
 

 

On the Micro-Precision Robotic Drilling 

of Aerospace Components 

 

 
John Newberry 

B. Eng. Aero. (Hons) 

 

A dissertation submitted in fulfilment of the degree of Doctor of Philosophy 

RMIT University 

 

 

School of Aerospace, Mechanical and Manufacturing Engineering 

SET Portfolio 

RMIT University, Australia 

March 2007 

 

 



i 

Abstract 

This dissertation describes research concerned with the use of advanced measurement 

techniques for the control of robotic manufacturing processes.  The work focused on 

improving the state of technology in the precision robotic machining of components within 

the aerospace manufacturing industry within Australia.  Specific contributions are the 

development of schemes for the use of advanced measurement equipment in precision 

machining operations and to apply flexible manufacturing techniques in automated 

manufacturing. 

The outcome of the research enables placement of a robotic end effector to drill a hole with a 

positional accuracy of 300 micron, employing an Indoor Global Positioning System for 

control of the drilling process.  This can be accomplished within a working area of 35 square 

metres where the robot system and/or part positions may be varied dynamically during the 

process. 

Large aerospace structures are capable of flexing during manufacturing operations due to 

their physical size and low modulus of rigidity.  This research work provided a framework for 

determining the appropriate type of automation and metrology systems needed for dynamic 

control suited to the precision drilling of holes in large aerospace components.   
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1 Chapter 1: Introduction 

1.1 Preamble 

This research is conducted as a part of a project funded by the Cooperative Research Centre 

for Intelligent Manufacturing Systems and Technologies (CRC-IMST), with Hawker de 

Havilland (HdH) as the major industrial partner.  The research was focused on identifying 

and developing the basis for a system of micro-precision drilling of aerospace components 

using a mobile robot.  The normal level of positioning accuracy provided by an industrial 

robot needed to be improved to cope with specific requirements encountered in the aerospace 

industry.  Here usable systems were required to be devised to accommodate the flexibility of 

large aircraft components even when supported on jigs.  A typical product would be a 

commercial aircraft stabilizer whose span was of the order of 12 metres with similar drilling 

error requirements common to small products (under 1m length). 

Pre-existing robotic systems are incapable of producing the desired level of accuracy over 

such spans.  Hence in order to improve positional accuracy and cater to the inherent 

flexibility of a structure (even when supported by jigs or fixtures), the candidate needed to 

use extended sensing to provide inputs for adjusting final end effector location on a precision 

scale.  A potential means of so doing would be to locate a photoelectric diode receiver on the 

surface of a flexible component so that accurate global location of features could be readily 

identified by triangulation. 

There was then a clear need to establish a means of finer position control beyond what was 

available for use in the aerospace industry.  The candidate researched and investigated the use 

of an “In-Factory” Global Positioning System (IPS) to attain the final precision positioning 

and control required in these instances. 
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1.2 Objective 

The overall objective of this research was to investigate whether the use of Indoor 

Positioning Systems (IPS) equipment was suitable for controlling precision positional 

information relating to both workpiece and robot when both were required to engage 

with one another.  There needed to be a recognition that both entities were mobile 

and/or flexible. 

It was necessary to eventually design a system to control the precise application-points of a 

range of tools such as orbital drills or assembly fastener insertion tools, coupled to a robot 

end effector. 

Such a system also needed to cope with multiple robots operating simultaneously on a single 

component or where the workpiece itself could move.  It was envisaged that the proposed 

system would result in a step change of improving the final manufacturing process accuracy 

of large aerospace components in a production environment. 
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2 Chapter 2: Literature review 

2.1 Overview of current methods of end effector positioning 

Much of the literature on positioning an end effector for manufacturing tasks relies on the 

robot manufacturer’s calculation of the IK (inverse kinematic) solution for determining end-

effector position and posture.  Inverse kinematics relies on the execution of a robot 

manufacturer’s algorithm to specify individual joint parameters as a function of desired 

global robot positions.  This technique is insufficient because it relies on absolute rigidity of 

the robot and workpiece and is intolerant of flexibility or other discrepancies in the actual 

location of critical points on the manufactured surface. As an example, a short summary of 

the inverse kinematic solution set for a typical robot as described by LaBrooy [1983] and 

reproduced in McKerrow [1991] are cited in Appendix A. 

Paul [1981] provided early methodology to determine joint angles by matrix analysis of the 

relationship of robot linkages.  Additionally, Paul [1981] discussed the derivation of 

Jacobians based on differential movements to identify the velocity characterisation of an end 

effector, affecting the dynamics of the manipulator itself. 

Young [1973] suggested the need of position measurement feedback for the positioning of a 

robotic tool, categorising these into either measurement of an absolute nature (where 

measurement is taken from a global coordinate frame) or incremental measurement (where 

the measurement is taken from a sequential series of related measurements).  This concept is 

related to an IPS system used throughout this research, which offers an absolute measure.  

Young [1973] however indicated that at the time, such systems were both large and cost-

prohibitive. He suggested that a measurement technique using a steel vane creating magnetic 

pulses be used to feedback positional information. 

Heath [1985] discussed use of the most predominant means of positioning robot used within 

industry.  Here a “teach pendant” was used to manually guide the robot to the correct position 

and posture.  Once this was achieved the operator recorded the robot’s position and posture, 

by recording the joint angles.  On replay the robot could rapidly return to “taught” points.  

The method initially termed joint coordinated motion (JCC) and other related methods are 

usually referred to as “online” programming.  Here the robot must have been pre-driven to 
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taught points and there is no necessity to invoke the inverse kinematic solution set.  Heath 

[1985] suggested that whilst this method allowed the robot to attain end effector locations 

only, the end-effector path between points was usually indeterminate to form part of robot’s 

in-built trajectory plan. 

Hefele and Brenner [2000] discussed the difference between the use of a teach pendant, as 

described by Heath [1985] and the IK solutions discussed earlier.  These authors suggested 

that robots commonly used for industrial purposes may have a repeatability of 0.1mm.  

Repeatability is the ability of a robot to reach a known position within a sphere of error.  The 

actual repeatability attained may vary up to several millimetres due to internal robot 

mechanical factors, such as linkage droop and drive mechanism servo errors.  As the teach 

pendant defines the correct position and posture attained manually, final repeatability is 

totally dependant on such internal robot factors.  The use of the IK solution, in an “offline” 

programming mode, relies on the mathematical model pre-programmed into the robot.  

Hefele and Brenner [2000] approached bridging the gap between using the teach pendant and 

the inverse kinematic solution accuracy by using digital photogrammetric tracking 

techniques.  These two methods were employed, initially placing digital cameras around the 

robot’s end effector and measuring differences between final and expected end effector 

locations.  Secondly, using a camera located at the end effector itself, coded targets placed 

about the measurement area were measured allowing calibration of the robot system itself 

and identification of deviations from the expected location. 

2.2 Overview of micro positioning research 

The first acknowledged attempt at using micro-positioning in addition to the robots IK 

solution was performed at Arizona State by Davidson [1985].  Since then the general concept 

of micro positioning has commonly been restricted to robots with operations on a micro 

scale.  This was essentially due to the increasing availability of miniaturised components used 

in micro-electronics.  Large scale deviation measurements were still inaccurate and there was 

a tendency to use Moire fringe methods for improved accuracy.  Adaptation of moire fringes 

to metrology is commonplace as used in industrial micrometer construction.  It’s use in large 

scale schemes is restricted and compounded by parallax errors and lens aberrations. 
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Yi, Na, Chung, Kim and Suh [2002] demonstrated a limited positioning system that was 

developed specifically for measuring the accuracy of flexure hinges, depicted in Figure 2.1.  

This system used peizo-electric actuators and possessed overall movement of 0-100µm in 

two linear dimensions (x and y) with a rotational movement of  0 - 0.1°.  The extremely small 

movement and rotation allowed by such actuators were typical of most micro positioning 

systems.  Whilst being able to position to within a few microns, the scope of the tool itself 

was extremely limited.  Due to the limited nature of these systems, they often required 

auxiliary micro systems inducing error to operate realistic payloads. 

 

Figure 2.1 - flexure hinge micro positioner 

(Yi, Na, Kim and Suh [2002]) 

Aoyama, Iwata and Sasaki [1995] built micro-robots capable of etching and micro-

hammering tasks.  These devices comprised a series of miniature robots working in parallel, 

achieving accuracies at a micron level in a controlled atmosphere.  Whilst the use of micro-

robots may offer considerable advantages for some manufacturing tasks and are capable of 

extremely high precision, the use of these schemes with miniscule payloads is only a 

curiosity in the candidate’s brief to manipulate accurately substantial payloads over long 

distance. 

Choi, Han, Kim, Kim, Choi and Na [2003] examined the use of micro positioning grippers 

for the positioning and pressing of small components.  The micro positioning system was 

based around a rotating module and linear movement axis that was completed by a 3-axis 

manoeuvring stage prior to pressing of the component.  This system employed laser 

displacement sensors to measure the final position and posture of the parts for determining 
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existing placement error.  Again this paper examined a process that focused on small scale 

items, rather than extending the measurement to larger components where inertia and 

dynamics played significant and so far unaccounted roles. 

Hohn and Robl [1999] considered the use of micro-positioning for existing industrial 

robotics.  Specifically this micro positioning system comprised a precise gripper attached to a 

standard industrial robot, using a vision system for executive control of the system.  This 

allowed for the prospect of micro-positioning over the range over which the robot operated.  

It must be noted that adaptation of this system was proposed for the assembly of wristwatch 

gears and was aimed at the manufacture of micro structures.  Many practical watch assembly 

schemes use extensive micro-jigs and “dead-reckoning” methods used in electronic 

manufacture.  The vision system used for this process was based on a CCD chip, with a 

maximum measurement area of 30mm x 20mm.  Although the accuracy of this system was 

recorded at 30 µm, it was only achievable over a small area.  Positioning accuracy was only 

possible while the robot arm remained constrained to the work envelope 

Huang [2000] examined a micro-positioning system that was based around a tapping cell, 

using sharp applications of force to effect fine positional adjustments.  The scheme appeared 

beneficial for industrial tasks where static friction needed to be overcome. 

Van Duin [2001] performed research examining micro positioning for industrial purposes, 

allowing measurement and drilling a flat workpiece to within several microns of positional 

accuracy.  This relied on placing static lasers on a part for guiding micro positioning of an 

end effector.  The required payload and movement was well beyond what was demonstrated 

by prior examples cited. This experimentation however was only able to demonstrate 

movement with two degrees of freedom and consumed space on the workpiece.  Both laser 

receivers and transmitters were located proximal to each other and 3-D measurements were 

attempted  There was merit in the Van Duin [2001] scheme which was explored by the 

candidate more fully and described later in this dissertation. 

The following section reviews the applicability of several papers in key areas. 
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2.3 Online vs. offline programming and feedback 

Programming of robot operations include two standard methods:  Online and offline 

programming. 

Online programming commonly uses a teach pendant.  The system must be “online” and the 

end effector moved to a desired location.  The system is rigid in concept and is inappropriate 

in the context of this research as control must be flexible and may not be pre-programmable. 

Offline programming includes the use of robot control programs to be invoked prior to any 

operation.  This relies on a mathematical model of the robot and can result in high errors 

when used with a flexible workpiece.  As there is no scheme for compensating such a robot, 

offline programming on its own is also unsuitable. 

Thus, it is necessary to utilise absolute positional feedback to compensate for the operation of 

any system, to allow for flexibility and adjustment of pre-calculated position. 

2.4 Scale of system 

The highest accuracy reported in the examples in section 2.2 was of the order of 100 microns 

and were attained using of micro-robots, used for micro positioning of small tools.  The 

techniques were inappropriate due to the nature of the micro robots themselves.  Firstly their 

small size heavily restricted both their movement and payload capacity, resulting in 

operations only being suited to small components and micro structures (demonstrated by 

Aoyama, Iwata and Sasaki [1995]).  While these robots were capable of adapting to differing 

shapes and situations they remained slow to move and operate.  Their applications were very 

limited.  This research focuses on operations on components that are large (several metres in 

length).  The use of micro robots over this space is then not feasible.  Additionally, to allow 

drilling and other operations in aerospace manufacture requires large end effectors and tools, 

all of which are well above the payload capacity of any micro robot. 
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2.5 Scale of operation 

The examples cited in section 2.2, with the exception of Van Duin [2001] focused generally 

on micro-components and operations.  The focus of this research is to examine the 

feasibility of developing a system to operate on aerospace components (up to12 metres in 

length).  A requirement for appropriate accuracy is needed to be maintained over these 

distances.  Radically different approaches and measurement systems were required over such 

distances.   

Larger scale industrial robots used for aerospace operations must then cater to large payloads 

and accurate movement over the range of the end effector.  While micro-adjustments may be 

readily available for much smaller scale systems, aerospace robots require dedicated micro-

positioning end effectors for accurate tool placement.  Additionally, previously reported 

schemes can introduce mechanical and control instability into the system as the tool 

positioning trajectory is ill-defined.  The parameters to be controlled associated with these 

robots must be attached to the part surface itself.  A micro positioning end effector must be 

able to operate with great absolute accuracy and repeatability as required by the task and 

often beyond the specifications of the robot system itself. 

2.6 Measurement systems 

One of the major issues discussed previously is the scope of the measurement systems to be 

used to ensure accuracy in micro-positioning.  Hohn and Robl [1999] employed standard 

industrial robots and CCD based vision systems with their micro-positioning system.  The 

processes were again performed on micro-components and accuracy depended on the ability 

to identify points which could be measured against reference points within a small field of 

view.  This was applicable realistically only to micro-devices, such as the wristwatch gear 

system cited and not to larger components manufactured for the aerospace industry. 

Hefele and Brenner [2000] proposed that increased accuracy may be achieved by employing 

a photogrammetric system.  These systems are frequently used in calibrating manufacturing 

equipment.  This type of system does allow for highly accurate measurement over large areas 

– however equipment required is often expensive and not robust.  Processing using 

photogrammetry is also problematic as it requires significant computing resources for image 
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resolution and data processing and will not operate effectively in real time applications. 

Another prospective method suited to measurement of robot position can be the use of laser 

trackers.  Laser trackers are units that measure the reflection of a laser beam from a scanner 

head off a reflective tooling ball.  The candidate contended that they are unsuitable for 

comprehensive manufacturing tasks as they are restricted to measuring a single location at a 

time, are difficult to commission for autonomous measurement and are very sensitive to 

disruptions in the measurement process. 

These methods are further considered in Chapter 3. 

2.7 Conclusion 

The candidate has reviewed the current literature regarding to the use of measurement 

systems for automation purposes and deduced that there is a dearth of appropriate methods 

for control of large-scale, accurate robotic manufacture of aircraft components.   

Further detailed review of measurement systems was required to identify prospective systems 

that may be feasible for this research.   Identification of a single suitable method will be 

detailed later. 
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3 Chapter 3: Overview of Measurement systems 

3.1 Introduction 

This chapter will examine and nominate measurement systems available as options for the 

described manufacturing operations and identify potential candidates for use in this research.  

Furthermore, a single measurement system to be researched in this dissertation will be 

identified. 

3.2 Measurement systems 

A brief discussion was presented in Chapter 2 as an introduction to the state of available and 

suitable technologies for micro positioning and manufacturing of flexible structures.  Central 

to the concept of micro-positioning for large scale manufacture is the presence of a highly 

accurate measurement system.  This section identifies the most suitable methods for position 

measurement and feedback for the prospect of automating the scheme to produce positional 

feedback information for machining large, flexible structures.  The following schemes will be 

described. 

3.2.1 IPS 

A Global Positioning System (GPS) is commonly employed for geographical location on 

earth.  The systems comprise a number of satellites orbiting the planet, each emitting radio 

signals.  A GPS unit (comprising of a handheld device) can be used with basic triangulation 

to determine absolute location with an accuracy of approximately 100 square metres normally 

or 10 square meters using advanced technology.  Figure 3.2 demonstrates this concept. 
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Figure 3.2 - GPS network 

Using this principle, manufacturers of IPS equipment developed a system replacing satellites 

with locally-based, infra-red and laser transmitters and receivers with photoelectric diode 

receivers.  Indoor Positioning System (IPS) is a recent addition available to metrology 

techniques.  Comprising of a series of fixed transmitters producing laser and infra-red pulses 

at a steady rate, these pulses are recorded by a receiver placed within the measurement area.  

The resulting pulse timing data can be used to resolve position data into three dimensions. 

The intent of this research was to develop a metrology system that could be used to improve 

automation tasks in manufacturing and be extended to include automotive assembly and 

autonomously guided vehicles. 

The candidate recognised the importance of such equipment and identified the opportunity to 

extend research into the micro precision control of robotic arms and micro-positioning of end 

effectors. 

Whilst this system is referred to as IPS it is important to note that other terms are frequently 

employed elsewhere such as Indoor GPS and IGPS.  The key advantages of the IPS are: 

1. Multiple measurements. 

2. Data immediately available at measurement location. 

Satellite 1 

Satellite 2 

Satellite 3 

Satellite 4 

Hand-held unit 
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3.2.2 Laser tracker 

Laser trackers are new tools used in manufacturing and research for precise measurement.  It 

comprises a laser head and target that is placed manually on or moved across the surface of 

an object.  The system has been used successfully for recent manufacturing of flexible 

aerospace components, as discussed by Steele [2005] and Bonghetti [2005]. 

The key advantages of laser trackers are: 

3. High measurement accuracy. 

4. Readily placed and manipulated targets. 

3.2.3 (Digital) Photogrammetry – optical measurement 

Photogrammetry is the basis for many traditional optical metrology techniques, Atkinson 

[1997].  Photogrammetry relies on taking images of an object from a number of locations and 

comparing the orientation of measured points in each image to determine three dimensional 

location and data.  This method allows multiple measurements to be performed 

simultaneously.  It is however computationally expensive due to the mapping of pixels 

comprising images particularly if the image moves. 

The chief benefits of photogrammetry are as follows: 

5. Multiple simultaneous measurements. 

6. Large range of equipment options. 
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3.2.4 CMM – touch probes, scanners 

Many CMM’s (coordinate measurement machines) are available for manufacturing tasks.  

These frequently require the object of measurement to be in a fixed location where traverse 

can be manually controlled.  Examples include the touch probes and scanners available 

through Leica Geosystems (Leica Geosystems [2006]).  Manual probe manipulation is 

common and automated accuracy can suffer.  Therefore measurement using CMM equipment 

can be extremely restrictive. 

3.2.5 Theodolites 

Theodolites are part of a suite of surveying equipment, consisting of optical tools used to 

manually determine three dimensional locations.  They can be employed in industry, where 

an example is the MANCAT system employed at Hawker de Havilland used for quality 

assurance purposes (Bonghetti [2005]).  However use of theodolites is time consuming as 

they are manually operated, making automation difficult. 

3.2.6 Laser distancemeters 

Laser distancemeters are devices designed to give a uni-directional distance measurement 

using reflection of a laser unit.  They operate on the “time of flight” principle. They are 

indiscriminate, in that they will not measure to a set target location and can be confused by 

measuring to the closest object that interrupts the beam.  Constant, Mothe, Badia and Saint-

Andre [2002] employed a laser distance meter in the measurement of a 1-axis robot arm 

employed to measure standing tree shapes.  They demonstrated that it is possible to use this 

technology to measure robot position albeit in a limited function. 

The method is not feasible where the measurement locations are mobile due to the prospect 

of beam interruption.  A means of identifying a possible end effector position using 

distancemeters has been discussed by Van Duin [2006], but has so far proven difficult to 

develop. 
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3.3 Measurement system characteristics 

The following table indicates important characteristics of the measurement system required 

for this research.  These five characteristics must be used to determine the effectiveness of 

any measurement system to be employed, as described below in Table 3.1. 

