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Summary 

 
Legionella spp. can cause a life threatening form of pneumonia, which is observed world-

wide. Outbreaks of the disease are, unfortunately, not a rare event, despite the introduction 

of government regulations which enforce the mandatory testing of cooling towers to ensure 

that they contain levels of the organism which are regarded as being within safe limits. 

 

Therefore, cooling towers should be monitored for Legionella spp. by using a biosensor. 

These could potentially save the community from a great deal of morbidity and mortality 

due to legionellosis. 

 

This study identified and investigated novel outer membrane proteins in L. pneumophila, 

and analysed their potential for use in a Legionella biosensor.  

A combination of bioinformatics and laboratory investigations was used to identify the 

Omp87, an outer membrane protein of L. pneumophila which had not been previously 

described in this organism. Sequence analysis of the protein showed that it shares similarity 

with various other members of the Omp85 protein family, including the D15 antigen of 

Haemophilus influenzae and the Oma87 of Pseudomonas aeruginosa. 

 

The omp87 gene of L. pneumophila was amplified and cloned, and was found to encode a 

protein of 786 amino acids, with a molecular weight of 87 kDa. Distribution studies 

revealed that the gene is present in most, but not all species and serogroups of Legionella.  

 

To investigate the function of the Omp87 protein in L. pneumophila, the omp87 gene was 

insertionally inactivated with the use of a kanamycin resistance gene. Amplicons of this 

disrupted gene were then introduced into L. pneumophila, and a double-cross over event 

occurred, integrating the inactivated gene into the genome of the organism. This resulted in 

non-viable cells, indicating that the gene is essential in L. pneumophila.  

 

The expression vector pRSETA was used to express the Omp87 protein in E. coli, and four 

truncates of varying sizes were designed, through the use of different PCR primers. Two of 

the protein truncates were then expressed and purified by gravity flow chromatography 

using columns packed with Ni-NTA sepharose resin.  



 xxiii

Following analysis of the proteins by SDS-PAGE and Western blotting, polyclonal 

antibodies were raised against the truncates. Distribution studies were then performed using 

the antiserum with different strains and species of Legionella. This study demonstrated that 

most serogroups of L. pneumophila, and most other Legionella species reacted with the 

polyclonal anti-Omp87 L. pneumophila antisera. Cross-reactivity was also observed with 

most other Legionella related organisms tested. 

 

The results presented in this thesis demonstrated that the Omp87 protein or the omp87 gene 

can be used to construct a biosensor. In addition other novel outer membrane proteins were 

identified which could also serve as potential targets for a biosensor.  

These biosensors will be able to identify Legionella spp. in water reservoirs and in clinical 

samples and hopefully reduce the number of infections and deaths caused by this organism.   
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1. Family Legionellaceae 

 

  The family Legionellaceae belong to the gamma (γ)-proteobacteria class of the phylum 

Proteobacteria. The γ-proteobacteria represent this phylum’s largest subgroup and although 

all members are phylogenetically related through 16S rRNA gene sequences, this subgroup 

consists of a remarkably diverse physiological range of organisms. This diversity includes 

chemoorganotrophs, photolithotrophes, chemolithotrophs, and methylotrophs. Genera in the 

class include Legionella, Chromatium, Leucothrix, Pseudomonas, Azotobacter, Vibrio, 

Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Yersinia and Haemophilus (Prescott 

et al, 2005). 

 

Legionella was first recognized as a human pathogen in 1976, when it was isolated from 

members of the American Legion attending a bicentennial celebration in Philadelphia. The 

organism was named Legionella pneumophila (Brenner et al, 1979) with the species name 

pneumophila coming from the Greek language for “lung-loving”. Of the 182 people affected 

with the ‘mystery’ pneumonia, which in up to half of the cases was accompanied by 

abdominal pain and diarrhoea, almost 30 people died. The resulting media attention led to a 

rapid and thorough scientific investigation of the outbreak which in turn, led to the 

identification and characterisation of the organism (Fraser et al, 1977). 

 

1.1 General characteristics 

 

Legionella spp. are aerobic, thin, gram negative bacilli, that vary in length between 2-20 μm. 

Following numerous passages on solid agar culture media, long filamentous forms of the 

organism may occasionally develop (see Figure 1.1, Faine et al, 1979). Due to the 

possession of flagella (single or multiple, polar or subpolar), most species of Legionella are 

motile. Visualisation of the organism by conventional staining methods can often be difficult 

due to their thin peptidoglycan layer (Chandler et al, 1977). Legionella species are 

nutritionally fastidious and require L-cysteine and iron supplemented media for primary 

isolation. They are non-fermentative, nitrate negative, catalase and gelatinase positive, and 

do not hydrolyse urea (Murray et al, 2005). 
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Figure 1.1 - Silver-stained smear from a culture of L. pneumophila, showing longer 
filamentous forms x 1,500 (Faine et al, 1979). 
 

 

1.1.1 Classification of Species and Antigenic Variants 

 

The initial isolation and molecular characterisation of a Legionella spp. led to the formation 

of the new ‘Legionellaceae’ family of bacteria. The genus Legionella was formed, and today 

consists of almost 50 species, and over 70 serogroups, all of which have been categorised 

following studies of DNA homology (www.Legionella.org). L. pneumophila currently has 15 

serogroups, which differ based on their Lipopolysaccharide (LPS) structure (Otten et al, 

1986). 

 

1.1.2 Nutritional requirements  

 

Although Legionella is described as a fastidious organism, it appears that it is only when 

grown in vitro that it requires complex media for growth. Tap water, harsh environmental 
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conditions and phagocytic cells are all regarded as comfortable living environments for the 

organism (Winn and Myerowitz, 1981). 

 

 Legionella spp. derive their energy from amino acids, as opposed to carbohydrates, and this 

forms the basis of their main nutritional growth factor requirement, the amino acid L- 

cysteine. In the laboratory, the medium of choice for the culture of Legionella species is 

Buffered Charcoal Yeast Extract (BCYE) agar. This medium contains L-cysteine, yeast 

extract, soluble ferric (Fe3+) pyrophosphate, and α-ketoglutarate. It also contains charcoal, 

which absorbs and inactivates toxic peroxides that develop as a byproduct of Legionella 

growth. Finally, a buffer is also included which maintains the pH of the medium at 6.9, 

which is ideal for Legionella spp. growth (Murray et al, 2005). 

 

1.1.3 Laboratory Diagnosis 

 

  The rapid and successful identification of Legionella spp. as the causative agent of disease 

is paramount. Often, cases of Legionnaires’ disease are epidemic in size, and numerous 

individuals are involved. This adds to the concern of laboratory staff identifying the 

organism, particularly if there are elderly and high risk patients involved. Antibiotic therapy 

must be initiated as soon as practically possible, in order to improve the success rate of 

therapy, and reduce the risk of fatalities. Since the discovery of Legionella, a vast number of 

techniques have been developed and assessed for the identification of L. pneumophila and 

other Legionella species. Older techniques include microagglutination, immune adherence 

haemagglutination, indirect haemagglutination, indirect immunofluorescence and ELISA 

(Herbrink et al, 1983). More recent methods for Legionella spp. detection are mostly based 

on molecular identification, and revolve around PCR-based techniques such as real-time, 

nested and multiplex PCR and hybridisation reactions. Some of these techniques will be 

reviewed in more detail here. 
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1.1.3.1 Conventional diagnostic methods 

1.1.3.1.1 Culture 

 

Considered the ‘gold-standard’ for diagnosis, culturing of Legionella spp. is routinely used 

by laboratories as an effective screening method for the presence of Legionella spp. in both 

clinical and environmental samples (Murray et al, 2005). The standard non-selective agar 

used for Legionella spp. is the agar discussed above (section 1.1.2), Buffered Charcoal Yeast 

Extract (BCYE) agar. Since respiratory samples are often excessively contaminated with 

normal flora, antibiotic supplements are usually added to the medium. Constituents added 

include polymyxin, anisomycin and cefamandole or vancomycin. These agents control the 

unwanted growth of gram negative bacteria, yeast, and gram positive bacteria, respectively. 

Legionella colonies growing on BCYE agar usually appear as round or flat colonies with 

smooth edges. They are usually colourless to iridescent, and may be translucent or speckled 

(Salyers and Whitt, 2002) (Figure 1.2). 

     

 

 
 

 Figure 1.2 - L. pneumophila colonies growing on BCYE agar (www.rivm.nl). 
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1.1.3.1.2 Agglutination-based Assays 

 

   Several years following the discovery of Legionella spp., agglutination tests became 

available that were able to detect L. pneumophila serogroups. These simple tests are still 

used routinely in laboratories, usually in conjunction with culture methods. 

Tang et al (1982) was one of the early groups to develop an agglutination based 

immunoassay for the detection of L. pneumophila. They developed a reverse, passive 

agglutination test, which was able to detect the soluble antigens of L. pneumophila in urine 

samples. Although the group described the method as rapid and simple, they did observe 

intra-genus cross-reactivity with several L. pneumophila serogroups. The group also 

observed that the assay did not detect one of the fifteen antigenuric samples included in the 

testing, which were all from patients with clinically diagnosed Legionnaires’ disease. 

A similar assay was developed by Sedgwick and Tilton (1983) using latex agglutination to 

detect L. pneumophila. The difference here was that the assay was designed to detect           

L. pneumophila colonies growing on agar plates, as opposed to detecting L. pneumophila 

antigens in the urine of infected patients. Here, the L. pneumophila samples were grown on 

CYE agar plates for two days at 35°C. The colonies were harvested and suspended in 

phospate buffered saline (PBS), and the turbidity was adjusted to 108 CFU per ml. One drop 

of this sample was then mixed with one drop of antibody coated latex particles. The mixture 

was then rotated and observed for agglutination. The group claimed that the assay could 

clearly distinguish between L. pneumophila serogroups 1-6, and did not react with non-

Legionella strains included in the testing. 

As with all agglutination tests, however, there is the associated difficulty of observing 

reactions, and objectively judging whether results are positive or negative. Often a ‘scale’ of 

agglutination is used, or the reaction time is taken into account (Mims et al, 2004). 

 

1.1.3.1.3 Immunofluorescence Assays 

 

  Immunofluorescent techniques were also developed for the detection of Legionella spp. 

These assays are relatively simple to perform, and remain much in use in today’s 

laboratories, and are usually performed in conjunction with culture (see Figure 1.3). 
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Herbrink et al (1983) developed an immunofluorescence assay shortly after the discovery of 

the Legionella bacterium.  The assay was based on the detection of antibody to                  

L. pneumophila. The group developed a polyvalent Enzyme Linked Immunosorbent Assay 

(ELISA) which allowed for the rapid screening and detection of L. pneumophila serogroups 

1-6 in human serum. The assay was designed using microtitre plates coated with the 

L. pneumophila serogroups. The group also tested the sensitivity of the assay, and found that 

it was comparable to that of the more laborious and time consuming technique of indirect 

immunofluorescence (IFA).  

 

 

 

      
 

Figure 1.3 - Fluorescent image of L. pneumophila cells (www.hsudruga.hr). 

 

 

 

Another technique that was evaluated for its potential as a diagnostic tool for                  

L. pneumophila detection was a solid surface immunoassay that was developed by Vogel et 

al (1981).  This assay involved the application of L. pneumophila antigen to a solid surface, 

and quantitation of binding through immunofluorescence. This technique employed the use 

of a semi-automated fluoroimmunoassay system. The group found that the procedure was 

able to readily detect specific L. pneumophila antibody in trials performed using sera 

obtained from L. pneumophila infected guinea pigs. They also found that results obtained 

with the fluoroimmunoassay system correlated well with those of the microagglutination 

assay previously developed by Farshy et al (1978).  The group used this microagglutination 

assay for comparison due to its technical simplicity. Following the evaluation, Vogel et al 

concluded that the results of the fluoroimmunoassay were comparative to those of the 
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microagglutination assay, yet that this assay was much quicker to perform than the 

microagglutination assay. 

 

1.1.3.2 Current diagnostic methods 

 

  Culture is still the gold standard for detection of Legionella spp. Numerous other tests are 

performed in combination with culture, to confirm the finding, or to type and determine the 

species, strain or serogroup of the organism. These additional tests include detection of 

bacterial antigens, through fluorescent antibody staining, clinical testing for antigens and 

antibodies in urine or serum, and gene probes and PCR, for detection or amplification of 

bacterial DNA (Mims et al, 2004). More recent techniques are being continuously evaluated, 

however routine diagnostic laboratories often have limitations in regards to equipment, 

expertise, and finance. 

One of the most commonly used diagnostic methods for the detection of L. pneumophila is 

urinary antigen detection (Fields et al, 2002). Several kits are commercially available which 

are similar in design and function. 

Benson et al (2000) evaluated two commercially available urinary antigen detection kits, the 

Binax and Biotest kits. Although both kits were found to be highly specific, the group found 

that the Biotest enzyme-linked immunosorbent assay (EIA) was slightly more sensitive than 

the Binax EIA kit. 

More recently, Okada et al (2002) evaluated the Biotest EIA with a newly developed Binax 

kit, Binax NOW. The group wanted to determine how the kits performed when presented 

with samples of non-serogroup 1 L. pneumophila, and other Legionella species.  They used 

in-vitro extracted antigens of 22 L. pneumophila serogroup 1-15 strains and of 27 other 

Legionella species. They found that there was no cross-reactivity between L. pneumophila 

and other Legionella species, but that reactivities were different with samples of non-

serogroup 1 L. pneumophila.  The observed sensitivity of both tests with L. pneumophila 

serogroup 1 was described as excellent, but the group was unable to conclude on the 

sensitivity of the tests with other L. pneumophila serogroups. 

No doubt due to the recent introduction of regulatory demands for routine testing of water 

cooling towers and the like, several groups have designed methods for the detection of 

Legionella spp. in water samples. 
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Delgado-Viscogliosi et al (2005) developed a method based on epifluorescence microscopy, 

for the enumeration of L. pneumophila and other Legionella spp. in water samples. The 

method, based on double-staining fluorescent labelling, uses a bacterial viability marker, and 

can therefore also distinguish between viable and non-viable Legionella spp. The group 

discussed the fact that although many PCR based methods for detecting Legionella spp.  

have been developed, none of these methods take into account the fact that it is only viable 

cells of Legionella spp. in water cooling systems which pose a threat to the community. The 

group concluded that this method was rapid and effective, and allowed users to monitor the 

efficiency of disinfection treatments. 

Some other methods which are being developed and evaluated for Legionella spp. 

identification include the work of Yanez et al (2005) who developed an immunomagnetic 

purification and real-time PCR method for amplification of the dotA gene, to quantitatively 

detect L. pneumophila in water samples. 

Similarly, the group of Fiume et al (2005) recently developed a species specific real-time 

and nested PCR reaction, for detection of L. pneumophila in water. The group targeted the 

mip gene for amplification and found that the nested PCR, in particular, was significantly 

more sensitive than culture in detecting organisms from water samples. They stated that the 

nested PCR did not require specific instrumentation, displayed a high sensitivity rate, and 

was therefore more valuable than either the real-time PCR assay, or cultural isolation for the 

monitoring and risk assessment of water samples.  

 

1.2 Pathogenesis of Legionellosis  

 

  In the environment, L. pneumophila organisms survive and replicate within their natural 

host, amoebae. It is widely believed that amoebae have helped L. pneumophila to evolve and 

be capable of surviving within human alveolar macrophages, and therefore cause infection in 

humans (Rowbotham, 1980). L. pneumophila can infect more than thirteen species of 

amoebae, and are especially prevalent in the soil and water genera, Acanthamoeba and 

Naegleria (Fields, 1996). Adding to the credibility of this evolutionary theory is the fact that 

L. pneumophila interacts with host cell organelles in both mammalian and protozoan 

phagocytes in an almost identical manner (Swanson and Hammer, 2000). 
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Human hosts usually acquire L. pneumophila infections by the inhalation of contaminated 

aerosols (Muder et al, 1986). The sources of these aerosols are diverse, and include air-

conditioning systems, clinical respiratory devices, whirlpools, showers, fountains, and mist 

machines (Barbaree et al, 1986; Breiman et al, 1990; Hlady et al, 1993; Jernigan et al, 1996; 

Kioski et al, 1997; Muder et al, 1986). If the droplet size of these aerosols is below around 5 

microns the organisms may then travel down to the lower respiratory tract, where infection is 

initiated by the engulfment of cells by alveolar macrophages in the lungs (Bollin et al, 1985). 

Legionella is described as an opportunistic pathogen, as in healthy people the infection is 

usually self-limiting, and those infected may remain asymptomatic (Salyers and Whitt, 

2002). For example, many of the hotel employees who were present during the 1976 

outbreak were found to be seropositive for L. pneumophila, yet did not display any 

symptoms, and did not develop Legionnaires’ disease (Fraser et al, 1977).  However, if the 

individual has underlying factors that impair normal host defence mechanisms which 

normally protect the lungs, they may become seriously ill. These underlying factors include 

immunosupression, advanced age, smoking, emphysema or other chronic lung diseases and 

hematological malignancies (Carratala et al, 1994). 

 

L. pneumophila is engulfed by phagocytic cells, such as macrophages and amoebae, within 

plasma membrane coils, by the methods of both conventional and coiling phagocytosis 

(Figure 1.4). In coiling phagocytosis, the cell extends a long pseudopod coil around the 

bacterium, and draws the bacterium into the interior of the cell. This method of phagocytosis 

has been observed by several other organisms, including Leishmania spp. and Borrelia spp., 

several spirocha etes, yeasts and trypanosomatids (Chang et al, 1979; Rittig et al, 1998).  
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Figure 1.4 - Phagocytic engulfment of a Legionella bacterial cell by coiling phagocytosis 

      (http://procareh2o.com/images/Legionella.jpg) 

 

 

Normally, cells are engulfed by phagocytes and remain within the phagosomal compartment. 

This phagosome then fuses with a lysosomal compartment which leads to acidification of the 

phagolysosome, and bacterial cell death. However, in the case of L. pneumophila, this does 

not occur, and these bacteria seem to have the unique ability of preventing phagosome-

lysosome fusion (Swanson and Hammer, 2000). The phagosomal compartment housing the 

L. pneumophila does not fuse with either primary or secondary monocytic lysosomes, and 

the vacuole does not acidify. Instead, the membrane bound bacterium associates with the 

endoplasmic reticulum, which is studded with ribosomes (Horwitz, 1983b). The                  

L. pneumophila cells then replicate to large numbers, and eventually escape from the 

vacuole. The cells then continue to replicate until they fill the cytoplasm of the macrophage. 

By this stage, the bacteria begin to suffer from insufficient nutrients. The Legionella will 

then start to express traits which will soon aid in the dispersion and infection process, 

including piliation, motility and cytotoxicity. After this, the bacteria lyse the cell, and move 

on and infect other nearby cells (Swanson and Hammer, 2000). Legionella spp. lyse cells by 

a two-step process. They firstly trigger apoptosis of the cell, and then release their own 

cytolysins that cause cell lysis (Prescott, 2005). The genes expressed by L. pneumophila, 

which are believed to assist the organism during the macrophage invasion process, will be 

discussed in section 1.2.2. 
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Infection of the lungs by L. pneumophila is very destructive to lung cells. It often results in 

alveolitis and broncheolitis, and is characterised by an excessive amount of liquid 

accumulation in the alveoli, which consists predominantly of lysed lung cells. In addition 

this exudate also contains polymorphonuclear cells and macrophages, fibrin, red blood cells, 

proteinaceous material, and other cellular debris (Winn and Myerowitz, 1981). In 

macrophages, the L. pneumophila organisms can often be located intracellularly, intact, and 

within cytoplasmic vacuoles. Others are found free in the cytoplasm, or in membrane-bound 

structures (Glavin et al, 1979). Interestingly, a study found that most Legionella cells found 

within neutrophils were partially degraded, and had disrupted membranes (Katz and 

Hashemi, 1982). 

 

It is not yet clear if the cell damage caused by Legionella spp. is due to the secretion of 

toxins or degradative products. They are known to secrete various extracellular proteases, 

such as the 40 kDa zinc metalloprotease, which has haemolytic activity, or phospholipases A 

and C. The zinc metalloprotease was found to inhibit neutrophil and monocyte killing of 

Listeria monocytogenes, and was involved in neutrophil chemotaxis (Rechnitzer and 

Kharazmi, 1992). When tested in guinea pigs, the L. pneumophila zinc metalloprotease was 

also found to be capable of causing the type of lung damage seen with human legionellosis 

(Conlan et al, 1986). 

The phospholipases A and C may damage alveolar cells by destroying the lung surfactant, 

which coats cells, leading to the collapse of the alveoli cells when the gas they retain is 

released, due to high surface tension (Prescott et al, 2005). 

Legionella is also known to produce a cytotoxin, called legiolysin, which was found to 

confer haemolytic activity (Wintermeyer et al, 1991).  The role of this 39 kDa protein in 

Legionella pathogenesis is still unclear since a mutant strain of Legionella, defective in 

legiolysin production, still replicated efficiently in the macrophage-like cell line, U-937 cells 

and protozoa, and still remained haemolytic (Wintermeyer et al, 1994). 

Toxins and secreted extracellular proteases of Legionella will be discussed further under the 

topic of Legionella virulence factors, in section 1.2.2.6. 
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1.2.1 Host immune response 

 

With legionellosis, it has become apparent that cell-mediated immunity is the critical host 

immune response to infection (Friedman et al, 1998). In early studies performed by Horwitz 

(1983), peripheral blood monocytes from patients who had recovered from legionellosis 

were compared to control cells. It was observed that proliferation of mononuclear cells from 

the pre-exposed patients was much greater than that of the controls. It was also noted that the 

supernatants obtained from cultured mononuclear cells of these pre-exposed patients were 

able to activate naïve mononuclear cells, which led them to inhibit L. pneumophila 

replication. The activation of human macrophages by cytokines such as interferon-γ (IFN- γ) 

appears to be the critical element in the prevention of Legionella spp. lung infections. 

Bhardwaj et al (1986) demonstrated that when cultures of human peripheral blood 

monocytes or alveolar macrophages, which normally support L. pneumophila replication, are 

treated with recombinant IFN-γ for one hour, the activated phagocytes no longer support     

L. pneumophila growth, and begin to inhibit the intracellular replication of the organism.  

Instead of enhancing bacterial killing, or preventing the formation of replication vacuoles, 

the activated macrophages are believed to starve the intracellular organisms of iron, by 

down-regulating their cellular transferrin receptors (Bhardwaj et al, 1986). 

It has been well documented that L. pneumophila intracellular and extracellular growth is 

highly dependent on the organisms ability to acquire and assimilate iron (Bortner et al, 1989, 

Pope et al, 1996).  

This observation of transferrin receptor downregulation was made by Byrd and Horwitz 

(1989), who noted that the ability of IFN-γ activated macrophages to inhibit L. pneumophila 

replication was reversed if the cultures were supplemented with iron. Also, Byrne and 

Swanson (1998) showed that IFN-γ activated blood monocytes expressed 73% less 

transferrin-binding sites than non-activated control cells. 

Although L. pneumophila readily binds complement component C3, it is resistant to innate 

and humoral immune responses, and is resistant to complement-mediated cell killing. This 

was demonstrated to be the case even with the involvement of specific antibodies. Horwitz 

and Silverstein (1981) showed that when L. pneumophila was opsonised by treatment with 

complement and specific antibodies, the bacteria interacted proficiently with 

polymorphonuclear (PMN) cells, but they were not killed by the PMNs. It was shown that 
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under some conditions, L. pneumophila may prevent death by phagocytic host cells by 

impairing the phagocytes oxidative killing response. Lochner et al (1985) showed that a       

L. pneumophila toxin, which was purified from culture supernatant, had the effect of 

inhibiting PMN cell killing of the otherwise susceptible bacteria, E. coli. 

Overall it has been determined that the clearing of legionellosis is not facilitated by 

complement, specific antibodies, or polymorphonuclear cells, but is reliant upon the 

involvement of the hosts cell mediated immunity. 

 

1.2.2 Virulence factors and their Regulation 

 

A detailed review of Legionella outer membrane proteins is presented in section 1.5. As 

some of these outer membrane proteins are also important for Legionella spp. virulence, 

please refer to section 1.5 when directed, for a more thorough review and discussion. 

 

1.2.2.1 Macrophage Invasion Potentiator (Mip) 

 

The Legionella Mip protein is a ~ 24 kDa outer membrane antigen, which displays 

peptidylprolyl cis:trans isomerase (PPIase) activity. This protein is believed to be an 

important Legionella virulence factor, which is involved in cellular invasion. This protein is 

discussed in detail in section 1.5, Legionella outer membrane proteins. 
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1.2.2.2 Acquisition and assimilation of iron 

 

As mentioned briefly in sections 1.1.2 and 1.2.1, Legionella requires iron for growth. This 

has been shown by a variety of experimental studies. Firstly, L. pneumophila grown in 

monocytes which have been treated with iron chelators, do not actively replicate. This 

observation can be reversed by the addition of iron to the medium (Byrd and Horwitz, 1991). 

Secondly, it has been shown that macrophages activated by IFN-γ become non-permissive 

for L. pneumophila replication by reducing intracellular iron levels (Byrd and Horwitz, 

1989). Finally, Gebran et al (1994) showed that following the addition of iron to the media, 

peritoneal macrophages from A/J mice become permissive for L. pneumophila growth. 

By growing cells on bacteriological media, it has been determined that the amount of ferric 

or ferrous iron required for minimal growth is between 3-13 μM, whilst greater than 20 μM 

is required for optimal growth (Johnson et al, 1991). It has been postulated that the reason 

for this high requirement for iron may be due to a high concentration of an iron-containing 

aconitase in the cytoplasm of Legionella (Mengaud and Horwitz, 1993). 

Unfortunately, not a great deal is known about how Legionella spp. acquire and assimilate 

iron. It is unclear whether Legionella spp. use the same mechanisms commonly employed by 

other organisms, such as siderophore production or the binding of transferrin (Johnson et al, 

1991, Reeves et al, 1983). However, under specific growth conditions, Liles et al (Liles et al, 

2000) demonstrated that L. pneumophila does possess a non-hydroxamate non-phenolate 

siderophore, termed legiobactin. And in addition to this, the group of Hickey and Cianciotto 

(1997) also found that the L. pneumophila genome encoded a homolog of a hydroxamate 

biosynthetic gene, which when disrupted, resulted in impaired growth of the organism within 

macrophages. This suggests that within host cells, L. pneumophila may produce and require 

an addition siderophore.  

Hemin is an important component of haemoglobin, and hemin-binding is one mechanism 

that has been investigated since the discovery of a hemin binding protein (hbp) gene locus in 

Legionella (O’Connell et al, 1996). In addition, a transcriptional regulator, Fur, which 

responds to iron levels was discovered (Hickey and Cianciotto, 1994). 

Viswanathan et al (2000) recently analysed a gene locus in L. pneumophila described as 

iraAB, which they identified as being responsible for the ability of L. pneumophila to 

assimilate iron. The group analysed an iraAB gene mutant, and found that the mutant was 
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defective for growth in the macrophage-like cell line, U-937. They found that even when the 

amount of cells inoculated was increased 50-times, the mutant failed to display any signs of 

infectivity. The group described the iraAB locus as a two gene operon. They also performed 

distribution studies and found that the iraAB genes are present in all serogroups of 

L. pneumophila, and are also present in the species L. gormanii, a relatively rare, but disease 

causing species. By creating several mutants, the group found that the role of iraAB in 

growth and pathogenesis of the organism was quite complex, and they believed that the iraA 

protein was essentially involved in intracellular growth, and that this was directly associated 

with iron acquisition. They then found that the iraB gene product was involved in the 

extracellular growth of the organism, and again, that this was related to iron acquisition. 

Sequence analysis performed on the genes revealed that the iraA gene was dissimilar to most 

other iron assimilation genes. A BLAST analysis did reveal a strong match with the 

phosphatidylethanolamine methyltranserase enzyme, from Acetobacter aceti. This enzyme is 

involved in the conversion of phosphatidylethanolamine to phosphatidylcholine (PC). 

Although this compound is rarely produced by organisms, L. pneumophila cells have been 

found to contain unusually large amounts of PC (Finnerty et al, 1979). 

An interesting observation was made by the group in regards to the mechanism used for 

extracellular iron acquisition by L. pneumophila with the iraB gene product. The group 

speculates that this very unique mechanism may be based on the PTR2 family of peptide 

transporters, whereby the organism uses the IraB protein to import iron-loaded peptides as a 

method for acquiring iron. Although siderophores are made up of peptide components 

(Dreschsel and Jung, 1998) this case may be the first real scenario whereby free peptides are 

used for iron acquisition. 

 

1.2.2.3 Flagella 

 

The flagella of Legionella are an important virulence factor which aids Legionella spp. in 

motility and dissemination to new host cells during infection (Pruckler et al, 1995). This 

outer membrane structure is discussed in detail in section 1.5. 
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1.2.2.4 Dot/Icm Type IV Secretion System 

 

Legionella spp. are among several organisms which makes use of type IV secretion systems 

as an implement for added virulence. Type IV secretion systems are encoded chromosomally 

at loci which are involved with the conjugal transfer of plasmid DNA, and the ability of cells 

to transfer DNA was once the criteria identifying members of the type IV transport system 

pathway.  In Legionella, the type IV secretion system is encoded by 24 genes, which are 

located on the bacterial chromosome at two different regions. Fourteen of these genes are the 

dot (defective for organelle trafficking) and icm (intracellular multiplication) genes 

(Andrews et al, 1998; Brand et al, 1994).  

Whilst most of the icm/dot gene products are believed to be membrane-associated proteins, 

DotA is a cytoplasmic membrane protein, and IcmW is a small cytoplasmic, soluble protein. 

It is believed that the Dot/Icm proteins assemble and stimulate a membrane-based secretory 

system in L. pneumophila, which is responsible for secreting virulence factors. In addition, 

the group of Segal et al (1999) recognised a second related system designated LVh 

(Legionella vir homologs) which is also involved in the transfer of plasmids by conjugation. 

The major role played by the Dot/Icm type IV secretion system is the avoidance of the 

endocytic pathway during phagocytosis. Dot/Icm mutants all succumb to the endosomal 

pathway within a very short time following infection (Segal and Shuman, 1997; Wiater et al, 

1998). This indicates that L. pneumophila has a very short time frame in which to alter its 

phagosome following infection. 

L. pneumophila utilises the Dot/Icm system to create a protected vacuole, but then no longer 

needs the system to maintain itself within the vacuole and replicate (Roy et al, 1998). This is 

characteristic of L. pneumophila cells in the exponential-phase of growth, where the 

expression of virulence traits is often down regulated (Byrne and Swanson, 1998).  

By comparing this to other type IV systems, it is hypothesised that the Dot/Icm complex of 

L. pneumophila must insert pores into the plasma membrane of the host cell vacuole, which 

can impair the process of phagosome maturation (Kirby and Isberg, 1998). It has been shown 

that Dot/Icm mutants lack this pore-forming activity, and are therefore not cytotoxic. The 

group of Kirby and Isberg (1998) also hypothesised that if a large number of pores are 

created in the host plasma membrane, the phagocyte can be rapidly lysed, in a contact-

dependant process. The toxins responsible for forming the pores are yet to be discovered, 
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making it difficult to establish the details of this process. Zuckman et al (1999) proposed the 

theory that the pores serve as a channel through which the effector molecules can be 

delivered, which then modify and alter the nascent phagosomal membrane. The group 

suggested that the small soluble protein IcmW may be one such effector, but that instead of 

acting as a substrate for the type IV secretion system, it may act by the direct or indirect 

regulation of Dot/Icm activity. They created an icmW mutant, and found that although pore 

formation was critical to establishing an isolated phagosome, it alone was not sufficient, and 

the IcmW protein product was required for full virulence.  

Joshi et al (2001) showed that Dot-independent factors are also involved in impeding 

phagosome maturation. They used a series of fluorescence microscopy assays to determine 

which bacterial factors participate in establishing a replicative vacuole, and whether             

L. pneumophila is isolated from the endosomal pathway or is contained within an 

intermediate endosomal compartment.  

The group found that vacuoles containing post-exponential (PE) phase L. pneumophila 

appeared to be separate from the endosomal pathway, as they lacked certain categorical 

markers. These include the transferrin receptors Lysosome Associated Membrane Protein-1 

(LAMP-1) and cathepsin D.  

LAMP-1 is a membrane glycoprotein, found mainly in late endosomes and lysosomes. It is 

believed to protect the Legionella membrane from the acidic and proteolytic components of 

the vacuole (Joshi et al, 2001).  

In contrast, the group found that most (70%) of the phagosomes that contained avirulent 

particles, such as polystyrene beads, E. coli, or exponential phase (E) L. pneumophila 

matured to  phagolysosomes, as determined by the presence of molecular markers, such as 

LAMP-1 and cathepsin D. This indicated that neither the Dot/Icm complex, or bacterial 

viability or virulence were critically required for the development of an isolated vacuole.  

Recently, Molofsky et al (2005) established the involvement of the flagella regulon, sigma 

factor FliA, in the avoidance of lysosomal degradation. The group used murine bone 

marrow-derived macrophages (BMM) to demonstrate that in addition to coordinating 

motility,  the FliA sigma factor also contributes to the inhibition of phagosome maturation, 

and hence virulence. 

Miyake et al (2005) described a gene locus consisting of 11 dot/icm genes, designated the 

protozoan and macrophage infectivity (pmi) locus. The group mutated a gene from the pmi 

locus, and found that the mutant was defective for cytopathogenicity of protozoa and 
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macrophages. The mutant also exhibited a partial defect for growth within U-937 cells, and a 

severe defect for growth within the amoeba Acanthamoeba polyphaga, which ultimately 

resulted in its elimination. 

Santic et al (2005) recently made an interesting discovery in regards to interferon-gamma 

(IFN-γ) activated macrophages. It is well documented that IFN-γ activated macrophages are 

able to inhibit intracellular replication of L. pneumophila, and other intracellular pathogens 

(Bhardwaj et al, 1986, Byrd and Horwitz, 1989, 1991, 1993). By analysing the kinetic 

distribution of molecular markers such as LAMP-2, cathepsin D and the lysosomal tracer 

Texas red ovalbumin, it has been shown that IFN-γ activated macrophages are able to 

‘override’ the mechanisms used by L. pneumophila to avoid phagolysosomal fusion (Santic 

et al, 2005). 

Overall, it has been determined that the Dot/Icm complex is critical for the avoidance of 

phagosomal-lysosomal fusion of L. pneumophila, and for the establishment of an isolated 

replicative vacuole (Vogel and Isberg, 1999). Effector molecules/proteins secreted through 

the Dot/Icm pore channel are believed to play a central role in altering host cell activity. 

Effector molecules believed to be involved include DotA, DotB, DotH, DotO, IcmQ, IcmR, 

IcmS, IcmW IcmX and FliA (Coers et al, 2000; Swanson and Isberg, 1996; Matthews and 

Roy, 2000; Molofsky and Swanson, 2005; Watarai et al, 2001; Zuckman et al, 1999). 

Proteins determined to be substrates of the Dot/Icm complex have also been identified, and 

include LepAB, LidA, RalF, and SidC. These proteins are believed to modulate host signal 

transductions in the establishment of replicative vacuoles (Chen et al, 2004., Conover et al, 

2003., Luo and Isberg, 2004., Nagai et al, 2002). 

 

1.2.2.5 Pili 

 
Pili, or fimbriae are short, hair like appendages which are usually involved in facilitating 

bacterial attachment to host cells or solid surfaces. This important Legionella virulence 

mechanism in Legionella spp. is discussed in detail in section 1.5. 
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1.2.2.6 Toxins 

 
Not a great deal has been elucidated in regards to Legionella toxins and their role in 

pathogenesis. Several toxins and secreted compounds have been described for Legionella 

spp., but their precise role remains unclear.  

One of the earliest cytotoxic peptides described in Legionella is a heat stable peptide, which 

was found to diminish the oxidative burst capabilities of polymorphonuclear cells (PMNs) 

(Friedman et al, 1980). The difficulty observed in purifying the toxin, or analysing its 

encoding genes, has meant that the toxin has never been fully analysed. 

Legionella uses a type II secretion mechanism to secrete a variety of toxic compounds. These 

include acid phosphatases, a zinc metalloprotease, phospholipases A and C and a 

lysophospholipase A (Aragon et al, 2001; Flieger et al, 2000, 2001)  If genes encoding this 

type II secretion process are disrupted, such as the isp genes, there is a significant reduction 

in Legionella virulence (Liles et al, 1998). 

The zinc metalloprotease plays a relatively small role in Legionella virulence. It promotes 

cytotoxicity by inhibiting chemotaxis, and the oxidative activity of PMNs. It also breaks 

down a variety of compounds including interleukin -2 (IL-2) and CD4 (Conlan et al, 1988., 

Mintz et al, 1993). As mentioned in section 1.2, Legionella also produce a 39 kDa cytotoxin, 

termed legiolysin, which was found to confer haemolytic activity to recombinant E. coli 

(Wintermeyer et al, 1991). The role of this cytotoxin in Legionella pathogenesis is not yet 

clear. 

1.2.2.7 Regulation of Virulence Factors  

1.2.2.7.1 Temperature 

 

The ambient temperature experienced by a bacterium is often used to control and regulate the 

expression of virulence factors. This is usually because the temperature is a useful indication 

of the environment in which the bacteria are residing at that time. Factors mainly influenced 

by temperature include motility and piliation. Legionella express more flagellin genes when 

they are incubated at 30°C, rather than 37°C (Heuner et al, 1999). Similarly, expression of 
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the pilBCD genes and production of type IV pili are greater at 30°C than 37°C (Liles et al, 

1998). 

Adherence of L. pneumophila to host cells was also found to be temperature dependent, and 

the organism was found to adhere to alveolar macrophages at a rate of two-fold more if the 

cells were incubated at 25°C, as opposed to 41°C, for 1 hr before infection (Edelstein et al, 

1987). However, Mauchline et al (1994) found that according to their 50% lethal dose 

(LD50), L. pneumophila cultured at the lower temperature of 24°C were generally less 

virulent than bacteria cultured at 37°C.  

 

1.2.2.7.2 Growth Phase 

 
  It is well documented that in addition to temperature, the growth phase of the organism has 

a dramatic influence over the regulation and expression of virulence traits. One notable effect 

is the phenotypic difference observed between Legionella grown on laboratory medium as 

opposed to those grown within phagocytic vacuoles. Legionella grown within phagocytes are 

shorter, thicker and more motile. They have been shown to express different genes and 

proteins, have a higher β-hydroxybutyrate content, and different staining properties, probably 

due to their thicker and smoother cell wall (Abu Kwaik et al, 1993; Cirillo et al, 1999; 

Edelstein et al, 1999). Also, bacterial cells grown within amoebae were found to have a 

different profile of membrane fatty acids, LPS, and outer membrane proteins, than cells 

grown in broth. They were also more susceptible to the protein degrading enzyme, proteinase 

K (Barker et al, 1993). 

Barker et al (1992; 1995) observed that L. pneumophila cells growing within phagocytes 

became more resistant to biocides and antibiotics. They were also found to be more invasive 

for mammalian cells, and more virulent and infective in studies using mouse models 

(Brieland et al, 1997; Cirillo et al, 1999). L. pneumophila has been shown to have two 

distinct phases of growth, which as mentioned, dramatically influence the phenotype of 

L. pneumophila. These are described as the ‘replicative’ and the ‘active infective phase’ 

(Rowbotham, 1986). 

During replication, L. pneumophila cells are sodium resistant and non-motile. They do not 

express the flaA gene or produce flagella (Byrne and Swanson, 1998). Following replication 

however, L. pneumophila acquire numerous virulence traits, clearly adapted to the escape of 
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nutrient depleted host cells and dissemination to new cells. At this stage, the cells become 

short, highly motile rods. Byrne and Swanson (1998) observed numerous changes in the 

phenotype of postexponential phase cultures of L. pneumophila, which are directly related to 

an increase in virulence. These included the development of motility, sodium-sensitivity, 

cytotoxicity, osmotic resistance, and the ability to evade phagosome-lysosome fusion. This 

conversion to a virulent form appears to be modulated by the detection of a depleted amino 

acid supply. Therefore, when the bacteria detect a lowering level of available nutrients, they 

begin to express the virulence traits necessary for escape and dissemination to a new host 

cell. If cells are inhaled into a human lung during this highly virulent phase, Legionnaires’ 

disease may ensue unless a strong and healthy host immune response is initiated (Byrne and 

Swanson, 1998). 

Following this phase of high virulence, the cells may also enter a “stationary” phase, which 

is triggered by the ‘stringent response pathway’, and is regulated by the stationary-phase σ 

factor RpoS (Hammer and Swanson, 1999). 

 This is a mechanism used by cells to promote the long term survival of the organism, in 

environmental conditions which are usually unfavourable and nutrient deprived. The 

mechanism employed by Legionella is believed to be similar to that of E. coli, whereby this 

phase is characterised by a rapid decline in growth and protein expression and synthesis 

(Nash et al, 1984). 

The figure below (figure 1.5) is a schematic summary of the different growth phases 

characteristic of the L. pneumophila life cycle. It also depicts some of the different 

phenotypes displayed by Legionella during each of the respective stages of growth.  
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Figure 1.5 - Schematic representation of the life cycle and growth phases of Legionella 

pneumophila. The virulence traits expressed during the active infective phase are outlined 

(Based on figure from Swanson and Hammer, 2000). 

“Active Infective” phase 

“Replicative” Phase 
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1.3 Epidemiology 

 

L. pneumophila remains an important cause of morbidity and mortality throughout the world. 

Following its identification in 1976, numerous outbreaks of Legionnaires’ disease have 

occurred globally, many of which have resulted in significant numbers of human deaths. Of 

these, undoubtedly the worst outbreak to occur took place in 1999, at the Westfriese Flora 

Show in the Netherlands. Here, 231 people became infected with L. pneumophila, and 21 of 

these subsequently died (Wijgergangs, 1999). 

In Australia, the largest outbreak to date occurred at the Melbourne Aquarium, in 2000. 

Here, culture methods were used in combination with urinary antigen detection to confirm 

the 119 cases of Legionnaires’ disease, of which 4 patients died. Water samples taken from 

the cooling towers of the aquarium resulted in the isolation of L. pneumophila serogroup 1. 

The average age of patients in this outbreak was 63 years, and 57% of these were males. In 

Australia, the outbreak led to regulation changes for the industry. These included the 

compulsory registration of all cooling towers, new and old, mandatory risk management 

programs, annual audits, random inspections, including checks of maintenance and 

equipment records, and the introduction of an enhanced technical advisory and outbreak 

investigation service within the Department of Human Services (http://hnb.dhs.vic.gov.au). 

 

Although Legionnaires’ disease outbreaks are often widely publicised, the majority of cases 

are actually sporadic, and diagnosis of the cause is rarely made. Of the 20,000 cases of 

Legionnaires’ disease believed to occur annually in the U.S, only around 1000 of these are 

reported (Marston et al, 1994., Montalbano et al, 1996). Person to person transmission of 

Legionella has never been reported, and the disease is most often community-acquired, but 

may also occur nosocomially. Of all the community-acquired pneumonias requiring 

hospitalisation, legionellosis only accounts for between 2% - 15% of cases (Marston et al, 

1994). Nosocomially acquired disease however, is often more striking and severe, and 

mortality rates can be as high as 50%, which is most likely due to the immunocompromised 

status of most hospital patients (Carratala et al, 1994). 

Even though almost  50 species of Legionella have been identified to date, by far the most 

prevalent species implicated with disease is L. pneumophila, and in particular,                  

L. pneumophila serogroup 1. Although the incidence of disease due to other serogroups or 
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species appears to be on the increase, research into the pathogenic mechanisms of Legionella 

spp. is predominantly based on this species. 

It has been well established that amoebae are the natural environmental reservoirs for          

L. pneumophila, and the organism is readily able to infect over 13 species of amoebae and 

two species of ciliated protozoa (Fields, 1996). The life cycle of L. pneumophila within 

protozoa is remarkably similar to that of its life cycle within macrophages (Figure 1.5), and 

many of the same virulence factors are required for infection, including the Macrophage 

invasion potentiator (Mip), and the protein products of the dot/icm genes (Prescott, 2005).  

Amoebae are believed to be the perfect host for Legionella spp., as they are also ubiquitously 

present in the environment, including water sources, such as potable water supplies, and even 

heated reservoirs. A connection has also been made between the presence of both 

L. pneumophila and protozoan phagocytes in supplies of water linked with legionellosis 

outbreaks (Barbaree et al, 1986). In the environment, amoebae serve an important survival 

role for Legionella, protecting the intracellular organism from biocides and other harsh 

environmental conditions. Barker et al (1992; 1995) found that Legionella grown within 

phagocytes are more resistant to both chemical biocides, such as agents used for water 

sanitising, and antibiotics. 

It has also been observed that Legionella organisms growing within amoebae are often 

highly virulent. For example, it has been observed that Legionella cells that are released from 

lysed amoebae are highly motile, which is a virulence trait also seen with cells grown within 

macrophages, and one which is associated with transmission (Byrne and Swanson, 1998; 

Rowbotham, 1986). In addition to this, it was observed by the group of Cirillo et al (1999; 

1994) that compared to Legionella growing in broth, Legionella cells obtained from 

Acanthamoeba castellanii were able to enter human monocytes and a monocytic cell line 

with greater ease. They were also able to do this in a complement-independent manner.  

 

1.4 Prevention  

 
Legionella is a pathogen found world-wide, that is capable of causing a severe and life 

threatening form of pneumonia. Preventative measures are imperative in reducing the 

incidence of sporadic cases, or outbreaks of legionellosis. Sadly, many cases of 

Legionnaires’ disease could have been avoided by the simple maintenance and control 
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measures now outlined by regulatory authorities, such as the Environmental Protection 

Agency (EPA), and the Center for Disease Control (CDC). 

 

1.4.1 Control 

 
 The Center for Disease Control (CDC) recently altered their guidelines for the control and 

prevention of Legionella spp. in water systems. These guidelines were released in 2003, and 

are entitled the “Guidelines for Environmental Infection Control”, and the “Guidelines for 

preventing healthcare-associated pneumonia” (http://www.cdc.gov). 

Their previous guidelines were based on the premise that hospitals should only implement 

preventative measures once a case of Legionnaires’ disease was identified. Similarly, 

environmental sources were only to be tested following the event of an outbreak (Freije, 

2004). This is obviously not the right approach, and contradicts all forms of preventative 

measures. The guidelines were consequently updated in 2003, and now have a proactive, 

rather than a reactive approach. The new guidelines include laboratory testing of suspected 

Legionnaires’ disease patients. The recommendation to laboratories is that both the culture of 

respiratory specimens, as well as the urinary antigen test, is implemented for diagnosis. They 

also added that it is important to review the availability and clinicians use of the diagnostic 

tests for Legionnaires’ disease. Another addition to the guidelines is the recommendation to 

educate physicians and health care workers on prevention and control measures of 

Legionella and Legionnaires’ disease. Lastly, the CDC recommends the periodic testing of 

potable water for Legionella in health care facilities that have patients who may be highly 

susceptible to legionnaire’s disease, such as the immunocompromised.  

 

The Environment Protection Agency (EPA) regulations appear to be somewhat more 

stringent in regards to preventative measures. Their guidelines entitled “Guidance Manual 

for the compliance with the filtration and disinfection requirements for public water systems 

using surface water sources” which is part of the “Institutional control of Legionella”, 

recommends that hospitals, hotels and other large buildings have their water tested quarterly, 

throughout the year (Environment Protection Agency, 1991). 
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Disinfection of water can be performed by three different methods. These include chemical, 

physical, and thermal disinfection. Chemical disinfection of water sources which may pose a 

potential hazard for the spread of Legionella, such as air conditioning systems and cooling 

towers, is the main method employed to ensure that numbers of Legionella spp. organisms 

remain under control, and within permitted guidelines.  An example of a physical method of 

water disinfection is membrane filtration. This method, however, is rarely used. Thermal 

disinfection is another method which is used quite commonly, and involves superheating of 

water to high temperatures (Best et al, 1984). 

 

1.4.2 Disinfection measures 

 

1.4.2.1 Chemical disinfection 

 

In terms of chemical disinfection, there are numerous classes of disinfectants in use. These 

include the use of metal ions, such as copper and silver, and oxidizing or non-oxidising 

agents.  

Oxidising agents include chlorine, bromine, iodine, chlorine dioxide, chloramines, 

halogenated hydantoins, ozone, and hydrogen peroxide.  

Examples of non-oxidising agents used include heterocyclic ketones, guanidines, 

thiocarbamates, aldehydes, amines, thiocyanates, organo-tin compounds, halogenated 

amides, halogenated glycols and UV light. Kim et al (2002) recently reviewed the efficacy of 

these methods. They found that in general, the oxidising agents were more effective than the 

non-oxidising agents, with chlorine being a common and effective choice. Of the non-

oxidising chemicals, they found that 2,2-dibromo-3-nitropropionamide (DBNPA) was the 

most effective, followed by glutaraldehyde. 

Chlorine is in widespread use for the disinfection of water systems. Interestingly, Legionella 

spp. are much more resistant to chlorine than E. coli and other coliforms (Kuchta et al, 

1993), and in order to control Legionella spp., concentrations of between 2–6 mg/L of 

chlorine are constantly needed (Lin et al, 1998). If the Legionella spp. are associated with 

amoebae, however, the minimal concentration required for disinfection increases to at least 4 

mg/L (Kuchta et al, 1993). 
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The efficacy of chlorine was also found to be greater when used in water which was 

maintained at the higher temperature of 43°C, as opposed to 25°C. The disadvantage, 

however, is that chlorine decays faster at a higher temperature (Muraca et al, 1987). Another 

method which can be employed is termed shock hyperchlorination. This involves the 

periodic use of very high levels of chlorine (20–50 mg/L). This is followed by the 

replacement of the water in the system after 1–2 h with fresh water, and then maintaining the 

system with a low concentration of around 1 mg/L of chlorine (Lin et al, 1998). Although the 

use of chlorine may seem to be a relatively safe, cheap and effective means of disinfection, 

there are also several disadvantages associated with its use. Firstly, it may not be totally 

effective at eradicating Legionella, especially if they are associated with amoebae, or are 

present in biofilms. A second issue is the fact that chlorine is corrosive to pipes and 

construction materials. The price of replacing or maintaining the water system may therefore 

become very costly. A final concern is the health related risk to the development of 

chlorination by-products, such as chlorinated organics, particularly in systems used for 

domestic drinking water. This may also become problematic to waste water treatment plants, 

where the chlorine residue could prove toxic to the microorganisms used to process the waste 

water, rendering the system less effective. 

