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Abstrat
The domain of medial imaging analysis has burgeoned in reent years due to the availabilityand a�ordability of digital radiographi imaging equipment and assoiated algorithms and, assuh, there has been signi�ant ativity in the automation of the medial diagnosti proess.One suh proess, ephalometri analysis, is manually intensive and it an take an experienedorthodontist thirty minutes to analyse one radiology image. This thesis desribes an approah,based on geneti programming, neural networks and mahine learning, to automate thisproess. A ephalometri analysis involves loating a number of points in an X-ray anddetermining the linear and angular relationships between them. If the points an be loatedaurately enough, the rest of the analysis is straightforward.The investigative steps undertaken were as follows: Firstly, a previously publishedmethod,whih was laimed to be domain independent, was implemented and tested on a seletionof landmarks, ranging from easy to very diÆult. These inluded the menton, upper lip,inisal upper inisor, nose tip and sella landmarks. The method used pixel values, and pixelstatistis (mean and standard deviation) of pre-determined regions as inputs to a genetiprogramming detetor. This approah proved unsatisfatory and the seond part of theinvestigation foused on alternative handrafted features sets and �tness measures. Thisproved to be muh more suessful and the third part of the investigation involved using pulseoupled neural networks to replae the handrafted features with learned ones. The fourthand �nal stage involved an analysis of the evolved programs to determine whether reasonablealgorithms had been evolved and not just random artefats learnt from the training images.A signi�ant �nding from the investigative steps was that the new domain independentapproah, using pulse oupled neural networks and geneti programming to evolve programs,



iiwas as good as or even better than one using the handrafted features. The advantage of this�nding is that little domain knowledge is required, thus obviating the requirement to manuallygenerate handrafted features. The investigation revealed that some of the easy landmarksould be found with 100% auray while the auray of �nding the most diÆult ones wasaround 78%.An extensive analysis of evolved programs revealed underlying regularities that were ap-tured during the evolutionary proess. Even though the evolutionary proess took di�erentroutes and a diverse range of programs was evolved, many of the programs with an aeptabledetetion rate implemented algorithms with similar harateristis.The major outome of this work is that the method desribed in this thesis ould be usedas the basis of an automated system. The orthodontist would be required to manually orreta few errors before ompleting the analysis.
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Glossary
De�nitionsThe following de�nitions are ommonly used throughout this thesis and have been inludedto assist the reader.Arity The number of arguments that are required to be given to a funtion.Bloat A term given to desribe the proess of ode growth over time.Cephalogram Is a radiograph (also known as an X-ray) of the head, inluding the mandible,taken in full lateral view whih is used for making ranial measurements.Crossover Creates two programs for the new population by rossing over or swapping thesub-trees of two seleted programs. The sub-tree in eah program is reated by randomlyhoosing a node.Crossover rate The probability of reating two new individuals using the rossover opera-tor.Detetion auray Is a measure of a program's ability to aurately loate the positionof a landmark. Auray is measured as the di�erene between the deteted landmark andthe known position whih is quanti�ed in pixels.Detetion rate Is a ratio used to ompare the relationship between the number of orretlydeteted landmarks with the total number of landmarks that are to be deteted.False alarm rate Is a ratio used to ompare the relationship between the number of inor-retly deteted landmarks with the total number of landmarks that are to be deteted.Features Refer to terminals. xix



LIST OF TABLES xxSub Image A heuristi based on anatomial knowledge is used to extrat a smaller imagefrom a digital X-ray, relative to a datum point. The rationale for the smaller image is toredue the size of the searh area when loating the landmark (refer to Figure 1).Image dataset A seletion of 110 digital X-ray ephalograms that are used throughout thisthesis. Eah image is an 8-bit greysale image that has 256 levels of grey (refer to Figure 1).Input window Contains a pre-de�ned set of shapes that are used to alulate features. Theinput window is traversed aross eah position on the sub image (refer to Figure 1).Introns Code segments not ontributing to a program's performane or irrelevant piees ofode that do not ontribute to program �tness.Maximum tree depth, initial The maximum depth of a tree at the initial generation.Maximum tree depth The maximum depth of a tree after the initial generation.Mutation Creates a new program by randomly hoosing a node and introduing a new sub-tree into a program.Mutation rate The probability of reating a new individual using the mutation operator.Parsimony pressure is a popular bloat-ontrol tehnique used to ombat bloat in genetiprogramming. A size penalty is added to the �tness funtion.Population size The number of individuals, or programs, in a given population.Operators Are nodes with hildren that orrespond to funtions that are available in thefuntion set.Elitism Copies an individual from the urrent generation into the next generation, with theaim of allowing the �ttest individuals to survive into the next generation.Elitism rate The probability of reating a new individual using the reprodution operator.Sensitivity An operating harateristi that measures the ability of a test to detet an objetwhen it is present.Shape The input window is divided into a set of shapes. Eah shape is omposed of a numberof pixels whih are used to alulate feature values. Eah shape has two features, i.e. meanand standard deviation (refer to Figure 1).Spei�ity An operating harateristi that measures the ability of a test to exlude anobjet when it is not present.Terminals Are variables that are always leaves in the parse tree. In the ontext of using
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Figure 1: Shemati of the proess for extrating features within the searh area of an X-ray.
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Chapter 1
Introdution
1.1 IntrodutionAdvanes and a�ordability in digital radiographi imaging have seen a requirement by or-thodontists to automate the ephalometri analysis. A ephalometri analysis is omposedfrom a de�ned set of landmarks or points, used to determine linear and angular relationships,that are loated in both bony and soft tissue on a raniofaial X-ray. The ephalometrianalysis is spei� to an orthodontist for determining measurements and ratios based on theoordinates of the landmarks. Figure 1.1 shows an image indiating several types of ephalo-metri landmarks. The outome of the analysis determines the type of treatment requiredfor the patient. Currently the proess of landmark identi�ation is manually intensive and itan take an experiened orthodontist thirty minutes to analyse one X-ray.Automating the ephalometri analysis is in the ontext of using a detetion programto automatially loate landmarks, aurately enough for a ephalometri analysis, with nomanual intervention. Rakosi [111℄ suggests an error of 2 mm is aurate enough for loatingephalometri landmarks. The error is de�ned as the di�erene between the position of thelandmark automatially identi�ed and the position if loated by an experiened orthodontist.The researh that is addressed in this thesis is to develop a new framework using imageproessing tehniques ombined with mahine learning to automatially loate landmarksfrom a lateral head X-ray. A learning approah is well suited to the problem beause ofthe diversity of biologial shapes that exist within a population. An advantage of using a1



CHAPTER 1. INTRODUCTION 2learning approah is that it potentially allows a pratitioner to re-train or re�ne the positionof a landmark.

Figure 1.1: Cephalometri landmarksA learning method that has shown promise for objet detetion problems is geneti pro-gramming. Geneti programming is an evolutionary searh strategy from the evolutionaryomputation family, a �eld that uses mehanisms similar to biologial evolution, for solv-ing omputational problems. The evolutionary searh strategy is direted by inreasing thelikelihood that �tter programs partake in the evolutionary proess, a proess that is analo-gous to natural evolution. Evolutionary omputation is an emerging area of researh thathas reently been applied to omputer vision problems. The geneti programming methodhas shown potential to loate landmarks beause, when applied to other problems of similardiÆulty, the detetion results have been promising and in some ases outperformed otherlearning paradigms suh as neural networks [59, 166℄.The overall aim is to develop an automated system to perform a ephalometri analysis.The intended purpose is to improve the eÆieny of the treatment plan by reduing anal-ysis time and allowing the orthodontist to fous on other work. Potential ost savings andpotential improved diagnosis would o�set any ost inurred by purhasing suh a system.



CHAPTER 1. INTRODUCTION 3Sope The aim of the work presented in this thesis is to develop a method to automatiallyidentify the o-ordinates of ephalometri landmarks in digital X-rays that is aurate enoughfor a ephalometri analysis. The landmarks listed in Table 2.11 (p. 47) are loated inboth bony and soft tissue. Previous attempts by [20, 63℄ to automatially loate soft tissuelandmarks have been reasonably suessful, however, test results are onsiderably lower forlandmarks loated on bony tissue; in both ases, the test results are based on relatively smalldatasets. The work presented in this thesis will use a seletion of landmarks that exhibit arange of detetion diÆulty (i.e. easy to hard) for the purpose of determining the likelihoodthat the proposed method will work on the entire list of landmarks in Table 2.11.Realistially the proposed method will not loate landmarks in all grades of digital images,as the learning method will only be trained to loate landmarks for a prede�ned set ofonditions suh as signal-to-noise ratios. For example, if the method is trained to loatelandmarks on digital radiographi imaging equipment then more than likely the method willnot work when presented with digitised �lm X-rays. This ensures that the work presented inthis thesis is learly de�ned and that an umbrella is not reated in an attempt to solve allephalometri issues. Although the onditions for loating landmarks are prede�ned, thereis no reason that a general method would not be able to learn how to loate a new type oflandmark.Domain Independent Approah A learning method that has shown promise for solvingobjet detetion problems is researh onduted by Zhang et al. [164, 168℄ who presented adomain independent approah using geneti programming and pixels as features for lassifyingand loating the entres of oins. Zhang et al. subsequently applied the method to a diÆultdetetion problem for deteting haemorrhages and miroaneurisms in retina images. Thedetetion performane of solutions from geneti programming was superior to other learningparadigms that inluded a neural network. The method by Zhang et al. uses a multi-lasslassi�er, however, in the ontext of our work eah landmark type will be treated as a separatedetetion problem. An advantage of this approah is that the omputational requirementsof a detetor program are relatively inexpensive ompared to other tehniques suh as thosethat use wavelet transforms.



CHAPTER 1. INTRODUCTION 4The initial researh in this thesis will investigate whether the domain independent ap-proah desribed by Zhang et al. is able to loate ephalometri landmarks to a suÆientdegree of auray for a ephalometri analysis. The later researh will look at ways to modifyand improve the basi approah. An outline of the domain independent approah for objetdetetion is now given.The loation of the objet of interest is found by traversing an input window aross theimage and evaluating a program at eah pixel loation. The program will take as inputthe values of the pixels in the input window or pixel statistis (suh as mean and standarddeviation) of simple shapes [8, 58, 59, 141, 165, 166℄. The program will output a numbergreater than zero when entred on an objet of interest or a number less than zero otherwise.The desired program is obtained by an evolutionary proess whih uses a training setof marked up images and a measure of detetion rate and false alarm rate as the �tness.The performane of eah program within the population is measured and sorted aording to�tness. A new population of programs is generated probabilistially by seleting programs topartake in geneti operations. The proess for �nding eah type of landmark will be treatedas a separate objet detetion problem.

Figure 1.2: Classi�ation strategy that uses the output of the program to determine if thepixel is a landmark or bakground. Pi represents the intensity value of pixel iThe images in Figure 1.3 illustrate four examples where the sweeping proess that wasdesribed above was used to searh for the inisal upper inisor landmark. The images areindiative of the large biologial variability amongst four di�erent patients. When the inputwindow is applied to the images in Figure 1.3a- the landmark was orretly found. Thelandmark was not orretly found in the example shown in Figure 1.3d. This is shown by the



CHAPTER 1. INTRODUCTION 5disparity between the input window entred on the predited position and the ross.
(a) (b) () (d)Figure 1.3: Examples illustrating the orret and inorret position of the inisal upper inisorlandmark. The input window is entred on the predited position of the landmark and theross indiates the atual loation found by the orthodontist.1.2 Goals of the thesisThe overall goal of the work presented in this thesis is to develop objet detetion programs forloating ephalometri landmarks using the geneti programming paradigm. The followingquestions will be explored and address issues assoiated with using geneti programming onlandmark detetion problems for a range of landmark types lassi�ed from easy to diÆult.1.2.1 Researh questions1. Can the domain independent approah using pixels as features and genetiprogramming be used for landmark detetion?The strategy that we have desribed above as the domain independent approah willdetermine if pixel based features are able to loate a range of landmarks from easy tohard to the desired level of auray for a ephalometri analysis. Formulating �tness isdomain dependent, for example having false alarms may be aeptable in one problem(mammograms) and unaeptable in other problems (target detetion). We investigatea formulation that suits the landmark problem.2. How an the domain independent approah be modi�ed and extended togive better detetion performane?This part of the investigation will address a number of fundamental issues for improvingthe detetion of landmarks in omplex images. This question will address:� Can detetion auray be improved by manually partitioning the input window



CHAPTER 1. INTRODUCTION 6into a set of shapes, idiosynrati to the landmark, and using pixel statistis (meanand standard deviation) of the shapes instead of pixel intensities.� How an �tness be formulated to redue the false alarm rate?� Can a �tness funtion that uses detetion error, de�ned as the eulidean distanebetween the predited position and the true position, produe aurate detetionprograms?� What operators should be inorporated into the funtion set so that programs aregiven the best hane of ahieving a suessful solution?3. Can handrafting of shapes be replaed by learning the shapes from exam-ples and will this inrease detetion auray?It is expeted that handrafted shapes used to ompute features will be able to pro-due better detetion programs ompared to using pixels as features from the domainindependent approah. However, the problem with determining handrafted shapes isthat knowledge of a landmark is required in order to determine suitable shapes and sothe tehnique beomes a semi-automated approah. In this part of the investigationour aim is to develop a method that is able to automatially generate a set of shapesusing the output from a pulse oupled neural network (PCNN) and determine if thedetetion programs produed are omparable to handrafted shapes. The PCNN isa method that has shown some promise of segmenting regions of interest (ROI) fromomplex senes. This part of the investigation will determine whether learned shapesare able to give better detetion performane ompared to the handrafted shapes.4. Are there any underlying algorithms that are learnt during the evolutionaryproess?The aim of this part of the investigation is to determine whether the suessful detetionprograms use some ad-ho patterns in the training data or whether some understandablealgorithm has been evolved.



CHAPTER 1. INTRODUCTION 71.3 ContributionsThe ontributions of this thesis are:1. A framework for geneti programming applied to landmark detetion, a diÆult realworld omputer vision problem.This work has delivered a feasible method for deteting ephalometri landmarks basedon GP. Most GP appliations in omputer vision use simple or arti�ial images. How-ever, our work has shown that GP an also be applied suessfully to detet landmarksin omplex real-world images.2. Presentation for improving the GP frameworkThe work presented in Chapter 5 learly demonstrated the bene�t of redution in falsealarm rate by introduing handrafted features, �tness adjustment and the reation ofnew operators for improving the performane of detetion programs. By plaing ourwork within an objet detetion ontext using GP, we expet that similar problems maymake use of our ontribution.Part of this work was published in:A. Innes, V. Ciesielski, J. Mamutil, S. John, and Alan Harvey. Landmark detetionfor ephalometri radiology images using geneti programming. In Ruhul Sarker, BobMKay, Mitsuo Gen, and Akira Namatame, editors, in Proeedings of the 6th Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, pages 125-132, Can-berra, November 2002.V. Ciesielski, A. Innes, J. Mamutil, and S. John. Landmark detetion for ephalometriradiology images using geneti programming. International Journal of Knowledge BasedIntelligent Engineering Systems, 7(3):164-171, July 2003.A. Innes, V. Ciesielski, J. Mamutil, and S. John, Reduing False Alarms Using Ge-neti Programming in Objet Detetion, in Proeedings of International Conferene ofArti�ial Intelligene, Las Vegas, USA, June 2004.3. A method for the automati generation of image features for landmark detetionThe work presented as part of this thesis has foused upon the automation of what istypially a manual proess of `handrafting' features. Spei�ally, we have devised ageneral method for ahieving this automation using a pulse oupled neural network andthrough experimentation, have disovered that our tehnique to disovering features is



CHAPTER 1. INTRODUCTION 8omparable if not exeeding in performane with handrafted features as well as othertehniques presented in the literature.Part of this work was published in:A. Innes, V. Ciesielski, J. Mamutil, and S. John. Landmark detetion for ephalo-metri radiology images using pulse oupled neural networks. In Hamid Arabnia andYoungsong Mun, editors, in Proeedings of the International Conferene on Arti�ialIntelligene (IC-AI'02), volume 2, pages 511-517, Las Vegas, June 2002. CSREA Press.A. Innes, V. Ciesielski, J. Mamutil, and S. John. Finding templates for ephalometrilandmark detetion using pulse oupled neural networks and geneti programming.In Hamid Arabnia and Youngsong Mun, editors, in Proeedings of the InternationalConferene on Imaging Siene, Systems and Tehnology (CISST'03), volume II, pages511-517, Las Vegas, June 2003. CSREA Press.4. A methodology for understanding evolved detetion programsWe have developed a methodology for understanding the evolved programs. Themethodology involved �nding the underlying algorithm implemented in the evolvedprogram and establishing that it is appropriate for the partiular objet detetion prob-lem. This gives on�dene that underlying regularities are being aptured in the evolvedprograms, not artefats of the training data.Vitor Ciesielski, Andrew Innes, Sabu John and John Mamutil, "Understanding evolvedgeneti programs for a real world objet detetion problem", in Proeedings of the 8thEuropean Conferene on Geneti Programming, Maarten Keijzer, Andrea Tettamanzi,Pierre Collet, Jano I. van Hemert and Maro Tomassini, Eds., Lausanne, Switzerland,30 Mar. { 1 Apr. 2005, vol 3447 of Leture Notes in Computer Siene, pp. 351{360,Springer



Chapter 2
Literature review
2.1 Computer visionThe problem of automatially extrating ephalometri landmarks from digitised X-Rays is aomputer vision problem. Computer vision is a large and diverse �eld overing many di�erentareas, suh as navigation, remote sensing, harater reognition and doument proessing, andmedial imaging. Our partiular problem �ts within the area of medial imaging, however,this is not to say the work desribed in this thesis is limited to this domain.The term omputer vision has many de�nitions, but probably the most appropriate,based on our problem, is given by Shapiro and Stokman [130, p. 13℄ who de�ned the goal ofomputer vision as being able to \make useful deisions about real physial objets and senesbased on sensed images". From this statement one may be lead diretly to the questionof how does a omputer vision pratitioner make useful deisions when presented with animage? This question is addressed by reating a desription or model of the objet in theimage. As a result, Forsyth and Pone [49, p. 13℄ have further generalised the de�nition ofomputer vision, and the view of many `experts', by saying \the goal of omputer vision isthe onstrution of sene desriptions from images".Solving omputer vision problems has a history dating bak to the 1960s [49℄, however,relatively few researhers explored omputer vision until the 1980s [69℄. The atalyst forthe inreased researh was the availability of a�ordable hardware meaning that algorithmsthat were one infeasible were now possible on relatively inexpensive workstations. Initially9



CHAPTER 2. LITERATURE REVIEW 10mahine vision problems in industrial vision were addressed using simpli�ed binary imageproessing. However, with inreased omputing power, mahine vision has progressed togreysale image proessing [41℄. Nowadays, the researh fous has hanged from lassialpattern reognition and image proessing tehniques towards knowledge-based tehniqueswhereby during the past deade there has been a strong emphasis on developing omputervision systems that exhibit learning behaviour.Beause of the inreasing omplexity of omputer vision problems, learning is seen as thenext frontier in omputer vision as is evident by the number of workshops dediated to solvingomputer vision using mahine learning [11, 12, 147℄. The key advantage of learning is theability to deal with new situations (improve responses over time) and it is not neessary toengineer a response, in advane, to every oneivable situation.2.1.1 Computer Vision in MediineComputer vision in mediine is urrently a very ative area of researh. The areas for researhin mediine inlude morphometry (to quantify the physial harateristis of an objet),visualisation of data, improved diagnosis, automati proessing of images and ontent-basedimage retrieval [97, 109℄. A reason for the inreased fous is to exploit the large number of2D and 3D digital images generated by X-ray, omputer topography, magneti resonane,ultrasound and nulear mediine imagery devies for diagnosis and therapy [4℄. The �eld ofomputer vision applied to mediine is diverse and so we shall only desribe problems loselyrelated to our domain. The following gives a brief outline of researh into problems relatingto objet detetion and lassi�ation in medial X-rays.Researh in objet detetion and lassi�ation problems inludes extrating the left ven-trile from ehoardiographi images [61℄, segmentation of normal and abnormal livers [62℄,detetion and diagnosis of miro-ali�ations in mammograms [27, 48, 149, 156, 163℄ andautomati detetion of tantalum markers inserted into femurs [154℄. Researh relating to theautomati detetion of ephalometri landmarks is presented in Setion 2.7.Beause of the diversity of problems and their assoiated diÆulty in the medial domainthere are a large number of papers dediated to topis that inlude pre-proessing, suhas image enhanement, noise redution, edge detetion and segmentation, lassi�ation and



CHAPTER 2. LITERATURE REVIEW 11loalisation of objets.2.1.1.1 Noise in X-ray imagesA signi�ant issue with digital X-ray images in omputer vision is the impat of noise onimage quality, i.e. image quality degrades quikly as noise inreases [51℄. System noiseis measured as the signal-to-noise ratio (SNR). The main soure of noise in X-rays is therandom distribution of photons over the image [99℄. The noise an be redued by inreasingthe number of photons used to form the image. However, medial images are noisy due to thelimitations on X-ray dose [115℄ beause organi objets are sensitive to irradiation. Therefore,there has been a reasonable amount of researh into reduing noise in medial X-rays withlow SNR using a pre-proessing step. These pre-proessing steps inlude the use of wavelets[46, 140℄ and the Rihardson-Luy algorithm [82℄ for de-noising images. Other traditionalimage proessing tehniques for smoothing and enhaning images inlude median �lters [146℄and Gaussian kernels [115℄.2.2 Objet detetionObjet detetion is an area of omputer vision and is de�ned as the task of determining if theobjet of interest is loated in the image, and if so, determining the oordinates of the objet'sposition. The most ommon approah for solving this problem, as desribed by Astrom [3℄, isto develop a lassi�er for distinguishing between two lasses, i.e. objet and non-objet, andapplying it to the image at di�erent positions. A review of the objet detetion literaturesuggests that some of the work is restrited to only lassi�ation, although an importantaspet of objet detetion is the determination of the position of an objet. An example ofthis is an objet detetion algorithm developed by Winkeler et al. [157℄ for deteting faesin images. In this partiular example, eah pixel position in the image is lassi�ed as eithera fae or non-fae, however, this approah does not identify the region of a fae in an image.
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Figure 2.1: An example of features and lassi�ers used for solving objet detetion problems.Generally speaking, most researh performed on objet detetion problems involves twomain steps: feature extration and lassi�ation as shown in Figure 2.1. Key features arehosen during the feature extration stage, with the goal to assist in disriminating betweenobjet and non-objet, and used as inputs into the lassi�er. A lassi�er is hosen anddeveloped, whih uses the extrated features to disriminate between lasses `objet' and`non-objet'. It is not unusual for pre-proessing, suh as normalising or resizing an image,to our prior to feature extration. Depending on the objet detetion task, an image mayontain multiple lasses. The most ommon approah for solving objet detetion problems,even if the problem ontains multiple lasses, is to use a binary lassi�er, i.e. the lassi�eris designed to distinguish between objet and non-objet. If the problem involves multiplelasses then it is not unommon to have a di�erent lassi�er for eah lass. However, Zhanget al. investigated a multiple lass lassi�er for loating haemorrhages and miro aneurismsin retinal images [164, 166, 168℄.As mentioned on page 10, using mahine learning to develop a lassi�er is pereived as apromising approah for solving diÆult omputer vision problems. DiÆult omputer visionproblems inlude appliations in the medial domain beause of the diversity in anatomy.Often a preise detetion algorithm is required with a orret balane between false alarmrate and detetion rate. This is important as images are often subjet to subtle hanges ingreysale, noise and bakground lutter. These issues ause diÆulty and hene, require anapproah that will have suitable features ombined with a learning methodology for reating



CHAPTER 2. LITERATURE REVIEW 13a suitable funtion that will produe a robust objet detetion funtion. Both the typesof features extrated and the lassi�er hosen are domain dependent, however, Zhang et al.proposed a method [164, 168℄ that laims to be domain independent.2.2.1 Performane measuresIn measuring the performane of objet detetion systems the most ommon measures ofperformane are (1) detetion rate, whih we wish to maximise and (2) false alarm rate, whihwe wish to minimise. Detetion rate and false alarm rate are determined using Equations2.1 and 2.2 respetively, however, it is not unommon to express either of the terms as aperentage.Detetion Rate (DR) refers to the number of objets orretly loated by the system,known as true positives (TP), as a ratio of the total number of objets, N , in a datasetontaining n images. The detetion rate is a value between 0 and 1.DR = Pni=1 TPiPni=1Ni (2.1)where,TP The number of positive examples orretly lassi�edN The number of objets in the imagen The number of images in the training/test setFalse Alarm Rate (FAR) refers to the number of objets inorretly loated, known asfalse positives (FP), as a ratio of the total number of objets. Unlike detetion rate, the falsealarm rate an be a value greater than 1, however, ideally the system will produe a falsealarm rate with a value of 0, i.e. no false alarms.FAR = Pni=1 FPiPni=1Ni (2.2)where,FP The number of negative examples inorretly lassi�ed



CHAPTER 2. LITERATURE REVIEW 14In the onfusion matrix, a onept originally borrowed from medial diagnosis, true neg-atives (TN) are the number of negative examples orretly lassi�ed and false positives (FP)are the number of negative examples inorretly lassi�ed as positive. False negatives (FN)are the number of positive examples inorretly lassi�ed as negative while true positives(TP) are the number of positive examples orretly lassi�ed [23℄. To better understand theterms `true positive' and `false positive' and their relationship to the predited outome, referto Table 2.1. AtualPositive NegativePredited Positive TP FPNegative FN TNTable 2.1: A onfusion matrix illustrating the relationship between atual and preditedlassi�ations performed by a lassi�ation system.The ultimate goal of objet detetion is to ahieve a detetion rate of 100% and falsealarm rate of 0%. However, ahieving the ultimate goal for diÆult detetion problems issometimes not possible and so a trade-o� between detetion rate and false alarm rate isrequired. Determining a trade-o� is problem dependent, for example produing false alarmsduring medial diagnosis is seen as aeptable sine the pratitioner would perform a furtherinvestigation as part of the treatment. However, a false alarm on an automati targetingsystem, where there is no human input, will ause the system to �re the weapon. Theseexamples demonstrate the reason why it is important to determine the balane betweendetetion rate and false alarm rate when measuring the performane of a system based onthe onsequenes of the deision.In objet detetion, the bakground artefats often signi�antly outweigh the number ofobjets in the image, potentially resulting in a highly skewed data set. This may ause anobjet detetion algorithm to be biased towards deteting bakground artefats as objets,whih is undesirable. Unfortunately, a highly skewed dataset is something that is not unom-mon in real world problems [47℄. In the presene of highly skewed datasets, the detetor willbe biased towards either poor detetion performane or inadvertently deteting non-objets.The detetion rate and false alarm rate may be treated as a multi-objetive optimisation



CHAPTER 2. LITERATURE REVIEW 15problem. The following gives an overview of multi-objetive approahes ommonly used formeasuring the performane of objet detetion and lassi�ation performane.2.2.1.1 Weighted sum approahThe weighted sum approah adds the multiple objetives together using di�erent weights, wi,for eah objetive, fi. The value of eah weight represents the relative importane of eahobjetive [28℄. The approah of ombining the objetives into a single funtion means themulti-objetive problem is transformed into a salar optimisation problem. This approahhas been used to measure the performane of learning algorithms inluding neural networks,geneti algorithms and geneti programming, for objet detetion problems [168℄.min kXi=1 wifi (2.3)There are other approahes, similar to the weighted sum approah, where the multi-objetive problem is transformed into a salar optimisation problem [8, 58, 167℄. These arereferred to as `aggregating funtions' beause the objetives are ombined to produe a single�tness funtion [65℄. An advantage of aggregating funtions is that they are easily adaptedto learning algorithms suh as geneti algorithms and geneti programming sine they are asalar optimisation tehnique [28℄. Aggregating funtions are generally more omputationallyeÆient than other multi-objetive tehniques [65℄. A disadvantage of this approah is that apriori information is required to determine the weights in order to evaluate the performaneof the lassi�er [77℄. If the assignment of weights is not ideal then one of the objetives willbeome dominant. For example, a bias exists when the number of objets to be deteted ismuh smaller than the total number of non-objets within an image. If the weights are notbalaned to aount for the bias between objets and non-objets then more than likely themeasure of performane will beome dominated by an objetive.2.2.1.2 Reeiver operating harateristi urveThe reeiver operating harateristi (ROC) urve, ommonly referred as ROC urve, orig-inated from the evaluation of radar operators that was adopted for the diagnosis of tests



CHAPTER 2. LITERATURE REVIEW 16followed by the mahine learning ommunity [129℄. An ROC analysis is seen as an alter-native tehnique to evaluate how well lassi�ers perform given a distribution of two lasses[13℄. The ROC urve is a graphial representation of the trade o� between true positive andfalse positive rates as a funtion of varying lassi�ation threshold [129℄. Alternatively, ROCurves are expressed as a trade-o� between sensitivity and spei�ity as illustrated in Figure2.2. ROC urves have been used to measure the performane of objet detetion systemsthat inlude neural networks and support vetor mahines [48, 98, 103, 131℄.
Sensitivity = TPNp ; where Np is the number of positives in the dataset (2.4)Speifiity = 1� FPNn ; where Nn is the number of negatives in the dataset (2.5)The area under the urve, as shown in Figure 2.2, measures the probability of orretlassi�ation [54℄. ROC urves present an attrative way of measuring the performane ofmahine learning algorithms [16℄ and have been applied as a �tness measure for genetialgorithms [128℄. The approah is seen as advantageous when hoosing an optimal point onthe urve. The point lying on the onvex hull of the ROC urve is hosen as the optimallassi�er/detetor [23℄ as apposed to manually hoosing a lassi�ation threshold.

Figure 2.2: A guideline for determining performane of an algorithm based on the area underthe ROC urve.Agarwal et al. in [1℄ suggest another approah to ROC urves for objet detetion prob-lems. The distintion between the two approahes being an alternative x-axis measure, i.e



CHAPTER 2. LITERATURE REVIEW 171 � Speifiity is replaed with 1 � Preision. Agarwal et al. in [1℄ justify the di�erenein approah for objet detetion problems beause the number of negatives in the dataset isnot known and so spei�ity annot be alulated.Preision = TPTP + FP (2.6)2.2.1.3 Multi-objetive optimisation using a Pareto-optimal frontA new area reeiving a lot of interest for evaluating the performane of lassi�ation problemsis multi-objetive optimisation using a Pareto-optimal front to �nd non-dominated solutions.The Pareto front is a olletion of solutions that have no superior and are referred to asnon-dominated solutions [65℄. Solutions are said to be non-dominated if the solutions do notperform better with respet to both objetives [36℄. The Pareto-optimal set orresponds topoints on the ROC urve [77℄. A single solution is seleted from those solutions along thePareto-optimal front.An advantage of this approah over the aggregated funtions, as desribed in 2.2.1.1, isthat the ambiguity is removed with regards to preferene of the objetives [77℄. Kupinski etal. [77℄ demonstrated that the Pareto-optimal front, optimised by a geneti algorithm, wasomparable to or better than the ROC urves for a given dataset and lassi�er. This approahis not restrited to two lasses and the generation of the ROC urves an be performed withina single task.2.3 Mahine learningFor omplex problems it is often too diÆult to enode the neessary behaviours and intel-ligene to solve suh problems. Therefore, it an be more feasible to implement a mahinelearning algorithm so that the desired behaviour of the system an be learned. One goalof mahine learning is to program omputers using example data to solve a given problem.Coneptually, mahine learning an be viewed as a searh de�ned by some underlying repre-sentation (e.g. linear funtions, logial desriptions, deision trees and neural networks).Mahine learning, an area that overlaps with statistis, is a subset of arti�ial intelligene



CHAPTER 2. LITERATURE REVIEW 18(refer to Figure 2.3) relating to the appliation of learning methodologies that allow omputersto learn. An overall de�nition of learning, as given by Witten et al. [158℄, is \things learnwhen they hange their behaviour in a way that makes them perform better in the future". Oneform of mahine learning involves learning from training data. The goal of suh an approahis to apply knowledge gained from the training stage to unseen ases.

Figure 2.3: A map of arti�ial intelligene and its relationship to evolutionary omputation.2.3.1 Types of learningThe methods for learning from data an be ategorised into the following types of learning:supervised and unsupervised. The following gives a brief outline for eah of these types oflearning.Supervised learning: This is the most ommon learning ategory. Supervised learninguses training data that onsists of inputs and their assoiated outputs to develop knowledgeor rules that are able to predit the output assoiated with unseen input or test data.Unsupervised learning: This is ommonly assoiated with luster analysis algorithms.The most signi�ant di�erene with supervised learning is there is no a priori output assoi-ated with unsupervised learning.For both supervised and unsupervised learning we want to learn a funtion, y = f(x),where x is an input and y is the output. However, supervised learning implies that a set of(x; y) pairs are given, whereas in unsupervised learning only a set of (x) are given.



CHAPTER 2. LITERATURE REVIEW 192.3.2 Current researh with mahine learningThe following is an outline of issues assoiated with learning from data.� Deiding what type of algorithm will give the best approximation to the funtion, i.e.what is the best way to represent the knowledge.� How many training examples are suÆient to learn a onept.� Is the algorithm salable with respet to inreasing the number of training examples,features or the number of lasses.� How to ontrol over�tting of the learned funtion (disussed in Setion 2.5.4).2.3.3 Estimating errorThe goal of learning an objet detetor/lassi�er from sample data is to suessfully preditwhen presented with new data. The most ommon measure of suess is the lassi�er's errorrate (refer to Equation 2.7), however, a more preise measure is the true error rate. The trueerror rate is statistially de�ned as the error rate of the learnt objet detetor when appliedto a large number of new ases { as the number of test ases inrease the error rate will givea better estimate of true error rate. However, in many real world problems and spei�allyour problem, the number of samples in the dataset is relatively small. Therefore, if we onlyhave a �nite seletion of data then how do we best estimate true error rate?Error rate = number of errorsnumber of ases (2.7)A ommon approah that is used for both learning and measuring performane whena small set of examples are made available from an in�nitely large population is to dividethe samples into two groups. The set of examples are also referred to as the dataset. Thegroup used for learning is known as the training set and the other group used to measureperformane is known as the test set. It is important that the examples seleted for the twogroups are randomly seleted from the dataset. The Training Set is a olletion of examplesthat are used for learning a model during training. The Test Set is a olletion of examples



CHAPTER 2. LITERATURE REVIEW 20whih were never used, or unseen, during training. The test set is used for measuring theperformane, or generalisation, of the �nal model that was learnt as a result of training. Ingeneral, the training set is used for learning the model, while a test set is used for measuringthe performane of that model.When seleting the size of the groups, how should the number of examples be proportionedto training and test? The following is an outline of ommon methods that are used to providean estimate of error when only a small number of examples are available in the dataset. Theestimate is often used as a means of omparing between di�erent approahes to learning theproblem. Based on the review from the literature, a less ommon approah to sampling datais the bootstrapping method [155℄.2.3.4 HoldoutThe holdout method is a single appliation of training and test sets whih is typially usedwhen a large number of examples are available in the dataset. In order to have suÆientsamples to learn, it is not unusual for the training set to be larger than the test set. Forexample, the training and test set may be proportioned 2/3 and 1/3 of the total datasetrespetively.2.3.5 Cross-validationA method known as leave-one-out onsists of (n � 1) samples for training and applying theremaining sample as a test, where n is the number of samples in the dataset. This proessis repeated n times, with training and testing ourring on a di�erent sample. This methodprovides a good approximation of true error rate, however, the method is omputationallyexpensive beause it is repeated n times.A less omputationally expensive method is the k-fold ross-validation. This methodrandomly divides the dataset into k test partitions. The train and test proess is repeatedk times and eah time using a di�erent test partition for test. An advantage of using ross-validation is that all of the available samples are used for testing, and a large proportionof samples are available for learning. Typially, leave-one-out is preferred over k-fold ross-validation when the dataset onsists of 30 or fewer samples [125℄.



