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Abstra
t
The domain of medi
al imaging analysis has burgeoned in re
ent years due to the availabilityand a�ordability of digital radiographi
 imaging equipment and asso
iated algorithms and, assu
h, there has been signi�
ant a
tivity in the automation of the medi
al diagnosti
 pro
ess.One su
h pro
ess, 
ephalometri
 analysis, is manually intensive and it 
an take an experien
edorthodontist thirty minutes to analyse one radiology image. This thesis des
ribes an approa
h,based on geneti
 programming, neural networks and ma
hine learning, to automate thispro
ess. A 
ephalometri
 analysis involves lo
ating a number of points in an X-ray anddetermining the linear and angular relationships between them. If the points 
an be lo
ateda

urately enough, the rest of the analysis is straightforward.The investigative steps undertaken were as follows: Firstly, a previously publishedmethod,whi
h was 
laimed to be domain independent, was implemented and tested on a sele
tionof landmarks, ranging from easy to very diÆ
ult. These in
luded the menton, upper lip,in
isal upper in
isor, nose tip and sella landmarks. The method used pixel values, and pixelstatisti
s (mean and standard deviation) of pre-determined regions as inputs to a geneti
programming dete
tor. This approa
h proved unsatisfa
tory and the se
ond part of theinvestigation fo
used on alternative hand
rafted features sets and �tness measures. Thisproved to be mu
h more su

essful and the third part of the investigation involved using pulse
oupled neural networks to repla
e the hand
rafted features with learned ones. The fourthand �nal stage involved an analysis of the evolved programs to determine whether reasonablealgorithms had been evolved and not just random artefa
ts learnt from the training images.A signi�
ant �nding from the investigative steps was that the new domain independentapproa
h, using pulse 
oupled neural networks and geneti
 programming to evolve programs,



iiwas as good as or even better than one using the hand
rafted features. The advantage of this�nding is that little domain knowledge is required, thus obviating the requirement to manuallygenerate hand
rafted features. The investigation revealed that some of the easy landmarks
ould be found with 100% a

ura
y while the a

ura
y of �nding the most diÆ
ult ones wasaround 78%.An extensive analysis of evolved programs revealed underlying regularities that were 
ap-tured during the evolutionary pro
ess. Even though the evolutionary pro
ess took di�erentroutes and a diverse range of programs was evolved, many of the programs with an a

eptabledete
tion rate implemented algorithms with similar 
hara
teristi
s.The major out
ome of this work is that the method des
ribed in this thesis 
ould be usedas the basis of an automated system. The orthodontist would be required to manually 
orre
ta few errors before 
ompleting the analysis.
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Unless otherwise stated, all fra
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Glossary
De�nitionsThe following de�nitions are 
ommonly used throughout this thesis and have been in
ludedto assist the reader.Arity The number of arguments that are required to be given to a fun
tion.Bloat A term given to des
ribe the pro
ess of 
ode growth over time.Cephalogram Is a radiograph (also known as an X-ray) of the head, in
luding the mandible,taken in full lateral view whi
h is used for making 
ranial measurements.Crossover Creates two programs for the new population by 
rossing over or swapping thesub-trees of two sele
ted programs. The sub-tree in ea
h program is 
reated by randomly
hoosing a node.Crossover rate The probability of 
reating two new individuals using the 
rossover opera-tor.Dete
tion a

ura
y Is a measure of a program's ability to a

urately lo
ate the positionof a landmark. A

ura
y is measured as the di�eren
e between the dete
ted landmark andthe known position whi
h is quanti�ed in pixels.Dete
tion rate Is a ratio used to 
ompare the relationship between the number of 
orre
tlydete
ted landmarks with the total number of landmarks that are to be dete
ted.False alarm rate Is a ratio used to 
ompare the relationship between the number of in
or-re
tly dete
ted landmarks with the total number of landmarks that are to be dete
ted.Features Refer to terminals. xix



LIST OF TABLES xxSub Image A heuristi
 based on anatomi
al knowledge is used to extra
t a smaller imagefrom a digital X-ray, relative to a datum point. The rationale for the smaller image is toredu
e the size of the sear
h area when lo
ating the landmark (refer to Figure 1).Image dataset A sele
tion of 110 digital X-ray 
ephalograms that are used throughout thisthesis. Ea
h image is an 8-bit greys
ale image that has 256 levels of grey (refer to Figure 1).Input window Contains a pre-de�ned set of shapes that are used to 
al
ulate features. Theinput window is traversed a
ross ea
h position on the sub image (refer to Figure 1).Introns Code segments not 
ontributing to a program's performan
e or irrelevant pie
es of
ode that do not 
ontribute to program �tness.Maximum tree depth, initial The maximum depth of a tree at the initial generation.Maximum tree depth The maximum depth of a tree after the initial generation.Mutation Creates a new program by randomly 
hoosing a node and introdu
ing a new sub-tree into a program.Mutation rate The probability of 
reating a new individual using the mutation operator.Parsimony pressure is a popular bloat-
ontrol te
hnique used to 
ombat bloat in geneti
programming. A size penalty is added to the �tness fun
tion.Population size The number of individuals, or programs, in a given population.Operators Are nodes with 
hildren that 
orrespond to fun
tions that are available in thefun
tion set.Elitism Copies an individual from the 
urrent generation into the next generation, with theaim of allowing the �ttest individuals to survive into the next generation.Elitism rate The probability of 
reating a new individual using the reprodu
tion operator.Sensitivity An operating 
hara
teristi
 that measures the ability of a test to dete
t an obje
twhen it is present.Shape The input window is divided into a set of shapes. Ea
h shape is 
omposed of a numberof pixels whi
h are used to 
al
ulate feature values. Ea
h shape has two features, i.e. meanand standard deviation (refer to Figure 1).Spe
i�
ity An operating 
hara
teristi
 that measures the ability of a test to ex
lude anobje
t when it is not present.Terminals Are variables that are always leaves in the parse tree. In the 
ontext of using
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 programming in obje
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orrespond to image features. Terminalsare 
ommonly referred to as features throughout this thesis and vi
e-versa.Test set Is a 
olle
tion of examples whi
h were never used, or unseen, during training.Training set Is a 
olle
tion of examples that are used for learning a model during training

Figure 1: S
hemati
 of the pro
ess for extra
ting features within the sear
h area of an X-ray.
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Chapter 1
Introdu
tion
1.1 Introdu
tionAdvan
es and a�ordability in digital radiographi
 imaging have seen a requirement by or-thodontists to automate the 
ephalometri
 analysis. A 
ephalometri
 analysis is 
omposedfrom a de�ned set of landmarks or points, used to determine linear and angular relationships,that are lo
ated in both bony and soft tissue on a 
raniofa
ial X-ray. The 
ephalometri
analysis is spe
i�
 to an orthodontist for determining measurements and ratios based on the
oordinates of the landmarks. Figure 1.1 shows an image indi
ating several types of 
ephalo-metri
 landmarks. The out
ome of the analysis determines the type of treatment requiredfor the patient. Currently the pro
ess of landmark identi�
ation is manually intensive and it
an take an experien
ed orthodontist thirty minutes to analyse one X-ray.Automating the 
ephalometri
 analysis is in the 
ontext of using a dete
tion programto automati
ally lo
ate landmarks, a

urately enough for a 
ephalometri
 analysis, with nomanual intervention. Rakosi [111℄ suggests an error of 2 mm is a

urate enough for lo
ating
ephalometri
 landmarks. The error is de�ned as the di�eren
e between the position of thelandmark automati
ally identi�ed and the position if lo
ated by an experien
ed orthodontist.The resear
h that is addressed in this thesis is to develop a new framework using imagepro
essing te
hniques 
ombined with ma
hine learning to automati
ally lo
ate landmarksfrom a lateral head X-ray. A learning approa
h is well suited to the problem be
ause ofthe diversity of biologi
al shapes that exist within a population. An advantage of using a1



CHAPTER 1. INTRODUCTION 2learning approa
h is that it potentially allows a pra
titioner to re-train or re�ne the positionof a landmark.

Figure 1.1: Cephalometri
 landmarksA learning method that has shown promise for obje
t dete
tion problems is geneti
 pro-gramming. Geneti
 programming is an evolutionary sear
h strategy from the evolutionary
omputation family, a �eld that uses me
hanisms similar to biologi
al evolution, for solv-ing 
omputational problems. The evolutionary sear
h strategy is dire
ted by in
reasing thelikelihood that �tter programs partake in the evolutionary pro
ess, a pro
ess that is analo-gous to natural evolution. Evolutionary 
omputation is an emerging area of resear
h thathas re
ently been applied to 
omputer vision problems. The geneti
 programming methodhas shown potential to lo
ate landmarks be
ause, when applied to other problems of similardiÆ
ulty, the dete
tion results have been promising and in some 
ases outperformed otherlearning paradigms su
h as neural networks [59, 166℄.The overall aim is to develop an automated system to perform a 
ephalometri
 analysis.The intended purpose is to improve the eÆ
ien
y of the treatment plan by redu
ing anal-ysis time and allowing the orthodontist to fo
us on other work. Potential 
ost savings andpotential improved diagnosis would o�set any 
ost in
urred by pur
hasing su
h a system.



CHAPTER 1. INTRODUCTION 3S
ope The aim of the work presented in this thesis is to develop a method to automati
allyidentify the 
o-ordinates of 
ephalometri
 landmarks in digital X-rays that is a

urate enoughfor a 
ephalometri
 analysis. The landmarks listed in Table 2.11 (p. 47) are lo
ated inboth bony and soft tissue. Previous attempts by [20, 63℄ to automati
ally lo
ate soft tissuelandmarks have been reasonably su

essful, however, test results are 
onsiderably lower forlandmarks lo
ated on bony tissue; in both 
ases, the test results are based on relatively smalldatasets. The work presented in this thesis will use a sele
tion of landmarks that exhibit arange of dete
tion diÆ
ulty (i.e. easy to hard) for the purpose of determining the likelihoodthat the proposed method will work on the entire list of landmarks in Table 2.11.Realisti
ally the proposed method will not lo
ate landmarks in all grades of digital images,as the learning method will only be trained to lo
ate landmarks for a prede�ned set of
onditions su
h as signal-to-noise ratios. For example, if the method is trained to lo
atelandmarks on digital radiographi
 imaging equipment then more than likely the method willnot work when presented with digitised �lm X-rays. This ensures that the work presented inthis thesis is 
learly de�ned and that an umbrella is not 
reated in an attempt to solve all
ephalometri
 issues. Although the 
onditions for lo
ating landmarks are prede�ned, thereis no reason that a general method would not be able to learn how to lo
ate a new type oflandmark.Domain Independent Approa
h A learning method that has shown promise for solvingobje
t dete
tion problems is resear
h 
ondu
ted by Zhang et al. [164, 168℄ who presented adomain independent approa
h using geneti
 programming and pixels as features for 
lassifyingand lo
ating the 
entres of 
oins. Zhang et al. subsequently applied the method to a diÆ
ultdete
tion problem for dete
ting haemorrhages and mi
roaneurisms in retina images. Thedete
tion performan
e of solutions from geneti
 programming was superior to other learningparadigms that in
luded a neural network. The method by Zhang et al. uses a multi-
lass
lassi�er, however, in the 
ontext of our work ea
h landmark type will be treated as a separatedete
tion problem. An advantage of this approa
h is that the 
omputational requirementsof a dete
tor program are relatively inexpensive 
ompared to other te
hniques su
h as thosethat use wavelet transforms.
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h in this thesis will investigate whether the domain independent ap-proa
h des
ribed by Zhang et al. is able to lo
ate 
ephalometri
 landmarks to a suÆ
ientdegree of a

ura
y for a 
ephalometri
 analysis. The later resear
h will look at ways to modifyand improve the basi
 approa
h. An outline of the domain independent approa
h for obje
tdete
tion is now given.The lo
ation of the obje
t of interest is found by traversing an input window a
ross theimage and evaluating a program at ea
h pixel lo
ation. The program will take as inputthe values of the pixels in the input window or pixel statisti
s (su
h as mean and standarddeviation) of simple shapes [8, 58, 59, 141, 165, 166℄. The program will output a numbergreater than zero when 
entred on an obje
t of interest or a number less than zero otherwise.The desired program is obtained by an evolutionary pro
ess whi
h uses a training setof marked up images and a measure of dete
tion rate and false alarm rate as the �tness.The performan
e of ea
h program within the population is measured and sorted a

ording to�tness. A new population of programs is generated probabilisti
ally by sele
ting programs topartake in geneti
 operations. The pro
ess for �nding ea
h type of landmark will be treatedas a separate obje
t dete
tion problem.

Figure 1.2: Classi�
ation strategy that uses the output of the program to determine if thepixel is a landmark or ba
kground. Pi represents the intensity value of pixel iThe images in Figure 1.3 illustrate four examples where the sweeping pro
ess that wasdes
ribed above was used to sear
h for the in
isal upper in
isor landmark. The images areindi
ative of the large biologi
al variability amongst four di�erent patients. When the inputwindow is applied to the images in Figure 1.3a-
 the landmark was 
orre
tly found. Thelandmark was not 
orre
tly found in the example shown in Figure 1.3d. This is shown by the



CHAPTER 1. INTRODUCTION 5disparity between the input window 
entred on the predi
ted position and the 
ross.
(a) (b) (
) (d)Figure 1.3: Examples illustrating the 
orre
t and in
orre
t position of the in
isal upper in
isorlandmark. The input window is 
entred on the predi
ted position of the landmark and the
ross indi
ates the a
tual lo
ation found by the orthodontist.1.2 Goals of the thesisThe overall goal of the work presented in this thesis is to develop obje
t dete
tion programs forlo
ating 
ephalometri
 landmarks using the geneti
 programming paradigm. The followingquestions will be explored and address issues asso
iated with using geneti
 programming onlandmark dete
tion problems for a range of landmark types 
lassi�ed from easy to diÆ
ult.1.2.1 Resear
h questions1. Can the domain independent approa
h using pixels as features and geneti
programming be used for landmark dete
tion?The strategy that we have des
ribed above as the domain independent approa
h willdetermine if pixel based features are able to lo
ate a range of landmarks from easy tohard to the desired level of a

ura
y for a 
ephalometri
 analysis. Formulating �tness isdomain dependent, for example having false alarms may be a

eptable in one problem(mammograms) and una

eptable in other problems (target dete
tion). We investigatea formulation that suits the landmark problem.2. How 
an the domain independent approa
h be modi�ed and extended togive better dete
tion performan
e?This part of the investigation will address a number of fundamental issues for improvingthe dete
tion of landmarks in 
omplex images. This question will address:� Can dete
tion a

ura
y be improved by manually partitioning the input window



CHAPTER 1. INTRODUCTION 6into a set of shapes, idiosyn
rati
 to the landmark, and using pixel statisti
s (meanand standard deviation) of the shapes instead of pixel intensities.� How 
an �tness be formulated to redu
e the false alarm rate?� Can a �tness fun
tion that uses dete
tion error, de�ned as the eu
lidean distan
ebetween the predi
ted position and the true position, produ
e a

urate dete
tionprograms?� What operators should be in
orporated into the fun
tion set so that programs aregiven the best 
han
e of a
hieving a su

essful solution?3. Can hand
rafting of shapes be repla
ed by learning the shapes from exam-ples and will this in
rease dete
tion a

ura
y?It is expe
ted that hand
rafted shapes used to 
ompute features will be able to pro-du
e better dete
tion programs 
ompared to using pixels as features from the domainindependent approa
h. However, the problem with determining hand
rafted shapes isthat knowledge of a landmark is required in order to determine suitable shapes and sothe te
hnique be
omes a semi-automated approa
h. In this part of the investigationour aim is to develop a method that is able to automati
ally generate a set of shapesusing the output from a pulse 
oupled neural network (PCNN) and determine if thedete
tion programs produ
ed are 
omparable to hand
rafted shapes. The PCNN isa method that has shown some promise of segmenting regions of interest (ROI) from
omplex s
enes. This part of the investigation will determine whether learned shapesare able to give better dete
tion performan
e 
ompared to the hand
rafted shapes.4. Are there any underlying algorithms that are learnt during the evolutionarypro
ess?The aim of this part of the investigation is to determine whether the su

essful dete
tionprograms use some ad-ho
 patterns in the training data or whether some understandablealgorithm has been evolved.



CHAPTER 1. INTRODUCTION 71.3 ContributionsThe 
ontributions of this thesis are:1. A framework for geneti
 programming applied to landmark dete
tion, a diÆ
ult realworld 
omputer vision problem.This work has delivered a feasible method for dete
ting 
ephalometri
 landmarks basedon GP. Most GP appli
ations in 
omputer vision use simple or arti�
ial images. How-ever, our work has shown that GP 
an also be applied su

essfully to dete
t landmarksin 
omplex real-world images.2. Presentation for improving the GP frameworkThe work presented in Chapter 5 
learly demonstrated the bene�t of redu
tion in falsealarm rate by introdu
ing hand
rafted features, �tness adjustment and the 
reation ofnew operators for improving the performan
e of dete
tion programs. By pla
ing ourwork within an obje
t dete
tion 
ontext using GP, we expe
t that similar problems maymake use of our 
ontribution.Part of this work was published in:A. Innes, V. Ciesielski, J. Mamutil, S. John, and Alan Harvey. Landmark dete
tionfor 
ephalometri
 radiology images using geneti
 programming. In Ruhul Sarker, BobM
Kay, Mitsuo Gen, and Akira Namatame, editors, in Pro
eedings of the 6th Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, pages 125-132, Can-berra, November 2002.V. Ciesielski, A. Innes, J. Mamutil, and S. John. Landmark dete
tion for 
ephalometri
radiology images using geneti
 programming. International Journal of Knowledge BasedIntelligent Engineering Systems, 7(3):164-171, July 2003.A. Innes, V. Ciesielski, J. Mamutil, and S. John, Redu
ing False Alarms Using Ge-neti
 Programming in Obje
t Dete
tion, in Pro
eedings of International Conferen
e ofArti�
ial Intelligen
e, Las Vegas, USA, June 2004.3. A method for the automati
 generation of image features for landmark dete
tionThe work presented as part of this thesis has fo
used upon the automation of what istypi
ally a manual pro
ess of `hand
rafting' features. Spe
i�
ally, we have devised ageneral method for a
hieving this automation using a pulse 
oupled neural network andthrough experimentation, have dis
overed that our te
hnique to dis
overing features is



CHAPTER 1. INTRODUCTION 8
omparable if not ex
eeding in performan
e with hand
rafted features as well as otherte
hniques presented in the literature.Part of this work was published in:A. Innes, V. Ciesielski, J. Mamutil, and S. John. Landmark dete
tion for 
ephalo-metri
 radiology images using pulse 
oupled neural networks. In Hamid Arabnia andYoungsong Mun, editors, in Pro
eedings of the International Conferen
e on Arti�
ialIntelligen
e (IC-AI'02), volume 2, pages 511-517, Las Vegas, June 2002. CSREA Press.A. Innes, V. Ciesielski, J. Mamutil, and S. John. Finding templates for 
ephalometri
landmark dete
tion using pulse 
oupled neural networks and geneti
 programming.In Hamid Arabnia and Youngsong Mun, editors, in Pro
eedings of the InternationalConferen
e on Imaging S
ien
e, Systems and Te
hnology (CISST'03), volume II, pages511-517, Las Vegas, June 2003. CSREA Press.4. A methodology for understanding evolved dete
tion programsWe have developed a methodology for understanding the evolved programs. Themethodology involved �nding the underlying algorithm implemented in the evolvedprogram and establishing that it is appropriate for the parti
ular obje
t dete
tion prob-lem. This gives 
on�den
e that underlying regularities are being 
aptured in the evolvedprograms, not artefa
ts of the training data.Vi
tor Ciesielski, Andrew Innes, Sabu John and John Mamutil, "Understanding evolvedgeneti
 programs for a real world obje
t dete
tion problem", in Pro
eedings of the 8thEuropean Conferen
e on Geneti
 Programming, Maarten Keijzer, Andrea Tettamanzi,Pierre Collet, Jano I. van Hemert and Mar
o Tomassini, Eds., Lausanne, Switzerland,30 Mar. { 1 Apr. 2005, vol 3447 of Le
ture Notes in Computer S
ien
e, pp. 351{360,Springer



Chapter 2
Literature review
2.1 Computer visionThe problem of automati
ally extra
ting 
ephalometri
 landmarks from digitised X-Rays is a
omputer vision problem. Computer vision is a large and diverse �eld 
overing many di�erentareas, su
h as navigation, remote sensing, 
hara
ter re
ognition and do
ument pro
essing, andmedi
al imaging. Our parti
ular problem �ts within the area of medi
al imaging, however,this is not to say the work des
ribed in this thesis is limited to this domain.The term 
omputer vision has many de�nitions, but probably the most appropriate,based on our problem, is given by Shapiro and Sto
kman [130, p. 13℄ who de�ned the goal of
omputer vision as being able to \make useful de
isions about real physi
al obje
ts and s
enesbased on sensed images". From this statement one may be lead dire
tly to the questionof how does a 
omputer vision pra
titioner make useful de
isions when presented with animage? This question is addressed by 
reating a des
ription or model of the obje
t in theimage. As a result, Forsyth and Pon
e [49, p. 13℄ have further generalised the de�nition of
omputer vision, and the view of many `experts', by saying \the goal of 
omputer vision isthe 
onstru
tion of s
ene des
riptions from images".Solving 
omputer vision problems has a history dating ba
k to the 1960s [49℄, however,relatively few resear
hers explored 
omputer vision until the 1980s [69℄. The 
atalyst forthe in
reased resear
h was the availability of a�ordable hardware meaning that algorithmsthat were on
e infeasible were now possible on relatively inexpensive workstations. Initially9
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hine vision problems in industrial vision were addressed using simpli�ed binary imagepro
essing. However, with in
reased 
omputing power, ma
hine vision has progressed togreys
ale image pro
essing [41℄. Nowadays, the resear
h fo
us has 
hanged from 
lassi
alpattern re
ognition and image pro
essing te
hniques towards knowledge-based te
hniqueswhereby during the past de
ade there has been a strong emphasis on developing 
omputervision systems that exhibit learning behaviour.Be
ause of the in
reasing 
omplexity of 
omputer vision problems, learning is seen as thenext frontier in 
omputer vision as is evident by the number of workshops dedi
ated to solving
omputer vision using ma
hine learning [11, 12, 147℄. The key advantage of learning is theability to deal with new situations (improve responses over time) and it is not ne
essary toengineer a response, in advan
e, to every 
on
eivable situation.2.1.1 Computer Vision in Medi
ineComputer vision in medi
ine is 
urrently a very a
tive area of resear
h. The areas for resear
hin medi
ine in
lude morphometry (to quantify the physi
al 
hara
teristi
s of an obje
t),visualisation of data, improved diagnosis, automati
 pro
essing of images and 
ontent-basedimage retrieval [97, 109℄. A reason for the in
reased fo
us is to exploit the large number of2D and 3D digital images generated by X-ray, 
omputer topography, magneti
 resonan
e,ultrasound and nu
lear medi
ine imagery devi
es for diagnosis and therapy [4℄. The �eld of
omputer vision applied to medi
ine is diverse and so we shall only des
ribe problems 
loselyrelated to our domain. The following gives a brief outline of resear
h into problems relatingto obje
t dete
tion and 
lassi�
ation in medi
al X-rays.Resear
h in obje
t dete
tion and 
lassi�
ation problems in
ludes extra
ting the left ven-tri
le from e
ho
ardiographi
 images [61℄, segmentation of normal and abnormal livers [62℄,dete
tion and diagnosis of mi
ro-
al
i�
ations in mammograms [27, 48, 149, 156, 163℄ andautomati
 dete
tion of tantalum markers inserted into femurs [154℄. Resear
h relating to theautomati
 dete
tion of 
ephalometri
 landmarks is presented in Se
tion 2.7.Be
ause of the diversity of problems and their asso
iated diÆ
ulty in the medi
al domainthere are a large number of papers dedi
ated to topi
s that in
lude pre-pro
essing, su
has image enhan
ement, noise redu
tion, edge dete
tion and segmentation, 
lassi�
ation and
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alisation of obje
ts.2.1.1.1 Noise in X-ray imagesA signi�
ant issue with digital X-ray images in 
omputer vision is the impa
t of noise onimage quality, i.e. image quality degrades qui
kly as noise in
reases [51℄. System noiseis measured as the signal-to-noise ratio (SNR). The main sour
e of noise in X-rays is therandom distribution of photons over the image [99℄. The noise 
an be redu
ed by in
reasingthe number of photons used to form the image. However, medi
al images are noisy due to thelimitations on X-ray dose [115℄ be
ause organi
 obje
ts are sensitive to irradiation. Therefore,there has been a reasonable amount of resear
h into redu
ing noise in medi
al X-rays withlow SNR using a pre-pro
essing step. These pre-pro
essing steps in
lude the use of wavelets[46, 140℄ and the Ri
hardson-Lu
y algorithm [82℄ for de-noising images. Other traditionalimage pro
essing te
hniques for smoothing and enhan
ing images in
lude median �lters [146℄and Gaussian kernels [115℄.2.2 Obje
t dete
tionObje
t dete
tion is an area of 
omputer vision and is de�ned as the task of determining if theobje
t of interest is lo
ated in the image, and if so, determining the 
oordinates of the obje
t'sposition. The most 
ommon approa
h for solving this problem, as des
ribed by Astrom [3℄, isto develop a 
lassi�er for distinguishing between two 
lasses, i.e. obje
t and non-obje
t, andapplying it to the image at di�erent positions. A review of the obje
t dete
tion literaturesuggests that some of the work is restri
ted to only 
lassi�
ation, although an importantaspe
t of obje
t dete
tion is the determination of the position of an obje
t. An example ofthis is an obje
t dete
tion algorithm developed by Winkeler et al. [157℄ for dete
ting fa
esin images. In this parti
ular example, ea
h pixel position in the image is 
lassi�ed as eithera fa
e or non-fa
e, however, this approa
h does not identify the region of a fa
e in an image.
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Figure 2.1: An example of features and 
lassi�ers used for solving obje
t dete
tion problems.Generally speaking, most resear
h performed on obje
t dete
tion problems involves twomain steps: feature extra
tion and 
lassi�
ation as shown in Figure 2.1. Key features are
hosen during the feature extra
tion stage, with the goal to assist in dis
riminating betweenobje
t and non-obje
t, and used as inputs into the 
lassi�er. A 
lassi�er is 
hosen anddeveloped, whi
h uses the extra
ted features to dis
riminate between 
lasses `obje
t' and`non-obje
t'. It is not unusual for pre-pro
essing, su
h as normalising or resizing an image,to o

ur prior to feature extra
tion. Depending on the obje
t dete
tion task, an image may
ontain multiple 
lasses. The most 
ommon approa
h for solving obje
t dete
tion problems,even if the problem 
ontains multiple 
lasses, is to use a binary 
lassi�er, i.e. the 
lassi�eris designed to distinguish between obje
t and non-obje
t. If the problem involves multiple
lasses then it is not un
ommon to have a di�erent 
lassi�er for ea
h 
lass. However, Zhanget al. investigated a multiple 
lass 
lassi�er for lo
ating haemorrhages and mi
ro aneurismsin retinal images [164, 166, 168℄.As mentioned on page 10, using ma
hine learning to develop a 
lassi�er is per
eived as apromising approa
h for solving diÆ
ult 
omputer vision problems. DiÆ
ult 
omputer visionproblems in
lude appli
ations in the medi
al domain be
ause of the diversity in anatomy.Often a pre
ise dete
tion algorithm is required with a 
orre
t balan
e between false alarmrate and dete
tion rate. This is important as images are often subje
t to subtle 
hanges ingreys
ale, noise and ba
kground 
lutter. These issues 
ause diÆ
ulty and hen
e, require anapproa
h that will have suitable features 
ombined with a learning methodology for 
reating
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tion that will produ
e a robust obje
t dete
tion fun
tion. Both the typesof features extra
ted and the 
lassi�er 
hosen are domain dependent, however, Zhang et al.proposed a method [164, 168℄ that 
laims to be domain independent.2.2.1 Performan
e measuresIn measuring the performan
e of obje
t dete
tion systems the most 
ommon measures ofperforman
e are (1) dete
tion rate, whi
h we wish to maximise and (2) false alarm rate, whi
hwe wish to minimise. Dete
tion rate and false alarm rate are determined using Equations2.1 and 2.2 respe
tively, however, it is not un
ommon to express either of the terms as aper
entage.Dete
tion Rate (DR) refers to the number of obje
ts 
orre
tly lo
ated by the system,known as true positives (TP), as a ratio of the total number of obje
ts, N , in a dataset
ontaining n images. The dete
tion rate is a value between 0 and 1.DR = Pni=1 TPiPni=1Ni (2.1)where,TP The number of positive examples 
orre
tly 
lassi�edN The number of obje
ts in the imagen The number of images in the training/test setFalse Alarm Rate (FAR) refers to the number of obje
ts in
orre
tly lo
ated, known asfalse positives (FP), as a ratio of the total number of obje
ts. Unlike dete
tion rate, the falsealarm rate 
an be a value greater than 1, however, ideally the system will produ
e a falsealarm rate with a value of 0, i.e. no false alarms.FAR = Pni=1 FPiPni=1Ni (2.2)where,FP The number of negative examples in
orre
tly 
lassi�ed
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onfusion matrix, a 
on
ept originally borrowed from medi
al diagnosis, true neg-atives (TN) are the number of negative examples 
orre
tly 
lassi�ed and false positives (FP)are the number of negative examples in
orre
tly 
lassi�ed as positive. False negatives (FN)are the number of positive examples in
orre
tly 
lassi�ed as negative while true positives(TP) are the number of positive examples 
orre
tly 
lassi�ed [23℄. To better understand theterms `true positive' and `false positive' and their relationship to the predi
ted out
ome, referto Table 2.1. A
tualPositive NegativePredi
ted Positive TP FPNegative FN TNTable 2.1: A 
onfusion matrix illustrating the relationship between a
tual and predi
ted
lassi�
ations performed by a 
lassi�
ation system.The ultimate goal of obje
t dete
tion is to a
hieve a dete
tion rate of 100% and falsealarm rate of 0%. However, a
hieving the ultimate goal for diÆ
ult dete
tion problems issometimes not possible and so a trade-o� between dete
tion rate and false alarm rate isrequired. Determining a trade-o� is problem dependent, for example produ
ing false alarmsduring medi
al diagnosis is seen as a

eptable sin
e the pra
titioner would perform a furtherinvestigation as part of the treatment. However, a false alarm on an automati
 targetingsystem, where there is no human input, will 
ause the system to �re the weapon. Theseexamples demonstrate the reason why it is important to determine the balan
e betweendete
tion rate and false alarm rate when measuring the performan
e of a system based onthe 
onsequen
es of the de
ision.In obje
t dete
tion, the ba
kground artefa
ts often signi�
antly outweigh the number ofobje
ts in the image, potentially resulting in a highly skewed data set. This may 
ause anobje
t dete
tion algorithm to be biased towards dete
ting ba
kground artefa
ts as obje
ts,whi
h is undesirable. Unfortunately, a highly skewed dataset is something that is not un
om-mon in real world problems [47℄. In the presen
e of highly skewed datasets, the dete
tor willbe biased towards either poor dete
tion performan
e or inadvertently dete
ting non-obje
ts.The dete
tion rate and false alarm rate may be treated as a multi-obje
tive optimisation
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tive approa
hes 
ommonly used formeasuring the performan
e of obje
t dete
tion and 
lassi�
ation performan
e.2.2.1.1 Weighted sum approa
hThe weighted sum approa
h adds the multiple obje
tives together using di�erent weights, wi,for ea
h obje
tive, fi. The value of ea
h weight represents the relative importan
e of ea
hobje
tive [28℄. The approa
h of 
ombining the obje
tives into a single fun
tion means themulti-obje
tive problem is transformed into a s
alar optimisation problem. This approa
hhas been used to measure the performan
e of learning algorithms in
luding neural networks,geneti
 algorithms and geneti
 programming, for obje
t dete
tion problems [168℄.min kXi=1 wifi (2.3)There are other approa
hes, similar to the weighted sum approa
h, where the multi-obje
tive problem is transformed into a s
alar optimisation problem [8, 58, 167℄. These arereferred to as `aggregating fun
tions' be
ause the obje
tives are 
ombined to produ
e a single�tness fun
tion [65℄. An advantage of aggregating fun
tions is that they are easily adaptedto learning algorithms su
h as geneti
 algorithms and geneti
 programming sin
e they are as
alar optimisation te
hnique [28℄. Aggregating fun
tions are generally more 
omputationallyeÆ
ient than other multi-obje
tive te
hniques [65℄. A disadvantage of this approa
h is that apriori information is required to determine the weights in order to evaluate the performan
eof the 
lassi�er [77℄. If the assignment of weights is not ideal then one of the obje
tives willbe
ome dominant. For example, a bias exists when the number of obje
ts to be dete
ted ismu
h smaller than the total number of non-obje
ts within an image. If the weights are notbalan
ed to a

ount for the bias between obje
ts and non-obje
ts then more than likely themeasure of performan
e will be
ome dominated by an obje
tive.2.2.1.2 Re
eiver operating 
hara
teristi
 
urveThe re
eiver operating 
hara
teristi
 (ROC) 
urve, 
ommonly referred as ROC 
urve, orig-inated from the evaluation of radar operators that was adopted for the diagnosis of tests
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hine learning 
ommunity [129℄. An ROC analysis is seen as an alter-native te
hnique to evaluate how well 
lassi�ers perform given a distribution of two 
lasses[13℄. The ROC 
urve is a graphi
al representation of the trade o� between true positive andfalse positive rates as a fun
tion of varying 
lassi�
ation threshold [129℄. Alternatively, ROC
urves are expressed as a trade-o� between sensitivity and spe
i�
ity as illustrated in Figure2.2. ROC 
urves have been used to measure the performan
e of obje
t dete
tion systemsthat in
lude neural networks and support ve
tor ma
hines [48, 98, 103, 131℄.
Sensitivity = TPNp ; where Np is the number of positives in the dataset (2.4)Spe
ifi
ity = 1� FPNn ; where Nn is the number of negatives in the dataset (2.5)The area under the 
urve, as shown in Figure 2.2, measures the probability of 
orre
t
lassi�
ation [54℄. ROC 
urves present an attra
tive way of measuring the performan
e ofma
hine learning algorithms [16℄ and have been applied as a �tness measure for geneti
algorithms [128℄. The approa
h is seen as advantageous when 
hoosing an optimal point onthe 
urve. The point lying on the 
onvex hull of the ROC 
urve is 
hosen as the optimal
lassi�er/dete
tor [23℄ as apposed to manually 
hoosing a 
lassi�
ation threshold.

Figure 2.2: A guideline for determining performan
e of an algorithm based on the area underthe ROC 
urve.Agarwal et al. in [1℄ suggest another approa
h to ROC 
urves for obje
t dete
tion prob-lems. The distin
tion between the two approa
hes being an alternative x-axis measure, i.e
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ifi
ity is repla
ed with 1 � Pre
ision. Agarwal et al. in [1℄ justify the di�eren
ein approa
h for obje
t dete
tion problems be
ause the number of negatives in the dataset isnot known and so spe
i�
ity 
annot be 
al
ulated.Pre
ision = TPTP + FP (2.6)2.2.1.3 Multi-obje
tive optimisation using a Pareto-optimal frontA new area re
eiving a lot of interest for evaluating the performan
e of 
lassi�
ation problemsis multi-obje
tive optimisation using a Pareto-optimal front to �nd non-dominated solutions.The Pareto front is a 
olle
tion of solutions that have no superior and are referred to asnon-dominated solutions [65℄. Solutions are said to be non-dominated if the solutions do notperform better with respe
t to both obje
tives [36℄. The Pareto-optimal set 
orresponds topoints on the ROC 
urve [77℄. A single solution is sele
ted from those solutions along thePareto-optimal front.An advantage of this approa
h over the aggregated fun
tions, as des
ribed in 2.2.1.1, isthat the ambiguity is removed with regards to preferen
e of the obje
tives [77℄. Kupinski etal. [77℄ demonstrated that the Pareto-optimal front, optimised by a geneti
 algorithm, was
omparable to or better than the ROC 
urves for a given dataset and 
lassi�er. This approa
his not restri
ted to two 
lasses and the generation of the ROC 
urves 
an be performed withina single task.2.3 Ma
hine learningFor 
omplex problems it is often too diÆ
ult to en
ode the ne
essary behaviours and intel-ligen
e to solve su
h problems. Therefore, it 
an be more feasible to implement a ma
hinelearning algorithm so that the desired behaviour of the system 
an be learned. One goalof ma
hine learning is to program 
omputers using example data to solve a given problem.Con
eptually, ma
hine learning 
an be viewed as a sear
h de�ned by some underlying repre-sentation (e.g. linear fun
tions, logi
al des
riptions, de
ision trees and neural networks).Ma
hine learning, an area that overlaps with statisti
s, is a subset of arti�
ial intelligen
e
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ation of learning methodologies that allow 
omputersto learn. An overall de�nition of learning, as given by Witten et al. [158℄, is \things learnwhen they 
hange their behaviour in a way that makes them perform better in the future". Oneform of ma
hine learning involves learning from training data. The goal of su
h an approa
his to apply knowledge gained from the training stage to unseen 
ases.