Table 3.1 - Measurement system characteristics 

 Characteristic 

1 Accuracy of the system. 
The accuracy of measurement is the basic definition of the quality of a measurement 
system.  The standard description of accuracy is the distance between the actual and 
measured values for a position.  Accuracy is required below 0.1mm.  It is impossible 
to describe this when the actual location may be unknown, therefore as a standard 
accuracy usually described as twice the standard deviation of a series of measured 
values, according to Steele [2005].  . 

2 Time to measurement acquisition. 
The development of precision data is usually achieved by taking a large number of 
measurements, as a result the time taken to achieve measurement is an important 
quantity.  Measurement must be rapid, of the order of less than 2 seconds to achieve 
automation tasks.  

3 Number of concurrent measurements. 
Analysis of position and posture of end effectors requires multiple measurements, 
including the workpiece and other items in the work area.  Where only a single 
measurement is required, this will require movement of the target between 
measurements, therefore a number of concurrent measurements is an important 
consideration for automation processes. 

4 Portability of operation.  Is the system portable, or is a dedicated fixture required? 

5 Setup time of system between tasks. 

3.4 Laser tracker 

The laser tracker is a measurement tool that is often used as an industry standard throughout 

the world, as discussed by Clarke, Wang, Forbes and Cross [2000].  Its exceptional accuracy 

and simple operation have made this an appropriate choice for many different manufacturing 

and research operations. 

The laser tracker itself consists of a single unit, with a laser head that measures vertical and 

azimuth angles of the laser target, coupled with a distance measurement of the beam.  The 

beam itself is reflected by the target, usually consisting of a reflective ball.  Depicted in 

Figure 3.3. 
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Figure 3.3 - Laser tracker unit and target details 

(Kyle, Loser and Warren [1997]) 

3.4.1 Accuracy 

Kyle, Loser and Warren [1997] describe the achievable accuracy of a laser tracker to be as 

low as 30-50 microns (µm).  However the new Leica laser tracker operates with an accuracy 

of 15 microns (µm) according to Leica Geosystems [2006].  This was confirmed by Steele 

[2006] and Bonghetti [2006] who demonstrated additionally that the error of the Leica system 

increased by at least 10 microns for each metre distant from the laser tracker head. 

3.4.2 Operation 

As the laser tracker itself relies on the reflection of a laser beam by a target, it is sensitive to 

interruption of the beam.  Should the beams be interrupted it is necessary to re-calibrate 

measurement of the part.  This can be problematic due to the environment, particularly where 

multiple objects operate in the same space and where a key element (head or ball) is mobile. 

Laser head 

Reflective tracker target 
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Additionally, as the laser tracker relies on measurement of the laser head posture, it is not 

capable of measuring more than a single point at any given time.  Where several points are 

required each must be measured individually by the operator, and the part must remain 

stationary throughout the measurement period.  This causes difficulty as measurement of 

multiple targets by necessity requires intervention of an operator to change and re-calibrate 

targets, increasing system down time and increasing the risk of measurement error due to 

movement between measurements.  During testing performed in association with this 

research the candidate found that taking measurements of points may take up to ten minutes 

to achieve effectively. 

Table 3.2 - Laser tracker characteristics 

 Characteristic Rating 

1 Accuracy to within 15 microns with a skilled operator. Excellent 

2 Time taken for individual measurements is negligible, however to achieve 
high accuracy batches of 100 measurements are taken, usually achieved in 
under 1 second.  

Excellent 

3 Single point measurement. Poor 

4 The system requires a dedicated computer and operator, data is commonly 
taken physically from this system via disk for further use.  This increases 
time for any measurement, however may be improved with system or 
fixture design. 

Poor 

5 The system is readily moved and requires little setup time as the 
measurement component consists of a single unit. 

Excellent 

3.5 Photogrammetry 

Photogrammetry uses two or more cameras placed on, or surrounding an object, with 

measurements taken from each image to determine three dimensional data. 

Traditional photogrammetry, according to Atkinson [1996], involves the use of film-based 

cameras.  This has been largely replaced by digital media allowing images to be available 

immediately for the purposes of measurement.  For the purposes of this dissertation, only 

digital photogrammetry will be considered. 

Photogrammetry relies usually on taking measurement of either flat-colour or retro-reflective 

targets.  As data is derived from images, multiple measurements are available from 
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previously recorded images.  Measurements taken at the camera location cannot be 

assembled and interpreted readily, requiring large computing resources for point mapping 

between images.  As described by Atkinson [1997] photogrammetry is not a feasible option 

where real-time measurements are required.  Although there has been some development into 

“videogrammetry”, Burner and Liu [2001] suggest this equates to analysis of video footage 

after the recording, and therefore is quite incapable of real-time measurement. 

Automated systems have become available for photogrammetric techniques, such as the V-

STARS system employed by VMS (Vision Metrology Systems).  This system utilises 

precision metrology equipment that is capable of acquiring measurement data in seconds.  

This equipment is however extremely expensive, with each unit in excess of US$100,000. 

(Geodetic Services Inc. [2006]) 

3.5.1 Accuracy  

Geodetic Services Inc. (Geodetic Services Inc. [2006]) describes that the maximum accuracy 

for the V-STARS system is however 1:60,000 – which corresponds to an accuracy of 0.33 

microns over a 20 metre (maximum dimension) large object.  This accuracy is dependant 

heavily on the skill of the operator and environmental factors. 

3.5.2 Operation 

Although there are a great number of different photogrammetric systems available, they rely 

on similar techniques.  Whilst high quality photogrammetric systems use calibration to ensure 

that the image taken is as accurate as possible, “low end” systems adjust identified points on 

a measured surface to cope with irregularities in the optics and measurement surfaces of 

camera equipment.  (An example of this is the calibration scheme employed by 

PhotoModeler Pro software, as described by Eos systems Inc [2000].)   
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Table 3.3 - Photogrammetry characteristics 

 Characteristic Rating 

1 With high-quality equipment,  setup accuracy may be below 1 micron. Excellent 

2 Using advanced systems measurements may be acquired rapidly (Under 
1 second) however these systems are cost prohibitive.  Most methods 
will require large periods of time for data to be available. 

Poor 

3 No restriction on concurrent measurements. Excellent 

4 Data is acquired at steady points, and image acquisition data is 
computationally expensive.  Systems need to be kept separate from the 
working and processing areas. 

Poor 

5 Capable of surveys using highly mobile equipment, following 
calibration performed setup time is reduced to very little. 

Excellent 

3.6 IPS 

IPS (Indoor Positioning System) is a system that relies on a series of base stations 

(transmitters) located about a working area. These transmitters emit laser and infra-red pulses 

at regular intervals, which are recorded by receivers within the working area and are then 

used to calculate receiver positions.  This arrangement is demonstrated below in Figure 3.4. 

 

Figure 3.4 - IPS operation 

(ArcSecond Inc [2003]) 
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3.6.1 Accuracy 

The accuracy quoted for the Indoor GPS equipment is 0.37mm, described as 3 times the 

uncertainty – or the error registered in 99% of all measurements, according to ArcSecond Inc. 

[2002].  Further study by the candidate has demonstrated that a measurement accuracy of 

0.1mm is achievable over the working area of the IPS, a total of 35 meters square.  This is 

discussed further in Appendix B. 

3.6.2 Operation 

The operation of the IPS is based on rapid analysis of laser and infra-red pulse timing data 

from several transmitter base stations.  As the signals recorded from each base station 

consists of timed pulses of laser and infra-red light from the transmitters there may be as 

many concurrent measurements as receivers available.  Blocking transmission does reduce 

system accuracy but it does not prevent measurement.  Successive measurements can be used 

to restore measurement quality immediately, hence the system is resistant to interruptions in 

the working area.  The IPS is a difficult system to prepare initially however once set up, 

measurement can be taken continuously and data is available readily.  As a result, aside from 

initial setup and calibration there is virtually no need for operator intervention during 

operation.  Finally, the data can be made available readily to measurement software and 

applications making use of simple languages such as Visual Basic for programming purposes. 

Table 3.4 - IPS characteristics 

 Characteristic Rating 

1 Accuracy to below 0.1mm with skilled setup and calibration Good 

2 Time taken for individual measurements is approximately 0.1 second; 
however to achieve high accuracy large numbers of measurements are 
needed.  This will commonly take up to 10 seconds, however it is readily 
varied by the operator. 

Good 

3 Number of measurements only limited by available receivers. Excellent 

4 The system is operated independently by any terminal with access to USB 
ports and receivers, and may therefore be readily accessed by any terminal 
including those dedicated to the tasks.  As a result this may be integrated 
into most processes. 

Excellent 

5 The system consists of several independent components which may be 
readily moved and installed, however movement of the system required 
fresh setup and calibration procedures. 

Good 
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3.7 Choice of measurement system 

3.7.1 Key indicators for assessment of measurement systems 

Table 3.5 - Measurement technique comparison 

Characteristic Laser tracker Photogrammetry IPS 

1 Laser tracker accuracy 
may be as high as 15 
microns when employed 
by a skilled operator. 

Accuracy varies with the 
size of measurement 
taken; however may 
reach micron level 
accuracy.  Advanced 
systems may produce 
measurements superior 
to 1 micron accuracy. 

Described as “sub 
millimetre accuracy” 
however through 
testing achievable 
accuracy of below 
0.1mm may be 
achieved. 

2 Measurement speed of 
approximately 100Hz, 
with precision 
measurement at 
approximately 1Hz 

Time dependant on 
system employed, may 
be as low as 1Hz for 
advanced systems. 

Measurement speed 
of approximately 
10Hz, precision 
measurements may 
be set from 2Hz and 
higher. 

3 Only one measurement 
at any given time. 

Number of 
measurements not 
restricted. 

Number of 
concurrent 
measurements only 
restricted by 
available hardware. 

4 Tracker requires 
dedicated terminal, and 
interface software for all 
equipment. 

Analysis is 
computationally 
expensive, frequently 
requiring dedicated 
terminals for advanced 
systems. 

Measurement may 
be performed in 
parallel with 
operations, thus 
dedicated terminal is 
not required. 

5 Rapid setup of single 
unit. 

Requires movement and 
setup of multiple sets of 
photographic equipment. 

Requires setup and 
calibration of 
transmitters and 
access to receivers. 

 

From the above table it can be demonstrated that the most problematic areas are the rapidity 

of measurement coupled with cost of the system in the case of photogrammetry, and the 

restriction to measurement of a single point in the case of a laser tracker. 
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On the basis of the investigation, the candidate has chosen to nominate the IPS system to 

investigate the issue of providing feedback to position an end effector accurately at the end of 

a robot. 

3.8 Conclusion 

An overview was conducted of suitable measurement systems and focus was placed on the 

IPS scheme.  This method of measurement can readily be established within a work area 

offering robust measurements and readily available data. 

Laser trackers, IPS and photogrammetry were also reviewed, and although both laser trackers 

and photogrammetry are able to achieve superior accuracy to the IPS, they are limited by the 

number of concurrent measurements that can be made.  Computational effort is also high.  

Future development will be based on the IPS to provide numerical feedback where required 

to a robot system. 
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4 Chapter 4: Industry participation 

4.1 Introduction 

This chapter outlines the participation through the industrial partner, Hawker de Havilland 

(HdH) throughout the process of this research.  A series of research questions are presented 

as a means of developing a set of Key attributes for the assessment of a micro-positioning 

system employed using IPS. 

4.2 Project background 

The candidate undertook to perform research on behalf on the CRC-IMST where HdH was a 

contributor.  The firm HdH identified a need to pursue a means of controlling a machine tool 

to drill large flexible structures to a high degree of accuracy.  The candidate researched 

suitable means of achieving these objectives which led to the investigations reported in this 

thesis. 

The candidate was offered access to production facilities within HdH as well as assistance 

with familiarisation of the system and programming.  As a consequence of association with 

the CRC, this led to knowledge of the current means of robotic control, procedures within the 

industry and further knowledge of techniques under research.  The candidate was funded to 

visit Boeing facilities in Seattle as part of this project.  At the time of writing HdH relied 

largely on using basic teach pendant and physical markers on the workpiece for end effector 

location.  Laser tracker measurements have also been used by the candidate to compare some 

drilling and trimming trials.  Such tracker measurements were found to be time consuming 

and required the presence of a skilled tracker operator throughout the process.  Additionally 

the tracker did not allow the opportunity for measurement of multiple locations 

simultaneously and therefore was unable to offer real-time identification of the end effector 

position and posture with respect to the workpiece.  The advent of IPS allows this 

measurement to be made, allowing for more rapid identification, correction and micro-

positioning.  Nevertheless laser tracker measurements were used as a datum against which to 

compare IPS data where nominated. 
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4.3 Research objectives and Outcomes 

4.3.1 Research questions 

The following questions were the basis of work performed throughout this research. 

i. How may a TCP (Tool Centre Point) be located in an absolute frame of reference? 

ii. How may key points on a workpiece be adequately located absolutely and transmitted 

to a central processor? 

iii. How may a system be instituted to modify robot controls to cater to flexibility in both 

robot and workpiece? 

iv. How may a point be located absolutely and have a scheme in place to drive the end 

effector to reach the desired location of a workpiece? 

 

Figure 4.5 - Desired movement of an End Effector TCP 

v. How may a point be located absolutely and a robot reach the location of a large 

workpiece supported in a jig using the same method? 

 

  

Required location 

End effector TCP 
location 
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Figure 4.6 - Example of mobile robot working on a large component (wing section) 

vi. How can the above system be made dynamic to cope with moving workpieces in an 

assembly line situation? 

4.3.2 Key attributes 

The questions above dictate a path toward improving manufacturing techniques with the aid 

of sophisticated measurement and data acquisition systems.  These questions additionally set 

the requirements for a series of attributes that a system developed as part of this research 

must achieve.  The key attributes of this system are described in Table 4.6. 

 

 

 

 

 

15 m approx 
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Table 4.6 - Key attributes 

Key Attribute 

1 System must be able to identify objects rapidly, including, but not restricted to, 
robotic tools, and workpieces. 

2 Measurement and control of systems must be capable using a minimum of 
workstations. 

3 Must be capable of micro-measurement, and micro-positioning of both end effectors 
and large workpieces to an accuracy of less than 0.1mm. 

4 Must be capable of taking measurement in under 2 seconds. 

5 System must be capable of measuring and deploying multiple robots simultaneously, 
along with workpieces and additional requirements. 

6 System must be capable of adjusting tool centre point locations to allow for 
workpiece movement during the operation. 

7 Equipment must be readily portable and robust. 

8 The system should be applicable to a number of different industries with minimal 
variation to the initial components. 

 

4.3.3 Project outcomes - deliverables 

4.3.3.1 Robotic drilling data 

The primary outcome of this research is to produce data that demonstrates the applicability of 

advanced control techniques for manufacturing operations.  This will take the form of drilling 

procedures, such as have been completed previously through research with the CRC-IMST 

and Hawker de Havilland.  (Van Duin [2001]) 

This data should include details on the effects of a flexible environment, ensuring that a 

system developed in a such a way is not only capable of rapid alteration of process, it is also 

capable of identifying and dealing with unexpected movement of either the workpiece and/or 

the end effector. 

4.3.3.2 Data feedback methodology 

A further deliverable is a methodology for employing the data provided by the above section, 

and ensuring that it may be employed by the process to ensure the quality of the process.  

This methodology is in a very basic form demonstrated by the feedback loop below in Figure 

4.7. 
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Figure 4.7- Data feedback philosophy 

4.3.3.3  Software for employing feedback 

The developed system for coping with data and feedback on position should then be used to 

produce software to easily identify part and tool locations, with data reflecting required 

movement of all components. 

4.3.4 Conceptual design of robotic tools 

The deliverables above are to be developed with the intention of comparing these to current 

technology for systems that fit broadly into two categories. 

4.3.4.1 Mobile platform 

The feedback system must be capable of identifying the process as applied to a mobile robot, 

specifically ensuring that the robotic platform is able to be placed randomly and the system 

will identify movement of the robotic arm and end effector to complete operations.  The 

mobile robotic platform used for testing during this research was the mobile robotic platform 

developed by HdH (Hawker de Havilland) and UoW (University of Wollongong), as 

demonstrated in Figure 4.8. 

Position and 
operation data 
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Figure 4.8 - Mobile robotic platform 

This platform consists of an IRB 6400 robotic arm, and a custom designed mobile platform 

and end effector, discussed later in this dissertation. 

4.3.4.2 Mobile assembly line process 

Although demonstrating this concept physically is beyond the capabilities of the research, the 

work offers indications of how such automated systems can be used on moving assembly 

line. 

4.4 Conclusion 

The chapter has outlined the interaction of the candidate with industry and identified key 

research questions associated with the research.  A Table of Characteristics was presented 

listing Key attributes of the selected measurement system.  These Key attributes were used as 

a means of assessing the outcomes of this research. 
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5 Chapter 5: Outline of testing procedures used in this 

research 

This chapter provides a brief but concise outline of the various tests proposed and conducted 

by the candidate to effect the project outcomes. 

The first phase (Phase 1) of testing was aimed at identifying the characteristics of an IPS 

system.  This included identifying absolute levels of accuracy afforded, the time to sample a 

location and the quality of that sample.  This work is described in Chapter 6. 

The second phase (Phase 2) of testing involved comparing the accuracy afforded by an IPS in 

relationship to a laser tracker.  Whilst the laser tracker was used as a basis for demonstrating 

accuracy of IPS positional measurement is was noted that the laser tracker was grossly 

inhibited by it’s inability to be used in the context of this research because of it’s inflexibility.  

This work is described in Chapter 7. 

The third phase (Phase 3) of testing was performed to demonstrate how the IPS data could be 

used to effect micro-positioning control of a robot end effector during a drilling operation.  In 

these tests both workpiece and robot move relative to each other in a dynamic environment.  

These tests exposed issues of practical importance needed to devise a system for operating in 

a real manufacturing environment.  This work is described in Chapter 8. 
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6 Chapter 6: Testing Phase 1 – Initial testing and 

commissioning of IPS 

6.1 Introduction 

This chapter presents and discusses the initial phase of testing.  Chapters 3 and 4 have 

identified why the IPS scheme was the most suited to the tasks of precision drilling of 

flexible components.  A pre-release version of an IPS system was purchased for evaluation 

and testing.  There was a dearth of information on its use, operation and effectiveness.  Phase 

1 testing was aimed at commissioning the system and identifying characteristics of 

performance of the IPS, it’s operational accuracies including time to sample and the quality 

of sampling in accordance with the criteria established in Chapter 3. 

6.2 Details 

6.2.1 Setup and operation of system 

Details for the setup and operation of the system remain consistent throughout this research.  

To reduce repetition within this dissertation, the IPS process and suitable configurations for 

transmitter locations are presented in Appendix B.  Improvements to the technique have been 

developed during this research and will be identified where appropriate.  Specific setup 

procedures individual to each section will be discussed. 
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6.2.2 Outline of Phase 1 testing 

Phase one testing consisted of many separate tests, where the key tests are listed as follows: 

• Test One – System operation 

• Test Two – Area measurement 

• Test Three – Precision point accuracy 

• Test Four – Movement 

• Test Five – Drift measurement 

6.3 Test one – System operation 

At the outset of this research equipment supplied was inoperable, with paltry levels of 

information dealing with the setup and use of the system.  The aim of Test 1 was to ensure 

that the IPS equipment was (a) operating and (b) capable of measurement.  The accuracy of 

the system was not yet under investigation. 

6.3.1 Setup 

Appendix B is a thorough description of the procedure used by the candidate in the described 

tests.  The arrangement of the system was not critical for this test, therefore testing was 

performed on a table within the cell’s working area.  The setup as is demonstrated in Figure 

6.9 was established by the candidate for the purpose of commissioning the IPS. 
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Figure 6.9 - Test 1 arrangement 

ATx1 to Tx4 are transmitters, R1-3 are reciever locations.  These were not specified locations 

as they were to move during measurement. 