CHAPTER 2. LITERATURE REVIEW 212.4 Evolutionary ComputationEvolutionary omputation is a powerful searh strategy based on biologial evolution, forsolving optimisation and other problems. The prinipal idea is that individuals from a pop-ulation are allowed to generate o�spring by means of mutation, mating, and other genetioperators. The �tness of an individual is based on the how well the individual solves theproblem. The �tter individuals are allowed to survive and partiipate in future generationsin a proess analogous to natural seletion, and they in turn generate their own o�springwhereby the whole proess iterates until a desired solution to the problem is reahed.There are several well known algorithms based on this proess. These inlude genetialgorithms, evolutionary programming, evolutionary strategies, learning lassi�er systemsand geneti programming.Evolutionary strategies di�er from geneti algorithms beause they only deal with real-oded problems, whereas geneti algorithms an solve omplex ombinatorial problems, ormixed valued problems. Evolutionary strategies also provide the faility to self-adapt theirontrol parameters, suh as mutation rate whih an assist in esaping from loal minima.Both geneti algorithms and evolutionary strategies have borrowed features from eah otherand over reent years the distintion between the two has beome blurred.Typially geneti algorithms and evolutionary strategies use vetors to represent individ-uals, whereas geneti programming uses tree or stak based strutures to represent omputerprograms, unlike evolutionary programming, whih is related to geneti programming but therepresentation of the program is a state-mahine. Learning lassi�er systems use a populationof binary rules from whih a geneti algorithm alters and selets the best rules. The utility ofa rule in this approah is deided by a reinforement learning proedure, instead of a measureof �tness.All of these approahes have the basi evolutionary priniples in ommon; they use apopulation of solutions, the solutions are perturbed in some manner to generate o�spring,and the �tter o�spring are seleted for the next generation.More reently other population based approahes have been developed suh as partileswarm optimisation, di�erential evolution, ultural algorithms, arti�ial immune system ap-



CHAPTER 2. LITERATURE REVIEW 22proahes and ant olony optimisation.2.5 Geneti ProgrammingGeneti programming enompasses a family of evolutionary algorithms popularised by Koza[73℄ from 1989. This seminal paper desribes a hierarhial geneti algorithm that allows aprogram to be evolved. Suh a program is most easily expressed as a LISP (LISt Proessing)S-expression. Koza's [73℄ inspiration for developing a method that uses LISP S-expressions isthat many problems in arti�ial intelligene an be thought of as exeuting a proedure forperforming a task that ould easily be expressed as a LISP program.As with other evolutionary algorithms, the geneti programming method shares similari-ties with the Darwinian priniple of survival of the �ttest. Initially, a population of programs,or individuals, are reated and ranked aording to a �tness measure and depending on thesuess of these programs, the programs will then be allowed to partiipate in reprodutionwith other programs to produe a new generation. The idea is that over time the �tnessof programs will improve where only the �ttest will survive. This is akin to the Darwinianpriniple of natural seletion.The major di�erene between geneti programming and onventional geneti algorithmsis the representation of the problem. A geneti algorithm typially uses a �xed length stringwhere eah bit is assigned a meaning. However, in its original formulation a geneti programis represented as a variable length LISP S-expression that an be interpreted as a program.Banzhaf et al. [7℄ state that due to the exible nature of GP, it is theoretially possibleto evolve any solution that an urrently be produed by onventional mahine learningmehanisms.Representation of solutions A solution in geneti programming is ommonly representedas a LISP S-expression that an also be depited as a tree-based struture. An example ofa LISP S-expression with the orresponding tree is shown in Figure 2.4. The funtions andterminals are the two fundamental elements used for the reating a tree. The terminalsorrespond to leaves, nodes without branhes, that represent a variable or a onstant value.



CHAPTER 2. LITERATURE REVIEW 23The funtions are nodes with hildren that orrespond to operators and funtions that areavailable in the funtion set. The arity of a funtion is the number of arguments (hildren),or inputs, required to be given to that funtion.(* x (+ (* x x) 10))
Figure 2.4: Representing a funtion, x(x2 + 10), as a LISP S-expression (above) with theorresponding tree (below).Other representations of a geneti program Generally speaking, the most popularapproah for struturing a geneti program, based on published literature, has been in theform of a tree-based struture. However, some of the other approahes reported in theliterature for struturing a geneti program inlude a linear-based struture [6, 17, 30℄, agraph-based struture [96, 143℄, a linear-tree struture [70℄, a linear-graph struture [71℄ andgrammatial evolution [102℄.Linear-based struture The program of a linear-based struture onsists of four parts:the header, body, footer and return instrution. A, B, C are registers and RO is the registerwhih is used to return the output at the end of the program. The header and footer do notpartake in the evolutionary proess. Programs using a linear-based struture are representedas binary strings whih are manipulated and exeuted without interpretation using a normalgeneti algorithm. An example of a linear-based program is shown in Figure 2.5 along withthe equivalent tree-based program.Graph-based struture A program of a graph-based struture onsists of N nodes ina direted graph with up to N ars going out from eah node. Eah node onsists of anation part and a branh-deision part. There are also speial nodes that inlude start andend nodes that indiate the start and end of the program, and speial nodes may also be



CHAPTER 2. LITERATURE REVIEW 24in the form of subprogram or library alling nodes. An example of a graph-based programis shown in Figure 2.5. A method similar to the graph-based struture is artesian genetiprogramming by Miller and Thomson [96℄ that onsiders a grid of nodes that are addressedin a artesian oordinate system.
Figure 2.5: Representation of a tree-based (left), linear-based (middle) and graph-based(right) strutures used in geneti programming.Grammatial evolution An approah in whih a geneti algorithm is used to evolveprograms. The individuals in the population are binary strings that undergo binary seletion,rossover and mutation. A program is generated from an individual by deoding the individualinto a sequene of appliations of rules from BNF grammar.2.5.1 Outline of Tree-Based Geneti ProgrammingThe following desription outlines the evolutionary proess for tree-based geneti program-ming. The proess is initiated by generating a population of random programs reated fromfuntions and terminals that are made available for seletion as part of the evolutionary pro-ess. New populations of programs are reated using geneti operations that are analogousto evolution. At the end of eah generation the performane of eah program is measuredaording to a �tness metri. This iterative proess is ontinued until some terminationriterion is satis�ed.Eah phase of the geneti program framework is explained as follows:1. Generate an initial random population of programs reated from a seletion of funtionsand terminals.2. The evolutionary proess iteratively steps through the following:



CHAPTER 2. LITERATURE REVIEW 25(a) Measure the performane of eah individual program against a �tness metri andrank eah program aording to �tness.(b) Determine if the termination riterion is satis�ed. If a termination riteria hasbeen satis�ed then proeed to step (3), otherwise, proeed to step () - reating anew generation.() A new population of programs is generated by probabilistially seleting individ-ual programs from the urrent population to partake in geneti operations. Betterindividuals have a higher probability of seletion. PR, PC and PM are the probabil-ity that an individual(s) will be reated using reprodution, rossover or mutationrespetively.i. Reprodution: Copy an individual program to the new population, typiallyif the program is �t. This may also be referred to as elitism.ii. Crossover: Creates two programs for the new population by rossing overrandomly hosen parts from two seleted programs.iii. Mutation: Creates a program by mutating or introduing a randomly hosenpart of a seleted program.3. At the end of the evolutionary run, the best program is typially seleted as the outomeof that run.
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Figure 2.6: This shemati outlines the proess for an evolutionary run.Population initialisation and geneti operators will be explained in greater detail.2.5.1.1 Population InitialisationPopulation initialisation is the term given when programs are reated in the initial population.The majority of researhers in GP use the ramped half-and-half method outlined by Koza in[74℄. Other work inludes the uniform method by B�ohm et al. [14℄ who laims a superiorperformane to the ramped half-and-half initialisation method. Luke and Panait [91℄ om-pared �ve major tree generation algorithms on two problems and onluded that there wasno di�erene in performane between the algorithms. However, results on a third problemindiate that the uniform method has an inferior performane to the ramped half-and-halfmethod.



CHAPTER 2. LITERATURE REVIEW 27The ramped half-and-half method reates a set of trees for the initial population. Theproess by whih these trees are reated is that given a maximum and minimum depth,M=(maximum�minimum+1) trees are reated at eah depth. Half the trees at eah depthare reated using the full method and the other half using the grow method. The full methodalways reates a full tree to the omputed tree depth. The grow method however, reatesrandomly shaped trees that do not exeed the omputed tree depth. It is not unommon forthe initial population to be restrited to a smaller maximum depth ompared with programsthat are evolved during the evolutionary searh.The uniform method takes a single pre-de�ned tree-size, and guarantees that it will reatea tree hosen uniformly of that tree size.



CHAPTER 2. LITERATURE REVIEW 282.5.1.2 Geneti OperationsIn geneti programming there are three type of geneti operators used for reating individualsfor the new generation. These are reprodution, rossover and mutation. The hoie ofoperator is determined probabilistially and generally speaking PC >> PM and PR � 0�0:1.Reprodution is the opying of an individual from the urrent generation into the nextgeneration. If a small number of the best individuals are opied the proess is alled elitism.Elitism guarantees monotoni improvement in �tness.Crossover reates two programs for the new population by rossing over or swapping sub-trees of two seleted programs (refer to Figure 2.7a). The o�spring are reated by randomlyhoosing a node from eah parent program and swapping the sub-trees between the nodes(refer to Figure 2.7a).Mutation reates a new program by randomly hoosing a node and introduing a newsub-tree into the program at that node (refer to 2.7b).The theory for justifying the probabilities for rossover and mutation in geneti algorithmsdoes not apply to geneti programming beause the tree-based genome is signi�antly di�erentto the vetor-based genome [92℄. Sine theory for hoosing probabilities for rossover andmutation is laking and researh by Luke et al. [92℄ onluded \why one is preferable tothe other is dependent on domain and parameter settings", our deision for rossover andmutation probabilities will be based on literature in geneti programming applied to image-related appliations (refer to Table 2.5).



CHAPTER 2. LITERATURE REVIEW 29

(a) Crossover (b) MutationFigure 2.7: Geneti operators: Crossover and mutationFive major steps that require onsideration prior to applying geneti programming to aproblem are outlined by Koza [75℄. These steps are:1. Terminal set2. Funtion set3. Fitness measure4. Parameters5. Termination riteriaMost of these steps are spei� to a partiular problem domain. Eah step will be ad-dressed in Setion 2.5.2 by fousing on literature relating to geneti programming applied toimage-related appliations.2.5.2 Vision and image appliations related to GPThis setion is a survey of literature on geneti programming related to objet detetionand other appliations in the image domain. The literature has been divided into setionsrelevant to a problem domain and sorted in order of relevane to our spei� problem. Themost relevant problem domain is objet detetion followed by image lassi�ation and image



CHAPTER 2. LITERATURE REVIEW 30proessing. A summary of the literature is shown in Table 2.2. It is worth noting thatgenerally objet detetion is an extension of lassi�ation.Domain Appliation Soure Year
Detetion Detetion of vehiles in IRLS images Howard et al. [58, 60℄ 2006, 1999Detetion of simple objets Roberts et al. [119℄ 2004Objet detetion in retinal images Zhang et al. [164, 165,166℄ 2003, 2000, 1999Detetion of ships in SAR images Benson et al. [8, 9℄ 2000Detetion of ships in SAR images Howard et al. [59℄ 1999Target detetion Takett [141℄ 1993
Imagelassi�
ation Mineral lassi�ation Ross et al. [123, 124℄ 2005, 2002Image texture feature extration Lam et al. [79℄ 2004Texture lassi�ation Song et al. [133, 135℄ 2003, 2002Text/piture lassi�ation Agnelli et al. [2℄ 2002Digit reognition Teredesai et al. [144℄ 2002Spetral imagery De Falo et al. [33℄ 2002Class'n of hyper-spetral imagery Rauss et al. [114℄ 2000Faial reognition Winkeler et al. [157℄ 1997Classi�ation of SAR images Daida et al. [31, 32℄ 1996, 1996Classi�ation of brain tumours Gray et al. [53℄ 1996Class'n of remote sensing imagery Riolo et al. [116℄ 1995Objet lassi�ation Teller [142℄ 1995
Imageproes
sing Color onstany Ebner [38℄ 2006Mathematial morphology Quintana et al. [110℄ 2006Impulse noise �lter Petrovi� et al. [106℄ 2005ROI extration Bhanu et al. [10℄ 2004Text Segmentation Rivero et al. [117℄ 2004Segmentation Lin et al. [84℄ 2002Thresholding Rosin [121℄ 2001Edge detetion Ross et al. [122℄ 2000Edge detetion Luier et al. [88℄ 1998Edge detetion Harris et al. [56℄ 1996Segmentation Poli [107, 108℄ 1996Other Low level feature extration Trujillo et al. [148℄ 2006Autonomous robot vision Martin [95, 93, 94℄ 2006, 2002, 2001Orientation detetion Roberts et al. [120℄ 2000Sparse optial ow Ebner et al. [39℄ 1999Morave operator Ebner et al. [37℄ 1998Table 2.2: Summary of geneti programming literature in the vision and image domain.2.5.2.1 GP applied to objet detetion problemsThis setion is a survey of literature using geneti programming for the purpose of loatingsmall objets in omplex images. Zhang et al. [165, 168℄ desribed a domain independent



CHAPTER 2. LITERATURE REVIEW 31approah using geneti programming to detet the loation of multiple lass objets. Zhanget al. de�ne domain independent as being able to apply the same approah to any problemand the approah will work unhanged. The approah utilises features that are omposed of:(a) raw pixels diretly or (b) easily omputed pixel statis suh as the mean and variane ofpixels within generi shapes. These features are not spei� to any type of problem and arereferred to as domain independent features.The work was tested on a suite of objet detetion problems ranging from easy, synthetiimages, medium, heads and tails of Australian oins, to a more diÆult problem of detetinghaemorrhages and miro-aneurisms in retinal images. Zhang et al. [166℄ found that usinggeneti programming as a method greatly redued the number of false alarms in imagesompared to a neural network. The detetion rate using the geneti programming methodwas also superior.Howard et al. [59℄ used geneti programming to evolve a detetor that an automatiallydetet ships in syntheti aperture radar SAR images. Results obtained by Howard et al. [59℄ompared favourably when benhmarked with previous work on the same problem using a self-organising Kohonen neural network and a multi-layered pereptron neural network. Benson[8, 9℄ used �nite state mahines with embedded geneti programs FSM(GP) to perform thetask of automati target detetion and applied to the same problem as Howard et al. [59℄.A omparison of test results using �gure of merits (FOM) as the measure was demonstratedfavourable for the FSM(GP) when ompared with Howard et al. [59℄.Howard et al. [58, 60℄ modi�es the multi-stage method using geneti programming from[59℄ to detet vehiles in infrared line san (IRLS) images. A omparison of detetion perfor-mane using simple and textural statistis in the seond stage detetors onluded that thatthe textural statistis were marginally superior to simple statistis.Takett [141℄ applied geneti programming for lassifying targets/non-targets in IR im-agery. Two experiments using di�erent terminal sets were performed using GP for traininga lassi�er. The geneti programming method was ompared to a neural network and binarytree lassi�er and in both ases the geneti programming method produed fewer false alarms.Roberts et al. [119℄ oevolved both feature extration and objet detetion using genetiprogramming to detet simple objets in arti�ial and natural images. Although the approah



CHAPTER 2. LITERATURE REVIEW 32was only applied to detet relatively simple objets, Roberts et al. stated that the algorithmwas able to automatially hoose features thought to be appropriate rather than requiring ahuman designer to manually hose features.2.5.2.2 GP applied to image lassi�ation problemsThis setion is a survey of literature using geneti programming for the purpose of lassi�a-tion. Agnelli et al. [2℄ applied geneti programming for lassifying douments into one of twolasses, i.e. text segments and piture segments. The evolved lassi�er was applied to a largedata set and good auray was ahieved. Agnelli et al. on p. 308 noted that a reason forusing GP was beause the symboli nature make the solutions easier to understand omparedto \neural networks and most lassi�ers". This may allow an expert to gain insight in thedomain. Song et al. [136℄ presented two lassi�ation methods using geneti programming forlassifying Brodatz textures. The results demonstrated that geneti programming was ableto lassify textures, and showed that the dynami range seletion method of lassi�ation notonly had a higher auray but also onverged at a faster rate ompared to the stati rangeseletion.Preliminary work presented by De Falo [33℄ applied GP to the lassi�ation of spetralpattern reognition. Results were reported as \positive and enouraging". Ross et al. [123℄used geneti programming for lassifying minerals from hyperspetral images. This workis losely related to the work by Rauss et al. [114℄ that evolved lassi�ers to detet grassin spetral images. The work illustrated that a lassi�er ould be evolved for auratelydeteting the existene of a partiular mineral. Rauss et al. [114℄ used geneti programmingas a tool for lassifying spetral imagery. More spei�ally the aim was to lassify grass fromthe spetral images. It was reported that lassi�ation was not ideal when presented withnew examples during testing. Daida et al. [31℄ used geneti programming to extrat ridgeand rubble features in multi-year ie from earth resonane satellite (ERS) syntheti aperatureradar (SAR) data. The author reported that the results are exellent and ompare favourablywith a manually interpreted ERS SAR data produt.Gray et al. [53℄ ompared geneti programming to a neural network for lassifying tumorsfrom a nulear magneti resonane spetra of biopsy extrats. A omparison of lassi�ation



CHAPTER 2. LITERATURE REVIEW 33auray for the geneti programming and neural network approah showed a lassi�ationauray of 80% and 90% respetively. A �nding by Gray et al. was that the evolutionaryproess found simple programs that were as ompetitive at lassifying as more ompliatedsolutions.Riolo et al. [116℄ proposed geneti programming for the purpose of lassifying satelliteremote sensing imagery. The goal is to predit whether a pixel represents water or not, basedon the information from the spetral bands. The results, although preliminary, showed thatthe method was able to disover simple relationships that ould orretly predit >98% fortraining and testing data.2.5.2.3 GP applied to image proessing problemsThis setion is an outline of literature relating to the use of geneti programming for imageproessing. This area of researh is less relevant to our problem, i.e. lassi�ation andloalisation of landmarks, and therefore only a brief outline will be given to desribe wheregeneti programming has been used to evolve programs for image proessing tehniques.These inlude edge detetion, segmentation and thresholding.Luier et al. [88℄ used geneti programming to evolve an edge detetion program, however,the test set was limited to three `toy' images of varying diÆulty. However, the Ross etal. [122℄ work was applied to a real world problem of deteting grain edges in petrographiimages. The results demonstrated that an evolved edge detetor was able to perform better atloating �ne grain edges than an edge extration proedure that required ten steps to extratthe edges. As a omparison to the GP approah, a neural network was learnt using thesame training data. The results from the neural network approah were onsidered inferior,with the authors onluding that a more areful approah to the seletion of data neededto be undertaken. Harris et al. [56℄ used GP to repliate Canny's Gaussian �rst-derivativeapproximation, however, the work was only applied to a one dimensional signal.Lin et al. [84℄ used geneti programming to �nd omposite operators to extrat regions ofinterest from an image that ould also be applied to similar images. Poli [107, 108℄ used GP,and a ombination of simple terminals, funtions and �tness funtions, to evolve a programto segment regions of interest in medial images. The GP approah was able to outperform



CHAPTER 2. LITERATURE REVIEW 34neural networks. Poli suggested that GP ould be used as an approah to reate imageanalysis tools muh more powerful than those urrently used in image proessing. Rosin[121℄ used geneti programming to detet the presene of landslides in multi-temporal aerialimages. A multi-temporal analysis deals with the detetion of hanges in pairs of imagesaquired in the same geographial area at di�erent times [18℄.2.5.2.4 Terminal setIn the ontext of using geneti programming in objet detetion problems, terminals generallyorrespond to image features. An important omponent of geneti programming is determin-ing what are useful features for solving a problem. However, this is one of the diÆulties ofsolving real world problems when domain knowledge is not available. If the feature set is notsuÆient to express a solution, then GP is unable to solve the problem. However, ontainingtoo many extraneous or redundant features in the terminal set auses the eÆieny of GPto derease aused by futile searhing in the higher-dimensional searh spae. Koza in [74℄demonstrated on a symboli regression problem that extraneous features redue the probabil-ity of suess. Ok et al. in [101℄ proposed an adaptive mutation based on terminal weightingfor �nding relevant features from a terminal set. However, although the results were promis-ing, the method was only applied to a symboli regression problem and not extended to realworld problems. Therefore hoosing relevant features is a areful seletion proess that seeksto minimise extraneous features.Although some work uses image pixels diretly, most work in GP applied to objet dete-tion problems have used a terminal set omposed of features alulated using simple statistisapplied to pixel values [8, 58, 59, 60, 141, 164, 165, 166, 168℄. Generally speaking, the inputwindow was divided into various shapes similar to those shown in Figure 2.8 and the meanand standard deviation of pixel values alulated for eah shape. However, Zhang et al. [165℄,Howard et al. [58℄ and Takett [141℄ used features desribed as rotational invariant statis-tis, textural statistis and moment and intensity based features respetively. In eah of theseases it was demonstrated that simple statistis had superior performane by produing fewerfalse alarms. Takett hypothesised that the non-linear nature of GP ombined with simplestatistis may be disovering features better suited to the problem than human-synthesised



CHAPTER 2. LITERATURE REVIEW 35features. Another advantage of using simple statistis is the speed of proessing beause ofthe low omputational overhead.In addition to image features, Zhang et al. [164, 166, 168℄ also used a terminal whihgenerates a random number in the range [0, 255℄; the range orresponding to the number ofgrey levels in the image.
(a) Zhang et al. [168℄ (b) Howard et al. [59℄ () Howard et al. [58, 60℄Figure 2.8: Shapes used for alulating features.2.5.2.5 Funtion setOne of the problems with geneti programming is hoosing a set of funtions that is ableto solve the problem. Work performed by Koza [74℄ indiated that geneti programming isunable to solve the problem if the funtion does not ontain the neessary operators, howeverif the funtion set inludes irrelevant operators then the performane will be degraded. Workby Wang et al. [152℄ supports this hypothesis based on the results from three di�erentproblems. They found that if too many operators are inluded in the funtion set then thismay degrade performane. This is beause the extra operators lead to an inrease in searhspae.Wang [153℄ experimented with various funtion sets for solving a sequene indution prob-lem and two symboli regression problems. The resulting experimentation on the problemsfound two ommon harateristis with the best performing funtion set. The investigationrevealed that the funtion set ontained operators similar to the target funtion and thefuntion set ontained the smallest number of operators. Although the �rst point is an in-teresting observation, the diÆulty with many real world problems is that we do not know



CHAPTER 2. LITERATURE REVIEW 36what operators are required prior to solving the problem.Soule et al. [138℄ ontradits the �ndings by Wang [153℄ that the best funtion set ontainsoperators found in the target funtion. The aim of Soule et al. work was to evolve a funtionfor the problem in Equation 2.8. They found that a smaller funtion set f+, �, �, /, pjjgwas able to outperform a funtion set ontaining the exat operators f+, �, �, /, pjj, tangrequired to repliate Equation 2.8, although this onlusion is based on the average �tnessand not the optimal solution. They onluded by saying \that better information regardinghow to hoose funtion sets ould signi�antly improved GP performane" [p. 190℄. So asan initial investigation to our objet detetion problem we are guided by the operators thathave been used in objet detetion and image lassi�ation problems.sin(x) = tan(x)p1 + tan2(x) (2.8)One thing ommon in the literature is that the funtion set should use the smallest orminimalisti approah to hoosing operators for solving the problem. This plaes an emphasisfor hoosing the orret operators for solving the problem in order to minimise the searhspae. Zhang [164℄ also demonstrated that using additional operators in the funtion setdoes not improve detetion rate and may also redue the rate of onvergene when trainingprograms to detet objets in diÆult images.Table 2.3 is a summary of operators that are used for objet detetion and lassi�ationproblems in image-related appliations. The most ommon set of funtions used by genetiprogramming for vision and image-related problems are the +, �, � and / operators. Otheroperators that appear frequently are boolean and (min and max) operators, and less itedoperators inlude trigonometri operators (sine, osine, tangent) and exponential operators.It is hard to see how periodi funtions suh as sine and osine assist with reating a betterlassi�er sine data in vision and image-related appliations are generally not periodi. Theonly appliation where a periodi funtion may be useful is evolving a program for removingperiodi noise.



CHAPTER 2. LITERATURE REVIEW 37Domain Soure Appliation +,�,�,/ Boolean min,max Other
Detetion

Zhang et al. [165℄ Objet detetion X XZhang et al. [168℄ (a) Objet detetion X(b) Objet detetion X XZhang et al.[166℄ Objet detetion XBenson[8℄ Det'n of ships in SAR images X X XHoward et al.[59℄ Det'n of ships in SAR images X XHoward et al. [58, 60℄ Det'n of vehiles in IRLS images X XTakett [141℄ Target detetion X X
Imagelassi�
ation Agnelli et al. [2℄ Texture/piture lassi�ation X X XTeredesai et al. [144℄ Digit lassi�ation X XSong et al. [136, 135℄ Texture lassi�ation X XRoss et al. [123℄ Mineral lassi�ation X XRauss et al. [114℄ Class'n of spetral imagery XWinkeler et al. [157℄ Faial reognition XDaida et al. [31, 32℄ Classi�ation of SAR imagery XGray et al. [53℄ Classi�ation of brain tumors X X XRiolo et al. [116℄ Classi�ation of RS imagery X XTeller et al. [142℄ Objet lassi�ation X XTable 2.3: Summary of operators made available as part of the evolutionary proess for visionand image appliations.2.5.2.6 Performane measures using geneti programmingIn determining a performane measure for solving problems in geneti programming, as withany mahine learning algorithm, it is important to ensure the goals of the problem have beenaptured. A general overview was given on how to measure the performane of objet de-tetion systems in Setion 2.2.1. As mentioned previously, the performane of a program ingeneti programming is measured aording to a �tness riteria and the population of pro-grams are ranked aording to the measured �tness. As part of the evolutionary proess the�ttest programs are reprodued and opied so that they an partake in the next generation.In the ontext of objet detetion in image-related appliations, �tness is measured usinga ombination of true positives and false positives, i.e. the number of objets orretlyand inorretly deteted respetively. Several variations of �tness funtions used to measurethe performane of objet detetion systems are shown in Table 2.4. Eah of these �tnessmeasures an be desribed as aggregating funtions beause the objetives are ombined toprodue a single funtion. The advantages and disadvantages of aggregating funtions aredesribed in Setion 2.2.1.1.



CHAPTER 2. LITERATURE REVIEW 38Soure Appliation Fitness funtionZhang et al. [165℄ Objet detetion �FR+ �(1�DR) + ÆFAAZhang et al. [166, 168℄ Objet detetion �FR+ �(1�DR)Benson et al. [8, 9℄ Det'n of ships in SAR images �TPFP+Nt + �TNFN+NoHoward [59℄ Det'n of ships in SAR images Phits(5�target grade)Ptargets(5�target grade+FP ) � 1Howard [58, 60℄ Det'n of vehiles in IRLS images �TPns+�FPTable 2.4: Fitness funtions used for measuring the performane of programs for objetdetetion problems.Computer vision problems using geneti programming for lassi�ationIn Setion 2.2 we desribed objet detetion as the task of lassi�ation and loalisation.This setion gives a summary of literature relating to lassi�ers in geneti programming foromputer vision related problems, suh as objet detetion and image proessing. The mostommon approah to lassi�ation in geneti programming is to use a representation similarto Figure 2.4 on page 23. In this ase, the output of the evolved program is a real numberthat needs to be mapped to a deision. In the ontext of lassi�ation or objet detetion,the real number is onverted into a deision about the lass or objet respetively.The majority of geneti programming literature relating to image lassi�ation uses aboundary as a deision point that is used to di�erentiate between two lasses, i.e. ob-jet/bakground, target/lutter, edge/non-edge, piture/text, et. The lassi�ation of prob-lems into two lasses using GP is relatively simple where the most ommon approah is to usezero as the deision point between the two lasses [2, 88, 107, 122, 141℄. This is illustratedin Figure 2.9. For example, when a program is applied to an instane of data, the output isomputed returning a value and the lass is hosen depending on whether the value is nega-tive or positive. An exeption to this is work by Teredesai et al. [144℄ that de�nes an intervalbetween the two lasses as unertain (refer to Figure 2.9). However, the problem with thisapproah is the output returned by the program an be orders of magnitude greater thanthe de�ned interval and so the deision between lass boundary an still be blak and white.Song et al. [136℄ ompared dynami range with stati range seletion to lassify textures



CHAPTER 2. LITERATURE REVIEW 39and found dynami range seletion to have a higher detetion auray and solutions tend toonverge in less generations.When a problem has more than two lasses then multiple binary lassi�ers have beenused in parallel and a heuristi is used to distinguish between the di�erent lasses [114, 123,142, 144℄. An exeption to this is work by Zhang et al. [164, 165, 166℄ who used the outputreturned from the program as per the binary lassi�er, however, in this instane the objetlasses were divided into a disrete number of steps eah representing a separate lass (referto Figure 2.9). A foreseeable issue with the Zhang et al. approah is that a di�erent setof features may be required for loating objets in seperate lasses. Whilst it is possibleto ombine many features using geneti programming, using this approah may make thesearh unneessarily large when evolving a detetion program to loate many di�erent typesof objets.

Figure 2.9: The mapping of binary and multiple lasses to a deision using three onepts oflass deision boundaries. Zero boundary (left), dealing with indeision (middle) and multiplelass lassi�er (right).2.5.3 ParametersTable 2.5 is a summary of geneti programming run-time parameter values by [2, 8, 33, 58, 114,123, 136, 135, 144, 157, 165, 166, 168℄ whih have been used by geneti programming to solveimage-related appliations. The run-time parameters are used used by geneti programmingduring training.Population size,M , is the number of individuals in the population, maximum generations,



CHAPTER 2. LITERATURE REVIEW 40G, is one of the termination riteria to end the evolutionary proess, maximum depth, D, isthe maximum tree depth allowed for programs and the initial maximum tree depth, d, is themaximum tree depth allowed in the initial generation. Reprodution, PR, rossover, PC , andmutation, PM , are the probabilities of seleting a partiular geneti operation to reate newindividual(s). For a de�nition of the geneti operations refer to Setion 2.5.1.2.Parameters RangePopulation Size, M 100-5000Maximum generation, G 100-2000Maximum depth, D 8-20Initial maximum depth, d 4-6Probability of:Reprodution, PR 0-0.10Crossover, PC 0.65-0.95Mutation, PM 0-0.25Table 2.5: A range of geneti programming run-time parameter values that have been appliedto image-related appliations.2.5.3.1 Termination riteriaAn evolutionary run requires a set of riteria for deiding when the evolutionary proessshould be terminated. The termination riteria onsist of either satisfying suess riteriaor the evolutionary proess reahing a prede�ned number of generations at whih point theevolutionary run will be terminated. The suess of a program an be easily measuredand ompared against the goals of the problem, however, hoosing how many generationsthat onstitutes an evolutionary run is more ompliated. Deiding when to terminate anevolutionary run is diÆult beause if a run is stopped too early the pratitioner may not havetaken best advantage of the evolutionary searh. However, if the evolutionary run is allowedto ontinue, the searh may have prematurely onverged and beome stuk at a sub-optimalsolution resulting in diminishing returns if the evolutionary proess is allowed to ontinue.Therefore if the goal is to ahieve a solution of a ertain standard then it may be more eÆientto terminate and start another run.A method popularised by Koza [75℄ for determining when a run should be terminateduses the umulative probability of suess. However, this assumes either the disovery of anoptimal solution or de�ning what onstitutes a suessful solution. Luke [90℄ presented a



CHAPTER 2. LITERATURE REVIEW 41method for omparing the quality of solutions from a long single run with multiple shorterruns. The method was applied to a problem in three domains and Luke onluded that itmakes more sense to do multiple shorter runs, m runs of n=m generations, than one longrun of m generations. There are other riteria for determining termination riteria suh asmeasure of diversity or the �tness reahing a plateau [55℄.2.5.4 Some issues with using geneti programmingSome of the issues relating to ustomising geneti programming to solve problems in theimage-related domain have been disussed above. The following are some other issues thatare known in the geneti programming domain:� Over �tting is an ourrene where the performane on the training examples still in-reases while the performane on unseen data beomes worse. A way to avoid over�ttingis to use a large training data set, however, it is not unommon for the dataset to on-tain a �nite number of samples. As a way of visually assessing whether over �ttinghas ourred, Langdon et al. in [80℄ plotted training versus test performane usingthe best individual from eah evolutionary run. If the points are sattered about thediagonal line then little over �tting has ourred. An example of a training versus testperformane graph is shown in Figure 5.7.� Premature onvergene ours when the population onverges to a suboptimal solu-tion. Banzhaf et al. in [7℄ suggest that improving the diversity of programs within apopulation is the key to reduing premature onvergene.� Problem representation is an issue for diÆult real world problems where there is no apriori knowledge of the types of features and terminals required to solve the problem.Seleting a suitable ombination of features and terminals is akin to possessing theorret ingredients to bake a ake. We stated in Setions 2.5.2.4 and 2.5.2.5 that if theterminal or feature sets are not suÆient then GP is unable to solve the problem, how-ever, if the sets ontain too many extraneous terminals/features then the performaneof GP will derease.