Figure 2.3: A map of arti�
ial intelligen
e and its relationship to evolutionary 
omputation.2.3.1 Types of learningThe methods for learning from data 
an be 
ategorised into the following types of learning:supervised and unsupervised. The following gives a brief outline for ea
h of these types oflearning.Supervised learning: This is the most 
ommon learning 
ategory. Supervised learninguses training data that 
onsists of inputs and their asso
iated outputs to develop knowledgeor rules that are able to predi
t the output asso
iated with unseen input or test data.Unsupervised learning: This is 
ommonly asso
iated with 
luster analysis algorithms.The most signi�
ant di�eren
e with supervised learning is there is no a priori output asso
i-ated with unsupervised learning.For both supervised and unsupervised learning we want to learn a fun
tion, y = f(x),where x is an input and y is the output. However, supervised learning implies that a set of(x; y) pairs are given, whereas in unsupervised learning only a set of (x) are given.
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h with ma
hine learningThe following is an outline of issues asso
iated with learning from data.� De
iding what type of algorithm will give the best approximation to the fun
tion, i.e.what is the best way to represent the knowledge.� How many training examples are suÆ
ient to learn a 
on
ept.� Is the algorithm s
alable with respe
t to in
reasing the number of training examples,features or the number of 
lasses.� How to 
ontrol over�tting of the learned fun
tion (dis
ussed in Se
tion 2.5.4).2.3.3 Estimating errorThe goal of learning an obje
t dete
tor/
lassi�er from sample data is to su

essfully predi
twhen presented with new data. The most 
ommon measure of su

ess is the 
lassi�er's errorrate (refer to Equation 2.7), however, a more pre
ise measure is the true error rate. The trueerror rate is statisti
ally de�ned as the error rate of the learnt obje
t dete
tor when appliedto a large number of new 
ases { as the number of test 
ases in
rease the error rate will givea better estimate of true error rate. However, in many real world problems and spe
i�
allyour problem, the number of samples in the dataset is relatively small. Therefore, if we onlyhave a �nite sele
tion of data then how do we best estimate true error rate?Error rate = number of errorsnumber of 
ases (2.7)A 
ommon approa
h that is used for both learning and measuring performan
e whena small set of examples are made available from an in�nitely large population is to dividethe samples into two groups. The set of examples are also referred to as the dataset. Thegroup used for learning is known as the training set and the other group used to measureperforman
e is known as the test set. It is important that the examples sele
ted for the twogroups are randomly sele
ted from the dataset. The Training Set is a 
olle
tion of examplesthat are used for learning a model during training. The Test Set is a 
olle
tion of examples
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h were never used, or unseen, during training. The test set is used for measuring theperforman
e, or generalisation, of the �nal model that was learnt as a result of training. Ingeneral, the training set is used for learning the model, while a test set is used for measuringthe performan
e of that model.When sele
ting the size of the groups, how should the number of examples be proportionedto training and test? The following is an outline of 
ommon methods that are used to providean estimate of error when only a small number of examples are available in the dataset. Theestimate is often used as a means of 
omparing between di�erent approa
hes to learning theproblem. Based on the review from the literature, a less 
ommon approa
h to sampling datais the bootstrapping method [155℄.2.3.4 HoldoutThe holdout method is a single appli
ation of training and test sets whi
h is typi
ally usedwhen a large number of examples are available in the dataset. In order to have suÆ
ientsamples to learn, it is not unusual for the training set to be larger than the test set. Forexample, the training and test set may be proportioned 2/3 and 1/3 of the total datasetrespe
tively.2.3.5 Cross-validationA method known as leave-one-out 
onsists of (n � 1) samples for training and applying theremaining sample as a test, where n is the number of samples in the dataset. This pro
essis repeated n times, with training and testing o

urring on a di�erent sample. This methodprovides a good approximation of true error rate, however, the method is 
omputationallyexpensive be
ause it is repeated n times.A less 
omputationally expensive method is the k-fold 
ross-validation. This methodrandomly divides the dataset into k test partitions. The train and test pro
ess is repeatedk times and ea
h time using a di�erent test partition for test. An advantage of using 
ross-validation is that all of the available samples are used for testing, and a large proportionof samples are available for learning. Typi
ally, leave-one-out is preferred over k-fold 
ross-validation when the dataset 
onsists of 30 or fewer samples [125℄.
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omputation is a powerful sear
h strategy based on biologi
al evolution, forsolving optimisation and other problems. The prin
ipal idea is that individuals from a pop-ulation are allowed to generate o�spring by means of mutation, mating, and other geneti
operators. The �tness of an individual is based on the how well the individual solves theproblem. The �tter individuals are allowed to survive and parti
ipate in future generationsin a pro
ess analogous to natural sele
tion, and they in turn generate their own o�springwhereby the whole pro
ess iterates until a desired solution to the problem is rea
hed.There are several well known algorithms based on this pro
ess. These in
lude geneti
algorithms, evolutionary programming, evolutionary strategies, learning 
lassi�er systemsand geneti
 programming.Evolutionary strategies di�er from geneti
 algorithms be
ause they only deal with real-
oded problems, whereas geneti
 algorithms 
an solve 
omplex 
ombinatorial problems, ormixed valued problems. Evolutionary strategies also provide the fa
ility to self-adapt their
ontrol parameters, su
h as mutation rate whi
h 
an assist in es
aping from lo
al minima.Both geneti
 algorithms and evolutionary strategies have borrowed features from ea
h otherand over re
ent years the distin
tion between the two has be
ome blurred.Typi
ally geneti
 algorithms and evolutionary strategies use ve
tors to represent individ-uals, whereas geneti
 programming uses tree or sta
k based stru
tures to represent 
omputerprograms, unlike evolutionary programming, whi
h is related to geneti
 programming but therepresentation of the program is a state-ma
hine. Learning 
lassi�er systems use a populationof binary rules from whi
h a geneti
 algorithm alters and sele
ts the best rules. The utility ofa rule in this approa
h is de
ided by a reinfor
ement learning pro
edure, instead of a measureof �tness.All of these approa
hes have the basi
 evolutionary prin
iples in 
ommon; they use apopulation of solutions, the solutions are perturbed in some manner to generate o�spring,and the �tter o�spring are sele
ted for the next generation.More re
ently other population based approa
hes have been developed su
h as parti
leswarm optimisation, di�erential evolution, 
ultural algorithms, arti�
ial immune system ap-
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hes and ant 
olony optimisation.2.5 Geneti
 ProgrammingGeneti
 programming en
ompasses a family of evolutionary algorithms popularised by Koza[73℄ from 1989. This seminal paper des
ribes a hierar
hi
al geneti
 algorithm that allows aprogram to be evolved. Su
h a program is most easily expressed as a LISP (LISt Pro
essing)S-expression. Koza's [73℄ inspiration for developing a method that uses LISP S-expressions isthat many problems in arti�
ial intelligen
e 
an be thought of as exe
uting a pro
edure forperforming a task that 
ould easily be expressed as a LISP program.As with other evolutionary algorithms, the geneti
 programming method shares similari-ties with the Darwinian prin
iple of survival of the �ttest. Initially, a population of programs,or individuals, are 
reated and ranked a

ording to a �tness measure and depending on thesu

ess of these programs, the programs will then be allowed to parti
ipate in reprodu
tionwith other programs to produ
e a new generation. The idea is that over time the �tnessof programs will improve where only the �ttest will survive. This is akin to the Darwinianprin
iple of natural sele
tion.The major di�eren
e between geneti
 programming and 
onventional geneti
 algorithmsis the representation of the problem. A geneti
 algorithm typi
ally uses a �xed length stringwhere ea
h bit is assigned a meaning. However, in its original formulation a geneti
 programis represented as a variable length LISP S-expression that 
an be interpreted as a program.Banzhaf et al. [7℄ state that due to the 
exible nature of GP, it is theoreti
ally possibleto evolve any solution that 
an 
urrently be produ
ed by 
onventional ma
hine learningme
hanisms.Representation of solutions A solution in geneti
 programming is 
ommonly representedas a LISP S-expression that 
an also be depi
ted as a tree-based stru
ture. An example ofa LISP S-expression with the 
orresponding tree is shown in Figure 2.4. The fun
tions andterminals are the two fundamental elements used for the 
reating a tree. The terminals
orrespond to leaves, nodes without bran
hes, that represent a variable or a 
onstant value.
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tions are nodes with 
hildren that 
orrespond to operators and fun
tions that areavailable in the fun
tion set. The arity of a fun
tion is the number of arguments (
hildren),or inputs, required to be given to that fun
tion.(* x (+ (* x x) 10))
Figure 2.4: Representing a fun
tion, x(x2 + 10), as a LISP S-expression (above) with the
orresponding tree (below).Other representations of a geneti
 program Generally speaking, the most popularapproa
h for stru
turing a geneti
 program, based on published literature, has been in theform of a tree-based stru
ture. However, some of the other approa
hes reported in theliterature for stru
turing a geneti
 program in
lude a linear-based stru
ture [6, 17, 30℄, agraph-based stru
ture [96, 143℄, a linear-tree stru
ture [70℄, a linear-graph stru
ture [71℄ andgrammati
al evolution [102℄.Linear-based stru
ture The program of a linear-based stru
ture 
onsists of four parts:the header, body, footer and return instru
tion. A, B, C are registers and RO is the registerwhi
h is used to return the output at the end of the program. The header and footer do notpartake in the evolutionary pro
ess. Programs using a linear-based stru
ture are representedas binary strings whi
h are manipulated and exe
uted without interpretation using a normalgeneti
 algorithm. An example of a linear-based program is shown in Figure 2.5 along withthe equivalent tree-based program.Graph-based stru
ture A program of a graph-based stru
ture 
onsists of N nodes ina dire
ted graph with up to N ar
s going out from ea
h node. Ea
h node 
onsists of ana
tion part and a bran
h-de
ision part. There are also spe
ial nodes that in
lude start andend nodes that indi
ate the start and end of the program, and spe
ial nodes may also be
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alling nodes. An example of a graph-based programis shown in Figure 2.5. A method similar to the graph-based stru
ture is 
artesian geneti
programming by Miller and Thomson [96℄ that 
onsiders a grid of nodes that are addressedin a 
artesian 
oordinate system.
Figure 2.5: Representation of a tree-based (left), linear-based (middle) and graph-based(right) stru
tures used in geneti
 programming.Grammati
al evolution An approa
h in whi
h a geneti
 algorithm is used to evolveprograms. The individuals in the population are binary strings that undergo binary sele
tion,
rossover and mutation. A program is generated from an individual by de
oding the individualinto a sequen
e of appli
ations of rules from BNF grammar.2.5.1 Outline of Tree-Based Geneti
 ProgrammingThe following des
ription outlines the evolutionary pro
ess for tree-based geneti
 program-ming. The pro
ess is initiated by generating a population of random programs 
reated fromfun
tions and terminals that are made available for sele
tion as part of the evolutionary pro-
ess. New populations of programs are 
reated using geneti
 operations that are analogousto evolution. At the end of ea
h generation the performan
e of ea
h program is measureda

ording to a �tness metri
. This iterative pro
ess is 
ontinued until some termination
riterion is satis�ed.Ea
h phase of the geneti
 program framework is explained as follows:1. Generate an initial random population of programs 
reated from a sele
tion of fun
tionsand terminals.2. The evolutionary pro
ess iteratively steps through the following:
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e of ea
h individual program against a �tness metri
 andrank ea
h program a

ording to �tness.(b) Determine if the termination 
riterion is satis�ed. If a termination 
riteria hasbeen satis�ed then pro
eed to step (3), otherwise, pro
eed to step (
) - 
reating anew generation.(
) A new population of programs is generated by probabilisti
ally sele
ting individ-ual programs from the 
urrent population to partake in geneti
 operations. Betterindividuals have a higher probability of sele
tion. PR, PC and PM are the probabil-ity that an individual(s) will be 
reated using reprodu
tion, 
rossover or mutationrespe
tively.i. Reprodu
tion: Copy an individual program to the new population, typi
allyif the program is �t. This may also be referred to as elitism.ii. Crossover: Creates two programs for the new population by 
rossing overrandomly 
hosen parts from two sele
ted programs.iii. Mutation: Creates a program by mutating or introdu
ing a randomly 
hosenpart of a sele
ted program.3. At the end of the evolutionary run, the best program is typi
ally sele
ted as the out
omeof that run.



CHAPTER 2. LITERATURE REVIEW 26

Figure 2.6: This s
hemati
 outlines the pro
ess for an evolutionary run.Population initialisation and geneti
 operators will be explained in greater detail.2.5.1.1 Population InitialisationPopulation initialisation is the term given when programs are 
reated in the initial population.The majority of resear
hers in GP use the ramped half-and-half method outlined by Koza in[74℄. Other work in
ludes the uniform method by B�ohm et al. [14℄ who 
laims a superiorperforman
e to the ramped half-and-half initialisation method. Luke and Panait [91℄ 
om-pared �ve major tree generation algorithms on two problems and 
on
luded that there wasno di�eren
e in performan
e between the algorithms. However, results on a third problemindi
ate that the uniform method has an inferior performan
e to the ramped half-and-halfmethod.
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reates a set of trees for the initial population. Thepro
ess by whi
h these trees are 
reated is that given a maximum and minimum depth,M=(maximum�minimum+1) trees are 
reated at ea
h depth. Half the trees at ea
h depthare 
reated using the full method and the other half using the grow method. The full methodalways 
reates a full tree to the 
omputed tree depth. The grow method however, 
reatesrandomly shaped trees that do not ex
eed the 
omputed tree depth. It is not un
ommon forthe initial population to be restri
ted to a smaller maximum depth 
ompared with programsthat are evolved during the evolutionary sear
h.The uniform method takes a single pre-de�ned tree-size, and guarantees that it will 
reatea tree 
hosen uniformly of that tree size.
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 OperationsIn geneti
 programming there are three type of geneti
 operators used for 
reating individualsfor the new generation. These are reprodu
tion, 
rossover and mutation. The 
hoi
e ofoperator is determined probabilisti
ally and generally speaking PC >> PM and PR � 0�0:1.Reprodu
tion is the 
opying of an individual from the 
urrent generation into the nextgeneration. If a small number of the best individuals are 
opied the pro
ess is 
alled elitism.Elitism guarantees monotoni
 improvement in �tness.Crossover 
reates two programs for the new population by 
rossing over or swapping sub-trees of two sele
ted programs (refer to Figure 2.7a). The o�spring are 
reated by randomly
hoosing a node from ea
h parent program and swapping the sub-trees between the nodes(refer to Figure 2.7a).Mutation 
reates a new program by randomly 
hoosing a node and introdu
ing a newsub-tree into the program at that node (refer to 2.7b).The theory for justifying the probabilities for 
rossover and mutation in geneti
 algorithmsdoes not apply to geneti
 programming be
ause the tree-based genome is signi�
antly di�erentto the ve
tor-based genome [92℄. Sin
e theory for 
hoosing probabilities for 
rossover andmutation is la
king and resear
h by Luke et al. [92℄ 
on
luded \why one is preferable tothe other is dependent on domain and parameter settings", our de
ision for 
rossover andmutation probabilities will be based on literature in geneti
 programming applied to image-related appli
ations (refer to Table 2.5).
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(a) Crossover (b) MutationFigure 2.7: Geneti
 operators: Crossover and mutationFive major steps that require 
onsideration prior to applying geneti
 programming to aproblem are outlined by Koza [75℄. These steps are:1. Terminal set2. Fun
tion set3. Fitness measure4. Parameters5. Termination 
riteriaMost of these steps are spe
i�
 to a parti
ular problem domain. Ea
h step will be ad-dressed in Se
tion 2.5.2 by fo
using on literature relating to geneti
 programming applied toimage-related appli
ations.2.5.2 Vision and image appli
ations related to GPThis se
tion is a survey of literature on geneti
 programming related to obje
t dete
tionand other appli
ations in the image domain. The literature has been divided into se
tionsrelevant to a problem domain and sorted in order of relevan
e to our spe
i�
 problem. Themost relevant problem domain is obje
t dete
tion followed by image 
lassi�
ation and image
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essing. A summary of the literature is shown in Table 2.2. It is worth noting thatgenerally obje
t dete
tion is an extension of 
lassi�
ation.Domain Appli
ation Sour
e Year
Dete
tion Dete
tion of vehi
les in IRLS images Howard et al. [58, 60℄ 2006, 1999Dete
tion of simple obje
ts Roberts et al. [119℄ 2004Obje
t dete
tion in retinal images Zhang et al. [164, 165,166℄ 2003, 2000, 1999Dete
tion of ships in SAR images Benson et al. [8, 9℄ 2000Dete
tion of ships in SAR images Howard et al. [59℄ 1999Target dete
tion Ta
kett [141℄ 1993
Image
lassi�

ation Mineral 
lassi�
ation Ross et al. [123, 124℄ 2005, 2002Image texture feature extra
tion Lam et al. [79℄ 2004Texture 
lassi�
ation Song et al. [133, 135℄ 2003, 2002Text/pi
ture 
lassi�
ation Agnelli et al. [2℄ 2002Digit re
ognition Teredesai et al. [144℄ 2002Spe
tral imagery De Fal
o et al. [33℄ 2002Class'n of hyper-spe
tral imagery Rauss et al. [114℄ 2000Fa
ial re
ognition Winkeler et al. [157℄ 1997Classi�
ation of SAR images Daida et al. [31, 32℄ 1996, 1996Classi�
ation of brain tumours Gray et al. [53℄ 1996Class'n of remote sensing imagery Riolo et al. [116℄ 1995Obje
t 
lassi�
ation Teller [142℄ 1995
Imagepro
es
sing Color 
onstan
y Ebner [38℄ 2006Mathemati
al morphology Quintana et al. [110℄ 2006Impulse noise �lter Petrovi�
 et al. [106℄ 2005ROI extra
tion Bhanu et al. [10℄ 2004Text Segmentation Rivero et al. [117℄ 2004Segmentation Lin et al. [84℄ 2002Thresholding Rosin [121℄ 2001Edge dete
tion Ross et al. [122℄ 2000Edge dete
tion Lu
ier et al. [88℄ 1998Edge dete
tion Harris et al. [56℄ 1996Segmentation Poli [107, 108℄ 1996Other Low level feature extra
tion Trujillo et al. [148℄ 2006Autonomous robot vision Martin [95, 93, 94℄ 2006, 2002, 2001Orientation dete
tion Roberts et al. [120℄ 2000Sparse opti
al 
ow Ebner et al. [39℄ 1999Morave
 operator Ebner et al. [37℄ 1998Table 2.2: Summary of geneti
 programming literature in the vision and image domain.2.5.2.1 GP applied to obje
t dete
tion problemsThis se
tion is a survey of literature using geneti
 programming for the purpose of lo
atingsmall obje
ts in 
omplex images. Zhang et al. [165, 168℄ des
ribed a domain independent
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h using geneti
 programming to dete
t the lo
ation of multiple 
lass obje
ts. Zhanget al. de�ne domain independent as being able to apply the same approa
h to any problemand the approa
h will work un
hanged. The approa
h utilises features that are 
omposed of:(a) raw pixels dire
tly or (b) easily 
omputed pixel stati
s su
h as the mean and varian
e ofpixels within generi
 shapes. These features are not spe
i�
 to any type of problem and arereferred to as domain independent features.The work was tested on a suite of obje
t dete
tion problems ranging from easy, syntheti
images, medium, heads and tails of Australian 
oins, to a more diÆ
ult problem of dete
tinghaemorrhages and mi
ro-aneurisms in retinal images. Zhang et al. [166℄ found that usinggeneti
 programming as a method greatly redu
ed the number of false alarms in images
ompared to a neural network. The dete
tion rate using the geneti
 programming methodwas also superior.Howard et al. [59℄ used geneti
 programming to evolve a dete
tor that 
an automati
allydete
t ships in syntheti
 aperture radar SAR images. Results obtained by Howard et al. [59℄
ompared favourably when ben
hmarked with previous work on the same problem using a self-organising Kohonen neural network and a multi-layered per
eptron neural network. Benson[8, 9℄ used �nite state ma
hines with embedded geneti
 programs FSM(GP) to perform thetask of automati
 target dete
tion and applied to the same problem as Howard et al. [59℄.A 
omparison of test results using �gure of merits (FOM) as the measure was demonstratedfavourable for the FSM(GP) when 
ompared with Howard et al. [59℄.Howard et al. [58, 60℄ modi�es the multi-stage method using geneti
 programming from[59℄ to dete
t vehi
les in infrared line s
an (IRLS) images. A 
omparison of dete
tion perfor-man
e using simple and textural statisti
s in the se
ond stage dete
tors 
on
luded that thatthe textural statisti
s were marginally superior to simple statisti
s.Ta
kett [141℄ applied geneti
 programming for 
lassifying targets/non-targets in IR im-agery. Two experiments using di�erent terminal sets were performed using GP for traininga 
lassi�er. The geneti
 programming method was 
ompared to a neural network and binarytree 
lassi�er and in both 
ases the geneti
 programming method produ
ed fewer false alarms.Roberts et al. [119℄ 
oevolved both feature extra
tion and obje
t dete
tion using geneti
programming to dete
t simple obje
ts in arti�
ial and natural images. Although the approa
h
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t relatively simple obje
ts, Roberts et al. stated that the algorithmwas able to automati
ally 
hoose features thought to be appropriate rather than requiring ahuman designer to manually 
hose features.2.5.2.2 GP applied to image 
lassi�
ation problemsThis se
tion is a survey of literature using geneti
 programming for the purpose of 
lassi�
a-tion. Agnelli et al. [2℄ applied geneti
 programming for 
lassifying do
uments into one of two
lasses, i.e. text segments and pi
ture segments. The evolved 
lassi�er was applied to a largedata set and good a

ura
y was a
hieved. Agnelli et al. on p. 308 noted that a reason forusing GP was be
ause the symboli
 nature make the solutions easier to understand 
omparedto \neural networks and most 
lassi�ers". This may allow an expert to gain insight in thedomain. Song et al. [136℄ presented two 
lassi�
ation methods using geneti
 programming for
lassifying Brodatz textures. The results demonstrated that geneti
 programming was ableto 
lassify textures, and showed that the dynami
 range sele
tion method of 
lassi�
ation notonly had a higher a

ura
y but also 
onverged at a faster rate 
ompared to the stati
 rangesele
tion.Preliminary work presented by De Fal
o [33℄ applied GP to the 
lassi�
ation of spe
tralpattern re
ognition. Results were reported as \positive and en
ouraging". Ross et al. [123℄used geneti
 programming for 
lassifying minerals from hyperspe
tral images. This workis 
losely related to the work by Rauss et al. [114℄ that evolved 
lassi�ers to dete
t grassin spe
tral images. The work illustrated that a 
lassi�er 
ould be evolved for a

uratelydete
ting the existen
e of a parti
ular mineral. Rauss et al. [114℄ used geneti
 programmingas a tool for 
lassifying spe
tral imagery. More spe
i�
ally the aim was to 
lassify grass fromthe spe
tral images. It was reported that 
lassi�
ation was not ideal when presented withnew examples during testing. Daida et al. [31℄ used geneti
 programming to extra
t ridgeand rubble features in multi-year i
e from earth resonan
e satellite (ERS) syntheti
 aperatureradar (SAR) data. The author reported that the results are ex
ellent and 
ompare favourablywith a manually interpreted ERS SAR data produ
t.Gray et al. [53℄ 
ompared geneti
 programming to a neural network for 
lassifying tumorsfrom a nu
lear magneti
 resonan
e spe
tra of biopsy extra
ts. A 
omparison of 
lassi�
ation



CHAPTER 2. LITERATURE REVIEW 33a

ura
y for the geneti
 programming and neural network approa
h showed a 
lassi�
ationa

ura
y of 80% and 90% respe
tively. A �nding by Gray et al. was that the evolutionarypro
ess found simple programs that were as 
ompetitive at 
lassifying as more 
ompli
atedsolutions.Riolo et al. [116℄ proposed geneti
 programming for the purpose of 
lassifying satelliteremote sensing imagery. The goal is to predi
t whether a pixel represents water or not, basedon the information from the spe
tral bands. The results, although preliminary, showed thatthe method was able to dis
over simple relationships that 
ould 
orre
tly predi
t >98% fortraining and testing data.2.5.2.3 GP applied to image pro
essing problemsThis se
tion is an outline of literature relating to the use of geneti
 programming for imagepro
essing. This area of resear
h is less relevant to our problem, i.e. 
lassi�
ation andlo
alisation of landmarks, and therefore only a brief outline will be given to des
ribe wheregeneti
 programming has been used to evolve programs for image pro
essing te
hniques.These in
lude edge dete
tion, segmentation and thresholding.Lu
ier et al. [88℄ used geneti
 programming to evolve an edge dete
tion program, however,the test set was limited to three `toy' images of varying diÆ
ulty. However, the Ross etal. [122℄ work was applied to a real world problem of dete
ting grain edges in petrographi
images. The results demonstrated that an evolved edge dete
tor was able to perform better atlo
ating �ne grain edges than an edge extra
tion pro
edure that required ten steps to extra
tthe edges. As a 
omparison to the GP approa
h, a neural network was learnt using thesame training data. The results from the neural network approa
h were 
onsidered inferior,with the authors 
on
luding that a more 
areful approa
h to the sele
tion of data neededto be undertaken. Harris et al. [56℄ used GP to repli
ate Canny's Gaussian �rst-derivativeapproximation, however, the work was only applied to a one dimensional signal.Lin et al. [84℄ used geneti
 programming to �nd 
omposite operators to extra
t regions ofinterest from an image that 
ould also be applied to similar images. Poli [107, 108℄ used GP,and a 
ombination of simple terminals, fun
tions and �tness fun
tions, to evolve a programto segment regions of interest in medi
al images. The GP approa
h was able to outperform
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ould be used as an approa
h to 
reate imageanalysis tools mu
h more powerful than those 
urrently used in image pro
essing. Rosin[121℄ used geneti
 programming to dete
t the presen
e of landslides in multi-temporal aerialimages. A multi-temporal analysis deals with the dete
tion of 
hanges in pairs of imagesa
quired in the same geographi
al area at di�erent times [18℄.2.5.2.4 Terminal setIn the 
ontext of using geneti
 programming in obje
t dete
tion problems, terminals generally
orrespond to image features. An important 
omponent of geneti
 programming is determin-ing what are useful features for solving a problem. However, this is one of the diÆ
ulties ofsolving real world problems when domain knowledge is not available. If the feature set is notsuÆ
ient to express a solution, then GP is unable to solve the problem. However, 
ontainingtoo many extraneous or redundant features in the terminal set 
auses the eÆ
ien
y of GPto de
rease 
aused by futile sear
hing in the higher-dimensional sear
h spa
e. Koza in [74℄demonstrated on a symboli
 regression problem that extraneous features redu
e the probabil-ity of su

ess. Ok et al. in [101℄ proposed an adaptive mutation based on terminal weightingfor �nding relevant features from a terminal set. However, although the results were promis-ing, the method was only applied to a symboli
 regression problem and not extended to realworld problems. Therefore 
hoosing relevant features is a 
areful sele
tion pro
ess that seeksto minimise extraneous features.Although some work uses image pixels dire
tly, most work in GP applied to obje
t dete
-tion problems have used a terminal set 
omposed of features 
al
ulated using simple statisti
sapplied to pixel values [8, 58, 59, 60, 141, 164, 165, 166, 168℄. Generally speaking, the inputwindow was divided into various shapes similar to those shown in Figure 2.8 and the meanand standard deviation of pixel values 
al
ulated for ea
h shape. However, Zhang et al. [165℄,Howard et al. [58℄ and Ta
kett [141℄ used features des
ribed as rotational invariant statis-ti
s, textural statisti
s and moment and intensity based features respe
tively. In ea
h of these
ases it was demonstrated that simple statisti
s had superior performan
e by produ
ing fewerfalse alarms. Ta
kett hypothesised that the non-linear nature of GP 
ombined with simplestatisti
s may be dis
overing features better suited to the problem than human-synthesised
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s is the speed of pro
essing be
ause ofthe low 
omputational overhead.In addition to image features, Zhang et al. [164, 166, 168℄ also used a terminal whi
hgenerates a random number in the range [0, 255℄; the range 
orresponding to the number ofgrey levels in the image.
(a) Zhang et al. [168℄ (b) Howard et al. [59℄ (
) Howard et al. [58, 60℄Figure 2.8: Shapes used for 
al
ulating features.2.5.2.5 Fun
tion setOne of the problems with geneti
 programming is 
hoosing a set of fun
tions that is ableto solve the problem. Work performed by Koza [74℄ indi
ated that geneti
 programming isunable to solve the problem if the fun
tion does not 
ontain the ne
essary operators, howeverif the fun
tion set in
ludes irrelevant operators then the performan
e will be degraded. Workby Wang et al. [152℄ supports this hypothesis based on the results from three di�erentproblems. They found that if too many operators are in
luded in the fun
tion set then thismay degrade performan
e. This is be
ause the extra operators lead to an in
rease in sear
hspa
e.Wang [153℄ experimented with various fun
tion sets for solving a sequen
e indu
tion prob-lem and two symboli
 regression problems. The resulting experimentation on the problemsfound two 
ommon 
hara
teristi
s with the best performing fun
tion set. The investigationrevealed that the fun
tion set 
ontained operators similar to the target fun
tion and thefun
tion set 
ontained the smallest number of operators. Although the �rst point is an in-teresting observation, the diÆ
ulty with many real world problems is that we do not know
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ontradi
ts the �ndings by Wang [153℄ that the best fun
tion set 
ontainsoperators found in the target fun
tion. The aim of Soule et al. work was to evolve a fun
tionfor the problem in Equation 2.8. They found that a smaller fun
tion set f+, �, �, /, pjjgwas able to outperform a fun
tion set 
ontaining the exa
t operators f+, �, �, /, pjj, tangrequired to repli
ate Equation 2.8, although this 
on
lusion is based on the average �tnessand not the optimal solution. They 
on
luded by saying \that better information regardinghow to 
hoose fun
tion sets 
ould signi�
antly improved GP performan
e" [p. 190℄. So asan initial investigation to our obje
t dete
tion problem we are guided by the operators thathave been used in obje
t dete
tion and image 
lassi�
ation problems.sin(x) = tan(x)p1 + tan2(x) (2.8)One thing 
ommon in the literature is that the fun
tion set should use the smallest orminimalisti
 approa
h to 
hoosing operators for solving the problem. This pla
es an emphasisfor 
hoosing the 
orre
t operators for solving the problem in order to minimise the sear
hspa
e. Zhang [164℄ also demonstrated that using additional operators in the fun
tion setdoes not improve dete
tion rate and may also redu
e the rate of 
onvergen
e when trainingprograms to dete
t obje
ts in diÆ
ult images.Table 2.3 is a summary of operators that are used for obje
t dete
tion and 
lassi�
ationproblems in image-related appli
ations. The most 
ommon set of fun
tions used by geneti
programming for vision and image-related problems are the +, �, � and / operators. Otheroperators that appear frequently are boolean and (min and max) operators, and less 
itedoperators in
lude trigonometri
 operators (sine, 
osine, tangent) and exponential operators.It is hard to see how periodi
 fun
tions su
h as sine and 
osine assist with 
reating a better
lassi�er sin
e data in vision and image-related appli
ations are generally not periodi
. Theonly appli
ation where a periodi
 fun
tion may be useful is evolving a program for removingperiodi
 noise.
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e Appli
ation +,�,�,/ Boolean min,max Other
Dete
tion

Zhang et al. [165℄ Obje
t dete
tion X XZhang et al. [168℄ (a) Obje
t dete
tion X(b) Obje
t dete
tion X XZhang et al.[166℄ Obje
t dete
tion XBenson[8℄ Det'n of ships in SAR images X X XHoward et al.[59℄ Det'n of ships in SAR images X XHoward et al. [58, 60℄ Det'n of vehi
les in IRLS images X XTa
kett [141℄ Target dete
tion X X
Image
lassi�

ation Agnelli et al. [2℄ Texture/pi
ture 
lassi�
ation X X XTeredesai et al. [144℄ Digit 
lassi�
ation X XSong et al. [136, 135℄ Texture 
lassi�
ation X XRoss et al. [123℄ Mineral 
lassi�
ation X XRauss et al. [114℄ Class'n of spe
tral imagery XWinkeler et al. [157℄ Fa
ial re
ognition XDaida et al. [31, 32℄ Classi�
ation of SAR imagery XGray et al. [53℄ Classi�
ation of brain tumors X X XRiolo et al. [116℄ Classi�
ation of RS imagery X XTeller et al. [142℄ Obje
t 
lassi�
ation X XTable 2.3: Summary of operators made available as part of the evolutionary pro
ess for visionand image appli
ations.2.5.2.6 Performan
e measures using geneti
 programmingIn determining a performan
e measure for solving problems in geneti
 programming, as withany ma
hine learning algorithm, it is important to ensure the goals of the problem have been
aptured. A general overview was given on how to measure the performan
e of obje
t de-te
tion systems in Se
tion 2.2.1. As mentioned previously, the performan
e of a program ingeneti
 programming is measured a

ording to a �tness 
riteria and the population of pro-grams are ranked a

ording to the measured �tness. As part of the evolutionary pro
ess the�ttest programs are reprodu
ed and 
opied so that they 
an partake in the next generation.In the 
ontext of obje
t dete
tion in image-related appli
ations, �tness is measured usinga 
ombination of true positives and false positives, i.e. the number of obje
ts 
orre
tlyand in
orre
tly dete
ted respe
tively. Several variations of �tness fun
tions used to measurethe performan
e of obje
t dete
tion systems are shown in Table 2.4. Ea
h of these �tnessmeasures 
an be des
ribed as aggregating fun
tions be
ause the obje
tives are 
ombined toprodu
e a single fun
tion. The advantages and disadvantages of aggregating fun
tions aredes
ribed in Se
tion 2.2.1.1.
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e Appli
ation Fitness fun
tionZhang et al. [165℄ Obje
t dete
tion �FR+ �(1�DR) + ÆFAAZhang et al. [166, 168℄ Obje
t dete
tion �FR+ �(1�DR)Benson et al. [8, 9℄ Det'n of ships in SAR images �TPFP+Nt + �TNFN+NoHoward [59℄ Det'n of ships in SAR images Phits(5�target grade)Ptargets(5�target grade+FP ) � 1Howard [58, 60℄ Det'n of vehi
les in IRLS images �TPns+�FPTable 2.4: Fitness fun
tions used for measuring the performan
e of programs for obje
tdete
tion problems.Computer vision problems using geneti
 programming for 
lassi�
ationIn Se
tion 2.2 we des
ribed obje
t dete
tion as the task of 
lassi�
ation and lo
alisation.This se
tion gives a summary of literature relating to 
lassi�ers in geneti
 programming for
omputer vision related problems, su
h as obje
t dete
tion and image pro
essing. The most
ommon approa
h to 
lassi�
ation in geneti
 programming is to use a representation similarto Figure 2.4 on page 23. In this 
ase, the output of the evolved program is a real numberthat needs to be mapped to a de
ision. In the 
ontext of 
lassi�
ation or obje
t dete
tion,the real number is 
onverted into a de
ision about the 
lass or obje
t respe
tively.The majority of geneti
 programming literature relating to image 
lassi�
ation uses aboundary as a de
ision point that is used to di�erentiate between two 
lasses, i.e. ob-je
t/ba
kground, target/
lutter, edge/non-edge, pi
ture/text, et
. The 
lassi�
ation of prob-lems into two 
lasses using GP is relatively simple where the most 
ommon approa
h is to usezero as the de
ision point between the two 
lasses [2, 88, 107, 122, 141℄. This is illustratedin Figure 2.9. For example, when a program is applied to an instan
e of data, the output is
omputed returning a value and the 
lass is 
hosen depending on whether the value is nega-tive or positive. An ex
eption to this is work by Teredesai et al. [144℄ that de�nes an intervalbetween the two 
lasses as un
ertain (refer to Figure 2.9). However, the problem with thisapproa
h is the output returned by the program 
an be orders of magnitude greater thanthe de�ned interval and so the de
ision between 
lass boundary 
an still be bla
k and white.Song et al. [136℄ 
ompared dynami
 range with stati
 range sele
tion to 
lassify textures
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 range sele
tion to have a higher dete
tion a

ura
y and solutions tend to
onverge in less generations.When a problem has more than two 
lasses then multiple binary 
lassi�ers have beenused in parallel and a heuristi
 is used to distinguish between the di�erent 
lasses [114, 123,142, 144℄. An ex
eption to this is work by Zhang et al. [164, 165, 166℄ who used the outputreturned from the program as per the binary 
lassi�er, however, in this instan
e the obje
t
lasses were divided into a dis
rete number of steps ea
h representing a separate 
lass (referto Figure 2.9). A foreseeable issue with the Zhang et al. approa
h is that a di�erent setof features may be required for lo
ating obje
ts in seperate 
lasses. Whilst it is possibleto 
ombine many features using geneti
 programming, using this approa
h may make thesear
h unne
essarily large when evolving a dete
tion program to lo
ate many di�erent typesof obje
ts.

Figure 2.9: The mapping of binary and multiple 
lasses to a de
ision using three 
on
epts of
lass de
ision boundaries. Zero boundary (left), dealing with inde
ision (middle) and multiple
lass 
lassi�er (right).2.5.3 ParametersTable 2.5 is a summary of geneti
 programming run-time parameter values by [2, 8, 33, 58, 114,123, 136, 135, 144, 157, 165, 166, 168℄ whi
h have been used by geneti
 programming to solveimage-related appli
ations. The run-time parameters are used used by geneti
 programmingduring training.Population size,M , is the number of individuals in the population, maximum generations,
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riteria to end the evolutionary pro
ess, maximum depth, D, isthe maximum tree depth allowed for programs and the initial maximum tree depth, d, is themaximum tree depth allowed in the initial generation. Reprodu
tion, PR, 
rossover, PC , andmutation, PM , are the probabilities of sele
ting a parti
ular geneti
 operation to 
reate newindividual(s). For a de�nition of the geneti
 operations refer to Se
tion 2.5.1.2.Parameters RangePopulation Size, M 100-5000Maximum generation, G 100-2000Maximum depth, D 8-20Initial maximum depth, d 4-6Probability of:Reprodu
tion, PR 0-0.10Crossover, PC 0.65-0.95Mutation, PM 0-0.25Table 2.5: A range of geneti
 programming run-time parameter values that have been appliedto image-related appli
ations.2.5.3.1 Termination 
riteriaAn evolutionary run requires a set of 
riteria for de
iding when the evolutionary pro
essshould be terminated. The termination 
riteria 
onsist of either satisfying su

ess 
riteriaor the evolutionary pro
ess rea
hing a prede�ned number of generations at whi
h point theevolutionary run will be terminated. The su

ess of a program 
an be easily measuredand 
ompared against the goals of the problem, however, 
hoosing how many generationsthat 
onstitutes an evolutionary run is more 
ompli
ated. De
iding when to terminate anevolutionary run is diÆ
ult be
ause if a run is stopped too early the pra
titioner may not havetaken best advantage of the evolutionary sear
h. However, if the evolutionary run is allowedto 
ontinue, the sear
h may have prematurely 
onverged and be
ome stu
k at a sub-optimalsolution resulting in diminishing returns if the evolutionary pro
ess is allowed to 
ontinue.Therefore if the goal is to a
hieve a solution of a 
ertain standard then it may be more eÆ
ientto terminate and start another run.A method popularised by Koza [75℄ for determining when a run should be terminateduses the 
umulative probability of su

ess. However, this assumes either the dis
overy of anoptimal solution or de�ning what 
onstitutes a su

essful solution. Luke [90℄ presented a
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omparing the quality of solutions from a long single run with multiple shorterruns. The method was applied to a problem in three domains and Luke 
on
luded that itmakes more sense to do multiple shorter runs, m runs of n=m generations, than one longrun of m generations. There are other 
riteria for determining termination 
riteria su
h asmeasure of diversity or the �tness rea
hing a plateau [55℄.2.5.4 Some issues with using geneti
 programmingSome of the issues relating to 
ustomising geneti
 programming to solve problems in theimage-related domain have been dis
ussed above. The following are some other issues thatare known in the geneti
 programming domain:� Over �tting is an o

urren
e where the performan
e on the training examples still in-
reases while the performan
e on unseen data be
omes worse. A way to avoid over�ttingis to use a large training data set, however, it is not un
ommon for the dataset to 
on-tain a �nite number of samples. As a way of visually assessing whether over �ttinghas o

urred, Langdon et al. in [80℄ plotted training versus test performan
e usingthe best individual from ea
h evolutionary run. If the points are s
attered about thediagonal line then little over �tting has o

urred. An example of a training versus testperforman
e graph is shown in Figure 5.7.� Premature 
onvergen
e o

urs when the population 
onverges to a suboptimal solu-tion. Banzhaf et al. in [7℄ suggest that improving the diversity of programs within apopulation is the key to redu
ing premature 
onvergen
e.� Problem representation is an issue for diÆ
ult real world problems where there is no apriori knowledge of the types of features and terminals required to solve the problem.Sele
ting a suitable 
ombination of features and terminals is akin to possessing the
orre
t ingredients to bake a 
ake. We stated in Se
tions 2.5.2.4 and 2.5.2.5 that if theterminal or feature sets are not suÆ
ient then GP is unable to solve the problem, how-ever, if the sets 
ontain too many extraneous terminals/features then the performan
eof GP will de
rease.
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aling problem diÆ
ulty is an issue in geneti
 programming be
ause as the size and
omplexity in
reases so does the size of the sear
h spa
e and the time taken to �nd anoptimal solution. Luke in [89℄ states that this makes the solution vulnerable to bloat.Gustafson et al. in [55℄ dis
ussed the relationship between problem diÆ
ulty and 
odegrowth and stated that the in
reased rate of 
ode growth is indu
ed by the highersele
tion pressure and less geneti
 diversity.� Bloat, or 
ode growth, is a term given to des
ribe the pro
ess of 
ode growing over time[35℄. Code growth in geneti
 programming is 
aused by the variable length representa-tion. Soule et al. in [137℄ stated that most 
ode growth 
onsists of 
ode that does not
ontribute to a program's performan
e. Code segments not 
ontributing to a program'sperforman
e are 
ommonly referred to as introns. Resear
h on the usefulness of bloatis mixed, however, there is a large amount of literature dealing with the issue of redu
-ing bloat. Reasons given why bloat should be prevented are: larger programs may beindi
ative of over �tting [81, 141℄; bloat for
es the evolutionary pro
ess into stagnation[5℄; and the pro
essing of extraneous 
ode adds to the 
omputation time [35℄. The twomost 
ommon approa
hes to redu
e bloat are: limiting the tree depth of a program; orin
orporating program size as part of the �tness measure (this is 
ommonly referred asparsimony pressure).� Program understandability is an issue in geneti
 programming be
ause of the diÆ
ultyof interpreting the fun
tion of evolved programs. Prior to implementing the programin a real system, it is ne
essary for engineers and the like to to have understandingof the fun
tioning of the system. The following se
tion is a summmary of previousresear
h performed to improve the understandability of programs generated by thegeneti
 programming paradigm.2.5.4.1 Improving program 
omprehensibilityMost programs dis
overed using geneti
 programming are treated as a bla
k box, i.e. GP isrun and the learnt program, or `best individual', is blindly applied to unseen data without anyunderstanding of the learnt program. Although geneti
 programming works relatively well on
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 programming literature is very thin when it 
omes to providing any explanation aboutthe learnt programs.Ideally, the goal is to dis
over a set of programs that is able to solve the problem whilst atthe same time being 
omprehensible to the user. Previous work using geneti
 programminghas been applied to dis
over 
omprehensible programs in real world problems [15, 66, 100℄.Ngan et al. in [100℄ were able to dis
over additional knowledge, beyond some general knowl-edge already known, for two real world problems. Song et al. [134, p. 2099℄ determinedthat the generated texture 
lassi�ers for binary textures were not ad-ho
, and in fa
t be-haved \as template mat
hers and frequen
y analysers". However, when geneti
 programmingwas trained to 
lassify 
omplex greys
ale textures the generated texture 
lassi�ers were morediÆ
ult to understand. An advantage of dis
overing knowledge in the learnt program is toprovide insight and allow a better understanding of how the problem is solved.Bojar
zuk et al. in [15℄ state that most geneti
 programming literature asso
iates 
om-prehensibility with small programs - the likely reason is when a program in
reases beyonda 
ertain size the 
omprehensibility de
reases. As a result, resear
h for dis
overing 
ompre-hensible programs for diÆ
ult real problems has been limited be
ause of their asso
iationwith problem 
omplexity that is related to program size. Johnson et al. in [66℄ asso
iatesthe in
rease in program 
omplexity, as a result of bloat, with the redu
tion in interpretabil-ity. We previously stated that one of the 
ommon approa
hes to 
ombat bloat is to applyparsimony pressure, whi
h has subsequently been applied to in
rease program understand-ability [34, 57, 66, 78, 134℄. Lai in [78℄ demonstrated that using parsimony pressure makesthe programs easier to understand 
ompared to using no parsimony pressure.2.6 Pulse Coupled Neural NetworksSe
tion 2.5.2.4 
ontained a dis
ussion about the advantages of dividing an input window intovarious shapes and then 
omputing simple statisti
s to be used as features 
ompared to using
omplex features, e.g. Wavelets. However, de
iding how to divide the input window into aset of shapes that will give GP the best opportunity to evolve a program is diÆ
ult. We
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ting regions of interest in noisy and low 
ontrast images will improve thedete
tability of landmarks lo
ated within 
luttered images.2.6.1 The PCNN modelA te
hnique that has shown potential to extra
t regions of interest is the Pulse CoupledNeural Network (PCNN). The PCNN model in [68℄ is a modi�
ation of the E
khorn linking�eld network [40℄. The E
khorn model was biologi
ally inspired from a 
at's visual 
ortexand modi�ed to be used as an image pro
essing algorithm [67℄. In essen
e, the PCNN modelis a digital simulation of the 
at's visual 
ortex. The PCNN model generates a sequen
e ofbinary images that 
ontain segments and edges by iterating Equations 2.9-2.13. Waldemarket al. in [150, p. 241℄ des
ribe the output from the PCNN model as a series of binary images,where \ea
h binary image 
ontains di�erent sets of segments from the original image".

