. Although gold nanoparticles are usually stable, 

under some conditions labelled conjugates may not be stable at higher 

temperatures (<50 °C) and therefore stored at 4 °C until used. 
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Chapter 4 

 

The assembly and validation of the diagnostic assay: 

A colour shift assay based on Surface plasmon 

resonance 

 

4.1. Introduction 
Colloid gold has a long history of safe use in clinical applications (Faraday 1857; 

Mulvaney 2003). The use of biomolecules such as proteins and nucleic acids with 

nanoparticles for developing nanotechnology devices has led to the development 

of hybrid nanomaterials (Sarikaya, Tamerler et al. 2003). Novel devices may 

become available by tuning the spectroscopic, fluorescence, luminescence, and 

electrochemical characteristics of gold nanoparticles with those of substrates 

including DNA, carbohydrates and other biological molecules or systems.  

 

Although bulk gold is well known for being inert, the reactivity of the gold 

nanoparticles has recently proven very useful in developing recognition systems 

based on their optical properties. Gold nanoparticles exhibit a specific optical 

property called Surface Plasmon Resonance (SPR), which is responsible for the 

deep red colour of the suspension (Mie 1908; Link and El-Sayed 2000). The 

aggregation of gold nanoparticles leads to the red shift of the absorption band 

from 520nm to longer wavelengths in the range of 600-800 nm, as a result of 
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electric dipole-dipole interaction and coupling between the plasmons of 

neighboring particles in the formed aggregates. A better understanding of the 

surface plasmon resonance properties of the gold nanoparticles can prove fruitful 

to develop the most sensitive reagents and technology for detecting biological 

molecules. 

 

Major parameters that control the formation of extended nanoparticle aggregates 

include, the size, size distribution, shape (Mock, Barbic et al. 2002), and chemical 

composition of the nanoparticle building blocks, the length and stability of the 

particle linker molecules (Mucic, Storhoff et al. 1998). Ordered or disordered 

assembly of nanoparticles in aggregates is possible by incorporating 

complementary receptor-substrate sites on the surface of the nanoparticles which 

permits the recognition-driven assembly of nanoparticles (Daniel and Astruc 

2004). The antibodies and antigens can be utilised as candidate molecules for the 

controlled assembly of nanoparticles in suspension (Mann, Shenton et al. 2000). 

By utilising the specific recognition properties of the coupling molecules, novel 

materials with controlled growth have been generated (Niemeyer 2001; Sun and 

Xia 2002; Djalali, Chen et al. 2003). Gold nanoparticles may be utilised to design 

an ideal colorimetric assay, based on the their extremely high extinction 

coefficients and the strongly distance-dependent optical properties (Liu and Lu 

2004). 
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The combination of the surface plasmon absorption property of gold 

nanoparticles with biology and medicine has already been demonstrated by 

using complementary DNA oligonucleotides attached to the surfaces of gold 

nanoparticles. Earlier work by Mirkin (Mirkin, Letsinger et al. 1996) and 

Alivisatos (Alivisatos, Johnsson et al. 1996) showed that complementary DNA 

oligonucleotides could be used to self-assemble nanoparticles. Mirkin et al.. 

(Mirkin, Letsinger et al. 1996) described a method for reversible assembly of 13 

nm colloidal gold nanoparticles into macroscopic aggregates by utilising the 

DNA specific interactions. Excellent specificity in base pairing, and its ability to 

address at the nanoscale makes DNA an ideal candidate for applications in 

biosensing and bionanotechnology. 

 

The inter-particle distance dependent colour change of colloidal gold due to 

aggregation has been used by Mirkin and co-workers to design a sensor capable 

of determining single-base mismatches in DNA hybridisation, (Elghanian, 

Storhoff et al. 1997; Storhoff, Elghanian et al. 1998). Selective colorimetric 

polynucleotide detection with the gold nanoparticle probes resulted in the 

formation of aggregates with an ultimate red to purple colour change in 

suspension (Storhoff, Elghanian et al. 1998). 

 

A highly sensitive and selective colorimetric biosensor has been designed based 

on DNAzyme-directed assembly of gold nanoparticles resulting in red to blue 



 

 191

colour shift (Liu and Lu 2003) and it has been reported that this can be used for a 

broad range of analytes. The DNAzyme catalyses specific cleavage of the 

substrate strand in the presence of lead. This ultimately disrupted the formation 

of the nanoparticle assembly, and resulted in red-coloured individual 

nanoparticles. The application of this particular sensor in lead detection in lead-

based paints was also demonstrated (Liu and Lu 2003; Liu and Lu 2004). This red 

shift based on the surface plasmon resonance of the gold nanoparticles, has been 

observed in other non–oligonucleotide-based strategies (Brust, Fink et al. 1995; 

Grabar, Smith et al. 1996; Storhoff, Mucic et al. 1997; Bao, Peng et al. 2005). 

 

However, protein-based recognition systems offer some additional advantages 

over oligonucleotides with a large number of complementary systems and a 

wide range of free energies of association (Mann, Shenton et al. 2000). To test the 

possibility of using antibody-antigen interactions in programmable nanoparticle 

self-assembly, Shenton et al.., (Shenton, Davis et al. 1999) described a study based 

on the interaction between a bivalent antigen molecule, DNP (bis-N-2,4-

dinitrophenyloctamethylenediamine) and anti-DNP IgE antibodies, conjugated 

with 12 nm gold nanoparticles. A macroscopic purple precipitate and a clear 

supernatant were evident after incubating overnight at 4 °C. TEM examination of 

the aggregates established the presence of large disordered three dimensional 

networks of discrete gold nanoparticles. The biomolecular specificity of the 

ligand-induced recognition was confirmed by a control experiment in which the 
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DNP antigen was added to a sol of Au nanoparticles conjugated with anti-biotin 

IgG antibodies. In this case, no precipitate was observed (Shenton, Davis et al. 

1999; Mann, Shenton et al. 2000).  

 

Streptavidin (STV)-biotin binding is an ideal model for studies on nanoparticle 

aggregation based on protein-ligand interactions. Being a small ligand, the 

complex is extremely stable over a wide range of temperature and pH (Mann, 

Shenton et al. 2000). Connolly and Fitzmaurice (Connolly and Fitzmaurice 1999) 

and Mann et al.. (Mann, Shenton et al. 2000) have used the STV-biotin interaction 

to organise an ordered assembly of nanoparticles. The immediate change of the 

suspension colour from red to blue was indicative of the formation of recognition 

driven assembly of nanoparticle networks. Studies by dynamic light scattering 

(DLS), showed that the average radius of all particles in suspension rapidly 

increased due to the STV-directed assembly (Niemeyer 2001). Analysing the 

aggregates by TEM revealed clusters of nanoparticles with an average of 20 

interconnected particles that were separated by about 5 nm. This inter-particle 

distance correlates with the diameter of an STV molecule. The results were also 

confirmed by Small Angle X-ray scattering (SAXS) technique. 

 

Using protein coated gold nanoparticles; a simple colorimetric sensor was also 

designed for studying the conformational changes in a protein. The 

conformational changes in the yeast iso-1-cytochrome c due to pH changes 



 

 193

caused measurable shifts in the colour of the respective protein coated gold 

nanoparticle suspensions, and it was detected by UV-Vis absorption 

spectroscopy (Chah, Hammond et al. 2005).  

 

The versatility of using gold nanoparticles in association with the antigen-

antibody recognition system should make it possible to produce a wide range of 

nanoparticle aggregates involving specific cross-linked structures, compositions 

and macroscopic architectures (Shenton, Davis et al. 1999). Such nanoparticle-

based receptors may generate novel probes for the recognition of various 

biomolecular specific ligands, and thus may provide novel tools for 

immunoassays and biosensors (Niemeyer 2001). This chapter mainly deals with 

an attempt made to utilize the surface plasmon resonance property of gold 

nanoparticles using the OMP85 antigen and anti-OMP85 antibody system.    
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4.2. Materials and Methods 
 

Materials 
All glassware was scrupulously clean. Glass and plastic containers and stirrers 

were cleaned in aqua-regia and thoroughly washed in Milli Q water. Aqua regia 

(3:1 HCl:HNO3) was made fresh each time. 13 nm gold nanoparticles were 

prepared by citrate reduction method. The larger size gold nanoparticles (30nm, 

40nm, 50nm and 60nm) used in this chapter were purchased from the British 

Biocell Ltd., UK. Molecular cut-off filters were obtained from Millipore Ltd., 

USA. Lysozyme and anti-lysozyme antibody were obtained from Sigma-Aldrich 

Ltd., USA. Bio-Rad Bradford assay reagent was used for protein estimation. All 

reagents were of high quality analytical grade and were filtered using 0.45µ 

nylon membrane filter, immediately before use. 

 

4.2.1. Conjugation of OMP85 and anti-OMP85 antibody molecules 
to different size gold nanoparticles 
 

Antibodies and antigens were attached to the surfaces of Au nanoparticles by 

identical procedures described in Chapter 3. The OMP 85 protein purified by 

sonic extraction method (Chapter 2) and protein A purified rabbit anti-OMP 85 

polyclonal antibody were re-suspended in 5 mM sodium carbonate buffer pH 

9.4, using 30 kDa molecular cut-off filters separately to achieve a final 

concentration of the protein of 5mg/mL as determined by Bradford assay. 
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To separate glass vials containing 6.0 mL of each size nanoparticles suspension 

(13, 30, 40, 50 and 60 nm) of gold nanoparticles (BBI, UK), 250 µl of protein 

solution (in carbonate buffer) was added and mixed gently on a shaker for 30 

minutes at room temperature.  To block the unbound sites on the gold 

nanoparticles surface, 250 µl of 5 mg/mL BSA in 5 mM sodium carbonate buffer 

pH 9.4, was added to the above conjugated gold nanoparticle suspensions and 

mixed gently on a shaker for another 30 minutes at room temperature.  

             

Excess protein and gold nanoparticles were removed from the individual size 

nanoparticles conjugation mixture by centrifugation at at 5000 to 20, 000 x g for 

45 minutes, at 4 °C, depending on the size of nanoparticles. The supernatant 

liquid was discarded and the pellet resuspended in low ionic strength 10 mM 

sodium phosphate buffer pH: 7.4. The washing step was repeated twice to 

remove any traces of unbound protein and BSA. Finally, the protein conjugated 

gold nanoparticles were resuspended in 5.0 mL of 10.0 mM sodium phosphate 

buffer pH 7.4.   

 

The optical absorption spectra of these systems were acquired using Hitachi U-

2000 dual-beam spectrophotometer using 1 cm path length quartz cuvettes. The 

absorbance of the supernatants was also measured in order to establish any 

presence of free protein or gold. To prevent light induced aggregation, all 

colloidal gold conjugations were stored in glass vials or polypropylene 
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centrifuge tubes in the dark at 4 °C. The suspensions were stable for several 

months.  

 

4.2.2. Coupling of nanoparticle-protein conjugates 
To verify the antigen and antibody mediated gold nanoparticle coupling of 

surface plasmons, 250 µl of anti-OMP85 antibody conjugated 13-60 nm gold 

nanoparticles in 10 mM sodium phosphate buffer pH 7.4 and 250 µl of OMP85 

conjugated 13-60 nm gold nanoparticles in 10 mM sodium phosphate buffer pH 

7.4 were added in a 48 well plate. All the combinations were carried out in 

triplicate. 

 

OMP85-conjugated gold nanoparticles (500 µl) and 500 ul of anti-OMP 85 

antibody conjugated gold nanoparticles were added to separate wells as controls. 

Native gold nanoparticles of each size (500 µl) were also added to separate wells 

as controls. They were mixed gently and then 100 µl of varying NaCl 

concentration were added (to a final concentration in the range from 2.0 mM to 

256 mM) to each combination of nanoparticles. They were mixed gently at room 

temperature. 

   

The colour shift was observed visually in specific combinations. The absorbance 

change at 620 nm was also measured within 5 minutes in a Hitachi U2000 UV-vis 
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absorption spectrophotometer. The schematic representation of the coupling 

procedure is given in the following Figure 4.1.  

 

Control system was tested using lysozyme/anti-lysozyme antibody conjugated 

13 nm gold nanoparticles without the addition of salt.     

  

            

            

            

            

            

      Coupling     

            

            

            

 

                                                                        Colour shift     

            

            

            

            

            

            

            

             

Figure 4.1. Schematic representation of antigen and antibody mediated gold 
nanoparticle coupling of surface plasmon resonance. 

250 µl of Ab conjugated 13-60 
nm gold nanoparticles in 5 
mM phosphate buffer pH: 
7.4. 

250 µl of Ag conjugated 13-60 
nm gold nanoparticles in 5 
mM phosphate buffer pH 
7.4. 

Mixed both of the solutions 
and 100 µl varying 
concentration of NaCl was 
added. Mixed at room 
temperature.  

Colour shift from red to blue 
was observed immediately in 
case of a specific antigen and 
antibody interaction. 

A non-specific antigen/antibody 
may be used to prove the 
concept. Absorbance at 620nm 
was measured. 
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4.3. Results 
 

4.3.1. Gold nanoparticle Conjugation 
Different size fractions of gold nanoparticles were successfully conjugated with 

OMP 85 and anti-OMP 85 antibodies. After separating the unbound proteins 

from the bound proteins, conjugated nanoparticles were resuspended in 10 mM 

sodium phosphate buffer pH 7.4 and the suspension appeared in ruby red 

colour. The absorbance at around 520 nm of the conjugated gold nanoparticles 

revealed slight or no difference in the absorbance in comparison to the native 

gold nanoparticles. After successful conjugation, the colloidal gold particles did 

not show any sign of non-specific aggregation. Reagent preparations stored at 

4°C for approximately 6 months were evaluated and shown to have no 

substantial loss in reactivity. 

 

4.3.2. Coupling of nanoparticle conjugates 
The coupling of surface plasmons of individual gold nanoparticles due to 

binding of OMP 85 and anti-OMP 85 antibodies in the presence of salt and 

subsequent colour shift from red to blue was studied. In presence of increasing 

NaCl concentration (to a final concentration in the range 2 mM to 256 mM NaCl), 

there was no observable colour shift in 13, 30, 40 and 60 nm size gold 

nanoparticles conjugated with OMP 85 and anti-OMP 85 antibodies. The 

absorbance at 620 nm of coupled nanoparticles remained below or identical to 

the individual conjugated nanoparticles. Plain gold nanoparticles of all sizes 
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aggregated immediately with salt addition and the suspension colour turned 

blue.   

