
Effective Web Crawlers

A thesis submitted for the degree of

Doctor of Philosophy

Halil Ali B.App.Sc (Hons.),

School of Computer Science and Information Technology,

Science, Engineering, and Technology Portfolio,

RMIT University,

Melbourne, Victoria, Australia.

17th March, 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RMIT Research Repository

https://core.ac.uk/display/15618103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has been

carried out since the official commencement date of the approved research program; and, any

editorial work, paid or unpaid, carried out by a third-party is acknowledged.

Halil Ali

School of Computer Science and Information Technology

RMIT University

17th March, 2008

iii

Acknowledgments

First and foremost, I would like to offer my deepest gratitude to my supervisors, Andrew

Turpin and Justin Zobel, as well as my former supervisor Hugh Williams. Without their

continued support, invaluable advice and patience, this thesis would not have been possible.

In addition, I would like to thank my SEG colleagues who have put up with my ramblings

and delusions of grandeur, while all the while helping me by providing feedback and assis-

tance. In particular, I wish to thank Steven “Super Steeeve” Garcia, Abhijit Chattaraj, Bodo

von Billerbeck, Falk Scholer, Milad Shokouhi, and Nick Lester for their technical assistance

and friendship. In addition, I would like to thank Jovan Pehcevski, Nikolas Askitis, Pauline

Chou, Ranjan Sinha, Timo Volkmer, Vaughan Shanks, Yaniv Bernstein, Yohannes Tsegay,

Jelita Asian and any others I may have missed. Thank you all for making the SEG cave and

Tardis such a warm environment to work in. I would like to thank all the support staff that

have helped maintain the machines and environments in which I worked.

Thank you to my close friends, James Baylis, Peter Owen, and Peter Pavlovic for your

continued support and friendship. Finally, I would like to thank my parents, Feriha and

Erdal, as well as my siblings Ali, Kerim, and Soyda. You have all supported my aspirations

and providing a nurturing environment for my work to thrive. I thank you all from the

bottom of my heart.

iv

Credits

Portions of the material in this thesis have previously appeared in the following publications:

• What’s Changed? Measuring Document Change in Web Crawling for Search Engines.

In Proceedings of the 10th International Symposium on String Processing and Infor-

mation Retrieval (SPIRE) 2003 Manaus, Brazil, October 2003.

This work was supported by the Australian Research Council and the Search Engine Group

at RMIT University.

The thesis was written in WinEdt on Windows XP, and typeset using the LATEX2ε document

preparation system.

All trademarks are the property of their respective owners.

Note

Unless otherwise stated, all fractional results have been rounded to the displayed number of

decimal figures.

v

Contents

Contents vi

List of Figures x

List of Tables xiv

List of Algorithms xvi

Abstract 1

1 Introduction 3

1.1 The History of Crawling . 4

1.2 Size of the Web . 6

1.3 Web Crawling and the Web . 7

1.4 Web Crawler Index Inconsistency . 9

1.5 Proxy Caching . 13

1.6 Web Structure . 15

1.7 Overview of Thesis . 17

2 Background 25

2.1 Data on the Web . 25

2.1.1 HTTP Headers and HTML Markup 25

2.1.2 Anchor Text . 27

2.1.3 Text Preprocessing . 29

2.2 The Crawling and Querying Process . 30

vi

CONTENTS vii

2.2.1 Ranking Schemes . 32

Document Ranking Functions . 32

Query-Independent Ranking . 35

Query-Dependent Ranking . 38

2.2.2 Crawl Ordering Schemes . 40

2.2.3 Answer Sets . 41

2.3 Collection Update . 42

2.3.1 Push vs. Pull Model . 42

2.3.2 Batch Update . 42

2.3.3 Incremental Update . 43

2.3.4 Early Consistency Schemes . 43

2.4 IR Evaluation Metrics . 44

2.4.1 Precision and Recall . 44

2.4.2 Rank Correlation Metrics . 47

2.5 Crawler Evaluation Metrics . 48

2.5.1 Measuring Document Change . 51

Simple Change Detection . 51

Detecting Meaningful Change . 51

Shingling . 52

Other Measures of Change . 53

2.6 Poisson and Simple Change Measures . 55

2.6.1 Work by Cho et al. 55

2.6.2 Work by others . 57

2.7 Adaptive Crawl Ordering Schemes . 58

2.7.1 Adaptive Crawling . 58

2.7.2 User Feedback . 62

2.7.3 Data Warehousing . 66

2.8 Web Change and Modelling . 69

2.8.1 Document Persistence . 69

2.8.2 Document Deletion, Creation, and Update 70

2.8.3 Web Crawling and Web Change . 73

CONTENTS viii

Top Level domains . 73

Other Studies . 76

2.9 Crawl Ordering and Collection Quality . 78

2.10 Parallel Crawlers . 81

2.11 Topic-Driven Crawlers . 82

2.12 Crawling the “Hidden Web” . 84

2.13 Mirroring . 85

2.14 Proxy Caching . 87

2.15 Crawler/Server Cooperation . 89

2.16 Crawler Implementation . 90

2.17 Other Crawler Related Studies . 92

2.18 Summary . 93

3 Experimental Environment 95

3.1 Introduction . 95

3.2 Test Collection . 96

3.3 Summary . 100

4 Crawler Evaluation Framework 101

4.1 Introduction . 102

4.2 Document Change Metrics . 104

4.3 Using Document Change in Web Crawling . 106

4.4 A Measurement Framework for Web Crawling 108

4.5 Results . 113

4.5.1 Collection and Queries . 113

4.5.2 Efficiency and Effectiveness . 116

Predicting Future Change . 116

Detecting Current Change . 121

4.6 Summary . 127

5 Stateless Crawl Ordering Schemes 129

5.1 Crawler types . 129

CONTENTS ix

5.2 Methodology . 131

5.3 Crawler Strategies . 132

5.4 Measuring Crawler Effectiveness . 148

5.5 Measuring Impact on Users . 151

5.6 Results . 154

5.7 Analysis . 160

5.8 Summary . 164

6 Change-Driven Crawling Using Anchor Text 167

6.1 Dynamic Crawl Adaptation . 168

6.2 Dynamic Scheme Adaptation . 172

6.3 Results . 172

6.4 Analysis . 181

6.5 Summary . 181

7 Conclusions and Future Work 183

7.1 Future Work . 189

A Crawler Design and Implementation 193

A.1 Introduction . 193

A.2 Standardising URLs . 195

A.3 HTTP Interaction Process . 198

A.4 Page Redirection . 202

A.5 Crawler Traps . 204

A.6 Mirrors . 205

A.7 Crawler Etiquette . 206

A.8 Crawler Implementation . 209

A.9 Summary . 210

Bibliography 211

List of Figures

1.1 Growth of hosts on the Internet . 6

1.2 A typical querying process . 8

1.3 Failure of the querying process . 10

1.4 A typical proxy cache process . 12

1.5 Proxy cache failure . 14

1.6 The connectivity and macroscopic structure of the Web 16

1.7 The crawling process . 19

2.1 An example of a HTML document . 27

2.2 Measuring the difference between two sentences using the shingling metric . . 52

2.3 The embarrassment metric decision tree . 63

4.1 Measuring the difference between two sentences using the Words metric . . 106

4.2 Skewed ranking of collection documents in response to 50 queries 109

4.3 Evaluating a change metric’s capacity for predicting future change 110

4.4 Evaluating a change metric’s capacity for detecting meaningful change 111

4.5 Change prediction over an interval of one crawl on the Proxy collection . . . 116

4.6 Change prediction over an interval of three crawls on the Proxy collection . 118

4.7 Change prediction over an interval of one crawl on the ABC collection 118

4.8 Change prediction over an interval of three crawls on the ABC collection . . 120

4.9 Change detection over an interval of one crawl on the Proxy collection . . . 122

4.10 Change detection over an interval of seven crawls on the Proxy collection . . 122

4.11 Change detection over an interval of one crawl on the ABC collection 124

4.12 Change detection over an interval of seven crawls on the ABC collection . . . 124

x

LIST OF FIGURES xi

4.13 Change detection over an interval of one crawl on the ABC collection using

top 30 . 125

5.1 Crawl ordering schemes . 133

5.2 Various crawl ordering schemes . 139

5.3 An example of the success rate of five schemes over 150,000 document retrievals

on the ABC collection . 149

5.4 Crawl ordering evaluation . 150

5.5 Final success rate over all documents, averaged over all intervals 152

5.6 Average success rate over all documents, averaged over all intervals 153

5.7 Correlation between the rankings of schemes by average success rate across all

crawls . 156

5.8 Performance of schemes during each crawl on the ABC collection using the

alternative evaluation technique . 157

5.9 Performance of schemes during each crawl on the CSIRO collection using the

alternative evaluation technique . 159

5.10 URL tree structure . 161

6.1 An example site with documents, and the anchor terms pointing to them . . 169

6.2 Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using default schemes . 173

6.3 Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using term frequency . 174

6.4 Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using term frequency with dynamic adaptation 175

6.5 Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two without term frequency . 176

6.6 Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two without term frequency using dynamic adaptation 177

6.7 Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using phrase frequency . 178

LIST OF FIGURES xii

6.8 Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using phrase frequency with dynamic adaptation 178

6.9 Crawl rate vs percentage of the collection crawled for the CSIRO collection . 180

A.1 An example of a HTML document . 195

A.2 The HTTP interaction process . 199

A.3 An example HTTP request . 200

A.4 An example HTTP response header . 200

A.5 An example of a page redirection using META tags 202

A.6 An example robots.txt file . 207

A.7 An example of robots META tags . 208

A.8 Architecture of our web crawler . 209

LIST OF FIGURES xiii

List of Tables

2.1 Matrix for determining the success or failure of a crawl 50

2.2 Change and persistence statistics of 720,000 popular pages 73

3.1 Statistics of the documents retrieved during crawls of the ABC 97

3.2 Number of documents that have changed, not changed, been added, or re-

moved from week to week in the ABC collection 97

3.3 Statistics of the documents retrieved during crawls of CSIRO 98

3.4 Number of documents that have changed, not changed, been added, or re-

moved from week to week in the CSIRO collection 98

4.1 Matrix for determining the success or failure of a crawl 108

4.2 Performance of Words metric at predicting change with particular α change

thresholds and crawl intervals . 126

4.3 Performance of Words metric at detecting change with particular α change

thresholds and crawl intervals . 126

5.1 Matrix for determining the success or failure of a crawl that includes both

freshness and popularity metrics . 148

5.2 Effectiveness of the top seven schemes averaged over seven recrawls of the

ABC collection . 156

5.3 Effectiveness of the top seven schemes averaged over ten recrawls of the CSIRO

collection . 159

6.1 Change statistics for the anchor terms . 171

xiv

LIST OF TABLES xv

List of Algorithms

5.1 A simple crawler algorithm . 131

5.2 The breadth-first crawl ordering algorithm . 135

5.3 The depth-first crawl ordering algorithm . 136

5.4 The PageRank crawl ordering algorithm . 137

5.5 The inlink crawl ordering algorithm . 138

5.6 The outlink crawl ordering algorithm . 140

5.7 The hub crawl ordering algorithm . 141

5.8 The URLdepth crawl ordering algorithm . 141

5.9 The URLlength crawl ordering algorithm . 142

5.10 The alpha crawl ordering algorithm . 143

5.11 The query based crawl ordering algorithm . 144

5.12 The large crawl ordering algorithm - Step 1 (Tree insertion) 146

5.13 The large crawl ordering algorithm - Step 2 (Tree traversal) 147

5.14 The random crawl ordering algorithm . 147

6.1 A simple crawler algorithm . 168

6.2 The dynamic anchor based crawl ordering algorithm 169

6.3 The dynamic anchor based crawl ordering algorithm (cont.) 170

xvi

LIST OF ALGORITHMS xvii

Abstract

Web crawlers are the component of a search engine that must traverse the Web, gathering

documents in a local repository for indexing by a search engine so that they can be ranked by

their relevance to user queries. As with any system that replicates data in an autonomously

updated environment, there are issues with maintaining up-to-date copies of documents.

When documents are retrieved by a crawler and have subsequently been altered on the

Web, the effect is an inconsistency in user search results. While the impact depends on

the type and volume of change, many existing algorithms do not take the degree of change

into consideration, instead using simple measures that consider any change as significant.

Furthermore, many crawler evaluation metrics do not consider index freshness or the amount

of impact that crawling algorithms have on user results. Most of the existing work makes

assumptions about the change rate of documents on the Web, or relies on the availability of

a long history of change.

In this thesis, we investigate five specific approaches to improving index consistency:

detecting meaningful change, measuring the impact of a crawl on collection freshness from

a user perspective, developing a framework for evaluating crawler performance, determining

the effectiveness of various stateless crawl ordering schemes, and proposing and evaluating

the effectiveness of a dynamic crawl approach. Our work is concerned specifically with cases

where there is little or no past change statistics with which predictions can be made.

In our work we analyse different measures of change and introduce a novel approach to

measuring the impact of recrawl schemes on search engine users. We show that our Words

scheme is an effective metric that detects important changes that affect user results. Other

well-known schemes, such as the widely used shingling approach, have to retrieve around

twice the volume of data to achieve the same level of effectiveness as the Words scheme.

2

Furthermore, while many studies have assumed that the Web changes according to a model,

our experimental results are all based on real web documents. In our work we also highlight

the development of the testbed of documents we use for testing our schemes.

We analyse twelve stateless crawl ordering schemes that have no past change statistics

with which to predict which documents will change. In particular we compare the Inlink,

Outlink, Hub, URLlength, URLdepth, Alpha, Query, Large, Random, Breadth,

Depth, and PageRank schemes. While some of these schemes have been tested and shown

to be effective, none, to our knowledge, has been tested to determine effectiveness in crawling

changed documents. We empirically show that the effectiveness of these various schemes

depends on the topology and dynamics of the domain crawled. For the ABC domain we

find that the Hub scheme is most effective, while the URLlength scheme works best for

the more volatile CSIRO domain. Our results indicate that no one static crawl ordering

scheme can effectively maintain freshness, motivating our work on dynamic approaches. In

addition we evaluate the utility of a popularity-based evaluation system, finding that it is

also ineffective.

We then present our own novel approach to maintaining freshness, which uses the anchor

text linking documents to determine the likelihood of a document changing, based on statis-

tics gathered during the current crawl. We show that this scheme is highly effective when

combined with existing stateless crawl ordering schemes. Our approach allows the crawling

scheme to improve both freshness and quality of a collection by combining it with a scheme

such as PageRank. Our scheme improves freshness regardless of which stateless scheme it is

used in conjunction with, since it uses both positive and negative reinforcement to determine

which document to retrieve.

Finally, we present the design and implementation of Lara, our own distributed crawler,

which we used to develop our testbed.

Chapter 1

Introduction

The Web consists of large collections of hyperlinked resources, which web authors autono-

mously generate and modify. The Web contains a large volume of information on different

topics, but, in contrast to traditional collections such as libraries, the Web has no centrally

organised content structure. Furthermore, the autonomous nature of content creation leads

to a high degree of volatility; documents are created, modified, and removed from the Web

at a high rate. While it is these specific factors that have led to the Web’s popularity, they

also create significant challenges for people trying to locate information.

Locating resources that fulfil user information needs is not a trivial task, and search

engines have become a critical tool for web users, with 3.6 billion searches conducted each

month in the US alone [Comscore, 2004]. Many organisations deploy a similar information-

seeking model within their own web sites, using a search engine within their intranets to

provide searching capabilities to customers and staff.

The inverted file is the preferred data structure for efficiently processing queries submitted

to search engines [Brin and Page, 1998; Witten et al., 1999]. An inverted file is similar to a

book index (and is often simply referred to as “the index”), where, for each word, a list of

the web documents containing that word is stored. To construct the index, a search engine

must visit every document to be included in the index, parse the document, and add the

relevant data to the inverted file.

It is the web crawler that collects documents from the Web and stores them locally in

a centralised collection so that their content can be indexed and subsequently ranked in

3

CHAPTER 1. INTRODUCTION 4

response to user queries. These crawled documents are also used to generate document

summaries — or snippets — that are returned as part of search results. Once they have

been retrieved, crawlers must maintain these crawled documents by periodically revisiting

the web documents they originate from. This ensures that the index and the summaries

accurately reflect any changes that have been made to the documents since they were last

crawled. Crawler accuracy or effectiveness is paramount to ensuring search user satisfaction:

only resources that have been visited can be searched and resources should be up-to-date to

meet users’ information needs.

There are several approaches to predicting when a document is likely to change and

therefore require recrawling. One method is to examine how frequently a document has

changed in the past, that is, by examining the past change history. While there are many

studies that have examined recrawl frequency when there is a long period of past change

history available, this information is not always available, particularly when a document has

only been crawled a few times. Little work has investigated schemes that work well when

past change information is unavailable or limited.

Another approach for predicting when documents are likely to change is to use the

Last-Modified and Expires HTTP headers that are returned along with web documents.

When they are properly maintained and accurate, these headers can be a very effective

method of improving the freshness of crawled documents. These headers, however, are not

always available, and may be deliberately inaccurate to force web clients to update their

locally cached copy of documents. In our work we examine different methods of predicting

the likelihood that documents have changed and therefore require recrawling.

In this chapter we highlight some of the key aspects of web crawling, the impact that

they have on maintaining the freshness of crawled documents, and how this can affect search

engine user results. In the next section we discuss some of the key moments in the history

of web crawling and show how crawling has evolved over time.

1.1 The History of Crawling

The first Internet “search engine”, a tool called “Archie” — shortened from “Archives”,

was developed in 1990 and downloaded the directory listings from specified public anony-

mous FTP (File Transfer Protocol) sites into local files, roughly once a month [Deutsch,

CHAPTER 1. INTRODUCTION 5

1990; Emtage and Deutsch, 1991]. In 1991, “Gopher” was created, which indexed plain text

documents. The programs “Veronica” and “Jughead” were used to search these Gopher

indexes [Machovec, 1993; Jones, 1993; Harris, 1993; Hahn and Stout, 1994]. With the intro-

duction of the World Wide Web in 1991 [Berners-Lee et al., 1992; Berners-Lee, 2008], many

of these Gopher sites became web sites that were linked by HTML links. In 1993, the “World

Wide Web Wanderer” was created, considered to be the first crawler [Gray, 1996b]. Although

this crawler was initially used to measure the size of the Web, it was later used to retrieve

URLs that were then stored in a database called Wandex, the first web search engine [Son-

nenreich and Macinta, 1998]. Another early search engine, “Aliweb” (Archie-Like Indexing

for the Web) [Koster, 1994a], allowed users to submit the URL of a manually constructed

index of their site.

The index contained a list of URLs and a list of user written keywords and descrip-

tions. The network overhead of crawlers initially caused much controversy, but this issue was

resolved in 1994 with the introduction of the Robots Exclusion Standard [Koster, 1994b],

which allowed web site administrators to block crawlers from retrieving part or all of their

sites. Also, in 1994, “WebCrawler” was launched [Pinkerton, 1994], the first “full text”

crawler and search engine. “WebCrawler” allowed users to search the content of web doc-

uments rather than the keywords and descriptors written by administrators, reducing the

likelihood of misleading results and allowing greater search capabilities. Around this time,

commercial search engines began to appear with Infoseek [2008], Lycos [2008], Altavista

[2008], Excite [2008], Dogpile [2008], Inktomi [2008], Ask.com [2008], and Northern Light

[2008] being launched from 1994 to 1997 [Sullivan, 2003b]. Also introduced in 1994 was Ya-

hoo! [2008], a directory of web sites that was manually maintained, though later incorporat-

ing a search engine. During these early years Yahoo! and Altavista maintained the largest

market share [Sullivan, 2003b]. In 1998 Google [2008] was launched, quickly capturing the

market [Sullivan, 2003b]. Unlike many of the search engines at the time, Google had a sim-

ple uncluttered interface, unbiased search results that were reasonably relevant, and a lower

number of spam results [Google, 1999]. These last two qualities were due to Google’s use of

the PageRank [Page et al., 1998] algorithm and the use of anchor term weighting [Brin and

Page, 1998].

CHAPTER 1. INTRODUCTION 6

1981 1986 1991 1996 2001 2006

Year

1

10

100

1000

10000

100000

1000000

10000000

100000000

of

 d
om

ai
ns

Hostnames
Active Hosts

Figure 1.1: The growth in numbers of domain hosts and active hosts on the Internet from

1981 to 2006 [Gray, 1996a; ISC, 2006; Netcraft, 2006].

While early crawlers dealt with relatively small amounts of data, modern crawlers, such

as the one used by Google, need to handle a substantially larger volume of data due to the

dramatic increase in the size of the Web.

1.2 Size of the Web

Over the time frame of crawler development, the Web has been growing rapidly, and so

crawlers need to operate efficiently and effectively [Brin and Page, 1998; Heydon and Najork,

1999; Shkapenyuk and Suel, 2002].

Generating statistics regarding the size of the Web is difficult since there is no single

source of the Web’s size over time. Statistics, need to be gathered from multiple sources,

and these typically have differences in the way they are collected. Furthermore statistics

regarding the number of web documents require complete crawls of the entire Web, which

are both difficult and expensive to produce and maintain. An alternative indicator of the size

of the Web is the number of domains or hosts on the Internet, however, not all domains have

an associated public web site, and so, this is only an approximation of the number of web

CHAPTER 1. INTRODUCTION 7

sites. We present the estimated growth of domains and web sites in Figure 1.1. From this we

can see that the number of domains follows an exponential growth, though this is beginning

to slow down. Estimates of the size of the Web are varied though a recent study by Gulli

and Signorini [2005] estimates that the indexable Web is more than 11.5 billion documents.

In the next section we describe the crawling process and highlight its interaction with the

Web.

1.3 Web Crawling and the Web

The Web contains large volumes of documents and resources that are linked together. In the

early days of the Web, manually locating relevant information was reasonably easy due to the

limited amount of information that was available. Typically, users found relevant information

with the aid of manually maintained web rings, links pages, and directories, such as Yahoo!

[2008] and later DMOZ [2008], which were organised by topic. However, as the size of the

Web grew, these approaches were augmented or replaced by automated systems using web

crawlers and search engines.

Search engines typically support “bag of word” querying techniques, where users enter

query terms and the search engine ranks web documents by their likelihood of relevance

to the query terms. This approach, while effective, requires an index of documents on the

Web. This index is created by retrieving a copy of every document to be indexed, from the

Web, a task that is undertaken by a web crawler. Web crawlers exploit the link structure

of web documents and traverse the Web by retrieving documents, extracting the embedded

URLs, and following them to new documents. Retrieved documents are placed in a central

repository so they can be indexed. Once indexed, a document is ranked in response to user

queries and its URL is returned to searchers as part of a ranked list. The user then follows

the link to the live Web copy of the document. We highlight this process in Figure 1.2 and

the following example.

1. The crawler retrieves a document about a computer virus from the CNN home-page.

2. The crawler inserts the document into the local repository.

3. The search engine indexes the documents in the local repository.

CHAPTER 1. INTRODUCTION 8

Computer
Virus

 www.cnn.com

 www.cnn.com

Local
Repository

of
Pages

8

9 . Insert Page

1

User

 "snippet"
Index

Computer
Virus

 www.cnn.com

 . Result
 "www.cnn.com"

 . Result
 "www.cnn.com"

 . Retrieve Page
 "www.cnn.com"

 . Query
 "computer virus"

 Index
3 . Create

 Snippet
7 . Construct

 . Search
 "computer virus"
5Search

Engine

Bandwidth Requirement

Data Flow

 . Retrieve Page

Web

Crawler

2

4

6

SAME VERSION

Figure 1.2: A typical querying process. The process begins with the crawler retrieving a

document from the Web (1) and inserting it into a local repository (2). The document is then

indexed (3), allowing users to search its contents. When users pose a query (4), the index

is examined for relevant documents (5), which are ranked (6), have snippets extracted (7),

and are returned to the user (8), who then follows the URL link to the live Web copy of the

document (9).

CHAPTER 1. INTRODUCTION 9

4. A user poses the query “computer virus”.

5. The search engine examines the index for relevant documents.

6. The search engine locates the CNN home-page and retrieves its URL.

7. The search engine creates a short snippet or summary from the cached document.

8. The search engine returns the CNN home-page URL and snippet to the user.

9. The user clicks on the URL and is presented with the CNN home-page containing the

computer virus article.

However, the Web is a volatile environment where documents are frequently created,

modified, and removed, which means that crawlers must revisit documents periodically to

update the local repository. Index inconsistency occurs when crawlers fail to recrawl docu-

ments that have changed. In this situation the returned documents are no longer relevant to

the user’s query, a problem that we highlight in greater detail in the next section.

1.4 Web Crawler Index Inconsistency

Ideally the index of a search engine should represent a perfect snapshot of a web at the time

each query is issued. In the case of the Web this is not feasible, as millions of queries are

issued per hour [Sullivan, 2006b], and hundreds of millions of web documents are created

every week [Ntoulas et al., 2004a]. To meet this demand, indexes would have to be updated

at least several hundred times per second, which is not possible with current technology.

Given the dynamic nature of web data, a crawler must visit documents on the Web

frequently in order to ensure that the index is up-to-date [Cho and Garćıa-Molina, 2000a].

In Figure 1.2, we presented a typical querying process. In Figure 1.3, instead we highlight

the potential failure of the querying process with the following example.

1. The crawler retrieves a document about a computer virus from the CNN home-page.

2. The crawler inserts the document into the local repository.

3. The search engine indexes the documents in the local repository.

CHAPTER 1. INTRODUCTION 10

 "www.cnn.com"

 Index
3 . Create

 Snippet
7 . Construct

 . Search
 "computer virus"
5

Week One

Week Two

Bandwidth Requirement

Data Flow

 www.cnn.com

 www.cnn.com

 . Query 1 week later
 "computer virus"

 . Retrieve Page
 "www.cnn.com"

 . Result
 "www.cnn.com"

 . Result

Web

Crawler

1

4

8

9 2

6

 . Insert Page

Engine

 www.cnn.com

Index

User

Local
Repository

of
Pages

 . Retrieve Page

Computer
Virus

Interest

DIFFERENT VERSION

Rates

Search

Figure 1.3: Failure of the querying process. Again, the process begins with the crawler

retrieving a document from the Web (1) and inserting it into a local repository (2). The

document is then indexed (3), allowing users to search its contents. However, this time

the user poses the query one week later (4). As before, the index is examined for relevant

documents (5), which are ranked (6), have snippets extracted (7), and are returned to the

user (8), who then follows the URL link to the live Web copy of the document (9). However,

in the week since the document was last crawled, the live Web copy has changed, and is not

relevant to the query.

CHAPTER 1. INTRODUCTION 11

4. A week passes by before a user poses the query “computer virus”.

5. The search engine examines the index for relevant documents.

6. The search engine locates the CNN home-page and retrieves its URL.

7. The search engine creates a short snippet or summary from the cached document.

8. The search engine returns the CNN home-page URL to the user.

9. The user clicks on the URL and is presented with the CNN home-page, however, the

document has changed, and now discusses “interest rates”.

In our original example, an online news document discussing a computer virus is retrieved

by a crawler and is indexed by the search engine. This article was correctly returned as a

relevant match to a query about “computer viruses”. However, in our second example, a

week has gone by since the document was crawled and now the online article has changed,

instead discussing “interest rates”. Since the crawler has not retrieved an updated copy

of the document, any queries regarding “computer viruses” will still match the indexed

document. When users retrieve the online document, however, it is likely to be irrelevant to

their information need. Furthermore, any queries about “interest rates” will not return this

document, since the index does not contain information from the more recent article.

A search engine, therefore, must divide its bandwidth between two tasks: answering

users’ queries and crawling the Web to find and update locally stored information. In order

to provide fast answers to users’ queries, as little bandwidth as possible should be spent on

crawling, rather devoting the resources to query processing. However, if the crawler does not

revisit sufficient documents in the Web, the index may not contain new documents that have

appeared in the Web since the last crawl, and may contain old information about existing

documents that have been edited since last crawled.

While revisiting documents infrequently produces index inconsistency, a crawler should

not revisit documents that have not changed; this wastes the limited bandwidth that the

search engine must divide between processing queries and crawling resources. A näıve crawler

that revisits documents randomly is likely to waste the search engine’s limited bandwidth

retrieving documents that have not changed. Therefore, a crawler needs to be able to predict

which documents will change, and revisit only those documents. Ideally a crawler should

CHAPTER 1. INTRODUCTION 12

User One

User Two

Bandwidth Requirement

Data Flow

 "www.yahoo.com"

8

9

 . Retrieve
 Page

 . Check Local
 Cache (not found)

 . Check Local
 Cache (found)

 . Request
 "www.yahoo.com"

 . Return
 Page

 Page

 . Request

Local
Repository

of
Pages

Web

Proxy
Cache

 . Insert Copy

 . Retrieve Page

 . Return

1
2

3

45

6 7

Figure 1.4: A typical proxy cache process. A user makes the initial request for a document

from the web proxy (1). The proxy checks the local repository for the resource, but does not

find it (2). The proxy requests the resource from the Web (3), puts a copy into the local

repository (4), and returns the resource to the user (5). Later, another user requests the

same resource from the proxy (6). When the proxy checks the local repository, it finds a

copy (7), which it retrieves (8) and returns to the user (9). While the initial request for the

resource results in the proxy retrieving a copy from the Web. Subsequent requests are fulfilled

with the locally cached copy, resulting in reduced web traffic.

CHAPTER 1. INTRODUCTION 13

only revisit documents that have changed and that will contribute to search results of some

future queries. We explore this stricter requirement on document change in Section 5.4.

A similar problem to search index inconsistency is studied in the proxy cache literature

and deals with the issue of maintaining proxy cache consistency and coherency [Srinivasan

et al., 1998; Belloum and Hertzberger, 2002]. However, unlike proxy caches, crawlers generally

do not consider cache replacement issues [Podlipnig and Böszörményi, 2003].

1.5 Proxy Caching

Proxy caching is a technique that reduces network traffic and its associated cost by main-

taining a local copy of popular resources.

We highlight a typical proxy caching process with the example in Figure 1.4. In this

example there are two different users on the local network.

1. The first user requests the Yahoo! home-page from the web proxy.

2. The proxy first checks the local repository for the resource, but does not find it.

3. The proxy then requests the resource from the Web.

4. After retrieving a copy of the resource, the proxy places a copy into the local repository.

5. The proxy then returns the resource to the user.

6. Later, a second user requests the same resource from the proxy.

7. The proxy checks the local repository, this time finding a copy.

8. The proxy retrieves a copy from the repository.

9. The proxy then returns the resource to the user.

From this example we can see that while the first request for a resource required that the

proxy retrieve the resource from the Web, subsequent requests could be satisfied with the

locally cached copy, saving traffic costs.

While proxy caching reduces network traffic, it can suffer from the same inconsistency

problems as search indexes. Since documents are cached locally, there can be differences in

the local copy and the source on the Web. We highlight this with the example in Figure 1.5.

CHAPTER 1. INTRODUCTION 14

Pages

 . Request One Day Later
 "www.yahoo.com"

Proxy
Cache

Local
Repository

of
 . Retrieve Page

"www.yahoo.com"

1

3

4

2

 Page
 . Return

 . Check Local
 Cache (found)

DIFFERENT VERSION

Web

"www.yahoo.com"

"www.yahoo.com"

User Two

Bandwidth Requirement

Data Flow

17.08.06

17.08.06
YAHOO!

YAHOO!
18.08.06

YAHOO!

Figure 1.5: Proxy cache failure. One day later, another user requests the same resource

from the proxy (1). When the proxy checks the local repository, it finds a copy (2), which it

retrieves (3) and returns to the user (4). Hence a request by a user for a resource that was

first requested on the previous day is fulfilled by the local cache. Unfortunately, the source

on the Web has changed and no longer matches the cached version. As such, the user is

returned a stale (out-of-date) version of the resource.

CHAPTER 1. INTRODUCTION 15

Again, we have a user on the local network requesting the same resource from the previous

example in Figure 1.4, however, this time the request is one day after the original request.

1. A user requests the Yahoo! home-page.

2. The proxy checks the local repository, again finding a copy.

3. The proxy retrieves a copy from the repository.

4. The proxy then returns the resource to the user.

However, as we can see in the figure, the original source on the Web has been modified.

Meanwhile, the locally cached copied has not been updated, and hence, the user is returned

a stale (out-of-date) copy of the resource. To avoid this problem, the proxy needs to be

able to determine when locally cached copies of resources are likely to become stale. Proxy

caches typically use the Last-Modified and Expires HTTP headers to determine when this

is likely to occur.

While proxies operate in a passive role, acting in response to user requests for documents,

web crawlers operate in a more active way. Crawlers do not wait for user requests, instead,

using heuristics to determine which documents to crawl. A common approach among many

crawlers is to examine the URL link structure of web documents and decide which document

to crawl based on link characteristics.

1.6 Web Structure

The Web can be thought of as a graph, where documents are nodes (or vertices) and hyper-

links are edges. This graph structure has been examined in many studies to try and discover

insights into algorithms for crawling and searching.

A study by Broder et al. [2000a;b] examines the properties of two Altavista crawls in

1999, with over 200 million documents and 1.5 billion links. They confirm that the power

law for in-degree holds true for the Web in general [Kumar et al., 1999; Barabási and Albert,

1999; Huberman and Adamic, 1999]. They also show that over 90% of the Web falls into four

main components, as shown in Figure 1.6. The first piece is the central core which consists of

documents that are strongly connected. That is, given any two documents (u and v) there is

CHAPTER 1. INTRODUCTION 16

IN OUT

Tendrils

Tubes

Disconnected Components

Central Core

Figure 1.6: The connectivity and macroscopic structure of the Web. The Web is broken

down into four main components, the central core, the IN group, the OUT group, and tendrils.

The central core is highly connected. The IN group links to the core but is not linked to by

the core. The OUT group is linked to by the core but does not link to the core. Tendrils

are document that belong to the IN or OUT group but do not link to the central core. Two

additional types are tubes and disconnect component. Tubes are documents in the IN group

that connect to the out group but not to the central core. The disconnect component is the

set of documents that are not linked in any way to connected component of the Web.

CHAPTER 1. INTRODUCTION 17

a path from u to v and from v to u. The path, however, may not be direct and instead may

be via intermediate documents. The second and third group of documents belong to the IN

and OUT group. The IN group consists of documents that link to the central core but are

not linked to by the core. These could be new, unknown or unpopular documents. The OUT

group consists of documents that are linked to by the central core, but do not link back to the

core, and are most likely corporate documents that contain internal links only. Finally, there

is a tendrils group that consists of documents that do not link to, and are not linked by, the

central core group of documents. Documents in the tendrils group hanging off the IN group

may link to the OUT group directly without connecting to the central core. These documents

are classed as tubes. The remaining documents consist of disconnected components that are

not linked to or linked by any documents in the connected component of the Web.

A document that belongs to the IN group can be used as a seed URL with which to begin

the crawling process, and successfully reach most documents in the connected component of

the Web. To guarantee that all documents were retrieved, every document in the IN group

would need to be used as a seed to begin the crawl. If the crawl begins from any other group

of documents, a smaller subset of documents in the connected group will be visited.

In contrast, Diligenti et al. [2004] examine random walks on a web graph and compare

various document ranking schemes on both general crawls and topic specific crawls. As we

discuss in Section 2.11, topic-driven crawling attempts to retrieve documents that are about

a specific theme. This is distinct from general crawling schemes that attempt to crawl all

documents regardless of their topic. Diligenti et al. propose a framework that incorporates

many of the published ranking schemes, including PageRank [Page et al., 1998], as well as

Hubs and Authorities [Kleinberg, 1999]. In the next section we give a brief outline of this

thesis and show how our work fits in with previous work in crawling.

1.7 Overview of Thesis

The aim of the crawling process is to retrieve as many of the documents on the Web (and

enterprise webs) that will be returned in response to user queries and that users will find

relevant to their queries, while keeping the collection current and minimising the resources

used in the process. Crawler efficiency is important: network bandwidth is expensive; careful

CHAPTER 1. INTRODUCTION 18

rules are needed to avoid traps where a crawler continually revisits the same resource; and

resources should only be revisited when there is a likelihood that they have changed.

A web crawler initially retrieves resources that are manually selected and submitted by

users (who may be internal maintainers of the search engine or external authors of web

resources), processes those resources and extracts hypertext links, and continues the process,

retrieving resources as their URLs (Uniform Resource Locators) are extracted.

The crawling process is outlined in Figure 1.7.

1. The crawler removes the highest-ranked URL from the frontier, a list of unvisited URLs.

2. The document is retrieved from the Web.

3. A copy of the document is placed in the local repository for indexing by the search

engine.

4. The crawler parses the document and extracts the HTML links, with each extracted

URL converted to a standardised format.

5. The extracted URLs are compared to a list of all previously extracted URLs (“All

URLs” list in Figure 1.7) and any new URLs are added to this list.

6. If the URL is added to the list of all previously extracted URLs, it is also inserted into

the frontier for crawling.

7. The frontier is reordered using some scheme [Cho et al., 1998], such as breadth-first

ordering or PageRank [Page et al., 1998], and the process repeats from Step 3 until the

frontier is empty, the crawl repository is full, or the resources allocated to crawling are

exhausted.

In this thesis, we consider part of the web crawling problem. After crawling to establish

a collection, resources need to be recrawled periodically so that the stored copy is refreshed

to match the actual resource on the Web.

Specifically, we investigate:

• Past work on improving crawler effectiveness and efficiency, both in terms of collection

quality and freshness through crawl ordering.

CHAPTER 1. INTRODUCTION 19

Web

Crawler

Bandwidth Requirement

Data Flow

7

Local
Repository

of
Pages

4

2
3

 . Retrieve
 Page

 . Compare &
 Add URLs

 URLs to
 List

 . Get URL &
 Remove from
 List

 . Reorder
 List
 using
 Ranking

 . Add New

 . Extract
 URLs

URLs
Unvisited

All
URLs

 . Insert
 Copy

1
2

3
4

.

.

.

1

6

5

Figure 1.7: The crawling process. The unvisited list initially contains seed URLs that have

been manually chosen. The crawler removes the top ranked unvisited URL (1), retrieves a

copy of the document from the Web (2), and inserts the copy into the local repository (3).

The crawler then parses the HTML document and extracts the URLs it contains (4). Each

extracted URL is compared to a list of previously extracted URLs (5) and any previously

unseen URLs are added to both the all URL list and the unvisited URL list (6). Finally,

the crawler reorders the unvisited URL list (7), and the process repeats, until either there

are no unvisited URLs left, the repository is full, or a preset number of documents have been

crawled.

CHAPTER 1. INTRODUCTION 20

• A framework that allows for consistent evaluation of crawler performance.

• A metric for detecting and predicting the impact of change on user search results.

• The effectiveness of various stateless crawl techniques with regard to collection fresh-

ness.

• Adaptive crawl ordering schemes and their impact on collection freshness.

• Issues relating to the design and development of a crawler.

While various approaches have been proposed that effectively maintain collection fresh-

ness with a long history of change, our work focuses on schemes that do not rely on a history

of change. One possible approach to establishing when to recrawl resources is to manually or

automatically classify documents based on their content or URL; for example, a list of well-

known news sites might be manually maintained, and all resources within the list recrawled

every 12 hours. Another approach is to retrieve a resource twice, to determine how much the

resource has changed, and use this information to establish a recrawl frequency. We focus

on elements of the latter approach in Chapter 4 but, in practice, both approaches may be

applied and we investigate these various approaches in Chapters 5 and 6.

In this chapter we introduced the Web, the crawling process, and provided a brief overview

of the problems related to maintaining consistency of crawled collections. In Chapter 2 we

provide more detail on the difficulties related to crawling and describe the various work that

has been conducted on the topic of crawling.

We investigate previous work that has measured the effectiveness of a crawler in differ-

ent ways, such as, a crawlers ability to maintain index freshness [Cho and Garćıa-Molina,

2000a; Edwards et al., 2001], that is, return documents that have changed since the last

crawl [Pandey and Olston, 2005; Ghodsi et al., 2005]; a crawlers ability to return important

documents [Cho et al., 1998; Najork and Wiener, 2001], typically defining a document as im-

portant if it will appear high in a ranked list that uses the PageRank algorithm [Page et al.,

1998]; a crawlers ability to return documents about a particular topic, through ordering of

the crawl by its relevance to a topic, otherwise known as topic-driven crawling [Chakrabarti

et al., 1999]; a crawlers ability to reduce search engine embarrassment [Wolf et al., 2002]; a

crawlers ability to crawl the hidden web [Raghavan and Garćıa-Molina, 2001], which attempts

CHAPTER 1. INTRODUCTION 21

to retrieve content “hidden” behind search forms in searchable databases; and methods for

implementing parallel crawling [Cho and Garćıa-Molina, 2002], which investigates ways of

efficiently running multiple crawlers. To determine the ranking, typically, these evaluation

schemes ignore whether the document returned by the crawler will ever be read by a user.

Throughout this thesis, we examine ways of ordering and evaluating a crawl to increase

the likelihood of retrieving new and changed documents that are likely to be useful to search

engine users. Our evaluation methods in Chapter 4, for instance, incorporate query ranking to

determine the effect that change metrics have on user results, while our methods in Chapter 5

examine the popularity of documents with users and incorporate this information into the

crawl evaluation.

In Chapter 3 we introduce our experimental environment, highlight our need for a test

collection and how we gathered this collection from the Web.

In Chapter 4 we discuss our document change metrics, comparing them to other change

measures and investigating their effectiveness in measuring changes that affect search engine

results. We demonstrate that they are more effective than the commonly used metrics. We

also present our evaluation techniques.

Then in Chapter 5 we examine various “stateless” crawl ordering schemes that are widely

used, primarily to improve collection quality, and we study their impact on index freshness.

We incorporate popularity to ensure that the utility of retrieved documents is considered

as part of the performance evaluation. We consider the popularity of a document by exam-

ining the number of times the document has been returned as an answer to some past user

queries of varying scope. Obviously a crawler is wasting bandwidth if it finds important, new

documents but these documents are never returned to any user. Using the metrics of fresh-

ness and popularity, we examine algorithms employed by crawlers to find documents with

minimal waste of bandwidth. We use algorithms that have been proposed in the literature,

and introduce several of our own. We show that no one scheme performs best on all collec-

tions, but that query statistics are an important factor when maintaining the effectiveness

of search results.

In Chapter 6 we investigate our novel approach to crawl ordering, which uses anchor

term statistics, in conjunction with stateless crawl ordering schemes, to bias a crawl towards

changed, new, and important documents. We find that it can improve collection freshness,

CHAPTER 1. INTRODUCTION 22

while maintaining the properties of different static schemes, particularly when combined with

our dynamic scheme adaptation approach.

One of the important functions for a crawler is to maintain the URL frontier — a list

of URLs parsed from retrieved documents that the crawler has not yet visited [Chakrabarti,

2002]. Several previous studies have examined methods for biasing the frontier towards

changed and new documents, but unlike our scheme in Chapter 6, have not used anchor text

as a basis for the bias. One line of investigation has been the derivation of mathematical

models of change, allowing an optimum crawling strategy to be derived for that model. For

example, past studies have developed optimal strategies for crawling documents that change

according to a Poisson process [Cho and Garćıa-Molina, 2000a], or a quasi-deterministic

model [Wolf et al., 2002]. While studies have shown that documents can change according

to a Poisson model [Brewington and Cybenko, 2000b], other larger studies have shown that

most documents are modified during US working hours [Brewington and Cybenko, 2000a],

and hence, change on the Web is not a Poisson process. There have been other studies that

have produced models without these assumptions that have performed well, albeit against

simulated data [Edwards et al., 2001]. In our work we specifically focus on crawling collections

where there is insufficient data to fit an accurate mathematical model of change, and where

recrawling static documents is extremely undesirable.

Several schemes have been used in the past to determine when documents are stale and

hence need to be updated. The simplest and most widespread method uses the Expires and

Last-Modified HTTP headers. If the current date is after the Expires date or the differ-

ence between the current date and the Last-Modified date exceeds a threshold, the copy

of a document is considered stale (does not match the original) and needs to be updated.

Proxy servers such as Squid [Wessels, 2001b;a] examine the Last-Modified and Expires

HTTP headers to determine when to update their local copy of a document. Unfortunately,

the Last-Modified and Expires HTTP headers can be inaccurate or missing [Wills and

Mikhailov, 1999a]. Some web administrators deliberately supply misleading headers to en-

courage web clients to update their local copy of a document.

An alternative method for improving collection freshness is to use past change to predict

future change [Fetterly et al., 2003b; Ali and Williams, 2003; Ntoulas et al., 2004a]. That is,

if there are two copies of each document, from two separate crawls, a third subsequent crawl

CHAPTER 1. INTRODUCTION 23

can be ordered on the basis of whether each document has changed or not. This is based on

the assumption that documents that have changed in the past are more likely to change again.

While this method has been shown to perform well, it has one major drawback. It requires

two complete crawls of all documents before any document change frequency statistics are

available, and so, only on the third crawl can the frontier be reordered to improve collection

freshness and crawler efficiency. Furthermore, this scheme can only adapt in response to

past change statistics. While it will work well if past change statistics reflect the current

change statistics of each document, they must remain stable. It cannot adapt dynamically

to documents that change at irregular intervals. Our schemes in Chapters 5 and 6, on the

other hand, do not rely on past change to predict future change.

Finally, in Appendix A, we present the design issues that were considered as part of our

development of the Lara crawler, which we used to gather our test collections.

CHAPTER 1. INTRODUCTION 24

Chapter 2

Background

There are many elements to crawling, as introduced in the previous chapter. Here we consider

crawling in detail, considering HTTP headers and HTML markup, web crawling, observing

document change, and how the Web changes. We conclude with a survey of past work on

crawling.

2.1 Data on the Web

The crawlers described in the previous chapter, such as Archie, indexed text only, however

these days search engines index many different document formats, such as HyperText Markup

Language (HTML), Adobe Portable Document Format (PDF), and PostScript (PS) files.

Here we provide a brief outline of the structure of HTML web documents and how they

relate to web crawlers. We only cover the structure of HTML documents since they contain

an extensive link structure, make up a large proportion of crawled documents, are well

studied, and are very different to other document formats in terms of dynamics [Douglis

et al., 1997; Wills and Mikhailov, 1999b; Zander et al., 2003].

2.1.1 HTTP Headers and HTML Markup

Web resources that are indexed by search engines typically contain two components: HTTP

headers and the resource content. HTTP headers specify information that includes the

date the document was returned, the web server, the HTML document length, and the

document content type [Fielding et al., 1999a]. The resource content is often marked-up

25

CHAPTER 2. BACKGROUND 26

using HTML [W3C, 1999], although it may also be another content type such as Adobe PDF

format [Corporate Adobe Systems Inc., 1993], PostScript [Corporate Adobe Systems Inc.,

1999], or a proprietary text format. When HTML is used, the markup specifies the HTML

recommendation, the document character set (which could alternatively have been specified

in the HTTP headers), and the structure of the document [Fielding et al., 1999a]. We focus

on HTML resources in our work.

Web crawlers make particularly use of the Last-Modified, Expires, and Date HTTP

headers. The Expires header explicitly indicates the date at which the document should be

recrawled. When used correctly, this header solves the recrawl problem, that is, it indicates

a validity period for the document version and an exact date for recrawling. However, as

we show experimentally later in Section 4.1, it is an unreliable tool: many web servers do

not provide the header and, when it is provided, it is often set to a past time. Setting the

Expires header to a past time helps ensure a document is not cached by user agents such as

web browsers and proxy caches [Fielding et al., 1999b].

The Last-Modified and Date headers are often provided. As we discuss in Section 4.3,

if two versions of a document are available, then past document changes can be used as a

predictor of a future change. In this context, the time interval between the current retrieval

— specified in the Date header — and the most-recent change to the document — specified

by the Last-Modified header — can be used as inputs to a predictive function [Brewington

and Cybenko, 2000b] to decide when the document is likely to change. We would expect

that this approach would be effective when the time between retrieval of document versions

is short.

The use of the Last-Modified header to predict document freshness is an approach

used extensively by proxy caching systems [W3C, 1995; Wessels, 2001a] such as Squid [Wes-

sels, 2001b]. This approach, however, relies on the accuracy of the HTTP headers. Previ-

ous studies have examined the accuracy of headers [Mogul, 1999] and their implications for

caching [Wills and Mikhailov, 1999a], finding that:

• 38% of HTTP responses had HTTP date headers that are impossible.

• 3% of documents with no change in the Last-Modified field had changed.

• 36% of documents had changed, despite no change in the Last-Modified field.

CHAPTER 2. BACKGROUND 27

<HTML>

<BODY>

<H3>

A sample HTML document with a link to the

RMIT Home-Page.