Figure 2.10: A blo
k diagram of the PCNN.The blo
k diagram of the PCNN model shown in Figure 2.10 
ontains two main 
ompart-ments: the feeding, Fij [n℄, and linking, Lij[n℄, 
ompartments. Ea
h of these 
ompartments
ommuni
ates with neighbouring neurons through synapti
 weights ofM andW respe
tively.Ea
h 
ompartment retains its previous state but with a de
ay fa
tor and only the feeding
ompartment re
eives an input stimulus, Sij , i.e. the pixel intensity at lo
ation (i; j). Thevalues for the feeding and linking 
ompartments are 
omputed using Equations 2.9 and 2.10respe
tively. Ykl[n� 1℄ are the outputs of neurons from a previous iteration. The 
onstants
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ay terms for feeding, linking and threshold respe
tively, and VF , VLand VT are magnitude s
aling terms for feeding, linking and threshold respe
tively.
Fij [n℄ = e�F ÆnFij [n� 1℄ + Sij + VFXkl MijklYkl[n� 1℄ (2.9)Lij [n℄ = e�LÆnLij [n� 1℄ + VLXkl WijklYkl[n� 1℄ (2.10)Uij [n℄ = Fij [n℄f1 + �Lij[n℄g (2.11)Yij [n℄ = 8><>: 1 if Uij [n℄ > �ij[n� 1℄0 Otherwise (2.12)�ij [n℄ = e�T Æn�ij[n� 1℄ + VTYij[n℄ (2.13)The two 
ompartments are then 
ombined to 
reate an internal state of the neuron, Uij [n℄,whi
h is 
ontrolled by the linking strength, � { refer to Equation 2.11. At this point, theinternal state of the neuron is then 
ompared to a dynami
 threshold, �ij[n℄, to produ
e anoutput, Yij[n℄ { refer to Equation 2.13. The output is either 0 or 1 whi
h produ
es a binaryoutput at lo
ation (i; j) at iteration n. The threshold is dynami
 by the fa
t that when theneuron �res, the threshold in
reases its value and then de
ays until the neuron �res again {refer to Equation 2.13. The series of equations are iteratively 
omputed from Equation 2.9through to Equation 2.13 whi
h is stopped at the dis
retion of the user.2.6.2 PCNNs applied to image-related appli
ationsStudies into the feasibility of the PCNN applied to image-related appli
ations have been di-verse, 
overing a range of domains that in
ludes military and medi
al imagery. The PCNNhas been applied to images requiring smoothing, segmenting and feature extra
tion. How-ever, in the 
ontext of our problem we will only be dis
ussing PCNN literature relevant tosegmenting regions of interest.Preliminary resear
h of PCNNs in medi
al imaging has produ
ed promising results whenlo
ating regions of interest in the following areas: segmentation of brain stru
ture and ab-domen stru
ture in MRIs [72℄; segmentation of lungs in pulmonary s
intigraphi
 images [72℄;
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ation of the left ventri
ular endo
ardial border in e
ho
ardiographi
 images [159℄;segmentation in mammogram imagery [67, 86℄ and isolating arteries from veins in retinalimages [67℄. The above examples demonstrated that the PCNN was able to segment regionsof interest in real-world medi
al images. With the ex
eption of the aforementioned medi
alexamples, the PCNN also produ
ed promising results when segmenting regions of interestin images having poor signal-to-noise ratios. For example, the PCNN was used for de�ningregion boundaries and dis
riminating spe
i�
 regions of interest in spe
tral images [29℄ andRanganath et al. in [76, 112℄ reported perfe
t segmentation of a simple problem even whenthe intensity ranges overlap.However, an issue with the PCNN is that the general 
onsensus by [21, 67, 72, 76, 139,151, 150℄ is that for automati
 segmentation to be viable for a large range of images, furtherresear
h into a better understanding of the set parameters and the parameter relationshipsis required. Waldemark et al. in [151℄ suggested that feedba
k 
ould allow the parameters tobe dynami
ally altered giving a higher attention to regions of interest. Preliminary resear
hby Ranganath et al. [113℄ uses a semi-intelligent method to adjust the parameters. Firstlya PCNN is used to suppress noise followed by a se
ond PCNN to segment the image. Dur-ing ea
h iteration of the segmentation stage, a 
ontrol module deletes regions from furtherpro
essing that do not meet 
ertain 
riteria based on prior knowledge of the region.2.7 Automati
 
ephalometri
 landmarkingCephalometri
 landmarks are a set of 
raniofa
ial points of interest that are used by anorthodontist to determine the physi
al normality of the patient; this is a simple de�nitiondes
ribing a 
ephalometri
 analysis. If the patient deviates from the pre-de�ned norm, theorthodontist is able to determine a treatment plan based on the linear and angular relation-ships of the landmarks to 
orre
t the abnormality. The type of 
ephalometri
 landmarksrequired are di
tated by the type of 
ephalometri
 analysis that is performed. Figure 2.11 isan illustration of 52 landmarks and their spatial relationships. The pro
ess of lo
ating thepositions of these landmarks is time 
onsuming and mundane and is a pro
ess orthodontistswould like to automate.
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1. S
ale #1 20. Gonion 39. Upper Lip Sup2. S
ale #2 21. Arti
ulare 40. Upper Lip Mid3. Orbitale 22. Condylion 41. Upper Lip Inf4. Porion 23. PterygoMaxillary Fissure Apex (PTV) 42. Upper Lip Height5. Basion 24. Post O

lusal Plane 43. Lower Lip Height6. Sella 25. Ant O

lusal Plane 44. Lower Lip Sup7. Nasion 26. Mesial Upper 6 45. Lower Lip Mid8. A Point 27. Distal Upper 6 46. Lower Lip Inf9. Ant Nasal Spine 28. Mesial Lower 6 47. Mental Fold Sup10. Post Nasal Spine 29. Forehead 48. Mental Fold Mid11. Apex Upper In
isor 30. Nasion Sup 49. Mental Fold Inf12. In
isal Upper In
isor 31. Nasion Mid 50. Chin Sup13. In
isal Lower In
isor 32. Nasion Inf 51. Chin Mid14. Apex Lower In
isor 33. Nose Sup 52. Chin Inf15. B Point 34. Nose Mid 53. Soft Menton16. Pogonion 35. Nose Inf 54. Odontoid Sup17. Gnathion 36. Philtrum Sup 55. Odontoid Inf18. Menton 37. Philtrum Mid 56. Cervi
al Vertebra 419. Md Plane Tangent 38. Philtrum InfFigure 2.11: De�nition of 
ephalometri
 landmarks
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ephalometri
 landmarkingTraditionally a 
ephalometri
 analysis was performed by manually tra
ing points on a lateral
ephalometri
 �lm X-ray. However, more re
ently a semi-automated approa
h has beendeveloped whi
h allows an orthodontist to mark the positions of landmarks on a digitised�lm using a 
omputer system and mouse. After the relevant landmarks have been enteredthe 
omputer system performs the 
ephalometri
 analysis. As a natural progression to thesemi-automated approa
h and whilst not a new idea, an automated approa
h to lo
ating
ephalometri
 landmarks was �rst proposed by Hussain et al. [64℄ in 1985.To date, no fewer than twenty independent resear
hers have attempted to automati-
ally lo
ate 
ephalometri
 landmarks in one form or another. Resear
h into automating the
ephalometri
 analysis 
an be 
ategorised into the following two se
tions: traditional 
omputervision and ma
hine learning. Prior to 1990, the fo
us of resear
h was to lo
ate landmarksusing image pro
essing te
hniques in 
onjun
tion with hand
rafting anatomi
al knowledge(non-ma
hine learning) [83, 104, 145, 146℄. However, post-1990 resear
h has fo
used on usingma
hine learning algorithms for lo
ating landmarks [19, 20, 24, 25, 63, 87℄. Although themore re
ent resear
h has produ
ed promising results, landmarking thus far has been unsu
-
essful for reasons in
luding: poor dete
tion a

ura
y, a la
k of algorithmi
 robustness andsmall test sets.2.7.1.1 Traditional 
omputer visionThe following histori
al ba
kground provides an outline of the signi�
ant resear
h, in terms ofresults, for automati
ally dete
ting landmarks with a 
riti
al dis
ussion of de�
ien
ies. Thefollowing dis
ussion is based on literature that uses a non-ma
hine learning methodology orhand
rafting for landmark dete
tion.Levy-Mandel et al. [83℄ proposed a knowledge-based line-followingmethod that a

ountsfor 
hanges in biologi
al shapes. The a priori knowledge for ea
h landmark was en
oded intoalgorithms. The lines were extra
ted using a set of image pro
essing operations. The testimages used were from a very stringent sele
tion of X-rays digitised to 256�256 pixels and256 grey-levels, i.e. head 
arefully positioned, no �lled 
avities or missing teeth. The results
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laim a su

ess of 23 from 36 landmarks, however, the size of the test set was not given. Itwas also 
laimed that 13 of the landmarks were not found be
ause the lines were not presenton the digitised X-ray.Parthasarathy et al. [104℄ proposed to automati
ally lo
ate nine landmarks based ona priori knowledge of human fa
ial stru
ture. The original 
ephalogram was �rst digitisedto 480�512 pixels and a four-level resolution pyramid was 
reated to improve the eÆ
ien
yof the sear
h. The resolution pyramid works on the lowest resolution for lo
ating featuresof interest and moves to higher resolutions to re�ne the sear
h. The algorithm subsequentlyapplies a series of digital image pro
essing and feature re
ognition te
hniques to enhan
e theimages. At this point, the landmark is lo
ated using a set of hand
rafted rules based on apriori to tra
k the fa
ial stru
ture's pro�le whi
h is relevant to the dete
tion of the landmark.The results for nine landmarks and a test set of �ve images, on average 58% were lo
atedwithin an error of 2 mm.Tong et al. [145, 146℄ presented an extension to Parthasarathy et al. [104℄ by lo
ating anadditional seventeen landmarks. The seventeen landmarks are lo
ated in both bony stru
ture(nine landmarks) and soft tissue (eight landmarks). The initial pre-pro
essing steps are perParthasarathy et al., i.e. a resolution pyramid is 
reated from a digitised image and further�ltering te
hniques are applied to tra
e the bony stru
ture of the jaw. The soft tissue pro�leis found by applying �ltering te
hniques with a priori knowledge of the skull anatomy. Thealgorithm uses the soft tissue pro�le and features inside the skull to determine new landmarksas well as previous landmarks to 
ompute regions of interest for further region enhan
ement.The test set 
onsisted of the �ve 
ephalograms as per Parthasarathy et al. and digitised to512�464 pixels and 256 grey-levels. The results for the seventeen points, on average 76% werelo
ated within an error of 2 mm. The method had trouble lo
ating the Porion and Gonionlandmarks in ea
h 
ase. The fo
us of this work seemed to 
entre around lo
ating landmarkswith a

ura
y being a minor obje
tive.
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hine learningThe following provides an outline of signi�
ant resear
h, in terms of results, for automati
allydete
ting landmarks and 
riti
ally dis
ussing de�
ien
ies where appli
able. The followingdis
ussion is based on literature that uses a ma
hine learning methodology for landmarkdete
tion.Cardillo et al. [20℄ presented an algorithm based on sub-image mat
hing to lo
ate twentylandmarks using a dataset of 40 images (512�490 and 256 grey-levels). The algorithm is basedon greys
ale mathemati
al morphology with a statisti
al approa
h to learn the stru
turing el-ements and their origins' probability distributions. A learning approa
h was used to over
omesubtle 
hanges in the fa
ial stru
ture. Cardillo et al. on p. 287 states that the landmark'sdete
tion performan
e "steadily in
reases from 60% at the start of training to a level of ap-proximately 85% after 40 X-rays". Based on the test results the work seems very promising,however, it is un
lear whether the test data used to determine the test results is independentof the training data. This is based on the number of images at the 
ompletion of trainingwhi
h seem to exhaust the entire dataset.Chen et al. [24, 25℄ 
ombined a multilayer per
eptron and geneti
 algorithm (GA) toextra
t spe
i�
 feature areas 
ontaining the landmark. The multilayer per
eptron was usedas an approximation to the geneti
 algorithm's �tness fun
tion. However, no results werereported stating the performan
e of the system.Hutton et al. [63℄ proposed a
tive shape models (ASMs) to lo
ate sixteen 
ephalometri
landmarks. The ASM uses a template of the spatial relationships between the importantstru
tures to help sear
h the image for features of interest. The model was established froma training set of hand-annotated images that was subsequently applied to unseen test data.Sixty-three randomly sele
ted 
ephalograms were tested using the leave-one-out method.The results for sixteen landmarks and a test set of sixty-three images, on average gave 35%a

ura
y within an error of 2 mm. Hutton et al. 
on
luded that the 
urrent implementationof the method did not give suÆ
ient a

ura
y for a 
ephalometri
 analysis but suggested that
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eptron (MPL) for automati
ally lo
ating
ephalometri
 landmarks. This work has been the most in-depth investigation for the follow-ing reasons: the size of the dataset was 134 images and the system was applied to twentytypes of landmarks. This approa
h di�ers signi�
antly from previous work be
ause the de-te
tion system is based on the initial positions of four points that are lo
ated using a simpleheuristi
. The four points are then used to 
ompute additional features to form a featureve
tor that represent size, rotation and the o�set of the skull. The features are then used asinputs into the MLP and the 
orresponding outputs represent the 
o-ordinates of the land-mark. The average dete
tion results, when 
ompared to Cardillo et al. [20℄, were in most
ases superior, however, no statisti
al test was used to 
on�rm whether the di�eren
es werestatisti
ally signi�
ant. Rather than using a MLP, El-Feghi in [43, 45℄ used an alternativeapproa
h in the form of a fuzzy neural network and partial least squares regression in [42℄ .However, the test set is not 
ompletely independent from the training set and so theresults are optimisti
. This 
laim is based on how El-Feghi et al. sele
ted their trainingand test sets and their method of biasing the data. As a method of redu
ing the number oftraining samples, a K-means 
lustering algorithm was used to form 55 
lusters from the 189samples. Clustering is based on a similarity measure between the 
omputed feature ve
tors.A sample from ea
h 
luster was then used for training with the remaining samples used fortesting. As a result, there will be a good 
han
e that there will be a high similarity betweenthe 
omputed feature ve
tors in both the training and the remaining test samples.Chakrabartty et al. [22℄ demonstrated the performan
e of proje
t prin
ipal-edge distri-bution features with a support ve
tor ma
hine 
lassi�er to automati
ally lo
ate eight typesof 
ephalometri
 landmarks. The proje
t prin
ipal-edge distribution features attempts to
apture information of an image by modelling its edge distribution along di�erent prin
ipaldire
tions or orientations. Although the results are based on a small sele
tion of landmarksthe dete
tion performan
e appears to be promising by demonstrating an a

ura
y of morethan 95%.
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ellular neural networks to lo
ate eight types of landmarks and
laimed that the approa
h is versatile enough to be used for the dete
tion of landmarks thatare lo
ated on both edges and regions (e.g. the sella landmark), however, this 
laim appearsto be based on a small number of, and pre-sele
ted, test 
ases.Yue et al. [161, 162℄ used 
lassi
al image pro
essing te
hniques and a pattern mat
hingalgorithm to lo
ate an initial set of twelve referen
e landmarks. These landmarks are thenused to divide the 
raniofa
ial shape into ten independent regions a

ording to anatomi
alknowledge. For ea
h region, the prin
ipal 
omponent analysis is used to statisti
ally 
har-a
terise shape variations and the gray pro�le to derive a modi�ed a
tive shape model forlo
alisation. This modi�ed a
tive shape model 
an be applied to test data to lo
ate fea-ture points, and with the assistan
e of a priori knowledge, the landmarks 
an be dete
ted.The dete
tion results indi
ate a signi�
ant improvement over the original a
tive shape modelapproa
h that was proposed by Hutton et al. in [63℄Rueda et al. [127℄ used a
tive appearan
e models, with pre-pro
essing for homogeni-sation, to automati
ally lo
ate 28 types of landmarks. The dete
tion performan
e (<2mm) for ea
h of the landmarks appears to be signi�
antly less than the results presentedby Chakrabartty et al. in [22℄.2.7.2 A 
riti
al review of automated 
ephalometri
 landmarkingIn this se
tion we will review some initial attempts to automate 
ephalometri
 landmarking.The results from the approa
hes that do not use ma
hine learning are based on a relativelysmall number of, and in some 
ases pre-sele
ted, test 
ases. An issue with these approa
hesis one 
an only assume the rules were en
oded using all the available images and then theperforman
e measured { nothing was stated otherwise to 
ontradi
t this 
laim. This is akinto learning a set of rules using a ma
hine learning algorithm and then testing on the trainingdata. Another issue is that be
ause the systems were validated using a very small sele
tion ofimages from a large population, it would be fair to assume that if tested on a large dataset ofimages then the reported dete
tion a

ura
ies would be signi�
antly redu
ed, i.e. the system
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ater for the biologi
al variability of the di�erent landmarks.Other approa
hes for developing 
lassi�ers for solving 
omplex problems use ma
hinelearning algorithms. Although some of the dete
tion a

ura
ies for the ma
hine learningalgorithms are not as high as those obtained by the non-ma
hine learning approa
hes, theresults are based on a larger dataset of images. Generally speaking the ma
hine learningapproa
hes seem to perform better than the hand
rafted te
hniques when fa
toring in the sizeof the dataset. A possible reason may be that a more 
omplex set of rules 
an be dis
overedby a ma
hine learning algorithm. It is 
on
eivable that the 
omplexity of the rule set is ableto 
ater for the biologi
al variability of the di�erent landmarks. Su
h a rule set would bediÆ
ult for a human to dis
over. It is also important to mention that the results using thema
hine learning algorithms, in most 
ases, are based on test data that is independent of thetraining data. However, in some reports it is not 
lear whether the dete
tion system has beentested 
ompletely independently of the training data [20, 44℄.In the literature, several approa
hes have been proposed and Table 2.6 is a 
hronologi
alsummary of notable results.Currently, a 
entral database does not exist for a dataset of 
ephalometri
 images and asa result, resear
hers are developing their approa
hes to automati
ally dete
t 
ephalometri
landmarks in isolation. It is not un
ommon for resear
hers to 
ompare their approa
h toprevious work. This is quite unfair for several reasons that in
lude: the sizes of the datasetsare never the same, the resolution of the images are di�erent; no statisti
al test 
omparingtest results is performed; and the 
omparison is always performed on a di�erent set of images.As a result, the 
omparison should only be used as an indi
ation and not to make a potentiallyfalla
ious 
laim that one approa
h is better than another.
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Parthasarathy [104℄ Tong [145℄ Cheng [26℄ Cardillo [19, 20℄ Forsyth [50℄ Rudolph [126℄ Liu [87℄ Hutton [63℄1989 1990 1991 1994 1996 1998 2000 2000Test set size 5 5 10 40 10 14 10 63Number of Landmarks 9 17 13 20 19 15 13 16Landmark DR Error DR Error Error DR Error Error Error Error ErrorOrbitale 80 1.3�0.5 2.8 40 1.1�1.7 6.0 2.5�3.8 5.3�4.1 5.5�3.4Porion 0 5.2�3.8 2.1 89 0.6�3.4 0.0 5.7�4.9 2.4�2.1 7.3�6.5Basion 2.8Sella 100 1.4�0.4 1.1 53 1.4�1.5 0.6 5.1�3.4 0.9�0.5 5.5�6.8Nasion 80 1.8�0.5 1.9 83 0.9�1.4 1.0 2.6�2.2 2.3�1.1 5.6�3.9A Point 100 0.8�0.6 2.8 77 1.4�1.7 0.4 2.3�2.6 4.3�1.6 3.3�2.4Anterior Nasal Spine 40 2.4�1.1 1.9 68 1.1�2.4 3.3 2.6�3.1 2.9�1.1 3.8�2.2Posterior Nasal Spine 60 2.2�1.1 86 0.3�0.4 4.5 5.0�4.1Apex Upper In
isor 60 1.7�0.8 79 1.4�1.7 2.1 2.2�3.0 2.9�2.6In
isal Upper In
isor 80 1.1�0.8 0.5 76 2.4�3.8 0.4 2.0�2.0 2.4�2.0 2.9�3.8In
isal Lower In
isor 60 2.1�1.3 4.9 64 2.1�2.3 0.7 2.5�2.5 2.9�1.0 3.1�2.3Apex Lower In
isor 60 1.5�1.1 89 0.6�1.2 1.2 2.7�3.0 3.9�2.7B Point 20 3.3�0.9 2.6 71 0.5�0.9 1.0 1.9�2.1 3.7�1.6 2.6�2.7Pogonion 60 1.9�1.2 2.1 97 0.4�0.7 0.4 1.9�2.3 2.5�1.1 2.7�3.4Gnathion 1.4 100 0.4�0.6 0.9 1.7�0.9 2.7�3.4Menton 40 2.0�0.7 0.2 78 1.2�3.2 0.4 3.1�3.5 1.9�0.6 2.7�3.6Gonion 20 2.7�1.0 0.9 61 1.2�3.5 0.6 4.5�3.1 5.8�6.0Posterior O

lusial Plane 71 1.1�1.6Anterior O

lusial Plane 48 3.5�4.4Nose Mid 94 0.1�0.2Upper Lip Mid 100 0.5�0.3Lower Lip Mid 100 0.3�0.3Chin Mid 100 0.4�0.4 91 0.3�1.8Additional LandmarksX1 60 2.7�2.2X2 80 1.3�1.0X3 40 2.2�1.4X4 100 0.6�0.5X5 100 0.3�0.4X6 100 0.7�0.7X7 100 0.3�0.3X11 80 1.0�1.1Bolton Point 1.7Glabella 0.4TMJ 5.1�4.3Mand. Not
h 4.3�3.9Table 2.6: Published dete
tion results for automati
ally dete
ting 
ephalometri
 landmarks1. DR denotes dete
tion rate, and error (mm)is de�ned as the distan
e between the expert and the landmark lo
ated by the system.1Yamakawa et al. [160℄, 1999, a
hieved a dete
tion rate of 72.7% for the Menton landmark.
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El-Feghi [43℄ Chakrabartty [22℄ El-Feghi [44℄ El-Feghi [45℄ El-Feghi [42℄ Giordano [52℄ Rueda [127℄ Yue [162℄2002 2003 2003 2004 2004 2005 2006 2006Test set size 30 40 134 200 100 26 96 86Number of Landmarks 15 8 20 20 20 8 28 12Landmark DR DR DR DR DR DR DR DR Error DROrbitale 99 89 74 74 72 57 2.1�1.2Porion 18 3.7�2.1BasionSella 100 87 79 77 77 83 39 2.3�1.3 76Nasion 100 85 87 100 91 77 81 56 2.3�1.8 86A Point 94 94 69 73 68 2.0�1.4Anterior Nasal Spine 98 89 92 92 75 55 2.1�1.3 79Posterior Nasal Spine 96 81 100 100 83 37 2.7�1.4 83Apex Upper In
isor 100 98 74In
isal Upper In
isor 97.7 100 100 77 92 90In
isal Lower In
isor 88 79 84 81Apex Lower In
isor 100 100 87B Point 100 85 85 83 73 44 2.2�1.3Pogonion 98 82 100 100 82 81 57 1.8�1.1Gnathion 93.3 100 100 79 74 1.6�1.1Menton 97.7 84 84 78 92 70 1.6�1.1 98Gonion 97.7 87 87 71 26 3.9�2.4 86Posterior O

lusial Plane 97.7 93 87 87Anterior O

lusial Plane 68 68 83Nose Mid 100 100 100 88Upper Lip MidLower Lip MidChin Mid 93.3 100 100 80Additional LandmarksX1X2X3X4X5X6X7X11Bolton PointGlabellaTMJMand. Not
h Table 2.6 (
ontinued)



Chapter 3
Data Preparation
3.1 What are Cephalograms?A 
ephalometri
 radiograph or 
ephalogram is a radiograph (also known as an X-ray) of thehead, in
luding the mandible, taken in full lateral view whi
h is used for making 
ranial mea-surements. The images used throughout this thesis are a sele
tion of 
ephalograms providedby a pra
tising orthodontist. Ea
h image was digitised from �lm X-ray as an 8-bit greys
aleimage that allows for 256 pixel intensities, or grey levels, to be re
orded. The resolution ofea
h image is 2056 � 2588 pixels.3.2 De�ning a Sear
h Area Using a Heuristi
Rather than sear
hing an entire X-ray for the purpose of lo
ating a parti
ular landmark thesear
h is limited to an area de�ned by a heuristi
 that is driven by anatomi
al knowledge.This heuristi
 is also based on the assumption the head always has the same orientation onthe X-ray. For example, it is fair to assume that the upper lip is always going to be lo
atedbelow the tip of the nose. Ea
h landmark is sear
hed for in an area limited by the spatialrelationship relative to a datum point previously lo
ated. It is expe
ted that when traversingan image, the landmark will be lo
ated somewhere in this sear
h area. Only a landmark that
an be lo
ated with a high degree of 
on�den
e is used as a datum point for de�ning thesear
h area for subsequent landmarks. The lo
ation of a datum point, marked as the bottom56
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orner of the ruler in Figure 3.1, 
an easily be found and in this 
ase is used as a referen
efor de�ning the sear
h area for the nose landmark. The sear
h area is shown as the hat
hedregion in Figure 3.1.It is expe
ted that not only will a smaller sear
h area be a more eÆ
ient way of sear
hinga landmark during both training and testing, but dete
tion reliability should be improvedbe
ause there will be fewer 
andidate positions 
ompared with a sear
h of the entire X-ray. Assu
h, fewer false alarms are expe
ted be
ause the sear
h is dire
ted towards a mu
h smallersear
h region.

Figure 3.1: An example illustrating the sear
h heuristi
 used to de�ne the sear
h area forlo
ating the nose landmark.The hat
hed region in Figure 3.1 is the sear
h area that has been determined statisti
allyrelative from the datum point (bottom 
orner of the ruler). In this example we have 
hosen�3� that gives a 99.95% 
han
e that the landmark is lo
ated somewhere in this region. Themean, �, and standard deviation, �, are 
al
ulated using the distan
e between the knownlandmark and the datum point from the images within the training set in both the x and ydire
tions.Figure 3.2 illustrates several sear
h areas that have been de�ned relative from the datum
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h area for lo
ating the bottom 
orner of the ruler is de�ned from the upperright of the image while the other sear
h areas are de�ned relative to the nose landmark. Asexpe
ted, the size of the sear
h area in
reases as the distan
e in
reases from the datum point.This in
rease in sear
h area is a fun
tion of varian
e that is related to biologi
al variability.So ideally a datum landmark should be lo
ated as 
lose to the landmark as possible in orderto minimise the size of the sear
h area.

Figure 3.2: A s
hemati
 of an X-ray that has de�ned several sear
h areas that en
ompass thebottom 
orner of the ruler, upper lip, menton and sella landmarks.In the 
ontext of our work, ea
h landmark type will be treated as a di�erent domain andthus ea
h landmark type will be 
onsidered as a separate dete
tion problem. The reason fortreating ea
h type of landmark as a separate dete
tion problem is be
ause of the diÆ
ulty anddiversity of landmarks and it is 
onsidered unrealisti
 that one program 
ould lo
ate all 56landmarks. So the approa
h taken involves dividing the landmark dete
tion problem into 56independent sub-problems. Ea
h of these sub-problems involves �nding a spe
i�
 landmarkin a region of the X-ray. For ea
h landmark, we wish to evolve a program that 
an be pla
edover a small window that gives a positive response if the window is 
entred within 2 mm (5pixels) of the known position of the landmark.The work presented in this thesis will use a sele
tion of landmarks that exhibit a range
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tion diÆ
ulty (i.e. easy to hard) for the purpose of determining the likelihood thatthe proposed method will work on all 56 landmarks. DiÆ
ulties 
an in
lude ambiguity wheredi�erent areas in an image have similar 
hara
teristi
s to the landmark of interest (e.g. theupper and lower lips), and ba
kground 
lutter where it is diÆ
ult to dis
riminate betweenthe lo
ation of the landmark and ba
kground (e.g. the sella landmark). The nose landmarkis subje
t to minimal biologi
al variation and is deemed relatively easy to dete
t 
omparedto the sella landmark.3.3 Image Pro
essingThe main issues from the 
omputer vision literature relating to digital X-ray images as dis-
ussed in Se
tion 2.1.1.1 are noise and to a lesser extent the enhan
ement of obje
ts in low
ontrast images. The issue of noise is related to the limitation of applying the X-ray pro
essto organi
 obje
ts. This se
tion will give a brief overview of pre-pro
essing te
hniques thathave been 
onsidered for enhan
ing image quality prior to extra
ting features for use in GP.These te
hniques have in
luded noise redu
tion, 
ontrast enhan
ement, size redu
tion andnormalisation.The image of the nose in Figure 3.3(a) illustrates the diÆ
ulty fa
ed when viewing softtissue against the ba
kground. Figure 3.3(b) has been greatly enhan
ed by mapping Figure3.3(a) using a logarithmi
 look up table (LUT). A logarithmi
 LUT maps the output values,G, from the logarithm of input values, F (refer to Equation 3.1). A logarithmi
 LUT is usedto enhan
e pixels with low intensity values and redu
e the spread of high intensity values.G(i; j) = 
 log(1 + F (i; j)) (3.1)However, preliminary experimental work (not presented in this thesis) indi
ated that im-proving the 
ontrast of soft tissue for human per
eption does not 
orrelate to better dete
tionprograms. Therefore, the 
ontrast of the soft tissue has not been enhan
ed { enhan
ementhas only been used for the purpose of improving the presentation 
larity of soft tissue.
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(a) Original (b) LUT enhan
edFigure 3.3: An example of two images that 
ontain the nose landmark. The image (b) hasbeen mapped from the original image (a) using a logarithmi
 LUT.The domain independent approa
h of GP using pixels as features, as des
ribed in Se
tion1.1 on page 3, will most likely not s
ale well to large obje
ts be
ause of the large input windowrequired to dete
t the obje
ts. The number of features in the domain independent approa
h,or terminals in the 
ontext of GP, is a fun
tion of the input window dimensions. So as theinput window size in
reases so too does the sear
h spa
e.For the purpose of developing a strategy for dete
ting landmarks, the original images havebeen s
aled down to 20% of the original image dimensions. The s
ale is a trade-o� betweendete
tion a

ura
y, or resolution, and training/testing times. The resolution of the originalX-ray was approximately 12.3 pixels/mm and s
aling produ
es a resolution of approximately2.5 pixels/mm. So based on an a

eptable toleran
e of 2 mm, the maximum error a

eptablefrom the known position with a s
aled image is 5 pixels.Redu
ing the size of the images also redu
es the time of an evolutionary run from 67.5hours to 2.7 hours1. S
aling transforms the images from a resolution of 2056 � 2588 pixelsto 411� 517 pixels. This redu
es the number of geneti
 program evaluations during trainingand also redu
es the e�e
t of Gaussian noise in the image.3.4 Pre-
al
ulation of Feature ValuesTo simplify the experimental work in this thesis, we have extra
ted the sear
h area as animage and pre-
al
ulated feature values prior to starting an evolutionary run. An example ofthis is shown in Figure 3.4, whereby an image 
ontaining the in
isal upper in
isor is extra
tedfrom an X-ray within the dataset. As des
ribed in Se
tion 3.2, images are extra
ted using1Pro
essing time is 
al
ulated by averaging the time taken to pro
ess 100 generations for 80 evolutionaryruns. An evolutionary run is based on evolving a dete
tion program for the sella landmark. Fitness is evaluatedby 
omputing the output at every se
ond position in the image and using the highest output to predi
t theposition of the landmark. Pro
essing was performed on an Intel Pentium 4 1.4 GHz CPU.
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 based on anatomi
al knowledge relative to a previously found datum point. Aninput window is then traversed a
ross ea
h position on the image whi
h 
omputes features atea
h pixel lo
ation. Although there is no advantage in improving the a

ura
y of dete
tionprograms when pre-
omputing pixels as features prior to an evolutionary run, we have de
idedto pre-
ompute features be
ause the pro
ess is a on
e-o� 
ost that will signi�
antly redu
etraining time when 
omputing 
omputationally expensive features. The pro
ess for pre-
omputing features is illustrated in Figure 3.4.

Figure 3.4: S
hemati
 of the pro
ess for pre-
al
ulating features within a sear
h area of anX-ray. The sear
h area for lo
ating a landmark is extra
ted using a heuristi
 of anatomi
alknowledge relative to a datum point.3.5 Dataset Sele
tionThe dataset used in this thesis 
ontains 110 images. The images in the dataset were providedby a pra
tising orthodontist and the images have not been hand 
hosen and are a randomsele
tion of images that are indi
ative of biologi
al variability from a population of patients.For example, the per
entage of images having an overbite should be in keeping with what isexpe
ted from real-world data.Be
ause the dataset 
onsists of a �nite number of samples, we have to determine the bestway of dividing the data set for both learning and testing the performan
e of the dete
toron unseen images. The majority of the work in this thesis uses the holdout method (refer
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tion 2.3.4 on page 20) for estimating a

ura
y. The holdout method reserves a part ofthe data set for testing that must not be used in any way during training. We have used a3/4 and 1/4 split for the training and test sets respe
tively. Cross-validation of experimentalwork has been 
onsidered, but we have de
ided the size of the training set and test set fromthe holdout method to be a

eptable for the purpose of 
omparing experiments. Performinga 
ross-validation for ea
h experiment would also in
rease 
omputational resour
es. A three-fold 
ross validation will only be performed for establishing dete
tion results for the �nalmethod at the 
on
lusion of the thesis. This is to ensure that the �nal results are based ona larger test set of images.



Chapter 4
Domain Independent Approa
h:Pixels as Features
4.1 Introdu
tionIn this 
hapter we apply a method by Zhang et al. [164, 168℄ whi
h has been su

essfully usedfor other obje
t dete
tion problems. The Zhang et al. method des
ribed in Se
tion 2.5.2.1 is
laimed to be domain independent, meaning that the same method will work un
hanged ona range of problems.The motivation for this 
hapter is to determine if the domain independent approa
h ofgeneti
 programming 
an be used for the problem of 
ephalometri
 landmark dete
tion. Thedomain independent approa
h outlined in this 
hapter has been applied with the minimumof 
hanges from the work performed by Zhang et al., who used geneti
 programming to lo-
ate and 
lassify obje
ts su
h as heads and tails of di�erent Australian 
oins in large images,and haemorrhages and mi
ro-aneurisms in retinal images. The main di�eren
e between themethod proposed by Zhang et al. and the intended use of the domain independent approa
his that Zhang et al. 
lassi�ed obje
ts belonging to multiple 
lasses, whereas our approa
hwill treat ea
h type of landmark as a separate dete
tion problem. Another main di�eren
eis that Zhang et al. in [164, 168℄ uses a population size between 100-700 individuals whi
h isin
reased with the diÆ
ulty of the dete
tion problem, whereas this 
hapter uses a population63
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h will be applied to three landmarks of in
reasing dete
-tion diÆ
ulty. The landmarks are: the tip of the nose whi
h is easy; the in
isal upper in
isorwhi
h is of medium diÆ
ulty; and the sella landmark whi
h is very diÆ
ult. Examples ofthese three landmarks are shown in Figure 4.1. The obje
tive is to lo
ate ea
h landmarkwithin 2 mm, or 5 pixels, of the known lo
ation. The 
rosses in Figure 4.1 
orrespond to thea
tual position of the landmark. The 
ir
le 
entred on the 
ross of ea
h image is a toleran
eof 2 mm. If the predi
ted position of the landmark is within the allowable toleran
e, thelo
ation of the landmark has been 
orre
tly found. If not, the position of the landmark isre
orded as a false alarm.