CHAPTER 2. LITERATURE REVIEW 42� Saling problem diÆulty is an issue in geneti programming beause as the size andomplexity inreases so does the size of the searh spae and the time taken to �nd anoptimal solution. Luke in [89℄ states that this makes the solution vulnerable to bloat.Gustafson et al. in [55℄ disussed the relationship between problem diÆulty and odegrowth and stated that the inreased rate of ode growth is indued by the higherseletion pressure and less geneti diversity.� Bloat, or ode growth, is a term given to desribe the proess of ode growing over time[35℄. Code growth in geneti programming is aused by the variable length representa-tion. Soule et al. in [137℄ stated that most ode growth onsists of ode that does notontribute to a program's performane. Code segments not ontributing to a program'sperformane are ommonly referred to as introns. Researh on the usefulness of bloatis mixed, however, there is a large amount of literature dealing with the issue of redu-ing bloat. Reasons given why bloat should be prevented are: larger programs may beindiative of over �tting [81, 141℄; bloat fores the evolutionary proess into stagnation[5℄; and the proessing of extraneous ode adds to the omputation time [35℄. The twomost ommon approahes to redue bloat are: limiting the tree depth of a program; orinorporating program size as part of the �tness measure (this is ommonly referred asparsimony pressure).� Program understandability is an issue in geneti programming beause of the diÆultyof interpreting the funtion of evolved programs. Prior to implementing the programin a real system, it is neessary for engineers and the like to to have understandingof the funtioning of the system. The following setion is a summmary of previousresearh performed to improve the understandability of programs generated by thegeneti programming paradigm.2.5.4.1 Improving program omprehensibilityMost programs disovered using geneti programming are treated as a blak box, i.e. GP isrun and the learnt program, or `best individual', is blindly applied to unseen data without anyunderstanding of the learnt program. Although geneti programming works relatively well on



CHAPTER 2. LITERATURE REVIEW 43many types of problems the generated programs are often unintelligible. Generally speaking,geneti programming literature is very thin when it omes to providing any explanation aboutthe learnt programs.Ideally, the goal is to disover a set of programs that is able to solve the problem whilst atthe same time being omprehensible to the user. Previous work using geneti programminghas been applied to disover omprehensible programs in real world problems [15, 66, 100℄.Ngan et al. in [100℄ were able to disover additional knowledge, beyond some general knowl-edge already known, for two real world problems. Song et al. [134, p. 2099℄ determinedthat the generated texture lassi�ers for binary textures were not ad-ho, and in fat be-haved \as template mathers and frequeny analysers". However, when geneti programmingwas trained to lassify omplex greysale textures the generated texture lassi�ers were morediÆult to understand. An advantage of disovering knowledge in the learnt program is toprovide insight and allow a better understanding of how the problem is solved.Bojarzuk et al. in [15℄ state that most geneti programming literature assoiates om-prehensibility with small programs - the likely reason is when a program inreases beyonda ertain size the omprehensibility dereases. As a result, researh for disovering ompre-hensible programs for diÆult real problems has been limited beause of their assoiationwith problem omplexity that is related to program size. Johnson et al. in [66℄ assoiatesthe inrease in program omplexity, as a result of bloat, with the redution in interpretabil-ity. We previously stated that one of the ommon approahes to ombat bloat is to applyparsimony pressure, whih has subsequently been applied to inrease program understand-ability [34, 57, 66, 78, 134℄. Lai in [78℄ demonstrated that using parsimony pressure makesthe programs easier to understand ompared to using no parsimony pressure.2.6 Pulse Coupled Neural NetworksSetion 2.5.2.4 ontained a disussion about the advantages of dividing an input window intovarious shapes and then omputing simple statistis to be used as features ompared to usingomplex features, e.g. Wavelets. However, deiding how to divide the input window into aset of shapes that will give GP the best opportunity to evolve a program is diÆult. We



CHAPTER 2. LITERATURE REVIEW 44believe that extrating regions of interest in noisy and low ontrast images will improve thedetetability of landmarks loated within luttered images.2.6.1 The PCNN modelA tehnique that has shown potential to extrat regions of interest is the Pulse CoupledNeural Network (PCNN). The PCNN model in [68℄ is a modi�ation of the Ekhorn linking�eld network [40℄. The Ekhorn model was biologially inspired from a at's visual ortexand modi�ed to be used as an image proessing algorithm [67℄. In essene, the PCNN modelis a digital simulation of the at's visual ortex. The PCNN model generates a sequene ofbinary images that ontain segments and edges by iterating Equations 2.9-2.13. Waldemarket al. in [150, p. 241℄ desribe the output from the PCNN model as a series of binary images,where \eah binary image ontains di�erent sets of segments from the original image".

Figure 2.10: A blok diagram of the PCNN.The blok diagram of the PCNN model shown in Figure 2.10 ontains two main ompart-ments: the feeding, Fij [n℄, and linking, Lij[n℄, ompartments. Eah of these ompartmentsommuniates with neighbouring neurons through synapti weights ofM andW respetively.Eah ompartment retains its previous state but with a deay fator and only the feedingompartment reeives an input stimulus, Sij , i.e. the pixel intensity at loation (i; j). Thevalues for the feeding and linking ompartments are omputed using Equations 2.9 and 2.10respetively. Ykl[n� 1℄ are the outputs of neurons from a previous iteration. The onstants



CHAPTER 2. LITERATURE REVIEW 45�F , �L and �T are deay terms for feeding, linking and threshold respetively, and VF , VLand VT are magnitude saling terms for feeding, linking and threshold respetively.
Fij [n℄ = e�F ÆnFij [n� 1℄ + Sij + VFXkl MijklYkl[n� 1℄ (2.9)Lij [n℄ = e�LÆnLij [n� 1℄ + VLXkl WijklYkl[n� 1℄ (2.10)Uij [n℄ = Fij [n℄f1 + �Lij[n℄g (2.11)Yij [n℄ = 8><>: 1 if Uij [n℄ > �ij[n� 1℄0 Otherwise (2.12)�ij [n℄ = e�T Æn�ij[n� 1℄ + VTYij[n℄ (2.13)The two ompartments are then ombined to reate an internal state of the neuron, Uij [n℄,whih is ontrolled by the linking strength, � { refer to Equation 2.11. At this point, theinternal state of the neuron is then ompared to a dynami threshold, �ij[n℄, to produe anoutput, Yij[n℄ { refer to Equation 2.13. The output is either 0 or 1 whih produes a binaryoutput at loation (i; j) at iteration n. The threshold is dynami by the fat that when theneuron �res, the threshold inreases its value and then deays until the neuron �res again {refer to Equation 2.13. The series of equations are iteratively omputed from Equation 2.9through to Equation 2.13 whih is stopped at the disretion of the user.2.6.2 PCNNs applied to image-related appliationsStudies into the feasibility of the PCNN applied to image-related appliations have been di-verse, overing a range of domains that inludes military and medial imagery. The PCNNhas been applied to images requiring smoothing, segmenting and feature extration. How-ever, in the ontext of our problem we will only be disussing PCNN literature relevant tosegmenting regions of interest.Preliminary researh of PCNNs in medial imaging has produed promising results whenloating regions of interest in the following areas: segmentation of brain struture and ab-domen struture in MRIs [72℄; segmentation of lungs in pulmonary sintigraphi images [72℄;



CHAPTER 2. LITERATURE REVIEW 46identi�ation of the left ventriular endoardial border in ehoardiographi images [159℄;segmentation in mammogram imagery [67, 86℄ and isolating arteries from veins in retinalimages [67℄. The above examples demonstrated that the PCNN was able to segment regionsof interest in real-world medial images. With the exeption of the aforementioned medialexamples, the PCNN also produed promising results when segmenting regions of interestin images having poor signal-to-noise ratios. For example, the PCNN was used for de�ningregion boundaries and disriminating spei� regions of interest in spetral images [29℄ andRanganath et al. in [76, 112℄ reported perfet segmentation of a simple problem even whenthe intensity ranges overlap.However, an issue with the PCNN is that the general onsensus by [21, 67, 72, 76, 139,151, 150℄ is that for automati segmentation to be viable for a large range of images, furtherresearh into a better understanding of the set parameters and the parameter relationshipsis required. Waldemark et al. in [151℄ suggested that feedbak ould allow the parameters tobe dynamially altered giving a higher attention to regions of interest. Preliminary researhby Ranganath et al. [113℄ uses a semi-intelligent method to adjust the parameters. Firstlya PCNN is used to suppress noise followed by a seond PCNN to segment the image. Dur-ing eah iteration of the segmentation stage, a ontrol module deletes regions from furtherproessing that do not meet ertain riteria based on prior knowledge of the region.2.7 Automati ephalometri landmarkingCephalometri landmarks are a set of raniofaial points of interest that are used by anorthodontist to determine the physial normality of the patient; this is a simple de�nitiondesribing a ephalometri analysis. If the patient deviates from the pre-de�ned norm, theorthodontist is able to determine a treatment plan based on the linear and angular relation-ships of the landmarks to orret the abnormality. The type of ephalometri landmarksrequired are ditated by the type of ephalometri analysis that is performed. Figure 2.11 isan illustration of 52 landmarks and their spatial relationships. The proess of loating thepositions of these landmarks is time onsuming and mundane and is a proess orthodontistswould like to automate.
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1. Sale #1 20. Gonion 39. Upper Lip Sup2. Sale #2 21. Artiulare 40. Upper Lip Mid3. Orbitale 22. Condylion 41. Upper Lip Inf4. Porion 23. PterygoMaxillary Fissure Apex (PTV) 42. Upper Lip Height5. Basion 24. Post Olusal Plane 43. Lower Lip Height6. Sella 25. Ant Olusal Plane 44. Lower Lip Sup7. Nasion 26. Mesial Upper 6 45. Lower Lip Mid8. A Point 27. Distal Upper 6 46. Lower Lip Inf9. Ant Nasal Spine 28. Mesial Lower 6 47. Mental Fold Sup10. Post Nasal Spine 29. Forehead 48. Mental Fold Mid11. Apex Upper Inisor 30. Nasion Sup 49. Mental Fold Inf12. Inisal Upper Inisor 31. Nasion Mid 50. Chin Sup13. Inisal Lower Inisor 32. Nasion Inf 51. Chin Mid14. Apex Lower Inisor 33. Nose Sup 52. Chin Inf15. B Point 34. Nose Mid 53. Soft Menton16. Pogonion 35. Nose Inf 54. Odontoid Sup17. Gnathion 36. Philtrum Sup 55. Odontoid Inf18. Menton 37. Philtrum Mid 56. Cervial Vertebra 419. Md Plane Tangent 38. Philtrum InfFigure 2.11: De�nition of ephalometri landmarks



CHAPTER 2. LITERATURE REVIEW 482.7.1 Previous work in ephalometri landmarkingTraditionally a ephalometri analysis was performed by manually traing points on a lateralephalometri �lm X-ray. However, more reently a semi-automated approah has beendeveloped whih allows an orthodontist to mark the positions of landmarks on a digitised�lm using a omputer system and mouse. After the relevant landmarks have been enteredthe omputer system performs the ephalometri analysis. As a natural progression to thesemi-automated approah and whilst not a new idea, an automated approah to loatingephalometri landmarks was �rst proposed by Hussain et al. [64℄ in 1985.To date, no fewer than twenty independent researhers have attempted to automati-ally loate ephalometri landmarks in one form or another. Researh into automating theephalometri analysis an be ategorised into the following two setions: traditional omputervision and mahine learning. Prior to 1990, the fous of researh was to loate landmarksusing image proessing tehniques in onjuntion with handrafting anatomial knowledge(non-mahine learning) [83, 104, 145, 146℄. However, post-1990 researh has foused on usingmahine learning algorithms for loating landmarks [19, 20, 24, 25, 63, 87℄. Although themore reent researh has produed promising results, landmarking thus far has been unsu-essful for reasons inluding: poor detetion auray, a lak of algorithmi robustness andsmall test sets.2.7.1.1 Traditional omputer visionThe following historial bakground provides an outline of the signi�ant researh, in terms ofresults, for automatially deteting landmarks with a ritial disussion of de�ienies. Thefollowing disussion is based on literature that uses a non-mahine learning methodology orhandrafting for landmark detetion.Levy-Mandel et al. [83℄ proposed a knowledge-based line-followingmethod that aountsfor hanges in biologial shapes. The a priori knowledge for eah landmark was enoded intoalgorithms. The lines were extrated using a set of image proessing operations. The testimages used were from a very stringent seletion of X-rays digitised to 256�256 pixels and256 grey-levels, i.e. head arefully positioned, no �lled avities or missing teeth. The results



CHAPTER 2. LITERATURE REVIEW 49laim a suess of 23 from 36 landmarks, however, the size of the test set was not given. Itwas also laimed that 13 of the landmarks were not found beause the lines were not presenton the digitised X-ray.Parthasarathy et al. [104℄ proposed to automatially loate nine landmarks based ona priori knowledge of human faial struture. The original ephalogram was �rst digitisedto 480�512 pixels and a four-level resolution pyramid was reated to improve the eÆienyof the searh. The resolution pyramid works on the lowest resolution for loating featuresof interest and moves to higher resolutions to re�ne the searh. The algorithm subsequentlyapplies a series of digital image proessing and feature reognition tehniques to enhane theimages. At this point, the landmark is loated using a set of handrafted rules based on apriori to trak the faial struture's pro�le whih is relevant to the detetion of the landmark.The results for nine landmarks and a test set of �ve images, on average 58% were loatedwithin an error of 2 mm.Tong et al. [145, 146℄ presented an extension to Parthasarathy et al. [104℄ by loating anadditional seventeen landmarks. The seventeen landmarks are loated in both bony struture(nine landmarks) and soft tissue (eight landmarks). The initial pre-proessing steps are perParthasarathy et al., i.e. a resolution pyramid is reated from a digitised image and further�ltering tehniques are applied to trae the bony struture of the jaw. The soft tissue pro�leis found by applying �ltering tehniques with a priori knowledge of the skull anatomy. Thealgorithm uses the soft tissue pro�le and features inside the skull to determine new landmarksas well as previous landmarks to ompute regions of interest for further region enhanement.The test set onsisted of the �ve ephalograms as per Parthasarathy et al. and digitised to512�464 pixels and 256 grey-levels. The results for the seventeen points, on average 76% wereloated within an error of 2 mm. The method had trouble loating the Porion and Gonionlandmarks in eah ase. The fous of this work seemed to entre around loating landmarkswith auray being a minor objetive.



CHAPTER 2. LITERATURE REVIEW 502.7.1.2 Mahine learningThe following provides an outline of signi�ant researh, in terms of results, for automatiallydeteting landmarks and ritially disussing de�ienies where appliable. The followingdisussion is based on literature that uses a mahine learning methodology for landmarkdetetion.Cardillo et al. [20℄ presented an algorithm based on sub-image mathing to loate twentylandmarks using a dataset of 40 images (512�490 and 256 grey-levels). The algorithm is basedon greysale mathematial morphology with a statistial approah to learn the struturing el-ements and their origins' probability distributions. A learning approah was used to overomesubtle hanges in the faial struture. Cardillo et al. on p. 287 states that the landmark'sdetetion performane "steadily inreases from 60% at the start of training to a level of ap-proximately 85% after 40 X-rays". Based on the test results the work seems very promising,however, it is unlear whether the test data used to determine the test results is independentof the training data. This is based on the number of images at the ompletion of trainingwhih seem to exhaust the entire dataset.Chen et al. [24, 25℄ ombined a multilayer pereptron and geneti algorithm (GA) toextrat spei� feature areas ontaining the landmark. The multilayer pereptron was usedas an approximation to the geneti algorithm's �tness funtion. However, no results werereported stating the performane of the system.Hutton et al. [63℄ proposed ative shape models (ASMs) to loate sixteen ephalometrilandmarks. The ASM uses a template of the spatial relationships between the importantstrutures to help searh the image for features of interest. The model was established froma training set of hand-annotated images that was subsequently applied to unseen test data.Sixty-three randomly seleted ephalograms were tested using the leave-one-out method.The results for sixteen landmarks and a test set of sixty-three images, on average gave 35%auray within an error of 2 mm. Hutton et al. onluded that the urrent implementationof the method did not give suÆient auray for a ephalometri analysis but suggested that



CHAPTER 2. LITERATURE REVIEW 51improvements are possible.El-Feghi et al. [44℄ used a multi-layered pereptron (MPL) for automatially loatingephalometri landmarks. This work has been the most in-depth investigation for the follow-ing reasons: the size of the dataset was 134 images and the system was applied to twentytypes of landmarks. This approah di�ers signi�antly from previous work beause the de-tetion system is based on the initial positions of four points that are loated using a simpleheuristi. The four points are then used to ompute additional features to form a featurevetor that represent size, rotation and the o�set of the skull. The features are then used asinputs into the MLP and the orresponding outputs represent the o-ordinates of the land-mark. The average detetion results, when ompared to Cardillo et al. [20℄, were in mostases superior, however, no statistial test was used to on�rm whether the di�erenes werestatistially signi�ant. Rather than using a MLP, El-Feghi in [43, 45℄ used an alternativeapproah in the form of a fuzzy neural network and partial least squares regression in [42℄ .However, the test set is not ompletely independent from the training set and so theresults are optimisti. This laim is based on how El-Feghi et al. seleted their trainingand test sets and their method of biasing the data. As a method of reduing the number oftraining samples, a K-means lustering algorithm was used to form 55 lusters from the 189samples. Clustering is based on a similarity measure between the omputed feature vetors.A sample from eah luster was then used for training with the remaining samples used fortesting. As a result, there will be a good hane that there will be a high similarity betweenthe omputed feature vetors in both the training and the remaining test samples.Chakrabartty et al. [22℄ demonstrated the performane of projet prinipal-edge distri-bution features with a support vetor mahine lassi�er to automatially loate eight typesof ephalometri landmarks. The projet prinipal-edge distribution features attempts toapture information of an image by modelling its edge distribution along di�erent prinipaldiretions or orientations. Although the results are based on a small seletion of landmarksthe detetion performane appears to be promising by demonstrating an auray of morethan 95%.



CHAPTER 2. LITERATURE REVIEW 52Giordano et al. [52℄ used ellular neural networks to loate eight types of landmarks andlaimed that the approah is versatile enough to be used for the detetion of landmarks thatare loated on both edges and regions (e.g. the sella landmark), however, this laim appearsto be based on a small number of, and pre-seleted, test ases.Yue et al. [161, 162℄ used lassial image proessing tehniques and a pattern mathingalgorithm to loate an initial set of twelve referene landmarks. These landmarks are thenused to divide the raniofaial shape into ten independent regions aording to anatomialknowledge. For eah region, the prinipal omponent analysis is used to statistially har-aterise shape variations and the gray pro�le to derive a modi�ed ative shape model forloalisation. This modi�ed ative shape model an be applied to test data to loate fea-ture points, and with the assistane of a priori knowledge, the landmarks an be deteted.The detetion results indiate a signi�ant improvement over the original ative shape modelapproah that was proposed by Hutton et al. in [63℄Rueda et al. [127℄ used ative appearane models, with pre-proessing for homogeni-sation, to automatially loate 28 types of landmarks. The detetion performane (<2mm) for eah of the landmarks appears to be signi�antly less than the results presentedby Chakrabartty et al. in [22℄.2.7.2 A ritial review of automated ephalometri landmarkingIn this setion we will review some initial attempts to automate ephalometri landmarking.The results from the approahes that do not use mahine learning are based on a relativelysmall number of, and in some ases pre-seleted, test ases. An issue with these approahesis one an only assume the rules were enoded using all the available images and then theperformane measured { nothing was stated otherwise to ontradit this laim. This is akinto learning a set of rules using a mahine learning algorithm and then testing on the trainingdata. Another issue is that beause the systems were validated using a very small seletion ofimages from a large population, it would be fair to assume that if tested on a large dataset ofimages then the reported detetion auraies would be signi�antly redued, i.e. the system



CHAPTER 2. LITERATURE REVIEW 53would not be robust enough to ater for the biologial variability of the di�erent landmarks.Other approahes for developing lassi�ers for solving omplex problems use mahinelearning algorithms. Although some of the detetion auraies for the mahine learningalgorithms are not as high as those obtained by the non-mahine learning approahes, theresults are based on a larger dataset of images. Generally speaking the mahine learningapproahes seem to perform better than the handrafted tehniques when fatoring in the sizeof the dataset. A possible reason may be that a more omplex set of rules an be disoveredby a mahine learning algorithm. It is oneivable that the omplexity of the rule set is ableto ater for the biologial variability of the di�erent landmarks. Suh a rule set would bediÆult for a human to disover. It is also important to mention that the results using themahine learning algorithms, in most ases, are based on test data that is independent of thetraining data. However, in some reports it is not lear whether the detetion system has beentested ompletely independently of the training data [20, 44℄.In the literature, several approahes have been proposed and Table 2.6 is a hronologialsummary of notable results.Currently, a entral database does not exist for a dataset of ephalometri images and asa result, researhers are developing their approahes to automatially detet ephalometrilandmarks in isolation. It is not unommon for researhers to ompare their approah toprevious work. This is quite unfair for several reasons that inlude: the sizes of the datasetsare never the same, the resolution of the images are di�erent; no statistial test omparingtest results is performed; and the omparison is always performed on a di�erent set of images.As a result, the omparison should only be used as an indiation and not to make a potentiallyfallaious laim that one approah is better than another.
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Parthasarathy [104℄ Tong [145℄ Cheng [26℄ Cardillo [19, 20℄ Forsyth [50℄ Rudolph [126℄ Liu [87℄ Hutton [63℄1989 1990 1991 1994 1996 1998 2000 2000Test set size 5 5 10 40 10 14 10 63Number of Landmarks 9 17 13 20 19 15 13 16Landmark DR Error DR Error Error DR Error Error Error Error ErrorOrbitale 80 1.3�0.5 2.8 40 1.1�1.7 6.0 2.5�3.8 5.3�4.1 5.5�3.4Porion 0 5.2�3.8 2.1 89 0.6�3.4 0.0 5.7�4.9 2.4�2.1 7.3�6.5Basion 2.8Sella 100 1.4�0.4 1.1 53 1.4�1.5 0.6 5.1�3.4 0.9�0.5 5.5�6.8Nasion 80 1.8�0.5 1.9 83 0.9�1.4 1.0 2.6�2.2 2.3�1.1 5.6�3.9A Point 100 0.8�0.6 2.8 77 1.4�1.7 0.4 2.3�2.6 4.3�1.6 3.3�2.4Anterior Nasal Spine 40 2.4�1.1 1.9 68 1.1�2.4 3.3 2.6�3.1 2.9�1.1 3.8�2.2Posterior Nasal Spine 60 2.2�1.1 86 0.3�0.4 4.5 5.0�4.1Apex Upper Inisor 60 1.7�0.8 79 1.4�1.7 2.1 2.2�3.0 2.9�2.6Inisal Upper Inisor 80 1.1�0.8 0.5 76 2.4�3.8 0.4 2.0�2.0 2.4�2.0 2.9�3.8Inisal Lower Inisor 60 2.1�1.3 4.9 64 2.1�2.3 0.7 2.5�2.5 2.9�1.0 3.1�2.3Apex Lower Inisor 60 1.5�1.1 89 0.6�1.2 1.2 2.7�3.0 3.9�2.7B Point 20 3.3�0.9 2.6 71 0.5�0.9 1.0 1.9�2.1 3.7�1.6 2.6�2.7Pogonion 60 1.9�1.2 2.1 97 0.4�0.7 0.4 1.9�2.3 2.5�1.1 2.7�3.4Gnathion 1.4 100 0.4�0.6 0.9 1.7�0.9 2.7�3.4Menton 40 2.0�0.7 0.2 78 1.2�3.2 0.4 3.1�3.5 1.9�0.6 2.7�3.6Gonion 20 2.7�1.0 0.9 61 1.2�3.5 0.6 4.5�3.1 5.8�6.0Posterior Olusial Plane 71 1.1�1.6Anterior Olusial Plane 48 3.5�4.4Nose Mid 94 0.1�0.2Upper Lip Mid 100 0.5�0.3Lower Lip Mid 100 0.3�0.3Chin Mid 100 0.4�0.4 91 0.3�1.8Additional LandmarksX1 60 2.7�2.2X2 80 1.3�1.0X3 40 2.2�1.4X4 100 0.6�0.5X5 100 0.3�0.4X6 100 0.7�0.7X7 100 0.3�0.3X11 80 1.0�1.1Bolton Point 1.7Glabella 0.4TMJ 5.1�4.3Mand. Noth 4.3�3.9Table 2.6: Published detetion results for automatially deteting ephalometri landmarks1. DR denotes detetion rate, and error (mm)is de�ned as the distane between the expert and the landmark loated by the system.1Yamakawa et al. [160℄, 1999, ahieved a detetion rate of 72.7% for the Menton landmark.
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El-Feghi [43℄ Chakrabartty [22℄ El-Feghi [44℄ El-Feghi [45℄ El-Feghi [42℄ Giordano [52℄ Rueda [127℄ Yue [162℄2002 2003 2003 2004 2004 2005 2006 2006Test set size 30 40 134 200 100 26 96 86Number of Landmarks 15 8 20 20 20 8 28 12Landmark DR DR DR DR DR DR DR DR Error DROrbitale 99 89 74 74 72 57 2.1�1.2Porion 18 3.7�2.1BasionSella 100 87 79 77 77 83 39 2.3�1.3 76Nasion 100 85 87 100 91 77 81 56 2.3�1.8 86A Point 94 94 69 73 68 2.0�1.4Anterior Nasal Spine 98 89 92 92 75 55 2.1�1.3 79Posterior Nasal Spine 96 81 100 100 83 37 2.7�1.4 83Apex Upper Inisor 100 98 74Inisal Upper Inisor 97.7 100 100 77 92 90Inisal Lower Inisor 88 79 84 81Apex Lower Inisor 100 100 87B Point 100 85 85 83 73 44 2.2�1.3Pogonion 98 82 100 100 82 81 57 1.8�1.1Gnathion 93.3 100 100 79 74 1.6�1.1Menton 97.7 84 84 78 92 70 1.6�1.1 98Gonion 97.7 87 87 71 26 3.9�2.4 86Posterior Olusial Plane 97.7 93 87 87Anterior Olusial Plane 68 68 83Nose Mid 100 100 100 88Upper Lip MidLower Lip MidChin Mid 93.3 100 100 80Additional LandmarksX1X2X3X4X5X6X7X11Bolton PointGlabellaTMJMand. Noth Table 2.6 (ontinued)



Chapter 3
Data Preparation
3.1 What are Cephalograms?A ephalometri radiograph or ephalogram is a radiograph (also known as an X-ray) of thehead, inluding the mandible, taken in full lateral view whih is used for making ranial mea-surements. The images used throughout this thesis are a seletion of ephalograms providedby a pratising orthodontist. Eah image was digitised from �lm X-ray as an 8-bit greysaleimage that allows for 256 pixel intensities, or grey levels, to be reorded. The resolution ofeah image is 2056 � 2588 pixels.3.2 De�ning a Searh Area Using a HeuristiRather than searhing an entire X-ray for the purpose of loating a partiular landmark thesearh is limited to an area de�ned by a heuristi that is driven by anatomial knowledge.This heuristi is also based on the assumption the head always has the same orientation onthe X-ray. For example, it is fair to assume that the upper lip is always going to be loatedbelow the tip of the nose. Eah landmark is searhed for in an area limited by the spatialrelationship relative to a datum point previously loated. It is expeted that when traversingan image, the landmark will be loated somewhere in this searh area. Only a landmark thatan be loated with a high degree of on�dene is used as a datum point for de�ning thesearh area for subsequent landmarks. The loation of a datum point, marked as the bottom56



CHAPTER 3. DATA PREPARATION 57orner of the ruler in Figure 3.1, an easily be found and in this ase is used as a referenefor de�ning the searh area for the nose landmark. The searh area is shown as the hathedregion in Figure 3.1.It is expeted that not only will a smaller searh area be a more eÆient way of searhinga landmark during both training and testing, but detetion reliability should be improvedbeause there will be fewer andidate positions ompared with a searh of the entire X-ray. Assuh, fewer false alarms are expeted beause the searh is direted towards a muh smallersearh region.

Figure 3.1: An example illustrating the searh heuristi used to de�ne the searh area forloating the nose landmark.The hathed region in Figure 3.1 is the searh area that has been determined statistiallyrelative from the datum point (bottom orner of the ruler). In this example we have hosen�3� that gives a 99.95% hane that the landmark is loated somewhere in this region. Themean, �, and standard deviation, �, are alulated using the distane between the knownlandmark and the datum point from the images within the training set in both the x and ydiretions.Figure 3.2 illustrates several searh areas that have been de�ned relative from the datum



CHAPTER 3. DATA PREPARATION 58point. The searh area for loating the bottom orner of the ruler is de�ned from the upperright of the image while the other searh areas are de�ned relative to the nose landmark. Asexpeted, the size of the searh area inreases as the distane inreases from the datum point.This inrease in searh area is a funtion of variane that is related to biologial variability.So ideally a datum landmark should be loated as lose to the landmark as possible in orderto minimise the size of the searh area.

Figure 3.2: A shemati of an X-ray that has de�ned several searh areas that enompass thebottom orner of the ruler, upper lip, menton and sella landmarks.In the ontext of our work, eah landmark type will be treated as a di�erent domain andthus eah landmark type will be onsidered as a separate detetion problem. The reason fortreating eah type of landmark as a separate detetion problem is beause of the diÆulty anddiversity of landmarks and it is onsidered unrealisti that one program ould loate all 56landmarks. So the approah taken involves dividing the landmark detetion problem into 56independent sub-problems. Eah of these sub-problems involves �nding a spei� landmarkin a region of the X-ray. For eah landmark, we wish to evolve a program that an be plaedover a small window that gives a positive response if the window is entred within 2 mm (5pixels) of the known position of the landmark.The work presented in this thesis will use a seletion of landmarks that exhibit a range



CHAPTER 3. DATA PREPARATION 59of detetion diÆulty (i.e. easy to hard) for the purpose of determining the likelihood thatthe proposed method will work on all 56 landmarks. DiÆulties an inlude ambiguity wheredi�erent areas in an image have similar harateristis to the landmark of interest (e.g. theupper and lower lips), and bakground lutter where it is diÆult to disriminate betweenthe loation of the landmark and bakground (e.g. the sella landmark). The nose landmarkis subjet to minimal biologial variation and is deemed relatively easy to detet omparedto the sella landmark.3.3 Image ProessingThe main issues from the omputer vision literature relating to digital X-ray images as dis-ussed in Setion 2.1.1.1 are noise and to a lesser extent the enhanement of objets in lowontrast images. The issue of noise is related to the limitation of applying the X-ray proessto organi objets. This setion will give a brief overview of pre-proessing tehniques thathave been onsidered for enhaning image quality prior to extrating features for use in GP.These tehniques have inluded noise redution, ontrast enhanement, size redution andnormalisation.The image of the nose in Figure 3.3(a) illustrates the diÆulty faed when viewing softtissue against the bakground. Figure 3.3(b) has been greatly enhaned by mapping Figure3.3(a) using a logarithmi look up table (LUT). A logarithmi LUT maps the output values,G, from the logarithm of input values, F (refer to Equation 3.1). A logarithmi LUT is usedto enhane pixels with low intensity values and redue the spread of high intensity values.G(i; j) =  log(1 + F (i; j)) (3.1)However, preliminary experimental work (not presented in this thesis) indiated that im-proving the ontrast of soft tissue for human pereption does not orrelate to better detetionprograms. Therefore, the ontrast of the soft tissue has not been enhaned { enhanementhas only been used for the purpose of improving the presentation larity of soft tissue.
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(a) Original (b) LUT enhanedFigure 3.3: An example of two images that ontain the nose landmark. The image (b) hasbeen mapped from the original image (a) using a logarithmi LUT.The domain independent approah of GP using pixels as features, as desribed in Setion1.1 on page 3, will most likely not sale well to large objets beause of the large input windowrequired to detet the objets. The number of features in the domain independent approah,or terminals in the ontext of GP, is a funtion of the input window dimensions. So as theinput window size inreases so too does the searh spae.For the purpose of developing a strategy for deteting landmarks, the original images havebeen saled down to 20% of the original image dimensions. The sale is a trade-o� betweendetetion auray, or resolution, and training/testing times. The resolution of the originalX-ray was approximately 12.3 pixels/mm and saling produes a resolution of approximately2.5 pixels/mm. So based on an aeptable tolerane of 2 mm, the maximum error aeptablefrom the known position with a saled image is 5 pixels.Reduing the size of the images also redues the time of an evolutionary run from 67.5hours to 2.7 hours1. Saling transforms the images from a resolution of 2056 � 2588 pixelsto 411� 517 pixels. This redues the number of geneti program evaluations during trainingand also redues the e�et of Gaussian noise in the image.3.4 Pre-alulation of Feature ValuesTo simplify the experimental work in this thesis, we have extrated the searh area as animage and pre-alulated feature values prior to starting an evolutionary run. An example ofthis is shown in Figure 3.4, whereby an image ontaining the inisal upper inisor is extratedfrom an X-ray within the dataset. As desribed in Setion 3.2, images are extrated using1Proessing time is alulated by averaging the time taken to proess 100 generations for 80 evolutionaryruns. An evolutionary run is based on evolving a detetion program for the sella landmark. Fitness is evaluatedby omputing the output at every seond position in the image and using the highest output to predit theposition of the landmark. Proessing was performed on an Intel Pentium 4 1.4 GHz CPU.



CHAPTER 3. DATA PREPARATION 61a heuristi based on anatomial knowledge relative to a previously found datum point. Aninput window is then traversed aross eah position on the image whih omputes features ateah pixel loation. Although there is no advantage in improving the auray of detetionprograms when pre-omputing pixels as features prior to an evolutionary run, we have deidedto pre-ompute features beause the proess is a one-o� ost that will signi�antly reduetraining time when omputing omputationally expensive features. The proess for pre-omputing features is illustrated in Figure 3.4.

Figure 3.4: Shemati of the proess for pre-alulating features within a searh area of anX-ray. The searh area for loating a landmark is extrated using a heuristi of anatomialknowledge relative to a datum point.3.5 Dataset SeletionThe dataset used in this thesis ontains 110 images. The images in the dataset were providedby a pratising orthodontist and the images have not been hand hosen and are a randomseletion of images that are indiative of biologial variability from a population of patients.For example, the perentage of images having an overbite should be in keeping with what isexpeted from real-world data.Beause the dataset onsists of a �nite number of samples, we have to determine the bestway of dividing the data set for both learning and testing the performane of the detetoron unseen images. The majority of the work in this thesis uses the holdout method (refer



CHAPTER 3. DATA PREPARATION 62to Setion 2.3.4 on page 20) for estimating auray. The holdout method reserves a part ofthe data set for testing that must not be used in any way during training. We have used a3/4 and 1/4 split for the training and test sets respetively. Cross-validation of experimentalwork has been onsidered, but we have deided the size of the training set and test set fromthe holdout method to be aeptable for the purpose of omparing experiments. Performinga ross-validation for eah experiment would also inrease omputational resoures. A three-fold ross validation will only be performed for establishing detetion results for the �nalmethod at the onlusion of the thesis. This is to ensure that the �nal results are based ona larger test set of images.



Chapter 4
Domain Independent Approah:Pixels as Features
4.1 IntrodutionIn this hapter we apply a method by Zhang et al. [164, 168℄ whih has been suessfully usedfor other objet detetion problems. The Zhang et al. method desribed in Setion 2.5.2.1 islaimed to be domain independent, meaning that the same method will work unhanged ona range of problems.The motivation for this hapter is to determine if the domain independent approah ofgeneti programming an be used for the problem of ephalometri landmark detetion. Thedomain independent approah outlined in this hapter has been applied with the minimumof hanges from the work performed by Zhang et al., who used geneti programming to lo-ate and lassify objets suh as heads and tails of di�erent Australian oins in large images,and haemorrhages and miro-aneurisms in retinal images. The main di�erene between themethod proposed by Zhang et al. and the intended use of the domain independent approahis that Zhang et al. lassi�ed objets belonging to multiple lasses, whereas our approahwill treat eah type of landmark as a separate detetion problem. Another main di�ereneis that Zhang et al. in [164, 168℄ uses a population size between 100-700 individuals whih isinreased with the diÆulty of the detetion problem, whereas this hapter uses a population63



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 64size of 100 individuals.The domain independent approah will be applied to three landmarks of inreasing dete-tion diÆulty. The landmarks are: the tip of the nose whih is easy; the inisal upper inisorwhih is of medium diÆulty; and the sella landmark whih is very diÆult. Examples ofthese three landmarks are shown in Figure 4.1. The objetive is to loate eah landmarkwithin 2 mm, or 5 pixels, of the known loation. The rosses in Figure 4.1 orrespond to theatual position of the landmark. The irle entred on the ross of eah image is a toleraneof 2 mm. If the predited position of the landmark is within the allowable tolerane, theloation of the landmark has been orretly found. If not, the position of the landmark isreorded as a false alarm.