 

1.4.2.2 Thermal disinfection 

 

Kim et al (2002) also tested the efficiency of thermal disinfection, and found that this was 

effective for killing microorganisms at temperatures above >60°C (140°F). 

In support of this finding, Rogers et al (1994) found that Legionella were able to survive in 

water at temperatures between 20 and 50°C, but were not recovered from water heated to 

60°C.  Similarly, Lin et al (1998) performed a study to determine the time required for a 

90% reduction (ie. 1-log) of Legionella spp., at temperatures of 45°C, 50°C, 60°C and 70°C 

(113°F, 122°F, 140°F,  and 158°F). They found that the times required for a 90% reduction, 

in minutes, were 2500, 380, <5 and <1 min, respectively. 

According to Best et al (1984), effective thermal disinfection of hot-water distribution 

systems requires flushing of all outlets, faucets, and shower heads for at least 30 min at 

>60°C. Maintaining the temperature of the water at 60°C following this treatment is also 
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known to be effective at preventing the re-establishment of the organism (Furuhata et al, 

1994). 

Vickers et al (1987) performed a study of L. pneumophila in hot water systems, and found 

that vertical storage tanks were contaminated with the organism more commonly than 

horizontal tanks. They also found that older tanks were contaminated more often than newer 

tanks. 

Overall, thermal disinfection is an effective means of eliminating Legionella from water 

systems. It is relatively inexpensive, and does not corrode pipes or construction materials as 

do some of the chemical methods. One disadvantage however, is the risk to the operator of 

scalding, due to the high temperature, and large volume of water involved. However, if 

caution is exercised, it remains an affordable and effective option for prevention of 

Legionella growth and dissemination.  

 

1.4.3 Vaccination 

 

Prevention of Legionella is unfortunately, not yet possible by means of vaccination. Various 

groups have analysed potential vaccine candidates, but as yet, none have satisfactorily made 

their way to the commercial market (Mims et al, 2004). 

Various groups began to analyse the potential of different Legionella spp.  antigens for use as 

vaccine targets, as early as the late 1980’s. One of the earlier groups was Blander and 

Horwitz (1989). They investigated the protective potential of the Major secretory protein 

(Msp) of L. pneumophila, using a guinea pig model. Interestingly, they found that in the 

guinea pig model, the Msp of L. pneumophila was able to elicit both a humoral and cell-

mediated immune response. It was able to protect the guinea pigs from an aerosol challenge 

with a high dose of virulent L. pneumophila. The group found that with a 40 μg dose, 

injected twice over a three week period, the guinea pigs experienced only limited 

multiplication of L. pneumophila in their lungs following the aerosol challenge. 

Similarly, Blander et al (1989) analysed the potential of a live avirulent mutant of                 

L. pneumophila to elicit a protective immune response in guinea pigs. They found that the 

mutant did not cause disease in the guinea pigs, and it did not revert to a virulent form with 

passage through the guinea pigs.  
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They observed that the immunised guinea pigs developed both a strong humoral and cell 

mediated immune response to wild-type L. pneumophila, and were protected against an 

aerosolised challenge with wild-type L. pneumophila. The group therefore concluded that the 

study demonstrated the potential for use of this attenuated L. pneumophila mutant, and that it 

may prove useful in the vaccination of people in the high risk group for developing 

Legionnaires’ disease, such as cigarette smokers, and patients on immunosuppressive 

therapy. 

Belyi et al (1996) determined that a vaccine produced from live Francisella tularensis, an 

organism genetically related to L. pneumophila, was able to protect guinea pigs which had 

been immunised, from a lethal aerosol challenge of virulent L. pneumophila. The group 

observed that immunisation with the tularemia vaccine protected over 80% of the challenged 

guinea pigs. The group tried to determine which of the bacterial components were 

responsible for eliciting the protection by isolating cell wall components of the organism. 

Unfortunately the individual cell wall components failed to induce the same protective 

response, and the components responsible for eliciting the response remain unidentified. 

Recently, Ricci et al (2005) analysed the protective potential of the L. pneumophila flagella, 

using the A/J mouse model. The group immunised the mice with purified flagellum protein, 

and found that upon challenge with virulent L. pneumophila, the mice displayed a 100% 

survival rate, due to the elicitation of a strong innate and adaptive cell-mediated immune 

response. This protective response was found to last for around thirty days, and protected 

mice from challenges with different serogroups of L. pneumophila.  

The group concluded that the flagellum protein is highly immunogenic, and is capable of 

protecting A/J mice against a lethal L. pneumophila challenge, due to the stimulation of both 

natural and acquired T-cell-mediated immune responses.  

The search for an ideal vaccine candidate for Legionella continues, and remains to be 

ascertained. If readily available and inexpensive, the vaccine would be a useful prophylactic 

tool for the elderly and immunocompromised. Due to the comparatively small target group, 

and the relative infrequency of legionellosis cases, it may be however, that there is 

insufficient demand and financial support for the development of a Legionella vaccine. As 

with all cases of vaccine development, the process can often take numerous years of 

laboratory trials, testing, and monetary input before the vaccine is ready for the commercial 

market. 
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1.5 Legionella Outer Membrane Proteins/Components 

 
1.5.1 Macrophage Invasion Potentiator (Mip) 

 

 The Macrophage Invasion Potentiator (Mip) family of proteins are a group of surface bound 

proteins which display peptidylprolyl cis:trans isomerase (PPIase) activity. They are an 

effective virulence attribute possessed by a few intracellular organisms, which include           

L. pneumophila, (which was the first organism to have the Mip recognised as an important 

virulence factor), Neisseria gonorrhoeae, Chlamydia, E. coli and Tryponosoma (Leuzzi et al, 

2005). 

Bacterial Mips are believed to be the prokaryotic homolog to the human FK506-binding 

protein (FKBP) family of enzymes. FK506-binding proteins, also known as Immunophilins, 

bind to immunosuppressive drugs, such as the macrolactones FK506 and rapamycin (Bell et 

al, 2006). 

It is now quite well known that Mips are a critical factor in the successful survival of 

intracellular organisms, as they play a very important role in the intracellular infection of a 

key member of the immune system, the human professional phagocyte, or macrophage. 

There is now ample evidence which suggests that deletion or mutation of the mip gene 

severely reduces the virulence level of the bacteria (Cianciotto et al, 1989; Cianciotto and 

Fields, 1992; O’ Connell et al, 1995). Recently, the group of Debroy et al, (2006) identified 

the target molecule of the Mip protein as a phospholipase C, although more work is needed 

to determine if this new information explains the role of the Mip in pathogenesis. 

 

1.5.1.1 The Mip protein within the species L. pneumophila 

 

A considerable amount of attention has been focused on the Mip protein of Legionella, 

particularly of L. pneumophila. This is most likely due to the fact that L. pneumophila is a 

ubiquitous pathogen which has the potential to cause life threatening illness, and of which 

the Mip has been shown to be an imperative part of its pathogenesis.     
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The Mip protein of L. pneumophila is a surface exposed protein, that has been shown to 

contribute to L. pneumophila infection of both protozoan and human macrophage cells 

(Cianciotto et al, 1992). The DNA sequence of the L. pneumophila mip gene was elucidated 

by the group of Engleberg et al (1989). It was found to encode a 24 kDa protein, which 

included a secretory signal sequence, and was believed to be transcribed monocistronically.  

 

The crystal structure of the L. pneumophila Mip protein was recently determined by Riboldi-

Tunnicliffe et al (2001). They found that the protein contains quite an atypical and unusual 

structure.  It was found to be homodimeric, as opposed to the majority of other FKBPs, 

which are monomers (Figure 1.6). It was also found to have a unique N-terminal sequence 

that is significantly different to that of the Mips of other organisms, and interestingly, was 

found to have a C-terminal domain which shares around 35% sequence similarity with the 

human protein  FK506-binding protein (FKBP12). 

Each monomer is described as having a ‘dumbbell’ shape due to its two structurally distinct 

domains being linked by a long α-helix. These domains consist of two anti-parallel α-helices, 

joined by a loop of six residues. It is these two α-helices which form the main biologically 

active dimer of the Mip protein. An eight-residue loop then connects the N-terminal domain 

to a linker helix. This linker helix, designated the α3 helix, contributes greatly to the 

uniqueness of the Mip protein. At a length of 45 residues, this helix is believed to be the 

longest free-standing α-helix of any protein. It is not stabilised by any external bonding to 

other parts of the protein, but instead, is stabilised internally by hydrogen bonds and salt 

bridges (Riboldi-Tunnicliffe et al, 2001). 
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Figure 1.6 – Schematic depiction of the crystal structure of the Mip monomer. The coils 

represent α-helices, whilst the arrows correspond to β-strands. The N-terminal region is 

colored blue, and the C-terminus is red (Riboldi-Tunnicliffe et al, 2001). 

 

1.5.1.2 Role of the Mip in L. pneumophila pathogenicity 

 

Functional investigation of the mip gene through analysis of the effects of mutations has 

been performed by several groups (Cianciotto et al, 1989; Cianciotto et al, 1990; Cianciotto 

et al, 1992; Hurley et al, 1993; Cianciotto et al, 1995; Shi et al, 2006).  

It was observed that a site-specific mutation introduced into the mip gene resulted in            

L. pneumophila having a significantly reduced ability to infect human alveolar macrophages, 

as well as the human macrophage-like cell line U937 (Cianciotto et al, 1989).   

When the growth curves of mip-mutants were compared to the parent strain in U-937 

monolayers, it was noted that there were significant differences between the two. Even 

though equal numbers of bacteria were used to infect the monolayers, there was found to be 

a reduction of around 10-fold in the number of mip-mutants recovered after 40 hours of 

infection. This number dropped to around 100 fold fewer mutants recovered after 3 days 

post-inoculation.   

 However, the group found that once inside the U-937 cells, the mutant organisms were able 

to grow at a comparable rate to the parent strain. They therefore explained this apparent 
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difference in growth curve kinetics by the fact that the mutant cells are probably unable to 

effectively initiate successive rounds of replication within the U-937 monolayer. They were 

then able to demonstrate that this was most likely the case by infecting the monolayer with 

10 fold more mip-mutants, so that an equivalent number of organisms were present at the 40 

hour post-infection point. When the growth curve was again analysed, it was observed that 

the rates of growth for both the parent strain and the mutant strain were indeed similar.  

This observation may be strengthened by the findings of Wieland et al (2002) who studied 

the regulation of the mip gene, and found that its expression was repressed a short time after 

the infection of a cell. Therefore, Mip expression is probably only important during the 

initial stages of infection.  

 

1.5.1.3 Distribution of the Mip gene within the genus Legionella  

 

Distribution studies have also been performed on species of Legionella other than                

L. pneumophila. Cianciotto et al (1990) performed Southern hybridisation and immunoblot 

analyses on numerous Legionella strains and serogroups, in order to determine the presence 

and expression of the mip gene, and Mip protein product. They found that 14 serogroups of 

L. pneumophila encoded a mip gene, and expressed a 24 kDa gene product. Reactivity of all 

14 serogroups tested was observed when immunoblotted using anti-Mip monoclonal 

antibodies. However, when Southern hybridisation reactions with mip DNA probes were 

performed on 29 other species of Legionella, they found that reactivity was only observed 

when the stringency conditions of the reaction were reduced. This indicated that the gene 

was present, but that there were variations in parts of the nucleotide sequence.  

Immunoblotting of whole cell lysates of Legionella species performed with anti-Mip 

antibodies also revealed that these strains all expressed a Mip protein product, ranging 

between 24-31 kDa in size (Cianciotto et al, 1990). 

Interestingly, when hybridisation reactions were performed on Legionella strains with DNA 

probes designed from the 5' end of the mip gene, reactivity was stronger than with probes 

designed from the 3' end. This indicated that the gene appeared more conserved between 

species at the 5' end, and that more sequence variability exists at the 3' end. 

Cianciotto et al (1990) also performed Southern hybridisation reactions with mip-based 

DNA probes using bacteria outside the genus Legionella. Under the conditions used by the 
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group, they found that there was no reactivity with any of the other bacterial species tested. 

These included E. coli, Haemophilus influenzae, Klebsiella pneumoniae, Mycoplasma 

pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus 

pneumoniae. They concluded that all of the Legionella strains tested expressed a Mip-like 

protein, and that all of the Legionella pneumophila serogroups tested possessed a mip gene 

very closely related to that of Legionella pneumophila serogroup 1. 

O’Connell et al (1995) analysed the mip gene of Legionella micdadei, another important and 

relatively common cause of Legionnaires’ Disease, which has also been implicated in 

abscess formation and cellulitis (Halberstam et al, 1992; Kilborn et al, 1992). The group 

mutated the mip gene by allelic exchange, which resulted in the complete loss of Mip protein 

expression. They then performed infectivity assays using the U-937 cell line, as well as the 

amoebal parasite Hartmanella vermiformis. The results showed that similarly to                  

L. pneumophila, the Mip of L. micdadei is also important for intracellular infection of the 

organism, and that mutation of the gene significantly impairs its ability to infect 

macrophages. They also found that the mip mutant had a reduced ability to survive within the 

amoebae, indicating that the protein may play a role in resistance to killing by the host cell. 

Overall it was shown that the Mip of L. micdadei shared a very similar function to that of the 

L. pneumophila Mip. 

 

1.5.1.4 Mip-Based Detection Systems 

 

The mip gene has been used as the target for a genotypic classification scheme for the genus 

Legionella (Ratcliff et al, 1998). It was found to be able to clearly distinguish between 

species of Legionella, and showed more than twice the discriminatory ability of the 

commonly used 16S rRNA gene. In addition to the nucleotide variation which occurs 

between species throughout the mip gene, the fundamental feature of the scheme relies on a 

hypervariable region of DNA adjacent to the proteins’ signal sequence coding region. 

The classification scheme involves the amplification and subsequent DNA sequencing, of 

around 700 nucleotide bases of DNA (between 661 to 715 bp, depending on the Legionella 

species). The study found that the mip gene was quite stable i.e. that there was no evidence 

of homologous recombination, and that the classification scheme correctly identified 39 of 
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40 Legionella species. It was also successfully able to further group 26 serogroups or 

reference strains for these Legionella species.  

 

Numerous research groups have developed methods for detecting Legionella spp. by the 

sensitive and specific technique of PCR (Bej et al, 1991; Kessler et al, 1993; Koide and 

Saito, 1995; Murdoch et al, 1996; Wellinghausen et al, 2001).  More recently, a real-time 

PCR assay was developed for the detection of L. pneumophila in clinical samples, based on 

the mip gene (Wilson et al, 2003).  It was shown that the mip gene served as a reliable and 

effective target gene for the identification of L. pneumophila in the clinical samples tested. 

However, they noted that two species of Legionella, namely L. worsleiensis and                  

L. fairfieldensis could possibly be falsely identified as L. pneumophila, since a BLAST 

sequence search performed by the group revealed a highly similar sequence match for the 

mip gene, in the regions targeted by the assay. However they could not support this 

hypothesis because they did not have access to these strains. 

 

1.5.2 Lipopolysaccharide (LPS) 

 

Lipopolysaccharide (LPS), has for numerous years now, been considered a contributor to 

Legionella pathogenesis. It has been linked to intracellular growth, virulence and serum 

resistance, and is considered to be the major immunodominant antigen of L. pneumophila 

(Luneberg et al, 1998).  

LPS is a complex molecule, which is present in the outer membrane of gram negative 

organisms, and is often responsible for the elicitation of innate immune responses from 

infected hosts (Girard et al, 2003).  

 

The structure of the LPS of L. pneumophila differs significantly from the LPS of other gram 

negative organisms, in that its lipid A component is composed of specific long chain fatty 

acids, which are believed to be the rationale for the molecules’ relatively low endotoxic 

properties (Wong et al, 1979). The O-chain of the molecule, termed ‘Legionaminic acid’, is 

composed of a homopolymer of the unique sugar, 5-acetamidino-7-acetamido-8-O-acetyl-

3,5,7,9-tetradeoxy-L-glycero-D-galacto-nonulosonic acid. It is this sugar which is 

responsible for the high hydrophobicity of the cell surface, and may therefore play a role in 
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bacterial adherence to alveolar macrophages, or amoebae (Zähringer et al, 1995). Helbig et 

al (1995) postulated that an epitope adjacent to the 8-O-acteyl group of the Legionaminic 

acid is involved in the virulence of L. pneumophila.  

The inner core oligosaccharide of the molecule does not contain heptose sugar molecules, 

but is composed of 2-keto-3-deoxy-D-manno-oct-2-ulosonic acids, which is similar to those 

of other enterobacterial core oligosaccharides (Neumeister et al, 1998).  The outer core of the 

molecule is also hydrophobic due to N- and O-acetyl groups, in addition to 6-deoxy sugars 

(see Figure 1.7). 
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Figure 1.7 - The highly O-acetylated core heptasaccharide of Legionella pneumophila 

LPS, where Kdo is 3-deoxy-D-manno-octulosonic acid and QuiNAc is 2-acetamido-2,6-

dideoxyglucose (Knirel et al, 1996). 

 

 

1.5.2.1 LPS - its role in typing and identification of Legionella 

 

Ciesielski et al (1986) performed a study to characterise the LPS of L. pneumophila, and to 

establish the relationship between LPS and the specificity of serogroups. They subjected the 

LPS from all L. pneumophila serogroups tested (serogroups 1-6) to SDS-PAGE analysis, and 

found that the migration pattern of these LPS samples were very distinct, and significantly 

different to that of other gram negative organisms. Each of the serogroups were seen to be 

associated with multiple complexes and have a smooth LPS profile. This smooth type LPS 
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correlates well with the work of Horwitz and Silverstein (1981), who determined that these 

strains of L. pneumophila displayed serum resistance. In order to establish if LPS was a 

determinant in serogroup specificity of strains, the group also performed immunoblots with 

proteinase K–treated whole cell lysates of L. pneumophila serogroups 1-6, using monkey 

immune serum which was serogroup specific. They found that only homologous antisera 

reacted with the lysates, indicating that the LPS was a determinant for the specificity of each 

serogroup. Although there was some very slight cross-reactivity between a few low 

molecular weight antigens of serogroup 6 with immune serum 5, generally the antiserum 

would only be reactive against its homologous serogroup, and not the other five.  

 

The LPS of Legionella is an antigenic structure which is often used for typing and 

identification of the organism. Jurgens and Fehrenbach (1995; 1997) have been studying the 

LPS of Legionella for several years now. In 1995, the group published work in which they 

analysed the cross-reactivity of L. pneumophila serogroups 1-14. When the group separated 

the LPS of serogroups 1-14 by SDS-PAGE, they found that most strains exhibited tight 

ladder like migration patterns. This was not the case however, with serogroups 4, 5, 6, 12 

and 13, whereby bands were quite widely separated. They found that overall, the banding 

patterns between serogroups 1-14, as well as the species L. bozemanni, L. gormanii and L. 

micdadei were significantly different from each other, and quite unique. The only similarity 

observed between banding patterns was amongst strains of a particular serogroup. In this 

case, the group tested 8 strains of L. pneumophila serogroup 1, and found them to be highly 

similar. In contrast to the group of Ciesielski, (1986) who tested cross-reactivity between 

serogroups 1-6, and found some cross-reactivity with serogroup 5 against the LPS of 

serogroup 6, Jurgens and Fehrenbach (1997) found cross-reactivity with serogroup 5 immune 

serum, against the LPS of all serogroups 1-14. It did not react however, with any other 

Legionella species, or other gram negative bacteria. From this, the group concluded that 

polyclonal antiserum raised against L. pneumophila serogroup 5, would be useful in the 

detection of all L. pneumophila serogroups. They also found that when separated by SDS-

PAGE, the LPS of L. pneumophila serogroups 1-14 is quite unique and can therefore serve to 

distinguish and type the different serogroups of Legionella pneumophila. The technique 

however, was not useful for the further differentiation of the serotypes into subtypes, as their 

LPS profiles were too similar. 
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Jurgens and Fehrenbach (1997) also recognised the importance and success of using LPS to 

type other bacterial species, and therefore considered that this concept may also be 

applicable to Legionella. They therefore separated LPS preparations of numerous Legionella 

species by SDS-PAGE, and analysed results to determine whether the LPS pattern of 28 

ATCC reference strains matched those of 430 wild-type isolates. They found that generally, 

the LPS pattern of the wild-type strains corresponded to their respective reference strain. 

However, they did observe some slight variations with some strains, in the form of either an 

additional or absent band. They concluded that this discrepancy in results may in fact have 

been as a result of different LPS concentrations in samples, and not necessarily variations in 

the LPS structure of the strains. The group did mention however, that the strains required 

further testing, but that the method showed potential due to both the stability of the LPS 

molecule and the relative ease of the test. 

Further to the concept of using LPS to differentiate between strains of Legionella 

pneumophila, Helbig et al (1997) performed a study whereby they created a panel of 98 

monoclonal antibodies, using reference strain serogroups. Each serogroup of L. pneumophila 

was said to possess at least one epitope which was specific to that serogroup only, allowing 

the creation of the monoclonal antibodies which specifically target a particular serogroup. 

The panel was designated the ‘Dresden Legionella LPS MAb panel”. A total of 165 clinical 

and 899 environmental isolates were included in the testing, and the group found that overall, 

the method of distinguishing serogroups by their LPS epitope patterns was effective. A major 

difficulty encountered during the development of the monoclonal antibodies however, was 

the fact that the antibodies developed against some serogroups (serogroups 4, 5, 8, 10, 12 

and 14) shared epitopes which were cross-reactive with several other serogroups. Serogroups 

4 and 5 were particularly problematic, as no serogroup specific epitopes for these strains 

were found, and a two-monoclonal antibody system had to be implemented for their 

identification. Overall, Helbig et al (1997) concluded that the monoclonal antibody system 

was valuable, and recommended its use in routine and clinical laboratory testing.  

 

1.5.2.2 LPS, Macrophages and the immune system 

   

The LPS of Legionella, as with other gram negative bacteria, can trigger a cascade of 

immunological activity within a host. It is known to activate macrophages, but can lead to 
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the development of septic shock in a host, due to the release of cytokines, such as 

Interleukin-1α (IL-1α), IL-1β, IL-6 and tumour necrosis factor α (TNF-α). Although 

endotoxic shock can result from excess secretion of cytokines such as TNF-α, the release of 

these cytokines also protects host cells against further bacterial infection.   

Arata et al (1993) studied the effect of L. pneumophila LPS-activated macrophages, and the 

resulting non-permissiveness of these macrophages to further infection by intracellular 

bacteria. The group found that when LPS of L. pneumophila was injected into the peritoneal 

cavity of A/J mice, the macrophages became activated and were then resistant to subsequent 

infection with L. pneumophila in vitro. Interestingly, if a batch of normal, non-activated 

macrophages was co-cultured with the treated, LPS-activated macrophages, the entire 

population of cells became non-permissive to further intracellular infection. The group 

examined whether this effect was due to the release of cytokines by the activated 

macrophages, such as IL-1, IL-6 or TNF-α, but was surprised to find that the levels of these 

soluble factors in the cells were not notably high. The group also tested the theory that the 

transition of macrophages from permissiveness to non-permissiveness may have been due to 

free LPS released by cells following injections of the endotoxin. They therefore pre-treated 

cells with Polymyxin B, a known inhibitor of LPS activity.  Again, they found that this did 

not significantly alter the ability of LPS-activated macrophages to induce non-

permissiveness in the unactivated macrophages, therefore indicating that it was most likely 

not LPS released from the activated macrophages that was eliciting this effect. However, the 

group noted that free or macrophage–bound LPS could not be totally ruled out as a cause of 

this phenomenon. Although the mechanisms involved still remain vague, the group 

postulated that there may be some kind of LPS-binding protein involved, which is able to 

bind to LPS, and present this LPS-LPS-binding protein complex to naive macrophages, 

enabling them to become activated and non-permissive, at much lower concentrations of 

LPS than normal. Following these initial experiments, several groups discovered that there 

are numerous molecules involved in the activation of macrophages and monocytes. One of 

these is the LPS-binding protein (LBP).  
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1.5.2.2.1 LPS Binding Protein (LBP) 

 

Tobias et al, (1995) investigated the mechanism of LPS activation via the formation of a 

complex between the 60 kDa plasma glycoprotein known as the LPS binding protein (LBP), 

and the 55 kDa glycoprotein, CD14.  This complexation process is believed to occur in a 

variety of mammalian cell types, including macrophages, neutrophils, endothelial cells, 

smooth muscle cells, and some epithelial cell lines (Haziot et al, 1988). 

 

1.5.2.2.2 GPI-anchored cell-surface protein CD14 

 

CD14, a cell surface protein, is found in macrophages, monocytes and neutrophils in the 

form of a glycerophosphoinositol tailed membrane protein (mCD14). It is believed that when 

LPS comes into contact with LBP, this initiates the binding of the LPS/LBP complex to 

mCD14. This in turn, initiates cellular activation (Wright et al, 1990). It was determined that 

inactivation of CD14 through the use of monoclonal antibodies, prevented the release of the 

important cytokine TNF-α. Such cytokines are critical in the activation process, as they 

prime leukocytes to respond to circulating LPS at very low amounts (ng/ml) (Wright et al, 

1990). 

 

1.5.2.2.3 Toll-Like Receptor 2 (TLR2) 

 

Another recently elucidated mechanism of phagocyte activation is the involvement of the 

signal-transducing molecule, Toll-like receptor 2 (TLR2). It was previously believed that 

Legionella used the molecule TLR4 (Poltorak et al, 1998) as a signal transducer. However, 

the group of Girard et al (2003) recently carried out some follow up work that they had been 

performing on the LPS of Rhizobium where they had found that CD14 expression in bone 

marrow cells (BMCs) was occurring by a TLR4-independant mechanism. This was believed 

to be due to the lipid A region of the Rhizobium LPS, which structurally contains a very long 

fatty acid chain. The LPS of Legionella contains a similarly long fatty acid chain, and was 
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therefore included in the investigation. Interestingly, the group found that Legionella could 

also activate BMC’s by TLR2, instead of TLR4. It is believed that the long chain fatty acids 

are not only responsible for the use of TLR2 mediated responses, but that they also reduce 

the reactivity of the LPS. The group concluded this based on the fact that an almost 100-fold 

higher concentration of Legionella LPS is required to activate BMCs, than for other 

enterobacteria or B. pertussis LPS. 

 

1.5.2.2.4 LPS Activation of macrophages – the ‘oxidative burst’ 

 

The ‘oxidative burst’ is a term used to describe a mechanism employed by cells to kill 

intracellularly growing organisms. This is accomplished by the release of O2
– and H2O2 

oxygen metabolites which are bactericidal to organisms such as L. pneumophila, and are 

ultimately responsible for their detriment.  

 

Kura et al (1994) investigated the role of the oxidative burst of macrophages in preventing 

infection by intracellular organisms, following activation by LPS.  A murine macrophage-

like cell line was used to observe permissiveness, as well as a mutant cell line, LPS1916, 

which was defective for the oxidative burst following activation by LPS. L. pneumophila 

serogroup 1 was infected into the monolayers, and the group then determined the extent of 

infection by performing CFU assays. The group found that under normal circumstances, both 

cell lines were permissive for infection by Legionella pneumophila. Pre-treatment of the cell 

lines with IFN-γ, which has the same effect as stimulation by LPS, caused the parent cell line 

to become non-permissive to multiplication by the L. pneumophila cells. However, the 

mutant cell line did not become resistant to further infection. 

A theory which had been postulated by other groups was the supposition that death of 

intracellular organisms by human monocytes was more likely due to the ability of 

macrophages to starve intracellular organisms of iron acquisition by minimising their 

expression of transferrin receptors (Byrd et al, 1989, 1993). However Kura et al (1994) 

found that levels of iron were quite high in cells following LPS stimulation.   

 Kura et al (1994) also found that it was the oxidative burst, and not the nitrite burst which 

was the critical bactericidal mechanism used by activated macrophages. They demonstrated 

this by inhibiting the production of cellular nitrite, and observing the effect this modification 
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had on the ability of the activated monocytes to inhibit bacterial growth. They found that 

there was no significant difference, indicating that the nitrite burst was in fact not an 

imperative factor in the inhibition of intracellular growth by macrophages. 

 

1.5.2.3 Legionella LPS Phase Variation   

 

The involvement of Legionella LPS in the virulence and phase variation of the organism has 

been studied for numerous years. It appears, however, that the precise mechanism of this 

involvement is yet to be fully understood.  Several groups have been involved in the 

progression of this understanding.                                                                                                                  

 

Edelstein et al, (1985) analysed the changes in virulence that occur in cells grown over a 

variety of temperatures. They developed monoclonal antibodies to the organisms, and then 

analysed the binding ability of the antibodies to cells when grown at different temperatures. 

The group found that changes occurred in the structure of the LPS of cells which no longer 

facilitated binding of the antibodies. The group realised, however, that there may be other 

surface molecules involved, which are also affected by the change in growth temperature.  

The group of Lüneberg et al, (1998) investigated the role of L. pneumophila LPS in 

virulence of the organism. To achieve this, the group raised monoclonal antibodies against 

the LPS of L. pneumophila serogroup 1. By doing so, they were able to identify an               

L. pneumophila LPS mutant. By performing assays using the human macrophage-like cell 

line HL60, the group was able to determine that although the mutant was able to enter the 

host cells, it was not able to replicate intracellularly. In addition to this, the mutant strain 

rapidly succumbed to serum complement factors, whilst the parent strain was virtually serum 

resistant. From this, the group concluded that the ability of L. pneumophila to resist serum 

complement factors is most likely due to the LPS carbohydrate moiety of the organism. 

However the group also acknowledges that there may be other cell surface molecules 

involved, which may have been altered due to the mutation of the LPS. 

In addition to this finding, was the remarkable discovery that when the LPS mutant strain of 

L. pneumophila was injected into guinea pigs, it displayed an unstable phenotype, and 

appeared to revert from the mutant form, which was unable to bind to the monoclonal 

antibodies, back to the wild-type, which was able to bind the antibodies. This switching of 
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phenotypes was believed to be most dramatic in vivo, in the guinea pig model. Finally, the 

group also found that when they recovered bacteria from the experimental animals, there was 

an increase in the percentage of wild-type cells (from 8% to 35%), indicating that there was 

selective pressure occurring in favour of the wild-type phenotype.    

Several years after this work, the same group of Lüneberg et al, (2001) was able to elucidate 

the molecular mechanism behind the ability of L. pneumophila to vary their LPS by phase 

variation. The group discovered 30 genes encoded on a 30 kb unstable genetic element. They 

discovered that the organism is able to alter the cellular location of this element from a 

chromosomal location, when the cells are in a wild-type phenotype and virulent, to being 

present as a high copy plasmid in the cell, where they express a different LPS epitope 

pattern, and are no longer virulent. The group was therefore able to conclude that the phase 

variation expressed by Legionella is most likely defined by the continuous changing, by 

excision and insertion of this genetic element, from the chromosomal to plasmid locations.   

 

1.5.3 Flagella 

 

In many organisms, including Legionella spp., the flagellum is believed to be an important 

mechanism in bacterial pathogenesis. They provide organisms with motility, which is often a 

critical step in bacterial dissemination and spread (Salyers and Whitt, 2002). 

The flagellum of Legionella spp. is known to consist of a 47 kDa filament subunit, and the 

organism has been characterised as having single or multiple, polar or subpolar flagella 

(Figures 1.8a and 1.8b, Rodgers et al, 1980; Elliot and Johnson, 1981). The work of 

Rowbotham described that flagellum expression and motility were associated with different 

growth phases of Legionella spp. (Rowbotham, 1986). These were described as the 

‘multiplicative phase’, and the ‘active infective phase’. 

During the multiplicative phase, the bacteria are typically multiplying rapidly, and do not 

express flagella, and are hence non-motile. During the active infective phase, the bacteria 

become highly motile. During this stage, the organisms are typically in the later stages of 

infection, where they are lysing host cells, and disseminating. Motility during this stage is 

imperative for cells, as they are usually seeking to find new host cells to infect (Hammer and 

Swanson, 2000). 
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  (a)      (b) 

Figure 1.8 - Electron microscopic image of flagella on L. pneumophila, negatively 

stained with 1% phosphotungstic acid, pH 6.5 (a) L. pneumophila serogroup 1 

(Cambridge 1) from enriched blood agar medium, displaying a single subpolar flagellum, x 

22,000. (b) L. pneumophila sgp 1 (Cambridge 2) from enriched blood agar medium 

displaying a single polar flagellum, x 66,000 (Taken from Rodgers et al, 1980). 

 

                                                

Pruckler et al, (1995) investigated the relationship between flagellum expression and the 

intracellular growth of Legionella. They found that although the flagellum structure may not 

be essential for virulence, it may play an important role in the infection of amoebae, and the 

human macrophage-like cell line, U937. Furthermore, Dietrich et al (2001) reinforced this 

view by stating that although the flagellum was not necessarily involved in the replication of 

Legionella, it was highly likely to be implicated in Legionella invasion of host cells. In more 

recent years, a more in depth understanding has arisen of the role of the flagellum in 

Legionella pathogenesis. It is now universally recognised that flagella are involved in the  

transmission of the organism to new host cells, and that expression is upregulated during the 

stationary phase of growth in broth and whilst in the late-stage replication vacuoles of 

amoebae and macrophages (Heuner et al, 1999). If a mutation is introduced into the gene 

found to encode for the flagellum, designated flaA, the mutant organisms have a reduced 

ability to invade cells. Interestingly, following a cycle of intracellular replication, the flaA 

mutants also have difficulty lysing the host cell (Merriam et al, 1997). 
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1.5.4 Pili / Fimbriae 

 

Pili, or fimbriae of gram negative bacteria are described as short, hair-like appendages that 

are much finer than flagella (3-10 nm diameter), and which are usually not involved in 

bacterial motility. Pili are usually involved in facilitating the attachment of organisms to 

solid surfaces or host tissues, and occasionally assist in the twitching motility observed in 

organisms such as Ps. aeruginosa, or N. gonorrhoeae (Prescott, 2005).  

Legionella were found to possess pili by transmission electron microscopy studies, shortly 

after the discovery of the bacterium (see Figure 1.9, Rodgers et al, 1980). Since then, there 

has been a significant amount of research performed on the pili of Legionella, in order to 

fully comprehend its role in Legionella pathogenesis, with specific emphasis on its function 

in adherence of the organism to host cells. 

Stone and Abu Kwaik (1999) investigated the genetic regulation of pilus expression in        

L. pneumophila. Interestingly, they found that L. pneumophila expressed pili of different 

lengths (see Figure 1.10, Stone and Abu Kwaik, 1999), which they believed was due to two 

sets of pilin encoding genes. By performing mutagenesis studies, the group was able to 

determine that the gene pilEL encoded for the longer type of pilus. This pilus was found to 

be related to the type IV pili of Neisseria spp. and Pseudomonas spp., and mutation of this 

gene resulted in a loss of these long pili on the surface of L. pneumophila. Without the 

expression of these long pili, the mutants were impaired in their ability to attach to cultured 

epithelial cells, macrophages, and protozoan cells.               
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Figure 1.9 - Electron microscopic image of pili on L. pneumophila (Togus 1), negatively 

stained with 1% phosphotungstic acid, pH 6.5 displaying a mass of dense, curly pili, x 

60,000 (Rodgers et al, 1980). 

 

Liles et al (1998) was able to discover and analyse the gene locus responsible for pilus 

biogenesis, whilst they were in the process of analysing L. pneumophila iron acquisition 

genes.  The genes were designated pilB, pilC and pilD, and were found to share significant 

similarity with the pilin biogenesis genes of Ps. aeruginosa. 

By growing the L. pneumophila strains at the lower temperature of 30°C, the group observed 

that the expression of the operon was up-regulated, indicating that the piliation of                 

L. pneumophila is temperature regulated. By performing Southern hybridisation reactions, 

the group was also able to determine that the pilin gene cluster appears to be conserved 

between the genus Legionella (Liles et al, 1998). 
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Figure 1.10- Electron microscopic image of pili on L. pneumophila, negatively stained 

with 1% phosphotungstic acid, pH 6.5. Both short and long pili can be seen, and are 

indicated by small arrowheads. A notably thicker flagellum can also be observed, and is 

indicated by the larger arrowhead (Taken from Stone and Abu Kwaik, 1999; Bar represents 

0.5 μm). 

 

In addition to pilin biogenesis, the group found that the Legionella pilB gene was strongly 

related to the pilB gene of Ps. aeruginosa, which, along with its homologous genes in other 

organisms, is a constituent of type II protein secretion systems. It has been previously 

established that these genes are required for the assembly of type IV pili (Lauer et al, 1993) 

and that loss of these genes results in organisms which do not express pili, and are therefore 

dramatically impaired in their ability to adhere to host cells (Strom and Lory, 1993; Heckles, 

1989). 

Due to the genomic organisation of the pilB, pilC and pilD genes, the group believed that the 

genes may have been co-transcribed. The pilC gene was located 8 bp past the end of the pilB 

ORF, whilst the pilD gene was located only 48 bp past the end of pilC.  

Liles et al (1999) examined the function of the pilD gene by mutating the pilD gene in 

L. pneumophila through insertional inactivation of a kanamycin-resistance cassette. The 

mutant strains were found to grow comparably to the parent strain in bacteriological media, 

however it was noted that at least three proteins were not secreted in the mutant strain. This 

indicated that the pilD gene was involved in the secretion of proteins. The pilD mutant also 

experienced difficulty growing within the amoebae Hartmanella vermiformis. This effect 
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was reversed upon complementation of the mutant with a functional pilD gene. This 

observation led to the conclusion that intracellular growth of L. pneumophila is reliant upon 

cellular proteins secreted by a type II secretion mechanism. 

 

Overall therefore, the pilD gene is seen as an integral member of the pilBCD gene cluster. It 

is a prepilin peptidase that cleaves and methylates both pilins and pseudopilins that 

eventually assemble into type IV pili. These type IV pili have been shown to promote 

bacterial attachment to host cells, and have been correlated to DNA transformation 

competence of L. pneumophila (Stone and Abu Kwaik, 1999). 

L. pneumophila proteins believed to utilise this type II system consist of a zinc 

metalloprotease, acid phosphatases, lipases, phospholipases A and C, and a 

lysophospholipase A (Aragon et al, 2000; 2001; 2002). 

 

1.5.5 Heat Shock Protein 60 (Hsp60) 

 

Heat shock proteins (Hsp) are involved in bacterial biogenesis, and are highly conserved 

proteins which are expressed in virtually all eukaryotic and prokaryotic cells. They are also 

known as chaperones, or stress proteins, and their intracellular expression in the cell can be 

observed to markedly increase when cells are subjected to stresses such as nutrient 

deprivation, oxygen radicals, viral infection and heat shock (Retzlaff et al, 1994). There have 

been some recent studies that indicate that although Hsp are mainly intracellular proteins, 

some Hsp can be surface expressed and can be secreted extracellularly (Ensgraber and Loos, 

1992., Evans et al, 1992) 

 

In Legionella, the Heat shock protein is a 58 to 60 kDa protein which is believed to be 

expressed by all Legionella strains. The protein has been found to contain a genus-specific 

epitope which is recognised by monoclonal antibodies, as well as epitopes which cross-react 

with many gram negative bacterial species (Plikaytis et al, 1987). In Legionella, the Hsp is 

usually associated with the cytoplasmic membrane (Gabay and Horwitz, 1985), but may 

translocate to the cell surface when the bacteria are growing intracellularly (Hoffman et al, 

1990).  
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The nucleotide sequence of the Legionella Hsp60 was elucidated by the group of Sampson et 

al (1990) and the protein was found to be homologous to the Hsp of other organisms 

including the GroEL protein of E. coli, the 65-kDa antigen of Mycobacterium tuberculosis, 

and the HtbB protein of Coxiella burnetii (Hoffman et al, 1989., 1990). 

The role of Hsp60 in Legionella pathogenesis has been studied, but there has been no direct 

link made with Hsp60 and Legionella virulence. However, it has been suggested that 

Legionella Hsp60 expression may be upregulated when the organism is residing within the 

rather unfavourable conditions of the phagosome (Dowling et al, 1992). More recently, 

Fernandez et al (1996) utilised radiolabelled L. pneumophila cells and human monocytes to 

determine which proteins were expressed in the early stages of infection. They examined 

polypeptide profiles of both adherent and intracellular bacteria, and found that synthesis of 

the Legionella Hsp60 had significantly increased, along with the Legionella OmpS protein. 

The group then tried to determine whether the protein was involved in virulence by creating 

a Hsp60 mutant. Although they were not able to reach a clear conclusion, they did find that 

although Hsp60 is located in the periplasm of both virulent and avirulent L. pneumophila, it 

was only in virulent strains of the organism that significant amounts of Hsp60 were released 

into the phagosome vacuole, during the infection cycle. The group speculated that the 

increase in Hsp60 levels during intracellular growth, combined with the finding that Hsp60 is 

found extracellularly associated with the phagosome membrane, may mean that Hsp60 is 

required for maintaining Legionella spp. growth in the replicative phagosome. They also 

acknowledged that the Legionella Hsp60 may be involved in the assembly or secretion of 

other proteins or factors involved in the virulence of the organism.  

Garduno et al (1998) tried to determine whether the Hsp60 of L. pneumophila played a 

similar role in adhesion to cells as the recently described Hsp70 of H. influenzae. The group 

analysed the role of Hsp60 in the adherence and invasion of Legionella using the non-

phagocytic HeLa cell line. Interestingly, they found that the L. pneumophila Hsp60 promoted 

binding to the HeLa cells and aided in the subsequent internalisation of virulent                  

L. pneumophila. However, the group also acknowledged that this observation may not be 

exclusively due to the action of Hsp60, as non-virulent Legionella, which were devoid of 

Hsp60 on their surface were still able to attach well to the HeLa cell line. 

The Hsp60 of Legionella has also been determined to play a role in immune recognition, 

particularly by immune cells such as T lymphocytes. In patients with confirmed cases of 

legionellosis, T cells were found to proliferate in response to challenge with purified Hsp60 
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(Weeratna et al, 1994). In addition to this, Retzlaff et al (1994) found that infection of 

murine macrophages, with either L. pneumophila bacteria, or purified Hsp60, elicits the 

production of the cytokine interleukin 1b (IL-1b). 

 

1.5.6 Major Outer Membrane Protein (mOMP) 

 

The Major outer membrane protein (mOMP) of Legionella spp. is a 24-29 kDa surface-

exposed outer membrane protein (porin), which is considered to be the organisms’ most 

abundant protein (Gabay and Horwitz, 1985). 

Gabay and Horwitz (1985) demonstrated that the mOMP is a peptidoglycan-associated porin, 

which remains linked to peptidoglycan even following treatment of the cells with 2% SDS 

and 2 mM MgCl2 at 60°C. This is in contrast to most other gram negative bacterial porins, 

which can usually be solubilised from the membrane with the use of detergents (Hancock, 

1987).  

Porins form channels through the outer membrane of gram negative bacteria, which allow 

hydrophilic, low molecular weight molecules to pass through (Nikaido and Vaara, 1985). 

The mOMP of L. pneumophila is described as being similar to the E. coli K-12 Omp porins, 

OmpF and OmpC. However, in contrast to the E. coli porins, which dissociate completely 

from peptidoglycan at high concentrations of salt (Hasegawa et al, 1976), the mOMP of       

L. pneumophila only dissociates to about 50% under similar conditions (Gabay and Horwitz, 

1985).  

Several years after the study of Gabay and Horwitz (1985), Hoffman et al (1992) analysed 

the structure of the mOMP of L. pneumophila, and found that the protein is covalently bound 

to peptidoglycan via a modified 28-kDa subunit, and is cross-linked through interchain 

disulfide bonds to other 28-kDa subunits. This again is unlike most other porins, which are 

usually anchored noncovalently into the peptidoglycan of the cells’ outer membrane 

(Hancock, 1987). 

The difference in molecular weight of the L. pneumophila mOMP observed by different 

groups is believed to be due to the different isolation methods employed for extraction of the 

protein. For example, groups using HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-

ethanesulfonic acid) find that the mOMP has a molecular weight of 29 kDa (Hindahl and 
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Iglewski, 1984). In contrast to this, groups using Tris buffer find the mOMP to be a 24 kDa 

protein (Engleberg et al, 1984). 

 

Bellinger-Kawahara and Horwitz (1990) previously analysed mechanisms of L. pneumophila 

phagocytosis via complement fixation. They found that monocyte complement receptors 

CR1 and CR3, and the serum complement component C3, mediate the phagocytosis of 

L. pneumophila. Further to this, they now examined C3 fixation to L. pneumophila, to 

identify acceptor molecules for C3 on the surface of L. pneumophila. This was achieved 

using whole-cell enzyme-linked immunosorbent assays (ELISA) to evaluate C3 fixation to 

the surface of bacteria. They found that C3 fixation takes place via the alternative pathway of 

complement activation. They also found that C3 fixes selectively to specific acceptor 

molecules on the cell surface. The group acknowledged that theoretically, this could be any 

surface bound protein or LPS molecule with exposed and accessible COOH or NH2 groups. 

They found however, that in nonimmune serum, it is the mOMP of L. pneumophila which is 

the molecule specifically targeted for C3 fixation.  

 

For L. pneumophila, two mechanisms have been described for attachment to host cells. One 

of these is opsonin-dependant binding (Horwitz, 1993), whilst the other is opsonin-

independant (Gibson et al, 1994). For the opsonin-dependant system, it is complement 

receptors CR1 and CR3 on human phagocytes which recognise the complement fragments 

C3b and C3bi, which ultimately leads to the phagocytosis of organisms, including 

Legionella. As discussed above, the group of Bellinger-Kawahara and Horwitz (1990) 

determined that it is the mOMP of L. pneumophila which selectively binds the C3 

complement component, which in turn leads to uptake of the organism by complement-

mediated phagocytosis. Krinos et al (1999) therefore decided to further analyse the role of 

the mOMP in Legionella adhesion to host cells. The group achieved this by creating an E. 

coli clone which contains a plasmid encoding the mOMP gene of Legionella. The E. coli 

strain overexpressing the L. pneumophila mOMP was five times more adherent to U-937 

cells than the parent E. coli strain, in the absence of opsonins. The group therefore concluded 

that the mOMP of L. pneumophila also appears to play an important role in opsonin-

independent binding of the organism to U-937 cells. They acknowledged, however, that 

further work is required to fully determine the role of the mOMP in the pathogenesis of       

L. pneumophila. 
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1.5.7 Peptidoglycan-associated Lipoprotein (Ppl)  

 
 
The peptidoglycan-associated lipoprotein (Ppl) of L. pneumophila is an outer membrane 

protein which has a predicted mass of 19 kDa. The protein has been found to be 

immunogenic, and is linked to the peptidoglycan layer of the bacterium (Engleberg et al, 

1991).  

 

Hindahl and Iglewski (1987) cloned and expressed the L. pneumophila ppl gene, and 

performed distribution studies to determine the prevalence of the gene within the genus 

Legionella. They included L. pneumophila serogroups 1-8, and the Legionella species of L. 

bozemanii, L. dumoffii, L. gormanii, L. longbeachae and L. micdadei. Western blotting 

results with anti-Ppl antibodies revealed reactivity with all of Legionella serogroups 1-8, and 

all Legionella species, except for L. gormanii.  

Later, Ludwig et al (1991) also cloned and sequenced the DNA fragment encoding the Ppl 

protein of L. pneumophila, and found that the gene is located on a 1.8 kb ClaI fragment. The 

ppl gene was found to encode a protein product of 176 amino acids, with an estimated 

molecular mass of 18.9 kDa. The group found that the protein product of the ppl gene 

contains a lipoprotein signal sequence cleavage site between amino acids 21 and 22, and 

cleavage here results in a mature protein of 155 amino acids, and a predicted mass of 16.8 

kDa (Wu and Tokunaga, 1986). The N-terminal region comprises of a hydrophilic region 

followed by an intensely hydrophobic region, and the sequence correlates with reported 

membrane protein signal sequences.   

The ppl gene showed a high degree of similarity with the peptidoglycan-associated 

lipoprotein (PAL) genes of H. influenzae and E. coli K-12 (Ludwig et al, 1991).  

The PAL of E. coli is described as being complexed with the Tol system. This Tol-PAL 

system is said to consist of several proteins that form two complexes. One of these is located 

in the cytoplasmic membrane, and consists of the TolA, TolQ, and TolR proteins. The other 

is associated with the outer membrane and consists of PAL and the periplasmic protein TolB 

(Bouveret et al, 1995). Overall, these tol-pal genes are believed to be involved in the 

maintenance of outer membrane integrity, and deletion of these genes results in the 

formation of membrane vesicles, which is indicative of a cell envelope assembly fault 
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(Bernadac et al, 1998). These results can be strengthened by the findings of Rodriguez-

Herva et al (1996) who found that the PAL lipoprotein of Pseudomonas putida also served 

the function of maintaining the integrity of the cell envelope of the organism.  