 

However, in the case of coupling of 50 nm gold nanoparticles conjugated with 

OMP 85 and anti-OMP 85 antibody, the colour changed from red to blue and 

thus a change in absorbance at 620 nm as seen in Figure 4.2. Wavelength scans 

from 190-800 nm (Figure 4.3.) showed a significant difference in absorbance in 

the range 600-800 nm in case of OMP85 and anti-OMP85 antibody coupling in 

comparision to the absorbance of individual conjugated nanoparticles in the 

presence of same salt concentration. Colour changed from red to blue 

immediately in a specific antigen-antibody interaction, but no colour shift was 

observed in the controls with BSA conjugated 50 nm gold nanoparticles and anti-

OMP85 antibody conjugated 50 nm gold nanoparticles. 

 

It was found that, coupling of the 50 nm OMP85 conjugated gold nanoparticles 

with the anti-OMP85 antibody conjugated nanoparticles and subsequent spectral 

shift was not reproducible (6 out of 23 times) under identical conditions. Figure 

4.4. shows images of the colour shift experiment and their corresponding TEM 

images of the nanoparticle assemblies. 
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(a) 13 nm gold nanoparticle spectral change with variable NaCl 

concentrations. 
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(b) 30 nm gold nanoparticle spectral change with variable NaCl concentrations. 
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(c) 40 nm gold nanoparticle spectral change with variable NaCl 

concentrations. 
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(d) 50 nm gold nanoparticle spectral change with variable NaCl concentrations. 
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(e) 60 nm gold nanoparticle spectral change with variable NaCl concentrations. 

 

Figure 4.2. Red shift of gold nanoparticles and nanoparticle-protein conjugates to 
600-800 nm due to coupling of surface plasmon resonance induced by specific 
interaction of OMP85 and anti-OMP85 antibody conjugated gold nanoparticles of 
different sizes. (a) 13 nm, (b) 30 nm, (c) 40 nm, (d) 50 nm and (e) 60 nm colloidal 
gold nanoparticles. 
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Figure 4.3. Absorption spectra of the OMP85 and anti-OMP85 antibody 
conjugated 50 nm colloidal gold nanoparticles. Mixing the two conjugates 
resulted in a red shift of the wavelength to 600-800 nm which resulted in colour 
shift from red to blue. 
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Figure 4.4. Images of red to blue colour shift experiment using OMP85 antigen 
and anti-OMP85 antibody conjugated 50 nm gold nanoparticles (with 0.512M 
NaCl) and their corresponding TEM images. 

 

 

4.3.3. Lysozyme and anti-lysozyme antibody coupling 
The coupling of surface plasmons of individual gold nanoparticles (13 nm) due 

to binding of lysozyme and anti-lysozyme antibodies and subsequent colour 

shift from red to blue was also studied as a model system. The colour changed 

from red to blue indicating a change in absorbance at 620 nm. There was a 

significant difference in absorbance at 620 nm in the case of lysozyme and anti-

lysozyme antibody coupling in comparison to the absorbance of individual 

conjugated nanoparticles (Figure 4.5.). No colour shift was observed in the 

controls with BSA conjugated 13 nm gold nanoparticles and anti-lysozyme Ab 

conjugated 13 nm gold nanoparticles. 
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Figure 4.5. Proof of concept experiment using lysozyme and anti-lysozyme 
antibody conjugated 13 nm colloidal gold nanoparticles (n=0.2). 
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4.4. Discussion 
In this chapter, the distance-dependent optical properties of gold nanoparticles 

are evaluated as a novel method for detecting a N. meningitidis specific antigen as 

aggregated gold nanoparticles conjugated with specific antigens and antibodies. 

The capacity of colloidal gold to undergo a chromic transition upon aggregation 

makes possible its use as reporter agents for immunodiagnostic applications 

where it can provide a visible range of detection. Aggregation of gold 

nanoparticles by utilising OMP 85 and anti-OMP 85 antibody systems was used 

to demonstrate that gold nanoparticle aggregates could be directed by 

biomolecular recognition.  

 

The potential of a rapid diagnostic assay for N. meningitidis by utilising the 

specific interaction of OMP 85 and anti-OMP 85 antibody conjugated to gold 

nanoparticles was evaluated as a model system. It was postulated that specific 

interaction of OMP85 and anti-OMP85 antibody coated nanoparticles leads to 

coupling of surface plasmons and thus readily observable colour shift occurs. 

 

Following the detailed biochemical characterisation of both the OMP85 antigen 

and the anti-OMP85 antibody receptors, they were conjugated by simple 

electrostatic adsorption to gold nanoparticles of different sizes in the range 13 – 

60 nm and tested for their ability to bind with resulting colour shifts due to SPR 

effects. It has been reported previously that, in order to observe the aggregation 
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induced colour shift, the gap between the nanoparticles should be less than the 

average diameter of the individual gold nanoparticles (Kreibig, Schmitz et al. 

1987; Elghanian, Storhoff et al. 1997). In that case, the size of the nanoparticles is 

related to the size of the biomolecules. This was evaluated in a model system 

with the lysozyme and anti-lysozyme interaction, where a red shift was observed 

with 13 nm gold nanoparticles. In order to verify the optimum size range of the 

nanoparticles to achieve such a colour shift, OMP85 and anti-OMP85 antibody 

molecules were conjugated with 13, 30, 40, 50 and 60 nm gold nanoparticles. 

 

The optimal pH and the minimum amount of OMP85 antigen and anti-OMP85 

antibody required for optimal coating of the particles by charge adsorption were 

determined by a series of concentration-dependent experiments and by 

isothermal titration. A critical flocculation concentration assay, based on the red 

to blue colour change of the native gold nanoparticles in the presence of high salt 

concentrations, were used to determine the optimum protein-colloidal gold ratio 

required for effective surface coverage for increased stability (as indicated by no 

red to blue colour change). The colloidal aggregation observed under these 

conditions for the uncoated colloid was arrested due to the adsorbed protein 

molecules.  

 

The optical spectrum of a suspension of gold nanoparticles conjugated with 

OMP85 or anti-OMP85 antibody did not significantly deviate from the 
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absorption spectrum of the bare gold nanoparticle suspension not showing a 

broadening of the spectrum or formation of a new absorption band. With all size 

fractions of nanoparticles after conjugation, a 3-5 nm shift of the plasmon peak 

was observed compared to that of the original gold nanoparticles. The probable 

reasons responsible for this shift were explained in Chapter 3 (Hayat 1991; Nath 

and Chilkoti 2002). These assembled protein-gold nanoparticle bioconjugates in 

aqueous suspension maintained their activity with enhanced stability and similar 

pH dependence. This clearly indicates that the protein conjugated gold 

nanoparticles have a high dispersivity in suspension without aggregation and in 

addition showed long-term stability at 4°C. 

 

During the coupling experiment in the presence of a particular salt concentration, 

no colour shift was observed with different size nanoparticle combinations 

except in the case of 50 nm gold nanoparticles. With the coupling of 50 nm gold 

nanoparticles conjugated with OMP85 and anti-OMP85, a broadening of the 

spectrum and the formation of a new absorption band at wavelengths longer 

than 600 nm was observed, indicating particle aggregation. Binding resulted in 

an immediate change in the SPR signal, which was observed as a colour shift, 

indicating directly the presence of a specific interaction. No colour shift was 

observed in case of the controls which occurred with only either gold 

nanoparticle-OMP85 conjugates or gold nanoparticle-anti-OMP85 antibody 
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conjugates demonstrating that the aggregation was due to the OMP85-anti-

OMP85 antibody specific interaction.  

  

In the case of plain gold nanoparticles, the addition of electrolytes caused 

flocculation as a result of the shielding of the repulsive double-layer charges 

which normally stabilise them. Whereas, the presence of a minimal quantity 

(CFC) of electrolytes in the protein-conjugated nanoparticle suspensions may 

help to keep the conjugated proteins in flexible conformation rather than as a 

rigid mass. This may provide better access of the antigen to the antibody. It has 

been reported that nearly 20% of the attached protein molecules are not available 

for coupling. This is most likely to be caused by steric hindrance effects, which 

prevents some of the adsorbed proteins from binding to targets. Thus presence of 

low levels of electrolytes can increase the probability of specific antigen-antibody 

interaction, when conjugated to gold nanoparticles. 

 

The SPR effect becomes negligible when the gap between the nanoparticles is 

larger than about 2.5 times the short-axis length (Su, Wei et al. 2003). As the 

spacing between particles was reduced by less than their average diameter, the 

surface plasmon resonance peak was shifted to higher wavelength and this shift 

is well described as an exponential function of the gap between the two particles 

(Sidhaye, Kashyap et al. 2005). Because the colour change depends on the 

nanoparticle spacing, the size of the nanoparticles is a defining characteristic of 
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the system considering the size of the proteins and antibodies. Thus, smaller 

nanoparticles with an average diameter much lesser than the size of the protein 

are likely to be ineffective in yielding a colour shift. This is indicative of the 

reason why the colour shift was observed only in the case of 50 nm gold 

nanoparticles. The average diameter of the 60 nm gold nanoparticles may be 

greater than the distance between the nanoparticles brought about by the 

coupling of OMP 85 and anti-OMP 85 antibody and hence the colour shift was 

not observed. 

 

Liu et al.. used nanoparticles with larger sizes, to accelerate the rate of colour 

change (Liu and Lu 2004). It is known that the optical properties of a 

nanoparticle aggregate are dominated by their size, rather than the number of 

nanoparticles in the aggregate. Therefore, a lower degree of aggregation would 

be required to give the same spectral shift with larger nanoparticles, and the time 

required for the colour change should be decreased (Liu and Lu 2004). This was 

indeed what was observed. The colour change approached completion in less 

than 10 min for 50nm nanoparticles. Formation of large aggregates, which 

changes the proximity of colloidal gold nanoparticles in suspension cause large 

changes in the absorbance spectrum of the colloidal suspension due to long-

range coupling of surface plasmons. 
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During the antigen-antibody induced aggregation process of gold nanoparticles, 

the change in visible absorbance, and shift toward longer wavelengths, is 

proportional to the concentration of ligand involved and occurs according to the 

kinetics of the interaction process. Such quantitative results may be obtained by 

monitoring the ratio of extinction at the plasmon peak (532 nm) to the 600-800 

nm. This ratio was higher with separated nanoparticles of red colour, while a 

lower ratio was associated with aggregated nanoparticles of blue colour. 

 

The combination of OMP85 and anti-OMP85 antibody affinity binding detection 

system shows the advantages such as, a very short procedure time, no fading of 

the signal and high spatial resolution. Therefore, this new approach potentially 

offers an addition to other methods for the diagnosis of meningitis.  

Nevertheless, it was noted that the assay, as conducted at room temperature was 

not completely reproducible, even from the same batch of conjugate preparation. 

 

There may be different factors responsible for affecting the reproducibility of the 

system. The aggregation rate depends primarily on the collision frequency of the 

particles, which is directly related to the concentration of gold nanoparticle 

conjugates within the analyte solution. Ligand-conjugated gold nanoparticles 

need to maintain good dispersion and long-term stability for use as signal 

amplification probes. Several methods have been used to improve the 

dispersivity in aqueous suspension by controlling the ligand density on the 
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surface of the gold nanoparticles and by utilizing surfactants like Tween-20 have 

definitely increased the stability of the particles. 

  

Gold nanoparticle aggregation depends on the coverage of the monolayer 

formed on the colloidal gold surface and that the antigen/antibody concentration 

used for conjugation was the critical concentration to observe specific 

aggregation of gold nanoparticles in this system. There is thus a critical surface 

concentration for each protein, at which the gold nanoparticles may be 

appropriately stabilised with room available for the coupling of surface 

plasmons to occur between the particles. 

 

Nanoparticles may also be covalently cross-linked to a specific functional group 

on a targeted biomolecule (Li, He et al. 2007) such that this site-specificity allows 

it to be conjugated at a position remote from the binding site so that it does not 

interfere with substrate binding. Specific peptides in place of proteins and Fab' 

fragments in place of whole antibodies may also be used with small size 

nanoparticles (Lee, Oh et al. 2006). Consequently, a single connection between 

two particles could produce differences in the antigen-binding affinities of the 

remaining uncoupled surface-attached antibodies, depending on their proximity 

to the interparticle cross-link (Shenton, Davis et al. 1999). The ability to fabricate 

the nanoparticle aggregates with controlled connectivity requires a specific 

design approach of the antibody-antigen interface. Indeed, the versatility of 
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using gold nanoparticles in association with antigen-antibody engineering may 

ultimately make it possible to assemble a wide range of nanoparticle-based 

diagnostic assays against different pathogens. 
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Chapter 5 
 

Quartz Crystal Microbalance as an Immunosensor 
 

 

5.1. Introduction 
The combination of highly specific recognition properties of biological 

macromolecules and the sensitivity of various transducers, such as optical, 

thermal, gravimetric, electrochemical and surface acoustic wave sensors, has led 

to the development of sensitive and selective biosensors as valuable tools in 

analytical biochemistry. Acoustic wave sensors based on the piezoelectric 

properties of materials such as quartz crystal resonators demonstrate a linear 

relationship between mass adsorbed on to the surface and the resonant 

frequency of the crystal in air or a vacuum (Vidal, Garcia-Ruiz et al. 2003). 

 

When an electrical field is applied through the quartz crystal, the inner dipoles 

are reorientated to create a mechanical strain. In 1920, Cady used the reverse 

piezoelectric effect in which case, mechanical vibrations of the crystal were 

observed due to deformation under an alternate electric field. The degree of 

deformation in a piezoelectric quartz crystal depends on the applied potential 

(Shana and Josse 1994). When the applied potential is altered, an oscillatory 

motion is generated, which then forms an acoustic wave in the material. It was 

found that, when this arrangement was included in an appropriate electronic 
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circuit, the measured oscillation frequency was close to the resonant frequency of 

the quartz crystal and this generated the maximum wave amplitude. Ultrasonic 

waves are also generated when the quartz crystal is vibrating near its resonant 

frequency. Thus, a modification of the mass or the thickness of the resonator, led 

to a resonant frequency variation. In biosensors, mass changes occuring on the 

crystal surface due to the various biomolecular interactions, are measured.  

 

A biosensor is an analytical tool consisting of two components: a receptor and a 

detector. The receptor is responsible for the selectivity of the sensor and the 

biorecognition elements that act as receptors include antibodies, enzymes 

(Bentley, Atkinson et al. 2001) or whole living cells (Nomura and Okuhara 1982). 

The transducer translates the biophysical or biochemical signal into an electrical 

signal, which is measured by the detector. Thus, similar principle applies to a H-

electrode, an oxygen electrode or a piezoelectric crystal (Figure 5.1.). 

 

 

 

 

 

 

 

Figure 5.1. Schematic for a general Biosensor (Bogdan 2005) 
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One promising simple form of a detector that fits the above criteria is the Quartz 

Crystal Microbalance (QCM). The QCM is a piezoelectric mass-sensing device 

that detects changes in frequency of the crystal due to changes in mass on the 

surface of the crystal. 