(a) Nose54�60 pixels (b) Inisal upper inisor71�59 pixels () Sella110�125 pixelsFigure 4.1: Images shown from the left ontain the nose, inisal upper inisor and sellalandmarks. The landmarks represent a range of detetion diÆulty from easy to diÆult.The ross indiates the known position of the landmark. The irle is the tolerane from theknown position, or allowable error, that is onsidered aeptable for a ephalometri analysis.4.2 MethodologyThe landmark detetion approah involves applying a program to an image, in moving windowfashion, to �nd the landmark. The suess of the program is measured by the �tness funtion.Inputs to the evolved program will be a set of features established by partitioning the inputwindow into an array of pixels (refer to Figure 4.4). Eah feature is a pixel intensity value of



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 65a pixel within the array. Setions 3.2 and 3.3 desribe a proess and the rationale for reduingthe number of evaluations by extrating an image using a priori anatomial knowledge andsaling the image to 20% of the original size. This proess redues the number of programevaluations during training and also redues the e�et of Gaussian noise. It is worth notingthat no image proessing, e.g. ontrast enhanement, has been performed prior to extratingthe searh area from eah X-ray.An outline of the domain independent approah for evolving a detetor to loate land-marks is shown in Figure 4.2. The following step-by-step desription gives a more in depthexplanation of the methodology depited in Figure 4.2.1. Assemble a database of images that onsists of the known positions of landmarks to beloated.2. Reserve some images as a test set for the purpose of measuring detetion performane.3. Determine the size of the square input window whih will ontain enough distinguishinginformation to permit the landmark to be identi�ed.4. Invoke an evolutionary proess to generate a program that an determine whether alandmark is loated within 2 mm of the atual position.5. Apply the generated program as a moving template to the reserved test images fromstep 2 and obtain the positions of the landmarks. Calulate the detetion rate and thefalse alarm rate on the test set as a measure of performane.

Figure 4.2: Diagram illustrating the evolutionary proess for both training and evaluatingthe performane of a detetion program.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 664.3 Con�guration of Geneti ProgrammingThis setion desribes how geneti programming will be used for the task of landmark de-tetion. Eah setion will give an outline of the main omponents for on�guring genetiprogramming to the problem of landmark detetion. The main omponents inlude the ter-minal set, funtion set, �tness evaluation and geneti programming parameters.4.3.1 The Terminal Set: Pixels as FeaturesThe terminals used in the domain independent approah are omposed of a two-dimensionalarray of pixel values that are made available as part of the evolutionary searh strategy. Thearray of pixels is ontained within an input window of a pre-determined square size that istraversed aross eah position in the image. The traversing proess is illustrated by movingthe entre of the input window, in a sanning manner, to eah pixel that is represented as awhite dot as shown in Figure 4.3.Determining the size of the input window is based upon another heuristi. This otherheuristi determines how muh information is required in order for the evolutionary proessto generate a solution to distinguish between the landmark of interest and the bakground.However, hoosing the size of the input window is a ompromise between ontaining enoughdistinguishing information so the landmark an be found and generating a large terminal setwhih may ontain redundant (or extraneous) features. A disussion of previous researh in[74℄ in Setion 2.5.2.4 indiated that the geneti searh enounters substantial loss of eÆienywhen extraneous features are ontained within the terminal set sine the extraneous featuresadd to the omplexity of the searh.
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Figure 4.3: The input window shown as the blak square is moved in a sanning proess toeah position in the image orresponding to the white dots.
(a) (b)Figure 4.4: Images (a) and (b) illustrate a 14�14 pixel input window, whereby eah terminalis represented by a single pixel and an average greylevel intensity of four neighbouring (2�2)pixels respetively. The input window has been divided into SS2 and SS2=4 sub-regions,entred on `�' at position (x, y) on an image. These are referred to as pixel based featuresthat represent the di�erent terminals available for the evolutionary proess.The input window shown in Figure 4.4 illustrates the spatial relationship of terminalswithin an input window. These terminals are referred to as pixel based features. The sizeof both input windows in Figure 4.4, whih is also referred to as square size (SS), is 14�14pixels. Eah terminal in Figures 4.4(a) and 4.4(b) is a real value represented by a singlepixel and an average greylevel intensity of four neighbouring pixels respetively produing aterminal set of 196 and 49 terminals respetively. A sub-region with a size of two indiretlysales the image, whih redues the resolution by a further 50%.Table 4.1 de�nes the size of the input window used for the experiments in this hapter.The seond olumn indiates the number of features in the terminal set. The size of theterminal set is a funtion of the input window size and sub-region size. The size of the input



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 68window is based on the need to ontain enough relevant information to enable di�erentiationbetween the landmark of interest and the bakground.Landmark Square Size Size of Sub-regions(pixels) 1�1 2�2 5�5Nose 14 196 49Inisal upper inisor 14 196 49Sella 40 1600 64Table 4.1: The sizes of the terminal set that are made available for use during the genetisearh. The number of features in the terminal sets are a funtion of input window size andsub-region size.4.3.2 The Funtion SetThe funtions shown in Table 4.2 are the operators most ommonly used by geneti pro-gramming for image-related appliations as desribed in Setion 2.5.2.5. The funtions +,�, *, / are four arithmeti operators that, when used, an allow the formation of both linearand non-linear funtions. The +, � and * have their usual meanings, while `/' representsa proteted division whih onstitutes the usual division operator, exept that a divide byzero produes INT MAX. The use of other operators used in image-related appliations weredisussed in Setion 2.5.2.5, however, it was unlear how these ould enhane the quality ofsolutions. FuntionsFuntion Arity De�nition+ 2 a+ b� 2 a� b* 2 a� b/ 2 � ab if b 6= 0else INT MAXTable 4.2: De�nition of operators used in the funtion set.4.3.3 Fitness EvaluationThe proess of measuring an individual's �tness is performed in three distint phases. Initiallythe program is applied to the training data, this is akin to moving the input window arossan image, whih produes an output needed to predit the position of the landmark. The



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 69method used for prediting the position of the landmark is the same as that used by Zhanget al.'s [164℄ and will be explained in greater detail below. The predited positions are thenompared with the atual loation of the landmark and the detetion and false alarm ratesare then alulated.The aim of the �tness metri presented in this setion is to maximise detetion rate(orret predition) and to minimise false alarm rate (inorret predition). The �tness of aprogram is alulated by omputing both detetion rate and false alarm rate. The �tness isevaluated as follows:1. Zhang et al.'s [164℄ approah for prediting the position of the landmark involves threeseparate steps. These steps are as follows:(a) A program is applied as a moving input window, shown as the blak square inFigure 4.5(b), aross a training image with the program's output evaluated ateah pixel loation. The output of the program, Output, is a oating point num-ber whih determines whether the position in the image should be lassi�ed as alandmark or bakground.(b) Zhang et al. uses a multi-lass lassi�ation strategy for lassifying objets, how-ever, beause we are evolving one program for eah landmark, a lassi�ationstrategy onsidering only two lasses (landmark/bakground) is required. There-fore, we have hosen zero as a deision point between the two lasses, whih hasalso been ommonly used by GP researhers in lassi�ation problems when dif-ferentiating between binary lasses as disussed in Setion 2.5.2.6. The positionat eah pixel loation is labelled aording to the lassi�ation strategy shown inFigure 4.5(a). If the Output is positive, the loation is labelled as \landmark";otherwise, the loation is labelled as \bakground". The labelled positions aredesribed as binary outputs within a detetion map. An example of a detetionmap is shown in Figure 4.5() whereby the white and grey regions depit positionslabelled as landmark and bakground respetively.() The detetion map is then used to loalise the position of the landmark. Thelandmark's position is predited by sanning eah position within the detetion



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 70map that was labelled as \landmark" and reording its (x; y) position. However,another landmark annot be predited within SS2 pixels of a landmark's positionpreviously predited during the san of the detetion map. The detetor shown inFigure 4.5(a) has subsequently reorded a landmark at three loations whih aredepited as the green and red rosses. The green and red rosses orrespond tothe orret and inorret positions respetively.2. A omparison is made between the predited position and the atual loation of thelandmark. A math (true positive) ours when the omparison is within a set toleraneof 2 mm (5 pixels). If the omparison is not within the set tolerane, the landmark forthe respetive image is reorded as a false alarm.3. The performane of a program is measured by iteratively applying steps one and twoto eah image in the training set and then alulating the detetion rate (DR) and falsealarm rate (FAR). The �tness is omputed as per equation 4.1.Fitness = A� FAR+B � (1�DR) (4.1)where FAR is the false alarm rate and DR is the detetion rate. A and B are onstantsthat provide a balane between false alarm rate and detetion rate. The onstants areused to transform a multi-objetive problem into a salar optimisation problem asdisussed in Setion 2.2.1.1. Zhang et al. in [164, 166, 168℄ used values of 50 and 1000for A and B respetively.Alternatively, the �tness funtion an be represented as,Fitness = FAR+ BA (1�DR)
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(a) Detetion program (b) Image () Classi�ed imageFigure 4.5: The series of images illustrate the strategy for prediting the position of a land-mark. A program (a) is traversed aross the image (b) at eah pixel loation and the program'soutput is alulated. The output of the program determines if the position is to be labelleda landmark or bakground. The labelled positions are desribed as the binary output in thedetetion map (). The green and red rosses orrespond to the orretly and inorretlypredited positions respetively.4.3.4 ParametersTable 4.3 indiates the geneti programming run-time parameter values used by geneti pro-gramming during training. The parameter values are based on researh by Zhang et al. in[164, 165, 166, 168℄ whereby geneti programming was used to solve similar types of detetionproblems to the ephalometri landmark detetion problem disussed here. A desription foreah run-time parameter is given in Setion 2.5.3.4.4 ResultsThe results given in this setion attempt to establish if the domain independent approahusing geneti programming, is able to loate ephalometri landmarks aurately enough fora ephalometri analysis. To determine the eÆay of this strategy, the method is tested onthree landmarks of varying levels of detetion diÆulty ranging from easy to hard.The aim of the geneti searh is to minimise the �tness funtion and ahieve a �tnesssore of zero. The �tness funtion is a ombination of detetion rate and false alarm rate. A�tness sore of zero only ours for a program that ahieves a detetion rate of 100% and afalse alarm rate of 0%. Eah evolutionary run is terminated when either the �tness sore iszero or 100 generations have been ompleted. The result from eah experiment is based on



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 72ParametersPopulation size, M 100Maximum generation, G 100Maximum depth, D 8Initial maximum depth, d 6Probability of:Reprodution, PR 0.10Crossover, PC 0.70Mutation, PM 0.20Probability of rossover at:Terminal 0.15Funtion 0.85A 50B 1000Terminal Set refer to Setion 4.3.1Funtion Set refer to Setion 4.3.2Tolerane (pixels) 5 (2 mm)Table 4.3: Run-time parameters used during the geneti searh for evolving detetion pro-grams for the nose, inisal upper inisor and sella landmarks.80 evolutionary runs.Table 4.4 shows training and test results for three di�erent landmarks whih providesa omparison of the mean �tness sores, alulated using the best individual at the end of100 generations, for 1�1 and 2�2 pixel sub-regions. The experiments for the sella landmarkusing 1�1 or 2�2 pixel sub-regions and an input window square size of 40 pixels was notonduted as this would have reated a terminal set of 1600 and 400 terminals respetively; inSetion 2.5.2.4 we disussed that the eÆieny of GP dereases when the terminal set ontainstoo many extraneous or redundant features. The size of the terminal set was subsequentlydereased by using a 5�5 pixel sub-region.Table 4.4 shows the average �tness sore for three landmarks inreasing with the relativeinrease in detetion diÆulty between the three landmarks. The exat reason as to why the�tness sore varies with the di�erent landmarks will be explained in detail later. To determineif there is a di�erene between the two sub-region sizes, a two-sample t test will be ondutedto ompare if either of the two sub-region sizes, i.e. 1�1 pixel or 2�2 pixels, have ome fromthe same population. To validate this experiment, the hypothesis will be tested on the noseand inisal upper inisor landmarks.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 73H0 : �1�1 = �2�2H1 : �1�1 6= �2�2p-value 8><>: 6 � rejet H0 in favour of H1;> � do not rejet H0:Size of Sub-regions1�1 2�2 5�5Nose AverageFitness 57.06 55.41p-value 0.666Inisal AverageFitness 71.76 71.81p-value 0.988Sella AverageFitness 142.79p-valueTable 4.4: Comparison of average �tness sore between 1�1 pixel sub-region and 2�2 pixelsub-region for the nose and inisal upper inisor. Average �tness is alulated from the bestindividual's �tness sore from eah run for 80 evolutionary runs.Sine the p-value exeeds the ritial `ut-o�' boundary of 0.05 for program �tness of thebest individual for both landmarks, the null hypothesis is aepted indiating that the �tnessof programs evolved from both sub-regions are from the same population. This indiates thatboth terminal sets, on average, will produe programs with the same �tness. It is reasonableto expet that if the size of the sub-region is inreased beyond a ertain size, the performaneof programs during and at the end of the evolutionary proess will derease. This is relatedto a loss of pixel information as the sub-region size is inreased.
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(b) Inisal Upper InisorFigure 4.6: Comparison of average �tness between a 1�1 pixel and 2�2 pixel sub-region.The average �tness sores are alulated from the �tness sore of the best individual at eahgeneration for 80 evolutionary runs.The graphs in Figure 4.6 show the average �tness alulated from the best individual's�tness sore at eah generation for 80 evolutionary runs. The graphs illustrate that there isnegligible di�erene between the rate of onvergene during the evolutionary searh for bothsub-region sizes of both landmarks.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 75Training TestSub-region size Sub-region size1�1 pixel 2�2 pixels 1�1 pixel 2�2 pixelsNose Averagedetetion (%) 97.32 97.82 97.64 96.81false alarm(%) 60.46 67.23 58.56 66.85Best programdetetion (%) 100 100 96.30 92.59false alarm(%) 13.41 9.76 11.11 14.81Inisal Averagedetetion (%) 98.04 97.53 94.72 94.82false alarm(%) 104.37 94.22 96.11 87.50Best programdetetion (%) 100 100 100 96.30false alarm(%) 67.47 78.31 85.19 59.26Sub-region size Sub-region size1�1 pixel 5�5 pixels 1�1 pixel 5�5 pixelsSella Averagedetetion (%) 99.34 97.41false alarm(%) 272.47 269.35Best programdetetion (%) 100 96.30false alarm(%) 202.44 214.81Table 4.5: Detetion results for the nose, inisal upper inisor and sella landmarks using thepixel based features de�ned in Setion 4.3.1. Averages are alulated using the best individualdisovered from eah run for 80 evolutionary runs.Table 4.5 shows the detetion and false alarm rates using the best individual at theompletion of evolutionary runs. It is worth noting that no run ahieved a �tness sore ofzero, i.e. a detetion rate of 100% and a 0% false alarm rate, and so the results presentedare from the best individual at the end of 100 generations. Although there is no signi�antdi�erene in detetion auraies between the three types of landmarks, the false alarm rateinreases signi�antly with the level of diÆulty. This is a result of both anatomial variabilityand lutter found in the sella images, as evident by the images in Figure 4.10.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 76(- (- (/ P4 (+ (/ P14 P24) P10)) (- (- P23 P43) P36)) (+ (- (* (/ P28 (/ (/ P14P11) (+ (+ P20 P17) P44))) (/ (/ (+ (- P39 P27) P13) (/ P40 P38)) (* P14 P30)))(- (* (- P23 P2) P8) P11)) (* (* (/ (/ (+ (- P43 P27) P13) (/ P11 P38)) (/ (/P14 P24) (+ P30 P44))) (/ (/ (+ (- P43 P49) P13) (/ P11 P38)) P16)) (/ P16 (* P15P30)))))Figure 4.7: A sample program for loating the nose landmark, where Pi represents the av-erage pixel intensity value of a sub-region labelled Pi and i is the ith sub-region. Note:The array of sub-regions (P(0;0). . .P(n;n)) depited in Setion 4.4 has been onverted into avetor (P0. . .Pn2), where n2 is the number of sub-regions within the input window. Fit-ness sore = 4.878 (FAR=9.75% and DR=100%).The program used to loate the nose landmark in Figure 4.7 was the �ttest program atthe end of 80 evolutionary runs. A random seletion of images ontaining the nose landmarkare shown in Figure 4.10(a-l). The detetion program in Figure 4.7 is applied to the imagesin Figure 4.10. The position of the nose landmark for all these images are orretly detetedwith only one false alarm as indiated by the red ross in image (g).(- P35 (/ (/ (+ (- (- (- P41 P15) P11) P37) (- (* (- P23 P15) P11) P16)) P39) (/P11 P16))) (* (- P17 (+ (- P29 (/ (- (- P41 P15) (- P3 P32)) (- P3 (- P3 P32))))P21)) P36))Figure 4.8: A sample program for loating the inisal upper inisor landmark, where Pirepresents the average pixel intensity value of a sub-region labelled Pi and i is the ith sub-region. Note: The array of sub-regions (P(0;0). . .P(n;n)) depited in Setion 4.4 has beenonverted into a vetor (P0. . .Pn2), where n2 is the number of sub-regions within the inputwindow. Fitness sore = 39.157 (FAR=78.31% and DR=100%).�P35 � P16 (P41 � P15 � P16 � P37 + P11 (P23 � P15 � 1))P39P11 ��P17 ��P29 � (P41 � P15 � P3 + P32)P32 + P21��P36(4.2)The program used to loate the inisal upper inisor landmark in Figure 4.8 is the �ttestprogram at the end of 80 evolutionary runs. The equivalent formula is shown as Equation4.2. A random seletion of images ontaining the inisal upper inisor landmark are shownin Figure 4.10(a-j). The positions of the inisal upper inisor landmark for all these imagesare orretly deteted. However, at least one false alarm was found in eah image with theexeption of image (h) and (j). This is a signi�ant inrease in false alarm rate as indiatedby the number of red rosses ompared to the nose landmark. Training results produeda false alarm rate and detetion rate of 78.1% and 100% respetively. This indiates that,



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 77on average, the detetion program has inorretly predited the position of an additionalphantom landmark on four out of �ve images.(+ (- (- (- P62 (* P2 P54)) (- (* (+ (+ P6 P33) P26) (/ P16 P31)) (- P51 (+ P43P58)))) (- (+ (+ P6 (+ P5 P27)) (+ (+ (* P35 P40) P38) P38)) (- P25 (- (+ P29P9) P25)))) (- (- (* P24 P8) P43) (- (- (+ P6 P32) (/ P13 P30)) (* P24 P46))))Figure 4.9: A sample program for loating the sella landmark, where Pi represents the av-erage pixel intensity value of a sub-region labelled Pi and i is the ith sub-region. Note:The array of sub-regions (P(0;0). . .P(n;n)) depited in Setion 4.4 has been onverted into avetor (P0. . .Pn2), where n2 is the number of sub-regions within the input window. Fit-ness sore = 101.22 (FAR=202.44% and DR=100%).The program used to loate the sella landmark in Figure 4.9 is the �ttest program at theend of 80 evolutionary runs. A random seletion of images ontaining the sella landmark areshown in Figure 4.10(a-h). The position of the sella landmark for all these images are orretlydeteted. However, at least two false alarms were found in eah image with the exeption ofimage (b). Although the detetion rates were similar between the three landmark types, theresults indiate that false alarm rate inreases with the level of detetion diÆulty.
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(a) (b) () (d) (e) (f)
(g) (h) (i) (j) (k) (l)Nose (54�60 pixels)
(a) (b) () (d) (e)
(f) (g) (h) (i) (j)Inisal upper inisor (71�59 pixels)
(a) (b) () (d)
(e) (f) (g) (h)Sella (110�125 pixels)Figure 4.10: A seletion of images showing the orretly found position (green ross) andinorret position (red ross) of three landmarks of inreasing detetion diÆulty. The land-marks, from easy to hard, are the nose, inisal upper inisor and sella landmarks.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 79The �tness funtion in Equation 4.1 is a weighted sum of detetion rate and false alarmrate with the aim to minimise �tness. Figure 4.11 shows �tness graphs for terminals thathave been alulated from a 2�2 pixel sub-region. The graphs are averages alulated usingthe best individual found at eah generation for 80 evolutionary runs. The detetion andfalse alarm rates are also illustrated. The graphs for eah landmark show that almost 100%detetion auray was ahieved at the �rst generation. However, there was a false alarm rateof 310%, 458% and 415% for the nose, inisal upper inisor and sella landmarks respetivelyand at generation 100, at the point where the evolutionary proess was terminated, the falsealarm rate had improved to 67%, 94% and 273% respetively. A �tness sore of zero wasnever ahieved for a detetion program for any of the evolutionary runs. The graphs illustratethat the �tness funtion rewards programs for ahieving high detetion rates and so then theaim of the evolutionary searh beomes foused on minimising the number of false alarms.
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CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 804.5 SummaryThe results demonstrate that the method by Zhang et al. [164, 168℄, whih laims to bedomain independent, were able to aurately loate simple landmarks with a low numberof false alarms. Although this method was shown to be suessful on simple landmarks, alarge number of false alarms were found on more diÆult landmarks suh as the inisal upperinisor and sella landmark. False alarms are unaeptable for a ephalometri analysis andtherefore further work is required to investigate if the geneti programming paradigm is ableto redue the false alarm rate. Therefore, further exploratory work of the proposed genetiprogramming method is required to determine if fators suh as �tness evaluation or otherfeatures will redue false alarm rate when loating diÆult types of landmarks.



Chapter 5
Domain Dependent Approah:Handrafted Shapes
5.1 IntrodutionThe purpose of the previous hapter was to determine if the domain independent approahof geneti programming using pixel based features was able to loate landmarks auratelyenough for a ephalometri analysis. The results of the experimental work showed that thedetetion rates were very good but the false alarm rates were unaeptably high, espeiallyfor the harder landmarks. Therefore the purpose of this hapter is to determine how thedomain independent approah an be re-formulated to redue the false alarm rate and atthe same time predit the position of the landmark aurately enough for a ephalometrianalysis.In this hapter we will provide a foundation for geneti programming that will be used insubsequent hapters. The work using the domain independent approah of geneti program-ming and pixel based features from Chapter 4 will be used as a benhmark for omparingperformane.
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CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 825.1.1 Chapter GoalsBased on the outome of the results from the domain independent approah using pixelsas features, several questions are posed for reduing false alarm rate. In this hapter, thefollowing researh questions will be investigated.1. Can the method of evaluating �tness be improved to redue the false alarm rate withouta�eting detetion performane? What is a good �tness metri that an be used as ameasure of a program's performane?2. Can replaing the pixel based features with features alulated using handrafted shapesimprove a program's detetion performane?3. Will the inlusion of other operators ommonly used by geneti programming in imagerelated appliations improve the detetion performane?5.2 MethodologyThe use of geneti programming for the purpose of landmark detetion in this hapter issimilar to the methodology desribed in Setion 4.2. The landmark detetion approah in-volves applying a program to an image, in moving window fashion, to loate the position ofthe landmark. The suess of the program is determined by the �tness funtion. Terminalsmade available to the evolved program are features based on partitioning areas surroundinga landmark by handrafting shapes within the input window. The shapes are intended todisriminate the landmark from bakground. The handrafted shapes are shown in Figure5.2. The features used in this hapter are alulated using the mean and standard deviationof pixel intensities within eah shape.The following step-by-step desription along with Figure 5.1 is similar to the methodologyin Setion 4.2 with the addition of developing a set of handrafted features.1. Assemble a database of images with the known positions of landmarks to be loated.2. Reserve some images as a test set for the purpose of measuring detetion performane.
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Figure 5.1: Diagram illustrating the geneti programming methodology for evolving andevaluating detetion programs using handrafted features.3. Determine the size of the square input window entred on the landmark that will ontainenough distinguishing information to permit the landmark to be identi�ed.4. Manually determine a set of shapes within the input window that are to be applied tothe training and test images. The handrafted shapes are spei� to apturing landmarkharateristis as well as disrimininating against bakground (refer to Figure 5.2).5. Invoke an evolutionary proess to generate a program whih an determine whether alandmark is loated with 2 mm of the atual position.6. Apply the generated program as a moving template to the reserved test images fromstep 2 and obtain the positions of the landmarks. Calulate the detetion rate and thefalse alarm rate on the test set as the measure of performane.The following setions desribe the evolutionary proess of step 5 in detail.5.3 Geneti Programming Con�guration5.3.1 The Terminal SetThe domain independent approah using pixels as features demonstrated that the number offalse alarms inreases with the omplexity of the detetion problem. Beause eah type oflandmark is distint in shape, greysale and ontrast, it is expeted that a set of handraftedshapes spei� to a landmark will give a better detetion performane ompared to pixels as



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 84features used in the previous hapter. We antiipate that landmark spei� features will bemore useful for disriminating between the loation of interest and bakground.In Setion 2.5.2.4 we reviewed the most ommon types of features for omplex detetionproblems. These were alulated using simple statistis, i.e. the mean and standard deviation,of pixel values within pre-de�ned shapes. The features presented in this hapter orrespond tothe di�erent shapes shown in Figure 5.2 with their resulting means and standard deviationsalulated from eah region based on grey level intensity. As desribed in Setion 2.5.2.4when using geneti programming in objet detetion problems, terminals orrespond to imagefeatures. In addition to these features, a terminal that generates a random number in therange of [0, 255℄ is inluded in eah terminal set.5.3.2 The Funtion SetThe funtions +, �, �, / are four arithmeti operators used by geneti programming duringtraining, whih is idential to the set used in the previous hapter shown in Table 4.2 on page68.5.3.3 Geneti Programming ParametersThe geneti programming parameters to be used during training are idential to those usedin the previous hapter as shown in Table 4.3 on page 72.5.4 Variations of Fitness EvaluationThe aim of this setion is to establish if the method for evaluating �tness from the domainindependent approah using the geneti programming paradigm of Chapter 4 an be reformu-lated to improve the performane of detetion programs for loating ephalometri landmarks.This investigation and subsequent investigations presented in this hapter will be tested onadditional landmark types to those presented in Chapter 4. The images shown in Figure 5.3are representative of the di�erent landmark types presented in this hapter.
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square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 upper left square A-E-o-GM3 S3 upper right square E-B-H-oM4 S4 bottom half G-H-C-DM5 S5 two entre olumns E-FM6 S6 two entre rows G-H
square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 left half A-E-F-DM3 S3 right half E-D-C-FM4 S4 two entre olumns E-FM5 S5 two entre rows G-H
square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 upper right square E-B-H-oM3 S3 bottom left square G-o-F-DM4 S4 two entre olumns E-FM5 S5 two entre rows G-HM6 S6 right half entre rows o-HM7 S7 upper left hand triangle A-E-oM8 S8 right hand retangle I-B-C-J
square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 top half A-B-H-GM3 S3 bottom half G-H-C-DM4 S4 two entre olumns E-FM5 S5 two entre rows G-HFigure 5.2: The diagrams in the left olumn depit the shapes used to extrat the featuresfor the bottom orner of the ruler, nose, upper lip, inisal upper inisor, menton and sellalandmarks. The features onsist of the mean and standard deviation alulated for eah shapefrom grey level intensities. The orresponding pitures in the middle olumn depit the sizeof the input window { shown as the white square { relative to the image. Note: Images forthe bottom orner of the ruler, nose and menton landmarks have had the ontrast enhanedto improve larity.
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square size=40
Features Shapes� �M1 S1 shaded regionM2 S2 white regionM3 S3 square A-B-C-DM4 S4 left half A-E-F-DM5 S5 right half E-D-C-FM6 S6 two entre olumns E-FM7 S7 two entre rows G-HFigure 5.2 (ontinued)

(a) Bottom orner of the ruler103�83 pixels (b) Nose54�60 pixels () Upper lip56�43 pixels

(d) Sella110�125 pixels (e) Menton93�85 pixels (f) Inisal upper inisor71�59 pixelsFigure 5.3: Images shown from top left in a lokwise diretion ontain the bottom orner ofthe ruler, nose, upper lip, inisal upper inisor, menton and sella landmarks. The landmarksare a range of objet detetion problems ranging from easy to diÆult. The ross indiatesthe known position of the landmark.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 875.4.1 Highest Output5.4.1.1 MotivationResults presented in this setion use a �tness funtion that rewards programs on the basis ofloating landmarks within the aeptable tolerane. Beause we know there is only one land-mark in the image we an onsider an alternative �tness funtion that takes this into aount.The �tness of a program is measured using only detetion rate, (Total no. of objets orretly loatedTotal no. of objets ).The reason for this will be given below. The +, �, �, / operators form the funtion set thatallow both linear and non-linear solutions to be evolved. The funtion set onsists of themost ommonly used operators available to geneti programming for solving image relatedappliations. The �tness is alulated as follows:1. The program is applied as a moving window aross a training image and the detetionprogram's output, Output, is evaluated at eah pixel loation. The output of thedetetion program is a oating point number interpreted as the likelihood that theevaluated position from the image is a landmark entre or bakground. During training,the highest value of Output from eah image is used to predit the position of thelandmark. The predited position given by the detetion program is then omparedwith the known true loation and the result for the training image is reorded as eithera true positive or false alarm. However, an issue with using the highest output to preditthe landmark's position is that it has beome ompulsory for the detetion program topredit a landmark's position. Ideally we do not want a detetion program to loatethe position of a landmark when the detetion program returns an ambiguous result,i.e. if a high output ours in another part of the image.2. A omparison is made between the predited position and the known loation of thelandmark. A math (true positive) ours when the omparison is within a set toleraneof 2 mm or 5 pixels. If the omparison is not within the set tolerane then the landmarkfor the respetive image is reorded as a false alarm.3. The performane of the programs is measured by iteratively applying steps one and twoto eah image in the training set and alulating detetion rate (DR).



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 884. The �tness of a program is measured using Equation 5.1. Equation 5.1 is suitable whenit is known there is only one objet of interest loated in an image.fitness = (1�DR); where DR is detetion rate (5.1)Previous work in Chapter 4 used the output from the detetion program to determineif the position of the landmark should be reorded as either a landmark or bakground.However, this approah produed a large number of false alarms. Therefore, in this setionwe use the highest output for prediting the position of the landmark with the expetation ofreduing the false alarm rate. This means that only one predition for loating the landmarkwill our; the predited position of the landmark will be either orret, i.e. within 2 mmof the atual position, or inorret and reorded as a false alarm. As a result, the sum ofdetetion rate and false alarm rate is one.The rationale behind the simpli�ed �tness metri of Equation 5.1 is based on the highestoutput used to predit the position of the landmark and the �tness metri of Equation 4.1on page 70. The following derivation explains how Equation 5.1 was derived from Equation5.2. fitness = A�FAR+B�(1�DR); (5.2)Equation 5.3 is an equivalent �tness funtion to Equation 5.2.fitness = FAR + BA (1�DR) (5.3)Observation 1: When one landmark is always loated within an image then FAR = 1�DR= �1 + BA� (1�DR)Observation 2: Fators in the �tness funtion ontaining only onstants, suh as �1 + BA�, anbe elimintated from the equation beause they have no e�et when ranking programs basedon �tness sore. fitness = (1�DR)



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 895.4.1.2 ResultsTo determine whether the geneti programming approah desribed in Setion 5.4.1 an beused to loate raniofaial landmarks, several landmarks have been hosen ranging from easyto most diÆult. The di�erent landmark types are shown in Figure 5.3 and the relativepositions are shown on a traing in Figure 2.11.The results indiate that the geneti programming methodology desribed in this se-tion has been suessfully used to evolve detetion programs for a number of ephalometrilandmarks. The results for the methodology are presented in Table 5.1. The detetion per-formane on the easier landmarks (nose and inisal upper inisor landmarks) was exellentand the performane on the more hallenging sella landmark was also promising albeit witha onsiderably dereased detetion performane. The redution in detetion performaneof the sella landmark is aused through the landmark exhibiting a greater variation in ananatomial shape and loated in areas that are subjet to subtle hanges of greysale. Dueto the diÆulty of the sella landmark, a non square/retangular handrafted shape was re-ated, as shown in Figure 5.2, to assist with improving the evolution of detetion programs.While some of the landmarks are `easy' to loate, it is important to note that there is a largevariation in human shapes and sizes as is evident from Figure 5.5, e.g. inisal upper inisor,and that the auray obtained is a non trivial ahievement.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 90Training TestingDetetion False alarm Detetion False alarmBottomorner ofthe ruler Average 100 0 99.77 0.23Std dev. 0 - 1.08 -Best program 100 0 100 0Nose Average 99.36 0.64 97.69 2.31Std dev. 0.89 - 1.90 -Best program 100 0 100 0Inisal Average 94.38 5.62 89.54 10.46Std dev. 3.18 - 3.72 -Best program 98.80 1.20 92.59 7.41Sella Average 55.53 44.47 43.06 56.94Std dev. 13.23 - 14.27 -Best program 73.17 26.83 62.96 37.04Table 5.1: Detetion results for training and test sets based on the use of features alulatedusing handrafted shapes and the highest output for prediting the position of the landmark.Results are based on a training set of 83 images and a random set of 27 test images that areindependent of the training set. The averages are alulated from the best individual fromeah run for 80 evolutionary runs.The best performing programs from 80 evolutionary runs are shown in Figure 5.4. Thelandmark positions were predited by applying the relevant program from Figure 5.4 to theimages in Figure 5.5. The ross in eah image of Figure 5.5 orresponds to the preditedposition of the landmark.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 91(- (- M3 (- M2 S1)) S4)Bottom orner of the ruler detetion program(* (/ (- (- (- M2 S2) (* (/ (- (- M2 S2) S3) M1) (- M5 M4))) S3) M1) (- M5M4)) Nose detetion program(* (* (* (+ M8 (* M7 S6)) (/ M6 (+ M8 S5))) (- 162.108 M1)) (* (* (/ (* S4M8) (* M8 M5)) (/ S4 (+ M5 M5))) (- 162.108 M1)))Inisal upper inisor detetion program(/ (- M5 (/ M1 S5)) (+ (+ M3 S4) (+ (+ (+ S3 (/ 59.5795 S2)) M3) (/ M1S2)))) Menton detetion program(/ (- (- S2 (- (* (- M7 M1) 113.67) (- (/ (/ M3 226.489) (+ M7 S1)) M4)))(- (* (- M3 M1) 113.67) (- (- (- (* S6 S6) S3) M6) S2))) (* M3 (* (+ (/ S7(+ (/ M3 226.489) M6)) (+ (* S4 S6) M4)) (* S1 (+ (+ (* S4 S4) M2) (* (/ M7(+ M7 S1)) M7)))))) Sella detetion programFigure 5.4: These programs are the best individuals from 80 evolutionary runs for the bottomorner of the ruler, nose, inisal upper inisor and sella landmarks.
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(1, 1) (0, 0) (1, 0) (0, 0)
(0, 1) (1, 0) (1, 0) (1, 0)Bottom orner of the ruler (103�83 pixels)