6.3.2 Method 

Test One was specifically aimed at demonstrating whether the equipment was capable of  

making measurements.  Therefore the methodology was limited to the following: 

1. Set up transmitters as shown in Figure 6.9. 

2. Set up 1 receiver, as described in Appendix B. 

3. Effect calibration procedure, as described in Appendix B. 

4. Identify operation, record data and M-values.  (Defined in Appendix B.) 
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6.3.3 Results 

Results for Test 1 are as described in Table 6.7. 

Table 6.7 - part 1 results 

Day Pass or fail? Detail 

1 – 2 Nov 2004 Fail Non-convergence* 

2 – 3 Nov 2004 Fail Non-convergence* 

3 – 18 Nov 2004 Fail Non-convergence* 

4 – 24 Nov 2004 Fail Non-convergence* 

5 – 3 Dec 2004 Pass Erratic measurement** 

*Non-convergence.  System failed to initialize, specific cause impossible to determine, most 
likely being insufficient ray convergence in bundle adjustment procedure.  See Appendix B 
for details. 
**Erratic measurement.  System initialized and calibration was successful, however visual 
inspection of measurement identified that this was highly erroneous. 

 

The final testing performed on day 5 resulted in the data presented in Table 6.8. 

Table 6.8 - Data for successful measurement 

Configuration Square 

Maximum dimension 2m 

M-value 25mm 

Estimated error of final target 
point 

20mm 

 

The value used for assessment was the “M-value” (metric value).  This is described as the 

maximum distance between the measured location and an intersection “ray”.  This concept is 

described more fully in Appendix B. 

6.3.4 Conclusions 

The error of this measurement, at 20mm representing 1% of the maximum dimension, was 

judged to be far too high for the requirements set in Chapter 4.  

The small area for measurement additionally led to high error due to proximity with the 

transmitters, therefore the measurement demonstrated was highly unstable, with large 
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variations of measured position and little correlation with movement of the receivers. 

6.3.5 Recommendations 

• Accuracy must be improved – setup areas need to allow sufficient distance from 

transmitters.  (Minimum of 2 metres was suggested by the manufacturer.) 

• Use of metric value appears too simplistic to quantify the complexities of error now 

envisaged, and a further identifier must be developed. 

• Measurement must be shown for the measurement of moving receivers. 

• Need to show movement of measured location over time.  (Drift). 

6.4 Test Two – Area measurement 

As IPS relies heavily on triangulation it is evident that measurement accuracy will be heavily 

dependant on the geometry of the measured location and stations from where measurement is 

taken.  Suitable configurations of transmitters are described in Appendix B. 

Test 2 is aimed at measurement taken over a working area where the working area was set to 

the size of a robotic cell, with approximately 10 metre square working space.  Due to the 

presence of obstructions as shown in Figure 6.10 a regular pattern of measurement was not 

possible. 
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Figure 6.10 - Area testing layout and configuration 
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6.4.1 Error calculation 

Test 1 described in Section 6.3 demonstrated a need for a more suitable measure of error.  To 

deal with this, the use of a standard measure of 90th percentile error is employed.  (Error 

being twice the standard deviation of a large number of measurements, as shown in Equation 

6.1).  Thus, a large number of data points was required to give an indication of error and 

hence a larger measurement time, or a previous estimation of error in the measurement 

volume must be made. 

Error = 2σ     Equation 6.1 

6.4.2 Precision point data 

An improvement available at the time of Test 2 was to use the “Precision Point” function 

described in Appendix B.  This function takes a number of data points set by the operator, 

using analysis of the data to provide a single precise measurement.  This has been employed 

in the following sections, and details of this are provided where appropriate. 

6.4.3 Setup 

The setup procedure is detailed in Appendix B.  The arrangement for this measurement is an 

exaggerated square configuration, as depicted in Figure 6.10.  This arrangement was required 

due to obstructions in the testing area. 

6.4.4 Method 

The methodology for test two was as follows: 

1. Set up transmitters as shown in Appendix. B. 

2. Set up 1 receiver, as described in Appendix B. 

3. Calibrate system as described in Appendix B, ensure accurate measurement by 

analysis of a specific data point. 
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4. Place receiver in first location, represented by intersection in Figure 6.10. 

5. Record data for later analysis. 

6. Repeat for each location in Figure 6.10. 

7. Determine position and error for each location from recorded data and separate 

measurements by different levels of precision point data. 

This process was completed in an established location where several days were available to 

ensure the optimum operation of the IPS. 

6.4.5 Expected results 

As this testing was based on the use of triangulation principles, due to this it was expected 

that locations with the highest intersection angles between rays from transmitters to receivers 

will have the lowest error.  (This concept was described in Appendix B.)  This suggested that 

the measurements taken in the centre of the working area result in the lowest error. 

The use of precision point data is also expected to reduce error. 

6.4.6 Results 

Error was calculated based on precision point method described in Section 6.4.2.  

Subsequently the following error maps were generated.  The following Figure 6.11 through 

Figure 6.15 demonstrate the error of measurements taken over the working area described in 

Figure 6.10 and specified in Section 6.4.4 where the receiver was placed in 30 separate 

locations within the range x = 0m to x = 8m and y = 0m to y = 10m.  Numerical data is 

included in Appendix C. 
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Figure 6.11 - 1 sample measurement 

 

The candidate noted that large errors occurred when in close proximity to transmitters (Txi).  

The geometry caused poor error resolution due to steep ray angles close to transmitters.  This 

was accounted for in setup of further experimentation.  The lowest error is between 0.2 and 

0.225mm within an area at approximately x = 6m, and 0.7m< y < 5m.  This high variation 

should be characteristic of low precision point sample sizes. 

This test also demonstrates that locations with higher intersection angles towards the centre 

of the measurement area will produce the lowest error. 
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Figure 6.12 - 5 sample measurement 

The candidate next investigated 5 precision point data measurement to reduce the recordable 

error.  Figure 6.12 now demonstrates the lowest error occurred in a similar band, with an 

improvement of 47% over the region 4m<x<6m, and y = 5m.  This demonstrates a 

significantly lower error than the previous measurements, due to the increase in Precision 

point data.  The lowest error recorded is in the range 0.125-0.15mm. 
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Figure 6.13 - 10 sample measurement 

The test was repeated for 10 Precision point data.  Figure 6.13 shows again this improvement 

at y = 5m, and improvement in overall measurement error.  The lowest error recorded is 

within 0.1-0.125mm, a 50% improvement on single precision point measurement.  The region 

of lowest error is again central to the measurement area, with lower error along edges away 

from the transmitter locations.  This is expected as these locations also provide excellent 

geometry. 
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Figure 6.14 - 15 sample measurement 

The test was repeated for 15 precision point data.  Figure 6.14 shows again this improvement 

at y = 5m.  At this point there is a distinct band of high accuracy, with points at x = 2 and 6m.  

The lowest error recorded is within 0.075-0.1mm, an improvement of 73% on single 

precision point data. 
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Figure 6.15 - 20 sample measurement 

Figure 6.15 again demonstrates the characteristic band of high accuracy at y = 5m, with a 

minimum error in the region 0.075-0.1mm, with only a marginal improvement over 15 

precision point data. 

The above figures demonstrate a distinct tendency towards lower error in a band at 

approximately y = 5m, and x = 6m.  The lowest error recorded is within 0.075-0.1mm.  These 

correspond to an area in the centre of the measurement area, with higher intersection angles.  

The increase in Precision Point data reduces the error, and the time to sample. 

Table 6.9 – Variation of recorded error with increasing precision point 

Precision point Improvement Error band Time per sample 

1 NA 0.2-0.225mm 0.05 seconds 

5 47% 0.125-0.15mm 0.25 seconds 

10 50% 0.1-0.125mm 0.5 seconds 

15 73% 0.075-0.1mm 0.75 seconds 

20 73% 0.075-0.1 mm 1 second 
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6.4.7 Conclusions 

• In the square configuration this experimentation has demonstrated that the system is 

capable of recording an error of between 0.075mm and 0.1mm, this is within the 

specifications set in Chapter 4. 

• The above diagrams demonstrate that a distinct improvement will be gained towards 

the centre of the measurement area.  This agrees with the theoretical concepts of 

triangulation, and manufacturer suggestions of arrangement of the IPS.  The higher 

error demonstrated towards the transmitters themselves also demonstrates the 

interference due to proximity with the transmitters and poor geometry of the location. 

• The improvement of measurement at the centre of the area is in agreement with the 

concept that intersection angles that intersect at as close to 90 degrees as possible will 

afford the lowest error. 

• As suggested, using the “Precision Point” data to make calculations with larger 

sample sizes dramatically improved the results.  Further experimentation is required 

to demonstrate this improvement and determine a suggested number of points for 

measurement.  The minimum error recorded varied from 0.225mm down to 0.075mm. 

6.4.8 Recommendations 

• Further experimentation should investigate the improvements to be gained from 

increasing the precision point data. 

• Locations requiring highest measurement accuracy should be placed central to 

measurement areas, with intersection angles as close to 90 degrees as possible. 
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6.5 Test 3 – Precision Point data 

Section 6.4 identified the need for further evaluation of the use of Precision Point data, which 

is the focus of Test 3.  This testing aims to vary the number of data points employed for 

Precision Point data from 1 to 100 points, and allow an assessment of the accuracy 

improvement compared to time taken for each individual measurement. The aim of this is to 

identify the highest accuracy return on measurement time. 

6.5.1 Setup 

The setup for Test 3 is identical to that for Test 2, as described in 6.4.3. 

6.5.2 Method 

The methodology for test three was as follows: 

1. Set up transmitters as shown in Figure 6.10. 

2. Set up 1 receiver, as described in Appendix B. 

3. Calibrate system as described in Appendix B, ensure accurate measurement by 

analysis of a specific data point. 

4. Place receiver in a central location. 

5. Record data for later analysis. 

6. Determine position and error for each different level of precision point data. 

6.5.3 Results 

Table 6.10 demonstrates the effect of Precision Point as a percentage improvement on 

measurements. 
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Table 6.10 – Reduction in error with multiple precision point data 

Samples 
taken 

Sampling 
rate (Hz) X Y Z 

Relative 
accuracy to 
single point 
measurement 

Error 
(mm) 

1 10 100.00% 100.00% 100.00% 100.00% 0.385928 

5 2 56.35% 55.49% 46.35% 55.64% 0.21466 

10 1 44.91% 44.25% 35.64% 44.35% 0.17463 

15 0.666667 40.01% 39.52% 31.37% 39.67% 0.15574 

20 0.5 34.94% 35.55% 28.15% 35.17% 0.136772 

30 0.333333 36.08% 35.09% 27.66% 35.61% 0.138689 

40 0.25 27.83% 26.28% 22.26% 27.21% 0.104249 

50 0.2 24.25% 23.34% 20.91% 23.91% 0.091135 

60 0.166667 22.03% 21.47% 19.31% 22.01% 0.0828 

80 0.125 19.86% 17.90% 17.76% 19.16% 0.075076 

100 0.1 17.54% 16.36% 17.79% 17.11% 0.065715 

 

The data demonstrates the nature of increasing number of measurements taken.  This 

specifically notes that at approximately 40 samples the improvement to accuracy becomes 

marginal. 

Table 6.10 demonstrates that for 40 samples error of only 27% compared to single point data, 

however by increasing the data to 100 samples this will reduce to 17.11%.  The average error 

varied between 0.38 and 0.065 mm.  

For manufacturing tasks employing this technology, time to measure is an important factor.  

According to Table 6.10 using a sample of 40 points will require approximately 4 seconds 

(0.25 Hz), while 100 points requires 10 seconds (0.1 Hz).  However, comparing this to the 

initial requirements that data be taken within two seconds it is evident that 10 to 20 points 

should be taken, allowing for a maximum of 45% error for a single point measurement. 
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6.5.4 Conclusion 

As expected, this testing has demonstrated the improvement of employing Precision Point 

data. 

• Improvement in relative accuracy of 55% was attained where measurements were 

taken for a minimum of 2 seconds. 

• A best absolute error of 0.066mm was attained when using 100 sample precision point 

data. 

6.6 Test 4 – Movement 

Measurement of a number of stationary receivers is normal for the operation of IPS as 

described.  However as the system provides continuous measurement it is capable of 

measuring a moving point.  The previous experiments have shown that increased time allows 

for more precise measurements, this however assumes that the receiver remains stationary 

throughout the measurement time.  Test 4 is aimed at quantifying the error induced due to 

movement of the receivers, and identifying a “safe measurement speed” for IPS operation. 

6.6.1 Setup 

6.6.1.1 IPS 

The setup for Test 4 is identical to that for Test 2, as described in 6.4.3. 

6.6.1.2 Receiver mount 

To allow movement of a receiver a “ball bar” is used.  This is a calibration tool for laser 

tracker units employed to offer a moving mount for Test 4.  This consists of a rotating bar 

that can be set to move at a constant angular velocity.  This bar was modified to rotate about a 

vertical axis (horizontal plane) with an IPS receiver fixed in place of the laser tracker target.  

Measurements were then taken on the rotating arm, and the measured data was compared to 

the known length of the rotating bar to determine accuracy. 
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This arrangement is depicted in Figure 6.16. 

 

Figure 6.16 – Rotating “ball” bar 

6.6.2 Method 

The methodology for test four was as follows: 

1. Set up transmitters as shown in Figure 6.10. 

2. Set up 1 receiver, as described in Appendix 0. 

3. Calibrate system as described in Appendix 0, ensure accurate measurement by 

analysis of a specific data point. 

4. Place ball bar in a central location.   Attach receiver to the ball bar mount. 

5. Start ball bar. 

6. Record data for later analysis, repeat for varying speeds. 

7. Compare recorded data at different speeds and Precision Points. 
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6.6.3 Results 

The receiver was moved in a circular path of radius 549mm as described previously.  The 

rotating bar was halted to take measurements at fixed locations on the perimeter of the circle.  

Tests were subsequently made as the receiver was rotated at a constant speed.  These results 

were compared to those taken when the receiver was stationary. 

The minimum measurement speed employed in this testing was 2.5rpm (approximately 

0.144m/s tip speed), with results as shown in Table 6.11.  More extensive results are 

contained in Appendix C.3. 

5 separate ball bar locations were used as depicted in Figure 6.17. 
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Figure 6.17 - Arrangement of ball bar locations 
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Figure 6.18 - Example of circular element 

The element depicted in Figure 6.18 is an example of a circular element developed by 

analysis of the IPS data.  The whiskers in the plot depict the error of individual measurements 

when compared to the actual path of the receiver with a radius of 549mm. 

Table 6.11 - Dynamic point standard deviation at 2.5 RPM 

 Precision points       

 1  10   20   

 Radius (mm) 2σ (mm) Radius (mm) 2σ (mm) % increase Radius (mm) 2σ (mm) % increase 

Location 1 549.04 1.978 548.849 9.36 373.21% 550.863 11.878 218.27% 

Location 2 548.495 2.072 548.256 14.214 586.00% 546.242 34.92 495.90% 

Location 3 548.792 2.706 548.516 11.924 340.65% 547.827 15.294 348.96% 

Location 4 548.946 2.142 548.296 14.99 599.81% 552.363 32.168 436.30% 

Location 5 548.67 3.146 549.469 14.042 346.34% 548.069 31.366 805.63% 

Mean 548.7886 2.43 548.6772 12.862 429.30% 549.0728 26.536 518.12% 

σ = standard deviation. 

Further data is presented in Appendix C.3.  As can be seen in Table 6.11 moving receivers 

present significantly higher standard deviation, and error, than that identified in previous 

sections  – with the best accuracy at 1.978mm. This clearly demonstrates that measurement of 

a moving object will result in data with a larger error.  Additionally, it can be seen that the 

use of precision point data will further increase error because of changes in position between 
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measurements.  Using 20 samples deviation increases up to 32.168mm (805% increase on 

single sample data).  This was expected by the candidate as analysis for a set of data 

comprising moving point. 

Table 6.12 – Dynamic error for a variety of reciever speeds (mm) 

 Precision points     

Speed 1 10 20 

Rpm Radius 2σ Radius 2σ Radius 2σ 

2.5 548.973 1.994 549.145 9.054 549.54 11.738

3 548.973 7.14 549.145 9.178 549.54 12.666

5 548.973 2.23 549.145 15.94 549.54 34.52

7.5 548.973 3.052 549.145 18.538 549.54 100.668

10 548.973 4.56 549.145 25.622 549.54 63.118

average 548.973 4.29 549.145 16.736 549.54 54.058

 

Table 6.12 demonstrates the results from location 1.  It shows an increase in error recorded 

with receiver speed. 

6.6.4 Conclusions 

• Precision Point data should not be recorded during any movement of the receiver. 

• Movement during measurement should be avoided for precision measurements, there 

is no “safe operating speed” for such measurement. 

6.7 Test 5 – Drift measurement 

The concept of drift is a steady degradation of measurement continuity and quality.  This 

takes the form of a perceived movement of a measured point over time, usually due to 

thermal effects on analogue componentry.  In the case of IPS this was expected to result in 

the need to recalibrate the equipment.  A secondary effect of drift was observed by the 

candidate as a result of tidal movement within HdH’s location on the Melbourne foreshore.  

Hence, the candidate believed that if drift existed it ought to be quantified. 
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6.7.1 Method 

The methodology for test five was as follows: 

1. Set up transmitters as shown in Figure 6.10. 

2. Set up 1 receiver, as described in Appendix B. 

3. Calibrate system as described in Appendix B, ensure accurate measurement by 

analysis of a specific data point. 

4. Place receiver in a central location. 

5. Record data over a long period of time. 

6. Analyze data to identify movement of the measured location. 

6.7.2 Primary drift measurement – three day 

The following data describes the results examining drift over the measurement area described 

in 6.4.3 and were taken over a period of three days.  

Due to software employed at the time of measurement, Precision Point data could not be 

employed where multiple receivers are operating over extended periods of time, as a result all 

data provided in the following section is based on single sample measurement taken at 

intervals throughout the test time.  The locations within the working area of the system are 

recorded in Table 6.13. 

Table 6.13 – Location of drift measurements 

Location X Y Z 

1 1225.202 4212.177 -889.67 

2 8636.803 4556.198 -750.07 

3 3790.793 7282.607 -637.44 
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Figure 6.19  - Primary drift (3 day period) 

Figure 6.19 demonstrates movement of the measured points over this period.  As can be seen 

this may reach over 300mm, which is clearly excessive.  This highlighted two causes of 

variation in measurement: 

1. Initialization of IPS system.  High variation is demonstrated in the first measurement 

taken for each day.  (This is more evident in data presented in Appendix C.4.)  This 

suggests that the IPS may take 30-50 minutes to warm up and operate effectively 

following initialization of the system.  As can be seen above (most clearly in location 

1 data in Figure 6.19) following a period for starting the system, it will settle at a 

given location – in this case it produced a variation of approximately 100mm from the 

initial measured location. 

2. Transmitter loss.  Several measurements (Figure 6.19) demonstrate extreme 

variations.  Analysis of raw data, and diagrams presented in Appendix C.4, suggest 

that this high variation is due to blockage of a transmitter.  Further analysis suggests 

that this variation is strongly effected by the quality of the measurement and most 

recent calibration.  Where the calibration quality is poor this will lead to a high 

sensitivity to loss of a transmitter.   This has been the case with these measurements, 

and should these be repeated with recent calibration data this high error should not 
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occur.  A scheme for automatic calibration should be investigated  

Additionally, testing highlighted the problems with this software.  Most importantly the 

confusion of separate IPS receivers, which resulted in the swapping of point data with a 

sudden shift in location.  This was a greater problem when using precision point data, as these 

points impact on the calculations, and increase error to well above that expected from single 

data measurement.  This problem was rectified with updates to software provided. 

A further source of error was the unstable ground for mounting of equipment, this effect is 

due to tidal forces and cannot be reduced.  Due to the poor results of this test, further 

secondary drift measurements were performed during a single day to reduce movement of the 

system, as discussed in Section 6.7.3. 