</H3>

</BODY>

</HTML>

Figure 2.1: A simple example of HTML.

• 41% of documents with an expires and date field were “pre-expired”, that is, they had

an expiry date in the past.

In another study, Wills and Mikhailov [1999a] find that more than 9% of resources did not

change despite a change in the Last-Modified header, and 0.3% of resources had changed

when the header had not. They also find that in 14%–18% of cases no Last-Modified header

was available.

In addition to studying change and HTTP headers, Wills and Mikhailov investigate actual

document change. They find that many document changes were predictable, that is, the

same lines in the HTML markup often changed as, for example, banner advertisements were

rotated. This observation is consistent with our motivation and conclusions that document

content needs to be analysed to determine the importance of change in web documents. We

investigate this further in Section 4. Also of particular importance to crawlers is the anchor

text contained within the HTML documents, which we discuss next.

2.1.2 Anchor Text

HTML resources, as exemplified in Figure 2.1, are typified by markup contained within angle

brackets “< >”, known as tags. While HTML contains large amounts of markup, that is,

tags that define how content should be presented, much of this was not actually useful to

crawlers or search engines until only recently. Search engines typically only index the textual

content that will be visible on a web browser and ignore other content [Sullivan, 2002].

CHAPTER 2. BACKGROUND 28

One major exception is that techniques of “spamming” search engines have forced search

engine engineers to pay closer attention to formatting to avoid documents that are misleading

and attempt to promote their rank. For instance, modern search engines consider how

prominent the text is on a web document when evaluating its significance, for instance,

ignoring text that has the same colour as the background or that is in a small unreadable

font [SEO Logic, 2006].

Of significant importance to both crawlers and search engines are HTML anchors and

anchor text. Anchors are the link information that connects web resources to each other.

These links allow users to traverse from one HTML resource to another. Crawlers also follow

these same links to traverse web documents so that they can be indexed by search engines

and subsequently searched by users.

Anchor text is the text that appears highlighted as a link to other documents or resources,

and generally provides information about the linked resource. For example, in Figure 2.1, we

can guess that the URL belongs to the RMIT home-page without visiting the site, because

the anchor text suggests this. Of course, we would not trust this assumption if we only had

one document to go by, but, the large volumes of anchor text that are collected during a crawl

can be correlated with each other, providing a good indication of document content [Amitay,

1998; Craswell et al., 2001; Upstill et al., 2003b]. They represent a third-party judgement of

the content of a document and a summary of its content. Many search engines rank their

importance highly and use them to judge the importance of web documents [Brin and Page,

1998; Sullivan, 2006a]. When search engines do not have the resources to visit all documents,

they may resort to indexing only the anchor text that has accumulated for a document, al-

lowing users to search a document that the crawler has not retrieved [Brin and Page, 1998;

Hawking and Thomas, 2005]. Furthermore, topic-driven or focused crawling depends on an-

chor text to order the crawl to find documents that are about a given topic [Chakrabarti

et al., 1999; Diligenti et al., 2000; Chau and Chen, 2003]. We discuss topic-driven crawling

in more detail in Section 2.11. While both anchor text and textual content are both indexed

by search engines, several preprocessing techniques are applied to improve their utility. For

instance, when crawlers need to correlate large volumes of anchor text phrases to deter-

mine their frequency, preprocessing techniques help match related anchors. We discuss these

techniques in more detail in the next section.

CHAPTER 2. BACKGROUND 29

2.1.3 Text Preprocessing

Many information retrieval (IR) schemes use text preprocessing and normalisation techniques

to improve their effectiveness [Baeza-Yates, 2004]. IR techniques rely on term statistics to

predict the relevance of query terms to documents in a collection.

However, for term statistics to be generated, term delimiters must be defined [Williams

and Zobel, 2005]. While this is relatively straightforward for English documents, as words

are separated by well-defined punctuation, this is much more difficult for other languages

such as Chinese [Chen and Liu, 1992; Zhang et al., 2005]. Once terms are extracted, they

must be preprocessed to ensure that semantically similar terms are associated accordingly.

Stemming, stopping, and case-folding are used by search engines to increase the likelihood

of matching related terms [Witten et al., 1999; Baeza-Yates and Ribeiro-Neto, 1999].

Case-folding involves converting all characters to the same case, either uppercase or low-

ercase. This ensures that terms will match regardless of their case.

Stopping is a process that removes common or function words that usually add no new

information to a sentence [Witten et al., 1999], and are typically conjunctions, such as AND,

OR, and THE. Stop words occur in nearly all documents in the collection, and so, cannot

be used to distinguish different documents. Removing stop words reduces computational

load and typically has very little or no impact on effectiveness [Baeza-Yates and Ribeiro-

Neto, 1999; Lester, 2006] . When comparing anchor phrases, stopping would be expected

to improve the correlation of related anchors, since anchor phrases would be more likely to

match. For instance, the following three anchor phrases will match after stopping:

"To the RMIT home-page"

"This is the RMIT home-page"

"RMIT home-page"

Stemming reduces terms to their stem or root word by removing a suffix, so that words

that are semantically similar are reduced to the same word [Frakes, 1992]. The resulting stem

is not necessarily a real word, for instance, the words computing, computer, computers, and

computation are all reduced to the stem comput through the removal of the relevant suffix:

-ing, -er, -ers, and -ation. The stemming process needs to be repeatable and preferably the

CHAPTER 2. BACKGROUND 30

resulting stem is unique for each semantic concept. In Chapter 6, which describes work based

on anchor text, we stem with an implementation of the Porter 2 stemmer [Porter, 1997].

Once terms are stemmed, stopped, and case folded, their frequency and distribution can

be analysed further to determine the likelihood that documents are relevant to user queries

and rank them accordingly using a document ranking function. Document ranking functions

are important since crawling algorithms can use feedback from query results to help improve

the crawling process, and in return produce better query results [Wolf et al., 2002; Bullot

et al., 2003; Pandey and Olston, 2005]. Furthermore, we use document ranking functions

throughout our work. In Chapter 4, we use document ranking functions to determine the

effect of change metrics on query results, and in Chapter 5 we use document ranking functions

to determine document importance.

We discuss crawling and querying processes further in the next section and highlight the

impact they have on each other.

2.2 The Crawling and Querying Process

As discussed in Section 2.1.2, the link structure of web documents allows users to traverse

between HTML documents. While users have a web browser to render the HTML document

and they traverse the documents by clicking on the anchor links, crawlers must parse the

HTML document and extract the HTML links contained within anchor tags. Furthermore,

each crawled document must be indexed to allow users to search them.

A crawler’s basic function is to request HTML web documents from sites on the Web,

extract URLs from these documents, and maintain a frontier.

The steps in the crawling process are:

1. The crawler frontier is initialised with a set of seed URLs with which to begin crawling.

This may be provided by the crawler’s administrator or may be submitted by web site

administrators.

2. The frontier is reordered according to some scheme [Cho et al., 1998], ranging in com-

plexity from simple breadth-first ordering, to more complex schemes such as Page-

Rank [Page et al., 1998]. When applying schemes, such as PageRank, that use the link

CHAPTER 2. BACKGROUND 31

structure of documents, a partial web graph is created from the documents that have

been crawled up to that point.

3. The highest-ranked URL is visited and removed from the frontier.

4. A copy of the retrieved resource is inserted into the central repository for indexing by

the search engine.

5. The document is parsed and HTML links in the resource are extracted.

6. Each extracted URL is converted to a standardised format and compared to a list of

previously extracted URLs.

7. If the URL has not been previously extracted, it is inserted into both the list of previ-

ously extracted URLs and the frontier, otherwise it is ignored.

8. The frontier is reordering and the process repeats from Step 3 until the frontier is empty,

the crawl repository is full, or the resources allocated to crawling are exhausted.

The crawling and querying process are closely tied together. If a crawler performs poorly,

the search results returned to users will be poor, as explained in Chapter 1. The querying

process can provide key information about what documents and topics users find important

over time [Google Zeitgeist, 2008].

The querying process begins once the crawler inserts a copy retrieved documents into the

local repository. These documents must be indexed to allow their content to be searched.

An index, much like the one found in a book, allows users to quickly locate documents that

are relevant to particular terms, without resorting to scanning every document [Salton, 1971;

Witten et al., 1999; Zobel and Moffat, 2006]. The first step is to normalise the content, as

outlined in Section 2.1.3. Once this has been done, an inverted index is constructed. An

inverted index contains a list of pointers to each occurrence of a term in a collection [Brooks,

2003]. Whenever users submit queries, the inverted index is used to locate relevant docu-

ments, which are ranked according to their likelihood of relevance [Salton and Buckley, 1988],

which we discuss next.

CHAPTER 2. BACKGROUND 32

2.2.1 Ranking Schemes

In the previous section we discussed the querying process, which returns documents in re-

sponse to queries based on their likelihood of relevance. However, search engines require

automated methods for ranking these documents, due to the overwhelming size of the Web

and the large number of documents that need to be considered when ranking them in re-

sponse to queries. In this section we outline some of the ranking methods that have been

proposed in the literature. We break these into three types — those that are document

ranking functions, those that are query independent, and those that are query dependent.

Document Ranking Functions

Document ranking functions determine the likelihood of a document being relevant to a

query. They are the primary method for ranking query results in search engines and can

use different techniques such as query similarity, probabilistic models, or language models to

rank documents.

• Term Frequency – Inverse Document Frequency

Term Frequency – Inverse Document Frequency (tf.idf) weights terms so that distin-

guishing terms are given greater emphasis. The weight of a term is calculated as

wt = tf · idf (2.1)

idf = log

(

1 +
N

n

)

(2.2)

where wt is the relevance weight assigned to a document due to query term t, N is the

number of documents in the collection, and n is the number of documents containing

the term t. Inverse document frequency (idf) determines how common a term is in

the entire collection. Terms that occur in fewer documents are given higher weighting

since they have greater discriminating power [Witten et al., 1999]. Term frequency (tf)

considers how frequently a term occurs in a particular document and assigns a greater

weight to terms occurring more frequently. Finally, length normalisation is used to

reduce the adverse impact of longer documents on search results. Longer documents

by virtue of their size are more likely to be relevant to many different queries because

CHAPTER 2. BACKGROUND 33

they are more likely to contain a variety of terms, otherwise known as the “scope

hypothesis”. Alternately, they may have the same scope as a shorter document, but

simply use more words, known as the “verbosity” hypothesis [Robertson et al., 1993].

• Cosine Similarity

Cosine Similarity operates on a representation of queries and documents as vectors in

a multi-dimensional space, where each term is represented in its own dimension. It

then measures the angle between the query vector and each document vector in the

collection [Luhn, 1957; Salton, 1971; Salton and McGill, 1986; Salton and Buckley,

1988; Witten et al., 1999; Baeza-Yates and Ribeiro-Neto, 1999]. The document vector

that has the smallest angle with the query vector has the highest similarity. The cosine

measurement is used to normalise the angle to a similarity score between 0 and 1. When

the similarity is lowest, the angle is at 90◦, and the score is 0. When the similarity is

highest, the angle is at 0◦, and the score is 1.

similarity(Q, D) =

m
∑

i=1

wqi · wdi

√

√

√

√

m
∑

i=1

(wqi)
2 ·

m
∑

i=1

(wdi)
2

(2.3)

where there is a vector of m terms, wqi is the weight w of term ti in query Q, and wdi

is the weight w of term ti in document D. The weight of a term indicates the degree

to which the term discriminates documents from each other.

• Okapi BM25

Okapi Best Match 25 is a probabilistic model that measures the probability that a doc-

ument is relevant to a given query [Robertson and Jones, 1976; Robertson and Walker,

1999; Jones et al., 2000]. Documents and queries are represented as binary vectors,

where a 1 or 0 indicates whether a particular term occurs in the query or document.

The metric then determines the probability that a given document is relevant and ir-

relevant to a query. The function also includes tf, idf, and length normalisation to

improve performance in the case where no relevance information is available.

CHAPTER 2. BACKGROUND 34

wt = tfd ×
log(N−n+0.5

n+0.5)

k1 × ((1− b) + b× dl
avdl

) + tfd

(2.4)

where wt is the relevance weight assigned to a document due to query term t, tfd is

the terms frequency in the document, N is the total number of documents, n is the

number of documents containing the query term, dl is the length of the document, while

avdl is the average document length. k1 and b are constants. The constant k1 affects

the strength of the relationship between weight and term frequency, while b alters the

impacts of document length.

• Language Modelling

Language Modelling builds a language model for each document in a collection, then

for each query, it estimates the probability that the query was constructed from the

language model for each document [Ponte and Croft, 1998]. A simple metaphor would

be to select ten terms at random (with replacement) from a document and then trying

to identify which document they were taken from by analysing the selected terms. Lan-

guage modelling assumes that users would select query terms that are likely to occur

only in relevant documents. The model is slightly more complicated than this explana-

tion since it also has a certain probability of selecting terms from other documents, to

consider the distribution of a term across relevant and non-relevant documents. Fur-

thermore smoothing is applied to compensate for data sparseness [Zhai and Lafferty,

2004]. The likelihood of a query given a document is

P (Q|D) =
∏

q∈Q

P (q|D) (2.5)

where Q is the query, D refers to a language model estimated from the corresponding

single document. The probability that a query term was generated by the language

model of a document is

Pλ(t|d) = (1− λ)
tfd

|d|
+ λ

tfc

|c|
(2.6)

where Pλ(t|d) is the probability P that query term t was generated by the language

model of document d, using the Jelinek-Mercer method of smoothing, λ is a parameter

CHAPTER 2. BACKGROUND 35

controlling the probability mass assigned to unseen words, tfd is the term frequency in

document d, |d| is the number of terms in document d, tfc is the term frequency in the

collection c, and |c| is the number of terms in the collection.

Query-Independent Ranking

Query-independent ranking schemes typically rely on link graph information to determine

document importance, authority, or relevance [Henzinger, 2001]. They utilise the fact that

documents on the Web are linked together by anchors added by document authors and

that this gives the Web a structure that can be exploited and from which we can infer

relationships [Davison, 2000; Broder et al., 2000a;b]. They are typically combined with

document ranking functions to produce an overall rank [Brin and Page, 1998; Sullivan, 2003a].

Furthermore they are used extensively to adjust crawl ordering to improve collection freshness

and importance [Cho et al., 1998; Baeza-Yates et al., 2005]

• Hubs and Authorities (HITS)

Hubs and authorities is a method for ranking query results in a hyperlinked envi-

ronment [Kleinberg, 1999]. Authorities are documents that are linked to by many hub

documents, and hence are considered important by many different users, a concept very

similar to both inlink and PageRank [Page et al., 1998], which we discuss next. Hubs

are documents that link to many different authoritative documents, and are hence con-

sidered good sources for finding other important documents. There is circularity in the

relationship between hubs and authorities, and so an iterative algorithm is required to

determine which are which. While the hubs and authorities scheme is typically applied

to a sub-graph of documents returned in response to a user query, and can therefore

be considered a query-dependent scheme, in our work we implement a scheme that can

be considered a simplified hub method that counts the number of inward and outward

links of all documents.

• Inlink

The inlink scheme — also known as backlink or in-degree — ranks documents by the

number of incoming links [Cho et al., 1998; Upstill et al., 2003a; Fagin et al., 2003a;

Castillo, 2004; Baeza-Yates et al., 2005]. Ranking based on inlink considers each URL

CHAPTER 2. BACKGROUND 36

link to a document as a vote by the author of the document that the link originates

from. Documents with more inlinks are considered more important by web authors,

and so, are ranked higher. The inlink scheme has been used to order a crawl in order

to retrieve important documents earlier in the crawl. It has also been compared to

PageRank with regard to predicting desirable documents and found in one study to

be highly similar in performance despite being computationally less expensive [Upstill

et al., 2003a]. Another study, by Fagin et al. [2003a], examines query ranking using

inlink in an enterprise search environment finding that it performs poorly compared to

other ranking schemes.

• PageRank

The PageRank algorithm [Page et al., 1998], shown in Figure 5.1(d), is similar to the

inlink scheme, in that it also uses link graph data to determine document importance.

However, while inlink uses simple link counts and a link from any two resources is

equally weighted, PageRank weights each link based on the importance of the document

from which it originates, and the number of outlinks in the origin document. PageRank

essentially models the inlink scheme in a recursive fashion across all resources and is

used by the Google search engine [Google, 2008] as part of its ranking strategy. The

PageRank algorithm can be described as a web surfer that follows links and on occasion

jumps to a random page [Page et al., 1998]. It is moderately complex to compute when

compared to the inlink scheme, since each document is initially allocated a PageRank

value, and then calculations must be performed iteratively until the PageRank values

converge with their true values. In recent years several studies have examined ways of

improving the efficiency of the PageRank computation [Haveliwala, 1999; Chen et al.,

2002; Kamvar et al., 2003a;b; Broder et al., 2004; 2006].

The PageRank of document A is given as,

PR(A) = (1− σ) + σ ·

∑

d∈BA

PR(d)

Nd

 (2.7)

where σ is a constant dampening value between 0 and 1, d ∈ BA is the documents

d that link to document BA, PR(d) is the PageRank of document d, and Nd is the

number N of outward link in document d.

CHAPTER 2. BACKGROUND 37

• DynAMoRANK

DynAMoRANK is a dynamic application of the Absorbing Model [Amati et al., 2003].

It combines content and link analysis and is produced by a random walk on a modified

Markov chain that has been extracted from the Web. Amati et al. [2003] show that it

outperforms PageRank on the TREC WT10g and .GOV collections.

• Static Utility Absorbing Model

The Static Utility Absorbing Model (SUAM) also uses the Absorbing Model to gather

information from hyperlinks between Web documents [Plachouras et al., 2003]. SUAM

determines the utility of documents with regard to how well they allow users to browse

their vicinity. That is, it determines how well linked a document is to other documents,

thus facilitating user accessibility.

• TrafficRank and HOTS

The TrafficRank and Hyperlink Object Temperature Scale (HOTS) schemes model the

Web using an entropy maximisation procedure [Tomlin, 2003]. The TrafficRank scheme

ranks nodes by the amount of expected traffic through them, while the HOTS scheme

determines the local temperature. Both measures are influenced by the number of

inward and outward links.

• Weighted Link Rank

Weighted Link Rank (WLRank) ranks documents by considering various link attributes

such as the location of the tag in the HTML structure, the length of the anchor text,

the relative position of the link in the document, and the probability of reaching a

document while randomly surfing [Baeza-Yates and Davis, 2004]. The results show

WLRank can improve precision, with the length of the anchor text appearing to be

most effective, while the relative position of a URL on a document is ineffective.

• Discovery Date

The discovery date of a document identifies the time taken to discover a document

during a breadth-first crawl beginning at the root document. The sequence of times

provides an approximation of the hyperlink graph distance from the root document to

CHAPTER 2. BACKGROUND 38

each document [Fagin et al., 2003a]. Documents that have a smaller graph distance to

the root are more accessible and hence considered more important. Fagin et al. [2003a]

find that discovery date had a significant effect on recall when combined with document

ranking functions.

• HostRank and DirRank

HostRank and DirRank are variations of the PageRank algorithm that attempt to re-

duce the effect of link spamming or farming, a technique where an author creates many

pages that all link to a single page, thereby increasing its PageRank score. The Host-

Rank method alters the random surfer model so that instead of periodically jumping to

a random page, the surfer jumps to a small set of “trusted pages” [Eiron et al., 2004].

The DirRank method breaks domains by directory structure so that pages that are

in the same directory are grouped together when calculating PageRank scores [Eiron

et al., 2004].

Query-Dependent Ranking

Query-dependent ranking schemes operate on a subset of a collection produced by a query

or accumulated query statistics.

• WebQuery

The WebQuery system examines the link structure of the results returned in response to

a query and ranks them by their connectivity [Carrière and Kazman, 1997]. Documents

that are more highly linked are given higher ranking. Furthermore, documents that are

highly linked by returned results but are not returned by the original query are also

ranked highly.

• Improved Hubs and Authorities

Bharat and Henzinger [1998] present methods for improving Kleinberg’s hubs and au-

thorities scheme. They observe that the original scheme suffers from three problems:

1. Mutually reinforcing relationships occur between hosts when one site has a large

set of documents pointing to a single document on a second site. This increases

CHAPTER 2. BACKGROUND 39

the hub score of the originating site and increases the authoritative score of the

second site, giving undue weight to the opinion of a single author.

2. Automatically generated links are given the same weight as links generated with

human opinion.

3. Non-relevant nodes found in neighbourhood graphs that are well connected lead

to topic drift.

• ARC

The Automatic Resource Compiler (ARC) is a system that compiles authoritative web

resources on a given broad topic, similar to those provided by web directories, by

adapting Kleinberg’s hubs and authorities scheme, and incorporating terms near anchor

text [Chakrabarti et al., 1998].

• Topic-Sensitive PageRank

While the original PageRank scheme does not consider whether links are related by

topic, topic-sensitive PageRank is an alternative method that computes a set of Page-

Rank vectors that are biased towards different topics [Haveliwala, 2002]. The search

results are ranked by a PageRank score that is biased towards the topic of the query

terms.

• Words-in-URL

The words-in-URL approach gives a slight preference to documents that contain query

terms as a substring in the URL, and is applied once documents are ranked by the

likelihood that they are relevant to a query. Fagin et al. [2003a] show that using words

in the URL in conjunction with traditional document ranking functions can produce

excellent improvements in effectiveness.

• Hilltop

Bharat and Mihaila [2000] describe the hilltop algorithm, which computes a list of the

most relevant “expert” pages on a query topic, and determines which pages in a query

result set are linked to by this set of expert pages. Pages are then ranked by the number

and relevance of expert pages that link to them.

CHAPTER 2. BACKGROUND 40

While ranking schemes are primarily used to order search results, they can also by used

to order web crawls. Next, we discuss some simple crawl ordering schemes that have been

used in the past.

2.2.2 Crawl Ordering Schemes

An important step during the crawling process is managing the order of the documents in the

crawl frontier. For crawling to be efficient, we must rank documents in the list such that those

that have changed or are popular are more likely to be crawled than those that are static

and unpopular. This is analogous to ranking documents in response to a query, but rather

than aiming for documents relevant to the query at the front of the list, we want changed,

popular documents. While we investigate many crawl ordering schemes later in Chapter 5,

here we provide a brief outline of some of the more common crawl ordering schemes that

have been used in the literature.

• Breadth

The Breadth ordering scheme crawls a domain by beginning at the root, retrieving all

documents at that link depth level, before any documents at the next link depth level.

Breadth-first ordering was used in early crawlers [Pinkerton, 1994], and has been shown

to perform reasonably well in retrieving important resources early in a crawl [Cho et al.,

1998; Najork and Wiener, 2001], where importance is measured using the PageRank

algorithm [Page et al., 1998]. While Najork and Wiener [2001] show that breadth-first

ordering retrieves documents with high PageRank early in a crawl, they do not compare

it to any other schemes. Other studies have shown that breadth-first ordering performs

well during the beginning of a crawl [Castillo, 2004] .

• Depth

The Depth ordering scheme crawls a domain by beginning at the root, retrieving all

documents accessible via a particular link first, before moving onto the next link in a

document. Depth-first ordering has been used for focused crawling [De Bra and Post,

1994], in an attempt to retrieve documents that are most relevant to a given topic first.

CHAPTER 2. BACKGROUND 41

• PageRank

The PageRank [Page et al., 1998] ordering scheme, described in Section 2.2.1, has

been shown to perform well in retrieving important documents early in a crawl, albeit

where the measure of importance is also PageRank [Cho et al., 1998; Castillo, 2004].

The final stage of the querying process is to return an answer set to the user, which we

discuss next.

2.2.3 Answer Sets

Once a query has been processed and the documents are ranked by relevance to the user query,

an answer set must be created, sorted, and returned to the user, along with a “snippet”.

While typical sorting algorithms require N log N comparisons to sort N records, a much

simpler approach is to use a max-heap, since only a small subset of documents is returned

per page of results, and it is only this subset that needs to be sorted [Witten et al., 1999]. Once

the ranked relevant documents are determined and ranked, snippets are created. Snippets

contain summaries that are selected from the ranked document, and allow the user to make a

more informed judgement of the relevance of the document. These snippets are created from

the locally indexed collection and typically, are query-biased, containing passages of text that

have a high frequency of the user’s query terms [Tombros and Sanderson, 1998]. The URLs

and snippets of each document are then presented to the user, typically as ten results per

page. Since the snippet is created from the locally cached copy of a document, it is likely

to appear to be relevant to the user query. However, once the user clicks on the URL, they

are presented with the live Web copy of the document, and this may have changed since the

document was last crawled, and therefore, may no longer be relevant.

In this section we have discussed the querying and crawling process, highlighting their

interaction, presented various methods for ranking query results, examined various simple

crawl ordering strategies and finally, illustrated the creation of answer sets. In the next

section we identify methods used by crawlers to update local copies of web collections.

CHAPTER 2. BACKGROUND 42

2.3 Collection Update

Whenever data is replicated, issues regarding maintaining consistency and coherency arise.

Collections must be kept consistent with the source data, either through a cooperative push

model, or an independent and autonomous pull model.

2.3.1 Push vs. Pull Model

A push model is typically used in cases where strict consistency is required, such as replicated

or distributed database systems. In this case, the source notifies replicated collections of

changes as they occur. In such cases maintaining consistency and coherence is not difficult.

Alternatively, a pull model is used in decentralised collections, where strong consistency is

not possible or costly, such as the Web. In this case, the source must be “polled” periodically,

to determine whether changes have occurred in the collection.

Much of the past work on maintaining consistency of replicated data has concentrated

on environments where a push model is assumed, particularly database systems [Bernstein

et al., 1980; Carvalho and Roucairol, 1982; Krishnakumar and Bernstein, 1991; Pu and Leff,

1991; Golding and Long, 1993; Barbará and Garćıa-Molina, 1994; Olston and Widom, 2000;

Yu and Vahdat, 2000].

Although there are cases of push-based replication on the Web, such as mirroring, this

is typically restricted to systems maintained by a single organisation that has control over

both the source and replicated collections [Sivasubramanian et al., 2004]. In the case of

replicated web collections that are maintained by crawlers or proxy cache systems, a pull

model is applicable. When recrawling web collections using a pull-based model, batch and

incremental updates are the two main approaches used.

2.3.2 Batch Update

The batch or periodic update approach does not recrawl any documents more than once

during any crawl period. That is, all documents must be recrawled before any can be re-

crawled again. This approach is used by Google when conducting a deep crawl on a monthly

basis [SEO Today, 2002; Googlerank.com, 2005]. The batch update method ensures that

all documents are retrieved within a particular time period, however, it does not effectively

CHAPTER 2. BACKGROUND 43

maintain the freshness of documents that change more frequently than the update period [Ed-

wards et al., 2001].

Consider the following simple example: if a search engine must maintain a repository of

documents and it takes less than one week to crawl all the documents, it could conduct a

batch update on a weekly basis. While this would guarantee that no document was more

than one week old, any documents that change more frequently than once a week would not

be up-to-date.

2.3.3 Incremental Update

The incremental update approach does not require that all documents are retrieved before

revisiting documents that may have changed. This approach is used by Google to maintain

more frequently changing documents [SEO Today, 2002; Googlerank.com, 2005]. While this

method does effectively improve the freshness of changing documents, it does not guarantee

an upper bound on freshness like the batch update approach.

Typically, large-scale crawlers adopt a combination of both batch and incremental crawl-

ing to improve freshness. Earlier approaches to improving freshness have focused on times-

tamps.

2.3.4 Early Consistency Schemes

Much of the early work on maintaining consistency has focused on the maintenance of

files with the File Transfer Protocol (FTP) through the use of timestamps similar to the

Last-Modified date.

Work by Cate [1992] describes an early system for maintain consistency of local copies

of files downloaded from an FTP site. Users specify an update threshold which indicates

the frequency at which files should be updated, and is expressed as a percentage of the files

reported age. The default operation of the system guarantees that files are up to date as of

5% of the reported age. For example, a file with a reported age of twenty days is updated

once a day. This approach assumes that older files are less likely to be updated than newer

files.

In related work, Gwertzman and Seltzer [1996] compare various early caching consistency

algorithms using trace-driven simulations. They show that the weak cache consistency scheme

CHAPTER 2. BACKGROUND 44

used by the Alex FTP cache systems [Cate, 1992] reduces network and server load more

effectively than a TTL or invalidation protocol.

While these early schemes were concerned with FTP sites, later work concentrated on

change of web documents, particularly HTML files. In the next section we discuss methods

for evaluating the performance of search engines and crawlers.

2.4 IR Evaluation Metrics

In this section we provide a brief discussion of the various information retrieval (IR) metrics

used to evaluate the performance of search engines.

2.4.1 Precision and Recall

In IR the performance of a search engine is evaluated through the use of the measures

precision and recall [Grossman and Frieder, 1998; Witten et al., 1999]. Suppose there is a set

of documents D in a collection and a set of queries Q. Suppose also that a user has evaluated

the relevance of each document to each query, and so we have a subset of documents di ⊂ D

that are evaluated as relevant to query qi ∈ Q. Finally, suppose that we have a returned

set of documents dr at cutoff r. We can then evaluate the performance of a search engine

by determining the percentage of relevant documents it returns in response to query qi after

examining the first r returned documents.

Pir =
|dr

⋂

di|

|dr|
(2.8)

Rir =
|dr

⋂

di|

|di|
(2.9)

The precision Pir of results at cutoff r for query i is the fraction of returned documents

that are relevant in the top r returned documents, while the recall Rir of the results at

cutoff r for query i is the fraction of the total relevant documents in the collection that were

returned in the top r returned documents. For example, if 100 documents are retrieved and

40 of them are relevant, the precision at 100 (P100) is 40/100 = 40%. If the collection contains

a total of 80 relevant documents, the recall at 100 (R100) is 40/80 = 50%.

CHAPTER 2. BACKGROUND 45

The recall and precision scores can be summarised using many different measures.

• Precision-at-10 (P10), is the precision after ten answers have been inspected, that is

P10. This measure is particularly suited to quantifying search engine effectiveness since

most search engines return only ten results per page of results by default [Google, 2008;

Yahoo!, 2008; Ask.com, 2008; Altavista, 2008; Lycos, 2008] and many users do no look

past the first page of results [Jansen et al., 1998; Joachims, 2002; Lempel and Moran,

2003; iProspect, 2006]. Having an arbitrary cutoff of ten does not average well across

different queries particularly when the number of relevant documents in a collection

varies. A query with only three relevant documents can only achieve a maximum P10

of 0.3, while a document that has several thousand relevant results is likely to have a

very high P10 score regardless of which scheme is used.

• Average Precision (avp) averages the precision values after each relevant document

is retrieved. This is typically averaged over several queries to produce a Mean Aver-

age Precision (map) score. Unlike many other measures, average precision requires

no thresholds or interpolation, and the contribution of ranked relevant documents is

intuitive, that is, a highly ranked relevant contributes more than a lowly ranked one.

Furthermore, average precision is extremely sensitive to changes in the rank of rele-

vant documents, the contribution of each relevant document is known, and finally it is

robust in practice, with comparable results for different collections. However, average

precision also has weaknesses. First, there is no user application that directly motivates

MAP, and hence, it is not an application measure, instead it is more an overall system

evaluation. Second, it is not favoured by statisticians, since relevant documents affect

the score of all relevant documents ranked below it [Voorhees and Harman, 2005].

• Eleven-Point / Three-Point Average Precision averages the precision values at either

each of the eleven or three recall intervals from 0% to 100%, that is 0, 10, 20 . . . 80, 90,

100 in the case of eleven-point precision, and 20, 50, and 80 with three-point precision.

In effect, three-point precision determines the precision score after 20%, 50%, and 80%

of all relevant documents are retrieved and then averages these scores.

CHAPTER 2. BACKGROUND 46

As defined earlier, di ⊂ D is the subset of documents that are judged as relevant to

query i, P(r) is the precision at cutoff r. Let kj reference the j-th element in the set

k = {0.0, 0.1, 0.2 . . . 0.8, 0.9, 1.0}. Then eleven-point average precision is calculated as,

11PP =
1

11

11
∑

j=1

P(kj× |di⊂D|)vspace5pt (2.10)

Let kj reference the j-th element in the set k = {0.2, 0.5, 0.8}. Then three-point average

precision is calculated as,

3PP =
1

3

3
∑

j=1

P(kj× |di⊂D|) (2.11)

Both eleven-point and three-point average precision suffer from a problem where a small

difference in retrieval could lead to a large difference in the score. For instance, when

measuring three-point average, if the 0.2 recall level is not reached, the score will be 0.

Consider the example where there are 300 relevant documents in a collection and 59

of the 100 documents returned in response to a query are relevant. The 3 pt precision

will be 0.0, whereas if 60 relevant documents were returned, the 3 pt precision would

be 0.2 (0.6/3).

• R-precision selects a cutoff that is equal to the number of relevant documents in the

collection, instead of an arbitrary cutoff. This makes the results from various queries

comparable, and hence their average is meaningful, unlike precision-at-10. Further-

more, R-precision is more of a measure of overall system performance, compared to

precision-at-10, which is more applicable to a particular application, such as the num-

ber of relevant results on the first page of results. R-precision is calculated as the

precision after r documents are retrieved, where r is the number of relevant documents

in the collection,

R-Precision = P(|di⊂D|) (2.12)

• Mean Reciprocal Rank (mrr) determines the inverse of the rank of the first relevant

answer, averaged over several queries. It is typically used when evaluating the perfor-

mance of question answering systems, page finding, and one class classification problem,

where typically there is only one correct answer and the aim is to return this as the

highest ranked result.

CHAPTER 2. BACKGROUND 47

2.4.2 Rank Correlation Metrics

Rank correlation metrics can be used to evaluate changes in the rank of search engine results.

Typically, the ranked results produced by a particular scheme are compared to that of another

scheme to determine the amount of disorder in the ranks [Fagin et al., 2003b]. While there

are many different correlation schemes, not all are suitable for ranked lists. An important

consideration when evaluating ranked lists is that changes in the order of highly ranked

items are more important than changes to lower ranked items. While both the Spearman

rank correlation coefficient and em Kendall’s Tau can measure changed in the order of a list,

they do not consider the rank of items.

• Spearman Rank correlation coefficient determines differences in the order of two lists

and produces a score in the range -1 to 1. The magnitude of the score indicates the

strength of the correlation, that is, a score that is closer to either 1 or -1 indicates

that there is a stronger correlation, while a score closer to 0 indicates that there is a

weaker correlation. The sign indicates the direction of the correlation. A positive score

indicates a positive relationship, that is, as ranks in one set increase, so do the ranks in

the second set. A negative score indicates that as ranks in one set increase, the ranks

in the second set decrease [Spearman, 1904].

Spearman Rank = 1−
6
∑

φ2
i

ϕ(ϕ2 − 1)
(2.13)

where φi is the difference in rank for each corresponding item in two lists, and ϕ is the

number of item pairs.

• Kendall’s Tau indicates the degree of similarity between two lists by determining

the number of inversions of pairs necessary to transform one ranked list into an-

other [Kendall and Gibbons, 1990].

τ =
4F

z(z − 1)
− 1 (2.14)

where z is the number of items, and F is the sum of items ranked after the given item

by both rankings.

CHAPTER 2. BACKGROUND 48

• Dissim determines the degree to which two lists differ by allocating each item in a

list a score calculated by the difference in its rank in the second list. Items that have

the same rank in both lists contribute a score of zero, while items that have changed

contribute an amount determined by the inverse of their rank [Moffat et al., 2006].

These scores are summed and then normalised by the maximum score, achieved when

all items do not appear in the second ranked list.

Dissim Contribution(y) =

∣

∣

∣

∣

1

T + xy
−

1

T + ℓ(xy)

∣

∣

∣

∣

(2.15)

where T is a damping factor, xy is the position of item y in one ranked list, and ℓ(xy)

is the position of the same item in the second list.

In this section we have introduced various IR evaluation metrics, which we will adapt into

crawler evaluation. In the next section we identify the various crawler evaluation metrics.

2.5 Crawler Evaluation Metrics

In the previous sections we defined some of the standard IR evaluation metrics. Crawler

evaluation has had a variety methods defined. To compare crawl ordering schemes it is

necessary to define crawler performance metrics. The sole aim of a crawler is to find new

and changed documents. Subsequently, crawler performance is measured with a freshness

metric that determines whether a document has been recrawled, and whether or not the

document has changed or new [Cho and Garćıa-Molina, 2000a]. We discuss document change

in Section 2.5.1. One method for measuring crawler performance that has been used before

is the “ChangeRatio” metric [Cho and Ntoulas, 2002], which is similar to the metric used by

Edwards et al. [2001] to evaluate incremental crawling techniques.

• ChangeRatio

The ChangeRatio metric detects the percentage of downloaded items that have changed.

For instance if 1000 documents are downloaded and 600 of those documents have

changed, the ChangeRatio is 0.6 (60%). When more downloaded items have changed,

the scheme is considered more successful and the ChangeRatio score increases. To avoid

variations in results over different cycles the ChangeRatio is averaged over several crawl

CHAPTER 2. BACKGROUND 49

cycles. Cho and Ntoulas also note that there may be cases where items vary in “im-

portance”, which they account for by assigning weight wi to each item oi. Furthermore

they define 1(oi) as an indicator with a value of 1 when item oi has changed and 0 when

it has not. While they define ChangeRatio as shown in Equation 2.16, in practice they

use the measure shown in Equation 2.17.

ChangeRatio =
∑

i∈R

wi · 1(oi) (2.16)

ChangeRatio =
1

|R|

∑

i∈R

wi · 1(oi) (2.17)

• Freshness and Age

Cho and Garćıa-Molina [2000a] define the freshness and age metrics as

F (oi; t) =

1 if oi is up-to-date at time t

0 otherwise
(2.18)

where up-to-date means that the local copy of a downloaded item matches the source

item. They define freshness of the entire collection as

F (U ; t) =
1

|U |

∑

oi∈U

F (oi; t) (2.19)

where U is the set of all locally stored items. Freshness measures the fraction of locally

stored items that are up-to-date.

They define age of item 0i at time t as

A(oi; t) =

0 if oi is up-to-date at time t

t − modification time of oi otherwise
(2.20)

and the age of the collection as

A(U ; t) =
1

|U |

∑

oi∈U

A(oi; t) (2.21)

The age indicates how “old” the local copy of an item is. Under ideal conditions, a

collection will have a high normalised freshness value of 1 and a low normalised age

value of 0.

CHAPTER 2. BACKGROUND 50

Document Document not

changed or new changed

Crawler Revisits Success Failure

Crawler Does Not Revisit Failure Success

Table 2.1: Matrix for determining the success or failure of a crawl in acting on a single

document. In this case retrieving new documents is considered a success.

• Divergence

Divergence is a staleness metric introduced by Olston and Widom [2002] that represents

the amount of difference between a local copy of an item and the source item. When

there is a large divergence, there are more differences between the local copy and the

source item, and so, the scheme is less effective in maintaining collection freshness.

Our measure, “hit rate”, while similar to ChangeRatio, contains several differences. First,

while Cho and Ntoulas only measure the ChangeRatio at the end of a crawl, we measure

“hit rate” after each document is retrieved, hence providing a clearer indication of a scheme’s

performance. Second, we consider new documents as part of our evaluation.

When the crawler retrieves a document that has changed or is new, this is considered a

success; conversely, retrieving a document that is the same as the copy already indexed is

considered a failure. This can be broken down into the confusion matrix shown in Table 2.1.

Similar to the definition of precision and recall, we define “hit rate” and “crawl rate” at

cutoff r.

h(r) =
Number changed or new documents found at cutoff r

r
(2.22)

c(r) =
Number changed or new documents found at cutoff r

Total changed documents in collection
(2.23)

The hit rate h(r) metric measures the percentage of changed or new documents in the

crawled collection after r documents have been retrieved, hence determining how accurately

the crawl scheme locates changed and new documents. The crawl rate c(r) metric measures

the percentage of changed or new documents in the collection that have been retrieved after r

CHAPTER 2. BACKGROUND 51

documents have been retrieved, hence determining how thoroughly the crawl scheme locates

change and new documents.

We then plot the performance of a scheme as the hit rate against the crawl rate, the hit

rate against the percentage of the collection crawled and the crawl rate against the percentage

of the collection crawled.

As stated earlier, crawler evaluation determines whether changed documents are re-

crawled. This therefore relies on a method of detecting change.

2.5.1 Measuring Document Change

The metrics in the previous section that evaluate crawler effectiveness require a definition of

change. In this section we present various methods for detecting and measuring change and

briefly compare them.

Simple Change Detection

A simple method of detecting byte-wise change between two documents is to compare a hash

value, such as that computed by an MD5 hash [Rivest, 1992]. If two documents have the

same hash value it is extremely likely that they are identical. Hashing has been used in many

web change, collection freshness, and mirroring studies [Wills and Mikhailov, 1999a; Bharat

and Broder, 1999; Mogul, 1999; Wills and Mikhailov, 1999b; Cho and Garćıa-Molina, 2000c;

Brewington and Cybenko, 2000b;a; Cho and Garćıa-Molina, 2003a]. While hashing is fast

and simple to compute, it is not a useful definition of change from a crawling perspective since

it does not quantify the differences between two versions of a document, instead producing

a binary indication of change regardless of the size or type of that change.

Detecting Meaningful Change

The size and type of change in a document may be important when assessing crawler effec-

tiveness. Some changes are unlikely to alter the index term entries for that document, and

hence not affect user query results. For example, changes in formatting such as the addition

of a “<hr>” HTML tag to a document will not affect results to queries for most search mech-

anisms. Furthermore, the alteration of an advertisement within a document is also unlikely

to affect search results. Many studies of change on the Web have shown that changes are

CHAPTER 2. BACKGROUND 52

(A) the quick brown fox jumped over the lazy dog

(B) the lazy dog jumped over the quick brown fox.

the quick brown quick brown fox brown fox jumped fox jumped over

jumped over the over the lazy

the lazy dog lazy dog jumped dog jumped over over the quick

Figure 2.2: Measuring the difference between sentence (A) and (B) using a three word

shingling metric. The shingles in bold are common to both sentence (A) and (B).

localised, due to rotated banner advertisement, changing date fields, and so on [Wills and

Mikhailov, 1999a; Ntoulas et al., 2004a]. It would be a waste of crawler resources to recrawl

these documents because doing so is unlikely to result in important changes to the index.

A first criterion for a meaningful measure of change, therefore, is that it should only take

into account HTML content that is indexed by the search engine.

Shingling

The shingling scheme [Broder et al., 1997] measures the resemblance of two documents by

removing all HTML from the documents, converting their text to lowercase and then mea-

suring the number of unique sequences of n words, known as n-grams or n-shingles, that the

two documents have in common, as shown in Equation 2.24. The scheme can also be used

to measure the containment of one document within another. For example, Equation 2.25

computes the percentage of document (A) that originates from document (B).

Resemblance =
Number of n-shingles (A) and (B) have in common

Total number of unique n-shingles in (A) or (B)
(2.24)

Containment =
Number of n-shingles (A) and (B) have in common

Number of unique n-shingles in (A)
(2.25)

The example in Figure 2.2 uses three word shingles and produces ten unique sequences,

of which four are common to both sentences, producing a similarity of 4/10 = 40%.

Since shingling requires a large amount of processing and storage, sketches are used,

which store a specific number of shingles selected from the document. The selection criterion

CHAPTER 2. BACKGROUND 53

may be positional, frequency-based, or structural and has been surveyed by Hoad and Zobel

[2003]. These are converted into distinct numbers that are then sorted. “Supershingles” can

be produced by creating shingles of the sorted sketches.

Other Measures of Change

Various measures of change have been used as part of large scale web document monitoring

and reporting tools. These tools allow users to specify web documents that they want mon-

itored, and the type of changes that they want reported. The WebCQ system [Liu et al.,

2000], in particular, allows the following types of change to be detected:

• Content update: Any update on a document

• Content insertion: Increase in size (above a threshold)

• Content deletion: Reduction in size (above a threshold)

• Link change: New or removed HTML links

• Image change: New or removed images

• Word change: New words added or existing words removed

• Phrase update: Detect changes to specific phrases

• Phrase deletion: Detect removal of specific phrases

• Table change: Detect changes to specific tables

• List change: Detect changes to specific lists

• Arbitrary text change: Identify any changes in specified fragments

• Keyword: Detect addition or removal of selected keywords

We have evaluated several of these schemes in our work on change metrics in Section 4.3,

and investigated these in a web crawling and search context.

ChangeDetector, another tool for monitoring web sites for change, uses document clas-

sification to filter changes by topic and uses entity-based change detection to filter changes

by semantic concepts, such as names and dates [Boyapati et al., 2002]. One such example is

the presence of a date near a location, which is indicative of a press release.

CHAPTER 2. BACKGROUND 54

When detecting change, the ChangeDetector scheme first looks for byte-wise differences.

If a change is found, the scheme then processes the document with an XML-aware difference

algorithm followed by entity extraction. The difference algorithm breaks the document into

nodes based on the W3C Document Object Model [Hégaret et al., 2005]. The text that

falls below a node is normalised by ignoring differences in whitespacing and structure. If a

hash of the text detects differences, the algorithm attempts to align the text with insertions

and deletions. Any “uninteresting” changes, such as spelling corrections, are ignored. The

remaining changes are filtered through entity extractors to detect different types of semantic

content. The distance between entities is recorded into a database allowing users to submit

queries.

Flesca and Masciari [2003] present a change metric that has been implemented in CMW,

a change detection system that can create web update triggers that allow users to identify

changes they want monitored and the actions to perform when they occur. Their approach

does not examine the exact sequence of changes that are required to produce the modified

document, but instead the amount of change that has been made. They represent documents

as trees and compare document subtrees to determine the amount of difference between them.

Work by Chawathe and Garćıa-Molina [1997] examined change detection in structured

text. Their scheme MH-DIFF, detects change in the hierarchy of a tree using the insert,

delete, update, copy, move, and glue operations to classify changes.

• Insert adds a new node to the hierarchy.

• Delete removes a node from the hierarchy.

• Update alters the label of a node.

• Copy creates a copy of a subtree in another position in the hierarchy.

• Move removes a section of a subtree and places it into another position in the hierarchy.

• Glue replaces a section of the subtree with a copy of another subtree in the hierarchy.

While there has been a significant amount of research dealing with measuring change,

particularly in web documents, much work dealing with modelling the Web has dealt with

simple change metrics.

CHAPTER 2. BACKGROUND 55

2.6 Poisson and Simple Change Measures

There has been a variety of work that has examined ways of improving crawler efficiency

and collection freshness on the presumption that the Web changes according to a Poisson

process. Much of this work has used simple measures of change based on hashing. A Poisson

process is used to model a set of events that occur randomly and independently at a fixed

rate over time [Taylor and Karlin, 1998]. Poisson processes have been used to model events

over time, such as the number of times a web server is accessed per minute, and the number

of accidents at an intersection each month.

We first examine the various studies by Cho et al. using a Poisson process to model web

change.

2.6.1 Work by Cho et al.

In work examining various synchronisation policies and their effectiveness in keeping a col-

lection up-to-date Cho and Garćıa-Molina [2000a] assume that web change follows a Poisson

process. They examine various ordering policies (fixed, random, purely random), uniform

allocation versus non-uniform allocation policies, and synchronisation frequencies. They ex-

amine the following synchronisation ordering methods:

• Fixed order: Visits URLs in a list repeatedly in the same order.

• Random: Maintains only the URL of the root document of a site with recrawls begin-

ning from the root document. The link structure may change between crawls.

• Purely random: Synchronises documents on demand, as they are requested by a user.

The also test the following resource allocation methods:

• Uniform allocation policy: Synchronises all elements uniformly at the same rate.

• Non-uniform allocation policy: Synchronises elements proportionally. Elements that

change more often are revisited more often.

Furthermore, they define freshness as the number of elements (documents) that are

up-to-date (where the local document is the same as the real world document) and age

as the sum of the difference between the current time and the modification time of each

CHAPTER 2. BACKGROUND 56

element in the database. Their results show that the fixed-order policy performs better than

both the random and purely random policies for maximising collection freshness and reducing

collection age. They also find that the uniform allocation policy is always more effective than

the proportional policy when the goal is to maximise the freshness of the database (averaged

over time) and the amount of change is not considered.

They also argue that documents that change very frequently or infrequently should not

be revisited often. Documents that change infrequently do not need to be revisited often

by definition, and they argue that documents that change very frequently will not remain

up-to-date for long once they are refreshed.