(a) Nose54�60 pixels (b) In
isal upper in
isor71�59 pixels (
) Sella110�125 pixelsFigure 4.1: Images shown from the left 
ontain the nose, in
isal upper in
isor and sellalandmarks. The landmarks represent a range of dete
tion diÆ
ulty from easy to diÆ
ult.The 
ross indi
ates the known position of the landmark. The 
ir
le is the toleran
e from theknown position, or allowable error, that is 
onsidered a

eptable for a 
ephalometri
 analysis.4.2 MethodologyThe landmark dete
tion approa
h involves applying a program to an image, in moving windowfashion, to �nd the landmark. The su

ess of the program is measured by the �tness fun
tion.Inputs to the evolved program will be a set of features established by partitioning the inputwindow into an array of pixels (refer to Figure 4.4). Ea
h feature is a pixel intensity value of
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tions 3.2 and 3.3 des
ribe a pro
ess and the rationale for redu
ingthe number of evaluations by extra
ting an image using a priori anatomi
al knowledge ands
aling the image to 20% of the original size. This pro
ess redu
es the number of programevaluations during training and also redu
es the e�e
t of Gaussian noise. It is worth notingthat no image pro
essing, e.g. 
ontrast enhan
ement, has been performed prior to extra
tingthe sear
h area from ea
h X-ray.An outline of the domain independent approa
h for evolving a dete
tor to lo
ate land-marks is shown in Figure 4.2. The following step-by-step des
ription gives a more in depthexplanation of the methodology depi
ted in Figure 4.2.1. Assemble a database of images that 
onsists of the known positions of landmarks to belo
ated.2. Reserve some images as a test set for the purpose of measuring dete
tion performan
e.3. Determine the size of the square input window whi
h will 
ontain enough distinguishinginformation to permit the landmark to be identi�ed.4. Invoke an evolutionary pro
ess to generate a program that 
an determine whether alandmark is lo
ated within 2 mm of the a
tual position.5. Apply the generated program as a moving template to the reserved test images fromstep 2 and obtain the positions of the landmarks. Cal
ulate the dete
tion rate and thefalse alarm rate on the test set as a measure of performan
e.

Figure 4.2: Diagram illustrating the evolutionary pro
ess for both training and evaluatingthe performan
e of a dete
tion program.
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 ProgrammingThis se
tion des
ribes how geneti
 programming will be used for the task of landmark de-te
tion. Ea
h se
tion will give an outline of the main 
omponents for 
on�guring geneti
programming to the problem of landmark dete
tion. The main 
omponents in
lude the ter-minal set, fun
tion set, �tness evaluation and geneti
 programming parameters.4.3.1 The Terminal Set: Pixels as FeaturesThe terminals used in the domain independent approa
h are 
omposed of a two-dimensionalarray of pixel values that are made available as part of the evolutionary sear
h strategy. Thearray of pixels is 
ontained within an input window of a pre-determined square size that istraversed a
ross ea
h position in the image. The traversing pro
ess is illustrated by movingthe 
entre of the input window, in a s
anning manner, to ea
h pixel that is represented as awhite dot as shown in Figure 4.3.Determining the size of the input window is based upon another heuristi
. This otherheuristi
 determines how mu
h information is required in order for the evolutionary pro
essto generate a solution to distinguish between the landmark of interest and the ba
kground.However, 
hoosing the size of the input window is a 
ompromise between 
ontaining enoughdistinguishing information so the landmark 
an be found and generating a large terminal setwhi
h may 
ontain redundant (or extraneous) features. A dis
ussion of previous resear
h in[74℄ in Se
tion 2.5.2.4 indi
ated that the geneti
 sear
h en
ounters substantial loss of eÆ
ien
ywhen extraneous features are 
ontained within the terminal set sin
e the extraneous featuresadd to the 
omplexity of the sear
h.
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Figure 4.3: The input window shown as the bla
k square is moved in a s
anning pro
ess toea
h position in the image 
orresponding to the white dots.
(a) (b)Figure 4.4: Images (a) and (b) illustrate a 14�14 pixel input window, whereby ea
h terminalis represented by a single pixel and an average greylevel intensity of four neighbouring (2�2)pixels respe
tively. The input window has been divided into SS2 and SS2=4 sub-regions,
entred on `�' at position (x, y) on an image. These are referred to as pixel based featuresthat represent the di�erent terminals available for the evolutionary pro
ess.The input window shown in Figure 4.4 illustrates the spatial relationship of terminalswithin an input window. These terminals are referred to as pixel based features. The sizeof both input windows in Figure 4.4, whi
h is also referred to as square size (SS), is 14�14pixels. Ea
h terminal in Figures 4.4(a) and 4.4(b) is a real value represented by a singlepixel and an average greylevel intensity of four neighbouring pixels respe
tively produ
ing aterminal set of 196 and 49 terminals respe
tively. A sub-region with a size of two indire
tlys
ales the image, whi
h redu
es the resolution by a further 50%.Table 4.1 de�nes the size of the input window used for the experiments in this 
hapter.The se
ond 
olumn indi
ates the number of features in the terminal set. The size of theterminal set is a fun
tion of the input window size and sub-region size. The size of the input
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ontain enough relevant information to enable di�erentiationbetween the landmark of interest and the ba
kground.Landmark Square Size Size of Sub-regions(pixels) 1�1 2�2 5�5Nose 14 196 49In
isal upper in
isor 14 196 49Sella 40 1600 64Table 4.1: The sizes of the terminal set that are made available for use during the geneti
sear
h. The number of features in the terminal sets are a fun
tion of input window size andsub-region size.4.3.2 The Fun
tion SetThe fun
tions shown in Table 4.2 are the operators most 
ommonly used by geneti
 pro-gramming for image-related appli
ations as des
ribed in Se
tion 2.5.2.5. The fun
tions +,�, *, / are four arithmeti
 operators that, when used, 
an allow the formation of both linearand non-linear fun
tions. The +, � and * have their usual meanings, while `/' representsa prote
ted division whi
h 
onstitutes the usual division operator, ex
ept that a divide byzero produ
es INT MAX. The use of other operators used in image-related appli
ations weredis
ussed in Se
tion 2.5.2.5, however, it was un
lear how these 
ould enhan
e the quality ofsolutions. Fun
tionsFun
tion Arity De�nition+ 2 a+ b� 2 a� b* 2 a� b/ 2 � ab if b 6= 0else INT MAXTable 4.2: De�nition of operators used in the fun
tion set.4.3.3 Fitness EvaluationThe pro
ess of measuring an individual's �tness is performed in three distin
t phases. Initiallythe program is applied to the training data, this is akin to moving the input window a
rossan image, whi
h produ
es an output needed to predi
t the position of the landmark. The
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ting the position of the landmark is the same as that used by Zhanget al.'s [164℄ and will be explained in greater detail below. The predi
ted positions are then
ompared with the a
tual lo
ation of the landmark and the dete
tion and false alarm ratesare then 
al
ulated.The aim of the �tness metri
 presented in this se
tion is to maximise dete
tion rate(
orre
t predi
tion) and to minimise false alarm rate (in
orre
t predi
tion). The �tness of aprogram is 
al
ulated by 
omputing both dete
tion rate and false alarm rate. The �tness isevaluated as follows:1. Zhang et al.'s [164℄ approa
h for predi
ting the position of the landmark involves threeseparate steps. These steps are as follows:(a) A program is applied as a moving input window, shown as the bla
k square inFigure 4.5(b), a
ross a training image with the program's output evaluated atea
h pixel lo
ation. The output of the program, Output, is a 
oating point num-ber whi
h determines whether the position in the image should be 
lassi�ed as alandmark or ba
kground.(b) Zhang et al. uses a multi-
lass 
lassi�
ation strategy for 
lassifying obje
ts, how-ever, be
ause we are evolving one program for ea
h landmark, a 
lassi�
ationstrategy 
onsidering only two 
lasses (landmark/ba
kground) is required. There-fore, we have 
hosen zero as a de
ision point between the two 
lasses, whi
h hasalso been 
ommonly used by GP resear
hers in 
lassi�
ation problems when dif-ferentiating between binary 
lasses as dis
ussed in Se
tion 2.5.2.6. The positionat ea
h pixel lo
ation is labelled a

ording to the 
lassi�
ation strategy shown inFigure 4.5(a). If the Output is positive, the lo
ation is labelled as \landmark";otherwise, the lo
ation is labelled as \ba
kground". The labelled positions aredes
ribed as binary outputs within a dete
tion map. An example of a dete
tionmap is shown in Figure 4.5(
) whereby the white and grey regions depi
t positionslabelled as landmark and ba
kground respe
tively.(
) The dete
tion map is then used to lo
alise the position of the landmark. Thelandmark's position is predi
ted by s
anning ea
h position within the dete
tion
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ording its (x; y) position. However,another landmark 
annot be predi
ted within SS2 pixels of a landmark's positionpreviously predi
ted during the s
an of the dete
tion map. The dete
tor shown inFigure 4.5(a) has subsequently re
orded a landmark at three lo
ations whi
h aredepi
ted as the green and red 
rosses. The green and red 
rosses 
orrespond tothe 
orre
t and in
orre
t positions respe
tively.2. A 
omparison is made between the predi
ted position and the a
tual lo
ation of thelandmark. A mat
h (true positive) o

urs when the 
omparison is within a set toleran
eof 2 mm (5 pixels). If the 
omparison is not within the set toleran
e, the landmark forthe respe
tive image is re
orded as a false alarm.3. The performan
e of a program is measured by iteratively applying steps one and twoto ea
h image in the training set and then 
al
ulating the dete
tion rate (DR) and falsealarm rate (FAR). The �tness is 
omputed as per equation 4.1.Fitness = A� FAR+B � (1�DR) (4.1)where FAR is the false alarm rate and DR is the dete
tion rate. A and B are 
onstantsthat provide a balan
e between false alarm rate and dete
tion rate. The 
onstants areused to transform a multi-obje
tive problem into a s
alar optimisation problem asdis
ussed in Se
tion 2.2.1.1. Zhang et al. in [164, 166, 168℄ used values of 50 and 1000for A and B respe
tively.Alternatively, the �tness fun
tion 
an be represented as,Fitness = FAR+ BA (1�DR)
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(a) Dete
tion program (b) Image (
) Classi�ed imageFigure 4.5: The series of images illustrate the strategy for predi
ting the position of a land-mark. A program (a) is traversed a
ross the image (b) at ea
h pixel lo
ation and the program'soutput is 
al
ulated. The output of the program determines if the position is to be labelleda landmark or ba
kground. The labelled positions are des
ribed as the binary output in thedete
tion map (
). The green and red 
rosses 
orrespond to the 
orre
tly and in
orre
tlypredi
ted positions respe
tively.4.3.4 ParametersTable 4.3 indi
ates the geneti
 programming run-time parameter values used by geneti
 pro-gramming during training. The parameter values are based on resear
h by Zhang et al. in[164, 165, 166, 168℄ whereby geneti
 programming was used to solve similar types of dete
tionproblems to the 
ephalometri
 landmark dete
tion problem dis
ussed here. A des
ription forea
h run-time parameter is given in Se
tion 2.5.3.4.4 ResultsThe results given in this se
tion attempt to establish if the domain independent approa
husing geneti
 programming, is able to lo
ate 
ephalometri
 landmarks a

urately enough fora 
ephalometri
 analysis. To determine the eÆ
a
y of this strategy, the method is tested onthree landmarks of varying levels of dete
tion diÆ
ulty ranging from easy to hard.The aim of the geneti
 sear
h is to minimise the �tness fun
tion and a
hieve a �tnesss
ore of zero. The �tness fun
tion is a 
ombination of dete
tion rate and false alarm rate. A�tness s
ore of zero only o

urs for a program that a
hieves a dete
tion rate of 100% and afalse alarm rate of 0%. Ea
h evolutionary run is terminated when either the �tness s
ore iszero or 100 generations have been 
ompleted. The result from ea
h experiment is based on



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 72ParametersPopulation size, M 100Maximum generation, G 100Maximum depth, D 8Initial maximum depth, d 6Probability of:Reprodu
tion, PR 0.10Crossover, PC 0.70Mutation, PM 0.20Probability of 
rossover at:Terminal 0.15Fun
tion 0.85A 50B 1000Terminal Set refer to Se
tion 4.3.1Fun
tion Set refer to Se
tion 4.3.2Toleran
e (pixels) 5 (2 mm)Table 4.3: Run-time parameters used during the geneti
 sear
h for evolving dete
tion pro-grams for the nose, in
isal upper in
isor and sella landmarks.80 evolutionary runs.Table 4.4 shows training and test results for three di�erent landmarks whi
h providesa 
omparison of the mean �tness s
ores, 
al
ulated using the best individual at the end of100 generations, for 1�1 and 2�2 pixel sub-regions. The experiments for the sella landmarkusing 1�1 or 2�2 pixel sub-regions and an input window square size of 40 pixels was not
ondu
ted as this would have 
reated a terminal set of 1600 and 400 terminals respe
tively; inSe
tion 2.5.2.4 we dis
ussed that the eÆ
ien
y of GP de
reases when the terminal set 
ontainstoo many extraneous or redundant features. The size of the terminal set was subsequentlyde
reased by using a 5�5 pixel sub-region.Table 4.4 shows the average �tness s
ore for three landmarks in
reasing with the relativein
rease in dete
tion diÆ
ulty between the three landmarks. The exa
t reason as to why the�tness s
ore varies with the di�erent landmarks will be explained in detail later. To determineif there is a di�eren
e between the two sub-region sizes, a two-sample t test will be 
ondu
tedto 
ompare if either of the two sub-region sizes, i.e. 1�1 pixel or 2�2 pixels, have 
ome fromthe same population. To validate this experiment, the hypothesis will be tested on the noseand in
isal upper in
isor landmarks.
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t H0 in favour of H1;> � do not reje
t H0:Size of Sub-regions1�1 2�2 5�5Nose AverageFitness 57.06 55.41p-value 0.666In
isal AverageFitness 71.76 71.81p-value 0.988Sella AverageFitness 142.79p-valueTable 4.4: Comparison of average �tness s
ore between 1�1 pixel sub-region and 2�2 pixelsub-region for the nose and in
isal upper in
isor. Average �tness is 
al
ulated from the bestindividual's �tness s
ore from ea
h run for 80 evolutionary runs.Sin
e the p-value ex
eeds the 
riti
al `
ut-o�' boundary of 0.05 for program �tness of thebest individual for both landmarks, the null hypothesis is a

epted indi
ating that the �tnessof programs evolved from both sub-regions are from the same population. This indi
ates thatboth terminal sets, on average, will produ
e programs with the same �tness. It is reasonableto expe
t that if the size of the sub-region is in
reased beyond a 
ertain size, the performan
eof programs during and at the end of the evolutionary pro
ess will de
rease. This is relatedto a loss of pixel information as the sub-region size is in
reased.
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(b) In
isal Upper In
isorFigure 4.6: Comparison of average �tness between a 1�1 pixel and 2�2 pixel sub-region.The average �tness s
ores are 
al
ulated from the �tness s
ore of the best individual at ea
hgeneration for 80 evolutionary runs.The graphs in Figure 4.6 show the average �tness 
al
ulated from the best individual's�tness s
ore at ea
h generation for 80 evolutionary runs. The graphs illustrate that there isnegligible di�eren
e between the rate of 
onvergen
e during the evolutionary sear
h for bothsub-region sizes of both landmarks.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 75Training TestSub-region size Sub-region size1�1 pixel 2�2 pixels 1�1 pixel 2�2 pixelsNose Averagedete
tion (%) 97.32 97.82 97.64 96.81false alarm(%) 60.46 67.23 58.56 66.85Best programdete
tion (%) 100 100 96.30 92.59false alarm(%) 13.41 9.76 11.11 14.81In
isal Averagedete
tion (%) 98.04 97.53 94.72 94.82false alarm(%) 104.37 94.22 96.11 87.50Best programdete
tion (%) 100 100 100 96.30false alarm(%) 67.47 78.31 85.19 59.26Sub-region size Sub-region size1�1 pixel 5�5 pixels 1�1 pixel 5�5 pixelsSella Averagedete
tion (%) 99.34 97.41false alarm(%) 272.47 269.35Best programdete
tion (%) 100 96.30false alarm(%) 202.44 214.81Table 4.5: Dete
tion results for the nose, in
isal upper in
isor and sella landmarks using thepixel based features de�ned in Se
tion 4.3.1. Averages are 
al
ulated using the best individualdis
overed from ea
h run for 80 evolutionary runs.Table 4.5 shows the dete
tion and false alarm rates using the best individual at the
ompletion of evolutionary runs. It is worth noting that no run a
hieved a �tness s
ore ofzero, i.e. a dete
tion rate of 100% and a 0% false alarm rate, and so the results presentedare from the best individual at the end of 100 generations. Although there is no signi�
antdi�eren
e in dete
tion a

ura
ies between the three types of landmarks, the false alarm ratein
reases signi�
antly with the level of diÆ
ulty. This is a result of both anatomi
al variabilityand 
lutter found in the sella images, as evident by the images in Figure 4.10.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 76(- (- (/ P4 (+ (/ P14 P24) P10)) (- (- P23 P43) P36)) (+ (- (* (/ P28 (/ (/ P14P11) (+ (+ P20 P17) P44))) (/ (/ (+ (- P39 P27) P13) (/ P40 P38)) (* P14 P30)))(- (* (- P23 P2) P8) P11)) (* (* (/ (/ (+ (- P43 P27) P13) (/ P11 P38)) (/ (/P14 P24) (+ P30 P44))) (/ (/ (+ (- P43 P49) P13) (/ P11 P38)) P16)) (/ P16 (* P15P30)))))Figure 4.7: A sample program for lo
ating the nose landmark, where Pi represents the av-erage pixel intensity value of a sub-region labelled Pi and i is the ith sub-region. Note:The array of sub-regions (P(0;0). . .P(n;n)) depi
ted in Se
tion 4.4 has been 
onverted into ave
tor (P0. . .Pn2), where n2 is the number of sub-regions within the input window. Fit-ness s
ore = 4.878 (FAR=9.75% and DR=100%).The program used to lo
ate the nose landmark in Figure 4.7 was the �ttest program atthe end of 80 evolutionary runs. A random sele
tion of images 
ontaining the nose landmarkare shown in Figure 4.10(a-l). The dete
tion program in Figure 4.7 is applied to the imagesin Figure 4.10. The position of the nose landmark for all these images are 
orre
tly dete
tedwith only one false alarm as indi
ated by the red 
ross in image (g).(- P35 (/ (/ (+ (- (- (- P41 P15) P11) P37) (- (* (- P23 P15) P11) P16)) P39) (/P11 P16))) (* (- P17 (+ (- P29 (/ (- (- P41 P15) (- P3 P32)) (- P3 (- P3 P32))))P21)) P36))Figure 4.8: A sample program for lo
ating the in
isal upper in
isor landmark, where Pirepresents the average pixel intensity value of a sub-region labelled Pi and i is the ith sub-region. Note: The array of sub-regions (P(0;0). . .P(n;n)) depi
ted in Se
tion 4.4 has been
onverted into a ve
tor (P0. . .Pn2), where n2 is the number of sub-regions within the inputwindow. Fitness s
ore = 39.157 (FAR=78.31% and DR=100%).�P35 � P16 (P41 � P15 � P16 � P37 + P11 (P23 � P15 � 1))P39P11 ��P17 ��P29 � (P41 � P15 � P3 + P32)P32 + P21��P36(4.2)The program used to lo
ate the in
isal upper in
isor landmark in Figure 4.8 is the �ttestprogram at the end of 80 evolutionary runs. The equivalent formula is shown as Equation4.2. A random sele
tion of images 
ontaining the in
isal upper in
isor landmark are shownin Figure 4.10(a-j). The positions of the in
isal upper in
isor landmark for all these imagesare 
orre
tly dete
ted. However, at least one false alarm was found in ea
h image with theex
eption of image (h) and (j). This is a signi�
ant in
rease in false alarm rate as indi
atedby the number of red 
rosses 
ompared to the nose landmark. Training results produ
eda false alarm rate and dete
tion rate of 78.1% and 100% respe
tively. This indi
ates that,
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tion program has in
orre
tly predi
ted the position of an additionalphantom landmark on four out of �ve images.(+ (- (- (- P62 (* P2 P54)) (- (* (+ (+ P6 P33) P26) (/ P16 P31)) (- P51 (+ P43P58)))) (- (+ (+ P6 (+ P5 P27)) (+ (+ (* P35 P40) P38) P38)) (- P25 (- (+ P29P9) P25)))) (- (- (* P24 P8) P43) (- (- (+ P6 P32) (/ P13 P30)) (* P24 P46))))Figure 4.9: A sample program for lo
ating the sella landmark, where Pi represents the av-erage pixel intensity value of a sub-region labelled Pi and i is the ith sub-region. Note:The array of sub-regions (P(0;0). . .P(n;n)) depi
ted in Se
tion 4.4 has been 
onverted into ave
tor (P0. . .Pn2), where n2 is the number of sub-regions within the input window. Fit-ness s
ore = 101.22 (FAR=202.44% and DR=100%).The program used to lo
ate the sella landmark in Figure 4.9 is the �ttest program at theend of 80 evolutionary runs. A random sele
tion of images 
ontaining the sella landmark areshown in Figure 4.10(a-h). The position of the sella landmark for all these images are 
orre
tlydete
ted. However, at least two false alarms were found in ea
h image with the ex
eption ofimage (b). Although the dete
tion rates were similar between the three landmark types, theresults indi
ate that false alarm rate in
reases with the level of dete
tion diÆ
ulty.
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(a) (b) (
) (d) (e) (f)
(g) (h) (i) (j) (k) (l)Nose (54�60 pixels)
(a) (b) (
) (d) (e)
(f) (g) (h) (i) (j)In
isal upper in
isor (71�59 pixels)
(a) (b) (
) (d)
(e) (f) (g) (h)Sella (110�125 pixels)Figure 4.10: A sele
tion of images showing the 
orre
tly found position (green 
ross) andin
orre
t position (red 
ross) of three landmarks of in
reasing dete
tion diÆ
ulty. The land-marks, from easy to hard, are the nose, in
isal upper in
isor and sella landmarks.
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tion in Equation 4.1 is a weighted sum of dete
tion rate and false alarmrate with the aim to minimise �tness. Figure 4.11 shows �tness graphs for terminals thathave been 
al
ulated from a 2�2 pixel sub-region. The graphs are averages 
al
ulated usingthe best individual found at ea
h generation for 80 evolutionary runs. The dete
tion andfalse alarm rates are also illustrated. The graphs for ea
h landmark show that almost 100%dete
tion a

ura
y was a
hieved at the �rst generation. However, there was a false alarm rateof 310%, 458% and 415% for the nose, in
isal upper in
isor and sella landmarks respe
tivelyand at generation 100, at the point where the evolutionary pro
ess was terminated, the falsealarm rate had improved to 67%, 94% and 273% respe
tively. A �tness s
ore of zero wasnever a
hieved for a dete
tion program for any of the evolutionary runs. The graphs illustratethat the �tness fun
tion rewards programs for a
hieving high dete
tion rates and so then theaim of the evolutionary sear
h be
omes fo
used on minimising the number of false alarms.
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isal upper in
isor and sella landmarks. Averagesare 
al
ulated using the best individual at ea
h generation for 80 evolutionary runs.



CHAPTER 4. DOMAIN INDEPENDENT APPROACH: PIXELS AS FEATURES 804.5 SummaryThe results demonstrate that the method by Zhang et al. [164, 168℄, whi
h 
laims to bedomain independent, were able to a

urately lo
ate simple landmarks with a low numberof false alarms. Although this method was shown to be su

essful on simple landmarks, alarge number of false alarms were found on more diÆ
ult landmarks su
h as the in
isal upperin
isor and sella landmark. False alarms are una

eptable for a 
ephalometri
 analysis andtherefore further work is required to investigate if the geneti
 programming paradigm is ableto redu
e the false alarm rate. Therefore, further exploratory work of the proposed geneti
programming method is required to determine if fa
tors su
h as �tness evaluation or otherfeatures will redu
e false alarm rate when lo
ating diÆ
ult types of landmarks.



Chapter 5
Domain Dependent Approa
h:Hand
rafted Shapes
5.1 Introdu
tionThe purpose of the previous 
hapter was to determine if the domain independent approa
hof geneti
 programming using pixel based features was able to lo
ate landmarks a

uratelyenough for a 
ephalometri
 analysis. The results of the experimental work showed that thedete
tion rates were very good but the false alarm rates were una

eptably high, espe
iallyfor the harder landmarks. Therefore the purpose of this 
hapter is to determine how thedomain independent approa
h 
an be re-formulated to redu
e the false alarm rate and atthe same time predi
t the position of the landmark a

urately enough for a 
ephalometri
analysis.In this 
hapter we will provide a foundation for geneti
 programming that will be used insubsequent 
hapters. The work using the domain independent approa
h of geneti
 program-ming and pixel based features from Chapter 4 will be used as a ben
hmark for 
omparingperforman
e.

81



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 825.1.1 Chapter GoalsBased on the out
ome of the results from the domain independent approa
h using pixelsas features, several questions are posed for redu
ing false alarm rate. In this 
hapter, thefollowing resear
h questions will be investigated.1. Can the method of evaluating �tness be improved to redu
e the false alarm rate withouta�e
ting dete
tion performan
e? What is a good �tness metri
 that 
an be used as ameasure of a program's performan
e?2. Can repla
ing the pixel based features with features 
al
ulated using hand
rafted shapesimprove a program's dete
tion performan
e?3. Will the in
lusion of other operators 
ommonly used by geneti
 programming in imagerelated appli
ations improve the dete
tion performan
e?5.2 MethodologyThe use of geneti
 programming for the purpose of landmark dete
tion in this 
hapter issimilar to the methodology des
ribed in Se
tion 4.2. The landmark dete
tion approa
h in-volves applying a program to an image, in moving window fashion, to lo
ate the position ofthe landmark. The su

ess of the program is determined by the �tness fun
tion. Terminalsmade available to the evolved program are features based on partitioning areas surroundinga landmark by hand
rafting shapes within the input window. The shapes are intended todis
riminate the landmark from ba
kground. The hand
rafted shapes are shown in Figure5.2. The features used in this 
hapter are 
al
ulated using the mean and standard deviationof pixel intensities within ea
h shape.The following step-by-step des
ription along with Figure 5.1 is similar to the methodologyin Se
tion 4.2 with the addition of developing a set of hand
rafted features.1. Assemble a database of images with the known positions of landmarks to be lo
ated.2. Reserve some images as a test set for the purpose of measuring dete
tion performan
e.
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Figure 5.1: Diagram illustrating the geneti
 programming methodology for evolving andevaluating dete
tion programs using hand
rafted features.3. Determine the size of the square input window 
entred on the landmark that will 
ontainenough distinguishing information to permit the landmark to be identi�ed.4. Manually determine a set of shapes within the input window that are to be applied tothe training and test images. The hand
rafted shapes are spe
i�
 to 
apturing landmark
hara
teristi
s as well as dis
rimininating against ba
kground (refer to Figure 5.2).5. Invoke an evolutionary pro
ess to generate a program whi
h 
an determine whether alandmark is lo
ated with 2 mm of the a
tual position.6. Apply the generated program as a moving template to the reserved test images fromstep 2 and obtain the positions of the landmarks. Cal
ulate the dete
tion rate and thefalse alarm rate on the test set as the measure of performan
e.The following se
tions des
ribe the evolutionary pro
ess of step 5 in detail.5.3 Geneti
 Programming Con�guration5.3.1 The Terminal SetThe domain independent approa
h using pixels as features demonstrated that the number offalse alarms in
reases with the 
omplexity of the dete
tion problem. Be
ause ea
h type oflandmark is distin
t in shape, greys
ale and 
ontrast, it is expe
ted that a set of hand
raftedshapes spe
i�
 to a landmark will give a better dete
tion performan
e 
ompared to pixels as
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hapter. We anti
ipate that landmark spe
i�
 features will bemore useful for dis
riminating between the lo
ation of interest and ba
kground.In Se
tion 2.5.2.4 we reviewed the most 
ommon types of features for 
omplex dete
tionproblems. These were 
al
ulated using simple statisti
s, i.e. the mean and standard deviation,of pixel values within pre-de�ned shapes. The features presented in this 
hapter 
orrespond tothe di�erent shapes shown in Figure 5.2 with their resulting means and standard deviations
al
ulated from ea
h region based on grey level intensity. As des
ribed in Se
tion 2.5.2.4when using geneti
 programming in obje
t dete
tion problems, terminals 
orrespond to imagefeatures. In addition to these features, a terminal that generates a random number in therange of [0, 255℄ is in
luded in ea
h terminal set.5.3.2 The Fun
tion SetThe fun
tions +, �, �, / are four arithmeti
 operators used by geneti
 programming duringtraining, whi
h is identi
al to the set used in the previous 
hapter shown in Table 4.2 on page68.5.3.3 Geneti
 Programming ParametersThe geneti
 programming parameters to be used during training are identi
al to those usedin the previous 
hapter as shown in Table 4.3 on page 72.5.4 Variations of Fitness EvaluationThe aim of this se
tion is to establish if the method for evaluating �tness from the domainindependent approa
h using the geneti
 programming paradigm of Chapter 4 
an be reformu-lated to improve the performan
e of dete
tion programs for lo
ating 
ephalometri
 landmarks.This investigation and subsequent investigations presented in this 
hapter will be tested onadditional landmark types to those presented in Chapter 4. The images shown in Figure 5.3are representative of the di�erent landmark types presented in this 
hapter.
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square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 upper left square A-E-o-GM3 S3 upper right square E-B-H-oM4 S4 bottom half G-H-C-DM5 S5 two 
entre 
olumns E-FM6 S6 two 
entre rows G-H
square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 left half A-E-F-DM3 S3 right half E-D-C-FM4 S4 two 
entre 
olumns E-FM5 S5 two 
entre rows G-H
square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 upper right square E-B-H-oM3 S3 bottom left square G-o-F-DM4 S4 two 
entre 
olumns E-FM5 S5 two 
entre rows G-HM6 S6 right half 
entre rows o-HM7 S7 upper left hand triangle A-E-oM8 S8 right hand re
tangle I-B-C-J
square size=14

Features Shapes� �M1 S1 square A-B-C-DM2 S2 top half A-B-H-GM3 S3 bottom half G-H-C-DM4 S4 two 
entre 
olumns E-FM5 S5 two 
entre rows G-HFigure 5.2: The diagrams in the left 
olumn depi
t the shapes used to extra
t the featuresfor the bottom 
orner of the ruler, nose, upper lip, in
isal upper in
isor, menton and sellalandmarks. The features 
onsist of the mean and standard deviation 
al
ulated for ea
h shapefrom grey level intensities. The 
orresponding pi
tures in the middle 
olumn depi
t the sizeof the input window { shown as the white square { relative to the image. Note: Images forthe bottom 
orner of the ruler, nose and menton landmarks have had the 
ontrast enhan
edto improve 
larity.
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square size=40
Features Shapes� �M1 S1 shaded regionM2 S2 white regionM3 S3 square A-B-C-DM4 S4 left half A-E-F-DM5 S5 right half E-D-C-FM6 S6 two 
entre 
olumns E-FM7 S7 two 
entre rows G-HFigure 5.2 (
ontinued)

(a) Bottom 
orner of the ruler103�83 pixels (b) Nose54�60 pixels (
) Upper lip56�43 pixels

(d) Sella110�125 pixels (e) Menton93�85 pixels (f) In
isal upper in
isor71�59 pixelsFigure 5.3: Images shown from top left in a 
lo
kwise dire
tion 
ontain the bottom 
orner ofthe ruler, nose, upper lip, in
isal upper in
isor, menton and sella landmarks. The landmarksare a range of obje
t dete
tion problems ranging from easy to diÆ
ult. The 
ross indi
atesthe known position of the landmark.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 875.4.1 Highest Output5.4.1.1 MotivationResults presented in this se
tion use a �tness fun
tion that rewards programs on the basis oflo
ating landmarks within the a

eptable toleran
e. Be
ause we know there is only one land-mark in the image we 
an 
onsider an alternative �tness fun
tion that takes this into a

ount.The �tness of a program is measured using only dete
tion rate, (Total no. of obje
ts 
orre
tly lo
atedTotal no. of obje
ts ).The reason for this will be given below. The +, �, �, / operators form the fun
tion set thatallow both linear and non-linear solutions to be evolved. The fun
tion set 
onsists of themost 
ommonly used operators available to geneti
 programming for solving image relatedappli
ations. The �tness is 
al
ulated as follows:1. The program is applied as a moving window a
ross a training image and the dete
tionprogram's output, Output, is evaluated at ea
h pixel lo
ation. The output of thedete
tion program is a 
oating point number interpreted as the likelihood that theevaluated position from the image is a landmark 
entre or ba
kground. During training,the highest value of Output from ea
h image is used to predi
t the position of thelandmark. The predi
ted position given by the dete
tion program is then 
omparedwith the known true lo
ation and the result for the training image is re
orded as eithera true positive or false alarm. However, an issue with using the highest output to predi
tthe landmark's position is that it has be
ome 
ompulsory for the dete
tion program topredi
t a landmark's position. Ideally we do not want a dete
tion program to lo
atethe position of a landmark when the dete
tion program returns an ambiguous result,i.e. if a high output o

urs in another part of the image.2. A 
omparison is made between the predi
ted position and the known lo
ation of thelandmark. A mat
h (true positive) o

urs when the 
omparison is within a set toleran
eof 2 mm or 5 pixels. If the 
omparison is not within the set toleran
e then the landmarkfor the respe
tive image is re
orded as a false alarm.3. The performan
e of the programs is measured by iteratively applying steps one and twoto ea
h image in the training set and 
al
ulating dete
tion rate (DR).



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 884. The �tness of a program is measured using Equation 5.1. Equation 5.1 is suitable whenit is known there is only one obje
t of interest lo
ated in an image.fitness = (1�DR); where DR is dete
tion rate (5.1)Previous work in Chapter 4 used the output from the dete
tion program to determineif the position of the landmark should be re
orded as either a landmark or ba
kground.However, this approa
h produ
ed a large number of false alarms. Therefore, in this se
tionwe use the highest output for predi
ting the position of the landmark with the expe
tation ofredu
ing the false alarm rate. This means that only one predi
tion for lo
ating the landmarkwill o

ur; the predi
ted position of the landmark will be either 
orre
t, i.e. within 2 mmof the a
tual position, or in
orre
t and re
orded as a false alarm. As a result, the sum ofdete
tion rate and false alarm rate is one.The rationale behind the simpli�ed �tness metri
 of Equation 5.1 is based on the highestoutput used to predi
t the position of the landmark and the �tness metri
 of Equation 4.1on page 70. The following derivation explains how Equation 5.1 was derived from Equation5.2. fitness = A�FAR+B�(1�DR); (5.2)Equation 5.3 is an equivalent �tness fun
tion to Equation 5.2.fitness = FAR + BA (1�DR) (5.3)Observation 1: When one landmark is always lo
ated within an image then FAR = 1�DR= �1 + BA� (1�DR)Observation 2: Fa
tors in the �tness fun
tion 
ontaining only 
onstants, su
h as �1 + BA�, 
anbe elimintated from the equation be
ause they have no e�e
t when ranking programs basedon �tness s
ore. fitness = (1�DR)



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 895.4.1.2 ResultsTo determine whether the geneti
 programming approa
h des
ribed in Se
tion 5.4.1 
an beused to lo
ate 
raniofa
ial landmarks, several landmarks have been 
hosen ranging from easyto most diÆ
ult. The di�erent landmark types are shown in Figure 5.3 and the relativepositions are shown on a tra
ing in Figure 2.11.The results indi
ate that the geneti
 programming methodology des
ribed in this se
-tion has been su

essfully used to evolve dete
tion programs for a number of 
ephalometri
landmarks. The results for the methodology are presented in Table 5.1. The dete
tion per-forman
e on the easier landmarks (nose and in
isal upper in
isor landmarks) was ex
ellentand the performan
e on the more 
hallenging sella landmark was also promising albeit witha 
onsiderably de
reased dete
tion performan
e. The redu
tion in dete
tion performan
eof the sella landmark is 
aused through the landmark exhibiting a greater variation in ananatomi
al shape and lo
ated in areas that are subje
t to subtle 
hanges of greys
ale. Dueto the diÆ
ulty of the sella landmark, a non square/re
tangular hand
rafted shape was 
re-ated, as shown in Figure 5.2, to assist with improving the evolution of dete
tion programs.While some of the landmarks are `easy' to lo
ate, it is important to note that there is a largevariation in human shapes and sizes as is evident from Figure 5.5, e.g. in
isal upper in
isor,and that the a

ura
y obtained is a non trivial a
hievement.
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tion False alarm Dete
tion False alarmBottom
orner ofthe ruler Average 100 0 99.77 0.23Std dev. 0 - 1.08 -Best program 100 0 100 0Nose Average 99.36 0.64 97.69 2.31Std dev. 0.89 - 1.90 -Best program 100 0 100 0In
isal Average 94.38 5.62 89.54 10.46Std dev. 3.18 - 3.72 -Best program 98.80 1.20 92.59 7.41Sella Average 55.53 44.47 43.06 56.94Std dev. 13.23 - 14.27 -Best program 73.17 26.83 62.96 37.04Table 5.1: Dete
tion results for training and test sets based on the use of features 
al
ulatedusing hand
rafted shapes and the highest output for predi
ting the position of the landmark.Results are based on a training set of 83 images and a random set of 27 test images that areindependent of the training set. The averages are 
al
ulated from the best individual fromea
h run for 80 evolutionary runs.The best performing programs from 80 evolutionary runs are shown in Figure 5.4. Thelandmark positions were predi
ted by applying the relevant program from Figure 5.4 to theimages in Figure 5.5. The 
ross in ea
h image of Figure 5.5 
orresponds to the predi
tedposition of the landmark.
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orner of the ruler dete
tion program(* (/ (- (- (- M2 S2) (* (/ (- (- M2 S2) S3) M1) (- M5 M4))) S3) M1) (- M5M4)) Nose dete
tion program(* (* (* (+ M8 (* M7 S6)) (/ M6 (+ M8 S5))) (- 162.108 M1)) (* (* (/ (* S4M8) (* M8 M5)) (/ S4 (+ M5 M5))) (- 162.108 M1)))In
isal upper in
isor dete
tion program(/ (- M5 (/ M1 S5)) (+ (+ M3 S4) (+ (+ (+ S3 (/ 59.5795 S2)) M3) (/ M1S2)))) Menton dete
tion program(/ (- (- S2 (- (* (- M7 M1) 113.67) (- (/ (/ M3 226.489) (+ M7 S1)) M4)))(- (* (- M3 M1) 113.67) (- (- (- (* S6 S6) S3) M6) S2))) (* M3 (* (+ (/ S7(+ (/ M3 226.489) M6)) (+ (* S4 S6) M4)) (* S1 (+ (+ (* S4 S4) M2) (* (/ M7(+ M7 S1)) M7)))))) Sella dete
tion programFigure 5.4: These programs are the best individuals from 80 evolutionary runs for the bottom
orner of the ruler, nose, in
isal upper in
isor and sella landmarks.
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(1, 1) (0, 0) (1, 0) (0, 0)
(0, 1) (1, 0) (1, 0) (1, 0)Bottom 
orner of the ruler (103�83 pixels)