(0, -2) (1, 1) (1, -4) (1, -3) (0, -1) (1, 0)
(0, -5) (1, 0) (1, 1) (2, 0) (0, 1) (0, 0)Nose (54�60 pixels)
(-1, -1) (-1, 0) (1, 0) (-1, -1) (1, 0)
(1, -1) (-1, -1) (-2, 0) (1, -3) (3, 3)Inisal upper inisor (71�59 pixels)Figure 5.5: A seletion of images showing the predited position, illustrated by the ross, for�ve di�erent landmark types. The di�erent landmark types from the top to bottom rows arethe bottom edge of the ruler, nose, inisal upper inisor, menton and sella landmarks. Theerror shown under eah image is a measure of the predited position relative to the atualposition. Positional error is measured in pixels.
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(-1, -1) (-1, -2) (1, -1) (0, -3)
(-1, -2) (1, -3) (2, -4) (4, -1)Menton (93�85 pixels)
(2, -3) (2, -3) (4, -5) (3, 0)
(2, 0) (4, -2) (2, 0) (2, -5)Sella (110�125 pixels)Figure 5.5 (ontinued)The �tness graphs shown in Figure 5.6 illustrate the proess whereby the �tness funtionis minimised, i.e. Equation 5.1, with the ultimate goal of ahieving a �tness sore of zero. Asthe �tness sore beomes smaller, programs with a better detetion performane and lowerfalse alarm rate are produed. The evolutionary proess ontinues until either a �tness soreof zero, i.e. 100% detetion rate, or the number of generations has reahed 100. Detetionof the bottom orner of the ruler and nose landmark ahieved a 100% detetion rate from



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 94100% (80/80) and 61% (49/80) of runs respetively whilst the inisal upper inisor and sellalandmarks never ahieved a detetion rate of 100%.
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CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 95The performane of detetion programs for the bottom orner of the ruler and nose land-marks indiate minimal over training as the points in the satter plot are evenly distributedabout the diagonal line. However, the performane of detetion programs for the inisal upperinisor and sella landmarks indiate over �tting as shown by the majority of points loatedbelow the diagonal line. The satter below the diagonal line indiates a bias for performingbetter on the training data. The detetion programs for the inisal upper inisor and sellalandmarks on average perform 5% and 12% better on training than test data. The disretesteps in the satter plot are due to the �nite number of examples in the training and testsets.
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CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 96This is evident by the programs that are shown for eah landmark in Figure 5.4. It is notonlusive whether the additional nodes are required to improve the �tness sore, or if theinrease in program size is a result of introns being introdued during an evolutionary run.Introns were desibed in Setion 2.5.4 in referene to the growth of ode not ontributing toa program's performane. However, we an hypothesise based on the work of Zhang et al. in[164℄ that the size of the program has inreased beause of the problem omplexity.A drawbak of the method is that run times of the evolutionary proess are high with onerun of 100 generations taking around 10.8 hrs � 2.7 hrs1. However, the evolutionary proessis a one-only ost and applying the program to an image is very fast, taking around 0.15seonds per image2. Given the oarseness of the features used, partiularly for the nose tipand inisor points, the detetion auray ahieved is surprising and suggests that with moreattention to the features the approah will be suessful on the more diÆult landmarks.5.4.2 Highest Output: Evaluating every seond pixel position5.4.2.1 MotivationThe main fators that inuene training times during the evolutionary proess are:� The number of images in the training set� The maximum depth of the tree� The number of positions to be evaluated in the image1Proessing time is alulated by averaging the time to proess 100 generations for 80 evolutionary runs. Anevolutionary run is based on evolving a detetion program for the sella landmark. Proessing was performedon an Intel Pentium 4 1.4 GHz CPU.2Proessing time is based on the time to predit the sella landmark using the highest output. Proessingwas performed on an Intel Pentium 4 1.4 GHz CPU.
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(a) (b)Figure 5.8: The white dots orrespond to positions that are evaluated in the image. Images(a) and (b) are evaluated at eah pixel position and every seond pixel position respetively.The previous setion demonstrated that geneti programming worked relatively well atprediting the position of the landmark, however, the proessing time of an evolutionaryrun is quite long. The aim of this setion is to investigate if the number of pixel positionsevaluated during training an be redued without ompromising the performane of detetionprograms. It is expeted that reduing the number of evaluations will redue training time.Figures 5.8(a) and 5.8(b) depit two images where eah pixel is evaluated and every seondpixel is evaluated respetively. If training is not ompromised by evaluating every seondpixel, then it is expeted expeted that training time will be redued by a fator of four. Atwo-sample t test an be used to ompare the di�erenes in mean detetion rate. Let thenull hypothesis be that the detetion rate of programs evaluated at eah pixel position havethe same mean as programs evaluated at every seond pixel position. In this experiment,the hypothesis is tested on three landmarks of varying diÆulty ranging from easy (nose) todiÆult (sella). H0 : �all = �qtrH1 : �all 6= �qtrp-value 8><>: 6 � rejet H0 in favour of H1;> � do not rejet H0:



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 98Training TestingAll Quarter All QuarterNose Detetion rate(%)Average 99.36 99.24 97.69 97.55Std dev. 0.89 1.05 1.90 1.95p-value 0.429 0.648Inisal Detetion rate(%)Average 94.38 94.61 89.54 88.98Std dev. 3.18 2.63 3.72 4.25p-value 0.625 0.380Sella Detetion rate(%)Average 55.53 54.73 43.06 44.40Std dev. 13.23 12.84 14.27 15.27p-value 0.696 0.566Table 5.2: An investigation to determine if the detetion performane of programs is ompro-mised by reduing the number of evaluations on training data. The table shows a omparisonof detetion performane for programs that have been trained on all pixel positions (All) andevery seond pixel position (Quarter) for the nose, inisal upper inisor and sella landmarks.The average detetion rate is alulated from the detetion rate of the best individual fromeah run for 80 evolutionary runs. The p-value is alulated from a two-sample t test toompare the mean detetion rate from two independent samples.The p-value exeeds an alpha level, or ritial `ut-o�' boundary, of 0.05, for eah land-mark and so we aept the null hypothesis (refer to Table 5.2). This indiates that there isnot enough evidene to onlude that the detetion performane of programs, at the end ofthe evolutionary proess, has hanged by reduing the number of evaluations during training.Additionally, the null hypothesis is also aepted as the p-value exeeds an alpha level of 0.05when omparing the detetion performane of programs against test data. This indiates thatthere is no evidene to support the hypothesis that the detetion performane of programshas been altered by reduing the data by a fator of four. Therefore, to redue the time ofan evolutionary run, subsequent experiments will be based on evaluating a program at everyseond pixel position in an image. Figure 5.9 depits �tness graphs for eah landmark whihare similar to those shown in Figure 5.6.
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Training set() Inisal upper inisor (d) SellaFigure 5.10: Detetion rate of the best program from 80 evolutionary runs. An evolutionaryrun is based on applying a program to every seond pixel position in the training data.Programs were evolved from features alulated using handrafted shapes and the highestoutput was used for prediting the position of the landmark. The data has been jittered forthe purpose of enhaning larity. Data points loated below the diagonal line indiate over�tting of training data.5.4.3 Binary Output5.4.3.1 MotivationPrevious work in this hapter has investigated an alternative domain dependent approahfor evaluating �tness. The �tness is evaluated by applying a program as a moving windowaross an image and omputing the output at eah pixel loation. The highest output fromthe image is used for prediting the position of the landmark. This proess is based on thepremise that only one objet of interest is always loated in the image. An alternative is thedomain independent approah desribed in Chapter 4 that applies a program to the image



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 101and omputes the output as desribed above, however, in this ase eah loation is labelledeither objet or bakground depending on the whether the program's output is positive orotherwise. The labelled positions are desribed as binary outputs in the detetion map. Referto Setion 4.3.3 for additional information desribing how this approah is used for loatingobjets.The objetive of this setion is to ompare the detetion and false alarm rates of programsthat have been evolved using the domain independent and domain dependent approah toevaluate �tness. In both ases the evolutionary proess will use features alulated fromthe handrafted shapes as depited in Figure 5.2. The �tness of a program using the domainindependent approah is evaluated as per Setion 4.3.3. The method for evaluating �tness forthe domain dependent approah is outlined in Setion 5.4.1. Advantages and disadvantageswill be given for both approahes.5.4.3.2 ResultsResults presented in Table 5.3 are for the nose and inisal upper inisor landmarks. Thedetetion rate for loating the nose landmark, a simple detetion problem, was similar usingeither the domain dependent approah (highest output) or the domain independent approah(binary output). The detetion rate for the inisal upper inisor, a medium diÆulty problem,using the domain dependent approah was slightly lower ompared to the domain independentapproah. However, the false alarm rate for both landmarks using the domain independentapproah was signi�antly higher ompared to the domain dependent approah approah. Anadvantage of using the highest output for prediting the position of ephalometri landmarksis that fewer false alarms are produed.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 102Training set Testing setHighest Binary Highest BinaryNose Averagedetetion(%) 99.24 98.54 97.55 99.17p-value 0.000 0.000false alarm(%) 0.76 47.33 2.45 33.75Best programdetetion(%) 100 100 100 100false alarm(%) 0 3.66 0 0Inisal Averagedetetion(%) 94.61 97.38 88.98 94.58p-value 0.000 0.000false alarm(%) 5.39 107.50 11.02 94.17Best programdetetion(%) 97.59 98.80 96.30 100false alarm(%) 2.41 72.29 3.70 51.85Table 5.3: Comparison of detetion programs that were evolved to predit the position ofthe landmark using the highest output and binary output. The averages are alulated fromthe best individual from eah run for 80 evolutionary runs. The p-value is alulated from atwo-sample t test to ompare the mean detetion rate from two independent samples.5.4.3.3 DisussionThe primary objetive of this work as desribed in Setion 1.1 is to have an automated ap-proah for loating ephalometri landmarks. However, it is expeted landmarks not foundwill need to be manually loated, while false alarms will require a pratitioner to hek theX-ray and re-position landmarks. The results from the previous setion demonstrated the do-main dependent approah produed fewer false alarms ompared to the domain independentapproah. However, the domain dependent approah makes only one predition resulting ina derease in detetion rate.Future work for inreasing detetion rate and reduing false alarm rate would be to applya two stage approah for objet detetion. Multiple stage approahes have been appliedpreviously by [58, 118, 141℄ for loating objets in large images. The �rst stage would be totrain a lassi�ation program, similar to the method desribed as the domain independentapproah, with the aim of minimising the number of andidate positions in the image. Theseond stage would then train a detetion program that would only be applied to the andidatepositions. The highest output from the detetion program, as used in the domain dependentapproah, would be used to predit the position of the landmark.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 103Beause the omplexity of the problem has been redued using a two stage approah, itis expeted that detetion programs will beome easier to understand. Currently programsare quite large and program omplexity inreases with the level of detetion diÆulty.if Output_1 < 0 thenbakgroundelseif Output_2 > highestreord position(x, y)Algorithm 1: Desription of the two stage approah applied to objet detetion. The �rststage applies a lassi�ation program to lassify positions based on the output, Output_1.The seond stage applies a detetion program to eah of the andidate positions, i.e. whenOutput_1 is greater than zero, and the output is omputed, Output_2. The highest outputfrom the detetion program is used to predit the position of the landmark.5.4.4 Highest Output: Unertain region5.4.4.1 MotivationIt was demonstrated that a method using a domain dependent approah for loating land-marks is able to outperform the domain independent approah in terms of produing fewerfalse alarms. The domain dependent approah desribed in Setion 5.4.1 uses the highestoutput to predit the most likely position of the landmark. However, the highest output doesnot always orretly predit the loation of the landmark and the false alarm rate inreaseswith image omplexity. This poses the question: \Are we able to re�ne the domain dependentapproah with the objetive of reduing the false alarm rate?"Previous work in this hapter has shown some landmarks annot be loated auratelyenough for a ephalometri analysis beause the images are either ambiguous in nature orloated within a luttered bakground. The detetion performane for loating landmarkswithin a luttered sene is most likely improved by making available better terminal andfuntion sets, however, improving the detetion performane of landmarks within areas ofambiguity we feel is related to how �tness is evaluated. An example of ambiguity is �ndingthe position of the upper lip landmark that may also enompass the lower lip within the sameimage as shown in Figure 5.11. In this example, both the upper and lower lips are similar in



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 104appearane.Figure 5.11 is an image showing the upper and lower lips with the aompanying output ofa reasonably suessful detetion program that has been evolved using the domain dependentapproah outlined in Setion 5.4.1. The output of the program, whih is represented as thesurfae plot, has been superimposed on the greysale image; eah point on the wire meshis the output of the program at a given pixel loation. The objetive of this program wasto detet the tip of the upper lip. Figure 5.4.1 illustrates that the highest output from thedetetion program { refer to the left side of View A { oinides with the position of the lowerlip. In this partiular example, the landmark was inorretly loated and is therefore a falsealarm. The seond highest output { refer to the right side of View A { oinides with theorret loation of the upper lip. The reason for this ourring is that the lower lip exhibitssimilar harateristis to the upper lip. So based on this result, are we able to reformulate thedomain dependent approah using the highest output for loating landmarks so that imagesontaining ambiguity are not lassi�ed?
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Figure 5.11: An ambiguous image that ontains the desired objet, the upper lip, but alsoontains the lower lip that is similar in appearane. The surfae plot represents the outputfrom a detetion program that has been applied to the image. The highest output is loatedat the lower lip at position (11, 31) and the region ontaining the seond highest output isloated at the upper lip at position (20, 7). The domain dependent approah uses the highestoutput to predit the position of the landmark and as result the landmark will be reordedas a false alarm.As desribed in Setion 2.5.2.6, a ommon approah to using geneti programming forobjet detetion problems has been to formulate as an objet/non-objet lassi�ation prob-lem. This is the most simplisti lassi�ation model as the output of the program deidesthe lass and often zero has been hosen as the deision boundary. An exeption to this isresearh presented by Teredesai et al. [144℄ who proposed an unde�ned region that was usedwhen the detetor is unable to on�dently make either a positive or negative deision { thiswas disussed in Setion 2.5.2.6. However, our domain dependent approah uses the highestoutput for prediting the loation of the landmark and we have found that this signi�antlyredues the number of false alarms when ompared to lassifying as objet/non-objet as perthe domain independent approah. So rather than de�ning an arbitrary region between twolasses, Teredesai et al.'s onept has been reformulated so a landmark will not be lassi�ed



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 106when the output from a detetor is within a perentage of the highest output. This is knownas the unertain region.The �tness of a program during training is alulated by using detetion and false alarmrates. The �tness is evaluated as follows:1. A program is traversed aross a training image and the program's output, Pij , atposition (i; j) is evaluated. The predited position of the deteted landmark is reordedas the loation orresponding to the highest output, PHighest.2. A seond traversal of the image veri�es that the program's output at eah loationin the image, Pij, is not similar to the predited position, PHighest. Eah positionis veri�ed using Equation 5.4 whih determines if a position has produed an outputwithin the shaded area as shown in Figure 5.12(a). The size of the shaded area is pre-determined prior to training and represents the unertain region whih is expressed as aperentage between the lowest, PLowest, and highest outputs, PHighest. For example, athreshold of 10 requires the program's output at eah position within the image, otherthan the predited position, to be at least 10% smaller than the highest output. Ifthe riterion of Equation 5.4 has been ful�lled then the landmark for that image isreorded as unlassified, i.e. the landmark's position will not be predited for theimage. Pixels loated within a distane of 5 pixels (2 mm) of the predited positionare not veri�ed beause they are within an error tolerane that is aeptable for aephalometri analysis. It is also expeted that an output at these pixel loations willmore than likely produe an output similar to the highest output.PHighest � PijPHighest � PLowest � 100% 6 Threshold (5.4)3. If the landmark in the image has not been unlassified, then a omparison is madebetween the landmark's predited position and the known true loation. A math, truepositive, ours when the omparison is within a tolerane of 5 pixels or 2 mm. Ifthe omparison is not within the tolerane then the landmark for the respetive imageis reorded as a false alarm. The tolerane is an upper error limit that is deemed



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 107aeptable for a ephalometri analysis. The error is de�ned as the Eulidean distanebetween the position found by the `system' and an `expert'.4. At the onlusion of evaluating the program for eah image in the training set thedetetion rate, DR, and false alarm rate, FAR, are alulated.5. The �tness is omputed as per Equation 5.5.fitness = A� FAR+B (1�DR) (5.5)where A and B are onstant values of 50 and 1000 respetively that are also used inSetion 4.3.3. The �tness funtion de�ned in Equation 5.5 is onstruted so as detetionrate inreases and false alarm rate dereases the �tness sore will approah zero.The ultimate aim is to orretly detet the position of the landmark, however, if thelandmark annot be on�dently loated then ideally we would like the program not to preditthe position of the landmark as opposed to produing a false alarm. The �tness funtion fromEquation 5.1 is not used for this senario beause false alarms and unlassi�ed landmarkswould be equally awarded. The objetive of the �tness funtion in Equation 5.5 is to rewardprograms that an detet landmarks and produe a small number of false alarms, and alsoindiretly reward programs by not loating landmarks that are within luttered or ambiguoussenes.
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(a) (b)Figure 5.12: The shaded area in (a) is the unertain region and is de�ned as a perentagebetween the lowest, PLowest, and highest output, PHighest. The �gure in (b) represents animage where `�' represents the position of the highest output. A omparison is performedon the shaded area to determine if any outputs are within the unertain region. The shadedarea in (b) is bound between an error tolerane of 5 pixels around the highest output and theedge of the image.5.4.4.2 ResultsTo determine the e�et of the threshold on false alarm rate, the method has been testedon the upper lip and sella landmarks. The reason for seleting these landmarks is beausethe performane of the detetion programs was not adequate. The upper lip landmark is amedium level of detetability based on the ambiguity between the upper and lower lips. Thesella landmark is a more diÆult landmark whih is loated within a luttered bakground.The results for eah threshold setting are based on 80 evolutionary runs.�rate = DR� FAR (5.6)The graphs in Figure 5.13 show that inorporating a threshold during training produesprograms that have minimal e�et on false alarm rate when deteting the upper lip, whilethe results for the sella landmarks show false alarm rate is signi�antly redued plateauing ata threshold value of 0.1. However, the smaller graph inset of eah graph shows an undesirabletrend of detetion rate reduing at a faster rate than false alarm rate. This is desribed as�rate and is de�ned in Equation 5.6. This indiates that while false alarm rate is redued it



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 109is to the detriment of detetion rate. In other words, detetion rate redues at a faster ratethan false alarm rate.
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(b) TestingFigure 5.13: The graphs illustrate how the unertain region inuenes false alarm rate anddetetion rate. The top and bottom graphs are results for the upper lip and sella landmarksrespetively. The graph inset is the di�erene between detetion and false alarm rates, �Rate,at eah threshold. The results are based on an average whih is alulated by averaging thebest individual at the end of 80 evolutionary runs.5.4.5 Highest output: Minimum Distane Error5.4.5.1 MotivationThe approahes to evaluating �tness for our detetion problem, that have been desribed sofar, use a ombination of detetion and false alarm rates. The detetion rate is a measure ofhow well the programs predit the landmarks within 2 mm of the desired loation, however,the auray of a detetion program beyond the 2 mm tolerane was not rewarded. An



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 110alternative to evaluating �tness is a �tness metri that rewards a program that an auratelyloate landmarks by minimising the umulative distane error. The ultimate objetive for ourproblem is to loate landmarks within 2 mm of the desired loation. So how well will a �tnessmetri that minimises the distane error predit the loation of landmarks and how will itompare with the �tness measure desribed as the domain dependent approah in Setion5.4.1?The approah desribed in this setion uses an alternative measure to evaluate �tnessthat rewards programs on the basis of minimising umulative distane error, �, when appliedto images in the training set. The distane error is the Eulidean di�erene between thelandmark's true loation and the predited position. The �tness is alulated as follows:1. The program is applied as a moving window aross a training image and the programoutput, Output, is evaluated at eah pixel loation. The output of the geneti pro-gram, Output, is a oating point number whih is interpreted as the likelihood thatthe evaluated position from the image is a landmark entre or bakground. Duringtraining the highest value of Output from eah image is used as the predited positionof the landmark. The predited position, (xi; yi), given by the geneti program is thenompared with the known true loation, (Xi; Yi), and the error is alulated.2. The performane of a program is measured by iteratively applying the �rst step to eahimage in the training set and alulating the distane error.3. The �tness is omputed as per equation 5.8.
fitness = � (5.7)where � = nXi=0q(Xi � xi)2 + (Yi � yi)2and n is the number of images in the training set



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 1115.4.5.2 ResultsTwo two-sample t tests are used to determine if there is a di�erene in mean detetion rateand detetion auray between two samples of programs using: (a) umulative distane erroras a meaure of �tness and (b) detetion rate as a �tness measure. Let the null hypothesis bethat the two samples are from the same population.The p-values for omparing the detetion rate of programs applied to training images areless than an alpha of 0.05 for the nose, inisal upper inisor and sella landmarks. Therefore,the null hypothesis, that the detetion rate of programs using the umulative distane erroris the same, an be rejeted. However, the average detetion rates for the nose and inisalupper inisor were only 0.60% and 2.62% less than the domain dependent approah desribedin Setion 5.4.1. The performane of the sella landmark was worst with the average detetionrate dereasing by 36.45%.The p-values for the detetion auray of programs applied to training images are lessthan 0.05 for the bottom orner of ruler, nose and inisal upper inisor landmarks. Therefore,the null hypothesis, that the detetion auray of programs using the umulative distaneerror is the same, an be rejeted. A omparison of the average detetion auray between thetwo approahes in Table 5.4 indiates a signi�ant improvement in average detetion aurayfor the bottom orner of the ruler, nose and inisal upper inisor landmarks. However, therewas not enough evidene to suggest that the detetion auray for the sella landmark hadhanged.These results suggest that using detetion rate as a �tness measure is advantageous be-ause the funtion is better suited to a wider range of landmark detetion diÆulties. How-ever, the umulative distane error as a �tness measure performs extremely well at preiselyloating easier types of landmarks. It is reommended as future work that these two �tnessfuntions should be ombined as a multiple objetive problem. It is expeted that detetionprograms will have high detetion performane and also improved auray.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 112Training Testing� (1�Dr) � (1�Dr)
Bottomornerof ruler

Averagedetetion (%) 99.97 99.98 100 99.21false alarm(%) 0.03 0.02 0 0.79auray (pixels) 0.86 2.41 0.83 2.45p-valuedetetion (%) 0.563 0.005auray (pixels) 0.000 0.000Best programdetetion (%) 100 100 100 100false alarm(%) 0 0 0 0auray (pixels) 0.81 0.97 0.75 1.14
Nose Averagedetetion (%) 98.64 99.24 97.69 97.55false alarm(%) 1.36 0.76 2.31 2.45auray (pixels) 1.85 2.39 2.21 2.67p-valuedetetion (%) 0.003 0.736auray (pixels) 0.000 0.001Best programdetetion (%) 100 100 100 100false alarm(%) 0 0 0 0auray (pixels) 1.51 1.69 1.46 1.63
Inisal Averagedetetion (%) 91.99 94.61 88.24 88.98false alarm(%) 8.01 5.39 11.76 11.02auray (pixels) 2.64 3.13 3.26 3.34p-valuedetetion (%) 0.000 0.282auray (pixels) 0.000 0.511Best programdetetion (%) 97.59 98.80 92.59 92.59false alarm(%) 2.41 1.20 7.41 7.41auray (pixels) 1.93 2.42 2.42 2.43
Sella Averagedetetion (%) 18.28 54.73 16.48 44.40false alarm(%) 81.72 45.27 83.52 55.60auray (pixels) 14.13 14.93 17.25 17.58p-valuedetetion (%) 0.000 0.000auray (pixels) 0.310 0.745Best programdetetion (%) 68.29 69.51 59.26 62.96false alarm(%) 31.71 30.49 40.74 37.04auray (pixels) 6.08 9.62 9.07 13.14Table 5.4: A omparison of umulative distane error and detetion rate �tness funtions.The averages are alulated from the best individual from eah run for 80 evolutionary runs.The p-value is alulated from a two-sample t test to ompare the mean detetion rate andauray (pixels) from two independent samples.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 1135.5 Funtion Set5.5.1 MotivationThe aim of this setion is to investigate a seletion of operators that are ommonly usedin geneti programming for solving vision and image related appliations. As disussed inSetion 2.5.2.5, the most ommon operators used in geneti programming for solving visionand image related problems are the +, �, � and / operators. A de�nition for eah of theseoperators is given in Setion 4.3.2. Other operators less ommonly used inlude the min andmax operators. The min and max operators return the minimum and maximum value froman arity of two respetively. A de�nition for eah operator is given in Table 5.5.FuntionsFuntion Arity De�nition+ 2 a+ b� 2 a� b� 2 a� b/ 2 � ab if b 6= 0else INT MAXmax 2 max(a; b)min 2 min(a; b)Table 5.5: De�nition of operators.The arithmeti operators in Table 5.5 allows the formation of linear and non-linear dete-tion programs and inorporating min and max into the funtion set allows non-ontinuousdetetion programs to be evolved. Even though many operators an be inluded in the fun-tion set, a disussion of previous researh by [74, 138℄ in Setion 2.5.2.5 indiated that theinlusion of unneessary operators or a large funtion set an lead to fewer suessful runs orslower onvergene of an evolutionary run. This is aused by additional operators inreasingthe size of the searh spae. Therefore, the aim of this setion is to �nd a ombination ofoperators based on the funtion sets de�ned in Table 5.6 that will, on average, lead to betterperforming solutions.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 114Case Funtion Set1 +, �2 +, �, �, /3 +, �, �, /, min, maxTable 5.6: De�nition of three funtion sets that are made available during the geneti searh.Eah funtion set in Table 5.6 will be investigated using the domain dependent approahthat uses highest output for prediting the position of the landmark. This approah is de-sribed in Setion 5.4.1.5.5.1.1 ResultsIn this setion we investigate the detetion performane of programs that have been evolvedusing three di�erent funtion sets. For omparing the three di�erent funtion sets, a one-wayANOVA [132℄ will be used to measure the di�erenes in mean detetion rate. Let the nullhypothesis be that the mean detetion rates of programs that have been evolved from thethree funtions are the same. The hypothesis is tested on three di�erent landmark types.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 115Training TestingCase 1 Case 2 Case 3 Case 1 Case 2 Case 3+,� +,�,�,/ +,�,�,/,min,max +,� +,�,�,/ +,�,�,/,min,maxNose Averagedetetion rate(%) 99.65 99.24 99.32 96.81 97.55 96.99p-value 0.011 0.050program size 56.83 32.30 47.65 - - -Best programdetetion rate(%) 100 100 100 100 100 100Inisor Averagedetetion rate(%) 95.09 94.61 94.78 89.07 88.98 89.86p-value 0.515 0.346program size 72.20 48.00 50.38 - - -Best programdetetion rate(%) 97.59 98.80 97.59 92.59 92.59 96.30Sella Averagedetetion rate(%) 62.81 54.73 52.81 53.89 44.40 43.15p-value 0.000 0.000program size 71.67 52.00 47.23 - - -Best programdetetion rate(%) 68.29 69.51 74.39 62.96 62.96 62.96Table 5.7: A omparison of average detetion rate for three funtion sets. The averagedetetion rate is alulated from the best individual's detetion rate from eah run for 80evolutionary runs. The p-value is based on a omparison of mean detetion rate for the threefuntion sets using a one-way ANOVA.The p-values for omparing the detetion rate of programs when applied to training im-ages are less than an alpha value of 0.05 for the nose and sella landmarks. Therefore, the nullhypothesis, of the mean detetion rate of programs that were evolved from the three funtionsets is the same, is rejeted. This indiates that at least two of the means are signi�antlydi�erent. Sine the alternative hypothesis is supported, a Tukey's pairwise omparison [132℄is onduted to determine disrepanies between the di�erent funtion sets. The pairwiseomparison from Table 5.8 revealed that during training, the funtion set of ase 1 was di�er-ent from ases 2 and 3 for the nose landmark. However, the di�erene in mean detetion ratesof the three funtion sets shown in Table 5.7 is minimal. The Tukey's pairwise omparisonof the mean detetion rate for the sella landmark showed that the funtion sets of ases 1and 2 were di�erent to ase 3. The mean detetion rate of the sella landmark in Table 5.7indiates that ase 1 on average will produe a program that will outperform ases 2 and 3by 8.1% and 10.0% respetively. There was not enough evidene to suggest that any of the



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 116three funtion sets had inuened the mean detetion rate for the inisal upper inisor. Thisanalysis is onsistent with the average detetion results of programs applied to test images.On average, a program that was evolved using the (+, �) funtion set was better for thenose and sella landmarks, however, the program size using the (+, �, �, /) operators wereon average onsiderably smaller. It is not onlusive that the disrepany in program sizesbetween the two funtion sets are aused by introns. No parsimony fator was used to ontrolbloat during training. Training TestingNose Case 1 22 Disimilar3 Similar Similar Case 1 22 Disimilar3 Similar SimilarInisal Case 1 22 Similar3 Similar Similar Case 1 22 Similar3 Similar SimilarSella Case 1 22 Disimilar3 Disimilar Similar Case 1 22 Disimilar3 Disimilar SimilarTable 5.8: A Tukey's pairwise omparison of the detetion performane of programs evolvedfrom three funtion sets.
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() SellaFigure 5.14: The �tness graphs are a omparison of the average �tness sore for the threefuntion sets de�ned in Table 5.6. The average �tness sore is alulated from the �tnesssore of the best individual at eah generation for 80 evolutionary runs.The �tness graphs in Figure 5.14 ompare the average �tness sores between the threedi�erent funtion sets that are de�ned in Table 5.6. The evolutionary proess was terminatedat either 100 generations or when a program ahieved a 100% detetion rate. All three graphsindiate that ase 1, i.e. the (+, �) funtion set, ahieves an improvement in �tness sorethat is signi�antly quiker ompared to the funtion sets of ases 2 and 3. This means thaton average, a �tter solution is available sooner ompared to programs that were evolved usingthe riher funtion set. It was reported in the literature by [152℄ that the performane maybe degraded if too many operators are inluded in the funtion set as this inreases the sizeof the searh spae. The (+, �, �, /) and (+, �, �, /, min, max) funtion sets produea similar rate of onvergene for optimising �tness sore during training of the nose, inisalupper inisor and sella landmarks.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 118Training a program to detet the inisal upper inisor using the (+, �) funtion setdemonstrated that negligible improvements were gained after generation 45, while to ahievethe same �tness using the (+, �, �, /) funtion set meant training for an additional 22generations. The �tness graph for the sella landmark showed that minimal improvementswere gained beyond generation 88. Although a similar �tness was ahieved for the inisalupper inisor at generation 100 for the three funtion sets, we have speulated that if traininghad ontinued using the (+, �, �, /) or (+, �, �, /, min, max) funtion set beyond generation100 then a similar average �tness may have ourred.Previously we ompared the mean detetion rate of programs that were evolved fromthree di�erent funtion sets. The analysis was based on 80 evolutionary runs. The outomeof the investigation was the (+, �) funtion set produed programs that were on averageomparable to or better performing than the other two funtion sets. However, upon a loserinspetion of the best evolutionary runs, i.e. the top 10% of evolutionary runs, as shown inTable 5.9, we notied that the detetion rate for programs that were evolved from the (+,�) funtion set was not as good as the programs evolved from the (+, �, �, /) or (+, �,�, /, min, max) funtion sets when applied to test images ontaining the nose landmark.There appears to be no evidene to suggest that there is a signi�ant di�erene of detetionperformane for programs evolved from the three funtion sets when applied to training data.This was supported by a one-way ANOVA and a omparison of average detetion rates asshown in Table 5.9. Training TestingCase 1 Case 2 Case 3 Case 1 Case 2 Case 3+,� +,�,�,/ +,�,�,/,min,max +,� +,�,�,/ +,�,�,/,min,maxNose detetion rate(%) 100 100 100 96.76 100 100p-value * 0.000Inisor detetion rate(%) 97.44 98.04 98.64 88.89 92.59 91.20p-value 0.000 0.067Sella detetion rate(%) 68.29 68.90 68.90 56.95 56.02 57.87p-value 0.731 0.832Table 5.9: A omparison of average detetion rate from the top 10% of evolutionary runsfor eah funtion set. The average detetion rate is alulated from the best individual'sdetetion rate from eah run based on the top 10% of evolutionary runs. The p-value is basedon a omparison of mean detetion rate for the three funtion sets using a one-way ANOVA.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 119Training TestingNose 1 22 Similar3 Similar Similar 1 22 Disimilar3 Disimilar SimilarInisal 1 22 Similar3 Disimilar Similar 1 22 Similar3 Similar SimilarSella 1 22 Similar3 Similar Similar 1 22 Similar3 Similar SimilarTable 5.10: An ANOVA matrix omparing the average detetion performane from the top10% of evolutionary runs for eah funtion set.5.5.2 Analysis of a linear funtion set: f+, �gA linear program is de�ned as a ombination of operators and terminals having an equivalentform as the linear model shown in Equation 5.8. The features of Mi and Si orrespond tothe mean and standard deviation alulated from the ith shape from grey level intensities.The features and their orresponding shapes are shown in Figure 5.2 on page 85.Output = �1M1 + �1S1 + �2M2 + �2S2 + � � � + �nMn + �nSn + C (5.8)= nXi=1(�iMi + �Si) + C;where �i and �i are integersOur landmark detetion problem has been formulated so that the highest output is usedto loate the position of the landmark. This means that the onstant, C, has no e�et inprediting the position of the landmark and therefore the onstant an be eliminated. Theequation an be redued to the linear model shown in Equation 5.9.Output = nXi=1(�iMi + �Si) (5.9)