Recently, Hellman et al (2000; 2002) made the interesting finding that the PAL is one of 

three E. coli proteins, in addition to LPS, which is released by bacterial cells following 

incubation with human serum, and which may be involved in the development of gram-

negative bacterial sepsis. They found that very small amounts of purified PAL was able to 

stimulate the macrophages of C3H/HeJ mice, and that injection of PAL into these mice 

stimulated the production of serum cytokines, and increased the expression of pulmonary 

and myocardial inflammatory markers. They also found that E. coli with reduced or 

truncated PAL lipoprotein expression was less virulent than the wild-type bacterium. From 

this, the group concluded that the PAL of E. coli may indeed be involved in mediating gram 

negative bacterial sepsis. 

Kim et al (2003) recently analysed the potential of the L. pneumophila PpL for use in a 

urinary based detection system. They raised antibodies to L. pneumophila serogroup 1 

purified PAL, and then analysed the potential of the resulting IgG antibodies to detect 

urinary PAL antigen from infected guinea pigs, using ELISA assays. The group tested 17 

urine samples from infected guinea pigs, along with 67 negative control samples. From this, 

they found that the assay had a specificity rate of 88.2% and a sensitivity rate of 95.5%. As a 

control, the group also included 161 human urine specimens from adults with either non-

Legionella pneumonia, or with a urinary tract infection, and found that none of these gave a 

positive result with the ELISA.  

Overall, due to the ease and stability of producing the recombinant Ppl lipoprotein, and the 

promising specificity and sensitivity results, the group concluded that the Ppl protein 

demonstrated considerable potential for the development of a diagnostic immunoassay for   

L. pneumophila detection (Kim et al, 2003). 
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1.6 Summary 

 

Legionella continues to be a problematic organism world-wide, and although our knowledge 

of its pathogenic mechanisms is quite comprehensive, there is still a great deal which 

remains to be elucidated. Legionella outer membrane proteins, in particular, often contribute 

greatly to the virulence of the organism. As they are located on the outer surface of the 

bacterium, they are often a first point of contact for bacterial cell attachment to host cells and 

tissues. They also serve as a channel through which bacterial components can be excreted 

outside the cell, such as toxins or effector molecules, or imported into the cell from the 

surrounding environment (Nikaido, 2003). 

There may be numerous other outer membrane proteins which are yet to be discovered, that 

play an important role in Legionella pathogenesis. Understanding the function and role of 

these proteins may help to further clarify the process of disease development and enable the 

development of better Legionella prevention and control measures.  

 

1.7 Aims of thesis 

 

The outer membrane of Legionella will be analysed for novel proteins. This will be 

performed both through immunological techniques, and bioinformatics tools such as the 

sequence analysis program, Prosite. Novel proteins identified will then be characterised in 

more detail. 
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2. General procedures 

 
Glasswares, liquid and agar media, pipette tips, PCR tubes and general materials were 

sterilised by autoclaving at 121oC (220 kPa) for 20 min. All chemicals used were of 

analytical laboratory reagent grade. All solutions were prepared using deionised water 

obtained from a Millipore Milli-Q water system (Liquipure, Melbourne, Australia). 

 

Centrifugation of volumes smaller than 1.5 ml were performed in an EBA12 Microcentrifuge 

(Hettich-zentrifugen). Centrifugation of volumes between 1.5 ml to 50 ml were performed 

using a Beckman AllegraTM 21R Centrifuge. Centifugation of volumes larger than 1.5 ml, 

requiring speeds above 6,000 x g were performed in a Beckman JA21 M/E Centrifuge. 

 

Media containing antibiotics or supplements were autoclaved and then allowed to cool to 

50oC before the addition of antibiotics or supplements and were dispensed into petri dishes 

under a flame or in a laminar flow cabinet. The media plates were then dried at 37oC for 1 hr 

before use. 

   

All glasswares were washed in Pyroneg detergent (Diversey-Lever Pty. Ltd., Australia), 

rinsed twice in tap water and then twice in deionised water.  

 

Solutions were dispensed using either; a Finnpipette® 0.5-10 μl (Labsystem) pipette for 

volumes ranging from 0.5 μl to 10 μl; or a Finnpipette 5-40 μl (Labsystem) pipette for 

volumes ranging from 10 μl to 40 μl; or a Gilson P-200 Pipetman Micropipette (John Morris 

Scientific, Australia) for volumes ranging from 200 μl to 1000 μl; or a Finnpipette 1000-

5000 μl (Labsystem) for volumes ranging from 1000 μl to 5000 μl. 
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2.1 Materials  

 

2.1.1 General chemicals and equipment 

 

ABI Prism BigDye Terminator Cycle 

Sequencing Ready Reaction Kit 

Perkin-Elmer Corp., U.S.A 

Acetic acid, glacial BDH Chemicals, U.K. 

Agar (Bacteriological Agar No. 1) Oxoid Ltd., U.K. 

Agarose (DNA grade) Progen Industries, Australia 

Albumin, bovine serum (BSA) Sigma Chemical Co., U.S.A 

Ammonium hydroxide BDH Chemicals, Australia 

Ampicillin CSL Ltd., Australia 

Balances: 

- Analytical balance 

- Balance (0.1-500g) 

 

Sartorius Gottingen, Germany 

U-Lab, Australia 

Benzamidine Sigma Chemical Co., U.S.A 

5-bromo-4-chloro-3-indoyl-b-D-

galactopyranoside (X-gal) 

Diagnostic Chemicals Ltd., Australia 

Bromophenol blue BDH Chemicals, Australia 

Centrifuges 

      -  Eppendorf centrifuge 

      -  Bench top centrifuge 

      -  High speed centrifuge 

      -  Ultra centrifuge 

 

Eppendorf Geratebau, Germany 

Centaur 2, MSE 

Beckman, U.S.A 

Beckman, U.S.A 

Centrifuge tubes 

      -  1.5 ml centrifuge Eppendorf  tubes 

      -  10 ml centrifuge tubes 

      -  50 ml centrifuge tubes       

 

Treff AG, Switzerland 

Sarstedt, Australia 

Greiner Labortechnik, Germany 

Chloroform Ajax Chemicals, Australia 

4-Chloro-1-napthol Sigma-Aldrich Pty. Ltd., U.S.A 

Cover slips Mediglass, Australia 

Cryovials (1.8 ml) Nalgene, U.S.A 
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DIG DNA Labelling and Detection Kit Boehringer Mannheim, Germany 

DNA Ligase (T4) and Ligase buffer Boehringer Mannheim, Germany 

DNA Polymerase (AmpliTaq) Perkin Elmer, U.S.A 

Deoxynucleoside triphosphates (dNTP’s) 

(10mM) 

Boehringer Mannheim, Germany 

Electrophoresis Power Supply: 

   -  EPS 500/400 

   -  EPS 3000xi 

   -  EPS 600 

 

Pharmacia LKIB, Sweden 

Biorad Laboratories, U.S.A 

Pharmacia LKIB, Sweden 

Electrophoresis Units: 

   -  DNA 

    (i)    Mini gel (GNA-100) 

    (ii)   Midi-gel (wide mini-sub cell GT)  

    (iii)  Maxi-gel (GNA-200) 

 

   -  Protein 

      (i)  Mini Protean III gel system 

      (ii) Maxi Protean gel system     

 

 

Pharmacia LKIB, Sweden 

Biorad Laboratories, U.S.A 

Pharmacia LKIB, Sweden 

 

 

Biorad Laboratories, U.S.A 

Biorad Laboratories, U.S.A 

Electroporation apparatus  Biorad, U.S.A 

Ethanol BDH Chemicals, U.K 

Ethidium Bromide (EtBr) Boehringer Mannheim, Germany 

Ethylenediamine tetra acetic acid, 

disodium salt (EDTA) 

BDHChemicals, Australia 

Filter (acrodisc 0.2 mm, 0.45 mm) Gelman Sciences, U.S.A 

Fluorescent Microscopy Unit 

   -   Camera 

   -   Microscope 

   -   Burner unit 

   -   Control unit 

 

Panasonic CCTV (WV-BP332E) 

Olympus EX5IWI 

Olympus U-RFL-T 

Olympus TH4-200 

Gel Documentation UV transilluminator  Gel DocumentationTM, Biorad, Australia 

Glycerol BDH Chemicals, U.K 

HEPES buffer Cytosystems Pty. Ltd., Australia 

Hexadecyltrimethyl ammonium bromide Sigma-Aldrich Pty. Ltd., U.S.A 
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(CTAB)  

Hydrochloric acid (32%) Ajax Chemicals Ltd., Australia 

Imidazole Sigma Chemical Co., U.S.A 

Isoamyl alcohol BDH Chemicals, Australia 

Isopropanol  Ajax Chemicals Ltd., Australia 

Isopropyl-thiogalactoside (IPTG) Sigma Chemical Co.., U.S.A 

Lambda DNA Pharmacia LKIB, Sweden 

Leupeptin Sigma Chemical Co., U.S.A 

Lysozyme Boehringer Mannheim, Germany 

Magnesium chloride BDH Chemicals, U.K 

2- Mercaptoethanol (β-mercaptoethanol) Biorad, U.S.A 

Methanol BDH Chemicals, U.K 

Microscopes 

       -  Light microscope 

       -  Transmission electron microscope   

           EM100SX-1 

 

Olympus Optical Co., Japan 

Jeol Ltd., Japan 

Microscope slides LOMB Scientific Co., Australia 

Molecular weight markers (protein) 

       -   Prestained 

       -   Unstained 

 

SeeBlue®, Invitrogen, U.S.A 

Fermentas Life Sciences, U.S.A 

Needle (19g, 21g, 26g) Terumo Pty. Ltd., Australia 

Nitrocellulose membrane (Hybond-N) Amersham U.S.A 

Orbital shaker  Chiltern orbital shaker SS60 

Paraffin BDH Chemicals, Australia 

Petri Dish Nunc, Denmark 

pH Meter Radiometer, Denmark 

Phenol/Chloroform BDH Chemicals, Australia 

Phosphate Buffered Saline (PBS) Oxoid Ltd., U.K 

Potassium Acetate BDH Chemicals, Australia 

Potassium dihydrogen orthophosphate BDH Chemicals, Australia 

Proteinase K Sigma Chemical Co.., U.S.A 

QIAEX II Gel Extraction Kit Qiagen, Clifton Hill, Victoria 
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Restriction enzymes New England, Australia 

Pharmacia, Australia  

Promega, Australia 

RNase Boehringer Mannheim, Germany 

Skim milk Bonlac Foods Ltd., Australia 

Sodium Acetate BDH Chemicals, U.K 

Sodium chloride BDH Chemicals, U.K 

Sodium Dodecyl Sulphate (SDS) BDH Chemicals, U.K 

di-Sodium hydrogen orthophosphate 

(anhydrous) 

BDH Chemicals, Australia 

Sodium chloride (pellets) BDH Chemicals, U.K 

Sodium phosphate Mallinckrodt Inc., U.S.A 

Sonicator Branson Sonic Power Co., U.S.A 

Sucrose BDH Chemicals, U.K 

Syringe (1ml, 5ml, 10ml, 20ml, 50ml) Terumo Pty, Ltd., Australia 

3,3',5,5'- tetramethylbenzidine (TMB) BD Biosciences, U.S.A 

N’,N’,N’,N’- tetramethylethylenediamine 

(TEMED) 

Biorad Laboratories, U.S.A 

Trans-blot electrophoretic transfer cell Biorad Laboratories, U.S.A 

Transilluminator (UV) Novex Australia Pty. Ltd. 

(hydroxymethyl) aminomethane (Tris) Boehringer Mannheim, Germany 

Triton –X-114 Sigma-Aldrich Pty. Ltd., U.S.A 

Tryptone  Oxoid Ltd., U.K 

Tween 20 Sigma Chemical Co., U.S.A 

Waterbath  

 

Ratek Instruments (U-Lab, Melbourne, 

Australia) 

Whatman blotting paper Whatman, U.K 

Wizard PCR DNA Purification Kit Promega, U.S.A 

Yeast Extract Oxoid Ltd., U.K 
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2.1.2 Bacteriological Media 

 

All media were prepared according to the manufacturers directions unless noted in the text.  

 

Buffered Charcoal Yeast Extract (BCYE-α) Agar: 10 ml of warm (50°C) sterile distilled 

water was aseptically added to one vial of Legionella BCYE Growth Supplement (Oxoid 

Ltd, U.K). The vial contents was gently mixed and added to 90 ml of sterile Legionella CYE 

Agar base (Oxoid Ltd, U.K), cooled to 50°C. The mixture was then poured into sterile Petri 

dishes. 

 

Buffered Yeast Extract Broth (BYE) broth: This method was based on that of Ristroph et 

al (1980). The contents of one vial of Legionella BCYE Growth Supplement (Oxoid Ltd, 

U.K) was reconstituted with 50 ml of warm (50°C) sterile distilled water. The vial contents 

was gently mixed and added to 450 ml of warm (50°C) sterile distilled water. 5 g of yeast 

extract was then added to the mixture. The broth was then filter sterilised through a 0.45 μm 

filter (Gelman Sciences, U.S.A), and the pH was adjusted to 6.9. 

 

Glycerol freezing medium: 50 % (v/v) glycerol (DBH), 50 % (v/v) HIB (Difco). 

 

Luria agar (LBA): 1% (w/v) yeast extract (Oxoid Ltd, U.K), 0.5% (w/v), tryptone (Oxoid 

Ltd., U.K), 0.5% (w/v) sodium chloride (NaCl; May & Baker Australia (M&B) and 1% 

(w/v) bacteriological agar (Oxoid Ltd., U.K). 

 

Luria broth (LBB): 1% (w/v) yeast extract (Oxoid Ltd, U.K), 0.5 % (w/v), tryptone (Oxoid 

Ltd., U.K), 0.5% (w/v) sodium chloride (NaCl; May & Baker Australia (M&B)). 

 

SOC broth (SOC): 2% (w/v) tryptone (Oxoid), 1% (w/v) yeast extract (Oxoid), 

10 mM NaCl (M&B), 2.5 mM potassium chloride (KCl) (British Drug House (BDH), 

Australia), 10 mM MgCl2 (BDH), 10 mM magnesium sulphate (MgSO4) (BDH) and 20 mM 

glucose (BDH). 

 

X-Gal/IPTG agar: Solidified sterile LA supplemented by spreading on agar plates. 5-

bromo-4-chloro-3-indoyl-β-D-galactose (X-gal) (Diagnostic Chemicals Limited (DCL), 
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Australia) and isopropyl-β-D-thiogalactopyranoside (ITPG) (DCL) added to a final 

concentration of 32 μg/ml. LA plates containing appropriate antibiotics were also 

supplemented with X-gal and ITPG in the same manner. 

 

2.1.3 Solutions 

 

Acetic acid, glacial: 5%, 80%, 100% glacial (BDH). 

 

Acrylamide/bisacrylamide solution: A 29.2% (w/v) acrylamide and 0.8% (w/v) 

bisacrylamide. 

 

Agarose: 1% DNA grade agarose (Progen) in 1×TAE buffer. 

 

Ammonium acetate: 10 M ammonium acetate (NH4Ac) (BDH). 

 

Ammonium persulphate (APS): 10% (w/v) ammonium persulphate (Bio-Rad) in distilled 

water and freshly prepared before use. 

 

Bovine serum albumin fraction V (BSA): 1 mg/ml in Milli-Q water, stored at –20°C 

(Sigma). 

 

Bromophenol blue: 1% (w/v) in Milli-Q water, stored at RT (Sigma). 

 

Butanol: 99.5% Butan-1-ol (BDH). 

 

Cell lysate buffer (for the preparation of whole cell lysates): 0.1 M Tris-base (BM), 2% 

(w/v) SDS (BDH), 15% (v/v) glycerol (BDH) and 2 mM PMSF (Sigma), pH 6.8. 

 

Chloroform: 100% (v/v) chloroform (BDH). 

 

4-chloro-1-napthol: 3 mg/ml 4-chloro-1-napthol (Sigma) in methanol, freshly prepared 

before use. 

 



Chapter II – Materials and Methods 

64  

CI: 96% (v/v) chloroform, 4% (v/v) isoamyl alcohol (BDH). 

 

Coomassie blue stain: 0.05% (w/v) Coomassie brilliant blue R-250 (Biorad), 50% (v/v) 

methanol (BDH), 10% (v/v) glacial acetic acid. 

 

CTAB/NaCl: 4.1 g of NaCl were dissolved in 80 ml of H20 and 10 g of CTAB were added 

while heating at 65°C (Sigma). 

 

Destain solution (for Coomassie blue stain): 40 % (v/v) ethanol (BDH) and 5 % glacial 

acetic acid (BDH). 

 

DNA denaturation solution: 0.5 M NaOH, 1.5 M NaCl in Milli-Q® water. 

 

EDTA solution: pH 8.5, 1 mM, 0.25 M and 0.5 M EDTA (BDH) in Milli-Q® water. 

 

Ethanol: 70%, 95%, 100 % ethanol (BDH) in Milli-Q® water. 

 

Ethidium bromide (EtBr): 10 mg/ml EtBr (BDH) in Milli-Q® water. 

 

Gel-buffer: 3.0 M Tris, 0.3% SDS, pH 8.45 in Milli-Q® water. 

 

Glycerol: 50 % (v/v) glycerol (BDH) in Milli-Q® water. 

 

Iso-Propanol: 99.5 % Propan-2-ol (BDH). 

 

IPTG: 2 g IPTG (Sigma) in 10 ml H2O, filter-sterilised, dispensed into 1 ml aliquots and 

stored at –20°C, used at a final concentration of 100 mM. 

 

KOAc: 60 ml 5M KOAc, 11.5 ml HOAc, 28.5 ml H2O. 

 

Laemmli sample mix: 1.25 ml 2M Tris-HCl, pH 6.8, 8 ml 10% SDS, 4 ml 100% glycerol, 

2 ml β-mercaptoethanol, 0.16 ml 0.5% bromophenol blue, made up to 30 ml with water  
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Lowry reagent A: 4% CuSO4⋅5H2O in Milli-Q® water, stored at RT. 

 

Lowry reagent B: 2% Na2CO3, 4% NaOH, 0.16% sodium tartrate, 1% SDS, stored at RT. 

 

Lowry reagent D: folin-ciocalteau (BDH) reagent was mixed 1:1 with distilled water, 

freshly prepared before use. 

 

Methanol: 100% (BDH). 

 

PCI: 50% saturated phenol, 48% chloroform, 2% isoamylalcohol (BDH)  

 

Phenol: Phenol saturated with TE buffer, pH 8.0 (BDH). 

 

Phosphate-Buffered Saline (PBS): PBS solution was prepared by dissolving 1 PBS tablet 

(Oxoid) in 100 ml Milli-Q® water. 

 

SDS: 10% (w/v) SDS (BDH). 

 

SDS-PAGE Reservoir buffer stock (10x): 0.25M Tris-HCl, 1.92M glycine (Sigma), 1% 

(w/v) SDS, adjusted to pH 8.3. This solution was stored at 4oC. 

 

SDS-PAGE Resolving gel (12.5%): 3.125 ml 40% (w/v) acrylamide-bisacrylamide 29:1 

solution (Amresco), 1.25 ml of 8x resolving gel buffer stock, 100 μl 10% (w/v) SDS, 5.025 

ml MilliQ® H2O. Just before pouring, 500 μl 1.5% (w/v) ammonium persulphate (Biorad) 

and 15 μl N,N,N',N'-tetramethylethylenediamine (TEMED) (Biorad) was added to the 

mixture. 

 

Resolving gel buffer stock (8x): 3.0M Tris-HCl pH 8.8. This solution was stored at 4oC. 

 
SDS-PAGE Stacking gel (3.75%): 375 μL 40% (w/v) acrylamide-bisacrylamide 29:1 

solution, 1ml of 4x stacking gel buffer stock, 40μL 10% (w/v) SDS, 2.385 ml MilliQ® H2O. 

Just before pouring add 200 μL 1.5% (w/v) ammonium persulphate and 10 μL TEMED. 
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Stacking gel buffer stock (4x): 0.5M Tris-HCl pH 6.8. This solution was stored at 4oC. 
 

Sodium hydroxide: 10 M, 0.1 M NaOH (BDH). 

 

Solution I (for plasmid isolation): 50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl, pH 

8.0, 4 mg/ml lysozyme. 

 

Solution II (for plasmid isolation): 1% (w/v) SDS and 0.2 M NaOH, freshly prepared. 

 

Solution III (for plasmid isolation): 3 M KOAc (295 g/L) (BDH), 2 M HOAc (115 ml 

glacial acetic acid/L) (BDH). 

 

Stop solution (loading dye) 10×: 10% Ficoll (BDH), 50% glycerol, 0.5% orange G, 

1% SDS, 10 mM EDTA, 50 mM Tris/HCl (pH 8.0). 

 

TAE buffer: TAE buffer was made up as a 50× stock and diluted to 1× before use. For 

preparation of 50× TAE stock: 24.2% (w/v) Tris-base (BM), 55.17% (v/v) glacial acetic acid 

(BDH) and 1.86% (w/v) EDTA (BDH) were dissolved in Milli-Q® water. 

 

TE buffer: 10 mM Tris-base (BM), 1 mM EDTA (BDH), pH 8.0. 

 

TE/RNase buffer: 20 μg/ml pancreatic ribonuclease (RNase) in TE buffer, was boiled for 

10 min and left to cool slowly. 

 

TEG: 25 mM Tris/HCl pH 8.0, 10 mM EDTA, 50 mM glucose was sterilized by 

autoclaving. 

 

Western Transfer buffer: 12 mM Tris, 192 mM glycine, 10% (v/v) methanol. 

 

2.1.4 Antibiotic stocks 

 
Ampicillin: 500 mg/vial (Centrafarm) was dissolved in 5 ml sterile water to give a 100 

mg/ml stock solution. Stored at –20oC. 
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Kanamycin: Kanamycin (Sigma) was made up as a stock solution of 100 mg/ml in sterile 

water, and was stored at –20oC. 

 

2.1.5 Enzyme stocks 

 
Lysozyme: 4 mg/ml was made freshly before use (Roche). 

 

Pfu DNA polymerase: 3 U/µl (Promega). 

 

Proteinase K: 10 mg/ml stock solution, stored at –20°C (BM). 

 

Restriction enzymes: all restriction enzymes used were purchased from Promega (Sydney, 

Australia), New England (Queensland, Australia), Pharmacia (Sydney, Australia), and were 

used as recommended by the manufacturer. 

 

DNase (RNase-free): RQ1 RNase-free DNase with 10× buffer (Promega). 

 

T4 ligase: 1 U/μL, stored at –20°C (BM). 

 

Taq DNA polymerase: 5 U/μL AmpliTaq (Perkin Elmer). 

 

2.2 General Methods 

 

2.2.1 Bacterial methods 

2.2.1.1 Bacterial strains and plasmids 

 
All bacterial strains and plasmids used in this study are listed in individual chapters of this 

thesis. 
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2.2.1.2 Bacterial culture conditions 

 

Legionella strains were routinely grown under aerobic conditions on BCYEα agar (Oxoid) 

for 48 hr at 37ºC. E. coli was grown in LB broth or agar at 37ºC overnight.  

2.2.1.3 Storage of bacterial strains 

 
Legionella strains were stored at –70ºC in cryovials (Nalgene, U.S.A) containing glycerol 

freezing medium for long-term storage. Other bacterial strains were stored at 4oC on 

appropriate media, supplemented with the appropriate antibiotics where required, for short-

term storage. 

 

2.2.2 Methods for protein analysis 

2.2.2.1 Preparation of whole cell lysates 

 
Bacterial cells were harvested in 3.0 ml of 10 mM Tris-HCl (pH 7.0). The cell suspension 

was centrifuged at 5,000 × g for 5 min at RT and the bacterial pellet washed by resuspending 

in 3 ml of 10 mM Tris-HCl (pH 7.0) followed by centrifugation as above. The bacterial 

pellet was resuspended in 0.5 ml of cell lysate buffer and boiled for 5 min. Cell debris was 

removed by centrifugation at 10,000 × g for 2 min, and the supernatant was transferred to a 

new microfuge tube for protein determination and further use. All whole cell lysate samples 

were stored at –20ºC. 

 

2.2.2.2 Determination of protein content (Lowry assay) 

 

The protein content of samples was determined by a modification of the Lowry method as 

described by Markwell et al (1978).  Eppendorf tubes were set up for both control samples 

and test samples. The set-up followed for control samples is shown in Table 2.1. 
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Table 2.1.  Test tube set-up for the Lowry assay 

Tube No 1 2 3 4 5 6 7 8 9 10 

Standard 
Albumin 

(1 mg/ml) (μl) 
0 10 20 30 40 50 70 100 0 0 

Cell lysate (μl) 0 0 0 0 0 0 0 0 10 10 

Milli-Q water (μl) 200 190 180 170 160 150 130 100 190 190
 

Six hundred μl of alkaline copper reagent (50 ml of 2% Na2CO3 , 0.4% NaOH, 0.16% 

sodium potassium tartrate and 1% SDS, mixed with 5 ml of 4% CuSO4.5H2O) was added  

each tube and these were allowed to stand at room temperature for 20 minutes. Sixty μl of 

Folin reagent (Folin-Ciocalteau reagent mixed at a 1:1 ratio with distilled H2O) was added to 

each tube, the tube was then rapidly mixed and allowed to stand for 30 minutes. Two 

hundred μl from each tube was then aliquoted into a 96 well microtitre tray and the tray was 

read on an ELISA reader at 600nm. The ELISA reader then determined the concentration of 

unknown samples through the development of a standard curve, consisting of the absorbance 

versus protein content (μg). 

2.2.2.3 Preparation of glycine SDS-PAGE gels  

 
Glycine SDS-PAGE was performed using a continuous buffer system (Laemmli, 1970). 

Electrophoresis was conducted at 180 V in a Mini or Maxi Protein system in an 

electrophoresis tank (Bio-Rad) for 8-10 hr under denaturing or reducing conditions. Two 

gels were run simultaneously in this system. The composition of the maxi and mini stacking 

gel and resolving gels are given in Table 2.2 and Table 2.3. One of the gels was used for 

transfer onto nitrocellulose membrane for immunoblotting analyses and the other gel was 

stained by Coomassie blue staining. Staining was performed for 1 hr, followed by destaining 

with several changes of destain solution. 
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 Table 2.2  The composition of two maxi SDS-PAGE gels. 

Gel components 4%  

stacking gels 

(ml) 

12.5%  

resolving gels 

(ml) 

40 %(w/v) acrylamide  1.6 15.6 

3 M Tris-HCl + 0.3 % SDS, 

pH 8.45 

3.0 16.5 

100 % glycerol - 5.2 

Deionised water 7.4 12.7 

10 % APS 0.1 0.2 

TEMED 0.01 0.02 

Total volume 12 ml 50 ml 

 

 

 

 Table 2.3   The composition of two mini SDS-PAGE gels. 

Gel components 4 % 

stacking gels 

(ml) 

12.5 % 

resolving gels 

(ml) 

40 %(w/v) acrylamide 0.6 3.125 

3 M Tris-HCl + 0.3 % 

SDS, pH 8.45 

1.5 3.3 

100 % glycerol - 1.04 

Deionised water 3.7 2.5 

10 % APS 0.05 0.05 

TEMED 0.005  0.005 

Total volume 6.3 ml 10 ml 

 

2.2.2.4 Electrophoretic transfer 

 
The protein bands from SDS-PAGE gels were transferred onto a nitrocellulose membrane as 

described by Towbin et al (1992). The separating gel was removed and soaked in transfer 
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buffer to equilibrate for 5-10 min. A piece of nitrocellulose membrane, eight pieces of 3M 

Whatman paper and scotch brite pads were also soaked in transfer buffer for 5 min. The 

transfer cassette was made in the following order: 1 soaked scotch brite pad, 4 sheets of 

Whatman 3M paper, polyacrylamide gel, membrane, 4 soaked sheets of filter paper and then 

scotch brite pad on the back section of the cassette. The cassette was closed and submerged 

in a transblot tank with the membrane on the anode side of the gel. The electrophoretic 

transfer was done at constant voltage of 70 V for 2 hr. 

2.2.2.5 Immunoblotting 

 
Immunoblotting was performed by the method described by Maniatis et al (1982). After 

electrophoretic transfer, the region of nitrocellulose membrane surrounding the bound 

protein was blocked by incubation with 5 % skim milk in tris-buffered saline/Tween20 

(TST) for 1-2 hr on a rotary shaker at RT. The skim milk solution was removed and the 

membrane washed once by gentle shaking in TST for 5 min. The membrane was then 

incubated with diluted primary antiserum (see individual chapters for details) overnight at    

4 °C or 1 hr at RT on a rotary shaker. The membrane was then washed 3 times in TST buffer 

for 2-3 min. Secondary antibody, conjugated with horseradish peroxidase (HRP) 

immunoglobulin (Biorad) was then used, diluted in TST containing 1 % skim milk (see 

individual chapters for details). The bound peroxidase was visualised with 4-chloro-1-

napthol. The SeeBlue TM Plus2 Pre-Stain standard (Invitrogen) was used as a molecular 

weight marker (Appendix 1). 

 

2.2.3 DNA molecular techniques 

2.2.3.1 Agarose gel electrophoresis for DNA size determination 

 
Before electrophoresis, a 1/10 volume of 10 x loading dye was added to each DNA sample. 

DNA sizes were determined by running each sample against λ DNA standards prepared by 

PstI restriction enzyme digestion, on a horizontal 1-2 % (w/v) agarose (Progen, Aust.) slab 

gel (made up with 1x TAE buffer) in either midi (Pharmacia, Aust.) or mini (Bio-Rad) gel 

tanks.  The DNA fragments were electrophoretically separated at 80 V for 2 hr. DNA size 

fragments generated by PstI restriction enzyme digestion were: 11.5, 5.1+4.7+4.5, 2.8, 
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2.6+2.5+2.4, 2.14, 1.99, 1.70, 1.16, 1.09, 0.80, 0.51, 0.47, 0.45, 0.34, 0.264, 0.247, 

0.216+0.211 kbp (Appendix 2). 

 

Following electrophoresis the gel was stained in an EtBr-bath (0.5 μg/ml) for 5 minutes and 

destained in tap water for at least 30 minutes. The DNA fragments were then visualized 

using a Gel doc UV-transilluminator (Gel docTM, Biorad, U.S.A). 

 

2.2.3.2 Quantification of DNA concentration 

 
For plasmid DNA, DNA concentrations were estimated by comparison of sample DNA 

against the λ PstI digested MW marker (50 μg/ml). 

  

For quantitating the amount of the DNA, a reading from the spectrophotometer (Shimadzu 

UV160 Visible Recording spectrophotometer) was taken at wavelengths 260 nm and 280 

nm. 1 ml of diluted DNA sample (1/100 dilution) was used to determine the concentration of 

DNA. An OD of 1 corresponded to 40 μg/ml for chromosomal DNA. Furthermore, the purity 

was determined by the ratio OD260 /OD280 > 1.8 for clean DNA, and 1.5 for 50 % protein. 

 

2.2.3.3 Plasmid DNA extraction (mini-prep)  

 
Plasmid DNA was isolated from the host bacteria using the mini-prep procedure of Ausubel 

et al (1995). Two ml of media was inoculated and grown at 37oC overnight. 1.5 ml bacterial 

culture was transferred to a 1.5 ml eppendorf tube (Sarstedt 1.5 ml micro-tube), centrifuged 

for 2 min at 5,400 x g, the pellet was then resuspended in 100 μl TEG/lysozyme and 

vortexed. The tubes were left at RT for 5 min and 200 μl freshly prepared 0.2 M 

NaOH/0.1 % SDS solution was added to the tube and mixed. The tubes were left on ice for 

5 min and 150 μl of 3 M cold potassium acetate (KOAc) was added and left on ice for 

another 5 min. Tubes were centrifuged and the supernatant transferred to clean eppendorf 

tubes. Fifty microliters of P/C/I was added to each tube, mixed and pelleted. This step was 

repeated with C/I instead of P/C/I. The supernatant was then transferred to a clean eppendorf 

tube and 900 μl 98% analytical ethanol was added to the tube and held at RT for 5 min. The 

tube was centrifuged for 5 min at 5,400 x g and the DNA pellet was washed with 1 ml 70% 
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ethanol. The tube was centrifuged again and the pellet air-dried. Plasmid DNA was finally 

resuspended in 30 μl Milli-Q® water with RNase and kept at -20°C. 

 

2.2.3.4 Chromosomal DNA preparation 

 
DNA was isolated from pure cultures by the CTAB procedure (Ausubel et al., 1995). 

Briefly, one lawn plate of bacterial cells was grown overnight, harvested in 9.4 ml TE buffer 

and 0.1 ml 0.5 M EDTA and lysed with 0.5 ml 10 % (w/v) SDS. Proteinase K was added to a 

final concentration of 0.1 mg/ml and the mixture incubated at 37ºC for 2 hr. Then 1.8 ml 5 M 

NaCl and 1.5 ml 10% (w/v) CTAB in 0.7 M NaCl was added and the mixture incubated for 

30 min at 65ºC. Five microliters of 24:1 chloroform/isoamyl alcohol was added and the 

mixture centrifuged for 10 min at 4ºC. The aqueous layer was removed and 5 ml of 25:24:1 

phenol/chloroform/isoamyl alcohol was added. The aqueous layer was removed after 

centrifugation. The DNA was precipitated with 0.6 volume isopropanol and dissolved in 

water.  

2.2.3.5 DNA ligation 

 
Ligations were performed in the ratio of 1 vector molecule to 2 insert molecules, and 1 

vector molecule to 4 insert molecules, with 10 U of T4 DNA Ligase and T4 DNA Ligase 

buffer. The reaction mix was made up to 20 μl with sterile Milli-Q® water and incubated at 

16ºC overnight. The mixture was then used for transformation of E. coli DH5α cells, unless 

otherwise stated.  

 

2.2.3.6  Phosphatase treatment of vectors 

 

Plasmids were alkaline phosphatase treated by incubating 1 μg of restriction digested 

plasmid DNA with 0.05 U of calf-intestinal phosphatase in the appropriate buffer for 1 hour. 

The reaction was stopped by adding 0.5M EDTA and heat inactivating the enzyme at 65°C 

for 15 minutes. 
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2.2.3.7 Preparation of Competent cells  

 
E. coli strains were grown overnight in 2 ml LBB in a shaking 37oC incubator. The fresh 

overnight culture was used to inoculate 200 ml LBB in a 500 ml flask which was then 

incubated for 3 h at 37oC with vigorous shaking. The culture was chilled for 30 min on ice 

before centrifugation in 50 ml tubes for 15 min at 3,400 x g at 4oC. The supernatant was 

discarded and the pellet resuspended in 50 ml sterile de-ionised H2O and re-centrifuged. 

After discarding the supernatant, the pellet was resuspended in 25 ml sterile de-ionised H2O 

and centrifuged again. The pellet was resuspended in 1 ml 10% (v/v) glycerol and 

centrifuged again. After resuspending in 0.75 ml 10% (v/v) glycerol, the pellet was stored at 

-70oC in aliquots of 85 μl.  

 

2.2.3.8 Electrotransformation 

 
Forty μl of competent cell suspension was mixed with DNA in a cold 1.5 ml polypropylene 

tube and stored on ice for 1 min before transferring to a cold 0.1 cm electroporation cuvette. 

The Gene Pulser apparatus (Bio-Rad) was set at 25 μF and 1.25 kV with the Pulser 

Controller set at 200 Ω. The mixture was pulsed once at these settings and immediately after 

pulsing 1 ml of SOC was added. The mixture was then transferred to a 1.5 ml polypropylene 

tube and incubated at 37ºC for 1 hr. A 100 μl volume of this suspension was plated out on 

agar plates containing selective antibiotics. 

 

2.2.3.9 Polymerase Chain Reaction (PCR) 

 
PCR was performed either by using isolated DNA or bacterial cells. PCR on fresh bacterial 

cells was performed by the following: fresh colonies grown on agar plates were picked up 

with sterile toothpicks. The toothpick was then put into a 50 μl PCR reaction mix (1 x 

reaction buffer, 15 μM MgSO4, 2.5 U Taq DNA polymerase, 200 ng forward and reverse 

primer) and ground on the wall of the PCR tube for 2 seconds. Then the bacterial cells on the 

toothpick were subcultured on an agar plate with appropriate antibiotic. The PCR reaction 

included an initial denaturation of DNA at 94ºC for 1 min and then 35 cycles of consecutive 



Chapter II – Materials and Methods 

75  

denaturation  (94ºC for 30 s), primer annealing (57ºC for 30 s), and chain extension (72ºC, 

and the duration is based on a rate of 1 kbp/min,). The final elongation step was 10 min at 

72ºC. Other PCR polymerases and reaction profiles are given in individual chapters. 

 

2.2.3.10 Restriction enzyme digestions 

 
Restriction enzyme digestions were performed according to the manufacturer’s instructions. 

However, for every μg of DNA, 10 U or 20 U of restriction enzyme was used. Samples were 

incubated at 37ºC for 2 hours. 

 

2.2.3.11 Southern blot analysis 

 

2.2.3.11.1 Transfer of DNA to Nylon Membrane 

 

Five μg of genomic DNA was digested with the desired restriction enzyme and was 

subjected to agarose gel electrophoresis. The DNA gels were then soaked in denaturation 

solution (0.5 M NaOH, 1.5 M NaCl) for 30 minutes followed by neutralisation solution (1.5 

M NaCl, 0.5 M Tris-HCl, pH 7.0) for 30 minutes. The DNA was transferred to the nylon 

membrane by placing the membrane on top of the gel, followed by at least 4 sheets of 3M 

Whatman paper, approximately 30 sheets of paper towels, a glass plate and a 1 kg weight on 

top of the glass. The transfer was allowed to proceed overnight. The membrane was then 

washed once in 2 x SSC to remove any residual agarose from the membrane. The membrane 

was then air dried and wrapped in plastic sandwich wrap and placed on top of a UV 

transilluminator for 5 minutes to allow cross-linking of DNA to the membrane. 

 

2.2.3.11.2 Labelling of probes with Digoxigenin 

  

Labelling was performed using the DIG DNA Labelling and Detection kit (Roche Molecular 

Biochemicals). All procedures were carried out according to the manufacturer’s instructions 
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using digoxigenin (DIG) –dUTP as the label. The labelled DNA probe was denatured before 

it was added to the membranes by boiling for 5 minutes. 

 

2.2.3.11.3 DNA Hybridisation 

 

The membrane was incubated at 60°C for 3 hours in hybridisation solution. The denatured 

probe was added to the hybridisation solution and the membrane was incubated overnight at 

60°C. 

 

2.2.3.11.4 Development of membranes 

 

Membranes were washed twice in 2 x SSC containing 1 % SDS for 5 minutes at room 

temperature. This was followed by a wash in 2 x SSC plus 0.1 % SDS for 30 minutes at 

65°C. Then a final wash with 0.1 % SSC containing 0.1 % SDS at 65°C for 15 minutes was 

performed. Positive hybridisations with DIG-labelled probes were immunodetected by 

incubating membranes with anti-DIG AP-conjugated antibodies followed by the addition of 

the substrate NBT/BCIP. All procedures were carried out according to the manufacturer’s 

instructions. 

 

2.2.4 Transmission electron microscopy 

 

Bacteria were grown for 48 hours at 37°C and resuspended in 2% bovine serum albumin 

(BSA) in phosphate buffered saline (PBS). The bacteria were then incubated for 4 minutes 

on 200-mesh copper grids coated with formvar and stained in 2% tungstophosphoric acid 

(pH 6.8) for 2 minutes. Grids were examined using a Joel EM100SX-1 transmission electron 

microscope. 
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3. Introduction 

 
 
Legionella spp. continue to remain a health hazard worldwide, which are capable of causing 

debilitation and death in their unsuspecting hosts. As most of the victims of the disease are 

immunocompromised, there is an added urgency for the rapid diagnosis of the disease, so 

that the appropriate antibiotic treatment can be promptly administered.  

 

Current detection methods are becoming increasingly efficient at diagnosing Legionella 

infections, however, outbreaks of the disease continue to occur, and the lives of the elderly 

and immunocompromised who succumb to this disease continue to remain at risk. 

Prevention of Legionella outbreaks, by continuous biomonitoring of water sources, or 

vaccination of ‘at-risk’ groups, would therefore provide a promising solution to this on-going 

problem.   

 

The outer membrane provides bacterial cells with a semi-permeable and protective sheath, 

which surrounds the peptidoglycan capsule of the cell (Nikaido, 2003).  The medical 

importance of outer membrane proteins has long been recognised. They are usually surface 

exposed molecules, which, for intact bacteria, makes them ideal target antigens for immune 

responses or detection systems (Palmer, 2002). 

 

The identification of novel outer membrane proteins which can be used as therapeutic or 

diagnostic targets can often be a laborious and time consuming process, involving hours of 

laboratory-based experiments. Another more feasible approach, however, is the use of 

bioinformatics. Bioinformatics has become a powerful tool in the identification and analysis 

of DNA and proteins. Many computational programs are available today which perform a 

vast array of functions, such as sequence alignments, predictions of protein structures and 

function, and the determination of phylogenetic linkages. The development of highly 

complex statistical algorithms and computational models has drastically intensified their 

capacity to perform tasks which would once have taken days or weeks of calculations and 

analysis. 

Many bioinformatics programs share databases of information which contain thousands of 

DNA and protein sequences. These databases are the key to predicting gene and protein 
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functions and structures, as novel sequences can be compared to these annotated and 

characterised genes and proteins to determine their likely significance, homology or 

function. 

 

DNA sequence analysis is becoming an increasingly popular means for the identification of 

novel proteins, particularly when we consider that the DNA sequence of the genomes of 

many organisms, both prokaryotic and eukaryotic, are constantly being elucidated. Protein 

motifs, or domains, are short sequences of peptides which are unique to particular protein 

families, and can often provide a great deal of insight into the proteins structure and/or 

function. These motifs can be very useful for screening sequences, and for determining the 

family from which the novel protein or DNA sequence pertains. 

Outer membrane proteins are one group of proteins, for which many motifs have been 

established, and have become publicly available through bioinformatics databases. 
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3.1 Outline of this chapter 

 

The recently published Legionella pneumophila genome (Chien et al, 2004) will be screened 

for novel outer membrane proteins, through the use of bioinformatics programs. Any novel 

proteins found will then be analysed to determine which of these would possess potential for 

use as a diagnostic or vaccine target molecule. 

Conventional laboratory methods will also be performed simultaneously, in an attempt to 

identify novel proteins through laboratory proteomics, such as Sodium Dodecyl Sulphate 

Polyacrylamide Gel Electrophoresis (SDS-PAGE) and protein sequencing methods, such as 

matrix-assisted laser desorption/ionisation - time of flight mass spectrometry (MALDI-TOF 

MS). A comparison of methods used for outer membrane protein isolation from bacterial 

cells will also be performed. 
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3.2 Materials and Methods 

 

3.2.1 Screening of the Legionella pneumophila genome - Bioinformatics 

 

3.2.2 National Centre for Bioinformatics Information (NCBI) 

 

The National Centre for Bioinformatics Information (NCBI), found at 

http://www.ncbi.nlm.nih.gov/ was used for screening the Legionella pneumophila genome. 

Protein motifs were searched for in this genome using the BLAST feature of the program. 

 

3.2.2.1 Expert Protein Analysis System (ExPASy) and Prosite 

 

The Expert Protein Analysis System (ExPASy) program, found at http://www.expasy.org/ 

was used for finding bacterial outer membrane protein motifs. In particular, the protein 

families and domains database, Prosite, was used. The following terms were entered into the 

database: ‘bacterial outer membrane protein’, ‘membrane’, ‘bacterial surface antigen’, and 

bacterial membrane protein’. A list of protein motifs was then obtained. These motifs were 

then used to screen the L. pneumophila serogroup 1 Philadelphia 1 strain genome, using the 

NCBI database.  

 

3.2.2.2 European Bioinformatics Institute (EBI) : InterProScan and PFam    

 
The PFam database of the European Bioinformatics Institute (EBI), found at 

http://www.ebi.ac.uk/ was used to obtain outer membrane protein families or domains. The 

sequence of a representative protein from each of these families was then used for screening 

of the L. pneumophila genome, in an attempt to find additional L. pneumophila outer 

membrane proteins. The ‘Text Search’ feature was used, and various searches were carried 

out using different search queries. The search terms ‘surface antigen’, ‘outer membrane 

protein’, ‘surface exposed’, ‘surface antigen’ and ‘membrane’ were used. When a match was 

obtained with the L. pneumophila genome, the L. pneumophila protein sequence was then 

used to perform a BLAST analysis against the NCBI microbial genome database. 
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3.2.3 Transmission Electron Microscopy studies of L. pneumophila 

 

Transmission Electron Microscopy studies were performed on L. pneumophila AA100 cells 

(kindly provided by Prof. Yousef Abu Kwaik, from the University of Kentucky, Lexington, 

U.S.A). The method followed for the preparation of the TEM samples is detailed in Chapter 

2, Materials and methods. 

 

 

3.2.4 Outer membrane Protein Isolation – Comparison of methods 

 

In all of the following methods, the strain used for the extraction of outer membrane proteins 

was L. pneumophila serogroup 1 AA100. 

 

3.2.4.1 Ultracentrifugation 

 

This method was based on that of Butler et al (1985) for bacterial outer membrane 

extraction. Briefly, freshly grown cells of L. pneumophila AA100 were suspended in 5 ml of 

50 mM tris-HCl, pH 7.2, to an OD of 0.2. They were then centrifuged at 10,000 x g for 15 

min to pellet cells. Membranes were then disrupted by adding 2% N-lauroyl sarcosinate 

(Sarkosyl) in 50 mM tris-HCl, pH 7.2. Cells were then incubated for 1 hr at 37°C, followed 

by sonication (6 cycles x 15 sec) in an ice bath. Lysozyme (1mg/ml) was then added, and the 

solution was again incubated at 37°C for 1 hr. Unbroken cells were then removed by low 

speed centrifugation. Outer membranes were then pelleted by ultracentrifugation at 100,000 

x g for 30 min. They were then washed once in 2% Sarkosyl, and were finally suspended in 

solubilisation buffer, containing 2% SDS, 10% glycerol, 62.5 mM tris-HCl, 0.005% 

bromphenol blue, and 10% (vol/vol) 2-mercaptoethanol. 

 

3.2.4.2 Sucrose density gradient  

 

The protocol used was based on the method of Hindahl and Iglewski (1986) for the isolation 

of bacterial outer membranes. Briefly, 100 ml of overnight cultures of L. pneumophila 
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AA100 grown in BYE broth were harvested by centrifugation at 5000 x g for 15 min at 4°C. 

Cells were then washed twice in cold 10 mM N-2-hydroxyethylpiperazine-N'-2-

ethanesulfonic acid (HEPES) buffer, pH 7.4. DNase and RNase were added at a 

concentration of 50 μg/ml. The suspension was then sonicated on ice (6 x 15 sec) and whole 

cells were then removed by centrifugation at 1000 x g for 15 min. The supernatant was 

centrifuged at 250,000 x g for 1 hr. The pellet was then washed twice in cold HEPES buffer.  

The pellet was finally suspended in 1.5 ml of HEPES buffer, and 0.8 ml was loaded onto 

sucrose gradients consisting of 2 ml of 70% sucrose, 3 ml of 64% sucrose, 3 ml of 58% 

sucrose, 2 ml of 52% sucrose, and 1 ml of 46% sucrose. The gradient was then centrifuged at 

63,000 x g at 4°C for 18 hr. The recovered membranes were washed twice in HEPES buffer 

by again centrifuging at 250,000 x g for 1 hr. Membranes were then resuspended in 

solubilisation buffer (as described above in previous method). 

 

3.2.4.3 Sonication and Sarkosyl membrane disruption  

 

This method was adapted from that of Crosa and Hodges (1981). Briefly, L. pneumophila 

AA100 cells grown on BCYE-α plates were harvested in 3 ml of 10mM Tris buffer, 

containing 0.3% (w/v) NaCl (pH 8.0). The sample was then sonicated 3 x for 30 sec, 

followed by a centrifugation step at 10,000 x g for 2 min. The supernatant was collected and 

subjected to a further centrifugation step at 17,000 x g at 4°C for 1 hour. The cell envelope 

was then incubated at room temperature with 3% Sarkosyl in 10mM Tris-HCl for 20 min. 

The outer membrane proteins were then collected by centrifugation at 17,000 x g for 1 hour. 

 

3.2.4.4 Glycine-acid extraction 

 

This method was based on the method of Garvis et al (1996). Freshly grown L. pneumophila 

AA100 cells were pelleted by centrifugation at 6,000 x g for 10 min at 4°C. They were then 

washed twice with 10mM phosphate buffered saline (PBS), pH 7.0. Cells were then 

suspended in 0.2M glycine-HCl, pH 2.2 and the suspension was stirred at room temperature 

for 2 hours. Bacterial cells were then removed by centrifugation at 6,000 x g for 20 min. The 
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supernatant was removed and neutralised with NaOH, and then concentrated using a 

Centricon-3 (Amicon, Inc., Beverly, Massachusetts, U.S.A.). 

 

3.2.5 Outer membrane Protein Sequencing: Matrix Assisted Laser 

Desorption/Ionisation - Time of Flight Mass spectrometry (MALDI-TOF MS) 

 

Outer membrane proteins were separated by SDS-PAGE on a maxi size gel. The protein 

bands of interest were then excised using a clean scalpel. The gel slices were then transferred 

to eppendorf tubes which were later sealed with parafilm. The samples were sent to the 

Australian Proteome Analysis Facility (Macquarie University, North Ryde, NSW) for 

MALDI-TOF mass spectrometry. Here, the samples were subjected to a tryptic digestion, 

and MALDI-TOF analysis was performed on the samples using an Applied Biosystems 4700 

Proteomics Analyser with TOF/TOF optics in MS mode. 

Results from the sequencing analysis were returned as a Peptide Mass Fingerprint (PMF), 

and in an MS Spectral output.  The PMF data was then analysed using the Mascot feature of 

the MatrixScience program (www.MatrixScience.com; Matrix Science Ltd, London, U.K). 