(0, -2) (1, 1) (1, -4) (1, -3) (0, -1) (1, 0)
(0, -5) (1, 0) (1, 1) (2, 0) (0, 1) (0, 0)Nose (54�60 pixels)
(-1, -1) (-1, 0) (1, 0) (-1, -1) (1, 0)
(1, -1) (-1, -1) (-2, 0) (1, -3) (3, 3)In
isal upper in
isor (71�59 pixels)Figure 5.5: A sele
tion of images showing the predi
ted position, illustrated by the 
ross, for�ve di�erent landmark types. The di�erent landmark types from the top to bottom rows arethe bottom edge of the ruler, nose, in
isal upper in
isor, menton and sella landmarks. Theerror shown under ea
h image is a measure of the predi
ted position relative to the a
tualposition. Positional error is measured in pixels.
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(-1, -1) (-1, -2) (1, -1) (0, -3)
(-1, -2) (1, -3) (2, -4) (4, -1)Menton (93�85 pixels)
(2, -3) (2, -3) (4, -5) (3, 0)
(2, 0) (4, -2) (2, 0) (2, -5)Sella (110�125 pixels)Figure 5.5 (
ontinued)The �tness graphs shown in Figure 5.6 illustrate the pro
ess whereby the �tness fun
tionis minimised, i.e. Equation 5.1, with the ultimate goal of a
hieving a �tness s
ore of zero. Asthe �tness s
ore be
omes smaller, programs with a better dete
tion performan
e and lowerfalse alarm rate are produ
ed. The evolutionary pro
ess 
ontinues until either a �tness s
oreof zero, i.e. 100% dete
tion rate, or the number of generations has rea
hed 100. Dete
tionof the bottom 
orner of the ruler and nose landmark a
hieved a 100% dete
tion rate from



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 94100% (80/80) and 61% (49/80) of runs respe
tively whilst the in
isal upper in
isor and sellalandmarks never a
hieved a dete
tion rate of 100%.
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Generation(d) SellaFigure 5.6: The �tness graphs are the average �tness s
ores of the best evolved programs thathave been applied to every pixel position in an image. The average �tness s
ore is 
al
ulatedfrom the �tness s
ore of the best individual at ea
h generation for 80 evolutionary runs. Thedotted lines show � one standard deviation from the average �tness.Langdon et al. in [80℄ presented a graph for visualising the performan
e of programsapplied to both training and test sets. The graph was used to indi
ate how mu
h over �ttinghad o

urred on training data. The graphs in Figure 5.7 determine how well the methodhas generalised on the training set by 
omparing the best performing individual from ea
hevolutionary run and measuring the performan
e against the test set. The diagonal linerepresents neutral situations where the performan
e of dete
tion programs are equal whenapplied to both the training and test sets. Points below the diagonal line indi
ate thatdete
tion programs perform better on training data.
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e of dete
tion programs for the bottom 
orner of the ruler and nose land-marks indi
ate minimal over training as the points in the s
atter plot are evenly distributedabout the diagonal line. However, the performan
e of dete
tion programs for the in
isal upperin
isor and sella landmarks indi
ate over �tting as shown by the majority of points lo
atedbelow the diagonal line. The s
atter below the diagonal line indi
ates a bias for performingbetter on the training data. The dete
tion programs for the in
isal upper in
isor and sellalandmarks on average perform 5% and 12% better on training than test data. The dis
retesteps in the s
atter plot are due to the �nite number of examples in the training and testsets.
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tion rate (%) of the best program from 80 evolutionary runs applied totraining and test data. Programs were evolved from features 
al
ulated using hand
raftedshapes and the highest output was used for predi
ting the position of the landmark. Thedata has been jittered for the purpose of enhan
ing 
larity. Data points lo
ated below thediagonal line indi
ate over �tting of data during training.As a general rule, the size of the programs in
reased with the diÆ
ulty of the landmark.
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h landmark in Figure 5.4. It is not
on
lusive whether the additional nodes are required to improve the �tness s
ore, or if thein
rease in program size is a result of introns being introdu
ed during an evolutionary run.Introns were des
ibed in Se
tion 2.5.4 in referen
e to the growth of 
ode not 
ontributing toa program's performan
e. However, we 
an hypothesise based on the work of Zhang et al. in[164℄ that the size of the program has in
reased be
ause of the problem 
omplexity.A drawba
k of the method is that run times of the evolutionary pro
ess are high with onerun of 100 generations taking around 10.8 hrs � 2.7 hrs1. However, the evolutionary pro
essis a on
e-only 
ost and applying the program to an image is very fast, taking around 0.15se
onds per image2. Given the 
oarseness of the features used, parti
ularly for the nose tipand in
isor points, the dete
tion a

ura
y a
hieved is surprising and suggests that with moreattention to the features the approa
h will be su

essful on the more diÆ
ult landmarks.5.4.2 Highest Output: Evaluating every se
ond pixel position5.4.2.1 MotivationThe main fa
tors that in
uen
e training times during the evolutionary pro
ess are:� The number of images in the training set� The maximum depth of the tree� The number of positions to be evaluated in the image1Pro
essing time is 
al
ulated by averaging the time to pro
ess 100 generations for 80 evolutionary runs. Anevolutionary run is based on evolving a dete
tion program for the sella landmark. Pro
essing was performedon an Intel Pentium 4 1.4 GHz CPU.2Pro
essing time is based on the time to predi
t the sella landmark using the highest output. Pro
essingwas performed on an Intel Pentium 4 1.4 GHz CPU.
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(a) (b)Figure 5.8: The white dots 
orrespond to positions that are evaluated in the image. Images(a) and (b) are evaluated at ea
h pixel position and every se
ond pixel position respe
tively.The previous se
tion demonstrated that geneti
 programming worked relatively well atpredi
ting the position of the landmark, however, the pro
essing time of an evolutionaryrun is quite long. The aim of this se
tion is to investigate if the number of pixel positionsevaluated during training 
an be redu
ed without 
ompromising the performan
e of dete
tionprograms. It is expe
ted that redu
ing the number of evaluations will redu
e training time.Figures 5.8(a) and 5.8(b) depi
t two images where ea
h pixel is evaluated and every se
ondpixel is evaluated respe
tively. If training is not 
ompromised by evaluating every se
ondpixel, then it is expe
ted expe
ted that training time will be redu
ed by a fa
tor of four. Atwo-sample t test 
an be used to 
ompare the di�eren
es in mean dete
tion rate. Let thenull hypothesis be that the dete
tion rate of programs evaluated at ea
h pixel position havethe same mean as programs evaluated at every se
ond pixel position. In this experiment,the hypothesis is tested on three landmarks of varying diÆ
ulty ranging from easy (nose) todiÆ
ult (sella). H0 : �all = �qtrH1 : �all 6= �qtrp-value 8><>: 6 � reje
t H0 in favour of H1;> � do not reje
t H0:
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tion rate(%)Average 99.36 99.24 97.69 97.55Std dev. 0.89 1.05 1.90 1.95p-value 0.429 0.648In
isal Dete
tion rate(%)Average 94.38 94.61 89.54 88.98Std dev. 3.18 2.63 3.72 4.25p-value 0.625 0.380Sella Dete
tion rate(%)Average 55.53 54.73 43.06 44.40Std dev. 13.23 12.84 14.27 15.27p-value 0.696 0.566Table 5.2: An investigation to determine if the dete
tion performan
e of programs is 
ompro-mised by redu
ing the number of evaluations on training data. The table shows a 
omparisonof dete
tion performan
e for programs that have been trained on all pixel positions (All) andevery se
ond pixel position (Quarter) for the nose, in
isal upper in
isor and sella landmarks.The average dete
tion rate is 
al
ulated from the dete
tion rate of the best individual fromea
h run for 80 evolutionary runs. The p-value is 
al
ulated from a two-sample t test to
ompare the mean dete
tion rate from two independent samples.The p-value ex
eeds an alpha level, or 
riti
al `
ut-o�' boundary, of 0.05, for ea
h land-mark and so we a

ept the null hypothesis (refer to Table 5.2). This indi
ates that there isnot enough eviden
e to 
on
lude that the dete
tion performan
e of programs, at the end ofthe evolutionary pro
ess, has 
hanged by redu
ing the number of evaluations during training.Additionally, the null hypothesis is also a

epted as the p-value ex
eeds an alpha level of 0.05when 
omparing the dete
tion performan
e of programs against test data. This indi
ates thatthere is no eviden
e to support the hypothesis that the dete
tion performan
e of programshas been altered by redu
ing the data by a fa
tor of four. Therefore, to redu
e the time ofan evolutionary run, subsequent experiments will be based on evaluating a program at everyse
ond pixel position in an image. Figure 5.9 depi
ts �tness graphs for ea
h landmark whi
hare similar to those shown in Figure 5.6.
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isor (d) SellaFigure 5.10: Dete
tion rate of the best program from 80 evolutionary runs. An evolutionaryrun is based on applying a program to every se
ond pixel position in the training data.Programs were evolved from features 
al
ulated using hand
rafted shapes and the highestoutput was used for predi
ting the position of the landmark. The data has been jittered forthe purpose of enhan
ing 
larity. Data points lo
ated below the diagonal line indi
ate over�tting of training data.5.4.3 Binary Output5.4.3.1 MotivationPrevious work in this 
hapter has investigated an alternative domain dependent approa
hfor evaluating �tness. The �tness is evaluated by applying a program as a moving windowa
ross an image and 
omputing the output at ea
h pixel lo
ation. The highest output fromthe image is used for predi
ting the position of the landmark. This pro
ess is based on thepremise that only one obje
t of interest is always lo
ated in the image. An alternative is thedomain independent approa
h des
ribed in Chapter 4 that applies a program to the image
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omputes the output as des
ribed above, however, in this 
ase ea
h lo
ation is labelledeither obje
t or ba
kground depending on the whether the program's output is positive orotherwise. The labelled positions are des
ribed as binary outputs in the dete
tion map. Referto Se
tion 4.3.3 for additional information des
ribing how this approa
h is used for lo
atingobje
ts.The obje
tive of this se
tion is to 
ompare the dete
tion and false alarm rates of programsthat have been evolved using the domain independent and domain dependent approa
h toevaluate �tness. In both 
ases the evolutionary pro
ess will use features 
al
ulated fromthe hand
rafted shapes as depi
ted in Figure 5.2. The �tness of a program using the domainindependent approa
h is evaluated as per Se
tion 4.3.3. The method for evaluating �tness forthe domain dependent approa
h is outlined in Se
tion 5.4.1. Advantages and disadvantageswill be given for both approa
hes.5.4.3.2 ResultsResults presented in Table 5.3 are for the nose and in
isal upper in
isor landmarks. Thedete
tion rate for lo
ating the nose landmark, a simple dete
tion problem, was similar usingeither the domain dependent approa
h (highest output) or the domain independent approa
h(binary output). The dete
tion rate for the in
isal upper in
isor, a medium diÆ
ulty problem,using the domain dependent approa
h was slightly lower 
ompared to the domain independentapproa
h. However, the false alarm rate for both landmarks using the domain independentapproa
h was signi�
antly higher 
ompared to the domain dependent approa
h approa
h. Anadvantage of using the highest output for predi
ting the position of 
ephalometri
 landmarksis that fewer false alarms are produ
ed.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 102Training set Testing setHighest Binary Highest BinaryNose Averagedete
tion(%) 99.24 98.54 97.55 99.17p-value 0.000 0.000false alarm(%) 0.76 47.33 2.45 33.75Best programdete
tion(%) 100 100 100 100false alarm(%) 0 3.66 0 0In
isal Averagedete
tion(%) 94.61 97.38 88.98 94.58p-value 0.000 0.000false alarm(%) 5.39 107.50 11.02 94.17Best programdete
tion(%) 97.59 98.80 96.30 100false alarm(%) 2.41 72.29 3.70 51.85Table 5.3: Comparison of dete
tion programs that were evolved to predi
t the position ofthe landmark using the highest output and binary output. The averages are 
al
ulated fromthe best individual from ea
h run for 80 evolutionary runs. The p-value is 
al
ulated from atwo-sample t test to 
ompare the mean dete
tion rate from two independent samples.5.4.3.3 Dis
ussionThe primary obje
tive of this work as des
ribed in Se
tion 1.1 is to have an automated ap-proa
h for lo
ating 
ephalometri
 landmarks. However, it is expe
ted landmarks not foundwill need to be manually lo
ated, while false alarms will require a pra
titioner to 
he
k theX-ray and re-position landmarks. The results from the previous se
tion demonstrated the do-main dependent approa
h produ
ed fewer false alarms 
ompared to the domain independentapproa
h. However, the domain dependent approa
h makes only one predi
tion resulting ina de
rease in dete
tion rate.Future work for in
reasing dete
tion rate and redu
ing false alarm rate would be to applya two stage approa
h for obje
t dete
tion. Multiple stage approa
hes have been appliedpreviously by [58, 118, 141℄ for lo
ating obje
ts in large images. The �rst stage would be totrain a 
lassi�
ation program, similar to the method des
ribed as the domain independentapproa
h, with the aim of minimising the number of 
andidate positions in the image. These
ond stage would then train a dete
tion program that would only be applied to the 
andidatepositions. The highest output from the dete
tion program, as used in the domain dependentapproa
h, would be used to predi
t the position of the landmark.
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ause the 
omplexity of the problem has been redu
ed using a two stage approa
h, itis expe
ted that dete
tion programs will be
ome easier to understand. Currently programsare quite large and program 
omplexity in
reases with the level of dete
tion diÆ
ulty.if Output_1 < 0 thenba
kgroundelseif Output_2 > highestre
ord position(x, y)Algorithm 1: Des
ription of the two stage approa
h applied to obje
t dete
tion. The �rststage applies a 
lassi�
ation program to 
lassify positions based on the output, Output_1.The se
ond stage applies a dete
tion program to ea
h of the 
andidate positions, i.e. whenOutput_1 is greater than zero, and the output is 
omputed, Output_2. The highest outputfrom the dete
tion program is used to predi
t the position of the landmark.5.4.4 Highest Output: Un
ertain region5.4.4.1 MotivationIt was demonstrated that a method using a domain dependent approa
h for lo
ating land-marks is able to outperform the domain independent approa
h in terms of produ
ing fewerfalse alarms. The domain dependent approa
h des
ribed in Se
tion 5.4.1 uses the highestoutput to predi
t the most likely position of the landmark. However, the highest output doesnot always 
orre
tly predi
t the lo
ation of the landmark and the false alarm rate in
reaseswith image 
omplexity. This poses the question: \Are we able to re�ne the domain dependentapproa
h with the obje
tive of redu
ing the false alarm rate?"Previous work in this 
hapter has shown some landmarks 
annot be lo
ated a

uratelyenough for a 
ephalometri
 analysis be
ause the images are either ambiguous in nature orlo
ated within a 
luttered ba
kground. The dete
tion performan
e for lo
ating landmarkswithin a 
luttered s
ene is most likely improved by making available better terminal andfun
tion sets, however, improving the dete
tion performan
e of landmarks within areas ofambiguity we feel is related to how �tness is evaluated. An example of ambiguity is �ndingthe position of the upper lip landmark that may also en
ompass the lower lip within the sameimage as shown in Figure 5.11. In this example, both the upper and lower lips are similar in
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e.Figure 5.11 is an image showing the upper and lower lips with the a

ompanying output ofa reasonably su

essful dete
tion program that has been evolved using the domain dependentapproa
h outlined in Se
tion 5.4.1. The output of the program, whi
h is represented as thesurfa
e plot, has been superimposed on the greys
ale image; ea
h point on the wire meshis the output of the program at a given pixel lo
ation. The obje
tive of this program wasto dete
t the tip of the upper lip. Figure 5.4.1 illustrates that the highest output from thedete
tion program { refer to the left side of View A { 
oin
ides with the position of the lowerlip. In this parti
ular example, the landmark was in
orre
tly lo
ated and is therefore a falsealarm. The se
ond highest output { refer to the right side of View A { 
oin
ides with the
orre
t lo
ation of the upper lip. The reason for this o

urring is that the lower lip exhibitssimilar 
hara
teristi
s to the upper lip. So based on this result, are we able to reformulate thedomain dependent approa
h using the highest output for lo
ating landmarks so that images
ontaining ambiguity are not 
lassi�ed?
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Figure 5.11: An ambiguous image that 
ontains the desired obje
t, the upper lip, but also
ontains the lower lip that is similar in appearan
e. The surfa
e plot represents the outputfrom a dete
tion program that has been applied to the image. The highest output is lo
atedat the lower lip at position (11, 31) and the region 
ontaining the se
ond highest output islo
ated at the upper lip at position (20, 7). The domain dependent approa
h uses the highestoutput to predi
t the position of the landmark and as result the landmark will be re
ordedas a false alarm.As des
ribed in Se
tion 2.5.2.6, a 
ommon approa
h to using geneti
 programming forobje
t dete
tion problems has been to formulate as an obje
t/non-obje
t 
lassi�
ation prob-lem. This is the most simplisti
 
lassi�
ation model as the output of the program de
idesthe 
lass and often zero has been 
hosen as the de
ision boundary. An ex
eption to this isresear
h presented by Teredesai et al. [144℄ who proposed an unde�ned region that was usedwhen the dete
tor is unable to 
on�dently make either a positive or negative de
ision { thiswas dis
ussed in Se
tion 2.5.2.6. However, our domain dependent approa
h uses the highestoutput for predi
ting the lo
ation of the landmark and we have found that this signi�
antlyredu
es the number of false alarms when 
ompared to 
lassifying as obje
t/non-obje
t as perthe domain independent approa
h. So rather than de�ning an arbitrary region between two
lasses, Teredesai et al.'s 
on
ept has been reformulated so a landmark will not be 
lassi�ed
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tor is within a per
entage of the highest output. This is knownas the un
ertain region.The �tness of a program during training is 
al
ulated by using dete
tion and false alarmrates. The �tness is evaluated as follows:1. A program is traversed a
ross a training image and the program's output, Pij , atposition (i; j) is evaluated. The predi
ted position of the dete
ted landmark is re
ordedas the lo
ation 
orresponding to the highest output, PHighest.2. A se
ond traversal of the image veri�es that the program's output at ea
h lo
ationin the image, Pij, is not similar to the predi
ted position, PHighest. Ea
h positionis veri�ed using Equation 5.4 whi
h determines if a position has produ
ed an outputwithin the shaded area as shown in Figure 5.12(a). The size of the shaded area is pre-determined prior to training and represents the un
ertain region whi
h is expressed as aper
entage between the lowest, PLowest, and highest outputs, PHighest. For example, athreshold of 10 requires the program's output at ea
h position within the image, otherthan the predi
ted position, to be at least 10% smaller than the highest output. Ifthe 
riterion of Equation 5.4 has been ful�lled then the landmark for that image isre
orded as un
lassified, i.e. the landmark's position will not be predi
ted for theimage. Pixels lo
ated within a distan
e of 5 pixels (2 mm) of the predi
ted positionare not veri�ed be
ause they are within an error toleran
e that is a

eptable for a
ephalometri
 analysis. It is also expe
ted that an output at these pixel lo
ations willmore than likely produ
e an output similar to the highest output.PHighest � PijPHighest � PLowest � 100% 6 Threshold (5.4)3. If the landmark in the image has not been un
lassified, then a 
omparison is madebetween the landmark's predi
ted position and the known true lo
ation. A mat
h, truepositive, o

urs when the 
omparison is within a toleran
e of 5 pixels or 2 mm. Ifthe 
omparison is not within the toleran
e then the landmark for the respe
tive imageis re
orded as a false alarm. The toleran
e is an upper error limit that is deemed
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eptable for a 
ephalometri
 analysis. The error is de�ned as the Eu
lidean distan
ebetween the position found by the `system' and an `expert'.4. At the 
on
lusion of evaluating the program for ea
h image in the training set thedete
tion rate, DR, and false alarm rate, FAR, are 
al
ulated.5. The �tness is 
omputed as per Equation 5.5.fitness = A� FAR+B (1�DR) (5.5)where A and B are 
onstant values of 50 and 1000 respe
tively that are also used inSe
tion 4.3.3. The �tness fun
tion de�ned in Equation 5.5 is 
onstru
ted so as dete
tionrate in
reases and false alarm rate de
reases the �tness s
ore will approa
h zero.The ultimate aim is to 
orre
tly dete
t the position of the landmark, however, if thelandmark 
annot be 
on�dently lo
ated then ideally we would like the program not to predi
tthe position of the landmark as opposed to produ
ing a false alarm. The �tness fun
tion fromEquation 5.1 is not used for this s
enario be
ause false alarms and un
lassi�ed landmarkswould be equally awarded. The obje
tive of the �tness fun
tion in Equation 5.5 is to rewardprograms that 
an dete
t landmarks and produ
e a small number of false alarms, and alsoindire
tly reward programs by not lo
ating landmarks that are within 
luttered or ambiguouss
enes.
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(a) (b)Figure 5.12: The shaded area in (a) is the un
ertain region and is de�ned as a per
entagebetween the lowest, PLowest, and highest output, PHighest. The �gure in (b) represents animage where `�' represents the position of the highest output. A 
omparison is performedon the shaded area to determine if any outputs are within the un
ertain region. The shadedarea in (b) is bound between an error toleran
e of 5 pixels around the highest output and theedge of the image.5.4.4.2 ResultsTo determine the e�e
t of the threshold on false alarm rate, the method has been testedon the upper lip and sella landmarks. The reason for sele
ting these landmarks is be
ausethe performan
e of the dete
tion programs was not adequate. The upper lip landmark is amedium level of dete
tability based on the ambiguity between the upper and lower lips. Thesella landmark is a more diÆ
ult landmark whi
h is lo
ated within a 
luttered ba
kground.The results for ea
h threshold setting are based on 80 evolutionary runs.�rate = DR� FAR (5.6)The graphs in Figure 5.13 show that in
orporating a threshold during training produ
esprograms that have minimal e�e
t on false alarm rate when dete
ting the upper lip, whilethe results for the sella landmarks show false alarm rate is signi�
antly redu
ed plateauing ata threshold value of 0.1. However, the smaller graph inset of ea
h graph shows an undesirabletrend of dete
tion rate redu
ing at a faster rate than false alarm rate. This is des
ribed as�rate and is de�ned in Equation 5.6. This indi
ates that while false alarm rate is redu
ed it
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tion rate. In other words, dete
tion rate redu
es at a faster ratethan false alarm rate.
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(b) TestingFigure 5.13: The graphs illustrate how the un
ertain region in
uen
es false alarm rate anddete
tion rate. The top and bottom graphs are results for the upper lip and sella landmarksrespe
tively. The graph inset is the di�eren
e between dete
tion and false alarm rates, �Rate,at ea
h threshold. The results are based on an average whi
h is 
al
ulated by averaging thebest individual at the end of 80 evolutionary runs.5.4.5 Highest output: Minimum Distan
e Error5.4.5.1 MotivationThe approa
hes to evaluating �tness for our dete
tion problem, that have been des
ribed sofar, use a 
ombination of dete
tion and false alarm rates. The dete
tion rate is a measure ofhow well the programs predi
t the landmarks within 2 mm of the desired lo
ation, however,the a

ura
y of a dete
tion program beyond the 2 mm toleran
e was not rewarded. An



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 110alternative to evaluating �tness is a �tness metri
 that rewards a program that 
an a

uratelylo
ate landmarks by minimising the 
umulative distan
e error. The ultimate obje
tive for ourproblem is to lo
ate landmarks within 2 mm of the desired lo
ation. So how well will a �tnessmetri
 that minimises the distan
e error predi
t the lo
ation of landmarks and how will it
ompare with the �tness measure des
ribed as the domain dependent approa
h in Se
tion5.4.1?The approa
h des
ribed in this se
tion uses an alternative measure to evaluate �tnessthat rewards programs on the basis of minimising 
umulative distan
e error, �, when appliedto images in the training set. The distan
e error is the Eu
lidean di�eren
e between thelandmark's true lo
ation and the predi
ted position. The �tness is 
al
ulated as follows:1. The program is applied as a moving window a
ross a training image and the programoutput, Output, is evaluated at ea
h pixel lo
ation. The output of the geneti
 pro-gram, Output, is a 
oating point number whi
h is interpreted as the likelihood thatthe evaluated position from the image is a landmark 
entre or ba
kground. Duringtraining the highest value of Output from ea
h image is used as the predi
ted positionof the landmark. The predi
ted position, (xi; yi), given by the geneti
 program is then
ompared with the known true lo
ation, (Xi; Yi), and the error is 
al
ulated.2. The performan
e of a program is measured by iteratively applying the �rst step to ea
himage in the training set and 
al
ulating the distan
e error.3. The �tness is 
omputed as per equation 5.8.
fitness = � (5.7)where � = nXi=0q(Xi � xi)2 + (Yi � yi)2and n is the number of images in the training set



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 1115.4.5.2 ResultsTwo two-sample t tests are used to determine if there is a di�eren
e in mean dete
tion rateand dete
tion a

ura
y between two samples of programs using: (a) 
umulative distan
e erroras a meaure of �tness and (b) dete
tion rate as a �tness measure. Let the null hypothesis bethat the two samples are from the same population.The p-values for 
omparing the dete
tion rate of programs applied to training images areless than an alpha of 0.05 for the nose, in
isal upper in
isor and sella landmarks. Therefore,the null hypothesis, that the dete
tion rate of programs using the 
umulative distan
e erroris the same, 
an be reje
ted. However, the average dete
tion rates for the nose and in
isalupper in
isor were only 0.60% and 2.62% less than the domain dependent approa
h des
ribedin Se
tion 5.4.1. The performan
e of the sella landmark was worst with the average dete
tionrate de
reasing by 36.45%.The p-values for the dete
tion a

ura
y of programs applied to training images are lessthan 0.05 for the bottom 
orner of ruler, nose and in
isal upper in
isor landmarks. Therefore,the null hypothesis, that the dete
tion a

ura
y of programs using the 
umulative distan
eerror is the same, 
an be reje
ted. A 
omparison of the average dete
tion a

ura
y between thetwo approa
hes in Table 5.4 indi
ates a signi�
ant improvement in average dete
tion a

ura
yfor the bottom 
orner of the ruler, nose and in
isal upper in
isor landmarks. However, therewas not enough eviden
e to suggest that the dete
tion a

ura
y for the sella landmark had
hanged.These results suggest that using dete
tion rate as a �tness measure is advantageous be-
ause the fun
tion is better suited to a wider range of landmark dete
tion diÆ
ulties. How-ever, the 
umulative distan
e error as a �tness measure performs extremely well at pre
iselylo
ating easier types of landmarks. It is re
ommended as future work that these two �tnessfun
tions should be 
ombined as a multiple obje
tive problem. It is expe
ted that dete
tionprograms will have high dete
tion performan
e and also improved a

ura
y.
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Bottom
ornerof ruler

Averagedete
tion (%) 99.97 99.98 100 99.21false alarm(%) 0.03 0.02 0 0.79a

ura
y (pixels) 0.86 2.41 0.83 2.45p-valuedete
tion (%) 0.563 0.005a

ura
y (pixels) 0.000 0.000Best programdete
tion (%) 100 100 100 100false alarm(%) 0 0 0 0a

ura
y (pixels) 0.81 0.97 0.75 1.14
Nose Averagedete
tion (%) 98.64 99.24 97.69 97.55false alarm(%) 1.36 0.76 2.31 2.45a

ura
y (pixels) 1.85 2.39 2.21 2.67p-valuedete
tion (%) 0.003 0.736a

ura
y (pixels) 0.000 0.001Best programdete
tion (%) 100 100 100 100false alarm(%) 0 0 0 0a

ura
y (pixels) 1.51 1.69 1.46 1.63
In
isal Averagedete
tion (%) 91.99 94.61 88.24 88.98false alarm(%) 8.01 5.39 11.76 11.02a

ura
y (pixels) 2.64 3.13 3.26 3.34p-valuedete
tion (%) 0.000 0.282a

ura
y (pixels) 0.000 0.511Best programdete
tion (%) 97.59 98.80 92.59 92.59false alarm(%) 2.41 1.20 7.41 7.41a

ura
y (pixels) 1.93 2.42 2.42 2.43
Sella Averagedete
tion (%) 18.28 54.73 16.48 44.40false alarm(%) 81.72 45.27 83.52 55.60a

ura
y (pixels) 14.13 14.93 17.25 17.58p-valuedete
tion (%) 0.000 0.000a

ura
y (pixels) 0.310 0.745Best programdete
tion (%) 68.29 69.51 59.26 62.96false alarm(%) 31.71 30.49 40.74 37.04a

ura
y (pixels) 6.08 9.62 9.07 13.14Table 5.4: A 
omparison of 
umulative distan
e error and dete
tion rate �tness fun
tions.The averages are 
al
ulated from the best individual from ea
h run for 80 evolutionary runs.The p-value is 
al
ulated from a two-sample t test to 
ompare the mean dete
tion rate anda

ura
y (pixels) from two independent samples.
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tion Set5.5.1 MotivationThe aim of this se
tion is to investigate a sele
tion of operators that are 
ommonly usedin geneti
 programming for solving vision and image related appli
ations. As dis
ussed inSe
tion 2.5.2.5, the most 
ommon operators used in geneti
 programming for solving visionand image related problems are the +, �, � and / operators. A de�nition for ea
h of theseoperators is given in Se
tion 4.3.2. Other operators less 
ommonly used in
lude the min andmax operators. The min and max operators return the minimum and maximum value froman arity of two respe
tively. A de�nition for ea
h operator is given in Table 5.5.Fun
tionsFun
tion Arity De�nition+ 2 a+ b� 2 a� b� 2 a� b/ 2 � ab if b 6= 0else INT MAXmax 2 max(a; b)min 2 min(a; b)Table 5.5: De�nition of operators.The arithmeti
 operators in Table 5.5 allows the formation of linear and non-linear dete
-tion programs and in
orporating min and max into the fun
tion set allows non-
ontinuousdete
tion programs to be evolved. Even though many operators 
an be in
luded in the fun
-tion set, a dis
ussion of previous resear
h by [74, 138℄ in Se
tion 2.5.2.5 indi
ated that thein
lusion of unne
essary operators or a large fun
tion set 
an lead to fewer su

essful runs orslower 
onvergen
e of an evolutionary run. This is 
aused by additional operators in
reasingthe size of the sear
h spa
e. Therefore, the aim of this se
tion is to �nd a 
ombination ofoperators based on the fun
tion sets de�ned in Table 5.6 that will, on average, lead to betterperforming solutions.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 114Case Fun
tion Set1 +, �2 +, �, �, /3 +, �, �, /, min, maxTable 5.6: De�nition of three fun
tion sets that are made available during the geneti
 sear
h.Ea
h fun
tion set in Table 5.6 will be investigated using the domain dependent approa
hthat uses highest output for predi
ting the position of the landmark. This approa
h is de-s
ribed in Se
tion 5.4.1.5.5.1.1 ResultsIn this se
tion we investigate the dete
tion performan
e of programs that have been evolvedusing three di�erent fun
tion sets. For 
omparing the three di�erent fun
tion sets, a one-wayANOVA [132℄ will be used to measure the di�eren
es in mean dete
tion rate. Let the nullhypothesis be that the mean dete
tion rates of programs that have been evolved from thethree fun
tions are the same. The hypothesis is tested on three di�erent landmark types.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 115Training TestingCase 1 Case 2 Case 3 Case 1 Case 2 Case 3+,� +,�,�,/ +,�,�,/,min,max +,� +,�,�,/ +,�,�,/,min,maxNose Averagedete
tion rate(%) 99.65 99.24 99.32 96.81 97.55 96.99p-value 0.011 0.050program size 56.83 32.30 47.65 - - -Best programdete
tion rate(%) 100 100 100 100 100 100In
isor Averagedete
tion rate(%) 95.09 94.61 94.78 89.07 88.98 89.86p-value 0.515 0.346program size 72.20 48.00 50.38 - - -Best programdete
tion rate(%) 97.59 98.80 97.59 92.59 92.59 96.30Sella Averagedete
tion rate(%) 62.81 54.73 52.81 53.89 44.40 43.15p-value 0.000 0.000program size 71.67 52.00 47.23 - - -Best programdete
tion rate(%) 68.29 69.51 74.39 62.96 62.96 62.96Table 5.7: A 
omparison of average dete
tion rate for three fun
tion sets. The averagedete
tion rate is 
al
ulated from the best individual's dete
tion rate from ea
h run for 80evolutionary runs. The p-value is based on a 
omparison of mean dete
tion rate for the threefun
tion sets using a one-way ANOVA.The p-values for 
omparing the dete
tion rate of programs when applied to training im-ages are less than an alpha value of 0.05 for the nose and sella landmarks. Therefore, the nullhypothesis, of the mean dete
tion rate of programs that were evolved from the three fun
tionsets is the same, is reje
ted. This indi
ates that at least two of the means are signi�
antlydi�erent. Sin
e the alternative hypothesis is supported, a Tukey's pairwise 
omparison [132℄is 
ondu
ted to determine dis
repan
ies between the di�erent fun
tion sets. The pairwise
omparison from Table 5.8 revealed that during training, the fun
tion set of 
ase 1 was di�er-ent from 
ases 2 and 3 for the nose landmark. However, the di�eren
e in mean dete
tion ratesof the three fun
tion sets shown in Table 5.7 is minimal. The Tukey's pairwise 
omparisonof the mean dete
tion rate for the sella landmark showed that the fun
tion sets of 
ases 1and 2 were di�erent to 
ase 3. The mean dete
tion rate of the sella landmark in Table 5.7indi
ates that 
ase 1 on average will produ
e a program that will outperform 
ases 2 and 3by 8.1% and 10.0% respe
tively. There was not enough eviden
e to suggest that any of the
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tion sets had in
uen
ed the mean dete
tion rate for the in
isal upper in
isor. Thisanalysis is 
onsistent with the average dete
tion results of programs applied to test images.On average, a program that was evolved using the (+, �) fun
tion set was better for thenose and sella landmarks, however, the program size using the (+, �, �, /) operators wereon average 
onsiderably smaller. It is not 
on
lusive that the dis
repan
y in program sizesbetween the two fun
tion sets are 
aused by introns. No parsimony fa
tor was used to 
ontrolbloat during training. Training TestingNose Case 1 22 Disimilar3 Similar Similar Case 1 22 Disimilar3 Similar SimilarIn
isal Case 1 22 Similar3 Similar Similar Case 1 22 Similar3 Similar SimilarSella Case 1 22 Disimilar3 Disimilar Similar Case 1 22 Disimilar3 Disimilar SimilarTable 5.8: A Tukey's pairwise 
omparison of the dete
tion performan
e of programs evolvedfrom three fun
tion sets.
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(
) SellaFigure 5.14: The �tness graphs are a 
omparison of the average �tness s
ore for the threefun
tion sets de�ned in Table 5.6. The average �tness s
ore is 
al
ulated from the �tnesss
ore of the best individual at ea
h generation for 80 evolutionary runs.The �tness graphs in Figure 5.14 
ompare the average �tness s
ores between the threedi�erent fun
tion sets that are de�ned in Table 5.6. The evolutionary pro
ess was terminatedat either 100 generations or when a program a
hieved a 100% dete
tion rate. All three graphsindi
ate that 
ase 1, i.e. the (+, �) fun
tion set, a
hieves an improvement in �tness s
orethat is signi�
antly qui
ker 
ompared to the fun
tion sets of 
ases 2 and 3. This means thaton average, a �tter solution is available sooner 
ompared to programs that were evolved usingthe ri
her fun
tion set. It was reported in the literature by [152℄ that the performan
e maybe degraded if too many operators are in
luded in the fun
tion set as this in
reases the sizeof the sear
h spa
e. The (+, �, �, /) and (+, �, �, /, min, max) fun
tion sets produ
ea similar rate of 
onvergen
e for optimising �tness s
ore during training of the nose, in
isalupper in
isor and sella landmarks.
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t the in
isal upper in
isor using the (+, �) fun
tion setdemonstrated that negligible improvements were gained after generation 45, while to a
hievethe same �tness using the (+, �, �, /) fun
tion set meant training for an additional 22generations. The �tness graph for the sella landmark showed that minimal improvementswere gained beyond generation 88. Although a similar �tness was a
hieved for the in
isalupper in
isor at generation 100 for the three fun
tion sets, we have spe
ulated that if traininghad 
ontinued using the (+, �, �, /) or (+, �, �, /, min, max) fun
tion set beyond generation100 then a similar average �tness may have o

urred.Previously we 
ompared the mean dete
tion rate of programs that were evolved fromthree di�erent fun
tion sets. The analysis was based on 80 evolutionary runs. The out
omeof the investigation was the (+, �) fun
tion set produ
ed programs that were on average
omparable to or better performing than the other two fun
tion sets. However, upon a 
loserinspe
tion of the best evolutionary runs, i.e. the top 10% of evolutionary runs, as shown inTable 5.9, we noti
ed that the dete
tion rate for programs that were evolved from the (+,�) fun
tion set was not as good as the programs evolved from the (+, �, �, /) or (+, �,�, /, min, max) fun
tion sets when applied to test images 
ontaining the nose landmark.There appears to be no eviden
e to suggest that there is a signi�
ant di�eren
e of dete
tionperforman
e for programs evolved from the three fun
tion sets when applied to training data.This was supported by a one-way ANOVA and a 
omparison of average dete
tion rates asshown in Table 5.9. Training TestingCase 1 Case 2 Case 3 Case 1 Case 2 Case 3+,� +,�,�,/ +,�,�,/,min,max +,� +,�,�,/ +,�,�,/,min,maxNose dete
tion rate(%) 100 100 100 96.76 100 100p-value * 0.000In
isor dete
tion rate(%) 97.44 98.04 98.64 88.89 92.59 91.20p-value 0.000 0.067Sella dete
tion rate(%) 68.29 68.90 68.90 56.95 56.02 57.87p-value 0.731 0.832Table 5.9: A 
omparison of average dete
tion rate from the top 10% of evolutionary runsfor ea
h fun
tion set. The average dete
tion rate is 
al
ulated from the best individual'sdete
tion rate from ea
h run based on the top 10% of evolutionary runs. The p-value is basedon a 
omparison of mean dete
tion rate for the three fun
tion sets using a one-way ANOVA.