In contrast to our work, they do not consider the significance of changes or the popularity

of the document to which changes are made. The home-pages of many sites are likely to

change very frequently, while also being of great importance to users. For example, over

a four year period the RMIT University home-page has changed on average over 12 times

per month [Internet Archive, 2008], however this page may not necessarily be updated by

their schemes. Furthermore, their work requires a long history of change to accurately predict

change frequency. Cho and Garćıa-Molina [2003a] have also shown that accurately estimating

frequency of change is difficult unless there is a long change history, or the Last-Modified

date is available.

In other work, Cho and Garćıa-Molina [2003b] examine the effectiveness of different web

document refresh schemes, again assuming that changes follow a Poisson process. They

introduce age and freshness metrics [Cho and Ntoulas, 2002], which we discuss further in

Section 2.7.

Cho and Garćıa-Molina examine proportional and uniform synchronisation policies. The

proportional policy refreshes resources at a frequency that is proportional to the frequency

with which they change, while the uniform policy synchronises all resources at the same rate.

Cho and Garćıa-Molina also examine synchronisation order, comparing fixed order, ran-

dom order, and a purely random ordering.

Mathematically they show that fixed order maintains the highest freshness and lowest

age, when assuming that all items change at the same rate. They also show that the uniform

policy is superior to the proportional policy, since the resources remain up-to-date for longer

when updating items that change less frequently. They state that this is not due to their

CHAPTER 2. BACKGROUND 57

discrete freshness metric but have no formal proof. They show that, to improve freshness,

items that change too frequently should be penalised. However, to improve age, they show

that items that change more frequently should be revisited more frequently and produce an

optimal solution for this.

Cho and Garćıa-Molina also study weighted freshness to try and incorporate “impor-

tance”, showing that items that have a higher weight should be revisited more frequently,

however the frequency is not proportional to the weight.

Cho and Garćıa-Molina verify experimentally that popular documents change according

to a Poisson process, by examining the change frequency of 720,000 documents from 270

popular sites crawled on a daily basis for four months. They show that the optimal policy is

significantly better than the uniform and proportional policies (500% freshness improvement

and 930% age improvement over proportional). Finally they show that the optimal scheme

is more useful when documents change more frequently. While these results are substantial,

the use of a simple discrete freshness metric in conjunction with simple change metrics would

not consider the rate at which significant changes are made to documents. Furthermore,

the fact that only popular sites are used in the experiments would tend to skew the results.

Their results do not consider the impact that crawling would have on document ranking.

Furthermore, they do not consider the addition of new documents.

In the next section we highlight the work of others in the area of crawler efficiency using

a Poisson model of change.

2.6.2 Work by others

In other work that assumes that the Web changes according to a Poisson process, Coffman

et al. [1998] examine the problem of search engine coherency from a queuing (theory) back-

ground. They relate the problem of revisiting web documents to the multiple-queue single

server (polling) system, where they consider the crawler to be the server and the documents

to be the stations in the polling system. They formulate a model and determine that the

optimal result is achieved when documents are crawled uniformly. However, this work is

purely theoretical and does not consider new documents, and so it is unclear how the results

would compare with live web data.

CHAPTER 2. BACKGROUND 58

While all the work described in this section uses collections assuming a Poisson process

for change modelling, there have been studies that have shown that the Web does not change

entirely at random, with for example changes occurring more frequently during US working

hours [Brewington and Cybenko, 2000a]. Padmanabhan and Qiu [2000] suggest that the

update of a news service is not modelled according to a Poisson process.

In the next section we discuss work that has used schemes that try to adapt to change

frequencies as they are detected.

2.7 Adaptive Crawl Ordering Schemes

Previously, in Section 2.2.2, we presented some static crawl ordering schemes. In this sec-

tion we present an overview of work on methods of detecting change and adapting collection

updates accordingly. We present work that examines change detection from a crawling per-

spective, studies that incorporate user feedback as part of crawl ordering, and finally work

that has examined adaptive schemes in a data warehousing environment.

2.7.1 Adaptive Crawling

Adaptive crawling schemes attempt to detect changes as part of the crawling scheme and

alter the crawl based on this information. One study into adaptive crawling describes the

design and implementation of an incremental crawler for the WebFountain project [Edwards

et al., 2001].

The model, based on linear programming, considers crawl strategies for improving docu-

ment coherence and maintaining collection freshness. Unlike much other work — but similar

to our work described in Section 4.3 — their design does not make assumptions about the

statistical nature of changes made to web documents. Instead it adapts to actual change

rates detected as part of the crawling process.

The design implements 256 different change frequency buckets for partitioning docu-

ments by change frequency, grouping documents with similar change frequencies together.

Documents that change very rapidly are handled separately, on the assumption that these

documents are typically media sites.

They find that different objectives produce different optimal solutions, but find a solution

that considers several criteria to produce a good overall result.

CHAPTER 2. BACKGROUND 59

• When the objective is to reduce the number of obsolete documents that are present in

the final time period, the optimum solution is to crawl documents only during the final

period, ignoring them during other time periods.

• With an objective to reduce the number of obsolete documents in each time period,

the optimum solution is to crawl fast-changing documents in many time periods, while

ignoring the 40% of documents with the lowest change rates.

• If the objective is to minimise the number of obsolete documents in the final time

period, but to still try to consider the number of obsolete documents in each time

period, the optimum solution is to crawl all documents just once during a crawl cycle

but spread them across the entire cycle.

In this work, the model considers a document obsolete if it is no longer a match of the ver-

sion on the Web, as determined by shingling [Broder et al., 1997], described in Section 2.5.1.

While their results are promising, they are simulated, and they note that it is not possible

to run the crawler model for a longer period and obtain a useful mathematical solution.

Therefore, their scheme must be periodically reset and start again from the beginning, some-

thing they argue would be necessarily anyway in practice in order to update parameters and

re-optimise the crawler.

In another major study, Cho and Ntoulas [2002] examine how to effectively use sampling

to detect document change. They measure the collection freshness while comparing the

following three document crawling methods.

• Round Robin

Round robin downloads a different subset of the collection during each crawl cycle, guar-

anteeing that all documents are retrieved once each. This method was used by the early

version of the Google crawler [Brin and Page, 1998] and the Mercator crawler [Heydon

and Najork, 1999].

• Change Frequency Based

The change frequency method uses past change history to determine how frequently

documents are changing, and hence how frequently to revisit them. This method is

investigated further in other work [Coffman et al., 1998; Cho and Garćıa-Molina, 2000a].

CHAPTER 2. BACKGROUND 60

• Sampling-Based

The sampling-based method retrieves a small sample from each site to determine what

percentage has changed, then allocates the remaining resources accordingly.

In the study they conduct crawls over a collection in cycles, downloading a limited number

of documents per cycle. Furthermore, they define several evaluation metrics, though they

use only the ChangeRatio measure, which we discussed in Section 2.5.

Cho and Ntoulas also define two different sampling policies, proportional and greedy.

Once the initial sample is made, the proportional scheme allocates the remaining resources in

proportion to the number of changed resources at each site. In contrast, the greedy scheme

allocates all the remaining resources to the site that had the most changed resources, then

if any resources are left they are allocated to the next most dynamic site and so on. While

the greedy policy is expected to produce a better ChangeRatio than the proportional scheme

when the estimation is correct, it is also expected to have a larger variation in performance,

producing a worse result when the estimation is incorrect.

Cho and Ntoulas also examine the optimal sample size for producing the highest Change-

Ratio. They also present an adaptive sampling process that detects the ChangeRatio of each

site during the sampling process and examines the confidence intervals. Once the confidence

interval is large enough to select a site for crawling, the scheme switches to the greedy policy.

They note that both the greedy and adaptive schemes may never download some documents,

and they examine this further in their experimental results.

Cho and Ntoulas examine “subset” sampling when there is only a small volume of re-

sources available. In this case, sites are grouped into subsets and then, in each download

cycle, only documents from one subset are sampled and downloaded. Different subsets are

visited in a round robin fashion over multiple download cycles. They discuss subset size but

do not provide an optimal subset size.

Cho and Ntoulas test these schemes against a web collection of 353,000 documents from

252 web sites, retrieved on a monthly basis for six months. They repeated the data for

experiments requiring a longer change history. They also test some of the schemes against

synthetic data following a normal change distribution.

CHAPTER 2. BACKGROUND 61

Their results show that:

• The greedy and adaptive schemes perform extremely well, with an average ChangeRatio

around 75%, compared to around 40% for the round robin, proportional, and frequency-

based approaches.

• When the volume of resources allocated to sampling is high, the performance of all

schemes is the same since all documents are downloaded. When sampling resources are

low, the performance of the greedy policy degrades.

• Subset sampling improves performance when there are limited resources.

• With longer change history data the frequency policy gradually improves in perfor-

mance, requiring about 100 download cycles to match the performance of the greedy

policy.

To evaluate the greedy policies ability to revisit all documents, they introduce a measure

of “fairness”, which they define as:

fairness =
of changed and visited documents up to the ith cycle

total # of changed documents up to the ith cycle
(2.26)

Importantly, this measure does not consider multiple missed changes as a negative, as

long as a changed document has been visited at least once. After five download cycles, the

greedy policy visits about 80% of the changed resources at least once. Cho and Ntoulas

examine the number of times changed resources are revisited in each change group, and show

that the number of visits is proportional to the number of changes. When compared with

synthetic data there is a close performance between the schemes with marginal differences,

though with the greedy and adaptive scheme still perform best.

A different study into the sampling method [Cho and Ntoulas, 2002], by Ghodsi et al.

[2005], introduces a hybrid method for updating collections. Their work combines the change

frequency method [Cho, 2001] with their own version of the sampling method. They use the

sampling method for the initial crawls until a large history is available, then switching to

the change frequency method. They also modify the sampling method and instead have an

iterative sampling method that downloads a sample size during iterations.

CHAPTER 2. BACKGROUND 62

Initially the sample size is equal for each site, however this adapts during iterations,

allocating more resources to sites that contain a larger number of changed documents.

Their data set consists of 100,000 documents (1000 web documents from 100 web sites)

crawled once a fortnight for eight weeks, a total of four times. They then repeat the four

cycles 125 times for a total of 500 cycles, measuring the efficiency of the different schemes

against the collection. They measure efficiency as the number of retrieved documents that

changed against the total number of retrieved documents.

Their results show that the standard adaptive sampling had an efficiency of 75%, com-

pared to their improved sampling scheme at 81% efficiency, and their hybrid scheme, which

had an efficiency of 87%.

2.7.2 User Feedback

Several studies have also considered user feedback as part of an adaptive crawling algorithm.

Bullot et al. [2003], for example, investigate user feedback for crawling. Their work

compares various crawl ordering schemes so that popular documents are kept up-to-date.

Their approach maintains a queue, with URLs at the front of the queue visited next. The

score of any URL that is visited is reset to 0, new documents are inserted into the queue

with a high score, and older URLs are given higher scores.

They monitor statistics regarding category, frequency of click, position of a URL, and

next penalisation to determine which URL to visit next.

• Category

The category of each clicked URL is noted and other URLs belonging to the same

category can also be visited. In this way URLs that are not clicked, but on the same

topic, also have their score affected.

• Frequency of Click

Frequency of click keeps track of the frequency at which URLs are visited by users.

URLs that are visited more frequently by users are rated higher than those visited less

frequently.

CHAPTER 2. BACKGROUND 63

Stale

Resource
Not Returned

Resource
Returned

URL
Clicked

Resource
Irrelevant

URL Not
Clicked

Resource
Relevant

Resource

Fresh

Figure 2.3: The embarrassment metric decision tree.

• Position of URL

Position of URL indicates the location of a URL on the results pages. Since URLs on

the results page are sorted by importance, URLs at the top of the first page are more

important than any other location on any other pages.

• Next Penalisation

Next penalisation reduces the score of all URLs on pages where users have clicked

the next button, since users have most probably found the results either irrelevant

or repeated. If a user clicks on some URL before clicking next, URLs on the page are

penalised less. If users click on page five instead of next, all URLs on pages one through

four are penalised.

Bullot et al. [2003] also discuss the effect of updating score information at different in-

tervals. They propose updating the score information whenever a URL is clicked (real time

update), a periodic update at a set interval (scheduled time update) and a hybrid update

model (scheduled limited update) that updates whenever a limited number of URL clicks are

made. The work is only a proposal and not investigated either experimentally or theoreti-

CHAPTER 2. BACKGROUND 64

cally. Furthermore, while they do propose schemes that alter the crawl order with regard to

various user feedback, they nonetheless assume that changes follow a Poisson process.

In another study examining user feedback, Schaale et al. [2003] introduce a new method

that analyses user queries to determine which documents should be crawled. Their scheme

ranks domains based on their relevance to user queries, then combines this with the existing

ordering method to produce a new crawl order. The work is untested.

Wolf et al. [2002] introduce the concept of search engine “embarrassment”, which mea-

sures the likelihood that a user clicks on a search result only to find that it is irrelevant to

their query, identifying how embarrassed the search engine would be by the failure of a user’s

search result. As highlighted in the decision tree shown in Figure 2.3, the embarrassment

metric breaks the evaluation into steps. It determines whether a resource is fresh or stale,

and in the latter case whether the stale resource is returned in response to a user query.

If returned, the scheme determines whether the resource is clicked by the user. Finally it

determines whether the clicked stale document is relevant to the query.

They model the probability of a user clicking on a result, based on its rank and page

position. They also consider combinations of web update models. Their results show that

their scheme for determining the optimal number of crawls for each document outperforms

a proportional and uniform scheme. However, their work does not consider cases where the

crawler fails to retrieve highly relevant, new documents during the crawl.

Finally, in an empirical study, Pandey and Olston [2005] examine how to schedule the

recrawling of documents to improve user experience. They formulate a user-centric search

repository quality metric that measures the impact of crawling strategies on users. We

investigated a similar concept [Ali and Williams, 2003], which we describe in Chapter 4.

They compare three schemes that analyse past change to predict future change and measure

their resource usage:

• Staleness-Based Refreshing

The staleness-based approach attempts to reduce the number of stale documents in the

search repository [Cho and Garćıa-Molina, 2000a]. They use this in conjunction with

shingling [Broder et al., 1997] and the transportation algorithm [Wolf et al., 2002] for

scheduling.

CHAPTER 2. BACKGROUND 65

• Embarrassment-Based Refreshing

The embarrassment-based approach minimises the level of “embarrassment” caused

to the search engine [Wolf et al., 2002]. Embarrassment increases when a user clicks

on a search results and finds that it is irrelevant. Again, this is used in conjunction

with shingling [Broder et al., 1997]. The results are simulated using a Poisson update

distribution. Click frequencies are simulated using a Zipf-like function. In the original

work by Wolf et al., the likelihood of relevance is simulated by selecting a uniform

random number between 0 and 1. Instead, Pandey and Olston assume that a document

that undergoes change becomes irrelevant to an average query if the fraction of shingles

that change exceeds a given threshold.

• User-Centric Refreshing

They determine user impact by ranking with tf.idf and inlink count.

To determine user interest, Pandey and Olston use the AltaVista query set. They allow

each scheme to crawl all documents on the initial crawl, then on subsequent crawls only a

certain number of documents were allowed to be refreshed. They compared the volume of

resources required by each scheme to achieve the same level of collection quality. Interest-

ingly, their results show that a user-centric approach requires substantially fewer resources

to achieve the same level of repository quality. This is particularly due to their use of query

relevance, which avoids crawling documents that change in “uninteresting” ways.

It is important to note that in their work, Pandey and Olston use a collection of 48 weeks

as opposed to our collection of 8 weeks. This allows them to use stochastic approaches such

as a Poisson process to model change. Furthermore, their evaluation metric is closely tied

into their schemes, and hence optimised for their schemes. Their implementations of various

schemes make many assumptions in order to test them. For instance, the decision whether

a document is relevant, the use of Zipf based click frequencies, and the simulation of results

using a Poisson update distribution. Unlike our work, they do not incorporate the addition

of new pages in any way. Finally, as noted earlier, this work was published two years after

our work [Ali and Williams, 2003].

CHAPTER 2. BACKGROUND 66

2.7.3 Data Warehousing

The issue of adaptively maintaining data consistency has been approached from a data ware-

housing perspective.

One study describes a scheme to maintain weak consistency of stock prices in a data ware-

house by estimating a good Time-To-Live (TTL) value based on different measures [Srini-

vasan et al., 1998]. A TTL value indicates how long a data item is expected to match the

source item and is typically used by proxy cache systems to predict the change frequency of

cached items. In this work, Srinivasan et al. suggest several approaches for determining a

“good” TTL.

• A Static TTL Value

This scheme is easy to implement, however selecting a low TTL may result in an

approach that contacts the web server too often, leading to wasted resources. While

selecting a high TTL would save on network resources, this could lead to the data

warehouse storing stale information.

• A Semi-Static TTL Value

This scheme begins with a large TTL. It then reduces the TTL each time the source is

found to be changing more frequently than it is being retrieved. The TTL can only be

reduced, and so, the TTL will always be the worst case, even if the worst case occurs

infrequently, leading to excessive polling.

• A Dynamic TTL Value Based on the Most Recent Changes

This scheme assumes a low TTL initially leading to frequent polling. If the source

changes frequently, the scheme polls frequently (low TTL). If the source changes in-

frequently, the scheme polls infrequently (high TTL). More recent changes are given

greater emphasis, in this case utilising a history of two TTL values.

• A Dynamic TTL Value with Static Bounds

To prevent the TTL value from becoming too high in cases where the source does not

change for a long time, in this scheme a static bound is used to limit the maximum

and minimum TTL value. This static value however, may not be representative of all

sources.

CHAPTER 2. BACKGROUND 67

• An Adaptive TTL Value

This scheme uses a dynamic TTL with a dynamic upper bound that is based on the

most rapid change observed so far.

Srinivasan et al. judge performance by how well a scheme minimises the metrics:

• Number of Pollings

Measures the number of times the source is polled and indicates the network overhead

of a scheme.

• Violation Probability

Indicates the probability that a user’s temporal consistency requirement is violated.

This metric measures the duration that the difference between the local price and the

source price exceeds the user constraint.

V Prob =
1

T

(

n
∑

i=1

ti

)

(2.27)

where t1, t2, . . . , tn denotes the durations during which the difference between the local

price and source price exceeded the user constraint, and T is the total time that the

data was presented to the user.

Using these metrics, they find that the adaptive TTL approach achieves the best results,

producing the lowest probability of violation. The schemes are evaluated against real stock

prices for several major IT companies over three-hour intervals. While these schemes appear

to work well for rapidly changing stock prices, which have uniform format, it is unclear how

well they would adapt to changing web documents.

In another study into data warehousing, Sundaresan et al. [2003] examine the problem

of revisiting documents that have changed to keep a local data current. They examine

the problem from the perspective of a distributed shared memory domain where a similar

problem, memory coherency, exists. Being pull-based, in turn means that the data warehouse

must poll the data sources (web documents) for changes.

Sundaresan et al. measure the average freshness of the warehouse collection and examine

the ability of the data warehouse to effectively determine change frequency with varying

levels of information availability.

CHAPTER 2. BACKGROUND 68

• At level 1, only the updated data is available.

• At level 2, a timestamp — equivalent to the Last-Modified HTTP header — is available

so that the age of the data can be determined.

• At level 3, a history of timestamps is available, making it possible to model the update

rate based on a window of previous updates. The longer the history the less susceptible

the model is to noise, however it will adapt to changes in update frequency much more

slowly.

Sundaresan et al. find that using the last update (level 2) to estimate the next change

produces the lowest freshness, but also has the lowest number of polls. Maintaining a list

of all updates (level 3) produces significantly better freshness, but more than doubles the

number of polls when compared to maintaining only the last update (level 2). Doubling the

poll rate of the last update (level 2) scheme produces slightly better results than maintaining

all updates (level 3) but requires nearly double the amount of polls required by the later

scheme.

While these schemes work reasonably well, they rely on the accuracy of the timestamp

information, something that cannot be done in a Web environment. Furthermore, they find

that a simple push model, where each source informs the local warehouse, produced the best

results, however this is obviously not feasible for search engines as outlined in Section 2.3.1.

They also consider different scheduling orders, such as First In First Out (FIFO), Least

Recently Requested (LRR), and Most Frequently Changed (MFC). The LRR approach favours

a model that does not over poll, and so, is more efficient, while the MFC scheme attempts

to keep the most views up-to-date.

Sundaresan et al. find that, of all the schemes they compare, the MFC scheduling order

produces the best overall freshness. The results are based on a Gaussian distribution of

update intervals, and real trace statistics. While these results are interesting, they are not

directly related to web document change, furthermore, change is implemented as a simple

binary measure, and so, the implications of the result for real web documents is unclear.

In this section we have discussed various adaptive crawl ordering schemes that have been

discussed in the literature. In the next section we discuss some of the past work into modelling

the Web.

CHAPTER 2. BACKGROUND 69

2.8 Web Change and Modelling

Many studies have examined the issue of web document dynamics and modelling portions of

the Web. Web document dynamics are important for many areas of research, particularly

crawling, data warehousing, and proxy caching.

2.8.1 Document Persistence

Often referred to as link-rot or web document half-life, document persistence is the study of

the rate at which documents disappear from the Web. They use the half-life measure, loosely

borrowed from physics, to determine the time taken for half of the documents to disappear.

A large study on document persistence by Koehler [2004] monitored 361 web documents

on a weekly basis for approximately 6.5 years between December 1996 and May 2003. The

results show that, although web documents are not particularly stable, once they have “aged”

sufficiently, they tend to stabilise and are more persistent. Furthermore, resources from

different domains, fields and disciplines tend to differ in their persistence.

In another study on document persistence, the authors examine the issue of link-rot of

documents from biochemistry and molecular biology domains [Markwell and Brooks, 2003].

They monitored 515 science education resource web documents for a period of two years,

and report a steady decline in the number of viable documents. They found that the “.gov”

domain was the most stable, while the “.edu”, “.org”, and in particular, the “.com” domains

were significantly more ephemeral.

Another study into the same problem in computing literature [Spinellis, 2003] examines

the accessibility of URLs that have appeared in published material from 1995 to 1999 on the

ACM digital library and the IEEE Computer Society digital library. The results show that

72% could be retrieved without problems. The remaining 28% could not be retrieved due to

various issues regarding availability.

While these studies were concerned specifically about the disappearance of documents

from the Web, others have examined the creation, modification, and deletion of documents.

CHAPTER 2. BACKGROUND 70

2.8.2 Document Deletion, Creation, and Update

Several studies have examined the rate at which documents are created, updated, and deleted

on the Web.

Pitkow and Pirolli use a survival analysis to examine the lifespan of documents on the

Web. They consider the survival rate of documents that are mainly requested internally by

the author, externally requested by others, and mutually requested by both the author and

the external community. They find that documents that are mainly requested by external

users have the highest survival rate, followed by documents that are mutually requested, and

that internally requested documents have the lowest survival rate.

Lawrence and Giles [2000] showed that even the most powerful crawlers can take weeks

or months to discover that a document has been created, deleted, or updated. This figure

has substantially improved over the years.

Notess [2003] examined search results for six different queries and noted that most search

engines had some results that were indexed in the past few days. Notess also shows that

the bulk of the index was about one month old, and that some documents had not been

re-indexed for much longer periods.

Lewandowski [2004] study date restricted queries to determine how effective search en-

gines are at determining the correct date of a document. Using fifty random queries from

the Fireball [2008] search engine, Lewandowski finds that the major search engines, Google

[2008], Yahoo! [2008], and Teoma [2004], all have difficulty in this regard.

In another study, Lewandowski et al. [2006] compare Google [2008], Yahoo! [2008], and

MSN [2008] finding that Google has the best overall freshness, with most documents being

updated on a daily basis, however, only MSN maintains all documents with a freshness of

less than twenty days. Recent studies of a large domain show that deep Web coverage has

also improved [McCown et al., 2006].

Lim et al. [2001] crawl five popular sites to a maximum depth of five levels, twice a day,

for one month and examine the extent to which documents change, and how “clustered” the

changes are. They measure the degree of change by using word edit distance, and determine

how clustered the changes are by dividing documents into blocks and determining which

blocks contain changes. They devise two methods of dividing documents into blocks.

CHAPTER 2. BACKGROUND 71

The first method divides the document into predefined blocks of 32 words, while the second

method divides documents by paragraph “<p>” tags.

Their results show that 90% of documents have a change of less than 20%. Furthermore,

most documents have changes that affect less than half the blocks when blocks are defined

as 32-word groups. With paragraph tags are used to define blocks, they note unsurprisingly,

that many documents have changes that affect less than half the blocks.

They conclude that, since changes are typically small and clustered, crawlers should use

an incremental update approach to improve efficiency. That is, instead of discarding the

collection and rebuilding the entire collection from scratch, only small subsets of the Web

need to be recrawled to update the collection.

Ntoulas et al. [2004a] examine the evolution of web documents, monitoring 150 popular

web sites for a year to determine the changes in both content and structure. Specifically

their work examines changes that affect search engines, such as changes to link structure,

the rate at which new documents and new content are created, the rate of change in content

as measured by tf.idf, as well as the number of new words introduced.

Their study shows that new documents are created at an approximate rate of 8% per

week, while 80% of documents are no longer available after one year. New documents tend

to “borrow” content from existing documents. They estimate that 38% of content in new

documents is “borrowed”. They also show that the link structure of the Web is much more

dynamic than the Web itself, with 25% of all links are new links being created each week

and about 80% of links being replaced after a year.

Ntoulas et al. also show that documents tend to either remain unchained or go through

small changes. There is less than 5% difference in 70% of changed documents after one week.

About 50% of documents that are available after one year have no changes. Changes tend to

be localised, with changes in restricted portions: weather, counter, reports, advertisements,

and last update snippets.

Significantly, the results of Ntoulas et al. show that frequency of change is not a good

predictor of degree of change, with no correlation between how frequently a document is

changing, and how much the document changes. This effectively means that existing schemes

that concentrate on frequency of change [Coffman et al., 1998; Cho and Garćıa-Molina, 2000c]

would not effectively maximise the degree of changes detected. Their results also show that

CHAPTER 2. BACKGROUND 72

past degree of change is a good predictor of future degree of change [Fetterly et al., 2003b].

That is, a document that changes by 10% in one week is likely to change by the same amount

the next week.

Baeza-Yates and Castillo [2001]; Baeza-Yates et al. [2004] show that, unsurprisingly, new

documents have poor PageRank, supporting our observation in Chapter 5 that finding doc-

uments that are both new and popular, is difficult. In our work in Chapter 5, we determine

the popularity of a document by the frequency that it is returned in response to user queries,

and we define a document as new if it has not been previous retrieved by the crawler.

A study by Koehler [2002] examines the stability, availability, and change rate of a set

of documents over a four-year period. The study does not consider the creation of new

documents over the time period, and so, represents the dynamics of an aging collection.

In the work, a document is considered comatose if it cannot be successfully downloaded

during six weekly requests. Koehler selected 361 URLs at random and retrieved them on a

weekly basis during the period December 1996 and February 2001. The study examines the

change in size of the documents, the number of new links, the changed items linked from

the document, as well as the document purpose. Koehler uses two different definitions of

document purpose, navigational and content. A navigational document is one whose main

purpose is to direct users to the information the web site was designed to provide, contained

within content documents [McDonnell et al., 2000].

The results show that document longevity is closely linked to domain type and document

purpose, with commercial navigational documents having a better survival rate than content

documents, while the opposite is true for educational documents. Koehler find that in general,

navigation documents are more likely to survive than content documents. Furthermore, aging

documents had a half-life of about two years, while the frequency and type of changes tend

to become more stable over time. Aging documents were also less likely to be removed from

the Web. Koehler argues that this may be due to the author becoming either satisfied with

or disinterested in the document.

While these studies have examined web dynamics from a general perspective, others have

also concentrated on web dynamics with respect to crawling.

CHAPTER 2. BACKGROUND 73

Top-Level Domain

All Com Edu Gov Netorg

Change < 1 day 23% 41% 2% 1% 11%

No change > 4 months 29% 14% 51% 54% 34%

Persistent > 1 month 72% 64% 84% 87% 71%

Persistent > 4 months 37% 26% 50% 56% 40%

Table 2.2: Change and persistence statistics of 720,000 popular pages. These values highlight

relative volatility of the “.com” domain, and the relative stability of the “.edu” and “.gov”

domains

2.8.3 Web Crawling and Web Change

The change rate of documents on the Web has been considered as part of a web crawling

strategy to improve collection freshness. We first focus on several studies that have studied

the link between web change and top level domains.

Top Level domains

Top level domains are the last part of an internet domain name, specifically, the letters after

the final dot of a domain name. Many studies have highlighted the link between generic top

level domain names, such as the commercial “.com” domain, and change frequency.

Cho and Garćıa-Molina [2000c] for example, monitor the daily evolution of 720,000 popu-

lar web documents over a four month period to determine how the Web evolves. They study

how often web documents change, their lifespan, how long it takes for half the documents

to change and model the change mathematically to determine how it affects crawling strate-

gies. The results of their experiments, presented in Table 2.2, illustrate the volatility of the

“.com” domain, and the relative stability of the “.edu” and “.gov” domains

They also find that 50% of all documents change or are replaced after approximately

fifty days. The “.com” domain requires only eleven days for 50% of documents to change,

while the “.gov” domain requires almost four months to have the same number of documents

change. From this study, they conclude that web document change can be modelled according

to a Poisson process and they use this in their crawling techniques.

CHAPTER 2. BACKGROUND 74

Their work discusses web document change and how it affects various crawling strategies

such as incremental and batch crawlers. Their definition of incremental crawling differs with

respect to most of the literature. In their work they define an incremental crawler as one that

continues crawling the Web once the crawlers resources are full and replaces less important

documents in their collection with the newer documents. In contrast, they define batch

crawlers as those that must periodically recrawl the Web and replace the entire collection

with freshly crawled documents.

Their work does not consider in detail the problem of determining web resource change

from document content. Rather, their crawler uses a simple checksum to determine whether

documents have changed. It then examines the history of the changes to determine how many

times the crawler detected that the document changed [Cho and Garćıa-Molina, 2000b; 2003a]

and uses this in its scheduling strategy. Their results are then used to determine the features

of an effective crawling technique. Specifically, they indicate that the average freshness of

the collection is the same for both batch and incremental (steady) crawlers, if all documents

are revisited every month by both schemes.

If both schemes retrieve the same number of documents over the same period of time, the

batch crawler will have a higher peak speed. The batch crawler is not continuously crawling

as the steady crawler does, and so, must collect documents at a higher speed during the times

it operates. The paper also shows that updating the collection as the crawler is retrieving

documents improves freshness but reduces availability. The paper describes an incremental

crawler where document importance is measured using PageRank. Document importance is

used to determine which documents to remove from the collection to make room for any new

documents that are crawled. Occasionally the crawler decides to revisit documents to refresh

the collection. In this case the crawler uses a checksum to determine whether documents

have changed. It then examines the history of the changes, to determine how many times

the crawler detected that the document changed [Cho and Garćıa-Molina, 2003a].

The paper does not consider how significant the changes are, simply whether they have

changed or not. They state that importance could be used to determine if a document needs

to be kept up-to-date. It is unclear whether the crawler they describe has been implemented.

Furthermore, they do not consider the creation of new documents.

CHAPTER 2. BACKGROUND 75

Douglis et al. [1997] analyse the following factors that affect how frequently resources

change on the Web:

• Size of the resource.

• Resource type.

• Frequency of access.

• Resource location.

• Top-level domain

The work focuses on how these factors affect proxy caching. The research analyses re-

quests and resources taken from two traces: one taken from a gateway containing the content

of requests and response messages, and another taken from an Internet proxy.

Douglis et al. determine the fraction of requests that access resources that have changed,

how old resources are when they are accessed, how modification times and access rates

interact, how much duplication there is in the Web, and whether changes can be detected

and exploited in HTML resources.

They find that, over a period of two weeks, many resources were modified to some extent,

some were never modified, and a significant number were modified at least once between

each trace. They also find that, although rate of change depends on many factors, content

type was a significant factor along with top level domains, while the size of the resource had

little correlation with rate of change. Their results are especially relevant to our work. In

Chapter 4 we show that past change size is a relatively good predictor of change; however,

we do not consider the size of the resource, but the change in size of the resource.

Fetterly et al. [2003b] also examine “top level domains”, by monitoring 150,836,209 HTML

documents on a weekly basis for eleven weeks to determine how frequently they change.

They find that the amount of change varies dramatically for different top level domains,

with documents in the “.com” domain changing more frequently than documents in the

“.gov” and “.edu” domains. However, there is a much weaker relationship between top

level domain and the amount of change. They also find that larger documents changed more

frequently and significantly than smaller documents. Typically documents change in either

CHAPTER 2. BACKGROUND 76

markup or in trivial ways. The relationship between the amount of change, the frequency of

change, and document size is more significant for commercial domains than for educational

and government domains. Finally they find that past change is a good predictor of future

change and that the quality of documents is also important, considering the amount of spam

documents they encounter, and the number of documents that change to a small degree in

meaningful content.

Next we present studies that have examined web change without focusing on top level

domains.

Other Studies

Wills and Mikhailov [1999a] discuss the accuracy of headers and their implications for caching.

They use an MD5 hash to determine the accuracy of Last-Modified headers in test sets (home-

pages taken from 100hot.com) over a two-week period.

As discussed in Section 2.1.1, they find that, in more than 9% of cases, resources had not

changed, despite a change in the last-modified header. In approximately 0.3% of cases the

resource had changed, despite no change in the last-modified header. They also show that

in 14%–18% of cases no Last-Modified header was available.

They also performed a case study on several high-profile home-pages to determine short

and long-term trends in changes, finding that many of the changes were predictable. That

is, changes to the same few lines in the HTML code — particularly banner advertisements.

This research heavily motivates our work in Chapter 4, that changes need to measured and

analysed to determine their importance, particularly banner advertisements, and that the

Last-Modified header is not a reliable indicator of change.

Brewington and Cybenko [2000a] present an analysis of web document changes and show

that they do not follow a pure Poisson process as stated by Cho et al. Nevertheless, they

assume that web document changes follow a Poisson process for their calculations.

In separate work, Brewington and Cybenko [2000b] discuss how fast the Web evolves

based on daily observations of 100,000 documents over a period of seven months, and estimate

the rate at which web search engines need to revisit the documents to keep them up-to-date.

They model changes in web documents and use this to determine the frequency at which

crawlers must re-index them to achieve particular levels of index consistency.

CHAPTER 2. BACKGROUND 77

The age of a document is determined by calculating the difference between a document’s

Last-Modified header and the time it was retrieved. Their system monitors specific URLs for

changes. In addition, the system also checks the top query responses whenever users present

a query to the search engine, however a particular user’s query will not be run more often

than once every three days, unless, the same query is posted by another user.

Through their work, Brewington and Cybenko [2000b] find:

• A web crawler must download at least 45 million documents a day (a re-indexing period

of 18 days) to maintain a 95% probability that a document taken at random is no more

than one week old (assuming a Web of 800 million documents).

• A crawler must re-index at least 94 million documents a day (a re-indexing period of

8.5 days) to maintain a 95% probability that a document taken at random is no more

than a day old.

• The Last-Modified header is available for around 65% of observations

• Most web documents are modified during the span of US working hours

• 4 kB–5 kB files with less than 2–3 images were modified most frequently.

• 4% of documents that were observed six times or more changed on every observation.

• 70% of these had no timestamp.

• 56% of documents observed six times or more had no change.

• 20% of the documents were younger than eleven days, with a median of roughly one

hundred days.

• The older half of documents had a very long tail.

This research is closely related to ours, in that they too are examining the problem

of determining frequency of document change. However, they are more concerned with

modelling the change as opposed to determining the effect of the changes on query results.

They do not consider the type, significance, and importance of the changes to documents in

a search context. Their method of polling does not guarantee that all changes that occur

CHAPTER 2. BACKGROUND 78

during any particular day are captured; however, they have conducted their experiments on

a fairly large data set.

Whilst many studies have investigated web change, there are several common traits.

Most use simple change metrics, despite studies showing that many modifications are trivial

changes to content and markup, or predictable changes to banner advertising. Many assume

change follows a Poisson process, despite observations to the contrary. Page content and

purpose has a significant affect on change frequency, with commercial pages typically chang-

ing more frequently. Finally, many studies rely on past change statistics, the Last-Modified

header, or some combination of the two, and do not consider the creation of new pages.

While these studies have examined web change and the implications for web crawling,

other studies have examined the relationship between crawl ordering and its impact on the

“quality” of the collection.

2.9 Crawl Ordering and Collection Quality

Crawl ordering techniques have typically been used as ways of improving the “quality” of the

crawl collection. That is, given that the size of the Web is large and growing larger [Ntoulas

et al., 2004a], crawlers need a way of ordering the crawl so that documents with the highest

quality are crawled first.

In one study, Najork and Wiener [2001] investigate collection quality as 328 million docu-

ments are crawled in breadth-first fashion from the Web. They use the Mercator crawler [Hey-

don and Najork, 1999] and measure quality using PageRank [Page et al., 1998], finding that

a breadth-first crawl performs well at the beginning of the crawl, downloading the highest

quality documents. However, they find that the quality of the downloaded documents drops

as the crawl continues. They believe that the reason for this is that high-quality documents

have many inward links from different hosts, and so, are found early in the crawl regardless of

where the crawl begins. The work does not compare breadth-first ordering to other crawling

strategies.

A study by Cho et al. [1998] examines crawl ordering methods and their impact on col-

lection importance as measured by PageRank [Page et al., 1998]. They compare ordering

by backlink/Inlink count, PageRank score, and breadth-first, showing that breadth-first per-

forms worst, while PageRank outperforms the other schemes. However, when combined with

CHAPTER 2. BACKGROUND 79

query topic relevance, they find that results are mixed, with breadth-first outperforming

other schemes for some topics but not for others.

In a study related to crawl ordering and collection quality, Boldi et al. [2004b] investigate

partial graphs to determine how quickly the partial PageRank based ranking matches the

complete PageRank ranking. They find that schemes that tend to miscalculate the final

PageRank value also tend to gather high PageRank early.

Another study, by Baeza-Yates et al. [2005], compares different crawl ordering schemes

to determine which retrieves “important” documents earlier in the crawl. They examine how

document ordering strategies operate with different amounts of information available. Since

a complete graph of the Web is only known at the end of the crawl, schemes cannot make

an accurate and informed ranking during the crawl. However, if a crawl is being repeated,

then there is historical information available with which to make a decision. They compare

a strategy with all information to strategies with historical information and strategies with

no extra information. Strategies with all information have access to a complete web graph

oracle, which they can consult in order to select the document in the crawl frontier that

has the highest PageRank score. Strategies with historical information can examine the web

graph from a previous crawl to decide which document to retrieve next. Finally, strategies

with no extra information have no access to information from past crawls, and so, can only

inspect information that has been collected in the current crawl.

Strategies with no extra information:

• Breadth-First: Crawls documents in the order they are discovered.

• Backlink/Inlink count: Crawls documents with the most inlinks from documents al-

ready crawled.

• Batch-PageRank: Crawls documents with the highest PageRank score, recalculating

PageRank each time K documents have been downloaded.

• Partial PageRank: Same as Batch-PageRank, however, between PageRank recalcula-

tions, new documents are assigned an approximate PageRank score using the sum of

the PageRank of existing documents pointing to the new documents, divided by the

number outlinks that the existing documents have.

CHAPTER 2. BACKGROUND 80

• OPIC: On-line Page Importance Computation is a weighted inlink count, similar to a

non-iterative PageRank score without any random links [Preda et al., 2003].

• Larger sites first: Crawls documents on sites with the most uncrawled documents, in

an attempt to avoid having many unvisited documents from any one site.

Strategies with historical information use link graph data from the previous crawl to

calculate PageRank for the current crawl. New documents are handled as follows:

• Historical PageRank Omniscient: Any new documents are assigned the PageRank from

an oracle that knows the complete link graph.

• Historical PageRank Random: Any new documents are assigned a PageRank selected

at random from the previous crawl.

• Historical PageRank Zero: Any new documents are assigned a PageRank of zero, and

so, are crawled last.

• Historical PageRank Parent: Any new documents are assigned the PageRank of the

documents that link to it divided by the number of outward links on the originating

document.

They also consider a strategy with all information:

• Omniscient: Queries an oracle with knowledge of the complete graph. Crawls docu-

ments in the frontier with the highest PageRank.

Baeza-Yates et al. compare the different schemes by determining the PageRank of the

collection as it is crawled, calculating the cumulative PageRank and the average PageRank.

Unsurprisingly, they find that the omniscient scheme is best. They find that backlink

count and partial PageRank are the poorest, and are less effective than a random crawl.

The breadth-first scheme outperforms most others during the beginning of the crawl, sup-

porting the findings of Najork and Wiener [2001], but it drops in performance after crawling

about 30% of the collection. Baeza-Yates et al. also find that the batch PageRank, larger

sites first, and the OPIC schemes perform best, retrieving half of the available PageRank,

while downloading 20%–30% of the documents. When compared to the historic PageRank

CHAPTER 2. BACKGROUND 81

schemes, OPIC performs poorly to begin with, improving as link information is collected.

The historical PageRank schemes outperform the OPIC scheme when comparing the average

PageRank.

While in-depth studies have been carried out for measuring collection quality, few such

studies have been conducted into collection freshness. Furthermore, while these crawl or-

dering schemes have been examined with regard to collection quality, many have not been

evaluated in regard to collection freshness. Many of the studies into crawling that we have

discussed in this section are directly related to our work. Similarly to our work, these studies

examines crawl order, however, while they attempt to improve the collection quality with

regard to importance, we attempt to improve collection freshness. Our work can compliment

such crawl strategies to produce collections that are both fresh and of a high quality. In our

work we examine many of these schemes in detail to determine how well they perform with

regard to maintaining collection freshness.

In the next section we discuss other more general aspects of crawling that have been

studied.

2.10 Parallel Crawlers

To improve the efficiency of crawlers and ensure that bandwidth is used effectively, it is

important to parallelise their operation. There have been several studies examining issues

related to parallel crawling.

In one study, Cho and Garćıa-Molina [2002] propose multiple parallel crawler architectures

and discuss their characteristics. They define metrics for evaluating parallel crawlers and

compare the architectures on a sample of 40 million documents collected from the Web. Their

results suggest that in cases were less than five crawlers are running in parallel, a “firewall”

approach is most effective. This approach segments the crawl space into predefined partitions

that are assigned to each crawler, with overlapping URLs ignored by each crawler. In other

cases, they suggest an approach that exchanges overlapping URLs with other crawlers.

In another study on parallel crawling, Shkapenyuk and Suel [2002] describe the design

and implementation of a distributed, robust, and scalable crawler designed to process up

to 400 documents per second. Finally, Boldi et al. [2004a] describe the implementation of

UbiCrawler, a linearly scalable crawler.

CHAPTER 2. BACKGROUND 82

In Appendix A, we discuss the implementation of our own Lara crawler, and the app-

roach we use to parallelise its operation.

While general crawlers attempt to crawl all documents, topic-driven crawlers are a dif-

ferent kind of crawling application that attempt to retrieve the subset of documents that are

related to a specific topic.

2.11 Topic-Driven Crawlers

Topic-driven or focused crawling attempts to gather only those documents that are relevant

to a given topic Chakrabarti et al. [1999]. It orders the crawl frontier based on the relevance

that URL anchor text has on a topic. Topic-driven crawling is based on the observation that

documents sharing a link are more likely to be topically related [Davison, 2000].

Topic-driven crawling is particularly relevant to our work in Chapter 6, which uses a

similar technique to topic-driven crawling. But, while topic-driven crawling measures the

similarity between anchor text and a topic to order a crawl by relevance, we use anchor term

statistics to measure the likelihood that anchor text point to a changed or new document.

One of the earliest examples of focused crawling was by Chakrabarti et al. [1999] and

used example documents to search for other related documents.

Rennie and McCallum [1999] use reinforcement learning to improve the likelihood of

crawling pages of a particular type or topic, producing a three-fold efficiency improvement

over a breadth-first crawl.

Diligenti et al. [2000] applied context graphs to avoid pursuing short term gains in rele-

vance, at the expense of following less relevant links that eventually lead to groups of highly

relevant documents. They use search engines to train the crawler so that link distances

between relevant documents can be determined for different topics.

McCallum et al. [2000] examine the use of machine learning to help in the construction of

internet portals that are concentrated on a particular topic, through the use of topic-driven

crawling.

Chau and Chen [2003] compare two traditional crawlers using breadth-first search, and

PageRank, to a crawler using neural network techniques, to order a topic-driven crawl of a

domain. In the case of the breadth-first search there is no way to ensure that documents were

relevant to a topic. The PageRank scheme maintains two priority queues, one for URLs with

CHAPTER 2. BACKGROUND 83

relevant anchor text and a second for all other URLs. The neural network spider maintains

a graph of nodes that represent documents, and the links between the nodes representing

anchor links. Each link is weighted according to the relevance of anchor terms to the topic,

and links with a weight above a threshold are traversed, retrieving the documents they link

to. The scheme then updates the graph, adding new nodes and links. The process stops

once a predetermined number of documents are retrieved, or the average weight of nodes is

lower than the allowable error. They develop a lexicon of both relevant, and irrelevant terms,

which they use to compare anchor terms against in the case of the content-based schemes.

Chau and Chen also selected five high-quality hub documents as seed URLs. Relevant

documents were determined by the percentage of relevant terms they contained.

Chau and Chen find that the neural network crawler performs best, with the breadth-

first crawler performing marginally worse. Interestingly, they find that the PageRank crawler

performed significantly worse than all other schemes, despite requiring the most computation

time. The exceptional performance of the Breadth-First scheme was directly related to

the choice of the high-quality seed URLs. PageRank performed exceptionally poorly since

it placed great emphasis on documents with a large number of links that were typically

irrelevant. Their work is of importance to us since it supports our results in Chapter 5 with

regard to freshness.

Menczer et al. [2001] discuss methods of evaluating adaptive topic-driven web crawlers.

They present three methods for evaluation: using classifiers trained on a sample set to assess

newly crawled documents, ranking of crawled documents via an independent retrieval system

and examining the order in which they were crawled, and finally, using cosine similarity to

assess the mean similarity between each crawled document and the focused crawl topic.

Srinivasan et al. [2005]; Menczer et al. [2004] present an evaluation framework for topic-

driven web crawlers. The system allows all logic related to the crawling algorithm to be

encapsulated in a single module that is connected to the evaluation system via a standard

interface. The system then keeps track of the resources used by the crawler, and the doc-

uments that are retrieved. Topics and relevant documents are retrieved from the DMOZ

[2008]. The system measures the recall and precision of the crawlers in regard to a specific

set of relevant target documents. The similarities of documents that are not in the target

set are also evaluated to determine their degree of relevance with regard to the target set.

CHAPTER 2. BACKGROUND 84

Chakrabarti et al. [2002] examine the information that is available about a document

in the documents that link to it, and how this information can be used to accelerate topic-

driven crawling. They implement a system that consists of two separate classifiers. The

first of these is an apprentice that assigns priorities to unvisited URLs using features derived

from the W3C Document Object Model [Hégaret et al., 2005]. The second classifier is a

trainer that generates training instances for the apprentice. In effect, the trainer is a user

specification of the desired content, while the apprentice learns how to find documents that

match the desired content. Chakrabarti et al. show that their approach reduces the fraction

of false positives by 30%–90%.

Next we discuss “Hidden Web” crawling, another specific type of crawler that are specif-

ically created to retrieve documents that are only accessible via a search interface.

2.12 Crawling the “Hidden Web”

The aptly named “Hidden Web” is the collections of documents that are in databases and

behind HTML forms. These documents are not directly linked by URLs, and so, crawlers

cannot retrieve them during the normal crawling process. Instead, crawlers must retrieve

them from within databases by completing HTML forms. This is typically achieved by

posing queries to the database and examining the results. The queries can be retrieved from

dictionaries, the general Web, from query results, or a combination of the above.

Raghavan and Garćıa-Molina [2001] introduce the Layout-based Information Extraction

(LITE) technique, which automatically extracts semantic information from search forms and

the results returned to queries.

Several studied by Ntoulas et al. [2004b; 2005] examine issues dealing with crawling the

hidden web and compare methods that retrieve query terms from dictionaries, from the Web,

and from returned query results. They show that an adaptive method that extracts terms

from query results outperforms other schemes.

Callan and Connell [2001] present an effective query-based approach to sampling of

databases on the Web, for the purpose of identifying the resource topics. This method,

unlike the STARTS approach [Gravano et al., 1997] does not require cooperation of the

resource providers, and is very similar to the approaches used for crawling the hidden web.

CHAPTER 2. BACKGROUND 85

Lin and Chen [2002] discuss a system for automatically searching the hidden web. The

system is essentially a meta-search engine that maintains details of the various hidden col-

lections and automatically selects the relevant collection to query when a user poses a query.