 

Application of biosensors to biological samples became possible only after 

suitable oscillator circuits which could operate in liquids were developed 

(Suleiman and Guilbault 1991). The selectivity provided by the biological 

coatings together with the intrinsic sensitivity of the piezoelectric (PZ) devices 

and the ability to oscillate the crystal in liquid medium have induced a rising 

interest in this class of sensors (Castillo, Gaspar et al. 2004). Biosensors are being 

used in a variety of different fields, ranging from pesticides to biological 

weapons.  

 

As mentioned earlier, biosensors based on acoustic wave propagation utilize a 

piezoelectric material such as quartz crystal. Depending on the cut-angle of the 

quartz mother crystal, different resonator types may be obtained with 

frequencies ranging from 5×102 to 3×108 Hz. Acoustic waves cover a frequency 

range of 14 orders of magnitude, starting from 10-2 Hz (seismic waves) and 

extending to 1012 Hz (thermoelastic excited phonons). The acoustic resonators 

generally oscillate in a narrow frequency range of 106-109 Hz. The four common 
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types of acoustic resonators are surface-acoustic-wave (SAW) resonator, acoustic-

plate-mode (APM) resonator, flexural-plate-wave (FPW) resonator and 

thickness-shear-mode (TSM) resonator, also known as the quartz-crystal 

microbalance (Martin, Frye et al. 1994). Here, only TSM resonators are discussed 

as it is relevant to the study. 

 

5.1.1. Thickness-Shear-Mode (TSM) Sensors (Quartz-Crystal 
Microbalances)  
TSM resonators are also referred as bulk-acoustic-wave (BAW) resonators or as 

quartz-crystal microbalances (QCMs) (Buttry and Ward 1992). TSM devices work 

due to the acoustic wave propagation inside a quartz plate.  

 

The active element of a QCM is formed by a thin round plate of AT-cut quartz 

crystal (cut with an angle of 35.25° to the z-axis or 35° 10  with respect to the 

optical axis) with two gold electrodes deposited on the two opposite sides. These 

electrodes allow an alternating electrical field to be applied and the quartz crystal 

oscillates near its resonant frequency or at an overtone. When a mass is added or 

removed, this is considered as an increase or a decrease of the crystal’s thickness 

(Sauerbrey 1959) and thus as a result, the resonance frequency decreases (Turner 

2000). In general, the classical working frequencies for QCM range between 5 

MHz to 10 MHz. 
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QCM can measure the mass and the thickness of an analyte bound in real time. 

Many platforms based on TSM sensors, have been developed for the analysis of 

binding specificities, affinities, kinetics and conformational changes associated 

with a molecular recognition event (Buttry and Ward 1992). Even though 

flexural-plate-wave (FPW) or surface-acoustic-wave (SAW) sensors are more 

sensitive in comparison to TSM resonators, TSM sensors are widely preferred 

due to their robust nature, availability, and affordable electronics.  

 

5.1.2. The QCM Operating Principle 
Lostis (Lostis 1958), Sauerbrey (Sauerbrey 1959) and Stockridge (Stockbridge 

1965) all derived equations to explain the relationship between the resonant 

frequency of an oscillating piezoelectric crystal and the mass loaded on the 

crystal surface (Kumar 2000). Although, each one of them followed a different 

path and came to a similar conclusion, the Sauerbrey equation is most widely 

accepted equation to describe this relationship between mass and frequency 

change (Sauerbrey 1959).  

 

where ∆f is the frequency change in oscillating crystal in Hz, and  

 ∆m is the mass of deposited film in g  

 f0 is the resonant frequency of the crystal or the initial standing wave, 

 A is the active area of the crystal surface in cm2 (between electrodes),  
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 ρq is the density of quartz, 

µq is the shear modulus of quartz, and 

vq is the shear wave or oscillation wave velocity with in the quartz crystal.  

 

Studies of the spatial distribution of the differential mass sensitivity on the QCM 

crystal have found that the sensitivity is maximum in the centre of the quartz 

crystal and decreases towards the borders of the crystal  (Sauerbrey 1959; Buttry 

and Ward 1992). However, if the thickness of the electrodes is too thin (usually 

less than 500 Å), the resonant frequencies and thus the mass sensitivities of the 

entire crystal surface is very similar. The frequency shift obtained can be 

corrected to minimize these bulk effects (Schumacher, Borges et al. 1985; Urbakh 

and Daikhin 1994). 

 

5.1.2.1. Sauerbrey relationship limitations 
The equation is valid only when the following conditions are fulfilled: (i) the 

resonator is operated either in air or vaccum, (ii) the adsorbed mass is distributed 

evenly over the crystal. (iii) ∆m is much smaller than the mass of the crystal itself 

(less than 1%), (Lu and Lewis 1972; Bandey, Martin et al. 1999) and (iv) the 

adsorbed mass is rigidly attached, with no slip or inelastic deformation in the 

added mass due to the oscillatory motion. 
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The Sauerbrey equation is valid only for thin, rigid, uniform and purely elastic 

added layers. The deposition of the layer is thus treated as a thickening of the 

crystal mass (Muratsugu, Ohta et al. 1993) and thus is assumed that the added 

layer possessing the same acoustic properties. It does not apply for thick films, 

viscous liquids, elastic solids, and viscoelastic bodies, since the density would 

change and viscous coupling would change. These limitations are in general due 

to a non-ideal behaviour of the added film. 

 

Biomolecules bound to a sensor surface cannot be considered completely rigid 

because biological systems operate in liquid environments and also the 

biomolecules coordinate with water which will enhance the sensor signal. Due to 

high damping with liquid loads, the development of special oscillator circuits 

was necessary to operate in liquids (Ward and Delawski 1991; Josse, Lee et al. 

1998). The amplitude of vibration is usually 10-20 nm in air and is reduced in 

water to a mere 1-2 nm (Cooper and Singleton 2007).  

 

However, using radio-isotope labelling methods, Muratsugu and coworkers 

have shown that under a liquid environment, the linear relationship between 

mass and frequency response will persist with a coefficient of about 4 

maintaining the frequency-to-mass relationship (Muramatsu, Tamiya et al. 1988). 
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This was then further developed by Kanazawa (1997), who expanded the model 

to Newtonian (viscous and lossy) liquids. The following equation describes the 

frequency shift for liquid- loaded sensor surface in which the liquid is defined by 

its density ρ1 and viscosity η1:  

 

in which µq is the shear modulus in x-direction and ρq is the density of the 

crystal. This equation can be derived by calculation of an effective mass loading 

based on the penetration depth of the transversal wave propagated from the 

crystal surface into the liquid.  

 

5.1.2.2. Dissipation factor 
For systems operating under vacuum, in gas or in liquid, energy is lost, that is 

dissipated, during oscillation (Buttry and Ward 1992). For example, energy is lost 

in liquids due to frictional losses within the liquid as well as between the 

adsorbate and the liquid (Uttenthaler, Kolinger et al. 1998). 

 

Kasemo and co-workers first described the quartz crystal microbalance with 

dissipation (QCM-D) technique, that measures the mechanical properties of an 

adsorbate, such as viscosity, elasticity, density and thickness. This QCM-D 

technique allows the resonance frequency and dissipation factor to be monitored 
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simultaneously (Buttry and Ward 1992; Rodahl, Hook et al. 1997). In this 

technique a quartz plate is excited with a frequency generator and the free decay 

of the oscillation is recorded by switching off the source and the procedure is 

repeated each second. The dissipation factor together with the resonance 

frequency is obtained by a curve fit. The Quality factor, Q is simply the inverse of 

D and sometimes this Q factor, Q, is used instead of dissipation. 

 

Other factors which affect the frequency of the crystal include, the surface 

roughness (Martin, Granstaff et al. 1991; Yang and Thompson 1993), water 

trapped in surface cavities (Buttry and Ward 1992) etc. The frequencies shifts 

obtained could be corrected to minimize these bulk affects. 

 

5.1.3. Applications 
The first analytical application of a PZ detector was reported by King in 1964 

(King 1964). The initial applications of the piezosensors were limited to 

measurement in the gas phase, because of the common belief at the time that 

stable oscillations could not be obtained in the liquid phase. However, with the 

development of new powerful oscillator circuits, it was shown that quartz 

crystals can oscillate in contact with solution (Martin and Hager 1989) and that 

enabled this technique to be introduced into bioanalytical applications. Since 

then, there has been a growing interest in the design of biosensors capable of 

detection in the areas of health eg. clinical diagnosis and environmental 
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monitoring eg. food and water-quality control. Although there is an extensive 

literature on the applications of QCM in various fields, the application only 

relevant to this present study is discussed.  

 

5.1.3.1. Analysis of protein-protein interactions using QCM technique  
QCM has been employed for the study of a range of protein-protein interactions. 

To continuously monitor the frequency during protein-protein interactions, a 

continuous liquid-phase piezoelectric biosensor for kinetic immunoassay was 

developed by Davis and Leary (Davis and Leary 1989), facilitating the observation 

of both the extent and the kinetics of these interactions. A number of protein-

protein interactions have been studied such as, specific interactions of proinsulin 

C and engineered anti-C peptide antibodies (Caruso, Rodda et al. 1997) and the 

affinity of myocardial infarction marker troponin T for α-tropomyosin (Salvay, 

Grigera et al. 2003). The QCM technique has also been used to study the influence 

of cations, anions and solvent on protein–protein interactions (Wang, Jiang et al. 

1998). 

 

5.1.3.2. Piezoimmunosensors  
Despite the established ELISA technique (Engvall 1980), the development of 

rapid, simple and label-free immunosensors based on piezoelectric transducers 

has been widely investigated due to their attractive applications in mass sensitive 

detection (Suleiman and Guilbault 1994). Such immunosensors are valued 

because, if there is an antibody against a particular analyte, an immunosensor 
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may be developed to recognize it. The piezoelectric immunosensor, as one of the 

most sensitive analytical instruments developed to date. 

 

5.1.3.2A. Immobilization 
In general, the immobilization of proteins is accomplished by a range of methods 

including, (a) simple physisorption (Voros 2004), or (b) by electrostatic 

interaction (Zhi and Haynie 2004), or (c) by covalently linking through amines 

(Melles, Anderson et al. 2005), or (d) using thiol-containing compounds (Zhu, 

Bilgin et al. 2001), or (e) attachment by affinity interactions. The recent 

immobilization methods use materials such as a silanized layer (Babacan, 

Pivarnik et al. 2000), sol–gel matrices (Unen, Engbersen et al. 2001), polymer 

membrane (Su and Li 2004), Langmuir-Blodgett film (Walter, Bussow et al. 2000), 

or self-assembled monolayer (SAM) (Angenendt, Glokler et al. 2003). However, 

simple nonspecific immobilization techniques on flat surfaces utilize soft 

membranes such as PVDF (Walter, Bussow et al. 2000) and nitrocellulose 

membrane (Joos, Schrenk et al. 2000) or poly(L-lysine). 

 

Antibody immobilization is a very important step for successful fabrication of a 

piezoelectric immunosensor. Antibodies immobilized on a solid-phase surface 

usually show less binding activity than that of soluble antibodies (Sokoll and 

Chan 1999), likely due to a combination of steric-hindrance effects of the 

molecules on the solid-phase (Kele, Nagy et al. 2006) and the random orientation 
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of the antibody molecules on solid-phase surface (Herr, Throckmorton et al. 

2005). Thus, there is a requirement to develop improved methods for the 

immobilization of antibodies in a highly oriented manner with increased binding 

activity.  

 

Affinity tag based immobilization techniques include, such as biotin, hexa-His 

tag, or glutathione S-transferase (GST), avidin coated surfaces, (Schäferling, Riepl 

et al. 2003) Ni-NTA-coated (Zhu, Bilgin et al. 2001), and glutathione coated 

surfaces (Kawahashi, Doi et al. 2003), Protein A or Protein G coated surfaces to 

immobilize immunoglobulin G (IgG) (Byung-Keun, Young-Kee et al. 2003), 

respectively. 

 

5.1.3.2B. Immunosensing in the gaseous phase 
Coating of a PZ crystal with an antigen was first demonstrated by Shons et al. 

(Shons, Dorman et al. 1972) on a surface precoated with a low surface energy 

plastic coating, nyebar C (30% solution in 1-3 di [trifluoromethyl] benzene), 

providing a layer capable of forming hydrophobic bonds with proteins such as 

BSA. An improved indirect assay method for the determination of antigens was 

reported by Oliveira et al. (Oliveira and Silver 1980). A method for determination 

of both the type of antibody subclass and the concentration of antibody present 

was patented by Rice (Rice 1980; Rice 1982). The detection of gaseous substrates 



 

 226

by PZ immunosensors was first reported by Guilbault and co-workers (Ngeh-

Ngwainbi, Foley et al. 1986). 

 

5.1.3.2C. Immunoassay in the liquid phase 
The detection of analytes in solution reported before have been carried out by 

comparing the resonant frequency of the crystal before and after exposure to the 

test sample and the frequency measurement were subsequently carried in the gas 

phase. However, in 1982, Nomura and Okuhara (Nomura and Okuhara 1982) 

were the first to design a device capable of operating in fluids, which became the 

starting point for the development of a new class of bioanalytical tools. 

  

The first online detection of antibody-antigen reactions in aqueous solutions 

originally started with the work of Roederer and Bastiaans on SAW sensors  

(Roederer and Bastiaans 1983; Roederer and Bastiaans 1988) to detect human IgG 

in solution. Thompson et al. (Thompson, Arthur et al. 1986) evaluated the 

response of a AT-cut quartz plate device, applied for the the detection of IgG in 

solution under various conditions including stationary and flowing water, 

change of interfacial chemistry, and different aqueous viscosities. 

 

Unlike the above mentioned findings, Muramatsu et al. (Muramatsu, Dicks et al. 

1987) demonstrated that an immobilized layer of protein A placed on the surface 

of crystals modified with (ϒ-aminopropy1)triethoxy-silane could be successfully 
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utilized to determine the concentration of IgG and its subclass in solution. 

Piezoimmunosensors have also been used for the quantitative detection of 

antigen present in sample solution, in a number of studies including tumour 

necrosis factor (Liu, Tang et al. 2004) and human and rabbit IgG (Zhang, Mao et 

al. 2004). A QCM-based immunoassay for the detection of HSA, an early 

indicator of renal disease in diabetic patients have been reported (Sakti, Lucklum 

et al. 2001).  Assays for detection of disease-associated antibodies have also been 

developed for Schistosoma japonicum (Wang, Wang et al. 2002), Toxoplasma 

gondii (Wang, Li et al. 2004) and anti-sperm antibodies (Shen, Tan et al. 2006). 