The variable parameters for the analysis were used as indicated by the Australian Proteome 

Analysis Facility. These variable parameters used were as follows: 1) MS/MS Search; 2) 

Database: MSDB; 3) Taxonomy: Other proteobacteria; 4) Enzyme: Trypsin; 5) Max. missed 

cleavage: 1; 6) Variable modifications: Oxidation (M), Propionamide (C); 7) Monoisotopic; 

8) Peptide tolerance: +/- 50ppm; 9) Peptide charge: 1+; 10) Data format: Mascot generic; 11) 

MS/MS tolerance: +/- 0.8Da; 12) Instrument: MALDI-TOF-TOF. 

 

3.3 Results 

 

3.3.1 Screening of the L. pneumophila genome: Bioinformatics 

 

One hundred and twenty protein motifs were obtained from the searches of the Expasy 

(Prosite) bioinformatics program. These motifs are presented by the program as a consensus 

sequence, which is essentially the ‘backbone’ sequence of the motif. This sequence 

represents the order and combination of amino acids possible for any given motif. For each 

motif, there are therefore many possible combinations of amino acids which may be present 
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for different microbial species, within the same protein family. Based on the consensus 

sequence of the motif, all of the possible amino acids sequence combinations in the motif are 

determined by the Prosite program. All of these individual combinations were then used for 

the screening of the L. pneumophila genome. 

A significant proportion of the screened motifs were found to possess similarity to the         

L. pneumophila genome. The proteins containing these motifs were then subjected to a 

BLAST analysis against the entire collection of proteins contained in the collective NBCI 

databases. The matches obtained with the highest similarity (i.e. the lowest E value) are 

shown in Table 3.1. The E value of the matches represents the likelihood that the match is 

occurring by a chance event. The closer this value is to zero (i.e. the smaller the value) the 

higher the likelihood that the match is not purely a chance event. 
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Table 3. 1 - Protein motif matches with the L. pneumophila genome. The table shows: column 1) the protein family name 2) the consensus 

sequence for that protein family 3) the actual protein motif which matched the L. pneumophila genome 4) the NCBI accession number for the 

matching protein in the L. pneumophila genome 5) the motif position within the Legionella protein 6) the name and size of the matching 

Legionella protein 7) NCBI BLAST matches with the microbial genome database 8) the E value for each BLAST result. 

MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

5’ nucleotidase_2 
signature 

[FYP]-x(4)-[LIVM]-G-
N-H-E-F FDVGTVGNHEFD 

 
 

YP_096682.1 
 

(575 aa) 
 
 

134-143 

 
 

B. anthracis 
 

Ps. putida 
 

D. radiodurans 
 
 

5’ nucleotidase 

1 e-86 

 
6 e-53 

 

8 e-53 

 

AAA- Protein 
family signature 

[LIVMT]-x-[LIVMT]-
[LIVMF]-x-[GATMC]-
[ST]-[NS]-x(4)-[LIVM]-

D-X-A-[LIFA]-x -R 

VIVIATNRPD- 
 

VLDPALTR 

YP_096792.1 
 

(639 aa) 
292-313 

V. paraheamolyticus 
 

V. cholerae 
 

Shewanella 
oneidensis 

 
Cell Division protein 

(FtsH) 
 
 

0.0 
 

0.0 
 

0.0 
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MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

ABC-2 Type 

Transporter 

[LIMST]-x(2)-[LIMW]-

x(2)-[LIMCA]-[GSTC]-

x-[GSAIV]-x(6)-

[LIMGA]-[PGSNQ]-

x(9,12)-P-[LIMFT]-x-

[HRSY]-x(5)-[RQ] 

LTPLTYLGVVFY- 
SLTILPPFWQG 

YP_094431.1 
 

(257 aa) 
179-200 

 
Ps. syringae pv. 

syringae (B728a) 

 

Ps. syringae pv 
tomato str. (DC3000) 

 
Ps. putida (KT2440) 

 
 
 
 
 

ABC Transporter, 
permease protein 

 

 
 

3 e-76 
 

 

 

4 e-75 

 
 
 

3 e-74 

ATP synthase 

gamma subunit 

signature 

[IV]-T-x-E-X(2)-[DE]-

x(3)-G-A-x-[SAKR] ITQELLEVVGGAEA 
YP_096975.1 

 
(288aa) 

274-287 

Ps. aeruginosa  
(PAO1) 

 
Ps. putida (KT2440) 

 
Ps. syringae pv 

tomato str. (DC3000) 
 

 
 

ATP synthase gamma 
chain/subunit 

 
 

 
1 e-105 

 

 

 

7 e-104 

 

 

 

1 e-102 
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MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

ATP-binding 
cassette, ABC 

transporter-type, 
signature and 

profile 
 
 

[LIVMFYC]-[SA]-
[SAPGLVFYKQH]-G-

[DENQMW]-
[KRQASPCLIMFW]-

KRNQSTAVM]-
[KRACLVM]-

[LIVMFYPAN]-{PHY}-
[LIVMFW]-

[SAGCLIVP]-
{FYWHP}-{KRHP}-

[LIVMFYWSTA] 

LSGGQQQ- 
 

RVAIARAL 
YP_096916.1 151-165 

 
 
 
 

S. pneumoniae R6 
 
 
 

Nostoc sp. 
 
 
 
 
 

 
 

ABC transporter 
ATP-binding protein 

 
 
 

4 e-128 

 

 

 

4 e-121 

 

ABC Transporter 1 

[LIVMFYC]-[SA]-
SAPGLVFYKQH]-G-

[DENQMW]-
[KRQASPCLIMFW]-

[KRNQSTAVM]-
[KRACLVM]-

[LIVMFYPAN]-{PHY}-
LIVMFW]-

[SAGCLIVP]-
{FYWHP}-{KRHP}-

[LIVMFYWSTA] 

VSAGDFALILGLSM YP_095642 279-292 

S. mutans 
(UA159) 

 
 

V. parahaemolyticus 
(RIMD 2210633) 

 
 

Nostoc sp. 

ABC transporter, 
ATP binding protein 

 
2 e-66 

 

 
 

5 e-63 

 

 

 

 

6 e-63 
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MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

Alanine 
Dehydrogenase 

[LIVM](2)-G-[GA]-G-x-
A-G-x(2)-[SA]-(3)-

[GA]-x-[SG]-[LIVM]-G-
A-x-V-x(3)-D 

IIGGGQAGTNAAK-

IALGLGADVTILD 

 
 

YP_094958.1 
 

(373aa) 
 
 
 

 
173-198 

 
 
 

V. cholerae 

 
 
 

Alanine 
Dehydrogenase 

 
 
 
 

 
 
 
 

3 e-94 

 

 

 
 
 
 

Amino Acid 
Permeases 
Signature 

[STAGC]-G-[PAG]-
x(2,3)-

[LIVMFYWA](2)-x-
[LIVMFYW]-x-

[LIVMFWSTAGC](2)-
[STAGC]-x(3)-

[LIVMFYWT]-x-
[LIVMST]-x(3)-

[LIVMCTA]-[GA]-E-
x(5)-[PSAL] 

AGPIGAIAYILGGFLM- 

YIVMLCLGELAVAMP 

YP_095004.1 
 

(487aa) 
57-80 

B. Anthracis 
 
 

B. subtilis subsp. 
Subtilis str. 168 

 
 

Ps. putida KT 2440 

Amino Acid 
Permease 

 

4 e-81 

 

 

 

7 e-78 

 

 

 

2 e-73 
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MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

Bacterial Export 
FHIPEP family 

signature 

R-[LIVM]-[GSA]-E-V-
[GSA]-A-R-F-[STAIV]-
L-D-[GSA]-[LM]-P-G-

K-Q-M-[GSA]-I-D-
[GSA]-[DA] 

RISEVSARFTLDA- 
 

MPGKQMAIDAD 

YP_095811.1 
 

(692aa) 
141-164 

Ps. aeruginosa 
(PAO1) 

 
 

Ps. putida (KT2440) 
 
 

Ps. syringae pv. 
tomato str. (DC3000) 

 
 

Shewanella 
oneidensis MR-1 

 

Flagellar 
Biosynthesis Protein 

(FlhA) 
 

 
0.0 

 
 
 

0.0 
 
 
 

0.0 
 
 
 

0.0 
 

Bacterial type II 

secretion system 

protein D signature 

[GR]-[DEQKG]-
[STVM]-[LIVMA](3)-
[GA]-G-[LIVMFY]-

X(11)-[LIVM]-P-
[LIVMFYWGS]-

[LIVMF]-[GSAE]-x-
[LIVM]-P-

[LIVMFYW](2)-x(2)-
[LV]-F 

GDIVVLGGLIQDSIG- 
 

NDNNKLPILGDIPGIGRLF 

YP_095350.1 
 

(791aa) 
673-706 

 
Erwinia 

chrysanthemi 

 

 
 
 

B. pseudomallei 
 
 

Type II  protein 
secretion LspD 

 

2 e-51 
 
 
 
 

1 e-50 

Band 7 protein 

family signature 

R-x(2)-[LIV]-[SAN]-
x(6)-[LIV]-D-x(2)-T-

x(2)-W-G-[LIVT]-

RDSINSRIIRIVDEA- 
 

TNPWGIKVTRIEIR 

YP_096950.1 
 

(259aa) 
139-167 

Ralstonia  
solanacearum 

 

 
Stomatin-like protein 

 

1 e-95 
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MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

[KRH]-[LIV]-x-[KRA]-
[LIV]-E-[LIV]-[KRQ] 

C. burnetti (RSA493) 3 e-95 

CO II and nitrous 
oxide reductase 
dinuclear copper 
centers signature 
(Cytochrome c 

oxidase) 

V-x-H-x(33,40)-C-x(3)-
C-x(3)-H-x(2)-M (The 

two C’s and H’s are 
copper ligands) 

VHSWWVPEL- 

GVKRDAIPG 

 

YP_096891.1 
 

(401aa) 
194-211 

Shewanella 
oneidensis (MR-1) 

 
Ps. aeruginosa 

(PAO1) 
 

V. parahaemolyticus 
(RIMD2210663) 

Cytochrome c 
Oxidase, subunit II 

 

9 e-90 

 

 

5 e-85 

 

 

9 e-84 

Cyclophilin-type 
peptidyl-prolyl cis-

trans isomerase 
signature & profile 

[FY]-x(2)-[STCNLV]-x-
F-H-[RH]-LIVMN]-

[LIVM]-x(2)-F-[LIVM]-
x-Q-[AG]-G 

YNGLTFHRVIAGFMIG 
 

YP_095978.1 
 

(188aa) 
74-88 

Corynebacterium 
glutamicum (ATCC 

13032) 
 

M. leprae 
 

Streptomyces 
chrysomallus 

Peptidyl-prolyl cis-
trans isomerise 

 

2 e-46 

 

 

6 e-43 

 

 

3 e-42 

 
 

Cytochrome b/b6 
signatures 

 
 
 
 

[DENQ]-x(3)-G-
[FYWMQ]-x-[LIVMF]-

R-x(2)-H 
(H is a heme b562 

ligand) 

DINFGWLLRYMH 
 

YP_096709.1 
 

(404aa) 
76-87 

Ps. putida (KT2440) 
 
 

Shewanella 
oneidensis 

(MR-1) 
 

V. cholerae 

Cytochrome c 
reductase 

 

1 e-169 

 

 

2 e-159 

 

 

3 e-150 
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MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

 

D-isomer specific 

2-hydroxyacid 

dehydrogenases 

signature 

 

[LIVMFYWA]-
[LIVFYWC]-x(2)-
[SAC]-[DNQHR]-
[IVFA]-[LIVF]-x-

[LIVF]-[HNI]-x-P-x(4)-
[STN]-x(2)-[LIVMF]-x-

[GSDN] 

VGTVGVGRIGERVI 

RRLKPFDCKELLYD 

 

YP_094337.1 
 

(403aa) 
200-222 

Sinorhizobium 

meliloti 

 
Hyphomicrobium sp. 

(JC17) 

Pseudomonas sp. 
(101) 

NAD+ dependent 
formate 

dehydrogenase 
 

1 e-166 

 

 

3 e-166 

 

 

2 e-163 

 
Dihydroorotate 
Dehydrogenase 

signature 
 

[GS]-x(4)-[GK]-
[GSTA]-[LIVFSTA]-

[GST]-x(3)-[NQR]-x-G-
[NHY]-x(2)-P-[RT] 

FIEVGTVTDA- 

AQEGNPKPR 

YP_095847.1 
 

(388aa) 
130-148 

H. influenzae 
 

V. vulnificus 
(CMCP6) 

 
V. cholerae 

Dihydroorotate 
Dehydrogenase 

 

7 e-99 

 

3 e-97 

 
 

1 e-96 
 

FKBP-type 

peptidyl-prolyl cis-

trans isomerase 

 

[LIVMC]-x-[YF]-x-
[GVL]-x(1,2)-[LFT]-
x(2)-[G-x(3)-[DE]-
[STAEQK]-[STAN] 

LIDGTVFDST 
YP_094827.1 

 
(235aa) 

157-166 

L. pneumophila 

serogroup 8 

 
L. pneumophila 

serogroup 1 

Macrophage 
Infectivity Potentiator 

(MIP) 
 

2 e-128 

 

 

8 e-128 

Ferrochelatase 
signature 

[LIVMF](2)-x-[ST]-x-H-
[GS]-[LIVM]-P-x(4,5)-
[DENQKR]-x-G-[GP]-

x(1,2)-Y 

LLFSYHGIPER 
YP_094469.1 

 
(332aa) 

183-193 

C. burnetii 
 

Ps. syringae pv. 
Syringae (B728a) 

 
Ps. syringae pv. 

Tomato str. 
(DC3000) 

Ferrochelatase 
 

3 e-88 
 
 

9 e-68 

 

 

8 e-67 
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NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
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Position 
of Motif 
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Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

 
Flagellar motor 

protein MotA 

family signature 

 

A-[LMF]-x-[GAT]-T-
[LIVMF]-x-G-x-
[LIVMF]-x(7)-P 

AMVGTFLGILIAYGFISP 
YP_096327.1 

 
(301aa) 

205-222 

S. enterica subsp. 

enterica serovar 

Typhi 

 
Y. pestis (CO92) 

Motility Protein A 
 

 
2 e-87 

 

 

3 e-87 

 

Fumarate 

reductase/succinate  

dehydrogenase 

FAD-binding site 

R-[ST]-H-[ST]-x(2)-A-
x-G-G 

(H is the FAD binding 
site) 

RSHTVAAQGG 
YP_094573.1 

 
(589aa) 

43-52 

V. vulnificus 
(CMCP6) 

 
V. parahaemolyticus 

(RIMD2210633) 
 

S. typhimurium  

Succinate 
dehydrogenase 

 

4 e-171 

 
 

3 e-170 
 
 
 

4 e-170 
 
 
 

Guanylate cyclases 

signature and 

profile 

 
 

G-V-[LIVM]-x(0,1)-G-
x(5)-[FY]-x-[LIVM]-

[FYW]-[GS]-
[DNTHKW]-[DNT]-

[IV]-[DNTA]-x(5)-[DE] 

VWSNDVTLAN 
YP_095519.1 

 
(441aa) 

376-385 

Nostoc sp. 

(PCC7120) 
 
 

Leptospira 
interrogans serovar 

lai str. (56601) 
 

Anabaena sp. 

Adenylate cyclase 
 

5 e-44 

 

 

 

6 e-40 

 

 

 
7 e-38 
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MOTIF 
NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

Guanylate Kinase 
signature and 

profile 

T-[ST]-R-x(2)-[KR]-
x(2)-[DE]-x(2)-G-x(2)-

Y-x-[FY]-[LIVMK]. 

TTRPQRKQ- 
 

DANGEEYFFI 

YP_096026.1 
 

(209aa) 
41-58 

C. burnetii 
 
 

Ps. aeruginosa 
(PAO1) 

 
Buchnera aphidicola 

 

Guanylate kinase 
 

5 e-61 

 

 

2 e-56 

 

 
4 e-56 

 
Hexapeptide-repeat 

containing-
transferase 
signature 

 
 

[LIV]-[GAED]-x(2)-
[STAV]-x-[LIV]-x(3)-

[LIVAC]-x-[LIV]-
[GAED]-[STAVR]-x-
[LIV]-[GAED]-x(2)-

[STAV]-x-[LIV]-x(3)-
[LIV] 

IGSGAMIMPGIKIG- 
 

HGAVIGSRALVAKDV 

YP_094790.1 
 

(202aa) 
162-190 

Bacteroides fragilis 
 
 

Oceanobacillus 
iheyensis HTE831 

Acetyltransferase 
(Putative) 

 

1 e-28 

 

 

 

8 e-26 

 
HlyD family 

secretion proteins 
signature 

 
 

[LIVM]-x(2)-G-[LM]-
x(3)-[STGAV]-x-

[LIVMT]-x-[LIVMT]-
[GE]-[KR]-x-

[LIVMFYW](2)-x-
[LIVMFYW](3) 

IRPGMAVQVFV- 

RTGERSLLNYL 

YP_095546.1 
 

(378aa) 
342-363 

Ps. putida (KT2440) 
 

V. parahaemlolyticus 
 

Shewanella  
oneidensis MR-1 

HlyD family 
secretion protein 

 

2 e-76 

 

3 e-62 

 

 

6 e-62 

MraY family 
signatures 

(Phospho-N-
acetylmuramoyl-

pentapeptide-
transferase) 

[KRA]-x(2)-[TIVK]-P-
[ST]-[MGA]-[GA]-G-

[LIVSA]-x-[LIVMF](2) 
KKYTPTMGGLVIL 

YP_096622.1 
 

(372aa) 
79-91 

C. burnetii 
(RSA 493) 

 
Ps. putida KT2440 

 
Ps. aeruginosa 

 

 
Phospho-N-

acetylmuramoyl-
pentapeptide-

transferase 
 
 

8 e-145 

 

7 e-138 

 

6 e-137 
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CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
SIZE 

Position 
of Motif 
within 
Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

 
PEP- utilizing 

enzymes signatures 
 
 
 

G-[GA]-X-[stn]-x-
[STN]-x-H-[STA]-

[STAV]-[LIVM](2)-
[STAV]-[RG] 

(H is phosphorylated) 

GGKTSHAAVVAR 
YP_094840.1 

 
(795aa) 

417-428 

Ps. aueruginosa 
(PAO1) 

 
Ps. putida (KT2440) 

 
E. coli 0157:H7 

Phosphoenolpyruvate 
Synthase 

 

2 e-137 
 
 

3 e-136 
 
 

1 e-135 

 
PTR2 family 

proton/oligopeptide 
symporters 
signatures 

 

[GA]-[GAS]-
[LIVMFYWA]-[LIVM]-

[GAS]-D-x-
[LIVMFYWT]-

[LIVMFYW]-G-x(3)-
[TAV]-[IV]-x(3)-

[GSTAV]-x-[LIVMF]-
x(3)-[GA] 

GGWVADRLLGAS- 
 

RTIFIGGILITIG 

YP_095407.1 
 

(480aa) 
 

62-74 

 
V. cholerae 

 
 

 
 

Proton/peptide 
symporter family 

protein 
 
 
 

 
 

9 e-112 

 

 
 

 
 

PTS HPr 
component 

phosphorylation 
sites signature 

 
 
 

[GSTADE]-
[KREQSTIV]-x(4)-

[KRDN]-S-[LIVMF](2)-
x-[LIVM]-x(2)-[LIVM]-

[GADE] [S is 
phosphorylated] 

GRQVDAKSIMGVMMLA 
YP_094519.1 

 
(89aa) 

42-56 

N. meningitidis 
(MC58) 

 
Ralstonia eutropha 

 
Nitrosomonas 

europaea     (ATCC 
19718) 

Phosphocarrier 
protein HPr 

 

7 e-22 
 
 

1 e-19 
 
 

1 e-17 
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BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

Phosphatidate 
cytidylytransferase 

signature 

S-x-[LIVMF]-K-R-x(4)-
K-D-x-[GSA]-x(2)-

[LIF]-[PG]-x-H-G-G-
[LIVMF]-x-D-R-

[LIVMFT]-D 

SGFKRAFKIKDFG 

DSIPGHGGITDRMD 

YP_094548.1 
 

(284aa) 
241-264 

C. burnetii 
(RSA 493) 

 
Ps. syringae pv. 

Tomato str.  

Phosphatidate 
cytidylyltransferase 

 

4 e-40 

 

 
2 e-38 

 

 

 

Polyprenyl 
synthetase 
signatures 

[LIVM](2)-x-D-D-
x(2,4)-D-x(4)-R-R-[GH]. 

 
LIHDIPAMDNDSYRRG 

YP_096339.1 
(309aa) 91-107 

Xylella fastidiosa 
Temecula 1 

 
V. cholerae 

 
Xylella fastidiosa 

 

Geranyltranferase 

5 e-51 

 

 

7 e-50 

 

2e-49 

Prolipoprotein 
diacylglyceryl 

transferase 

G-R-x-[GA]-N-F-
[LIVMF]-N-x-E-x(2)-G GRIGNFINSEIWG 

YP_096863.1 
 

(256aa) 
138-150 

C. burnetii RSA493 
 

Ps. aeruginosa 
(PAO1) 

 
Ps. putida (KT2440) 

 

Prolipoprotein 
diacylglyceryl 

transferase 
 

6 e-98 

 

 

7 e-94 

 

2 e-88 

 

Protein SecA 
signatures 

[IV]-x-[IV]-[SA]-T-
[NQ]-M-A-G-R-G-x-D-

I-x-L 
VTVATNMAGRGTDIVL 

YP_095492.1 
 

(902aa) 
 

501-516 

Shewanella 

oneidensis (MR-1) 

 
E. coli 0157:H7 

 
S. enterica subsp. 
enterica serovar 

Typhi 

Preprotein 
translocase sec A 

subunit 
 

 
0.0 

 
 

0.0 
 
 
 

0.0 
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NAME 

CONSENSUS 
PATTERN MATCHING MOTIF 

NCBI 
ACCESSION 

NUMBER 
and  

PROTEIN 
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Position 
of Motif 
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Protein 

BLAST RESULTS 
 

PROTEIN NAME 
 

E 
VALU

E 

Protein SecY 
signatures 

[GST]-[LIVMF]- 
[LIVMFCA]-x-

[LIVMF]-[GSA]-
[LIVM]-x-P-

[LIVMFY](2)-x-[AS]-
[GSTQ]-[LIVMFAT](3)-

[EQ]-[LIVMFA](2) 
 

SILALGIMPYISASIVVQLL 
YP_094393.1 

 
(444aa) 

77-95 

 
C. burnetii 
(RSA 493) 

 
Shewanella 
oneidensis 

(MR-1) 
 

V. parahaemolyticus 
(RIMD 2210663) 

 

 
Preprotein 

translocase sec Y 
subunit 

 

 
1 e-168 

 
 
 

7 e-159 

 

 
 
 

2 e-155 
 
 

Respiratory-chain 
NADH 

dehydrogenase 20 
Kd subunit 

 
 

[GN]-x-D-[KRHST]-
[LIVMF](2)-P-[IV]-D-

[LIVMF4YW](2)-x-P-x-
C-P-S-[PT] The C is a 
putative 4Fe-4S ligand) 

GTDKIVPVDVYIPGCPP 
YP_096785.1 

 
(158aa) 

118-134 

 
Nitrosomonas 

europaea ATCC 
19718 

 

Respiratory-chain 
NADH 

dehydrogenase 20 Kd 
subunit 

 

9 e-75 

Respiratory-chain 
NADH 

dehydrogenase 
30Kd subunit 

E-R-E-x(2)-[DE]-
[LIVMFY](2)-x(6)-
[HK]-x(3)-[KRP]-x-
[LIVM]-[LIVMYS] 

EREVFDLFGILF 

SGHSDIRRIL 

YP_096784.1 
 

(227aa) 
143-164 C. burnetii 

(RSA 493) 
NADH 

dehydrogenase 

 
3 e-129 

 

Respiratory-chain 
NADH 

dehydrogenase 49 
Kd subunit 

[LIVMH]-H-[RT]-[GA]-
x-E-K-[LIVMTN]-x-E-

x-[KRQ] 
LHRETEKLIEHK 

YP_096783.1 
 

(422aa) 
48-59 

C. burnetii 
(RSA 493) 

 
X. axonopodis pv. 

Citri str. 306 
 

Xylella fastdiosa  
 

NADH 
dehydrogenase 

subunit D 
 

0.0 
 
 

9 e-177 

 

 

1 e-175 
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PROTEIN NAME 
 

E 
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E 

Respiratory-chain 
NADH 

dehydrogenase 51 
Kd subunit 

G-[AM]-G-[AR]-Y-
[LIVM]-C-G-[DE](2)-

[STA](2)-[LIM](2)-
[EN]-S 

GAGAYICGDESALIES 
YP_096781.1 

 
(428aa) 

171-186 

C. burnetii 
(RSA 493) 

 
N. meningitidis 

(MC58) 
 

N. meningitidis 
(z2491) 

 
NADH 

dehydrogenase 
subunit F 

 

2 e-174 

 

1 e-159 

 

2 e-158 

Respiratory-chain 
NADH 

dehydrogenase 75 
Kd subunit 

P-x(2)-C-[YWSD]-x(7)-
G-x-C-R-x-C PRFCYHERISIAGNCRMC 

YP_096780.1 
 

(783aa) 
31-48 

C. burnetii 
(RSA 493) 

 
X. axonopodis pv. 

Citri str. 306 
 

X. campestris pv. 
Campestris str. 
ATCC 33913 

 

NADH 
dehydrogenase 

subunit G 
 

2 e-135 

 
 
 

1 e-116 

 

 

 

3 e-116 

 
 
 

SLC 26 a Protein 
family signature 

 
 
 
 

[PAV]-x-[FY]-[GS]-L-
Y-[STAG](2)-x(4)-

[LIVFYA]-[LIVMST]-
[YI]-x(3)-[GA]-[GST]-

S-[KR] 

PVYGLYASFFPAIIYLFFGTSR 
YP_094633.1 

 
(733aa) 

365-380 

Bradyrhizobium 
japonicum (USDA 

110) 
 

Mesorhizobium loti 
 

Rickettsia conorii 

2-Acylglycerophos- 
Phoethanolamine 

 

2 e-144 

 

 

7 e-144 

 

 

6 e-143 

Signal peptidases II 
signature 

[LIVM]-x-[GASF]-
[GA]-[GAS]-[LIVMT]-

[GAS]-N-[LVMFG]-
[LIVFYG]-D-[RI]-

[LIVMFA] 

IGGGALGNLYDRL 
YP_094972.1 

 
(121aa) 

67-76 

C. burnetti 
 

Y. pestis (CO92) 
 

E. coli k12 

Lipoprotein signal 
peptidase 

 

1 e-39 

 

2 e-33 

 

6 e-33 
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Sodium 
dicarboxylate 

transporter 

P-x(0,1) 
-G-[DE]-x-[LIVMF](2)-
x-[LIVM](2)-[KREG]-

[LIVM](3) 

 
 
 

PIGATVNMDGAA-

LFQCVAAVFIAQ 

 

 
 

YP_096257.1 
 

(430aa) 
295-318 

Y. pestis 
 

Xanthomonas 
campestris pv. 
Campestris str. 
ATCC 33913 

 
Ps. aeruginosa 

C4- dicarboxylate 
transport protein 

 
 

2 e-108 

 

 

3 e-108 

 

 

2 e-107 

Sodium sulfate 
symporter 

[STACP]-S-x(2)-F-x(2)-
P-[LIVM]-[GSA]-x(3)-

N-x-[LIVM]-V 
ASSDFSTPIGYQTNlMV 

YP_095305.1 
 

(94aa) 
 

42-58 

 
 

Brucella suis 
 
 
 

 
 

Transporter, TrkA 
family 

 
 

 
 

6 e-25 

 

 

Squalene and 
pytoene synthase 

(Also called 
Farnesyl-

diphosphate 
farnesyltransferase) 

 
 

Y-[CSAM]-x(2)-[VSG]-
A-[GSA]-[LIVMAT]-
[IV]-G-x(2)-[LMSC]-

x(2)-[LIV] 

YCYHVAGV- 

VGLMMARV YP_094165.1 155-170 

 
N. europaea ATCC 

19718 
 

Ustilago maydis 
 

Halobacterium sp. 
(NRC-1) 

 
 

Squalene and pytoene 
synthase 
(366aa) 

 

3 e-15 

 

 

4 e-13 

 

 

4 e-11 

Succinate 
Deydrogenase 

 
 
 
 
 

HTWNGIRHLMWDlG YP_094571.1 86-99 

Ps. aeruginosa 
 
 

Ps. putida KT2440 
 

Succinate 
deydrogenase 

Cytochrome b556 
(130aa) 

5 e-32 

 

 

 

3 e-31 
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E 

R-P-[LIVMT]-x(3)-
[LIVM]-x(6)-

[LIVMWPK]-x(4)-S-
x(2)-H-R-x-[ST] 

 

 
Ps. syringae pv. 

Tomato str. DC3000 
 

 

1 e-29 

 

 
Sugar transport 

proteins signature 
 
 
 

[LIVMSTAG]-
[LIVMFSAG]-x(2)-
[LIVMSA]-[DE]-x-

[LIVMFYWA]-G-R-
[RK]-x(4,6)-[GSTA] 

SGFLSDRFG- 

RRKILMTAA YP_094583.1 282-296 
C. burnetti 
(RSA 493) 

 

 
 

Major facilitator 
family transporter 

(427aa) 
 
 

 

 
6 e-97 

 

 

 

Tyrosine specific 
protein 

phosphatases 
signature and 

profile 

[LIVMF]-H-C-x(2)-G-
x(3)-[STC]-[STAGP]-x-

[LIVMFY] 
IHCLGGVGRTGTMAA 

YP_096814.1 
 

(319aa) 
 

229-243 Clostridium 
acetobutylicum 

 
 

Protein tyrosine 
phosphatases II 

superfamily 
 

4 e-29 

ADH Zinc G-H-E-x(2)-G-x(5)-
[GA]-x(2)-[IVSAC] GHEGAGSVVQIGKNV 

YP_094738.1 
 

(342aa) 
64-78 

 
V. vulnificus 

 
V. parahaem. 

(RIMD 2210633) 
 

V. cholerae 
 

Threonine 3- 
deydrogenase 

 

6 e-148 

 
1 e-147 

 

 

2 e-147 
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DnaJ domains 
signature and 

profile 

[FY]-x(2)-[LIVMA]-
x(3)-[FYWHNT]-

[DENQSA]-x-L-x-[DN]-
x(3)-[K] 

FGAVGEAYQVLS 

DPGLRSKY 

YP_096275.1 
 

(296aa) 
45-64 

N. europaea 
(ATCC 19718) 

 
C. burnetti 
RSA 493 

 
 

DnaJ/DNA binding 
protein 

 
5 e-80 

 

 
5 e-80 
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An additional search was also performed with the protein families database (PFam) 

within the European Bioinformatics Institute (EBI) database. This database does not 

perform protein motif searches, but searches for protein families and domains within a 

sequence.  

A search was performed with the PFam program for protein families or domains using 

search parameters such as ‘membrane’, ‘outer membrane protein’, ‘surface exposed’ and 

‘surface antigen’. This resulted in several protein family matches, along with bacterial 

species which possessed ‘representative’ proteins from each family. In order to then 

screen the L. pneumophila genome, one of the representative proteins was selected, and 

the sequence of the protein was used to perform an NCBI BLAST analysis with the      

L. pneumophila genome. When the BLAST analysis revealed a match with the              

L. pneumophila genome, the corresponding L. pneumophila sequence was then used for 

a BLAST analysis with the entire NCBI protein database. The results of the analysis are 

shown in Table 3.2.  
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Table 3.2 PFam protein family matches with the Legionella database. The table shows: column 1) the protein family name 2) The PFam 

accession number for the protein family 3) the name of the matching protein in the Legionella database and the NCBI accession number 4) the 

NCBI BLAST results with the microbial genome database 5) the E values of each BLAST result. 
 

 

PROTEIN 

FAMILY NAME 

 

PFam 

ACCESSION 

NO. 

NCBI 

ACCESSION 

NO. and 

L. pneumophila  

PROTEIN 

NAME  

 

BLAST 

RESULTS 

 

 

 

PROTEIN 

NAME  

 

E VALUE 

Surface Antigen 

msp4  

 (OmpA of E. coli) 

IPR002566 

YP_094693.1 

 

Outer Membrane 

Protein, OmpA 

family protein 

(249 aa) 

Pseudomonas 

fluorescens (Pf-5) 

Fusobacterium 

nucleatum subsp. 

vincentii 

(ATCC 49256) 

OmpA family 

protein  

 

Outer 

membrane 

protein 

9e-18 

 

 

 

5e-17 

 

Bacterial surface 

antigen family (D15) 

(H. influenzae) 

IPR000184 

YP_094550.1 

Hypothetical protein 

(786aa) 

Nitrosococcus 

oceani  

(ATCC 19707) 

Outer 

membrane 

protein  

 

3e-172 
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 (Methylococcus 

capsulatus str. 

Bath)  

 

(Methylobacillus 

flagellatus KT) 

outer 

membrane 

protein, 

OMP85 family 

 

surface antigen 

(D15) 

 

 

5e-156 

 

 

2e-151 

 

Virulence-related 

outer membrane 

protein family 

(OmpX of E. coli) 

IPR000758 

NC_002942.5  

 

Hypothetical protein 

(276aa) 

No significant 

Matches* 

 

 

Outer membrane 

efflux protein 

family 

(E. coli) 

 

IPR003423 

 

NC_002942.5 

 

Hypothetical protein 

(67aa)   

No significant 

Matches* 

 

 

 
                           * Matches were considered ‘significant’ when their E value was less than 1e-3
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3.3.2 Transmission Electron Microscopy studies of L. pneumophila 

 

Gram stains performed on cultures of L. pneumophila AA100 which had been passaged 

several times on BCYE-α agar showed normal sized L. pneumophila cells, that ranged 

between 2-20 μm in length. In addition to these cells however, long filamentous forms 

of L. pneumophila were seen. 

TEM analysis of the L. pneumophila cells revealed long filamentous forms of the 

organism. This image is shown in Figure 3.1. 

 

 

 
 

Figure 3.1.  Transmission electron microscopy image of L. pneumophila AA100 

showing long filamentous forms of the organism (x 6,000). 

 

 

3.3.3 Outer membrane Protein Isolation – Comparison of methods 

 

Four methods for the isolation of outer membrane proteins were compared, and the 

resulting samples were analysed by separating the protein preparations by SDS-PAGE. 

The SDS-PAGE image of the proteins extracted by each method is shown in Figure 3.2. 
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Figure 3.2. Comparison of four methods for the isolation of outer membrane 

proteins. Lane 1: SeeBlue® molecular weight marker; Lane 2: Omp isolation method 1 

(Sonication and sarkosyl membrane disruption); Lane 3: Omp isolation method 2 

(Sucrose density gradient); Lane 4: Omp isolation method 3 (Ultracentrifugation); Lane 

5: Omp isolation method 4 (Glycine-acid extraction). 

 

Of the four methods, the Glycine-acid extraction method was the simplest and easiest 

procedure to perform. It was performed within 3 hours, and required the least labour. 

This method also gave a clear profile of the isolated outer membrane proteins, which 

allowed for easy excision of the protein bands for mass spectrometry analysis. Therefore 

this method was chosen to further analyse the outer membrane proteins of                     

L. pneumophila.  

 1      2        3      4       5

   98 kDa 

  250 kDa 

  50 kDa 

  22 kDa 
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3.3.4 Outer membrane Protein Sequencing: MALDI-TOF Mass spectrometry 

 

Numerous outer membrane proteins of L. pneumophila were selected for MALDI-TOF 

Mass spectrometry, in order to identify novel and previously uncharacterised proteins in 

L. pneumophila. 

Glycine-acid extraction was used for the isolation of L. pneumophila outer membrane 

proteins. The isolated proteins were then separated by SDS-PAGE on a maxi size gel. 

The gel image is shown in Figure 3.3. The protein bands of interest were then excised 

and sequenced by MALDI-TOF Mass spectrometry. Five protein samples were 

sequenced, and the Peptide Mass Fingerprints (PMF) spectral images were obtained. An 

example of one of these spectral image results is shown in Figure 3.4. The PMF data 

was then analysed and the results of the analysis are shown in Table 3.3. 

 

 
                       

    
 

               

Figure 3.3.   L. pneumophila outer membrane proteins separated by SDS-PAGE for 

MALDI-TOF Mass Spectrometry analysis. The L. pneumophila Omp samples were 

electrophoresed in triplicate. The boxes indicate which bands were excised and 

sequenced. Lane 1: Molecular weight standard (Fermentas Life Sciences, U.S.A); Lanes 

2-4: L. pneumophila isolated outer membrane proteins (in triplicate). 

 

40 kDa 
50 kDa 

30 kDa 

85 kDa Excised sample 1 

Excised sample 2 

Excised sample 3 
Excised sample 4 

Excised sample 5 

15 kDa 

   1             2         3         4 

100 kDa 
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Figure 3.4.  Spectral image of a Peptide Mass Fingerprint (PMF) result following MALDI-TOF sequencing of an 

L. pneumophila outer membrane protein.
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Table 3.3.   MALDI-TOF Mass spectrometry sequencing results of excised             

L. pneumophila outer membrane proteins. The columns show the excised protein 

sample number (Figure 3.2); the matching protein NCBI accession number; the name 

and size of the matching protein; the organism in which the protein is found; and the 

score of the match*. 

 

PROTEIN 

SAMPLE No. 

 

 

NCBI 

ACCESSION NO. 

 

PROTEIN 

NAME and SIZE
ORGANISM  SCORE* 

 

 

Sample 1 

 

 

Q8VQ24_BARHE 
Omp89 

(89 kDa) 

Bartonella 

henselae 
68 

 

 

Sample 2 

 

 

 CH60_LEGPA 

 60 kDa 

chaperonin Heat 

Shock Protein 

(58 kDa) 

Legionella 

pneumophila 
70 

 

 

Sample 3 

 

 

 

 

Q8PNP2_XANAC 

 

outer membrane 

protein 

(39 kDa) 

 

 

Xanthomonas 

axonopodis pv. 

citri 

 

 

241 
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Sample 4 

 

 

 

Q2WG57_LEGPN 

 

Major outer 

membrane 

protein 

(32 kDa) 

 

Legionella 

pneumophila 
67 

 

 

 

Sample 5 

 

 

 

 

No Significant 

Match 
   

 

* The protein score is -10*Log(P), where P is the probability that the observed match is 

a random event. Protein scores of greater than 67 are significant (p<0.05) 

(www.MatrixScience.com).
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3.3.5 Selection of outer membrane protein for further characterisation 

 

From these search results, a protein was selected for further analysis and 

characterisation. The protein chosen belongs to the Omp85 bacterial surface antigen 

family. This protein corresponded to sample number 1 from the MALDI-TOF Mass 

spectrometry analysis, which revealed a match with an outer membrane protein 

(Omp89) from Bartonella henselae. Similarly, the protein was identified through the 

PFam bioinformatics analysis as an outer membrane protein belonging to the Omp85 

family of proteins. The protein, which belongs to the Omp85 family of bacterial surface 

antigens, was selected for three reasons. Firstly, this protein was found in                      

L. pneumophila using both bioinformatics, and the isolation of the protein through 

laboratory techniques, with subsequent MALDI-TOF mass spectrometry sequencing. 

Secondly, this protein has not yet been described in Legionella. Analysing this protein 

may therefore provide further insight into the mechanisms of L. pneumophila 

pathogenesis. Thirdly, this family of proteins is present on the bacterial outer membrane 

and is surface exposed. This criterion is important for the development of bacterial 

detection systems which usually rely on surface antigens for the detection of the 

organism. 

 

3.3.6 BLAST Sequence analysis of the L. pneumophila genome with the 

Haemophilus  influenzae D15 protein. 

 

In order to determine the location of the novel protein in the L. pneumophila genome, a 

BLAST analysis was performed with the D15 Outer membrane antigen of Haemophilus 

influenzae, and the L. pneumophila genome.  

The D15 Outer membrane antigen of Haemophilus influenzae is one representative of 

the Omp85 family of proteins which has been thoroughly characterised, and for which 

the protein sequence has been published (Flack et al, 1995). 

 The gene was found to be located at nucleotide positions 547,578-549,939 in the 

L. pneumophila genome. A sequence alignment was then performed, using the D15 

protein sequence of H. influenzae, with the protein sequence of the novel 

L. pneumophila protein. This alignment is shown in Figure 3.5.  
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Figure 3.5. Sequence alignment of the H. influenzae D15 protein (NCBI accession no. AAC22575) with the Legionella pneumophila 

Philadelphia 1 genome (NCBI accession no NC_002942.5). The sequence produced an amino acid identity match of 29% (231/783) with an E 

value of 1e-105. 

H. influenzae D15 
L. pneumophila 

H. influenzae D15 
L. pneumophila 

H. influenzae D15 
L. pneumophila 

H. influenzae D15 
L. pneumophila 

H. influenzae D15 
L. pneumophila 

H. influenzae D15 
L. pneumophila 

H. influenzae D15 
L. pneumophila 
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3.4 Discussion 

 
Bioinformatics programs and databases are today considered an invaluable tool in many 

scientific research areas. In the field of bacterial biotechnology, bioinformatics is 

assisting researchers in areas as vast as the development of novel drugs and 

antimicrobial agents, the determination of protein biomarkers for various bacterial 

diseases, and the development of vaccines which are more effective and easier to 

administer (Bansal, 2005). 

Program features are being continually updated and improved and programs are 

becoming increasingly specialised. A program was recently developed, for example, 

which can be used to identify unique bacterial strain, species, and genus-specific 

proteins (Mazumber et al, 2005).  

The concept of using both proteomics and bioinformatics for the identification of novel 

proteins is one which also appears to be gaining prevalence. Berven et al (2006) recently 

utilised both conventional proteomics, such as 2-D gel electrophoresis and mass 

spectrometry, in conjunction with a novel biocomputing program, to analyse the outer 

membrane subproteome of Methylococcus capsulatus.   

The bioinformatics analyses performed in this study, using the motifs found in outer 

membrane proteins, resulted in numerous matches with the L. pneumophila genome. The 

Expasy (Prosite) database was searched using key words such as ‘membrane’, ‘outer 

membrane protein’ and ‘surface antigen’, and the resulting list of protein motif 

sequences was used to perform an NCBI BLAST analysis with the L. pneumophila 

Philadelphia 1 genome. Although there were numerous matches, some of these proteins 

were not confined to the outer membrane of the cell, and included various enzymes and 

transporter proteins which may intermittently function in the bacterial outer membrane, 

but are not necessarily located within the outer membrane of the cell.  

The protein families database (PFam), which is part of the European Bioinformatics 

Institute (EBI) was also used, and resulted in a few more matches with the 

L. pneumophila genome. These matches corresponded not to protein motif matches, but 

protein family matches. These protein family signatures are more complex than the 

protein motifs found using the Expasy database. The protein family or domain 

signatures are usually an entire set of motifs combined to cover and include all of the 

protein members of a family. Therefore, instead of a single signature or motif sequence, 
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a protein family or domain may consist of hundreds of different motifs strung together 

(http://www.ebi.ac.uk/). 

When a protein family match was obtained with the L. pneumophila genome using the 

PFam database, a bacterial species possessing a representative of this protein was 

selected so that a protein BLAST analysis could be performed. In the case of the surface 

antigen msp4 family, for example, the OmpA of E. coli was selected, and the sequence 

of this protein was used for an NCBI BLAST analysis against the L. pneumophila 

genome (Table 3.2). The L. pneumophila protein sequence was then used to perform an 

NCBI BLAST against the microbial genome database.  This analysis revealed matches 

with the protein in organisms such as Pseudomonas fluorescens Pf-5, and 

Fusobacterium nucleatum subsp. Vincentii. 

 

Transmission electron microscopy studies of L. pneumophila AA100 cells which had 

been passaged several times on BCYE-α agar, revealed that in addition to the expected 

sized cells (of around 2-20 μm in length), there were also long filamentous forms of the 

organism. This observation was first reported shortly after the discovery of the organism 

(Faine et al, 1979). Although the reasons for the development of these filamentous 

forms of the organism are not yet known, studies have indicated that the shorter bacilli 

are more virulent than the longer forms (Nowicki et al, 1987). 

 

In addition to the bioinformatics approach, proteomic techniques were also used to 

identify novel outer membrane proteins. Four methods were compared for the isolation 

of outer membrane proteins. Methods 1 and 3 (2.2.1 and 2.2.3) were similar, and both 

involved the use of sonication and sarkosyl for the disruption of the bacterial membrane. 

Method 2 (2.2.2) involved a sucrose gradient for the separation of membrane 

components. This method proved to be laborious, and the layers of separated proteins 

were quite difficult to extract from the sucrose layered column.  This method also 

contained an 18 hour ultracentrifugation step which made the entire process quite 

lengthy. Method 4 (2.2.4) utilised glycine-acid for the ‘stripping’ of the membrane 

proteins from the cell. This method was distinct from the others as it did not utilise 

detergents or lengthy centrifugation steps, and was the easiest to perform. The clarity 

and yield of the isolated proteins was comparable to the other methods, but the method 

was quicker to carry out. 
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The glycine-acid method was therefore selected as the method used for separating 

L. pneumophila outer membrane proteins for MALDI-TOF Mass spectrometry. The 

proteins were separated on a maxi gel which enabled for better resolution of the proteins 

and facilitated their excision from the gel. Numerous proteins were selected and excised 

from the gel. The proteins were then sequenced by MALDI-TOF Mass spectrometry and 

the Peptide Mass Fingerprints (PMF) results for each protein sample were further 

analysed using the Mascot feature of the Matrix Science program. This program enabled 

the identification of unknown proteins through the analysis of PMF samples against a 

database of typical PMF patterns.  

Two of the proteins sequenced revealed matches with the L. pneumophila database. 

Only the smallest protein band excised, sample 5, did not display any relevant matches 

with the database. The largest protein (sample 1) revealed a match with the Omp89 

protein of the related organism Bartonella henselae. Although this sample did not 

produce a match with the L. pneumophila database, the result was consistent with the 

protein size expected from the gel (~89 kDa) to the matching protein in B. henselae. 

This match also corresponded with the bioinformatics results, which indicated the 

presence in L. pneumophila of an outer membrane protein belonging to the Omp85 

family of proteins. As this protein is novel in L. pneumophila, and has not yet been 

characterised, it would probably not contain a recognised PMF pattern in the database, 

meaning that a link with the protein in L. pneumophila would not be established during a 

PMF search.  

Sample number three also did not produce a match with the L. pneumophila database, 

but instead revealed a match with a 39 kDa outer membrane protein of the closely 

related Xanthomonas axonopodis. This size again corresponds well with the size of the 

protein in the SDS-PAGE gel analysis, therefore indicating that this protein may also not 

yet have been characterised in L. pneumophila. 

The other protein samples excised for MALDI-TOF analysis seemed to match well with 

the database. The sizes expected from the gel corresponded well with the sizes of protein 

matches observed in L. pneumophila. One difference however, albeit slight, was the 

result for the major outer membrane protein (mOMP), which was reported as being 32 

kDa in size. The literature however, indicates that this protein is between 24-29 kDa, 

depending on the method used for its isolation (Engleberg et al, 1984).  

A possible explanation for this slight difference may be that the protein is reported as 

often remaining linked with peptidoglycan upon isolation, even following treatment of 
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the cells with detergents such as SDS (Gabay and Horwitz, 1985). This may account for 

the minor increase in size observed. Gabay and Horwitz (1985) also reported the mOMP 

as being the most abundant protein in L. pneumophila. This is evident from the gel in 

Figure 3.3, which clearly shows that this protein band has a much greater intensity than 

any of the other proteins. Although the gel contains only outer membrane proteins, and 

does not represent the entire cell protein content, it is evident that this protein is by far 

the most abundant of the outer membrane proteins isolated. 

 

Through the combination of bioinformatics, SDS-PAGE and MALDI-TOF mass 

spectrometry, a previously uncharacterised outer membrane protein was identified in 

L. pneumophila. This protein belongs to the Omp85 family of proteins, and includes 

proteins such as the Haemophilus influenzae D15, the Neisseria meningitidis Omp85, 

and the Pasteurella multocida Omp87. These proteins are all believed to share a similar 

cellular function, and are believed to possess a similar structure. Homologues of this 

protein are believed to exist in all gram negative organisms (Voulhoux et al, 2003). 

 

The bacterial surface antigen domain of the Omp85 family is a protein domain which is 

defined by an N-terminal sequence with a set of characteristic Polypeptide 

Translocation Associated (POTRA) motifs, and a C-terminal barrel domain consisting 

of 16 predicted β-strands (Sanchez-Pulido et al, 2003). Therefore, this family of proteins 

cannot be defined by a single consensus sequence or protein motif, and is hence more 

difficult to detect using the typical protein motif identifiers.  

The protein was found to be encoded for in the L. pneumophila genome through the use 

of the protein families database (PFam) within the European Bioinformatics Institute 

(EBI) database. Database screening revealed a bacterial surface antigen domain which is 

present in outer membrane proteins such as the D15 protein of H. influenzae. Screening 

of the L. pneumophila genome with the protein sequence of the D15 antigen of H. 

influenzae revealed a 29% identity match with a gene, which had not yet been annotated 

in L. pneumophila. The alignment also showed that the gene was present in the 

L. pneumophila Philadelphia 1 genome between nucleotide positions 547,578-549,939 

(2361bp in length). The gene encodes a novel L. pneumophila protein with an estimated 

molecular weight of 87 kDa, and was subsequently designated the name Omp87. 
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Further characterisation of this novel L. pneumophila protein will be required, and may 

provide further insight into our knowledge of L. pneumophila, including the mechanisms 

of its pathogenesis. 