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 120(- (- (+ (- M1 S3) S5) (+ S1 (+ (+ (+ M2 (- S1 (- M1 M7))) (+ M2 S1))(- (+ M3 (- S4 (- M1 108.475))) (- M1 108.475))))) (+ S3 (+ (+ (+ (+ (+ M7(+ M2 S1)) (+ (- S4 S3) S1)) (- S1 (- M1 M7))) (+ (- S1 (- M1 M7)) S1))(- (+ M2 (- S1 (- M1 108.475))) (- M1 108.475)))))Figure 5.15: An evolved linear detetion program for loating the sella landmark.An example of a linear program evolved to loate the sella landmark is shown in Figure5.15. This LISP S-expression an be simpli�ed to the equivalent program shown in Equation5.10. Output = 8M1 � 9S1 � 4M2 �M3 � S3 � 2S4 + S5 � 4M7 (5.10)Figure 5.16 shows an analysis of the oeÆients generated in 80 evolutionary runs. Themagnitude of eah oeÆient, � and �, is alulated using the best program from eahevolutionary run. The frequeny that a oeÆient's magnitude is either positive, negative orzero, is ollated for eah terminal and presented in the form of a bar hart shown in the �gure.The three bar harts in Figure 5.16 show that some of the terminals have oeÆients that arepredominantly all positive or negative. What this indiates is that the evolutionary proesshas direted the searh toward the systemati learning of an underlying algorithm that maybe onsistent between eah evolutionary run. A further investigation into understanding theevolved programs is presented in Chapter 7.
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() SellaFigure 5.16: Frequeny that a terminal's oeÆient, �i or �i in Equation 5.9, is negative,positive or zero (i.e. not used in a program). The analysis uses the best program at the endof 80 evolutionary runs.5.6 Highest Output: Pixels as Features5.6.1 MotivationPrevious work in this hapter has investigated several approahes for evaluating the �tness ofa program using features that were alulated from handrafted shapes. The objetive was todetermine a suitable approah for solving our landmark detetion problem. We demonstrateda domain dependent approah that uses the highest output for prediting the position of thelandmark. The most suitable �tness metri used detetion rate as a measure of performane.The overall performane of the evolved programs, i.e. detetion and false alarm rates, waspreferable to the domain independent approah desribed in Chapter 4. Both methods wereompared on four types of landmarks ranging from easy to hard.
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Figure 5.17: The diagram illustrates an input window of size 14�14 pixels divided into m2sub-regions. The average grey level intensity of the pixels within eah sub-region is alulated.The averages at eah sub-region represent the terminals that are available for the evolutionaryproess.However, we would now like to apply our domain dependent approah that was desribedabove and ompare the performane of programs that were evolved from features using hand-rafted shapes with pixels as features desribed in Setion 4.3.1. The operators used in thegeneti searh are limited to the f+, �, �, /g funtion set.5.6.2 ResultsA two-sample t test is used to determine if there is a di�erene in mean detetion rate betweentwo samples of programs using: (a) pixels as features and (b) programs evolved using featuresalulated from handrafted shapes. Let the null hypothesis be that the two samples are fromthe same population.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 123Training TestingPixelbased Hand-rafted Pixelbased Hand-raftedBottomornerof theruler Averagedetetion(%) 99.94 99.98 99.44 99.21false alarm(%) 0.06 0.02 0.56 0.79program size 33.05 24.88 - -p-value 0.176 0.472Best programdetetion 100 100 100 100false alarm 0 0 0 0Nose Averagedetetion(%) 97.62 99.24 95.79 97.55false alarm(%) 2.38 0.76 4.21 2.45program size 53.75 32.30 - -p-value 0.000 0.001Best programdetetion 100 100 100 100false alarm 0 0 0 0Inisal Averagedetetion(%) 94.28 94.61 88.06 88.98false alarm(%) 5.72 5.39 11.94 11.02program size 45.50 48.00 - -p-value 0.489 0.221Best programdetetion(%) 98.80 98.80 96.30 92.59false alarm(%) 1.20 1.20 3.70 7.41Sella Averagedetetion(%) 18.35 54.73 10.60 44.40false alarm(%) 81.65 45.27 89.40 55.60program size 58.12 52.00 - -p-value 0.000 0.000Best programdetetion(%) 30.49 69.51 25.93 62.96false alarm(%) 69.51 30.49 74.07 37.04Table 5.11: A omparison of detetion performane for programs that were evolved frompixel based features and features using handrafted shapes. The averages are alulated fromthe best individual from eah run for 80 evolutionary runs. The p-value is alulated from atwo-sample t test to ompare the mean detetion rate from two independent samples.The p-value is less than an alpha value of 0.05 for the nose and sella landmarks. Therefore,the null hypothesis, that the mean detetion rate of programs evolved from pixel basedfeatures and features alulated using handrafted shapes is the same, an be be rejeted.The average detetion rates for the nose and sella landmarks dereased by 1.62% and 36.38%respetively when programs were evolved using pixel based features. There was no evidene tosuggest that the average detetion rate for bottom orner of the ruler and inisal upper inisor



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 124landmark had hanged. Therefore, while pixel based features work as well as handraftedfeatures for evolving programs on two of the four landmarks, the features fail to produea omparable detetion rate on the more diÆult sella landmark. This indiates that pixelbased features do not perform as well as features alulated using handrafted shapes.
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() SellaFigure 5.18: The �tness graphs are a omparison of the average �tness sore for programsevolved using features alulated from handrafted shapes and programs evolved using pixelsas features. The average �tness is alulated from the �tness sore of the best individual ateah generation for 80 evolutionary runs.The �tness graphs in Figure 5.18 indiate that on average, the improvement in �tnesssores of programs for the nose and sella landmarks is signi�antly quiker when using featuresalulated from handrafted shapes. The �tness of programs using pixel based features forthe sella landmark at generation 100 had not improved muh from the initial population.However, the �tness of programs when using handrafted features had improved signi�antlyfrom the initial population. This suggests that pixel based features do not work well on



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 125diÆult detetion problems. The rate of onvergene of both feature sets used to evolvedetetion programs for prediting the bottom orner of the ruler and inisal upper inisorlandmark is similar.5.7 SummaryThe aim of this hapter was to determine if geneti programming is able to evolve a detetionprogram that is aurate enough for the purpose of prediting the position of ephalometrilandmarks. This was ahieved experimentally by fousing on how to formulate geneti pro-gramming for the landmark detetion problems presented in this study. The investigationfoused on: (a) how to improve �tness evaluation for reduing the number of false alarms, (b)a omparison between handrafted and domain independent features and () an investigationof di�erent funtion sets. To improve the robustness of the approah, the experimental workwas onduted on a seletion of landmarks ranging from easy to diÆult. The �ndings fromthis hapter will form the foundation for future work and beome the investigative basis tobe used in the subsequent hapters. The investigation indiated that:� When it is known there is only one objet present in an image, using the highest out-put for prediting the position of the landmark produes signi�antly less false alarmsompared with the domain independent approah desribed in Chapter 4. We alsodemonstrated that the auray of the detetion program ould be improved by min-imising the error { the distane between the known and predited position { in the�tness funtion. However, this �tness metri was not as e�etive as detetion rate forlandmarks that are diÆult to loate. A �tness metri that uses detetion rate wasshown to be a good measure of performane.� The results indiate that the f+; �g funtion set on average produes a detetion pro-gram that is omparable to or better than the f+; �; �; =g and f+; �; �; =; min; maxgfuntion sets. However, this omparison is driven by average and not optimal. An anal-ysis of the programs from the best performing evolutionary runs (i.e. the top 10% ofevolutionary runs) indiates that the f+; �; �; =g funtion set produes programs



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 126that are omparable to, or better than the f+; �g funtion set when applied to testdata.� The results suggest that handrafted shapes spei� to a partiular landmark are ableto produe better performing programs when applied to diÆult landmarks when om-pared to pixels as features.



Chapter 6
Learning with Features from PulseCoupled Neural Networks
6.1 IntrodutionPrevious work in Chapter 5 has improved the domain independent approah of geneti pro-gramming by using handrafted shapes and the highest output to predit the position of thelandmark. A �tness measure using detetion rate was used as a measure of performane.This approah was tested and veri�ed on a range of ephalometri landmarks with varyinglevels of suess. The handrafted shapes are manually onstruted and ontained within amoving input window. The set of shapes is used for alulating feature values based on imagestatistis of the grey level intensities. The features orrespond to terminals that are used asinputs for the geneti programming method.We have established in Setion 5.6 that detetion programs evolved using pixel based fea-tures were not as suessful as a spei� set of handrafted shapes devised for eah landmark.However, the proess for determining what are useful shapes is tedious, time onsuming andopen to interpretation. Therefore, the initial investigation of this hapter is to determine ifit is possible to automatially apture useful regions of interest by generating useful shapesusing a segmentation algorithm. If this question is answered in the aÆrmative, then willthese shapes improve the detetion performane ompared to the handrafted shapes from127



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS128Setion 5.3.1?6.2 Can regions of interest be extrated using a segmentationalgorithm?The aim of this setion is to determine if we an ahieve an aurate representation of alandmarks shape using a segmentation algorithm for highlighting regions of interest. Thesegmented shapes will subsequently be used for alulating features and used as part of thegeneti searh. Whilst there are many segmentation tehniques used in image proessing,a promising tehnique that was disussed Setion 2.6 for segmenting regions of interest inomplex images is the Pulse Coupled Neural Network (PCNN). The PCNN is a relatively newedge detetion and segmentation method that has produed promising results in segmentingregions of interest in medial images [67, 72, 86, 159℄.The diÆulty of segmenting regions of interest in our problem is that a number of areasloated within the bony tissue of the head are subjet to both noise and low ontrast. Whilefairly aurate segmentation an be ahieved for a few images using segmentation algorithms,many of the algorithms tend to fail when applied to a larger suite of images unless parametersare onstantly adjusted. Beause the ultimate goal of our problem is to develop a methodologythat is automated, we are trying to avoid the senario of interfering with the methodology byontinually altering parameters in an ad ho manner to ahieve the best possible outome.6.2.1 Pulse Coupled Neural Network segmentationThe aim of this setion is to determine whether the outputs from the Pulse Coupled NeuralNetwork (PCNN) are able to produe a segmented output that highlights regions of interestthat will be useful for landmark detetion. It is antiipated that segmenting the output willprovide useful shapes for landmark detetion programs by assisting with disriminating thelandmark from bakground. The PCNN algorithm used in these experiments is based on theode from Lindblad and Kinser [85℄. The PCNN will fous on highlighting regions of intereston both soft and bony tissue. The segmented regions will later be used to assist with loatingthe position of the landmark. To determine whether pre-proessing by a PCNN ould be



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS129useful in landmark detetion four landmarks are seleted. Two easy landmarks (the mentonand upper lip landmarks), one of medium diÆulty (inisal upper inisor landmark) and anextremely hard one (sella landmark) are seleted. The sella landmark is loated in an area ofbony tissue that is shown on the X-ray as subtle hanges in greysale. The other landmarksare loated on the edge of bone/soft-tissue and soft-tissue. The di�erent landmark types usedin Chapter 5 that regularly ahieved 100% detetion performane have been omitted fromthis investigation. By using the PCNN it is antiipated that a set of parameters for eahlandmark will produe a binary image that have highlighted shapes relevant for landmarkidenti�ation.6.2.1.1 Segmentation resultsThe results shown in Figure 6.1 are the binarised output from the PCNN applied to four typesof landmarks. A set of parameters was empirially determined for eah type of landmark priorto segmentation. The parameter values remained onstant throughout segmentation of thetraining data. The parameters shown in Figure 6.1 are used for segmenting regions of interestfor eah type of landmark.To determine the likelihood that the PCNN output ould be used to assist with loat-ing landmarks, the segmented outputs were manually lassi�ed into three ategories, i.e.Definitive, Partially de�ned and Failure. The ategories qualify the output and establishthe validity of the PCNN parameters. Table 6.1 is a summary of segmentation results fromthe PCNN applied to the four types of landmarks. The results indiate the PCNN methodwas able to aurately segment regions loated on the edge of bone/soft-tissue or soft-tissue,however, the tehnique was less suessful for highlighting the semi-irular region that en-ompasses the sella landmark. The redued segmentation suess rate for the sella landmarkis beause of the low ontrast between the region of interest(semi-irular region) and bak-ground. The images shown in Figure 6.1 are a sample of results from a dataset of 83 images.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS130Menton�F = 1�L = 0:3�� = 0:15� = 0:08VF = 0:01VL = 1V� = 1 Cut-out I k � � �
BinaryImage A k � � �Upper lip�F = 1�L = 0:3�� = 0:15� = 0:26VF = 0:01VL = 1V� = 1 Cut-out I k � � �
BinaryImage A k � � �Inisal upper inisor�F = 1�L = 0:3�� = 0:15� = 0:08VF = 0:01VL = 1V� = 1 Cut-out I k � � �
BinaryImage A k � � �Sella�F = 80�L = 0:3�� = 0:15� = 0:008VF = 0:01VL = 19V� = 5 Cut-out I k � � �
BinaryImage A k � � �k 1 2 3 � � � nFigure 6.1: Segmentation results using the PCNN for the menton, upper lip, inisal upperinisor and sella ut-outs of size 40�40 pixels. Below eah image ut-out is the orrespond-ing binary image output from the PCNN. The values in the left olumn orrespond to theparameters of the PCNN used to ahieve the binary image. The images have been saled by130% to enhane larity.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS131Menton Upper lip Inisal SellaDe�nitive (%) 88.0 97.6 85.5 32.5Partially de�ned (%) 12.0 2.4 12.0 33.7Failure (%) 0 0 2.4 33.7Table 6.1: Summary of segmentation results for the four types of landmarks as shown inFigure 6.1. Results are based on a set of 83 images6.2.1.2 PCNN derived shapesThe PCNN is used to highlight a region of interest that may assist with prediting the positionof the landmark. Beause one binary image is reated from eah ut-out, the method is limitedto extrating two shapes (i.e. blak and white regions) from eah ut-out as shown in Figure6.1. The PCNN derived shapes are reated as follows:1. An image ut-out is entred on the known position of the landmark with the dimensionsof the ut-out predetermined by the input window's square size in Figure 5.2 on page85. The PCNN is then applied to the image ut-out, Ik, to produe a binary image,Ak(i; j).2. Step one is iteratively applied to eah image in the training set.3. The binary image output from the PCNN, Ak(i; j), is used to reate a template matrix,Template, by omputing the average at eah pixel position. The template is alulatedusing Equation 6.1. Template(i; j) = 1n nXk=1Ak(i; j); (6.1)where Ak(i; j) is the segmented image and n is the number of images in the trainingset. An example template for eah landmark is shown in the top row of Figure 6.2.4. Two shapes are extrated by thresholding the Template (refer to Algorithm 2) . ShapesA and B orrespond to white and blak pixels in the bottom row of Figure 6.2. Theterm given to desribe these shapes is PCNN derived shapes.The two PCNN derived shapes are used to alulate features M1, S1, M2 and S2.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS132if Template(i,j)>70 thenShape AelseShape BAlgorithm 2: The proedure for segmenting Template into two distint shapes.

(a) Menton (b) Upper lip () Inisal upper inisor (d) SellaFigure 6.2: Templates omputed using the output from a PCNN.Grey pixels in the template, as shown in the top row of Figure 6.2, indiate the PCNNhas either not produed an ideal segmentation or there is biologial variability that hasbeen aptured whilst averaging the binary outputs. Grey pixels are de�ned as pixels havinggrey level intensities in the interval [1, 254℄. Beause the PCNN method performs well atextrating soft and bony tissue, the grey pixels for the menton, upper lip, and inisal upperinisor landmarks are aused by biologial variability. However, segmentation results for thesella ut-out were less suessful and ahieved a de�nitive segmentation of only 32.5%. Thisprodues a lower ontrast template ompared to the other three landmarks.A value of 70 was hosen to threshold the template into two distint regions, i.e. shapeA and shape B. This value was empirially determined for the sella template and wassubsequently applied for thresholding the templates for the other landmarks shown in Figure6.2. If we ould improve the proess for segmenting regions of interest in areas that aresubjet to subtle hanges of greysale, then this may improve the PCNN derived shapes.This setion demonstrated that shapes an be automatially generated using a PCNN.The PCNN derived shapes have found regions of interest that we believe will be useful forloating landmarks.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS1336.3 Geneti Programming: Learning from PCNN derived shapes6.3.1 MotivationPrevious work in Setion 5.6 has ompared the performane of programs that were evolvedfrom features using handrafted shapes with pixel based features. The outome was thathandrafting shapes spei� to a landmark are able to produe better performing programswhen applied to a diÆult landmark. However, hoosing a set of handrafted features is diÆ-ult and time onsuming. Therefore, we would like to determine if the detetion performaneof programs using PCNN derived shapes is omparable to programs that used handraftedshapes from Setion 5.3.1.6.3.2 MethodologyWe will investigate three feature sets that use PCNN derived shapes. Eah feature set is aprogression from manually reated handrafted shapes to a method that an generate shapesautomatially. The feature sets are de�ned in Table 6.2.The �rst feature set uses handrafted shapes from Setion 5.2 and is used as a benhmarkfor measuring detetion performane for the following three feature sets. The seond featureset substitutes the PCNN derived shapes for some of the handrafted shapes from the previousfeature set. This allows us to determine whether PCNN derived shapes an improve detetionperformane using the same number of terminals. The aim of the third feature set is tomeasure the detetion performane for programs that use only PCNN derived shapes. Thefourth feature set determines if additional square shapes ombined with PCNN derived shapesan improve detetion performane. The fourth feature set is automatially generated. Thefeature values are alulated from the means and standard deviations of grey level pixel valuesfor eah shape. To determine the e�etiveness of eah feature set for evolving programs, fourlandmarks of varying detetion diÆulty have been seleted. They are the menton, upper lip,inisal upper inisor and sella landmarks.
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Figure 6.3: Diagram depiting an approah for extrating PCNN and additional featuresfrom the extrated images along with the methodology for evolving and evaluating detetionprograms for the task of loating a landmark.Case Feature Set1 Handrafted shapes2 PCNN derived + handrafted shapes3 PCNN derived shapes only4 PCNN derived shapes + quadrantsTable 6.2: De�nition of four feature sets that are made available during the geneti searh.The use of geneti programming for landmark detetion is similar to the methodologydesribed in Setion 5.2 on page 82 with the exeption of steps 3 and 4. A shemati fordesribing the methodology is shown in Figure 6.3. The amended items are as follows:3. The size of the input window that is applied to eah landmark type is determined by thesquare size de�ned in Figure 5.2. This gives an unbiased omparison for the detetionperformane of programs that are evolved using the di�erent feature sets.4. Three on�gurations using the PCNN derived shapes de�ned in Figure 6.2 will beonduted. The shapes are spei� to apturing a landmark's harateristis and alsodisriminating against bakground. The results from eah of these experiments will beompared with handrafted shapes de�ned in Setion 5.3.1.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS1356.3.3 The Funtion SetAn investigation of di�erent operators in Setion 5.5 established that a funtion set onsistingof (+, �, �, /) is a good seletion of operators for evolving detetion programs.6.3.4 Fitness EvaluationAn investigation of alternative approahes for evaluating �tness in Chapter 5 demonstratedthat using the highest output for prediting the position of a landmark produes signi�antlyless false alarms than the domain independent approah. The �tness of a program will bemeasured as per Equation 5.1 in Setion 5.4.1, i.e. Fitness = (1�DR). The alulation fordetetion rate, DR, is de�ned in Setion 2.2. The tolerane for orretly loating a landmarkis 2 mm (5 pixels) of the position loated by the orthodontist.6.3.5 Case2: PCNN derived and Handrafted shapes6.3.5.1 MotivationThe aim of this setion is to determine the e�etiveness of the PCNN derived shapes whenompared to the handrafted shapes. This is ahieved by using a seletion of the handraftedshapes from Setion 5.3.1 and the PCNN derived shapes and then determining if the detetionrate is signi�antly di�erent.The two handrafted shapes in Setion 5.3.1 are substituted with the orresponding PCNNderived shapes as shown in Figure 6.4. The reason for seleting these handrafted shapes isbeause of the resemblane to the PCNN derived shapes. This will determine if an auraterepresentation of a landmark's region of interest using PCNN derived shapes will improvedetetion rate ompared to the handrafted shapes. There were no similarities between thePCNN derived shapes and the handrafted shapes for the inisal upper inisor, so we seletedtwo features that were ommonly hosen by GP as a result of the evolutionary proess.Substituting the PCNN derived shapes into the handrafted set of shapes has reated ahybrid set that we have desribed as PCNN derived + handrafted shapes. The reason forsubstituting rather than appending the two shapes to the feature set is to ompare theprogram's performane and not inrease the number of features that are available for seletion



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS136during the geneti searh. Handrafted PCNN derivedMenton )Upper lip )Inisal upperinisor )Sella )Figure 6.4: Substituting two handrafted shapes, i.e. A and B, for PCNN derived shapes.
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Menton square size=14

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 two entre olumns E-FM5 S5 two entre rows G-H
Upper lip square size=14

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 two entre olumns E-FM5 S5 two entre rows G-H
Inisal upperinisor square size=14

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 upper right square E-B-H-oM5 S5 bottom left square G-o-F-DM6 S6 two entre olumns E-FM7 S7 two entre rows G-HM8 S8 right hand retangle I-B-C-J
Sella square size=40

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 left half A-E-F-DM5 S5 right half E-D-C-FM6 S6 two entre olumns E-FM7 S7 two entre rows G-HFigure 6.5: The diagrams in the left olumn are shapes that have been manually determined.The seond olumn are shapes automatially extrated using the PCNN template. Theshapes manually and automatially extrated are ombined to produe the feature set for thementon, upper lip, inisal upper inisor and sella landmarks. A feature set onsists of themean and standard deviation of pixel intensities for eah shape.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS1386.3.5.2 ResultsThe aim is to determine the e�etiveness of the PCNN derived shapes by measuring the de-tetion performane of programs that are evolved from PCNN derived + handrafted shapes.The performane of the programs will then be ompared with programs evolved using hand-rafted shapes. A two-sample t test is used to determine if there is a di�erene in meandetetion rate between two samples of programs using: (a) PCNN derived + handraftedshapes and (b) handrafted shapes. Let the null hypothesis be that the two samples are fromthe same population.The p-value is less than an alpha value of 0.05, the ritial `ut-o�' boundary, for thementon, upper lip and sella landmarks. Therefore the null hypothesis, that the mean detetionrate of programs evolved using PCNN derived + handrafted shapes and handrafted shapesis the same, an be rejeted. The average detetion rates for menton, upper lip and sellalandmarks has inreased by 5.77%, 15.69% and 18.67% respetively by the inlusion of thePCNN derived shapes. There is no evidene to suggest that the average detetion rate for theinisal upper inisor had hanged. The same hypothesis for omparing the mean detetionrate of programs are supported for eah landmark when applied to the test images. Theaverage detetion performane has inreased for the menton, upper lip and sella landmarksby 10.56%, 19.31% and 29.67% respetively. The mean detetion rate of the best program hasinreased more for test data than training data. This suggests that programs using the PCNNderived shapes have generalised better ompared to programs that used handrafted shapes.This is shown as a satter plot in Figure 6.6. This analysis demonstrates that improvingthe representation of a landmark's region of interest improves the detetion performane ofprograms.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS139Training TestingCase 1 Case 2 Case 1 Case 2Menton Averagedetetion (%) 93.07 98.84 83.47 94.03false alarm(%) 6.93 1.16 16.53 5.97p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 100 100 96.30 100false alarm(%) 0 0 3.70 0Upper lip Averagedetetion (%) 83.74 99.43 63.70 83.01false alarm(%) 16.26 0.57 36.30 16.99p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 90.36 100 77.78 92.59false alarm(%) 8.64 0 22.22 7.41Inisal upperinisor Averagedetetion (%) 94.61 94.44 88.98 88.80false alarm(%) 5.39 5.56 11.02 11.20p-valuedetetion (%) 0.675 0.787Best programdetetion (%) 98.80 97.59 92.59 96.30false alarm(%) 1.20 2.41 7.41 3.70Sella Averagedetetion (%) 54.73 73.40 44.40 74.07false alarm(%) 45.27 26.60 55.60 25.93p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 69.51 82.93 62.96 85.19false alarm(%) 30.49 17.07 37.04 14.81Table 6.3: A omparison of detetion performane for programs that were evolved using hand-rafted shapes (Case 1) de�ned in Setion 5.2 with PCNN derived + handrafted shapes (Case2). The averages are alulated from the best individual from eah run for 80 evolutionaryruns. The p-value is alulated from a two-sample t test to ompare the mean detetion ratefrom two independent samples.
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(d) SellaFigure 6.6: A omparison of detetion performane for programs that were evolved fromPCNN derived and handrafted shapes with handrafted shapes. The points are the detetionrate of the best program for eah run from 80 evolutionary runs.Figure 6.7 is a seletion of randomly hosen examples of four di�erent landmark types.The positions of eah landmark type are predited by using the best performing programof 80 evolutionary runs. The best program for eah landmark is shown in Figure 6.8. Theoordinates below eah image show the detetion error de�ned as the di�erene between thepredited and known position. If the error is in exess of a Eulidean distane of 5 pixels (2mm) then this is regarded as a false alarm. The landmarks in all the images shown in Figure6.7 were predited within the aeptable tolerane with the exeption of a sella landmark inthe bottom row of Figure 6.7. The landmark for this image was reorded as a false alarmbeause the predited error was (41, 35) pixels or 21.9 mm from the orret loation.
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(-3, 1) (-1, 0) (-1, 1) (0, -1)
(-3, 0) (1, -1) (2, -2) (2, 1)Menton (93�85 pixels)

(-1, 3) (0, 2) (0, 3) (0, 4) (-1, 1) (-1, 1)(1, -2) (-1, 2) (-1, -1) (-1, 1) (-1, 3) (-1, 2)Upper lip (56�43 pixels)
(-1, 2) (-1, 1) (0, 1) (-1, 0) (3, 1)
(2, 1) (-2, 1) (-2, 1) (-4, 0) (4, 2)Inisal upper inisor (71�59 pixels)Figure 6.7: The rows from top to bottom are indiative of the variation in biologial shapesfor the menton, upper lip, inisal upper inisor and sella landmarks respetively. The positionfound by the detetion program is marked with the ross. The positional error (pixels) isdisplayed under eah image.
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(2, -3) (0, 0) (4, 3) (2, 0)
(0, -1) (3, 0) (41, 35) (2, -3)Sella (110�125 pixels)Figure 6.7 (ontinued)(* (- (* M5 162.198) (+ S1 (* M5 162.198))) (+ (* (- S1 S3) (- S5 S4)) (-(* (- S1 (- S3 S2)) M1) S5)))Menton program (Fitness=0)(/ (/ M4 (+ S1 (* 230.061 (+ M2 S2)))) (+ (+ 230.061 (- (- (/ M1 (+ S2 (-M1 73.1477))) S4) (+ (/ S1 S1) M3))) (* (+ 234.024 M3) (+ M2 S2))))Upper lip program (Fitness=0)(* (* (/ M6 M7) (+ M3 (- M8 219.569))) (- M2 (+ M3 M8)))Inisal upper inisor detetion program (Fitness=2.41)(/ (/ (/ (/ (+ (* M5 M6) (/ S7 S3)) (/ S2 M2)) (/ S1 S5)) (- (/ (+ (/ S7 M2)(- (/ S7 S3) (- S5 M2))) (+ (+ (* M6 87.2767) (- S3 S2)) M5)) (+ (/ M5 S6)M5))) (/ (+ (/ (+ M2 (- S2 S5)) (/ (* S7 M5) M2)) (+ (* S5 S5) M2)) (/ (/ (*(- M3 M1) (- (- S2 S5) S5)) (+ (* M1 S5) (/ M5 S7))) (+ (- (- 58.6679 M5) (/S6 M7)) S7)))) Sella detetion program (Fitness=17.07)Figure 6.8: The programs expressed as LISP S-expressions are the best individuals from 80evolutionary runs for the menton, upper lip, inisal upper inisor and sella landmarks.As evident from the experiments, the size of the program inreased with the diÆulty ofthe landmark. The best performing programs from 80 evolutionary runs are shown in Figure



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS1436.8. It is not onlusive that the program sizes inreased beause of �tness or an aumulationof introns during an evolutionary run. No parsimony fator was used to ontrol bloat duringtraining.6.3.6 Case 3: PCNN derived shapes only6.3.6.1 MotivationIn the previous setion we analysed the e�etiveness of the PCNN derived shapes by ompar-ing them with the simpli�ed handrafted shapes shown in Figure 6.4. This work demonstratedthat inorporating shapes that are a better representation of a landmark's region of interestimproves the detetion performane of evolved programs. However, the previous feature setwas partially onstruted from handrafted shapes and we would like a method that anautomatially generate the feature set. As an intermediate step in automatially generatinga feature set, we would like to determine how well the PCNN derived shapes an be used fordeteting the previous set of landmarks without using handrafted shapes.Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BFigure 6.9: The feature set onsists of features derived from the PCNN derived shapes.Features are alulated using the mean and standard deviation of pixel intensities for eahshape.6.3.6.2 ResultsThe aim is to measure the detetion performane of programs evolved from a feature setonsisting of only PCNN derived shapes. The detetion performane of programs usinghandrafted shapes will be used as a benhmark. A two-sample t test is used to determineif there is a di�erene in mean detetion rate between two samples of programs using: (a)PCNN derived shapes and (b) handrafted shapes. Let the null hypothesis be that the twosamples are from the same population.The p-value is less than an alpha value of 0.05 for all four landmarks, i.e. menton, upperlip, inisal upper inisor and sella landmarks. Therefore the null hypothesis, that the mean



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS144detetion rate of programs evolved using PCNN derived shapes and handrafted shapes isthe same, an be rejeted. The average detetion rate for the menton, upper lip and sellalandmarks has inreased by 3.45%. 15.36% and 20.15% respetively, however, the averagedetetion rate for the inisal upper inisor has dereased by 38.28%. The same hypothesis foromparing the mean detetion rate of programs is supported for eah landmark type whenapplied to the test images.The derease in detetion performane for the inisal upper inisor landmark suggests thatthe PCNN derived shapes are not as e�etive at disriminating a landmark from bakgroundas the menton, upper lip and sella landmarks. This statement is supported by the derease indetetion rate for the inisal upper inisor whereas there was a signi�ant inrease in detetionrate for the other landmark types. This suggests that the PCNN derived shapes were eithernot a good representation of the inisal upper inisor or that additional shapes are requiredin order to evolve omparable detetion programs.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS145Training TestingCase 1 Case 3 Case 1 Case 3Menton Averagedetetion (%) 93.07 96.52 83.47 92.64false alarm(%) 6.93 3.48 16.53 7.36p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 100 100 96.30 96.30false alarm(%) 0 0 3.70 3.70Upper lip Averagedetetion (%) 83.74 99.10 63.70 78.52false alarm(%) 16.26 0.90 36.30 21.48p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 90.36 100 77.78 85.19false alarm(%) 8.64 0 22.22 14.81Inisal upperinisor Averagedetetion (%) 94.61 56.33 88.98 51.57false alarm(%) 5.39 43.67 11.02 48.43p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 98.80 71.08 92.59 55.56false alarm(%) 1.20 28.92 7.41 44.44Sella Averagedetetion (%) 54.73 74.88 44.40 71.76false alarm(%) 45.27 25.12 55.60 28.24p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 69.51 79.27 62.96 77.78false alarm(%) 30.49 20.73 37.04 22.22Table 6.4: A omparison of detetion performane for programs that were evolved usinghandrafted shapes (Case 1) with PCNN derived shapes (Case 3). The averages are alulatedfrom the best individual from eah run for 80 evolutionary runs. The p-value is alulatedfrom a two-sample t test to ompare the mean detetion rate from two independent samples.6.3.7 Case 4: PCNN derived shapes and quadrants6.3.7.1 MotivationIn the previous setion the aim was to determine how well the PCNN derived shapes an beused for deteting a seletion of landmarks by omparing with the detetion performane ofprograms that were evolved from handrafted shapes. We found that PCNN derived shapeswere not as e�etive for deteting the inisal upper inisor ompared to the other three types



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS146of landmarks. This suggests that additional shapes may have been useful for improving thedetetion performane of programs. This setion will investigate if additional shapes reatedwithout any prior knowledge of the landmark, or independent of domain, an improve thedetetion performane for the inisal upper inisor.We disussed in Setion 2.5.2.4 that feature sets were generally a omposition of variousshapes within an input window. One of those feature sets used by Zhang et al. in [165℄was reated by dividing the input window into four quadrants. The aim of this setionis to determine if features alulated using PCNN derived shapes in onjuntion with thequadrants an improve the detetion rate in omparison with programs that were evolvedusing handrafted shapes. Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 upper left quadrant A-E-o-GM5 S5 upper right quadrant E-B-H-oM6 S6 bottom left quadrant G-o-F-DM7 S7 bottom right quadrant o-H-C-FFigure 6.10: The feature set onsists of features derived from the PCNN derived shapes andquadrants. Features are alulated using the mean and standard deviation of pixel intensitiesfor eah shape.6.3.7.2 ResultsThe aim is to measure the detetion performane of programs that are evolved from a featureset that has been automatially generated. The feature set onsists of PCNN derived shapesand quadrants. The detetion performane of programs using handrafted shapes will againbe used as the benhmark. A two-sample t test is used to determine if there is a di�erene inmean detetion rate between two samples of programs using: (a) PCNN derived shapes andquadrants and (b) handrafted shapes. Let the null hypothesis be that the two samples arefrom the same population.The p-value is less than an alpha value of 0.05 for the menton, upper lip and sella land-marks. Therefore the null hypothesis, that the mean detetion rate of programs evolved using



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS147PCNN derived shapes and quadrants and handrafted shapes is the same, an be rejeted. Theaverage detetion rates for the menton, upper lip and sella landmarks has inreased by 6.12%,15.64% and 18.55% respetively. There is no evidene to suggest that the average detetionrate for the inisal upper inisor has hanged. The same hypothesis for omparing the meandetetion rate of programs is supported for eah landmark when applied to the test imageswith the exeption of the inisal upper inisor. However, the average detetion rate for theinisal upper inisor has dereased by only 1.53%. The average detetion performane hasinreased for the menton, upper lip and sella landmarks by 11.67%, 16.86% and 27.31%respetively.These results suggest that the evolved programs using features alulated from the PCNNderived shapes and quadrants are omparable to or better than programs that were evolvedfrom handrafted shapes. An advantage of using PCNN derived shapes and quadrants is thatthey have been automatially generated without any manual intervention.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS148Training TestingCase 1 Case 4 Case 1 Case 4Menton Averagedetetion (%) 93.07 99.19 83.47 95.14false alarm(%) 6.93 0.81 16.53 4.86p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 100 100 96.30 100false alarm(%) 0 0 3.70 0Upper lip Averagedetetion (%) 83.74 99.38 63.70 80.56false alarm(%) 16.26 0.62 36.30 19.44p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 90.36 100 77.78 88.89false alarm(%) 8.64 0 22.22 11.11Inisal upperinisor Averagedetetion (%) 94.61 94.19 88.98 87.45false alarm(%) 5.39 5.81 11.02 12.55p-valuedetetion (%) 0.262 0.028Best programdetetion (%) 98.80 97.59 92.59 92.59false alarm(%) 1.20 2.41 7.41 7.41Sella Averagedetetion (%) 54.73 73.28 44.40 71.71false alarm(%) 45.27 26.72 55.60 28.29p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 69.51 84.15 62.96 81.48false alarm(%) 30.49 15.85 37.04 18.52Table 6.5: A omparison of detetion performane for programs that were evolved usinghandrafted shapes (Case 1) with PCNN derived shapes and quadrants (Case 4). The averagesare alulated from the best individual from eah run for 80 evolutionary runs. The p-value isalulated from a two-sample t test to ompare the mean detetion rate from two independentsamples.6.4 Comparison of Feature SetsThis setion ompares the detetion performane of programs that were evolved using thedi�erent feature sets presented in this hapter. The di�erent feature sets are presented inTable 6.6. For omparing the four feature sets, a one-way ANOVA proedure [132℄ is usedto measure the di�erenes in mean detetion rate. Let the null hypothesis be that the mean