 

Specific clinical markers can also be analyzed using QCM including plasma 

vitellogenin (Oshimaa, Nakajimaa et al. 2005), cholinesterase (Halámeka, Tellera 

et al. 2006), α-fetoprotein (Chou, Hsu et al. 2002), human ferritin (Chou, Hsu et al. 

2002) and ceruloplasmin (Wang, Li et al. 2004). QCM-D also has also been 

utilized for studying antigen and antibody interactions (Lu, Morimoto et al. 2003) 

and hemocompatibility of biomaterials (Ebersole, Miller et al. 1990; Fawcett, 

Craven et al. 1998). 

 

5.1.3.3. QCM-based detection of microorganisms 
Piezoelectric immunosensors haven also been used for direct detection of 

bacteria. Generally, primary or capture antibodies are immobilized onto gold 

coated AT-cut quartz crystal and the specific binding of bacteria onto the 
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immobilized antibodies ultimately results in decrease of the sensor’s resonant 

frequency. 

 

A number of piezoelectric immunosensors have been developed for rapid 

detection of bacteria including Salmonella typhimurium (Muramatsu, Kajiwara et 

al. 1986), S. paratyphi (Bao, Deng et al. 1996), E. coli O157:H7 (Suleiman and 

Guilbault 1994; Ben-Dov, Willner et al. 1997; Ivnitski, Abdel-Hamid et al. 1999; 

Dmitri Ivnitski 2000)., E. coli K12, Chlamydia trachomatis, Yersisinia pestis, Candida 

albicans (Sato, Endo et al. 1995; Sato, Serizawa et al. 1998), Shigella dysenteriae, 

Staphylococcus epidermidis (Hengerer, Decker et al. 1999) etc. and this has been 

summarized in several reviews (Bizet, Gabrielli et al. 1995). These 

immunosensors generally have a detection limit of 105–107 CFU/mL and show 

minimum or no cross reactivity towards related species. 

 

As an alternative to whole cell capture-based assays, Su et al.. (2001) developed a 

test for Salmonella enteritidis by immobilizing the bacteria to detect the 

corresponding antibodies in 1/100 diluted chicken serum and egg-white 

samples, with a clinical specificity of 100 and 92.9%, respectively (Su, Low et al. 

2001). Direct screening using QCM and virus-specific antibodies has been 

applied to human serum from patients with dengue fever virus infection (Wu, Su 

et al. 2005). 
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The detection of bovine ephemeral fever virus was demonstrated in minutes, 

potentially leading to a rapid diagnostic technique (Lee and Chang 2005). 

Amounts as low as 1 ng of two orchid viruses was detected acoustically by 

immobilizing specific virus antibodies on the sensor surface (Eun, Huang et al. 

2002). Other viral immunoassays reported include those for Tobacco Mosaic Virus 

(TMV) (Rice 1980) herpes simplex type I (HSV1) (Cooper, Dultsev et al. 2001), 

and influenza (Amano and Cheng 2005). A sensitive technique for analyzing 

phage libraries within a short time by using a flow injection system, was also 

achieved by the quartz-crystal microbalance (Tian, Wei et al. 2004). 

 

5.1.4. Amplification of the QCM signal 
Besides the unique optical properties of the gold nanoparticles, the particles also 

have been applied as signal enhancers for QCM based detection (Kim, Baek et al. 

2007). DNA-conjugated nanoparticles have been used to enhance the signal 

produced upon hybridization to a surface-bound single-stranded template 

(Taton, Mirkin et al. 2000; Wang, Xu et al. 2001; Ha, Kim et al. 2004; He and Liu 

2004; Liu, Tang et al. 2004). They were also used to increase the surface area 

available to immobilize the DNA template on a sensor (Liu, Li et al. 2005). 

Detection sensitivity is generally around 10-15–10-16 M, however, Mo et al.. 

reported zeptomolar (10-21 M) sensitivity for the detection of specific nucleic acid 

(Mo, Wang et al. 2005). Different size nanoparticles were used in the range 10-

60nm however, it has been shown that 20 nm is the optimal particle size for 
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maximal sensitivity. The larger particles were found to suffer from weaker 

binding to the surface and are therefore lost on exposure to flow across the 

sensor surface (Tao, Jian et al. 2003). 

 

A unique strategy using gold nanoparticles as signal amplification probes for the 

high-sensitive detection of the streptavidin–biotin interaction on a QCM device 

has been reported (Kim, Baek et al. 2007). Recently, amplification schemes similar 

to sandwich ELISA have been reported (Kolinger, Uttenthaler et al. 1995). Two 

approaches using an amplified mass immunosorbent assay (AMISA) concept 

and a reusable polyvinyl-ferrocene (PV-FC) film coated on the crystal, have been 

described for the detection of adenosine 5’-phosphosulfate (APS) reductase and 

human chorionic gonadotropin (hCG) respectively.  

 

A method designated as latex piezoelectric immunoassay (LPEIA), was 

developed for immunoassay of C-reactive protein (CRP), a marker for acute 

inflammation (Kurosawa, Tawara et al. 1990). In this method, the amplification of 

the frequency shift was observed using antibody-coated latex without any film 

on the crystal. Antibody-coated latex beads were also employed in an assay for 

identification of degradation products of fibrinogen and fibrin (Aizawa, 

Kurosawa et al. 2003). Thus, acoustic sensor technology is thus regarded as a 

highly interdisciplinary and has added advances and improvements ranging 

from from electrical engineering to cell biology.  
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5.2. Materials and Methods 
 

5.2.1. Materials 
Monodisperse suspensions of gold nanoparticles with an average 50 nm particle 

diameter were obtained from British Biocell (UK), while bovine serum albumin 

(BSA), N,N-dimethyl formamide (DMF) and absolute ethanol and methanol were 

obtained from Sigma-Aldrich, USA. Casein was obtained from Ajax chemicals 

Ltd, PVDF membrane (0.45 µm) from Millipore, USA and the 5 MHz gold coated 

QCM sensors were obtained from Maxtek Inc., USA.  

 

The working buffer used in these experiments was 0.1M phosphate buffer (PB) 

pH 7.4. Piranha solution (1:3 H2O2 (30% v/v) : conc. H2SO4), 0.1N NaOH, 0.1N 

HCl were all prepared using analytical reagent grade chemicals. In all instances, 

high purity deionized water was used as a diluent.  

 

5.2.2. QCM instrumentation 
The RQCM Quartz crystal microbalance (Maxtek Inc., USA) allows simultaneous 

measurement of crystal frequency and crystal resistance. The RQCM was used 

with a standard 25 mm diameter polished AT-cut quartz crystal wafer with 

circular electrodes on both sides and coated by gold disc-shaped films deposited 

on chromium underlayers (Figure 5.2.). The electrode area was approximately 

133 mm2 (Maxtek model No. 149211-2). The crystals were mounted in a Maxtek 
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CHT-100 crystal holder which was connected to a flow cell to create a 100 µl flow 

cell.  

   

Figure 5.2. The images of gold coated QCM crystals used in this study. 

 

A high performance phase lock oscillator circuit of the system initiates the 

oscillation of the crystal by a voltage pulse and the crystal is then driven at its 

resonance frequency to achieve the series resonance. The frequency of the 

vibrating crystal was monitored by a multifunction frequency counter. This 

circuit is capable of supporting heavily loaded crystals, up to 5,000 Ohms 

resistance. This circuit also incorporates a potentiometer to adjust the crystal 

capacitance cancellation thus reducing errors caused by stray capacitance of the 

system. This is is essential for accurate measurements in lossy films. This has 

enabled to measure frequency and crystal resistance to a high degree of accuracy 

over wide operating conditions. A software program (RQCM data log program) 

facilitated remote operation and the data acquisition. 
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5.2.3. QCM crystal pre-treatment 

The fabrication of the immunoassay system on 5 MHz AT-cut quartz crystals 

commenced with cleaning the crystals by the following chemical treatment. The 

crystals were pre-treated with 1M NaOH for 10 min, 1M HCl for 10 min, and 

then with Piranha etch solution, in sequence, to obtain a clean gold surface. After 

pre-treatment, the crystals were rinsed with ethanol and water successively and 

dried at room temperature under a nitrogen atmosphere prior to use. 

 
 
5.2.4. Operation of flow-cell 
After the pre-treatment, the 5 MHz AT-cut quartz crystal was mounted in an 

acrylic crystal holder between two O-ring seals inserted in a Teflon cell with 

leads, so that only the gold surface of the crystal was in contact with the liquid. 

The crystal surface was exposed to a 100 µl chamber which was connected to a 

syringe pump (Razel, USA; Model No. A-99.EZ) through 1/16” Teflon tubing 

(Upchurch Scientific Inc., USA). The sample solutions were injected through a 

manually controlled six-way valve (VICI, Cheminert, USA; Model No. 06S-

0373L). All fittings and connectors were obtained from FIA Lab Instruments Inc., 

USA.  

 

The crystal holder was placed at an angle of 30° and sealed to air in order to 

remove the potential of air bubbles remaining on the crystal after filling from the 

dry state and to allow air bubbles in the liquid phase to pass out without 
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adhering to the crystal. This placement of the crystal holder also alters the liquid 

meniscus in order to avoid reflection of induced longitudinal waves at the air-

liquid interface which in turn influence the resonant frequency of the quartz 

crystal. A constant flow rate of 3.0 mL hour–1 was maintained through out the 

experiment. 

 

5.2.5. Preparation of the Self Assembled Monolayer (SAM)-based 
immunosensor  
Rabbit anti-OMP85 polyclonal antibodies purified by protein A sepharose 

chromatography were used (Chapter 2) in these studies. Anti-OMP85 antibodies 

were immobilized by direct adsorption onto the gold surface of the crystals. 

Anti-OMP85 antibody solution (200 µl of 0.5 mg/mL) in PB was spread over the 

entire Au electrode surface and incubated at 4 °C overnight. The excess antibody 

was removed by rinsing with PB. The antibody-modified crystals were then 

saturated with 1% (w/v) Casein dissolved in PB for at least 1 h to block 

unreacted and nonspecific binding sites on the crystal surface. After rinsing with 

PB, the crystals were dried under nitrogen. The crystals were then mounted into 

a crystal holder and washed with PB until a steady/stable base line was 

achieved. OMP85 conjugated 50 nm gold nanoparticle suspension (Chapter 3) 

was then injected and resulting frequency changes were monitered. 
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5.2.6. Deposition of PVDF film on QCM crystal by spin coating 
PVDF solution was prepared by dissolving 75 mg of PVDF membrane (Millipore, 

USA) in 1.0 mL N,N-dimethyl formamide at 60 °C for 5 minutes. A 100 µl aliquot 

of the PVDF solution was then spin coated on to the surface of a QCM electrode, 

using a Laurell Technologies model WS-400A-6NPP spin coater, at increasing 

speed in the range of 0-5000 rpm at an acceleration of 50 rpm/sec for 2 minutes. 

The spinning process was repeated twice. The crystal was removed from the spin 

coater and then washed thoroughly with double distilled water to remove any 

residual DMF and dried in a vacuum oven at 60 ºC  for 30 – 60 minutes. The 

deposited PVDF film was uniform and dried during the spin coating procedure. 

The film on other parts of the crystal apart from the gold surface was manually 

removed, so that only the gold surface was coated with PVDF. The coated 

crystals were stored at room temperature in a clean chamber until used. 

 

5.2.7. Surface characterisation of PVDF coating 
The PVDF film coating on the QCM crystal surface was characterized by the 

following techniques: 

  

5.2.7.1. Scanning Electron Microscopy (SEM) studies 
SEM was performed on the PVDF film coating using a Philips XL30 microscope, 

to obtain the information about the structural morphology of the deposition. 

PVDF coated QCM crystals were affixed to aluminium pegs with carbon tape 



 

 236

and sputter coated with gold for 60 sec at 0.016 mA (Agron plasma) using a SPI-

Module Sputter Coater (SPI Supplied Division of Structure Probe, Inc).  

 

Then, the crystal was placed inside the microscope's vacuum column through an 

air-tight door. Emitted from a tungsten source, the high energy electron beam 

which typically has an energy ranging from a few hundred eV to 30 keV is 

focused into a very fine focal spot sized 0.4 nm to 5 nm. As the electron beam hits 

each spot on the sample, due to the energy exchange between the electron beam 

and the sample, secondary electrons are deflected from its surface. A detector 

counts these electrons and sends the signals to an amplifier. The final image is 

built up from the number of electrons emitted from each spot on the sample.  

 

This scanning electron microscope has a magnification range from 15x to 

200,000x and a resolution of 5 nanometers. The resulting images were scanned on 

a digital imaging system by computer enhancement. Images of fresh PVDF film 

coating were taken before and after using the crystal multiple times. Also, an 

approximate estimation of the film thickness was obtained from the SEM cross 

section images at 25,000X magnification. 

 

5.2.7.2. Atomic Force Microscopy (AFM) studies 
The Atomic Force Microscopy (AFM) (Binnig et al.. 1986) measurements were 

performed with a Nanoscope IIIa Multimode scanning probe microscope (Digital 
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Instruments Inc., Santa Barbara, CA, USA) in order to achieve information about 

the surface morphology of the PVDF coated QCM surfaces. The images were 

scanned in tapping mode (Martin et al.. 1987, Zhong et al.. 1993) in air with a 

sharp tip attached to a cantilever (Vecco, USA). Rectangular phosphorus doped 

silicone tips (0.5-2.0 ohm-cm) with a spring constant of 40N/m were used in the 

frequency range of 100-500kHz. The thickness of the cantilever was 4 micrometer 

with back side coating of 40nm aluminium. Tip region of contact (ROC) was 

<10nm with tipROC max of 12.5 nm, front  and back and side angles of the tip 

were 15°, 25° and 17.5° respectively. Scan speed was varied depending on the 

scan size without affecting the quality of the image. When a laser beam is 

directed onto the cantilever, the deflection of the cantilever is detected with a 

photo detector. Both the height and roughness profiles of the PVDF surface and 

the attachment of the whole cell NM bacteria on the sensor surface were 

analysed. 

 
  
5.2.7.3. Network analyzer studies 
An Agilent E5100A Netwrok analyzer was used to study the impedance profile 

of the crystal before and after coating with PVDF layer. A Pi-network test fixture 

was used in the data acquition process. The dissipation change was measured by 

periodically switching off the driving power to the thickness-shear-mode 

oscillation of the sensor crystal and recording the decay of the damped 

oscillation. 
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5.3. Results 
In these studies, the use of QCM was explored to develop a real time 

immunoassay for OMP85 antigen and to assess the applicability for the 

development of a biosensor for detection of Neisseria meningitidis.  