While most work has concentrated on extracting information from the databases, Wu

et al. [2004] focus on accurately matching the interface of search interfaces via an interactive

clustering-based approach.

These studies highlight the many difficulties that arise when crawling the Web. In our

work we do not attempt to crawl pages hidden behind forms. It is therefore unclear how well

our schemes would operate in such environments.

Next we discuss the methods employed by crawlers to detect duplicate collections on the

Web, known as mirrors.

2.13 Mirroring

The vast disparity in available bandwidth across the Web, and the multiple web users fre-

quently requiring the same data at the same time, leads to an excessive strain on web servers.

To alleviate this problem and improve load sharing, web administrators can use mirroring

techniques. Mirroring replicates groups of documents or entire web sites at multiple URLs.

While mirroring is beneficial to users, it can be a problem for web crawlers. If crawlers

retrieve multiple copies of the same data, this is not beneficial to search engine users, since

repeated search results do not provide new information. Furthermore, recrawling the same

data at a different location wastes crawler bandwidth that could otherwise be used to improve

search results. Crawlers therefore need to be able to detect mirrors and avoid crawling them

unnecessarily. Propagation delay can further complicate detection of mirrors, since mirrors

may not be identical.

A study by Fetterly et al. [2003a] examines the number and distribution of “near-

duplicate” documents on the Web. They measure similarity using five word shingles [Broder

et al., 1997] and define “near-duplicate” documents as documents that share two “supersh-

ingles”. They collected data on a weekly basis over a duration of eleven weeks, consisting of

approximately 150 million web documents. Their results show that 29.2% of these documents

are very similar, while 22.2% are virtually identical. Many of these near duplicates remain

so over time, with implications for mirroring.

CHAPTER 2. BACKGROUND 86

In other work, Cho et al. [2000] identify techniques for detecting mirroring and examine 25

million documents for mirroring. They use a content similarity measure that determines tex-

tual overlap [Shivakumar and Garćıa-Molina, 1995], and consider both document similarity

and link similarity to identify mirrors.

In a large study, Bharat and Broder [1999] examine 179 million URLs, and 238,000 hosts

to determine how much mirroring there was on the Web. They define two hosts as mirrors if

a large percentage of URL paths are valid on both domains, and the common paths contain

documents with similar content. Specifically, they examine structural and content similarity.

Structural similarity is defined by the relative paths on a host. When two different hosts

have the same set of paths, they are classified as structurally identical. On the other hand, if

two documents are byte-wise identical they are classified as content identical. If documents

have undergone changes at the byte level, such as the addition of white-space or HTML

reformatting without changes to content, they are no longer content identical. Instead, two

documents are considered content equivalent if they are identical after they are normalised

for such changes. If documents undergo changes due to banner advertising or other dynamic

content, but remain highly similar at a syntactic level, they are considered highly similar.

Similarity at a syntactic level is measured using shingling [Broder et al., 1997]. Finally, two

documents are considered related if they change substantially at the syntactic level but are

semantically similar. Using these measures of similarity they define six levels of mirroring:

• Level 1: Structural and Content Identity.

– Every document on Host A is replicated with byte-wise identical content on Host

B and vice versa.

• Level 2: Structural identity. Content equivalence.

– Every document on Host A is replicated with equivalent content on Host B and

vice versa.

• Level 3: Structural identity. Content similarity.

– Every document on Host A is replicated with highly similar content on Host B

and vice versa.

CHAPTER 2. BACKGROUND 87

• Level 4: Partial structural match. Content similarity.

– Some document on Host A is replicated with highly similar content on Host B and

vice versa.

• Level 5: Structural identity. Related content.

– Every document on Host A is replicated with related but not syntactically similar

content on Host B and vice versa.

• Mismatch: None of the above.

They also investigate whether the IP address of hosts are related. They compare paths

by tokenising them by directory and creating word bi-grams on consecutive directories. They

convert characters to lowercase, treat non-alphabetical characters as word breaks, eliminate

stop words, and ignore features that occur only once in a host. Finally, they compare

document content with the use of shingling [Broder et al., 1997]. In their experiments they

find that 10% of the hosts in the collection are mirrored.

In Appendix A, we describe the design and development of our Lara crawler, however

we avoid issues related to mirroring by manually avoiding them. If we were to conduct a

general crawl of the Web, we would need to implement some, or all or the techniques we have

described.

While we have discussed maintaining freshness and consistency of collections retrieved

by web crawlers, a similar problem is encountered with proxy caching.

2.14 Proxy Caching

Proxy caches operate in multi-user environments and attempt to reduce web traffic by storing

local copies of web resources that are frequently requested by local users. The are two main

issues regarding proxy caching:

• Cache replacement policies

There are potentially unbounded numbers of resources on the Web, due to documents

that are dynamically generated [Baeza-Yates and Castillo, 2004]. For instance, online

calendars, diaries, and sites that calculate the value of π, can dynamically generate an

CHAPTER 2. BACKGROUND 88

unbounded number of documents. This coupled with limited local storage capacity,

dictate that proxies need to decide on which resource to replace in the local cache once

it is full. This issue is generally not directly relevant to crawling.

• Cache consistency

Proxy caches store local copies of web resources, and so, as with crawling, need to deal

with issues regarding synchronising the local copy of a resource with the source.

Chankhunthod et al. [1996] discuss a proxy cache system that has different levels of

hierarchical caching with sibling and parent cache to provide greater flexibility and scalability.

Belloum and Hertzberger [2002] examine the impact of dynamic documents on a cache

replacement policy. They show that the performance can be improved dramatically by pre-

fetching cached documents when they become stale according to their TTL value, before

they are retrieved by users. In this sense it operates much like a crawler for a search engine,

since updates are not in response to user requests.

Cao and Liu [1998] analyse three different approaches to maintaining strong cache con-

sistency in a proxy cache system. They compare an adaptive TTL, a poll every time, and

an invalidation approach. The adaptive TTL approach that they use is the same as that

proposed by Cate [1992]. The poll every time approach sends an if-modified-since re-

quest whenever a user requests a resource contained in the cache. The if-modified-since

request informs the web server to return the requested resource only if it has been modified

since the date that the client last retrieved the resource, which is provided by the client as

part of the request. Finally, the invalidation approach relies on the server to notify clients

when files are modified.

Cao and Liu show that an invalidation approach generates a similar volume of network

traffic and server workload as an adaptive TTL approach, yet maintains consistency more

effectively. In addition, the invalidation approach maintains consistency as effectively as

the poll every time approach, but produces a much smaller volume of network traffic and

server workload. The invalidation approach, however, is not currently supported by the

HTTP protocol, and may be difficult to implement on the Web, making it unsuitable for web

crawling.

CHAPTER 2. BACKGROUND 89

An alternate approach towards improving collection consistency has been to improve

crawler and web server cooperation, which we discuss next.

2.15 Crawler/Server Cooperation

Several studies have examined ways of improving web servers to better accommodate crawlers

and improve web crawling efficiency.

McLearn [2002] examine how cooperation and information sharing between competing

crawlers can improve collection freshness, increase web coverage, reduce redundancy, and

reduce resource usage. They define freshness as a crawlers ability to capture “web events”,

such as the addition of new web objects or changes made to them. They formalise their

definition of freshness during interval ti and tj as:

Freshness tij =
Number of captured web events tij

Total number of web events tij
(2.28)

Brandman et al. [2000] investigate methods for improving web servers to better accom-

modate web crawlers. They propose that web servers export meta-data describing content

and last modified information. In the absence of these kinds of improvements or a push-based

models, the current method of periodic polling is required to keep collections fresh.

Gupta and Campbell [2001] propose a method that allows web servers to monitor changes

in their local files and push the changes in batches to search engines. Specifically they

incorporate popularity, age, and freshness to decide which documents changes to push to

search engines, and measure the number of bytes transmitted to determine the transmission

costs. The algorithm is analysed but not implemented, and so, its effectiveness is unclear.

Furthermore, this approach requires cooperation from web servers to accurately keep track

of changes to hosted documents.

Mikhailov and Wills [2002; 2003] propose the MONARCH approach for strong cache

consistency, which runs on the web server and monitors objects for change, assigning cache

invalidation commands accordingly. The approach assumes that documents consist of mul-

tiple objects that must be retrieved to render a document, and that these different object

can change at different rates. Caches are then instructed to request or validate the most

frequently changing objects on every request. The requests are also used to determine which

CHAPTER 2. BACKGROUND 90

other objects the client may have cached. The relationships between objects in a document

are used to determine which object in a document is the most dynamic and therefore is used

to “manage” the other objects in the document. This reduces the number of objects that the

server must monitor for changes. While this reduces server workload, it still requires wide

adoption to impact search engine performance and policy.

There have also been submissions by private groups to the W3C proposing standards for

improving the efficiency of replication on the Web [W3C, 1997]. They propose standards

for maintaining an index of files so that proxy clients can quickly determine which files have

changed and download them to ensure the consistency of changed files.

Other groups have also proposed methods for efficiently searching and locating resources

from web servers [DASL, 2000].

While many approaches have been proposed to improve web server and search engine

cooperation in an effort to improve search engine index freshness, none have been adopted in

the general Web, and so, search engine still rely upon heuristic methods to predict document

change frequency.

Next we discuss the various crawler designs and implementations that have been published

in the past.

2.16 Crawler Implementation

There have been many papers published in the past describing the design and implementation

of web crawlers. In Appendix A we describe the implementation issues with our Lara

crawler, which we used to gather documents for our work. Here we highlight the design and

development of published crawlers in chronological order.

Some of the first published crawlers include the RBSE spider [Eichmann, 1994], Web-

Crawler [Pinkerton, 1994], and the World Wide Web Worm [McBryan, 1994]. The Archive

crawler, another early crawler implementation, has been continuously crawling the Web

since October 1996 and allows users to examine changing snapshots of the Web over that

time [Burner, 1997; Internet Archive, 2006].

Other authors report on toolkits for designing crawlers. Miller and Bharat [1998] for

example, describe SPHINX, a Java toolkit that provides a framework for designing and

implementing a web crawler.

CHAPTER 2. BACKGROUND 91

Several crawlers used by large commercial search engines have also been described in past

studies. An early implementation of the famous Google [2008] crawler and search engine is

described by Brin and Page [1998], while Heydon and Najork [1999] describe the design and

implementation of Mercator, a scalable and extensible crawler, used by the Altavista [2008]

search engine.

Several studies have described the design of crawlers that incorporate techniques for

maintaining the freshness of crawled documents. For instance, CoBWeb, a scalable and dis-

tributed web crawler for the Brazilian Web is described by da Silva et al. [1999]. The design

of CoBWeb considers issues related to updating previously crawled documents by utilising a

cache parasite approach. This obtains information from proxy cache servers about URLs that

have been requested by users. Then any new or updated documents are requested directly

from the proxy cache. A study by Edwards et al. [2001], describes the design of the WebFoun-

tain crawler, and the optimisation model used to control the crawl strategy to specifically

improve the freshness of the collection. While, Baeza-Yates and Castillo [2002] describe the

implementation of a crawler that considers collection freshness and other important factors

such as document importance.

Several past studies have examined the development of highly distributed crawlers for the

purposes of parallelisation. Shkapenyuk and Suel [2002] for example, describe the design and

implementation of a distributed web crawler theoretically capable of retrieving up to 400 doc-

uments per second, though limited to 300 documents per second due to network constraints.

Shkapenyuk and Suel [2002] describe the design and implementation of a distributed, robust,

and scalable crawler designed to process up to 400 documents per second. Zeinalipour-Yazti

and Dikaiakos [2002] present WebRace, a distributed web crawler, filtering processor and ob-

ject cache that is incorporated into Internet middleware infrastructure. Risvik and Michelsen

[2002] give an overview of the FAST crawler, capable of retrieving 400 documents per second

that was used to serve the Alltheweb [2008] search engine. On a related issue, Broder et al.

[2003] examine methods for caching the “seen URL” list for large scale crawlers.

Other papers describing crawler implementation include work by Boldi et al. [2004a], Hafri

and Djeraba [2004], and Shokouhi and Chubak [2004].

Next we discuss other various crawler related topics that have been covered in the liter-

ature.

CHAPTER 2. BACKGROUND 92

2.17 Other Crawler Related Studies

Lawrence and Giles [1998] examine the coverage of search engines finding that no single

search engine indexed more than one-third of the “indexable” Web.

In another study Gulli and Signorini [2005] show that the indexable Web is more than

11.5 billion documents as of January 2005 and that even Google [2008], the largest search

engine at the time indexed only 76.2% of these documents. Furthermore, the combined

coverage of the four major search engine — Google [2008], Yahoo! [2008], Ask.com [2008],

and MSN [2008] — was only 9.36 billion or 81.4% of the indexable Web at the time.

Czumaj et al. [2001] examines the issue of access times for documents across the Web.

They show that access times fluctuate according to time zone, and that this can be used to

schedule crawling during less busy times.

Castillo [2004] begins by describing a web crawler model that integrates the crawler with

the rest of the search engine. They present methods for retrieving important documents early

in a crawl [Baeza-Yates et al., 2005], where importance is measured as PageRank. They also

model user behaviour to determine how crawlers should traverse web sites, and propose web

server cooperation methods to improve search results and reduce network congestion.

They model a random surfer on an infinite Web to determine how deep a user would go

into a web site, where depth is measured as link depth. At each point the surfer can:

• go to the next level

• stay at the same level

• go to the previous level

• go to a different deeper level

• go to a different previous level

• go to the start document

• leave the site

From this model and web logs, they show that a crawler would not have to traverse deeper

than about four links, in the case of web sites, and seven links, in the case of web logs or

CHAPTER 2. BACKGROUND 93

“Blogs”, to capture most of the documents that users would visit. They also discuss the

implementation of the WIRE crawler, which considers both freshness and quality [Baeza-

Yates and Castillo, 2002].

2.18 Summary

In this chapter we have highlighted the various difficulties associated with crawling. While

there has been work on many aspects of crawling, very little work has examined the problem

of maintaining freshness of crawled documents. Furthermore, many of the studies on this

aspect have made assumptions about the rate of change of documents, have used simple

notions of change, or have simulated their experiments. Studies that have examined change

detection have not examined the impact these changes have on search results. Furthermore,

while many studies have been made into the effect of crawl ordering on collection “quality”,

few have examined their affect on collection freshness. While several studies have discussed

the use of user feedback in crawl ordering from a theoretical standpoint, few have examined

this approach empirically. Finally, adaptive schemes have typically relied on a long history

of change to predict future change, or have applied a single crawl strategy for an entire

site. In our work we first set out to determine an effective meaningful change metric that

is computationally inexpensive. We define a novel approach to measuring change that can

identify changes that will have a real impact on user search results. We then produce test

collections for our experiments, such that real world performance can be measured. Next,

we test some traditional and novel stateless crawl ordering schemes to determine their affect

on collection freshness. Finally, we test our novel adaptive crawling scheme, which does not

require a history of changes and effectively orders a crawl such that documents that have

changed are more likely to be recrawled.

CHAPTER 2. BACKGROUND 94

Chapter 3

Experimental Environment

As we described earlier, web search engines store collections locally in order to provide fast,

scalable search facilities. The collections are gathered by crawling the Web. A problem

with crawling is determining when to revisit resources that have changed: stale documents

contribute towards poor search results, while unnecessary refreshing costs search companies

both time and money.

Evaluating crawler performance with regard to collection freshness requires several key

components: a test collection, a measure of resource change, and an evaluation methodology.

Together, these form an evaluation framework or system, something we discuss further in the

next chapter. In this chapter, we describe the first of these components — our test collection

and how it was created.

3.1 Introduction

Crawlers operate in an environment where autonomous changes are made to target docu-

ments. To maintain consistency of collections, crawlers must periodically revisit documents

after they have been initially crawled. Evaluating their performance in this regard is diffi-

cult. The volatility of the Web makes it impossible to consistently evaluate crawling schemes

directly. Instead, either web resource change must be modelled, or test collections must be

created. As outlined in Section 2.6 (page 55), previous work has proposed that changes on

the Web can be modelled according to a Poisson process, however some have shown that

changes on the Web are not according to a pure Poisson model [Dasen and Wilde, 2001], and

95

CHAPTER 3. EXPERIMENTAL ENVIRONMENT 96

other large studies have shown that in fact the Web does not change randomly [Brewington

and Cybenko, 2000a; Padmanabhan and Qiu, 2000]. In our work, rather than attempting to

model the Web, or make assumptions about the way in which it changes, we use snapshots

of the Web and test our schemes against these test collections, a process that we describe

further in the next section. In addition, we describe our motivation for this test collection,

and how it was developed.

3.2 Test Collection

While crawlers are normally used to retrieve documents from live, dynamic web collections,

they cannot be tested directly against live collections. Since various crawling schemes need to

be compared, and results need to be repeatable, it is necessary to use a static web. Testing

a scheme directly against the Web would most likely produce different results each time,

making it impossible to compare the results of any schemes. To avoid these problems, test

collections or change modelling techniques are required. In past work, different models have

been used to describe change on the Web, however many have used simple notions of change,

making it difficult to model meaningful change on the Web. Instead, in our work we have

opted to use a test collection as this would give us statistics representative of the real Web.

Many typical IR tasks have test datasets, such as the TREC [Voorhees and Harman,

2005] text retrieval collections, the INEX [Fuhr et al., 2004] XML data retrieval collections,

and the TRECVID [Kraaij et al., 2006] video retrieval collections, with which to run their

experiments. However, there are no collections for testing crawler index consistency algo-

rithms. Furthermore, in order to evaluate the performance of a crawler, statistics about the

rate of change of all documents are required, not just the documents that are recrawled.

These two problems necessitate the use of a testbed that contains a copy of each available

document, sampled at a regular interval.

Our collections are produced from two large Australian web sites. The first of these is

the Australian Broadcasting Commission (ABC) web site. This is a large domain consisting

of about 500,000 documents, of about six gigabytes in total. We crawled the ABC on eight

occasions in one-week intervals.

CHAPTER 3. EXPERIMENTAL ENVIRONMENT 97

Crawl Documents Size (MB) Date

1 485,190 6,522 27 May 2004

2 465,684 6,440 04 June 2004

3 475,451 6,481 11 June 2004

4 563,670 6,799 18 June 2004

5 611,819 7,751 27 June 2004

6 614,393 7,833 05 July 2004

7 546,630 6,850 22 July 2004

8 540,530 6,871 30 July 2004

Table 3.1: Statistics of the documents retrieved during each of the eight crawls of the ABC.

Interval New Removed Changed Unchanged
Changed New

Popular Popular

1-2 10,197 29,703 44,049 411,438 19,994 4,461

2-3 31,190 21,423 40,878 403,383 20,667 9,055

3-4 96,767 8,548 78,032 388,871 39,015 33,111

4-5 71,910 23,761 45,696 494,213 17,308 29,208

5-6 17,654 15,080 64,126 532,613 22,417 4,962

6-7 19,772 87,535 49,323 477,535 21,354 7,222

7-8 10,935 17,035 54,181 475,414 22,363 3,923

Table 3.2: Number of documents that have changed, not changed, been added, or removed

from week to week in the ABC collection. The last two columns are statistics of popular

documents, determined by query statistics. Change is evaluated using Words α = 10.

CHAPTER 3. EXPERIMENTAL ENVIRONMENT 98

Crawl Documents Size (MB) Date

1 143,143 1,171 05 Oct 2004

2 141,905 1,064 13 Oct 2004

3 134,836 1,047 19 Oct 2004

4 144,499 1,209 25 Oct 2004

5 147,134 1,157 29 Oct 2004

6 145,372 1,146 05 Nov 2004

7 149,137 1,159 10 Nov 2004

8 118,555 1,003 15 Nov 2004

9 137,116 995 19 Nov 2004

10 151,791 1,162 25 Nov 2004

11 95,343 738 01 Dec 2004

Table 3.3: Statistics of the documents retrieved during each of the eleven crawls of CSIRO.

Interval New Removed Changed Unchanged
Changed New

Popular Popular

1-2 10,165 11,403 3,502 128,238 1,095 2,172

2-3 10,968 18,037 3,993 119,875 1,475 4,066

3-4 15,348 5,685 5,141 124,010 1,588 4,152

4-5 11,415 8,780 5,156 130,563 1,775 3,456

5-6 9,665 11,427 4,624 131,083 2,096 3,793

6-7 9,775 6,010 7,295 132,067 2,973 4,161

7-8 11,533 42,115 4,081 102,941 1,568 4,148

8-9 38,283 19,722 3,226 95,607 1,285 9,239

9-10 20,539 5,864 5,305 125,947 2,709 5,852

10-11 6,370 62,818 2,600 86,373 1,277 2,148

Table 3.4: Number of documents that have changed, not changed, been added, or removed

from week to week in the CSIRO collection. The last two columns are statistics of popular

documents, determined by query statistics. Change is evaluated using Words α = 10.

CHAPTER 3. EXPERIMENTAL ENVIRONMENT 99

The second collection was taken from the CSIRO, a site which is representative of a

typical large organisation, due to the large percentage of well connected internal links [Broder

et al., 2000a;b; Fagin et al., 2003a]. This collection consists of about 120,000 documents, of

approximately six gigabytes in total, which we crawled on eleven occasions, also in one-week

intervals.

The decision to conduct our study using the ABC and CSIRO web sites was based on

their large sizes and the substantial variety of documents that they contain, ranging from

television and radio program information, to news articles, transcripts of audio, information

about staff members, and web forums. Access to the query logs for each site also allowed us

to analyse the utility of a popularity metric, and a query-biased crawling scheme, discussed

in Chapters 5 and 6.

Statistics from the crawls are presented in Tables 3.1 through to 3.4. In Tables 3.1 and 3.3

we present the number of documents retrieved during each crawl, the size of the crawl and the

date it was conducted. In Tables 3.2 and 3.4 we show the number of documents that moved

in and out of the collection on a week-by-week basis. Also shown in the final columns of the

each table is the number of the changed documents that were returned in the top thousand

documents to any query in the period (taken from query logs): that is the documents that

have changed and are deemed popular. We note that there is a mismatch in the time when

the queries for the CSIRO were posed and the time the CSIRO collection was crawled, which

could lead to the wrong documents being flagged as popular. Specifically, the queries for

the ABC collection were from the time period 27th May 2004 to 30th July 2004, while the

queries for the CSIRO were from the time period 19th June 2004 to 19th August 2004. We

refer to these tables more in Section 5.4.

Both crawls were in breadth-first order, beginning with the root document for each do-

main; http://www.abc.net.au/ for the ABC domain and http://www.csiro.au/ for the CSIRO

domain. Crawling was with our own Lara crawler, the design and development of which

we discuss in Appendix A. The crawls were restricted to only those documents that were

accessible from internal links within the sites. This in turn means that we have no informa-

tion external to these two domains, including the link graph data that is used for computing

PageRank, inlink, and hub statistics for schemes discussed in Section 2.2.2.

CHAPTER 3. EXPERIMENTAL ENVIRONMENT 100

Both domains were crawled with approximately one-week intervals, though there is a two-

week gap between crawl six and seven of the ABC. This crawl rate imposes restrictions on our

results: our testbed does not allow us to accurately model changes that occur more frequently

than approximately once a week or less frequently than approximately once every eight weeks

for the ABC and once every eleven weeks for the CSIRO. While these collections are not

used to examine our schemes in Chapter 4, they are used extensively in our experiments

in Chapters 5 and 6. Our work in the Chapter 4 does not require ongoing statistics over

multiple crawls, nor the URL link structure that is required for our experiments in later

chapters. Furthermore, our experiments in Chapter 4 require documents that are collected

from heterogeneous domains so that we can produce generic change metrics. Nonetheless,

we do test our change metrics in Chapter 4 against the ABC collection to ensure that they

are suitable in later chapters.

3.3 Summary

Web crawling is essential to the maintenance of an up-to-date and complete document col-

lection for a web search engine. Testing crawling algorithms directly against the Web does

not produce consistent results due to document variations over time, and so test collections

are necessary. In this chapter we have highlighted the test collections which we use to eval-

uate our algorithms in later chapters. As we have noted, test collections are an important

component of a crawler evaluation framework. In the next chapter we outline the two other

components — a measure of resource change, and an evaluation methodology.

Chapter 4

Crawler Evaluation Framework

Web crawlers collect resources from the Web so that they can be stored locally and indexed

by search engines. Crawlers must also periodically revisit these resources to maintain the

local collection.

As we highlighted in the previous chapter, evaluating crawler performance with regard to

collection freshness requires several key components: a test collection, a measure of resource

change, and an evaluation methodology. Together, these form an evaluation framework or

system. In the previous chapter we discussed our test collection. Here we investigate the two

other components — the measure of change, and the evaluation methodology.

While many studies have examined measures of resource change, relatively few have

examined them from a crawler perspective and even fewer have examined their impact on

search engine user experience. Measuring meaningful change is important since some changes

— such as in images, advertisements, or headers — are unlikely to affect query results.

In this chapter, we investigate measures for determining whether documents have changed

and should be recrawled. We highlight our crawler evaluation framework, consisting of our

approach to measuring meaningful change, and our approach to evaluating the impact of

change on user experience.

We empirically test our change metric and show that it is more effective than other

existing simple measures at identifying meaningful change. We also show that content-

based measures are more effective than the traditional approach of using HTTP headers for

detecting meaningful change, that is, change that affects users’ search results.

101

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 102

Refreshing based on HTTP headers typically recrawls 15% of the collection each day,

but users do not search for the majority of refreshed documents. In contrast, refreshing

documents when more than ten words change recrawls 22% of the collection, but updates

documents more effectively, detecting more of the changes that affect users’ search results.

We conclude that our approaches are an effective component of a web crawling strategy.

4.1 Introduction

Crawlers operate in an environment where autonomous changes are made to target docu-

ments. To maintain consistency of collections, crawlers must periodically revisit documents

after they have been initially crawled. Evaluating their performance in this regard is diffi-

cult. The volatility of the Web makes it impossible to consistently evaluate crawling schemes

directly. Instead, either web resource change must be modelled, or test collections must be

created. As outlined in Section 2.6 (page 55), previous work has proposed that changes on

the Web be modelled according to a Poisson process, however some have shown that changes

on the Web are not a pure Poisson model [Dasen and Wilde, 2001], and other large studies

have shown that in fact the Web does not change randomly [Brewington and Cybenko, 2000a;

Padmanabhan and Qiu, 2000]. In our work, rather than attempting to model the Web, or

make assumptions about the way in which it changes, we use snapshots of the Web and

test our schemes directly against these test collections, a process that we described earlier in

Chapter 3 (page 95).

Another drawback with existing crawler evaluation techniques is that they typically do not

consider search engine user experience. While we outlined a wide range of change detection

metrics in Section 2.5.1 (page 51), many of these require large amounts of computation

in addition to standard search engine functions, and few have been analysed to assess their

impact on crawling performance and search results that is, their effectiveness from a crawling

perspective, something we investigate further in this chapter.

Our work in this chapter also compares several change metric approaches against the

more traditional approach of using HTTP headers. Inspecting the expiry and last modified

information in the HTTP headers of web resources is a well-known technique for establishing

when to recrawl a resource [Srinivasan et al., 1998; Brewington and Cybenko, 2000b; Wessels,

2001a]. However, as we discuss further in Section 4.5.1, this information is only present

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 103

in around 39% of the documents in our general web collection (Proxy) — a results that

is in marked contrast to the observations of others (82%–86% and 65%) as discussed in

Sections 2.1.1 (page 25) and 2.8.3 (page 73).

Furthermore, while web crawlers can request just the HTTP header information and use

this to determine whether a recrawl is necessary, this does not guarantee improved efficiency

or effectiveness. While this may lead to reduced bandwidth usage since the entire document

is not retrieved, the process nevertheless involves using a HTTP request which could have

been used to retrieve a page. Furthermore, as we have noted previously, there are reliability

and availability issues with the use of HTTP headers to predict resource change.

Another approach is to compute the past change in a resource and use this to decide

whether a document has changed enough to warrant recrawling. We explore this idea in this

chapter by investigating whether the number of bytes added or removed from a document is a

good indicator of interesting change and, if so, how many bytes of change is significant enough

to impact on search results. We extend the idea for words, and also investigate the impact of

removing HTTP headers, document markup, and common words prior to computing change.

Our results show that our metrics are excellent predictors and detectors of changes that

have an impact on search results. For example, our Words metric can predict about 93% of

changes affecting rank while recrawling just 22% of the collection. In contrast, the Shingling

change metric, typically used by others, must retrieve 3.5 times as many pages.

Our results also demonstrate the limitations of using HTTP headers to predict change.

The Headers approach to predicting change typically detected 10%–15% of rank variations

due to stale documents, but recrawled about 14% of the collections. Our Words content

based change prediction metric detected the same amount of variations while retrieving

2%–4% of the collection.

We conclude that our simple change metrics are an effective component of a web crawl-

ing refresh strategy. In addition, we recommend our accuracy evaluation approach as a

benchmarking method for determining crawler accuracy.

In the next section we outline some simple change metrics that can be implemented into

the crawling and indexing process. We then follow with a proposal for a novel approach to

evaluating their performance that directly measures their impact on search results.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 104

Finally, we use this evaluation technique to identify an effective, meaningful change detection

tool that we use as part of our experimental framework in later chapters.

4.2 Document Change Metrics

In this section, we propose simple measures for detecting changes and determining the degree

to which these changes impact upon a user’s search results. We examine measures that are

efficient to compute: some of our measures can be calculated during the normal process of

indexing; that is, they require no additional document processing. In our experiments we

examine how well each metric detects meaningful changes, as well as their capacity to predict

future change. We examine the performance of each metric using intervals, specifically time

t, t + n and t + 2n.

We propose four metrics that we test in Section 4.5.

1. None— retrieve all documents at time t+n but none of the documents at time t+2n.

In this way, all other metrics are guaranteed to perform as well as the None metric,

since they will contain all documents from time t + n and some subset will be replaced

with updated documents from time t + 2n as the threshold for change α is reduced.

2. All— retrieve all documents at time t + 2n. Hence every document is up-to-date.

3. Size— retrieve all documents at time t + n and the subset of documents from time

t + 2n that have changed by more than α bytes in file size between time intervals t + n

and t + 2n. Importantly, our basic implementation of Size is based on the raw file

size of the document and does not include any form of document preprocessing such as

removal of markup or stop words. The Size metric is extremely efficient to calculate

since it based on the file size of a document.

4. Words— retrieve all documents at time t + n and the subset of documents from time

t+2n that have changed by more than α words between time intervals t+n and t+2n.

A word is defined as a string of alphanumeric characters that may include hyphens or

apostrophes.

As discussed in Section 4.1, we experiment with the use of the HTTP headers Expires and

Last-Modified (which we refer to as Headers). We also experiment with the shingling

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 105

method discussed in Section 2.2, with no recrawling which we refer to as None, and with

full recrawling which we refer to as All.

We use the All and None metrics as ceiling and floor benchmarks for performance

respectively. The All metric shows the maximum achievable accuracy for any of the metrics

that we test, and is produced when all documents are updated in the final interval t+2n. All

other metrics that we test will always retrieve either the same set of documents or a subset

thereof. Because of this, All crawls the maximum number of resources per time interval. In

contrast, None demonstrates the impact on search accuracy when a crawler fails to update

a collection. We do not propose using All or None in practice.

The Size metric is an approximation of All but any changes that do not affect size by

more than α bytes are ignored. Moreover, even when α = 0, document changes can occur

that are not detected: for example, a changing date, page number, or HTML colour attribute

may not affect the size of the document. Because it is less sensitive to change, we expect

that, for low values of α, the Size metric will be effective. In addition, because Size can be

computed from file size, it is very efficient to evaluate.

The Words metric is sensitive to single byte changes, but not to more than one change

per word. In this context, change is defined as substitution, deletion, or insertion of a word,

that is, α defines the number of such elementary changes that must occur for a document

to be crawled. This is a different form of robustness to change to that of the Size metric:

a multi-byte change in a currency value, a counter, or a document footer may be only a

one-word change. The Words metric therefore matches an intuitive understanding of what

constitutes change. Words are defined as strings of alphanumeric characters that may include

hyphens or apostrophes; all other characters are non-words and define boundaries between

adjacent words [Williams and Zobel, 2005]. We illustrate the Words metric with an example

in Figure 4.1. Note that if we use the Size metric to measure the change we get a difference

of three.

The shingling method, discussed in Section 2.2 (page 52), measures the number of se-

quences of length n that two documents have in common. In the experimentation reported

in this chapter, we measure resemblance using a length of seven words, as used in work

by Edwards et al. [2001].

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 106

(A) Lara Croft is a tomb raider

(B) Brian Lara is a cricket player

Lara Croft is a tomb raider

↓i ↓d ↓s ↓s

Brian Lara is a cricket player

Figure 4.1: Measuring the difference between sentence (A) and (B) using the Words metric.

In this example an s indicates a Substitution, a d indicates a Deletion, and an i indicates an

Insertion, giving a total cost of four operations.

In our basic implementations of Size and Words, we consider all resource content in-

cluding HTTP headers and HTML markup. We have also experimented with removal of

headers, removal of markup, and removal of both. Our rationale for removing headers is

based on our observation in preliminary experiments that these frequently contribute to re-

crawling of documents that have not changed in their content. For example, header tags

such as Date: Wed, 23 Apr 2003 22:08:08 GMT reflect the time of retrieval and not the

document content, but are updated at each retrieval. Our rationale for removing markup is

based on observations that changes in it rarely affect document content and that markup is

rarely indexed by search engines.

4.3 Using Document Change in Web Crawling

One of our additional aims in this chapter is to identify change metrics that can use past

document change as an effective predictor of future document change. For these purposes

we assume that each web resource has been retrieved twice; that is, we are able to determine

how much a document has changed and use this as a predictor of significant future change.

In practice, document change frequency needs to be predicted after a document has been

retrieved only once, and this is something we examine further in Chapters 5 and 6.

Since our aim is to identify change metrics that can predict future change our definition

for change metric is altered accordingly.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 107

1. None— retrieve all documents at time t+n but none of the documents at time t+2n.

In this way, all other metrics are guaranteed to perform as well as the None metric,

since they will contain all documents from time t+n, while some subset will be replaced

with documents from time t + 2n. Note that the None metric is identical for both

predicting future change and detecting change.

2. All— retrieve all documents at time t+n, and the subset of documents at time t+2n

that have changed between time intervals t and t + n, that is, any document version

dt+n that is not bytewise identical to dt is recrawled. In this way, any document not

updated to time t + 2n will be updated to time t + n.

3. Size— retrieve all documents at time t+n, and the subset of documents at time t+2n

that have changed by more than α bytes in size between time intervals t and t + n.

4. Words— retrieve all documents at time t + n, and the subset of documents at time

t + 2n that have changed by more than α words between time intervals t and t + n.

With each metric s, we compute a function Cs(dt, dt+n, α) that evaluates to 0 or 1 for a

change threshold α and two versions of document d that have been retrieved at time intervals

t and t + n. A value Cs(dt, dt+n, α) = 1 indicates that document d has changed by more

than α under metric s and should be recrawled, while Cs(dt, dt+n, α) = 0 indicates that no

change has occurred or the change is less than the threshold α. We make two simplifying

assumptions: first, when Cs = 1 we assume that sufficient resources are available to recrawl

document d in the next time interval t + 2n; and second, we assume only binary values for

Cs, that is, a priority for recrawling is not available.

An implementation of the function Cs(dt, dt+n, α) is effective if it is able to identify

document changes that will impact the accuracy of the search engine. We discuss how

the impact on search engine accuracy is measured in Section 4.4. Moreover, the function

Cs(dt, dt+n, α) is efficient if it minimises the number of resources that are retrieved to those

that have an impact on effectiveness. We quantify efficiency in Section 4.5 by measuring

the number of documents retrieved in a given time interval, and consider it relative to the

extremes of recrawling all documents with any change and not recrawling.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 108

Document Document not

changed changed

Crawler revisits Success Failure

Crawler does not revisit Failure Success

Table 4.1: Matrix for determining the success or failure of a crawl in acting on a single

document.

4.4 A Measurement Framework for Web Crawling

An obvious measure of the accuracy of a recrawling strategy is to record the success and

failure rate for revisiting documents. For example, after using a metric to decide whether

to recrawl each document in the collection, the prediction success may be recorded in a

confusion matrix that tabulates successes and failures, as shown in Table 4.1. A success is

where a document that was predicted to change was retrieved and had changed, or where a

document was predicted not to change and had not changed. Failures are where a document

was predicted to not change but did change, and where a document predicted to change

and was retrieved but had not changed. The sum of the values in the matrix is the number

of documents in the collection. When evaluating change metrics we do not consider new

documents, as we are examining change in existing documents. However, later in Chapter 5

we consider new documents that are retrieved during the recrawl process as well as their

popularity, and in this case we use a modified evaluation metric, which we highlight in

Table 5.1.

For a search engine, we argue that counting successes and failures does not accurately

reflect the performance of a recrawling strategy because it does not take into account how

often documents are returned to search engine users. As for the use of terms in queries [Spink

et al., 2001] and word occurrences in text [Williams and Zobel, 2005], we have observed that

the frequency of appearance of documents as highly-ranked answers is skewed. That is, a

subset of the documents in the collection is often returned as answers to a stream of queries,

while the majority of documents are rarely returned. Figure 4.2 shows this effect for the

collection and queries we use in our experiments in Section 4.5. For our set of 50 queries,

over 10,000 of our 12,348 documents are never ranked in the top 100 responses. In contrast,

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 109

0 2 4 6 8 10

Times Document is Ranked in Top 100 Answers

10

100

1000

10000
N

um
be

r
of

 D
oc

um
en

ts

Figure 4.2: Skewed ranking of collection documents in response to 50 queries. The graph

shows on the x-axis the number of times a document appears in the top 100 responses to the

50 queries, while the y-axis shows the number of documents with that frequency. For example,

over 1,300 documents appear once in the top 100 answers for the 50 queries. Over 10,000

documents are never returned in the top 100 responses (0 on x-axis).

twenty of the documents appear five times or more, and one document appears in answers to

eleven queries. Similar access frequencies have also been observed in larger collections [Garcia

et al., 2004].

Skewed ranking of documents suggests two principles that need to be considered when

recrawling documents. First, recrawling documents that are returned as answers to queries

is important, while recrawling unaccessed documents is likely to be unnecessary. Second, a

complete recrawling strategy should include document access frequencies, an idea that we

explore further in Chapter 5.

Returning to our first principle, we propose a novel crawler evaluation measurement that

considers the impact that recrawling has on search performance. Specifically, we determine

the answers that would have been returned as the top 1,000 ranked responses to a query if

the collection were entirely up-to-date, and then measure how these results are affected when

the collection is formed from a recrawling strategy. This process of forming a collection is

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 110

Crawl

α
Changed

D3D1 D2

Not
Updated

D3

D
WORDS
3

D3

Results

Page 1
Page 2
Page 3

..

..

Page 1
Page 2
Page 3

..

..

Rank Correlation

(Ranked Results)

Page 1 Page 1

Page 5

Page 3

Page 2

Page 4

Page 5

Page 4

Page 2

Page 3

..

Query 1
Query 2

(Relevance)

Eval

Search
Engine

Page 1

Page 3

Page 5

Page 4

Page 2

Changed

Changed

Changed

Unchanged

Unchanged

Page 1

Page 3

Page 5

Page 4

Page 2

Queries

Updated

Crawl
WORDS

Dissim

(WORDS)

Figure 4.3: Evaluating a change metric’s capacity for predicting future change. The Words

metric is evaluated using the D1, D2 and D3 collections. Documents that change in the

D1 → D2 interval by a significant amount, as determined by Words α, are updated in the

D2 → D3 interval. The partially updated collection DWORDS
3 is then compared to the fully

up-to-date collection D3 by using a search engine and examining the ranked search results of

queries against the two collection. The Dissim rank correlation metric is used to measure the

degree to which the ranked up-to-date D3 results match the ranked DWORDS
3 results.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 111

Crawl

α
Changed

D3D3 D2

Not
Updated

D3

D
WORDS
3

D3

Results

Page 1
Page 2
Page 3

..

..

Page 1
Page 2
Page 3

..

..

Rank Correlation

(Ranked Results)

Page 1 Page 1

Page 5

Page 3

Page 2

Page 4

Page 5

Page 4

Page 2

Page 3

..

Query 1
Query 2

(Relevance)

Eval

Search
Engine

Page 1

Page 3

Page 5

Page 4

Page 2

Changed

Changed

Changed

Unchanged

Unchanged

Page 1

Page 3

Page 5

Page 4

Page 2

Queries

Updated

Crawl
WORDS

Dissim

(WORDS)

Figure 4.4: Evaluating a change metric’s capacity for detecting meaningful change. The

Words metric is evaluated using the D2 and D3 collections. Documents that change in the

D2 → D3 interval by a significant amount, as determined by Words α, are updated in the

D2 → D3 interval. The partially updated collection DWORDS
3 is then compared to the fully

up-to-date collection D3 by using a search engine and examining the ranked search results of

queries against the two collection. The Dissim rank correlation metric is used to measure the

degree to which the ranked up-to-date D3 results match the ranked DWORDS
3 results.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 112

similar in spirit to the TREC experimental testbed [Harman, 1995]: for a set of queries, a set

of known answers are stored, and techniques can be evaluated by measuring how accurate

they are in returning the set of known answers. We explain this process below.

We determine the correct answers that would be returned if a collection was up-to-date

using four steps. First, we crawled and recrawled a document collection at time intervals t,

t+n, and t+2n to form three collections D1, D2, and D3 respectively. Second, we extracted

fifty queries from a well-studied Excite search engine log [Spink et al., 2001]. Third, we ran

the queries using our search engine on the D3 collection retrieved at time t + 2n. Last, for

each query we stored as the relevant answers either the top 1,000 ranked responses or the

number of ranked responses returned, whichever is less. In this way, the performance of our

search engine with a perfect recrawling strategy for the time interval is known. (Further

details on the collection, queries, and search engine are provided in Section 4.5.)

We can now evaluate the performance of our change metrics outlined in Section 4.3

(page 106). Using the document collections D1 and D2 crawled at time intervals t and t+n,

we can compute the change measure Cs(dt, dt+n, α) for all documents in D2. For documents

where Cs = 1, we update the collection D2 so that the document version dt+2n replaces dt+n

to form document collection DMETRIC
3 , that is, DWORDS

3 , DSIZE
3 , DSHINGLING

3 , DALL
3 , and

DNONE
3 for each metric. Having derived our new collection based on a simulated recrawl

strategy, we run our queries on the DMETRIC
3 collection and record the top 1,000 responses

(or the number returned if this is less).

To express the effectiveness of each recrawl metric, we use rank correlation to determine

the similarity of the ranked results returned from search DMETRIC
3 and the correct results

from searching D3. In our approach, a correct answer is one that has the same URL. That

is, we view a match as correct even if the document has changed, as long as the correct

URL is identified. This approach is logical: though the content of a document may have

changed, its content is still ranked as relevant as far as users’ queries are concerned, and so,

the changes are not important. We measure the similarity of the top 1,000 results (or as many

as are returned) using the Dissim rank correlation metric which we outlined in Section 2.4.2

(page 47). In the situation where there are 1,000 relevant answers in the collection and all

1,000 answers are returned in the same order, the rank correlation is 100%. We average the

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 113

rank correlation results across all queries and normalise the score using the All and None

results as the maximum and minimum values respectively.

In Figure 4.3, we illustrate the evaluation process further using the document collections

D1 and D2 crawled at time intervals t and t+n. We compute the change measure Cs(d1, d2, α)

for all documents in D2 using the Words metric and use this to determine which documents

to update in the next time interval (t + n, t + 2n), thus allowing us to evaluate how well the

Words metric can predict change.

In contrast, Figure 4.4, illustrates the evaluation process using the document collections

D2 and D3 crawled at time intervals t + n and t + 2n. We compute the change measure

Cs(d2, d3, α) for all documents in D3 using the Words metric and use this to determine

which documents to update in the same interval (t + n, t + 2n), thus allowing us to evaluate

how well the Words metric can detect change.

4.5 Results

In this section, we present the results of using the metrics discussed in Section 4.3 to pre-

dict when resources should be recrawled. Our experiments were carried out using the public

domain search engine Zettair [2008] that implements a variant of the Okapi BM25 rank-

ing function [Robertson and Walker, 1999]. When evaluating the queries, no stopping,

stemming, or other techniques were used. Furthermore, the entire documents, including the

headers, were used and so all documents contained changes of some degree. We begin by

describing the collection and queries we used in this set of experiments.

4.5.1 Collection and Queries

Our Proxy document collection is derived from web resources retrieved by staff and students

of the CS department at RMIT University. We obtained a proxy cache log of around 50 MB

that lists around 300, 000 web resources retrieved by several hundred user agents over a two

day period, and used this to guide the retrieval of documents to form a collection. Because

of its size, the number of user agents, and observed diversity, we believe that this proxy log

represents a realistic source of documents that would form part of a search engine collection.

To test this we selected a different subset of queries from the same proxy log and determined

that 77% of reachable documents were indexed by Google [2008].

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 114

To develop a collection from the list of web resources in the proxy cache log, we carried

out the following process:

1. We extracted all URLs that were successfully retrieved (those that had a “2xx” HTTP

response code) and had a Content-Type (a MIME type) of text/html; our search

engine indexes only HTML documents, and recrawl schemes for other document types

— such as PDF, PostScript, RTF, and proprietary formats — are outside the scope

of our work. As we outlined in Chapter 2, we only consider HTML documents since

they contain an extensive link structure, make up a large proportion of crawled docu-

ments, are well studied, and are very different to other document formats in terms of

dynamics [Douglis et al., 1997; Wills and Mikhailov, 1999b; Zander et al., 2003]

2. We removed any query strings from URLs so that the base URL was retrieved. Our

rationale is that the URLs of dynamically generated documents can be extracted from

web documents during a crawl process, but that these are not necessarily the same URLs

as would be found in a proxy log; we therefore chose to omit dynamically generated

documents from these experiments. For example, the URL:

http://www.google.com/search?hl=en&q=Lara+Croft

becomes:

http://www.google.com/search

3. We then removed duplicate URLs, and selected every fifth URL to give a list of around

14,000 URLs.

4. We then retrieved the HTTP headers for each URL to ensure the resource was able

to be found (that is, to ensure a “2xx” HTTP response code was still possible), and

deleted any URLs that were no longer accessible.

5. For the remaining URLs, we retrieved the HTML document and HTTP headers and

stored these as a “day one” collection.

6. Each day for fourteen further days, we repeated the crawling process and stored the

HTML and HTTP headers; using this approach, the minimum time interval we were

able to experiment with was one day.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 115

7. For any URL that was not retrieved on all fifteen days, we removed the resource from

our fifteen collections. We also removed any document that contained explicit or of-

fensive terms using the script used to filter the TREC VLC collection [Hawking et al.,

1998].

The resulting collection consisted of fifteen copies — one each from fifteen consecutive

days — of 12,348 documents. Its total size on day one was 126 MB. Of these 12,348 docu-

ments, only 4,780 — or 38.7% — contained either a Last-Modified or an Expires HTTP

header.

In our experiments, we used fifty queries extracted from a query log from the Excite

search engine [Spink et al., 2001]. To ensure that the queries had answers in our collection,

we selected the first 50 queries that returned at least 500 answers with any of the query

terms and had at least 10 answers that contained all of the query terms; these heuristics

were chosen based on empirical observation with the aim of finding queries that had relevant

answers in our collection. Furthermore, while we ensured that the queries we used had at

least 500 answers, we computed rank correlation over 1000 documents, to avoid possibly

skewing results by ignoring documents that were ranked highly to more constrained query

topics, hence improving the amount of variety among documents that were considered as

part of the study. We also experimented with using only the top 30 documents to determine

the impact on highly ranked results.

We use the Proxy collection exclusively in this chapter for the purposes of evaluating

change metrics. It represents a general collection of pages retrieved from many different

domains however it contains no link information. This collection allows us to evaluate the

effectiveness of our change metrics on a general Web collection. Throughout all our experi-

ments in later chapters we use a second collection, ABC derived from a single domain, which

we described in greater detail in Section 3.2. This collection contains additional information

such as link structure and anchor text which make it suitable for our experiments in later

Chapters. In order to ensure the suitability of our change metrics we also evaluate them

against this collection.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 116

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
%

 o
f

R
an

k
V

ar
ia

tio
ns

 D
et

ec
te

d

headers
shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.5: Change prediction over an interval of one crawl on the Proxy collection. Crawl

one and two are used to predict changes on crawl three. The x-axis indicates the percentage

of the collection that is updated while the y-axis indicates the percentage of variations in rank

correlation that are detected, as the α change threshold is altered.