Further characterisation of the protein, including distribution studies and mutagenesis, 

will be performed in chapters 4 and 5 of this thesis. 
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4. Introduction  

 
 
Homologues of the Omp87 protein are believed to exist in all gram-negative organisms 

(Voulhoux et al, 2003). Some of these homologues have been previously studied and 

characterised. These include the Neisseria meningitidis Omp85 (Genevrois et al, 2003), 

the Haemophilus influenzae D15 (Loosmoore et al, 1997) the Shigella flexneri Oma87 

(Robb et al, 2001), and the Pasteurella multocida Oma87 (Ruffolo and Adler, 1996). 

There appears to be a consensus that the protein is involved in either lipid or protein 

transport to the outer membrane of the cell. In Neisseria meningitidis, Genevrois et al 

(2003) recently found that deletion of the omp85 gene resulted in the depletion of 

lipopolysaccharides and phospholipids from the outer membrane of the bacterial cell, 

and a corresponding increase and accumulation of these lipids in the inner membrane of 

the cell. However Voulhoux et al (2003) believe that the observed decrease in LPS from 

the outer membrane of Omp85 mutants is more likely due to a defect in LPS transport 

machinery, and that Omp85 is instead involved in the insertion of proteins into the 

bacterial outer membrane. They found that depletion of the Meningococcal Omp85 

resulted in a decrease in assembled proteins in the outer membrane, and a subsequent 

increase in unassembled forms of outer membrane proteins in the inner membrane of the 

cell. 

Several groups have also analysed the potential of this relatively novel protein to serve 

as a vaccine candidate by studying its antigenicity and immunogenic properties. 

Loosmore et al (1997) performed passive immunisation studies and showed that the D15 

outer membrane protein of Haemophilus influenzae was able to protect infant rats 

against the development of bacteraemia due to H. influenzae. This D15 outer membrane 

protein was found to share an amino acid similarity of 75% with the Oma87 protein of 

Pasteurella multocida which may have been a factor which led Mitchison and co-

workers to recently analyse the Oma87 protein of Pasteurella multocida, and its 

potential as a vaccine candidate (Mitchison et al, 2000). The group cloned fragments of 

the protein and analysed the ability of these fragments to protect chickens against a 

challenge from virulent P. multocida. Unfortunately, none of the fragments analysed 

were able to protect the immunised chickens against a challenge with a virulent strain of 

P. multocida. 
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4.1 Outline of this chapter 

 

This chapter describes the characterisation and analysis performed of the Omp87 protein 

of Legionella pneumophila serogroup 1, strain AA100.  

The analysis includes the initial PCR amplification of the omp87 gene, through the 

development of novel PCR primers. It then continues with the DNA sequence 

determination of the omp87 gene, followed by distribution studies of the omp87 gene, by 

using Southern blotting in order to determine whether the omp87 gene was also present 

in other species of Legionella, using a specific and novel omp87 gene DNA probe.  

Finally, the omp87 gene was cloned into the vector pBluescript SKII-, in preparation for 

further analysis, such as mutagenesis studies (Chapter V). 
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4.2 Material and Methods 

 

4.2.1 PCR amplification of the omp87 gene of L. pneumophila AA100 

 

The PCR was used to confirm the presence of the omp87 gene.  

 

4.2.1.1 Primer design 

 

The primers designed for the amplification of the omp87 gene were designated omp87a 

and omp87b. These were designed based on the published sequence of Legionella 

pneumophila subsp. pneumophila strain Philadelphia 1, available through the NCBI 

website, at http://www.ncbi.nlm.nih.gov/ with the sequence reference number of 

NC002942. The primer sequences are given in Table 4.4. The primers were designed 

with XbaI restriction sites at the 5′ end to facilitate cloning. The forward primer was 

designed approximately 300 bp upstream of the predicted start of the omp87 gene to 

ensure that the promoter region of the protein was included in the amplification reaction.  

 

4.2.1.2 PCR amplification 

 

The L. pneumophila serogroup 1 strain AA100 used for the amplification reaction was 

kindly obtained from Prof. Yousef Abu Kwaik, at the Department of Microbiology and 

Immunolgy, University of Kentucky, Lexington, Kentucky, U.S.A. 

The PCR amplification of the omp87 gene was performed using the AmipliTaq DNA 

polymerase system (Roche Molecular Biochemicals). The optimised PCR conditions 

and mastermix components are given in Table 4.1a and b. 
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Table 4.1a - The optimised PCR conditions for amplification of L. pneumophila 

omp87 

  
 

PCR Stage                                                             Time (s) / Temp (°C)     

  

 

STAGE 1 

Initial denaturation of DNA template 1 min / 94°C   

STAGE 2 

Denaturation of DNA 30s / 94°C  

Annealing of primers 30s / 62°C 

Elongation  3min / 72°C 

Number of cycles 35 

 

STAGE 3 

Final elongation                                                            5min / 72°C 

 

 

 

Table 4.1b - The optimised PCR Master mix components  

   

                 Reagent                                                        Volume 

 

               Milli-Q water                                                    33.5 μl       

 10 x PCR buffer 5 μl 

 MgCl2 5 μl 

 dNTP’s 1 μl 

 Primer 1 2 μl 

 Primer 2 2 μl 

 Taq polymerase 0.5 μl 

  DNA template 1 μl 

 Total Reaction Volume 50 μl 
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4.2.2 DNA Sequence determination of L. pneumophila AA100 omp87 

 

Following the successful PCR amplification of the L. pneumophila omp87 gene, the 

amplified product was prepared for DNA sequence determination. Due to the presence 

of slight non-specific background amplification, it was deemed necessary to purify the 

amplified product prior to sequencing. This was carried out by excising the DNA band 

from an agarose gel, using the QIAquick gel extraction kit (Qiagen, UK), according to 

the manufacturer’s instructions. 

Several amplified DNA samples were combined during the extraction process, in order 

to increase the amount of DNA. The sequencing reaction mixture, and sequencing 

reaction cycle conditions can be seen in Table 4.2a and b.  Due to the length of the 

omp87 gene fragment (2.7 kb) a second set of primers were designed for internal 

sequencing of the gene. The primers used for the sequencing reactions are described in 

Table 4.3. 

The sequencing reactions were performed using an ABI Prism Big Dye Terminator 

Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Australia) in a Perkin-Elmer 2400 

GeneAmp PCR system. Following the sequencing reaction, the sequencing products 

were precipitated using ethanol and sodium acetate, according to the manufacturer’s 

instructions.  

The DNA sequence determination was carried out by the DNA Sequencing Facility at 

Monash University, (Clayton campus), Victoria, Australia, using the ABI Prism 373 

DNA Sequencer (Perkin-Elmer, Australia). 
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Table 4.2a - Sequencing reaction mixture used for DNA sequence determination of 

the L. pneumophila omp87 gene __ 
 

Reagent                                               Concentration                                       Volume    

  

Ready reaction Premix 2.5 x 1 μl 

 

Big Dye Sequencing Buffer 5 x 3.5 μl 

 

Primer  -                                                  20 ng (~1 μl) 

 

DNA template (PCR product)  - 7.5 μl (~60ng) 

 

MilliQ H2O  - 7 μl 

 

Final volume 1 x 20 μl 

_____________________________________________________________________ 

Table 4.2b - Sequencing reaction cycle conditions                     

                                                                                         Time / Temp______________ 

STAGE 1 

Initial denaturation of DNA template 1 min / 96°C  

 

STAGE 2 

Denaturation of DNA 10s / 96°C  

Annealing of primers 5s / 50°C 

Elongation  4min / 60°C 

Number of cycles 25 

 

STAGE 3 

Holding temperature (until purification)               4°C 
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4.2.2.1 Sequence analysis software and websites  

 

Sequence analysis, comparisons and primer designing were performed using Clone 

Manager 6 software, version 6.00 (Sci Ed Central Software Inc.). 

DNA sequence alignments and amino acid sequence searches were performed using 

both the National Centre for Biotechnology Information (NCBI) website, available at 

http://www.ncbi.nlm.nih.gov/ and the Expert Protein Analysis System (ExPASy) 

Molecular Biology Proteomics Server with Swiss-Prot/TrEMBL database, available at 

http://kr.expasy.org.   

 

 

 

 

 

Table 4.3 Primers used in this study  

 Primer             Description                                  Source/Reference 

 

omp87a  

omp87b 

omp87c 

omp87d  

Universal M13 

Reverse M13 

5′ TTTATCTAGAATCCCTATGCTGGATGGCGG  3′ 

5′ AATTTCTAGAGGTTGCGATATGTACAGCAC  3′    

5′ TTAAAGAAATGGGGCTGGTC 3′ 

5′  TCCTGAAAATGATTACCGTT  3′ 

5′  CACGACGTTGTAAAACGACGGCCAG  3′ 

5′  CACCAGGAAACAGCTATGACCATG 3′                   

This study 

This study  

This study 

This study  

Stratagene, U.S.A   

Stratagene, U.S.A        

* Underlined sequence = XbaI restriction site. 
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4.2.3 Distribution studies of omp87:  PCR and Southern blotting of the 

L. pneumophila AA100 omp87 gene 

 

In order to determine whether the omp87 gene was universally present in all Legionella 

species and serogroups, distribution studies with the gene were performed. This was 

firstly carried out by PCR amplification of the gene in different species and serogroups. 

Southern blotting was then carried out on remaining non-reactive strains as a 

confirmatory test for the presence or likely absence of the gene.  

 

4.2.3.1 Legionella species and serogroups included in this study 

 

The Legionella serogroups and species included in this study were all kindly donated by 

Prof. Yousef Abu Kwaik, from the Department of Microbiology and Immunolgy, at the 

University of Kentucky, Lexington, Kentucky, U.S.A. The complete list of strains 

included can be seen in Table 4.4. 

 

4.2.3.2 PCR amplification of the omp87 gene of all Legionella species  

 

The primers used for the amplification of the omp87 gene in all other Legionella species 

and serogroups were the same as those used for the amplification of the internal 

fragment of the omp87 gene for DNA sequence determination. These primers, 

designated omp87c and omp87d amplify a 1.2 kb region in the centre of the omp87 

gene. Their sequences are shown in Table 4.3. 

The PCR conditions used for the amplification reaction of all Legionella strains were 

identical to those used for the amplification of the L. pneumophila omp87 gene, and can 

be seen in Table 4.1a and b. 
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4.2.3.3 Southern blotting of the omp87 gene 

 

Genomic DNA from Legionella strains was extracted, following 48hr growth on BCYE 

agar, by the CTAB method (Ausbel et al, 1995). The concentrations of DNA obtained 

were determined by spectrophotometric absorbance at 260 nm. Ten μg of DNA was then 

digested overnight at 37°C, with the restriction enzyme HindIII, in a total volume of 

200μl. Following the overnight digestion, the digested genomic DNA was precipitated 

using ethanol and 3M sodium acetate.  The digested fragments were then subjected to 

agarose gel electrophoresis, on a 1.2% agarose gel, at a constant voltage of 70V for 2 

hours. 

The DNA in the gels was then transferred to nylon membranes overnight by capillary 

action, followed by cross-linking onto the membrane by 5 minutes of UV exposure in a 

transilluminator. The Southern blotting was performed under moderate stringency 

conditions. 

 

4.2.3.4 Southern blotting DNA probe: design and labeling with DIG 

 

The DNA probe used for detection of the omp87 gene was designed based on the 

internal primers utilised for sequencing of the omp87 gene of L. pneumophila serogroup 

1. These primers were the same as those used for the PCR amplification of all 

Legionella species, discussed above in section 4.2.3.2. The amplified fragment obtained 

using these primers was considered appropriate for use as an omp87 gene probe for 

detection of the gene in other Legionella species. 

The fragment was therefore amplified from L. pneumophila serogroup 1 AA100, using 

the omp87c and omp87d primers. The optimised PCR conditions used were the same as 

those described in 4.2.1.2 (Table 4.1a and b). 

Several samples of amplified product were combined in order to increase the amount of 

probe DNA.  

Labelling of the DNA probe was performed using the DIG DNA Labelling and 

Detection kit (Roche Molecular Biochemicals). All procedures were carried out 

according to the manufacturer’s instructions using digoxigenin (DIG) –dUTP as the 
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label. The labelled DNA probe was denatured prior to being added to the nylon 

membranes in the blotting procedure, by boiling for 5 minutes. 
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Table 4.4 Legionella serogroups and species included in this study* 

____________________________________________________________________________________ 
 

L. pneumophila serogroup 1 AA100 

L. pneumophila serogroup 2 

L. pneumophila serogroup 3 

L. pneumophila serogroup 4 

L. pneumophila serogroup 5 

L. pneumophila serogroup 6 

L. pneumophila serogroup 7 

L. pneumophila serogroup 8 

L. pneumophila serogroup 9 

L. pneumophila serogroup 10 

L. pneumophila serogroup 11 

L. pneumophila serogroup 12 

L. pneumophila serogroup 13 

Legionella longbeachae  

Legionella spiritensis  

Legionella dumoffii 

Legionella gratiana 

Legionella parisensis 

Legionella santicrucis 

Legionella cherrii 

Legionella maceachernii  

Legionella micdadei rivera        

Legionella micdadei tatlock 

Legionella moravica 

Legionella wadsworthii 

       

 

* All strains were obtained from Prof. Yousef Abu Kwaik from the Department of 

Microbiology and Immunolgy, at the University of Kentucky, Lexington, Kentucky, 

U.S.A. 
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4.2.4 Cloning of the L. pneumophila AA100 omp87 gene 

 

Following the successful PCR amplification of the omp87 gene of L. pneumophila, it 

was cloned into the vector pBluescript SKII-. Following the PCR reaction, the amplified 

product was purified using the Promega PCR purification kit (Promega, U.S.A.) to 

remove salts and other impurities that may hinder the activity of enzymes. As the 

omp87a and omp87b primers were designed to include an XbaI restriction site, the PCR 

product could then be digested with XbaI. This was done in a total reaction volume of 20 

μl, at 37°C for 1 hour. Following digestion, the XbaI enzyme in the reaction mixture was 

inactivated by phenol-chloroform treatment. 

The pBluescript SKII- plasmid was digested under the same conditions, also with XbaI. 

In order to prevent self re-ligation, the vector was treated with calf intestinal 

phosphatase (CIP), at a concentration of 0.05 units, for 1 hour at 37°C. 

 

4.2.4.1 DNA ligation 

 

Ligations were performed in the ratio of one vector molecule to 2 insert molecules, and 

one vector molecule to 4 insert molecules. The ligation was performed with 10 U of T4 

DNA Ligase and T4 DNA Ligase buffer (Boehringer Mannheim). The reaction mix was 

made up to 20 μl with sterile Milli-Q water and incubated at 16°C overnight. The 

mixture was then transformed into E. coli DH5α cells. 

 

4.2.4.2 Electrotransformation 

  

Electrocompetent E. coli DH5α cells were transformed with the ligation mixture by 

electrotransformation, using a Gene Pulser apparatus (Bio-Rad Gene PulsarTM), set at 25 

μF and 1.25 kV, with the Pulse Controller set at 200 Ω. Immediately after pulsing 1 ml 

of SOC medium was added. The mixture was then transferred to a 1.5 ml polypropylene 

tube and incubated at 37°C for 1 hour. One hundred μl of this suspension was then 

plated out on LB agar plates, containing X-gal (20 mg/ml) and IPTG (20 mg/ml). The 

agar plates also contained ampicillin, at a concentration of 100 μg/ml. 
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4.2.4.3 PCR amplification of omp87 clones 

 

In order to screen white colonies for the desired plasmid construct, PCR amplification 

was carried out on the colonies. The white colonies were touched with a sterile toothpick 

from the agar plate and were inoculated directly into the reaction mixture, without any 

prior DNA extraction process. The PCR amplification reaction used was essentially 

identical to that used for the amplification of the omp87 gene from L. pneumophila 

(Table 4.1) with the exception of the DNA template. In this case, the 1 μl of DNA was 

substituted for 1 μl of sterile milli-Q water. Primers used for the reaction were the 

pBluescript Universal M13 primers, which amplify the region of the multiple cloning 

site, and therefore the insert. The sequence of these primers is shown in Table 4.3. 

 

4.2.4.4 Restriction digestion of omp87 clones 

 

Following the PCR amplification reaction, DNA from the colonies which displayed the 

expected insert sizes were digested with the restriction enzymes HindIII and XbaI. Three 

hundred ng of plasmid DNA was digested according to the conditions described in 

Chapter 2. The digestion was performed at 37°C for 2 hours. 
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4.3 Results 

 
4.3.1 PCR amplification of the omp87 gene in L. pneumophila 

 

The omp87 gene of L. pneumophila was amplified by PCR. The primers omp87a and 

omp87b amplified a fragment of ~ 2.7 kb, which included the 2.4 kb omp87 gene, and 

300 bp of DNA upstream of the gene. Optimisation of the PCR conditions were required 

in order to obtain the amplified product, and this was achieved mainly by optimisation 

of the primer annealing temperature. A gradient PCR, consisting of a temperature range 

spanning from 54-61°C was used (Figure 4.1). A lower temperature range of 48-51°C 

was also analysed, but this gradient resulted in non-specific binding (results not shown). 

 

 

 

 

        
 

Figure 4.1. Gradient PCR amplification of the L. pneumophila omp87 gene. Lane: 1, 

lambda x PstI marker; Lane 2, negative control sample; Lanes 3-10, amplified product at 

annealing temperatures of 3: 54°C; 4: 55.4°C; 5: 56.3°C; 6: 57.4°C; 7: 58.4°C; 8: 

59.5°C; 9: 61.4°C; 10: 62.1°C. 
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4.3.2 DNA Sequence determination of L. pneumophila omp87 

 

The sequencing performed on the L. pneumophila AA100 omp87 gene showed the gene 

to be ~ 2.4 kb in size. The sequence is shown in Figure 4.2. The sequencing 

chromatograms can be seen in Appendix 3 (a and b). Analysis of this DNA sequence 

was performed through the National Centre for Biotechnology Information (NCBI) 

website, (http://www.ncbi.nlm.nih.gov/). A DNA sequence alignment, performed 

against the published Legionella pneumophila Philadelphia 1 strain, showed a similarity 

match of 98%. This sequence alignment is shown in Figure 4.3.  

The analysis revealed that the DNA sequence encoded a protein of 786 amino acids, 

with a predicted molecular weight of 87 kDa. The protein sequence of Omp87 can be 

seen in Figure 4.4. A comparison of the L. pneumophila AA100 and Philadelphia 1 

Omp87 DNA and protein sequences revealed that although there were 29 DNA base pair 

mismatches between the two sequences, these resulted in only 6 amino acid differences. 

This indicated that the Omp87 genes are highly conserved between these two strains. 

Both the DNA and amino acid sequence of the Omp87 of L. pneumophila AA100 were 

submitted to GenBank (Accession number: DQ657353) 

(www.ncbi.nlm.nih.gov/GenBank). 

A more in depth analysis of this amino acid sequence, using the Expert Protein Analysis 

System (ExPASy), at http://kr.expasy.org revealed that the protein contained a secretory 

signal sequence, of around 44 amino acids in length, situated at the N-terminal region of 

the protein. It was found to have an estimated pI value of 9.66.  In addition, it was also 

predicted to contain a cleavage site positioned between amino acids 25-42. This 

cleavage site determines where the protein is cleaved following translocation within the 

cell. These features are outlined in Figure 4.4. An amino acid comparison was 

performed against a protein sequence database, also through the NCBI website. This 

BLAST analysis revealed a large number of matches with previously identified proteins. 

Table 4.5 summarises some of these matches, and these have been ranked in order of 

their identity % matches.  

The E value, or ‘expected’ value of the match is also included. This E value is a 

parameter which represents the number of times the particular match would be expected 

to occur purely by chance. Therefore, the lower the E-value, and the closer it is to zero, 

the more likely the match is significant, and not purely a chance event. 
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In the case where two matches have the same % identity match, they were then ranked 

according to their E value, with the smaller E value ranked higher.  
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TTTATCTAGAATCCCTATGCTGGATGGCGGTCATCTTTTGTATTATGTCTTGGAAATCAT 
AAGAAGAAAGCCATTATCGGACGGAGTTAAATCTGTCGCGTTCTATTTTGGATTATTACT 
GTTGGTTGCCTTAATGTTTGTTGCTCTTAGTAATGATATATCAAGATTAACCAGTTAGGA 
TTTGGCGAGAGTAATTCTAATTTCTGTATGATTAATGAATGAAATGATGTTTTAGCGACA 
AAGAAACTTGACAGTAGTTTCTAGTTCCTATAAAAGGGTTTCAATTTTTTGTACAATTGA 
ATGGTTTTTAATTTCATAAGTGCGCGTAGTGCTGGACGTAAAATAATAATGAAAAAAGTC 
AGTAATAAATTAATATTAGGTGTTTGTTGTTCTACTCTTTTAGCTTGGTCATCCCAAACC 
TTTTCTTCTGATACCTTTATTGTCAAAGGGATTAGAGTTAACGGATTACAAAGGGTTTCG 
ACAGGTACGGTATTAAACTATATGCCTGTGCAAGTGGGTGAGGAAATCAGTTCCAGCTCA 
ACAGCTCAAATTATCCGCGCTCTCTATGAGACAGGATTTTTCCAGTCCGTTTCGCTTGAA 
CGCCAAGGGAATGTGTTAGTGGTCAATGTGGTAGAGCGAGCAACTATTGGCTCTATTACC 
GTTGTAGGAAATAAGGAAATACCCTCTGATAAAATGAAGGCTTTTCTTAAAGAAATGGGG 
CTGGTCAAAGGCAGAGTATTTCAAAGATCTTCCTTGGAGCGTTTGGAGAAGGAGCTGAAA 
CAGGCCTACACAGCCAGAGGGAAGTATAATTCTCGTATTGAAACTAAAGTAACTCCTCTT 
ACTGAAAATAGAGTAGCCATTAGTATTACTGTATCAGAAGGTCGAGTTTCACGGATTAAA 
GAAATAAAAAAAATGGGTAACCATGATTTTAAAGCAAATGAGTTATTGCCTGAATTGACG 
TTAAGTACAAGCAATCTGTTTACTTATTTTACTAAAAAAGATCAATATTCCAAAGCAGGA 
ATGGATGCTTCTTTAGAAGCATTACGTTCATTTTATTTAGATAGGGGATATTTGAAATTT 
AATGTTGTCTCTTCGCAAGTTTTGCTATCGCCTGATAAAAAAGACGTCTATATCAATATT 
CATATAGAAGAAGGACCTCAATATCATTTCTCAGGTTATGATGGGGTTGGAAAAACGATA 
TTACCTAAAGAAAAAATTGATTCACTGATACAGGTTAAGAAAGGCGATGTTTTTTCTCGT 
AAAAAGGTTACTGAATCCATCTCTGCAATAGGGTTAGCTTTAGGGGATGTAGGATATGGT 
TTTCCCGCGATTAATGCTGAACCTAGAATAGATGAAAATAATAAAACAGTATTTATTACT 
TTTGTAGTGCAGCCGGGTCGTCATGTTTATGTGAGACGTATTAATTTTCATGGTAATACG 
AAGACAGGAGATTATGTTCTACGTAATGTGATTCGTCAGGATGAAGGTGGGCTACTGTCT 
TTACATAACATCAAGGAATCTGAGCGTCAGTTACGAATGCTGGGCTATCTAAAAAATATT 
GATGTCAAAACGACGCCTGTTCCAGGAACCAATAATCAGGTAGATTTGGATGTTAATGTG 
GAAGAAGCTCCTTCAGCAGAAGCAAGCGCATCCATGGGATATGGTACAAACGGTTATCAA 
TTTAATGCATCCGTTAACCAACGCAATTTTATGGGAAGTGGACGTTCCATGGGAGCTGCT 
TTCAATGCAAGTCAATGGGGGCAAGACTACTCTTTTAACTATTATAATCCGTTCTATACC 
GATACTGGGGTAGGCCGGGGAGGAAGCTTATATTATTCAAGGATTGATCCTAAAAATTTA 
AATGTCAGTACATACAGTTCTAATCGCTATGGTGGCGACATCAGCTATAACTTCCCGTTA 
GGTGAGAAAAGCAGCTTTCAATTGGGATATGGTTATCAAGATATCAATATTAAGTCAGTG 
GGTTACGTACTCCCCATAATCAACTTTGTTGCTTTAAACGGTAATCATTTTCAGGAAATA 
AGGTTGACATCCGGTTGGAGTAGAAACAGCTATGATCAAATGCCTTATCCTAACCAGGGA 
TTTAATCAACAAGCTATTGCTATGGTCGCGTTGCCAGCAACATCGCAATCTTTATCTTAC 
TATAAGAGCTCTTATCAGGCGCATTTATATTATCCTCTAACCCGCGGCTGGATTTTTTCT 
GTCCTGGGTAATGTGGGGTACGGAAATACTTTTGATAATTTCGGATTACCCTTTTTTGAA 
AACTACTATGCCGGTGGTCCAGTTCAACCAGGCCAGGTTCGAGGGTACGATAGTTATTCT 
TTAGGCCCGCAAGATAATTTTGGAAATGCAATGGGTGCGAATTTCCTTGTGAATGGAAGT 
GTAGGTTTGATACTACCATACCCATTGAGTCGAGATAATGTAAGAACGACTATTTTTGCT 
GATGCGGGTAATGTATTTGCTTCCGGGACACCTGCTGCTTTACGTGGAACTCCGGCAGGT 
CCGATGCGTTATTCAGCTGGTGTGTCATTAGAATGGCGCTCACCTTTTGGTCCATTGTCT 
TTTAGCTTGGCTAAGGCATTGAATCCACAGCCATTGGATCAGACTCAGCTCTTCCAATTT 
GCTCTTTCCTCAGGTTTTTAGAGGTATTATGGATTAGAGTAAGCAGATTTTAGTATTTTA 
AAAACTAGTGCTGTACATATCGCAACCTCTAGAAATT 
 

Figure 4.2. DNA sequence of the L. pneumophila omp87 gene. The highlighted  

base pairs indicate the start of the gene (ATG) and the end of the gene (TAG). 
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ATGGTTTTTAATTTCATAAGTGCGCGTAGTGCTGGACGTAAAATAATAATGAAAAAAGTCAGTAATAAATTAAT    74                         
||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
ATGGTTTTTAACTTCATAAGTGCGCGTAGTGCTGGACGTAAAATAATAATGAAAAAAGTCAGTAATAAATTAAT   
 
ATTAGGTGTTTGTTGTTCTACTCTTTTAGCTTGGTCATCCCAAACCTTTTCTTCTGATACCTTTATTGTCAAAG    148  
||||||||||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||| 
ATTAGGTGTTTGTTGTTCTACTCTTTTAGCTTGGTCATCCCAATCCTTTTCTTCTGATACCTTTATTGTCAAAG   
 
GGATTAGAGTTAACGGATTACAAAGGGTTTCGACAGGTACGGTATTAAACTATATGCCTGTGCAAGTGGGTGAG    222             
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
GGATTAGAGTTAACGGATTACAAAGGGTTTCGACAGGTACGGTATTAAACTATATGCCTGTGCAAGTGGGTGAG   
 
GAAATCAGTTCCAGCTCAACAGCTCAAATTATCCGCGCTCTCTATGAGACAGGATTTTTCCAGTCCGTTTCGCT    296                
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
GAAATCAGTTCCAGCTCAACAGCTCAAATTATCCGCGCTCTCTATGAGACAGGATTTTTCCAGTCCGTTTCGCT   
 
TGAACGCCAAGGGAATGTGTTAGTGGTCAATGTGGTAGAGCGAGCAACTATTGGCTCTATTACCGTTGTAGGAA    370                      
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
TGAACGCCAAGGGAATGTGTTAGTGGTCAATGTGGTAGAGCGAGCAACTATTGGCTCTATTACCGTTGTAGGAA   
 
ATAAGGAAATACCCTCTGATAAAATGAAGGCTTTTCTTAAAGAAATGGGGCTGGTCAAAGGCAGAGTATTTCAA    444            
||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
ATAAGGAAATACCTTCTGATAAAATGAAGGCTTTTCTTAAAGAAATGGGGCTGGTCAAAGGCAGAGTATTTCAA   
 
AGATCTTCCTTGGAGCGTTTGGAGAAGGAGCTGAAACAGGCCTACACAGCCAGAGGGAAGTATAATTCTCGTAT    518                         
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
AGATCTTCCTTGGAGCGTTTGGAGAAGGAGCTGAAACAGGCCTACACAGCCAGAGGGAAGTATAATTCTCGTAT 
 
TGAAACTAAAGTAACTCCTCTTACTGAAAATAGAGTAGCCATTAGTATTACTGTATCAGAAGGTCGAGTTTCAC    592          
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   
TGAAACTAAAGTAACTCCTCTTACTGAAAATAGAGTAGCCATTAGTATTACTGTATCAGAAGGTCGAGTTTCAC   
   
GGATTAAAGAAATAAAAAAAATGGGTAACCATGATTTTAAAGCAAATGAGTTATTGCCTGAATTGACGTTAAGT    666             
|||||||||||||||||| ||| ||||||||||||||||||||||||||||||||||||||||||||||||||| 
GGATTAAAGAAATAAAAATAATTGGTAACCATGATTTTAAAGCAAATGAGTTATTGCCTGAATTGACGTTAAGT 
 
ACAAGCAATCTGTTTACTTATTTTACTAAAAAAGATCAATATTCCAAAGCAGGAATGGATGCTTCTTTAGAAGC    740 
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
ACAAGCAATCTGTTTACTTATTTTACTAAAAAAGATCAATATTCCAAAGCAGGAATGGATGCTTCTTTAGAAGC   
 
ATTACGTTCATTTTATTTAGATAGGGGATATTTGAAATTTAATGTTGTCTCTTCGCAAGTTTTGCTATCGCCTG    814          
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
ATTACGTTCATTTTATTTAGATAGGGGATATTTGAAATTTAATGTTGTCTCTTCGCAAGTTTTGCTATCGCCTG   
 
ATAAAAAAGACGTCTATATCAATATTCATATAGAAGAAGGACCTCAATATCATTTCTCAGGTTATGATGGGGTT    888                
|||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||| |||| 
ATAAAAAAGACGTCTACATCAATATTCATATAGAAGAAGGACCTCAATATCATTTCTCAGGTTATGATGTGGTT   
 
GGAAAAACGATATTACCTAAAGAAAAAATTGATTCACTGATACAGGTTAAGAAAGGCGATGTTTTTTCTCGTAA    962 
||||||||||||||||||||||||||||||||||||||||| |||||||||||||||||| ||||||||||||| 
GGAAAAACGATATTACCTAAAGAAAAAATTGATTCACTGATCCAGGTTAAGAAAGGCGATATTTTTTCTCGTAA   
 
AAAGGTTACTGAATCCATCTCTGCAATAGGGTTAGCTTTAGGGGATGTAGGATATGGTTTTCCCGCGATTAATG    1036                        
 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
GAAGGTTACTGAATCCATCTCTGCAATAGGGTTAGCTTTAGGGGATGTAGGATATGGTTTTCCCGCGATTAATG                               
   
CTGAACCTAGAATAGATGAAAATAATAAAACAGTATTTATTACTTTTGTAGTGCAGCCGGGTCGTCATGTTTAT    1110           
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| 
CTGAACCTAGAATAGATGAAAATAATAAAACAGTATTTATTACTTTTGTAGTGCAGCCGGGCCGTCATGTTTAT   
 
GTGAGACGTATTAATTTTCATGGTAATACGAAGACAGGAGATTATGTTCTACGTAATGTGATTCGTCAGGATGA    1184                        
|||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||| 
GTGAGACGTATTAATTTTCATGGTAATACGAAGACAGGAGATTATGTTCTGCGTAATGTGATTCGTCAGGATGA   
 
AGGTGGGCTACTGTCTTTACATAACATCAAGGAATCTGAGCGTCAGTTACGAATGCTGGGCTATCTAAAAAATA    1258                        
||||||  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
AGGTGGTTTACTGTCTTTACATAACATCAAGGAATCTGAGCGTCAGTTACGAATGCTGGGCTATCTAAAAAATA   
 
TTGATGTCAAAACGACGCCTGTTCCAGGAACCAATAATCAGGTAGATTTGGATGTTAATGTGGAAGAAGCTCCT    1332             
||||||||||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||| 
TTGATGTCAAAACGACGCCTGTTCCAGGAACCAATAATCAGGTCGATTTGGATGTTAATGTGGAAGAAGCTCCT   

 
TCAGCAGAAGCAAGCGCATCCATGGGATATGGTACAAACGGTTATCAATTTAATGCATCCGTTAACCAACGCAA     1406                       
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
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TCAGCAGAAGCAAGCGCATCCATGGGATATGGTACAAACGGTTATCAATTTAATGCATCCGTTAACCAACGCAA   
            
TTTTATGGGAAGTGGACGTTCCATGGGAGCTGCTTTCAATGCAAGTCAATGGGGGCAAGACTACTCTTTTAACT     1480                     
||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||| 
TTTTATGGGAAGTGGACGTTCCATGGGGGCTGCTTTCAATGCAAGTCAATGGGGGCAAGACTACTCTTTTAACT   
 
ATTATAATCCGTTCTATACCGATACTGGGGTAGGCCGGGGAGGAAGCTTATATTATTCAAGGATTGATCCTAAA     1554           
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
ATTATAATCCGTTCTATACCGATACTGGGGTAGGCCGGGGAGGAAGCTTATATTATTCAAGGATTGATCCTAAA   
 
AATTTAAATGTCAGTACATACAGTTCTAATCGCTATGGTGGCGACATCAGCTATAACTTCCCGTTAGGTGAGAA     1628          
||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
AATTTAAATGTTAGTACATACAGTTCTAATCGCTATGGTGGCGACATCAGCTATAACTTCCCGTTAGGTGAGAA  
 
AAGCAGCTTTCAATTGGGATATGGTTATCAAGATATCAATATTAAGTCAGTGGGTTACGTACTCCCCATAATCA     1702                       
|||||| |||||||||||||||||||||||||||||||||||||||||||| |||||||||||||||||||||| 
AAGCAGTTTTCAATTGGGATATGGTTATCAAGATATCAATATTAAGTCAGTAGGTTACGTACTCCCCATAATCA   
 
ACTTTGTTGCTTTAAACGGTAATCATTTTCAGGAAATAAGGTTGACATCCGGTTGGAGTAGAAACAGCTATGAT     1776                       
||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||  
ACTTTGTTGCTTTAAACGGCAATCATTTTCAGGAAATAAGGTTGACATCCGGTTGGAGTAGAAACAGCTATGAT   
 
CAAATGCCTTATCCTAACCAGGGATTTAATCAACAAGCTATTGCTATGGTCGCGTTGCCAGCAACATCGCAATC     1850                       
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
CAAATGCCTTATCCTAACCAGGGATTTAATCAACAAGCTATTGCTATGGTCGCGTTGCCAGCAACATCGCAATC   
 
TTTATCTTACTATAAGAGCTCTTATCAGGCGCATTTATATTATCCTCTAACCCGCGGCTGGATTTTTTCTGTCC     1924            
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
TCTATCTTACTATAAGAGCTCTTATCAGGCGCATTTATATTATCCTCTAACCCGCGGCTGGATTTTTTCTGTCC                      
 
TGGGTAATGTGGGGTACGGAAATACTTTTGATAATTTCGGATTACCCTTTTTTGAAAACTACTATGCCGGTGGT     1998             
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||||| 
TGGGTAATGTGGGGTACGGAAATACTTTTGATAATTTCGGATTACCCTTTTTTGAAAACTACTATGCGGGTGGT   
 
CCAGTTCAACCAGGCCAGGTTCGAGGGTACGATAGTTATTCTTTAGGCCCGCAAGATAATTTTGGAAATGCAAT     2072           
|||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||| 
CCAGTTCAACCAGGCCAGGTTCGAGGATACGATAGTTATTCTTTAGGCCCGCAAGATAATTTTGGAAATGCAAT 
                                                              
GGGTGCGAATTTCCTTGTGAATGGAAGTGTAGGTTTGATACTACCATACCCATTGAGTCGAGATAATGTAAGAA     2146             
|||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||| 
GGGTGCGAATTTCCTTGTGAATGGAAGTGTAGGTCTGATACTACCATACCCATTGAGTCGAGATAATGTAAGAA   
 
CGACTATTTTTGCTGATGCGGGTAATGTATTTGCTTCCGGGACACCTGCTGCTTTACGTGGAACTCCGGCAGGT     2220                       
||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||| 
CGACTATTTTTGCTGATGCGGGTAATGTATTTGCTTCCGGGACACCTCCTGCTTTACGTGGAACTCCGGCAGGT   
 
CCGATGCGTTATTCAGCTGGTGTGTCATTAGAATGGCGCTCACCTTTTGGTCCATTGTCTTTTAGCTTGGCTAA     2294                       
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
CCGATGCGTTATTCAGCTGGTGTGTCATTAGAATGGCGCTCACCTTTTGGTCCATTGTCTTTTAGCTTGGCTAA   
 
GGCATTGAATCCACAGCCATTGGATCAGACTCAGCTCTTCCAATTTGCTCTTTCCTCAGGTTTTTAGAGGTATT     2368       
|||||||||||||||||| |||||||||||||| ||||||||||||||||||||||| |||||||||||||||| 
GGCATTGAATCCACAGCCTTTGGATCAGACTCAACTCTTCCAATTTGCTCTTTCCTCGGGTTTTTAGAGGTATT                                
   
ATGGATTAGAGTAAGCAGATTTTAGTATTTTA                                               2400                       
|||||||||||||||| |||||||||||||||  
ATGGATTAGAGTAAGCGGATTTTAGTATTTTA   
 
 
 
 

 

Figure 4.3. DNA sequence alignment of L. pneumophila AA100 omp87 and the 

published L. pneumophila Philadelphia 1 strain (from NCBI database).  

Base pair match= 2371/2400 (98%), Gaps = 0/2400 (0%) 
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MVFNFISARSAGRKIIMKKVSNKLILGVCCSTLLAWSSQTFSSDTFIVKG

IRVNGLQRVSTGTVLNYMPVQVGEEISSSSTAQIIRALYETGFFQSVSLE

RQGNVLVVNVVERATIGSITVVGNKEIPSDKMKAFLKEMGLVKGRVFQRS

SLERLEKELKQAYTARGKYNSRIETKVTPLTENRVAISITVSEGRVSRIK

EIKKMGNHDFKANELLPELTLSTSNLFTYFTKKDQYSKAGMDASLEALRS

FYLDRGYLKFNVVSSQVLLSPDKKDVYINIHIEEGPQYHFSGYDGVGKTI

LPKEKIDSLIQVKKGDVFSRKKVTESISAIGLALGDVGYGFPAINAEPRI

DENNKTVFITFVVQPGRHVYVRRINFHGNTKTGDYVLRNVIRQDEGGLLS

LHNIKESERQLRMLGYLKNIDVKTTPVPGTNNQVDLDVNVEEAPSAEASA

SMGYGTNGYQFNASVNQRNFMGSGRSMGAAFNASQWGQDYSFNYYNPFYT

DTGVGRGGSLYYSRIDPKNLNVSTYSSNRYGGDISYNFPLGEKSSFQLGY

GYQDINIKSVGYVLPIINFVALNGNHFQEIRLTSGWSRNSYDQMPYPNQG

FNQQAIAMVALPATSQSLSYYKSSYQAHLYYPLTRGWIFSVLGNVGYGNT

FDNFGLPFFENYYAGGPVQPGQVRGYDSYSLGPQDNFGNAMGANFLVNGS

VGLILPYPLSRDNVRTTIFADAGNVFASGTPAALRGTPAGPMRYSAGVSL

EWRSPFGPLSFSLAKALNPQPLDQTQLFQFALSSGF 

 

 

 

 

 

Figure 4.4. Protein sequence of the L. pneumophila AA100 Omp87 protein. The 

protein consists of 786 amino acids. The pink shaded box represents the secretory signal 

sequence, which is situated at the N-terminal region and has an estimated length of 44 

amino acids. The purple shaded box represents the predicted region of the cleavage site, 

which is situated between amino acids 25-42.  

     C- Terminal Region 

     N- Terminal Region 
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Table 4.5. Summary of amino acid BLAST analysis results. The table shows protein 

matches with similar amino acid sequences to L. pneumophila AA100 Omp87. The % 

identity match, and the E value of the matches are also included. 

NCBI 

Reference 

no. 

Bacterial species/strain Protein Match 

Identity 

(% 

Match) 

E value

002942.5 

Legionella pneumophila 

subsp. pneumophila str. 

Philadelphia 1, 

 

Outer membrane 

protein 

 

770/786 

(98%) 

0.0 

 

006369.1 
Legionella pneumophila 

str. Lens 

Hypothetical 

protein 

 

770/786 

(97%) 

0.0 

 

007484.1 
Nitrosococcus oceani ATCC 

19707 

 

Outer membrane 

protein 

 

328/778 

(42%) 
5e-162 

007614.1 

Nitrosospira multiformis 

ATCC 25196 

 

   Surface antigen 

(D15) 

302/756 

(39%) 
3e-142 

007404.1 
Thiobacillus 

denitrificans ATCC 25259 

Surface antigen 

(D15) 

297/747 

(39%) 
2e-141 

007947.1 
Methylobacillus 

flagellatus KT 

Surface antigen 

(D15) 

296/784 

(37%) 
3e-143 

004757.1 
Nitrosomonas europaea 

ATCC 19718 

 

Bacterial surface 

antigen (D15) 

280/756 

(37%) 
2e-134 

AABQ070- 

00001.1 

Pseudomonas aeruginosa 

C3719 

Outer membrane 

protein/protective 

antigen OMA87 

291/780 

(37%) 

3e-130 
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NCBI 

Reference 

no. 

Bacterial species/strain Protein Match 

Identity 

(% 

Match) 

E value

N007005.1 
Pseudomonas syringae pv. 

syringae B728a 

Surface antigen 

(D15):Surface 

antigen variable 

number 

291/804 

(36%) 
5e-132 

AAAL020-

00004.1 

Xylella fastidiosa Dixon 

ctg90 

 

Surface antigen 

(D15):Surface 

antigen variable 

number 

278/771 

(36%) 

 

2e-129 

 

005773.3 
Pseudomonas syringae pv. 

phaseolicola 1448A 

 

Outer membrane 

protein, OMP85 

family 

286/798 

(35%) 
3e-130 

004129.6| 

 

Pseudomonas fluorescens  

Pf-5 

 

Outer membrane 

protein, OMP85 

family 

289/809 

(35%) 
2e-130 

 

004459.1 

 

Vibrio vulnificus CMCP6 
Outer membrane 

surface antigen 

278/807 

(34%) 

 

9e-118 

 

AAKG01-

000001.1 
Vibrio cholerae O395 

Outer membrane 

protein/protective 

antigen OMA87 

271/813 

(33%) 
3e-114 

AALB010-

00001.1 

Shewanella putrefaciens 

CN-32 ctg164 

surface antigen 

(D15):Surface 

antigen  

268/832 

(32%) 
2e-113 



Chapter IV – Omp87 Characterisation and Analysis 

 

141  

4.3.3 Distribution studies of the  omp87 gene 

 

4.3.3.1 PCR amplification of the omp87 gene in all Legionella strains 

 

PCR amplification of the omp87 gene was successful in a number of Legionella strains. 

The gene was amplified in all Legionella serogroups 1-13, except serogroups 2, 3, 4, 5 

and 8. Results of the amplification of the majority of strains can be seen in Figure 4.5, 

displaying the expected 1.2 kb amplified product. All PCR reactions were repeated 

multiple times. This resulted in an amplification product for serogroup 2, whilst 

serogroups 3, 4, 5 and 8 remained negative.  

Overall therefore, the expected amplification of the omp87 gene was shown in 

L. pneumophila serogroups 1, 2, 6, 7, 9, 10, 11, 12 and 13. 

The omp87 gene of other Legionella species was then amplified by PCR. These included 

L. longbeachae, L. spiritensis, L. dumoffii, L. gratiana, L. parisensis, L. santicrucis, L. 

cherrii, L. maceachernii, L. moravica, L. micdadei rivera, L. micdadei tatlock and L. 

wadsworthii. Results of the PCR amplification can be seen in Figure 4.6. The PCR 

experiment was repeated 3 times. Amplification products were only observed in the 

species L. longbeachae and L. gratiana.  
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Figure 4.5. PCR amplification of the omp87 gene in Legionella pneumophila 

serogroups 1-13. Lane: 1, lambda x PstI marker; Lane 2, negative control; Lane 3, LP1; 

Lane 4, LP2; Lane 5, LP3; Lane 6, LP4; Lane 7, LP5; Lane 8, LP6; Lane 9; LP9; Lane 

10, LP10; Lane 11, LP11; Lane12, LP12; Lane 13, LP13. (LP serogroups 7 and 8 were 

not included in this amplification reaction).  

            1     2     3     4    5     6     7      8    9     10   11   12     13 
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11.5 kb 
 
     5 kb 
 
 
  1.7 kb 
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Figure 4.6 PCR amplification of the omp87 gene in other Legionella species. Again, 

the 1.2 kb amplified product is evident. Lane 1, lambda x PstI marker; Lane 2, negative 

control; Lane 3, positive control L. pneumophila 1; Lanes 4-15, L. longbeachae, L. 

spiritensis, L. dumoffii, L. gratiana, L. parisensis, L. santicrucis, L. cherrii, L. 

maceachernii, L. moravica, L. micdadei rivera, L. micdadei tatlock and L. wadsworthii. 

 

 

4.3.3.2 Southern Blotting of the L. pneumophila AA100 omp87 gene 

 

4.3.3.2.1 DNA Probe: Design and labelling with DIG 

 

The DNA probe used for the Southern blotting study was designed based on the same 

primer pair used for the amplification of part of the omp87 gene in all Legionella 

species. A fragment of 1.2 kb was amplified from L. pneumophila AA100. Several 

samples were combined and purified so as to obtain a higher concentration of DNA for 

production of the probe. The PCR amplification of the L. pneumophila omp87 gene for 

probe production can be seen in Figure 4.7. 

 1     2      3     4      5     6     7     8     9    10   11   12   13   14    15 

11.5 kb 
 
  5 kb 
 
 
1.2 kb 
 
0.8 kb 
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Figure 4.7.  PCR amplification of the 1.2 kb fragment of the L. pneumophila AA100 

omp87 gene for the Southern blotting DNA probe. This band was excised from the 

gel, purified, and labelled with DIG using the DIG DNA Labelling and Detection kit 

(Roche Molecular Biochemicals). 

 

 

4.3.3.2.2 Southern blotting 

 

The Southern blotting reaction was performed under moderate stringency conditions, on 

all L. pneumophila serogroups 1-13, even though the majority of these had already 

reacted positively by PCR for the omp87 gene. In addition, other Legionella species 

were included in this experiment. The results of the Southern blotting can be seen in 

Figures 4.8 and 4.9 

 1.2 kb 
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Figure 4.8. Southern blotting reaction of L. pneumophila serogroups 1-13 and other 

Legionella species.  Lanes: 1-13: L. pneumophila serogroups 1-13 respectively; Lane 

14: L. spiritensis; Lane 15: L. dumoffii; Lane 16: L. gratiana; Lane 17: L. cherii; Lane 

18: L. micdadei tatlock. 
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Figure 4.9 Southern blotting reaction of Legionella species.  Lane 1: L. wadsworthii; 

Lane 2: L. santicrucis; Lane 3: L. maceachernii; Lane 4: L. moravica, Lane 5: L. cherrii; 

Lane 6: L. parisensis; Lane 7: L. spiritensis; Lane 8: L. santicrucis; Lane 9: L. micdadei 

rivera. 

 

 

Figure 4.9 shows that all samples reacted with the probe, except L. pneumophila 

serogroup 3 (lane 3), L. dumoffii; (lane 15) and L. gratiana (lane 16).  Figure 4.10 shows 

that all samples reacted with the probe, although the amount of reactivity varies between 

species. 

 

 

4.3.4 Cloning of the L. pneumophila AA100 omp87 gene 

 

Following the elecrotransformation and growing of colonies, the blue/white screening 

principle was used to select colonies which had obtained the omp87 gene fragment. 

Seven white colonies (T1-T7) were firstly screened by PCR to determine which of these 

harboured the cloned fragment. The pBluescript Universal M13 primers were used for 

11.5 kb 
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the amplification reaction. These primers amplify the multiple cloning site (MCS) region 

of the plasmids. The vectors representative of these clones can be seen in Figures 4.10a 

and b.  The results from the amplification reaction can be seen in Figure 4.11. 
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                                                                        (b) 

 

Figure 4.10. pBluescript vector harbouring the 2.7 kb amplified fragment 

containing the L. pneumophila AA100 omp87 gene in a) the forward orientation 

and b) the reverse orientation. Genes are indicated by red arrows. Amp: Ampicillin 

gene; Omp87: Omp87 gene; LacZ: LacZ gene. 
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Figure 4.11 PCR Amplification reaction of the omp87 gene clones. Lane 1: lambda x 

PstI marker; Lanes 2-8: White colonies T1 - T7 selected for screening of omp87 clones. 

 

 

Following the PCR reaction, it was observed that 5 of the 7 samples amplified the 

expected product size of ~2.9 kb (T1, T2, T3, T5 and T7). This size includes the inserted 

omp87 gene fragment (~2.7 kb) plus the ~ 200-300 bp amplified from the plasmid’s 

multiple cloning site. The T6 clone (lane 7) appeared to contain the 2.9 kb insert, but 

also contained an additional band of around 300 bp. It was predicted that this sample 

may have included both a white and a blue colony, hence producing the observed 

~ 2.9 kb 

~ 0.3 kb 
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banding pattern. DNA from the 5 positive clones were then digested with restriction 

enzymes to determine the orientation of the insert. Cells were therefore re-grown, and 

plasmid minipreps were performed in order to isolate the pBluescript plasmid from the 

cells. Following this, plasmids were digested with the appropriate enzymes and 

digestion products were analysed by agarose gel electrophoresis. Results of the 

restriction digestion of each of the clones is shown in Figure 4.13. 