 

5.3.1. Self Assembled Monolayer (SAM) based Immunosensor 
The clean gold surface on the QCM crystal coated with anti-OMP85 antibodies 

was washed in situ with 0.1M PB pH 7.4. The excess anti-OMP85 antibody and 

casein molecules were removed by PB wash and a stable base line was achieved. 

Introduction of OMP85 antigen conjugated with 50 nm gold nanoparticle, on the 

QCM crystal surface resulted in frequency changes, corresponding to the antigen 

concentration. Figure 5.3 shows the time and concentration dependent frequency 

changes upon the exposure of the anti-OMP85 antibody layer to 6.25 µg/mL 

OMP85-conjugated to 50 nm gold nanoparticle. The frequency change for the 

same amount of antigen without the gold nanoparticles was not measurable in 

this QCM system (data not shown).  

 

However, the frequency shifts due to the specific antigen-antobody interactions 

were varied and sometimes unobservable. For reasons not clear, the system was 

not stable and the measured frequency change was variable with high noise 

levels. In order to address these issues with stability and noise, a PVDF film with 

protein A layer on QCM was utilized as an alternate approach.    
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Figure 5.3. Changes in frequency as a function of time following the sequential 
exposure of the antibody coated quartz crystal to the OMP85 conjugated 50 nm 
gold nanoparticles. The grey area indicates the OMP85 and anti-OMP85 antibody 
binding event and resulting frequency change. 

 

5.3.2. Real-time measurements using a PVDF coated QCM 
immunosensor 
A method for the preparation of preparation of a PVDF solution was developed 

and used to spin coat the QCM crystals. This method was desribed in section 

5.2.6. 

 

5.3.2.1. Real time analysis of the in situ preparation of a Immunosensor 
Before an experiment, the RQCM instrument was warmed up for at least two 

and half hours with or without a crystal in the holder. The PVDF-coated 5 MHz 

AT-cut quartz crystal was mounted in an acrylic crystal holder between two O-

∼40 Hz 
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ring seals, so that only the coated surface of the crystal was in contact with the 

liquid. Analytical grade methanol was injected for 3 minutes to pre-wet the 

PVDF membrane. After wetting the PVDF film with methanol for 5 minutes, 

0.1M PB pH 7.4 was passed through the chamber to remove the methanol and 

obtain a stable base line. The crystal resistance was observed in the range of 500-

600 Ohms. Similar resistances were recorded following the application of 

subsequent film coatings. If necessary, capacitance cancellations were carried out 

to lock the crystal frequency. The frequency shift was recorded as a function of 

time at an interval of 5 s using the RQCM data log program on a computer.  

 

The detection of OMP85 target antigen molecules using this approach was as 

follows: The PVDF coating was washed using 0.1M phosphate buffer pH 7.4 

until a steady baseline was achieved overnight. Following the observation of a 

steady baseline, a layer of protein A was  first adsorbed on the PVDF coated Au 

surface of the QCM electrode by passing a solution of 100 ug/mL protein A at a 

flow rate of 3.0 mL hour-1. After the protein A baseline was stabilised (shift less 

than 1 Hz min−1), excess protein A was removed by washing with 0.1M PB (pH 

7.4). The PB wash was continued until another stable baseline was observed for 

5-10 minutes. Subsequent blocking of unbound sites using 1% (w/v) casein in PB 

on the sensing interface was then carried out at a similar flow rate. Excess casein 

solution was removed with PB until a baseline was achieved for a further 5-10 

minutes.  
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Following the stabilisation of the QCM response, the protein A - sepharose 

purified anti-OMP85 antibody solution (100 µg/mL) was then injected for 

binding to the surface immobilized protein A molecules and allowed to bind 

until a stable base line was observed. After rinsing with PB to remove the excess 

antibodies, finally the cognate antigen, OMP85 was allowed to specifically bind 

with the anti-OMP85 antibodies by passing 20 µg/mL OMP85 antigen over the 

crystal surface at the same flow rate. After achieving the stable baseline 

frequency, excess OMP85 antigen was flushed with PB to obtain a steady 

baseline (Figure 5.4.).  
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Figure 5.4. Changes in frequency following sequential exposure of the PVDF 
coated quartz crystal to the OMP85 antigen alone.  
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5.3.3. Enhancement of mass sensitivity using gold nanoparticles 
The gold nanoparticles were used to enhance the mass sensitivity and 50 nm 

gold nanoparticles conjugated with OMP85 antigen was passed over the protein 

A immobilized anti-OMP85 antibody layer and the frequency change was 

monitored. When the antigen was added without gold nanoparticles at 20 

µg/mL OMP85 concentration, a ~55 Hz frequency shift was observed (Figure 

5.4.), whereas, at 300 ng/mL concentration, the temporal response curves could 

not be distinguished from the baseline of the negative control curve. For 

example, with 5 µg/mL OMP85-gold nanoparticle suspension (as measured by 

Bradford assay) injected in the QCM cell, a large decrease of the microbalance 

frequency, ∆f = 130 Hz, was observed (Figure 5.5.). For the same amount of 

antigen without gold nanoparicles, a frequency shift of 22 Hz was observed. For 

the entire range of concentrations analyzed (300ng-20µg/mL OMP85), a five fold 

increase in the sensitivity was observed with the use of 50nm gold nanoparticles 

(Table 5.1.). 

 

OMP85 Conc. (µµµµg/mL) 
∆∆∆∆f with gold 
nanoparticle 

∆∆∆∆f without gold 
nanoparticle 

20 250 55 
10 185 32 
5 130 22 

2.5 90 15 
1.25 65 10 

0.625 40 6 
0.312 12 4 

Table 5.1. QCM response for various concentrations of OMP85 antigen both with 
and without gold nanoparticles. 
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Figure 5.5. A flow through experiment showing detected frequency changes in 
response to sequential addition of protein A (100 µg/mL), casein (0.1%), anti-
OMP85 antibody (100 µg/mL) and 50 nm gold nanoparticle conjugated OMP85 
antigen (5 µg/mL). 

 

All frequency changes due to different binding events were monitored step by 

step in real time (Figure 5.5. and 5.6.). In every step, the frequency change 

reached a plateau after a variable period of time which indicated no further 

change in the mass on the crystal surface. Once a stable base line was established 
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at each step, replacement of the protein solution by buffer solution (PB) did not 

produce any noticeable change in the frequency response. This indicates that the 

possible effect of variations in bulk density and viscosity due to fluid exchange 

were negligible. Except for the antibody step, the resonant frequency of the 

crystal reached a baseline very quickly in all other steps and the stable 

frequencies obtained at different times were almost identical. A prolonged 

baseline, stable over few hours with a noise level less than ± 1 Hz when PB was 

flowing across the crystal surface at 3.0 mL/hour was also demonstrated. 

 

 

Figure 5.6. A schemtatic representation of a piezoelectric immunosensor used in 
these studies in the order of addition of different layers of biomolecules. 
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To test the reproducibility of the immunosensor, the QCM response to different 

concentrations of OMP85 antigen, was determined in duplicates. An inter-assay 

variation of 5-10Hz was observed with the various concentrations. This result 

indicates that the proposed piezoimmunosensor could provide reproducible 

determination of OMP85 antigen. 

 

5.3.4. Dose–response curves  
It can be seen that for the entire OMP85 working concentration range of 300 ng–

20 µg/mL, the higher the concentration, the greater the sensor responses (Figure 

5.7a., 5.7b. and 5.7c.), and a nonlinear relationship between frequency change 

and amount of OMP85-gold nanoparticle conjugate was observed (Table 5.1.).  
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(a) 20 µg/mL OMP 85 antigen – 250 Hz Frequency shift 
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(b) 2.5 µg/mL OMP 85 antigen – 130Hz Frequency shift 
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(c) 300 ng/mL OMP 85 antigen – 12 Hz Frequency shift 
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Figure 5.7. Changes in frequency as a function of time following the sequential 
exposure of the PVDF coated quartz crystal to OMP85 protein conjugated to 50 
nm gold nanoparticle. (a) 20 µg/mL, (b) 2.5 µg/mL and (c) 300 ng/mL. The grey 
area indicates the gold nanoparticle-OMP85 and anti-OMP85 antibody binding 
event and subsequent frequency change. All the responses after the Ag-Ab 
binding event are the washing steps. 

 

 

The specificity of biosensor was assessed using BSA conjugated gold 

nanoparticles as a non-specific antigen. No non-specific interaction was observed 

using upto 20 µg/mL BSA-gold nanoparticle conjugate, illustrating the 

specificity of the sensor (Figure 5.8a.). The dip immediately after the introduction 

of the BSA coated nanoparticle suspension might have occurred due to the 

  ∼12 Hz 
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viscosity difference between the solutions. The microbalance frequency remained 

constant when neat 50 nm gold nanoparticle suspensions were injected onto the 

QCM surface coated with protein A/anti-OMP85 antibodies (Figure 5.8b.). 

Nanoparticles were blocked with casein to prevent non-specific Au-protein 

binding. 
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(b) Neat gold nanoparticles - 0 Hz Frequency shift 
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Figure 5.8. Changes in frequency following the exposure of the PVDF coated 
quartz crystal with protein A and anti-OMP85 antibody to (a) BSA conjugated 50 
nm gold nanoparticles and (b) neat gold nanoparticles. No change in frequency 
was observed. The grey area indicates the injection of neat/BSA conjugated gold 
nanoparticles and subsequent elution without binding to the immobilised 
anibodies. 

 
 
 
5.3.5. Calibration curve for the detection of OMP85 
A calibration curve was constructed using OMP85 antigen at different 

concentrations in the range of 300 ng - 20 µg/mL on the antibody-coated crystals, 

which resulted in differing frequencies accordingly, all significantly 

distinguishable from the background noise. Calibration curves were obtained for 

both gold nanoparticle-OMP85 conjugates and OMP85 alone on the sensor.  

  0 Hz 



 

 250

 

 The calibration curve determined from the net frequency changes showed 

significant linearity over a range from 300 ng/mL to 20 µg/mL of OMP85 target 

molecule (5.9a. and 5.9b.) These experiments clearly indicate that gold 

nanoparticles can be used to enhance the detection limits of the conventional 

QCM detection systems. 
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Figure 5.9. The calibration curve determined from the net frequency changes 
upon OMP85 and anti-OMP85 antibody interactions and the difference in 
frequency measured with and without conjugation with gold nanoparticles. The 
concentration of OMP85 target molecules ranged from 300 ng/mL to 20 µg/mL 
resulting frequency changes were in the range from 10 to 250 Hz. (a). The 
calibration curve determined from the net frequency changes by OMP85 target 
molecules with different concentrations and additional frequency changes due to 
OMP85 conjugated gold nanoparticles.  (b) The calibration graph of frequency 
decrease vs. logarithm of antigen concentration is linear within the same 
detection range. 
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5.3.6. Regeneration of immunosensor 
After each run, the used QCM crystals were regenerated by injecting the elution 

buffer solution (0.1 M Glycine-HCl, pH 3.0) to release antigen–antibody 

complexes from the protein A layer. Washing continued until return to the 

original protein A baseline was observed. The glycine solution removed all 

biological layers except the protein A and casein layers, which could be seen 

from the frequency base line. Finally methanol was applied to remove the 

protein A and casein layers as well and followed by PB wash until the initial 

baseline was achieved. The crystal was reused for the subsequent experiments.  

 

Using this regeneration method, the coated crystals were reused up to 25 times 

without significant loss of protein binding activity. One important observation 

was that the crystal base resistance increased with each use. After 20-25 uses, the 

PVDF film from the crystal surface was removed with an acetone wash and re-

coated with a fresh PVDF solution to regenerate the PVDF layer. 

 

5.3.7. Analysis of whole cell NM bacteria by the immunosensor 
 
To evaluate the designed sensor for the detection of whole cell bacteria with and 

without Au nanoparticles attachment, sheep anti-NM polyclonal antibody were 

immobilized using protein G on the sensor surface. Formalin treated N. 

meningitides cell suspension at a concentration of 300 x 106 cfu L-1 were prepared. 
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Figure 5.10. indicates a 7 Hz frequency shift upon attachment of the 100 cfu/mL 

cells. However with PBS wash, the frequency change was reduced to 4 Hz net 

change. For the same concentration of bacteria conjugated with 50 nm gold 

nanoparticles, significant frequency shift (17 Hz) was observed but notably this 

occurred in the opposite direction (Figure 5.11.). Similar response in the opposite 

direction was observed with large number of bacteria (3 x 104 cfu/ml) injected 

onto the sensor surface. 
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Figure 5.10. Changes in frequency following the exposure of the PVDF coated 
quartz crystal to N. meningitidis whole cells. A net frequency shift of 4 Hz was 
observed for 100 cfu/mL bacteria. 
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Figure 5.11. Changes in frequency following the exposure of the PVDF coated 
quartz crystal to N. meningitidis whole cells conjugated with 50 nm gold 
nanoparticles. A net frequency shift of 17 Hz was observed in the opposite 
direction for 100 cfu/mL bacteria. 
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Figure 5.12. Changes in frequency following the exposure of the PVDF coated 
quartz crystal to N. meningitidis whole cells. For a total of 2 x 104 cfu/mL, a 
frequency shift was observed in the opposite direction with the response 
reaching the pre-antibody attachment base-line. 

 



 

 254

5.3.8. Surface characterisation of PVDF coating 
 

5.3.8.1. Scanning Electron Microscopy (SEM) studies 
SEM images clearly showed the uniform distribution of the polymer. PVDF 

formed a thin, porous, rough and rigid structure on the QCM surface (Figure 

5.13a. and 5.13b). These pores are predicted to be hydrophobic pockets based on 

the structural similarity to the pores in the PVDF membrane (Figure 5.14.), which 

also indicates that dissolution conditions didn’t alter the structural features of the 

PVDF membrane. A distorted structure of the film after multiple uses was 

observed as seen in Figure 5.15. An estimation of the film thickness was found to 

be less than 1 µm, as measured from the cross section of the film (Figure 5.16.).  

 

  

   (a)      (b) 

Figure 5.13. PVDF film distribution on the QCM magnification at (a) 500x and (b) 
10000X. 
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Figure 5.14. PVDF membrane structure at 10000X magnification. 

 
 
 
 

  

Figure 5.15. Distorted PVDF film structure after multiple runs on the same film. 
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Figure 5.16. The cross sectional view of the PVDF film coated on the QCM crystal 
showing the thickness of the film. 