6.7.3 Secondary drift measurement – single day 

Figure 6.20 demonstrates drift measurements taken over a single day.  This clearly 

demonstrates that a high variation is seen from the initial measurement.  However, variation 

is lower in later measurements suggesting that the system may require time to initialize 

correctly. 
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Figure 6.20 – Secondary drift (single day) 
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6.7.4 Discussion 

As may be seen from Figure 6.20, the greatest variation is from the initial measurement.  

Movement following this variation remains at approximately 0.5mm or less for each 30 

minute interval.  This suggests that the largest factor effecting drift will be initialization of the 

system prior to use.  Additionally, this movement is below the standard deviation presented in 

previous sections, suggesting that this may be due to the quality of measurement taken rather 

than movement of the actual location.  The largest variation (aside from the initial setup) was 

between measurements 2 and 6, which suggests that to keep drift below 0.15mm, calibration 

may be repeated within two hours. 

As may be readily seen from section 6.7.1 and 6.7.3, the initial 3 day tests show a variation of 

100 – 300mm for initial tests, reducing to below 0.35mm for the tests over a single day.  The 

factor effecting this most is the software confusion between separate receivers.  This issue 

has been dealt with in an updated software package, and is unlikely to cause any problems at 

a later date.  The variation demonstrated in Figure 6.20 suggests that calibration may be 

repeated every two hours to maintain variation of 0.15mm or below. 

6.8 Conclusion 

The IPS was commissioned and it’s characteristics including operational accuracy and 

measurement quality was examined.  In particular: 

• Improvement in relative accuracy of 55% was attained where measurements were 

taken for a minimum of 2 seconds. 

• A best absolute error of 0.066mm was attained when using 100 sample precision point 

data.  This will occur towards the centre of a square configuration. 

• Precision Point data should not be recorded during any movement of the receiver. 

 

The candidate now believed it important to compare the accuracy of IPS to the laser tracker 

to compare the proposed system to one of a more established means. 
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7 Chapter 7: Testing Phase 2 – IPS measurement on 

Aerospace Manufacturing Equipment 

7.1 Introduction 

In Chapter 6 the first phase of testing demonstrated the characteristics of operation of IPS and 

allowance was made for an estimation of measurement accuracy.  This was demonstrated 

early during the research and therefore continual improvements in measurement process were 

expected to lead to greater accuracy in the following testing phases. 

Phase 2 testing described in this chapter developed the IPS in a static condition as a means of 

identifying the locations of real objects within a measurement area.  Additionally this phase 

of testing was able to develop the IPS as a means of QA (Quality Assurance) for aerospace 

manufacturing jigs.  Throughout this testing the IPS was applied to measurement of specified 

target locations on assembly jigs used in Hawker de Havilland’s (HdH) manufacturing 

operations. 

7.2 Details 

7.2.1 Setup of IPS for Aerospace assembly jigs 

Setup of the system varied for measurement of differing jigs, as prospective transmitter 

locations were restricted by the manufacturing environment.  Each section of the chapter 

details setup arrangements individually. 

7.2.2 Parallax error in IPS measurement 

Testing Phase 1 in Chapter 5 demonstrated the accuracy of the IPS to be approximately 

0.2mm, however the setup arrangement was maintained square.  The jigs discussed in this 

chapter all employ a spatial “C” configuration for transmitter location and receivers on the 

jigs and were restricted in operation as explained later.  It was postulated that this would lead 

to errors due to parallax, and initial testing was designed to identify this. 

Figure 7.21 depicts how error can be generated depending on the relative location and 
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orientation of transmitters to the receiver.  The receivers use between 8 and 32 photovoltaic 

cells of diameter 8mm to absorb a signal.  However the physical shape of the receiver can 

partly block the transmitter signal.  For example Figure 7.21 shows that receiver A receives 

the signal from the transmitter over its length A1.  Receiver B can receive the same signal but 

only over length B1.  The transmitter will then have more difficulty accurately pinpointing 

the location of B due to the parallax error over this length. 

 

A’ and B’ are the centroidal locations of the visible footprint from the transmitter. 

Figure 7.21- Receiver parallax 

For the IPS, transmitter data comprises laser and infra red signals and the system had 

difficulty discriminating well enough to identify the absolute locations of receiver B when 

compared to laser trackers. 
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Figure 7.22 - "C" configuration 

Figure 7.22 depicts a typical “C” configuration of the IPS.  For this arrangement the parallax 

problem is compounded for receivers that are horizontal mounted with transmitters in the 

horizontal plane.  The visibility of lengths A1, B1, etc are obscured by the physical features of 

the receivers, as shown below in Figure 7.23.  This will therefore result in a measurement 

forward of the actual location of the receiver.  As the calculation for position includes each 

transmitter data this can lead to a large zone of uncertainty due to an enlarged footprint 

caused by the obliqueness of incident rays.  The effects of parallax error may be reduced by 

keeping all transmitters distant to the jig, however this may lead to increased error due to the 

low intersection angles.  This has been discussed in Chapter 6 and Appendix B. 

 

 

 

ATx 1 

Tx 2 Tx 3 

Tx 4 

Survey area 

Transmitter 



 58 

 

Figure 7.23 - Parallax of a single receiver in "C" configuration 

7.2.3 Assembly jigs for IPS measurement 

The following assembly jigs were used in measurements. 

• Krueger flap assembly jig: 

The Krueger flap jig was used to produce the flap for a number of aircraft including several 

Boeing 700 series aircraft and Airbus A380. 

• Boeing 757 vertical stabiliser jig: 

The Boeing 757 vertical stabiliser jig was employed to produce the structural spars and final 

assembly of the vertical stabiliser for the Boeing 757 aircraft.  This equipment was readily 

made available for testing. 

• 777 vertical stabiliser jig: 

The Boeing 777 aircraft is the most popular Boeing airliner in production.  The related 

equipment used by the candidate was used as a means of assembling the vertical stabiliser 

and was employed throughout the experimental period.  Tests needed to be conducted on the 

equipment even though the latter was in use for production purposes. 
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7.3 Krueger flap assembly jig QA measurement 

Initial testing involved measurement of a Krueger flap assembly jig, of overall length 1.5m, 

as shown below in Figure 7.24.  This testing was performed to assess the ability of the IPS to 

survey a relatively small assembly jig and demonstrate the effect of parallax error discussed 

previously in Section 7.2.2.  Additionally, this testing was used to compare the IPS to a laser 

tracker where it was expected that parallax would lead to high errors. 

 

Figure 7.24 - Krueger flap assembly jig 

7.3.1 Setup of IPS for measurement of Krueger flap assembly jig 

Setup of the IPS was achieved in the “C” configuration layout, as depicted in Figure 7.25.  

Transmitters were constrained to locations as depicted, to operate within the Krueger jig area.  

The measurement area and test component are far smaller than other experimentation 

described in Chapter 5.  It was expected that the impact of survey size would not adversely 

affect accuracy of measurement as previous measurements in Phase 1 testing suggested.  

However the candidate suggested that parallax was likely to result in high error. 
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Figure 7.25 - Krueger test setup 

7.3.2 Measurement locations 

The target locations for measurement were co-located with the locations employed for 

conventional laser tracker used in QA measurement.  Hence a comparison between the two 

methods could be made and discussed later in this dissertation.  Measurement of jig targets 

was required at an offset distance from attachment to the jig depicted in Figure 7.26. 
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Figure 7.26 - Krueger measurement locations 
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7.3.3 Orientation of receivers for Krueger measurement 

 

Figure 7.27 - Orientation of Krueger receivers with transmitters located in one 

horizontal plane. 

Figure 7.27 shows that receivers located at OTP targets along the front of the jig are oriented 

akin to receivers depicted previously in Figure 7.23.  The reference points are located 

generally in a vertical plane.  This scheme has resulted in errors as described is Section 7.2.2 

therefore analysis of data from receivers has been split into two sets: one for OTP targets and 

the other for reference targets. 
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7.3.4 Adapters 

To allow for measurements to correctly locate OTP receivers OTP offset adapters are 

required, the design of which is shown in Figure 7.28. 

 

Figure 7.28 - Krueger test OTP adapters 

7.3.5 Results 

Full results are included in Appendix D.1.  Figure 7.29 depicts the error between laser tracker 

(or expected) established data points and IPS data points. 

 

Figure 7.29 - Error between IPS target measurements and Laser tracker data 

The above image shows that error between the laser tracker and IPS from the targets was not 

acceptable.  It should be noted that Figure 7.29 is not to scale, and therefore only intended to 

be representative with the real x-scale error of Figure 7.29 being approximately 7mm. 
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The following data demonstrates there is a large variation between the OTP target and 

reference target sets as defined in Section 7.3.3.  To investigate this variation data has been 

aligned in two different manners as follows: 

1. Aligned by reference target sets. 

2. Aligned by OTP target sets 

Extensive data is included in Appendix D.1, however the reduced results is included in Table 

7.14. 

Table 7.14 - Kruger jig measurement variation (mm) with laser tracker data applied to 

jig of maximum dimension 1.5m 

Oriented by OTP Reference (EH) 

Data set OTP 
Reference 
(EH) OTP 

Reference 
(EH) 

Maximum 1.46 15.95 12.36 4.87 

Minimum 0.23 5.90 9.94 1.37 

Average 0.97 11.23 11.35 2.85 

 

In the context of this research, Laser tracker data is presumed to be absolute and accurate in 

comparison to the IPS-generated data.  Where these two data sets exist (Laser tracker and 

IPS) points can map from one data set to another. 

It has been shown that the IPS data corresponding to receivers located on the horizontal plane 

(located on the front of the jig) are more prone to parallax error.  Correspondingly receivers 

located in the vertical plane (located on top of the jig) are less prone to error. 

Acquired data can be considered as thus: 



 65 

 

Figure 7.30 - Data mapping error matrix 

In order to present this data the following representations will be used: 

 

Figure 7.31 - Representation of data 

When laser tracker and IPS generated data sets are compared the diagrams following in 

Sections 7.3.5.1 and 7.3.5.2 result. 
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7.3.5.1 Krueger data aligned by reference points 

 

Figure 7.32 - Krueger data oriented by reference targets (Offset in inches) 

Alignment by reference target sets along the main body of the jig demonstrates that the 

measurements of OTP targets are not adequately measured with respect to their expected 

locations.  This is depicted in Figure 7.32.  The long “whiskers” above clearly demonstrate 

that large error has been generated where OTP positions are systematically situated in front of 

the accurate laser tracker locations.  This is the expected result as discussed in Section 7.2.2.  

Table 7.14 demonstrates that the error of OTP measurement points is on average 11.3mm, 

while the error of reference target points is 2.86mm. 
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7.3.5.2 Krueger data aligned by OTP targets 

 

Figure 7.33 - Krueger data oriented by OTP targets (Offset in inches) 

Aligning by the OTP target sets demonstrates that the measurements of the attachment targets 

are not appropriately placed with respect to their expected locations, as shown above in 

Figure 7.33.  The long “whiskers” on the above data clearly demonstrate that large error has 

been generated where reference targets have been located behind the accurate laser tracker 

locations.  This agrees with the details discussed in Section 7.3.5.  Table 7.14 demonstrates 

that the error of OTP points is on average 0.976mm, while the error of reference points is 

11.23mm. 

It now becomes clear that in all cases the IPS data is located in front of the laser tracker data 

for every measured OTP point.  This systematic error observation occurs because of parallax 

error. 
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7.3.5.3 Krueger data basic measurement error 

Experimentation in the previous chapter demonstrates that the system is operating sufficiently 

accurately as defined in Chapter 3.  Error of individual points from IPS data is presented in 

Table 7.15.  This suggests that the accuracy of the data points was improved well below sub 

millimeter accuracy, demonstrating that the error determined in the previous sections was due 

to parallax error rather than by poor measurement accuracy. 

Table 7.15 - Krueger data accuracy 

 Number 
of data 
samples 1 10 20 50 

eh1 0.297967 0.100279 0.085039 0.065938 

eh2 0.285852 0.085954 0.067894 0.047676 

eh3 0.237363 0.085039 0.072923 0.054178 

eh4 0.247752 0.089611 0.072415 0.051029 

eh5 207.4751 0.344373 0.240055 0.198018 

eh6 725.6869 249.3486 2.885567 2.943835 

eh7 4.004132 0.105689 0.080848 0.060046 

SP501 0.683946 0.086741 0.06477 0.048717 

OTP 511 0.167589 0.06604 0.051283 0.031572 

OTP 512 105.4371 0.116002 0.094336 0.070739 

OTP 514 0.20381 0.065049 0.049327 0.027762 

OTP 515 0.266421 0.082093 0.070612 0.043078 

OTP 517 0.371678 0.09398 0.074041 0.060096 

OTP 518 0.218364 0.066167 0.045212 0.030861 

OTP 513 0.233274 0.08382 0.05776 0.039751 

OTP 516 0.530454 0.129515 0.115138 0.08067 

OTP 519 0.240386 0.071044 0.053035 0.030836 

 

It is clear that the measurement accuracy of the IPS is very high, especially for Precision 

point data employing large numbers of samples.  The error reported in Table 7.15 is the error 

compared to the length of the error whiskers in Figure 7.31. 

It is also clear that eh6 and OTP 512 error is far larger than expected, this is due to 

interference of the measurement by external factors. 
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7.3.6 Krueger flap assembly jig conclusions and recommendations 

Following the Krueger experimentation, the following recommendations are made: 

• Small setup areas should be avoided, whilst several small jigs may be included in one 

survey area, the transmitters should be arranged in a larger setup. 

• Where possible allowing parallax error due to relative position and orientation of the 

transmitter and receiver should be avoided, thus orientation of receivers should be 

vertical to reduce parallax error.  Following return of this data to the manufacturer an 

effective angle of 120º was suggested, relating to 60º from the horizontal to the 

receiver.  Data from this experimentation has assisted with documentation for the 

official release of IPS equipment. 

• Where receivers must be located horizontally, transmitters must be located distant to 

the receivers to reduce parallax error. 

• IPS error was 11mm over 1.5m which corresponds to 0.7%. 
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7.4 757 Vertical Stabiliser Assembly Jigs 

A 757 vertical stabiliser jig was employed for the second stage of aerospace assembly jig 

measurements; t6his experimentation included the measurement of the main assembly jig and 

rudder spar assembly jigs.   

7.4.1 Setup of IPS for measurement of 757 vertical stabiliser assembly 

jig 

The candidate has demonstrated in Section 7.3 that consistent placement of the receivers in a 

vertical orientation would reduce the parallax error and allow transmitters to be placed 

around the jig.  This would lead to an improvement by: 

- Reducing the IPS error. 

- Reducing error between “accurate” location and IPS data. 

Measurement of the 757 vertical stabiliser assembly jig consists of two separate tests, 

involving measurements taken off rudder spar assembly jigs, and main assembly jig.  The 

spar jigs consist of two linear jigs within a workspace, and allows for a square configuration.  

The main assembly jig is a vertical planar jig, requiring a “C” configuration.  These are 

depicted in Figure 7.34. 

The testing in Section 7.3 demonstrated the effects of parallax on measurement accuracy, 

therefore all measurement of the 757 jigs receivers were constrained to remain vertical to 

avoid the increased error discussed in Section 7.2.2. 
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Figure 7.34 - 757 assembly jig setup 

7.4.2 757 vertical stabiliser assembly jig measurement Locations 

The measurement locations presented in the following sections, depicted in Figure 7.34 and 

Figure 7.35. 

 

Figure 7.35 - 757 Main assembly jig target measurements 

7.4.3 Results – 757 spar assembly jigs 

Measurement data for the 757 spar jigs is demonstrated in Table 7.16.  This demonstrates that 

a sub-millimetre accuracy was readily achievable, with the expected improvement in 

accuracy using increased data samples that has been demonstrated in Chapter 6. 
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Table 7.16 - 757 spar measurement results 

Summarized from Appendix D.2 and D.3 

Samples Test 1   Test 2   Test 3   Average   

  Front Back Front Back front Back Front back 

1 0.71509 1.76775 0.80362 0.857281 0.703214 0.96887 0.740643 1.197968 

10 0.29361 1.37851 0.40348 0.414632 0.322631 0.528714 0.33991 0.773954 

20 0.23340 1.40284 0.29743 0.285388 0.268568 0.505749 0.266471 0.731327 

50 0.16028 1.13339 0.21560 0.343471 0.217339 0.423822 0.197742 0.633563 

 

Table 7.16 also demonstrates that the measurements taken for the rearward spar in test 1 have 

produced an error of 1.13mm, which is significantly high.  This result was due to interference 

with the system at the time of measurement by staff working in the measurement area. 

7.4.4 Results – 757 stabiliser assembly jig 

Due to the state of the 757 assembly jig it was not possible to take measurements from 

specific targets fixed to the structure, therefore measurements were taken off physical 

scaffolding and other locations on the jig itself.  The results of these measurements are 

recorded below in Table 7.17. 
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Table 7.17 - 757 main jig measurement results 

Location data points     

  1 10 20 50 

1 0.42503 0.185989 0.150232 0.122843 

2 NA NA NA NA 

3 NA NA NA NA 

4 0.556853 0.192479 0.123675 0.073268 

5 0.542744 0.208694 0.140526 0.073006 

6 0.535217 0.211576 0.146088 0.064967 

7 0.558743 0.22307 0.151689 0.045682 

8 0.52059 0.200086 0.119662 0.067896 

9 0.43258 0.167623 0.140448 0.07726 

10 0.71583 0.338948 0.287024 0.180393 

11 0.648198 0.249739 0.209989 0.137142 

12 0.516132 0.269384 0.237148 0.148451 

13 0.573317 0.265688 0.224399 0.140382 

14 0.593567 0.227461 0.168712 0.080204 

15 0.522523 0.224955 0.177544 0.08946 

16 0.604026 0.301736 0.247722 0.182118 

17 0.462492 0.158678 0.122478 0.069674 

18 0.500716 0.217161 0.166347 0.11332 

19 0.489563 0.195216 0.126016 0.089146 

20 0.554072 0.218276 0.146903 0.075528 

Max 0.71583 0.338948 0.287024 0.182118 

Average 0.541788 0.225376 0.171478 0.101708 

Min 0.42503 0.158678 0.119662 0.045682 

 

Data from the 757 measurements for the main jig demonstrate achievable accuracy of under 

0.2mm using samples of 50 data points. 

7.4.5 Laser tracker application to 757 measurement 

Laser tracker measurement was not possible on the 757 measurement jig as interference with 

the scaffolding and technical failures of the equipment rendered this section of the 

experimentation unfeasible. 
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7.4.6 757 experimentation recommendations 

• Further experimentation should be completed employing laser tracker data to verify 

the accuracy of the IPS on large components. 

• Such measurement must employ the laser tracker with all scaffolding removed and 

specific adapters fixed into locations on the jig body. 

• Measurement using IPS is appropriate for larger components such as assembly jigs. 

7.5 Testing of 777 jigs 

Previous testing of 757 assembly jigs in Section 7.4 suggested that measurements taken 

should be compared to laser tracker measurements of attached targets on the structure, which 

was unavailable.  To achieve this, measurements have been performed on the 777 rudder jig 

which at the time of experimentation was used for production.  The 757 measurement 

demonstrated the improved measurement capable by ensuring the receivers were kept vertical 

and allowing the “C” configuration with good spacing to ensure higher intersection angles. 

This testing included two phases: 

• Initial measurement and accuracy identification. 

• Laser tracker comparison measurements. 