 

 

 

 

 
 

Figure 4.12. Restriction digest pattern of omp87 clones. Lane 1: lambda x PstI 

marker; Lanes 2-6: Plasmids isolated from transformants T1, T2, T3, T5 and T7 digested 

with XbaI; Lanes 8-12: Plasmids isolated from transformants T1, T2, T3, T5 and T7 

digested with HindIII; Lane 13: lambda x PstI marker. 

 

DNA from clones digested with XbaI were expected to produce the following fragment 

sizes: 

Forward orientation: 2.7 kb and 2.9 kb 

Reverse orientation: 2.7 kb and 2.9 kb 

DNA from clones digested with HindIII, however, were expected to produce the 

following fragment sizes: 

Forward orientation:  4.7 kb and 0.9 kb 

Reverse orientation:  3.8 kb and 1.8 kb 
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The HindIII enzyme therefore produces a differential banding pattern which enables for 

the determination of insert orientation. As seen from the gel in Figure 4.12, Lanes 2-6, 

digested with XbaI do not give an indication of insert orientation. Lanes 8-12 however, 

display a difference in banding size. Lanes 8-10 show the predicted banding pattern for 

inserts in the reverse orientation. Lanes 11 and 12 however, (samples 4 and 5) appeared 

partially undigested, and were therefore repeated. 

The repeated restriction digest was performed using the enzymes BglII and XhoI. This 

was a double digestion, using both enzymes simultaneously. This reaction was again 

performed in a 20 μl reaction volume. The sizes of the inserts expected using this 

restriction enzyme combination  are as follows: 

Forward orientation: 2 kb and 3.6 kb. 

Reverse orientation: 4.8 kb and 0.8 kb 

Results of the restriction digestion are shown in Figure 4.13. 

 

 

 

 

                                                          
 

 

Figure 4.13.  Restriction digest of partially digested clones 4 and 5.  Lane 1: lambda 

x PstI marker; Lane 2: omp87 clone 4 x BglII and XhoI; Lane 3: omp87 clone 5 x BglII 

and XhoI. 
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As can be seen from Figure 4.14, the plasmid in lane 2 is in the reverse orientation, as 

the digestion pattern revealed the expected product sizes of 4.8 kb and 0.8 kb. The clone 

in lane 3 revealed some bands of the sizes expected from a forward orientation insert, 

but also contained several other bands. Among these, was the 2.9 kb fragment indicative 

of an empty pBluescript vector. This indicated that the clone was indeed a mixture of 

both a forward orientation insert, and an empty pBluescript vector. In order to separate 

out the successful clone, the mixture was re-grown and again plated out on agar media.  

Due to the low success of clones with inserts in the forward orientation, it was thought 

that this may be due to the high stress exerted on the cells by the expression of the entire 

omp87 gene. The cells were therefore grown without the addition of the inducer IPTG, 

so as to minimise the stress on the cells and increase the likelihood of recovering a 

plasmid with the omp87 gene in the forward orientation. Following re-growth, colonies 

were again harvested, and the isolated plasmids were again digested with BglII and 

XhoI. Results of the digestion are shown in Figure 4.14. 

 

 

 

    
 

Figure 4.14. Restriction digestion of clones with BglII and XhoI. Lane 1: lambda x 

PstI marker; Lanes 2-6: omp87 clones with forward orientation inserts. 
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The digested clones were found to contain the predicted sizes of clones with inserts in 

the forward orientation. These clones were therefore used for further experiments. 
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4.4 Discussion 

 

Sequence analysis performed on the omp87 DNA sequence of L. pneumophila AA100, 

showed that this gene was 98% identical to the publicly available genome sequence of 

Legionella pneumophila subsp. pneumophila strain Philadelphia 1.  

Comparison of the amino acid sequence of the L. pneumophila AA100 Omp87 with 

proteins in the Genbank database, showed that the protein was similar to outer 

membrane proteins, particularly belonging to the Omp85 family, of numerous other 

organisms. These included Nitrosococcus oceani (42% similarity), Nitrosospira 

multiformis (39% similarity) and Thiobacillus denitrificans (39% similarity). 

 

The Omp87 protein was found to be 786 amino acids (87 kDa) in size, and was 

predicted to contain a secretory signal sequence of around 44 amino acids in length, 

situated at the N-terminal region of the protein. It was also predicted to contain a 

cleavage site, situated between amino acids 25-42, also at the N-terminal end. These 

findings were similar to those of Manning et al (1998), who characterised the Omp85 of 

N. gonorrhoea and N. meningitidis. They found that the Omp85 of these organisms was 

792 amino acids (87 kDa) in size, and contained a secretory signal at the N-terminal end, 

with a cleavage site at around 60 amino acids from the protein N-terminal end. 

Similarly, characterisation of the D15 outer membrane protein, also belonging to the 

Omp85 family, of H. influenzae by Flack et al (1995), found that the protein was 797 

amino acids (85kDa) in size and contained a secretory signal at the N-terminal end of 

around 19 amino acids, with a predicted cleavage site at the end of this region, between 

amino acids 19 and 20. 

 

The distribution studies performed on the gene revealed that the omp87 gene was 

present in most, but not all, serogroups and species of Legionella. From these results, 

however, we can not conclude that the gene is not present in some strains. Sequence 

variability will play a large role in the PCR and the Southern blotting reactions. Small 

variations at the locations of primer binding in the sequence will lead to false negative 

PCR reactions, and sequence variability, together with stringency conditions, can alter 

Southern blotting results. Also, the quality of the genomic DNA digestion proved to be 

another critical parameter.  If DNA-ases are present in the DNA samples it will result in 
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degradation of the DNA leading to false negative results. Insufficient DNA blotted onto 

the nylon membrane can also lead to false negative reactions.  

 

Several differences between the PCR and Southern blotting results were seen. 

Interestingly, the species L. gratiana was found to be positive by PCR, displaying the 

1.2 kb fragment, but was one of the few samples which was not reactive by Southern 

blotting. This indicated that samples must be confirmed with numerous experiments 

before they can be explicitly labeled positive or negative, as many factors may interfere 

with, and hinder results. 

The Southern blotting revealed that some Legionella species showed a similar banding 

pattern, however many showed different banding patterns that were unique. Some of the 

L. pneumophila serogroups 1-13 showed very similar patterns, which were characteristic 

of L. pneumophila serogroup 1, for which the DNA probe was designed. The 

L. pneumophila serogroups 1-13 are believed to be genetically closely related, hence 

would be expected to show a similar banding pattern.  

 

Based partly on the L. pneumophila serogroup 1 AA100 strain used in this study, and the 

published L. pneumophila subsp. pneumophila strain Philadelphia 1 DNA sequence, the 

sizes of the expected fragments were calculated. However, the actual fragment sizes 

observed in the Southern blotting do not entirely correlate with the calculated ones. This 

is most likely due to the slight variations in the DNA sequence of the reference strain 

(L. pneumophila subsp. pneumophila strain Philadelphia 1) and the strain used in this 

experiment. This seems likely as the fragments obtained still match partially with the 

predicted HindIII restriction fragments. Small differences in DNA sequence are 

sufficient to alter the genomic DNA restriction digest pattern of the sample, which will 

alter the sizes of the fragments reacting with the probe (Lodish et al, 2004). 

 

The main aims of the Southern blotting and PCR reactions were to analyse the 

distribution of the gene, and determine if its presence throughout the Legionella genus 

was widespread. The variations in banding patterns observed in the Southern blotting are 

therefore not as important as the fact that there is reactivity with almost all strains. These 

results therefore gave a good indication that the omp87 gene indeed appears to be 

present in most Legionella serogroups and species. Further testing would be required on 

the negative strains in order to definitively determine the presence or absence of the 
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gene. Lowering the stringency conditions of the Southern blot would also probably 

result in more positive reactions.  

 

Cloning of the L. pneumophila AA100 omp87 gene proved to be quite laborious, and 

obtaining a clone with the insert in the forward orientation was difficult. Numerous 

clones were obtained with their insert in the reverse orientation, but only a mixed colony 

(one containing an empty vector and one containing the vector with insert) was found to 

have a forwardly inserted omp87 gene. 

The complete cloned omp87 gene may have placed significant stress on the cell. When 

IPTG was added to plates during the blue/white screening process, this enhanced the 

expression of the lacZ promoter, and hence expression of the omp87 gene insert. This 

may then have been too strenuous for the cell. The entire omp87 gene was cloned so that 

it also contained the DNA encoding for the secretory signal sequence of the protein. 

This sequence therefore may lead to the protein’s translocation to another site within the 

cell, following protein translation and processing. The Omp87 is an outer membrane 

protein, therefore meaning that its translocation would be to the outer membrane of the 

bacterial cell. An accumulation of too many proteins in the outer membrane of the cell 

would most likely have a detrimental effect on the cell, and would probably therefore 

have a negative impact on cell propagation and survival. Mitchison et al, (2000) also had 

difficulty cloning the entire oma87 gene of Pasteurella multocida, and resorted to 

cloning shorter fragments of the gene, despite several attempts, and the use of several 

different cloning vectors.  

Re-growing the mixed colony containing the L. pneumophila omp87 gene on plates 

without IPTG may perhaps have been the critical element in obtaining the clone with the 

forward insert, as there would not have been any induction and over-expression of the 

gene, besides the normal or ‘leaky’ expression that is to be expected. The mixed growth 

would likely have reduced the amount of IPTG available to the clone carrying the 

construct with the omp87 gene in the forward orientation. 

By growing the colonies on plates without IPTG, the blue-white screening tool was 

therefore not available to aid with screening of colonies. This was not a problem, 

however, and simply meant that more colonies needed to be screened, and that several of 

these colonies were found to contain the empty pBluescript plasmid. 

Another possibility may have been to clone part of the omp87 gene, omitting the 

secretory signal sequence. In this way, the majority of the gene would be present, but the 
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lack of signal peptide sequence would prevent export of the protein to the outer 

membrane of the cell, thus reducing the stress placed on the cell, due to protein 

accumulation in the cells outer membrane. This approach may have been an option and 

would have been undertaken if this cloning attempt had not been successful. 

The omp87 construct produced in this chapter will be utilised in Chapter 5 for 

mutagenesis studies of the L. pneumophila omp87 gene. 



 

158  

 

CHAPTER V  

 

 

 

 
 

 

 

Mutagenesis of the 

 

Legionella pneumophila 

 

omp87 gene 
 

 Chapter V – Mutagenesis of the L. pneumophila Omp87 



Chapter V – Omp87 Mutagenesis 

 

159  

5. Introduction 

 
The Omp87 protein is believed to be involved in lipid and protein transport to the outer 

membrane of the cell. Deletion of the gene in other organisms has resulted in the 

depletion of lipopolysaccharides and phospholipids from the outer membrane of the 

bacterial cell, and a corresponding increase and accumulation of these lipids in the inner 

membrane of the cell (Genevrois et al 2003). 

 

Mutagenesis has, for quite some time, been a common and effective method for studying 

the function of genes. The particular gene of interest can be inactivated by one of several 

methods, including insertional inactivation or point mutations, and the effect this has on 

the host organism can be analysed. This often gives a great deal of insight into the most 

likely function of the gene and its protein product (Salyers and Whitt, 2002). 

 

Following PCR amplification, distribution studies, and cloning of the L. pneumophila 

omp87 gene in chapter 4, it was decided that understanding the function of the Omp87 

protein would be an important and fundamental addition to the overall knowledge of this 

novel L. pneumophila protein. 
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5.1 Outline of this chapter 

 

The work undertaken in this chapter describes how the knock-out mutagenesis was 

performed on the L. pneumophila omp87 gene, through the insertion of a kanamycin-

resistance cassette. The gene is firstly inactivated in the pAOFIA pBluescript construct 

described in chapter 4. The construct will then be amplified and reintroduced into 

Legionella through electrotransformation.  

Through homologous recombination a double cross-over event should take place, 

resulting in the replacement of the intact chromosomal omp87 gene with the introduced 

inactivated omp87 gene. This should result in a L. pneumophila strain without a 

functional omp87 gene. By studying the phenotype of this mutant strain, an insight into 

the function of the omp87 gene might be obtained. 
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5.2 Materials and Methods 

 
5.2.1 Inactivation of the L. pneumophila FW02/001 omp87 gene in pBluescript 

SKII(-) 

 

A non-polar kanamycin resistance gene (kanR) isolated from the plasmid pFD666 was 

used to inactivate the omp87 gene present in the pAOFIA construct, made in chapter 4, 

by insertional inactivation. The pFD666 plasmid was kindly donated by Dr. Ryszard 

Brzezinski, from the University De Sherbrook, Quebec, Canada. 

 

5.2.1.1 PCR amplification of the pFD666 plasmid kanamycin resistance gene 

 

In order to knock-out the omp87 gene, the kanR gene used for the disruption was firstly 

amplified by PCR from pFD666. The plasmid was supplied as a purified DNA sample, 

and was therefore firstly electroporated into E. coli DH5α cells for propagation (results 

not shown). The plasmid map of pFD666 is shown in Figure 5.1 

 

5.2.1.1.1 Primer design 

 

The primers used to amplify the kanR gene were obtained from the publication by Lebeau et 

al, 2004, with the exception that BamHI sites were added to the 5' ends of the primers, to 

facilitate cloning. The primer sequences, designated KanA and KanB, are shown in Table 

5.1. 

 

5.2.1.1.2 PCR amplification 

 

The PCR amplification of the kanR gene was performed using the Pfu DNA polymerase 

system (Roche Molecular Biochemicals). The optimised PCR conditions and mastermix 

components are given in Table 5.2. 
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Figure 5.1 A plasmid map of pFD666 which was the source of the L. pneumophila 

compatible kanamycin gene. Arrows indicate the kanR, ori pJV1, and the repPJV1 

genes.  
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Table 5.1 Primers designed for amplification of the pFD666 plasmid KanR gene.  
 

Primer                                    Description                                     Source/Reference 

  

 

KanA    5′       TGATGGATCCCAGGGGGGCGGAGCCTATG       3′   Lebeau et al, 2004 

 

KanB    5′     GGATGGATCCTACTGCGGCCGCGATCCAAGC     3′   Lebeau et al, 2004 

                                                        

__________________________________________________________    ___________    

* underlined sequence is BamH1 recognition sequence. 
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Table 5.2 The optimised PCR conditions for amplification of the pFD666 

kanamycin gene  
 

PCR Stage                                                                       Time / Temp      

  

 

STAGE 1 

Initial denaturation of DNA template 2 min / 94°C   

 

STAGE 2 

Denaturation of DNA 30s / 94°C  

Annealing of primers 30s / 57°C 

Elongation  30s / 72°C 

Number of cycles 35 

 

STAGE 3 

Final elongation                                                            2 min 30s / 72°C 

 

PCR Master mix components 

 

                   Reagent                                                     Volume 

 

               Milli-Q® water                                                 38 μl       

 10 x Pfu buffer 5 μl 

 dNTP’s 1 μl 

 Primer 1 (KanA) 2 μl 

 Primer 2 (KanB) 2 μl 

 Pfu polymerase 1 μl 

  DNA template 1 μl 

 Total Reaction Volume 50 μl 
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5.2.1.2 Cloning of the kanR gene cassette 

 

Following the amplification reaction, the amplified product containing the kanR gene 

was purified using the Promega PCR purification kit (Promega) to remove salts and 

other impurities that may hinder the activity of enzymes. The purified product was then 

digested with BamHI to give the PCR product sticky BamHI ends to facilitate cloning. 

The conditions used for the digestion are described in Chapter 2, Materials and methods. 

 

5.2.1.2.1 Digestion of plasmid pAOFIA  

 

The pAOFIA plasmid, harbouring the omp87 gene (Chapter 4) was isolated from E. coli 

DH5α using the alkaline lysis method. Digestion of the pAOFIA plasmid was carried 

out with BglII. The digestion conditions are described in Chapter 2, Materials and 

methods.  

 

5.2.1.2.2 DNA Ligation of pAOFIA with the amplified kanR gene  

 

The BglII digested pAOFIA plasmid and the BamHI digested kanR gene could be ligated 

together as BglII and BamHI enzymes produce compatible sticky ends on the DNA 

fragments. 

Ligations were performed at a ratio of one vector molecule to 2 insert molecules, and 

one vector molecule to 4 insert molecules, using 10 U of T4 DNA Ligase and T4 DNA 

Ligase buffer. The reaction mix was made up to 20 μl with sterile Milli-Q® water and 

incubated at 16°C overnight.  

 

5.2.1.2.3 Electrotransformation 

  

Electrocompetent E. coli DH5α cells were transformed by electrotransformation, using a 

Gene Pulser apparatus (Bio-Rad), set at 25 μF and 1.25 kV, with the Pulse Controller set 
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at 200 Ω. The ligation mixture was pulsed once at these settings, and immediately after 

pulsing 1 ml of SOC medium was added. The mixture was then transferred to a 1.5 ml 

polypropylene tube and incubated at 37°C for 1 hour. One hundred μl and 50 μl aliquots 

of this suspension were then plated out on LB agar plates containing kanamycin, at a 

concentration of 50 μg/ml. 

 

5.2.1.2.4 Digestion of plasmids 

 

Colonies obtained following the electrotransformation were re-grown in LB broth, and 

plasmids were isolated. These were then digested with HindIII, at 37°C for 2 hours. 

Samples were then analysed on a 1% agarose gel. The constructs with the kanR in the 

same orientation as the omp87 gene were named pAOFIAKanA and the constructs with 

the kanR in the reverse direction were designated pAOFIAKanB. 

 

5.2.1.2.5 PCR amplification of cloned construct pAOFIAKanA/B 

 

Prior to the PCR amplification, the pAOFIAKanA/B clones were linearised by digesting 

with the enzyme EcoRI. The EcoRI enzyme cuts the plasmid only once within the 

multiple cloning site. This process ensured that only DNA which integrated into the 

bacterial chromosome would confer kanamycin resistance to cells, and not intact 

pAOFIAKanA/B plasmid carried over from the PCR reaction. 

The linearised constructs were then amplified by PCR, using the M13 pBluescript 

Universal primers. The PCR amplification of the pAOFIAkanA/B constructs was 

performed using the Pfu DNA polymerase system (Roche Molecular Biochemicals). The 

conditions used for the reaction were essentially identical to those of the amplification of 

the kan gene from the plasmid pFD666, except that the extension time was extended to 4 

min. Clones in both the forward and reverse orientation were amplified, and the 

resulting PCR products were then used to transform L. pneumophila FW02/001. 
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5.2.1.2.6 Selection of the L. pneumophila strain to be used for transformation 

 

Several different strains of L. pneumophila were tested for their sensitivity to the 

antibiotic kanamycin, and hence for their suitability as a host strain for the plasmid 

constructs pAOFIAKanA/B.  Strains were grown on BCYE-α plates containing 50 

μg/ml of kanamycin, and BCYE-α plates without kanamycin. Plates were then incubated 

at 37°C for 48 hours. The strains tested are shown in Table 5.3. 

 

 

 

 

Table 5.3  L. pneumophila 1 strains tested for kanamycin sensitivity 

 

Strain 

 

Source 

L. pneumophila FW02/001 
Microbiological Diagnostic Unit (MDU), 

University of Melbourne, Australia 

L. pneumophila ATCC 33152 
Microbiological Diagnostic Unit  (MDU), 

University of Melbourne, Australia 

L. pneumophila AA100 
Dept. of Microbiology and Immunology, 

University of Kentucky, U.S.A 

                                   

 

5.2.2 Natural transformation of L. pneumophila 

 

The procedure for the natural transformation of L. pneumophila cells was followed 

according to the method outlined by Stone and Abu Kwaik (1999). Briefly, 

L. pneumophila FW02/001 cultures were grown in 5 ml of Buffered Yeast Extract 

(BYE) broth at 37°C for 4 days without shaking, in 15 ml capped plastic tubes. Prior to 

the addition of plasmid DNA, 4.6 ml of BYE broth was removed from the culture, 
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without disturbing the bacteria settled at the bottom. DNA was then added to the 

bacterial culture to a final concentration of 40 μg of plasmid DNA per ml, in a final 

volume of 0.5 ml. The tubes were gently mixed and returned to 37°C for an additional 2 

days. One hundred μl of each transformation mixture was then plated out on BCYE-α 

agar containing 50 μg/ml of kanamycin. Control samples were also used and included 

the DNA of plasmid pFD666. 

 

5.2.3 Preparation of electrocompetent L. pneumophila cells 

 

Electrocompetent L. pneumophila cells were prepared using the method described by 

Cianciotto and Fields (1992). Briefly, 2 plates of L. pneumophila FW02/001 grown for 

48 hours on BCYE-α plates were harvested and resuspended in 20 ml of sterile distilled 

H2O. Cells were then centrifuged at 6000 x g for 20 min. The bacterial pellet was then 

resuspended in 50 ml of ice-cold 10% glycerol in sterile distilled H2O. The cells were 

then centrifuged for 25 min at 6000 x g. This step was repeated again, with the pellet 

being resuspended in 50 ml of ice-cold 10% glycerol in sterile distilled H2O. Cells were 

then finally resuspended in 500 μl of 10% glycerol and stored at -70°C until used. 

    

5.2.4 Electrotransformation of L. pneumophila FW02/001 with 

pAOFIAKanA/B. 

 

Electrocompetent L. pneumophila FW02/001 cells were transformed by 

electrotransformation, using a Gene Pulser apparatus (Bio-Rad), set at 25 μF and 1.25 

kV, with the Pulse Controller set at 200 Ω. The ligation mixture was pulsed once at these 

settings, and immediately after pulsing 1 ml of BYE broth was added. The mixture was 

then transferred to a 1.5 ml polypropylene tube and incubated at 37°C for 1 hour. One 

hundred μl and 50 μl aliquots of this suspension were then plated out on BCYE agar 

plates containing kanamycin, at a concentration of 50 μg/ml. The rest of the 

electrotransformation mixture was stored at 4°C for further analysis. 

Control samples were also used in the electrotransformation. These consisted of plasmid 

pFD666 DNA as a positive control, and electrocompetent cells with milli-Q water 

instead of plasmid DNA as a negative control.  
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5.2.5 PCR amplification of the omp87 gene region in transformants. 

 

The PCR was performed on the sample remaining from the electrotransformation of 

L. pneumophila. Firstly, genomic DNA was extracted from the transformation mixture 

(5.2.5) using the Wizard DNA Purification kit (Promega, U.S.A). 

The PCR amplification of the isolated DNA was performed using the AmpliTaq DNA 

polymerase system (Roche Molecular Biochemicals). The primers used for the reaction 

included one primer designed to bind to the L. pneumophila genomic DNA, around 500 

bp upstream of the commencement of the omp87 gene 

(CAATTTCGGCACTCGGTACG), and the other primer bound within the kanR gene 

(kanA or kanB). The optimised PCR conditions and mastermix components are given in 

Table 5.4.  

 

5.2.6 DNA sequencing of PCR product from 5.2.6. 

 

The PCR products were separated on an agarose gel and the expected product was 

excised from the gel prior to DNA sequence determination. The excised gel slice was 

purified using the QIAquick gel extraction kit (Qiagen, UK). The sequencing reaction 

mixture, and sequencing reaction cycle conditions are shown in Table 5.5. 

The sequencing reactions were performed using an ABI Prism Big Dye Terminator 

Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Australia) in a Perkin-Elmer 2400 

GeneAmp PCR system. Following the sequencing reaction, the sequencing products 

were precipitated using ethanol and sodium acetate, according to the manufacturer’s 

instructions.  

The DNA sequence determination was carried out by the DNA Sequencing Facility at 

Monash University, (Clayton campus), Victoria, Australia, using the ABI Prism 373 

DNA Sequencer (Perkin-Elmer, Australia). 
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Table 5.4 The optimised PCR conditions for amplification of transformation 

mixture     
 

PCR Stage                                                                      Time  /  Temp      

  

 

STAGE 1 

Initial denaturation of DNA template 1 min / 94 °C   

 

STAGE 2 

Denaturation of DNA 30s / 94 °C  

Annealing of primers 30s / 57 °C 

Elongation  30s / 72 °C 

Number of cycles 35 

 

STAGE 3 

Final elongation                                                            5min / 72 °C 

 

PCR Master mix components 

 

                   Reagent                                                        Volume 

 

               Milli-Q® water                                                  32.5 μl       

 10 x Taq buffer 5 μl 

 dNTP’s 1 μl 

 MgCl2  5 μl 

 Primer 1 2 μl 

 Primer 2 2 μl 

 Taq polymerase 0.5 μl 

  DNA template 2 μl 

 Total Reaction Volume 50 μl 
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Table 5.5 Sequencing reaction mixture and Sequencing cycle conditions used for 

DNA sequence determination of the PCR product  
 

Reagent                                                                          Volume    

  

Ready reaction Premix (2.5)     1 μl 

 

Big Dye Sequencing Buffer (5x)  3.5 μl 

 

Primer (20 ng/ μl)              1 μl 

 

DNA template (PCR product)                     7.5 μl  

 (8μg/μl) 

 

MilliQ H2O   7 μl 

_____________________________________________________________________ 

Total Volume              20 μl 

_____________________________________________________________________ 

Sequencing reaction cycle conditions                         Time / Temp  

_____________________________________________________________________ 

STAGE 1 

Initial denaturation of DNA template 1 min / 96°C  

 

STAGE 2 

Denaturation of DNA 10s / 96°C  

Annealing of primers 5s / 50°C 

Elongation  4min / 60°C 

Number of cycles 25 

 

STAGE 3 

Holding temperature (until purification)               4°C 

_____________________________________________________________________ 
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5.3 Results 

 

5.3.1 Inactivation of the L. pneumophila omp87 gene in pBluescript SKII- 

 

The construct pAOFIA was used to inactivate the omp87 gene. This construct was made 

by inserting the L. pneumophila omp87 gene into pBluescript SKII- (Chapter 4). A kanR 

gene was isolated from the plasmid pFD666 by PCR and was used to insertionally 

inactivate the L. pneumophila omp87 gene. 

 

5.3.1.1  PCR amplification of the pFD666 plasmid kanamycin (kanR) gene 

 
The PCR amplification of the kanamycin gene from the plasmid pFD666 was 

successful, and resulted in a PCR fragment of ~ 1.2 kb. The PCR conditions were 

optimised, and an annealing temperature of 57°C was found to produce the purest 

product without compromising product yield (Figure 5.2). The kanR gene has a size of 

0.8 kb, however the primers used are located outside the gene, to give the product of 1.2 

kb. Pfu polymerase was used instead of Taq polymerase for the added benefit of the 

proofreading activity, to reduce the error rate. 

 

 

                                                  
 
Figure 5.2.  PCR amplification of the PFD666 kanamycin gene. Lane: 1, lambda x 

PstI marker; Lanes 2-3: amplified kanR  gene. 

~ 1.2 kb 

11 kb 
 
 5 kb 
 
 
1.7 kb 
1.1 kb 

1   2    3



Chapter V – Omp87 Mutagenesis 

 

173  

5.3.1.2 Cloning of the kanR gene cassette 

 

Following the amplification and purification of the kanamycin gene product, it was then 

digested with BamHI to create ‘sticky’ ends for the ligation process.  Similarly, the 

pAOFIA plasmid, which harbours the cloned L. pneumophila omp87 gene, was digested 

with BglII. A unique BglII recognition site is present in the pAOFIA plasmid, which is 

located 449 bp into the omp87 gene. The enzymes BamHI and BglII produce compatible 

sticky ends even though they possess slightly different recognition sequences. The 

resulting digestion products were ligated together and used to transform E. coli. 

 

Colonies resulting from the electrotransformation of E. coli DH5α with the ligated 

pAOFIA and kanR gene, were selected on BCYE agar containing 50 μg/ml kanamycin. 

Plasmid DNA was isolated from the colonies. These were digested with HindIII. The 

digestion products were then separated on an agarose gel, which is shown in Figure 5.3. 

The sizes of inserts expected for each orientation were determined using CloneManager 

(Clone Manager 6 software, version 6.00, Scientific & Educational Software Inc.), and 

were as follows: 

 

Forward orientation: 0.95 kb, 1.1 kb and 4.9 kb. This construct was designated 

pAOFIAKanA (Figure 5.4a). 

 

Reverse orientation: 0.95 kb, 2.3 kb, and 3.7 kb. This construct was designated 

pAOFIAKanB (Figure 5.4b). 
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Figure 5.3.  Restriction enzyme digests of pAOFIA x kanR clones. Lane: 1, lambda x 

PstI marker; Lane 2-5: HindIII digested AOFIAKanA/B clones  

 
From the gel, it is evident that the plasmid analysed in lane number 2 contain the kanR 

gene in the reverse orientation, with product sizes of 3.7, 2.3 and 0.95 kb. The plasmids 

analysed in lanes 3-5 contain the kanR gene in the forward orientation, with product sizes 

of 4.9, 1.1 and 0.95 kb. 

 

 

 

 

 

 

 

 

 

 

 

4.9 kb 
 
 
 
1.1 kb 
0.95 kb 

3.7 kb 
 

2.3 kb 
 
 
 
 0.8 kb 

1 2 3 4 5

11 kb 



Chapter V – Omp87 Mutagenesis 

 

175  

AOFIAKanA
6920 bps

1000

2000

30004000

5000

6000

HindIII

HpaI

XbaI
SacI

DraI
DraIScaI

DraI

KpnI
XhoI
SalI

HindIII
EcoRV
EcoRI

PstI
SmaI
XmaI

BamHI
SpeI
XbaI

SpeI
DraI

SacI

DraI
EcoRV

DraI
HindIII

HpaI

DraI

Kan

Omp87

LacZ'

Amp

'LacZ

Omp87

 

AOF1AkanaB
6920 bps

1000

2000

30004000

5000

6000

HindIII

DraI

HpaI

HindIII
DraI

EcoRV
DraI

SacI

DraI
SpeI

XbaI
SpeI
BamHI
SmaI
XmaI
PstI
EcoRI
EcoRV
HindIII

SalI
XhoI
KpnI

DraI
ScaI

DraI
DraI

SacI
XbaI

HpaI

Kan

Omp87

'LacZ

Amp

LacZ'

Omp87

 
 

Figure 5.4. Physical map of the pAOFIAKanA/B constructs, with the kanR gene in 

the a) forward orientation, and b) in the reverse orientation. The blue arrow 

represents the omp87 gene, whilst the pink arrow represents the kanR gene. 
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5.3.1.3 PCR amplification of cloned construct pAOFIAKanA/B 

 

As the plasmids carrying the pAOFIAKanA/B constructs are not suicide vectors, the 

plasmids themselves could not be used to transform L. pneumophila cells. Therefore a 

PCR reaction was performed to amplify the inactivated omp87 gene, and the resulting 

product was used to transform L. pneumophila. Using PCR products to transform 

L. pneumophila is a novel method that has recently been shown to be successful for this 

organism (personal communication, Emmy De Buck, Rega Institute for Medical 

Research, Leuven, Belgium). In order to amplify only the region of the disrupted omp87 

gene, the pBluescript Universal M13 primers were used for the PCR reaction. The 

amplified product was then used to transform the L. pneumophila strain. Following 

transformation, the disrupted omp87 gene should be introduced into the L. pneumophila 

genome by a double cross-over and replace the functional omp87 gene, thereby creating 

a mutant omp87 gene strain.  

The PCR amplification products of the pAOFIAKanA/B constructs can be seen in 

Figure 5.5. 
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Figure 5.5 PCR amplification of pAOFIAKanA/B constructs. Lane: 1, lambda x PstI 

marker; Lanes 2-3: PCR amplified pAOFIAKanA clone, Lanes 4-5: PCR amplified 

pAOFIAKanB clone.  

Prior to the transformation of L. pneumophila, the PCR products were digested with the 

restriction enzyme EcoRI to linearise the PCR template and prevent this shuttle vector 

from producing any kanamycin resistant colonies. This enzyme cuts the construct only 

once, within the plasmid multiple cloning site.  

 

5.3.1.4 Selection of L. pneumophila strain for transformation 

 

As the kanR gene was used to select for transformants, a L. pneumophila strain sensitive 

to kanamycin had to be used for the transformation experiment. Therefore, different 

strains of L. pneumophila were tested for their sensitivity to kanamycin. This was done 

by plating out strains on BCYE agar plates containing 50 μg/ml kanamycin. 

 

The results of the L. pneumophila sensitivity testing to kanamycin indicated that the    

L. pneumophila AA100 strain was resistant to kanamycin (50 μg/ml), whilst both the   

FW02/001 and ATCC 33152 strains were sensitive. These results led to the selection of 
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the kanamycin sensitive strain FW02/001 for use as a host strain for the transformation 

with the plasmid constructs pAOFIAKanA/B. This strain of L. pneumophila was kindly 

donated by Ms Mary Valcanis at the Microbiological Diagnostic Unit (MDU), 

University of Melbourne, Australia. 

 

5.3.1.5 Natural transformation of L. pneumophila FW02/001 

 

Some strains of L. pneumophila are able to take up DNA from their environment, in the 

process of natural transformation.  No colonies were observed following the natural 

transformation of L. pneumophila FW02/001 cells on BCYE-α plates containing 

kanamycin. All cells grew on plates without kanamycin, indicating that cells remained 

viable. However, neither test samples nor control samples supported any growth, 

indicating that cells had not been transformed. The negative result with the positive 

control sample, plasmid pFD666, was particularly indicative that the natural 

transformation had not been successful, as we would have expected kanamycin resistant 

colonies from this control sample. 

 

5.3.1.6 Electrotransformation of L. pneumophila with pAOFIAKanA/B 

 

As L. pneumophila FW02/001 could not be transformed using natural transformation, 

electroporation was used. 

Following the electrotransformation of L. pneumophila with mutant constructs 

AOFIAKanA/B, the transformation mixtures were plated on BCYE agar plates 

containing 50μg/ml kanamycin. Following incubation, these plates were then examined 

for growth. Results of both control and test plates are shown in Table 5.6. 
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Table 5.6.  Results of electrotransformation of L. pneumophila 

 

 

SAMPLE 

 

DNA 
GROWTH/  

NO GROWTH* 

 

pFD666  

 

Growth 
 

+ ve controls 

 
 

PCR amplified pAOFIAKanA/B 

construct 

Growth on media 

without kanamycin 

 

- ve control 

 

 H20 No Growth 

PCR amplified pAOFIAKanA 

construct 
No growth 

Test 
PCR amplified pAOFIAKanB  

construct 
No growth 

* Growth of transformants on BCYE medium supplemented with 50 μg/ml kanamycin, 

unless otherwise indicated. 

 

From the first positive control plate, where the plasmid pFD666 was electroporated into 

L. pneumophila, the transformation efficiency was calculated. This was shown as an 

efficiency based on the amount of plasmid DNA used, but also relative to the number of 

electrocompetent cells present and viable in the starting mixture. 

 

• No. of electrocompetent L. pneumophila cells in sample: 1.04 x 1013 

• Number of transformants obtained per ng of plasmid DNA: 7.8 x 105 cells 

• Number of transformants obtained per μg of plasmid DNA: 7.8 x 108 cells 

 

Therefore the transformation efficiency was: 

7.8 x 103 cells / μg DNA / 1x108 cells. 
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5.3.2 PCR amplification of pAOFIAKanA/B mutants 

 

Due to the fact that no growth was obtained on test plates, a PCR reaction was 

performed on some of the original electrotransformation mixture to determine whether 

homologous recombination had taken place between the plasmid-encoded omp87 gene, 

and the chromosomally encoded omp87 gene. A new primer was therefore designed for 

this reaction.  

The primer designed for determining whether the homologous recombination took place, 

is shown schematically in Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                in pAOFIAKanA/B 
       

 
Figure 5.6 Schematic representation of primer design for confirmation of 

homologous recombination between plasmid DNA and L. pneumophila genomic 

DNA. HR1 (red arrow) represents the new primer HR1; Pink arrow represents omp87 

gene; Blue arrow represents kanR gene. KanA and KanB arrows (shaded grey) represent 

existing primers KanA and KanB. The disrupted omp87 gene and the kanR gene are 

introduced into the genomic DNA via the plasmids pAOFIAKanA and pAOFIAKanB. 
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The HR1 primer was designed to bind to L. pneumophila genomic DNA, at 

approximately 500 bp upstream of the commencement of the omp87 gene. To amplify 

transformants resulting from transformation with pAOFIAkanA, the primers HR1 and 

KanB were used. To amplify transformants resulting from transformation with 

pAOFIAkanB, the primers HR1 and KanA were used. 

 

5.3.2.1 PCR amplification of transformants 

 

In order to determine whether homologous recombination had taken place between the 

plasmid pAOFIAKanA/B constructs, and the L. pneumophila FW02/001 genome, a PCR 

amplification reaction was performed. Following the electrotransformation of 

L. pneumophila with mutant amplification constructs pAOFIAKanA/B, L. pneumophila 

DNA was extracted and was used as template DNA for a PCR amplification reaction. 

The amplification products were then analysed on an agarose gel. These results are 

shown in Figure 5.7. 

 

 

 

 

 
 

Figure 5.7.  PCR amplification of pAOFIAKanA/B constructs. Lane: 1, lambda x 

PstI marker; Lanes 2: PCR amplified pAOFIAKanA clone, Lane 3: PCR amplified 

pAOFIAKanB clone. 
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The 2.1 kb amplified fragment is present, however there was also a smaller 

amplification product present of ~ 0.4 kb. The 2.1 kb fragment was therefore excised 

from the gel, purified and sequenced to confirm that it was the region containing both 

genomic and plasmid DNA. 

 

The sequence obtained from the sequencing reaction is shown schematically in Figure 

5.8, from the construct pAOFIAKanB. The DNA sequence chromatogram is attached in 

Appendix 4. 

The sequencing results showed that the PCR product containing the kanR gene had been 

integrated into the L. pneumophila genome by homologous recombination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Schematic representation of part of the genomic DNA of 

L. pneumophila following homologous recombination with pAOFIAKanB.  

The green arrows indicate the area of the DNA sequence analysed using the primers 

HR1 and KanA.  The pink arrows represent the omp87 gene; the blue arrow represents 

the kanR gene; the grey arrows represent the primers HR1, KanA and KanB. 
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5.4 Discussion 

 
For numerous years in the 1980s, it was believed that Legionella species were not 

capable of taking up foreign DNA, by either natural or artificial means (Mintz et al, 

1999). It was not until 1992 when Marra et al (1992) discovered that Legionella could 

be transformed with DNA using electroporation. Several years later, Stone and Abu 

Kwaik (1999) made the interesting discovery that strains of Legionella pneumophila 

which produced type IV pili were naturally competent and able to take up DNA from 

their surroundings.  

Interestingly, the L. pneumophila AA100 strain is discussed by Stone and Abu Kwaik 

(1999) as being one of the strains they determined that was capable of natural 

transformation. Therefore, this strain was included in this study as the host strain for the 

mutagenesis of the omp87 gene, by natural transformation. However, kanamycin 

sensitivity testing of L. pneumophila 1 strains revealed that our laboratory stock of the 

AA100 strain was resistant to kanamycin. It therefore could not be included in this 

study, as kanamycin was the antibiotic used for selection with our plasmid. The 

kanamycin sensitive L. pneumophila FW02/001 strain was therefore used as an 

alternative. 

Unfortunately the attempt to naturally transform L. pneumophila was not successful. 

Although the procedure was repeated several times, the control samples failed to 

produce the expected results. The positive control sample, of pFD666 DNA, if 

successful, would have provided cells with kanamycin resistance. However no colonies 

were observed on plates containing kanamycin from any of the samples. This may be 

because the L. pneumophila FW02/001 strain does not possess the receptor molecules 

necessary for the uptake of DNA through natural transformation. This would not be 

unusual, as it has been shown that there is often a significant difference in DNA uptake 

competence, not only between different species, but also within species of bacteria 

(Sikorski et al, 2002; Wang et al, 2002). 

It was then decided that the electroporation of L. pneumophila, which has also been well 

described and extensively carried out, would be used for the transformation. This 

procedure proved to be straightforward and unproblematic.  
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In this study, the omp87 gene of L. pneumophila was disrupted through the insertion of a 

kanamycin-resistance cassette. The omp87 gene, which had previously been cloned into 

the plasmid pBluescript SKII- (Chapter 4) was the foundation for the mutagenesis study. 

In this construct, the omp87 gene was inactivated through the insertion of a kanamycin 

gene, resulting in the larger constructs, pAOFIAKanA and pAOFIAKanB. The region of 

plasmid containing the disrupted omp87 gene was then amplified by PCR. The resulting 

PCR product was used to electrotransform L. pneumophila FW02/001. No transformants 

were obtained when the mixture was plated on Legionella BCYE-α plates containing 

kanamycin. 

 

Several other factors may have caused the lack of kanamycin resistant colonies after 

L. pneumophila was transformed with pAOFIAkanB. Firstly, there was a possibility that 

the L. pneumophila cells had not been permissive for the electrotransformation, and had 

not actually taken up any of the foreign DNA. This may have been due to the particular 

strain used, or that the procedure used for preparing the electrocompetent cells had not 

been successful.  

 Secondly, the possibility would also exist that homologous recombination had not 

occurred as expected, and the double cross-over event had not taken place. This would 

prevent the integration of the kanR gene into the genome and therefore none of the 

organisms would possess resistance to the antibiotic. This was an important 

consideration as the cloned omp87 gene was obtained from a different L. pneumophila 

strain (AA100) than the strain used for the transformation experiments (FW02/001). 

This change in strain was necessary, as the AA100 strain was already kanamycin 

resistant. These strains may have possessed subtle differences in DNA sequences which 

could be sufficient to inhibit a successful double cross-over recombination event.  

Thirdly, the inactivation of the omp87 gene could have been lethal to the L. pneumophila 

cells.  

The inclusion of control samples was one of the key components to elucidate the cause 

for the lack of kanamycin resistant colonies. In addition to the negative control samples, 

a positive control sample was included, consisting of plasmid pFD666 DNA. This is the 

plasmid from which the kanamycin gene was amplified.  

Kanamycin-resistant colonies were obtained using this control sample, therefore 

indicating that the L. pneumophila FW02/001 strain used was indeed capable of taking 

up foreign DNA,  
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The transformation efficiency of the L. pneumophila with this plasmid was determined, 

and was found to be 7.8 x 103 cells / μg DNA / 1x108 cells.  This figure falls within the 

range of the transformation efficiencies observed for other organisms with similar sized 

plasmids, and similar starting numbers of electrocompetent cells (i.e. ~ 108 cells). 

Certain organisms however, such as some strains of E. coli, can achieve efficiencies of 

up to 107 to 108 cells / μg DNA (Calvin and Hanawalt, 1988). Some strains of 

Campylobacter jejuni were also found to achieve high efficiency values of up to 1.6 x 

105 cells / μg DNA (Miller et al, 1988). 

In order to confirm that homologous recombination had taken place, a PCR 

amplification reaction was performed. The novel approach described by Burns et al 

(2000) was used, whereby a PCR product would only be obtained if the double cross-

over event had occurred. This was achieved by the effective and unique design of 

primers, whereby one primer was designed in the genome of the organism, whilst the 

other was designed on the integrated kanR gene. Integration of part of the plasmid into 

the genome could only occur by a double cross-over event as the plasmid had been 

linearised by restriction digestion prior to the PCR amplification and 

electrotransformation. Therefore, no intact plasmid could have been introduced into the 

L. pneumophila, which might have conferred kanamycin resistance to cells. Therefore if 

a PCR product was obtained, we could conclude that homologous recombination had 

taken place.  

As the PCR reaction was successful, and a fragment of the expected size was obtained, 

the final confirmatory stage was to determine the DNA sequence of this fragment, and to 

observe whether the sequence obtained correlated with that expected if the double cross-

over event had taken place. 

As anticipated, the DNA sequence derived from the transformed cells corresponded to 

the expected sequence. This included part of the L. pneumophila genomic DNA 

sequence, part of the omp87 gene sequence, and part of the sequence of the kanamycin 

resistance cassette. As mentioned, this was already anticipated due to the previous PCR 

amplification reaction, which gave a PCR product size indicative of a successful double 

cross-over event.  

From this study, we were able to conclude that the inactivation of the omp87 gene in 

L. pneumophila FW02/001 resulted in non-viable cells. We demonstrated that a double 

cross-over event occurred within the L. pneumophila genome between the 
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chromosomally encoded omp87 gene, and a mutated, plasmid encoded copy of the gene, 

and that this must have been lethal to the cells.  

Further investigations are needed to definitively conclude that this lethality was due to 

the fact that the omp87 gene of L. pneumophila was an essential gene. The effect of the 

mutation on genes downstream of the mutated omp87 gene would need to be analysed to 

confirm that the mutation did not induce any polar effects, which may also have given 

rise to the lethality. 

Further work is also needed to increase our understanding of the function of the Omp87 

protein in L. pneumophila. This analysis becomes more difficult if mutagenesis studies 

cannot be relied upon for providing insight into the role of this protein in the biology of 

the cell. In the case of lethal mutations, it then becomes necessary to analyse the 

function of the gene by means of inducible promoters or genes, cloned upstream of the 

gene of interest. The expression of these genes can then be regulated to switch on and 

off. In this way, the effect of little or no expression of the gene can be analysed without 

necessarily being detrimental to the cell.  

Several mutagenesis studies have been performed on genes belonging to the Omp family 

in other organisms, and these have had mixed results. Neisseria meningitidis is one such 

strain. Genevrois et al (2003) were successfully able to control the expression of the N. 

meningitidis omp85 gene by the use of a tac promoter. This promoter allowed 

expression of the gene to be switched on and off, allowing for the analysis of the gene, 

without compromising the cell’s viability. They found that depletion of the Omp85 

protein resulted in an accumulation of lipopolysaccharide and phospholipids in the inner 

membrane of the cell, and their disappearance from the outer membrane. Its function 

was therefore linked with the transport of LPS to the bacterial outer membrane. 

In contrast to this, Bos et al (2004) believe that the presence of Omp85 homologues in 

organisms which do not contain LPS is more indicative of a more minor role in LPS 

transport, and a more critical role in the transport of Omps. 

The Omp85 protein of E. coli, also known as YaeT, is believed to play the same role, of 

Omp transport, in E. coli. Werner and Misra (2005) recently examined the outer 

membrane of E. coli, and found that cells which were depleted of the Omp85 protein 

were severely affected, and showed an accumulation of Omps in the periplasm of the 

cell. It was therefore speculated that the protein is involved in inserting the soluble 

protein intermediates from the periplasm into the outer membrane.  
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Before the discovery that Legionella spp. are able to take up DNA both naturally and 

artificially, the study of Legionella spp. pathogenicity and virulence was very limited 

and time-consuming. Since then however, there has been a rapid expanse of knowledge 

and understanding into Legionella spp. and their pathogenic mechanisms and cellular 

functions. However studying essential genes still remains problematic. 
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6. Introduction 

 
 
Recombinant protein expression and purification is a routinely used laboratory approach 

for analysing proteins, or peptides. The purified proteins can be used to identify their 

functional role, structure, antigenic properties or potential as vaccine candidates. 

Protein expression in high level expression vectors, such as pRSET, is a common and 

effective means of producing high amounts of a particular protein. The pRSET 

Expression vector (Invitrogen) which is a derivative of the pBluescript plasmid, is 

specifically designed for high level expression of prokaryotic proteins, and is controlled 

by the bacteriophage T7 promoter (www.Invitrogen.com). This T7 promoter system was 

originally described by Studier et al (1986) and functions on the principle that induction 

of the promoter lacUV5, by IPTG, leads to cellular expression of T7 DNA polymerase, 

which in turn leads to the expression of the cloned gene of interest. The host cells used 

with the system, E. coli BL21(DE3) pLysS, possess a chromosomal copy of the T7 

DNA polymerase gene. These cells also possess an additional plasmid, the pLysS 

plasmid, which encodes a T7 lysozyme gene, to repress and prevent any basal 

expression of cloned target genes. In this way, any ‘leaky’ expression of the target gene 

can be controlled and minimised so that it is only expressed when the inducer IPTG is 

added to growth medium. 

Importantly, the pRSET vector contains a poly-histidine (6xHis) tag, so that the protein 

can be later purified using Ni-NTA Sepharose-based resins. The histidine tag binds 

reversibly to the Ni2+ residues in the sepharose resin, to allow for extraction and 

purification of the expressed protein from the total protein content of the cell. The 

histidine-tagged protein can then be eluted from the sepharose column by competitive 

binding with imidazole, or by using buffers with a reduced pH (Bollag et al, 1996). 

The pRSET vectors are available in three different reading frames (pRSETA, B and C), 

relative to the multiple cloning site sequence to facilitate cloning of proteins in frame 

with the 6 Histidine residues. In this study, the vector pRSET A was used. 



Chapter VI - Omp87: Protein Expression and Analysis 

190  

6.1 Outline of this chapter 

 
 
This chapter describes the cloning, expression, purification and analysis of the Omp87 

protein. The expression vector pRSETA was used for expression of the Omp87 protein, 

and four truncates of varying sizes were designed, through the use of different PCR 

primers. The constructs were then sequenced, and immunoblotting was performed with 

anti-histidine antiserum. The protein truncates were then expressed and purified using 

Ni-NTA sepharose resin (Qiagen) packed columns and gravity flow chromatography.  