4.5.2 Efficiency and Effectiveness

So far in this section, we have highlighted how we formed our collection and queries. Next, we

present our experimental results for our various metrics against this collection and queries.

First we present the effectiveness of our schemes for predicting future change using the Proxy

and ABC collections. Later we examine the effectiveness of our scheme for detecting current

change against these same collections.

Predicting Future Change

In Figure 4.5 we plot the overall effectiveness of each metric for predicting change using

the Proxy collection. The y-axis indicates the average rank correlation between the query

results for collection DMETRIC
3 and D3, normalised against the All and None metrics. That

is, 0% and 100% on the y-axis represent the None and All metrics respectively. The x-axis

indicates the percentage of the collection that is updated as the threshold for change α is

reduced for each metric.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 117

The results shown are for predicting which documents to retrieve on the third of three

consecutive crawls, that is, documents are retrieved on crawl one and two, and predictions

using different change metrics are used to decide which documents to retrieve on crawl three.

We performed the same experiment with crawl twelve, thirteen, and fourteen and found the

same relative results. All document content — including headers and markup — is used in

the change detection process for the Words, Shingling and Size metrics. The Headers

metric uses only the HTTP header information to predict which documents will change. The

Words NoHead metric removes the HTTP headers prior to computing the Words change

value. The Words Parsed metric removes HTML markup prior to computing the Words

change value. Finally, the Words Parsed NoURL metric removes both HTML markup

and URL link information prior to computing the Words change value.

The results in Figure 4.5, show that our metrics (Size and Words) are efficient and

effective. After retrieving 15% of the entire collection, the Words metric detects over 43%

of the variations in rank due to stale documents, while the Size metric detects over 39%. In

contrast, the Shingling approach detects less than 20% of these same variations. Interest-

ingly, the Shingling approach must retrieve over 41% of the collection – about 2.7 times the

amount of documents — to produce the same degree of collection consistency as the Words

metric. The Words metric achieves this level of performance with an α change threshold of

24 words.

We note that the additional preprocessing techniques, such as the removal of HTTP

headers, parsing of HTML and removal of URLs appears to have little affect on the overall

performance of the Words scheme. This suggests that the Words scheme is robust enough

to handle their inclusion and, as we stated earlier, changes in markup rarely affect document

content and markup is rarely indexed by search engines.

Furthermore, it is clear that the Size metric cannot detect all changes, since changes in

content may not affect the overall size of the document. In this case, the Size metric detects

a maximum of about 42% of all rank variations.

Finally, the performance of the Headers approach shows that the use of the Last-

Modified and Expires HTTP headers for predicting change is largely ineffective. It detects

less than 15% of rank variations, while retrieving 13% of the collection.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 118

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
%

 o
f

R
an

k
V

ar
ia

tio
ns

 D
et

ec
te

d

headers
shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.6: Change prediction over an interval of three crawls on the Proxy collection.

Crawl one and four are used to predict changes on crawl seven. The x-axis indicates the per-

centage of the collection that is updated while the y-axis indicates the percentage of variations

in rank correlation that are detected, as the α change threshold is altered.

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100

%
 o

f
R

an
k

V
ar

ia
tio

ns
 D

et
ec

te
d

shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.7: Change prediction over an interval of one crawl on the ABC collection. Crawl

one and two are used to predict changes on crawl three. The x-axis indicates the percentage

of the collection that is updated while the y-axis indicates the percentage of variations in rank

correlation that are detected, as the α change threshold is altered.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 119

In Figure 4.6 we plot the effectiveness of each scheme at predicting change using the

Proxy collection, this time over three crawl intervals, that is, documents are retrieved on

crawl one and crawl four. Changes detected by different metrics are used to determine which

documents to update on crawl seven. In this graph we see that the pattern in the relative

performance of each metric is similar to that in Figure 4.5, with the Words metric and its

variations performing best. The Words metric detects nearly 72% of all changes in rank

while retrieving just 24% of the collection with an α change threshold of 13 words. The

Shingling approach detects just over 36% of the variation in the rank of search results for

the same number of documents retrieved, while the Size metric detects its maximum at just

over 63%. Finally, the Headers approach detects just 9% of rank variations while retrieving

14% of the collection.

In the next set of graphs we examine the change prediction performance of our schemes

on the ABC collection. In Figure 4.7, we plot the effectiveness over intervals of one crawl

on the ABC collection. We note that the Words and Size metrics easily outperform the

other metrics at predicting change over one crawl intervals. The Words and Size metrics

detect nearly 93% and 92% of variations, respectively, while retrieving 22% of the collection.

In contrast the Shingling approach detects less than 73% of variations after retrieving the

same number of documents. To detect the same amount of variations as the Words metric,

the Shingling metric must retrieve more than 55% of the collection — 2.5 times the number

of documents retrieved by the Words metric. The Words metric achieves this with an α

change threshold of 12 words. The different variations of the Words metric have virtually

no impact on its performance.

Once again we note that the Size metric is restricted in its ability to detect variations,

this time to a maximum of 92% of all rank variations. Finally, we note that we have not

included any Headers results for the ABC collection. After examining the headers, we

observed that the HTTP headers had been modified by administrators of the ABC domain

to automatically expire just under a week after they were retrieved — one of the problems

highlighted previously in Sections 2.1.1 (page 25) and 2.8.3 (page 73).

Another interesting observation that can be made from our results is that not all docu-

ments and changes are created equal. As we highlighted earlier in Section 4.4, query results

are skewed. Hence, updating certain documents can have a greater impact on search results.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 120

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
%

 o
f

R
an

k
V

ar
ia

tio
ns

 D
et

ec
te

d

shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.8: Change prediction over an interval of three crawls on the ABC collection. Crawl

one and four are used to predict changes on crawl seven. The x-axis indicates the percentage

of the collection that is updated while the y-axis indicates the percentage of variations in rank

correlation that are detected, as the α change threshold is altered.

This explains why improvements in rank correlation are not linear. That is, in our ABC

collection 87,351 documents change by any amount in content over the crawl two and crawl

three interval. This composes 22.7% of the entire collection, however it is possible to cap-

ture the majority of these variations (64%) by updating just 5% of the entire collection —

just 19,249 documents out of a total of 384,992. If each document had an equal impact on

rank, achieving a rank correlation of 64% would require 64% of all changed documents to be

updated — 55,904 out of a total of 87,351 changed documents instead of just 19,249.

Finally, in Figure 4.8, we present the results of predicting change over intervals of three

crawls using the ABC collection. We note that once again the Words metric and its

variations produce the best results. Interestingly, the parsed variations Words Parsed

and Words Parsed NoURL perform better than the Words metric during the interval

from 18% to 31% of the collection retrieved, however from 31% onwards the Words metric

outperforms all other Words variations. The cause of this variation is due to modifications

to markup in a number of documents on crawl four of the Proxy collection.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 121

At 31% of the collection retrieved, the Words metric detects almost 80% of all variations

in rank, with an α change threshold of 13 words. At the same percentage of the collection

retrieved, the Size and Shingling metrics predict about 61% and 48% respectively. The

Size metric is limited to a maximum of 86%.

Throughout our experiments into predicting future change we show that the Words

metric and its variants consistently outperform the Size and Shingling approaches. The

basic Words metric appears to be effective at predicting changes that will affect rank results.

Furthermore, an α change threshold between 12 and 24 words appears to capture the majority

of these changes. Next we present the effectiveness of our schemes for detecting change using

the Proxy and ABC collections.

Detecting Current Change

In this section we examine the effectiveness of our change metrics at detecting changes that

affect ranked results in the Proxy and ABC collections.

Our first set of results, in Figure 4.9, show the effectiveness of our schemes at detecting

changes over a one crawl interval, beginning on crawl one — changes between crawl one and

two are used to update documents on crawl two. The α change threshold is adjusted to

update a subset of the collection on crawl two, which is then compared to the up-to-date

crawl two collection, as highlighted in figure 4.4. In this first graph we note that the Words

metric and its variants are most effective. The Words metric detects close to 97% of rank

variations while updating just 22% of the collection, using an α change threshold of 10

words. For the same number of updates, the Size metric achieves its maximum effectiveness

of 84%, whereas, the Shingling approach detects less than 63% of the variations in rank.

The Shingling metric must update more than 76% of the collection — almost 3.5 times as

many documents — in order to achieve the same level of effectiveness as the Words metric.

Interestingly, the Headers approach is much more effective at detecting change than it is

at predicting change. Here we see that Headers detects almost 56% of variations in rank

while retrieving 9% of the collection. On closer inspection, the majority of these changes are

detected by the expires HTTP header. We note that the entire collection must be updated

before all rank variations are detected due to changes in the HTTP headers. Furthermore, we

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 122

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
%

 o
f

R
an

k
V

ar
ia

tio
ns

 D
et

ec
te

d

headers
shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.9: Change detection over an interval of one crawl on the Proxy collection. Crawl

one and two are used to decide pages to update on crawl two. The x-axis indicates the per-

centage of the collection that is updated while the y-axis indicates the percentage of variations

in rank correlation that are detected, as the α change threshold is altered.

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100

%
 o

f
R

an
k

V
ar

ia
tio

ns
 D

et
ec

te
d

headers
shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.10: Change detection over an interval of seven crawls on the Proxy collection.

Crawl one and seven are used to decide pages to update on crawl seven. The x-axis indicates

the percentage of the collection that is updated while the y-axis indicates the percentage of

variations in rank correlation that are detected, as the α change threshold is altered.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 123

index the entire document — including the HTTP headers when evaluating rank variations.

Once documents are parsed only 38% of the collection contains changes.

In Figure 4.10, we examine the Proxy collection over an interval of seven crawls, using

changes in documents from crawls one and seven. We note that once again, the Words

metric and its variants detect the largest percentage of rank variations. For a brief period,

from about 13% to 19% of the collection updated, there is a spike in the performance of the

parsed HTML variations of the Words metric, however, on the whole, the basic Words

metric performs best. With an α change threshold of 9 words, the Words metric retrieves

about 28% of the collection while detecting about 98% of rank variations. In contrast, the

Size and Shingling approaches detect about 87% and 61% respectively. The Shingling

metric must update 75% of the collection to achieve the level of consistency in rank results

that the Words metric achieves with just 28% of the collection. Finally, the Headers

approach produces its best result during this seven crawl interval, detecting 78% of variations

in rank while retrieving 14% of the collection. Examining the results more closely reveals that

the last modified HTTP header has a greater impact in this case. The large improvement

over the one crawl interval suggests that the changes detected over shorter intervals are not

significant as those over longer intervals. With the removal of markup using the Words

Parsed scheme, we note that 41% of the collection contains changes.

In Figure 4.11, we present the effectiveness of our schemes at detecting changes over a one

crawl period on the ABC collection. The performance of all metrics, except the Shingling

approach, is on par with that of the basic Words metric. Once again the Size metric is

restricted in its ability to detect all changes — this time to about 94% of rank variations,

which it achieves after updating 24% of the collection. The Words metric detects just over

93% after updating about 20% of the collection, while the Shingling metric detect just 70%.

To achieve the same effectiveness as the Words metric at 20%, the Shingling metric must

update 54% of the collection — 2.7 times the number of documents as that of the Words

metric. The parsing of the collection reduces the number of changed documents to 53%.

In Figure 4.12, we highlight the effectiveness of our schemes over a seven crawl interval

on the ABC collection. Here we see that the Words Parsed and Words Parsed NoURL

metric perform slightly better than the Words and Words NoHead metrics until 28% of

the collection is updated. From this point onwards, the Words metric outperforms Words

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 124

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
%

 o
f

R
an

k
V

ar
ia

tio
ns

 D
et

ec
te

d

shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.11: Change detection over an interval of one crawl on the ABC collection. Crawl

one and two are used to decide pages to update on crawl two. The x-axis indicates the per-

centage of the collection that is updated while the y-axis indicates the percentage of variations

in rank correlation that are detected, as the α change threshold is altered.

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100

%
 o

f
R

an
k

V
ar

ia
tio

ns
 D

et
ec

te
d

shingling
size

words
words nohead
words parsed
words parsed nourl

Figure 4.12: Change detection over an interval of seven crawls on the ABC collection.

Crawl one and seven are used to decide pages to update on crawl seven. The x-axis indicates

the percentage of the collection that is updated while the y-axis indicates the percentage of

variations in rank correlation that are detected, as the α change threshold is altered.

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 125

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
%

 o
f

R
an

k
V

ar
ia

tio
ns

 D
et

ec
te

d

shing
size

words
words nohead
words parsed
words parsed nourl

Figure 4.13: Change detection over an interval of one crawl on the ABC collection using top

30. Crawl one and two are used to decide pages to update on crawl two. The x-axis indicates

the percentage of the collection that is updated while the y-axis indicates the percentage of

variations in rank correlation that are detected, as the α change threshold is altered.

Parsed and Words Parsed NoURL metrics. With an α change threshold of 12 words, the

Words metric updates 33% of the collection, while detecting over 91% of rank variations. In

contrast, the Size and Shingling metrics detect roughly 81% and 70% respectively. In order

to be as effective as the Words metric after updating 33% of the collection, the Size and

Shingling metrics must update 51% and 72% respectively. Furthermore, the Size metric

cannot detect more than 95% of all rank variations. Finally, we note that 54% of the

collection contains changes after parsing the documents.

Our results so far have examined the effectiveness of our schemes using the top 1000 query

results — a design choice based on our observation that search engines mainly retrieve 1000

results and TREC evaluation set-ups only consider the top 1000 results. However, as we

highlighted in Section 2.4.1 (page 44) most search engines return only ten results per page of

results by default [Google, 2008; Yahoo!, 2008; Ask.com, 2008; Altavista, 2008; Lycos, 2008]

and many users do no look past the first page of results [Jansen et al., 1998; Joachims, 2002;

Lempel and Moran, 2003; iProspect, 2006].

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 126

Crawl 1-2 vs 2-3 1-4 vs 4-7

Collection ABC Proxy ABC Proxy

Words α Threshold 12 24 13 13

Updated 22% 15% 31% 24%

Effectiveness 93% 44% 80% 72%

Table 4.2: Performance of Words metric at predicting change with particular α change

thresholds and crawl intervals.

Crawl 1-2 vs 1-2 1-7 vs 1-7

Collection ABC Proxy ABC Proxy

Words α Threshold 21 10 12 9

Updated 20% 22% 33% 28%

Effectiveness 93% 97% 91% 98%

Table 4.3: Performance of Words metric at detecting change with particular α change

thresholds and crawl intervals.

In the final result in this section, presented in Figure 4.13, we demonstrate the effective-

ness of our scheme using the top 30 query results instead. Interestingly, the performance is

virtually identical to that over 1000 results, presented earlier in Figure 4.11. While similar

observations were made for the other result sets, we have not included these for brevity.

Throughout our experiments into detecting change we show that the Words metric and

its variants consistently outperform the Size and Shingling approaches. As with predicting

future change, the basic Words metric can consistently detect changes that will affect rank

results. Furthermore, an α change threshold between 10 and 21 words appears to capture

the majority of these changes.

In Tables 4.2 and 4.3, we summarise the α change thresholds which efficiently predict the

majority of future changes, and detect the majority of changes, respectively.

Based on our results in this section, we conclude that the Words metric is a highly

effective and efficient method for distinguishing meaningful change for web crawling purposes,

motivating us to use it in our work in later chapters. Throughout our work in later chapters,

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 127

we use the Words metric with an α change threshold of 10 to ensure that the majority of

meaningful changed are captured.

4.6 Summary

In this chapter we have proposed various change metrics and have shown their relative per-

formance. We have also proposed an effective measure for determining the impact of change

and recrawling on user search results. In later chapters we use these methods as part of our

experiments.

Web crawling is essential to the maintenance of an up-to-date and complete document

collection for a web search engine. We have proposed simple measures to determine when

document content has changed and will affect the search process. Our approaches are based

on comparing document versions, and will form an important component of an overall recrawl

evaluation strategy.

Our results show that the use of the number of words that change in a document is a

practical tool for guiding document recrawling and an effective way of detecting changes that

will affect user search results. For example, by recrawling just 22% of the Proxy collection,

the Words metric can update a collection such that only 3% of search results are inaccurate

over a one crawl period. In contrast, using the Shingling approach has an inaccuracy of

37% for the same number of documents updated. Furthermore, the Shingling metric must

retrieve 3.5 times as many documents to achieve the same level of accuracy in search results

as the Words scheme.

Despite its inability to detect all changes, our Size metric manages to keep search results

relatively consistent, failing to accurately maintain just 16% of search results over a one crawl

period on the Proxy collection. In contrast, the HTTP headers detect only a fraction of the

changed resources, and fail to accurately maintain 44% of ranked results.

We conclude that our Words metric is an effective and efficient tool for both guiding

web recrawling for web search engines and detecting meaningful changes in documents. Fur-

thermore, the Words metric detects changes more effectively than the Shingling approach

commonly used by other work. Over a one crawl interval, the Words approach can achieve

the same performance as the Shingling approach while retrieving one third of the number

CHAPTER 4. CRAWLER EVALUATION FRAMEWORK 128

of documents resulting in substantial savings in crawler bandwidth. The Words metric is

an effective and efficient approach for finding significant changes in documents.

The evaluation metrics discussed in this chapter form only one part of an effective and

efficient recrawling strategy and we examine other aspects as well. In the next chapter we

investigate ongoing trends for large collections, that is, how a priority queuing strategy can

be used to guide efficient and effective querying. We also investigate the use of automatic

document categorisation through the use of anchor terms and its use in predicting recrawl

frequency in Chapter 6.

Chapter 5

Stateless Crawl Ordering Schemes

As we described in Chapter 1 (page 3), search engines are an important tool for many users

who seek to resolve their information needs, in both a general Web environment and within

an enterprise environment. While there has been research into recrawling changed docu-

ments with the aid of a long history of change statistics, there has been less investigation of

maintenance of collection freshness when these statistics are not available. In this chapter

we investigate strategies for crawl ordering that aim to recrawl documents that have changed

and avoid recrawling static documents, while utilising only the information available after one

crawl. Our results, based on the ABC and CSIRO domains, show that, while the appropriate

crawling strategy is consistent for a particular domain, it can vary between domains depend-

ing on their topology and dynamics. Furthermore, while many of the crawl ordering schemes

we test have been shown to have good properties in terms of retrieving important documents

early in a crawl, they are not as well suited to recrawling changed documents. In this chap-

ter we also investigate popularity-based metrics. We conclude that a static crawl ordering

scheme alone is not sufficient for maintaining index consistency and coherence, motivating

our work in Chapter 6.

5.1 Crawler types

While there has been research into static crawl ordering schemes to evaluate their ability

to retrieve “good” documents early in a crawl, no studies to our knowledge have evaluated

their performance with regard to recrawling changed documents. We describe the schemes

129

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 130

that we evaluate in this section as being static, as opposed to adaptive, since they do not

incorporate any change statistics into the crawling process.

Furthermore, while many studies have examined crawling schemes that incorporate a long

history of change, few studies have examined schemes for the cases when this information is

unavailable. We describe these schemes as also being stateless, since they are applied to a

web collection after only one crawl has been conducted, and hence there are no past change

statistics with which to predict future change. Stateless crawling algorithms are applicable

in cases where the Web has only been crawled once, or new documents must be recrawled

for the first time. They have also been used in cases where collection “quality” is considered

important [Cho et al., 1998; Najork and Wiener, 2001; Baeza-Yates et al., 2005].

In Section 2.9 (page 78), we described work that evaluates the effectiveness of many

standard crawl ordering schemes, in regard to their ability to improve collection quality,

as measured by PageRank. In particular, the work we described compares the breadth-

first, inlink, PageRank, larger sites first, and On-line Page Importance Computation (OPIC)

ordering schemes, finding that many of these schemes perform reasonably well. However,

none of these schemes have been examined in relation to their effectiveness at recrawling

changed documents.

An additional aspect we explore, that has been largely ignored in past work, is the use of

query skew and document popularity. That is, as we highlighted in Section 4.4 (page 108),

there is a skew in the frequency that documents are returned as highly-ranked query results:

a small subset of documents are returned frequently in response to user queries, while a much

larger set are rarely returned.

In this chapter we exploit this query skew from a crawling perspective, incorporating doc-

ument access frequencies as part of both the crawling strategy and evaluation, to determine

its utility. We also investigate the effectiveness of typical static crawl ordering schemes with

regard to recrawling changed documents.

In the next section we highlight the way in which these stateless crawl ordering schemes

are applied to web collections to evaluate their effectiveness. We follow with a description

of the various static crawl ordering schemes that we evaluate in this chapter, including the

Inlink, Outlink, Hub, URLlength, URLdepth, Alpha, Query, Large, and Random

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 131

Algorithm 5.1: Simple crawl scheme.

Input: List L of all documents d from a previous crawl, an empty list V

Sort L by some ranking scheme1:

while L is not empty and bandwidth is available do2:

Visit the first document d in list L3:

Remove d from L and insert into V4:

S ← documents linked to by d5:

foreach s ∈ S do6:

if s is not in L or V then7:

Add s to the front of L8:

end9:

end10:

end11:

schemes. We also briefly reintroduce the Breadth, Depth, and PageRank schemes, which

we covered in Chapter 2.2.2 (page 40).

5.2 Methodology

When evaluating crawl ordering and collection quality, the crawl frontier is ordered using

the scheme to be tested, such as depth-first order, and then, for each document that is

retrieved, the quality of the collection is determined using a metric, such as PageRank. In

Section 2.9 (page 78) we highlighted several past studies that have used this methodology,

however, when evaluating crawl ordering and collection freshness, the approach that we use

is somewhat different.

During the initial crawl the entire site is crawled, since a copy of all documents is required

for indexing purposes. These documents, their URLs, and their link structure are then used

by the schemes to rank documents for the next crawl of the site. Each of the schemes we

evaluate operates with nothing more than the statistics available after only one crawl. Some

schemes, such as PageRank and inlink, use this to order the next crawl, while other schemes,

such as breadth-first and depth-first, ignore this information altogether. As documents are

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 132

revisited, the link data, directory structure and document content information that is used

by each scheme is also updated.

We highlight this process in Algorithm 5.1. The list L is initalised with the documents

from a previous crawl, sorted using the ranking scheme being evaluated — PageRank for

example. An initially empty list V is used to keep track of visited documents.

We then simulate the recrawl of the site by repeatedly removing the document from the

front of list L and placing it in list V . Each time we remove a document d from list L we

examine the outgoing links from the latest version of the document. Any documents that are

linked to by the latest document d but are not in lists L or V are added to the front of list

L. The order in which documents are removed from the front of the list becomes our crawl

order. This process of removing documents continues until our cutoff value is reached.

It is important to note that the list is ordered by the ranking scheme only once —

before the crawl simulation begins. The only reordering that occurs after this is through the

introduction of new documents, as just highlighted.

In the next section we highlight the various stateless crawl algorithms that we examine

in our work.

5.3 Crawler Strategies

In Section 2.2.2 (page 40) we highlighted the operation of several common crawl ordering

schemes, namely the breadth-first, depth-first, and PageRank schemes. In this section we

reintroduce these schemes and present several other crawl ordering schemes that we also

compare in this chapter.

As we highlighted previously in Section 2.2 (page 30), a crawler starts at a seed document,

visits the document, extracts all of the links from that document, and then subsequently

follows each of the links to find more documents. We summarise this process with the simple

algorithm in Algorithm 5.1. Step 7 ignores many of the problems in recognising mirrors and

duplicate documents [Bharat and Broder, 1999], which we discussed in Section 2.13 (page 85).

Here, we focus on Step 1; for crawling to be efficient, we must rank documents in L such

that documents that have changed are more likely to be crawled than those that are static.

This is analogous to ranking documents in response to a query, but rather than aiming for

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 133

0

1

5 6

2 3

7

4

8 9

(a) Breadth

0

1

2 3

4 7

5

8

9 6

(b) Depth

0

1

4 8

5 6

3

7

9 2

(c) PageRank

Figure 5.1: Crawl ordering schemes. The numbers in the nodes represent the order in which

nodes are visited using each scheme, beginning at 0 and ending at 9. The arrows represent

the HTML links between the nodes. In the case where several nodes are equally ranked, a

breadth-first order among the nodes is used.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 134

documents relevant to the query at the front of L, we want changed, popular documents at

the front of L.

An effective method for predicting change is to look at past change statistics [Fetterly

et al., 2003b; Malcolm and Armitage, 2003; Ntoulas et al., 2004a]. Documents that have

changed frequently in the past typically change frequently in the future, possibly according

to a Poisson model [Cho et al., 1998]. Such schemes are only effective if a long history of

crawling has been established, and the statistics are stable over time [Cho and Garćıa-Molina,

2003a]. Here we consider queuing strategies that can be used without any prior knowledge

of the change statistics of the web site that is the target of a crawl, or that can be used in

conjunction with models based on change statistics.

Breadth

The Breadth ordering scheme, as shown in Figure 5.1(a), orders a crawl by link depth, that

is, the number of links that must be traversed from the root document to reach a particular

document, retrieving documents that are located deeper in the link structure later. As each

document is crawled, the URL links it contains are placed at the end of the queue. The

Breadth scheme penalises documents that are deeply nested, based on the principle that

they require much deeper linear traversal to retrieve them from the root document, which in

turn makes them less accessible to users.

It begins at the root document and explores all the neighbouring documents. Then,

for each of these nearest documents, it explores their unexplored neighbouring documents,

repeating the process until all documents are visited. The list, L is initialised with a breadth-

first traversal of the link structure of a site beginning at the root document.

Breadth-first ordering has been shown to perform reasonably well in retrieving important

resources early in a crawl [Cho et al., 1998; Najork and Wiener, 2001], particularly during

the beginning of a crawl [Castillo, 2004].

Depth

The Depth ordering scheme, as shown in Figure 5.1(b), traverses the link structure, before

retrieving documents in sibling branches. As each document is crawled, the URL links that

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 135

Algorithm 5.2: Breadth-first scheme.

Input: An input graph G of vertices V and edges E, the starting vertex s, array of

vertices out[u] linking out from vertex u

Variables: Vertices u and v, array state[], integer i, queue Q, start of queue head[Q],

an empty array containing resulting ordered list R[]

Functions: Enqueue(Q, v) inserts vertex v into end of queue Q

Dequeue(Q) removes the vertex from start of queue Q

foreach vertex u ∈ V [G]− {s} do1:

state[u]← UNSEEN2:

end3:

state[s]← SEEN4:

i← 05:

Q← {s}6:

while Q 6= 0 do7:

u← head[Q]8:

foreach v ∈ out[u] do9:

if state[v] = UNSEEN then10:

state[v]← SEEN11:

R[i]← u12:

i← i + 113:

Enqueue(Q, v)14:

end15:

end16:

Dequeue(Q)17:

state[u]=visited18:

end19:

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 136

Algorithm 5.3: Depth-first scheme.

Input: An input graph G of vertices V and edges E, the starting vertex s, array of

vertices out[u] linking out from vertex u

Variables: Vertices u and v, array state[], integer i, queue Q, start of queue head[Q],

an empty array containing resulting ordered list R[]

Functions: Push(Q, v) inserts vertex v onto top of stack Q

Pop(Q) removes the vertex from top of stack Q

foreach vertex u ∈ V [G]− {s} do1:

state[u]← UNSEEN2:

end3:

state[s]← SEEN4:

i← 05:

Q← {s}6:

while Q 6= 0 do7:

u← head[Q]8:

foreach v ∈ out[u] do9:

if state[v] = UNSEEN then10:

state[v]← SEEN11:

R[i]← u12:

i← i + 113:

Push(Q, v)14:

end15:

end16:

Pop(Q)17:

state[u]=visited18:

end19:

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 137

Algorithm 5.4: PageRank scheme.

Input: An input graph G of vertices V and edges E, number of iterations of the

PageRank algorithm iter, constant dampening value σ, array of vertices out[u]

linking out from vertex u, array of vertices in[v] linking into vertex v

Variables: Vertex u and v, array Pagerank[]

foreach vertex u ∈ V [G] do1:

Pagerank[u]← 12:

end3:

for i = 0 to iter do4:

foreach vertex u ∈ V [G] do5:

Pagerank[u]← 06:

foreach v ∈ in[u] do7:

Pagerank[u]← Pagerank[u] + (Pagerank[v]/|out[v]|)8:

end9:

Pagerank[u] = (1− σ) + σ · Pagerank[u]10:

end11:

end12:

Sort Pagerank from highest to lowest Pagerank[u]13:

the document contains are placed at the front of the queue in the same way that a stack

operates.

The Depth ordering scheme ranks documents in L by the order in which they occur in

a depth-first traversal of the link graph of a site, and produces a more focused crawl, that

retrieves all documents accessible via a particular link first, before moving onto the next link

in a document.

In a closed web domain that is structured by topics, depth-first ordering would tend to

gather documents on specific topics first. For this reason, past studies have used it as part

of topic-driven crawling schemes [De Bra and Post, 1994].

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 138

Algorithm 5.5: Inlink scheme.

Input: An input graph G of vertices V and edges E, array of vertices in[u] linking to

vertex u

Variables: Vertex u, an empty array N []

foreach vertex u ∈ V |G| do1:

N [u]← |in[u]|2:

end3:

Sort N [u] from highest to lowest4:

PageRank

The PageRank ordering scheme, shown in Figure 5.1(c), and previously described in Sec-

tion 2.2.1 (page 35), orders a crawl by the number of documents that link to a particular

document and the number of documents that link to each of these documents. It also con-

siders the number of outward links that each document has, such that the weight of each link

is divided by the number of outward links the containing document has. Documents with

high PageRank scores are considered important by web document authors, since many au-

thors have created links to them. Furthermore, the recursive nature of the PageRank scheme

means that links from documents with high PageRank have a greater weighting than links

from documents with low PageRank. As we have highlighted in Section 2.2.1 (page 35), it

is used to rank query results by search engines, such as Google [2008]. A study by Fagin

et al. [2003a] on rank aggregation in an enterprise search environment has shown that the

high-impact that PageRank has in improving ranking on the Internet is not replicated in an

intranet environment. PageRank has also been compared to inlink with regard to predicting

desirable documents and found to be similar in performance despite being computationally

more expensive [Upstill et al., 2003a].

Inlink

The Inlink ordering scheme, sometimes referred to as Backlink [Cho et al., 1998] or In-

degree [Upstill et al., 2003b], determines the number of documents that link to a particular

document and ranks documents in order from most highly linked to least linked, as shown in

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 139

2

1

3 8

5 6

0

7

9 4

(a) Inlink

0

1

4 5

3 7

6

2

8 9

(b) Outlink

0

1

4 7

5 8

2

3

9 6

(c) Hub

Figure 5.2: Crawl ordering schemes. The numbers in the nodes represent the order in which

nodes are visited using each scheme, beginning at 0 and ending at 9. The arrows represent

the HTML links between the nodes. In the case where several nodes are equally ranked, a

breadth-first order among the nodes is used.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 140

Algorithm 5.6: Outlink scheme.

Input: An input graph G of vertices V and edges E, array of vertices out[u] linking

out from vertex u

Variables: Vertex u, an empty array N []

foreach vertex u ∈ V |G| do1:

N [u]← |out[u]|2:

end3:

Sort N [u] from highest to lowest4:

Figure 5.2(a). That is, the more hyperlinks pointing to a document, the higher its perceived

importance for crawling.

Previous studies with Inlink ordering have shown that its performance varies between

moderate and poor when attempting to retrieve important documents earlier in a web

crawl [Cho et al., 1998; Castillo, 2004]. A study by Fagin et al. [2003a] into rank aggre-

gation in an intranet environment has shown that Inlink performs poorly when combined

with traditional query-based ranking.

Outlink

The Outlink ordering scheme, sometimes referred to as Out-degree [Broder et al., 2000a;

Henzinger, 2001; Dill et al., 2002] or Forward link [Page et al., 1998; Cho et al., 1998; Cho,

2001; Diligenti et al., 2004], determines the number of documents that a particular document

links to and ranks documents in order from most outward links to least outward links, as

shown in Figure 5.2(b). That is, the more outlinks a document contains, the higher its

perceived importance for crawling. A document with many outlinks is likely to be a link

collection, such as a sitemap, and thus is likely to have new links added to it periodically.

A crawler may decide to frequently revisit a document with a high number of outlinks to

ensure that the index contains as many of these new documents as possible.

A study by Pirolli et al. [1996] has shown that the Outlink scheme can be combined with

other factors to identify index pages, that is, pages that serve as navigational link collections

to pages that may or may not be related.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 141

Algorithm 5.7: Hub scheme.

Input: An input graph G of vertices V and edges E, array of vertices in[u] linking to

vertex u, array of vertices out[u] linking out from vertex u

Variables: Vertex u, an empty array N []

foreach vertex u ∈ V |G| do1:

N [u]← |in[u]|+ |out[u]|2:

end3:

Sort N [u] from highest to lowest4:

Algorithm 5.8: URLdepth scheme.

Input: An input graph G of vertices V and edges E

Variables: Vertex u, an empty array N []

Functions: Url(u) returns the URL of vertex u

Slashes(U) returns number of slashes “/” in URL U

foreach vertex u ∈ V |G| do1:

N [u]←Slashes(Url(u))2:

end3:

Sort N [u] from lowest to highest4:

Hub

The Hub ordering scheme, as shown in Figure 5.2(c), ranks documents by the sum of the

number of outlinks and inlinks in each document, combining the properties of the Outlink

and Inlink schemes. The Hub scheme ranks highly documents that are link collections

and are considered important by users. These documents are likely to be important hub

documents, and hence, are good starting points for browsing users. An iterative variant of

the Hub scheme called HITS, which we described in Section 2.2.1 (page 35), has been used

in the past to order query results, using links graphs from the results subset [Kleinberg,

1999]. A weighted version of the Hub scheme has also been used in a study by Bharat and

Henzinger [1998] to improve query results for given topics, producing comparable results to

existing schemes, while reducing computation costs.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 142

Algorithm 5.9: URLlength scheme.

Input: An input graph G of vertices V and edges E

Variables: Vertex u, an empty array N []

Functions: Url(u) returns the URL of vertex u

Length(U) returns the length of URL U

foreach vertex u ∈ V |G| do1:

N [u]←Length(Url(u))2:

end3:

Sort N [u] from lowest to highest4:

URLdepth

The URLdepth ordering scheme determines the directory depth of a document in a do-

main, as opposed to the Breadth scheme, which determines link depth. The URLdepth

scheme favours documents that have a small depth over documents that are deeply nested.

Documents are ordered by a score equal to the inverse of the number of slashes “/” in the

URL of a document. URLdepth is based on the premise that documents with URLs that

are located closer to the base document directory are generally more accessible and hence

likely to be changing more frequently than documents that are deeply nested. Due to the

general hierarchical tree-like structure of URLs, it is also reasonable to expect that the infor-

mation located in deeper paths is more specific than the information located at smaller URL

depths [Eiron and McCurley, 2003b]. Approaches similar to the URLdepth scheme have

been used in the past for home-page finding tasks [Upstill et al., 2003b]. Home-page finding

attempts to locate the entry page to a web site [Hawking and Craswell, 2002]. Past work

has also demonstrated that URLs with fewer slashes are more useful [Arasu et al., 2001].

A previous study by Fagin et al. [2003a] has shown that the URLdepth scheme performs

poorly at ranking query results in an enterprise environment when combined with traditional

query-based ranking schemes.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 143

Algorithm 5.10: Alpha scheme.

Input: An input graph G of vertices V and edges E

Variables: Vertex u, an empty array N []

Functions: Url(u) returns the URL of vertex u

foreach vertex u ∈ V |G| do1:

N [u]←Url(u))2:

end3:

Sort N [u] alphabetically4:

URLlength

The URLlength ordering scheme is very similar to the URLdepth scheme in many ways.

It assumes that resources with short URLs are more likely to change frequently than long

URLs. This is based on the assumption that short URLs are easier to remember, and are

likely to be more accessible to users, and hence popular. Longer URLs are also more likely

to contain slashes “/”. It is easily computed by measuring the number of characters in

each URL and ordering them from shortest to longest. The URLlength scheme has been

used in the past for ranking query results in intranet search in conjunction with traditional

query-based ranking and found to perform well [Fagin et al., 2003a].

Alpha

The Alpha scheme ranks documents based on the alphabetical ordering of their URLs and

would tend to group resources by directory, since resources within the same directory would

be alphabetically very similar. On a large domain, it is quite likely that resources in the

same directory would have a similar content and frequency of change [Eiron and McCurley,

2003a]. Consider for instance, the “news” directory in the ABC domain, which could be

expected to change fairly frequently.

Resources in the same directory would also tend to link to each other [Eiron and McCur-

ley, 2003b;a], and so, when new resources are created, they would tend to be clustered in the

same directory.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 144

Algorithm 5.11: Query scheme.

Input: An input graph G of vertices V and edges E

Variables: Vertex u, an empty array D[] and N [], document d

Functions: Index(D) produce an index of a set of documents D

Doc(u) returns the content of the document in vertex u

Query(q, I, k) returns top k ranked documents for query q on index I

foreach vertex u ∈ V |G| do1:

D[u]←Doc(u)2:

end3:

I =Index(D)4:

foreach q ∈ Q do5:

R =Query(q, I, k)6:

foreach d ∈ R do7:

N [d]← N [d] + 18:

end9:

end10:

Sort N [d] from highest to lowest11:

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 145

Query

The Query ordering scheme incorporates resource popularity into the crawling process. It

ranks documents that are returned frequently to user queries, before documents that are

seldom retrieved, hence attempting to update documents that have the most impact on

search engine users. In our study we have evaluated resources from the previous crawl and

considered them popular if they have been returned in the top thousand results fifteen or

more times in response to about 18,000 queries collected from the ABC query logs and about

5,500 queries collected from CSIRO query logs.

While the Query scheme is similar to a focused crawl [Chakrabarti et al., 1999; 2002],

in that it uses query topics to determine which resources to retrieve, there are several dis-

tinctions. In the Query scheme the query topics are not limited in scope, covering a wide

range of distinct topics that are determined by their popularity. Furthermore, these topics

are likely to change between crawls as their popularity changes over time [Diaz and Jones,

2004].

Large

The Large ordering scheme determines the number of documents in each directory including

the documents in any of their sub directories, ranking documents from the largest directory

branch first. If we assume that all directories begin with the same number of documents

at the birth of a site, directories that are larger now must have had more new documents

added to them than smaller directories. This scheme assumes that this trend will continue

by ranking larger directories more highly than smaller directories. It also assumes that

documents located in the same directory are more likely to be linked to each other [Eiron

and McCurley, 2003b;a]. This scheme is similar to the larger sites first method [Baeza-Yates

et al., 2005], but while that scheme orders a crawl by the size of a domain, the Large scheme

orders by the size of a directory structure.

Random

The Random ordering scheme reorders the crawl using random keys, and represents a base-

line performance for comparing other schemes.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 146

Algorithm 5.12: Large scheme insertion.

Input: An input graph G of vertices V and edges E, a starting vertex s, array of

vertices adj[c] adjacent to vertex c

Variables: Vertex u and c, an empty array D[] and N [], an array of tokens T [U][]

for URL U , document d, term t

Functions: Url(u) returns the URL of vertex u

Tokenise(U , t) tokenises URL U on term t and return tokens as array

Insert(t, c) creates new vertex for term t and adds edge to it from c

Inc(t, c) increments frequency counter for term t adjacent to vertex c

Traverse(t, c) traverses vertex containing term t adjacent to vertex c

InsertURL(t, c) inserts the term t into the vertex c

foreach vertex u ∈ V |G| do1:

U ←Url(u)2:

T [U]←Tokenise(U , ‘/’)3:

c← s4:

foreach term t ∈ T [U] do5:

if t /∈ adj[c] then6:

Insert(t, c)7:

Inc(t, c)8:

c← Traverse(t, c)9:

else10:

Inc(t, c)11:

c← Traverse(t, c)12:

end13:

end14:

InsertURL(U , c)15:

end16:

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 147

Algorithm 5.13: Large scheme.

Input: An input graph G of vertices V and edges E, a starting vertex s, array of

vertices adj[c] adjacent to vertex c

Variables: Vertex u and c, an empty array D[] and N [], an array of tokens T [U][]

for URL U , document d, term t

Functions: GetUrls(c) returns the URLs in vertex c

GetCount(c) returns the frequency counter for terms in vertex c

Traverse(t, c) traverses vertex containing term t adjacent to vertex c

Scan(c, n) recursively computes sum n of terms and vertices for vertex c

c← s1:

n← 02:

Scan(c, n):3:

n = n+GetCount(c)4:

foreach term t ∈ adj[c] do5:

D[n]← GetURLs(c)6:

c← Traverse(t, c)7:

Scan(c, n)8:

end9:

end10:

Sort D[n] from lowest n to highest11:

Algorithm 5.14: Random scheme.

Input: An input graph G of vertices V and edges E

Variables: Vertex u, an empty array N []

Functions: Rand(u) generates a random number using vertex u as a seed

foreach vertex u ∈ V |G| do1:

N [u]←Rand(u)2:

end3:

Sort N [u] from lowest to highest4:

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 148

Document Document not

changed or new changed and old

Revisited
Popular – Success

Failure
Not Popular – Failure

Not Revisited
Popular – Failure

Success
Not Popular – Success

Table 5.1: Matrix for determining the success or failure of a crawl in acting on a single

document that includes both freshness and popularity metrics.

5.4 Measuring Crawler Effectiveness

As we explained in Section 2.5 (page 48), crawler effectiveness is typically measured with a

freshness metric that determines whether a document has been recrawled, and whether or

not the document has changed or is new. However, this metric does not accurately reflect

all the factors of the live Web. Most significantly, it does not consider the popularity of

a document. Keeping popular documents current is essential, since these documents will

be heavily utilised by end users, and changes made to these document are more likely to

impact end users. Conversely, regularly updating documents that are rarely retrieved does

not effectively utilise bandwidth of the search engine, and provides little benefit to end users.

Accordingly, we extend the definition of success or failure of a crawler on a document, as in

Table 5.1.

Popularity is determined by the queries issued by end users, hence it is more reflective

of the end user’s needs. In contrast, importance, typically measured using schemes such as

PageRank and Inlink, indicates how highly linked to a document is from other documents,

identifies how accessible the document is, and is determined by web authors. Although there

is a correlation between importance and popularity, it is not unlikely for a document to have

a high importance, as measured by PageRank and yet still have a low popularity, particularly

if the topic is not queried frequently. For instance, a document containing copyright warning

information is likely to be linked to by many documents in a domain, however, few users are

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 149

0 20 40 60 80 100
Percentage of Cutoff Documents Crawled (%)

0

20

40

60

80

100
Su

cc
es

s
R

at
e

(%
)

Hub
Outlink
Breadth
Pagerank
Random

Figure 5.3: An example of the success rate of five schemes over a cutoff of 150,000 document

retrievals on the ABC collection. The plots do not necessarily end at success rate of 100%

since the crawl is restricted to 150,000 documents out of a total of approximately 540,000

(on average). Success rate at any point in the crawl is defined as the number of changed or

new documents retrieved divided by the number of documents retrieved at that point.

likely to search for the copyright information in a domain, particularly since it is so readily

available.

In our experiments, we determine popularity by computing the frequency with which a

particular document is returned in response to user queries taken from the ABC and CSIRO

query logs. Since we used the single source of queries to determine popularity for both the

Query ordered scheme as well as evaluating all the schemes, we required a way to avoid

skewing the results.

To avoid this problem, we acquired approximately eight weeks of ABC queries and eleven

weeks of CSIRO queries, then, for each domain, we took their respective queries, sorted them

by date, and split each week of queries into two equal sequential sets of queries. The first

half was used for producing the Query ordered crawl, while the second half was used to

evaluate the schemes. This gives us about 18,000 queries for evaluating the ABC collection

and about 5,500 queries for evaluating the CSIRO collection.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 150

(Ranked Results) (Relevance)

TREC
EVAL

Page 4a

Page 6a
Page 5a

Page 4b

Page 6b
Page 5b

Page 4a
Page 5a
Page 6a

Scheme
Ordered

Crawl AB Crawl B

Page 1b
Page 2b
Page 3b

Page 2b
Page 3b

Page 1a
Page 2a
Page 3a

Page 1b

Crawl A

Engine
Search

Crawl B
Queries

Query 1
Query 2

..

Results

Page 1
Page 2
Page 3

..

..

Page 1
Page 2
Page 3

..

..

Precision

Crawl AB Crawl B

Figure 5.4: Crawl ordering evaluation. The scheme crawls all documents during Crawl

A and then decides on which subset to recrawl during Crawl B. This produces Crawl AB

consisting of a subset of documents from Crawl A and from Crawl B. Documents from Crawl

B are guaranteed to be fresh, while documents from Crawl A may not be up-to-date if they

have changed during crawl B. User queries are used to rank and compare Crawl AB and

Crawl B documents. Crawl AB becomes the scheme being evaluated, while Crawl B becomes

the relevance judgements.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 151

As we observed in Section 2.2.2 (page 40), each scheme is a ranking of documents, just like

in the operation of a ranking algorithm in a search engine. Here, however, rather than ranking

documents by their likelihood of relevance to a query, as in a search engine, we are ranking

documents by their likelihood to have changed since the last crawl. Furthermore, rather

than using relevance to judge a ranking of the documents, we are using the standard success

measures we described in Section 2.5 (page 48) and Table 2.1 (page 50). In addition, we take

popularity into consideration by using the measures shown in Table 5.1. Another difference

from the usual retrieval problem is that new documents, not included in the original ranking

of documents, are always a success under the standard matrix, and might be a success under

the popularity matrix.

We define the success rate at any point in the crawl to be the number of successes achieved

divided by the number of documents crawled. The final success rate is the success rate at

the end of the crawl. The average success rate is the average of all success rates achieved

after every document crawled. For example, consider the graphs of success rate shown in

Figure 5.3. The final success rate of the PageRank and Breadth schemes is 48%, but the

average success rate of PageRank is 35%, while Breadth has an average success rate of

about 25%.

5.5 Measuring Impact on Users

In order to determine the impact that crawl algorithms have on user search results, we also

evaluate crawls using an alternative metric that takes popularity into consideration. This

technique also uses queries as part of the evaluation and is very similar to the technique we

used in Section 4.4 (page 108). We illustrate the method in Figure 5.4, and describe it below.

The technique begins by crawling all documents during the first crawl — Crawl A in Fig-

ure 5.4. We then use the crawl ordering scheme to decide which documents to revisit during

the second crawl — Crawl B in Figure 5.4. This results in Crawl AB, a hybrid collection

that consists partially of the up-to-date collection from Crawl B and the stale collection from

Crawl A. This collection is compared to the fully up-to-date collection, Crawl B, by running

a set of queries against the partially up-to-date collection and the fully up-to-date collection.

The search results of these two collections are compared using the TREC evaluation system

to determine how document rankings have been affected. If the crawl scheme is effective,

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 152

(a) Final success rate: ABC, Standard

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

(b) Final success rate: CSIRO, Standard

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

No new
New

*

(c) Final success rate: ABC, Popularity

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

*

(d) Final success rate: CSIRO, Popularity

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

Figure 5.5: Final success rate (%) over all documents, averaged over all intervals. Error

bars indicate one standard deviation. Light bars include new documents, contrary to dark

bars which ignore new documents. Stars indicate a significance to Random method (Tukey

HSD test, p < 0.05).

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 153

(e) Average success rate: ABC, Standard

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

*
*
*
*

(f) Average success rate: CSIRO, Standard

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

*

(g) Average success rate: ABC, Popularity

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

*

*

*

(h) Average success rate: CSIRO, Popularity

0 20 40 60 80

Depth
PageRank
Inlink
Outlink
Breadth
Hub
Random
Query
URLLen
URLDepth
Alpha
Large

Figure 5.6: Average success rate (%) over all documents, averaged over all intervals. Error

bars indicate one standard deviation. Light bars include new documents, contrary to dark

bars which ignore new documents. Stars indicate a significance to Random method (Tukey

HSD test, p < 0.05).

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 154

then there should be no changes in the rankings. While documents may have changed, if

the rankings have not, we assume that this means that the document is still relevant to the

query. Furthermore, by using user queries, we are ensuring that a greater emphasis is placed

on retrieving popular documents rather than unpopular documents that are not returned as

query results.

In the next section we discuss the various results we achieved throughout our experiments

into stateless crawl ordering.

5.6 Results

In this section we present the results of our crawl experiments on the ABC and CSIRO

collections, using the various crawl methods outlined in Section 2.2.2 (page 40) under various

test conditions incorporating popularity and change.