7.5.1 Setup of IPS for measurement of 777 vertical stabiliser assembly 

jig 

Setup in “C” configuration, as depicted in Figure 7.36. 
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Figure 7.36 - 777 measurement setup 

7.5.2 Setup – adapters for 777 vertical stabilizer assembly jig 

The candidate demonstrated in Section 7.3 that special adapters were required to ensure that 

measurement could be taken in appropriate locations.  Therefore adapters were designed to 

take measurements from the 777 jig, and allow receiver placement in appropriate target 

measurement locations.  Following this the receiver was to be replaced with a 1.5 inch 

diameter laser tracker measurement ball.  These adapters additionally ensure that the 

receivers remain vertical to ensure adequate visibility of the transmitters, and avoid the 

parallax error as discussed in Section 7.2.2. 
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Figure 7.37 - 777 adapters 

7.5.3 Setup – 777 assembly jig arrangement and measurement location 

Setup of the 777 vertical stabilizer jig is depicted in Figure 7.38.  Target locations have been 

noted in the diagram.  A further location has been included on the scaffolding for use as a 

“control target”.  The control target was employed to provide a stationary point.  The distance 

between the measured target and the control target was then compared in subsequent readings 

to offer an indication of the stability of the system.  Additionally, the control point 

demonstrates that the IPS is capable of measuring multiple locations at any given time. 

IPS Receiver Laser tracker ball 

Adapter 
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Figure 7.38 - 777 measurement locations 

7.5.4 Results – measurement 

Measurement results taken over the 777 vertical stabilizer jig are demonstrated in Table 7.18, 

additionally these have been compared to the control target in the workspace.  The “shift” 

value expressed below is the average variation of the distance from the measured target to the 

control target.  The extremely low shift value suggests that while the error of the measured 

target point may be as high as 0.25mm, the point was stable and physical error is likely to be 

less than the indicated error. 
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Table 7.18 - 777 measurement results (measurement average in mm) 

Day 1   2   3   4   

 Error Shift Error Shift Error Shift Error Shift 

1 0.245287 0.087424 0.196598 0.006874 0.236556 -0.02399 0.252292 0.021196 

2     0.197894 -0.00174 0.253218 -0.06956 0.261959 0.041761 

3     0.205771 0.001795 0.229658 -0.01701     

4         0.370886 -0.05475     

5         0.446502 -0.16618     

6         0.263593 -0.06053     

7         0.207596 0.025185     

 

 

7.5.5 Results – Laser tracker comparison of 777 assembly jig 

measurement 

The variation of laser tracker and IPS data is recorded in Table 7.19, with extended results 

recorded in Appendix D.4. 

Table 7.19 - 777 laser tracker variations 

IPS data Laser tracker data    variation 

X Y Z X Y Z    

0 0 0 -1.24921 0.473852 0.600302  1.464725 

336.8096 -159.543 3.289431 337.4875 -159.297 2.92065  0.809963 

865.3327 -899.275 951.3632        NA 

1103.442 -1018.81 514.5708 1103.413 -1018.85 514.7568  0.191848 

1869.183 -1388.49 843.6558 1869.891 -1388.89 843.0904  0.989834 

3311.854 -2101.91 212.2807 3311.904 -2102.71 212.2342  0.803521 

3697.879 -2265.73 849.8959        NA 

6819.897 -3759.59 1017.501 6821.829 -3760.96 1018.161  2.459139 

7909.411 -4290.91 792.8863 7910.793 -4291.14 792.7844  1.403889 

9038.37 -4840.85 550.919 9039.013 -4840.56 550.6899  0.739855 

9988.721 -5303 349.5877 9989.253 -5303.45 349.7844  0.721334 

11064.47 -5812.49 115.6685 11065.68 -5813.48 115.8382   1.573794 

 

Measurement with the laser tracker was used as a means of verifying the accuracy of 

employing IPS, however it was found that this equipment was effected by the following: 
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• Repeated failure of laser tracker due to technical difficulties and interference with 

surrounding items. 

• Adapter errors as discussed in Section 7.3. 

• Obstructions to the laser tracker beam. 

This experimentation concluded that while the current use of the laser tracker is an effective 

option for some measurement tasks, it can be expected that it will not perform well in 

environments with a large number of obstructions.  Standard laser tracker measurement of the 

777 assembly jig must be performed while the base platform is removed, and all 

manufacturing operations must cease while this is occurring. 

The use of IPS was possible while rudders were being produced and caused no impact on the 

duties of personnel in the area.  For further development IPS should be permanently affixed 

in place, and tool verification would be achieved far more effectively than using the standard 

laser tracker equipment. 

7.5.6 777 experimental recommendations 

• Measurement can be achieved on jigs used for manufacturing tasks by the IPS without 

affecting productivity.  This additionally suggests that the IPS may be employed 

during production as a means of QA of the produced part. 

• Where tolerance is 0.2mm or higher IPS is readily capable of use in QA tasks. 

• Use of a control point measured simultaneously allows a further estimation of 

accuracy, however multiple targets may be used to speed up measurement process.  

• IPS is more flexible in a manufacturing environment, and less sensitive to adapter 

errors. 
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7.6 Review of Key objectives 

The key objectives as listed in Chapter 3 are as follows.  Phase 2 testing has investigated the 

use of IPS for measurement of large assembly jigs and quality assurance tasks, and therefore 

attributes referring to its use for automation cannot be demonstrated.  Table 7.20 lists the 

achievements of the system compared to the original key attributes. 

Table 7.20 - Key attributes as of Phase 2 

Key Attribute 

1 System must be able to identify objects rapidly, including, but not restricted to, 

robotic tools, and workpieces. 

• The system is able to identify measurements, however at this stage ability to 
rapidly identify items and report on posture is not demonstrated. 

2 Measurement and control of systems must be capable using a minimum of 

workstations. 

• All measurement and control performed using a single portable computer. 
3 Must be capable of micro-measurement, and micro-positioning of both end effectors 

and workpieces. 

• Capable of fine measurement with accuracy below 0.2mm, positioning not 
yet demonstrated. 

4 Must be capable of taking measurement in under 2 seconds. 

• Measurement requires approximately 5 seconds to complete accurately. 
5 System must be capable of measuring and deploying multiple robots simultaneously, 

along with workpieces and additional requirements. 

• Not yet demonstrated. 
6 System must be capable of adjusting tool centre point locations to allow for 

workpiece movement during the operation. 

• Not yet demonstrated 

7 Equipment must be readily portable and robust. 

• All equipment readily moved by hand/vehicle with installation within an 
hour. 

8 The system should be applicable to a number of different industries with minimal 

variation to the initial components. 

• All tasks are not industry specific. 
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7.7 Conclusions 

The IPS was successfully employed for the measurement of large aerospace manufacturing 

jigs, and it’s accuracy compared to that of the laser tracker to verify the quality of 

measurement.  It was noted that: 

• The IPS is a suitable choice for quality assurance tasks, however it’s error may be in 

excess of the tolerances required.  Additionally it may be capable of QA of parts 

throughout the manufacturing process.  Testing has suggested that the accuracy may 

be superior to that quoted of 0.2mm, however this has been impossible to 

demonstrate. 

• The IPS is capable of measuring multiple targets simultaneously.  Further analysis is 

required to employ this system for manufacturing tasks. 

• The IPS is a poor choice for highly restricted locations where transmitters must be 

placed close to the targets, however multiple smaller jigs may be included in a larger 

survey area. 

• The use or “C” configurations results in a high parallax error unless receivers are kept 

vertical and not constrained to a given orientation, or the transmitters are kept distant 

from the receivers.  

• Laser tracker data is insufficient to prove accurate measurement where there is no 

ability to ensure accurate machining of adapters. 
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8 Chapter 8: Testing Phase 3 – Robotic drilling trials 

8.1 Introduction 

The objective of this research is to develop a methodology for the application of advanced 

measurement equipment (IPS) for control of automated aircraft manufacturing operations.  

Testing Phase 3 is aimed at demonstrating this through a dynamic robotic drilling trial on a 

carbon composite panel to simulate a drilling operation on an aerospace component. 

This chapter additionally examines the capability of the system to cope with an unpredictable 

environment, where not only the article being manufactured may move, but also the robot 

platform may move. 

8.2 Required tasks for the system 

8.2.1 Manufacturing issues 

The use of IPS is envisaged as a means of control for robotic manufacturing tasks that will 

improve the robotic manufacturing of aerospace components.  The following issues were 

identified as important in this research: 

• Control via IPS. 

IPS is considered as a means of control for a manufacturing process. 

• Control of a mobile robotic platform. 

With the development of mobile robotics there is a need for precise control of the 

manufacturing process.  Precise control of a robotic system usually requires a clear 

knowledge of the position and orientation of all components in the system.  For a mobile 

robotic system the location of the platform itself varies frequently.  To account for this, the 

IPS is used to measure the end effector location and attitude only.  Movement of the end 

effector is introduced relative to the initial end effector location, bypassing the need for robot 
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positional knowledge.  The following situation is common: 

• Coping with an unexpected movement of workpiece. 

A common manufacturing problem is flexure and movement of the part during the 

manufacturing process.  For a pre-programmed process this can result in damage to the part 

and likely damage to both part and tool. 

As drilling is performed on a completed assembly (eg. Wing, flap, rudder etc) damage can 

result in tens of thousands of dollars.  A methodology for the measurement of the part 

throughout the process must be developed, allowing corrections within the manufacturing 

process to be automatically achieved. 

8.2.2 Tasks for Testing Phase 3 

Tasks described in this chapter were based on the use of IPS data as feedback of positional 

information for both a robot end effector with a drill and the workpiece.  To test this several 

tasks were completed as follows: 

• Identification of positional data for TCP (tool centre point), robot and part; 

• Determining positional correction of the TCP as applied to part locations; 

• Development of a feedback loop for the utilisation of IPS data. 

8.2.3 System testing 

To achieve the tasks the following tests were completed: 

• Test 1 – Measurement of pre-programmed drilling operation. 

Preset positional movements were programmed into an ABB IRB6400 robot, using a teach 

pendant dedicated to the robot.  This task formed the basis of the first set of drilling trials 

involving only movement of the end effector without any control from the IPS.  The 
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positional accuracy of this measurement produced an estimation of end effector repeatability 

and drill pattern quality. 

• Test 2 – Control of a drilling operation utilising the IPS. 

The IPS guided trial involved control of the end effector solely by use of IPS data.  Ideally 

data should be automatically fed into the robot and applied however due to the lack of an 

online control for the robot and safety concerns with unproven equipment the choice was 

made to input data manually. 

• Test 3 (Bump 1) – Control of a drilling operation employing IPS and involving 

simultaneous movement of the drilling platform. 

The “Bump 1” testing was as per Test 2, however during the drilling trial the robot platform 

was moved to simulate unintentional movement of the end effector and/or movement of the 

platform between operations.  This is referred to as “Bump 1” testing as the tests simulated 

the capacity of the system to correct itself when one or more components were accidentally 

moved. 

• Test 4 (Bump 2) – Control of drilling operation employing IPS with movement of the 

part. 

Bump 2 testing was as per Test 2, however during the drilling trial the workpiece was moved 

to simulate unintentional movement of the drilling plate to observe how the system 

compensated for the disturbance.  This is referred to as “Bump 2” testing as it assesses the 

capability of the system to self correct when one or more components were accidentally 

moved. 

8.2.4 Feedback loop 

Throughout the testing a feedback loop for controlling these operations was gradually 

developed.  This is presented in the following sections in the manner it was developed to deal 

with the experimentation. 
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8.3 Experimental arrangement 

The experimental arrangement is depicted in Figure 8.39.  This comprises of the IPS system, 

two test drilling plates and the mobile robotic platform, with a micro-positioning drilling end 

effector attached.  The working area covered by the IPS is approximately 30 square meters. 

 

Figure 8.39 - Experimental drilling arrangement 

8.3.1 IPS setup 

The IPS setup is arranged in the C-configuration utilized previously where extensive setup 

time can be minimized and measurement achieved from a single side of the measurement 

area.  The receivers were mounted horizontally on the end effector.  Chapter 7 identified that 

this may cause high error, and the “visible” angle must be adequate for appropriate 

measurement.  This is shown below in Figure 8.40. 
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Figure 8.40 – Visible zone in IPS system 

As depicted, the maximum angle for interference with the measurement is less than 60º, 

which is suggested to be effective in Appendix B.  This results in an insignificant shadowed 

area, which is expected not to effect the measured accuracy. 

8.3.2 Mobile platform and drilling plate setup 

Figure 8.41 demonstrates the setup of the mobile robot and drilling plates.  The diagram 

depicts two separate drilling plates so that the robot can move its end effector throughout its 

entire range between drilling trials. 

 

Test drilling plates ATx 1 

Tx 2 

Tx 3 

Tx 4 

Maximum angle is below 60º 
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Figure 8.41 - Mobile platform and drilling setup 

8.3.2.1 Mobile robotic platform 

The “Mobile robot” platform employed has been developed as part of a project within HdH.  

It was also envisaged that the IPS could be used to guide the platform itself in addition to 

positioning the end effector.  As fine measurement is achieved on the tool, guiding and 

positioning of the platform may be ignored at this stage because this task is less complex than 

manipulating the end effector. 

The platform itself is a custom built platform of size 1.5[m] x 3[m] developed for HdH.  At 

the time of experimentation an IRB6400 robot was mounted on this platform.  The platform 

is shown in Figure 8.42. 
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Figure 8.42 - Mobile robotic platform 

Figure 8.43 illustrates an example of the drilling plate setup used in the trial.  Plates are 

mounted on steel frames of 50kg mass used previously on drilling trials.  The setup ensures 

that there is no unintentional movement of the part throughout the trial and the frames are 

light enough to be shifted manually when required.  The plates themselves are made of 

aluminum alloy with mounting provided for composite panels.  The plates incorporate a 

window for drilling as shown in Figure 8.43. 

Mobile platform 

Robot 



 89 

 

Figure 8.43 - Drilling plate setup 

8.3.3 End Effector setup 

The drilling end effector employed for this research is a micro-positioning end effector 

previously used for drilling trials.  The end effector is depicted in Figure 8.44. 
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Figure 8.44 - Micro-positioning drilling end effector 

The following details of the end effector are relevant to this research: 

• Maximum traverse: 100mm. 

• 3-axis movement; translation only in all 3 axes. 

Placement of the end effector was achieved by movement of the robot arm, with fine 

positioning achieved by end effector micro-positioning.  This fine positioning was achieved 

using only two axis of the end effector, with the third axis used to raise and lower the tool. 

Therefore the end effector had only two effective degrees of freedom. 

Receivers were placed on a metal bar fixed rigidly to the end effector as shown in Figure 

8.44.  This resulted in the receivers being placed close together and horizontally.  The 

distance to the TCP from the receivers will however make this arrangement sensitive to errors 

in measurement. 
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8.3.4 Drilling panel 

The testing was performed on a 5mm thick carbon composite panel.  Following the drilling 

process, the panel was measured accurately using CMM equipment, results are included in 

Appendix E. 

8.3.5 Drilling pattern 

The drilling pattern employed was a pattern of four 4mm diameter holes comprising a central 

hole with three surrounding holes equally spaced at 120º intervals on a 50mm radius circle, as 

shown in Figure 8.45. 

 

Figure 8.45 - Drilling pattern 

8.4 Coordinate frame – Measurement and identification 

This testing included precise identification of components within a working area using a 

series of coordinate frames to identify key components.  These coordinate frames are 

depicted in Figure 8.46. 
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Figure 8.46 - Coordinate frames 

The environment consists of the following coordinate frames and transformations: 

• Global coordinate frame - G 

o The Global coordinate frame was a stationary inertial coordinate frame 

characterized by the IPS system.  All coordinates were measured in this frame 

in order to compare tool to part vectors. 

• Robot location frame - R 

o The robot coordinate frame is the coordinate frame that describes the 

positioning of the robot with reference to the global system.  This coordinate 

frame can be passed by taking measurements directly from the tool frame, and 

referring results to the Global frame using coordinate transforms. 

• Inertial Robot Transformation - [0T6] 

o [0T6] is a set of internal robot frames denoting the wrist centre (at the origin of 

the last internal robot frame) from the robot’s base frame. 

G 
R 

T 

[A] 

P 

[
0
T6] 

[T] 
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• Tool coordinate frame - T 

o The tool coordinate frame is used to describe the location of the TCP from 

frame 6 of the robot.  This point is most frequently located at the origin of the 

tool frame.  All measurements can then be taken with reference to the TCP, 

allowing displacement to be readily input by the operator. 

• Part coordinate frame - Pi 

o The part coordinate frame was the frame where coordinates specify 

measurement points on the part with respect to the origin of the part frame.  

The most commonly referred points describe the location of required holes to 

be drilled. 

Figure 8.47 shows the relationship between the frames as a transform map. 

8.4.1 Transformations 

The mathematics controlling transformations is based on methods described by Paul, R. 

[1981].  The basic methodology is described as follows: 
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To allow transformations between matrices the transformation matrices, and their inverses 

need to be known.  The methodology used to determine the inverse matrices was described 

by Paul [1981] and LaBrooy [1991], given the orthogonal nature of the transforms: 
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Figure 8.47 - Transform map 
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8.4.2 Calculation of Rotations and Translations 

Calculation of rotations and translations were completed using Microsoft Excel Solver 

functions.  An example of the spreadsheets and function description is also included in 

Appendix E. 

This methodology included setting boundary values known to be above and below the actual 

values for each rotation and translation entity followed by iteration of these values.  As each 

measurement included four separate receivers the accuracy of solution was determined using 

the minimum difference between the calculated and measured results, again described in 

Appendix E. 
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8.4.3 Data analysis – TCP correction 

To complete measurements and identify movements required, all measurements were 

required to be adapted into coordinate frames represented in Figure 8.48: 

 
Figure 8.48 - Coordinate frame conversions 

8.5 Test 1 – Measurement of pre-programmed drilling operations 

In Test 1 a robot’s tool was firstly positioned arbitrarily at a location D1 (Drilling location 1, 

as depicted in Figure 8.45) on a carbon fibre panel.  The robot was moved under program 

control to 3 other locations (D2, D3, D4) on the carbon fibre panel relative to D1.  Any 

accuracy errors resulting from reaching subsequent holes will be generated by the robot’s 

inability to precisely reach D2, D3 and D4 due to computational error in the ideal 

mathematical model programmed into the robot.  The physical location of the resulting holes 

was then measured by CMM measurement. 
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8.5.1 Feedback loop – Stage 1 

The data employed for test 1 comprised of recording the drilling locations and identifying the 

accuracy of positioning the tool of the robot via robot transforms.  Error related to the 

inability of the robot tool to reach a desired position.  Hence only recording of positions was 

performed.  The loop for this data analysis is depicted in Figure 8.49. 

 

Figure 8.49 - Feedback loop Stage 1 

8.5.2 Measurement results 

Table 8.21 demonstrates the average error of drilling these holes in 4 trials.  This 

measurement (the expected locations compared to the CMM measurement) used the central 

hole as a reference point. Expanded results are included in Appendix E. 

Table 8.21 – Physical error of drilled holes: Test 1 

Test 1 

Trial Mean Error (mm) 

1 0.565329 

2 0.204471 

3 0.181868 

4 0.424021 

Average 
between trials 0.343922 

 

Measure and record location 

Drill: Are more Holes required? 
No                            Yes 

Move to next location 

Finish 

Start Move to D1 Drill and set reference frame 
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The results in Table 8.21  demonstrate that the accuracy of actual drilled locations was within 

0.34mm over the robot span of 2800mm.  The error presented here is the variation between 

the actual measured location of the drilled hole, and the expected location of the hole, as 

shown below in Figure 8.50. 

 
Figure 8.50 - Drilled hole error 

8.5.3 Recommendations 

• Measurement demonstrated at approximately 0.34mm accuracy was well above the 

micron level stated in Van Duin (2000).  It can be assumed that the system was 

inherently incapable of achieving these levels of accuracy without additional precise 

control.  This will impact on the accuracy of the IPS controlled drilling trials. 

• Further drilling trials are required employing the IPS as a means of control to identify 

if this will affect the accuracy of drilling trials. 