The purified protein was then analysed by SDS-PAGE and Western blotting, using 

human, anti-Legionella antiserum. 
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6.2 Materials and Methods 

 
 
6.2.1 Cloning of the omp87 gene into pRSETA 

 
 

6.2.1.1 Design and PCR amplification of truncated omp87 gene fragments 

 
 
The L. pneumophila serogroup 1 AA100 strain was used to PCR amplify four different 

fragments of the omp87 gene.  The primer sequences of each of the fragments are shown 

in Table 6.1. The largest construct, construct 1, contains its own set of forward (C1A) 

and reverse (C1B) primers. The other 3 constructs all have different forward primers 

(C2A, C3A and C4A) but share the same reverse primer (C234B), with incorporated 

His-tag (underlined). The PCR amplification of the truncated omp87 gene was 

performed using the Pfu DNA polymerase system (Roche Molecular Biochemicals). The 

optimised PCR conditions and mastermix components are given in Table 6.2. Following 

the PCR amplification reaction, 3 identical samples were combined to increase the 

concentration of DNA available for cloning. The combined samples were then purified 

using the Wizard PCRprep purification kit (Promega).  

 

6.2.1.2 Isolation and digestion of plasmid pRSETA 

 

A miniprep isolation of plasmid pRSET was performed by the alkaline lysis method 

(Ausubel et al, 2005). A freshly grown culture of E. coli BL21 cells harbouring the 

plasmid were used for the extraction. 

The purified plasmid was then digested with the restriction enzymes PstI and EcoRI, 

according to the method described in chapter 2 (Materials and methods). The ability of 

each enzyme to cut the plasmid was tested by single digestions, followed by a double 

digestion with both enzymes under identical conditions. Digestions were performed at 

37°C for 2 hours. Following the digestion, the restriction enzymes were inactivated by 

heating at 65°C for 15 min. 
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Table 6.1. Primers designed for amplifying fragments of the omp87 gene  
 

Primer                                                     Description                                      

  

 

C1A            3'   TTAACTGCAGAAGTGCGCGTAGTGCTGGAC   5'        

 

C2A            3'   TCAACTGCAGTAGAGTTAACGGATTACAAAG   5'      

 

C3A                 3'   TGGACTGCAGGGAGAAGGAGCTGAAACAGGCCTAC   5'                              

                                                                                                                           

C4A                 3'   AATCCTGCAGTGCAATAGGGTTAGCTTTAG    5'      

 

C1B                       3'  ACCTGAATTCACCTGAGGAAAGAGCAAATTGGAAGA  5'   

 

C234B                3'   TTAGAATTGATGATGATGATGATGATGACCTGAGGA-           

                     -AAGAG CAAATTGGAAGA   5'     

                                                     

_____________________________________________________________________ 
 

* Underlined region outlines position of Histidine tag
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Table 6.2 The optimised PCR conditions for amplification of L. pneumophila omp87 

truncated gene constructs  
 

PCR Stage                                                                    Time / Temp      

  

 

STAGE 1 

Initial denaturation of DNA template 1 min / 94°C   

 

STAGE 2 

Denaturation of DNA 30s / 94°C  

Annealing of primers 30s / 49°C 

Elongation  5min* / 72°C 

Number of cycles 35 

* Based on construct 1 (i.e. shorter elongation time for smaller constructs) 

STAGE 3 

Final elongation                                                            5min / 72°C 

 

PCR Master mix components 

 

                   Reagent                                                        Volume 

 

               Milli-Q water                                                    38 μl       

 10 x PCR buffer 5 μl 

 dNTP’s 1 μl 

 Primer 1 2 μl 

 Primer 2 2 μl 

 Pfu polymerase 1 μl 

  DNA template  1 μl 

 Total Reaction Volume 50 μl 
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6.2.1.3 Digestion of Truncated omp87 gene fragments 

 
 
Following the purification of the omp87 PCR products, the samples were all digested 

with the restriction enzymes PstI and EcoRI, prior to ligation with the plasmid pRSETA. 

Digestions were performed at 37°C for 2 hours. Following the digestion, the restriction 

enzymes were inactivated by heating at 65°C for 15 min. 

 

6.2.1.4 Ligation of omp87 gene PCR products with plasmid pRSETA 

 

Ligations were performed in the ratio of one vector molecule to 2 insert molecules, and 

one vector molecule to 4 insert molecules. The ligations were performed with 10 U of 

T4 DNA Ligase (Boehringer Mannheim) and T4 DNA Ligase buffer. The reaction mix 

was made up to 20 μl with sterile Milli-Q® water and incubated at 16°C overnight. The 

mixture was then used for transformation of E. coli BL21 cells. 

 

6.2.1.5 Electrotransformation 

 

Electrocompetent E. coli BL21 cells were transformed by electrotransformation, using a 

Gene Pulser apparatus (Gene PulsarTM, Bio-Rad), set at 25 μF and 1.25 kV, with the 

Pulse Controller set at 200 Ω. The ligation mixture was pulsed once at these settings, 

and immediately after pulsing 1 ml of SOC medium was added. The mixture was then 

transferred to a 1.5 ml polypropylene tube and incubated at 37°C for 1 hour. One 

hundred μl of this suspension was then plated out on LB agar plates, containing 100 

μg/ml ampicillin. 

 

6.2.2 Screening of recombinant plasmids 

 

Colonies resulting from the electrotransformation procedure were re-grown in LB broth 

containing 50 μg/ml ampicillin for 24 hours at 37°C. Plasmids were then isolated and 
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digested with the restriction enzymes PstI and EcoRI, under the same conditions 

detailed in section 6.2.1.2 for the isolation and digestion of plasmid pRSETA. 

 

 

6.2.3 DNA sequencing of the recombinant pRSET constructs 

 

The pRSET T7 Promoter primer (5' TAATACGACTCACTATAGGG 3'), and reverse 

primer (5' TATGGCTAGCATGACTGGT 3') whose sequences were obtained from the 

Invitrogen pRSET technical manual (www.Invitrogen.com) were used for the DNA 

sequencing reaction of the recombinant omp87 fragments. The sequencing reactions 

were performed using an ABI Prism Big Dye Terminator Cycle Sequencing Ready 

Reaction Kit (Perkin-Elmer, Australia) in a Perkin-Elmer 2400 GeneAmp PCR system. 

The sequencing reaction mixture and sequencing reaction cycle conditions can be seen 

in Table 6.3. Following the sequencing reaction, the sequencing products were 

precipitated using ethanol and sodium acetate, according to the manufacturer’s 

instructions.  

The DNA sequence determination was carried out by the Micromon DNA Sequencing 

Facility at Monash University, (Clayton campus), Victoria, Australia, using the ABI 

Prism 373 DNA Sequencer (Perkin-Elmer, Australia). 

 
 
6.2.4 Expression of pRSET constructs in E. coli BL21 

 

6.2.4.1 Growth and induction of pRSET plasmid constructs 

 

In order to determine the optimal induction time for each pRSET omp87 construct, the 

following study was performed. Briefly, 2 ml of LB broth containing 50 μg/ml of 

ampicillin was inoculated with each construct, and was grown overnight at 37°C with 

shaking. The following day, 25 ml of broth was inoculated with the overnight culture. 

The culture was then grown at 37°C with vigorous shaking to an OD600 (l = 1cm) of 

between 0.4 - 0.6. One ml of culture was then removed as the time zero sample. The 

inducer IPTG was then added to the broth to a final concentration of 1 mM, and the 
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culture was grown for several more hours, with a 1 ml sample of the broth being taken at 

hourly intervals. 

In addition to the optimal time for IPTG induction of the recombinant pRSET protein 

constructs, several other parameters were also investigated. These included the 

concentration of IPTG used for induction, and the temperature cultures should be grown 

at during induction. In the case of the optimal IPTG concentration to be used, several 

concentrations were tested. These included 0.2 mM, 0.5 mM, 1 mM, 5 mM and 10 mM. 

These final concentrations were all used to induce cultures which had reached an OD600 

of 0.4. Cultures were then induced for 5 hours, at 37°C. 

For the investigation into the optimal induction temperature to be used, the temperatures 

of 28°C, 32°C and 37°C were tested.  These cultures were all grown to an OD600 of 0.4, 

whereby they were then induced with 1 mM IPTG. The cultures were then incubated for 

5 hours at one of the above mentioned temperatures. 

The samples were then analysed by SDS-PAGE analysis.   

 

6.2.4.2 Determination of truncated Omp87 protein solubility 

 

In order to determine whether the expressed Omp87 protein was soluble or insoluble, the 

cells containing the induced pRSET constructs were boiled in a small volume of SDS-

PAGE loading buffer, containing the reducing agent β-mercaptoethanol. The samples 

were then centrifuged, and both the supernatant and pellet were analysed by SDS-PAGE 

to determine which fraction contained the recombinant protein. 

The program devised by The School of Chemical Engineering and Materials Science at 

the University of Oklahoma (http://biotech.ou.edu/) was also used for an estimate of the 

solubility of the proteins. The protein sequences were entered into the program, and the 

predicted percentage of the protein’s solubility or insolubility was determined.  
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Table 6.3. Sequencing reaction mixture and Sequencing cycle conditions used for 

DNA sequence determination of recombinant pRSET protein constructs  
 

Reagent                                                                        Volume    

  

Ready reaction Premix (2.5x)                        1 μl 

 

Big Dye Sequencing Buffer (5x)                         3.5 μl 

 

Primer (20 ng/μl)  1 μl 

 

DNA template (PCR product) (8 ng/μl)  7.5 μl  

 

MilliQ H2O  7 μl 

 

Final volume  20 μl 

_____________________________________________________________________ 

Sequencing reaction cycle conditions                      Time / Temp 

_____________________________________________________________________ 

STAGE 1 

Initial denaturation of DNA template 1 min / 96°C  

 

STAGE 2 

Denaturation of DNA 10s / 96°C  

Annealing of primers 5s / 50°C 

Elongation  4min / 60°C 

Number of cycles 25 

 

STAGE 3 

Holding temperature (until purification)               4°C 

_____________________________________________________________________ 
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6.2.4.3 Western blotting of Omp87 recombinant protein with anti-His antiserum 

 

To confirm that the histidine tag was correctly expressed from the recombinant Omp87 

pRSET constructs, immunoblotting was performed using mouse anti-his antiserum. The 

primary antiserum was used at a dilution of 1/3000. The secondary antibody, a goat, 

anti-mouse IgG was used at 1/5000.  Separation of proteins by SDS-PAGE was firstly 

performed. An aliquot of the sample taken prior to column purification (pre-column 

sample), together with purified construct 3 and purified construct 4 were analysed. The 

SDS-PAGE gel was then used for the immunoblotting procedure. The details of this 

procedure are described in Chapter 2, Materials and methods. 

 

6.2.4.4 Purification of truncated Omp87 proteins by gravity-flow 

chromatography 

 
 

6.2.4.4.1 Pre-treatment of samples for column purification  

 
 
Prior to the purification of the expressed protein from the total cell protein content by 

sepharose column chromatography, solubilisation of the expressed protein was required, 

so as to enable the effective unfolding and binding of the protein to the Ni2+ charged 

sepharose. This procedure was derived from that of the purification of Omp85 from 

Neisseria meningitidis (Dr. George Moutafis, Pfizer Australia, personal 

communication). 

Briefly, following the induction of the E. coli BL21 cells for 4 hours with 1 mM IPTG, 

the cells were harvested and pelleted by centrifugation at 5000 x g for 15 min. The 

supernatant was removed, and the pellet was resuspended in 5 ml of wash buffer (50 

mM Na2PO4, 300 mM NaCl, 20 mM imidazole).  The protease inhibitors Leupeptin 

(1μg/ml) and Benzamidine (1nM) were added to the sample. Ten mg of lysozyme was 

also added and the samples were incubated at 37°C for 30 min. The samples were then 

frozen at – 70°C for 30 min. A series of freeze-thawing cycles were then performed 
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using a dry ice/ethanol bath, and a 37°C water bath. Five U of DNase was then added to 

remove DNA and therefore reduce the viscosity of the sample. The sample was then 

centrifuged at 1000 x g for 15 min at room temperature to pellet the insoluble inclusion 

bodies. Ten ml of 8 M Urea (in wash buffer) was then added to samples to solubilise 

inclusion bodies, and the samples were left shaking gently at room temperature for 1.5 

hours. A 1 ml aliquot of the sample was collected at this stage for analysis (pre-column 

sample). 

 

6.2.4.4.2 Purification by gravity flow chromatography 

 

Following pre-treatment, the samples were then added to a 5 ml sepharose-filled vertical 

column which had been pre-equilibrated with 10 ml of 8 M Urea (in wash buffer). The 

flow through from the column was collected for analysis (flow through sample). The 

column was then washed with 20 ml of progressively lower concentrations of urea 

through the column (8 M, 6 M, 5M, 4 M, 3 M, 2 M). The recombinant protein was then 

eluted from the column by washing with 20 ml of elution buffer (2 M Urea, 50 mM 

Na2PO4, 300 mM NaCl, 500 mM imidazole). One ml aliquots were collected during the 

elution process. The fractions were then analysed with a simplified Bradford assay to 

determine which fractions contain the recombinant protein. In this assay, 20 μl of the 

sample were mixed with 200 μl of Bradford reagent (0.01% Coomassie Brilliant G-250 

dye, 5% 95% Ethanol, and 10% Phosphoric Acid (85%), in dH20). The samples were 

then observed for colour development, which was relative to the amount of protein 

present. The 4 or 5 aliquots generating the deepest colour development were then pooled 

together and analysed by SDS-PAGE. 

 

6.2.4.5 SDS-PAGE Analysis of proteins 

 

Protein samples were analysed by SDS-PAGE, according to the method described in 

Chapter 2, Materials and methods. 
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6.2.4.6 Immunoblotting of recombinant proteins with anti-Legionella antiserum 

 
 
Following the purification of the recombinant pRSET constructs 3 and 4, 

immunoblotting was performed to determine whether the recombinant proteins were 

recognised by anti-L. pneumophila antibodies following their expression in the E. coli 

BL21 expression system. Western blotting was therefore carried out as outlined in 

Chapter 2, Materials and methods.  

Approximately 25 μg of each of the recombinant proteins was firstly subjected to SDS-

PAGE analysis. A whole cell lysate of L. pneumophila AA100 was also prepared and 

included as the positive control. Immunoblotting was then performed using a batch of 

human anti-Legionella antiserum that was kindly donated by the Serology department at 

the Victorian Infectious Disease Reference Laboratory (VIDRL).  The primary 

antiserum was used at a dilution of 1/3500. The secondary antiserum, anti-human IgG 

was then used at a dilution of 1/3000.  
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6.3 Results 

 
 
6.3.1 Design of primers to amplify truncated omp87 gene fragments 

 
 
Different primer sets were designed to amplify different fragments of the omp87 gene. 

These truncates varied in size from 2.37 kb, to 1.4 kb, and were designed to be 

progressively smaller and truncated from 5' end of the gene (the proteins N-terminal 

region). 

The largest amplicon, fragment 1, had a forward primer designed to include 5 additional 

amino acids (15 bp) upstream of the start codon of the omp87 gene, to ensure the 

expression of the complete gene and include the entire secretion signal sequence of the 

protein. The sizes of each of the fragments were as follows: 

Fragment 1: 2376 bp 

Fragment 2: 2223 bp 

Fragment 3: 1911 bp 

Fragment 4: 1392 bp 

 

6.3.2 PCR amplification of truncated omp87 gene fragments. 

 
 
Truncated omp87 gene fragments were created by PCR amplification of the                   

L. pneumophila omp87 gene using different sets of primers (Table 6.1). The 

amplification of the constructs was performed successfully, however the PCR product 

yield for Fragment 2 was low, despite optimisation of the PCR conditions. In order to 

increase this yield, it was decided to use amplified fragment 1 DNA as a template for the 

amplification of the slightly smaller fragment 2. This provided a higher amount of 

template DNA, as it had already been amplified by PCR. The original PCR 

amplification of fragment 2 can be seen in Figure 6.1, and the subsequent PCR reaction, 

using fragment 1 DNA as a template for the reaction, can be seen, along with all other 

fragments, in Figure 6.2. The yield of fragment 2 has increased, however there is a 

small amount of non-specific product of around 5 kb. 
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Figure 6.1  PCR amplification of omp87 fragment 2, with an amplified product size 

of ~ 2.2 kb. Lane: 1, lambda x PstI marker; Lanes 2-4, PCR amplification product of 

omp87 fragment 2, of 2.2 kb. 
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Figure 6.2 PCR amplification of omp87 fragments 1-4. Lane: 1, lambda x PstI 

marker; Lanes 2-5, PCR amplification product of Omp87 truncates 1-4, of sizes 2.4 kb,  

2.2 kb, 1.9 kb; and 1.4 kb, respectively. 

~ 2.4 kb (Fragment 1) 

~ 1.9 kb (Fragment 3) 

~ 1.4 kb (Fragment 4) 

~ 2.2 kb (Fragment 2) 

   1     2     3     4    5 

11.5 kb 

2.8 kb 

1.7 kb 



Chapter VI - Omp87: Protein Expression and Analysis 

204  

6.3.3 Isolation and restriction digestion of plasmid pRSET 

 
 

The plasmid to be used for the expression of the omp87 fragments, pRSET, was 

successfully isolated from a fresh culture of E. coli BL21 cells by the alkaline lysis 

method. A schematic diagram of this plasmid can be seen in Figure 6.3. 

 

 

 

 

 

 

 
 
 
 

 
 

Figure 6.3. Physical map of the plasmid pRSET, displaying the major plasmid 

features (www.Invitrogen.com). These include the T7 Promoter gene (PT7), the 6 x 

Histidine tag (6 x His), the Ribosome binding site (RBS), the Multiple cloning site 

(MCS), the E. coli origin of replication (ColE1), the Phage 1 origin of replication (f1 ori) 

and the ampicillin resistance gene. 
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In order to insert the PCR fragments into the pRSET plasmid, single and double 

digestions were performed, using the enzymes PstI and EcoRI to ensure complete 

digestion by both enzymes. The results of the digestions are shown in Figure 6.4. 

 

6.3.4 Electrotransformation of pRSET constructs into E. coli BL21  

 
 
Following the digestion of the omp87 fragments and the pRSET plasmid, ligations were 

performed. The constructs we expected to obtain following the ligation can be 

represented schematically, and the physical maps for all four constructs are shown in 

Figures 6.5 - 6.8. The insert sizes expected for each of the clones were as follows: 

 

pRSET Construct 1 : 2.9 kb + 2.3 kb; pRSET Construct 2 : 2.9 kb + 2.2 kb; pRSET 

Construct 3 : 2.9 kb + 1.9 kb; pRSET Construct 4 : 2.9 kb + 1.4 kb. 

 

The ligated constructs were then used to transform E. coli BL21 cells via 

electrotransformation.  The colonies resulting from the electrotransformation were 

grown in broth, and plasmids were isolated and digested with the restriction enzymes 

PstI and EcoRI. Results of the digestions can be seen in Figure 6.9. 
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Figure 6.4 Restriction digestion of plasmid pRSETA. Lane: 1, lambda x PstI marker; 

Lane 2, pRSET x PstI; Lane 3: pRSET x EcoRI; Lane 4: pRSET x PstI, EcoRI.  
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Figure 6.5 – Physical map of the plasmid pRSET, Construct 1, containing the 

largest of the four omp87 gene inserts of 2.5 kb. The omp87 gene is represented by the 

pink shaded arrow. The ampR gene is represented by the light blue shaded arrow. 
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Figure 6.6 – Physical map of the plasmid pRSET, Construct 2, containing an omp 

insert of 2.3 kb. The omp87 gene is represented by the pink shaded arrow. The ampR 

gene is represented by the light blue shaded arrow. 
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Figure 6.7 – Physical map of the plasmid pRSET, Construct 3, containing an omp 

insert of 2.0 kb. The omp87 gene is represented by the pink shaded arrow. The ampR 

gene is represented by the light blue shaded arrow. 
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Figure 6.8 – Physical map of the plasmid pRSET, Construct 4, containing the 

smallest omp87 insert of 1.5 kb. The omp87 gene is represented by the pink shaded 

arrow. The ampR gene is represented by the light blue shaded arrow. 

 
 
 
 
 

 
 

Figure 6.9 Restriction digestion of recombinant pRSETA plasmids. Lane: 1, lambda 

x PstI marker; Lanes 2-4, pRSET fragment 1 clones x PstI; Lanes 5-7, pRSET fragment 

2 clones x PstI; Lanes 8-10 : pRSET fragment 3 clones x PstI; Lanes 11-13, pRSET 

fragment 4 clones x PstI; Lane 14, Empty plasmid pRSET; Lane 15, lambda x PstI 

marker. 
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From the above results, it was determined that one of the three clones of Construct 1 

(Figure 6.9, lane 3) contained the expected DNA fragments, but also contained an 

additional, unexpected product of around 4.4 kb. This clone was therefore re-grown, the 

plasmid was isolated and digested. The digestion products now showed the expected 

sizes of 2.9 and 2.4 kb (Figure 6.10). 

Despite several cloning attempts, Construct 2 could not be obtained. However, repeated 

attempts with Construct 3 did result in the desired plasmid with the expected digestion 

fragments (Figure 6.11, lane 4). Two successful clones containing a Construct 4 

plasmid were obtained in the first attempt (Figure 6.9, lanes 11 and 13), with the 

expected product sizes of 2.9 kb and 1.4 kb.  
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Figure 6.10. Restriction digestion of plasmid pRSETA Construct 1 clones. Lane: 1, 

lambda x PstI marker; Lanes 2-3, Construct 1 clones digested with PstI and EcoRI. 

 
 
 
 
 

 
 
 
 

Figure 6.11. Restriction digestion of plasmid pRSETA Construct 3 clones. Lane: 1, 

lambda x PstI marker; Lanes 2-5 Construct 3 clones digested with PstI and EcoRI. 
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6.3.5 Sequencing of Omp87 recombinant protein DNA 

 

In order to ensure that the 6 x Histidine tag was in the correct reading frame relative to 

the Omp87 truncates, the pRSET plasmids of all 3 constructs were sequenced. The 

pRSET T7 Promoter primer, and reverse primer pair were used for the DNA sequencing 

reactions. 

The sequencing was performed successfully, and revealed that the Omp87 truncates had 

been successfully cloned into the correct reading frame with the 6 Histidine residues of 

the pRSET vector. The expressed proteins would therefore contain the 6 x His-tag that 

would enable them to be purified using the Ni-NTA column. 

 

6.3.6 Growth and induction of pRSET plasmid constructs 

 

Following the successful cloning of three truncated Omp87 constructs in pRSET, 

analysis of the protein products could now commence by inducing the expression of the 

genes in the host cell E. coli BL21.  

As the pRSET vector contains a polylinker region (Figure 6.3), cloning of the amplified 

PCR product truncates into this region results in a larger insert size (i.e. a fusion 

protein), by 120 bp. Following ligation, the expected sizes of the fusion proteins are as 

follows: 

 

Construct 1: 2495 bp    (831 amino acids - 92 KDa) 

Construct 2: 2342 bp    (780 amino acids - 86 KDa) 

Construct 3: 2030 bp    (676 amino acids - 75 KDa) 

Construct 4: 1511 bp    (503 amino acids - 55 KDa) 

 

The induction time required for maximal protein expression is one variable which differs 

between protein expression systems. The recommended guidelines outlined by 

Invitrogen (www.invitrogen.com) for the expression of cloned proteins from the pRSET 

expression system were therefore optimised for maximal protein expression.  

The induction of the pRSET constructs was performed at hourly intervals over 5 hours, 

and some samples were left overnight. The samples were then separated on a 

polyacrylamide gel, by SDS-PAGE. Samples containing induced Construct 1, the largest 
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Omp87 construct, did not show any expression of the protein, over any of the induction 

hours tested, including the overnight sample. The results for construct 1 are shown in 

Figure 6.12.  The results for constructs 3 and 4, which did show expression of the 

truncated proteins are shown in Figures 6.13 and 6.14. 

 

 

 

 

 

 

 

 

    
 

 

 

Figure 6.12. SDS-PAGE gel of induction trial with Omp87 construct 1. No 

additional expression of a 92 kDa protein can be seen over the time frame tested. Lane 

Mw: SeeBlue® protein molecular marker; Lane 0: Induction time = 0 hrs; Lane 1: 

Induction time =  1 hr; Lane 2: Induction time =  2 hrs; Lane 3: Induction time =  3 hrs; 

Lane 4: Induction time =  4 hrs; Lane 5: Induction time =  5 hrs; Lane O/N : Induction 

time = overnight.  
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Figure 6.13. SDS-PAGE gel of induction trial with Omp87 construct 3. The 

concentration of the expressed 75 kDa Omp87 truncate can be seen to increase over the 

time frame tested. Lane 0: Induction time = 0 hrs; Lane Mw: SeeBlue® protein 

molecular marker; Lane 1: Induction time =  1 hr; Lane 2: Induction time =  2 hrs; Lane 

3: Induction time =  3 hrs; Lane 4: Induction time =  4 hrs; Lane 5: Induction time =  5 

hrs; Lane O/N: Induction time = overnight.  
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Figure 6.14. SDS-PAGE gel of induction trial with Omp87 construct 4. The 

concentration of the expressed 55 kDa Omp87 truncate can be seen to increase over the 

time frame tested. Lane Mw: SeeBlue® protein molecular marker; Lane 0: Induction 

time = 0 hrs; Lane 1: Induction time = 1 hr; Lane 2: Induction time = 2 hrs; Lane 3: 

Induction time = 3 hrs; Lane 4: Induction time = 4 hrs; Lane 5: Induction time = 5 hrs; 

Lane O/N : Induction time = overnight.  
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The results with the expression of constructs 3 and 4 show that the concentration of 

expressed protein did not increase after 4 hours of induction with IPTG. An induction 

time of 4 hours was therefore selected for the remainder of the study, as the optimal 

induction time.  

For the different IPTG concentrations investigated, there was very little difference 

observed between the concentrations of 1 mM, 5 mM and 10 mM (results not shown). 

Below 1 mM, the expression of the protein was slightly lower. It was therefore decided 

that 1 mM was the optimal IPTG concentration for use with the recombinant pRSET 

constructs. 

The results of the optimal induction temperature were also analysed. There was a slight 

difference observed with the yield of protein obtained from the 28°C and 32°C induction 

temperatures (results not shown). However, this difference was not only limited to the 

expressed recombinant protein. It was instead an overall reduction in total cell protein 

amounts, due to the slower growth rate of cells at these reduced temperatures. When this 

reduction in recombinant protein expression was viewed relative to the overall reduction 

in total cell protein, the difference in recombinant expression was negligible. Therefore, 

although the cells grew at a slower rate at the lower temperatures, the expression of the 

recombinant protein was virtually uniform over the temperature ranges tested.  

 
 

6.3.6.1 Determination of truncated Omp87 protein solubility 

 

In order to determine whether the expressed Omp87 proteins were soluble or insoluble, 

the E. coli cells containing the pRSET constructs were induced for 4 hours with 1 mM 

IPTG. The cells were then boiled in SDS-PAGE loading buffer containing β-

mercaptoethanol. The samples were then centrifuged, and both the supernatant and 

pellet were analysed by SDS-PAGE.  

β-mercaptoethanol is a reducing agent which reduces the disulfide bonds within proteins 

and usually leads to their complete unfolding and linearisation. If a protein is insoluble, 

however, the protein aggregates into a dense, biologically inactive form that requires a 

very high concentration of denaturant or detergent to dissolve the protein into an 

unfolded, linear structure. 
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The results indicated that the truncated proteins were insoluble, as they were present in 

the pelleted fraction of the sample (results not shown).  

The School of Chemical Engineering and Materials Science at the University of 

Oklahoma (http://biotech.ou.edu/) have devised a program which determines the 

likelihood of the solubility of a recombinant protein when over-expressed in E. coli. The 

protein sequences were entered into the program, and the predicted percentages of the 

protein solubility or insolubility was determined. This program was used for an estimate 

of the solubility of all pRSET Omp87 constructs. 

The results from the Recombinant protein solubility prediction program are shown in 

Table 6.4. 

 

 

 

 

Table 6.4.  Results for each Omp87 construct from the Recombinant protein 

solubility prediction program (http://biotech.ou.edu/). The protein sequence of the 

recombinant protein is entered into the program, and the program then determines the 

predicted solubility or insolubility for that particular protein when overexpressed in E. 

coli. The CV-CV' value denotes the likelihood that the recombinant protein is soluble in 

the cytoplasm of E. coli (CV-CV' < 0) or will form inclusion bodies (CV-CV' > 0) 

(Wilkinson and Harrison, 1991). 

Construct Protein Size (aa) 
CV-CV' 

value 

Predicted % 

Solubility/Insolubility 

Construct 1 831 aa 2.43 

 

93.3 % Insoluble 

 

Construct 3 676 aa 2.26 

 

91.7 % Insoluble 

 

Construct 4 503 aa 2.29 

 

92 % Insoluble 
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6.3.7 Western blotting of Omp87 recombinant protein using anti-His antibody 

 

Immunoblotting was performed with antibody which specifically binds to histidine tags. 

Anti-His antibody was used to determine if the His-tag was being correctly expressed. 

The results revealed reactivity with the proteins. However there was also reactivity with 

several other smaller proteins in the samples, particularly in the pre-column sample. This 

could indicate that there was binding of the anti-his antibody to intrinsic histidine 

residues in other proteins or peptides; or it may have indicated that there was proteolytic 

breakdown of the recombinant proteins and the anti-his antibody was recognizing, and 

binding to these smaller fragments. 

In order to address the potential problem of protein degradation, the protease inhibiting 

enzymes Leupeptin and Benzamidine were added to the pre-column preparation steps, 

and were used at a final concentration of 1 μg/ml and 1 nM, respectively. However no 

significant difference in reactivity was observed. 

 

6.3.8 Purification of truncated Omp87 proteins by gravity-flow chromatography 

 
A sepharose Ni-NTA column purification method was used for the purification of the 

recombinant Omp87 proteins constructs. Purification of the expressed proteins through 

this purification system proved to require a substantial amount of optimisation in order 

to obtain the final eluted protein in a relatively pure state, with a reasonably high yield. 

An initial concentration of 6 M Urea was used for the solubilisation of the protein, but 

this was not sufficient, as the protein was not effectively binding to the column. The 

higher concentration of 8 M Urea was therefore used, and proved to be effective. Also, 

an initial concentration of 250 mM imidazole was used for eluting the proteins from the 

column. This was not successful, and the protein remained bound to the column 

following the final elution steps. This concentration was therefore increased to 500 mM 

imidazole, and again, proved to be successful (results not shown). 

 

SDS-PAGE results for the purification of both Omp87 constructs 3 and 4 are shown in 

Figures 6.15 and 6.16. 
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Figure 6.15.  SDS-PAGE analysis of protein fractions from the purification of 

Omp87 construct 3, using a Ni-NTA column. Lane Mw, molecular weight standard, 

Lane PC, Pre-column fraction; Lane FT, Flow-through fraction; Lane W, wash fraction; 

Lane E, Eluted fraction. 

 
 
 
 
 
 

        
 
 
 
 

Figure 6.16. SDS-PAGE analysis of protein fractions from the purification of 

Omp87 construct 4, using a Ni-NTA column. Lane Mw, molecular weight standard, 

Lane PC, Pre-column fraction; Lane FT, Flow-through fraction; Lane W, wash fraction; 

Lane E, Eluted fraction. 
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Through the introduction of several more washing steps to the column, a purer yield of 

the final eluted protein product was able to be obtained. The SDS-PAGE analysis of the 

final purification products of Omp87 constructs 3 and 4 are shown in Figure 6.17. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.17.  SDS-PAGE analysis of eluted protein fractions for Omp87 constructs 

3 and 4, using a Ni-NTA column. Lane 1, SeeBlue® protein molecular marker; Lanes 

2-3, Eluted fractions from construct 3; Lanes 4-5, Eluted fractions from construct 4. 

 
 

6.3.9 Immunoblotting of recombinant Omp87 constructs  

 
 
In order to determine if the expressed recombinant proteins were recognised by human 

anti-L. pneumophila antiserum, immunoblotting was performed.  

A whole cell lysate of L. pneumophila AA100 was also included as a control sample. 

The results of the immunoblot are shown in Figure 6.18.  

As expected, the L. pneumophila whole cell lysate control sample shows clear reactivity 

with the antiserum. Constructs 3 and 4 also show reactivity with the human antiserum, 

indicating that the proteins are still recognised by the antiserum, despite being truncated 

versions of the original protein, with an incorporated histidine tag. 
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Figure 6.18.  Immunoblot of recombinant pRSET protein constructs 3 and 4 with 

human anti- L. pneumophila antiserum. Lane 1, SeeBlue® protein molecular marker; 

Lane 2, recombinant construct 3 protein; Lane 3, recombinant construct 4 protein; Lane 

4, L. pneumophila AA100 whole cell lysate. 
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6.4 Discussion 

 
 
In order to express the omp87 gene of L. pneumophila, four different fragments of the 

gene were cloned into the expression vector pRSET. Cloning of the pRSET Omp87 was 

successful for the smaller protein fragments 3 and 4. However, this was not the case 

with the two larger constructs 1 and 2. Omp87 construct 1 was obtained following the 

co-isolation of this plasmid in combination with a plasmid containing an unknown insert 

of 4.4 kb.  

Despite many attempts, no successful clones were obtained containing the construct 2 

insert. This may have been due to the fact that larger fragment sizes in plasmids are 

usually more difficult to clone, or it may have been due to the fact that these larger 

clones also encoded for the protein’s secretory signal sequence. This may have meant 

that the exporting of these proteins to the outer membrane of the E. coli cell following 

protein translation destabilised the organism with lethal consequences.  An accumulation 

of proteins on the cells outer membrane may have been an excessive structural load on 

the cell, thereby rendering these clones unstable. Although we would not expect this to 

occur in the absence of the inducer IPTG, there is often still a small amount of ‘leaky’ 

expression occurring. Although pRSET construct 2 was truncated, it was only around 

five amino acids smaller than the entire Omp87 protein. As we do not know the exact 

location of the protein’s secretory signal, it may indeed be the case that PRSET 

construct 2 also encodes for the secretory signal of the protein. Through sequence 

analysis, we have only been able to predict that the secretory signal of the Omp87 

protein is located at the N-terminal region of the protein, and is around 44 amino acids 

in length (Chapter 4). 

The reason we could recover a construct 1 clone was perhaps due to mutations or frame 

shifts, as no expression was observed in the induction experiments.   

Mitchison et al (2000) also experienced difficulty cloning the entire oma87 gene of 

Pasteurella multocida, using the plasmid pGEX-4T-3. Despite several attempts at 

cloning the entire gene, and the use of several different cloning vectors including pGEX 

and pRSET, the group resorted to cloning shorter fragments of the gene. 

A histidine tag was incorporated in the reverse primers that were used to amplify 

fragments 2, 3 and 4. This was done to ensure that the histidine tag would be present at 
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the C-terminal region, in the event that post-translational modifications to the proteins 

would result in cleavage at the N-terminal region of the protein, and hence cleavage of 

the N-terminal histidine tag. If the histidine tag was cleaved from the translated protein, 

there would be no means for purification of the recombinant protein. The cleavage site 

of the protein is usually situated at the N-terminal region of the protein. It is at this site 

that proteins are usually cleaved following processing or translocation. Therefore, 

inclusion of the histidine tag at the C-terminal region ensured that the proteins would 

still be able to be purified on the Ni-NTA column, even in the event of such 

posttranslational modifications. 

 

The process of protein purification was performed successfully and resulted in the 

isolation and purification of the recombinant proteins from pRSET Omp87 truncates 3 

and 4. Amounts of protein purified varied, but were usually in the range of 3-5 mg per 

200 ml of E. coli broth culture. These proteins had molecular weights of 75 kDa and 55 

kDa respectively, and were purified to a relatively pure state through the use of the Ni-

NTA chromatography system. The 75 kDa construct 3 protein was purified to a higher 

degree than the smaller construct 4 protein, which had a few faint bands present on the 

SDS-PAGE gel, indicative of proteins which had co-purified with the recombinant 

construct 4 protein. These additional bands could also signify protein degradation 

however, as the presence of the histidine tag on the breakdown products would still bind 

to the Ni-NTA column, and result in their purification. As both of the constructs were 

purified under the same conditions however (i.e. temperature, buffer composition) we 

would probably expect evidence of protein degradation in both constructs, and not only 

one. 

The optimisation for the Ni-NTA column purification process was quite lengthy, 

particularly due to the formation of inclusion bodies, by the recombinant proteins. The 

formation of inclusion bodies is reportedly a common occurrence, particularly from the 

high level expression of recombinant proteins in host cells such as E. coli. Inclusion 

bodies can be found in both the cytoplasmic and periplasmic space of bacteria, and are 

described as being dense, globular and amorphous protein aggregates (Baneyx, 1999). 

They are believed to be one of the major impediments in protein production, and hinder 

the development of many areas of proteomics, such as the design and synthesis of novel 

proteins and the modification of natural proteins (Ventura, 2005). Inclusion bodies are 
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also seen however, as an efficient initial step in the purification process, as greater than 

90% of the inclusion body usually consists of the recombinant protein (Clark, 2001).  

Predicting whether or not a recombinant protein is likely to be insoluble, and liable to 

form inclusion bodies is quite a useful and valuable tool, as it may prevent the need for 

the initial laboratory trials of purifying the recombinant protein under both native and 

denaturing conditions. The program developed by The School of Chemical Engineering 

and Materials Science at the University of Oklahoma (http://biotech.ou.edu/) is a 

program devised to predict the solubility of recombinant proteins when over-expressed 

in E. coli. The proteins sequence is entered into the program, and the predicted 

percentage of the proteins solubility or insolubility is determined. The program is based 

on a statistical analysis of protein parameters such as charge average, turn forming 

residue fraction, cysteine fraction, proline fraction, hydrophilicity, and total number of 

residues, and is based on 81 proteins that either are, or are not involved in the formation 

of inclusion bodies. This analysis enables the program to predict the probability that a 

recombinant protein will form inclusion bodies based only on the amino acid sequence 

of the protein (Wilkinson and Harrison, 1991). The pRSET construct protein sequences 

showed high values of predicted insolubility. In the instance of constructs 3 and 4, this 

was indeed the case, as a very high concentration of urea was required to solubilise these 

proteins. For the construct 1 protein, a comparison cannot be made as the protein was 

not successfully expressed using the pRSET expression system. 

During the optimisation of the protein purification process using the Ni-NTA column, a 

few important changes were made that had a significant impact on the success of the 

purification. Firstly, as both proteins were insoluble, a very high concentration of urea 

would be required in order to solubilise the protein. A concentration of 6 M urea was 

used for solubilisation during the initial stages, but the protein appeared to not bind to 

the column, and was instead found in the flow-through fraction.  

At this stage, it had already been ascertained that the histidine tag was present, and was 

effectively expressed. The lack of the histidine tag could therefore be excluded as a 

potential cause for the apparent binding deficiency. The conformation of the protein was 

then considered, as the histidine tag was present, but possibly not able to be accessed, 

due to the conformation of the protein. If the protein had still been present in the form of 

a globular inclusion body, the histidine residues may have been shielded, and 

structurally inhibited, from binding to the Ni2+ residues on the column. The 

concentration of urea used for the solubilisation of the proteins was therefore increased 



Chapter VI - Omp87: Protein Expression and Analysis 

224  

to 8M. The samples were also given additional time to bind to the column, by recapping 

the column following the addition of the sample. The column was then left shaking 

gently at room temperature for 1 hour. This gentle shaking also increased the binding 

potential of the sample to the Ni2+ residues, as it allowed for better mixing of the sample 

with the sepharose/ Ni2+. Following this extra binding time, the sample was then allowed 

to pass through the column. The flow-through fraction was then collected, and again 

passed through the column, to ensure that maximum binding of the recombinant protein 

occurred. 

Another alteration that was made was the increase in imidazole concentration used for 

elution of the protein from the column. Imidazole binds competitively with the histidine 

tag to the Ni2+ residues in the sepharose. Following these changes, the proteins were 

effectively binding to the column, but were not being eluted during the final elution step 

using 250 mM imidazole. This concentration was therefore increased to 500 mM 

imidazole. Elution of the protein then occurred as expected, and resulted in a relatively 

clean and pure product. 

However, as there continued to be slight co-purification of other proteins with the 

recombinant Omp87 truncates, additional washing of the column was incorporated into 

the process, in the form of increased volume of washing buffers that were passed 

through the column. These washing buffers were prepared with the consecutively lower 

concentrations of urea that were passed progressively through the column, and appeared 

to reduce the presence of the co-purified proteins. The concentration of urea was 

reduced gradually in these washing buffers to ensure that the protein did not resolubilise 

during the purification process. 

 

The SDS-PAGE analysis of the recombinant proteins gave a clear and concise indication 

of the success of the expression, and protein purification processes. The construct 3 

protein band, of 75 kDa, was very prominent and easy to visualise on the gel. The 

construct 4 protein band, of 55 kDa, was not as prominent on the gel, but was still easy 

to distinguish from amongst the other protein bands.  

 

Immunoblotting performed on the recombinant proteins with the human anti-Legionella 

antiserum demonstrated that the Legionella antibodies were still able to recognise the 

Legionella Omp87 truncated proteins, although they were truncated versions of the 

Omp87 protein, and contained a histidine tag. This indicated that the portion of the 
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protein that was included in the truncates contained immunogenic regions. It also 

indicated that the incorporation of the histidine tags did not interfere with the antigen-

antibody binding reaction, or the conformation of the proteins. 

 

Further work will be performed on the recombinant Omp87 proteins, including the 

raising of polyclonal antiserum in rabbits. This work will be described in the following 

chapter (Chapter 7). 
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7. Introduction 

 
 
Cross-reactivity between proteins of different bacterial species is often a major factor 

involved in the development of diagnostic tests. Occasionally the cross-reactivity may 

prove helpful if the detection of the organism itself is the critical parameter, and not the 

species of the bacteria. However, identifying the bacterial species involved is often 

important, and this diagnosis may be essential in decisions made involving the treatment 

regime, such as the commencement of antimicrobial therapy. Often there is substantial 

difference between the virulence levels of different strains of bacteria. In the case of 

Legionella for instance, numerous species are highly virulent, whilst others pose no 

known threat to human health (Salyers and Whitt, 2002). 

 

The Omp87 protein of L. pneumophila may potentially be a target for the development 

of diagnostic tests for this organism, or for use in a surveillance-type system to prevent 

outbreaks of disease in problematic sites such as cooling towers.  

 

Raising antibodies to the Omp87 protein, and determining whether these antibodies are 

able to detect L. pneumophila, and the extent to which these antibodies cross-react with 

other species of Legionella, is therefore necessary as a preliminary investigation into the 

value of this protein as a target antigen for Legionella detection. 
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7.1 Outline of this chapter 

 
 
This chapter describes the animal experimentation involved in raising polyclonal 

antibodies against the Omp87 protein of L. pneumophila, using the purified protein 

truncates produced in Chapter 6. Four New Zealand White rabbits were used for 

producing antisera, which was performed over a 12 week period. Analysis of antibody 

titre levels, and cross-reactivity studies were then performed using Enzyme Linked 

Immunosorbent Assays (ELISA). Cross-reactivity was also determined using SDS-

PAGE and Immunoblotting, using different Legionella species and L. pneumophila 

serogroups. 
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7.2 Materials and Methods 

 
7.2.1 Preparation of Omp87 protein samples for raising of polyclonal antiserum  

 

Following the purification of the protein truncates (Chapter 6), the protein concentration 

was increased by centrifuging the samples at 3,000 x g for 1 hour in a YM-30 Centricon 

concentrating device, (Amicon, Inc., U.S.A) with a 30 kDa cut-off limit. Any remaining 

urea and imidazole was also removed from the sample by consecutive washing of the 

sample with phosphate buffered saline (PBS) in the centricon device. Precipitated 

protein was removed from the filter of the device and kept, so as to allow the continuous 

flow through of the sample.  

The concentration of the precipitated protein sample removed from the centricon was 

then determined by performing a Lowry assay (see Chapter 2, Materials and Methods). 

The protein amount was then adjusted to 200 μg using PBS, in a total volume of less 

than 1 ml per rabbit. 

 

7.2.2 Animal experiments 

 

Four 9-week-old female New Zealand White rabbits were used for raising the polyclonal 

antisera. The procedure utilised was approved by the University Animal Ethics 

Committee. 

 

7.2.2.1 Pre-bleed blood collection and processing 

 

Fifteen milliliters of blood was taken prior to the commencement of the study by 

catheterisation of the central ear artery. The blood was collected and left overnight at 

4°C to clot. The following day, the tubes were centrifuged at 5,000 x g for 15 minutes. 

The supernatant was then collected and the pellet was discarded. The serum was again 

centrifuged at 5,000 x g for 15 minutes to remove any remaining red blood cells. The 

serum was then aliquoted into 1 ml aliquots and stored at -20°C. 
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7.2.2.2 Administration of antigen injections and bleeds 

 

The first injection was given as a 1:1 ratio of antigen/PBS:Freunds Complete Adjuvant 

(FCA). The follow up booster administrations were given at the same ratio, except that 

Freunds Incomplete Adjuvant (FIA) was used, instead of FCA. The mixing of the 

protein/PBS and CFA was done by using 2 x 2 ml glass syringes connected via a 3- way 

tap. The mixture was mixed with the syringes for 25 minutes. For the follow up booster 

injections, the protein/PBS and FIA was emulsified by sonication. The mixture was 

sonicated on ice at 35% amplitude for a total of 45 seconds. With both methods, the 

consistency of the mixture was checked by placing a drop of the mixture into a petri dish 

containing H2O. The emulsification was deemed sufficient if the drop was able to retain 

its shape in the liquid.  

The injection inoculum was divided into 3 equal parts and the injections were 

administered at different sites subcutaneously along the flanking sides of the rabbits.  

The first injection was given at week 1, followed by booster injections at weeks 3, 5, 7, 

and 9. Bleeds were taken by catheterisation of the central ear artery at weeks 0 (pre-

bleed), 8, 11 and 13. Following the final bleed at week 13, all rabbits were euthanised. 

 

7.2.3 Immunoblotting for analysis of pre-bleed serum  

 

Immunoblotting was used to analyse the pre-bleed sera.  Samples separated using SDS-

PAGE included 30 μg of whole cell lysate samples of E. coli and L. pneumophila, and 1 

μg of purified Construct 3 and Construct 4 proteins. The SDS-PAGE gel was then used 

for immunoblotting with the pre-bleed antiserum. The pre-bleed rabbit serum was 

diluted to 1/12 with Tris-buffered Saline/Tween20 (0.05%) (TST). A secondary 

antibody was used at a 1/1000 dilution (in TST) of goat, anti-rabbit IgG, conjugated with 

Horse-radish peroxidase (HRP). The bound peroxidase was then visualised by 

developing the blot with 4-chloro-1-napthol in tris-buffered saline (TBS). 
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7.2.4 Absorption of antiserum with E. coli whole cells and whole cell lysates 

 

For the absorption of antiserum with whole E. coli cells, a fresh 10 ml broth culture of E. 

coli BL21 cells was centrifuged at 5000 x g for 15 min. The pellet was washed 2 x with 

PBS. The pellet was then collected and incubated with 10 ml of rabbit antiserum, which 

had been diluted 1/10 with PBS. The mixture was then left shaking gently overnight at 

4°C. For the absorption of antiserum with whole cell lysates, 10 ml of fresh broth culture 

of E. coli BL21 cells was centrifuged at 5000 x g for 15 min. The pellet was washed 2 x 

with PBS. The pellet was then resuspended in 5 ml of PBS. The suspension was then 

sonicated at maximum amplitude for 6 cycles x 15 seconds, on ice. Five hundred 

microliters of the cell lysate was then added to 10 ml of rabbit antiserum which had been 

diluted 1:10 with PBS. With both methods, following the overnight absorption of the 

antiserum, the antiserum was centrifuged at 5,000 x g for 10 minutes. It was then filtered 

using a 0.45 μm filter, followed by filtration with a 0.2 μm filter (Gelman Sciences, 

U.S.A). 

 

7.2.5 ELISA assays for determination of antiserum titre  

 

Indirect ELISA assays were performed to determine the titre of antibodies in the post-

immune sera. Firstly, 3 μg of each recombinant antigen was prepared in ELISA coating 

buffer (0.15 M Na2CO3, 0.35 NaHCO3, pH 9.6). This was added to wells of a 96-well 

plate and left incubating at room temperature for 2 hours, or overnight at 4°C. Plates 

were then rinsed 5 x with Phosphate buffered saline/Tween20 (PBST). The ELISA plate 

was then blocked using 1% BSA in PBS. This was incubated at room temperature for 30 

minutes, or overnight at 4°C. The plates were then rinsed 5 x with PBST. Doubling 

dilutions of antiserum were then added to wells (diluted in PBS/0.05% Tween-20). 

Dilutions ranged from 1/100 to 1/204,800. This was incubated for 2 hours at room 

temperature, or 1 hour at 37°C. The secondary antibody used was a 1/1000 dilution (in 

TST) of HRP conjugated goat, anti-rabbit IgG. This was then added to wells, and was 

left for 2 hours at room temperature, or 1 hour at 37°C. The plates were again rinsed 5 x 

with PBST. The plates were then developed by adding the substrate solution 3,3',5,5'- 

tetramethylbenzidine (TMB) (BD Biosciences, U.S.A). The plates were allowed to 
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develop for up to 1 hour. The reaction was then stopped by the addition of 2M H2SO4. 

The plates were then immediately read at 450 nm using a microplate spectrophotometer. 

Control samples were also included in the ELISA. These were: ‘no antigen added to 

well ’, ‘no blocking of well’, and ‘no conjugate added to well’. 