 

5.3.8.2. Network analysis 
A network analyzer was used to monitor the frequency shift and the acoustic 

damping of admittance at the crystal resonance frequency after film deposition 

(Figure 5.17 and Figure 5.18). The film quality was quantified by calculating the 

Q  factor of the crystal, which represents the rate at which an oscillating system 

dissipates its energy. The higher the Q  factor, the better the quality of the QCM 

resonator, and the lower the dissipation of oscillation energy in the resonating 

system. 
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Figure 5.17. The impedance behavior of 5 MHz quartz in the presence and 
absence of the PVDF film coating. An alternating electric field was applied to the 
crystal causing an oscillary motion. As the field is switched off, the amplitude of 
the oscillation declines. The rate at which it declines depends on the energy 
dissipation. 
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Figure 5.18. Changes in energy dissipation as a function of time obtained from 
the QCM measurements for the same sequence of events as displayed in Figure 
5.14. 

 

5.3.8.3. Atomic Force Microscopy studies 
The surface profile of the PVDF film on the quartz crystal was also monitered by 

AFM. Tapping mode was used, in order to avoid the sample deformation when 

imaging polymeric materials such as PVDF presents. An atomic force 

microscopy image of the PVDF modified crystal surface is presented in Figure 

5.16., which was similar to the image obtained from SEM. The polymer 

distribution was rough and the root mean square roughness (RMS) of the coating 

was found to be 247.99 nm, respectively, which can be seen in Figure 5.19. The 

3D image of the roughness distribution profile can be seen in Figure 5.20. The 
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contrast between the AFM images of a plain gold surface area and the area 

covered by PVDF film allows the rough estimation of the thickness of the film to 

be approximately 79.68 nm (Figure 5.21.). AFM images (Figure 5.22. and Figure 

5.23.) of the bacteria attached QCM sensor confirmed the presence of bacteria.   

 

 

Figure 5.19. AFM image of the PVDF film coating on the QCM surface. 
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Figure 5.20. AFM image showing the roughness distribution of the PVDF film 
coating on the QCM surface 

 

 

Figure 5.21. Height analysis of the PVDF film by atomic forece microscopy to 
determine the approximate thickness of the layer. 
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Figure 5.22. AFM image of a N. meningitides bacterium attached to the sensor 
surface through protein G and anti-NM antibody immobilization. 

 

 
Figure 5.23. Height and section analysis of the QCM sensor surface also indicates 
the presence of attached bacteria (approximately 1 µm size). 
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5.4. Discussion 
The piezoelectric crystal sensor is becoming a very powerful analytical tool 

because of the established relationship for the change in frequency to the analyte 

concentration with high sensitivity. Being a label free assay, piezoelectric 

immunosensing methods, offer an alternative to existing conventional methods. 

In this chapter, a highly selective QCM based immunosensor was designed for 

the rapid diagnosis of meningococcal meningitis using OMP85 and anti-OMP85 

antibody as a model system. 

 

AT cut crystals with polished surface are very popular in QCM techniques 

because of their excellent frequency versus temperature characteristics (low 

df/dt) over a wide range of temperatures and they are specially designed for 

operation in liquids. The mass sensitivity of a 5 MHz quartz crystal is 

approximately 0.057 Hz cm2 ng-1, which is approximately 100 times higher than 

that of an electronic fine-balance which has a sensitivity of 0.1 g. Thus, it is ideal 

to choose a coating that will undergo highly selective chemical or physical 

binding with the analyte to be detected.  

 

The flow-through QCM biosensors have drawn increasing attention due to their 

ease for automation of the process (Rickert, Brecht et al. 1997). After fixing the 

crystal in the crystal holder, capacity cancellations were done to lock the crystal 

frequency in the system. Proper capacitance cancellations are required to assure 
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true series resonance operation of the crystal oscillator, and to eliminate 

frequency and resistance errors. 

  

Antibody immobilization is a vital step in successful development of a 

piezoelectric immunosensor. Apart from affiinity based and chemical 

immobilization methods, antigens or antibodies are frequently immobilized by 

the simple physisorption on clean gold surfaces (Sargent and Sadik 1998). The 

stability of those immobilized molecules does not differ significantly from the 

covalently coupled ones. However, problems arising from these immobilization 

techniques are the nondirectional orientation of the molecules on the surface and 

thus some of the antigen or antibody molecules are not accessible for binding. In 

this study, the frequency shift observed for the binding of a particular 

concentration of OMP85 antigen, was much less in comparision to the frequency 

shift observed for the same amout of antigen bound on the PVDF coated crystal 

with protein A bound antibody. This reflects the importance of using protein A 

and the directional orientation of the antibody molecues for maximum 

sensitivity.  

 

PVDF (average molecular weight, M w = 530,000) transfer membrane is a 

naturally hydrophobic, unsupported transfer membrane. Its exceptional tensile 

strength and high binding capacity make these membranes ideal for use in 

Western blots, immunoblotting, protein sequencing, MS analysis and solid phase 
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assays. PVDF membranes are also used in various detection systems which 

includes, radioactive, chromogenic, chemiluminescent, fluorescent, and 

chemifluorescent techniques. Its high binding capacity, prevents protein from 

passing through the membrane, and has a low background that provides an 

excellent signal-noise ratio. Also, PVDF film exhibits piezoelectric, pyroelectric 

and ferroelectric properties and which all have been utilized in sensors and 

actuators including modal transducers, electromechanical transducers, 

biomedical photoacoustic imaging arrays, infrared imaging arrays, and 

fingerprint sensors. 

 

Deposition of uniform ultrathin film on a quartz crystal is a crucial point to 

achieve stable and reproducible results each time. Interpretation of adsorption 

phenomena is strongly influenced by the surface roughness of quartz resonators 

(Beck, Pittermann et al. 1992; Martin, Frye et al. 1993). Hence, smooth surfaces are 

required when operating in fluids so as to avoid frequency shifts arising from 

changes in surface energies (Martin, Frye et al. 1993). There are various methods 

for depositing PVDF films on a substrate such as casting, spray, sputtering, spin, 

self-assembling, evaporation and the Langmuir–Blodgett technique. Each 

method has its strengths and shortcomings. For example, with the casting 

method it is possible to deposit a thicker polymeric film, but there is a poor 

control on the amount of material deposited.  
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Spin coating is a simple and fast technique to prepare thin films of best 

uniformity in a repeatable manner. The film formation, its thickness and 

roughness can be controlled by varying parameters such as solution 

concentration, solvent properties, spinning speed, acceleration and spinning time 

(Emir, Zhong et al. 2006). In this work, PVDF film coating on QCM crystal surface 

was ahieved by spincoating of a PVDF solution prepared as described in section 

5.2.6. The primary aim was to obtain sufficiently smooth and fully covered films 

of PVDF, which would work in the RQCM instrument. 

 

After careful trials, the PVDF concentration was optimized (75 mg/mL) to 

achieve the same resistance (500-600 Ohms) each time. The spinning was 

repeated twice to yield a more compact structure following drying of the 

membrane. The film on the silica surface surrounding the electrode was 

manually peeled off so that only the film remains on the gold surface. This was 

done principally to reduce the mass load on the crystal and so that the crystal 

frequency could be locked in the system. An interesting observation was that the 

film was loosely bound on the silica surface, where as on the gold surface it was 

tightly bound and hence there was not slip against the electrode surface of the 

quartz crystal during oscillation. PVDF coated crystals may be stored dry for 

long periods of time at room temperature. Prior to use, dried membrane coated 

crystals must be wet by soaking in 100% methanol. 
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PVDF is an inherently hydrophobic polymer, so aqueous buffers cannot 

penetrate the pore structure. It has been generally considered that the pore 

structure must be made accessible by a prewetting step with methanol so that 

proteins can interact with the PVDF membrane. Methanol also assists in 

removing any complexed SDS from the protein molecules (Mozdzanowski and 

Speicher 1992) and thereby increases the probability that a protein molecule will 

bind to the membrane. Once the membrane is wetted, protein binding may be 

achieved by simply bringing the protein into contact with the membrane. 

Because binding occurs throughout the depth of the membrane, the binding 

capacity is determined by the internal surface area of the pores (Mansfield, 1994). 

Complete wetting with methanol was evident by a change in the membrane’s 

appearance from opaque to semi-transparent.  

 

Due to the hydrophobic character and the steric constraints of the surrounding 

PVDF layer, the physical adsorption of antibody molecules directly within the 

PVDF polymer may induce a marked loss of their recognition activity. Also, the 

antibody molecules buried in the porous structures may drastically reduce the 

accessibility to the immobilized antibody molecules. Such limitations may hinder 

the formation of specific antigen– antibody bonding. 

 

Although many immobilization methods have been studied and applied to 

piezoelectric immunosensor developments, it is usually necessary to determine a 
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suitable immobilization method for each biological material in a particular 

application (Blonder, Ben-Dov et al. 1997). In clinical immunoassays, it is 

preferable that antibodies are immobilized with highly controlled orientation 

and the steric-hindrance effect must be reduced (Sokoll and Chan 1999) so as to 

maximize their antigen-binding efficiency and attain ultimate sensitivity and 

selectivity of immunoassay (Lee and Chang 2005). Protein A is a polypeptide 

isolated from Staphylococcus aureus that binds specifically to immunoglobulin 

molecules, especially IgG antibodies, through the Fc domain without interacting 

at the antigen site. Protein A layer might also be serving as an intervening 

“spacer” matrix to extend the immobilized antibodies away from the surface and 

makes them more accessible to the antigens. This property permits the formation 

of tertiary complexes consisting of protein A, antibody and antigen. 

 

Protein A has been widely utilized for oriented immobilization of antibodies and 

constructions of piezoelectric immunosensors (Muramatsu, Dicks et al. 1987; 

Konig and Gratzel 1994; Babacan, Pivarnik et al. 2000). It was shown that Protein 

A-based piezoelectric immunosensor was more favorable than the 

polyethylenimine-glutaraldehyde method in detecting S. typhimurium due to its 

stability and better reproducibility of the immobilization layers (Babacan, 

Pivarnik et al. 2000). A Protein-A based SPR immunosensor has been developed 

for detection of E. coli O157:H7 (Fratamico, Strobaugh et al. 1998). The 
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immobilization of Protein A caused a highly insulating layer, and the insulation 

was further improved by antibody immobilization and protein binding. 

 

Blocking any unbound or non-specific sites on the layer to maximize the signal-

to-noise ratio was was necessary because of the inherent affinity of the polymeric 

surface for proteins. Also interstitial places between hydrophobic pores might 

have been filled with protein A and Casein molecules as a result of their smaller 

size.  

 

After washing with phosphate buffer to remove any excess casein from the 

transducer surface, anti-OMP85 antibody solution was injected. Being a 

directional coupling between protein A and antibody molecules, this particular 

step took more than an hour to reach the base line. As the hydrophobic pores in 

the PVDF film were filled with protein A and casein molecules, antibodies 

should only bind to the protein A molecules. On the other hand, without protein 

A molecules, antibodies would have penetrated into the porous structure of the 

membrane and only those antibody molecules on the very top layer of the 

surface may actually be available for antigen binding. Antibody molecules 

embedded within the pore structure may not participate in the overall reaction.  

 

 After washing with PB to clear any excess antibody, OMP85 antigen conjugated 

with 50 nm colloidal gold nanoparticles was introduced. It is shown that, the 
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resonant frequency of the sensor decreased over time due to the binding of 

OMP85 antigen onto the immobilized antibodies, and the time to reach a plateau 

ranged from 5 to 15 minutes. The total mass of macromolecules deposited onto 

the electrode was directly proportional to the frequency change of the QCM. 

When the different molecules were bound onto the crystal surface, the roughness 

range of the crystal was decreased and thus the resistance. 

 

It is well known that the behavior of a piezoelectric sensor in solution is much 

different to that in air. In solution, in addition to surface mass change due to 

specific or nonspecific adsorption, variation of surface viscoelasticity and 

solution density and viscosity can all result in a frequency change of the quartz 

crystal (Martin, Granstaff et al. 1991). Other important parameters that influence 

the resonant frequency of the quartz crystal in solution are the ionic strength and 

dielectric constant of the electrolyte. To avoid the possible error resulting from 

different additions of solutions or samples, the frequency changes of each step 

were monitored with PB wash for more than 5 minutes (after the achieving the 

base line for each sample) until equilibrium was reached. When it was 

equilibrated with the phosphate buffer, the crystal could reach a new equilibrium 

generally within 3 min after replacement injection, and the baseline was stable 

over many hours with a noise level less than ±1 Hz.  
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The maximum frequency increase due to washing with PB was less than 1.0 Hz, 

which was negligible when compared to multilayer frequency shifts when 

protein solutions were added. Further addition of PB after the protein layers 

have been resulted in no change total frequency of the crystal, indicating that 

specific adsorption of the protein layer has occurred.  

 

For small biomolecule detection at low concentrations, it may be quite difficult to 

obtain observable and direct signals. This is mainly due to the lack of mass 

sensitivity of the commonly used QCM instruments, as they generally employ 5 

to 10 MHz quartz crystals  (Zhang, Feng et al. 1997). Besides their use in 

colorimetric assays, gold nanoparticles can be used in mass detection techniques 

to amplify the mass of analytes thereby increasing the sensitivity of the assay, as 

noted previously. The conjugation of colloidal gold nanoparticles to 

macromolecules can retain the activity of biomolecules and enhance the 

immobilized amount of biomolecules (Chu, Zhao et al. 2006; Tripathi, 

Kandimalla et al. 2006).  

 

This sensitivity was sufficient to directly detect the binding event between the 

OMP85 alone and the specific antibody layer. Conjugated gold nanoparticles 

were used as signal amplification probes for high-sensitive detection of target 

antigen at very low concentrations. First, in contrast to the direct binding of 

antigen with immobilized antibody on bulk gold surfaces, OMP antigen was 
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bound on gold nanoparticle surfaces. Second, the high surface-to-volume ratio of 

the assembled gold nanoparticles may greatly enhance the immobilization 

density of bound proteins. The OMP85 antigen was then detected directly by the 

frequency change observed as it bound to the specific antibodies. The present 

immunoassay system exhibited the analytical performance such as sensitivity, 

precision, accuracy, analytical time, stability and reproducibility needed for 

quantification of the OMP85 antigen. 

 

To ensure that the frequency change was due to the OMP85 and anti-OMP85 

antibody interaction, neat gold nanoparticles without antigen were injected onto 

the PVDF coated crystal containing protein A and anti-OMP85 antibodies. No 

frequency change was observed and this observation led to the following 

conclusions: (a) the interactions between anti-OMP85 antibody and OMP85 

antigen was specific as reflected by the frequency change, (b) neat nanoparticles 

didn’t bind to the either PVDF or antibody coated QCM crystal and (c) changes 

due to solution viscosity were negligible as the measurable signal was constant 

when the nature of the solution was modified. Moreover, 90 % of the signal was 

obtained within 10 minutes. 