8.6 Test 2 – IPS guided drilling operations 

Test 2 consisted of drilling operations guided by the IPS system.  Due to the process 

employed IPS data was entered manually to move the end effector. 

Drilled hole 
location 

Calculated hole 
location 

Error (mm) 
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Receivers were located on the tool and part as shown in Figure 8.51.  Receivers 1-4 were 

fixed rigidly to the end effector relative to the TCP, and receivers 5-8 were located on the 

part.  The tool was located by analysis of measured locations of receivers 1-4.  The location 

of the TCP was calculated with respect to these.  Hence the location of D1, D2, D3 and D4 

were calculated using data from all eight receivers.  The end effector was manually moved 

and the process repeated with points D3 and D4. 

 
Figure 8.51 - IPS receiver locations on End Effector 

8.6.1 Feedback loop – Stage 2 

The feedback loop described in section 8.5.1 was adjusted to include data returned to the 

system.  The feedback loop for this operation is depicted below in Figure 8.52. 
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Figure 8.52 - Feedback loop Stage 2 

8.6.2 Measurement results 

Table 8.22 presents the average error of this scheme compared to the CMM measurement.  

Note that an additional trial was completed employed precision point data discussed in 

previous chapters, with a sample size of 20 measurement.  Expanded results are included in 

Appendix E. 

Table 8.22 – Physical error of drilled holes: Test 2 

Test 2: IPS positioning 

Trial Mean Error (mm) 

1 0.322099 

2 0.250891 

3 0.338152 

4 0.389657 

5 0.39133 

6 0.327524 

20 sample 0.322686 

Average 0.33462 

 

The results demonstrate that the IPS controlled drilling results in an accuracy of  0.33mm this 

suggests that the accuracy of the IPS when used as a means of control for the system is 

Drill: Are more Holes required? 
No                            Yes 

Move to next location 

Finish 

Start Move to D1 Drill and set reference frame 

Measure: Is location acceptable? 
Yes                                 No 

End effector movement 
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similar to the accuracy of the micro-positioning end effector itself demonstrating internal 

robot computational errors. 

This also suggests that the use of Precision point data will not offer a substantial benefit in 

physical drilling trials. 

8.6.3 Recommendations 

• IPS control shows no improvement on the accuracy of the operation in excess of the 

inaccuracy of the end effector itself. 

• A single sample with larger numbers of measurement points (20) demonstrated that 

this does not significantly alter the error of the IPS/robot system. 

• Further testing must be completed to identify if the IPS system control is able to 

accurately place the TCP to where the robot is moved by an unknown distance. 

8.7 Test 3 – “Bump 1”: Movement of end effector 

Previous testing involved drilling holes about a central reference point, but did not 

demonstrate the capability to re-locate the initial drilling location (D1), if moved 

unintentionally.  Using IPS feedback the robot’s end effector may be relocated if bumped and 

returned to the known global location of D1 

Therefore, Test 3 consisted of drilling operations guided by IPS measurement, including 

movement of the robotic platform during this process.  D1 and D2 were drilled under IPS 

control as per Test 2.  The robot was then disturbed and the tool was required to find D3 

under IPS control. 
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8.7.1 Feedback loop – Stage 3 

The feedback loop described in section 8.6.1 was adjusted to include data on the new end 

effector location and adjustment.  The feedback loop for this data analysis is depicted in 

Figure 8.53. 

 

Figure 8.53 - Feedback loop Stage 3 

8.7.2 Measurement results 

Table 8.23 demonstrates that the average error of drilling trials is approximately 0.32mm. 

Expanded results are included in Appendix E.  The important point is that the robot can 

relocate itself at the same inherent level of accuracy as its intended systems will allow if 

perturbed.  This is significant as external controllers can now guide the robot with the same 

level of precision but over the range of the IPS workspace of a 35 meter square. 

Start Move to D1 Drill and set reference frame 
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End effector movement 
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Table 8.23 – Physical error of drilled holes: Test 3 

Test 3: Robot movement 

Trial Mean Error (mm) 

1 0.171324 

2 0.197824 

3 0.251859 

4 0.460826 

5 0.438082 

6 0.423247 

Average 0.32386 

 

The results above demonstrate that the IPS controlled drilling resulted in an accuracy of  

0.32mm while the system was compensating for movement of the robotic platform.  This 

demonstrated that movement of the robotic platform and end effector has no significant 

impact on error. 

8.7.3 Recommendations 

• IPS may be used to cater for unintentional robotic platform movement. 

• IPS control had no significant impact on the accuracy of the operation in excess of the 

inaccuracy of the end effector drilling trials.  This suggested that the IPS is bounded 

most importantly by the repeatability of the robot, as demonstrated previously. 

• Further testing must be completed to identify if the IPS system control was able to 

accurately place the TCP when the plate is moved by an unknown distance. 

8.8 Test 4 – “Bump 2”: Movement of drilling plate 

Previous measurements consisted of drilling a set pattern of holes, this resembles the standard 

manufacturing process of robot operations on a pre-determined piece in a set location.  Test 4 

was designed to examine if the system was capable of accounting for movement of a 

workpiece, altering the actual process of operation.  If successful true flexibility in 

manufacturing would be possible. 

In Test 4, D1 and D2 only were drilled.  The plate was now moved (rotated and translated).  
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The IPS was then used to calculate both degree of rotation and translation by measurement of 

4 receivers on the plate. 

D3 and D4 were drilled under IPS control as before but the test now incorporates rotated and 

translated entities of the plate. 

8.8.1 Feedback loop – Stage 4 

The feedback loop described in section 8.7.1 was adjusted to include movement of the plate 

and adjustment of the required location.  The loop for data analysis is depicted in Figure 8.54. 

 
Figure 8.54 - Feedback loop Stage 4 
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8.8.2 Measurement results 

Table 8.24 demonstrates the average error of drilling trials. Expanded results are included in 

Appendix E. 

Table 8.24 – Physical error of drilled holes: Test 4 

Test 4: Plate movement 

Trial Mean error (mm) 

1 0.469909 

2 0.512868 

3 0.314712 

Mean 0.432496 

 

The data in Table 8.24 demonstrate that the IPS controlled drilling results in an accuracy of  

0.43mm, where the IPS is compensating for movement of the part.  The level of accuracy is a 

33% increase on the previous tests. 

8.9 Summary of Results and Discussion 

• Teach pendant positioning of the end effector gives an error of 0.34mm signifying the 

degree of computational internal error of a robot. 

• An IPS guidance of end effectors provided an error of approximately 0.33mm.  A 

maximum error of 0.43mm (approximately 0.5mm) was recorded for testing where 

both plate and end effector were perturbed. 

• These errors were of the same order as teach pendant testing of the end effector itself, 

and therefore equivalent to the repeatability of the robot. 

• When translated into practice, huge time savings may be evident where part and robot 

may be re-located by the IPS and re-positioned automatically if perturbed at any time 

to ensure correct operation. 

• The flexibility of IPS guided robots has been therefore demonstrated. 
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8.10  Review of Key objectives 

Phase Three testing has investigated the use of IPS for automated and machining tasks, Table 

8.25 lists the achievements of the system compared to the original key attributes listed in 

Chapter 3. 

Table 8.25 - Key attributes as of phase 3 

Key Attribute Status 

1 System must be able to identify objects rapidly, including, but not 

restricted to, robotic tools, and workpieces. 

• The system was proven capable of identifying position 
and posture of items, and developing adjustment data 
automatically. 

Substantially 

achieved 

2 Measurement and control of systems must be capable using a 

minimum of workstations. 

• Measurement was performed using a single portable 
computer, however due to the system robot controls were 
restricted to a control station. 

Achieved 

3 Must be capable of micro-measurement, and micro-positioning 

of both end effectors and workpieces. 

• Capable of fine measurement, and positioning below 
0.5mm, restricted by the repeatability of the robotic tool. 

Substantially 

achieved 

4 Must be capable of taking measurement in under 2 seconds. 

• Measurement required approximately 5 seconds to 
complete accurately. 

Partially achieved 

5 System must be capable of measuring and deploying multiple 

robots simultaneously, along with workpieces and additional 

requirements. 

• Not yet demonstrated. 

Not yet 

demonstrated 

6 System must be capable of adjusting tool centre point locations 

to allow for workpiece movement during the operation. 

• Demonstrated accurately below 0.5mm. 

Demonstrated 

below 0.5mm. 

7 Equipment must be readily portable and robust. 

• All equipment readily moved by hand/vehicle with 
installation within an hour. 

Achieved 

8 The system should be applicable to a number of different 

industries with minimal variation to the initial components. 

• Tasks were not industry specific. 

Achieved 

8.11 Conclusions 

The IPS was commissioned as a means for robotic control conducting successful dynamic 

testing and drilling operations.  It was noted that: 
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• The system is capable of identifying part locations and robot end effector posture 

simultaneously in a short time period. 

• The system is capable of identifying and adjusting for perturbation of both part and 

robot throughout machining process with the same level of accuracy as inherently 

possessed by the robot. 

• Incorporation of an IPS guidance system gives the overall system a degree of stability 

if either or both part and system are pertubated. 

• The degree of accuracy is the same as though the robotic end-effector was under its 

own program control without the added safeguard of being able to automatically 

relocate to a global location. 

• The placement of robotic end effectors where deployed from a mobile platform is 

applicable over the entire IPS workspace, which is approximately a square of 35 

meters. 

 
Figure 8.55 - IPS control 

IPS 

Normal Robot control gives 

inherent level of accuracy 

Control gives a level of 

accuracy with in-built 

safeguard against 

unexpected perturbations. 



 108 

9 Chapter 9: Employing IPS – future developments 

9.1 Introduction 

This chapter describes several concepts for further development of the use of IPS in 

manufacturing of precision components.  Due to restrictions throughout this research these 

could not be fully explored and may form the basis of future research into this area of 

manufacturing. 

9.2 Automated robot control 

This research has demonstrated IPS positional feedback used for control of drilling trials as 

an example of guiding precision manufacturing tasks.  The research was reduced to the basic 

concept of application of a TCP to a location on a part, where both robot tool and part 

location are known to be unstable.  This concept was intentionally generic so as to be readily 

utilised by a variety of tools, robotic systems and manufacturing tasks. 

As discussed in previous chapters, the process may be improved by permanent location of 

transmitters and updated receivers and software.  The experimentation in Chapter 7 

demonstrated control of a single robotic system as this was limited by equipment available.  

The use of greater numbers of receivers and robotic systems will allow a number of 

concurrent operations within the workspace..  Additionally, area not dedicated to robotic 

manufacturing tasks surrounding the workspace may be used for other tasks, including 

quality assurance.  An example IPS working area is depicted in Figure 9.56. 
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Figure 9.56 - Example IPS controlled working cell 

9.3 Flexible manufacturing 

Chapter 8 examined the use of IPS for controlling robotic movement of an end effector, 

including “Bump 1” and “Bump 2” demonstrating effective control of the manufacturing task 

where there is relative movement of the robot platform and part.  This relied on accurate 

identification of movement and re-application of the drilling pattern in the updated location. 

By alteration of the drilling pattern during or between drilling trials it is possible to 

manufacture alternate versions of the article in the machining process without increase in 

operating time or robot downtime.  This concept is depicted in Figure 9.57. 

     Receiver location 

Transmitters not pictured 
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Figure 9.57 - Flexible drilling process 

An extension of this is the use of a variety of robotic tools with an interchangeable end 

effector.  This concept may allow real flexibility in the precision robotic manufacturing 

process. 

9.4 Moving assembly line concept 

An extension of the mobile robotic platform concept is the use of mobile platforms for 

mounting of parts.  Receivers would be mounted on platforms providing positional data of 

the part allowing manufacturing tasks to be performed on the part in any location. 

 

Fit and secure Component 

Drill Pattern A 

Which version of part is required? 
A                                                B 

Locate End effector and Part 

Drill Pattern B 

Component Part Drill Pattern B Drill Pattern A 

Completed 

Part A 

Completed 

Part B 
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9.5 Conclusion 

Testing described in this dissertation is restricted to simple items and robots.  The extension 

of this process to develop may be achieved by the following: 

• Increased/improved equipment (system and receivers) – This would allow for the 

commissioning of an IPS guided autonomous robotic cell. 

• Variation of pattern and positional data between trials – This would allow for flexible 

operations on the part. 

• End effector tool changer – This would allow flexible manufacturing with a minimum 

of different systems. 

• Mobile part platforms – This would allow for the development of a moving assembly 

line. 

Due to the generic nature of experimentation described in this dissertation these concepts 

would require little further development to achieve. 



 112 

10 Chapter 10: Research conclusions and 

recommendations 

10.1 Introduction 

This dissertation has provided a thorough examination of research into identification of the 

IPS system as an option to provide positional information to control automated 

manufacturing systems.  The adaptation of current robotic systems to advanced control 

techniques such as IPS is envisaged to provide a step change in the field of automated 

manufacturing. It also demonstrated that the system is readily capable of dealing with 

flexibility of both the robotic tools, and parts.  The system would also be applicable to mobile 

platforms during the manufacturing process. 

In this research, the development of control systems for manufacturing tasks on large 

components typical to that of the aerospace industry has been focused however the systems 

are by no means restricted to only a single field of manufacture, and would be equally 

applicable with a variety of processes and tools. 

10.2 Review of Key attributes developed by the research 

The Key attributes developed in Chapter 4 are reproduced in Table 10.26. 

Table 10.26 - Key attributes 

Key Attribute 

1 System must be able to identify objects rapidly, including, but not restricted to, 

robotic tools, and workpieces. 

2 Measurement and control of systems must be capable using a minimum of 

workstations. 

3 Must be capable of micro-measurement, and micro-positioning of both end effectors 

and large workpieces to an accuracy of less than 0.1mm. 

4 Must be capable of taking measurement in under 2 seconds. 

5 System must be capable of measuring and deploying multiple robots simultaneously, 

along with workpieces and additional requirements. 

6 System must be capable of adjusting tool centre point locations to allow for 

workpiece movement during the operation. 

7 Equipment must be readily portable and robust. 

8 The system should be applicable to a number of different industries with minimal 

variation to the initial components. 
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10.2.1 Key attribute 1 – System must be able to identify objects 

rapidly, including, but not restricted to, robotic tools, and 

workpieces  

The system has demonstrated its capacity to identify positional information at a rate of 10Hz 

for single point data and 0.5Hz for 20 point data.  Precision point data and therefore data 

quality, are inverse to the data acquisition rate. 

Experimentation in Chapter 8 employed only single data point measurements, suggesting that 

positional data may be obtained at a rate of 10Hz resulting in a reliable error below 0.5mm 

over a working area of approximately 30 square meters.  The calculation of position and 

orientation from this data presented in Chapter 8 relied on manual operation of excel 

functions, this may be programmed to reduce calculation time to insignificant. 

This measurement included workpiece and tool measurements, however is not restricted to 

these.  Additional items may be measured simultaneously by employing a greater quantity of 

IPS receivers. 

Substantially achieved. 

10.2.2 Key attribute 2 – Measurement and control of systems must 

be capable using a minimum of workstations 

All measurement is achieved using a single portable PC operating at 2Ghz.  The IPS software 

is windows based and readily installed into other workstations allowing robot controllers to 

measure IPS targets in parallel with operation of their dedicated systems.  This method allows 

data feedback to automatically control robot movement. 

Substantially achieved. 

10.2.3 Key attribute 3 – Must be capable of micro-measurement, 

and micro-positioning of both end effectors and large workpieces 

to an accuracy of less than 0.1mm 



 114 

The system has demonstrated the capability to place an end effector with an absolute 

accuracy of below 0.5mm in Chapter 8.  Chapters 6 and 7 demonstrated that the IPS 

measurement accuracy may be below 0.1mm given ample setup, testing and adjustment time 

for equipment.  It can be suggested that with similar test time and redundant data (receivers) 

for robotic trials the accuracy of an absolutely placed TCP should be equivalent to the 

accuracy of the IPS system. 

Achieved. 

10.2.4 Key attribute 4 - Must be capable of taking measurement in 

under 2 seconds 

Chapter 3 demonstrated that data for positional measurement may be acquired at a frequency 

of 10Hz, however employing precision point data values this may be reduced to 0.2Hz or 

lower.  Testing in Chapter 8 demonstrated that precision point data was unnecessary for 

accurate tool placement. 

Substantially achieved. 

10.2.5  Key attribute 5 – System must be capable of measuring and 

deploying multiple robots simultaneously, along with workpieces 

and additional requirements 

Chapter 8 demonstrated that a workpiece and end effector may be measured simultaneously.  

The number of concurrent measurements was restricted only by the available equipment. 

Discussion in Chapter 3 indicated that the IPS is theoretically capable of measuring an 

unlimited number of receivers within a working area.  This indicates that where position and 

orientation calculations are readily achieved a large number of concurrent measurements will 

allow for identification of a number of tools and workpieces simultaneously. 

Not achieved, suggested by analysis. 

10.2.6 Key attribute 6 – System must be capable of adjusting tool 

centre point locations to allow for workpiece movement during the 
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operation  

Adjustment for both robot platform and part movement was positively demonstrated in 

Chapter 8, Section 8.7 and 8.8.  Accuracy of the continued drilling operation was superior to 

0.5mm. 

Substantially achieved. 

10.2.7 Key attribute 7 – Equipment must be readily portable and 

robust 

Equipment packs into three cases each one weighing less than 100kg, measuring less than 

1mx0.5mx0.5m in the largest dimensions.  These are designed to carry all required equipment 

and protect from damage.  During operation the metric value discussed in Chapter 6 is used 

as a means of identifying when system operation has been interrupted and a transmitter may 

be out of position.  Recalibration allows system to continue measurement readily, ensuring 

that the process is not sensitive to interruption. 

Substantially achieved. 

10.2.8 Key attribute 8 – The system should be applicable to a 

number of different industries with minimal variation to the initial 

components  

Experimentation as part of this research has been performed in a generic manner.  While the 

research is aimed at aerospace manufacturing tasks, processes are not restricted to aerospace 

components. 

Chapters 6 and 7 aimed at assessment of the system as a position server, and the data is used 

for analysis of the system only.  Chapter 8 performed drilling on a composite panel, although 

the process included a robotic tool and material specific to aerospace manufacture the process 

of identification and adjustment is designed to be part independent and thus applicable to 

other industries. 

Substantially achieved. 
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This dissertation has demonstrated the capability of the IPS as a tool for the control of robotic 

manufacturing operations.  The use of this equipment allows for control of robotic systems 

and adjustment for interruptions to the manufacturing process.  Further development will 

offer this process as a means of reducing the costs and risks of robotic manufacturing. 

Future development in this area will allow for a realistic means of controlling flexible 

manufacturing operations, and the development of moving assembly line processes with 

multiple robots and micro-precision machining.  It is expected that this would offer a step 

change in the automated manufacturing of precision parts within, but not restricted to, the 

aerospace sector. 

In conclusion the research has demonstrated that the IPS feedback used to control 

manufacturing operations on flexible structures or machines is limited to 0.5mm over a 

working range of 30 square meters.  The accuracy of the IPS for manufacturing tasks was 

within the sub-millimetre region (0.3mm was achieved) when both robot and workpiece were 

moved by an unknown quantity over a working area of 30 square meters. 

The candidate has demonstrated that the IPS system can effectively control manufacturing 

operations on large, flexible objects typically encountered in aerospace structures to 

tolerances that are acceptable by this important industry. 
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Appendix A:  IK solution set for a typical robot 

Example summary of an inverse kinematic solution set for a typical robot. 