Figures 5.5 and 5.6 show the mean average precision (MAP) of each recrawl scheme,

broken down into the two components No new and New. The No new component consists

of documents that were crawled in a previous interval, and have been found to have changed

during a subsequent crawl, while the New component consists of documents that had not

been discovered in any of the previous crawls of the domain. Note that we are using the full

history of the collection to evaluate the schemes, but we are only using the previous interval

as input to any one of the schemes, thus ensuring that the schemes operate in a stateless

fashion.

In Figures 5.5(a-b) and 5.6(e-f) document popularity is ignored, and only documents that

change by more than the Words threshold are considered a success. In Figures 5.5(c-d)

and 5.6(g-h) document popularity is included in the definition of success. Furthermore,

while all documents are retrieved during the first crawl of a site, only 150,000 documents

are retrieved on subsequent crawls of the ABC domain, and 45,000 of the CSIRO domain;

thus simulating a production crawler that cannot afford bandwidth to recrawl the entire site

every crawl.

Using this criteria, the best performance on the ABC when ignoring popularity, Fig-

ures 5.5(a) and 5.6(e), is the Hub method, although using the final success rate no method is

statistically significantly better than Random. Using the average success rate method, the

Outlink, Inlink, and Breadth schemes outperform Random. Comparing panel (a) with

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 155

panel (e), it is apparent that new documents are the main contribution to the average success

rate succeeding the final success rate (the light section of the bars are longer). This is because

new documents are discovered earlier in the crawl, rather than later. The success rate early

in some crawls is up around 80%, due to new document discovery, falling eventually to the

final rate that is less than 40% (on average). The same pattern is evident when comparing

Figures 5.5(b) and 5.6(f).

For the CSIRO web site, when popularity is ignored, the URLlength scheme outper-

forms all others. In fact, it is the only scheme that is superior to Random.

In Figures 5.5(c-d) and 5.6(g-h), document popularity is taken into consideration, re-

ducing the overall number of documents that are considered successes, since a successful

document must be both changed and popular. The majority of schemes have a success rates

of about half of the previous standard value. From the last row of Tables 3.2 (page 97)

and 3.4 (page 98) we can see that about half of all changed documents are popular, so we

would expect the success rate for finding changed documents to drop by about 50%, on

average, when popularity is taken into account. Comparing the dark bars in Figure 5.5(a)

and (c), for example, shows that this is the case. With popularity taken into account, Hub

remains the dominant scheme on the ABC site, but no method stands out on the CSIRO

site.

Surprisingly, the introduction of the popularity success criteria did not boost the per-

formance of the Query scheme. In separate experiments not reported here, we found that

when we used the same queries for both ordering L in the Query scheme, and for evaluation

of success, Query still did not perform well.

It is also worth noting that the majority of successess in the CSIRO crawls were derived

from the discovery of new documents: that is, the light bars dominate the dark, unlike in the

ABC crawls. From Tables 3.2 (page 97) and 3.4 (page 98), we can see that the number of

new documents in each CSIRO crawl were about two to four times more than the number of

changed documents, while in the ABC crawls, the number of new documents was usually less

than the number of changed documents. We have since learned that the CSIRO domain was

undergoing major restructuring around the time of the crawl period, leading to the volatility

of the site and the creation of many new documents.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 156

3 4 5 6 7 8 9 10 11
Crawl

-1.0

-0.5

0.0

0.5

1.0

Sp
ea

rm
an

 R
an

k
C

or
re

la
tio

n

ABC
ABC Pop
CSIRO
CSIRO Pop

Figure 5.7: Correlation between the rankings of schemes by average success rate across all

crawls in our test suite.

Query Hub PageRank Breadth URLdepth Random Inlink

88.35 78.11 69.21 67.12 62.11 61.91 59.40

Table 5.2: Effectiveness of top seven schemes averaged over seven recrawls of the ABC test

collection. Schemes are ordered from most effective to least.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 157

1 2 3 4 5 6 7 8
Crawl

0

20

40

60

80

100
E

ff
ec

tiv
en

es
s

(M
.A

.P
.)

Query
Hub
Pagerank
Breadth

URLdepth
Random
Inlink

Figure 5.8: Performance of schemes during each crawl on the ABC collection using the

alternative evaluation technique outlined in Section 5.5 and Figure 5.4. Effectiveness is

measured using Mean Average Precision between the query results on the up-to-date collection

and the partially updated collection on each crawl. During each crawl only 150,000 additional

documents are updated.

The result from the next analysis is presented in Figure 5.7; a plot of the Spearman Rank

Correlation Coefficient between a ranking of the schemes at each interval. Along the x-axis

the current interval is shown, and at each interval the mean of all previous ranks for a scheme

are used to evaluate the relative performance of each scheme. That is, the more intervals

that are used, the more past statistics that are used to predict the future performance of a

scheme. From the graph it is clear that there is a strong correlation between the relative

performance of different schemes as the number of intervals increases. This means that after

very few intervals the relative performance of different schemes becomes apparent and more

importantly the performance is fairly consistent. Hence once a good scheme for the domain

is determined, it remains a good scheme.

In the next set of results, we examine the performance of the top seven schemes over

each crawl of the ABC collection. We use the alternative evaluation technique highlighted in

Figure 5.4 (page 150) and Section 5.5 (page 151) to evaluate their performance. During the

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 158

first crawl all documents were retrieved. We determined the effectiveness of each scheme by

limiting subsequent crawls to 150,000 documents. We then ran queries against each partially

updated collection to produce a set of ranked results. The same queries were run against a

fully up-to-date collection. We then determined the similarity between these results using

Mean Average Precision.

Table 5.2 highlights the performance of the schemes averaged over seven recrawls of the

ABC collection, while in Figure 5.8 we break down the performance during each crawl. The

x-axis in Figure 5.8, represents the crawl number being evaluated; at each crawl another

150,000 documents are updated in the collection. The y-axis is the effectiveness of each

scheme.

Although we tested all schemes using this evaluation technique we only report the schemes

that are on average at least as effective as the random approach.

On the first crawl all documents are retrieved and so the effectiveness for all schemes is

100%. On the second crawl 150,000 documents are updated, however each scheme performs

almost identically. On the third crawl, there is a much greater variance. The effectiveness of

the Breadth, Random, Alpha, URLdepth, and Inlink schemes all drop sharply below

71%, while the effectiveness of the Hub and PageRank schemes drops slightly to 88% and

84% respectively. Only the performance of the Query scheme remains steady at 93%. On

the fourth crawl the performance of all schemes drops, though to varying degrees. The top

three schemes, Query, Hub, and PageRank respectively, all have an effectiveness that is

20%-30% higher than that of the Breadth, Random, URLdepth, and Inlink schemes.

Interestingly, the effectiveness of the PageRank scheme drops sharply to roughly that of the

Random scheme, from crawl five onwards. Throughout all crawls of the ABC the Query

scheme outperforms all others, maintaining an average effectiveness of roughly 88% — over

10% more effective than the Hub scheme.

Our results clearly show that if the relevance of user query results is to be maintained,

a scheme must incorporate query terms. Our observations in Tables 3.2 and 3.4 (page 97

and 98), demonstrated that the percentage of documents that were changed and returned

by queries was clearly a small subset. By focussing a crawl on these documents the greatest

impact on search results can be made.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 159

URLlength Breadth Depth Query URLdepth Inlink Random

86.93 85.87 85.72 85.68 85.16 83.40 82.92

Table 5.3: Effectiveness of top seven schemes averaged over ten recrawls of the CSIRO test

collection. Schemes are ordered from most effective to least.

1 2 3 4 5 6 7 8 9 10 11
Crawl

0

20

40

60

80

100

E
ff

ec
tiv

en
es

s
(M

.A
.P

.)

URLlength
Breadth
Depth
Query
URLdepth
Inlink
Random

Figure 5.9: Performance of schemes during each crawl on the CSIRO collection using

the alternative evaluation technique outlined in Section 5.5 and Figure 5.4. Effectiveness is

measured using Mean Average Precision between the query results on the up-to-date collection

and the partially updated collection on each crawl. During each crawl only 45,000 additional

documents are updated.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 160

We also used the same evaluation techniques on the CSIRO collection, presented in Ta-

ble 5.3 and Figure 5.9. Our results indicate that all schemes performed equally well. When

we tested an approach that did not update any documents during each interval, we found

that the results were still quite high — with an average effectiveness of over 78% — compared

to 86% for the URLlength scheme, and 82.92% for the Random scheme. This indicated

that performance similarity was not caused by our 45,000 document cutoff being too high.

Suspecting that the number of relevant documents per query was low, we then examined the

collection. We found that the number of relevant documents per query was 25% fewer than

for the ABC collection.

Based on this result, and the observed volatility of the collection due to restructuring,

we felt that the CSIRO collection would not be useful for comparing schemes. While we

continue to use the CSIRO collection in further work, we report primarily on our results for

the ABC collection.

Next, we analyse the complexity of the various schemes that we have implemented in this

Chapter.

5.7 Analysis

In this section we examine the costs and savings of the crawl schemes highlighted in this

chapter. Specifically, we measure and compare the computational costs and bandwidth

savings of each scheme. We assume that a collection of N URLs need to be sorted according

to a crawl algorithm.

In the case of the Breadth, Depth, and Random schemes, the URL of each page is

read and then written into a queue with no other processing required. Hence the cost for

these schemes is given as

Cost = N + N

Cost = O(N) (5.1)

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 161

www.abc.net.au/rn/ www.abc.net.au/tv/

www.abc.net.au/

www.abc.net.au/tv/lateline/ www.abc.net.au/tv/4corners/

www.abc.net.au/tv/lateline/content/www.abc.net.au/tv/lateline/business/

www.abc.net.au/news/

Figure 5.10: URL tree structure.

The URLlength, Alpha, and URLdepth schemes require only a URL sort based on

the relevant key, and so, the cost for these schemes reduces to the cost of the sort.

Cost = N log N

Cost = O(N log N) (5.2)

The Inlink scheme determines the number of pages that link to each given page, and so,

the scheme must retrieve the list of inward links for each URL, then sort the URLs by the

number of links.

Cost = (N × I) + N log N

Cost = O(N log N) (5.3)

where I is the average number of links to each page.

The Outlink scheme is similar to the Inlink scheme, except that instead of examining

the number of inward links, it determines the number of outward links each page has, and

so, the cost is

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 162

Cost = (N ×O) + N log N

Cost = O(N log N) (5.4)

where O is the average number of links originating from each page.

The PageRank scheme must determine the pages that link to, and that are linked by,

each page. In addition, there must be several iterations before the initial scores of each page

converge with their true values. Finally, pages must be sorted by their respective scores.

Cost = (((N × I) + (N ×O))× E) + N log N (5.5)

where E is the number of iterations of the algorithm.

The Hub scheme must determine the number of inlinks and outlinks that each page has,

these values are summed together and pages are then sorted accordingly.

Cost = (N × I) + (N ×O) + N log N (5.6)

The Large scheme must determine the number of URLs located in each directory and

any sub-directories. The URL directory structure must be represented as a tree as shown in

Figure 5.10. Creating this structure has the cost

Cost = N × T (5.7)

where T is the average number of slashes “/” in a URL.

Once the tree is created, the number of sub-directories must be determined for each

directory. If the process begins at the root node (www.abc.net.au/), and we assume that

past statistics regarding sub-directories are ignored, all sub-directories must be re-examined

for each directory, and so, the cost is given as

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 163

Cost = H ×N ′ + H −
H
∑

i=1

(Ai)

Since
H
∑

i=1

Ai =
AH+1 − 1

A− 1
− 1

Cost = H ×N ′ + H −
AH+1 − 1

A− 1
− 1

Given H ≈ ⌈logA N ′⌉

Cost = ⌈logA N ′⌉ ×N ′ + ⌈logA N ′⌉ −

(

A⌈logA N ′⌉+1 − 1

A− 1
− 1

)

Cost = ⌈logA N ′⌉ × (N ′ + 1)−

(

A×A⌈logA N ′⌉ − 1

A− 1
− 1

)

Cost = ⌈logA N ′⌉ × (N ′ + 1)−

(

A×N ′ − 1

A− 1
− 1

)

Cost = ⌈logA N ′⌉ × (N ′ + 1)−

(

A×N ′ − 1

A− 1

)

+ 1

=⇒ Cost = O(N ′ logA N ′) (5.8)

where N ′ is the number of unique directories, H is the average height of the tree, and A

is the average number of immediate subdirectories in each directory. In the worst case the

directory structure is deep (H is large) and the directories contain few branches (A is small)

while there are many distinct directories (N ′). In the worst case the computation cost is

Cost =
N ′(N ′ − 1)

2

= O(N ′2) (5.9)

An improvement to the Large scheme is to work from the bottom of the tree to the top,

thus avoiding recalculating the subdirectories contained in each directory. The computation

cost then becomes
Cost = (N ′ ×A) (5.10)

Hence, the final cost of creating the tree, determining the number of nodes and sub nodes,

and sorting the URLs accordingly is

Cost = (N ′ ×A) + (N × T) + (N log N) (5.11)

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 164

The Query scheme determines the frequency that documents are returned in response

to queries. This requires documents to be indexed, running the queries and noting the top

ranked documents, then finally sorting the crawl accordingly.

Index Cost =
N2 log T

2B

Cost =
N2 log T

2B
+ C × (Q + K) + N log N

Cost ≈ N2 (5.12)

where T is the number of distinct terms in the indexed collection, B is the number of postings

in memory, C is number of queries run (18,000 in our work), Q is the cost of running a single

query (very small), and K is the maximum number of documents returned in response to a

query (1000 in our work).

5.8 Summary

In this chapter we have investigated strategies for crawl ordering that aim to recrawl doc-

uments that have changed and avoid recrawling static documents. The schemes we have

examined are intended for cases where no past change statistics are available, as is the case

when crawling a new domain, or when discovering new documents in an existing domain.

We have used existing schemes from the literature, and introduced the Query schemes and

our simplified implementation of the Hub scheme. We have also introduced the notion of

popularity in evaluating the crawls.

On the ABC domain, the Hub scheme had the highest overall success rate over all in-

tervals, and was statistically significantly better than a randomly ordered crawl. This was

true using both the criteria for success that a document had changed, and the more strin-

gent criteria that a document had changed and was popular. On the CSIRO domain, the

URLlength scheme was the best performer when change was the measure of success, but

when popularity was also required, no method outperformed a randomly ordered crawl. This

demonstrates what is perhaps intuitive: different domains may be better served by different

crawl strategies. It also highlighted a limitation of our CSIRO collection.

We have also demonstrated that the performance of schemes over a sequence of crawls

on the same domain is relatively stable. The correlation between the ranking of schemes

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 165

from one interval to the next (as shown in Figure 5.7) is high: generally around 80% to

90%. Not only are different schemes suitable for different domains, but, once a good scheme

has been established, it remains good for future crawls. Again this supports our intuitive

understanding of web sites within an enterprise. They are constructed by organisations with

specific goals in mind, and they are maintained according to regular policies and rules. Hence

once the appropriate crawling scheme is chosen within an enterprise, it continues to apply

while the organisation maintains its site according to those rules.

In this chapter we have introduced the Query scheme for ordering documents for recrawl

based on past query patterns. The scheme did not work any better than randomly selecting

documents during a crawl on either site (Figures 5.5 and 5.6). While we had hypothesised

that biasing a crawl by previous queries would help the crawler find popular documents, the

impact on changed and new documents was uncertain. If a large proportion of successes

in the crawls were due to the discovery of new documents — as in the case of the CSIRO

collection — the Query scheme may be expected to perform poorly. Past studies have shown,

for example, that the PageRank scheme is biased against new documents [Baeza-Yates and

Castillo, 2001; Baeza-Yates et al., 2004], since users are less likely to link to newly created

documents. In a similar way, users may be less likely to query these same documents.

When we examined the performance of various schemes by evaluating their impact on

search results, we found that while the Hub scheme still performed well for the ABC col-

lection, the Query scheme outperformed all other schemes. This highlights the need for

the incorporation of query statistics into the crawling process if user query results are to be

maintained effectively.

Overall however, our results suggest that the distribution of popular documents is essen-

tially random from a change perspective. Users are interested in a wide variety of documents,

and this is not necessarily tied into their likelihood of changing. This does not however dis-

miss the fact that documents that are popular cannot be ignored. It means that change

and popularity are two possibly competing factors, and so, a crawl scheme must compro-

mise between these two objectives. In the next chapter we introduce a scheme that allows

these factors to be considered as part of a general crawling scheme while maintaining crawl

effectiveness and efficiency.

CHAPTER 5. STATELESS CRAWL ORDERING SCHEMES 166

Chapter 6

Change-Driven Crawling Using

Anchor Text

Web crawlers need to revisit documents periodically to ensure that query results are relevant

to user queries. Typically, schemes that predict change frequency either require past change

statistics, use statistics that are susceptible to tampering, or assume that the documents

change according to some particular model.

We introduce a novel scheme for ordering the crawl frontier by examining the anchor

text pointing to each document. Our scheme begins with an ordering based on the previous

crawl, but adapts during the current crawl as anchor text term statistics change. Section 6.1

explains the method in more detail. We test our scheme on snapshots of two web sites,

and in Section 6.3, we show that it is more efficient than previous schemes proposed in the

literature.

Instead, our scheme only requires one complete crawl. Then on the second crawl, as each

document is retrieved, the scheme updates the change statistics of each anchor term pointing

to the retrieved document. If the retrieved document changed, the score increases for each

anchor term that points to the document. If the retrieved document was unchanged the

score decreases for each term. As the crawl continues, the changing term scores affect which

document will be crawled next. In this way, the crawler adapts to actual document change

statistics as they are detected dynamically during the crawl. While document content could

be used instead of anchor text to predict change, this would be much more computationally

167

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 168

Algorithm 6.1: Simple crawl scheme.

Input: List L of all documents d from a previous crawl, an empty list V

Sort L by some ranking scheme1:

while L is not empty and bandwidth is available do2:

Visit the first document d in list L3:

Remove d from L and insert into V4:

S ← documents linked to by d5:

foreach s ∈ S do6:

if s is not in L or V then7:

Add s to the front of L8:

end9:

end10:

end11:

expensive and may not necessarily improve results, as anchor terms have been shown to be

quite effective in identifying a document [Craswell et al., 2001; Hawking, 2004] or predicting

the target document’s content [Amitay, 1998].

6.1 Dynamic Crawl Adaptation

In this section we describe our dynamic crawl adaptation scheme in detail. During the initial

crawl all documents are crawled using the method highlighted in Algorithm 6.1. Since all

documents are crawled, this provides our scheme with the complete link graph structure and

anchor terms statistics required by the schemes.

Further to this, we define:

d , a web document;

Ad, the set of stemmed and stopped anchor terms that point to d;

ct, the number of times anchor term t points to a changed document;

ut, the number of times t points to an unchanged document; and

ftd, the number of times anchor term t points to document d.

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 169

Algorithm 6.2: Dynamic crawl adaptation scheme.

Input: An input graph G of vertices V and edges E, integer limit number of

documents to recrawl during each crawl, array of vertices out[u] linking out

from vertex u, array of edges inEdge[v] linking into vertex v

Variables: Vertices u, v, and RevisitPage, array state[], integers i and j, doubles

MaxScore and Score, terms s and t, arrays anchors[] and

CheckAnchors[]

Functions: CalculateScore(u) returns the change score for vector u

Retrieve(u) recrawls vertex u

GetAnchors(E) returns list of all anchors that are in the set of edges E

AlterChangeStats(v) updates change/unchange statistics for vector v

"breaking news"

d1 d2 d3

"latest"

"headline" "report" "news"

"breaking news"

"headline"

"news"

Figure 6.1: An example site with three documents, and the anchor terms pointing to them.

The score of document d is then calculated as the average change-to-unchange ratio over all

terms pointing to the document:

S(d) =
1

|Ad|

∑

t∈Ad

ct

ct + ut
(6.1)

To take into consideration the frequency with which a particular term points to a docu-

ment, we use a modified score:

Sf (d) =
1

|Ad|

∑

t∈Ad

(

ct

ct + ut
× ftd

)

(6.2)

Hence, the more frequently a term is included in anchor text that points to a document,

the more weight it has on the documents score when using Sf .

The steps in the crawling process are shown in Algorithm 6.2 and 6.3. We outline these

steps through the use of a sample site containing three documents with their associated

anchor links, shown in Figure 6.1.

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 170

Algorithm 6.3: Dynamic crawl adaptation scheme (cont.).

foreach vertex u ∈ V [G] do1

state[u]← UNVISITED2

end3

for j ← 0 to limit do4

MaxScore← 05

RevisitPage←GetDefault(G)6

foreach vertex u ∈ V [G] do7

if state[u] = UNVISITED then8

Score=CalculateScore(u)9

if Score > MaxScore then10

MaxScore← Score11

RevisitPage← u12

end13

end14

Retrieve(RevisitPage)15

state[RevisitPage]← VISITED16

anchors[]←GetAnchors(inEdge[RevisitPage])17

foreach term t ∈ anchors[] do18

foreach vertex v ∈ V [G] do19

CheckAnchors[]←GetAnchors(inEdge[v])20

foreach term s ∈ CheckAnchors[] do21

if s = t then22

AlterChangeStats(v)23

end24

end25

end26

end27

end28

end29

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 171

Term

“news” “headline” “latest” “breaking news” “report”

Before d1

Change Freq (ct) 0 0 0 0 0

Unchange Freq (ut) 0 0 0 0 0

After d1

Change Freq (ct) 1 1 1 1 0

Unchange Freq (ut) 0 0 0 0 0

Table 6.1: Change statistics for the anchor terms pointing to the documents in example in

Figure 6.1. The first set of term change and unchange frequency statistics are produced before

any documents have been retrieved. The second set are produced after document one has been

retrieved. In this case document one has changed.

In Table 6.1, the change statistics for each term are shown. Since no documents have

been visited yet, all terms initially have a change and unchange frequency of zero and hence

all documents have the same score. In such cases, the default ordering is used, such as

PageRank [Page et al., 1998], or breadth-first ordering. In this case assume that document

one is retrieved first and has changed. Accordingly, each term pointing to document one has

its change frequency (ct) incremented, while its unchange frequency (ut) remains unchanged,

as shown in Section 2 of Table 6.1. The next step is to calculate the score of the two remaining

unvisited documents, documents two and three. The score for document two is calculated by

averaging the score of the terms “headline” and “report”, while the score for document three

is the average score of the terms “news” and “breaking news”.

d2 =

(

1 + 0.00001

0 + 0.00001
+

0 + 0.00001

0 + 0.00001

)

÷ 2 = 50, 001 (6.3)

d3 =

(

1 + 0.00001

0 + 0.00001
+

1 + 0.00001

0 + 0.00001

)

÷ 2 = 100, 001 (6.4)

Since document three has the higher score it is retrieved next. Intuitively, document three

is pointed to by more terms that have been found to link to changed documents. This process

continues until the crawl cutoff it reached and the crawl process then stops. As the crawl

progresses, more statistical samples become available for each term, and so the change and

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 172

unchange statistics of each term become more accurate. At the end of the crawl, the complete

change statistics for each term are known, and so this information can be incorporated into

the ordering of the next crawl.

6.2 Dynamic Scheme Adaptation

In this section we describe a subtle modification that we make to our approach to ensure

that it can adapt to situations where the effectiveness of term change statistics is limited.

This is useful in situations where a site has a large disparity in its change frequency across

different sections, such as in a large domain where different sections change with varying

frequencies due to modification by different departments. For example, a university site that

consists of several independent sections based on faculties or departments. Each departmental

section has common terms such as “enrolments” or “events”. In some departments these

consistently link to frequently changing documents, while in others they consistently link

to static documents. In this case, the likelihood of an anchor term linking to an altered

document depends on the location of the anchor term within the context of the site.

Our Dynamic Scheme Adaptation (DSA) approach monitors the ongoing performance of

both the default scheme and the dynamic anchor based scheme. It dynamically switches to

the approach that has performed more effectively. This approach is also suitable for situations

where we want to control the degree to which the default scheme affects the overall crawl

strategy.

This modification allows our approach to perform almost as effectively as the default

scheme when anchor term statistics are not effective, and also allows performance to improve

when anchor statistics are effective.

6.3 Results

In this section we present the results of our experiments presented as the crawl rate versus

the percentage of the collection retrieved. Crawl rate is the percentage of changed or new

documents in the collection that have been retrieved so far, where change is defined using

Words with an α change threshold of ten words. Plotting the crawl rate against the per-

centage of the collection retrieved demonstrates how well a scheme finds changed documents

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 173

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
C

ra
w

l R
at

e
(R

ec
al

l)

best
breadth
hub
inlink
pagerank
query
worst

Figure 6.2: Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using default schemes.

during the crawl process. The graph is monotonically increasing, that is, the crawl rate starts

at a value of zero and the value can only increase during the crawl.

In these graphs, it is important to note that the performance of a scheme during the

beginning and particularly the middle of a crawl is most significant. That is, a good scheme

will achieve a high crawl rate during the early stages of the crawl, allowing the crawl to stop

earlier and avoid wasting resources retrieving static documents. While we only report results

from crawl two, we have observed similar results during other crawl periods. Furthermore,

each graph outlines the performance of the top five schemes — Breadth, Hub, Inlink,

PageRank, and Query— as well as two control schemes — Best and Worst. The Best

scheme orders a crawl so that it retrieves all significantly changed documents first, while the

Worst scheme retrieves static documents first. Again, change is defined using the Words

metric with an α change threshold of ten words.

Since some documents may change by less than ten words, yet contain links to new

documents, the Best scheme does not necessarily capture all new documents before retrieving

static documents. Similarly, the Worst scheme does not necessarily avoid all new documents

before retrieving new and changed documents.

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 174

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
C

ra
w

l R
at

e
(R

ec
al

l)

best
breadth
hub
inlink
pagerank
query
worst

Figure 6.3: Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using term frequency.

We also plot an upper limit for performance and the performance in the average case,

both represented by a grey dotted line.

In our graphs we plot four variations of the anchor based schemes: phrase, term, term freq,

and phrase freq. With each scheme, any new documents that are retrieved are considered

relevant, however, none of the schemes bias towards terms that retrieve new documents.

Furthermore, schemes vary in the way that term statistics are calculated.

The phrase (S) scheme considers the entire anchor as a complete indivisible unit. Other

anchors must match the entire anchor to share change statistics. The term (S) scheme breaks

each anchor up into distinct terms and monitors their change statistics in the collection. The

term freq (Sf) scheme is similar to the term scheme, in that it also breaks up each anchor

into terms, however in addition, it keeps track of the frequency at which each term points to

a particular document. The phrase freq (Sf) scheme similarly considers the entire anchor,

while keeping track of the frequency with which a particular phrase points to a document.

In addition, each scheme is based upon a default scheme (without any term statistics). That

is, if all unvisited documents have the same score, the default ordering will take precedence

for the scheme. Each of the four anchor based variation can thus be compared to this default

scheme.

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 175

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
C

ra
w

l R
at

e
(R

ec
al

l)

best
breadth
hub
inlink
pagerank
query
worst

Figure 6.4: Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using term frequency with dynamic adaptation.

In Figure 6.2, we present the default performance of each scheme on the ABC collection

without the influence of any anchor statistics. It is clear that the Hub scheme is most

effective during the entire crawl and retrieves close to 100% of all changed or new documents

after retrieving less than 50% of the collection. The performance of the remaining schemes

fluctuates to varying degrees.

In Figure 6.3, we introduce the use of term frequency statistics — term freq (Sf) —

and note that each scheme performs virtually identically. In general, all schemes improve in

their performance during the first half of the crawl, except for the Hub and Best schemes,

which actually drop significantly. This is attributed to the domination of the term frequency

approach over the default scheme and is caused by the large number of term statistics that

are gathered during the crawl which help identify which document to retrieve next. It is

only towards the end of the crawl, after about 87% of the collection is retrieved that term

statistics can no longer distinguish which document will change. At this point, the default

scheme is used to decide which document to retrieve, hence the variations noted.

While the term frequency approach produces an improvement when the default scheme

is poor, we note a performance drop when the default scheme is effective. To counter this,

we use the DSA approach, introduced in Section 6.2, and present the results in Figure 6.4.

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 176

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
C

ra
w

l R
at

e
(R

ec
al

l)

best
breadth
hub
inlink
pagerank
query
worst

Figure 6.5: Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two without term frequency.

We note that while the performance of the Best scheme returns to optimal and the

performance of the Hub scheme improves dramatically after retrieving 22% of the collection,

the remaining scheme are not affected. After retrieving 22% of the collection using the term

frequency statistics, the DSA approach detects that the performance has dropped to a lower

level than that of the Hub scheme, and so switches schemes. At about 43% the DSA approach

determines that the Breadth scheme is performing more effectively than the term frequency

approach and switches to that. Furthermore, since the Best scheme always outperforms the

term frequency scheme, the DSA it never switches from the default scheme. Finally, we note

that the DSA approach does not alter the remaining schemes, since they do not perform as

well as the term frequency approach for the majority of the crawl.

We note that while the PageRank scheme is actually more effective after 60% of the

collection is retrieved, the DSA approach does not switch schemes because the PageRank

scheme performed very poorly during the first half of the crawl.

We could easily make three improvement that we foresee would greatly boost the per-

formance of the DSA approach. The first of these would be to weight the performance of

schemes and the anchors approach, based on their recency. In this way, the recent perfor-

mance of each scheme would have a greater weighting than its prior performance. This would

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 177

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
C

ra
w

l R
at

e
(R

ec
al

l)

best
breadth
hub
inlink
pagerank
query
worst

Figure 6.6: Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two without term frequency using dynamic adaptation.

make the scheme selection more dynamic. In Figure 6.4, the DSA approach would switch to

the Hub scheme after about 12% of the collection retrieved, and to the PageRank scheme

after about 60% of the collection retrieved, since at this point the recent performance of

the term frequency approach has dropped, while the performance of Hub and PageRank

schemes continues to improve.

The second improvement would be to apply a measure of confidence on the reported

effectiveness. This would be based on the recency of the last sample and the total number

of samples. Hence, if a scheme hasn’t been used recently, or frequently the DSA approach is

more likely to switch to it. This would ensure that a scheme that performs poorly to begin

with but improves dramatically later is not overlooked because there are no new samples

highlighting this improvement.

Finally, we could use the DSA approach to select between all default schemes and the

anchors approach. By allowing the crawl to switch between a large variety of crawl patterns,

this hybrid approach would allow the crawler to adapt to a wide variety of domains more

effectively.

In the next set of results, presented in Figures 6.5 and 6.6, we examine the use of anchor

terms without the inclusion of frequency statistics — term (S).

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 178

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100
C

ra
w

l R
at

e
(R

ec
al

l)

best
breadth
hub
inlink
pagerank
query
worst

Figure 6.7: Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using phrase frequency.

0 20 40 60 80 100
% of Collection Retrieved

0

20

40

60

80

100

C
ra

w
l R

at
e

(R
ec

al
l)

best
breadth
hub
inlink
pagerank
query
worst

Figure 6.8: Crawl rate vs percentage of the collection crawled for the ABC collection on

crawl two using phrase frequency with dynamic adaptation.

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 179

We note that there is a greater variation in the performance of the different default

ordering schemes, highlighting that the anchor approach has less information with which to

order the crawl. In this case, it relies upon the default scheme more heavily. This is clearly

evident at about 16% of the collection crawled — at this point all schemes feature a plateau

in the crawl rate, when compare to the results incorporating term frequencies in Figure 6.3.

It is also at this point in Figure 6.6, that the DSA approach detects that the Hub scheme

is more effective than the anchor terms approach, and so switches schemes. Similarly, at

47% of the collection crawled, the DSA approach detects that the Breadth scheme is more

effective than the anchor terms approach, and switches schemes.

In Figures 6.7 and 6.8, we highlight the performance of the phrase frequency scheme —

phrase freq (Sf) — both with and without the impact of the DSA approach. We can clearly

see the impact of phrases on crawl rate, particularly the performance of the Best and Worst

control schemes. In the initial stages of the crawl, there are significant improvements in the

crawl rate due to the discovery of new and changed documents. However, there are several

large plateaus in crawl rate. The vertical improvements in crawl rate for the Best scheme,

especially during the middle stages of the crawl, are due to the crawling algorithm falling

back on the default scheme in the absence of useful phrase statistics. With the introduction

of the DSA approach in Figure 6.8, we note that the Breadth, Hub, and Best schemes

have distinct alterations to their crawl rate. In the case of these schemes, the DSA approach

detects that the effectiveness of the phrase approach has stalled, and shifts to the default

scheme instead.

Finally, in Figure 6.9, we present the results of our schemes on the CSIRO collection.

Since our previous results in Section 5.6 showed that all schemes essentially performed as

effectively as the Random approach, we compare the various anchor based approaches using

the random default ordering.

We note that all schemes, including the default scheme perform optimally until about

3% of the collection is retrieved. Closer examination revealed that this was due to the

discovery of new documents which, as we noted earlier, was caused by major restructuring

of the CSIRO site during the crawl period. Importantly, all variations of the anchor based

approach produce substantial improvements over the default Random scheme.

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 180

0 20 40 60 80 100
% of Collection Crawled

0

20

40

60

80

100
C

ra
w

l R
at

e
(R

ec
al

l)

phrase freq (S_f)
term freq (S_f)
random
phrase (S)
term (S)

Figure 6.9: Crawl rate plotted against percentage of the collection crawled with a random

default scheme using the CSIRO collection.

Furthermore, it is clear that the plots of the different anchor schemes share a similar

shape to the default scheme, indicating that the anchor based approach is falling back onto

the default scheme when the score for each page is the same. Hence, a compromise is made

between improved document freshness and the default scheme objective. When combined

with the PageRank default scheme, this ensures that the crawled documents are both fresh

and important. This can be extended to the Query scheme to ensure retrieved documents

are fresh and likely to be returned in response to user queries.

Overall, we note that the schemes that incorporate frequency typically tend to perform

best — particularly during the beginning of the crawl — suggesting that a number of distinct

terms occurring with a high frequency are a more significant indicator of the relevance of

terms with respect to document change, than many different terms with fewer occurrences.

When it comes to identifying documents that change, having fewer terms that occur in

high frequencies in the collection has a larger impact than lots of different terms occurring

infrequently. Intuitively, this makes sense, PageRank relies on this same principle to deter-

mine document importance, while topic-driven crawling uses this idea to test for document

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 181

relevance to a theme. Of all the schemes, we find that the term freq (Sf) performs best

during the beginning and middle of the crawl.

6.4 Analysis

Continuing with the analysis that we introduced in Section 5.7 (page 160), we now analyse

the computation costs and bandwidth savings of our dynamic approach to crawling.

Cost = (N ×N ×A×N ×
A

C
)

Cost = (N3 ×
A2

C
) (6.5)

A =
number of unique anchor links

N

C =
number of links

number of unique anchor terms

where N is the number of URLs, B is the average number of terms linking to each page, and

M is the average number of documents linked to by each term.

Compared to the schemes we introduced in Chapter 5 (page 129) the adaptive schemes

that we introduced in this chapter are much more computationally expensive, however the

bandwidth savings (as measured by their effectiveness) are much more significant, as we have

shown in the previous sections.

6.5 Summary

All crawl schemes that rely on a mathematical model require at least two crawls of the Web

in order to fit a model of change, and preferably many more so that the model fit is accurate.

The methods that we have proposed and tested in this chapter require only the previous

crawl of the Web, but if required, can be maintained over many crawls to identify long term

trends. Our results have demonstrated that our approach of using anchor term statistics is an

effective means of predicting page change. Furthermore, our schemes are adaptive, and not

reactive. That is, unlike traditional change-based crawling schemes which rely on past change

statistics, our schemes use the statistics generated during the current crawl. This ensures

that our schemes have the most accurate information available to make crawl decisions. They

are not one crawl behind, and so, the statistics used reflect current page change dynamics,

CHAPTER 6. CHANGE-DRIVEN CRAWLING USING ANCHOR TEXT 182

not those of the past which may no longer be accurate. Our schemes use both positive and

negative sampling to help them perform well whether combined with highly effective or poor

schemes. Our schemes can be combined with different default schemes to produce a solution

that meets multiple objectives. For instance our schemes can be combined with a PageRank

or Query default scheme to ensure that retrieved pages are fresh, as well as important or

popular.

In particular, we found that the term freq (Sf) scheme generally improved upon the

default scheme and produced the most improvement of all the schemes evaluated, particularly

during the first half of the crawl.

The use of terms and their frequency produced the most improvement. This was directly

influenced by the fact that the number of distinct terms was high, while the number of

distinct phrases was dramatically lower. Furthermore, the use of frequency statistics helped

reinforce terms change dynamics. That is, a term that linking frequently to a particular

document had a greater impact on the documents statistics than a term that linked only a

few times, hence clearly identifying important change indicating terms.

Furthermore, the plots of each evaluated scheme generally maintained the overall shape

of the default scheme, despite improvements in collection freshness, but particularly when

anchor statistics were not effective. This indicated that the schemes were falling back on the

default scheme, and so producing a collection that combined the properties of the default

scheme as well as producing a collection that was generally fresher.

Finally, the use of our DSA approach allowed our schemes to adapt to situations where

the default scheme began performing more effectively than the anchor based approach. We

foresee greater improvements in performance of the DSA approach with the introduction

of further modifications. These include the introduction of both a decay and a measure of

confidence on crawl statistics, and the incorporation of several default schemes from which

to select the most effective.

In the next chapter, we summarise our results and discuss future work.

Chapter 7

Conclusions and Future Work

In this thesis we have examined algorithms for web crawling and methods for evaluating

these algorithms. In particular, we have studied the impact that different crawling strategies

have on the freshness of a crawled collection, that is, the degree to which a crawled collection

matches the content of live Web pages. While there have been extensive studies in the

past that have investigated the impact that crawl ordering has on collection quality, much

less work has been carried out on collection freshness. Much of the existing work dealing

with collection freshness has focused on modelling changes in Web pages over time, typically

according to a Poisson process. Past work has also largely ignored the impact that collection

freshness has on the search engine user, and the impact that new documents have on search

results, something that we explore throughout our work by examining the changes to users’

query results.

Another important factor that has been largely ignored in past work, is the maintenance

of collection freshness in cases where there is insufficient data to accurately fit a mathematical

model for change, particularly during the initial recrawls of a page. While previous studies

have examined the use of past change statistics for maintaining document freshness, this

approach requires that all documents are recrawled at least once so that their changes can be

modelled, and preferably recrawled for many crawls for the model to be accurate. Whilst this

approach can be quite effective, it relies on past changes reflecting current change dynamics,

since the model is always built on statistics that are at least one crawl old. Therefore, this

approach does not work well for documents that change at irregular intervals. In contrast,

183

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 184

our work in Chapter 6 (page 167), determines change statistics during the crawl process and

adapts the crawl accordingly. Hence, our approach would adapt to handle documents that

change at irregular intervals.

In our work in Chapter 2 (page 25), we highlighted many of the issues related to crawling,

not just those restricted to collection freshness, and demonstrated that despite the relatively

short history of the Web and crawling, both have developed and grown substantially. How-

ever, we also highlighted the lack of work into improving collection freshness, particularly in

the absence of a long history of change, the abundance of studies that have made assumptions

about the change frequency of documents in an attempt to simplify the problem and produce

solutions, and the lack of empirical studies into the incorporation of user feedback. We have

addressed these issues throughout our work in Chapters 3–6.

Our work in Chapter 3 (page 95), highlighted the limitations of evaluating crawler per-

formance directly on the Web, and the need for an evaluation framework.

In Chapter 4 (page 101) we examined various methods for measuring document change

and defined the Words and Size metrics, two approaches for effectively measuring and

predicting document change affecting search results.

We verified the skewed nature in which documents were returned as answers to user

queries, supporting the results of others [Garcia et al., 2004]. In Figure 4.2 (page 109), we

demonstrated that for our Proxy collection of 12,348 documents, 1,762 documents were

returned in the top 100 results in response to 50 queries. The remaining 10,586 documents

were never returned. Hence, maintaining the consistency of the top 1,762 documents would

have a greater impact on the consistency of user search results than updating the 10,586

documents that were never returned in the top 100 results. This principle would form a

major component of our schemes and evaluation metrics.

We used this principle to formalise a novel approach to measuring the impact that changes

had on search engine users and investigated various change metrics using this approach.

Our evaluation method measured the differences in ranked search results to determine how

changes in indexed documents would impact the query results of search engine users.

We showed that the Words metric was effective as both a predictor and detector of

changes affecting search results. It predicted 93% of variations in rank results while recrawling

22% of the collection. In contrast, the Shingling approach, which is used in many studies,

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 185

retrieved 3.5 times as many pages to achieve this same result. When it came to detecting

changes, the Words metric was able to detect 97% of rank variations due to stale documents,

while recrawling 22% of the collection. The Shingling approach once again required 3.5

times as many pages to match the effectiveness of the Words metric. Using the HTTP

headers to detect change could capture 56% of all rank variations and would retrieve 9% of

the collection, matching the performance of the Shingling approach for the same number of

updated documents over a one crawl interval. The Headers approach, however, performed

quite badly at predicting change, detecting 9% of variations while retrieving 14% of the

collection. In contrast, the Words approach predicted over 52% of rank variation for the

same number of documents updated.

Through our work in Chapter 4 (page 101), we identified Words as an efficient and

effective scheme for finding significant changes in documents. We adopted the Words metric

with an α change threshold of 10 words throughout our work in later chapters. We also

highlighted the data collection which we generated and used throughout our work.

In Chapter 5 (page 129) we highlighted the fact that many stateless schemes have been

used in the past to determine their effect on collection “quality” without considering their

impact on collection freshness. We set out to determine how these schemes impacted on

collection freshness by recrawling a restricted number of documents from two collections on

a weekly basis. Our evaluation method also ensured that no past change statistics were

available to any of the schemes. We introduced the concept of popularity, a new evaluation

constraint that determined how frequently documents were returned as part of a result set

in response to user queries.

Few studies in the past had taken new documents into consideration when evaluating

crawl schemes. We incorporated new documents by evaluating their retrieval as a success,

introduced a new ordering scheme Query which sorted documents by the frequency that

they were returned in response to user queries, and introduced Hub, a simplified adaptation

of the HITS algorithm.

We found that while certain schemes were shown to perform well at retrieving important

documents in other studies, they did not perform well at retrieving changed documents. Our

results demonstrated that the most effective scheme was highly dependent on the collection

being crawled. Specifically, for the ABC collection we found that the Hub scheme was most

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 186

effective and its performance was statistically significantly better than a random crawl. On

the CSIRO collection, we found that the URLlength scheme was most effective in retrieving

changed and new documents. However, when we applied the additional constraint of popu-

larity, we found that no scheme performed statistically significantly better than the random

crawl. We suspected that this was because there was no correlation between popularity and

change.

We were able to confirm this during our experiments with the Query scheme — our

approach to updating popular documents based on the frequency that they were returned in

response to user queries — we found that it performed poorly, producing a result that was

essentially random from a freshness perspective. There was no correlation between popular

documents and changed documents. This demonstrated that freshness and popularity were

competing goals, in much the same way as quality and freshness were shown to be.

We also investigated the stability of schemes over each crawl interval, demonstrating that

the performance of different schemes was stable over different intervals. That is, a scheme

that was found to perform well during earlier crawls of a site would perform well during later

crawls for the period of at least eight weeks.

When we evaluated the impact that various schemes had on user search results, we found

that while the Hub scheme still performed well for the ABC collection, the Query scheme

outperformed all other schemes. This highlighted the need to incorporate query statistics in

the crawl process. Importantly, the skewed nature of query results emphasised the significant

impact that changes to relatively few documents could have on query results.

Our results in Chapter 5, led to our work in Chapter 6 (page 167), where we aimed

to produce a dynamic approach that could be combined with any stateless approach to

produce a general scheme that combined the properties of both schemes. The approach that

we developed used anchor term statistics to determine the likelihood that terms linked to

changed and static documents. This approach was combined with a stateless default scheme.

Whenever terms statistics could not identify which document in the frontier was most likely

to change, the default scheme was used to order the frontier instead. Furthermore, we ran our

experiments were run over multiple intervals, with a decay on the weight of term statistics

from past crawls to reduce their impact on the crawl order. We found that the performance

of schemes remained fairly consistent.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 187

This approach had several distinct advantages over other approaches. Since anchor terms

were used rather than document terms, a much smaller set of terms needed to be maintained.

This resulted in reduced processing and maintenance costs. Our approach did not require two

complete crawls to order the crawl effectively and statistics from the current crawl were used

rather than from past crawls, thus reflecting the current dynamics of pages. The approach did

not rely on change models like many past schemes. The improvement in collection freshness

was not restricted to the performance of the default scheme, since it used both positive and

negative results to improve freshness. It could be easily combined with any stateless scheme

to achieve a variety of objectives independent of collection freshness, while still improving

collection freshness. This approach produced improvements in collection freshness despite

changes in the collection dynamics and topology, a factor which had adversely affected the

stateless schemes we investigated in Chapter 5 (page 129).

Overall, we found that our adaptive scheme term freq (Sf) generally improved upon the

default scheme. With the introduction of our Dynamic Scheme Adaption (DSA) approach

we saw a marked improvement in collection freshness in the cases where the default scheme

outperformed the anchor based approach. In the situation where no anchor statistics were

available, the approach would fall back to the default scheme ensuring that the collection

maintained the properties of the default scheme while improving collection freshness.

In our results on the CSIRO collection, we noted that while there was an improvement

in collection freshness, the overall shape of the plot of the default scheme could be observed

in the plot of the dynamic scheme. This indicated that the default scheme was having a

significant impact on the documents that were being retrieved, despite the fact that there was

an improvement in the freshness. Hence, the crawled collection maintained the properties

of the default scheme while also being fresher. That is, if the default scheme was suited

towards finding important pages, the retrieved collection would contain pages that were both

important and fresh.

While our dynamic, anchor text based approach produced a marked improvement in

collection freshness, there was an additional computation cost. Most of the stateless crawl

ordering schemes that we evaluated in Chapter 5 (page 129) had a cost generally ranging

from O(N) for simple schemes such as Breadth and Depth to O(N log N) for most other

schemes, where N is the number of documents that are ordered. Of all the stateless scheme

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 188

that we evaluated, Query had the highest computation with a cost of O(N2). In contrast

our dynamic approach had a cost of O(N3 × A2

C
), where A is the average number of unique

anchor terms linking to each document and C is the average number of documents linked to

by each unique term.

While this is substantially higher than most of the stateless schemes we evaluated, it

is important to note that other advanced crawl ordering approaches, such as those used

by topic driven crawlers would also have a similar cost, and that their associated cost has

not discouraged their use. In our case, the additional computation costs are likely to be

outweighed by the bandwidth savings.

From our work, we can make the following observations:

• Crawling is difficult: Careful rules need to be defined to ensure that resources are not

wasted, collections are properly maintained, and users are satisfied with their search

experience.

• Crawler evaluation metrics should consider the skewed nature of search results and the

impact that schemes have on search results: Whether evaluating change metrics, the

performance of a crawl ordering scheme or any other aspect of crawling, the evaluation

metric should in some way take into account the fact that query results are skewed and

the impact that the scheme has on query results.

• Using past queries to predict change is ineffective: The set of documents that are fre-

quently returned in response to user queries do not necessarily correlate with documents

that change frequently, and so re-crawling them is a waste of resources.

• Using anchor terms to predict change is effective: There is a clear correlation between

anchor terms and document dynamics, in much the same way that there is a correlation

between anchor terms and document topics, a property used extensively in topic driven

crawling.

Throughout our research we have highlighted the limitations of using HTTP headers to

predict documents change, and the effectiveness of our Words scheme for both predicting

and detecting change, particularly against the common Shingling approach. We have pro-

posed a novel framework for evaluating the effectiveness of crawling, and demonstrated the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 189

performance of the common crawling algorithms with regard to collection freshness, some-

thing that has been lacking in past literature. We have developed a novel approach for

predicting document change based on the use of anchor terms. Furthermore, we have in-

corporated a dynamic method for selecting crawl algorithms using past observations of their

performance as a selection criteria. Our approaches have focused on schemes that operate

without the need for a past history of change. This makes them ideal for cases where this

information is not available, particularly when documents are recrawled for the first time

or new documents are found. Finally, our experiments have not relied upon assumptions

or models of change on the Web, and instead we have used real world data to evaluate our

schemes.

While we have endeavoured to minimise the impact of limitations, there are several key

restraints within our work. Specifically, our framework was limited to eight and eleven weeks

of crawls from the ABC and CSIRO domains respectively. Furthermore, our crawls were

conducted on a weekly basis, and so we cannot draw any conclusions for changes that occur

more frequently than once per week, or less frequently than once every eight to eleven weeks.