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS149detetion rate of programs that have been evolved from the four features is the same, i.e.H0 : �ase 1 = �ase 2 = �ase 3 = �ase 4.The p-values for omparing the detetion rate of programs when applied to training imagesare less than an an alpha value of 0.05 for the upper lip, inisal upper inisor and sellalandmarks. Therefore, the null hypothesis, that the mean detetion rate of programs thatwere evolved from the four feature set sets is the same, is rejeted. This indiates that at leasttwo of the means are signi�antly di�erent. Sine the alternative hypothesis is supported, aTukey's pairwise omparison [132℄ was onduted to determine signi�ant di�erenes betweenthe di�erent feature sets. The results of the pairwise omparison are shown in Table 6.8.An analysis of the pairwise omparison from Table 6.8 and the graph from Figure 6.11indiates that on average, the feature sets using the PCNN derived shapes produed betterperforming programs ompared to the feature sets using the handrafted shapes. The inisalupper inisor is an exeption. The results for the PCNN derived shapes only when applied tothe inisal upper inisor indiate that other shapes were required to disriminate the objetfrom bakground when omparing the results from the other feature sets.A further analysis of the pairwise omparison reveals that there was no signi�ant di�er-ene between programs that were evolved from features using PCNN derived and handraftedshapes and PCNN derived shapes and quadrants. The results of programs using the PCNNderived shapes and quadrants produed detetion programs that were either equivalent toor exeeded the detetion performane of the handrafted shapes from Chapter 5. This isa desirable result sine the method to reate the PCNN derived shapes and quadrants is aproess where only a small amount of prior knowledge is required about a landmark.Case 1 Handrafted shapesCase 2 PCNN derived + handrafted shapesCase 3 PCNN derived shapes onlyCase 4 PCNN derived shapes + quadrantsTable 6.6: De�nition of four feature sets that are made available during the geneti searh.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS150Training TestingCase 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
Menton Averagedetetion (%) 93.07 98.84 96.52 99.19 83.47 94.03 92.64 95.14false alarm(%) 6.93 1.16 3.48 0.81 16.53 5.97 7.36 4.86p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 100 100 100 100 96.30 100 96.30 100false alarm(%) 0 0 0 0 3.70 0 3.70 0
Upperlip Averagedetetion (%) 83.74 99.43 99.10 99.38 63.70 83.01 78.52 80.56false alarm(%) 16.26 0.57 0.90 0.62 36.30 16.99 21.48 19.44p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 90.36 100 100 100 77.78 92.59 85.19 88.89false alarm(%) 8.64 0 0 0 22.22 7.41 14.81 11.11
Inisal Averagedetetion (%) 94.61 94.44 56.33 94.19 88.98 88.80 51.57 87.45false alarm(%) 5.39 5.56 43.67 5.81 11.02 11.20 48.43 12.55p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 98.80 97.59 71.08 97.59 92.59 96.30 55.56 92.59false alarm(%) 1.20 2.41 28.98 2.41 7.41 3.70 44.44 7.41
Sella Averagedetetion (%) 54.73 73.40 74.88 73.28 44.40 74.07 71.76 71.71false alarm(%) 45.27 26.60 25.12 26.72 55.60 25.93 28.24 28.29p-valuedetetion (%) 0.000 0.000Best programdetetion (%) 69.51 82.93 79.27 84.15 62.96 85.19 77.78 81.48false alarm(%) 30.49 17.07 20.73 15.85 37.04 14.81 22.22 18.52Table 6.7: A omparison of programs' detetion performane that are evolved using variationsof handrafted, PCNN derived shapes and quadrants. The averages are alulated from thebest individual from eah run for 80 evolutionary runs. The p-value is alulated using aone-way ANOVA to ompare the mean detetion rate between the four independent samples.A omparison of detetion performane for training results of programs using handraftedshapes and PCNN derived shapes and quadrants reveals that the latter improved detetionperformane by 15.6% and 18.55% for the upper lip and sella landmarks respetively. Thedetetion performane was also higher during testing with an improvement of 18.55% and27.31% for the upper lip and sella landmark respetively. There was no signi�ant di�erenein detetion performane for the inisal upper inisor landmark.The �tness graphs in Figure 6.12 ompare the average �tness sores between the four



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS151di�erent feature sets. The evolutionary proess was terminated at either 100 generations orwhen a program ahieved a 100% detetion rate. All four graphs indiate that the PCNNderived and handrafted shapes and PCNN derived shapes and quadrants have a similar rateof onvergene when optimising �tness sore and has generally outperformed the Handraftedshapes and PCNN derived shapes only throughout the evolutionary proess.
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(d) SellaFigure 6.11: A summary of detetion performane of programs that are evolved from fea-tures using variations of handrafted, PCNN derived shapes and quadrants. The error barsrepresent 95% on�dene intervals.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS152Training TestingMenton Case 1 2 32 Disimilar3 Disimilar Disimilar4 Disimilar Similar Disimilar Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar DisimilarUpperlip Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar Similar 1 2 32 Disimilar3 Disimilar Disimilar4 Disimilar Disimilar SimilarInisal Case 1 2 32 Similar3 Disimilar Disimilar4 Similar Similar Disimilar Case 1 2 32 Similar3 Disimilar Disimilar4 Similar Similar DisimilarSella Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar Similar Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar SimilarTable 6.8: A Tukey's pairwise omparison of the detetion performane of programs thatwere evolved from four feature sets.
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(d) SellaFigure 6.12: The �tness graphs are a omparison of average �tness sores for four di�erentfeature sets. The average �tness is alulated by averaging the �tness sore of the bestindividual from eah generation for 80 evolutionary runs.6.5 Determining Input Window Size6.5.1 MotivationThe aim of this setion is to determine how sensitive the seletion of the input window size iswith respet to detetion performane. Previously the size of the input window was manuallydetermined based on the notion of seleting an input window that is large enough to apturesuÆient detail in order to di�erentiate the landmark from bakground.The justi�ation for introduing the work here rather than as part of the exploratorywork in Chapter 5, is that some the handrafted shapes used in the previous hapter wereustomised for a �xed window size. As a result, any hanges to the input window size would



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS154have required manual adjustment of the handrafted shapes. Therefore, this work is mostvaluable in this hapter beause the PCNN derived shapes and quadrants an be automat-ially reated independent of window size. The analysis for determining the sensitivity ofinput window size is applied to the menton and upper lip landmarks.6.5.2 ResultsThe graphs in Figure 6.13 show the relationship between the size of the input window andthe detetion performane of a program; the detetion performane of a program is based onthe average detetion rate from the best individual from eah run for 80 evolutionary runs.Both graphs indiate that the detetion performane of programs is sensitive to the size ofthe input window. The results for the menton and upper lip landmarks suggest that an inputwindow size should be somewhere between the interval of [14, 40℄ and [20, 30℄ respetively.Seleting an input window size with dimensions outside of this interval will on average produea program that will have a lower detetion performane. However, determining what is anideal input window size using this approah is time onsuming, i.e. inrementally testingseveral size input windows, as the evolutionary proess for produing enough runs to onveymeaningful statistis is omputationally expensive. Therefore, the size of the input windowshould be seleted prior to the evolutionary proess and is reommended as future work.
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CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS1556.6 SummaryThe aim of this hapter was to investigate whether using segmented shapes would improvethe detetion performane of programs ompared to the handrafted shapes used in Setion5.3.1. The segmented shapes were generated using the output from a PCNN to reate atemplate that was ultimately binarised into two distint shapes. The segmented shapes werereferred to as the PCNN derived shapes.The PCNN derived shapes were used to reate three feature sets with the purpose ofomparing the e�etiveness of the PCNN derived shapes against the handrafted shapes.The feature sets were alulated using the mean and standard deviation of pixel intensitieswithin eah shape. The three feature sets were:1. PCNN derived and handrafted shapes;2. PCNN derived shapes only; and3. PCNN derived shapes and quadrants.An investigation of the detetion programs that used the PCNN derived shapes demon-strated a signi�ant improvement in detetion performane when ompared to the handraftedshapes desribed in Setion 5.3.1 when tested on the menton, upper lip and sella landmarks.However, the results for the inisal upper inisor landmark suggest that the PCNN derivedshapes were not as useful in evolving detetion programs as there was no improvement indetetion performane.Ideally, we would like an approah for landmark detetion whih is entirely automated,from the reation of useful features to be used within a program, to the identi�ation oflandmarks within an image. Even for a domain expert, onstruting shapes for the purposesof extrating useful features is not a trivial task. This is a ompelling argument for theutility of an automated approah to the problem. We have gone a long way towards ahievingthis goal; the method desribed in this hapter has shown that the PCNN approah usingautomatially derived square shapes, is omparable to, or better than a handrafted approah.



Chapter 7
Analysis of Evolved Programs
Previous work in Chapters 5 and 6 has established that our geneti programming approah tolandmark detetion was suessful at evolving detetion programs for several ephalometrilandmarks of varying diÆulty. However, one of the drawbaks of geneti programmingsolutions is that the evolved programs an beome very omplex and, as a result, diÆult tounderstand. This makes it hard to\sell"geneti programming solutions beause many domainexperts are unhappy with blak box solutions. To ahieve a greater aeptane by domainexperts requires that a program's solution be better understood in order to appreiate itslimitations and generality. The aim of this hapter is to determine whether any regularitiesare being disovered, and if so, what they are. We hope that by identifying regularities inevolved detetion programs we will have a better understanding of the landmark detetionproess. The initial part of the investigation will fous on programs evolved to loate an easylandmark, the tip of the nose, followed by an analysis of programs evolved to loate a morediÆult landmark, the sella landmark.The analysis methodology will be to evolve simpli�ed detetion programs by limitingthe funtion and terminal sets and to enourage small programs by inluding a size penaltyin the �tness. The underlying algebrai expressions in the programs will be simpli�ed andompared. The programs will be manually exeuted at key positions in the training and testimages.

156



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1577.1 Geneti Programming Con�gurationThe geneti programming parameters to be used during training are the same as those usedin Table 4.3 on page 72. The results presented in this hapter will be based on the bestindividual from eah run for 80 evolutionary runs.7.2 Fitness funtionPrevious work in Setion 5.4.1 established that Equation 7.1 was suessful as a measure ofthe program's performane when we know that only one landmark is loated in an image.fitness = (1�DR)� 100, where (7.1)DR is the detetion rate.To assist with the simpli�ation of programs, we attempt to redue the size of programsby favouring smaller trees on the proviso that detetion rate is not ompromised during anevolutionary run, i.e. we would like to remove extraneous segments of ode not ontributingto a program's performane. In Setion 2.5.4 we desribed extraneous ode segments notontributing to a program's performane as introns. A ommon approah used to reduebloat is to inorporate parsimony pressure as part of the �tness measure.The parsimony pressure is ahieved by inorporating a seond objetive into the �tnessfuntion as a way of penalising large programs. The revised �tness funtion using parsimonypressure is shown in Equation 7.2. The seond term provides the parsimony pressure, whihdivides the number of nodes in the program by the maximum number of nodes in a tree.The maximum number of nodes in a tree is ditated by the maximum depth of the tree.The maximum tree depth in our problem has been limited to nine, giving a maximum of(29�1) = 511 nodes in a full binary tree. To ensure the main objetive of the �tness funtionis to evolve programs with good detetion performane, the seond term is multiplied by110 . This limits the seond term between [0, 0.1℄. The �rst term is limited between [0, 100℄.The weightings for eah of the two terms ensure that detetion performane is the primary



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 158objetive and program size is seondary.fitness = (1�DR)� 100 + Program Size511 � 110 , where (7.2)DR is detetion rate andProgram Size is the number of nodes in the program
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(a) Nose landmark (b) Sella landmarkFigure 7.2: The hange in detetion performane and size of programs during an evolution-ary run when using parsimony pressure to redue program size. The detetion rate andprogram size are an average alulated using the best individual from eah generation for 80evolutionary runs.Although the termination riteria remain unhanged, early termination annot be ahievedbeause a program with a �tness sore of zero is not possible, i.e. a program with 100% de-tetion rate and a program size of zero nodes. Eah evolutionary run is terminated at theend of 100 generations as per the previous work presented in this thesis. The graphs in Fig-ure 7.2 show the improvement of average detetion rate and the redution in program sizethroughout the evolutionary proess for both the nose and sella landmarks.7.3 Terminal setThe terminals used for the purpose of this analysis are based on two terminal sets previouslyused in thesis that have produed programs with good detetion performane. The terminalset used for the nose landmark onsists of features using handrafted shapes as de�ned inSetion 5.2, whereas the sella landmark will use a terminal set omposed of features usingPCNN derived shapes and quadrants as de�ned in Setion 6.10. Both terminal sets are shownin Figure 7.3, where eah terminal set onsists of the alulated mean and standard deviationof pixel intensities within eah shape.
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square size=14

Features Shapes� �M1 S1 full square A-B-C-DM2 S2 left half A-E-F-DM3 S3 right half E-D-C-FM4 S4 entre olumn E-FM5 S5 entre row G-H

square size=40
Features Shapes� �M1 S1 shaded regionM2 S2 unshaded regionM3 S3 full square A-B-C-DM4 S4 top left A-E-o-GM5 S5 top right E-B-H-oM6 S6 bottom left G-o-F-DM7 S7 bottom right o-H-C-FFigure 7.3: The diagrams in the left olumn depit the shapes used to extrat the featuresfor the nose and sella landmarks. The features onsist of the mean and standard deviationalulated for eah shape from grey level intensities. The orresponding piture in the middleolumn depits the size of the input window, shown as the white square, relative to the image.Note: The nose image has had the ontrast enhaned to improve the larity of the soft tissue.7.4 Funtion setThe analysis of the programs is restrited to funtion sets whih will only evolve programsexhibiting the behaviour of linear funtions. The redued funtion sets will be limited tousing the f+; �g operators that are desribed in Setion 4.3.2. The operators are dividedinto two funtion sets as shown in Table 7.1.Case 1 +Case 2 +, �Table 7.1: Operators used to evolve programs that will exhibit the behaviour of linear fun-tions.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1617.5 ResultsThis setion analyses detetion programs for the nose and sella landmarks where the programsare limited to exhibiting the behaviour of a linear funtion. The following analyses are basedon 80 evolutionary runs using the best individual at the end of 100 generations.7.5.1 Nose landmark7.5.1.1 Case 1: `+' operatorThe motivation for using the f+g operator is to simplify programs so we an understand ifthere are any regularities aptured when using the simplest operator. All the evolutionaryruns evolved a best individual using only the S5 terminal, i.e. the standard deviation of tworows of pixels entred within an input window, as shown in Equation 7.3. This programprodued a detetion performane of 65.9% (54/82). The results from training suggest thatEquation 7.3 was unsuessful at loating the position of landmarks when the nose was loatednear the edge of the image. A seletion of images where the landmark is inorretly identi�edis shown in Figure 7.4. Output = S5 (7.3)As desribed in Setion 5.4.1, the landmark is loated by moving an input window arossthe image and alulating the detetion program's output at eah pixel loation. The highestoutput is used for prediting the position of the landmark. If we ompute the output whenthe input window is positioned on an area of onstant brightness, suh as the soft tissueor bakground, the program returns a low positive output, i.e. Output is � 0. However,if the input window is positioned partially on a vertial or diagonal edge suh as the soft-tissue/bakground edge, the program's output will inrease until the entre of the inputwindow oinides with an edge. The reason is that S5 is omputed using the standarddeviation of two rows of pixels and most variation of pixel intensities ours when the inputwindow is entred on either diagonal or vertial edges. But as mentioned previously, some of



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 162the nose tips are loated near the edge of the image that also ontain a bright vertial bandas shown in Figure 7.4. So not only is the output high on the soft-tissue/bakground edgebut also on the bright vertial band.
Figure 7.4: Images where the nose landmarks are inorretly identi�ed. In all three ases,the landmarks are loated near a bright vertial band that is an artifat near the edge of anX-ray. All images have been enhaned using a logarithmi LUT to improve the larity of thesoft tissue.The analysis desribed above is onsistent with the graph shown in Figure 7.5. The sur-fae plot represents the output of the detetion program, Equation 7.3, applied to a greysaleimage. This shows that when the input window is positioned on an area of onstant brightnessthe output of the program is � 0. The output inreases whenever the input window is posi-tioned on an edge and approahes a maximum when entred on the soft-tissue/bakgroundedge. The ridge shown in Figure 7.5 orrelates to the soft-tissue/bakground edge. Thehighest peak in Figure 7.5 is used to predit the position of the landmark and in this asethe program has predited the landmark with a detetion error of (2, 3) pixels.The methodology is very promising that even with the extremely simpli�ed situation weget a program that is somewhat aurate whose behaviour we an understand.
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CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1637.5.1.2 Case 2: `+, �' operatorsThe previous setion demonstrated that a funtion set onsisting of the f+g operator alonewas not able to evolve a detetion program for loating all nose landmarks within the imagedata set. With only the f+g operator available for seletion, the evolutionary proess wasonly able to evolve a �ttest individual that used the S5 terminal. We know from previous workin Setion 5.5 that having f+; �g operators available for seletion allows the evolutionaryproess to evolve programs that an loate the nose landmark with a 100% detetion rate.The aim of this setion is to analyse programs that have the use of f+; �g operators todetermine: (a) how these detetion programs loate the nose landmark and (b) if there areany underlying algorithms learnt as a result of the evolutionary proess. As noted in Setion7.4, a funtion set onsisting of f+; �g operators will only evolve programs exhibiting thebehaviour of linear funtions. This is analogous to evolving a oeÆient for eah terminal, �iand �i, in Equation 7.4. Note that only integer oeÆients an be evolved for eah terminal.Output = �1M1 + �1S1 + �2M2 + �2S2 + � � �+ �5M5 + �5S5 (7.4)= 5Xi=1(�iMi + �Si), where�i and �i are integers, and i orresponds to the ith shapeThe evolutionary proess using the �tness funtion in Equation 7.2 was able to produeprograms with an average detetion rate of 99.6%. Comparing this result to a similar ex-periment in Setion 5.5 that does not inlude parsimony pressure when alulating �tnesssuggests that using a penalty to redue extraneous ode does not inuene detetion perfor-mane; both experiments are similar in terms of funtion set, terminal set and the methodused to loate the landmark. The omparison was based on a two-sample t test to determineif there was a di�erene in mean detetion rate between two samples of programs using: (a)detetion rate as the �tness metri and (b) detetion rate and parsimony pressure as the �t-ness metri; A large p-value of 0.87 indiated that there was no evidene to suggest that theaverage detetion performane had hanged. However, a two-sample t test omparing the size



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 164of the programs between the two �tness funtions produed a p-value of 0.000 indiating thatparsimony pressure had signi�antly dereased the size of the programs. Using parsimonypressure, the average program size has dereased from 56.8 nodes to 22.3 nodes. The linearfuntions shown in Equations 7.5-7.8 are derived from four of the �ttest programs taken from80 evolutionary runs when using parsimony pressure in the �tness metri.Output = M1 � S2 � S3 � 2M4 +M5 (7.5)Output = M2 � 2S2 � 2M4 +M5 (7.6)Output = 2M1 � S1 � 2M4 � S4 (7.7)Output = M2 � 2S2 � 2M4 +M5 (7.8)Table 7.2 is a list of linear funtions { these funtions aount for 43/80 of the evolutionaryruns { that have regularly ourred at the end of the evolutionary proess. The analysisreveals that the evolutionary proess has not evolved idential programs but has learnt anequivalent funtion. A seletion of programs that produed an equivalent funtion are shownin Figure 7.6. To determine if they are equivalent, the relationships of Equations 7.10 and7.11 are substituted into eah funtion; the reason for the substitution is explained on page168. Frequeny Program Detetion Rate13/80 3M2 � 4S2 +M3 � 4M4 100% (82/82)13/80 3M2 � 2S2 +M3 � 4M4 � 2S4 100% (82/82)7/80 M2 � 2S2 �M3 � 2S3 + 2S5 98.7% (81/82)6/80 M2 � S2 +M3 � S3 � 2M4 100% (82/82)4/80 �S1 +M2 +M3 � 2M4 � S4 100% (82/82)Table 7.2: Frequeny that a linear funtion has ourred as a result of the evolutionaryproess. Eah funtion is derived using the best individual from eah run for 80 evolutionaryruns. This table has been restrited to funtions that have ommonly ourred from the 80evolutionary runs.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1651. (- (- M5 S2) (+ M4 (+ S2 (- M4 M2))))2. (- (+ (- M5 (+ M4 (+ M4 (- S2 M2)))) S5) (+ M1 S2))3. (+ (+ (+ (- (- S5 M4) S2) (- (- (- S2 (+ S2 M3)) M4) (+ S1 S5))) (+ M4M3)) (- (- (+ (+ M4 M5) (+ (+ M5 S1) (+ M3 M1))) (+ M3 M1)) (+ (+ S5 (+(+ M4 M3) M4)) (- M2 (+ (- M2 S2) (+ M1 M2))))))Figure 7.6: The above three evolved programs are signi�antly di�erent in terms of treestrutures and geneti material used, however, eah of the programs is equivalent to 3M2 �4S2 +M3 � 4M4. A detetion rate of 100% (82/82) was ahieved by eah of these programs.Analysis of an individual programThe following analysis desribes how Equation 7.5 is used to predit the position of thelandmark based on the value of features at six positions aross two images. Eah positionde�ned in Table 7.3 is indiative of regular image patterns that our within the image dataset. The positions inlude soft tissue (1), bakground (2), a soft-tissue/bakground edge (3)and two examples where the input window is entred on the nose landmark (4, 5). The lastposition is related to the tip of nose loated near the edge of an image, i.e. the tip of the noseis slightly obsured by the bright vertial band (6).If we evaluate the program when the input window is loated on an area of onstantbrightness, suh as the soft-tissue or bakground, the output of the program is� 0. Intuitivelywe know that when the input window is positioned on an area of onstant brightness, thevalues of: (a) features alulated using the mean of grey level intensities within eah shape,Mi, will be approximately the same and (b) features alulated using the standard deviationof grey level intensities within eah shape, Si, will be � 0. A sample alulation is shown inEquation 7.9 when the input window is loated on an area of onstant brightness. We havehosen an arbitrary value, x, to desribe the average grey level intensity for eah feature. Thisis beause the value of eah feature, alulated using the average from grey level intensitieswithin eah shape, is approximately the same. The alulation demonstrates that when theinput window is loated on an area of onstant brightness the output is � zero.
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Output =M1 � S2 � S3 � 2M4 +M5 (7.9)� x� 0� 0� 2x+ x� 0where x is an arbitrary value of feature MiIf we evaluate the program when the input window is entred on a diagonal soft-tissue/bak-ground edge, as shown as position 3 in Table 7.3, the program's output is negative. Whenthe input window is loated on the tip of the nose, the program produes a high output inomparison to the previous positions. If we ompare both outputs when the input windowis loated on the soft-tissue/bakground edge (refer to positions 3 and 4 in Table 7.3) andtreat eah term in the equation as a separate omponent, we observe that the most signi�antomponent for varying the output is ontributed by M4. If the input window moves eitherside of the soft-tissue/boundary edge, the value of either S2, the standard deviation of theleft half, or S3, the standard deviation of the right half, will derease the output beause ofthe negative oeÆients.When the highest output is used to predit the position of the landmark, the detetionerrors are (1, -1) and (1, 0) pixels with respet to the known positions for the images shownin Table 7.3.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1671Position M1 - S2 - S3 - 2M4 + M5 = Output1 23.3-0.9-1.3-45.8+22.3=-2.42 4.5-0.5-0.5- 8.6+ 4.8=-0.33 11.6-5.1-3.3-22.4+12.0=-7.24 10.2-3.9-0.3-14.2+10.8= 2.6Highest � =(1, -1) 9.2-4.7-0.2-10.5+ 9.8= 3.65 10.1-3.1-1.4-15.5+10.6= 0.76 6.8-1.3-2.7-11.0+ 6.7=-1.5Highest � =(1, 0) 9.5-3.9-1.8-10.2+10.0=-3.6Table 7.3: Sample evaluations of a linear funtion, M1 � S2 � S3 � 2M4 +M5, when appliedto six di�erent positions aross two images.The analysis desribed above is onsistent with the graph shown in Figure 7.7. The graphin Figure 7.7 is the output of a detetion program, Equation 7.5, that has been applied to agreysale image. A graphial representation of Equations 7.6-7.8 applied to the same imageshow landsapes similar to the one shown in Figure 7.7.
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CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 168Analysis of regularly ourring patterns aross programsWe have analysed a program and have shown that the program's output is not ad-ho andthat the underlying evolved algorithm is reasonable for deteting the tip of the nose. Inthis setion we investigate whether there are any regularities learnt through the evolutionaryproess that are onsistent among the evolutionary runs.To redue the omplexity of the analysis we remove the redundant terminals in the termi-nal set. For example, we know the sum of the average grey level intensity of the left and righthalves of the input window is related to the average grey level intensity of the entire inputwindow (refer to Equation 7.10). We also on�rmed experimentally that ifM1 is substitutedin plae of M5 then the detetion performane of the evolved programs is not ompromised(refer to Equation 7.11). This suggests that the nose landmark training data for bothM5 andM1 terminals are similar. The programs' omplexity is redued by eliminating the terminalsof M1 and M5 by substituting the relationships of Equations 7.10 and 7.11 into the evolvedprograms. M1 = 12(M2 +M3) (7.10)M1 �M5 (7.11)An analysis of the best program from eah evolutionary run reveals a perfet orrelation,using best subsets regression [132℄, between the terminal oeÆients of �1 and the terminaloeÆients of �2, �3, �4 and �5. A multiple linear regression indiates that the sum ofall these terminal oeÆients, i.e. oeÆients of terminals based on the average grey levelintensities of the various shapes, is zero. The relationship is shown in Equation 7.12. Thesigni�ane of this relationship is that when the input window is loated on an area of onstantbrightness, the program's output is � equal to 0. The reason why this ours is desribed onpage 165.We have established that programs produe an output of � 0 when the input window isloated on an area of onstant brightness, but how is the program's output manipulated so



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 169that non-landmark positions (suh as on an edge) are di�erentiated from a landmark loatedon an edge? The bar hart shown in Figure 7.8 indiates that the evolutionary proessselets a ombination of features alulated from both the average and standard deviationof grey level intensities within eah shape. Generally speaking, we have found that theevolutionary proess generates detetion programs that an detet the majority of landmarkswith features using the alulated means of the grey level intensities within eah shape, andthat the performane is further enhaned with features that have been alulated using thestandard deviations.
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Figure 7.8: Frequeny that a feature's oeÆient, �i or �i in Equation 7.4, is negative, positiveor zero (i.e. not used in a program). The analysis uses the best program at the end of 80evolutionary runs. Eah program was substituted with Equations 7.10 and 7.11 resulting ina zero oeÆient for features M1 and M5.We shall start by analysing how features alulated using the mean are used for loatinglandmarks. If we examine the oeÆients that regularly our in Figure 7.8, we observe thatthe oeÆients of M2 and M3 are generally positive and the oeÆient of M4 is generallynegative. On the oasions when the oeÆient of M3 is not positive and the oeÆient ofM4 is not negative, the detetion performane of the program was less than 100%. This is



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 170shown in Figures 7.9(a) and 7.9(b).
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Coefficient(a) M3 (b) M4Figure 7.9: Graphs (a) and (b) show the relationship between the oeÆients of M3 and M4versus detetion performane. The data has been jittered so that the density of points at agiven point are visible.This re-ourring pattern is interesting as M2 and M3 are the means of the left and righthalves of the input window respetively, and M4 is the mean of the two entre olumns.Although the ombination of M2 andM3 are important,M4 is able to penalise the program'soutput when the input window is loated on the soft-tissue/bakground edge, above or belowthe tip of the nose. The penalty is assoiated with the negative oeÆient ofM4 that dereasesthe program's output when values of M4 are high relative to M2 and M3. When the inputwindow is loated on the tip of the nose, the penalty of M4 is dereased beause the mean isassoiated with pixels that have low greysale values.If we analyse in more detail how features using the standard deviation work, we observethat S2, S3 and S4 { these are features that regularly produe a non-zero oeÆient { givea higher output when the input window is positioned on a diagonal edge ompared to thetip of the nose. Beause we want to penalise the program's output when the input windowis loated on a diagonal edge, the features are multiplied by a negative oeÆient and sothe program's output is redued. However, if the input window is loated on the tip of thenose, the standard deviation values of S2, S3 and S4 are negligible and the program's outputis not redued. It appears that the features omputed using standard deviation are used todi�erentiate the ideal position from other positions that ontain lutter or areas that are not



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 171onstant brightness. However, these features only di�erentiate the ideal position from lutterand do not highlight the position of the landmark against areas of onstant brightness.If we analyse the frequeny that a feature's oeÆient ours using Figure 7.8, we ob-serve that useful features, i.e. features that regularly produe either a positive or negativeoeÆient, are those that are alulated using shapes within an input window that oinidewith the shape of the nose tip. For example, the left and right halves of the input windoware approximately the shape of the soft tissue and bakground respetively when the inputwindow is entred on the tip of the nose. Another shape regularly used was the two entralolumns.The shapes used to alulate S1, the full square, and S5, two entral rows, do not maththe pro�le of the nose and as a result a high standard deviation is produed when the inputwindow is positioned on the tip of the nose. These features of S1 and S5, do not our in43/80 programs and have the same magnitude oeÆient but opposite signs on an additional9/80 programs. The signi�ane of this is that the similarity between the two shapes willresult in similar feature values and thereby have a negligible inuene on the output. Shapesthat orrelate to the pro�le of the nose are S2, standard deviation of the left half, and S3,standard deviation of the right half. The frequeny of ourrene of S2 and S3 is 67/80 and42/80 respetively. The reason for the lower ourrene of terminal S3 in programs is thatwhen the nose is partially obstruted by the edge of the image, the output would be penalisedwhen the input window is loated on the tip of the nose, thus thereby reduing the output atthe landmark's loation. Terminal S2 is more e�etive at disriminating false alarms in theseimages and so appears more frequently.Another regularity ommon with the best individual of eah evolutionary run is that thesum of the oeÆients of terminals alulated using standard deviation is negative. Thisrelationship is shown in Equation 7.13. The signi�ane of this is if the input window ispositioned on a luttered sene, suh as the soft-tissue/bakground boundary, the omputedoutput from a program will be redued as a result of the aumulated penalty from eahstandard deviation feature.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1725Xi=1 �i = 0 (7.12)4Xi=2 �i < 0 (7.13)where �i and �i are the oeÆients of Mi and Si respetively.The signi�ane of the above analysis is that the most important features were thosederived from shapes that math the nose's pro�le when the input window is entred on the tipof the nose. Features alulated using shapes that do not math the nose's pro�le were eithernot seleted during the evolutionary proess or were made redundant by a similar feature.This is onsistent with the results of Setion 5.6 in whih it was found that handraftedshapes gave better detetion performane than pixel based features that were not spei� tothe shape of the landmark.7.5.2 Sella landmarkThe previous setion analysed programs used to detet a simple landmark, the tip of the nose,and demonstrated that the evolved programs were not ad-ho and in fat the evolutionaryproess learnt underlying regularities that were onsistent between the evolutionary runs.The analysis in this setion is for a more diÆult detetion problem, the sella landmark. Theinreased diÆulty is in terms of the variation in shape of the sella region as well as theamount of bakground lutter.7.5.2.1 Case 2: `+, �' operatorsThe aim of this setion is to analyse detetion programs for a more diÆult detetion problemwhen only the f+, �g operators are available for seletion. As mentioned previously, afuntion set onsisting of only f+, �g operators will only evolve a linear funtion whih isanalogous to evolving a oeÆient for eah terminal, �i and �i, in Equation 7.14.
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Output = �1M1 + �1S1 + �2M2 + �2S2 + � � �+ �7M7 + �7S7 (7.14)= 7Xi=1(�iMi + �iSi), where�i and �i are integers, and i orresponds to the ith shape

An intermediate analysis of programs that were evolved from a feature set al-ulated using PCNN derived shapesAs an intermediate step to understanding programs that were evolved using the featureset outlined in Figure 7.3, this setion will investigate programs when only the �rst fourfeatures are available for seletion, i.e. M1; S1; M2 and S2. The features are based on thealulated mean and standard deviation for eah of the two PCNN derived shapes. Theproess to extrat the PCNN derived shapes is desribed in Chapter 6.The evolutionary proess using the �tness funtion in Equation 7.2 produed an averagedetetion rate of 70.3%. Although the best individual from eah of the 80 evolutionary runsprodued vastly di�erent programs, upon simpli�ation it was established that eah of theprograms are variants of two linear funtions. The two funtions are shown in Equations7.15 and 7.16, whih produed similar detetion rates of 70.7% and 69.5% respetively. Bothfuntions shown in Equations 7.15 and 7.16 are similar with the exeption of the oeÆientfor S2. Output = 5M1 � 5S1 � 5M2 � 2S2 (7.15)=M1 � S1 �M2 � 0:4S2 (equivalent �tness funtion)Output = 3M1 � 3S1 � 3M2 � S2 (7.16)�M1 � S1 �M2 � 0:3S2 (equivalent �tness funtion)
Analysis of an individual programThe following analysis desribes how Equation 7.15 is used to predit the position of a



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 174landmark based on the value of features at six di�erent positions aross two images. Eahof the positions shown in Table 7.4 are indiative of regular patterns that our within theimage data set. The positions inlude an area that has similar pixel intensity values (1), edgeof bone with some bakground lutter (3, 4, 5) and two examples where the input window isentred on the sella landmark (6, 7).If we evaluate the program when the input window is loated on an area of onstantbrightness, i.e. an area where the input window ontains pixels having similar pixel intensityvalues, the output of the program is � 0. The reason for this was desribed on page 165, butin brief, the values of: (a) features alulated using mean, Mi, are approximately the sameand (b) features alulated using standard deviation, Si, are � 0. An analysis of the outputat the �rst position in Table 7.4 indiates that when the input window is loated on an areathat visually appears to ontain pixels with onstant brightness, the output is lose to zerorelative to the output of the other �ve positions.If we treat the seond, third and fourth positions from Table 7.15 as a similar type ofpattern, i.e. the input window ontaining either bone or bakground lutter, we observe theoutput is signi�antly lower ompared to the �rst position. The omponents alulated fromstandard deviation features, i.e. S1 and S2, have inreased beause the PCNN derived shapesused to alulate values of S1 and S2 do not oinide with any of the luttered regions. Theoutput is penalised beause the oeÆients of both S1 and S2 are negative thereby reduingthe program's output at the landmark's loation.If we analyse position �ve, i.e. when the input window is entred on the known positionof the landmark, we ahieve an output that is higher than the previous four positions. Thisis partly due to the relationship between omponents M1 and M2 and the lower values of S1and S2. If we subtrat 5M1, the alulated mean of pixel intensity values depited as brighterpixels when entred on the landmark, from 5M2, the alulated mean of slightly darker pixels,we get a value of 1111�1050 = 51. Even though the values for both features alulated usingstandard deviation are high, they are low relative to the other positions that are loated ona luttered sene. The detetion error was (1, -2) pixels with respet to the known positionwhen using the highest output to predit the position of the landmark.The bottom image in Table 7.4 (Table 7.4b) is an example where the program has in-



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 175orretly loated the landmark and has produed a detetion error of (29, 14) pixels. Thereason for the inorret predition is a ombination of two fators. The �rst fator is the lowontrast between the semi-irular region (or region depited as a saddle) and bakgroundpixels. This has produed a low value when subtrating the values 5M2 from 5M1, when theinput window is loated over the position of the landmark. Seondly, the standard deviationsof both shapes are high relative to the analysis at position �ve in the top image of Table7.4. The high values of S1 and S2 are attributed to the generality of the PCNN derivedshapes used to apture the large variations of the semi-irular region that enompass thesella landmark. It is reasonable to expet that if these shapes better mathed the regions ofinterest then this would have produed a lower standard deviation potentially inreasing theprogram's output at the desired loation. 1Position 5M1 - 5S1 - 5M2 - 2S2 = Output
(a)

1 1142-10.3-1135- 2.8= -6.12 1188-54.0-1172-18.5= -55.53 986-68.8-1014-32.3=-129.14 1047-72.8-1041-29.9= -96.75 1111-28.8-1050-20.3= 11.9Highest � =(1, -2) 1111-27.4-1051-19.2= 13.4
(b) 6 1079-34.3-1037-19.3= -11.6Highest � =(29, 14) 986-55.8- 869-39.7= 21.5