Φ1     =    tan-1(py/px) or 

Φ1     =    Φ1+180° 

Φ234 =    tan-1[(C 1 a x +S 1 a y)/(-a z)] 

Φ3     =    tan-1(S3/C3) 

Where 

 C3      =    [(C1px+S1py)
2+pz

2-a2
2-a3

2]/(2a2a3) 

 S3       =    ±√(1- C3
2) 

Φn45 =    tan-1[(S1nx-C1ny)(S1ox-C1oy)] 

Φ2     =    tan-1[(ea-db)/(da+eb)] 

Where 

 a     =    px 

 b     =    C1px+S1py 

 c     =    S3a3 

 d     =    C3a3+a2 

Also 

Φ4     =    Φ234- Φ2- Φ3 

Φ4’  =    Φn4=n* Φ4 

Φ5     =    Φn45- Φn4 
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Appendix B:  IPS, setup and operation 

B.1  Basics of metrology 

Metrology is the basis for many measurement systems, IPS included.  Although this is of 

great importance to this area of study, an extensive discussion is of little relevance to this 

dissertation.  Therefore only a brief discussion of the applicable metrology principles is be 

presented here.  This analysis is based entirely on the work of Atkinson [1996], ArcSecond 

Inc. [2003], Eos Systems Inc. [2000] and Geodetic Services Inc [2006] 

B.1.1 Basic Metrology Principles 

The principles of metrology are employed in many different applications, including 

navigation, photogrammetry and operation of the IPS.  To demonstrate the concept of 

metrology the example of photogrammetry is to be employed here. 

Photogrammetry involves the taking of a number of images of an object from a variety of 

angles surrounding the object.  At this point it can be considered that the images consist of a 

“snapshot in time” as movement of the item between images cannot be allowed. (Atkinson 

[1996]) 

B.1.2 Use of Triangulation 

The analysis of metrology data is based on the concept of Triangulation.  A series of “rays” 

are projected from the camera locations to each target location.  The intersection of these 

“rays” determines the object’s absolute location.  This concept is depicted in Figure B.58. 
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Figure B.58 – Photogrammetric "rays" to an object 

(Geodetic Services Inc [2006]) 

These “rays” are lines projected to infinity in space.  It is the convergence of these lines that 

is used to calculate the positional information.  If the camera locations are known, the 

positional data of each target can then be calculated. 

If the parameters of the system are not known a calibration is required.  This process is based 

on a mathematical algorithm referred to as “bundle adjustment” (so called because the 

procedure examines the “bundles” of rays in space at each location.  (Atkinson [1996], 

ArcSecond Inc. [2003] and Geodetic Services Inc [2006]) 

B.1.3 Metrology preparation 

There are several factors that metrologists need to consider common to any survey, and form 

the basis for planning projects.  (Atkinson [1996]) 

B.1.3.1  Four factors of accuracy 

The following sections outline the four major aspects to consider when performing a survey, 

as discussed in Geodetic Services Inc (2002). 
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B.1.3.1.1 Number of intersecting “rays” 

The principle of triangulation used for metrology surveys suggests that the maximum base 

stations possible should be used for a survey that requires high accuracy.  As additional data 

can serve to improve the accuracy of each measured point as well as assess the degree of 

error for marked points within the survey. 

Whilst large data sets involve more complex calculations, there is little variation on the basic 

concept.  Indeed, most metrology surveys will use many data sets, such as in the 

photogrammetry work discussed by Martin, Gilbert and Lee [2001], where approximately 

100 images are used in measuring displacements of the PC-9 fatigue test aircraft.  Pappa, 

Giersch and Quagliaroli [2001] used only four digital cameras for their survey of an inflatable 

space antenna. 

B.1.3.1.2 Resolution 

Atkinson [1997] suggests that resolution of an objects’ image is limited by the image capture 

area sensor’s sensitivity.  At the limit, this will be 1 pixel.  It is important to distinguish 

between adjacent positions using this criteria. 

Resolution is more commonly associated with camera quality, as the size of the numbers of 

pixels available in a digitized image.  Geodetic Services Inc [2002] discusses this in terms of 

the accuracy available in an image and the capability to separate points on an image.  This 

suggests that increasing the resolution is likely to improve the accuracy of a survey by 

allowing more detail of its’ features to be distinguished on the sensor. 

B.1.3.1.3 Geometry 

Another consideration is geometry, which relates to intersection angles of the measured 

points.  Gruen [1997] suggests that generally it is ideal to have projected ray angles 

intersecting at, or as close to, 90 degrees as possible.  Figure B.59 demonstrates this concept. 
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Figure B.59 - Intersection rays and error 

B.1.3.1.4 Complexity of object 

The final factor discussed here is the complexity of the survey.  Geodetic Services Inc (2002) 

suggests that the more complex an item, the more difficult it becomes to perform an adequate 

location survey.  This may be considered in reference to other factors where a difficult survey 

may not allow for images to be taken from ideal locations or only allow few useful images. 

 

 

 

 

 

Error 

10° 
10° 

10° 

10° 

A A B 

Using rays emanating from two base stations, the black lines indicate 
the actual location of a point and the blue lines indicate inaccurate 

measurement, 10° from the correct direction.  Note that the image with 

poor measurement accuracy shows far greater error for the same 10° 
error. 

B 



 126 

B.2 IPS 

The IPS transmitter can be likened to two fan-shaped laser beams (LB1 and LB2) coupled to 

each other and rotating in synchronisation about axis Z. 

 

Figure B.60 - Physicality of IPS transmitter head 

The fan-shaped beams are in a fixed geometric relationship to each other at 90° apart on the 

vertical (Z) axis, where their apertures can produce fan-shaped beams.  The beams are 

projected at +/-30° from the horizontal plane  The beam can be mapped to produce data 

resulting in timing pulses which in turn can be mapped to produce elevation and azimuth data 

relating to the location of measured points. 

Figure B.61 demonstrates how geometric data is processed to produce information regarding 

the location of receivers located on a part. 

LB2 LB1 

Z 
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Figure B.61 - Calculation of positional data 

(Adapted from ArcSecond Inc [2003]) 

P1, P2 and P3 are as detected by fan 1, and T1, T2 and T3 are the time it takes respectively 

for fan 2 to reach these locations.  This timing data is then analysed to determine vertical 

angle.  A strobe once every two cycles is used as a reference to identify the azimuth angles.  

These angles are then employed using triangulation methods to provide positional data, 

Figure B.62 graphically describes an example of timing data as recorded by a receiver. 

 

 

P1 

P2 

P3 

Z 

T1

T2

T3
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Figure B.62 - Figure of measurement example 

When a receiver “sees” the signal from two or more transmitters, the position of that receiver 

may then be calculated using triangulation assuming that transmitter locations are known.  

The location of transmitters is determined through a calibration process discussed later.  This 

calibration sequence identifies the position and orientation of each transmitter, establishing 

the required reference stations.  With streaming data, a rate of up to 20Hz may be achieved, 

however testing for this dissertation found that this resulted in poor data resolution and 10Hz 

was the effective maximum. 

B.2.1 Setup or Calibration 

To determine a location the receiver must correctly convert the intervals described above, the 

transmitter location and orientation need to be known relative to the system.  The 6 degrees 

of freedom of each transmitter are precisely determined during the setup process.  This is 

critically important as the quality of all position data is heavily dependant on the quality of 

Example of timing data 

Time data 

Data Azimuth data 
Fan 1 
Fan 2 
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setup data.  (ArcSecond Inc. [2003]) 

The method of determining transmitter location uses the “Bundle Adjustment” method.  The 

three stages of bundle adjustment are as follows: 

a) Collect observations 

At each observation point the system measures a “ray” (azimuth and elevation angle) from 

each transmitter to receiver.  These rays are at this stage lines projected into space, with no 

information to bound the line by transmitters or receivers. 

 

Figure B.63 – Single IPS observation 

(ArcSecond Inc. [2003]) 

b) Apply scale 

At this stage there is no data referring to the size or location of components in the system.  

This means that the data is ill defined, and the application of a scale between two known 

Receiver 
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points will indicate the magnitude of  measurement.  The scale is often set using “scale bars”. 

c) Calculate a solution 

Finally, calculation of the data relies on analysis of “bundles” of ray converging on each 

location.  (It is this process that provides the term “bundle adjustment”.)  The Bundle 

adjustment algorithm requires that each of these rays converges at the given location, where 

mapping interpretation provides position and orientation of respective transmitters. 

 

Figure B.64 – Multiple IPS observations 

(ArcSecond Inc. [2003]) 

B.2.2 M-value (metric) 

The metric (or M-value) is a representative of the “best closure” of ray bundles, which means 

the shortest distance form the calculated position to the closest ray.  This M-value will be 

very large unless the setup is accurate.  The M-value should not be taken to be a direct 

indication of error, however if offers an indication of error. 

Receiver 3 

Receiver 2 

Receiver 1 

Receiver 4 



 131 

The M value is the minimum distance perpendicular to a ray from the location of a receiver.  

The M-values are shown below for 3 Rays (R1 – R3). 

 

Figure B.65 - Example of M-value 

B.2.3 Precision point data 

A development in IPS measurement was the use of the “Precision Point” function.  This 

allows an operator to set an interval based on time or number of measurements, all data 

collected during this time is analysed as a bundle to produce a single precise measurement.  

This has been employed throughout testing during this research. 

 

 

 

 

 

 

Measured location 
M-
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B.3 Components 

This section is a summary of equipment discussed in ArcSecond Inc. [2003] 

B.3.1 Hardware 

 

Figure B.66 - IPS hardware 

(ArcSecond Inc. [2003]) 

B.3.1.1  Transmitters 

The system consists of 2 to 6 transmitters, which come in two grades, industrial and 

metrology grades depending on the requirements of the user.  Generally, industrial 

requirements offer accuracy of 1mm or less, while metrology purposes offer sub-millimetre 

accuracy. 

The transmitters require rechargeable batteries. 
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Figure B.67 - IPS transmitter 

(ArcSecond Inc. [2003]) 

B.3.1.2  Sensors 

The IPS receiver consists of a sensor (photodiode detector) and it’s associated digital signal 

processor.  This generally consists of a receiver, amplifier and PCE (position calculation 

engine).  The receivers PCE requires a rechargeable battery. 

B.3.1.2.1 Types of sensors 

• Vector bar 

Two receivers in a bar, amplifier included. 

 

Figure B.68 - Vector bar 

(ArcSecond Inc. [2003]) 

Laser aperture 
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• Receiver 

Basic receiver offers 360 degree by 120 degree coverage. 8 or 32 planar surfaces. 

 

Figure B.69 - Cylindrical receiver 

(ArcSecond Inc. [2003]) 

• Planar receiver 

Flat receiver, allows approximately 170 degree cone angle. 

 

Figure B.70 - Planar receiver 

(ArcSecond Inc. [2003]) 

• Measurement tools. 

Consist of a set of receivers in a mechanical arrangement to identify an unknown point.  A 

single receiver might be used if its centre is unknown. 

• Arrangement of a receiver 
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Figure B.71 - Receiver and PCE setup 

(ArcSecond Inc. [2003]) 

B.3.2 Software functions 

The series of angles (azimuth and elevation) are then calculated by the position server and 

provided to the system.  The basic functions included by the Position Network Server include 

the following: 

• Create and perform setups on transmitter configurations. 

• Setup and control receiver hubs 

• Setup multiple types of concurrent Position Servers to process, display, and distribute 

Indoor GPS data. 

• Provide for remote device connection which can supply data to Position Servers. 
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• Control the display of data so that it can be represented in different units with 

different levels of precision and data rates. 

• Save settings and setups for later reuse. 

While the data is available through the Position Network Sever, it is more commonly 

provided to third party software as positional information.  Such software packages include 

CAD/CAM software, modelling software, and most frequently software developed through 

programming languages such as visual basic. 

B.4 Setup arrangement of IPS 

The operation of IPS is dictated by the process for which the IPS is used.  The receivers must 

be capable of taking a measurement from each to the transmitters initially through setup of 

the system, and be capable of taking effective measurement throughout operation. 

To cater for varying measurement subjects, different methods of measurement must be 

undertaken.  These are reflected in the arrangement of the IPS system. 

B.4.1 “Square” configuration 

The Square configuration is a typical configuration where items within the working area do 

not interfere with lines of sight between transmitters and receivers.  In this arrangement the 

transmitters are set in a spare pattern as depicted in Figure B.72. 
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Figure B.72 - "Square" configuration 

(ArcSecond Inc. [2003]) 

This configuration is an ideal arrangement as it allows for some ray intersection angles to 

approach 90˚ within the working area offering the best accuracy at any target location.  

Logically this allows for the highest accuracy to be at the centre of the working area, and the 

lowest accuracy towards the edge of the working area.  The manufacturer suggests a spacing 

of 35m between transmitters, however a transmitter spacing of approximately 10 meters has 

provided excellent measurement accuracy. 

B.4.2 “C” configurations 

Max 

Max 
Receiver 
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The “C” configuration is demonstrated in Figure B.73.  This arrangement allows transmitters 

to be located along a single side of a survey item or where a square configuration cannot be 

achieved.  It should be noted that the error will increase along the “major axis” (Noted in 

Figure B.73 as the x-axis) as the target location is brought further from the transmitters as the 

intersection angles reduce. 

 

 

 

Figure B.73 - "C" configuration 

(ArcSecond Inc. [2003]) 

X 

Too near 

Too distant 
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C.2 Precision point testing 

Table C.32 - Precision point Error (mm) 

test 1         test 2         

 PP X Y Z Absolute  PP X Y Z 3

1 0.406629 0.354137 0.176824 0.539221 1 0.372231 0.329301 0.15946 0.496986

5 0.216964 0.208359 0.079796 0.300811 5 0.215563 0.192315 0.074385 0.288882

10 0.175116 0.167309 0.062036 0.242194 10 0.173219 0.159535 0.057817 0.235492

15 0.158287 0.151418 0.055421 0.219048 15 0.150426 0.136576 0.050876 0.203177

20 0.140605 0.130109 0.054531 0.191567 20 0.133525 0.119085 0.045578 0.178914

30 0.141352 0.130957 0.050194 0.192692 30 0.141201 0.115216 0.043894 0.182243

40 0.104674 0.099327 0.042443 0.144301 40 0.1135 0.076973 0.037268 0.137138

50 0.084257 0.089495 0.041901 0.122917 50 0.104578 0.068966 0.034701 0.125271

60 0.078588 0.087693 0.037056 0.117755 60 0.096571 0.056062 0.031999 0.111665

80 0.073544 0.078667 0.034587 0.10769 80 0.087333 0.04874 0.030202 0.100014

100 0.066752 0.068918 0.036738 0.095946 100 0.067394 0.048659 0.029089 0.083124

test 3              

 PP X Y Z 3  

1 0.35539 0.362298 0.151547 0.507506  

5 0.200722 0.179006 0.068817 0.268947  

10 0.164461 0.147378 0.054514 0.220835  

15 0.152461 0.130577 0.046621 0.200735  

20 0.12261 0.127107 0.037283 0.176606  

30 0.133008 0.121011 0.039944 0.179819  

40 0.096823 0.094872 0.029581 0.135556  

50 0.08227 0.082278 0.027892 0.116353  

60 0.070377 0.073525 0.026067 0.101778  

80 0.071265 0.059128 0.022491 0.0926  

100 0.067466 0.049689 0.022875 0.083789  

Table C.33 - Precision point comparison data 

Samples rate (Hz) X Y Z Absolute 
Error 
(mm) 

1 10 100.00% 100.00% 100.00% 100.00% 0.385928 

5 2 56.35% 55.49% 46.35% 55.64% 0.21466 

10 1 44.91% 44.25% 35.64% 44.35% 0.17463 

15 0.666667 40.01% 39.52% 31.37% 39.67% 0.15574 

20 0.5 34.94% 35.55% 28.15% 35.17% 0.136772 

30 0.333333 36.08% 35.09% 27.66% 35.61% 0.138689 

40 0.25 27.83% 26.28% 22.26% 27.21% 0.104249 

50 0.2 24.25% 23.34% 20.91% 23.91% 0.091135 

60 0.166667 22.03% 21.47% 19.31% 22.01% 0.0828 

80 0.125 19.86% 17.90% 17.76% 19.16% 0.075076 

100 0.1 17.54% 16.36% 17.79% 17.11% 0.065715 
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C.3 Dynamic data 

The following data represents the errors developed using InnovMetric’s Polyworks inspector. 

Table C.34 - Error data at 2.5RPM 

 Precision points       

 1  10  20  

 Radius 2σ Radius 2σ % increase Radius 2σ % increase 

spot 1 549.04 1.978 548.849 9.36 373.21% 550.863 11.878 218.27%

spot 2 548.495 2.072 548.256 14.214 586.00% 546.242 34.92 495.90%

spot 3 548.792 2.706 548.516 11.924 340.65% 547.827 15.294 348.96%

spot 4 548.946 2.142 548.296 14.99 599.81% 552.363 32.168 436.30%

spot 5 548.67 3.146 549.469 14.042 346.34% 548.069 31.366 805.63%

average 548.7886 2.43 548.6772 12.862 429.30% 549.0728 26.536 518.12%

Table C.35 - Error data at 5RPM 

 Precision points       

 1 10  20  

 Radius 2σ Radius 2σ % increase radius 2σ % increase 

spot 1 548.899 2.206 548.663 17.014 671.26% 544.4 35.892 434.70%

spot 2 548.475 3.162 547.889 18.542 486.40% 548.133 27.706 469.61%

spot 3 548.924 3.266 547.926 12.116 270.97% 548.64 19.946 636.09%

spot 4 548.767 2.852 548.06 19.72 591.44% 548.649 31.656 435.23%

spot 5 548.512 3.59 547.608 19.06 430.92% 554.206 34.572 702.28%

average 548.7154 3.062 548.0292 17.478 470.80% 548.8056 30.682 551.69%

Table C.36 - Error data at 10RPM 

 Precision points     

 1 10  20  

 Radius 2σ Radius 2σ % increase Radius 2σ % increase 

spot 1 548.869 4.514 547.274 28.248 525.79% 547.981 64.766 1131.79%

spot 2 548.487 7.516 548.651 33.242 342.28% 513.263 72.094 2006.27%

spot 3 548.808 3.784 548.594 29.776 686.89% 525.108 54.904 699.31%

spot 4 548.655 3.508 547.695 29.666 745.67% 520.845 51.952 596.72%

spot 5 548.545 4.482 545.683 26.964 501.61% 486.137 111.374 2120.35%

average 548.6728 5.028 547.5794 29.496 486.63% 518.6668 79.486 1533.38%

Table C.37 - Summary of dynamic data 

  Precision points     

  1 10 20 

speed Rpm Radius 2σ Radius 2σ radius 2σ 

1 2.5 548.973 1.994 549.145 9.054 549.54 11.738

2 3 548.973 7.14 549.145 9.178 549.54 12.666

3 5 548.973 2.23 549.145 15.94 549.54 34.52

4 7.5 548.973 3.052 549.145 18.538 549.54 100.668

5 10 548.973 4.56 549.145 25.622 549.54 63.118

Average  548.973 4.29 549.145 16.736 549.54 54.058



 149 

 

C.4 Drift 

Table C.38 - Extended drift data 

Location 1             

day test x (mm) 
x drift 
(mm) y (mm) 

d drift 
(mm) z (mm) 

z drift 
(mm) 

7 1 1246.571 0 4276.406 -94.2636 -950.44 4.368262 

7 2 1217.997 -28.5742 4182.143 -89.0389 -946.07 314.0375 

7 3 1219.575 -26.996 4187.367 -93.1129 -636.40 4.062511 

7 4 1218.561 -28.0106 4183.293 0.909258 -946.38 179.3225 

8 1 1247.758 1.186467 4277.316 -88.548 -771.12 3.643463 

8 2 1221.261 -25.3106 4187.858 0.458704 -946.80 312.8431 

8 3 1246.248 -0.32349 4276.865 -85.4682 -637.60 3.226576 

8 4 1220.101 -26.4703 4190.938 1.154654 -947.21 -1.05762 

8 5 1245.54 -1.03088 4277.561 -89.357 -951.50 3.0672 

8 6 1218.065 -28.5068 4187.049 -84.1598 -947.37 2.753582 

8 7 1219.22 -27.3515 4192.247 29.88579 -947.69 -6.04757 

9 1 1228.683 -17.888 4306.292 -89.8015 -956.49 3.194137 

9 2 1218.469 -28.1019 4186.605 -95.9778 -947.25 313.0557 

9 3 1218.013 -28.5583 4180.429 -88.5567 -637.39 3.77518 

9 4 1218.616 -27.9552 4187.85 -91.0681 -946.67 3.929456 

9 5 1218.383 -28.1884 4185.338 -82.2791 -946.51 3.141693 

9 6 1219.065 -27.5066 4194.127 -93.4012 -947.30 4.018942 

9 7 1218.146 -28.4258 4183.005 -87.735 -946.42 3.328705 

9 8 1218.558 -28.0129 4188.671 0 -947.11 0 

                