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 119Training TestingNose 1 22 Similar3 Similar Similar 1 22 Disimilar3 Disimilar SimilarIn
isal 1 22 Similar3 Disimilar Similar 1 22 Similar3 Similar SimilarSella 1 22 Similar3 Similar Similar 1 22 Similar3 Similar SimilarTable 5.10: An ANOVA matrix 
omparing the average dete
tion performan
e from the top10% of evolutionary runs for ea
h fun
tion set.5.5.2 Analysis of a linear fun
tion set: f+, �gA linear program is de�ned as a 
ombination of operators and terminals having an equivalentform as the linear model shown in Equation 5.8. The features of Mi and Si 
orrespond tothe mean and standard deviation 
al
ulated from the ith shape from grey level intensities.The features and their 
orresponding shapes are shown in Figure 5.2 on page 85.Output = �1M1 + �1S1 + �2M2 + �2S2 + � � � + �nMn + �nSn + C (5.8)= nXi=1(�iMi + �Si) + C;where �i and �i are integersOur landmark dete
tion problem has been formulated so that the highest output is usedto lo
ate the position of the landmark. This means that the 
onstant, C, has no e�e
t inpredi
ting the position of the landmark and therefore the 
onstant 
an be eliminated. Theequation 
an be redu
ed to the linear model shown in Equation 5.9.Output = nXi=1(�iMi + �Si) (5.9)



CHAPTER 5. DOMAIN DEPENDENT APPROACH: HANDCRAFTED SHAPES 120(- (- (+ (- M1 S3) S5) (+ S1 (+ (+ (+ M2 (- S1 (- M1 M7))) (+ M2 S1))(- (+ M3 (- S4 (- M1 108.475))) (- M1 108.475))))) (+ S3 (+ (+ (+ (+ (+ M7(+ M2 S1)) (+ (- S4 S3) S1)) (- S1 (- M1 M7))) (+ (- S1 (- M1 M7)) S1))(- (+ M2 (- S1 (- M1 108.475))) (- M1 108.475)))))Figure 5.15: An evolved linear dete
tion program for lo
ating the sella landmark.An example of a linear program evolved to lo
ate the sella landmark is shown in Figure5.15. This LISP S-expression 
an be simpli�ed to the equivalent program shown in Equation5.10. Output = 8M1 � 9S1 � 4M2 �M3 � S3 � 2S4 + S5 � 4M7 (5.10)Figure 5.16 shows an analysis of the 
oeÆ
ients generated in 80 evolutionary runs. Themagnitude of ea
h 
oeÆ
ient, � and �, is 
al
ulated using the best program from ea
hevolutionary run. The frequen
y that a 
oeÆ
ient's magnitude is either positive, negative orzero, is 
ollated for ea
h terminal and presented in the form of a bar 
hart shown in the �gure.The three bar 
harts in Figure 5.16 show that some of the terminals have 
oeÆ
ients that arepredominantly all positive or negative. What this indi
ates is that the evolutionary pro
esshas dire
ted the sear
h toward the systemati
 learning of an underlying algorithm that maybe 
onsistent between ea
h evolutionary run. A further investigation into understanding theevolved programs is presented in Chapter 7.
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) SellaFigure 5.16: Frequen
y that a terminal's 
oeÆ
ient, �i or �i in Equation 5.9, is negative,positive or zero (i.e. not used in a program). The analysis uses the best program at the endof 80 evolutionary runs.5.6 Highest Output: Pixels as Features5.6.1 MotivationPrevious work in this 
hapter has investigated several approa
hes for evaluating the �tness ofa program using features that were 
al
ulated from hand
rafted shapes. The obje
tive was todetermine a suitable approa
h for solving our landmark dete
tion problem. We demonstrateda domain dependent approa
h that uses the highest output for predi
ting the position of thelandmark. The most suitable �tness metri
 used dete
tion rate as a measure of performan
e.The overall performan
e of the evolved programs, i.e. dete
tion and false alarm rates, waspreferable to the domain independent approa
h des
ribed in Chapter 4. Both methods were
ompared on four types of landmarks ranging from easy to hard.
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Figure 5.17: The diagram illustrates an input window of size 14�14 pixels divided into m2sub-regions. The average grey level intensity of the pixels within ea
h sub-region is 
al
ulated.The averages at ea
h sub-region represent the terminals that are available for the evolutionarypro
ess.However, we would now like to apply our domain dependent approa
h that was des
ribedabove and 
ompare the performan
e of programs that were evolved from features using hand-
rafted shapes with pixels as features des
ribed in Se
tion 4.3.1. The operators used in thegeneti
 sear
h are limited to the f+, �, �, /g fun
tion set.5.6.2 ResultsA two-sample t test is used to determine if there is a di�eren
e in mean dete
tion rate betweentwo samples of programs using: (a) pixels as features and (b) programs evolved using features
al
ulated from hand
rafted shapes. Let the null hypothesis be that the two samples are fromthe same population.
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rafted Pixelbased Hand-
raftedBottom
ornerof theruler Averagedete
tion(%) 99.94 99.98 99.44 99.21false alarm(%) 0.06 0.02 0.56 0.79program size 33.05 24.88 - -p-value 0.176 0.472Best programdete
tion 100 100 100 100false alarm 0 0 0 0Nose Averagedete
tion(%) 97.62 99.24 95.79 97.55false alarm(%) 2.38 0.76 4.21 2.45program size 53.75 32.30 - -p-value 0.000 0.001Best programdete
tion 100 100 100 100false alarm 0 0 0 0In
isal Averagedete
tion(%) 94.28 94.61 88.06 88.98false alarm(%) 5.72 5.39 11.94 11.02program size 45.50 48.00 - -p-value 0.489 0.221Best programdete
tion(%) 98.80 98.80 96.30 92.59false alarm(%) 1.20 1.20 3.70 7.41Sella Averagedete
tion(%) 18.35 54.73 10.60 44.40false alarm(%) 81.65 45.27 89.40 55.60program size 58.12 52.00 - -p-value 0.000 0.000Best programdete
tion(%) 30.49 69.51 25.93 62.96false alarm(%) 69.51 30.49 74.07 37.04Table 5.11: A 
omparison of dete
tion performan
e for programs that were evolved frompixel based features and features using hand
rafted shapes. The averages are 
al
ulated fromthe best individual from ea
h run for 80 evolutionary runs. The p-value is 
al
ulated from atwo-sample t test to 
ompare the mean dete
tion rate from two independent samples.The p-value is less than an alpha value of 0.05 for the nose and sella landmarks. Therefore,the null hypothesis, that the mean dete
tion rate of programs evolved from pixel basedfeatures and features 
al
ulated using hand
rafted shapes is the same, 
an be be reje
ted.The average dete
tion rates for the nose and sella landmarks de
reased by 1.62% and 36.38%respe
tively when programs were evolved using pixel based features. There was no eviden
e tosuggest that the average dete
tion rate for bottom 
orner of the ruler and in
isal upper in
isor
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hanged. Therefore, while pixel based features work as well as hand
raftedfeatures for evolving programs on two of the four landmarks, the features fail to produ
ea 
omparable dete
tion rate on the more diÆ
ult sella landmark. This indi
ates that pixelbased features do not perform as well as features 
al
ulated using hand
rafted shapes.
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) SellaFigure 5.18: The �tness graphs are a 
omparison of the average �tness s
ore for programsevolved using features 
al
ulated from hand
rafted shapes and programs evolved using pixelsas features. The average �tness is 
al
ulated from the �tness s
ore of the best individual atea
h generation for 80 evolutionary runs.The �tness graphs in Figure 5.18 indi
ate that on average, the improvement in �tnesss
ores of programs for the nose and sella landmarks is signi�
antly qui
ker when using features
al
ulated from hand
rafted shapes. The �tness of programs using pixel based features forthe sella landmark at generation 100 had not improved mu
h from the initial population.However, the �tness of programs when using hand
rafted features had improved signi�
antlyfrom the initial population. This suggests that pixel based features do not work well on
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ult dete
tion problems. The rate of 
onvergen
e of both feature sets used to evolvedete
tion programs for predi
ting the bottom 
orner of the ruler and in
isal upper in
isorlandmark is similar.5.7 SummaryThe aim of this 
hapter was to determine if geneti
 programming is able to evolve a dete
tionprogram that is a

urate enough for the purpose of predi
ting the position of 
ephalometri
landmarks. This was a
hieved experimentally by fo
using on how to formulate geneti
 pro-gramming for the landmark dete
tion problems presented in this study. The investigationfo
used on: (a) how to improve �tness evaluation for redu
ing the number of false alarms, (b)a 
omparison between hand
rafted and domain independent features and (
) an investigationof di�erent fun
tion sets. To improve the robustness of the approa
h, the experimental workwas 
ondu
ted on a sele
tion of landmarks ranging from easy to diÆ
ult. The �ndings fromthis 
hapter will form the foundation for future work and be
ome the investigative basis tobe used in the subsequent 
hapters. The investigation indi
ated that:� When it is known there is only one obje
t present in an image, using the highest out-put for predi
ting the position of the landmark produ
es signi�
antly less false alarms
ompared with the domain independent approa
h des
ribed in Chapter 4. We alsodemonstrated that the a

ura
y of the dete
tion program 
ould be improved by min-imising the error { the distan
e between the known and predi
ted position { in the�tness fun
tion. However, this �tness metri
 was not as e�e
tive as dete
tion rate forlandmarks that are diÆ
ult to lo
ate. A �tness metri
 that uses dete
tion rate wasshown to be a good measure of performan
e.� The results indi
ate that the f+; �g fun
tion set on average produ
es a dete
tion pro-gram that is 
omparable to or better than the f+; �; �; =g and f+; �; �; =; min; maxgfun
tion sets. However, this 
omparison is driven by average and not optimal. An anal-ysis of the programs from the best performing evolutionary runs (i.e. the top 10% ofevolutionary runs) indi
ates that the f+; �; �; =g fun
tion set produ
es programs
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omparable to, or better than the f+; �g fun
tion set when applied to testdata.� The results suggest that hand
rafted shapes spe
i�
 to a parti
ular landmark are ableto produ
e better performing programs when applied to diÆ
ult landmarks when 
om-pared to pixels as features.



Chapter 6
Learning with Features from PulseCoupled Neural Networks
6.1 Introdu
tionPrevious work in Chapter 5 has improved the domain independent approa
h of geneti
 pro-gramming by using hand
rafted shapes and the highest output to predi
t the position of thelandmark. A �tness measure using dete
tion rate was used as a measure of performan
e.This approa
h was tested and veri�ed on a range of 
ephalometri
 landmarks with varyinglevels of su

ess. The hand
rafted shapes are manually 
onstru
ted and 
ontained within amoving input window. The set of shapes is used for 
al
ulating feature values based on imagestatisti
s of the grey level intensities. The features 
orrespond to terminals that are used asinputs for the geneti
 programming method.We have established in Se
tion 5.6 that dete
tion programs evolved using pixel based fea-tures were not as su

essful as a spe
i�
 set of hand
rafted shapes devised for ea
h landmark.However, the pro
ess for determining what are useful shapes is tedious, time 
onsuming andopen to interpretation. Therefore, the initial investigation of this 
hapter is to determine ifit is possible to automati
ally 
apture useful regions of interest by generating useful shapesusing a segmentation algorithm. If this question is answered in the aÆrmative, then willthese shapes improve the dete
tion performan
e 
ompared to the hand
rafted shapes from127
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tion 5.3.1?6.2 Can regions of interest be extra
ted using a segmentationalgorithm?The aim of this se
tion is to determine if we 
an a
hieve an a

urate representation of alandmarks shape using a segmentation algorithm for highlighting regions of interest. Thesegmented shapes will subsequently be used for 
al
ulating features and used as part of thegeneti
 sear
h. Whilst there are many segmentation te
hniques used in image pro
essing,a promising te
hnique that was dis
ussed Se
tion 2.6 for segmenting regions of interest in
omplex images is the Pulse Coupled Neural Network (PCNN). The PCNN is a relatively newedge dete
tion and segmentation method that has produ
ed promising results in segmentingregions of interest in medi
al images [67, 72, 86, 159℄.The diÆ
ulty of segmenting regions of interest in our problem is that a number of areaslo
ated within the bony tissue of the head are subje
t to both noise and low 
ontrast. Whilefairly a

urate segmentation 
an be a
hieved for a few images using segmentation algorithms,many of the algorithms tend to fail when applied to a larger suite of images unless parametersare 
onstantly adjusted. Be
ause the ultimate goal of our problem is to develop a methodologythat is automated, we are trying to avoid the s
enario of interfering with the methodology by
ontinually altering parameters in an ad ho
 manner to a
hieve the best possible out
ome.6.2.1 Pulse Coupled Neural Network segmentationThe aim of this se
tion is to determine whether the outputs from the Pulse Coupled NeuralNetwork (PCNN) are able to produ
e a segmented output that highlights regions of interestthat will be useful for landmark dete
tion. It is anti
ipated that segmenting the output willprovide useful shapes for landmark dete
tion programs by assisting with dis
riminating thelandmark from ba
kground. The PCNN algorithm used in these experiments is based on the
ode from Lindblad and Kinser [85℄. The PCNN will fo
us on highlighting regions of intereston both soft and bony tissue. The segmented regions will later be used to assist with lo
atingthe position of the landmark. To determine whether pre-pro
essing by a PCNN 
ould be
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tion four landmarks are sele
ted. Two easy landmarks (the mentonand upper lip landmarks), one of medium diÆ
ulty (in
isal upper in
isor landmark) and anextremely hard one (sella landmark) are sele
ted. The sella landmark is lo
ated in an area ofbony tissue that is shown on the X-ray as subtle 
hanges in greys
ale. The other landmarksare lo
ated on the edge of bone/soft-tissue and soft-tissue. The di�erent landmark types usedin Chapter 5 that regularly a
hieved 100% dete
tion performan
e have been omitted fromthis investigation. By using the PCNN it is anti
ipated that a set of parameters for ea
hlandmark will produ
e a binary image that have highlighted shapes relevant for landmarkidenti�
ation.6.2.1.1 Segmentation resultsThe results shown in Figure 6.1 are the binarised output from the PCNN applied to four typesof landmarks. A set of parameters was empiri
ally determined for ea
h type of landmark priorto segmentation. The parameter values remained 
onstant throughout segmentation of thetraining data. The parameters shown in Figure 6.1 are used for segmenting regions of interestfor ea
h type of landmark.To determine the likelihood that the PCNN output 
ould be used to assist with lo
at-ing landmarks, the segmented outputs were manually 
lassi�ed into three 
ategories, i.e.Definitive, Partially de�ned and Failure. The 
ategories qualify the output and establishthe validity of the PCNN parameters. Table 6.1 is a summary of segmentation results fromthe PCNN applied to the four types of landmarks. The results indi
ate the PCNN methodwas able to a

urately segment regions lo
ated on the edge of bone/soft-tissue or soft-tissue,however, the te
hnique was less su

essful for highlighting the semi-
ir
ular region that en-
ompasses the sella landmark. The redu
ed segmentation su

ess rate for the sella landmarkis be
ause of the low 
ontrast between the region of interest(semi-
ir
ular region) and ba
k-ground. The images shown in Figure 6.1 are a sample of results from a dataset of 83 images.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS130Menton�F = 1�L = 0:3�� = 0:15� = 0:08VF = 0:01VL = 1V� = 1 Cut-out I k � � �
BinaryImage A k � � �Upper lip�F = 1�L = 0:3�� = 0:15� = 0:26VF = 0:01VL = 1V� = 1 Cut-out I k � � �
BinaryImage A k � � �In
isal upper in
isor�F = 1�L = 0:3�� = 0:15� = 0:08VF = 0:01VL = 1V� = 1 Cut-out I k � � �
BinaryImage A k � � �Sella�F = 80�L = 0:3�� = 0:15� = 0:008VF = 0:01VL = 19V� = 5 Cut-out I k � � �
BinaryImage A k � � �k 1 2 3 � � � nFigure 6.1: Segmentation results using the PCNN for the menton, upper lip, in
isal upperin
isor and sella 
ut-outs of size 40�40 pixels. Below ea
h image 
ut-out is the 
orrespond-ing binary image output from the PCNN. The values in the left 
olumn 
orrespond to theparameters of the PCNN used to a
hieve the binary image. The images have been s
aled by130% to enhan
e 
larity.
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isal SellaDe�nitive (%) 88.0 97.6 85.5 32.5Partially de�ned (%) 12.0 2.4 12.0 33.7Failure (%) 0 0 2.4 33.7Table 6.1: Summary of segmentation results for the four types of landmarks as shown inFigure 6.1. Results are based on a set of 83 images6.2.1.2 PCNN derived shapesThe PCNN is used to highlight a region of interest that may assist with predi
ting the positionof the landmark. Be
ause one binary image is 
reated from ea
h 
ut-out, the method is limitedto extra
ting two shapes (i.e. bla
k and white regions) from ea
h 
ut-out as shown in Figure6.1. The PCNN derived shapes are 
reated as follows:1. An image 
ut-out is 
entred on the known position of the landmark with the dimensionsof the 
ut-out predetermined by the input window's square size in Figure 5.2 on page85. The PCNN is then applied to the image 
ut-out, Ik, to produ
e a binary image,Ak(i; j).2. Step one is iteratively applied to ea
h image in the training set.3. The binary image output from the PCNN, Ak(i; j), is used to 
reate a template matrix,Template, by 
omputing the average at ea
h pixel position. The template is 
al
ulatedusing Equation 6.1. Template(i; j) = 1n nXk=1Ak(i; j); (6.1)where Ak(i; j) is the segmented image and n is the number of images in the trainingset. An example template for ea
h landmark is shown in the top row of Figure 6.2.4. Two shapes are extra
ted by thresholding the Template (refer to Algorithm 2) . ShapesA and B 
orrespond to white and bla
k pixels in the bottom row of Figure 6.2. Theterm given to des
ribe these shapes is PCNN derived shapes.The two PCNN derived shapes are used to 
al
ulate features M1, S1, M2 and S2.
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edure for segmenting Template into two distin
t shapes.

(a) Menton (b) Upper lip (
) In
isal upper in
isor (d) SellaFigure 6.2: Templates 
omputed using the output from a PCNN.Grey pixels in the template, as shown in the top row of Figure 6.2, indi
ate the PCNNhas either not produ
ed an ideal segmentation or there is biologi
al variability that hasbeen 
aptured whilst averaging the binary outputs. Grey pixels are de�ned as pixels havinggrey level intensities in the interval [1, 254℄. Be
ause the PCNN method performs well atextra
ting soft and bony tissue, the grey pixels for the menton, upper lip, and in
isal upperin
isor landmarks are 
aused by biologi
al variability. However, segmentation results for thesella 
ut-out were less su

essful and a
hieved a de�nitive segmentation of only 32.5%. Thisprodu
es a lower 
ontrast template 
ompared to the other three landmarks.A value of 70 was 
hosen to threshold the template into two distin
t regions, i.e. shapeA and shape B. This value was empiri
ally determined for the sella template and wassubsequently applied for thresholding the templates for the other landmarks shown in Figure6.2. If we 
ould improve the pro
ess for segmenting regions of interest in areas that aresubje
t to subtle 
hanges of greys
ale, then this may improve the PCNN derived shapes.This se
tion demonstrated that shapes 
an be automati
ally generated using a PCNN.The PCNN derived shapes have found regions of interest that we believe will be useful forlo
ating landmarks.
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 Programming: Learning from PCNN derived shapes6.3.1 MotivationPrevious work in Se
tion 5.6 has 
ompared the performan
e of programs that were evolvedfrom features using hand
rafted shapes with pixel based features. The out
ome was thathand
rafting shapes spe
i�
 to a landmark are able to produ
e better performing programswhen applied to a diÆ
ult landmark. However, 
hoosing a set of hand
rafted features is diÆ-
ult and time 
onsuming. Therefore, we would like to determine if the dete
tion performan
eof programs using PCNN derived shapes is 
omparable to programs that used hand
raftedshapes from Se
tion 5.3.1.6.3.2 MethodologyWe will investigate three feature sets that use PCNN derived shapes. Ea
h feature set is aprogression from manually 
reated hand
rafted shapes to a method that 
an generate shapesautomati
ally. The feature sets are de�ned in Table 6.2.The �rst feature set uses hand
rafted shapes from Se
tion 5.2 and is used as a ben
hmarkfor measuring dete
tion performan
e for the following three feature sets. The se
ond featureset substitutes the PCNN derived shapes for some of the hand
rafted shapes from the previousfeature set. This allows us to determine whether PCNN derived shapes 
an improve dete
tionperforman
e using the same number of terminals. The aim of the third feature set is tomeasure the dete
tion performan
e for programs that use only PCNN derived shapes. Thefourth feature set determines if additional square shapes 
ombined with PCNN derived shapes
an improve dete
tion performan
e. The fourth feature set is automati
ally generated. Thefeature values are 
al
ulated from the means and standard deviations of grey level pixel valuesfor ea
h shape. To determine the e�e
tiveness of ea
h feature set for evolving programs, fourlandmarks of varying dete
tion diÆ
ulty have been sele
ted. They are the menton, upper lip,in
isal upper in
isor and sella landmarks.
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Figure 6.3: Diagram depi
ting an approa
h for extra
ting PCNN and additional featuresfrom the extra
ted images along with the methodology for evolving and evaluating dete
tionprograms for the task of lo
ating a landmark.Case Feature Set1 Hand
rafted shapes2 PCNN derived + hand
rafted shapes3 PCNN derived shapes only4 PCNN derived shapes + quadrantsTable 6.2: De�nition of four feature sets that are made available during the geneti
 sear
h.The use of geneti
 programming for landmark dete
tion is similar to the methodologydes
ribed in Se
tion 5.2 on page 82 with the ex
eption of steps 3 and 4. A s
hemati
 fordes
ribing the methodology is shown in Figure 6.3. The amended items are as follows:3. The size of the input window that is applied to ea
h landmark type is determined by thesquare size de�ned in Figure 5.2. This gives an unbiased 
omparison for the dete
tionperforman
e of programs that are evolved using the di�erent feature sets.4. Three 
on�gurations using the PCNN derived shapes de�ned in Figure 6.2 will be
ondu
ted. The shapes are spe
i�
 to 
apturing a landmark's 
hara
teristi
s and alsodis
riminating against ba
kground. The results from ea
h of these experiments will be
ompared with hand
rafted shapes de�ned in Se
tion 5.3.1.
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tion SetAn investigation of di�erent operators in Se
tion 5.5 established that a fun
tion set 
onsistingof (+, �, �, /) is a good sele
tion of operators for evolving dete
tion programs.6.3.4 Fitness EvaluationAn investigation of alternative approa
hes for evaluating �tness in Chapter 5 demonstratedthat using the highest output for predi
ting the position of a landmark produ
es signi�
antlyless false alarms than the domain independent approa
h. The �tness of a program will bemeasured as per Equation 5.1 in Se
tion 5.4.1, i.e. Fitness = (1�DR). The 
al
ulation fordete
tion rate, DR, is de�ned in Se
tion 2.2. The toleran
e for 
orre
tly lo
ating a landmarkis 2 mm (5 pixels) of the position lo
ated by the orthodontist.6.3.5 Case2: PCNN derived and Hand
rafted shapes6.3.5.1 MotivationThe aim of this se
tion is to determine the e�e
tiveness of the PCNN derived shapes when
ompared to the hand
rafted shapes. This is a
hieved by using a sele
tion of the hand
raftedshapes from Se
tion 5.3.1 and the PCNN derived shapes and then determining if the dete
tionrate is signi�
antly di�erent.The two hand
rafted shapes in Se
tion 5.3.1 are substituted with the 
orresponding PCNNderived shapes as shown in Figure 6.4. The reason for sele
ting these hand
rafted shapes isbe
ause of the resemblan
e to the PCNN derived shapes. This will determine if an a

uraterepresentation of a landmark's region of interest using PCNN derived shapes will improvedete
tion rate 
ompared to the hand
rafted shapes. There were no similarities between thePCNN derived shapes and the hand
rafted shapes for the in
isal upper in
isor, so we sele
tedtwo features that were 
ommonly 
hosen by GP as a result of the evolutionary pro
ess.Substituting the PCNN derived shapes into the hand
rafted set of shapes has 
reated ahybrid set that we have des
ribed as PCNN derived + hand
rafted shapes. The reason forsubstituting rather than appending the two shapes to the feature set is to 
ompare theprogram's performan
e and not in
rease the number of features that are available for sele
tion
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 sear
h. Hand
rafted PCNN derivedMenton )Upper lip )In
isal upperin
isor )Sella )Figure 6.4: Substituting two hand
rafted shapes, i.e. A and B, for PCNN derived shapes.
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Menton square size=14

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 two 
entre 
olumns E-FM5 S5 two 
entre rows G-H
Upper lip square size=14

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 two 
entre 
olumns E-FM5 S5 two 
entre rows G-H
In
isal upperin
isor square size=14

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 upper right square E-B-H-oM5 S5 bottom left square G-o-F-DM6 S6 two 
entre 
olumns E-FM7 S7 two 
entre rows G-HM8 S8 right hand re
tangle I-B-C-J
Sella square size=40

Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 left half A-E-F-DM5 S5 right half E-D-C-FM6 S6 two 
entre 
olumns E-FM7 S7 two 
entre rows G-HFigure 6.5: The diagrams in the left 
olumn are shapes that have been manually determined.The se
ond 
olumn are shapes automati
ally extra
ted using the PCNN template. Theshapes manually and automati
ally extra
ted are 
ombined to produ
e the feature set for thementon, upper lip, in
isal upper in
isor and sella landmarks. A feature set 
onsists of themean and standard deviation of pixel intensities for ea
h shape.
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tiveness of the PCNN derived shapes by measuring the de-te
tion performan
e of programs that are evolved from PCNN derived + hand
rafted shapes.The performan
e of the programs will then be 
ompared with programs evolved using hand-
rafted shapes. A two-sample t test is used to determine if there is a di�eren
e in meandete
tion rate between two samples of programs using: (a) PCNN derived + hand
raftedshapes and (b) hand
rafted shapes. Let the null hypothesis be that the two samples are fromthe same population.The p-value is less than an alpha value of 0.05, the 
riti
al `
ut-o�' boundary, for thementon, upper lip and sella landmarks. Therefore the null hypothesis, that the mean dete
tionrate of programs evolved using PCNN derived + hand
rafted shapes and hand
rafted shapesis the same, 
an be reje
ted. The average dete
tion rates for menton, upper lip and sellalandmarks has in
reased by 5.77%, 15.69% and 18.67% respe
tively by the in
lusion of thePCNN derived shapes. There is no eviden
e to suggest that the average dete
tion rate for thein
isal upper in
isor had 
hanged. The same hypothesis for 
omparing the mean dete
tionrate of programs are supported for ea
h landmark when applied to the test images. Theaverage dete
tion performan
e has in
reased for the menton, upper lip and sella landmarksby 10.56%, 19.31% and 29.67% respe
tively. The mean dete
tion rate of the best program hasin
reased more for test data than training data. This suggests that programs using the PCNNderived shapes have generalised better 
ompared to programs that used hand
rafted shapes.This is shown as a s
atter plot in Figure 6.6. This analysis demonstrates that improvingthe representation of a landmark's region of interest improves the dete
tion performan
e ofprograms.
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tion (%) 93.07 98.84 83.47 94.03false alarm(%) 6.93 1.16 16.53 5.97p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 100 100 96.30 100false alarm(%) 0 0 3.70 0Upper lip Averagedete
tion (%) 83.74 99.43 63.70 83.01false alarm(%) 16.26 0.57 36.30 16.99p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 90.36 100 77.78 92.59false alarm(%) 8.64 0 22.22 7.41In
isal upperin
isor Averagedete
tion (%) 94.61 94.44 88.98 88.80false alarm(%) 5.39 5.56 11.02 11.20p-valuedete
tion (%) 0.675 0.787Best programdete
tion (%) 98.80 97.59 92.59 96.30false alarm(%) 1.20 2.41 7.41 3.70Sella Averagedete
tion (%) 54.73 73.40 44.40 74.07false alarm(%) 45.27 26.60 55.60 25.93p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 69.51 82.93 62.96 85.19false alarm(%) 30.49 17.07 37.04 14.81Table 6.3: A 
omparison of dete
tion performan
e for programs that were evolved using hand-
rafted shapes (Case 1) de�ned in Se
tion 5.2 with PCNN derived + hand
rafted shapes (Case2). The averages are 
al
ulated from the best individual from ea
h run for 80 evolutionaryruns. The p-value is 
al
ulated from a two-sample t test to 
ompare the mean dete
tion ratefrom two independent samples.
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(d) SellaFigure 6.6: A 
omparison of dete
tion performan
e for programs that were evolved fromPCNN derived and hand
rafted shapes with hand
rafted shapes. The points are the dete
tionrate of the best program for ea
h run from 80 evolutionary runs.Figure 6.7 is a sele
tion of randomly 
hosen examples of four di�erent landmark types.The positions of ea
h landmark type are predi
ted by using the best performing programof 80 evolutionary runs. The best program for ea
h landmark is shown in Figure 6.8. The
oordinates below ea
h image show the dete
tion error de�ned as the di�eren
e between thepredi
ted and known position. If the error is in ex
ess of a Eu
lidean distan
e of 5 pixels (2mm) then this is regarded as a false alarm. The landmarks in all the images shown in Figure6.7 were predi
ted within the a

eptable toleran
e with the ex
eption of a sella landmark inthe bottom row of Figure 6.7. The landmark for this image was re
orded as a false alarmbe
ause the predi
ted error was (41, 35) pixels or 21.9 mm from the 
orre
t lo
ation.
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(-3, 1) (-1, 0) (-1, 1) (0, -1)
(-3, 0) (1, -1) (2, -2) (2, 1)Menton (93�85 pixels)

(-1, 3) (0, 2) (0, 3) (0, 4) (-1, 1) (-1, 1)(1, -2) (-1, 2) (-1, -1) (-1, 1) (-1, 3) (-1, 2)Upper lip (56�43 pixels)
(-1, 2) (-1, 1) (0, 1) (-1, 0) (3, 1)
(2, 1) (-2, 1) (-2, 1) (-4, 0) (4, 2)In
isal upper in
isor (71�59 pixels)Figure 6.7: The rows from top to bottom are indi
ative of the variation in biologi
al shapesfor the menton, upper lip, in
isal upper in
isor and sella landmarks respe
tively. The positionfound by the dete
tion program is marked with the 
ross. The positional error (pixels) isdisplayed under ea
h image.
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(2, -3) (0, 0) (4, 3) (2, 0)
(0, -1) (3, 0) (41, 35) (2, -3)Sella (110�125 pixels)Figure 6.7 (
ontinued)(* (- (* M5 162.198) (+ S1 (* M5 162.198))) (+ (* (- S1 S3) (- S5 S4)) (-(* (- S1 (- S3 S2)) M1) S5)))Menton program (Fitness=0)(/ (/ M4 (+ S1 (* 230.061 (+ M2 S2)))) (+ (+ 230.061 (- (- (/ M1 (+ S2 (-M1 73.1477))) S4) (+ (/ S1 S1) M3))) (* (+ 234.024 M3) (+ M2 S2))))Upper lip program (Fitness=0)(* (* (/ M6 M7) (+ M3 (- M8 219.569))) (- M2 (+ M3 M8)))In
isal upper in
isor dete
tion program (Fitness=2.41)(/ (/ (/ (/ (+ (* M5 M6) (/ S7 S3)) (/ S2 M2)) (/ S1 S5)) (- (/ (+ (/ S7 M2)(- (/ S7 S3) (- S5 M2))) (+ (+ (* M6 87.2767) (- S3 S2)) M5)) (+ (/ M5 S6)M5))) (/ (+ (/ (+ M2 (- S2 S5)) (/ (* S7 M5) M2)) (+ (* S5 S5) M2)) (/ (/ (*(- M3 M1) (- (- S2 S5) S5)) (+ (* M1 S5) (/ M5 S7))) (+ (- (- 58.6679 M5) (/S6 M7)) S7)))) Sella dete
tion program (Fitness=17.07)Figure 6.8: The programs expressed as LISP S-expressions are the best individuals from 80evolutionary runs for the menton, upper lip, in
isal upper in
isor and sella landmarks.As evident from the experiments, the size of the program in
reased with the diÆ
ulty ofthe landmark. The best performing programs from 80 evolutionary runs are shown in Figure
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on
lusive that the program sizes in
reased be
ause of �tness or an a

umulationof introns during an evolutionary run. No parsimony fa
tor was used to 
ontrol bloat duringtraining.6.3.6 Case 3: PCNN derived shapes only6.3.6.1 MotivationIn the previous se
tion we analysed the e�e
tiveness of the PCNN derived shapes by 
ompar-ing them with the simpli�ed hand
rafted shapes shown in Figure 6.4. This work demonstratedthat in
orporating shapes that are a better representation of a landmark's region of interestimproves the dete
tion performan
e of evolved programs. However, the previous feature setwas partially 
onstru
ted from hand
rafted shapes and we would like a method that 
anautomati
ally generate the feature set. As an intermediate step in automati
ally generatinga feature set, we would like to determine how well the PCNN derived shapes 
an be used fordete
ting the previous set of landmarks without using hand
rafted shapes.Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BFigure 6.9: The feature set 
onsists of features derived from the PCNN derived shapes.Features are 
al
ulated using the mean and standard deviation of pixel intensities for ea
hshape.6.3.6.2 ResultsThe aim is to measure the dete
tion performan
e of programs evolved from a feature set
onsisting of only PCNN derived shapes. The dete
tion performan
e of programs usinghand
rafted shapes will be used as a ben
hmark. A two-sample t test is used to determineif there is a di�eren
e in mean dete
tion rate between two samples of programs using: (a)PCNN derived shapes and (b) hand
rafted shapes. Let the null hypothesis be that the twosamples are from the same population.The p-value is less than an alpha value of 0.05 for all four landmarks, i.e. menton, upperlip, in
isal upper in
isor and sella landmarks. Therefore the null hypothesis, that the mean
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tion rate of programs evolved using PCNN derived shapes and hand
rafted shapes isthe same, 
an be reje
ted. The average dete
tion rate for the menton, upper lip and sellalandmarks has in
reased by 3.45%. 15.36% and 20.15% respe
tively, however, the averagedete
tion rate for the in
isal upper in
isor has de
reased by 38.28%. The same hypothesis for
omparing the mean dete
tion rate of programs is supported for ea
h landmark type whenapplied to the test images.The de
rease in dete
tion performan
e for the in
isal upper in
isor landmark suggests thatthe PCNN derived shapes are not as e�e
tive at dis
riminating a landmark from ba
kgroundas the menton, upper lip and sella landmarks. This statement is supported by the de
rease indete
tion rate for the in
isal upper in
isor whereas there was a signi�
ant in
rease in dete
tionrate for the other landmark types. This suggests that the PCNN derived shapes were eithernot a good representation of the in
isal upper in
isor or that additional shapes are requiredin order to evolve 
omparable dete
tion programs.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS145Training TestingCase 1 Case 3 Case 1 Case 3Menton Averagedete
tion (%) 93.07 96.52 83.47 92.64false alarm(%) 6.93 3.48 16.53 7.36p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 100 100 96.30 96.30false alarm(%) 0 0 3.70 3.70Upper lip Averagedete
tion (%) 83.74 99.10 63.70 78.52false alarm(%) 16.26 0.90 36.30 21.48p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 90.36 100 77.78 85.19false alarm(%) 8.64 0 22.22 14.81In
isal upperin
isor Averagedete
tion (%) 94.61 56.33 88.98 51.57false alarm(%) 5.39 43.67 11.02 48.43p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 98.80 71.08 92.59 55.56false alarm(%) 1.20 28.92 7.41 44.44Sella Averagedete
tion (%) 54.73 74.88 44.40 71.76false alarm(%) 45.27 25.12 55.60 28.24p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 69.51 79.27 62.96 77.78false alarm(%) 30.49 20.73 37.04 22.22Table 6.4: A 
omparison of dete
tion performan
e for programs that were evolved usinghand
rafted shapes (Case 1) with PCNN derived shapes (Case 3). The averages are 
al
ulatedfrom the best individual from ea
h run for 80 evolutionary runs. The p-value is 
al
ulatedfrom a two-sample t test to 
ompare the mean dete
tion rate from two independent samples.6.3.7 Case 4: PCNN derived shapes and quadrants6.3.7.1 MotivationIn the previous se
tion the aim was to determine how well the PCNN derived shapes 
an beused for dete
ting a sele
tion of landmarks by 
omparing with the dete
tion performan
e ofprograms that were evolved from hand
rafted shapes. We found that PCNN derived shapeswere not as e�e
tive for dete
ting the in
isal upper in
isor 
ompared to the other three types



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS146of landmarks. This suggests that additional shapes may have been useful for improving thedete
tion performan
e of programs. This se
tion will investigate if additional shapes 
reatedwithout any prior knowledge of the landmark, or independent of domain, 
an improve thedete
tion performan
e for the in
isal upper in
isor.We dis
ussed in Se
tion 2.5.2.4 that feature sets were generally a 
omposition of variousshapes within an input window. One of those feature sets used by Zhang et al. in [165℄was 
reated by dividing the input window into four quadrants. The aim of this se
tionis to determine if features 
al
ulated using PCNN derived shapes in 
onjun
tion with thequadrants 
an improve the dete
tion rate in 
omparison with programs that were evolvedusing hand
rafted shapes. Features Shapes� �M1 S1 segmented shape AM2 S2 segmented shape BM3 S3 square A-B-C-DM4 S4 upper left quadrant A-E-o-GM5 S5 upper right quadrant E-B-H-oM6 S6 bottom left quadrant G-o-F-DM7 S7 bottom right quadrant o-H-C-FFigure 6.10: The feature set 
onsists of features derived from the PCNN derived shapes andquadrants. Features are 
al
ulated using the mean and standard deviation of pixel intensitiesfor ea
h shape.6.3.7.2 ResultsThe aim is to measure the dete
tion performan
e of programs that are evolved from a featureset that has been automati
ally generated. The feature set 
onsists of PCNN derived shapesand quadrants. The dete
tion performan
e of programs using hand
rafted shapes will againbe used as the ben
hmark. A two-sample t test is used to determine if there is a di�eren
e inmean dete
tion rate between two samples of programs using: (a) PCNN derived shapes andquadrants and (b) hand
rafted shapes. Let the null hypothesis be that the two samples arefrom the same population.The p-value is less than an alpha value of 0.05 for the menton, upper lip and sella land-marks. Therefore the null hypothesis, that the mean dete
tion rate of programs evolved using
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rafted shapes is the same, 
an be reje
ted. Theaverage dete
tion rates for the menton, upper lip and sella landmarks has in
reased by 6.12%,15.64% and 18.55% respe
tively. There is no eviden
e to suggest that the average dete
tionrate for the in
isal upper in
isor has 
hanged. The same hypothesis for 
omparing the meandete
tion rate of programs is supported for ea
h landmark when applied to the test imageswith the ex
eption of the in
isal upper in
isor. However, the average dete
tion rate for thein
isal upper in
isor has de
reased by only 1.53%. The average dete
tion performan
e hasin
reased for the menton, upper lip and sella landmarks by 11.67%, 16.86% and 27.31%respe
tively.These results suggest that the evolved programs using features 
al
ulated from the PCNNderived shapes and quadrants are 
omparable to or better than programs that were evolvedfrom hand
rafted shapes. An advantage of using PCNN derived shapes and quadrants is thatthey have been automati
ally generated without any manual intervention.
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tion (%) 93.07 99.19 83.47 95.14false alarm(%) 6.93 0.81 16.53 4.86p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 100 100 96.30 100false alarm(%) 0 0 3.70 0Upper lip Averagedete
tion (%) 83.74 99.38 63.70 80.56false alarm(%) 16.26 0.62 36.30 19.44p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 90.36 100 77.78 88.89false alarm(%) 8.64 0 22.22 11.11In
isal upperin
isor Averagedete
tion (%) 94.61 94.19 88.98 87.45false alarm(%) 5.39 5.81 11.02 12.55p-valuedete
tion (%) 0.262 0.028Best programdete
tion (%) 98.80 97.59 92.59 92.59false alarm(%) 1.20 2.41 7.41 7.41Sella Averagedete
tion (%) 54.73 73.28 44.40 71.71false alarm(%) 45.27 26.72 55.60 28.29p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 69.51 84.15 62.96 81.48false alarm(%) 30.49 15.85 37.04 18.52Table 6.5: A 
omparison of dete
tion performan
e for programs that were evolved usinghand
rafted shapes (Case 1) with PCNN derived shapes and quadrants (Case 4). The averagesare 
al
ulated from the best individual from ea
h run for 80 evolutionary runs. The p-value is
al
ulated from a two-sample t test to 
ompare the mean dete
tion rate from two independentsamples.6.4 Comparison of Feature SetsThis se
tion 
ompares the dete
tion performan
e of programs that were evolved using thedi�erent feature sets presented in this 
hapter. The di�erent feature sets are presented inTable 6.6. For 
omparing the four feature sets, a one-way ANOVA pro
edure [132℄ is usedto measure the di�eren
es in mean dete
tion rate. Let the null hypothesis be that the mean
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tion rate of programs that have been evolved from the four features is the same, i.e.H0 : �
ase 1 = �
ase 2 = �
ase 3 = �
ase 4.The p-values for 
omparing the dete
tion rate of programs when applied to training imagesare less than an an alpha value of 0.05 for the upper lip, in
isal upper in
isor and sellalandmarks. Therefore, the null hypothesis, that the mean dete
tion rate of programs thatwere evolved from the four feature set sets is the same, is reje
ted. This indi
ates that at leasttwo of the means are signi�
antly di�erent. Sin
e the alternative hypothesis is supported, aTukey's pairwise 
omparison [132℄ was 
ondu
ted to determine signi�
ant di�eren
es betweenthe di�erent feature sets. The results of the pairwise 
omparison are shown in Table 6.8.An analysis of the pairwise 
omparison from Table 6.8 and the graph from Figure 6.11indi
ates that on average, the feature sets using the PCNN derived shapes produ
ed betterperforming programs 
ompared to the feature sets using the hand
rafted shapes. The in
isalupper in
isor is an ex
eption. The results for the PCNN derived shapes only when applied tothe in
isal upper in
isor indi
ate that other shapes were required to dis
riminate the obje
tfrom ba
kground when 
omparing the results from the other feature sets.A further analysis of the pairwise 
omparison reveals that there was no signi�
ant di�er-en
e between programs that were evolved from features using PCNN derived and hand
raftedshapes and PCNN derived shapes and quadrants. The results of programs using the PCNNderived shapes and quadrants produ
ed dete
tion programs that were either equivalent toor ex
eeded the dete
tion performan
e of the hand
rafted shapes from Chapter 5. This isa desirable result sin
e the method to 
reate the PCNN derived shapes and quadrants is apro
ess where only a small amount of prior knowledge is required about a landmark.Case 1 Hand
rafted shapesCase 2 PCNN derived + hand
rafted shapesCase 3 PCNN derived shapes onlyCase 4 PCNN derived shapes + quadrantsTable 6.6: De�nition of four feature sets that are made available during the geneti
 sear
h.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS150Training TestingCase 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
Menton Averagedete
tion (%) 93.07 98.84 96.52 99.19 83.47 94.03 92.64 95.14false alarm(%) 6.93 1.16 3.48 0.81 16.53 5.97 7.36 4.86p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 100 100 100 100 96.30 100 96.30 100false alarm(%) 0 0 0 0 3.70 0 3.70 0
Upperlip Averagedete
tion (%) 83.74 99.43 99.10 99.38 63.70 83.01 78.52 80.56false alarm(%) 16.26 0.57 0.90 0.62 36.30 16.99 21.48 19.44p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 90.36 100 100 100 77.78 92.59 85.19 88.89false alarm(%) 8.64 0 0 0 22.22 7.41 14.81 11.11
In
isal Averagedete
tion (%) 94.61 94.44 56.33 94.19 88.98 88.80 51.57 87.45false alarm(%) 5.39 5.56 43.67 5.81 11.02 11.20 48.43 12.55p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 98.80 97.59 71.08 97.59 92.59 96.30 55.56 92.59false alarm(%) 1.20 2.41 28.98 2.41 7.41 3.70 44.44 7.41
Sella Averagedete
tion (%) 54.73 73.40 74.88 73.28 44.40 74.07 71.76 71.71false alarm(%) 45.27 26.60 25.12 26.72 55.60 25.93 28.24 28.29p-valuedete
tion (%) 0.000 0.000Best programdete
tion (%) 69.51 82.93 79.27 84.15 62.96 85.19 77.78 81.48false alarm(%) 30.49 17.07 20.73 15.85 37.04 14.81 22.22 18.52Table 6.7: A 
omparison of programs' dete
tion performan
e that are evolved using variationsof hand
rafted, PCNN derived shapes and quadrants. The averages are 
al
ulated from thebest individual from ea
h run for 80 evolutionary runs. The p-value is 
al
ulated using aone-way ANOVA to 
ompare the mean dete
tion rate between the four independent samples.A 
omparison of dete
tion performan
e for training results of programs using hand
raftedshapes and PCNN derived shapes and quadrants reveals that the latter improved dete
tionperforman
e by 15.6% and 18.55% for the upper lip and sella landmarks respe
tively. Thedete
tion performan
e was also higher during testing with an improvement of 18.55% and27.31% for the upper lip and sella landmark respe
tively. There was no signi�
ant di�eren
ein dete
tion performan
e for the in
isal upper in
isor landmark.The �tness graphs in Figure 6.12 
ompare the average �tness s
ores between the four



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS151di�erent feature sets. The evolutionary pro
ess was terminated at either 100 generations orwhen a program a
hieved a 100% dete
tion rate. All four graphs indi
ate that the PCNNderived and hand
rafted shapes and PCNN derived shapes and quadrants have a similar rateof 
onvergen
e when optimising �tness s
ore and has generally outperformed the Hand
raftedshapes and PCNN derived shapes only throughout the evolutionary pro
ess.
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(d) SellaFigure 6.11: A summary of dete
tion performan
e of programs that are evolved from fea-tures using variations of hand
rafted, PCNN derived shapes and quadrants. The error barsrepresent 95% 
on�den
e intervals.