Our crawls were limited to pages within these two domains, and so we have no anchor, term

or link statistics from pages outside of these domains. External link information is likely

to be more varied and objective, giving us a clearer understanding of the impact of anchor

terms and their utility for classifying document change. Hence, a larger more diverse crawl

would help us to evaluate our schemes more thoroughly. We discuss this and many other

future avenues of investigation within the scope of our research in the next section.

7.1 Future Work

While we have examined many different facets of maintaining the freshness of crawled collec-

tions, this is by no means a solved problem, and there are many improvements and unexplored

avenues that can be investigated.

Specifically, in our work in Chapter 5 (page 129), an avenue for further study would be

the impact that document duplication has on performance, for instance, investigating any

relationship between document change frequency and near-duplicate documents. That is, to

examine the issue of change amongst loosely coupled mirrors.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 190

While our popularity evaluation metric relies on binary scores — a document is either

popular or unpopular — an alternative approach that could be adopted is to incorporate a

continuous scale for popularity, so that resources are weighted according to their popularity.

This approach would ensure that popular documents are weighted higher, and so their impact

when retrieved or missed would be greater than for unpopular documents. This approach,

however, would require the normalisation of scores so that the effectiveness would not exceed

100%.

Another area of investigation is the dynamic selection of a crawl cutoff value. This would

require a method for predicting when to stop the crawl instead of using a hard cutoff and

could be based on the ratio of changed, new, and unchanged pages. This would be very

similar to our DSA approach, monitoring ongoing performance and deciding at which point

to terminate the crawl.

Our work in Chapter 6 (page 167) could be extended further by incorporating IR measures

such as tf.idf. This would weight the ability of terms to discriminate between documents and

could be used to reduce computation costs. The impact of weighting would probably be

marginalised since the change versus unchange ratio would tend to cancel out for terms that

are randomly distributed amongst changed and static documents, but the computational

costs would be significant.

Other methods for reducing the computation costs that can be investigated include reduc-

ing the frequency of term statistic updates. In our current implementation, term statistics

are updated after each page is retrieved. This could easily be modified to update on every

fifth page, for example. Different approaches would obviously result with varying degrees of

impact on efficiency and effectiveness. With the inclusion of further optimisation techniques,

our work could be extended to larger, more diverse collections, and our dynamic approach

could be adapted to work with terms from these general collections.

Reducing the frequency of term statistics updates and reducing computational costs would

allow us to use other means of evaluation. Specifically, we could incorporate our novel

approach to evaluating change scheme performance, introduced in Chapter 4. While this

approach was suitable for evaluating performance at reasonably large intervals, it was not

suitable for use in our work in Chapter 6, since we evaluated the performance each time

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 191

we retrieved a document. In the case of our experiments in Chapter 6, we would have to

re-evaluate about 18,000 queries, a total of 500,000 times for each scheme.

While our work currently incorporates a dynamic approach for freshness, this could be

extended to include multiple factors such as freshness, popularity, importance, and term

frequency in the collection. These factors would then be weighted with tuning parameters

to allow for a specific focus. Again, this can easily be implemented in our DSA approach by

combining several default schemes that possess these properties.

As we highlighted earlier in Chapter 6, we could easily improve the performance of our

DSA approach through several simple modifications; Implementing a decay on the perfor-

mance of the schemes and the anchors approach, applying a measure of confidence on the

reported effectiveness and combining several default schemes. These measure would allow the

DSA approach to be more dynamic in its selection process and allow it to adapt to different

domains more effectively.

Our current implementation of the anchors based approach considers new and changed

documents equally. This could be altered by dividing the term scoring system into two

distinct components, new and changed. The crawl could then be biased towards retrieving

documents that have changed or towards documents that link to new documents.

Our work could also be extended from anchor terms to incorporate the terms contained

within documents in order to determine the content of changing documents, although this

would be much more computationally expensive, and require more IR optimisations to reduce

costs. Anchor terms could also be extended to include the terms surrounding them, in the

same way that topic driven crawlers operate. In addition, terms that form the URL could

also be incorporated. These could then be used as part of terms associated with change

for documents. However, these terms would need to be collated and weighted separately

since there would be fewer URL terms than anchor terms for each document. Furthermore,

combining these terms with the anchor terms could “dilute” their ability to discrimination

between documents that change and those that are static. For instance, in the URL’s

(CHANGED) http://www.abc.net.au/news/latest/s12346.htm

(STATIC) http://www.abc.net.au/news/old/s12345.htm

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 192

the terms “news”, “latest”, and “old” could be extracted. Generally, the term “news” would

be expected to be associated with many dynamic pages. In this case, however, the term

“news” would not be a good change predicting term, since both URLs contain the term,

but only one document has changed. Instead, in this particular case, the terms “latest” and

“old” are impacting upon the performance of the term “news” as a change prediction term.

Appendix A

Crawler Design and

Implementation

In this section, we discuss the problems and challenges that have come up during our develop-

ment of a distributed crawler for collecting web documents for the Zettair search engine. We

also present the solutions that we have implemented in response to these various problems.

A.1 Introduction

A web crawler operates by retrieving a resource from a web site, extracting the HTML links

out of the resource, queuing each URL into its list of URLs to visit, storing a copy of the

resource in a central repository, and then visiting the next URL in the list. The crawler stops

retrieving resources once the list of URLs to visit is empty, or the central repository is full.

Of course, if a crawler used a simple algorithm like the one just described, it would quickly

begin retrieving multiple copies of the same resources. This would waste a large amount of

bandwidth and flood web servers with unnecessary requests. The crawler therefore needs

to keep track of URLs it has previously extracted from documents to avoid retrieving them

again.

To complicate matters further, the URL to a particular resource can be represented in

many different formats. The following URLs, for example, all return the same resource:

http://www.cs.rmit.edu.au/∼hali

193

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 194

http://www.cs.rmit.edu.au:80/∼hali

http://www.cs.rmit.edu.au/%7Ehali

http://WWW.CS.RMIT.EDU.AU/∼hali

To determine whether a URL has been retrieved before, the crawler must convert each

URL to a standardised format, before comparing them against the list of extracted URLs.

Further to this, standardising URLs and ensuring that each unique URL is retrieved only

once does not necessarily guarantee that resources won’t be wasted. Web crawlers can get

caught in what are commonly known as ‘crawler traps’ [Heydon and Najork, 1999]. Crawler

traps are a set of resources that cause the web crawler to traverse them indefinitely. They

are typically dynamically generated and of limited use to search engine users. They can be

created maliciously in an attempt to obtain higher rankings in search results or to trap mis-

behaving crawlers. They can also be created unintentionally through dynamically generated

resources, for example, an online diary with a document for each month, each with a link to

the next and previous month. Obviously, if a crawler attempted to retrieve every entry in

the diary it would never stop crawling and so, the crawler needs to either detect when it is

in a crawler trap or avoid them altogether.

While crawlers are essential to the utility of the internet, they can also be a nuisance to

web administrators. A badly behaving crawler may flood a server with a large number of

requests in a short period of time, producing what is known as a Denial Of Service (DOS)

attack, whereby the web server cannot respond to any other web user requests because it is

inundated with frequent requests from a web crawler. Further, web crawlers may retrieve

sensitive material that web publishers may not want to be indexed, or may even intentionally

retrieve e-mail addresses for the purposes of unsolicited e-mail advertising known as “spam”.

In response to some of these issues, guidelines have been produced that promote good crawling

practices and etiquette that should be observed by crawlers.

Previous work on crawlers have mainly concentrated on scalability [Heydon and Najork,

1999; Shkapenyuk and Suel, 2002], crawl ordering [Cho et al., 1998], parallelization [Cho and

Garćıa-Molina, 2002], index freshness [Edwards et al., 2001; Ali and Williams, 2003] and

topic-driven crawling [Chakrabarti et al., 1999; Diligenti et al., 2000; Chau and Chen, 2003].

In this section we present a variety of crawler related problems, and the solutions we

implemented to overcome them in order to develop an efficient and effective crawler.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 195

That is, a crawler that does not needlessly retrieve web resources, yet still manages to retrieve

any resources that will be useful to the end user.

<HTML>

<HEAD>

<BASE HREF="http://abc.net.au/new/">

<TITLE>Sample document</TITLE>

</HEAD>

<BODY>

<P>Here is a link

to the main page</P>

<P>Both this link and this

 link will use the Base URL

to form a fully qualified URL</P>

</BODY>

</HTML>

Figure A.1: An example of HTML. (sample.html)

A.2 Standardising URLs

One of the biggest challenges in developing a crawler is extracting the URLs from HTML

documents and ensuring that they are standardised so that multiple copies of the same

resource are not retrieved. In Figure A.1, we present a sample of HTML code from the URL

http://abc.net.au/test/sample.html

The HTML links in the resource are represented as anchor tags in the format

link

The URL in the anchor tag above is represented in its fully qualified form, while the URLs

in the following anchor tags are represented in their relative form.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 196

link

link

Normally these would be combined with the resource URL to form the following URLs

respectively

http://abc.net.au/test/index.html

http://abc.net.au/test/../index.html

however in this case the resource contains the base URL

http://abc.net.au/news/

and so, once converted to their fully qualified form, produce the following URLs instead.

http://abc.net.au/news/index.html

http://abc.net.au/news/../index.html

Although the second URL will resolve correctly, it is important that it is reduced further

so that the URL can be uniquely identified. Once fully resolved it becomes the URL

http://abc.net.au/index.html

Each relative URL in the HTML resource must first be converted to its fully qualified

form as outlined above, before it can be uniquely identified.

URLs can also contain hexadecimal representations of characters. This is done by placing

the “%” character before the hexadecimal value of the ascii character. For instance, the “∼”

character can be represented by the sequence “%7e”.

This notation allows web developers to embed characters that normally cannot be repre-

sented in a URL. Any character can be represented in this format, and so it is important that

they are converted in a standardised way. This is made more complicated by the fact that

certain characters, like the space character, can only be represented in hexadecimal notation,

while the rules for other characters depend on where in the URL they occur. The first occur-

rence of the “?” character for instance, must always be converted to the character format,

while all subsequent occurrences must be converted to the hexadecimal representation “%3F”.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 197

This is to ensure that all characters after the first occurrence of the “?” character are parsed

as variables including subsequent occurrences of the “?” character. In addition, because this

format is not case sensitive, both “%7e” and “%7E” will produce the “∼” character. Hence,

these rules must be clearly defined by the crawler so that there is no ambiguity in the URL

format.

HTTP URLs typically consist of several key components. The domain or host, path,

resource, and variables.

{Domain}{Path}{Resource}{Variables}

http://abc.net/files/file.php?p=2&q=books

The domain identifies the web server where the resource resides. The path identifies

the absolute directory path to the resource on the server. The resource identifies the file

that is being requested. Finally, variables are user parameters that are passed to executable

resources. Each variable identifier and value pair is separated by an ampersand “&”.

An important rule with URLs is that while the resource and path components of a URL

are case sensitive, the domain is not. The following two URLs, for example, are the same.

http://abc.net.au/index.htm

http://ABC.NET.AU/index.htm

While, the following two URLs are different.

http://abc.net.au/test.html

http://abc.net.au/TEST.HTML

This in turn means that the domain of a URL needs to be case folded in a standardised

way, for instance, by converting all characters to lowercase, while the resource and path must

remain unchanged.

Occasionally, URLs also include a port address, typically because the port is non standard.

Any URL that does not specify a port address will use the default port 80, however the default

port address can be explicitly included in the URL. The following URLs for instance, will

return the same resource.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 198

http://www.cs.rmit.edu.au:80/

http://www.cs.rmit.edu.au/

And so, if the default port (80) is included in the URL, it must be handled in a consistent

manner, by either removing it in all cases, or including it in URLs when no port is specified.

Web publishers can also produce in-document links, that is, links to specific sections

within a HTML document, by using the “#” character in a URL and placing a corresponding

anchor tag in the document. For example, the URL

http://abc.net.au/test/sample.html#end

links to the “end” tag in the sample.html document from Figure A.1. However, the

returned resource does not change with the inclusion of the “#” character, therefore, to

prevent redundancy, any suffix beginning with the “#” character must be removed. And so,

once altered, the previous example becomes.

http://abc.net.au/test/sample.html

Standardising URLs in the ways outlined in this section prevents the crawler from re-

trieving the same resource multiple times due to different representations of the same URL,

however there are other factors that affect the crawling process.

In the next section we highlight the HTTP interaction process and how this affects the

crawling process.

A.3 HTTP Interaction Process

The HTTP standard allows clients to request resources from different servers in a standard-

ised way, and so, all HTTP transactions must follow the HTTP interaction process, outlined

in Figure A.2.

1. The process begins with a connection request from the client (web browser or crawler)

to the web server, typically on the default port 80.

2. The server then responds with either an acknowledgement indicating that the con-

nection was accepted, or a rejection indicating that the request was denied and the

connection closed.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 199

request

connect

acknowledge

resource data

disconnect

client server

1

3

2

4

5

6

acknowledge

acknowledge

Figure A.2: The HTTP interaction process. The process begins with a connection request

from the client to the server (1). The server responds with either an acknowledgement ac-

cepting the connection, or a rejection denying the connection (2). The client responds with

its own acknowledgement and then sends a HTTP header requesting a resource from the web

server (3). The server follows up with an acknowledgment to the client and then responds

with its own HTTP header (4). The requested resource is then sent (5). Finally, the server

closes the connection (6).

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 200

GET /test/sample.html HTTP/1.0

Host: abc.net.au

Accept: text/html

User-Agent: Wget/1.9

Connection: close

Figure A.3: An example HTTP request.

HTTP/1.1 200 OK

Date: Mon, 25 Oct 2004 10:58:53 GMT

Server: Apache

Set-Cookie: ABCGuestID=131.170.24.156.1098701933415944; path=/;

expires=Mon, 01-Nov-04 10:58:53 GMT

Accept-Ranges: bytes

Cache-Control: max-age=-453594

Expires: Wed, 20 Oct 2004 04:58:59 GMT

Connection: close

Content-Type: text/html

Figure A.4: An example HTTP response header.

3. When the client receives the acknowledgement it responds with its own acknowledge-

ment indicating that the server’s acknowledgement was received. It then sends a re-

quest for a resource from the web server in the form of a HTTP header, as shown in

Figure A.3.

In the example, shown in Figure A.3, the request is for the resource “/test/sample.html”

(along with the HTTP response headers) using the HTTP 1.0 protocol. Alternatively, the

client could request only the HTTP response headers by using the HEAD command, instead

of the GET command.

The HTTP request must also specify which host it is requesting the resource from, since

the web server could potentially host many different virtual domains, all using the same IP

address. In this particular case the host is identified as “abc.net.au”. The third line in the

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 201

request, indicates the file format that the web client supports, while the fourth line in the

request identifies the web client to the server. The final line indicates whether the server

should keep the HTTP connection open after the current request is completed, so that the

client can make further requests. In this particular example, the connection will be closed

after the resource is transmitted to the client. It is important that each line is separated by

a carriage return followed by a line feed “\r\n”, with an empty carriage return line feed to

end the request, as outlined in the HTTP specification [Fielding et al., 1999a].

4. After receiving the clients request, the server follows up with an acknowledgment to

the client and then responds to the clients HTTP request with its own set of HTTP

headers, as shown in Figure A.4.

5. This is followed by an empty line and then the requested resources, in this case the

HTML document “sample.html” shown in Figure A.1.

6. The server then closes the connection.

The first line in the HTTP response header, shown in Figure A.4, indicates the version of

the HTTP protocol being used for the response as well as a resource status code. The code is a

three digit number that indicates whether the requested resource was successfully returned. A

number in the 200–299 range indicates that the requested resource was successfully returned

to the client and follows on after the headers. A code in the 300–399 range indicates that the

requested resource has moved to another location. This is typically accompanied with the

“LOCATION” header field indicating the new location. A code in the 400–499 range indicates

that there is a client side error, for instance, a 404 code indicates that the requested resource

does not exist on the web server. A code in the 500–599 range indicates there is a server side

error.

The next field, “DATE”, indicates the web servers local date and time. The “SERVER” field

identifies the web server type and version (typically). The “SET-COOKIE” field is used by the

server for state maintenance. The “ACCEPT-RANGES” field indicates whether the server can

handle request for only part of a resource. Both the “CACHE-CONTROL” and “EXPIRES” fields

are used for maintaining cache consistency and coherence. The next field, “CONNECTION”,

indicates whether the connection will be terminated after the current communication ends.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 202

<HTML>

<HEAD>

<META HTTP-EQUIV=refresh CONTENT=2;url=http://abc.net.au/>

</HEAD>

</HTML>

Figure A.5: An example of a redirection using META tags. The user will be redirected to

the URL “http://abc.net.au/” after a period of two seconds.

Finally the “CONTENT-TYPE” field indicates the file format of the resource that will follow on

after the header. Search engines typically index only HTML documents, and so crawlers need

to be able to determine resource formats before they are retrieved. A convenient approach

is to use this HTTP response header field. By using a HEAD request rather than a GET

request, the crawler can retrieve both the status code and content-type to determine the

availability and type of resources, without needlessly downloading large resources that search

engines cannot index. At the same time it can use the headers to determine if there is a page

redirection, which we highlight next.

A.4 Page Redirection

Page redirection occurs when a resource redirects the user to another page automatically

through the use of HTTP response headers or HTML META tags. As outlined earlier, the

web server can return a HTTP response header with a code in the 300–399 range indicating

that the resource has moved. This is accompanied by the “LOCATION” field indicating the

new URL where the resource can be found. An alternative method of redirection is through

the use of HTML META tags. The example in Figure A.5 includes a META tag in the

HTML that instructs the web client to redirect to the URL “http://abc.net.au/” after

two seconds. In both cases, the web client must create a connection to the new domain

identified in the URL and then request the resource in the URL.

In order to avoid continuously resolving these redirections, any URL that causes a redi-

rection must also be added to the seen URL list.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 203

Occasionally, crawlers come across recursive URL redirections, that is, resources that

redirect to themselves. This problem is solved by comparing redirected resources against the

seen URL list.

In addition to redirections, web servers also define a default resource that is returned

if none are specified in the URL. The following URLs could potentially return the same

resource, since in many cases, if no resource is specified, the default resource “index.html”

is returned instead.

http://abc.net.au/index.html

http://abc.net.au/

There are, however, many different standards for default resource naming. On most

Apache installations the default resource is “index.html”, while on most IIS installations

the default is “home.html”, “default.html”, or “index.html”. The file extensions are

typically “.htm”, “.html”, or “.php”, however the default resource can be customised to

anything the web administrator chooses. One simple approach to handle this is to include

rules for the most common default resources (index.xxx, home.xxx, and default.xxx), while

a more robust approach is to request the resource and then determine the resource that is

returned via the HTTP headers.

Another similar problem is the addition of trailing slashes in URLs. For example, the

following two URLs are identical.

http://abc.net.au/

http://abc.net.au

Although many servers resolve this through redirection, this is not always strictly the

case, and so it is important that the crawler keep track of this. One simple approach is to

remove trailing slashes from URLs before they are inserted into, or, compared against, the

seen URL list.

During a multitude of test crawls, we also came across several peculiarities. We found

that URLs could contain consecutive slashes, while the domain could contain a trailing dot.

In both cases the URLs would resolve correctly. The following three URLs, for instance, all

resolve to the same resource.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 204

http://abc.net.au///index.html

http://abc.net.au./index.html

http://abc.net.au/index.html

These issues are easily solved by converting multiple consecutive slashes into a single slash

(except for the double slashes preceding the domain name), and by removing any trailing

dots in the domain.

On several occasions, domains returned different response headers when a HEAD request

was made instead of a GET request. A HEAD request would return headers with a “404

Not Found” error, while a GET request would return a “200 OK” header. Our approach

to dealing with this was to first issue a HEAD request. If this returned a “200 OK” or a

non-html resource type, then the header was considered valid and processed accordingly.

Otherwise, a GET request was issued instead to confirm the validity of the headers.

Another interesting observation was that many domains returned customised “404 Not

Found” error documents when requested resources could not be located, however the headers

contained a “200 OK” response code. This is also known as a soft 404, and a heuristic for

their identification has been developed by Bar-Yossef et al. [2004]. In the next section we

highlight the problem of crawler traps, and how they can be avoided.

A.5 Crawler Traps

Crawler traps are another potential hazard for web crawlers. Crawler traps are resources that

can potentially be traversed indefinitely and are typically dynamically generated [Heydon and

Najork, 1999]. They can be created maliciously to make a site appear to be large, popular and

highly linked, in an attempt to increase its presence in search results. They can also be created

unintentionally by web site administrators inadvertently creating a recursive symbolic link,

for instance, by creating a directory with a symbolic link to the parent directory. Another

common crawler trap is created by dynamically generated content that does not end. For

instance, entries in an online diary that goes on indefinitely into the future, or a site that

calculates the value of π and allows the user to move along the sequence.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 205

In our implementation, we prevent crawler traps by restricting the number of documents

that the crawler retrieves from a particular dynamically generated resource. For instance,

the following URL

http://go.com/diary.php?d=10&m=02&y=2004

could be reduced to the dynamic resource

http://go.com/diary.php

by removing the suffix beginning with the “?” character. The crawler is then restricted to

retrieving a limited number of variations of the same dynamic resource. Another alternative

would be to retrieve only the reduced dynamic resource without any parameters. Finally, the

crawler could restrict the dynamic resources that are retrieved to only those that are linked

to by static resources, by not traversing any dynamic URLs that are in a dynamic resource

themselves. Since static URLs cannot dynamically generate links or resources, the crawler

cannot crawl them indefinitely.

Another related problem is URL rewriting. URL rewriting is a server side function that

converts the URL of dynamic resources into a static format at runtime. For instance, URL

rewriting would convert the URL

http://go.com/diary.php?d=10&m=02&y=2004

into the URL

http://go.com/diary/10/02/2004

The parameter values are passed as a directory structure, while their order determines

the variables being set. URL rewriting makes distinguishing dynamic resources from static

resources difficult, particularly for crawler trap avoidance.

Next we reintroduce mirroring and explain the impact that they have on crawling.

A.6 Mirrors

As we described in Section 2.13 (page 85), mirrors are a set of resources that have been

replicated on different domains, typically because they are on a different physical machine to

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 206

help distribute server load and improve performance. It is important that crawlers detect and

avoid crawling mirrors as they do not provide any additional benefit to search engine users,

but require a large amount of resources and bandwidth to crawl. One method of detecting

mirrors is to detect similarity in URL resource paths across different domains.

For example, the following URLs could potentially be mirrors since there are similarities

in their directory structure.

http://go.com/books/c/comp/list.html

http://test.com/books/c/comp/list.html

http://a.com/cp/books/c/comp/list.html

Another method is to determine content similarity. The easiest and fastest way to detect

identical documents is to create a document fingerprint using a scheme such as an MD5

hash [Rivest, 1992], and to compare the fingerprints. However, since changes made to the

original site tend to trickle slowly to mirrors, there is usually some difference in content across

mirrors. Since even the slightest difference in content will generate a completely different

document fingerprint, the similarity of mirrored documents would not be detected. A better

approach is to use a change metric, such as shingling [Broder et al., 1997] or our own metric

Words, introduced in Chapter 4 (page 101), and allow for a small amount of differences.

This allows resources that are identical or nearly identical to be detected across different

mirrors.

While there are many different approaches to detecting mirrors, no one single method

alone can detect all mirrors. However, by combining URL resource similarity with content

similarity across an entire site, a crawler can help reduce the likelihood of needlessly crawl-

ing mirrors [Bharat and Broder, 1999]. In our work we do not target mirrors, and so our

implementation does not take mirroring into account.

In the next section we introduce the difficulties associated with maintaining crawler eti-

quette.

A.7 Crawler Etiquette

Several studies in the past have highlighted the impact of badly behaving crawlers, and have

demonstrated approaches toward good crawler etiquette [Koster, 1993; 1995; Dill et al., 2002].

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 207

User-agent: Mediapartners-Google*

Disallow:

User-agent: *

Disallow: /forum

Disallow: /pm

Disallow: /search

Disallow: /softwaremap

Disallow: /top

Disallow: /tracker

Figure A.6: An example robots.txt file (http://sourceforge.net/robots.txt).

In this section we present the various factors that crawlers must consider when crawling the

Web in a conscientious and responsible manner.

Many of the problems relating to crawler etiquette relate to the differences in the be-

haviour of a typical web client and a crawler. The throughput of a crawler, for instance, is

very different to that of a typical web client. A web browser typically sends a few request

in a short period of time whenever a user clicks on a link. This is followed by a long period

of inactivity, while the user reads the content of the returned documents, before they send

their next request. In contrast, a crawler is an autonomous program that can send multiple,

continuous, requests in parallel to many web servers.

The Web is an environment with limited resources, operating across networks of varying

bandwidth, and so it is important that a crawler does not send a large number of requests

over a short period of time, to any particular server. If a crawler floods a web server with

requests, this will produce what is known as a Denial Of Service (DOS) attack and the web

server will not be able to respond to requests from other web clients. This sort of behaviour

will generally get the web crawler banned from the site, it is therefore important that the

crawler restrict the frequency of requests to any particular domain.

Crawlers should also follow any robot exclusion guidelines that have been outlined by the

web site administrator. These rules apply throughout the entire domain and are identified in

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 208

<HTML>

<HEAD>

<META name="ROBOTS" content="NOINDEX,NOFOLLOW">

</HEAD>

<BODY>

<P> ... </P>

</BODY>

</HTML>

Figure A.7: An example of robots META tags.

a file named “robots.txt” that is located in the root path of the site. The robot exclusion

guidelines identify the resources that a crawler is not allowed to retrieve from the domain.

An example of the robot exclusion guidelines from the sourceforge.net domain are outlined

in Figure A.6. The “User-agent” field identifies the web crawler. If a particular web crawler

is not specifically identified, it must follow the rules outlined for “User-agent: *”. This

is followed by a list of resources that the identified crawler is prohibited from retrieving.

For instance, the first rule “Disallow: /forum” indicates that any URL with the prefix

“www.slashdot.org/forum” cannot be retrieved by any crawler, other than the user agent

“Mediapartners-Google*”, which has no restrictions.

While a web administrator can define domain wide crawler restrictions by creating a

robots.txt file, web authors can create their own robots exclusion guidelines for individual

HTML resources through the use of HTML META tags, as shown in Figure A.7. The META

tag has two parameters that can be altered. The first parameter indicates whether the current

resource can be indexed or not, while the second parameter indicates whether the URL links

in the resource can be followed. In this particular example, the first parameter is set to

“NOINDEX”, informing the crawler that the resource should not be indexed. Alternatively,

it could be set to “INDEX”. The second parameter in this example is set to “NOFOLLOW”,

informing the crawler not to follow any links in the resource. Alternatively, it could be set

to “FOLLOW”, allowing links in the HTML resource to be traversed.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 209

Web

MYSQL

Crawler ClientsURL Server

LARA Crawler

Collection Store

Web Servers

Figure A.8: Architecture of our web crawler.

By following these various guidelines a crawler can function with minimal impact on

web servers and other web clients. In the next section we introduce the architecture and

implementation of our Lara crawler.

A.8 Crawler Implementation

In this section we describe the various components of our Lara crawler and their design

and implementation. This scalable crawler has been implemented in C code, compiled using

the GNU C compiler [2006], and runs under the Linux/Unix environment. It uses a MySQL

[2006] database as a backend for storing crawled data and has a distributed architecture.

The system consists of three main components, outlined in Figure A.8, a MySQL database

backend, a centralised URL server component, and distributed crawler components.

The number of distributed crawler components can be adjusted dynamically during run-

time and can be run on different physical machines if required. The crawler components

retrieve HTML documents from the Web and then extract and process their URLs.

APPENDIX A. CRAWLER DESIGN AND IMPLEMENTATION 210

Each extracted URL is compared to a URL filter and matching URLs are transmitted to

the centralised URL server. The centralised server maintains the seen URL list, the list of

resources to visit, and provides each crawler component with the next URL to retrieve. The

seen URL list is maintained in a hashtable, while the list of resources to visit is maintained

in a priority queue. The default crawl order is a breadth-first traversal.

The centralised URL server ensures that the same resource is not retrieved more than once

by any crawler component, the distributed crawlers help improve scalability and throughput,

while the database allows simple maintenance of the crawled data.

A.9 Summary

In this section we have presented some of the main challenges that we have been faced with

during the development of a distributed web crawler and the solutions we have implemented.

We have also discussed some of the details of our web crawler implementation. When collect-

ing data for this thesis, we have used our crawler to trawl two large enterprise web sites with

approximately 700,000 documents in total, ten times over a period of ten weeks, producing

over 80 gigabytes of data.

Bibliography

H. Ali and H. E. Williams. What’s Changed? Measuring Document Change in Web Crawling

for Search Engines. In String Processing and Information Retrieval (SPIRE), pages 28–42,

Manaus, Brazil, 2003.

Alltheweb, Mar. 2008. URL http://www.alltheweb.com/.

Altavista, Mar. 2008. URL http://www.altavista.com/.

G. Amati, I. Ounis, and V. Plachouras. The Dynamic Absorbing Model for the Web. Techni-

cal Report TR-2003-137, University of Glasgow, Department of Computing Science, Apr.

2003.

E. Amitay. Using Common Hypertext Link to Identify the Best Phrasal Description of

Target Web Documents. In Proceedings of the ACM Special Interest Group on Information

Retrieval (SIGIR 98) Post Conference Workshop on Hypertext Information Retrieval for

the Web. ACM Press, New York, New York, USA, 1998. URL http://www.mri.mq.edu.

au/∼einat/sigir/.

A. Arasu, J. Cho, H. Garćıa-Molina, A. Paepcke, and S. Raghavan. Searching the Web. ACM

Transactions on Internet Technology, 1(1):2–43, Aug. 2001.

Ask.com, Mar. 2008. URL http://ask.com/.

R. A. Baeza-Yates. Challenges in the Interaction of Information Retrieval and Natural Lan-

guage Processing. In A. F. Gelbukh, editor, Computational Linguistics and Intelligent

Text Processing, Fifth International Conference, CICLing 2004, volume 2945 of Lecture

Notes in Computer Science, pages 445–456, Seoul, Korea, Feb. 15–21 2004. Springer. ISBN

211

BIBLIOGRAPHY 212

3-540-21006-7. URL http://springerlink.metapress.com/openurl.asp?genre=article&issn=

0302-9743&volume=2945&spage=445.

R. A. Baeza-Yates and C. Castillo. Relating Web Characteristics with Link Based Web Page

Ranking. In Proceedings of String Processing and Information Retrieval (SPIRE), pages

21–32, Laguna de San Rafael, Chile, Nov. 13–15 2001. IEEE CS. Press.

R. A. Baeza-Yates and C. Castillo. Balancing Volume, Quality and Freshness in Web

Crawling. In A. Abraham, J. Ruiz-delSolar, and M. Köppen, editors, Hybrid Intelli-

gent Systems, volume 87 of Frontiers in Artificial Intelligence and Applications, pages

565–572, Santiago, Chile, Dec. 1–4 2002. IOS Press. ISBN 1-58603-297-6. URL http:

//citeseer.ist.psu.edu/baeza-yates02balancing.html.

R. A. Baeza-Yates and C. Castillo. Crawling the Infinite Web: Five Levels are Enough.

In S. Leonardi, editor, Algorithms and Models for the Web-Graph: Third International

Workshop, (WAW 2004), volume 3243 of Lecture Notes in Computer Science, pages 156–

167, Rome, Italy, Oct. 16 2004. Springer. ISBN 3-540-23427-6. URL http://springerlink.

metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3243&spage=156.

R. A. Baeza-Yates and E. Davis. Web Page Ranking using Link Attributes. In S. I. Feldman,

M. Uretsky, M. Najork, and C. E. Wills, editors, WWW Alternate ’04: Proceedings of

the Thirteenth International World Wide Web Conference on Alternate Track Papers &

Posters, pages 328–329, New York, New York, USA, May 17–20 2004. ACM Press, New

York, New York, USA. ISBN 1-58113-912-8. doi: http://doi.acm.org/10.1145/1013367.

1013459.

R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley and

ACM Press, Harlow, United Kingdom, 1999. ISBN 0-201-39829-X. URL http://sunsite.

dcc.uchile.cl/irbook/.

R. A. Baeza-Yates, C. Castillo, and F. Saint-Jean. Web Dynamics, Structure and Page

Quality. In M. Levene and A. Poulovassilis, editors, Web Dynamics, pages 93–109. Springer

Verlag, 2004.

R. A. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez. Crawling a Country: Better

Strategies than Breadth-First for Web Page Ordering. In A. Ellis and T. Hagino, editors,

BIBLIOGRAPHY 213

WWW ’05: Special Interest Tracks and Posters of the Fourteenth International Conference

on World Wide Web, pages 864–872, Chiba, Japan, May 10–14 2005. ACM Press, New

York, New York, USA. ISBN 1-59593-051-5. doi: http://doi.acm.org/10.1145/1062768.

Z. Bar-Yossef, A. Z. Broder, R. Kumar, and A. Tomkins. Sic Transit Gloria Telae: Towards

an Understanding of the Web’s Decay. In S. I. Feldman, M. Uretsky, M. Najork, and

C. E. Wills, editors, WWW ’04: Proceedings of the Thirteenth International Conference

on World Wide Web, pages 328–337, New York, New York, USA, May 17–20 2004. ACM

Press, New York, New York, USA. ISBN 1-58113-844-X. doi: http://doi.acm.org/10.1145/

988672.988716.

A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Science, 286

(5439):509–512, Oct. 15 1999. ISSN 0036-8075.

D. Barbará and H. Garćıa-Molina. The Demarcation Protocol: A Technique for Maintaining

Constraints in Distributed Database Systems. VLDB Journal, 3(3):325–353, 1994.

A. S. Z. Belloum and L. O. Hertzberger. Concurrent Evaluation of Web Cache Replacement

and Coherence Strategies. Simulation, 78(1):28–35, Jan. 2002.

T. Berners-Lee. W3C, Mar. 2008. URL http://www.w3.org/.

T. Berners-Lee, R. Cailliau, J. Groff, and B. Pollermann. World-Wide Web: The Information

Universe. Electronic Networking: Research, Applications and Policy, 1(2):74–82, 1992.

URL http://citeseer.ist.psu.edu/berners-lee92worldwide.html.

P. A. Bernstein, B. T. Blaustein, and E. M. Clarke. Fast Maintenance of Semantic Integrity

Assertions Using Redundant Aggregate Data. In Sixth International Conference on Very

Large Data Bases, pages 126–136, Montreal, Canada, Oct. 1–3 1980. IEEE Computer

Society.

K. Bharat and A. Broder. Mirror, Mirror on the Web: A Study of Host Pairs with Replicated

Content. In P. H. Enslow Jr., editor, WWW ’99: Proceeding of the Eighth International

Conference on World Wide Web, pages 1579–1590, Toronto, Canada, May 11–14 1999.

Elsevier North-Holland Inc., New York, New York, USA. doi: http://dx.doi.org/10.1016/

S1389-1286(99)00021-3.

BIBLIOGRAPHY 214

K. Bharat and M. R. Henzinger. Improved Algorithms for Topic Distillation in a Hyperlinked

Environment. In SIGIR ’98: Proceedings of the Twenty-First Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 104–111,

Melbourne, Australia, 1998. ACM Press, New York, New York, USA. ISBN 1-58113-015-5.

doi: http://doi.acm.org/10.1145/290941.290972.

K. Bharat and G. A. Mihaila. Hilltop: A Search Engine Based on Expert Documents. Tech-

nical Report CSRG-405, University of Toronto, Feb. 2000. URL http://www.cs.toronto.

edu/∼georgem/hilltop/. ftp://ftp.cs.toronto.edu/csrg-technical-reports/405/hilltop.html.

P. Boldi, B. Codenotti, M. Santini, and S. Vigna. UbiCrawler: A Scalable Fully Distributed

Web Crawler. Software – Practice and Experience, 34(8):711–726, 2004a. ISSN 0038-0644.

doi: http://dx.doi.org/10.1002/spe.587.

P. Boldi, M. Santini, and S. Vigna. Do Your Worst to Make the Best: Paradoxical Effects

in PageRank Incremental Computations. In S. Leonardi, editor, Algorithms and Models

for the Web-Graph: Third International Workshop, (WAW 2004), volume 3243 of Lecture

Notes in Computer Science, pages 168–180, Rome, Italy, Oct. 16 2004b. Springer. ISBN

3-540-23427-6. URL http://springerlink.metapress.com/openurl.asp?genre=article&issn=

0302-9743&volume=3243&spage=168.

V. Boyapati, K. Chevrier, A. Finkel, N. Glance, T. Pierce, R. Stockton, and C. Whitmer.

ChangeDetectortm: A Site Level Monitoring Tool for the WWW. In WWW ’02: Pro-

ceedings of the Eleventh International Conference on World Wide Web, pages 570–579,

Honolulu, Hawaii, USA, May 7–11 2002. ACM Press, New York, New York, USA. ISBN

1-58113-449-5. doi: http://doi.acm.org/10.1145/511446.511464.

O. Brandman, J. Cho, H. Garćıa-Molina, and N. Shivakumar. Crawler-Friendly Web Servers.

SIGMETRICS Performance Evaluation Revision, 28(2):9–14, 2000. ISSN 0163-5999. doi:

http://doi.acm.org/10.1145/362883/362894.

B. E. Brewington and G. Cybenko. Keeping Up with the Changing Web. Computer, 33(5):

52–58, 2000a. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.841784.

B. E. Brewington and G. Cybenko. How Dynamic is the Web? In Proceedings of the Ninth

International World Wide Web Conference on Computer Networks: The International

BIBLIOGRAPHY 215

Journal of Computer and Telecommunications Networking, pages 257–276, Amsterdam,

The Netherlands, 2000b. North-Holland Publishing Co., Amsterdam, The Netherlands.

doi: http://dx.doi.org/10.1016/S1389-1286(00)00045-1.

S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. In

P. H. Enslow Jr. and A. Ellis, editors, WWW7: Proceedings of the Seventh International

Conference on World Wide Web, pages 107–117, Brisbane, Australia, Apr. 14–18 1998.

Elsevier Science Publishers B. V., Amsterdam, The Netherlands. doi: http://dx.doi.org/

10.1016/S0169-7552(98)00110-X.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and

J. Wiener. Graph Structure in the Web. In Proceedings of the Ninth International World

Wide Web Conference on Computer Networks : The International Journal of Computer

and Telecommunications Networking, pages 309–320, Amsterdam, The Netherlands, 2000a.

North-Holland Publishing Co., Amsterdam, The Netherlands. doi: http://dx.doi.org/10.

1016/S1389-1286(00)00083-9.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,

and J. Wiener. Graph Structure in the Web. Computer Networks, 33(1-6):309–320, June

2000b. ISSN 1389-1286. doi: http://dx.doi.org/10.1016/S1389-1286(00)00083-9.

A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic Clustering of the

Web. Computer Networks and ISDN Systems, 29(8-13):1157–1166, 1997. ISSN 0169-7552.

doi: http://dx.doi.org/10.1016/S0169-7552(97)00031-7.

A. Z. Broder, M. Najork, and J. L. Wiener. Efficient URL Caching for World Wide Web

Crawling. In WWW ’03: Proceedings of the Twelfth International Conference on World

Wide Web, pages 679–689, Budapest, Hungary, May 20–24 2003. ACM Press, New York,

New York, USA. ISBN 1-58113-680-3. doi: http://doi.acm.org/10.1145/775152.775247.

A. Z. Broder, R. Lempel, F. Maghoul, and J. O. Pedersen. Efficient PageRank Approximation

via Graph Aggregation. In S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, editors,

WWW Alt. ’04: Proceedings of the Thirteenth International World Wide Web Conference

on Alternate Track Papers & Posters, pages 484–485, New York, New York, USA, May 17–

BIBLIOGRAPHY 216

20 2004. ACM Press, New York, New York, USA. ISBN 1-58113-912-8. doi: http://doi.

acm.org/10.1145/1013367.1013537.

A. Z. Broder, R. Lempel, F. Maghoul, and J. O. Pedersen. Efficient PageRank Approximation

via Graph Aggregation. Information Retrieval, 9(2):123–138, 2006. doi: http://dx.doi.org/

10.1007/s10791-006-7146-1.

T. A. Brooks. Web Search: How the Web has Changed Information Retrieval. Information

Research, 8(3), 2003. URL http://informationr.net/ir/8-3/paper154.html.

H. Bullot, S. K. Gupta, and M. K. Mohania. A Data-Mining Approach for Optimizing

Performance of an Incremental Crawler. In 2003 IEEE / WIC International Conference

on Web Intelligence, (WI 2003), pages 610–615, Halifax, Canada, Oct. 13–17 2003. IEEE

Computer Society, Los Alamitos, California, USA. ISBN 0-7695-1932-6. doi: http://doi.

ieeecomputersociety.org/10.1109/WI.2003.1241279. URL http://csdl.computer.org/comp/

proceedings/wi/2003/1932/00/19320610abs.htm1023.

M. Burner. Crawling Towards Eternity - Building an Archive of the World Wide Web. Web

Techniques, 2(5), May 1997.

J. P. Callan and M. E. Connell. Query-Based Sampling of Text Databases. ACM Transactions

on Information Systems, 19(2):97–130, 2001. ISSN 1046-8188. doi: http://doi.acm.org/

10.1145/382979.383040.

P. Cao and C. Liu. Maintaining Strong Cache Consistency in the World Wide Web. IEEE

Transactions on Computers, 47(4):445–457, 1998. ISSN 0018-9340. doi: http://dx.doi.

org/10.1109/12.675713.

S. J. Carrière and R. Kazman. WebQuery: Searching and Visualizing the Web through

Connectivity. Computer Networks, 29(8-13):1257–1267, 1997. doi: http://dx.doi.org/10.

1016/S0169-7552(97)00062-7.

O. S. F. Carvalho and G. Roucairol. On the Distribution of an Assertion. In PODC ’82:

Proceedings of the First ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, pages 121–131, Ottawa, Canada, Aug. 18–20 1982. ACM Press, New York,

New York, USA. ISBN 0-89791-081-8. doi: http://doi.acm.org/10.1145/800220.806689.

BIBLIOGRAPHY 217

C. Castillo. Effective Web Crawling. PhD thesis, University of Chile, Nov. 2004.

V. Cate. Alex – A Global File System. In Proceedings of the 1992 USENIX File System

Workshop, pages 1–11, Ann Arbor, Michigan, USA, May 21–22 1992. URL http://citeseer.

ist.psu.edu/cate92alex.html.

S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan-

Kauffman, 2002. ISBN 1-55860-754-4. URL http://www.cse.iitb.ac.in/∼soumen/

mining-the-web/.

S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and J. Kleinberg. Au-

tomatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text.

In P. H. Enslow Jr. and A. Ellis, editors, WWW7: Proceedings of the Seventh Inter-

national Conference on World Wide Web, pages 65–74, Brisbane, Australia, Apr. 14–

18 1998. Elsevier Science Publishers B. V., Amsterdam, The Netherlands. doi: http:

//dx.doi.org/10.1016/S0169-7552(98)00087-7.

S. Chakrabarti, M. V. D. Berg, and B. Dom. Focused Crawling: A New Approach to Topic-

Specific Web Resource Discovery. Computer Networks, 31(11–16):1623–1640, 1999. ISSN

1389-1286. URL http://citeseer.ist.psu.edu/chakrabarti99focused.html.

S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated Focused Crawling through

Online Relevance Feedback. In WWW ’02: Proceedings of the Eleventh International

Conference on World Wide Web, pages 148–159, Honolulu, Hawaii, USA, May 7–11 2002.

ACM Press, New York, New York, USA. ISBN 1-58113-449-5. doi: http://doi.acm.org/

10.1145/511446.511466.

A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell. A

Hierarchical Internet Object Cache. In USENIX Annual Technical Conference, pages

153–164, San Diego, California, USA, Jan. 22–26 1996. USENIX Association. URL

http://citeseer.ist.psu.edu/chankhunthod95hierarchical.html.

M. Chau and H. Chen. Comparison of Three Vertical Search Spiders. IEEE Computer, 36

(5):56–62, 2003. URL http://computer.org/computer/co2003/r5056abs.htm.

BIBLIOGRAPHY 218

S. S. Chawathe and H. Garćıa-Molina. Meaningful Change Detection in Structured Data. In

J. Peckham, editor, SIGMOD ’97, Proceedings ACM SIGMOD International Conference

on Management of Data, pages 26–37, Tucson, Arizona, USA, May 13–15 1997. ACM

Press, New York, New York, USA. ISBN 0-89791-911-4. doi: http://doi.acm.org/10.1145/

253260.253266.

K.-J. Chen and S.-H. Liu. Word Identification for Mandarin Chinese Sentences. In COLING

1992, Proceedings of the Fourteenth International Conference on Computational Linguis-

tics, pages 101–107, Nantes, France, Aug. 23–28 1992. Association for Computational Lin-

guistics, Morristown, New Jersey, USA. URL http://acl.ldc.upenn.edu/C/C92/C92-1019.

pdf.

Y.-Y. Chen, Q. Gan, and T. Suel. I/O-Efficient Techniques for Computing PageRank. In

CIKM ’02: Proceedings of the Eleventh International Conference on Information and

Knowledge Management, pages 549–557, McLean, Virginia, USA, Nov. 4–9 2002. ACM

Press, New York, New York, USA. ISBN 1-58113-492-4. doi: http://doi.acm.org/10.1145/

584792.584882.

J. Cho. Crawling the Web: Discovery and Maintenance of Large-Scale Web Data. PhD

thesis, Stanford University, 2001. URL http://citeseer.ist.psu.edu/cho01crawling.html.

J. Cho and H. Garćıa-Molina. Synchronizing a Database to Improve Freshness. In SIGMOD

’00: Proceedings of the 2000 ACM SIGMOD International Conference on Management of

Data, pages 117–128, Dallas, Texas, USA, 2000a. ACM Press, New York, New York, USA.

ISBN 1-58113-217-4. doi: http://doi.acm.org/10.1145/342009.335391.

J. Cho and H. Garćıa-Molina. Estimating Frequency of Change. Technical report, Stanford

University, Computer Science Department, Nov. 2000b.

J. Cho and H. Garćıa-Molina. The Evolution of the Web and Implications for an Incremental

Crawler. In VLDB ’00: Proceedings of the Twenty Sixth International Conference on Very

Large Data Bases, pages 200–209, Cairo, Egypt, Sept. 10–14 2000c. Morgan Kaufmann

Publishers Inc., San Francisco, California, USA. ISBN 1-55860-715-3.

J. Cho and H. Garćıa-Molina. Parallel Crawlers. In Proceedings of the Eleventh International

Conference on World Wide Web, pages 124–135, Honolulu, Hawaii, USA, May 7–11 2002.

BIBLIOGRAPHY 219

ACM Press, New York, New York, USA. ISBN 1-58113-449-5. doi: http://doi.acm.org/

10.1145/511446.511464.

J. Cho and H. Garćıa-Molina. Estimating Frequency of Change. ACM Transactions on

Internet Technology (TOIT), 3(3):256–290, 2003a. ISSN 1533-5399. doi: http://doi.acm.

org/10.1145/857166.857170.

J. Cho and H. Garćıa-Molina. Effective Page Refresh Policies for Web Crawlers. ACM

Transactions on Database Systems (TODS), 28(4):390–426, 2003b. ISSN 0362-5915. doi:

http://doi.cm.org/10.1145/958942.958945.

J. Cho and A. Ntoulas. Effective Change Detection Using Sampling. In VLDB 2002, Proceed-

ings of Twenty Eighth International Conference on Very Large Data Bases, pages 514–525,

Hong Kong, China, Aug. 2002. Morgan Kaufmann. URL http://www.vldb.org/conf/2002/

S15P01.pdf.

J. Cho, H. Garćıa-Molina, and L. Page. Efficient Crawling through URL Ordering. Computer

Networks and ISDN Systems, 30(1–7):161–172, 1998. URL http://citeseer.ist.psu.edu/

cho98efficient.html.

J. Cho, N. Shivakumar, and H. Garćıa-Molina. Finding Replicated Web Collections. In

SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD International Conference on Man-

agement of Data, pages 355–366, Dallas, Texas, USA, 2000. ACM Press, New York, New

York, USA. ISBN 1-58113-217-4. doi: http://doi.acm.org/10.1145/342009.335429.

E. G. Coffman, Z. Liu, and R. R. Weber. Optimal Robot Scheduling for Web Search Engines.

Journal of Scheduling, 1:15–29, 1998.

Comscore, Mar. 2004. URL http://www.comscore.com/press/release.asp?press=458.

Corporate Adobe Systems Inc. PDF Reference, Dec. 1993. URL http://partners.adobe.com/

public/developer/pdf/index reference.html.