Table 7.4: Sample evaluations of a linear funtion, 5M1 � 5S1 � 5M2 � 2S2, when applied tosix di�erent positions aross two images.To summarise this analysis:1Eah shaded region represents the pixels that are used in the statistial operation for alulating thefeature value.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 176� Features M1 and M2 assist with di�erentiating between the known position and areaswhere the input window ontains pixel intensity values of onstant brightness. Thedistintion is made by a positive output of �M1;2, where �M1;2 = 5M2 � 5M1.� Features M1 and M2 ombined with S1 and S2 are used to di�erentiate between lut-tered senes and the known position.The above analysis shows how eah omponent within the linear funtion is able to ma-nipulate the output for the purpose of prediting the position of the sella landmark. Asmentioned on page 173, the programs are variants of two linear funtions of whih are sim-ilar. This demonstrates that although eah evolutionary run evolves a signi�antly di�erentprogram, the evolutionary proess has aptured an underlying regularity onsistent arosseah evolutionary run. Another regularity aptured by the evolutionary proess is that thesum of the oeÆients of features alulated using the mean, equates to zero. This is shown inEquation 7.17 and is onsistent with the �nding for programs that were evolved to detet thenose landmark. The oeÆients of features alulated using standard deviation are alwaysnegative and derease the program's output when the input window is loated on a lutteredbakground. 2Xi=1 �i = 0 (7.17)�i < 0; where i=1, 2 (7.18)where �i and �i are the oeÆients of Mi and Si respetively.
An analysis of programs that were evolved from a feature set alulated usingPCNN derived shapes and quadrantsThe previous setion analysed the funtionality and determined if there were any under-lying regularities aptured by the evolved detetion programs when only four features, basedon the two PCNN derived shapes, were available for seletion. The aim of this setion isto inorporate the additional features based on the quadrants, i.e. analyse programs where



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 177the features from Figure 7.3 are available for seletion, and then determine if there are anyregularities aptured as part of the evolutionary proess. The features analysed in this setionare the features used in Setion 6.3.7.The evolutionary proess using the �tness funtion in Equation 7.2 produed an averagedetetion rate of 75.9%. This result is signi�antly higher than the previous result whenonly the four features, i.e. M1; S1; M2 and S2, were available for seletion. This indiatesthat at least one of the other features were used to improve the detetion performane of theevolved programs. The linear funtions shown in Equations 7.19-7.22 are derived from fourof the �ttest programs taken from 80 evolutionary runs. The best evolutionary run ahieveda detetion rate of 84.1%.Output = 5M1 � 2M2 � S2 � 2M3 � 3S3 � 2S4 + S5 �M6 + S7 (7.19)Output = 6M1 � 2S1 � 5M2 � 3S2 �M3 � 3S4 +M5 + S5 (7.20)�2M6 + S6 +M7 + S7Output = 3M1 � 3S1 �M2 � 4S2 �M3 + 4S3 � S4 �M6 + S7 (7.21)Output = 6M1 � S1 � 5M3 � 3S3 � 2S4 + S5 � 2M6 +M7 + S7 (7.22)
Analysis of an Individual ProgramPrevious work on page 173 analysed how the position of a landmark is predited based onthe value of features at seven positions aross two images. The positions were indiative ofregular patterns that our within the image data set. The analysis demonstrated that if theinput window is loated on an area of onstant brightness or bakground lutter then theprogram's output will be approximately zero or negative respetively. The rationale of theprogram's output is the sum of eah feature's oeÆient alulated using mean, as desribedby Equation 7.15, is equal to zero. Likewise, the program's output is generally negative whenthe input window is positioned over luttered bakground. This is shown by the numerialanalysis for position 1 and positions 2-4 respetively in Table 7.5.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1781Position 5M1 - 2M2 - S2 - 2M3 - 3S3 - 2S4 + S5 - M6 + S7 = Output
(a)

1 1142- 454 - 1.4- 455 - 5.6- 1.3+ 1.0- 230 + 1.4= -2.92 1188- 469 - 9.2- 472 -30.3- 5.2+ 1.8- 247 + 7.3=-35.63 986- 406 -16.2- 401 -45.7-31.3+16.3- 188 + 9.7=-76.24 1047- 417 -14.9- 418 -44.3-12.2+ 7.1- 202 +12.9=-41.45 1111- 420 -10.2- 431 -31.2- 6.7+ 6.6- 222 +11.0= 7.5Highest � =(1, -2) 1111- 420 - 9.6- 431 -30.0- 7.1+ 6.5- 221 +10.6= 9.4
(b)

6 1079- 415 - 9.6- 422 -28.5- 7.0+ 5.0- 213 +11.8= 0.77 986- 348 -19.9- 369 -60.6-27.3+11.1- 193 +23.1= 2.4Highest � =(1, -3) 1084- 416 - 8.9- 424 -26.3- 6.8+ 5.2- 215 +11.6= 3.8Table 7.5: Sample evaluations of a linear funtion, 5M1 � 2M2 � S2 � 2M3 � 3S3 � 2S4 +S5 �M6 + S7, when applied to seven di�erent positions aross two images.Rather than repeat the analysis on an image where the landmark's loation was previ-ously orretly identi�ed, the analysis in this setion will be applied to an image where thelandmark's loation was previously inorretly identi�ed (refer to the bottom image in Table7.4). The bottom image in Table 7.5 is an example where the landmark is now loated withinthe allowable tolerane. Position six in Table 7.5 is the loation of the known position ofthe sella landmark and position seven is loated in a luttered bakground and entred onthe position that was previously reorded as a false alarm { the false alarm was a result ofapplying Equation 7.15 to the image.The sum of all omponents within the linear funtion that onsist of features alulatedusing mean for positions six and seven in Table 7.5 are 29 (1079-415-422-213) and 76 (986-348-369-193) respetively. The value at position seven is high relative to position six beausethe highest output should be loated at the known position of the landmark. However, thefeatures alulated using standard deviation redue the program's output at position seven1Eah shaded region represents the pixels that are used in the statistial operation for alulating thefeature value.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 179relative to position six { the sum of all omponents within the linear funtion that onsistsof features alulated using standard deviation for positions six and seven in Table 7.5 are�28:3 (-9.6-28.5-7+5+11.8) and �73:6 (-19.9-60.6-27.3+11.1+23.1) respetively. Althoughthe highest output does not oinide with the known position, the detetion error is (1, -3)whih is within the allowable tolerane for our detetion problem.A omparison of detetion performane shows that Equation 7.19, a linear funtion evolvedfrom fourteen features, has inreased the detetion performane from 70.7% (58/82) to 84.1%(69/82) with respet to Equation 7.15, a linear funtion evolved from four features. Ananalysis of these results show that Equation 7.19 has improved detetion performane byorretly identifying the sella landmark in an additional thirteen images. It is worth notingthat although the way in whih features used by both linear funtions are di�erent, thefuntions have orretly loated the landmark in idential positions in 47.6% (39/82) of theimages. For example, refer to the top image in Tables 7.4 and 7.5 where the landmark isorretly identi�ed by two di�erent programs with a detetion error of (1, -2) pixels. Thisresult is not entirely unexpeted beause the graphs in the top row in Figure 7.10 produesimilar surfae plots whih are the result of two di�erent programs applied to the same image.The surfae plot is the output from a program that has been applied to eah position withinthe image. A similar surfae plot ours when both programs are applied to the bottomimage in Figure 7.10, exept the height of the peak that was previously highest { refer toView A in Image B(a) { has been redued by the use of additional features { refer to ViewA in Image B(b). The highest peak in View A of eah image is irled.
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(a) 5M1 � 5S1 � 5M2 � 2S2 (b) 5M1 � 2M2 � S2 � 2M3 � 3S3�2S4 + S5 �M6 + S7Figure 7.10: Graphs (a) and (b) illustrate the output from a �t individual when four andfourteen features are available for seletion respetively. In both ases, only the `+, �'operators are available. The output of the program, whih is represented as the surfae plot,is superimposed on the greysale image.It is worth stating that although the evolutionary proess evolves a diverse range of pro-grams, some of the evolutionary runs learn an equivalent funtion. A sample of programsthat produe an equivalent funtion are shown in Figure 7.11. To determine if they are equiv-alent, the relationship of Equation 7.23 is substituted into eah funtion; the reason for thesubstitution is explained on page 181. This indiates that although the geneti programmingmethod evolves a program that appears somewhat ad-ho, it is not unommon for the genetiprogramming method to learn an underlying regularity, and in this ase an idential funtion,from di�erent evolutionary runs.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1811 (+ (- (+ S7 (- (- M1 S1) S3)) (- (- M2 S1) (- (- (- M1 S1) S3) M2))) (-(- M3 S3) M2))2 (+ (- (+ (- S2 (- (+ (+ M2 S6) (+ M4 S1)) (+ (- (- M1 S3) M2) (+ (- S6M2) M4)))) (+ M3 S7)) (+ (+ S2 (- S3 (- M1 S3))) M3)) M3)3 (+ (+ (+ M3 S6) (+ M3 (+ (- S7 (- (- M2 M5) S1)) (- (- (- M1 S1) S3) (+(+ S6 M3) M2))))) (- (- (- (- M1 S1) S3) S3) (+ M5 M2)))Figure 7.11: The above three evolved programs are signi�antly di�erent in terms of treestrutures and geneti material used, however, eah of the programs is equivalent to 5M1 �2S1 � 5M2 � 2S3 � 2S7. A detetion rate of 76.8% (63/82) was ahieved for eah of theseprograms.Analysis of regularly ourring patterns aross programsWe have analysed two programs used to loate the sella landmark where eah program wasevolved using two di�erent feature sets. The analysis showed that the program's output is notad-ho and that the underlying algorithm is reasonable for deteting the sella landmark. Inthis setion, we shall perform a similar type of analysis that was onduted for nose landmark,to determine if there are any regularities aptured through the evolutionary proess that areonsistent amongst the evolutionary runs.To redue the omplexity of this analysis we remove the number of redundant terminalsthat are available in the terminal set. For example, we know the sum of the average greylevel intensity of M1 and M2 is related to the average grey level intensity of the entire inputwindow { refer to Equation 7.23. The onstants n1 and n2 are the number of pixels used toalulate M1 and M2 respetively. The program's omplexity is redued by eliminating theterminal M3 and substituting the relationship of Equation 7.23 into the evolved programs.M3 = ( 1n3M1 + 1n1M2) n1n3n1 + n3 , where n1=719 and n2=881� 0:45M1 + 0:55M2 (7.23)An analysis of the best program from eah evolutionary run reveals a orrelation, usingbest subsets regression, between the terminal oeÆients �1 and the terminal oeÆients�2, �3, : : :, �7. A multiple linear regression indiates that the sum of all these terminal



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 182oeÆients, i.e. oeÆients of terminals based on the average grey level intensities of thevarious shapes, is zero. The relationship is shown in Equation 7.24. The same underlyingregularity has been aptured in programs used to detet the nose landmark and the sellalandmark (evolved using the restrited feature set) { refer to Equations 7.12 (p. 172) and7.17 (p. 176) respetively. The signi�ane of this relationship is that when the input windowis loated on an area of onstant brightness, the program's output is � equal to 0. For anexplanation into why this ours, refer to page 165.There are no other orrelations between the various feature oeÆients suggesting thatthere are inter-relationships between the di�erent oeÆients. An analysis of the bar hartshown in Figure 7.12 indiates that the evolutionary proess selets a ombination of featuresalulated from both the average and standard deviation of grey level intensities within eahshape. Several generalisations of inuential features are derived from the bar hart and shownin the form of Equations 7.25-7.28. We shall begin by analysing how the most inuentialfeatures, i.e. the frequeny that a feature's oeÆient is either positive or negative in at least70% of the best programs, are used to loate a landmark. The following investigation willanalyse inuential features alulated using: (a) mean and then (b) standard deviation.Inuential features alulated using mean, as shown in Figure 7.12, areM1 andM2 whihare features derived using the PCNN derived shapes. The signs of the oeÆient for M1and M2 are positive and negative respetively, whih is also onsistent with programs thatwere evolved from the redued feature set. This is reasonable beause if the input window isentred on the sella landmark and we subtrat �2M2 from �1M1, we expet a high outputompared to other positions within the image.Inuential features alulated using standard deviation, as shown in Figure 7.12, are S1,S2 and S7. Features S1 and S2 are derived using the PCNN derived shapes and feature S7is derived using the bottom right quadrant. The signs of both oeÆients for S1 and S2 arenegative, whih is also onsistent with programs that were evolved from the redued featureset. The oeÆient of S7 is generally positive and when the feature is ombined with S1 andS2 the program's output will have a greater derease when the input window is loated onbakground lutter relative to when loated on the known position. The magnitude of S1and S2 oeÆients are higher than the other oeÆients of features alulated using standard



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 183deviation suggesting the PCNN derived shapes are more inuential features.
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Figure 7.12: Frequeny that a feature's oeÆient, �i or �i in Equation 7.14, is negative,positive or zero (i.e. is not used in a program). The analysis uses the best program at theend of 80 evolutionary runs. Eah program was substituted with Equation 7.23 resulting ina zero oeÆient for feature M3.7Xi=1 �i = 0 (7.24)�i < 0; where i=2 (7.25)�i > 0; where i=1 and 5 (7.26)�i < 0; where i=1, 2 and 4 (7.27)�i > 0; where i=5 and 7 (7.28)where �i and �i are the oeÆients of Mi and Si respetively.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1847.6 SummaryThe aim of this hapter was to determine if there are any regularities aptured during theevolutionary proess, and if so, whether we ould develop explanations of how the evolvedprograms work for an objet detetion problem. The investigation was restrited to funtionsets whih only evolved programs exhibiting the behaviour of linear funtions for the detetionof two landmark types. The investigation demonstrated that the evolved programs are not ad-ho, and in fat, underlying regularities are being aptured during the evolutionary proess.The underlying regularities regularly learnt are:� There is a perfet orrelation between the feature oeÆients alulated using the meansof grey level intensity values within the pre-de�ned shapes. The signi�ane of thisrelationship is that when the input window is loated on an area of onstant brightness,the program's output is � equal to 0.� Features that are alulated using shapes mathing the landmark's pro�le were utilisedmore frequently than shapes that do not math the landmark's pro�le. This presents astrong argument for the use of shapes that math the landmark's pro�le.� The oeÆients of features that are alulated using the standard deviation of grey levelintensity values within shapes that math a landmark's pro�le, are generally negative.The negative oeÆients redue the output when the input window is loated on edgesor bakground lutter whih are not related to the position of the landmark. Theinreased values are a result of the shapes not mathing the lutter ontained withinthe input window.� Although eah of the evolved programs from the di�erent evolutionary runs were di�er-ent, it was not unommon for the evolutionary proess to learn an equivalent funtion.This is strong evidene that the evolved programs are not ad-ho but are apturingimportant domain harateristis. This suggests that for situations where there are toomany terminals and funtions to permit understanding, the evolved programs are stillapturing regularities of the domain.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 185The investigation has provided an understanding of how the simpli�ed programs work andthat they are apturing important regularities in the problem domain. We onjeture thatprograms using the full funtion and terminal sets are also apturing domain regularities,even though they are diÆult to identify.



Chapter 8
Conlusions
In this thesis, a methodology for using geneti programming for aurately loating ephalo-metri landmarks has been presented. This methodology has been developed using severallandmark types that vary in terms of detetion diÆulty. As part of this investigation weexplored a wide range of features, operators and �tness measures.8.1 Researh QuestionsThe researh questions put forward by this thesis were:1. Can an existing domain independent approah using pixels as features andgeneti programming be used for landmark detetion?This question was addressed within Chapter 4 to determine if the method laimingto be domain independent { geneti programming and pixel based features { an beused to detet ephalometri landmarks. We demonstrated that this methodology wassuessful on simple landmarks, however, we found that the false alarm rate inreasedwith the detetion diÆulty of the landmark. The methodology used to detet thenose (easy) and sella (hard) landmarks produed false alarm rates of 14.8% and 214.8%respetively. False alarms are unaeptable for a ephalometri analysis and thereforefurther work was required to investigate if the methodology an be improved to reduefalse alarm rate. Our work demonstrated that the domain independent approah usedin Chapter 4 is not suitable for these types of detetion problems.186



CHAPTER 8. CONCLUSIONS 1872. How an the domain independent approah be modi�ed and extended togive better detetion performane?This researh question was addressed in Chapter 5. The investigation foussed onalternative �tness measures, funtion sets and the handrafting of shapes for generatingfeatures.An investigation into the main issues for improving the detetion performane of pro-grams within the geneti programming paradigm revealed:� That using both the highest output to predit the position of the landmark anddetetion rate as a �tness metri produes signi�antly less false alarms than thedomain independent approah. We also demonstrated that the auray of thedetetion program ould be improved by minimising the error { the distane be-tween the known and predited position { in the �tness funtion. However, this�tness metri was not as e�etive as detetion rate for landmarks that are diÆultto loate.� That handrafted shapes, idiosynrati to the type of landmark, are able to pro-due better performing programs ompared to the domain independent approahthat uses pixel based features.� That the f+; �; �; =g funtion set evolved programs that were marginally betterperforming than programs evolved using f+; �g or f+; �; �; =; min; maxgfuntion sets. The funtion sets were derived from operators that are ommonlyited in geneti programming literature within the omputer vision domain. Dueto the unexpetedly good performane of programs evolved using the f+; �gfuntion set, it would be worthwhile as future work to asertain the performaneof other paradigms that are more suited to learning a linear funtion.3. Can handrafting of shapes be replaed by learning the shapes from exam-ples and will this inrease detetion auray?This researh question was addressed in Chapter 6 where we have investigated the useof a pulse oupled neural network to segment a landmark's regions of interest. The



CHAPTER 8. CONCLUSIONS 188segments were subsequently used to generate a set of shapes. An investigation of thedetetion programs that used the PCNN derived shapes and quadrants demonstrateda signi�ant improvement in detetion performane when ompared to the handraftedshapes. When tested on three out of the four landmarks (on average, the detetion rateinreased by 11.7%, 16.9% and 27.3% for the menton, upper lip and sella landmarksrespetively) and there was no signi�ant di�erene in detetion performane for theother landmark (inisal upper inisor). This work has gone a long way to ahieving thegoal of a fully automated approah to generating a set of shapes, however further workis required to be able to automatially identify a suitable set of parameter values forthe PCNN.4. Are there any underlying algorithms that are learnt during the evolutionaryproess?We have shown that a methodology of simplifying the funtion set, that restrits pro-grams to linear funtions and simplifying programs using parsimony pressure, yieldsinsight into the underlying regularities in the evolved programs. We found that thesame underlying regularities were onsistently being disovered in many of the evolu-tionary runs. The regularities inlude an idential output for eah of the programswhen loated on an area of onstant brightness, the higher utilisation of shapes thatmath a landmark's region of interest and the evolutionary proess learning an identialfuntion even though the programs were signi�antly di�erent.Even though we have simpli�ed the omplexity of the programs by restriting the typeof operators in the funtion set, the simpli�ed approah still gives us on�dene that themore omplex non-linear funtions are still apturing regularities within the problemdomain.8.2 Comparison with other workThe aim of this setion is to ompare the detetion performane of our method with othernotable results from the literature survey1. The methodology we used for this omparison1El-Feghi et al. has not been inluded in Table 8.1 for the reasons explained in Setion 2.7.1.2 on page 51.



CHAPTER 8. CONCLUSIONS 189is based on the PCNN derived shapes and quadrants, as we pereive this to be toward oneof our goals of ahieving an automated approah to generating a set of features. Our testresults are based on a three-fold ross validation applied to 110 images.Cardillo Chakrabartty Giordano Rueda Yue Our work1994 2003 2005 2006 2006Test set size 40 40 26 96 86 110Hard tissue landmarksSella 53 87 - 39 76 80Nasion 83 85 81 56 86 84A Point 77 - 73 68 - 73Inisal Upper Inisor 76 - 92 - 90 95Menton 78 - 92 70 98 100Soft tissue landmarksNose Mid 94 - - - - 100Upper Lip Mid - - - - - 89Table 8.1: A omparison of our detetion rates with results from the literature. Our results arebased on detetion programs that were evolved using PCNN derived shapes and quadrants.The GP and PCNN parameter settings are detailed in Appendix A.The results provided in Table 8.1 ompare favourably against other published detetionresults from the literature. However, it should be noted that the detetion results of the di�er-ent approahes are not diretly omparable for the following reasons: the sizes of the datasetsare not the same, the resolution of the images are di�erent; no statistial test omparing testresults is performed; and the omparison is performed on a di�erent set of images.8.3 Further Work1. The work presented in this thesis used a seletion of landmarks that exhibit a range ofdetetion diÆulties. We would like to apply the methodology outlined in Chapter 6that used the PCNN derived shapes and quadrants to the remaining landmarks.2. The size of the input window has been determined in a somewhat ad-ho fashion, basedon the riteria of what size peforms `well'. Work presented in Chapter 6 (page 154)illustrated the sensitivity of the size of the input window with respet to a program'sexpeted detetion performane. The reason for the variation in a program's expeted



CHAPTER 8. CONCLUSIONS 190detetion performane is due to a trade-o� between the input window's size being toosmall and the input window not ontaining enough information, and too large and theinput window ontaining information that is subjet to biologial variability. Therefore,we would like an automated way to pre-determine the size of the input window priorto the evolutionary proess.3. The PCNN method demonstrated that if there was a signi�ant di�erene between theregion of interest and bakground then the method was able to onsistently segmentthe relevant regions of interest. However, this method was not onsistent at segmentingthe regions of interest when there were subtle hanges in greysale, e.g. sella region,or noisy images. As part of this researh we explored many lassial image proessingtehniques in order to segment the regions of interest and as future work we would liketo extend this exploration to determine if a suitable segmentation algorithm an belearnt.4. The features presented in this thesis use the alulated mean and standard deviation ofgrey-level intensity values within pre-de�ned shapes. The advantage of using these fea-tures is that the proessing time to alulate these features is relatively small omparedto the more omplex features that are derived from Wavelet and Fourier transforms. Al-though the performane of detetion programs using these features had produed somevery promising results, we would like to inorporate a spatial relationship between thepixels within the input window.5. The searh for the landmark was on�ned to a muh smaller area within the X-ray.The searh area was de�ned using a statistial heuristi that was driven by anatomialknowledge relative to a known datum point. However, the size of the searh area variesdepending on the distane of the datum point to the landmark's expeted position.The searh area is a funtion of variane whih is related to biologial variability. Thekey issue is minimising the size of searh area that will also ontain the landmark ofinterest.Previous work by [44℄ used a MLP to learn the oordinates of landmarks from an initial



CHAPTER 8. CONCLUSIONS 191set of four key points. This methods di�ers from the other approahes in that it learnsthe spatial and sale relationships to determine the oordinates of the landmarks ratherthan a sliding window approah. Although the results were found to be inaurate forautomatially loating landmarks, we believe that a method similar to this would sig-ni�antly redue the size of the searh area ompared to the heuristi that we urrentlyuse. We expet that a smaller searh area will signi�antly redue training times andpotentially inrease detetion rate.6. Possible sope for future work is to determine if the detetion rate (Setion 5.4.1) andthe distane error (Setion 5.4.5) �tness funtions an be inorporated as multi-objetiveoptimisation problem. This would hopefully evolve programs that have a high detetionrate and high detetion auray. The �tness funtion used throughout the majorityof this thesis only rewards programs on the basis that the position is predited within2 mm of the known position; there is urrently no inentive for the landmark to bepredited less than 2 mm.7. Part of our work used the PCNN to highlight regions of interest with the purpose toimprove disrimination between the landmark and bakground pixels. However, usingthe PCNN requires several parameters to be manually tuned whih an be a diÆulttask depending on where the region of interest is loated. A searh method, suh as ageneti algorithm, may be able to learn a suitable set of PCNN parameters that wouldautomate this task. A similar onept has been used previously for optimising theparameters regulating a video-based traking system [105℄.8. Work presented in Setion 5.5 demonstrated that programs exhibiting the behaviour oflinear funtions are nearly as suessful at deteting landmarks as programs that exhibitthe behaviour of non-linear funtions. Therefore, it is worth exploring a paradigm thatis better suited to learning linear funtions, suh as geneti algorithms or partile swarmoptimisation. The advantages of using a paradigm suh as geneti algorithms omparedto geneti programming are: they are more suited to solving linear problems, the timespent proessing a bit-string is signi�antly less than proessing a program tree and thesearh spae is signi�antly smaller.



CHAPTER 8. CONCLUSIONS 1929. Researh by [58℄ used geneti programming to learn a multi-stage approah for detet-ing vehiles in infrared line san (IRLS) images. The aim of eah stage was to reduethe number of pixel positions (false alarms) from eah subsequent stage and the vehileswere deteted from the remaining pixel positions in the �nal stage. This approah wasshown to improve the detetion performane when ompared to a single detetion pro-gram. As future work it would be worthwhile to learn an initial lassi�er to redue thenumber of pixel positions and then evolve a detetion program using our methodologyto predit the position of the landmark from the remaining pixel positions.
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Appendix A
Parameter Settings
A.1 Parameter Settings: Geneti ProgrammingParametersPopulation size, M 100Maximum generation, G 100Maximum depth, D 8Initial maximum depth, d 6Probability of:Reprodution, PR 0.10Crossover, PC 0.70Mutation, PM 0.20Probability of rossover at:Terminal 0.15Funtion 0.85Terminal Set +, �, *, /Funtion Set PCNN derived shapesand quadrantsTolerane (pixels) 5 (2 mm)Table A.1: Run-time parameters used during the geneti searh for evolving detetion pro-grams.
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APPENDIX A. PARAMETER SETTINGS 220A.2 Parameter Settings: Pulse Coupled Neural NetworkPCNN parametersLandmark SS �F �L �T � VF VL VT TMenton 8 1 0.3 0.15 0.08 0.01 1 1 50Sella 40 80 0.3 0.15 0.008 0.01 19 5 60Inisal upper inisor 10 1 0.3 0.15 0.08 0.01 1 1 31Nose mid 14 1 0.3 0.15 0.26 0.01 1 1 40Nasion 26 1 0.3 0.15 0.03 0.01 1 1 50A point 32 1 0.3 0.15 0.06 0.01 1 1 54Upper lip 14 1 0.3 0.15 0.26 0.01 1 1 70Table A.2: Parameter settings used to generate the PCNN derived shapes in Table A.3.Template PCNN derivedshapesSellaNasionA pointInisal upperinisorMentonNoseTable A.3: Templates omputed using the output from a PCNN with the orrespondingPCNN derived shapes. PCNN parameter settings are based on the values in Table A.2.



APPENDIX A. PARAMETER SETTINGS 221A.3 Cross Validation Results Cross validationLandmark 1 2 3 AvgMenton 100 100 100 100Sella 86.1 69.4 83.3 79.6Inisal upper inisor 94.4 100 91.7 95.4Nose mid 100 100 100 100Nasion 77.8 80.6 94.4 84.3A point 80.6 72.2 66.7 73.2Upper lip 88.9 88.91Table A.4: Cross validation results based on the detetion performane for a range of land-mark types using the parameter settings from Setions A.1 and A.2.

1The detetion performane for the upper lip is only based on a single-fold from a three-fold ross validation.
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APPENDIX B. TEST RESULTS 223
Appendix B
Test results
B.1 Sella landmark

(0,2) (1,1) (1,-3) (-1,2)
(3,0) (2,-2) (0,0) (0,0)
(3,2) (1,-1) (2,0) (1,-1)Figure B.1: A seletion of images along with the predited position for the sella landmark asis depited by the ross. The positional error shown under eah image is a measure of thepredited position relative to the atual position. Positional error is measured in pixels.
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(2,-2) (0,-2) (2,0) (2,0)
(-1,-9) (1,-1) (-1,0) (-1,1)
(2,2) (0,0) (-2,0) (17,20)
(4,0) (-1,1) (-23,-21) (1,-4)
(3,-3) (1,-3) (4,2) (1,2)Figure B.1 (ontinued)
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(-1,0) (1,3) (1,-16) (19,20)Detetion rate=86.1% (31/36) False alarm rate=13.9% (5/36)Figure B.1 (ontinued)Fitness sore=19.1781(/ (/ (* (- (/ (* M1 M1) (+ S3 M2)) S4) M1) (+ (+ (+ (+ S1 (+ (- M4 M1) M6))M2) (+ (- (- M4 M1) M1) M6)) M2)) (+ M1 M6))Figure B.2: The sella landmark detetion program used to predited the position of thelandmarks in Figure B.1



APPENDIX B. TEST RESULTS 226B.2 Nasion
(0,1) (-1,9) (0,2) (1,3) (0,5) (2,1) (0,5)
(2,-14) (2,-4) (1,2) (5,-6) (-1,3) (0,-2) (0,6)
(0,-2) (4,-5) (-1,8) (0,3) (-2,0) (-1,1) (3,0)
(0,-1) (0,2) (-1,3) (2,1) (0,-3) (1,-1) (-4,-1)
(-1,3) (0,-2) (8,-4) (1,4) (0,3) (-2,1) (-1,-16)
(0,0) Detetion rate=77.8% (28/36) False Alarm Rate=22.2% (8/36)Figure B.3: A seletion of images along with the predited position for the nasion landmarkas is depited by the ross. The positional error shown under eah image is a measure of thepredited position relative to the atual position. Positional error is measured in pixels.



APPENDIX B. TEST RESULTS 227Fitness=9.45946(* (/ (/ (- (- (+ S3 M4) (/ M7 S2)) (+ (+ S1 S2) (+ M2 S1))) (* (* (/ M7 S1)S7) (/ (- M6 (* S2 (+ M5 S4))) S1))) (* (/ (- (* (* M7 M4) (* M7 S3)) (+ (+(+ S2 127.194) M1) S2)) (- (/ (/ S6 S1) M1) (* M2 S5))) (* (+ M4 (+ (/ M7M5) 127.194)) (- (- M1 S6) (/ S1 121.876))))) (* (- (- (* (/ M7 S1) S7) (/S1 (+ M6 (+ S4 127.194)))) (/ (* M4 S3) (+ (/ (/ (+ S4 S2) S6) S2) (* M6 (+(+ M1 M2) S2))))) (- (* (- (+ M6 M1) (- S7 4.97753)) M2) (+ S1 S7))))Figure B.4: The nasion landmark detetion program used to predited the position of thelandmarks in Figure B.3



APPENDIX B. TEST RESULTS 228B.3 A-point landmark
(3,0) (-3,-1) (-4,-3) (-1,-2) (-2,3) (2,2)
(-1,-2) (2,1) (6,8) (0,-1) (1,-1) (-6,-13)
(-8,-15) (2,3) (-1,3) (1,0) (0,5) (2,1)
(1,2) (-3,-9) (2,-1) (-2,-4) (-1,3) (2,1)
(-1,2) (-3,-1) (-3,-3) (3,4) (-2,-1) (13,19)
(2,3) (-2,-4) (-1,-6) (-1,-2) (-2,-7) (-1,-2)Detetion rate=80.6% (29/36) False alarm rate=19.4% (7/36)Figure B.5: A seletion of images along with the predited position for the A-point landmarkas is depited by the ross. The positional error shown under eah image is a measure of thepredited position relative to the atual position. Positional error is measured in pixels.



APPENDIX B. TEST RESULTS 229Fitness=27.027(* (* (/ (- 239.272 (- S2 M6)) (+ M7 M1)) (* (* (/ (+ (/ (- S2 S1) M7) M6)(+ (+ (+ S4 M1) S6) S6)) 178.822) (- S4 108.699))) (+ M6 (* (+ M6 (* (/ (-S2 S1) M7) M4) (- S2 S1))))Figure B.6: The A-point landmark detetion program used to predited the position of thelandmarks in Figure B.5B.4 Inisal upper inisal landmark
(1,-3) (-1,-2) (0,-3) (2,-2) (-1,-2) (0,-1)
(1,-2) (-4,0) (0,-1) (-1,-2) (-1,-2) (0,-2)
(0,-2) (0,-1) (-1,-2) (-1,-2) (0,-1) (1,-1)
(1,-1) (2,-6) (1,-3) (-2,-4) (-1,-2) (1,-2)
(1,-2) (0,-1) (-1,-1) (0,-2) (0,-3) (-4,7)
(0,-2) (-2,-2) (0,-1) (0,-4) (1,-2) (-2,-1)Detetion rate=94.4% (34/36) False alarm rate=5.6% (2/36)Figure B.7: A seletion of images along with the predited position for the inisal upperinisor landmark as is depited by the ross. The positional error shown under eah imageis a measure of the predited position relative to the atual position. Positional error ismeasured in pixels.



APPENDIX B. TEST RESULTS 230Fitness=4.05405(/ (* (/ S7 M2) M7) (/ (- (/ (* (* M7 S5) M2) 219.642) (- (* (/ S7 M2) (+(/ S7 M2) (+ S5 S5))) 90.9186)) (* (- 76.1776 S2) S5)))Figure B.8: The inisal upper inisor landmark detetion program used to predited theposition of the landmarks in Figure B.7



APPENDIX B. TEST RESULTS 231B.5 Menton landmark
(-2,-1) (-2,-1) (2,0) (1,0) (3,-2)
(-1,-1) (0,-1) (3,-1) (1,-1) (1,0)
(2,0) (3,1) (-3,0) (2,1) (1,-1)
(0,0) (-1,-1) (0,-1) (-3,1) (2,0)
(3,0) (-3,0) (1,0) (2,-1) (0,-1)
(-1,-1) (-1,0) (-2,-1) (-1,0) (1,-1)
(1,0) (-1,0) (0,0) (1,-1) (2,-1)Figure B.9: A seletion of images along with the predited position for the menton landmarkas is depited by the ross. The positional error shown under eah image is a measure of thepredited position relative to the atual position. Positional error is measured in pixels.
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(1,-1) Detetion rate=100% (36/36) False alarm rate=0% (0/36)Figure B.9 (ontinued)Fitness=0(- (- (* M4 (- (- (- 98.0502 M7) S2) S2)) (/ (- (* S4 S4) (* M1 S7)) (/ S4S4))) (/ (- (* S4 S4) (* M1 S7)) (/ S4 S4)))Figure B.10: The menton landmark detetion program used to predited the position of thelandmarks in Figure B.9



APPENDIX B. TEST RESULTS 233B.6 Nose landmark
(0,1) (0,-1) (0,-1) (-1,-2) (3,-3) (0,-2)
(0,-1) (0,-2) (0,0) (0,-2) (-1,2) (0,1)
(-1,3) (0,0) (0,-1) (0,-2) (-1,3) (0,1)
(0,1) (0,0) (0,1) (-1,-1) (-1,1) (-1,1)
(0,0) (0,-1) (0,1) (0,1) (0,0) (0,1)
(-1,2) (1,1) (1,1) (0,-1) (-1,1) (0,1)Detetion rate=100% (36/36) False alarm rate=0% (0/36)Figure B.11: A seletion of images along with the predited position for the nose landmarkas is depited by the ross. The positional error shown under eah image is a measure of thepredited position relative to the atual position. Positional error is measured in pixels.



APPENDIX B. TEST RESULTS 234Fitness=0(/ (+ (+ (- (- (- M3 M6) (- (- (- M6 M6) (- M7 M4)) M4)) (- (+ M7 S7) (- S4M2))) (* M1 (* (- S3 S1) (+ S5 M3)))) (* (+ (- S7 S6) (+ M6 S3)) (- (/ M3M7) (/ 10.7579 M4)))) (+ (* (+ (* S3 S7) (+ M3 M6)) (+ (+ S1 (* M3 S2)) (+M4 S4))) (- S7 S6)))Figure B.12: The nose landmark detetion program used to predited the position of thelandmarks in Figure B.11