CHAPTER 6. LEARNINGWITH FEATURES FROMPULSE COUPLED NEURAL NETWORKS152Training TestingMenton Case 1 2 32 Disimilar3 Disimilar Disimilar4 Disimilar Similar Disimilar Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar DisimilarUpperlip Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar Similar 1 2 32 Disimilar3 Disimilar Disimilar4 Disimilar Disimilar SimilarIn
isal Case 1 2 32 Similar3 Disimilar Disimilar4 Similar Similar Disimilar Case 1 2 32 Similar3 Disimilar Disimilar4 Similar Similar DisimilarSella Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar Similar Case 1 2 32 Disimilar3 Disimilar Similar4 Disimilar Similar SimilarTable 6.8: A Tukey's pairwise 
omparison of the dete
tion performan
e of programs thatwere evolved from four feature sets.
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(d) SellaFigure 6.12: The �tness graphs are a 
omparison of average �tness s
ores for four di�erentfeature sets. The average �tness is 
al
ulated by averaging the �tness s
ore of the bestindividual from ea
h generation for 80 evolutionary runs.6.5 Determining Input Window Size6.5.1 MotivationThe aim of this se
tion is to determine how sensitive the sele
tion of the input window size iswith respe
t to dete
tion performan
e. Previously the size of the input window was manuallydetermined based on the notion of sele
ting an input window that is large enough to 
apturesuÆ
ient detail in order to di�erentiate the landmark from ba
kground.The justi�
ation for introdu
ing the work here rather than as part of the exploratorywork in Chapter 5, is that some the hand
rafted shapes used in the previous 
hapter were
ustomised for a �xed window size. As a result, any 
hanges to the input window size would
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rafted shapes. Therefore, this work is mostvaluable in this 
hapter be
ause the PCNN derived shapes and quadrants 
an be automat-i
ally 
reated independent of window size. The analysis for determining the sensitivity ofinput window size is applied to the menton and upper lip landmarks.6.5.2 ResultsThe graphs in Figure 6.13 show the relationship between the size of the input window andthe dete
tion performan
e of a program; the dete
tion performan
e of a program is based onthe average dete
tion rate from the best individual from ea
h run for 80 evolutionary runs.Both graphs indi
ate that the dete
tion performan
e of programs is sensitive to the size ofthe input window. The results for the menton and upper lip landmarks suggest that an inputwindow size should be somewhere between the interval of [14, 40℄ and [20, 30℄ respe
tively.Sele
ting an input window size with dimensions outside of this interval will on average produ
ea program that will have a lower dete
tion performan
e. However, determining what is anideal input window size using this approa
h is time 
onsuming, i.e. in
rementally testingseveral size input windows, as the evolutionary pro
ess for produ
ing enough runs to 
onveymeaningful statisti
s is 
omputationally expensive. Therefore, the size of the input windowshould be sele
ted prior to the evolutionary pro
ess and is re
ommended as future work.
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) Upper lipFigure 6.13: The sensitivity of sele
ting the size of the window with respe
t to a program'sexpe
ted performan
e based on training and test results. The dete
tion rate is based onan average of the best individual from ea
h run for 80 evolutionary runs. The error barsrepresent a 95% 
on�den
e interval.
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hapter was to investigate whether using segmented shapes would improvethe dete
tion performan
e of programs 
ompared to the hand
rafted shapes used in Se
tion5.3.1. The segmented shapes were generated using the output from a PCNN to 
reate atemplate that was ultimately binarised into two distin
t shapes. The segmented shapes werereferred to as the PCNN derived shapes.The PCNN derived shapes were used to 
reate three feature sets with the purpose of
omparing the e�e
tiveness of the PCNN derived shapes against the hand
rafted shapes.The feature sets were 
al
ulated using the mean and standard deviation of pixel intensitieswithin ea
h shape. The three feature sets were:1. PCNN derived and hand
rafted shapes;2. PCNN derived shapes only; and3. PCNN derived shapes and quadrants.An investigation of the dete
tion programs that used the PCNN derived shapes demon-strated a signi�
ant improvement in dete
tion performan
e when 
ompared to the hand
raftedshapes des
ribed in Se
tion 5.3.1 when tested on the menton, upper lip and sella landmarks.However, the results for the in
isal upper in
isor landmark suggest that the PCNN derivedshapes were not as useful in evolving dete
tion programs as there was no improvement indete
tion performan
e.Ideally, we would like an approa
h for landmark dete
tion whi
h is entirely automated,from the 
reation of useful features to be used within a program, to the identi�
ation oflandmarks within an image. Even for a domain expert, 
onstru
ting shapes for the purposesof extra
ting useful features is not a trivial task. This is a 
ompelling argument for theutility of an automated approa
h to the problem. We have gone a long way towards a
hievingthis goal; the method des
ribed in this 
hapter has shown that the PCNN approa
h usingautomati
ally derived square shapes, is 
omparable to, or better than a hand
rafted approa
h.



Chapter 7
Analysis of Evolved Programs
Previous work in Chapters 5 and 6 has established that our geneti
 programming approa
h tolandmark dete
tion was su

essful at evolving dete
tion programs for several 
ephalometri
landmarks of varying diÆ
ulty. However, one of the drawba
ks of geneti
 programmingsolutions is that the evolved programs 
an be
ome very 
omplex and, as a result, diÆ
ult tounderstand. This makes it hard to\sell"geneti
 programming solutions be
ause many domainexperts are unhappy with bla
k box solutions. To a
hieve a greater a

eptan
e by domainexperts requires that a program's solution be better understood in order to appre
iate itslimitations and generality. The aim of this 
hapter is to determine whether any regularitiesare being dis
overed, and if so, what they are. We hope that by identifying regularities inevolved dete
tion programs we will have a better understanding of the landmark dete
tionpro
ess. The initial part of the investigation will fo
us on programs evolved to lo
ate an easylandmark, the tip of the nose, followed by an analysis of programs evolved to lo
ate a morediÆ
ult landmark, the sella landmark.The analysis methodology will be to evolve simpli�ed dete
tion programs by limitingthe fun
tion and terminal sets and to en
ourage small programs by in
luding a size penaltyin the �tness. The underlying algebrai
 expressions in the programs will be simpli�ed and
ompared. The programs will be manually exe
uted at key positions in the training and testimages.

156



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1577.1 Geneti
 Programming Con�gurationThe geneti
 programming parameters to be used during training are the same as those usedin Table 4.3 on page 72. The results presented in this 
hapter will be based on the bestindividual from ea
h run for 80 evolutionary runs.7.2 Fitness fun
tionPrevious work in Se
tion 5.4.1 established that Equation 7.1 was su

essful as a measure ofthe program's performan
e when we know that only one landmark is lo
ated in an image.fitness = (1�DR)� 100, where (7.1)DR is the dete
tion rate.To assist with the simpli�
ation of programs, we attempt to redu
e the size of programsby favouring smaller trees on the proviso that dete
tion rate is not 
ompromised during anevolutionary run, i.e. we would like to remove extraneous segments of 
ode not 
ontributingto a program's performan
e. In Se
tion 2.5.4 we des
ribed extraneous 
ode segments not
ontributing to a program's performan
e as introns. A 
ommon approa
h used to redu
ebloat is to in
orporate parsimony pressure as part of the �tness measure.The parsimony pressure is a
hieved by in
orporating a se
ond obje
tive into the �tnessfun
tion as a way of penalising large programs. The revised �tness fun
tion using parsimonypressure is shown in Equation 7.2. The se
ond term provides the parsimony pressure, whi
hdivides the number of nodes in the program by the maximum number of nodes in a tree.The maximum number of nodes in a tree is di
tated by the maximum depth of the tree.The maximum tree depth in our problem has been limited to nine, giving a maximum of(29�1) = 511 nodes in a full binary tree. To ensure the main obje
tive of the �tness fun
tionis to evolve programs with good dete
tion performan
e, the se
ond term is multiplied by110 . This limits the se
ond term between [0, 0.1℄. The �rst term is limited between [0, 100℄.The weightings for ea
h of the two terms ensure that dete
tion performan
e is the primary
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tive and program size is se
ondary.fitness = (1�DR)� 100 + Program Size511 � 110 , where (7.2)DR is dete
tion rate andProgram Size is the number of nodes in the program
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al representation of the �tness fun
tion, as de�ned in Equation 7.2, foroptimising dete
tion rate and program size.Figure 7.1 is a graphi
al representation of Equation 7.2 with the aim of minimising �tness.The graph illustrates that the easiest way for improving �tness is to in
rease dete
tion rate.This is indi
ated by the larger gradient along the dete
tion rate axis in 
omparison to theprogram size axis.
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(a) Nose landmark (b) Sella landmarkFigure 7.2: The 
hange in dete
tion performan
e and size of programs during an evolution-ary run when using parsimony pressure to redu
e program size. The dete
tion rate andprogram size are an average 
al
ulated using the best individual from ea
h generation for 80evolutionary runs.Although the termination 
riteria remain un
hanged, early termination 
annot be a
hievedbe
ause a program with a �tness s
ore of zero is not possible, i.e. a program with 100% de-te
tion rate and a program size of zero nodes. Ea
h evolutionary run is terminated at theend of 100 generations as per the previous work presented in this thesis. The graphs in Fig-ure 7.2 show the improvement of average dete
tion rate and the redu
tion in program sizethroughout the evolutionary pro
ess for both the nose and sella landmarks.7.3 Terminal setThe terminals used for the purpose of this analysis are based on two terminal sets previouslyused in thesis that have produ
ed programs with good dete
tion performan
e. The terminalset used for the nose landmark 
onsists of features using hand
rafted shapes as de�ned inSe
tion 5.2, whereas the sella landmark will use a terminal set 
omposed of features usingPCNN derived shapes and quadrants as de�ned in Se
tion 6.10. Both terminal sets are shownin Figure 7.3, where ea
h terminal set 
onsists of the 
al
ulated mean and standard deviationof pixel intensities within ea
h shape.
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square size=14

Features Shapes� �M1 S1 full square A-B-C-DM2 S2 left half A-E-F-DM3 S3 right half E-D-C-FM4 S4 
entre 
olumn E-FM5 S5 
entre row G-H

square size=40
Features Shapes� �M1 S1 shaded regionM2 S2 unshaded regionM3 S3 full square A-B-C-DM4 S4 top left A-E-o-GM5 S5 top right E-B-H-oM6 S6 bottom left G-o-F-DM7 S7 bottom right o-H-C-FFigure 7.3: The diagrams in the left 
olumn depi
t the shapes used to extra
t the featuresfor the nose and sella landmarks. The features 
onsist of the mean and standard deviation
al
ulated for ea
h shape from grey level intensities. The 
orresponding pi
ture in the middle
olumn depi
ts the size of the input window, shown as the white square, relative to the image.Note: The nose image has had the 
ontrast enhan
ed to improve the 
larity of the soft tissue.7.4 Fun
tion setThe analysis of the programs is restri
ted to fun
tion sets whi
h will only evolve programsexhibiting the behaviour of linear fun
tions. The redu
ed fun
tion sets will be limited tousing the f+; �g operators that are des
ribed in Se
tion 4.3.2. The operators are dividedinto two fun
tion sets as shown in Table 7.1.Case 1 +Case 2 +, �Table 7.1: Operators used to evolve programs that will exhibit the behaviour of linear fun
-tions.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1617.5 ResultsThis se
tion analyses dete
tion programs for the nose and sella landmarks where the programsare limited to exhibiting the behaviour of a linear fun
tion. The following analyses are basedon 80 evolutionary runs using the best individual at the end of 100 generations.7.5.1 Nose landmark7.5.1.1 Case 1: `+' operatorThe motivation for using the f+g operator is to simplify programs so we 
an understand ifthere are any regularities 
aptured when using the simplest operator. All the evolutionaryruns evolved a best individual using only the S5 terminal, i.e. the standard deviation of tworows of pixels 
entred within an input window, as shown in Equation 7.3. This programprodu
ed a dete
tion performan
e of 65.9% (54/82). The results from training suggest thatEquation 7.3 was unsu

essful at lo
ating the position of landmarks when the nose was lo
atednear the edge of the image. A sele
tion of images where the landmark is in
orre
tly identi�edis shown in Figure 7.4. Output = S5 (7.3)As des
ribed in Se
tion 5.4.1, the landmark is lo
ated by moving an input window a
rossthe image and 
al
ulating the dete
tion program's output at ea
h pixel lo
ation. The highestoutput is used for predi
ting the position of the landmark. If we 
ompute the output whenthe input window is positioned on an area of 
onstant brightness, su
h as the soft tissueor ba
kground, the program returns a low positive output, i.e. Output is � 0. However,if the input window is positioned partially on a verti
al or diagonal edge su
h as the soft-tissue/ba
kground edge, the program's output will in
rease until the 
entre of the inputwindow 
oin
ides with an edge. The reason is that S5 is 
omputed using the standarddeviation of two rows of pixels and most variation of pixel intensities o

urs when the inputwindow is 
entred on either diagonal or verti
al edges. But as mentioned previously, some of



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 162the nose tips are lo
ated near the edge of the image that also 
ontain a bright verti
al bandas shown in Figure 7.4. So not only is the output high on the soft-tissue/ba
kground edgebut also on the bright verti
al band.
Figure 7.4: Images where the nose landmarks are in
orre
tly identi�ed. In all three 
ases,the landmarks are lo
ated near a bright verti
al band that is an artifa
t near the edge of anX-ray. All images have been enhan
ed using a logarithmi
 LUT to improve the 
larity of thesoft tissue.The analysis des
ribed above is 
onsistent with the graph shown in Figure 7.5. The sur-fa
e plot represents the output of the dete
tion program, Equation 7.3, applied to a greys
aleimage. This shows that when the input window is positioned on an area of 
onstant brightnessthe output of the program is � 0. The output in
reases whenever the input window is posi-tioned on an edge and approa
hes a maximum when 
entred on the soft-tissue/ba
kgroundedge. The ridge shown in Figure 7.5 
orrelates to the soft-tissue/ba
kground edge. Thehighest peak in Figure 7.5 is used to predi
t the position of the landmark and in this 
asethe program has predi
ted the landmark with a dete
tion error of (2, 3) pixels.The methodology is very promising that even with the extremely simpli�ed situation weget a program that is somewhat a

urate whose behaviour we 
an understand.
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h is represented as the surfa
e plot,is superimposed on the greys
ale image.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1637.5.1.2 Case 2: `+, �' operatorsThe previous se
tion demonstrated that a fun
tion set 
onsisting of the f+g operator alonewas not able to evolve a dete
tion program for lo
ating all nose landmarks within the imagedata set. With only the f+g operator available for sele
tion, the evolutionary pro
ess wasonly able to evolve a �ttest individual that used the S5 terminal. We know from previous workin Se
tion 5.5 that having f+; �g operators available for sele
tion allows the evolutionarypro
ess to evolve programs that 
an lo
ate the nose landmark with a 100% dete
tion rate.The aim of this se
tion is to analyse programs that have the use of f+; �g operators todetermine: (a) how these dete
tion programs lo
ate the nose landmark and (b) if there areany underlying algorithms learnt as a result of the evolutionary pro
ess. As noted in Se
tion7.4, a fun
tion set 
onsisting of f+; �g operators will only evolve programs exhibiting thebehaviour of linear fun
tions. This is analogous to evolving a 
oeÆ
ient for ea
h terminal, �iand �i, in Equation 7.4. Note that only integer 
oeÆ
ients 
an be evolved for ea
h terminal.Output = �1M1 + �1S1 + �2M2 + �2S2 + � � �+ �5M5 + �5S5 (7.4)= 5Xi=1(�iMi + �Si), where�i and �i are integers, and i 
orresponds to the ith shapeThe evolutionary pro
ess using the �tness fun
tion in Equation 7.2 was able to produ
eprograms with an average dete
tion rate of 99.6%. Comparing this result to a similar ex-periment in Se
tion 5.5 that does not in
lude parsimony pressure when 
al
ulating �tnesssuggests that using a penalty to redu
e extraneous 
ode does not in
uen
e dete
tion perfor-man
e; both experiments are similar in terms of fun
tion set, terminal set and the methodused to lo
ate the landmark. The 
omparison was based on a two-sample t test to determineif there was a di�eren
e in mean dete
tion rate between two samples of programs using: (a)dete
tion rate as the �tness metri
 and (b) dete
tion rate and parsimony pressure as the �t-ness metri
; A large p-value of 0.87 indi
ated that there was no eviden
e to suggest that theaverage dete
tion performan
e had 
hanged. However, a two-sample t test 
omparing the size



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 164of the programs between the two �tness fun
tions produ
ed a p-value of 0.000 indi
ating thatparsimony pressure had signi�
antly de
reased the size of the programs. Using parsimonypressure, the average program size has de
reased from 56.8 nodes to 22.3 nodes. The linearfun
tions shown in Equations 7.5-7.8 are derived from four of the �ttest programs taken from80 evolutionary runs when using parsimony pressure in the �tness metri
.Output = M1 � S2 � S3 � 2M4 +M5 (7.5)Output = M2 � 2S2 � 2M4 +M5 (7.6)Output = 2M1 � S1 � 2M4 � S4 (7.7)Output = M2 � 2S2 � 2M4 +M5 (7.8)Table 7.2 is a list of linear fun
tions { these fun
tions a

ount for 43/80 of the evolutionaryruns { that have regularly o

urred at the end of the evolutionary pro
ess. The analysisreveals that the evolutionary pro
ess has not evolved identi
al programs but has learnt anequivalent fun
tion. A sele
tion of programs that produ
ed an equivalent fun
tion are shownin Figure 7.6. To determine if they are equivalent, the relationships of Equations 7.10 and7.11 are substituted into ea
h fun
tion; the reason for the substitution is explained on page168. Frequen
y Program Dete
tion Rate13/80 3M2 � 4S2 +M3 � 4M4 100% (82/82)13/80 3M2 � 2S2 +M3 � 4M4 � 2S4 100% (82/82)7/80 M2 � 2S2 �M3 � 2S3 + 2S5 98.7% (81/82)6/80 M2 � S2 +M3 � S3 � 2M4 100% (82/82)4/80 �S1 +M2 +M3 � 2M4 � S4 100% (82/82)Table 7.2: Frequen
y that a linear fun
tion has o

urred as a result of the evolutionarypro
ess. Ea
h fun
tion is derived using the best individual from ea
h run for 80 evolutionaryruns. This table has been restri
ted to fun
tions that have 
ommonly o

urred from the 80evolutionary runs.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1651. (- (- M5 S2) (+ M4 (+ S2 (- M4 M2))))2. (- (+ (- M5 (+ M4 (+ M4 (- S2 M2)))) S5) (+ M1 S2))3. (+ (+ (+ (- (- S5 M4) S2) (- (- (- S2 (+ S2 M3)) M4) (+ S1 S5))) (+ M4M3)) (- (- (+ (+ M4 M5) (+ (+ M5 S1) (+ M3 M1))) (+ M3 M1)) (+ (+ S5 (+(+ M4 M3) M4)) (- M2 (+ (- M2 S2) (+ M1 M2))))))Figure 7.6: The above three evolved programs are signi�
antly di�erent in terms of treestru
tures and geneti
 material used, however, ea
h of the programs is equivalent to 3M2 �4S2 +M3 � 4M4. A dete
tion rate of 100% (82/82) was a
hieved by ea
h of these programs.Analysis of an individual programThe following analysis des
ribes how Equation 7.5 is used to predi
t the position of thelandmark based on the value of features at six positions a
ross two images. Ea
h positionde�ned in Table 7.3 is indi
ative of regular image patterns that o

ur within the image dataset. The positions in
lude soft tissue (1), ba
kground (2), a soft-tissue/ba
kground edge (3)and two examples where the input window is 
entred on the nose landmark (4, 5). The lastposition is related to the tip of nose lo
ated near the edge of an image, i.e. the tip of the noseis slightly obs
ured by the bright verti
al band (6).If we evaluate the program when the input window is lo
ated on an area of 
onstantbrightness, su
h as the soft-tissue or ba
kground, the output of the program is� 0. Intuitivelywe know that when the input window is positioned on an area of 
onstant brightness, thevalues of: (a) features 
al
ulated using the mean of grey level intensities within ea
h shape,Mi, will be approximately the same and (b) features 
al
ulated using the standard deviationof grey level intensities within ea
h shape, Si, will be � 0. A sample 
al
ulation is shown inEquation 7.9 when the input window is lo
ated on an area of 
onstant brightness. We have
hosen an arbitrary value, x, to des
ribe the average grey level intensity for ea
h feature. Thisis be
ause the value of ea
h feature, 
al
ulated using the average from grey level intensitieswithin ea
h shape, is approximately the same. The 
al
ulation demonstrates that when theinput window is lo
ated on an area of 
onstant brightness the output is � zero.
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Output =M1 � S2 � S3 � 2M4 +M5 (7.9)� x� 0� 0� 2x+ x� 0where x is an arbitrary value of feature MiIf we evaluate the program when the input window is 
entred on a diagonal soft-tissue/ba
k-ground edge, as shown as position 3 in Table 7.3, the program's output is negative. Whenthe input window is lo
ated on the tip of the nose, the program produ
es a high output in
omparison to the previous positions. If we 
ompare both outputs when the input windowis lo
ated on the soft-tissue/ba
kground edge (refer to positions 3 and 4 in Table 7.3) andtreat ea
h term in the equation as a separate 
omponent, we observe that the most signi�
ant
omponent for varying the output is 
ontributed by M4. If the input window moves eitherside of the soft-tissue/boundary edge, the value of either S2, the standard deviation of theleft half, or S3, the standard deviation of the right half, will de
rease the output be
ause ofthe negative 
oeÆ
ients.When the highest output is used to predi
t the position of the landmark, the dete
tionerrors are (1, -1) and (1, 0) pixels with respe
t to the known positions for the images shownin Table 7.3.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1671Position M1 - S2 - S3 - 2M4 + M5 = Output1 23.3-0.9-1.3-45.8+22.3=-2.42 4.5-0.5-0.5- 8.6+ 4.8=-0.33 11.6-5.1-3.3-22.4+12.0=-7.24 10.2-3.9-0.3-14.2+10.8= 2.6Highest � =(1, -1) 9.2-4.7-0.2-10.5+ 9.8= 3.65 10.1-3.1-1.4-15.5+10.6= 0.76 6.8-1.3-2.7-11.0+ 6.7=-1.5Highest � =(1, 0) 9.5-3.9-1.8-10.2+10.0=-3.6Table 7.3: Sample evaluations of a linear fun
tion, M1 � S2 � S3 � 2M4 +M5, when appliedto six di�erent positions a
ross two images.The analysis des
ribed above is 
onsistent with the graph shown in Figure 7.7. The graphin Figure 7.7 is the output of a dete
tion program, Equation 7.5, that has been applied to agreys
ale image. A graphi
al representation of Equations 7.6-7.8 applied to the same imageshow lands
apes similar to the one shown in Figure 7.7.
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 0  5  10  15  20  25  30  35  40  45  50  55Figure 7.7: The graph illustrates the output from a �t individual,M1�S2�S3� 2M4+M5,when only the f+; �g operators are available for sele
tion. The output of the program,whi
h is represented as the surfa
e plot, is superimposed on the greys
ale image.1Ea
h shaded region shows the pixels that are used in the statisti
al operation for 
al
uating the feature.
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urring patterns a
ross programsWe have analysed a program and have shown that the program's output is not ad-ho
 andthat the underlying evolved algorithm is reasonable for dete
ting the tip of the nose. Inthis se
tion we investigate whether there are any regularities learnt through the evolutionarypro
ess that are 
onsistent among the evolutionary runs.To redu
e the 
omplexity of the analysis we remove the redundant terminals in the termi-nal set. For example, we know the sum of the average grey level intensity of the left and righthalves of the input window is related to the average grey level intensity of the entire inputwindow (refer to Equation 7.10). We also 
on�rmed experimentally that ifM1 is substitutedin pla
e of M5 then the dete
tion performan
e of the evolved programs is not 
ompromised(refer to Equation 7.11). This suggests that the nose landmark training data for bothM5 andM1 terminals are similar. The programs' 
omplexity is redu
ed by eliminating the terminalsof M1 and M5 by substituting the relationships of Equations 7.10 and 7.11 into the evolvedprograms. M1 = 12(M2 +M3) (7.10)M1 �M5 (7.11)An analysis of the best program from ea
h evolutionary run reveals a perfe
t 
orrelation,using best subsets regression [132℄, between the terminal 
oeÆ
ients of �1 and the terminal
oeÆ
ients of �2, �3, �4 and �5. A multiple linear regression indi
ates that the sum ofall these terminal 
oeÆ
ients, i.e. 
oeÆ
ients of terminals based on the average grey levelintensities of the various shapes, is zero. The relationship is shown in Equation 7.12. Thesigni�
an
e of this relationship is that when the input window is lo
ated on an area of 
onstantbrightness, the program's output is � equal to 0. The reason why this o

urs is des
ribed onpage 165.We have established that programs produ
e an output of � 0 when the input window islo
ated on an area of 
onstant brightness, but how is the program's output manipulated so
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h as on an edge) are di�erentiated from a landmark lo
atedon an edge? The bar 
hart shown in Figure 7.8 indi
ates that the evolutionary pro
esssele
ts a 
ombination of features 
al
ulated from both the average and standard deviationof grey level intensities within ea
h shape. Generally speaking, we have found that theevolutionary pro
ess generates dete
tion programs that 
an dete
t the majority of landmarkswith features using the 
al
ulated means of the grey level intensities within ea
h shape, andthat the performan
e is further enhan
ed with features that have been 
al
ulated using thestandard deviations.
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Figure 7.8: Frequen
y that a feature's 
oeÆ
ient, �i or �i in Equation 7.4, is negative, positiveor zero (i.e. not used in a program). The analysis uses the best program at the end of 80evolutionary runs. Ea
h program was substituted with Equations 7.10 and 7.11 resulting ina zero 
oeÆ
ient for features M1 and M5.We shall start by analysing how features 
al
ulated using the mean are used for lo
atinglandmarks. If we examine the 
oeÆ
ients that regularly o

ur in Figure 7.8, we observe thatthe 
oeÆ
ients of M2 and M3 are generally positive and the 
oeÆ
ient of M4 is generallynegative. On the o

asions when the 
oeÆ
ient of M3 is not positive and the 
oeÆ
ient ofM4 is not negative, the dete
tion performan
e of the program was less than 100%. This is
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Coefficient(a) M3 (b) M4Figure 7.9: Graphs (a) and (b) show the relationship between the 
oeÆ
ients of M3 and M4versus dete
tion performan
e. The data has been jittered so that the density of points at agiven point are visible.This re-o

urring pattern is interesting as M2 and M3 are the means of the left and righthalves of the input window respe
tively, and M4 is the mean of the two 
entre 
olumns.Although the 
ombination of M2 andM3 are important,M4 is able to penalise the program'soutput when the input window is lo
ated on the soft-tissue/ba
kground edge, above or belowthe tip of the nose. The penalty is asso
iated with the negative 
oeÆ
ient ofM4 that de
reasesthe program's output when values of M4 are high relative to M2 and M3. When the inputwindow is lo
ated on the tip of the nose, the penalty of M4 is de
reased be
ause the mean isasso
iated with pixels that have low greys
ale values.If we analyse in more detail how features using the standard deviation work, we observethat S2, S3 and S4 { these are features that regularly produ
e a non-zero 
oeÆ
ient { givea higher output when the input window is positioned on a diagonal edge 
ompared to thetip of the nose. Be
ause we want to penalise the program's output when the input windowis lo
ated on a diagonal edge, the features are multiplied by a negative 
oeÆ
ient and sothe program's output is redu
ed. However, if the input window is lo
ated on the tip of thenose, the standard deviation values of S2, S3 and S4 are negligible and the program's outputis not redu
ed. It appears that the features 
omputed using standard deviation are used todi�erentiate the ideal position from other positions that 
ontain 
lutter or areas that are not
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onstant brightness. However, these features only di�erentiate the ideal position from 
lutterand do not highlight the position of the landmark against areas of 
onstant brightness.If we analyse the frequen
y that a feature's 
oeÆ
ient o

urs using Figure 7.8, we ob-serve that useful features, i.e. features that regularly produ
e either a positive or negative
oeÆ
ient, are those that are 
al
ulated using shapes within an input window that 
oin
idewith the shape of the nose tip. For example, the left and right halves of the input windoware approximately the shape of the soft tissue and ba
kground respe
tively when the inputwindow is 
entred on the tip of the nose. Another shape regularly used was the two 
entral
olumns.The shapes used to 
al
ulate S1, the full square, and S5, two 
entral rows, do not mat
hthe pro�le of the nose and as a result a high standard deviation is produ
ed when the inputwindow is positioned on the tip of the nose. These features of S1 and S5, do not o

ur in43/80 programs and have the same magnitude 
oeÆ
ient but opposite signs on an additional9/80 programs. The signi�
an
e of this is that the similarity between the two shapes willresult in similar feature values and thereby have a negligible in
uen
e on the output. Shapesthat 
orrelate to the pro�le of the nose are S2, standard deviation of the left half, and S3,standard deviation of the right half. The frequen
y of o

urren
e of S2 and S3 is 67/80 and42/80 respe
tively. The reason for the lower o

urren
e of terminal S3 in programs is thatwhen the nose is partially obstru
ted by the edge of the image, the output would be penalisedwhen the input window is lo
ated on the tip of the nose, thus thereby redu
ing the output atthe landmark's lo
ation. Terminal S2 is more e�e
tive at dis
riminating false alarms in theseimages and so appears more frequently.Another regularity 
ommon with the best individual of ea
h evolutionary run is that thesum of the 
oeÆ
ients of terminals 
al
ulated using standard deviation is negative. Thisrelationship is shown in Equation 7.13. The signi�
an
e of this is if the input window ispositioned on a 
luttered s
ene, su
h as the soft-tissue/ba
kground boundary, the 
omputedoutput from a program will be redu
ed as a result of the a

umulated penalty from ea
hstandard deviation feature.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1725Xi=1 �i = 0 (7.12)4Xi=2 �i < 0 (7.13)where �i and �i are the 
oeÆ
ients of Mi and Si respe
tively.The signi�
an
e of the above analysis is that the most important features were thosederived from shapes that mat
h the nose's pro�le when the input window is 
entred on the tipof the nose. Features 
al
ulated using shapes that do not mat
h the nose's pro�le were eithernot sele
ted during the evolutionary pro
ess or were made redundant by a similar feature.This is 
onsistent with the results of Se
tion 5.6 in whi
h it was found that hand
raftedshapes gave better dete
tion performan
e than pixel based features that were not spe
i�
 tothe shape of the landmark.7.5.2 Sella landmarkThe previous se
tion analysed programs used to dete
t a simple landmark, the tip of the nose,and demonstrated that the evolved programs were not ad-ho
 and in fa
t the evolutionarypro
ess learnt underlying regularities that were 
onsistent between the evolutionary runs.The analysis in this se
tion is for a more diÆ
ult dete
tion problem, the sella landmark. Thein
reased diÆ
ulty is in terms of the variation in shape of the sella region as well as theamount of ba
kground 
lutter.7.5.2.1 Case 2: `+, �' operatorsThe aim of this se
tion is to analyse dete
tion programs for a more diÆ
ult dete
tion problemwhen only the f+, �g operators are available for sele
tion. As mentioned previously, afun
tion set 
onsisting of only f+, �g operators will only evolve a linear fun
tion whi
h isanalogous to evolving a 
oeÆ
ient for ea
h terminal, �i and �i, in Equation 7.14.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 173
Output = �1M1 + �1S1 + �2M2 + �2S2 + � � �+ �7M7 + �7S7 (7.14)= 7Xi=1(�iMi + �iSi), where�i and �i are integers, and i 
orresponds to the ith shape

An intermediate analysis of programs that were evolved from a feature set 
al-
ulated using PCNN derived shapesAs an intermediate step to understanding programs that were evolved using the featureset outlined in Figure 7.3, this se
tion will investigate programs when only the �rst fourfeatures are available for sele
tion, i.e. M1; S1; M2 and S2. The features are based on the
al
ulated mean and standard deviation for ea
h of the two PCNN derived shapes. Thepro
ess to extra
t the PCNN derived shapes is des
ribed in Chapter 6.The evolutionary pro
ess using the �tness fun
tion in Equation 7.2 produ
ed an averagedete
tion rate of 70.3%. Although the best individual from ea
h of the 80 evolutionary runsprodu
ed vastly di�erent programs, upon simpli�
ation it was established that ea
h of theprograms are variants of two linear fun
tions. The two fun
tions are shown in Equations7.15 and 7.16, whi
h produ
ed similar dete
tion rates of 70.7% and 69.5% respe
tively. Bothfun
tions shown in Equations 7.15 and 7.16 are similar with the ex
eption of the 
oeÆ
ientfor S2. Output = 5M1 � 5S1 � 5M2 � 2S2 (7.15)=M1 � S1 �M2 � 0:4S2 (equivalent �tness fun
tion)Output = 3M1 � 3S1 � 3M2 � S2 (7.16)�M1 � S1 �M2 � 0:3S2 (equivalent �tness fun
tion)
Analysis of an individual programThe following analysis des
ribes how Equation 7.15 is used to predi
t the position of a



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 174landmark based on the value of features at six di�erent positions a
ross two images. Ea
hof the positions shown in Table 7.4 are indi
ative of regular patterns that o

ur within theimage data set. The positions in
lude an area that has similar pixel intensity values (1), edgeof bone with some ba
kground 
lutter (3, 4, 5) and two examples where the input window is
entred on the sella landmark (6, 7).If we evaluate the program when the input window is lo
ated on an area of 
onstantbrightness, i.e. an area where the input window 
ontains pixels having similar pixel intensityvalues, the output of the program is � 0. The reason for this was des
ribed on page 165, butin brief, the values of: (a) features 
al
ulated using mean, Mi, are approximately the sameand (b) features 
al
ulated using standard deviation, Si, are � 0. An analysis of the outputat the �rst position in Table 7.4 indi
ates that when the input window is lo
ated on an areathat visually appears to 
ontain pixels with 
onstant brightness, the output is 
lose to zerorelative to the output of the other �ve positions.If we treat the se
ond, third and fourth positions from Table 7.15 as a similar type ofpattern, i.e. the input window 
ontaining either bone or ba
kground 
lutter, we observe theoutput is signi�
antly lower 
ompared to the �rst position. The 
omponents 
al
ulated fromstandard deviation features, i.e. S1 and S2, have in
reased be
ause the PCNN derived shapesused to 
al
ulate values of S1 and S2 do not 
oin
ide with any of the 
luttered regions. Theoutput is penalised be
ause the 
oeÆ
ients of both S1 and S2 are negative thereby redu
ingthe program's output at the landmark's lo
ation.If we analyse position �ve, i.e. when the input window is 
entred on the known positionof the landmark, we a
hieve an output that is higher than the previous four positions. Thisis partly due to the relationship between 
omponents M1 and M2 and the lower values of S1and S2. If we subtra
t 5M1, the 
al
ulated mean of pixel intensity values depi
ted as brighterpixels when 
entred on the landmark, from 5M2, the 
al
ulated mean of slightly darker pixels,we get a value of 1111�1050 = 51. Even though the values for both features 
al
ulated usingstandard deviation are high, they are low relative to the other positions that are lo
ated ona 
luttered s
ene. The dete
tion error was (1, -2) pixels with respe
t to the known positionwhen using the highest output to predi
t the position of the landmark.The bottom image in Table 7.4 (Table 7.4b) is an example where the program has in-
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orre
tly lo
ated the landmark and has produ
ed a dete
tion error of (29, 14) pixels. Thereason for the in
orre
t predi
tion is a 
ombination of two fa
tors. The �rst fa
tor is the low
ontrast between the semi-
ir
ular region (or region depi
ted as a saddle) and ba
kgroundpixels. This has produ
ed a low value when subtra
ting the values 5M2 from 5M1, when theinput window is lo
ated over the position of the landmark. Se
ondly, the standard deviationsof both shapes are high relative to the analysis at position �ve in the top image of Table7.4. The high values of S1 and S2 are attributed to the generality of the PCNN derivedshapes used to 
apture the large variations of the semi-
ir
ular region that en
ompass thesella landmark. It is reasonable to expe
t that if these shapes better mat
hed the regions ofinterest then this would have produ
ed a lower standard deviation potentially in
reasing theprogram's output at the desired lo
ation. 1Position 5M1 - 5S1 - 5M2 - 2S2 = Output
(a)