 

7.2.6 Western blotting for the determination of cross-reactivity 

 

Immunoblotting was used for the determination of antiserum cross-reactivity. Organisms 

used for the cross-reactivity testing consisted of different Legionella serogroups and 

species, and different bacterial species. These organisms are shown in Table 7.1. Whole 

cell lysates of all organisms were prepared, (as described in Chapter 2, Materials and 

Methods) and the concentration of each protein sample was determined by performing a 

Lowry assay, as described by Markwell et al (1978). Thirty micrograms of cell lysate 

was then separated by SDS-PAGE, and this gel was used for immunoblotting with the 

antiserum of rabbit 2. A dilution of 1/500 (in TST) of the primary antiserum (rabbit) was 

used. The secondary antiserum used was a 1/1000 dilution (in TST) of goat, anti-rabbit 

IgG, conjugated with Horse-radish peroxidase (HRP). The bound peroxidase was then 

visualised by developing the blot with 4-chloro-1-napthol in tris-buffered saline (TBS). 
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         Table 7.1   Bacterial serogroups and species included in cross-reactivity  

          studies 

       Organism          Source 

L. pneumophila serogroup 1-13 University of Kentucky* 

L. gratiana " 

L. cincinnatiensis " 

L. wadsworthii " 

L. adelaidensis " 

L. micdadei rivera " 

L. santicrucis " 

L. longbeacheae " 

L. birminghamensis " 

L. dumoffii " 

L. cherrii " 

L. spiritensis " 

L. parisensis " 

L. maceachernii " 

Shigella flexneri RMIT University** 

Salmonella typhimurium " 

Haemophilus influenzae " 

Aeromonas hydrophila " 

Pasteurella multocida " 

Moraxella catarrhalis " 

Vibrio parahaemolyticus " 

Pseudomonas aeruginosa " 

Serratia marcesens " 

Xanthomonas campestris " 

*  Strains kindly provided by Prof. Yousef Abu Kwaik, University of Kentucky, U.S.A 

** Strains kindly provided by Ms Celia McKenzie, RMIT University, Australia 
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7.2.7 Fluorescence Microscopy 

 

Fluorescence microscopy was performed in order to visualise antigen-antibody binding. 

The rabbit Omp87 antiserum was used as the primary antiserum (diluted 1:10 in PBS), 

and a FITC-labelled goat, anti-rabbit IgG was used as the secondary antibody (diluted 

1:10 in PBS). A control primary antiserum (diluted 1:100 in PBS) was also used, which 

was a rabbit polyclonal antiserum against L. pneumophila whole cells (kindly provided 

by E. Grixti, School of Applied Sciences, RMIT University, Melbourne, Australia). 

Samples used for the fluorescence microscopy were whole cells of Staphylococcus 

epidermidis and L. pneumophila (resuspended in PBS), purified recombinant protein 

construct 3, and over-expressed E. coli harbouring the pRSET plasmid either with or 

without the recombinant construct 3 protein insert. Controls were also used which 

consisted of bacterial samples with only FITC-labelled secondary antibody and PBS. 

This was to ensure that secondary antibody could not non-specifically bind to the 

bacterial cells. These images were not included in the results as no evidence of 

fluorescence was seen in the samples. All samples included in the fluorescence 

microscopy are shown in Table 7.2. Half a loop full of fresh bacterial culture, and 1 μg 

of purified recombinant protein were used. Prior to their use, the recombinant constructs 

were over-expressed with 1mM IPTG for 4 hours to ensure that there was maximal 

protein expression.  

The bacterial cells and recombinant protein were attached to glass slides by fixation in 

2% paraformaldehyde, pH 7.0. The slides were left to air dry for 1 hour at RT. The 

primary antiserum was then added, and slides were incubated at 37°C for 1 hour in a 

humid chamber. The slides were then rinsed by gentle agitation for 5 seconds in a petri 

dish containing freshly added PBS. The secondary antibody was then added, and the 

slides were incubated in the dark at 37°C for 1 hour in a humid chamber. The slides 

were rinsed again by gentle agitation for 5 seconds in a petri dish containing freshly 

added PBS. The slides were then air dried in a dark chamber at RT for 1 hour. One drop 

of mounting medium (50% glycerol in H2O) was then added, and the slides were viewed 

under a fluorescent microscope. 
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Table 7.2.  Samples included in the fluorescence microscopy study. 

                   

Sample Antiserum 

None  

anti-Omp87 S. epidermidis 

FITC-labelled secondary antibody only* 

None  

whole cell L. pneumophila  

anti-Omp87 

L. pneumophila 

FITC-labelled secondary antibody only* 

Purified construct 3 

recombinant protein 
anti-Omp87 

None  

whole cell L. pneumophila 
E. coli (pPRSET + 

Construct 3) 

anti-Omp87 

E. coli (empty pRSET) anti-Omp87 

E. coli FITC-labelled secondary antibody* 

* These results are not shown 
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7.3 Results  

 
7.3.1 Preparation of Omp87 protein samples for raising of polyclonal antiserum  

 

In order to obtain sufficient amounts of the Omp87 protein for the production of 

polyclonal antiserum in rabbits, concentrating of the purified recombinant protein was 

required. This was performed using a YM-3 Centricon concentrating device. The device 

has a 30 kDa cut-off limit, so that proteins greater than 30 kDa are retained by the 

device, and any proteins or other reagents pass through the filter, and can be discarded. 

Urea and imidazole, which were used during the purification process (Chapter 6) were 

removed from the samples by consecutively washing the device with PBS. Due to the 

removal of the urea, however, the Omp87 proteins began to precipitate out of solution, 

and could be seen in the device as white, flaky material, situated around the filter. In 

order to allow the washing and concentrating process to continue, and to prevent 

blocking of the filter, the precipitate was removed. This (precipitated) protein sample 

was then used for the inoculation of the rabbits, following the determination of its 

concentration via a Lowry assay (Markwell et al, 1978). 

 

7.3.2 Immunoblotting for analysis of pre-immune serum 

 

Blood samples were taken from rabbits prior to the commencement of the study. These 

were used to determine if the rabbits contained any pre-existing antibodies to Legionella 

or E. coli. The pre-immune antiserum from each rabbit was tested against whole cell 

lysates of L. pneumophila, E. coli, and purified recombinant protein Construct 3 and 

Construct 4 in a Western blotting experiment. The SDS-PAGE gel image used for the 

immunoblotting, and results of the immunoblotting reaction for rabbits 1-4 are shown in 

Figures 7.1 and 7.2 (a-d) respectively. 
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Figure 7.1. Samples separated by SDS-PAGE for immunoblotting with pre-

immune antisera from rabbits 1-4. Lane 1: SeeBlue® prestained molecular weight 

standard (Invitrogen); Lane 2: E. coli BL21 whole cell lysate; Lane 3: L. pneumophila 

whole cell lysate; Lane 4: purified recombinant Construct 3; Lane 5: purified 

recombinant Construct 4. 

 
 
 

 
 
Figure 7.2 (a)   Immunoblotting reaction of pre-immune antiserum from rabbit 1. 

Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli BL21 whole 

cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: purified recombinant 

Construct 3; Lane 5: purified recombinant Construct 4. 
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Figure 7.2 (b)   Immunoblotting reaction of pre-immune antiserum from rabbit 2. 

Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli BL21 whole 

cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: purified recombinant 

Construct 3; Lane 5: purified recombinant Construct 4. 
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Figure 7.2 (c)   Immunoblotting reaction of pre-immune antiserum from rabbit 3. 

Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli BL21 whole 

cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: purified recombinant 

Construct 3; Lane 5: purified recombinant Construct 4. 

 
 

      
 
Figure 7.2 (d)   Immunoblotting reaction of pre-immune antiserum from rabbit 4. 

Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli BL21 whole 

cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: purified recombinant 

Construct 3; Lane 5: purified recombinant Construct 4. 
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The immunoblotting results show that there was reactivity with several proteins in the E. 

coli whole cell lysates (lane 2), a few proteins from the L. pneumophila whole cell 

lysate, and some of the purified constructs. 

From these results, it appears that the rabbits possessed pre-existing antibodies to E. coli. 

This result was not surprising, as E. coli is a very common organism found ubiquitously 

in the environment.  

There was also reactivity however, with the L. pneumophila cell lysate. This reactivity 

was not as strong as it was with the E. coli, and the reactivity appeared to be confined to 

a few bands of the same size as proteins which also reacted strongly with the E. coli. 

Due to the similarity between E. coli and L. pneumophila, it may therefore be that these 

bands represented L. pneumophila proteins that cross-reacted with antibodies against E. 

coli proteins. 

Weak reactivity was also observed with proteins in lanes 4 and 5, from the recombinant 

protein samples. This can most likely be accounted for by the fact that the host cells 

used for the expression of the recombinant proteins were E. coli. These reactive proteins 

are therefore most likely to be E. coli proteins which were co-purified with the 

L. pneumophila recombinant proteins. Although these reactive proteins do not appear 

strongly on the Coomassie Blue stained SDS-PAGE gel used for the immunoblotting, 

they are most likely to be present in the sample. They are only seen more clearly in the 

immunoblot due to the high sensitivity of the technique compared to that of Coomassie 

Blue staining of proteins. 

In order to remove these cross-reacting proteins, and to determine if the reactivity 

observed with L. pneumophila and the recombinant proteins was indeed a case of cross-

reactivity, the pre-immune antiserum was absorbed with both E. coli whole cells and E. 

coli cell lysates. 

 

7.3.3 Absorption of antiserum with E. coli whole cells and whole cell lysates 

 

With the aim of removing cross-reactive E. coli proteins, and to determine if the cross-

reactivity with L. pneumophila observed in 7.4.2 was due to E. coli antibodies, the pre-

immune antiserum was incubated with E. coli whole cells and cell lysate. If E. coli 

antibodies were present in the antiserum, they would bind to the cells or cell 
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components, and could effectively be removed from the antiserum. Both whole cells and 

cell lysate were used for the absorption of antibodies to ensure that all E. coli proteins 

both on the cell surface and within the cell, would be exposed to the antiserum, and was 

available for the binding, and hence removal, of the antibodies. 

Following the absorption process, the immunoblotting was performed with the same 

SDS-PAGE protein samples, which consisted of whole cell lysates of L. pneumophila, 

and E.coli, and purified recombinant protein Construct 3 and Construct 4 (Figure 7.1). 

The results for the immunoblotting with the E. coli BL21 absorbed pre-immune 

antiserum from all rabbits are shown in Figures 7.3 (a-d). 

 

 

 

 
 

Figure 7.3 (a) Immunoblotting performed with absorbed pre-immune antiserum 

from rabbit 1. Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli 

BL21 whole cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: purified 

recombinant Construct 3; Lane 5: purified recombinant Construct 4. 
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Figure 7.3 (b) Immunoblotting performed with absorbed pre-immune antiserum 

from rabbit 2. Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli 

BL21 whole cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: Purified 

recombinant Construct 3; Lane 5: Purified recombinant Construct 4. 

 

 
 

Figure 7.3 (c) Immunoblotting performed with absorbed pre-immune antiserum 

from rabbit 3. Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli 

BL21 whole cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: Purified 

recombinant Construct 3; Lane 5: Purified recombinant Construct 4. 
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Figure 7.3 (d) Immunoblotting performed with absorbed pre-immune antiserum 

from rabbit 4. Lane 1: SeeBlue® prestained molecular weight standard; Lane 2: E. coli 

BL21 whole cell lysate; Lane 3: L. pneumophila whole cell lysate; Lane 4: Purified 

recombinant Construct 3; Lane 5: Purified recombinant Construct 4. 

 

 

The reactivity with the pre-immune antiserum was dramatically reduced following the 

absorption of the antiserum with E. coli B21 cells and cell lysate. The reactivity dropped 

to little, if any, with any of the samples. This indicated that the reactivity seen with the 

L. pneumophila cell lysate in the previous immunoblots (Figure 7.2 a-d) was due to 

cross-reactivity with E. coli proteins, and was not due to pre-existing L. pneumophila 

antibodies in the rabbits. 

 

7.3.4 ELISA assays for determination of antiserum titre  

 

Four New Zealand White rabbits were used for raising polyclonal antisera against the 

L. pneumophila Omp87 recombinant proteins, Construct 3 and Construct 4. Two rabbits 

were used for each recombinant protein. Following the final bleed at week 13, the 

antisera collected were subjected to an ELISA assay to determine the titre. This was 

performed to enable the determination of the optimal dilution for further cross-reactivity 

studies using immunoblotting. 
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The ELISA assay required a considerable amount of optimisation, particularly in terms 

of antigen and antiserum concentrations used. Both higher and lower concentrations of 

antigen were used for coating of wells, and different ranges of antiserum dilutions were 

trialled.  The optimal conditions for the ELISA were then determined. Dilutions of 

antiserum used ranged from 1/100 to 1/204,800, and 3 μg of each of the recombinant 

proteins was used for coating of the ELISA wells. The results obtained from the titration 

studies are shown in Figures 7.4 (a-d). The antibody titre calculated from the assay was 

taken as the reciprocal of the lowest dilution demonstrating reactivity with the antigen. 

The conditions used for the assay are described in section 7.3.5. The background 

OD450nm value of the assay was determined by the control sample which did not contain 

any antigen. This value was then subtracted from all sample results. 

The data for these graphs is shown in Appendix 5. 
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Figure 7.4 (a) ELISA titration results for terminal bleed antiserum of Rabbit 1. 

Dilutions were as follows: 1)1/100 2) 1/200 3) 1/400 4) 1/800 5) 1/1600 6) 1/3200  

7) 1/6400 8) 1/12800 9) 1/25600 10) 1/51,200 11) 1/102400  
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Figure 7.4 (b) ELISA titration results for terminal bleed antiserum of Rabbit 2. 

Dilutions were as follows: 1)1/100 2) 1/200 3) 1/400 4) 1/800 5) 1/1600 6) 1/3200  

7) 1/6400 8) 1/12800 9) 1/25600 10) 1/51,200 11) 1/102400 12) 1/204800. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Dilution

O
D

45
0n

m

 
Figure 7.4 (c) ELISA titration results for terminal bleed antiserum of Rabbit 3. 

Dilutions were as follows: 1)1/100 2) 1/200 3) 1/400 4) 1/800 5) 1/1600 6) 1/3200  

7) 1/6400 8) 1/12800 9) 1/25600 10) 1/51,200  
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Figure 7.4 (d) ELISA titration results for terminal bleed antiserum of Rabbit 4. 

Dilutions were as follows: 1)1/100 2) 1/200 3) 1/400 4) 1/800 5) 1/1600 6) 1/3200    

 7) 1/6400 8) 1/12800 9) 1/25600 10) 1/51,200 11) 1/102400  

 

The titre for each of the rabbit antisera was defined as the reciprocal of the last dilution 

to give a detectable response with the antigen. For each rabbit antisera, the titre was 

therefore determined to be: 

 

Rabbit 1 Titre:  51,200 

Rabbit 2 Titre:  102,400 

Rabbit 3 Titre:  25,600 

Rabbit 4 Titre:  51,200 

 

7.3.5 Immunoblotting for the determination of the distribution of Omp87. 

 

Immunoblotting was performed with the rabbit antiserum to determine if there was any 

cross-reactivity with different Legionella species and serogroups, and other related 
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organisms. Essentially, this study was performed to determine if cross-reactivity exists 

between the Omp87 protein of L. pneumophila and the Omp of other Legionella species 

and to determine if other closely related organisms also possess an Omp87 homologue, 

recognised by the L. pneumophila Omp87 antiserum. 

Western blotting was performed with the antiserum of rabbit 2. This antiserum was 

selected as it was shown to possess the highest titre of antibodies (7.4.4). A dilution of 

1:500 was the highest dilution used which was shown to display clear, and visible 

reactivity. Higher dilutions were also used, but these did not give a clear and obvious 

banding pattern, particularly with the more faintly reacting strains. The results of the 

SDS-PAGE electrophoresis and the immunoblotting for all organisms are shown in 

Figure 7.5 (a-d). 
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(i) 

 

 

 

 
(ii) 

 

Figure 7.5 a) SDS-PAGE gel (i) and immunoblot (ii) of whole cell lysates of 

L. pneumophila serogroups 1-11. Lane 1: SeeBlue® molecular weight standard; Lane 

2: L. pneumophila sgp 1; Lane 3: L. pneumophila sgp 2; Lane 4: L. pneumophila sgp 3; 

Lane 5: L. pneumophila sgp 5; Lane 6: L. pneumophila sgp 6; Lane 7: L. pneumophila 

sgp 8; Lane 8: L. pneumophila sgp 9; Lane 9: L. pneumophila sgp 10; Lane 10: 

L. pneumophila sgp 11. 
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(ii) 

 

Figure 7.5 b) SDS-PAGE gel (i) and immunoblot (ii) of whole cell lysates of 

L. pneumophila and other Legionella species. Lane 1: SeeBlue® molecular weight 

standard; Lane 2: L. pneumophila sgp 12; Lane 3: L. pneumophila sgp 13; Lane 4: L. 

gratiana; Lane 5: L. cincinnatiensis; Lane 6: L. wadsworthii; Lane 7: L. adelaidensis; 

Lane 8: L. micdadei rivera; Lane 9: L. santicrucis; Lane 10: L. birminghamensis. 
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(i) 

 

 

 

 
(ii) 

 

 

Figure 7.5 c) SDS-PAGE gel (i) and immunoblot (ii) of whole cell lysates of 

different Legionella species. Lane 1: SeeBlue® molecular weight standard; Lane 2: L. 

dumofii; Lane 3: L. cherrii; Lane 4: L. spiritensis; Lane 5: L. parisensis; Lane 6: L. 

maceachernii; Lane 7: L. longbeachae; Lane 8: Aeromonas hydrophila; Lane 9: 

Pasteurella multocida. 
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(i) 

 

 

 

 
(ii) 

 

Figure 7.5 d) SDS-PAGE gel (i) and immunoblot (ii) of whole cell lysates of various 

bacterial species. Lane 1: SeeBlue® molecular weight standard; Lane 2: Haemophilus 

influenzae; Lane 3: Moraxella catarrhalis; Lane 4: Vibrio parahaemolyticus; Lane 5: 

Pseudomonas aeruginosa; Lane 6: Serratia marcescens; Lane 7: Shigella flexneri; Lane 

8: Xanthomonas campestris; Lane 9: Salmonella typhimurium. 
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The immunoblotting showed reactivity with almost all strains of bacteria included in the 

cross-reactivity study. The banding pattern was different for numerous strains, 

particularly the non-Legionella organisms. Almost all of the L. pneumophila serogroups 

1-13 displayed reactivity at the expected Omp87 size of 87 kDa, except L. pneumophila 

serogroup 3 (Lane 4) and 13 (Lane 3) which showed bands at smaller sizes, and L. 

pneumophila serogroup 9 (Lane 8) which did not show any reactivity. The smaller 

fragments of reactivity observed for L. pneumophila serogroup 3 may have been due to 

protein breakdown or degradation, in which case the antibodies still recognise and bind 

to the individual fragments of the protein, but the reactivity profile appears different to 

that expected. It may also be that these strains have smaller proteins with essentially the 

same functionality. 

Reactivity was observed with most other species of Legionella, except for L. cherrii, L. 

parisensis and L. longbeachae. Reactivity at 87 kDa was only observed with L. 

birminghamensis.The banding pattern seen with these other Legionella strains was 

different, however there did appear to be some similarity with the patterns observed 

between these strains. 

With the other bacterial species included in the study, reactivity with the antiserum was 

observed with Aeromonas hydrophila, Haemophilus influenzae, Vibrio 

parahaemolyticus, Pseudomonas aeruginosa, Serratia marcescens, Shigella flexneri, 

Xanthomonas campestris, and Salmonella typhimurium. The banding pattern observed 

with many of these organisms was similar, with a protein of around 50 kDa reacting, in 

addition to several smaller protein of less than 20 KDa. 

 

7.3.6 Fluorescence Microscopy 

 

Fluorescence microscopy was performed in order to visualise antigen-antibody binding. 

The observation of antibody binding with whole cells of organisms would indicate that 

the L. pneumophila Omp87 protein was surface bound, and was stearically able to bind 

to the antibody. The results of the fluorescence microscopy for all samples is shown in 

Figures 7.6-7.15. 
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Figure 7.6.  Light microscopy image of S. epidermidis (x 400), mounted in 50% 

glycerol mounting medium. 

 

 

 

 

 
 

Figure 7.7.  UV microscopy image of S. epidermidis + polyclonal anti-Omp87 

recombinant protein construct 3 antiserum + FITC labelled secondary antibody  (x 

200). 
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Figure 7.8.  Light microscopy image of L. pneumophila (x 400), mounted in 50% 

glycerol mounting medium. 

 

 
 

Figure 7.9.  UV microscopy image of L. pneumophila whole cells + whole cell 

primary L. pneumophila polyclonal antiserum + FITC labelled secondary antibody 

(x 200). 
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Figure 7.10.  UV microscopy image of L. pneumophila whole cells x polyclonal anti-

Omp87 recombinant protein construct 3 antiserum + FITC-labelled secondary 

antibody (x 200). 

 

 

 

 
 

Figure 7.11.  UV microscopy image of purified construct 3 x polyclonal anti-Omp87 

recombinant protein construct 3 antiserum + FITC-labelled secondary antibody (x 

200). 
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Figure 7.12.  Light microscopy image of over-expressed E. coli harbouring 

construct 3 recombinant protein plasmid (x 400), mounted in 50% glycerol 

mounting medium. 

 

 

 

 

 
 

Figure 7.13.  UV microscopy image of E. coli over-expressing recombinant protein 

construct 3 (in pRSET) + whole cell primary L. pneumophila polyclonal antiserum 

+ FITC labelled secondary antibody (x 200). 
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Figure 7.14.  UV microscopy image of E. coli over-expressing recombinant protein 

construct 3 (in pRSET) + polyclonal anti-Omp87 recombinant protein construct 3 

antiserum + FITC labelled secondary antibody (x 200). 

 

 

 
 

Figure 7.15.  UV microscopy image of E. coli harbouring empty plasmid pRSET x 

polyclonal anti-Omp87 recombinant protein construct 3 antiserum + FITC labelled 

secondary antibody (x 200). 
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The fluorescence microscopy images of the control samples are all as expected. The 

S. epidermidis sample did not show any reactivity with the polyclonal anti-Omp87 

antiserum (Fig 7.7). Conversely, the purified construct 3 recombinant protein which was 

incubated with the polyclonal anti-Omp87 antiserum showed a great deal of reactivity 

(Fig 7.11). The entire field was highly reactive, and appeared very bright green. As 

anticipated, the UV microscopy image of L. pneumophila whole cells which were 

incubated with the L. pneumophila whole cell polyclonal antiserum also showed 

reactivity (Fig 7.9). The whole cell antiserum was raised against cell lysate preparations 

of L. pneumophila, so antibodies were present in this antiserum which recognised all 

antigenic components of L. pneumophila. The L. pneumophila cells which were 

incubated with the polyclonal anti-Omp87 antiserum however, did not show any 

reactivity (Fig 7.10). This was unexpected, as we would anticipate that the anti-Omp 87 

antiserum would bind with the Omp87 protein on the surface of the L. pneumophila 

cells. 

The over-expressed E. coli cells harbouring the recombinant protein in pRSET displayed 

reactivity with both the whole cell L. pneumophila antiserum (Fig 7.13), and the anti-

Omp87 antiserum (Fig 7.14). This would indicate that the E. coli expressed the 

recombinant Omp87 protein on the cell surface, enabling it to bind to the antibodies in 

the antiserum. The E. coli cells harbouring the empty pRSET plasmid did not show any 

reactivity with the anti-Omp87 antiserum, as expected.  
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7.4 Discussion 

 

Preparation of antigen samples for the raising of antibodies in rabbits required that 

samples be suspended in reagents regarded as safe for inoculation into animals, such as 

PBS. Therefore the chemicals used in the purification process such as urea and 

imidazole had to be removed through filtration with a centricon concentrating device. 

This device allows only compounds greater than the chosen filter size to be retained by 

the filter. Therefore the protein could effectively be washed with PBS. Unfortunately, 

the lack of the denaturant urea in the washed sample caused the protein to precipitate out 

of solution. This precipitation caused the filtration process to slow significantly, as the 

filter became blocked with white flaky protein aggregates. Upon its formation, therefore, 

the protein precipitate was removed from the filter and the process was resumed on the 

remainder of the protein solution. This problem is not uncommon when dealing with 

membrane proteins, as they tend to have highly hydrophobic regions, and require high 

concentrations of detergents to remain soluble (Baneyx, 1999). 

 

The immunoblotting performed with the pre-bleed serum taken prior to the 

commencement of animal work revealed that the rabbits possessed pre-existing 

antibodies to E. coli. This is to be expected as they would be very likely to come into 

contact with this widespread organism through a variety of sources, such as contact with 

animal handlers and handled animal feed. It was unexpected however, to observe that 

several L. pneumophila proteins also reacted with this serum. However as E. coli and 

L. pneumophila are phylogenetically related, it was assumed that the reactivity observed 

with L. pneumophila may have been due to cross-reactivity of E. coli and 

L. pneumophila proteins. This was particularly evident as the L. pneumophila reactive 

proteins were of the same size as the E. coli reactive proteins. Removing the E. coli 

specific antibodies from the serum through absorption with E. coli confirmed this 

notion, as immunoblots performed with the absorbed antisera showed a dramatic 

reduction in reactivity with both the E. coli and the L. pneumophila samples. The 

absorbed antisera were then used for the remainder of the experiments, so as to ensure 

that the cross-reactivity observed between E. coli and L. pneumophila did not interfere 

with any other experimental results. 
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The determination of antibody titres by ELISA for the post-immune sera was carried out 

successfully, and the graphical data obtained for the assay demonstrated a clear 

relationship between the antigen and the concentration of diluted antiserum. The titres of 

the antibody levels ranged from 25,600 for rabbit 3, up to 102,400 for rabbit 2. On 

average, the titres obtained for the recombinant construct 3 protein (rabbits 1 and 2) 

were higher than those of recombinant construct 4 (rabbits 3 and 4). This may indicate 

that the larger construct 3 was more antigenic than the smaller construct 4, thus 

generating a higher immune response. In addition, the construct 3 protein could also 

contain extra epitopes. 

 

Distribution studies carried out by immunoblotting revealed that almost all strains of 

bacteria tested reacted with the Omp87 recombinant protein antiserum. These results 

corresponded with the theory of Voulhoux et al (2003), who believe that homologues of 

the Omp87 protein exist in all gram negative organisms.  

Almost all of the L. pneumophila serogroups 1-13 contained proteins of the expected 

size of 87 kDa, that reacted with the antiserum. Most of the other Legionella species 

tested also reacted with the antiserum, although the banding pattern obtained was 

different. Within the other Legionella species, and other bacterial species, there appeared 

to be some similarity with the banding patterns. In particular, most Legionella species, 

and several other bacterial species possessed a reactive protein of around 50 kDa, along 

with several smaller proteins. This may be due to protein degradation or breakdown, 

which resulted in smaller antigenic fragments which could still be recognised by the 

antibodies. If this was the case however, we would probably also expect the same for 

L. pneumophila serogroups 1-13, as all samples were processed in the same manner, and 

under the same conditions. Different protein sensitivity in different organisms, or 

different proteases or amounts of proteases, may however account for this observation 

(Bollag et al, 1996). The Omp87 protein of these organisms may not be as stable, or 

may be more prone to degradation by temperature or protease activity than the 

L. pneumophila Omp87. In addition, it may be possible that the Omp87 protein of these 

other Legionella and bacterial species possess a quaternary structure, and may be 

present, for example, in a dimer configuration. The protein would therefore separate into 

its individual components when subjected to electrophoresis under denaturing 

conditions, due to the reduction of disulphide bonds. Alternately, the reactivity seen with 
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the other Legionella and bacterial species may be due to cross-reactivity with a protein 

which is totally unrelated to the Omp87 of L. pneumophila. 

The fluorescence microscopy study did not provide much insight into the location of the 

Omp87 protein in L. pneumophila. The control samples all reacted as expected. The S. 

epidermidis negative control did not reveal any binding with the polyclonal Omp87 

antiserum, whilst the positive controls, such as the purified recombinant protein, 

revealed a great deal of binding. The whole cell L. pneumophila antiserum also reacted 

with samples, although to a lesser extent.  

The fact that the polyclonal Omp87 antiserum did not react with L. pneumophila does 

not necessarily indicate that the Omp87 is not surface exposed. It may be because the 

serum was raised against a denatured form of the protein. Alternately, it may be that the 

β-barrel architectural structure typical of outer membrane proteins contains regions of 

differing antigenicity, just as it contains regions of differing chemical properties. These 

proteins usually have a tertiary structure which consists of a strongly hydrophobic barrel 

outer surface, and an amphipathic region at the membrane-solvent interface (Schulz, 

2000). The Omp85 family of proteins are also believed to possess two domains. One is 

an NH2-terminal periplasmic domain, and the other is a COOH-terminal “surface 

antigen” domain (Manning et al, 1998). Antibodies reacting with the surface antigen 

domain were found to be protective against H. influenzae infections in animal models 

(Loosmore et al, 1997). In L. pneumophila, however, this surface antigen domain may 

not be immunogenic, and may therefore not generate reactive antibodies. 

As Legionella are gram negative organisms, they will also contain a leaflet of LPS 

surrounding the cell. These LPS molecules may also be interfering with the binding of 

antibodies to the Omp87 protein. It may therefore be a conformational difficulty in 

which the antibodies cannot readily access the protein which may result in the lack of 

antigen/antibody binding.  

 

Further testing of the sensitivity and specificity of the Omp87 protein is required in 

order to gain a better understanding of the usefulness of the protein in diagnostics and 

detection systems. A wider scope of organisms, including all known Legionella species, 

should also be included in cross-reactivity testing, in order to fully determine the extent 

of Omp87 cross-reactivity within the genus Legionella, and with other unrelated 

organisms.   
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8. Introduction 

 

Legionella spp., and L. pneumophila in particular, continue to be problematic 

worldwide, and potentially pose a threat to the health of the community. This is despite 

today’s greater awareness for the need of more stringent guidelines for Legionella spp. 

control and prevention.  

 

Outbreaks of legionellosis are often large and result in significant morbidity and 

mortality. The largest occurring in Australia to date being at the Melbourne aquarium in 

2000. This outbreak resulted in 119 confirmed cases of Legionnaires’ disease, and four 

deaths. The outbreak led to regulatory changes in Australia regarding Legionella control 

and prevention measures, and although these changes may have curbed the number of 

disease outbreaks, sporadic cases of disease continue to occur (O' Keefe et al, 2005). 

Worldwide, the largest reported outbreak of Legionellosis was in 1999, at the Westfriese 

Flora Show in the Netherlands. Here, 21 of the 231 people infected with Legionella 

succumbed to the disease (Wijgergangs, 1999). It is therefore clear that Legionella spp. 

have the potential to be highly detrimental to human health and well being. 

 

Continuous monitoring of man-made environments in which Legionella spp. thrive 

would seem to provide a possible solution to the ongoing problem of both large and 

small scale outbreaks of Legionnaires’ disease. Cooling towers and air-conditioning 

systems are examples of problematic areas which are often the source of disease 

outbreaks (Brown et al, 2001), and are areas for which the continuous monitoring of 

bacterial growth may prove advantageous. 

Using biological sensors, or biosensors, is one approach which could be used for 

monitoring of environmental conditions. These could be in the form of a platform on 

which antigen-antibody binding kinetics is monitored and relayed through to an 

electronic detection and warning system. In order to construct the biological foundation 

of such a system, the appropriate antigen and antibody capture system must be devised 

which will be both sensitive and specific. In this thesis, an attempt was made to discover 

novel L. pneumophila outer membrane proteins which could potentially serve this 

purpose. 
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8.1 Identification of L. pneumophila Omp87 

 

Through the use of both bioinformatics and laboratory techniques such as SDS-PAGE 

and MALDI-TOF Mass spectrometry, the L. pneumophila Omp87 protein was identified 

(chapter 3).  

The use of bioinformatics tools has, in recent years, become a popular method for a 

diverse range of both genomic and proteomic investigations, such as the identification of 

novel genes or proteins, predictions of the structure and function of proteins, and many 

other DNA or protein sequence-related operations (Fickett, 1996). Although the task of 

searching databases for sequences or motifs can be time consuming, it is nonetheless an 

inexpensive, rapid, and less laborious option to pursue when compared to conventional 

laboratory methods, which often require expensive equipment or chemical reagents, and 

can require days, weeks or even months of experimentation. It can also prove to be 

indispensable in cases where the organism being investigated is difficult to culture or 

cannot be cultured in the laboratory. 

In addition to the Omp87 protein, the bioinformatics protein motif sequence searching 

revealed many L. pneumophila membrane proteins, which included proteins that have 

not been previously described in Legionella. For the purpose of this study, only proteins 

in the outer membrane of L. pneumophila were considered. Proteins situated in the outer 

membrane of the cell are most often the focus of diagnostic or detection systems, as they 

are usually the first proteins which come into contact with the target antibody (Palmer, 

2002). 

Most of the protein matches which arose during the motif searching were not isolated to 

the outer membrane of the bacterial cell,  and instead consisted mostly of enzymes 

which perhaps performed catalytic functions in the cell’s outer membrane. These were 

therefore not useful for the purpose of this study. 

 

During the laboratory process of analysing L. pneumophila outer membrane proteins 

(Chapter 3), a comparison of four different methods for the extraction of outer 

membrane proteins was performed. Two of the methods were similar, and involved 

similar completion times. The glycine-acid extraction method however, was different to 

the other methods and was the simplest and most rapid to perform. This method also 

gave results which were comparable to the other methods, and was therefore selected for 
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use with the analysis of L. pneumophila outer membrane proteins, and ultimately, the 

discovery of the Omp87 protein. This method of outer membrane protein extraction is 

not used routinely for Legionella, but is a commonly used technique with the enteric 

bacterium, Campylobacter jejuni (Garvis et al, 1996). 

 

In addition to the Omp87 protein, the MALDI-TOF Mass spectrometry performed on 

the L. pneumophila outer membrane preparation (Chapter 3) also revealed a match with 

an outer membrane protein of the closely related Xanthomonas axonopodis. The protein 

match had a highly significant ‘score’ value of 241, and revealed a protein of 39 kDa. 

This protein appeared uncharacterised in L. pneumophila, and would therefore also be an 

interesting candidate for further analysis. Literature searches on outer membrane 

proteins of Xanthomonas axonopodis pv. citri did not reveal any publications on a 39 

kDa protein, so no speculation can be made regarding the possible function of this 

protein.  

 

Following the identification of the L. pneumophila Omp87, further analysis and 

characterisation of the protein was performed.  

 
 
8.2 Characterisation of L. pneumophila Omp87 

 

The L. pneumophila Omp87 protein was analysed following its discovery, in order to 

gain a better understanding of the protein, and to determine whether the protein was a 

possible candidate for use with a Legionella biosensor-based detection system.  

The omp87 gene was amplified from the L. pneumophila strain AA100 using novel PCR 

primers, which were designed based on the publicly available genome sequence of the 

L. pneumophila Philadelphia 1 strain. DNA sequencing was then performed, which 

revealed a sequence that was 98% identical to the Philadelphia 1 strain omp87 gene.  

It also revealed that the Omp87 protein was 786 amino acids in size (87 kDa), and 

contained a secretory signal sequence of around 44 amino acids in length, situated at the 

N-terminal region of the protein. These results were found to be very similar to the 

Omp87-like proteins of other organisms, such as the Omp85 of N. gonorrhoea and N. 

meningitidis, which were found to be 792 amino acids in length (Manning et al, 1998), 
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and the D15 outer membrane protein of H. influenzae, which is 797 amino acids in 

length (Flack et al, 1995). 

PCR and Southern blotting was performed to determine whether other strains and 

serogroups of Legionella also contained the omp87 gene. The same primer pair that was 

used for the PCR was also used to synthesise a probe for Southern blotting, and 

amplified part of the L. pneumophila omp87 gene. L. pneumophila serogroups 1-13 were 

included in the PCR and Southern blotting experiments, in addition to 12 other 

Legionella species.   

 

The PCR reaction amplified the omp87 gene in all strains except L. pneumophila 

serogroups 3, 4, 5 and 8. We would however, expect the gene to be present in all 

serogroups. Nevertheless, this result was not surprising as the PCR is a very sensitive 

technique, and small variations in sequence can result in negative reactions due to the 

inability of the primer to bind completely to the DNA template. The fact that all of the 

strains were subjected to the same PCR conditions may also have been another factor 

affecting the results. Repetition of PCR negative serogroups, with optimisation of the 

PCR conditions for each individual serogroup may have resulted in PCR products for 

more strains. 

The Southern blotting, which is less sensitive than the PCR, showed that the omp87 gene 

was present in almost all serogroups of L. pneumophila. Only  the serogroup 3 strain did 

not react with the probe, indicating that this serogroup may warrant repeat testing, 

perhaps using a different strain of the organism, particularly as this strain was also 

negative by PCR. 

 

Mutagenesis studies were then performed on the omp87 gene of L. pneumophila, in 

order to gain insight into the function of this protein. Studies with Omp87-like proteins 

in other organisms indicated that the protein is involved in the transport of either lipids 

or proteins to the outer membrane of the cell. In Neisseria meningitidis, depletion of the 

Omp85 protein resulted in a reduction of lipopolysaccharides and phospholipids in the 

outer membrane of the bacterial cell, and an accumulation of these lipids in the inner 

membrane of the cell (Genevrois et al, 2003). 

Voulhoux et al (2003) however, believed that the Omp85 of N. meningitidis is involved 

in the insertion of proteins into the bacterial outer membrane, and that the decrease in 
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LPS observed by Genevrois et al was probably due to a defect in LPS transport 

machinery.  

The omp87 gene of L. pneumophila was disrupted by insertional inactivation with a 

kanamycin resistance gene. Natural transformation was then attempted to introduce the 

disrupted gene into the L. pneumophila genome, which was not successful. Possibly, the 

strain of L. pneumophila used in this study (FW02/001) did not possess the receptor 

molecules or recognition sequence necessary for the uptake of DNA through natural 

transformation (Smith, 1980). 

Electroporation was therefore used to introduce the disrupted gene into the                      

L. pneumophila genome. The disrupted gene was amplified by PCR, and these 

amplicons were introduced into L. pneumophila using electrotransformation. 

Homologous recombination between the functional omp87 gene and the disrupted 

omp87 gene was then believed to take place, via a double cross-over event. When the 

transformation mixture was plated on Legionella BCYE-α plates containing kanamycin, 

no transformants were obtained. As all of the control plates gave the expected results, 

we were able to speculate that the omp87 gene is essential in L. pneumophila, and that 

its inactivation is lethal to cells. To confirm that the inactivation of the omp87 gene is 

lethal and that the results obtained were not due to an inability of the DNA to enter cells, 

or the inability to recombine with the host’s genome, a PCR reaction was performed. 

This was based on the method described by Burns et al (2000). The experiment was 

designed so that a product would only be obtained if integration of the disrupted gene 

had occurred with the L. pneumophila genome. As a product of the anticipated size was 

obtained we were able to conclude that the omp87 gene was indeed an essential 

L. pneumophila gene. DNA sequencing of the product further confirmed this. 

Additional studies are needed to further analyse the function of the omp87 gene. 

Regulation of the amount of expression of the Omp87 protein through the use of 

inducible promoters or genes cloned upstream of the omp87 gene would allow 

investigators to analyse the function of the protein without compromising the cells 

viability (Genevrois et al, 2003). 

The final analysis performed on the L. pneumophila Omp87 involved the production of 

polyclonal antiserum against the protein (chapter 7). This was carried out using New 

Zealand White rabbits, over a 12 week period.   

Pre-existing E. coli antibodies present in the pre-immune rabbit sera displayed reactivity 

with several L. pneumophila proteins. This cross-reactivity was not surprising as E. coli 
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and Legionella spp. are phylogenetically related. These E. coli antibodies were therefore 

removed by absorption of the sera with E. coli whole cells and cell lysates.  

The antibody titre in the post-immune sera was determined by ELISA, and all rabbits 

showed a good level of antibody production. The titres ranged from 25,600 for rabbit 3, 

and were as high as 102,400 for rabbit 2. On average, the antibody production of rabbits 

1 and 2 (construct 3) were higher than those of rabbits 3 and 4 (construct 4). This may 

be due to the larger construct 3 being more antigenic than the smaller construct 4. This 

could then result in the generation of a higher immune response. 

 

Cross-reactivity studies were then performed using the immune sera to determine 

whether different serogroups and species of Legionella, in addition to several other 

related bacteria, were reactive towards the L. pneumophila Omp87 antiserum. The 

results showed that almost all strains of bacteria tested reacted with the L. pneumophila 

Omp87 antiserum. Variations in the reactive banding pattern were observed, but there 

were also similarities. L. pneumophila serogroups 1-13, in particular, gave the clearest 

banding pattern, with almost all strains displaying a band at around 87 kDa. Similarities 

were also observed with the banding pattern of other bacterial strains tested, whereby a 

50 kDa protein, along with several smaller proteins reacted with the antiserum for most 

of the strains. This was probably due to protein degradation or breakdown, which 

resulted in smaller antigenic protein fragments. 

 

Fluorescence microscopy carried out with L. pneumophila whole cells, the Omp87 

polyclonal antiserum and secondary FITC-labelled anti-rabbit antiserum did not reveal 

the location of the Omp87 protein. As whole cells were used, reactivity with the 

antiserum would indicate that the protein was surface expressed, and able to be accessed 

by the antibodies in the antiserum. As the control samples gave the expected results, we 

speculated that the protein was not surface exposed, did not possess antigenic surface 

exposed regions, or was shielded by other molecules in the outer membrane. 

 

8.3 Potential of the Omp87 for use in a Legionella detection system  

 

This study found that the L. pneumophila omp87 gene is most likely to be essential for 

survival of this organism. Essential genes are often considered to be ideal candidates for 
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bacterial detection systems. They usually are highly conserved, and undergo very little 

modifications. They therefore often share very similar DNA sequences between 

serogroups and species. This would lead us to speculate that the L. pneumophila omp87 

gene would be considered as a potential candidate for a detection system.  

However, based on the analysis performed on the L. pneumophila Omp87 protein, it 

would appear that antibodies against the Omp87 protein would have limited use as a 

capture protein for a Legionella biosensor. Not only did the protein show cross-

reactivity with many Legionella serogroups and species tested, but it was also cross-

reactive with proteins from related bacterial species. Therefore, if polyclonal 

L. pneumophila Omp87 antibodies would be used in an antibody-based detection 

system, many false positive reactions would be obtained, which is obviously not 

desirable.  

If cross-reactivity of the Omp87 protein was limited to Legionella serogroups and 

species, the protein would still be useful as a primary capture molecule. A second, more 

specific antigen or antibody could then be included in the system to differentiate 

between the species of Legionella present, once a positive reaction was obtained. As the               

L. pneumophila Omp87 also reacted with other bacterial species however, it could not 

be used in such a system.  

 

There are however, several options which could possibly still enable the Omp87 to be 

used in a Legionella detection system. Firstly, a system using monoclonal Omp87 

antibodies could greatly improve the specificity for the protein. Monoclonal antibodies 

are directed at certain epitopes of a protein and are therefore more specific than 

polyclonal antibodies, which are indiscriminately produced against many of the proteins 

epitopes. As expected, the extent of any cross-reactivity with the monoclonal antibodies 

would also need to be ascertained to determine the potential of the antibodies for use in 

the detection system. Secondly, if the cross-reactivity of the L. pneumophila Omp87 was 

restricted to other bacterial species which are related to Legionella, such as within the 

class of gamma Proteobacteria, absorbing the Omp87 antiserum with whole cell lysates, 

and outer membrane preparations of these organisms to remove the cross-reactive 

antibodies would also improve the specificity of the serum. Testing the range of 

organisms which cross-react with the Omp87 antiserum however, would be a laborious 

task, as a large and comprehensive collection of organisms would need to be tested in 

order to fully rule out any cross-reactivity with other unrelated organisms. 
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8.4 Future Directions 

 

Clinical and environmental biosensors which rely on antigen/antibody or DNA/DNA 

hybridisation reactions are becoming increasingly prevalent. DNA-based systems in 

particular, are generally regarded as highly specific and sensitive, such as the use of 

PCR-based detection systems. Previous work in which I was involved aimed at the 

environmental field testing of samples, and the miniaturisation of PCR machines to 

enable on-site PCR testing of environmental samples (Ivanova et al, 2002). Today 

however, conventional PCR-based systems appear to be gradually declining in 

popularity in favour of real-time PCR methods and high throughput systems such as 

microarray-based systems, which are also highly sensitive and specific. Although 

antigen/antibody based systems have been in widespread use for numerous years, the 

obvious advantages of DNA microarray systems, such as the ability to test numerous 

samples simultaneously for the presence of many different genes (Zhou, 2003) means 

that these systems are likely to surpass the use of current methods.  

In the context of DNA-based systems, the omp87 gene may prove useful as an indicator 

for the presence of Legionella spp. in environmental or clinical samples. The gene 

sequence of the omp87 gene could be analysed for the presence of unique signature 

sequences which are exclusive to Legionella, or even to L. pneumophila, thereby greatly 

enhancing the specificity of the gene. These DNA signature sequences could then be 

used in a microarray type detection system which could process numerous samples 

simultaneously, or could include several Legionella genes which would enable for 

typing of the organism. In a clinical setting, the L. pneumophila omp87 gene could be 

included in a test to diagnose patients suspected of having a lung infection. 

Representative genes of other organisms commonly implicated in lung infections could 

also be included, and a complete test could be devised which, with one sample of 

sputum or excised lung cells (biopsy) could provide a diagnosis for the cause of the 

infection. 

 

Despite large scale media attention, and increased public awareness of the dangers of 

Legionella and the symptoms of disease, outbreaks of Legionnaires’ disease continue to 

occur with a somewhat regular prevalence. Therefore, whether future Legionella 

detection systems are antigen/antibody or DNA/DNA based, it is clear that an effective, 
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cost-efficient and user friendly system needs to be devised which can be routinely 

implemented by large and small corporations alike, into their building’s water systems. 

With the assistance of government regulations to ensure that these systems remain in 

place, we would hope that the incidence of Legionnaires’ disease outbreaks in the 

community receded to the point of becoming a rarity.   
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Appendix 1: SeeBlue TM Plus2 Pre-Stain Molecular weight standard 

 
 
 
 
 
 
 
 
 

 
Myosin  (250 KDa) 
 

 
Phosphorylase  (148 KDa) 
 
 
BSA  (98 Kda) 
 
 
Glutamic Dehydrogenase  (64 KDa) 
 
 

Alcohol Dehydrogenase  (50 KDa) 
 
 

Carbonic Anhydrase  (36 KDa) 
 
 
Myoglobin Red  (22 KDa) 
 

Lysozyme  (16 KDa) 
 
 
 

Aprotinin  (6 Kda) 
 
 
Insulin, B Chain  (4 KDa)  
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Appendix 2: λ x Pst1 Molecular weight marker 

 
 
 
 

0.47 

 2.14 

1.16+1.09 

11.5 

2.8 

1.99 

1.70 

0.80 

0.34 

0.264+0.247 

5.1+4.7+4.5 

2.6+2.5+2.4 

0.51 

0.45 



Appendices 
__________________________________________________________________________________________________________ 

304  

Appendix 3A: DNA sequencing chromatogram of omp87 gene (a) 
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Appendix 3B: DNA sequencing chromatogram of omp87 gene (b) 
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Appendix 4: DNA sequencing chromatogram of inactivated omp87 gene (AOFIAKanB) 
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Appendix 5:  Titration results (in triplicate) of ELISA assay for Rabbits 1-4.  

The titrations were performed in triplicate for each rabbit, and the average of these 3 titrations were calculated. The background OD450nm was 

subtracted from the average, and these values were plotted on the graphs shown in chapter 7, Figures 7.4 (a-d). 

Rabbit 1 1.358 1.289 1.276 1.27 1.295 1.227 1.262 1.262 1.223 1.01 0.66 0.419
 1.332 1.264 1.252 1.276 1.264 1.305 1.219 1.198 1.156 0.954 0.659 0.412
 1.223 1.239 1.314 1.224 1.239 1.183 1.217 1.152 1.031 0.832 0.578 0.377
             
  Average 1.304 1.264 1.281 1.257 1.266 1.238 1.233 1.204 1.137 0.932 0.632 0.403
-Background 0.659 0.619 0.636 0.612 0.621 0.593 0.588 0.559 0.492 0.287 -0.013 -0.242
    
Rabbit 2 1.29 1.297 1.291 1.285 1.298 1.258 1.258 1.258 1.18 0.996 0.711 0.434
 1.173 1.188 1.209 1.254 1.199 1.158 1.172 1.153 1.121 0.938 0.667 0.427
 1.242 1.231 1.205 1.27 1.226 1.215 1.199 1.199 1.135 0.969 0.653 0.423
             
  Average 1.235 1.239 1.235 1.270 1.241 1.210 1.210 1.203 1.145 0.968 0.677 0.428
-Background 0.59 0.594 0.59 0.625 0.596 0.565 0.565 0.558 0.5 0.323 0.032 -0.217
    
Rabbit 3 1.139 1.057 1.084 1.122 1.061 1.062 1.036 0.958 0.763 0.488 0.267 0.099
 1.127 1.02 1.051 1.022 1.08 1.032 1.02 0.911 0.799 0.494 0.315 0.131
 1.122 1.082 1.052 1.032 1.073 1.023 1.027 0.953 0.786 0.516 0.328 0.143
             
  Average 1.129 1.053 1.062 1.059 1.071 1.039 1.028 0.941 0.783 0.499 0.303 0.124
-Background 0.484 0.408 0.417 0.414 0.426 0.394 0.383 0.296 0.138 -0.146 -0.342 -0.521
             
Rabbit 4 1.179 1.145 1.075 1.078 1.113 1.109 1.08 1.002 0.811 0.619 0.345 0.155
 1.106 1.078 1.006 1.013 1.01 0.984 0.999 0.905 0.755 0.453 0.321 0.147
 1.13 1.116 1.058 0.935 1.022 1.038 1.039 0.982 0.853 0.597 0.394 0.186
             
  Average 1.138 1.113 1.046 1.009 1.048 1.044 1.039 0.963 0.806 0.556 0.353 0.163
Background 0.493 0.468 0.401 0.364 0.403 0.399 0.394 0.318 0.161 0.079 -0.292 -0.482

 