 

Stability and regeneration of immunosensors are crucial to consider for the 

development of practical immunosensors. Commonly, the regeneration of 

immunosensors is achieved by releasing the antigen–antibody complexes 
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adsorbed electrostatically from the sensing surface with a strong base and high 

ionic strength salt (NaOH+NaCl). Janshoff et al. (Janshoff, Steinem et al. 1996) 

used proteases to regenerate the sensor surfaces. In this study, 0.1M glycine-HCl, 

pH 2.3 solution was used to release antigen–antibody complexes from the 

biorecognition surface to regenerate the active surface. An erratic response was 

observed with 0.1M glycine pH 3.0 solution and this might be due to a difference 

in viscosity of the solutions and changes in temporal excess flow pressure on the 

crystal. Final treatment with methanol not only removed the protein A and 

casein layers, but also wetted the membrane for the next experiment. 

 

Evidence of restoration of the initial resonance frequencies revealed that the 

dissociation of the antigen–antibody complex was successfully attained. Up to 

20-25 repetitive assays were achieved without significant loss of detection 

sensitivity, showing high reusability and stability in the successive assays. After 

reusing for more than 25 times, then, the sensitivity of the immunosensor 

declined very sharply. This was performed twice with consistent results.  

 

Typical calibration curves of the immunosensor for 50 nm gold nanoparticle 

conjugated with different concentrations of OMP85 were obtained and the 

frequency shift was directly proportional to the antigen concentration. To clarify 

the amplification characteristics of the gold nanoparticle conjugation, the 

calibration curves of the frequency responses without nanoparticle conjugation 
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were also obtained for each concentration of OMP85 anigen. The calibration 

curve was linear over the same OMP85 concentration range. After comparing the 

difference in the frequency shifts between the OMP85–gold nanoparticle 

conjugates and the nanoparticles alone, it was found that there was five fold 

increase in the sensitivity with nanoparticle conjugation. 

 

The developed immunosensor was able to detect the whole cell NM bacteria. At 

low numbers (100 cfu/mL) normal frequency shift with 4 Hz net response was 

observed. Initial 7 Hz shift was reduced to 4 Hz after PB wash, which might be 

due to the removel of unbound bacteria from the sensor surface. After PB wash, 

when bacteria were re-injected, 3 Hz frequency shift was observed, and with the 

subsequent PB wash, response had gone back to the initial base line. This 

suggests that, excess or unbound bacteria were removed from the sensor surface 

with PB wash.  

 

However, with the same concentration of bacteria attached with gold 

nanoparticles and also with excess number of bacteria, there was a significant 

frequency response but notably this occurred in the opposite direction. It was 

observed that with a 6 x 104 cfu/mL, the frequency trace rises to the frequency 

which is equivalent to the initiation of the antibody attachment. This suggests 

that, under the shear force of the oscillating QCM crystal and the high surface to 

volume ratio of the bacteria, might be removing the specifically bound antibodies 
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from the surface as indicated by the frequency returning to the initial pre-Ab 

attachment state. Previous QCM studies have employed cell detachment as a 

detection mechanism. Dultsev et al.. (2001) showed that specifically adsorbed 

bacteriophage could be detected by breaking the interaction between proteins 

displayed on a phage coat and ligands on the surface of a QCM (Dultsev, Speight 

et al. 2001). Gryte et al.. (1993) used 5 MHz QCM crystal to monitor the 

attachment and detachment of anchorage-dependent mammalian cells on a 

surface (Gryte, Ward et al. 1993). In both cases the frequency rose upon 

detachment following immunorecognition. Future experimentation with small 

gold nanoparticles with lower inertial shear force and determining the optimum 

dilution of bacteria may produce continuous attachment and frequency changes 

in the same direction as the initial case. 

 

As a control experiment, protein A was used instead of protein G for binding 

with sheep IgG. This resulted in no binding of sheep IgG to the protein A layer 

and subsequently, NM cells were shown not to bind to this protein A layer. 

Indirectly, it shows that, bacteria do not adhere to the surface non-specifically 

under flow conditions. Perhaps, a more valid alternative control experiment 

would be to test the immunosensor with binding of NM cells to a control 

antibody (IgG) of the same species. 
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The QCM resonator system can be considered as an electric or electromechanical 

system. The Q  factor of the QCM as an electric resonating system represents the 

resistance of the system, but as an electromechanical resonator, the Q  factor 

represents the level of mechanical friction that causes the decay of the oscillation 

energy. An increase of the QCM surface roughness causes a higher frequency 

shift and a higher mechanical friction and thus damping of the oscillation energy. 

There are three factors that must be optimized in order to produce a polymer 

coated QCM with a high Q  factor, suitable for use in the PLL oscillator system in 

a liquid medium. They are: (i) the mass load, (ii) the film uniformity (mass 

distribution and uniform morphology), and (iii) the surface roughness. 

 

In order to measure the dissipation factor of the crystal due to PVDF coating, an 

impedance analysis was performed in the range of the resonance frequencies of 

the quartz. The observed significant dissipation changes suggest that the PVDF 

layer adsorbed on the Au electrode forms a compact structure, being elongated 

outward from the sensing surface. Network analysis revealed that the motional 

resistance R, which is indicative of energy loss, changes in the same fashion as 

the serial resonance frequency (Figure 5.17 and Figure 5.18). A lower mass load, 

and uniform film thickness, improved the coating quality and caused less 

damping of the QCM oscillation energy, whilst maintaining a sufficiently high Q  

factor of the resonating crystal. 
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To study surface morphology of thin films on a micro-scale, the films were 

characterized by atomic force microscope (AFM). The results showed that the 

polymer distribution was uniform and the roughness may be attributed to the 

porous nature of the polymer. To reduce the surface roughness of the coating, an 

extra layer for PVDF may be applied to the QCM. But, if the porous stuructures 

in the film become too deep, the protein A and anti-OMP85 antibody layers may 

be buried, which will result in a decrease of the sensitivity. Similar results were 

obtained from different scanning regions, which indicated the uniform 

distribution of the polymer film. AFM studies on the sensor surface utilized for 

the detection of bacteria, revealed that the bacteria was attached to the antibody 

(Figure 2.22. and Figure 2.23.).  

 

The PVDF film coating on the QCM was analyzed by SEM to study the 

morphology and thickness of the coating. Though the actual PVDF membrane 

used to make the film had a thickness of 140-250 µm, on the QCM it formed a 

thin layer that may be due to its self-limiting growth. The pore size formed in the 

film was comparable to the pore size in the actual membrane. After using the 

same crystal multiple times, the sensitivity of the crystal was drastically reduced 

which was evident by the SEM pictures which shows the distorted structure 

(Figure 5.12.).  

 



 

 277

This work advances the design and evaluation of a QCM based model biosensor 

for the rapid diagnosis of meningococcal meningitidis. In this study using the 

real-time QCM measurements, a novel strategy has been developed for the high-

sensitivity detection of target biomolecules with very low concentrations on a 

quartz crystal microbalance (QCM) device using gold nanoparticles as signal 

amplification probes. The protein A/protein G affinity-based approach 

preserved the access of the antigen to the oriented immobilized antobody and 

facilitated macromolecular interactions. Without protein A/ptotein G based 

immobilization, owing to the severe steric hindrance of three-dimensional 

network of the polymer, the antibodies may not have been so accessible to the 

antigen.  

 

The QCM method used in this work is operationally attractive because of its 

simplicity and suitability for in situ measurement. The results show the 

specificity of the QCM immunosensor and the determination of OMP85 antigen 

and the whole cell bacteria based on gold nanoparticle conjugation is practically 

free of interference from nonspecific binding events. This has shown that the use 

of PVDF modified QCM crystals can successfully and reproducibly be employed 

in the detection of protein antigens as well as whole cell bacteria. 

 

Direct measurements are attractive when compared with classical colorimetric 

tests, such as ELISA, where several steps are necessary to obtain an optimal 
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signal, which are, of course, time consuming. QCM detection of the analyte can 

occur online and is label-free within minutes to specifically detect any 

macromolecule. However, the obtained sensitivity of piezoimmunosensors is 

lower than that of an ELISA assay. The sensitivity of the flow-through 

immunosensor could possibly be further improved by decreasing flow rate 

and/or increasing sample running time although reducing analytical speed. The 

sensitivity of the QCM immunosensor, however, might be improved by using 10 

MHz or higher frequency crystals (Uttenthaler, Schraml et al. 2001), at the same 

time, noise levels should be reduced.  

 

The results presented in this chapter suggest that the use of gold nanoparticle 

protein conjugates in this immunosensor allow for the determination of OMP85 

antigen down to 300 ng/mL and the bacteria to 100 cfu/mL. Previous studies on 

QCM immunosensor have reported similar findings. Piezoelectric immunoassays 

for the detection of human serum albumin, have been reported with the 

sensitivity in the clinically relevant range, 20-200 µg/mL (Sakti, Lucklum et al. 

2001). Using the SAM based method on 10 MHz crystal, Tsai et al., (2005) 

reported about the development of an immunosensor for the detection of α-

fetoprotein, with an observable 10 Hz frequency shift for 500 ng/mL protein 

concentrations (Tsai and Lin 2005). With a 27 MHz quartz crystal, Bizet et al. had 

reported a frequency shift of 150 Hz for 5 µg/mL antibody concentration (Bizet, 

Gabrielli et al. 1999). Where as, with 5 MHz QCM crystal using gold 
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nanoparticles as signal amplification probes, Kim et al. had achieved 3.3 Hz 

frequency shift for a 50 ng/mL biotin  concentration (Kim, Baek et al. 2007). 

Amplification of the 10 MHz QCM response by back-filling immobilization of 

nanogold on biorecognition surface was reported with a detection range of 3.0-50 

ng/mL protein concentration.  

 

All the previously published reports claims to have detected the bacteria in the 

concentration range of 105–107 CFU/mL (Muramatsu, Kajiwara et al. 1986; 

Suleiman and Guilbault 1994; Sato, Endo et al. 1995; Bao, Deng et al. 1996; Ben-

Dov, Willner et al. 1997; Sato, Serizawa et al. 1998; Hengerer, Decker et al. 1999; 

Ivnitski, Abdel-Hamid et al. 1999; Dmitri Ivnitski 2000). However, a tremendous 

improvement in terms of sensitivity has been achieved with this designed 

immunosensor where, a significant QCM response was observed with bacterial 

concentration as low as 100 cfu/mL. Furthermore, direct measurements without 

time-consuming sample preparation are possible in complex matrices such as 

body fluids. The sensor configuration meets the sensitivity, selectivity, and 

response time requirements of such a platform technology. This QCM 

methodology provides a valuable contribution to both qualitatively and 

quantitatively identify the meningococcal antigen and to demonstrate the 

potential power of QCM technique both as a research and a diagnostic tool. 
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Chapter 6 
 
 

Summary and Conclusion 
 
The traditional techniques used for the diagnosis of meningococcal meningitis 

are slow, expensive, need skilled operators, and require additional steps of 

sample pre-treatment that will increase the time and cost of these tests. Thus, 

there is a clear need for rapid, accurate and affordable detection techniques for 

meningococcal meningitis to ensure prompt treatment. 

 

The primary aim of this project was to develop a model immunodiagnostic assay 

for the rapid, specific and sensitive detection of meningitis, using a highly 

conserved OMP85 antigen and its cognate receptor, anti-OMP85 antibody as 

model system. Two individual approaches were tested in this regard, both 

utilising gold nanoparticle-protein conjugates, but with different applicability. 

Conjugation of the proteins to gold nanoparticles resulted in increased stability 

of the nanoparticles, but also retained the native protein structure as reflected by 

maintenance of the specific recognition capabilities of the colloid-bound antigen 

and antibodies.  

 

6.1. Surface Plasmon Resonance based colour shift assay 
The surface plasmon resonance based colour shift experiment due to coupling of 

gold nanoparticles mediated by the specific interaction of OMP85 and anti-
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OMP85 antibody molecules, demonstrated that the nanoparticles can be 

potentially used as molecular labels for detection of N. meningitidis infection. The 

relationship between the size of nanoparticles, the size of the proteins and the 

occurrence of the surface plasmon resonance based colour shift was established 

in this study. Also, the importance of the presence of electrolytes for the coupling 

process was identified. The coupling behaviour of gold nanoparticles was 

investigated by UV-visible absorption spectrophotometry and TEM analysis. 

However, for reasons that are not clear, this colour shift assay method was not 

reproducible. The major problem observed was, at times the particles were either 

too stable or else they tended to aggregate in the presence of the same electrolyte 

concentration. Once these problems are overcome, this method has many 

desirable features including rapid detection, a colorimetric response, good 

selectivity and little or no required instrumentation. The results obtained from 

these studies take our understanding of nanoparticle-based diagnostics one step 

further towards developing detection methods that may eventually be used as 

point of care diagnostic tests. 

 

6.2. Quartz Crystal Microbalance as an immunosensor 
Due to the problems associated with the reproducibility of the colour shift assay, 

QCM was chosen as an alternative approach towards developing a working 

model assay for the rapid diagnosis of meningococcal infection. The 

development of the QCM based immunosensor included the highly successful 
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novel immobilisation composite architecture which consisted of PVDF film 

coating on the QCM crystal surface and the directional orientation of antibodies 

using protein A molecules. This allowed the fabrication of a QCM immunosensor 

with control over selectivity, sensitivity and functionality with gold 

nanoparticles as signal amplification probes to improve the detection limit that 

may equal or surpass those achieved by more widely accepted optical 

techniques. Additional features of this technique include a rapid response time, a 

requirement for only a single analyte-specific antibody, less interference from 

non-analyte components, and kinetic data is obtained with high resolution and 

real time monitoring of all events. These results in this study offer a real 

alternative approach for the clinical diagnosis of meningococcal infection 

without the need for sample preparation.  

 

6.3. Future directions of the surface plasmon resonance based 
colour shift assay 
There are currently no known commercial diagnostic tests for pathogens 

available that are based on this concept of coupled gold nanoparticles-induced 

colour shift. The major problem with the technique is reproducibility which may 

be addressed by fine tuning of the conjugation process to determine optimum 

concentration of the protein required which stabilise the gold nanoparticles with 

sufficient space available between the particles for the resulting SPR induced 

colour shift. 
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As a future development, new probes can be engineered so that the gold 

nanoparticle label can be positioned away from the binding site so it does not 

interfere with binding. For example, specific peptides instead of whole antigens 

and Fab’ fragments instead of whole antibody, labelled to gold nanoparticles 

may have several advantages over whole protein labelling. These advantages 

include the requirement of smaller nanoparticles over large ones, great control 

over the conjugation process and the smaller protein molecules more likely to be 

in their native conformation. Once established, this technique may be expanded 

for development of sensitive and rapid medical diagnostic assays for a range of 

pathogens. 