Corporate Adobe Systems Inc. PostScript Language Reference. Addison-Wesley Longman

Publishing Co. Inc., Boston, Massachusetts, USA, third edition, 1999. ISBN 0-201-37922-8.

URL http://www.adobe.com/products/postscript/pdfs/PLRM.pdf.

BIBLIOGRAPHY 220

N. Craswell, D. Hawking, and S. Robertson. Effective Site Finding using Link Anchor In-

formation. In SIGIR ’01: Proceedings of the Twenty Fourth Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 250–257,

New Orleans, Louisiana, USA, Sept. 9–13 2001. ACM Press, New York, New York, USA.

ISBN 1-58113-331-6. doi: http://doi.acm.org/10.1145/383952.383999.

A. Czumaj, I. Finch, L. Gasieniec, A. Gibbons, P. Leng, W. Rytter, and M. Zito. Efficient

Web Searching using Temporal Factors. Theoretical Computer Science, 262(1–2):569–582,

2001. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(00)00366-2.

A. S. da Silva, E. A. Veloso, P. B. Golghe, B. Ribeiro-Neto, A. H. F. Laender, and N. Ziviani.

CoBWeb: A Crawler for the Brazilian Web. In SPIRE ’99: Proceedings of the String Pro-

cessing and Information Retrieval Symposium & International Workshop on Groupware,

page 184. IEEE Computer Society, Washington DC, Washington, USA, 1999. ISBN 0-

7695-0268-7.

M. Dasen and E. Wilde. Keeping Web Indices Up-To-Date. In Poster Proceedings of the

Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1–5

2001. ACM Press, New York, New York, USA. URL http://www10.org/cdrom/posters/

1132.pdf.

DASL. DAV Searching and Locating Protocol, Apr. 2000. URL http://www.webdav.org/

dasl/.

B. D. Davison. Topical Locality in the Web. In N. J. Belkin, P. Ingwersen, and M. K.

Leong, editors, SIGIR ’00: Proceedings of the Twenty Third Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 272–

279, Athens, Greece, July 24–28 2000. ACM Press, New York, New York, USA. ISBN

1-58113-226-3. doi: http://doi.acm.org/10.1145/345508.345597.

P. M. E. De Bra and R. D. J. Post. Information Retrieval in the World-Wide Web: Making

Client-Based Searching Feasible. Computer Networks and ISDN Systems, 27(2):183–192,

1994. URL http://citeseer.ist.psu.edu/99604.html.

P. J. Deutsch. Original Archie Announcement, 1990. URL http://groups.google.com/group/

comp.archives/msg/a77343f9175b24c3?output=gplain.

BIBLIOGRAPHY 221

F. Diaz and R. Jones. Using Temporal Profiles of Queries for Precision Prediction. In SIGIR

’04: Proceedings of the Twenty Seventh Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 18–24, Sheffield, United

Kingdom, 2004. ACM Press, New York, New York, USA. ISBN 1-58113-881-4. doi:

http://doi.acm.org/10.1145/1008992.1008998.

M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused Crawling using

Context Graphs. In VLDB ’00: Proceedings of the Twenty Sixth International Confer-

ence on Very Large Data Bases, pages 527–534, Cairo, Egypt, Sept. 10–14 2000. Morgan

Kaufmann Publishers Inc., San Francisco, California, USA. ISBN 1-55860-715-3. URL

http://citeseer.ist.psu.edu/diligenti00focused.html.

M. Diligenti, M. Gori, and M. Maggini. A Unified Probabilistic Framework for Web Page

Scoring Systems. IEEE Transactions on Knowledge and Data Engineering, 16(1):4–16,

2004. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.2004.1264818.

S. Dill, R. Kumar, K. S. Mccurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins. Self-

Similarity in the Web. ACM Transactions on Internet Technology (TOIT), 2(3):205–223,

Aug. 2002. ISSN 1533-5399. doi: http://doi.acm.org/10.1145/572326.572328.

DMOZ. The Open Directory Project, Mar. 2008. URL http://www.dmoz.org/.

Dogpile, Mar. 2008. URL http://www.dogpile.com/.

F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul. Rate of Change and Other

Metrics: A Live Study of the World Wide Web. In USENIX Symposium on Internet

Technologies and Systems, Dec. 1997. URL http://citeseer.ist.psu.edu/douglis97rate.html.

J. Edwards, K. S. McCurley, and J. A. Tomlin. An Adaptive Model for Optimizing Per-

formance of an Incremental Web Crawler. In WWW ’01: Proceedings of the Tenth In-

ternational World Wide Web Conference, pages 106–113, Hong Kong, China, May 1–

5 2001. ACM Press, New York, New York, USA. ISBN 1-58113-348-0. doi: http:

//doi.acm.org/10.1145/371920.371960.

BIBLIOGRAPHY 222

D. Eichmann. The RBSE Spider - Balancing Effective Search Against Web Load. Computer

Networks and ISDN Systems, May 1994. URL http://citeseer.ist.psu.edu/eichmann94rbse.

html.

N. Eiron and K. S. McCurley. Untangling compound documents on the web. In HYPERTEXT

’03: Proceedings of the Fourteenth ACM Conference on Hypertext and Hypermedia, pages

85–94, Nottingham, United Kingdom, Aug. 26–30 2003a. ACM Press, New York, New

York, USA. ISBN 1-58113-704-4. doi: http://doi.acm.org/10.1145/900051.900070.

N. Eiron and K. S. McCurley. Locality, Hierarchy, and Bidirectionality in the Web. In

Workshop on Algorithms and Models for the Web Graph, Budapest, Hungary, May 20

2003b. URL http://citeseer.ist.psu.edu/eiron03locality.html.

N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking the Web Frontier. In S. I. Feldman,

M. Uretsky, M. Najork, and C. E. Wills, editors, WWW ’04: Proceedings of the Thirteenth

International Conference on World Wide Web, pages 309–318, New York, New York, USA,

May 17–20 2004. ACM Press, New York, New York, USA. ISBN 1-58113-844-X. doi:

http://doi.acm.org/10.1145/988672.988714.

A. Emtage and P. Deutsch. Archie: An Electronic Directory Service for the Internet. In Pro-

ceedings of the Winter 1992 USENIX Conference, pages 93–110, San Francisco, California,

USA, 1991.

Excite, Mar. 2008. URL http://www.excite.com/.

R. Fagin, R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin, and D. P.

Williamson. Searching the Workplace Web. In WWW ’03: Proceedings of the Twelfth In-

ternational Conference on World Wide Web, pages 366–375, Budapest, Hungary, May 20–

24 2003a. ACM Press, New York, New York, USA. ISBN 1-58113-680-3. doi: http:

//doi.acm.org/10.1145/775152.775204.

R. Fagin, R. Kumar, and D. Sivakumar. Comparing Top k Lists. In SODA ’03: Proceedings

of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 28–36.

Society for Industrial and Applied Mathematics, Philadelphia, PA, Jan. 12–14 2003b. ISBN

0-89871-538-5.

BIBLIOGRAPHY 223

D. Fetterly, M. Manasse, and M. Najork. On the Evolution of Clusters of Near-Duplicate

Web Pages. In LA-WEB ’03: Proceedings of the First Conference on Latin American

Web Congress, Empowering Our Web, pages 37–45, Sanitago, Chile, Nov. 10–12 2003a.

IEEE Computer Society, Washington DC, Washington, USA. ISBN 0-7695-2058-8. URL

http://csdl.computer.org/comp/proceedings/la-web/2003/2058/00/20580037abs.htm.

D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener. A Large-Scale Study of the Evolution

of Web Pages. In WWW ’03: Proceedings of the Twelfth International Conference on World

Wide Web, pages 669–678, Budapest, Hungary, May 20–24 2003b. ACM Press, New York,

New York, USA. ISBN 1-58113-680-3. doi: http://doi.acm.org/10.1145/775152.775246.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext Transfer Protocol: HTTP/1.1. Network Working Group: RFC 2616, June

1999a. URL http://www.w3.org/Protocols/rfc2616/rfc2616.html.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext Transfer Protocol: HTTP/1.1 – Section 14.21 Expires. Network Working Group:

RFC 2616, June 1999b. URL http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#

sec14.21.

Fireball, Mar. 2008. URL http://www.fireball.de/.

S. Flesca and E. Masciari. Efficient and Effective Web Change Detection. Data & Knowl-

edge Engineering, 46(2):203–224, 2003. ISSN 0169-023X. doi: http://dx.doi.org/10.1016/

S0169-023X(02)00210-0.

W. B. Frakes. Stemming Algorithms. In W. B. Frakes and R. A. Baeza-Yates, editors,

Information Retrieval: Data Structures & Algorithms, pages 131–160. Prentice-Hall, 1992.

ISBN 0-13-463837-9.

N. Fuhr, M. Lalmas, S. Malik, and Z. Szlavik, editors. Advances in XML Information

Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Re-

trieval, INEX 2004, volume 3493 of Lecture Notes in Computer Science, Dagstuhl Cas-

tle, Germany, Dec. 6–8 2004. Springer-Verlag GmbH. ISBN 978-3-540-26166-7. URL

http://www.springeronline.com/3-540-26166-4.

BIBLIOGRAPHY 224

S. Garcia, H. E. Williams, and A. Cannane. Access-Ordered Indexes. In V. Estivill-

Castro, editor, ACSC ’04: Proceedings of the Twenty-Seventh Australasian Computer

Science Conference, volume 26 of Conferences in Research and Practice in Information

Technology, pages 7–14, Dunedin, New Zealand, Jan. 2004. Australian Computer Society

Inc., Darlinghurst, Australia. ISBN 1-920682-05-8. URL http://crpit.com/confpapers/

CRPITV26Garcia.ps.

M. Ghodsi, O. Hassanzadeh, S. Kamali, and M. Monenizadeh. A Hybrid Approach for Re-

freshing Web Page Repositories. In L. Zhou, B. C. Ooi, and X. Meng, editors, DASFAA

2005: Proceedings of the Tenth International Conference on Database Systems for Ad-

vanced Applications, volume 3453 of Lecture Notes in Computer Science, pages 588–593,

Beijing, China, Apr. 2005. Springer. ISBN 3-540-25334-3.

GNU C compiler, Sept. 2006. URL http://gcc.gnu.org/.

R. A. Golding and D. D. E. Long. Modeling Replica Divergence in a Weak-Consistency

Protocol for Global Scale Distribution Data Bases. Technical Report UCSC-CRL-93-09,

University of California, Santa Cruz, California, USA, 1993. URL http://citeseer.ifi.unizh.

ch/golding93modeling.html.

Google, Mar. 2008. URL http://www.google.com/.

Google. Google’s New GoogleScout Feature Expands Scope of Search on the Internet, Sept.

1999. URL http://www.google.com/press/pressrel/pressrelease4.html.

Google Zeitgeist, Mar. 2008. URL http://www.google.com/intl/en/press/zeitgeist.html.

Googlerank.com. Google Dance: The Google’s Update, 2005. URL http://www.googlerank.

com/ranking/Ebook/dance.html.

L. Gravano, K. C.-C. Chang, H. Garćıa-Molina, and A. Paepcke. STARTS: Stanford Proposal

for Internet Meta-Searching. In J. Peckham, editor, SIGMOD ’97: Proceedings of the 1997

ACM SIGMOD International Conference on Management of Data, pages 207–218, Tucson,

Arizona, USA, May 13–15 1997. ACM Press, New York, New York, USA. ISBN 0-89791-

911-4. doi: http://doi.acm.org/10.1145/253260.253299.

BIBLIOGRAPHY 225

M. K. Gray. Web Growth Summary, 1996a. URL http://www.mit.edu/∼mkgray/net/

web-growth-summary.html.

M. K. Gray. World Wide Web Wanderer, 1996b. URL http://www.mit.edu/people/mkgray/

net/.

D. A. Grossman and O. Frieder. Information Retrieval: Algorithms and Heuristics. Kluwer

Academic Publishers, Norwell, Massachusetts, USA, 1998. ISBN 0792382714.

A. Gulli and A. Signorini. The Indexable Web is more than 11.5 Billion Pages. In A. Ellis

and T. Hagino, editors, WWW ’05: Special Interest Tracks and Posters of the Fourteenth

International Conference on World Wide Web, pages 902–903, Chiba, Japan, May 10–14

2005. ACM Press, New York, New York, USA. ISBN 1-59593-051-5. doi: http://doi.acm.

org/10.1145/1062745.1062789.

V. Gupta and R. Campbell. Internet Search Engine Freshness by Web Server Help. In

SAINT ’01: Proceedings of the 2001 Symposium on Applications and the Internet (SAINT

2001), page 113, San Diego, California, USA, Jan. 8–12 2001. IEEE Computer Society,

Washington DC, Washington, USA. ISBN 0-7695-0942-8.

J. Gwertzman and M. I. Seltzer. World Wide Web Cache Consistency. In Proceed-

ings of the USENIX Annual Technical Conference, pages 141–152, San Diego, Cali-

fornia, USA, Jan. 22–26 1996. USENIX Association. URL http://citeseer.ist.psu.edu/

chankhunthod95hierarchical.html.

Y. Hafri and C. Djeraba. High Performance Crawling System. In MIR ’04: Proceedings

of the Sixth ACM SIGMM International Workshop on Multimedia Information Retrieval,

pages 299–306, New York, New York, USA, 2004. ACM Press, New York, New York, USA.

ISBN 1-58113-940-3. doi: http://doi.acm.org/10.1145/1026711.1026760.

H. Hahn and R. Stout. The Gopher, Veronica, and Jughead. In The Internet Complete

Reference, pages 429–457. Osborne McGraw-Hill, 1994.

D. Harman. Overview of the Second Text REtrieval Conference (TREC-2). Information

Processing and Management, 31(3):271–289, May/June 1995. doi: http://dx.doi.org/10.

1016/0306-4573(94)00047-7.

BIBLIOGRAPHY 226

J. Harris. Mining the Internet: Networked Information Location Tools: Gophers, Veronica,

Archie, and Jughead. Computing Teacher, 21(1):16–19, Aug. 1 1993. ISSN 0278-9175.

T. H. Haveliwala. Topic-Sensitive PageRank. In WWW ’02: Proceedings of the Eleventh

International Conference on World Wide Web, pages 517–526, Honolulu, Hawaii, USA,

May 7–11 2002. ACM Press, New York, New York, USA. ISBN 1-58113-449-5. doi:

http://doi.acm.org/10.1145/511446.511513.

T. H. Haveliwala. Efficient Computation of PageRank. Technical Report 1999-31, Com-

puter Science Department, Stanford University, 1999. URL http://citeseer.ist.psu.edu/

haveliwala99efficient.html.

D. Hawking. Challenges in Enterprise Search. In CRPIT ’04: Proceedings of the Fifteenth

Conference on Australasian Database, pages 15–24, Dunedin, New Zealand, 2004. Aus-

tralian Computer Society Inc., Darlinghurst, Australia.

D. Hawking and N. Craswell. Overview of the TREC-2001 Web Track. In E. M. Voorhees

and D. K. Harman, editors, Proceedings of the Tenth Text REtrieval Conference TREC-

2001, NIST Special Publication 500-250, pages 61–67, Gaithersburg, Maryland, USA, 2002.

National Institute of Standards and Technology (NIST), Washington DC, Washington,

USA.

D. Hawking and P. Thomas. Server Selection Methods in Hybrid Portal Search. In

R. A. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait, editors, SIGIR

’05: Proceedings of the Twenty-Eighth Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 75–82, Salvador, Brazil,

Aug. 15–19 2005. ACM Press, New York, New York, USA. ISBN 1-59593-034-5. doi:

http://doi.acm.org/10.1145/1076034.1076050.

D. Hawking, N. Craswell, and P. B. Thistlewaite. Overview of TREC-7 Very Large Collection

Track. In TREC-7, NIST Special Publication 500-242, pages 40–52, Gaithersburg, Mary-

land, USA, 1998. National Institute of Standards and Technology (NIST), Washington

DC, Washington, USA.

P. L. Hégaret, R. Whitmer, and L. Wood. W3C Document Object Model (DOM), June 12

2005. URL http://www.w3.org/DOM/.

BIBLIOGRAPHY 227

M. R. Henzinger. Hyperlink Analysis for the Web. IEEE Internet Computing, 5(1):45–50,

2001. ISSN 1089-7801. doi: http://dx.doi.org/10.1109/4236.895141. URL http://www.

computer.org/internet/ic2001/w1045abs.htm.

A. Heydon and M. Najork. Mercator: A Scalable, Extensible Web Crawler. World Wide Web,

2(4):219–229, 1999. ISSN 1386-145X. doi: http://dx.doi.org/10.1023/A:1019213109274.

URL http://citeseer.ist.psu.edu/heydon99mercator.html.

T. C. Hoad and J. Zobel. Methods for Identifying Versioned and Plagiarized Documents.

Journal of the American Society for Information Science and Technology (JASIST), 54

(3):203–215, 2003. ISSN 1532-2882. doi: http://dx.doi.org/10.1002/asi.10170.

B. A. Huberman and L. A. Adamic. Evolutionary Dynamics of the World Wide Web.

Nature, 401:131, 1999. URL http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:

cond-mat/9901071.

Infoseek, Mar. 2008. URL http://www.infoseek.co.jp/.

Inktomi, Mar. 2008. URL http://www.inktomi.com/.

Internet Archive, Sept. 2006. URL http://web.archive.org/.

Internet Archive. Internet Archive Wayback Machine, Mar. 2008. URL http://web.archive.

org/web/*/http://www.rmit.edu.au.

iProspect. iProspect Search Engine User Behavior Study, Apr. 2006. URL http://www.

iprospect.com/premiumPDFs/WhitePaper 2006 SearchEngineUserBehavior.pdf.

ISC. Internet Software Consortium, Internet Domain Survey, 2006. URL http://www.ics.org.

B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real Life Information Retrieval: A

Study of User Queries on the Web. SIGIR Forum, 32(1):5–17, 1998. ISSN 0163-5840. doi:

http://doi.acm.org/10.1145/281250.281253.

T. Joachims. Optimizing Search Engines using Clickthrough Data. In Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, pages 133–142, Edmonton, Canada, July 23–26 2002. ACM Press. ISBN 1-58113-567-

X. doi: http://doi.acm.org/10.1145/775047.775067.

BIBLIOGRAPHY 228

K. S. Jones, S. Walker, and S. E. Robertson. A Probabilistic Model of Information

Retrieval: Development and Comparative Experiments - Part 1 and 2. Information

Processing and Management, 36(6):779–840, 2000. URL http://citeseer.ist.psu.edu/

sparckjones98probabilistic.html.

R. Jones. Jughead: Jonzy’s Universal Gopher Hierarchy Excavation And Display. unpub-

lished, Apr. 1993.

S. Kamvar, T. Haveliwala, and G. Golub. Adaptive Methods for the Computation of Page-

rank. Technical report, Computer Science Department, Stanford University, Apr. 2003a.

URL http://citeseer.ist.psu.edu/kamvar03adaptive.html.

S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation

Methods for Accelerating PageRank Computations. In WWW ’03: Proceedings of the

Twelfth International Conference on World Wide Web, pages 261–270, Budapest, Hun-

gary, May 20–24 2003b. ACM Press, New York, New York, USA. ISBN 1-58113-680-3.

doi: http://doi.acm.org/10.1145/775152.775190.

M. G. Kendall and J. D. Gibbons. Rank Correlation Methods. Oxford University Press, New

York, New York, USA, fifth edition, 1990. ISBN 0195208374.

J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM,

46(5):604–632, 1999. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/324133.324140.

W. Koehler. Web Page Change and Persistence - A Four-Year Longitudinal Study. Journal

of the American Society for Information Science and Technology (JASIST), 53(2):162–171,

2002. ISSN 1532-2882. doi: http://dx.doi.org/10.1002/asi.10018.

W. Koehler. A Longitudinal Study of Web Pages Continued: A Consideration of Document

Persistence. Information Research, 9(2), Jan. 2004.

M. Koster. Guidelines for Robots Writers, 1993. URL http://www.robotstxt.org/wc/

guidelines.html.

M. Koster. ALIWEB - Archie-Like Indexing in the WEB. Computer Networks and

ISDN Systems, 27(2):175–182, 1994a. ISSN 0169-7552. doi: http://dx.doi.org/10.1016/

0169-7552(94)90131-7.

BIBLIOGRAPHY 229

M. Koster. Robots in the Web: Threat or Treat? ConneXions, 9(4), Apr. 1995. URL

http://www.robotstxt.org/wc/threat-or-treat.html.

M. Koster. A Standard for Robot Exclusion, 1994b. URL http://www.robotstxt.org/wc/

norobots.html. http://www.robotstxt.org/wc/exclusion.html.

W. Kraaij, P. Over, and A. F. Smeaton. TREVID 2006 - An Introduction. In Proceed-

ings of the TREC Video Retrieval Evaluation (TRECVID) Workshop 2006, Gaithersburg,

Maryland, USA, Nov. 13–16 2006. National Institute of Standards and Technology (NIST),

Washington DC, Washington, USA. URL http://www-nlpir.nist.gov/projects/tvpubs/tv.

pubs.org.html.

N. Krishnakumar and A. J. Bernstein. Bounded Ignorance in Replicated Systems. In PODS

’91: Proceedings of the Tenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 63–74, Denver, Colorado, USA, May 29–31 1991. ACM Press,

New York, New York, USA. ISBN 0-89791-430-9. doi: http://doi.acm.org/10.1145/113413.

113419.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for Emerg-

ing Cyber-Communities. In P. H. Enslow Jr., editor, WWW ’99: Proceeding of the

Eighth International Conference on World Wide Web, pages 1481–1493, Toronto, Canada,

May 11–14 1999. Elsevier North-Holland Inc., New York, New York, USA. doi: http:

//dx.doi.org/10.1016/S1389-1286(99)00040-7.

S. Lawrence and C. L. Giles. Searching the World Wide Web. Science, 280(5360):98–100,

1998. URL http://citeseer.ist.psu.edu/lawrence98searching.html.

S. Lawrence and C. L. Giles. Accessibility of Information on the Web. Intelligence, 11(1):

32–39, 2000. ISSN 1523-8822. doi: http://doi.acm.org/10.1145/333175.333181.

R. Lempel and S. Moran. Predictive Caching and Prefetching of Query Results in Search

Engines. In WWW ’03: Proceedings of the Twelfth International Conference on World

Wide Web, pages 19–28, Budapest, Hungary, May 20–24 2003. ACM Press, New York,

New York, USA. ISBN 1-58113-680-3. doi: http://doi.acm.org/10.1145/775152.775156.

BIBLIOGRAPHY 230

N. Lester. Efficient Index Maintenance for Text Databases. PhD thesis, RMIT University,

Aug. 2006.

D. Lewandowski. Date Restricted Queries in Web Search Engines. Online Information

Review, 28(6):420–427, June 1 2004. ISSN 1468-4527. URL http://www.citebase.org/

abstract?id=oai:eprints.rclis.org:2216.

D. Lewandowski, H. Wahlig, and G. Meyer-Bautor. The Freshness of Web Search Engine

Databases. Journal of Information Science, 32(2):131–148, 2006. ISSN 0165-5515. doi:

http://dx.doi.org/10.1177/0165551506062326.

L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. C. Agarwal. Characterizing Web

Document Change. In X. S. Wang, G. Yu, and H. Lu, editors, WAIM ’01: Proceedings of

the Second International Conference on Advances in Web-Age Information Management,

volume 2118 of Lecture Notes in Computer Science, pages 133–144, Xi’an, China, July 9–

11 2001. Springer-Verlag, London, United Kingdom. ISBN 3-540-42298-6. URL http:

//link.springer.de/link/service/series/0558/bibs/2118/21180133.htm.

K.-I. Lin and H. Chen. Automatic Information Discovery from the “Invisible Web”. In

2002 International Symposium on Information Technology: Coding and Computing (ITCC

2002), pages 332–337, Las Vegas, Nevada, USA, Apr. 8–10 2002. IEEE Computer Society,

Washington DC, Washington, USA. ISBN 0-7695-1506-1. URL http://csdl.computer.org/

comp/proceedings/itcc/2002/1506/00/15060332abs.htm.

L. Liu, C. Pu, and W. Tang. WebCQ: Detecting and Delivering Information Changes on the

Web. In CIKM ’00: Proceedings of the Ninth International Conference on Information and

Knowledge Management, pages 512–519, McLean, Virginia, USA, 2000. ACM Press, New

York, New York, USA. ISBN 1-58113-320-0. doi: http://doi.acm.org/10.1145/354756.

354860.

H. P. Luhn. A Statistical Approach to Mechanized Encoding and Search-

ing of Literary Information. IBM Journal of Research and Development, 1

(4):309–317, 1957. URL http://domino.research.ibm.com/tchjr/journalindex.nsf/0/

ff069b3bf042cc5e85256bfa00683d19?OpenDocument.

BIBLIOGRAPHY 231

Lycos, Mar. 2008. URL http://www.lycos.com/.

G. S. Machovec. Veronica: A Gopher Navigational Tool on the Internet. Information Intel-

ligence, Online Libraries, and Microcomputers, 11(10):1–4, Oct. 1 1993. ISSN 0737-7770.

C. Malcolm and G. Armitage. Bandwidth Efficient Web Object Change Interval Estimation.

In Australian Telecommunications Networks & Applications Conference 2003 (ATNAC

2003), Melbourne, Australia, Dec. 2003. URL http://citeseer.ist.psu.edu/666170.html.

J. Markwell and D. W. Brooks. Link Rot Limits the Usefulness of Web-Based Educational

Material in Biochemistry and Molecular Biology. Biochemistry and Molecular Biology

Education, 31:69–72, 2003.

O. A. McBryan. GENVL and WWWW: Tools for Taming the Web. In O. Nierstrasz, editor,

Proceedings of the First International World Wide Web Conference, Geneva, Switzerland,

May 25–27 1994.

A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the Construction of

Internet Portals with Machine Learning. Information Retrieval, 3(2):127–163, 2000. ISSN

1386-4564. doi: http://dx.doi.org/10.1023/A:1009953814988.

F. McCown, X. Liu, M. L. Nelson, and M. Zubair. Search Engine Coverage of the OAI-

PMH Corpus. IEEE Internet Computing, 10(2):66–73, 2006. ISSN 1089-7801. doi: http:

//dx.doi.org/10.1109/MIC.2006.41.

J. McDonnell, W. Koehler, and B. Carroll. Cataloging Challenges in an Area Studies Virtual

Library Catalog (ASVLC): Results of a Case Study. Journal of Internet Cataloging, 2(2):

15–42, 2000.

G. L. McLearn. Autonomous Cooperating Web Crawlers. Master’s thesis, University of

Waterloo, 2002. URL http://citeseer.nj.nec.com/mclearn02autonomous.html.

F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz. Evaluating Topic-Driven Web Crawlers.

In SIGIR ’01: Proceedings of the Twenty-Fourth Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, pages 241–249, New Or-

leans, Louisiana, USA, Sept. 9–13 2001. ACM Press, New York, New York, USA. ISBN

1-58113-331-6. doi: http://doi.acm.org/10.1145/383952.383995.

BIBLIOGRAPHY 232

F. Menczer, G. Pant, and P. Srinivasan. Topical Web Crawlers: Evaluating Adaptive Al-

gorithms. ACM Transactions on Internet Technology (TOIT), 4(4):378–419, 2004. ISSN

1533-5399. doi: http://doi.acm.org/10.1145/1031114.1031117.

M. Mikhailov and C. Wills. Exploiting Object Relationships for Deterministic Web Object

Management. In Proceedings of the Seventh International Workshop on Web Content

Caching and Distribution, Boulder, Colorado, USA, Aug. 14–16 2002. URL http://citeseer.

ist.psu.edu/mikhailov02exploiting.html.

M. Mikhailov and C. E. Wills. Evaluating a New Approach to Strong Web Cache Consis-

tency with Snapshots of Collected Content. In WWW ’03: Proceedings of the Twelfth

International Conference on World Wide Web, pages 599–608, Budapest, Hungary,

May 20–24 2003. ACM Press, New York, New York, USA. ISBN 1-58113-680-3. doi:

http://doi.acm.org/10.1145/775152.775237.

R. C. Miller and K. Bharat. SPHINX: A Framework for Creating Personal, Site-Specific

Web Crawlers. In P. H. Enslow Jr. and A. Ellis, editors, WWW7: Proceedings of the Sev-

enth International Conference on World Wide Web, pages 119–130, Brisbane, Australia,

Apr. 14–18 1998. Elsevier Science Publishers B. V., Amsterdam, The Netherlands. doi:

http://dx.doi.org/10.1016/S0169-7552(98)00064-6.

A. Moffat, W. Webber, J. Zobel, and R. A. Baeza-Yates. A Pipelined Architecture for

Distributed Text Query Evaluation. Information Retrieval, 10(3):205–231, June 2006.

ISSN 1386-4564. doi: http://dx.doi.org/10.1007/s10791-006-9014-4.

J. Mogul. Errors in Timestamp-Based HTTP Header Values. Technical Report 99/3, Compaq

Computer Corporation Western Research Laboratory, Dec. 1999. URL http://citeseer.ist.

psu.edu/mogul99errors.html.

MSN, Mar. 2008. URL http://www.msn.com/.

MySQL, Sept. 2006. URL http://www.mysql.com/.

M. Najork and J. L. Wiener. Breadth-First Crawling Yields High-Quality Pages. In WWW

’01: Proceedings of the Tenth International World Wide Web Conference, pages 114–118,

BIBLIOGRAPHY 233

Hong Kong, China, May 1–5 2001. ACM Press, New York, New York, USA. ISBN 1-

58113-348-0. URL http://citeseer.ist.psu.edu/najork01breadthfirst.html.

Netcraft. Netcraft Web Server Survey, 2006. URL http://www.netcraft.com/survey/.

Northern Light, Mar. 2008. URL http://www.northernlight.com/.

G. Notess. Search Engine Statistics: Freshness Showdown, May 17 2003. URL http://www.

searchengineshowdown.com/statistics/freshness.shtml.

A. Ntoulas, J. Cho, and C. Olston. What’s New on the Web? The Evolution of the Web from

a Search Engine Perspective. In S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills,

editors, WWW ’04: Proceedings of the Thirteenth International Conference on World Wide

Web, pages 1–12, New York, New York, USA, May 17–20 2004a. ACM Press, New York,

New York, USA. ISBN 1-58113-844-X. doi: http://doi.acm.org/10.1145/988672.988674.

A. Ntoulas, P. Zerfos, and J. Cho. Downloading Hidden Web Content. Technical report,

UCLA, 2004b.

A. Ntoulas, P. Zerfos, and J. Cho. Downloading Textual Hidden Web Content through

Keyword Queries. In M. Marlino, T. Sumner, and F. M. S. III, editors, ACM/IEEE

Joint Conference on Digital Libraries, JCDL 2005, pages 100–109, Denver, California,

USA, June 7–11 2005. ACM Press. ISBN 1-58113-876-8. doi: http://doi.acm.org/10.1145/

1065385.1065407.

C. Olston and J. Widom. Offering a Precision-Performance Tradeoff for Aggregation Queries

over Replicated Data. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,

G. Schlageter, and K.-Y. Whang, editors, VLDB 2000, Proceedings of Twenty Sixth Inter-

national Conference on Very Large Data Bases, pages 144–155, Cairo, Egypt, Sept. 10–14

2000. Morgan Kaufmann. ISBN 1-55860-715-3.

C. Olston and J. Widom. Best-Effort Cache Synchronization with Source Cooperation. In

M. J. Franklin, B. Moon, and A. Ailamaki, editors, SIGMOD ’02: Proceedings of the 2002

ACM SIGMOD International Conference on Management of Data, pages 73–84, Madison,

Wisconsin, USA, June 3–6 2002. ACM Press, New York, New York, USA. ISBN 1-58113-

497-5. doi: http://doi.acm.org/10.1145/564691.564701.

BIBLIOGRAPHY 234

V. N. Padmanabhan and L. Qiu. The Content and Access Dynamics of a Busy Web Site:

Findings and Implications. In SIGCOMM ’00: Proceedings of the Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer Communication, pages

111–123, Stockholm, Sweden, 2000. ACM Press, New York, New York, USA. ISBN 1-

58113-223-9. doi: http://doi.acm.org/10.1145/347059.347413.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing

Order to the Web. Technical report, Stanford Digital Library Technologies Project, 1998.

URL http://citeseer.ist.psu.edu/page98pagerank.html.

S. Pandey and C. Olston. User-Centric Web Crawling. In A. Ellis and T. Hagino, editors,

WWW ’05: Proceedings of the Fourteenth International Conference on World Wide Web,

pages 401–411, Chiba, Japan, May 10–14 2005. ACM Press, New York, New York, USA.

ISBN 1-59593-046-9. doi: http://doi.acm.org/10.1145/1060745.1060805.

B. Pinkerton. Finding What People Want: Experiences with the WebCrawler. In Proceedings

of the Second International World Wide Web Conference, Chicago, Illinois, USA, Oct.

1994.

P. Pirolli, J. Pitkow, and R. Rao. Silk from a Sows Ear: Extracting Usable Structures from

the Web. In M. J. Tauber, editor, CHI ’96: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 118–125, Vancouver, Canada, Apr. 13–18

1996. ACM Press, New York, New York, USA. ISBN 0-89791-777-4. doi: http://doi.acm.

org/10.1145/238386.238450.

J. E. Pitkow and P. Pirolli. Life, Death, and Lawfulness on the Electronic Frontier. In

S. Pemberton, editor, CHI ’97: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, pages 383–390, Atlanta, Georgia, USA, Mar. 22–27 1997. ACM

Press/Addison-Wesley, New York, New York, USA. ISBN 0-201-32229-3. doi: http://doi.

acm.org/10.1145/258549.258805.

V. Plachouras, I. Ounis, and G. Amati. A Utility-Oriented Hyperlink Analysis Model for

the Web. In LA-WEB ’03: Proceedings of the First Conference on Latin American Web

Congress, Empowering Our Web, pages 123–131, Santiago, Chile, Nov. 10–12 2003. IEEE

Computer Society, Washington DC, Washington, USA. ISBN 0-7695-2058-8.

BIBLIOGRAPHY 235

S. Podlipnig and L. Böszörményi. A Survey of Web Cache Replacement Strategies. ACM

Computing Surveys, 35(4):374–398, 2003. ISSN 0360-0300. doi: http://doi.acm.org/10.

1145/954339.954341.

J. M. Ponte and W. B. Croft. A Language Modeling Approach to Information Retrieval. In

SIGIR ’98: Proceedings of the Twenty First Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 275–281, Melbourne,

Australia, 1998. ACM Press, New York, New York, USA. ISBN 1-58113-015-5. doi:

http://doi.acm.org/10.1145/290941.291008.

M. F. Porter. An Algorithm for Suffix Stripping. Readings in Information Retrieval, pages

313–316, 1997.

M. Preda, S. Abiteboul, and G. Cobena. Adaptive On-Line Page Importance Computation.

In WWW ’03: Proceedings of the Twelfth International Conference on World Wide Web,

pages 280–290, Budapest, Hungary, May 20–24 2003. ACM Press, New York, New York,

USA. ISBN 1-58113-680-3. doi: http://doi.acm.org/10.1145/775152.775192.

C. Pu and A. Leff. Replica Control in Distributed Systems: An Asynchronous Approach.

In J. Clifford and R. King, editors, Proceedings of the 1991 ACM SIGMOD International

Conference on Management of Data, pages 377–386, Denver, Colorado, USA, May 29–31

1991. ACM Press. doi: http://doi.acm.org/10.1145/115790.115856.

S. Raghavan and H. Garćıa-Molina. Crawling the Hidden Web. In VLDB ’01: Proceedings of

the Twenty Seventh International Conference on Very Large Data Bases, pages 129–138.

Morgan Kaufmann Publishers Inc., San Francisco, California, USA, 2001. ISBN 1-55860-

804-4.

J. Rennie and A. McCallum. Using Reinforcement Learning to Spider the Web Efficiently.

In I. Bratko and S. Dzeroski, editors, ICML ’99: Proceedings of the Sixteenth International

Conference on Machine Learning, pages 335–343, Bled, Slovenia, June 27–30 1999. Morgan

Kaufmann Publishers Inc., San Francisco, California, USA. ISBN 1-55860-612-2.

K. M. Risvik and R. Michelsen. Search Engines and Web Dynamics. Computer Networks,

39:289–302, June 2002. URL http://citeseer.ist.psu.edu/risvik02search.html.

BIBLIOGRAPHY 236

R. Rivest. The MD5 Message-Digest Algorithm. Technical Report Internet RFC-1321, IETF,

Apr. 1992. URL http://www.ietf.org/rfc/rfc1321.txt.

S. E. Robertson and K. S. Jones. Relevance Weighting of Search Terms. Journal of the

American Society for Information Science, 27:129–146, 1976.

S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In The Eighth Text REtrieval

Conference (TREC-8), pages 151–162, Gaithersburg, Maryland, USA, Nov. 17–19 1999.

National Institute of Standards and Technology (NIST), Washington DC, Washington,

USA. URL http://trec.nist.gov/pubs/trec8/papers/okapi.pdf.

S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at

TREC-2. In D. Harman, editor, The Second Text REtrieval Conference (TREC-2), pages

21–34, Gaithersburg, Maryland, USA, 1993. National Institute of Standards and Technol-

ogy (NIST), Washington DC, Washington, USA. URL http://trec.nist.gov/pubs/trec2/

papers/ps/city.ps.

G. Salton. The SMART Retrieval System – Experiments in Automatic Document Processing.

Prentice Hall, Englewood Cliffs, New Jersey, USA, 1971.

G. Salton and C. Buckley. Term-Weighting Approaches in Automatic Text Retrieval. In-

formation Processing and Management, 24(5):513–523, 1988. doi: http://dx.doi.org/10.

1016/0306-4573(88)90021-0.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill

Inc., New York, New York, USA, 1986. ISBN 0070544840.

A. Schaale, C. Wulf-Mathies, and S. Lieberam-Schmidt. A New Approach to Relevancy

in Internet Searching - The “Vox Populi Algorithm”. ArXiv Computer Science e-prints,

Aug. 2003. URL http://adsabs.harvard.edu/cgi-bin/nph-bib query?bibcode=2003cs.......

.8039S&db key=PRE.

SEO Logic. Search Engine Optimization: Search Engine Marketing FAQ – Hidden Text,

Sept. 2006. URL http://seologic.com/faq/hidden-text.php.

SEO Today. Google: Search Technology for the Millennium, 2002. URL http://www.

seotoday.com/browse.php/category/articles/id/172/index.php.

BIBLIOGRAPHY 237

N. Shivakumar and H. Garćıa-Molina. SCAM: A Copy Detection Mechanism for Digital

Documents. In Proceedings of the Second International Conference in Theory and Practice

of Digital Libraries (DL ’95), Austin, Texas, USA, June 1995.

V. Shkapenyuk and T. Suel. Design and Implementation of a High-Performance Distributed

Web Crawler. In Proceedings of the Eighteenth International Conference on Data Engi-

neering (ICDE’02), pages 357–368. IEEE Computer Society, Washington DC, Washington,

USA, 2002. URL http://citeseer.ist.psu.edu/shkapenyuk02design.html.

M. Shokouhi and P. Chubak. Designing a Regional Crawler for Distributed and Centralized

Search Engines. In Proceedings of Tenth Australian World Wide Web Conference (Ausweb

04), Gold Coast, Australia, July 3–7 2004.

S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen. Replication for Web

Hosting Systems. ACM Computing Surveys, 36(3):291–334, 2004. ISSN 0360-0300. doi:

http://doi.acm.org/10.1145/1035570.1035573.

W. Sonnenreich and T. Macinta. Web Developer.com r Guide to Search Engines. John

Wiley & Sons, New York, New York, USA, 1998.

C. Spearman. The Proof and Measurement of Association Between Two Rings. American

Journal of Psychology, 15:72–101, 1904.

D. Spinellis. The Decay and Failures of Web References. Communications of the ACM

(CACM), 46(1):71–77, 2003. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/602421.

602422.

A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic. Searching the Web: The Public

and their Queries. Journal of the American Society for Information Science, 52(3):226–

234, 2001. ISSN 1532-2882. doi: http://dx.doi.org/10.1002/1097-4571(2000)9999:9999〈::

AID-ASI1591〉3.3.CO;2-I.

P. Srinivasan, G. Pant, and F. Menczer. A General Evaluation Framework for Topi-

cal Crawlers. Information Retrieval, 8(3):417–447, 2005. ISSN 1386-4564. doi: http:

//dx.doi.org/10.1007/s10791-005-6993-5.

BIBLIOGRAPHY 238

R. Srinivasan, C. Liang, and K. Ramamritham. Maintaining Temporal Coherency of Virtual

Data Warehouses. In RTSS ’98: Proceedings of the IEEE Real-Time Systems Symposium,

page 60. IEEE Computer Society, Washington DC, Washington, USA, 1998. ISBN 0-8186-

9212-X.

D. Sullivan. Search Engine Watch: Death of a Meta Tag, Oct. 1 2002. URL http:

//searchenginewatch.com/sereport/article.php/2165061.

D. Sullivan. Search Engine Watch, Sept. 2006a. URL http://searchenginewatch.com/.

D. Sullivan. Search Engine Watch: How Search Engines Rank Web Pages, July 31 2003a.

URL http://searchenginewatch.com/showPage.html?page=2167961.

D. Sullivan. Search Engine Watch: Searches Per Day, Apr. 20 2006b. URL http:

//searchenginewatch.com/reports/article.php/2156461.

D. Sullivan. Search Engine Watch: Where are they now? Search Engines we’ve Known &

Loved, Mar. 4 2003b. URL http://searchenginewatch.com/sereport/article.php/2175241.

R. Sundaresan, T. M. Kurç, M. Lauria, S. Parthasarathy, and J. H. Saltz. A Slacker Co-

herence Protocol for Pull-based Monitoring of On-line Data Sources. In CCGRID ’03:

Proceedings of the Third International Symposium on Cluster Computing and the Grid,

pages 250–257, Tokyo, Japan, May 12–15 2003. IEEE Computer Society, Washington DC,

Washington, USA. ISBN 0-7695-1919-9.

H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press,

Orlando, Florida, USA, third edition, 1998.

Teoma, Sept. 2004. URL http://www.teoma.com/.

A. Tombros and M. Sanderson. Advantages of Query Biased Summaries in Information

Retrieval. In SIGIR ’98: Proceedings of the Twenty-First Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 104–111,

Melbourne, Australia, 1998. ACM Press, New York, New York, USA. ISBN 1-58113-015-5.

doi: http://doi.acm.org/10.1145/290941.290947.

BIBLIOGRAPHY 239

J. A. Tomlin. A New Paradigm for Ranking Pages on the World Wide Web. In WWW ’03:

Proceedings of the Twelfth International Conference on World Wide Web, pages 350–355,

Budapest, Hungary, May 20–24 2003. ACM Press, New York, New York, USA. ISBN

1-58113-680-3. doi: http://doi.acm.org/10.1145/775152.775202.

T. Upstill, N. Craswell, and D. Hawking. Predicting Fame and Fortune: PageRank or Inde-

gree? In Proceedings of the Australasian Document Computing Symposium, ADCS2003,

pages 31–40, Canberra, Australia, December 2003a. URL http://research.microsoft.com/

users/nickcr/pubs/upstill adcs03.pdf.

T. Upstill, N. Craswell, and D. Hawking. Query-Independent Evidence in Home Page Find-

ing. ACM Transactions on Information Systems (TOIS), 21(3):286–313, 2003b. ISSN

1046-8188. doi: http://doi.acm.org/10.1145/858476.858479.

E. M. Voorhees and D. Harman, editors. TREC: Experiment and Evaluation in Information

Retrieval. Digital Libraries and Electronic Publishing Series. MIT press, Cambridge, Mas-

sachusetts, USA, 2005. URL http://mitpress.mit.edu/catalog/item/default.asp?ttype=

2&tid=10667.

W3C. W3C httpd: Proxies, July 1995. URL http://www.w3.org/Daemon/User/Config/

Caching.html#CacheLastModifiedFactor.

W3C. The HTTP Distribution and Replication Protocol (DRP) Submission, Submitted by

Marimba, Inc., Netscape Communications Corp., Novell, Inc., Sun Microsystems, Aug.

1997. URL http://www.w3.org/TR/NOTE-drp.

W3C. HTML 4.01 Specification, Dec. 1999. URL http://www.w3.org/TR/html40/.

D. Wessels. Squid Frequently Asked Questions: Caching, 2001a. URL http://www.

squid-cache.org/Doc/FAQ/FAQ.pdf.

D. Wessels. Squid Internet Object Cache: Caching, 2001b. URL http://www.squid-cache.

org/.

H. E. Williams and J. Zobel. Searchable Words on the Web. International Journal of Digital

Libraries, 5(2):99–105, 2005. doi: http://dx.doi.org/10.1007/s00799-003-0050-z.

BIBLIOGRAPHY 240

C. E. Wills and M. Mikhailov. Towards a Better Understanding of Web Resources and Server

Responses for Improved Caching. Computer Networks, 31(11–16):1231–1243, 1999a. ISSN

1389-1286. doi: http://dx.doi.org/10.1016/S1389-1286(99)00037-7.

C. E. Wills and M. Mikhailov. Examining the Cacheability of User-Requested Web Resources.

In Proceedings of the Fourth International Web Caching Workshop, San Diego, California,

USA, Apr. 1999b. URL http://citeseer.ist.psu.edu/article/wills99examining.html.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishing, San Francisco, California, USA,

second edition, May 1999. ISBN 1-55860-570-3.

J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen. Optimal Crawling

Strategies for Web Search Engines. In WWW ’02: Proceedings of the Eleventh International

Conference on World Wide Web, pages 136–147, Honolulu, Hawaii, USA, May 7–11 2002.

ACM Press, New York, New York, USA. ISBN 1-58113-449-5. doi: http://doi.acm.org/

10.1145/511446.511465.

W. Wu, C. Yu, A. Doan, and W. Meng. An Interactive Clustering-Based Approach to

Integrating Source Query Interfaces on the Deep Web. In G. Weikum, A. C. König,

and S. Deßloch, editors, Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 95–106, Paris, France, June 13–18 2004. ACM Press, New

York, New York, USA. ISBN 1-58113-859-8. doi: http://doi.acm.org/10.1145/1007568.

1007582.

Yahoo!, Mar. 2008. URL http://www.yahoo.com/.

H. Yu and A. Vahdat. Efficient Numerical Error Bounding for Replicated Network Services. In

A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-

Y. Whang, editors, VLDB 2000, Proceedings of Twenty Sixth International Conference on

Very Large Data Bases, pages 144–155, Cairo, Egypt, Sept. 10–14 2000. Morgan Kaufmann.

ISBN 1-55860-715-3.

S. Zander, G. Armitage, and C. Malcolm. Dynamics and Cachability of Web Sites: Im-

plications for Inverted Capacity Networks. In B. Landfeldt and T. Moors, editors, The

BIBLIOGRAPHY 241

Eleventh IEEE International Conference on Networks (ICON2003), pages 45–50, Sydney,

Australia, Sept. 28– Oct. 1 2003. IEEE Computer Society Press. ISBN 0-7803-7788-5.

D. Zeinalipour-Yazti and M. D. Dikaiakos. Design and Implementation of a Distributed

Crawler and Filtering Processor. In A. Y. Halevy and A. Gal, editors, NGITS ’02: Pro-

ceedings of the Fifth International Workshop on Next Generation Information Technologies

and Systems, volume 2382 of Lecture Notes in Computer Science, pages 58–74, Caesarea,

Israel, June 24–25 2002. Springer-Verlag, London, United Kingdom. ISBN 3-540-43819-X.

URL http://link.springer.de/link/service/series/0558/bibs/2382/23820058.htm.

Zettair, Mar. 2008. URL http://www.seg.rmit.edu.au/zettair/.

C. Zhai and J. Lafferty. A Study of Smoothing Methods for Language Models Applied to

Information Retrieval. ACM Transactions on Information Systems (TOIS), 22(2):179–214,

2004. ISSN 1046-8188. doi: http://doi.acm.org/10.1145/984321.984322.

Y. Zhang, P. Vines, and J. Zobel. Chinese OOV Translation and Post-Translation Query

Expansion in Chinese–English Cross-Lingual Information Retrieval. ACM Transactions

on Asian Language Information Processing (TALIP), 4(2):57–77, 2005. ISSN 1530-0226.

doi: http://doi.acm.org/10.1145/1105696.1105697.

J. Zobel and A. Moffat. Inverted Files for Text Search Engines. ACM Computing Surveys,

38(2):6, 2006. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/1132956.1132959.