1 1142-10.3-1135- 2.8= -6.12 1188-54.0-1172-18.5= -55.53 986-68.8-1014-32.3=-129.14 1047-72.8-1041-29.9= -96.75 1111-28.8-1050-20.3= 11.9Highest � =(1, -2) 1111-27.4-1051-19.2= 13.4
(b) 6 1079-34.3-1037-19.3= -11.6Highest � =(29, 14) 986-55.8- 869-39.7= 21.5

Table 7.4: Sample evaluations of a linear fun
tion, 5M1 � 5S1 � 5M2 � 2S2, when applied tosix di�erent positions a
ross two images.To summarise this analysis:1Ea
h shaded region represents the pixels that are used in the statisti
al operation for 
al
ulating thefeature value.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 176� Features M1 and M2 assist with di�erentiating between the known position and areaswhere the input window 
ontains pixel intensity values of 
onstant brightness. Thedistin
tion is made by a positive output of �M1;2, where �M1;2 = 5M2 � 5M1.� Features M1 and M2 
ombined with S1 and S2 are used to di�erentiate between 
lut-tered s
enes and the known position.The above analysis shows how ea
h 
omponent within the linear fun
tion is able to ma-nipulate the output for the purpose of predi
ting the position of the sella landmark. Asmentioned on page 173, the programs are variants of two linear fun
tions of whi
h are sim-ilar. This demonstrates that although ea
h evolutionary run evolves a signi�
antly di�erentprogram, the evolutionary pro
ess has 
aptured an underlying regularity 
onsistent a
rossea
h evolutionary run. Another regularity 
aptured by the evolutionary pro
ess is that thesum of the 
oeÆ
ients of features 
al
ulated using the mean, equates to zero. This is shown inEquation 7.17 and is 
onsistent with the �nding for programs that were evolved to dete
t thenose landmark. The 
oeÆ
ients of features 
al
ulated using standard deviation are alwaysnegative and de
rease the program's output when the input window is lo
ated on a 
lutteredba
kground. 2Xi=1 �i = 0 (7.17)�i < 0; where i=1, 2 (7.18)where �i and �i are the 
oeÆ
ients of Mi and Si respe
tively.
An analysis of programs that were evolved from a feature set 
al
ulated usingPCNN derived shapes and quadrantsThe previous se
tion analysed the fun
tionality and determined if there were any under-lying regularities 
aptured by the evolved dete
tion programs when only four features, basedon the two PCNN derived shapes, were available for sele
tion. The aim of this se
tion isto in
orporate the additional features based on the quadrants, i.e. analyse programs where
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tion, and then determine if there are anyregularities 
aptured as part of the evolutionary pro
ess. The features analysed in this se
tionare the features used in Se
tion 6.3.7.The evolutionary pro
ess using the �tness fun
tion in Equation 7.2 produ
ed an averagedete
tion rate of 75.9%. This result is signi�
antly higher than the previous result whenonly the four features, i.e. M1; S1; M2 and S2, were available for sele
tion. This indi
atesthat at least one of the other features were used to improve the dete
tion performan
e of theevolved programs. The linear fun
tions shown in Equations 7.19-7.22 are derived from fourof the �ttest programs taken from 80 evolutionary runs. The best evolutionary run a
hieveda dete
tion rate of 84.1%.Output = 5M1 � 2M2 � S2 � 2M3 � 3S3 � 2S4 + S5 �M6 + S7 (7.19)Output = 6M1 � 2S1 � 5M2 � 3S2 �M3 � 3S4 +M5 + S5 (7.20)�2M6 + S6 +M7 + S7Output = 3M1 � 3S1 �M2 � 4S2 �M3 + 4S3 � S4 �M6 + S7 (7.21)Output = 6M1 � S1 � 5M3 � 3S3 � 2S4 + S5 � 2M6 +M7 + S7 (7.22)
Analysis of an Individual ProgramPrevious work on page 173 analysed how the position of a landmark is predi
ted based onthe value of features at seven positions a
ross two images. The positions were indi
ative ofregular patterns that o

ur within the image data set. The analysis demonstrated that if theinput window is lo
ated on an area of 
onstant brightness or ba
kground 
lutter then theprogram's output will be approximately zero or negative respe
tively. The rationale of theprogram's output is the sum of ea
h feature's 
oeÆ
ient 
al
ulated using mean, as des
ribedby Equation 7.15, is equal to zero. Likewise, the program's output is generally negative whenthe input window is positioned over 
luttered ba
kground. This is shown by the numeri
alanalysis for position 1 and positions 2-4 respe
tively in Table 7.5.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1781Position 5M1 - 2M2 - S2 - 2M3 - 3S3 - 2S4 + S5 - M6 + S7 = Output
(a)

1 1142- 454 - 1.4- 455 - 5.6- 1.3+ 1.0- 230 + 1.4= -2.92 1188- 469 - 9.2- 472 -30.3- 5.2+ 1.8- 247 + 7.3=-35.63 986- 406 -16.2- 401 -45.7-31.3+16.3- 188 + 9.7=-76.24 1047- 417 -14.9- 418 -44.3-12.2+ 7.1- 202 +12.9=-41.45 1111- 420 -10.2- 431 -31.2- 6.7+ 6.6- 222 +11.0= 7.5Highest � =(1, -2) 1111- 420 - 9.6- 431 -30.0- 7.1+ 6.5- 221 +10.6= 9.4
(b)

6 1079- 415 - 9.6- 422 -28.5- 7.0+ 5.0- 213 +11.8= 0.77 986- 348 -19.9- 369 -60.6-27.3+11.1- 193 +23.1= 2.4Highest � =(1, -3) 1084- 416 - 8.9- 424 -26.3- 6.8+ 5.2- 215 +11.6= 3.8Table 7.5: Sample evaluations of a linear fun
tion, 5M1 � 2M2 � S2 � 2M3 � 3S3 � 2S4 +S5 �M6 + S7, when applied to seven di�erent positions a
ross two images.Rather than repeat the analysis on an image where the landmark's lo
ation was previ-ously 
orre
tly identi�ed, the analysis in this se
tion will be applied to an image where thelandmark's lo
ation was previously in
orre
tly identi�ed (refer to the bottom image in Table7.4). The bottom image in Table 7.5 is an example where the landmark is now lo
ated withinthe allowable toleran
e. Position six in Table 7.5 is the lo
ation of the known position ofthe sella landmark and position seven is lo
ated in a 
luttered ba
kground and 
entred onthe position that was previously re
orded as a false alarm { the false alarm was a result ofapplying Equation 7.15 to the image.The sum of all 
omponents within the linear fun
tion that 
onsist of features 
al
ulatedusing mean for positions six and seven in Table 7.5 are 29 (1079-415-422-213) and 76 (986-348-369-193) respe
tively. The value at position seven is high relative to position six be
ausethe highest output should be lo
ated at the known position of the landmark. However, thefeatures 
al
ulated using standard deviation redu
e the program's output at position seven1Ea
h shaded region represents the pixels that are used in the statisti
al operation for 
al
ulating thefeature value.
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omponents within the linear fun
tion that 
onsistsof features 
al
ulated using standard deviation for positions six and seven in Table 7.5 are�28:3 (-9.6-28.5-7+5+11.8) and �73:6 (-19.9-60.6-27.3+11.1+23.1) respe
tively. Althoughthe highest output does not 
oin
ide with the known position, the dete
tion error is (1, -3)whi
h is within the allowable toleran
e for our dete
tion problem.A 
omparison of dete
tion performan
e shows that Equation 7.19, a linear fun
tion evolvedfrom fourteen features, has in
reased the dete
tion performan
e from 70.7% (58/82) to 84.1%(69/82) with respe
t to Equation 7.15, a linear fun
tion evolved from four features. Ananalysis of these results show that Equation 7.19 has improved dete
tion performan
e by
orre
tly identifying the sella landmark in an additional thirteen images. It is worth notingthat although the way in whi
h features used by both linear fun
tions are di�erent, thefun
tions have 
orre
tly lo
ated the landmark in identi
al positions in 47.6% (39/82) of theimages. For example, refer to the top image in Tables 7.4 and 7.5 where the landmark is
orre
tly identi�ed by two di�erent programs with a dete
tion error of (1, -2) pixels. Thisresult is not entirely unexpe
ted be
ause the graphs in the top row in Figure 7.10 produ
esimilar surfa
e plots whi
h are the result of two di�erent programs applied to the same image.The surfa
e plot is the output from a program that has been applied to ea
h position withinthe image. A similar surfa
e plot o

urs when both programs are applied to the bottomimage in Figure 7.10, ex
ept the height of the peak that was previously highest { refer toView A in Image B(a) { has been redu
ed by the use of additional features { refer to ViewA in Image B(b). The highest peak in View A of ea
h image is 
ir
led.
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(a) 5M1 � 5S1 � 5M2 � 2S2 (b) 5M1 � 2M2 � S2 � 2M3 � 3S3�2S4 + S5 �M6 + S7Figure 7.10: Graphs (a) and (b) illustrate the output from a �t individual when four andfourteen features are available for sele
tion respe
tively. In both 
ases, only the `+, �'operators are available. The output of the program, whi
h is represented as the surfa
e plot,is superimposed on the greys
ale image.It is worth stating that although the evolutionary pro
ess evolves a diverse range of pro-grams, some of the evolutionary runs learn an equivalent fun
tion. A sample of programsthat produ
e an equivalent fun
tion are shown in Figure 7.11. To determine if they are equiv-alent, the relationship of Equation 7.23 is substituted into ea
h fun
tion; the reason for thesubstitution is explained on page 181. This indi
ates that although the geneti
 programmingmethod evolves a program that appears somewhat ad-ho
, it is not un
ommon for the geneti
programming method to learn an underlying regularity, and in this 
ase an identi
al fun
tion,from di�erent evolutionary runs.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 1811 (+ (- (+ S7 (- (- M1 S1) S3)) (- (- M2 S1) (- (- (- M1 S1) S3) M2))) (-(- M3 S3) M2))2 (+ (- (+ (- S2 (- (+ (+ M2 S6) (+ M4 S1)) (+ (- (- M1 S3) M2) (+ (- S6M2) M4)))) (+ M3 S7)) (+ (+ S2 (- S3 (- M1 S3))) M3)) M3)3 (+ (+ (+ M3 S6) (+ M3 (+ (- S7 (- (- M2 M5) S1)) (- (- (- M1 S1) S3) (+(+ S6 M3) M2))))) (- (- (- (- M1 S1) S3) S3) (+ M5 M2)))Figure 7.11: The above three evolved programs are signi�
antly di�erent in terms of treestru
tures and geneti
 material used, however, ea
h of the programs is equivalent to 5M1 �2S1 � 5M2 � 2S3 � 2S7. A dete
tion rate of 76.8% (63/82) was a
hieved for ea
h of theseprograms.Analysis of regularly o

urring patterns a
ross programsWe have analysed two programs used to lo
ate the sella landmark where ea
h program wasevolved using two di�erent feature sets. The analysis showed that the program's output is notad-ho
 and that the underlying algorithm is reasonable for dete
ting the sella landmark. Inthis se
tion, we shall perform a similar type of analysis that was 
ondu
ted for nose landmark,to determine if there are any regularities 
aptured through the evolutionary pro
ess that are
onsistent amongst the evolutionary runs.To redu
e the 
omplexity of this analysis we remove the number of redundant terminalsthat are available in the terminal set. For example, we know the sum of the average greylevel intensity of M1 and M2 is related to the average grey level intensity of the entire inputwindow { refer to Equation 7.23. The 
onstants n1 and n2 are the number of pixels used to
al
ulate M1 and M2 respe
tively. The program's 
omplexity is redu
ed by eliminating theterminal M3 and substituting the relationship of Equation 7.23 into the evolved programs.M3 = ( 1n3M1 + 1n1M2) n1n3n1 + n3 , where n1=719 and n2=881� 0:45M1 + 0:55M2 (7.23)An analysis of the best program from ea
h evolutionary run reveals a 
orrelation, usingbest subsets regression, between the terminal 
oeÆ
ients �1 and the terminal 
oeÆ
ients�2, �3, : : :, �7. A multiple linear regression indi
ates that the sum of all these terminal
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oeÆ
ients, i.e. 
oeÆ
ients of terminals based on the average grey level intensities of thevarious shapes, is zero. The relationship is shown in Equation 7.24. The same underlyingregularity has been 
aptured in programs used to dete
t the nose landmark and the sellalandmark (evolved using the restri
ted feature set) { refer to Equations 7.12 (p. 172) and7.17 (p. 176) respe
tively. The signi�
an
e of this relationship is that when the input windowis lo
ated on an area of 
onstant brightness, the program's output is � equal to 0. For anexplanation into why this o

urs, refer to page 165.There are no other 
orrelations between the various feature 
oeÆ
ients suggesting thatthere are inter-relationships between the di�erent 
oeÆ
ients. An analysis of the bar 
hartshown in Figure 7.12 indi
ates that the evolutionary pro
ess sele
ts a 
ombination of features
al
ulated from both the average and standard deviation of grey level intensities within ea
hshape. Several generalisations of in
uential features are derived from the bar 
hart and shownin the form of Equations 7.25-7.28. We shall begin by analysing how the most in
uentialfeatures, i.e. the frequen
y that a feature's 
oeÆ
ient is either positive or negative in at least70% of the best programs, are used to lo
ate a landmark. The following investigation willanalyse in
uential features 
al
ulated using: (a) mean and then (b) standard deviation.In
uential features 
al
ulated using mean, as shown in Figure 7.12, areM1 andM2 whi
hare features derived using the PCNN derived shapes. The signs of the 
oeÆ
ient for M1and M2 are positive and negative respe
tively, whi
h is also 
onsistent with programs thatwere evolved from the redu
ed feature set. This is reasonable be
ause if the input window is
entred on the sella landmark and we subtra
t �2M2 from �1M1, we expe
t a high output
ompared to other positions within the image.In
uential features 
al
ulated using standard deviation, as shown in Figure 7.12, are S1,S2 and S7. Features S1 and S2 are derived using the PCNN derived shapes and feature S7is derived using the bottom right quadrant. The signs of both 
oeÆ
ients for S1 and S2 arenegative, whi
h is also 
onsistent with programs that were evolved from the redu
ed featureset. The 
oeÆ
ient of S7 is generally positive and when the feature is 
ombined with S1 andS2 the program's output will have a greater de
rease when the input window is lo
ated onba
kground 
lutter relative to when lo
ated on the known position. The magnitude of S1and S2 
oeÆ
ients are higher than the other 
oeÆ
ients of features 
al
ulated using standard
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uential features.
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Figure 7.12: Frequen
y that a feature's 
oeÆ
ient, �i or �i in Equation 7.14, is negative,positive or zero (i.e. is not used in a program). The analysis uses the best program at theend of 80 evolutionary runs. Ea
h program was substituted with Equation 7.23 resulting ina zero 
oeÆ
ient for feature M3.7Xi=1 �i = 0 (7.24)�i < 0; where i=2 (7.25)�i > 0; where i=1 and 5 (7.26)�i < 0; where i=1, 2 and 4 (7.27)�i > 0; where i=5 and 7 (7.28)where �i and �i are the 
oeÆ
ients of Mi and Si respe
tively.
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hapter was to determine if there are any regularities 
aptured during theevolutionary pro
ess, and if so, whether we 
ould develop explanations of how the evolvedprograms work for an obje
t dete
tion problem. The investigation was restri
ted to fun
tionsets whi
h only evolved programs exhibiting the behaviour of linear fun
tions for the dete
tionof two landmark types. The investigation demonstrated that the evolved programs are not ad-ho
, and in fa
t, underlying regularities are being 
aptured during the evolutionary pro
ess.The underlying regularities regularly learnt are:� There is a perfe
t 
orrelation between the feature 
oeÆ
ients 
al
ulated using the meansof grey level intensity values within the pre-de�ned shapes. The signi�
an
e of thisrelationship is that when the input window is lo
ated on an area of 
onstant brightness,the program's output is � equal to 0.� Features that are 
al
ulated using shapes mat
hing the landmark's pro�le were utilisedmore frequently than shapes that do not mat
h the landmark's pro�le. This presents astrong argument for the use of shapes that mat
h the landmark's pro�le.� The 
oeÆ
ients of features that are 
al
ulated using the standard deviation of grey levelintensity values within shapes that mat
h a landmark's pro�le, are generally negative.The negative 
oeÆ
ients redu
e the output when the input window is lo
ated on edgesor ba
kground 
lutter whi
h are not related to the position of the landmark. Thein
reased values are a result of the shapes not mat
hing the 
lutter 
ontained withinthe input window.� Although ea
h of the evolved programs from the di�erent evolutionary runs were di�er-ent, it was not un
ommon for the evolutionary pro
ess to learn an equivalent fun
tion.This is strong eviden
e that the evolved programs are not ad-ho
 but are 
apturingimportant domain 
hara
teristi
s. This suggests that for situations where there are toomany terminals and fun
tions to permit understanding, the evolved programs are still
apturing regularities of the domain.



CHAPTER 7. ANALYSIS OF EVOLVED PROGRAMS 185The investigation has provided an understanding of how the simpli�ed programs work andthat they are 
apturing important regularities in the problem domain. We 
onje
ture thatprograms using the full fun
tion and terminal sets are also 
apturing domain regularities,even though they are diÆ
ult to identify.



Chapter 8
Con
lusions
In this thesis, a methodology for using geneti
 programming for a

urately lo
ating 
ephalo-metri
 landmarks has been presented. This methodology has been developed using severallandmark types that vary in terms of dete
tion diÆ
ulty. As part of this investigation weexplored a wide range of features, operators and �tness measures.8.1 Resear
h QuestionsThe resear
h questions put forward by this thesis were:1. Can an existing domain independent approa
h using pixels as features andgeneti
 programming be used for landmark dete
tion?This question was addressed within Chapter 4 to determine if the method 
laimingto be domain independent { geneti
 programming and pixel based features { 
an beused to dete
t 
ephalometri
 landmarks. We demonstrated that this methodology wassu

essful on simple landmarks, however, we found that the false alarm rate in
reasedwith the dete
tion diÆ
ulty of the landmark. The methodology used to dete
t thenose (easy) and sella (hard) landmarks produ
ed false alarm rates of 14.8% and 214.8%respe
tively. False alarms are una

eptable for a 
ephalometri
 analysis and thereforefurther work was required to investigate if the methodology 
an be improved to redu
efalse alarm rate. Our work demonstrated that the domain independent approa
h usedin Chapter 4 is not suitable for these types of dete
tion problems.186
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an the domain independent approa
h be modi�ed and extended togive better dete
tion performan
e?This resear
h question was addressed in Chapter 5. The investigation fo
ussed onalternative �tness measures, fun
tion sets and the hand
rafting of shapes for generatingfeatures.An investigation into the main issues for improving the dete
tion performan
e of pro-grams within the geneti
 programming paradigm revealed:� That using both the highest output to predi
t the position of the landmark anddete
tion rate as a �tness metri
 produ
es signi�
antly less false alarms than thedomain independent approa
h. We also demonstrated that the a

ura
y of thedete
tion program 
ould be improved by minimising the error { the distan
e be-tween the known and predi
ted position { in the �tness fun
tion. However, this�tness metri
 was not as e�e
tive as dete
tion rate for landmarks that are diÆ
ultto lo
ate.� That hand
rafted shapes, idiosyn
rati
 to the type of landmark, are able to pro-du
e better performing programs 
ompared to the domain independent approa
hthat uses pixel based features.� That the f+; �; �; =g fun
tion set evolved programs that were marginally betterperforming than programs evolved using f+; �g or f+; �; �; =; min; maxgfun
tion sets. The fun
tion sets were derived from operators that are 
ommonly
ited in geneti
 programming literature within the 
omputer vision domain. Dueto the unexpe
tedly good performan
e of programs evolved using the f+; �gfun
tion set, it would be worthwhile as future work to as
ertain the performan
eof other paradigms that are more suited to learning a linear fun
tion.3. Can hand
rafting of shapes be repla
ed by learning the shapes from exam-ples and will this in
rease dete
tion a

ura
y?This resear
h question was addressed in Chapter 6 where we have investigated the useof a pulse 
oupled neural network to segment a landmark's regions of interest. The



CHAPTER 8. CONCLUSIONS 188segments were subsequently used to generate a set of shapes. An investigation of thedete
tion programs that used the PCNN derived shapes and quadrants demonstrateda signi�
ant improvement in dete
tion performan
e when 
ompared to the hand
raftedshapes. When tested on three out of the four landmarks (on average, the dete
tion ratein
reased by 11.7%, 16.9% and 27.3% for the menton, upper lip and sella landmarksrespe
tively) and there was no signi�
ant di�eren
e in dete
tion performan
e for theother landmark (in
isal upper in
isor). This work has gone a long way to a
hieving thegoal of a fully automated approa
h to generating a set of shapes, however further workis required to be able to automati
ally identify a suitable set of parameter values forthe PCNN.4. Are there any underlying algorithms that are learnt during the evolutionarypro
ess?We have shown that a methodology of simplifying the fun
tion set, that restri
ts pro-grams to linear fun
tions and simplifying programs using parsimony pressure, yieldsinsight into the underlying regularities in the evolved programs. We found that thesame underlying regularities were 
onsistently being dis
overed in many of the evolu-tionary runs. The regularities in
lude an identi
al output for ea
h of the programswhen lo
ated on an area of 
onstant brightness, the higher utilisation of shapes thatmat
h a landmark's region of interest and the evolutionary pro
ess learning an identi
alfun
tion even though the programs were signi�
antly di�erent.Even though we have simpli�ed the 
omplexity of the programs by restri
ting the typeof operators in the fun
tion set, the simpli�ed approa
h still gives us 
on�den
e that themore 
omplex non-linear fun
tions are still 
apturing regularities within the problemdomain.8.2 Comparison with other workThe aim of this se
tion is to 
ompare the dete
tion performan
e of our method with othernotable results from the literature survey1. The methodology we used for this 
omparison1El-Feghi et al. has not been in
luded in Table 8.1 for the reasons explained in Se
tion 2.7.1.2 on page 51.



CHAPTER 8. CONCLUSIONS 189is based on the PCNN derived shapes and quadrants, as we per
eive this to be toward oneof our goals of a
hieving an automated approa
h to generating a set of features. Our testresults are based on a three-fold 
ross validation applied to 110 images.Cardillo Chakrabartty Giordano Rueda Yue Our work1994 2003 2005 2006 2006Test set size 40 40 26 96 86 110Hard tissue landmarksSella 53 87 - 39 76 80Nasion 83 85 81 56 86 84A Point 77 - 73 68 - 73In
isal Upper In
isor 76 - 92 - 90 95Menton 78 - 92 70 98 100Soft tissue landmarksNose Mid 94 - - - - 100Upper Lip Mid - - - - - 89Table 8.1: A 
omparison of our dete
tion rates with results from the literature. Our results arebased on dete
tion programs that were evolved using PCNN derived shapes and quadrants.The GP and PCNN parameter settings are detailed in Appendix A.The results provided in Table 8.1 
ompare favourably against other published dete
tionresults from the literature. However, it should be noted that the dete
tion results of the di�er-ent approa
hes are not dire
tly 
omparable for the following reasons: the sizes of the datasetsare not the same, the resolution of the images are di�erent; no statisti
al test 
omparing testresults is performed; and the 
omparison is performed on a di�erent set of images.8.3 Further Work1. The work presented in this thesis used a sele
tion of landmarks that exhibit a range ofdete
tion diÆ
ulties. We would like to apply the methodology outlined in Chapter 6that used the PCNN derived shapes and quadrants to the remaining landmarks.2. The size of the input window has been determined in a somewhat ad-ho
 fashion, basedon the 
riteria of what size peforms `well'. Work presented in Chapter 6 (page 154)illustrated the sensitivity of the size of the input window with respe
t to a program'sexpe
ted dete
tion performan
e. The reason for the variation in a program's expe
ted
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tion performan
e is due to a trade-o� between the input window's size being toosmall and the input window not 
ontaining enough information, and too large and theinput window 
ontaining information that is subje
t to biologi
al variability. Therefore,we would like an automated way to pre-determine the size of the input window priorto the evolutionary pro
ess.3. The PCNN method demonstrated that if there was a signi�
ant di�eren
e between theregion of interest and ba
kground then the method was able to 
onsistently segmentthe relevant regions of interest. However, this method was not 
onsistent at segmentingthe regions of interest when there were subtle 
hanges in greys
ale, e.g. sella region,or noisy images. As part of this resear
h we explored many 
lassi
al image pro
essingte
hniques in order to segment the regions of interest and as future work we would liketo extend this exploration to determine if a suitable segmentation algorithm 
an belearnt.4. The features presented in this thesis use the 
al
ulated mean and standard deviation ofgrey-level intensity values within pre-de�ned shapes. The advantage of using these fea-tures is that the pro
essing time to 
al
ulate these features is relatively small 
omparedto the more 
omplex features that are derived from Wavelet and Fourier transforms. Al-though the performan
e of dete
tion programs using these features had produ
ed somevery promising results, we would like to in
orporate a spatial relationship between thepixels within the input window.5. The sear
h for the landmark was 
on�ned to a mu
h smaller area within the X-ray.The sear
h area was de�ned using a statisti
al heuristi
 that was driven by anatomi
alknowledge relative to a known datum point. However, the size of the sear
h area variesdepending on the distan
e of the datum point to the landmark's expe
ted position.The sear
h area is a fun
tion of varian
e whi
h is related to biologi
al variability. Thekey issue is minimising the size of sear
h area that will also 
ontain the landmark ofinterest.Previous work by [44℄ used a MLP to learn the 
oordinates of landmarks from an initial
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hes in that it learnsthe spatial and s
ale relationships to determine the 
oordinates of the landmarks ratherthan a sliding window approa
h. Although the results were found to be ina

urate forautomati
ally lo
ating landmarks, we believe that a method similar to this would sig-ni�
antly redu
e the size of the sear
h area 
ompared to the heuristi
 that we 
urrentlyuse. We expe
t that a smaller sear
h area will signi�
antly redu
e training times andpotentially in
rease dete
tion rate.6. Possible s
ope for future work is to determine if the dete
tion rate (Se
tion 5.4.1) andthe distan
e error (Se
tion 5.4.5) �tness fun
tions 
an be in
orporated as multi-obje
tiveoptimisation problem. This would hopefully evolve programs that have a high dete
tionrate and high dete
tion a

ura
y. The �tness fun
tion used throughout the majorityof this thesis only rewards programs on the basis that the position is predi
ted within2 mm of the known position; there is 
urrently no in
entive for the landmark to bepredi
ted less than 2 mm.7. Part of our work used the PCNN to highlight regions of interest with the purpose toimprove dis
rimination between the landmark and ba
kground pixels. However, usingthe PCNN requires several parameters to be manually tuned whi
h 
an be a diÆ
ulttask depending on where the region of interest is lo
ated. A sear
h method, su
h as ageneti
 algorithm, may be able to learn a suitable set of PCNN parameters that wouldautomate this task. A similar 
on
ept has been used previously for optimising theparameters regulating a video-based tra
king system [105℄.8. Work presented in Se
tion 5.5 demonstrated that programs exhibiting the behaviour oflinear fun
tions are nearly as su

essful at dete
ting landmarks as programs that exhibitthe behaviour of non-linear fun
tions. Therefore, it is worth exploring a paradigm thatis better suited to learning linear fun
tions, su
h as geneti
 algorithms or parti
le swarmoptimisation. The advantages of using a paradigm su
h as geneti
 algorithms 
omparedto geneti
 programming are: they are more suited to solving linear problems, the timespent pro
essing a bit-string is signi�
antly less than pro
essing a program tree and thesear
h spa
e is signi�
antly smaller.
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h by [58℄ used geneti
 programming to learn a multi-stage approa
h for dete
t-ing vehi
les in infrared line s
an (IRLS) images. The aim of ea
h stage was to redu
ethe number of pixel positions (false alarms) from ea
h subsequent stage and the vehi
leswere dete
ted from the remaining pixel positions in the �nal stage. This approa
h wasshown to improve the dete
tion performan
e when 
ompared to a single dete
tion pro-gram. As future work it would be worthwhile to learn an initial 
lassi�er to redu
e thenumber of pixel positions and then evolve a dete
tion program using our methodologyto predi
t the position of the landmark from the remaining pixel positions.
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Appendix A
Parameter Settings
A.1 Parameter Settings: Geneti
 ProgrammingParametersPopulation size, M 100Maximum generation, G 100Maximum depth, D 8Initial maximum depth, d 6Probability of:Reprodu
tion, PR 0.10Crossover, PC 0.70Mutation, PM 0.20Probability of 
rossover at:Terminal 0.15Fun
tion 0.85Terminal Set +, �, *, /Fun
tion Set PCNN derived shapesand quadrantsToleran
e (pixels) 5 (2 mm)Table A.1: Run-time parameters used during the geneti
 sear
h for evolving dete
tion pro-grams.
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APPENDIX A. PARAMETER SETTINGS 220A.2 Parameter Settings: Pulse Coupled Neural NetworkPCNN parametersLandmark SS �F �L �T � VF VL VT TMenton 8 1 0.3 0.15 0.08 0.01 1 1 50Sella 40 80 0.3 0.15 0.008 0.01 19 5 60In
isal upper in
isor 10 1 0.3 0.15 0.08 0.01 1 1 31Nose mid 14 1 0.3 0.15 0.26 0.01 1 1 40Nasion 26 1 0.3 0.15 0.03 0.01 1 1 50A point 32 1 0.3 0.15 0.06 0.01 1 1 54Upper lip 14 1 0.3 0.15 0.26 0.01 1 1 70Table A.2: Parameter settings used to generate the PCNN derived shapes in Table A.3.Template PCNN derivedshapesSellaNasionA pointIn
isal upperin
isorMentonNoseTable A.3: Templates 
omputed using the output from a PCNN with the 
orrespondingPCNN derived shapes. PCNN parameter settings are based on the values in Table A.2.



APPENDIX A. PARAMETER SETTINGS 221A.3 Cross Validation Results Cross validationLandmark 1 2 3 AvgMenton 100 100 100 100Sella 86.1 69.4 83.3 79.6In
isal upper in
isor 94.4 100 91.7 95.4Nose mid 100 100 100 100Nasion 77.8 80.6 94.4 84.3A point 80.6 72.2 66.7 73.2Upper lip 88.9 88.91Table A.4: Cross validation results based on the dete
tion performan
e for a range of land-mark types using the parameter settings from Se
tions A.1 and A.2.

1The dete
tion performan
e for the upper lip is only based on a single-fold from a three-fold 
ross validation.
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APPENDIX B. TEST RESULTS 223
Appendix B
Test results
B.1 Sella landmark

(0,2) (1,1) (1,-3) (-1,2)
(3,0) (2,-2) (0,0) (0,0)
(3,2) (1,-1) (2,0) (1,-1)Figure B.1: A sele
tion of images along with the predi
ted position for the sella landmark asis depi
ted by the 
ross. The positional error shown under ea
h image is a measure of thepredi
ted position relative to the a
tual position. Positional error is measured in pixels.
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(2,-2) (0,-2) (2,0) (2,0)
(-1,-9) (1,-1) (-1,0) (-1,1)
(2,2) (0,0) (-2,0) (17,20)
(4,0) (-1,1) (-23,-21) (1,-4)
(3,-3) (1,-3) (4,2) (1,2)Figure B.1 (
ontinued)



APPENDIX B. TEST RESULTS 225
(-1,0) (1,3) (1,-16) (19,20)Dete
tion rate=86.1% (31/36) False alarm rate=13.9% (5/36)Figure B.1 (
ontinued)Fitness s
ore=19.1781(/ (/ (* (- (/ (* M1 M1) (+ S3 M2)) S4) M1) (+ (+ (+ (+ S1 (+ (- M4 M1) M6))M2) (+ (- (- M4 M1) M1) M6)) M2)) (+ M1 M6))Figure B.2: The sella landmark dete
tion program used to predi
ted the position of thelandmarks in Figure B.1



APPENDIX B. TEST RESULTS 226B.2 Nasion
(0,1) (-1,9) (0,2) (1,3) (0,5) (2,1) (0,5)
(2,-14) (2,-4) (1,2) (5,-6) (-1,3) (0,-2) (0,6)
(0,-2) (4,-5) (-1,8) (0,3) (-2,0) (-1,1) (3,0)
(0,-1) (0,2) (-1,3) (2,1) (0,-3) (1,-1) (-4,-1)
(-1,3) (0,-2) (8,-4) (1,4) (0,3) (-2,1) (-1,-16)
(0,0) Dete
tion rate=77.8% (28/36) False Alarm Rate=22.2% (8/36)Figure B.3: A sele
tion of images along with the predi
ted position for the nasion landmarkas is depi
ted by the 
ross. The positional error shown under ea
h image is a measure of thepredi
ted position relative to the a
tual position. Positional error is measured in pixels.



APPENDIX B. TEST RESULTS 227Fitness=9.45946(* (/ (/ (- (- (+ S3 M4) (/ M7 S2)) (+ (+ S1 S2) (+ M2 S1))) (* (* (/ M7 S1)S7) (/ (- M6 (* S2 (+ M5 S4))) S1))) (* (/ (- (* (* M7 M4) (* M7 S3)) (+ (+(+ S2 127.194) M1) S2)) (- (/ (/ S6 S1) M1) (* M2 S5))) (* (+ M4 (+ (/ M7M5) 127.194)) (- (- M1 S6) (/ S1 121.876))))) (* (- (- (* (/ M7 S1) S7) (/S1 (+ M6 (+ S4 127.194)))) (/ (* M4 S3) (+ (/ (/ (+ S4 S2) S6) S2) (* M6 (+(+ M1 M2) S2))))) (- (* (- (+ M6 M1) (- S7 4.97753)) M2) (+ S1 S7))))Figure B.4: The nasion landmark dete
tion program used to predi
ted the position of thelandmarks in Figure B.3



APPENDIX B. TEST RESULTS 228B.3 A-point landmark
(3,0) (-3,-1) (-4,-3) (-1,-2) (-2,3) (2,2)
(-1,-2) (2,1) (6,8) (0,-1) (1,-1) (-6,-13)
(-8,-15) (2,3) (-1,3) (1,0) (0,5) (2,1)
(1,2) (-3,-9) (2,-1) (-2,-4) (-1,3) (2,1)
(-1,2) (-3,-1) (-3,-3) (3,4) (-2,-1) (13,19)
(2,3) (-2,-4) (-1,-6) (-1,-2) (-2,-7) (-1,-2)Dete
tion rate=80.6% (29/36) False alarm rate=19.4% (7/36)Figure B.5: A sele
tion of images along with the predi
ted position for the A-point landmarkas is depi
ted by the 
ross. The positional error shown under ea
h image is a measure of thepredi
ted position relative to the a
tual position. Positional error is measured in pixels.



APPENDIX B. TEST RESULTS 229Fitness=27.027(* (* (/ (- 239.272 (- S2 M6)) (+ M7 M1)) (* (* (/ (+ (/ (- S2 S1) M7) M6)(+ (+ (+ S4 M1) S6) S6)) 178.822) (- S4 108.699))) (+ M6 (* (+ M6 (* (/ (-S2 S1) M7) M4) (- S2 S1))))Figure B.6: The A-point landmark dete
tion program used to predi
ted the position of thelandmarks in Figure B.5B.4 In
isal upper in
isal landmark
(1,-3) (-1,-2) (0,-3) (2,-2) (-1,-2) (0,-1)
(1,-2) (-4,0) (0,-1) (-1,-2) (-1,-2) (0,-2)
(0,-2) (0,-1) (-1,-2) (-1,-2) (0,-1) (1,-1)
(1,-1) (2,-6) (1,-3) (-2,-4) (-1,-2) (1,-2)
(1,-2) (0,-1) (-1,-1) (0,-2) (0,-3) (-4,7)
(0,-2) (-2,-2) (0,-1) (0,-4) (1,-2) (-2,-1)Dete
tion rate=94.4% (34/36) False alarm rate=5.6% (2/36)Figure B.7: A sele
tion of images along with the predi
ted position for the in
isal upperin
isor landmark as is depi
ted by the 
ross. The positional error shown under ea
h imageis a measure of the predi
ted position relative to the a
tual position. Positional error ismeasured in pixels.



APPENDIX B. TEST RESULTS 230Fitness=4.05405(/ (* (/ S7 M2) M7) (/ (- (/ (* (* M7 S5) M2) 219.642) (- (* (/ S7 M2) (+(/ S7 M2) (+ S5 S5))) 90.9186)) (* (- 76.1776 S2) S5)))Figure B.8: The in
isal upper in
isor landmark dete
tion program used to predi
ted theposition of the landmarks in Figure B.7
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(-2,-1) (-2,-1) (2,0) (1,0) (3,-2)
(-1,-1) (0,-1) (3,-1) (1,-1) (1,0)
(2,0) (3,1) (-3,0) (2,1) (1,-1)
(0,0) (-1,-1) (0,-1) (-3,1) (2,0)
(3,0) (-3,0) (1,0) (2,-1) (0,-1)
(-1,-1) (-1,0) (-2,-1) (-1,0) (1,-1)
(1,0) (-1,0) (0,0) (1,-1) (2,-1)Figure B.9: A sele
tion of images along with the predi
ted position for the menton landmarkas is depi
ted by the 
ross. The positional error shown under ea
h image is a measure of thepredi
ted position relative to the a
tual position. Positional error is measured in pixels.
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(1,-1) Dete
tion rate=100% (36/36) False alarm rate=0% (0/36)Figure B.9 (
ontinued)Fitness=0(- (- (* M4 (- (- (- 98.0502 M7) S2) S2)) (/ (- (* S4 S4) (* M1 S7)) (/ S4S4))) (/ (- (* S4 S4) (* M1 S7)) (/ S4 S4)))Figure B.10: The menton landmark dete
tion program used to predi
ted the position of thelandmarks in Figure B.9
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(0,1) (0,-1) (0,-1) (-1,-2) (3,-3) (0,-2)
(0,-1) (0,-2) (0,0) (0,-2) (-1,2) (0,1)
(-1,3) (0,0) (0,-1) (0,-2) (-1,3) (0,1)
(0,1) (0,0) (0,1) (-1,-1) (-1,1) (-1,1)
(0,0) (0,-1) (0,1) (0,1) (0,0) (0,1)
(-1,2) (1,1) (1,1) (0,-1) (-1,1) (0,1)Dete
tion rate=100% (36/36) False alarm rate=0% (0/36)Figure B.11: A sele
tion of images along with the predi
ted position for the nose landmarkas is depi
ted by the 
ross. The positional error shown under ea
h image is a measure of thepredi
ted position relative to the a
tual position. Positional error is measured in pixels.



APPENDIX B. TEST RESULTS 234Fitness=0(/ (+ (+ (- (- (- M3 M6) (- (- (- M6 M6) (- M7 M4)) M4)) (- (+ M7 S7) (- S4M2))) (* M1 (* (- S3 S1) (+ S5 M3)))) (* (+ (- S7 S6) (+ M6 S3)) (- (/ M3M7) (/ 10.7579 M4)))) (+ (* (+ (* S3 S7) (+ M3 M6)) (+ (+ S1 (* M3 S2)) (+M4 S4))) (- S7 S6)))Figure B.12: The nose landmark dete
tion program used to predi
ted the position of thelandmarks in Figure B.11