 

6.4. Future Direction of the QCM-based immunosensor 
The use of coated piezoelectric devices as immunochemical sensors for the 

detection of meningococcal infection is very promising and should be considered 

as a viable alternative to other immunodetection methods. In future work based 

on this study, other types of nanoparticles and of various sizes may be studied as 

signal enhancement probes for high sensitivity detection. To improve the 

stability of the device, all electronic oscillator components could be 

thermostatically controlled and better shielded from external environmental 

influnces. In order to further increase the sensitivity for minor component 

analysis, crystals with operational frequency of greater than or equal to 10 MHz 

with higher mass sensitivity and optimised noise levels may be used.  
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Polymers used as sensor coatings enable a variety of modifications of 

composition and functionality, enabling optimum adaptation of the sensitive 

surface to the analyte. Besides their selectivity and low cost, QCM 

immunosensors can be easily automated and developed as simple portable 

devices, which would allow a rapid detection of meningococcal infection at the 

point of care setting. This raises an exciting possibility of using quartz crystal 

arrays for high throughput screening of a range of different from a clinical 

sample at one time. 

 

Instead of CSF, serum samples may be analysed for detection of anti-OMP85 and 

anti-capsular antibodies. The detection of the antigen in blood could constitute a 

more convenient method of screening high-risk populations. Monoclonal 

antibodies against the SR1 peptide may be used as target receptors with high 

specificity for N. meningitidis serogroup B bacteria. Based on the insights 

achieved through these studies, and following further characterisation studies, 

SR1 could be used as a versatile molecular marker and open new avenues in the 

diagnostic as well as therapeutic management of meningitis.  

 

Thus, the results of this study demonstrate that it is feasible to detect 

meningococcal meningitis rapidy with a great control over sensitivity and 

selectivity. Moreover, there is scope for the development of a hybrid technique 
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with enhanced sensitivity for example, by combining the quartz-crystal 

microbalance with other detection techniques. It envisaged that once optimised, 

these techniques would serve as prototypes for more generic tests for the rapid 

diagnosis of a range of bacterial and viral pathogens. However, this step from 

research to product development and commercial availability remains a 

significant one. 
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Appendix 1: List of Gram negative bacteria used for cross-
ractive studies and the disease caused by the respective 
bacteria 
 
 

Bacteria  Pathogenesis 

Neisseria meningitidis  Meningitis 

Neisseria meningitidis MC58  Meningitis 

Neisseria meningitidis 

serogroup A strain  

 Meningitis 

Neisseria gonorrhoeae  Gonorrhoea 

Chromobacterium violaceum  Human infection caused by Chromobacterium violaceum is 

rare, but when it occurs it is associated with a high 

mortality rate. Human infections are reported from 

several continents, particularly Australia, South 

America, and Southeast Asia where the typical disease 

presentation includes cutaneous inflammation, sepsis, 

liver abscesses and ocular infections. Currently there are 

no vaccines. 

Bordetella pertussis  Causes whooping cough 

Acinetobacter sp. ADP1  can cause hospital acquired infections 

Escherichia coli  one of the foremost causes of food poisoning 

Pseudomonas fluorescens  Commensal bacteria have emerged as an important 

disease factor in human Crohn's disease (CD) and 

murine inflammatory bowel disease (IBD) models. 

Many pseudomonas live in a commensal relationship 

with plants. P. fluorescens Pf-5 provides a framework for 

future studies to understand the biological basis of 

biocontrol as an alternative to the use of chemical 

pesticides for control of insects of public health 

importance. 

Pseudomonas aeruginosa  is a leading cause of opportunistic infection among 

persons with compromised immune systems 
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Salmonella enterica subsp. 

enterica serovar Typhi str. 

CT18 

 causes typhoid fever and is a leading cause of human 

gastroenteritis and is used as a mouse model of human 

typhoid fever 

Salmonella enterica subsp. 

enterica serovar Paratyphi A 

str. 

 is a cause of Enteric fever 

Vibrio alginolyticus  V. alginolyticus is one of many Gram-negative 

bacteria of marine origin with worldwide distribution, 

having been isolated from Europe, Australia, 

Japan,Hawaii, and North America. Recent exposure to 

seawater usually antedates the isolation of V. 

alginolyticus from humans. V alginolyticus is a 

halophilic Vibrio first recognized as being pathogenic in 

humans in 1973. Wound infections account for 71% of V 

alginolyticus infections. Ear infections are also seen with 

this organism. Gastroenteritis was thought to be a rare 

presentation of V alginolyticus infection, but it accounted 

for 12% of infections in one series. Other clinical 

syndromes reported in association with V alginolyticus 

infection include chronic diarrhoea in a patient with 

AIDS, conjunctivitis, and post-traumatic intracranial 

infection. Infections of the ear (otitis media and otitis 

externa) are another important source of isolates of V. 

alginolyticus. V. alginolyticus has rarely been recovered 

from sputum and an eye socket. Ocular infection due to 

this organism is extremely rare. 

Vibrio vulnificus  Causes potentially fatal food poisoning 

Vibrio cholerae  Causes Cholera 

Vibrio parahaemolyticus  Causes food-borne gastroenteritis 

Vibrio sp. Ex25  Causes Cholera 

Shigella dysenteriae  The illness caused by Shigella (shigellosis- bacillary 

dysentery) accounts for less than 10% of the reported 

outbreaks of food borne illness in this country. Shigella 
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rarely occurs in animals; principally a disease of 

humans except other primates such as monkeys and 

chimpanzees. The organism is frequently found in water 

polluted with human feces. 

Haemophilus influenzae  Naturally-acquired disease caused by Haemophilus 

influenzae seems to occur in humans only. It was 

mistakenly thought to be the cause of the disease 

influenza, and it was named accordingly. Haemophilus 

influenzae is highly adapted to its human host. It is 

present in the nasopharynx of approximately 75 percent 

of healthy children and adults. It is rarely encountered 

in the oral cavity and it has not been detected in any 

other animal species. 

In infants and young children (under 5 years of age), 

Haemophilus influenzae type b causes bacteraemia and 

acute bacterial meningitis Occasionally, it causes 

epiglottitis (obstructive laryngitis), cellulitis, 

osteomyelitis, and joint infections. Nontypable H. 

influenzae causes ear infections (otitis media) and 

sinusitis in children. Initially H. influenzae invades the 

nasopharyngeal mucosa before spreading to the lower 

respiratory tract where the organism invades and 

destroys the mucous membranes producing 

bronchiolitis, peribronchiolitis, and/or interstitial 

lesions and is associated with respiratory tract infections 

(pneumonia). 

Legionella pneumophila   Causes Legionnaires' disease 

Pasteurella multocida  is a pathogenic bacteria causing many serious diseases 

in humans and animals. This bacterium is the causative 

agent of fowl cholera in chickens and turkeys, 

hemorrhagic septicaemia in cattle, atrophic rhinitis in 

pigs, and infections in humans from dog and cat bites. 

Patients tend to exhibit swelling, cellulitis and bloody 
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drainage at the wound site. Infection may move to 

nearby joints where it can cause swelling and arthritis. 

Brucella abortus  causes Brucellosis (spontaneous abortion in cattle and 

undulant fever in humans). Brucellosis is passed on to 

humans by drinking infected unpasteurised milk or 

from contact with discharges from cattle or goats that 

abort their foetus. It is unlikely that this disease would 

be spread from person to person. Symptoms include 

intermittent or irregular fever of variable duration, 

headache, weakness, profuse sweating, chills, weight 

loss and generalized aching. Antibiotic treatment will 

cure the condition. 
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Appendix 2: Buffers and Reagents 
 
10X PAGE Running Buffer. Tris Base (3% w/v), Glycine (14.4% w/v) and SDS 

(1% w/v) was dissolved in dH2O, pH 8.3.   Dilution of 1X was used for 

electrophoresis. 

 

Acrylamide/bisacrylamide solution: A 40% (w/v) solution was prepared 

containing 38.67% (w/v) ultra pure acrylamide and 1.33% (w/v) bisacrylamide 

(Bio-Rad, USA) 

 

Ammonium Persulfate (10%). Ammonium Persulfate (100 mg) was dissolved in 

1 mL of dH2O and filter sterilised through a 0.22 µM syringe filter.   The solution 

was stored at 4°C wrapped in foil for up to 3 months. 

 

Ampicillin.  Ampicillin (500 mg/vial) was dissolved in 5 mL of sterile water, 

giving a stock solution of 100 mg/mL.  One mL aliquots were stored frozen at –

20°C.  The ampicillin was added to media or other solution at the final 

concentration of 100 µg/mL. 

 

Blocking Solution. Skim milk (5%) was dissolved in TBS. 

 

Coomassie Destaining Reagent. Ethanol (10% v/v) and Acetic Acid (10% v/v) 

was diluted in dH2O. 

 

Coomassie Stain. Coomassie Brilliant Blue R-250 (0.05% w/v) was dissolved in 

methanol (250 mL) and Acetic Acid (50 mL).  After the Coomassie Brilliant Blue 

had dissolved, the solution was diluted to 500 mL with dH2O (Final 

concentration 50% Methanol, 10% Acetic Acid). 
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ELISA Substrate Solution.  Equal volumes of reagent A and reagents B of TMB 

substrate was mixed immediately before use. 

 

Elution buffer (50 mM Tris-HCl, 150 mM NaCl and 0.1 mM EDTA; pH 7.5)  

 

Elution Buffer pH: 8.0. 50 mM Na2HPO4 pH 7.8, 300 mM NaCl, 250 mM 

Imidazole, 0.05 %   Tween 20 / 0.2% Triton X-100. Adjust pH to 8.0 using NaOH. 

 

Extraction / Solubilization buffer 50 mM Tris-HCl pH 7.5, 8 M urea, 1 mM    

DTT, 2 mM    reduced Glutathione, 0.2 mM oxidized Glutathione, 1 mM    PMSF* 

*PMSF is instable in aqeous solutions and added to the buffer at he point 

described in the protocol. 

 

Folding buffer 50mM HEPES pH7.5, 0.2M NaCl, 1mM DTT, 1M NDSB256 

 

Horse Blood Agar Trypticase Soya Broth (3% w/v) and Bacteriological Agar (1% 

w/v) were dissolved in deionised H2O and autoclaved at standard conditions.  

After the agar had cooled, Horse blood (5% w/v) was added to the agar and the 

medium poured into petri dishes. 

 

Isoproply-β-D thiogalactopyranoside (IPTG) (0.1 M) Stock Solution. IPTG (1.2 

g) was dissolved in 50 mL of sterile water, filter sterilised and stored at 4°C 

 

Kanamycin.  Kanamycin was made up as a stock solution of 50 mg/mL in sterile 

water and stored in 1 mL aliquots at -20°C. The working concentration of 

Kanamycin was 50 µg/mL. 
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Luria Bertoni Broth Tryptone (1% w/v), Yeast Extract (0.5% w/v), and NaCl 

(0.5% w/v) was dissolved in deionised H2O and autoclaved at standard 

conditions. 

 

Lysis Buffer (for enzymatic lysis) 20 mM Tris-HCl pH 8.0, 200 mM NaCl, 5mM 

DTT, 5% Glycerol, 0.35mg/ml lysozyme, 1% Triton X-100, 1mM PMSF (Add just 

before doing experiment)  

 

Lysis buffer (for sonication) 50 mM Tris-HCl pH 7.5, 200 mM NaCl, 5 mM DTT 

and 1mM PMSF 

 

Modified SDS-PAGE sample buffer for gold nanoparticle analysis. 0.6 mL of 

0.1M Tris-HCL (pH 6.8), 5.0 mL 50% glycerol, 2.0 mL 10% SDS, 1.0 mL 1% 

bromophenol blue and 1.4 mL H20 

 

PBS. 0.01 M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium 

chloride, pH 7.4. 

 

PBS/T. Phosphate buffer (0.01 M), 0.0027 M potassium chloride and 0.137 M 

sodium chloride, pH 7.4, autoclaved at standard conditions.   Tween 20 (0.05% 

v/v) was then added. 

 

Renaturation buffer 2 mM reduced glutathione and 0.2 mM oxidized 

glutathione 

 

SDS-PAGE Sample Buffer. Tris-HCl (125 mM, pH 6.8), SDS (2% w/v), β-

mercaptoethanol (5% w/v), Bromophenol blue (0.02% w/v) and glycerol (25% 

v/v) in dH2O. 
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Solubilisation/Extraction buffer (50 mM Tris-HCl pH 7.5 containing 8 M urea, 1 

mM DTT, 2 mM reduced Glutathione, 0.2 mM oxidised Glutathione, 1 mM 

PMSF)  

 

Solubilization buffer 50mM HEPES-NaOH pH7.5, 6M guanidine HCl, 25mM 

DTT 

 

Stock solutions 1 mg/ml DNase and in water, 100 mM PMSF 

(phenylmethylsulfonyl fluoride) in isopropanol, 1M MgCl2, 1% Triton X-100, 5 

mM sodium carbonate buffer pH 9.4, 10 mM sodium phosphate buffer pH 7.4, 

1% bovine serum albumin (BSA), 0.1% sodium azide  

 

TBS. Tris Base (10 mM) and NaCl (500 mM) was dissolved in deionised H2O, pH 

7.4, then autoclaved at standard conditions. 

 

TBS/Tween. Tween 20 (0.05% (v/v)) was added to TBS. 

 

Wash buffer (pH: 8.0) 50 mM Na2HPO4 pH 7.8, 300 mM NaCl, 20   mM 

Imidazole, 0.05 %   Tween 20 / 0.2% Triton X-100 

 

SDS-PAGE Resolving gel (12.5%). 

Reagents Volume 

Water 4.22 mL 

1.5 M Tris (pH 8.8) 2.5 mL 

10% SDS 0.1 mL 

Bis-Acrylamide (40%) 3.135 mL 

10% Ammonium persulfate 0.05 mL 

TEMED 0.01 mL 

Total volume 10 mL 
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SDS-PAGE Stacking gel (4%). 

Reagent Volume 

Water 3.580 mL 

0.5 M Tris (pH 6.8) 1 mL 

10% SDS 0.04 mL 

Bis-Acrylamide (40%) 0.375 mL 

10% Ammonium persulfate 0.01 mL 

TEMED 0.0005 mL 

Total 5 mL 

 

SDS-PAGE loading buffer was added to samples to be analysed in a 4:1 sample 

to buffer ratio.   Prepared samples were then heated to 100°C for 10 min in a heat 

block.   SDS-PAGE gel wells were loaded with 20 µL of sample using a syringe.  

SDS-PAGE was performed at 80 V for 30 min  then 180 V for 50 min. 

 