Location 2             

day test x (mm) 
x drift 
(mm) y (mm) 

d drift 
(mm) z (mm) 

z drift 
(mm) 

7 1 8642.407 0 4555.071 0.1202 -770.89 -0.07687 

7 2 8642.67 0.262598 4555.192 0.195037 -770.97 134.4878 

7 3 8642.731 0.324034 4555.266 5.47596 -636.40 -0.24788 

7 4 8609.298 -33.1089 4560.547 4.443993 -771.14 -0.22721 

8 1 8615.731 -26.6757 4559.515 0.034257 -771.12 -0.12222 

8 2 8642.571 0.16377 4555.106 0.057252 -771.01 133.2935 

8 3 8642.77 0.362524 4555.129 -0.14218 -637.60 -0.39347 

8 4 8643.517 1.10997 4554.929 -0.01106 -771.28 -0.53958 

8 5 8643.48 1.072744 4555.06 0.109294 -771.43 -0.56405 

8 6 8643.711 1.303833 4555.181 0.294357 -771.4 -0.7178 

8 7 8643.59 1.182508 4555.366 0.158369 -771.61 -0.21752 

9 1 8642.947 0.539981 4555.23 0.240718 -771.11 -0.33946 

9 2 8642.715 0.308019 4555.312 0.14655 -771.23 133.506 

9 3 8643.052 0.644605 4555.218 4.78752 -637.39 -0.46937 

9 4 8613.54 -28.8666 4559.859 0.227616 -771.36 -0.28818 

9 5 8643.18 0.772484 4555.299 0.273398 -771.18 -0.48653 

9 6 8643.171 0.763567 4555.345 4.678776 -771.38 -0.51448 

9 7 8615.435 -26.9717 4559.75 0.308684 -771.41 -0.5015 

9 8 8642.737 0.330132 4555.38 0 -771.39 0 
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Location 3        

day test x (mm) 
x drift 
(mm) y (mm) 

d drift 
(mm) z (mm) 

z drift 
(mm) 

7 1 3792.442 0 7280.878 0.134919 -636.32 -0.03033 

7 2 3792.271 -0.17061 7281.013 0.215298 -636.35 -0.0843 

7 3 3792.033 -0.40879 7281.093 0.472915 -636.40 -0.14228 

7 4 3792.084 -0.35778 7281.351 0.863086 -636.46 -1.06185 

8 1 3791.005 -1.43673 7281.741 0.95932 -637.38 -1.14569 

8 2 3790.99 -1.45215 7281.837 1.254518 -637.46 -1.27863 

8 3 3790.828 -1.61447 7282.133 1.539416 -637.60 -1.4092 

8 4 3790.796 -1.64617 7282.418 1.830395 -637.73 -1.46969 

8 5 3790.37 -2.07212 7282.709 2.238089 -637.79 -1.49794 

8 6 3790.37 -2.07212 7283.116 2.579578 -637.82 -1.61779 

8 7 3790.204 -2.23762 7283.458 17.48876 -637.94 -3.63469 

9 1 3780.282 -12.1606 7298.367 0.102845 -639.95 -1.0422 

9 2 3791.636 -0.80581 7280.981 0.316067 -637.36 -1.06611 

9 3 3791.62 -0.82194 7281.194 0.47649 -637.3 -1.09392 

9 4 3791.662 -0.78017 7281.355 0.569131 -637.41 -1.12986 

9 5 3791.586 -0.85565 7281.447 0.628166 -637.45 -1.15813 

9 6 3791.586 -0.85565 7281.506 0.555096 -637.48 -1.183 

9 7 3791.688 -0.7539 7281.433 0.620487 -637.50 -1.21526 

9 8 3791.617 -0.8247 7281.499 0 -637.53 0 

 

The following diagrams demonstrate the drift over 3 days. 

Drift - x

-35

-30

-25

-20

-15

-10

-5

0

5

1 2 3 4 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

7 8 9

day/test

d
ri

ft
 (

m
m

)

location 1

location 2

location 3

 

Figure C.75 - Drift, 3 day in x axis 
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Figure C.76 - Drift, 3 day in y axis 
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Figure C.77 - Drift, 3 day in z axis 
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Table C.39 - Drift data single day 

  

x y Z Abs 

0 0 0 0 

-0.17061 0.134919 -0.0303 0.219615 

-0.40879 0.215298 -0.0843 0.469645 

-0.35778 0.472915 -0.1422 0.609832 

    

x y Z   

0 0 0 0 

-0.01613 0.213222 -0.0239 0.215164 

0.025647 0.373645 -0.0517 0.378078 

-0.04983 0.466286 -0.0876 0.477065 

-0.04983 0.525321 -0.1159 0.540265 

0.051918 0.452252 -0.140 0.476499 

-0.01889 0.517642 -0.1730 0.546133 

    

x y Z   

0 0 0 0 

-0.01542 0.096235 -0.0838 0.128565 

-0.17774 0.391433 -0.2167 0.481463 

-0.20945 0.67633 -0.3473 0.788631 

-0.63539 0.96731 -0.4078 1.227089 

-0.63539 1.375003 -0.4360 1.576241 

-0.80089 1.716493 -0.5559 1.974042 

 

The following diagrams demonstrate the drift over 1 day. 
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Figure C.78 - Drift, 1 day in x axis 
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Figure C.79 - Drift, 1 day in y axis 
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Figure C.80 - Drift, 1 day in z axis 
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Appendix D: Phase two testing 

D.1 Krueger flap measurement data 

The Krueger flap assembly jig is depicted below in Figure D.81. 

 

Figure D.81 - Krueger flap assembly jig diagram 

Approximately 5000 samples were taken for each point, reference (EHi) and OTPi, using the 

IPS system. It should be noted that each of these points represents a point on the jig.  When 

conjoined they represent vectors on a 3D rigid body.  As IPS data varied for each sample 

point laser tracker data was taken to be absolute.  Laser tracker data for the jig is presented in 

Table D.40. 
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Table D.40 - Laser tracker data (inches) 

 Theoretical location  

Target X (inch) Y (inch) Z (inch) 

OTP 511 10.97078 -7.5552 3.21 

OTP 512 17.06278 -7.5552 3.21 

OTP 514 40.31738 -7.5552 3.21 

OTP 515 46.40938 -7.5552 3.21 

OTP 517 69.73608 -7.5552 3.21 

OTP 518 75.82808 -7.5552 3.21 

OTP 513 10.97078 -11.4052 6.61 

OTP 516 40.31738 -11.4052 6.61 

OTP 519 69.73608 -11.4052 6.61 

eh1 1.5307 7.635344 -3.1273 

eh2 46.7344 7.637444 -3.262 

eh3 83.0347 7.642544 -2.9339 

eh4 83.2332 -16.953 6.593744 

eh5 55.548 -12.3913 6.674444 

eh6 30.95 -12.2198 6.667844 

eh7 -0.482 -16.8226 6.602944 

SP501 0.0179 -12.6758 6.512844 

 

A first best fit was calculated using laser tracker determined points as a reference.  It was 

presumed that the IPSE Hi data would be more accurate because the mounting arrangement 

was less prone to parallax error as described in Section 7.2.2. 

A transformation was determined between the IPS EHi point data and the laser tracker points 

corresponding to the EHi data points.  The translation was then applied to all points in the 

IPSE Hi and OTPi data sets.  Errors were then calculated as below: 

( )ZYXError

ZZZ

YYY

XXX

IPSLT

IPSLT

IPSLT

∆+∆+∆Σ=

−=∆

−=∆

−=∆

 

The data for this scheme is presented in Table D.41. 
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Table D.41 - Krueger IPS data oriented by reference (EH) locations (inch) 

 
oriented by reference (EH) 
locations Difference   Error  

 X Y Z ∆X ∆Y ∆Z   

eh1 1.55243 7.648943 -3.04984 -0.02173 -0.0136 -0.07746 0.081593 max 

eh2 46.76942 7.656261 -3.33804 -0.03502 -0.01882 0.076039 0.085806 0.191819 

eh3 83.0327 7.65778 -2.98573 0.002005 -0.01524 0.051828 0.054058   

eh4 83.26892 -16.9151 6.778361 -0.03572 -0.03788 -0.18462 0.191819 min 

eh5 55.61539 -12.4259 6.596859 -0.06739 0.034574 0.077585 0.108425 0.054058 

eh6 30.91938 -12.2802 6.534098 0.030618 0.060423 0.133746 0.149921   

eh7 -0.51118 -16.7795 6.669114 0.029181 -0.04313 -0.06617 0.084204 mean 

SP501 -0.10189 -12.7231 6.446329 0.119789 0.047266 0.066515 0.14494 0.112596 

         

OTP 511 11.03362 -7.64234 3.661999 -0.06283 0.087142 -0.452 0.464591 max 

OTP 512 17.12676 -7.64665 3.647798 -0.06397 0.091445 -0.4378 0.451799 0.486737 

OTP 514 40.37867 -7.64643 3.585784 -0.06129 0.091232 -0.37578 0.391526   

OTP 515 46.46944 -7.65263 3.594967 -0.06005 0.097425 -0.38497 0.401618 min 

OTP 517 69.7996 -7.64431 3.662622 -0.06351 0.089106 -0.45262 0.465661 0.391526 

OTP 518 75.89138 -7.65429 3.669232 -0.06329 0.099086 -0.45923 0.474044   

OTP 513 11.03429 -11.4361 7.091585 -0.0635 0.030919 -0.48159 0.486737 mean 

OTP 516 40.3772 -11.4226 7.032285 -0.05982 0.017448 -0.42229 0.426857 0.446974 

OTP 519 69.80139 -11.3732 7.064152 -0.06531 -0.03197 -0.45415 0.459936   

 

When the mean data was examined in Table D.41 it was clear that the mean error of 

0.112596 inch applying to points EHi was smaller than the error of 0.44674 inch that applied 

to the points OTPi.  This was now a measure of what was summarized in earlier chapters.  Ie.  

That parallax error errors resulting from horizontally mounted receivers were of the order of 

0.4 inch.  Hence for the first time a measure of parallax error could be defined for a real jig. 

This procedure was then repeated by comparing the OHi data sets between the IPS and laser 

tracker measurements, the results are presented in Table D.42. 

Table D.42 - Krueger IPS data oriented by OTP locations (inch) 

 oriented by OTP locations Difference   Error  

 X Y Z ∆X ∆Y ∆Z   

eh1 1.493787 7.83962 -3.23229 0.036913 -0.20428 0.104989 0.232624 max 

eh2 46.71078 7.840251 -3.52097 0.023622 -0.20281 0.258971 0.32978 0.628176 

eh3 82.97405 7.827536 -3.16918 0.060647 -0.18499 0.235279 0.305379   

eh4 83.20436 -16.8911 6.220113 0.028841 -0.06194 0.373631 0.379828 min 

eh5 55.55192 -12.3928 6.10728 -0.00392 0.0015 0.567164 0.56718 0.232624 

eh6 30.85595 -12.2402 6.047082 0.094047 0.020367 0.620762 0.628176   

eh7 -0.57571 -16.7333 6.1141 0.093709 -0.08935 0.488844 0.505701 mean 

SP501 -0.16543 -12.674 5.953018 0.183326 -0.00177 0.559826 0.589081 0.442219 
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OTP 511 10.9713 -7.55428 3.246116 -0.00051 -0.00092 -0.03612 0.036131 max 

OTP 512 17.06444 -7.55986 3.231766 -0.00165 0.004658 -0.02177 0.02232 0.057837 

OTP 514 40.31635 -7.56439 3.169441 0.001037 0.009194 0.040559 0.041601   

OTP 515 46.40711 -7.57222 3.178445 0.002275 0.017017 0.031555 0.035923 min 

OTP 517 69.73727 -7.57064 3.245896 -0.00119 0.015438 -0.0359 0.039093 0.009357 

OTP 518 75.82905 -7.58221 3.252269 -0.00096 0.027009 -0.04227 0.050171   

OTP 513 10.97107 -11.3998 6.617615 -0.00029 -0.00543 -0.00761 0.009357 mean 

OTP 516 40.31399 -11.3926 6.558122 0.003396 -0.01262 0.051878 0.053498 0.038437 

OTP 519 69.73819 -11.3509 6.590329 -0.0021 -0.05435 0.019671 0.057837   

 

The condensed data set is as shown below in Table D.43, this is presented in millimeters as 

appropriate for this thesis and employed in Chapter 5. 

Table D.43 - Condensed Krueger data set (mm) 

Oriented by OTP   Reference   

data set OTP reference OTP Reference 

Errors      

Maximum 0.057837 0.628176 0.486737 0.191819 

Average 0.038437 0.442219 0.446974 0.112596 

Minimum 0.009357 0.232624 0.391526 0.054058 

 

This demonstrates that parallax error was dominant and is again quantified by the difference 

between accuracy of EHi and OTPi data sets. 
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Table D.44 - Krueger data accuracy (inch) 

  Variation (inch)     

  1 10 20 50 

eh1 0.011731 0.003948 0.003348 0.002596 

eh2 0.011254 0.003384 0.002673 0.001877 

eh3 0.009345 0.003348 0.002871 0.002133 

eh4 0.009754 0.003528 0.002851 0.002009 

eh5 8.168311 0.013558 0.009451 0.007796 

eh6 28.57035 9.816874 0.113605 0.115899 

eh7 0.157643 0.004161 0.003183 0.002364 

SP501 0.026927 0.003415 0.00255 0.001918 

OTP 511 0.006598 0.0026 0.002019 0.001243 

OTP 512 4.151065 0.004567 0.003714 0.002785 

OTP 514 0.008024 0.002561 0.001942 0.001093 

OTP 515 0.010489 0.003232 0.00278 0.001696 

OTP 517 0.014633 0.0037 0.002915 0.002366 

OTP 518 0.008597 0.002605 0.00178 0.001215 

OTP 513 0.009184 0.0033 0.002274 0.001565 

OTP 516 0.020884 0.005099 0.004533 0.003176 

OTP 519 0.009464 0.002797 0.002088 0.001214 
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D.2 757 spar section data 

Table D.45 - 757 front spar data, day 1 

Single 
sample                  

  X  y  z  Tot    

  Avg stdev avg Stdev avg Stdev Stdev error  

1a 767.1929 0.122862 3655.603 0.590272 -689.18 0.057427 0.605652 1.211304  

1b 1021.775 0.290898 3651.016 0.223042 -680.17 0.073447 0.37385 0.7477  

3a 2241.786 0.193988 3628.514 0.493179 -636.93 0.106189 0.540494 1.080987  

3b 2503.497 0.175045 3623.108 0.248395 -627.65 0.056811 0.309141 0.618282  

4a 3526.866 0.160105 3611.676 0.225483 -591.9 0.047863 0.280655 0.56131  

5a 4159.531 0.16527 3603.628 0.227082 -570.02 0.049796 0.285237 0.570473  

5b 4418.602 0.174014 3600.434 0.208947 -561.55 0.049565 0.276399 0.552798  

6a 6055.252 0.238735 3575.381 0.2917 -504.38 0.114962 0.394081 0.788161  

6b 6319.163 0.14041 3574.863 0.235068 -494.81 0.048927 0.278147 0.556293  

7a 7960.347 0.120961 3553.834 0.205851 -438.00 0.042254 0.24247 0.48494 
average 
error 

7b 8222.745 0.134849 3542.571 0.316777 -428.75 0.042445 0.346891 0.693782 0.715094 

          

10 
sample                  

  X  y  Z  Tot    

  Avg stdev avg Stdev Avg Stdev Stdev error  

1a 767.2077 0.063939 3655.664 0.231486 -689.18 0.021786 0.24114 0.48228  

1b 1021.782 0.142412 3651.024 0.114765 -680.17 0.028343 0.185083 0.370165  

3a 2241.796 0.068093 3628.516 0.115563 -636.93 0.020021 0.135618 0.271236  

3b 2503.523 0.058642 3623.12 0.125695 -627.64 0.024224 0.140801 0.281602  

4a 3526.881 0.069662 3611.691 0.105952 -591.89 0.016491 0.127869 0.255738  

5a 4159.55 0.076292 3603.639 0.093824 -570.01 0.021 0.122737 0.245475  

5b 4418.624 0.074097 3600.465 0.071544 -561.54 0.019421 0.104815 0.209629  

6a 6055.252 0.094761 3575.415 0.124186 -504.38 0.017883 0.157231 0.314461  

6b 6319.183 0.055939 3574.888 0.108425 -494.80 0.018593 0.123414 0.246827  

7a 7960.362 0.053273 3553.864 0.087198 -437.99 0.013243 0.103038 0.206076 
average 
error 

7b 8222.766 0.066603 3542.606 0.158755 -428.74 0.018175 0.173117 0.346233 0.293611 

          

20 
sample                  

  X  y  Z  Tot    

  Avg stdev avg Stdev Avg Stdev Stdev error  

1a 767.1995 0.058235 3655.65 0.173904 -689.18 0.0169 0.184173 0.368346  

1b 1021.756 0.116637 3650.991 0.092824 -680.17 0.027906 0.151655 0.30331  

3a 2241.785 0.053775 3628.484 0.094489 -636.93 0.014006 0.109618 0.219236  

3b 2503.513 0.045596 3623.092 0.115401 -627.64 0.017755 0.125346 0.250692  

4a 3526.869 0.066317 3611.696 0.091988 -591.89 0.011524 0.113985 0.227969  

5a 4159.541 0.062857 3603.616 0.079278 -570.02 0.014343 0.102185 0.20437  

5b 4418.608 0.054783 3600.445 0.045263 -561.55 0.009028 0.071634 0.143267  

6a 6055.246 0.073714 3575.399 0.096885 -504.38 0.010915 0.122227 0.244455  

6b 6319.177 0.040951 3574.872 0.064544 -494.80 0.011791 0.077343 0.154686  
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7a 7960.36 0.046565 3553.845 0.060359 -437.99 0.009934 0.076878 0.153755 
average 
error 

7b 8222.756 0.058726 3542.572 0.136106 -428.74 0.011829 0.148706 0.297411 0.233409 

          

50 
sample                  

  X  y  Z  Tot    

  Avg stdev avg Stdev Avg Stdev Stdev error  

1a 767.2047 0.037532 3655.651 0.116995 -689.18 0.013167 0.123571 0.247142  

1b 1021.732 0.10514 3650.968 0.063967 -680.17 0.016526 0.124175 0.24835  

3a 2241.772 0.049976 3628.493 0.068544 -636.93 0.008721 0.085276 0.170553  

3b 2503.485 0.047883 3623.08 0.074456 -627.65 0.015762 0.089916 0.179833  

5a 3526.873 0.043236 3611.679 0.069797 -591.89 0.007086 0.082409 0.164818  

6a 4159.537 0.046615 3603.627 0.055426 -570.02 0.009812 0.073084 0.146168  

6b 4418.596 0.041954 3600.443 0.025194 -561.55 0.007935 0.049577 0.099154  

7a 6055.229 0.030488 3575.389 0.053599 -504.38 0.006482 0.062003 0.124005  

7b 6319.167 0.017925 3574.863 0.04482 -494.80 0.010089 0.049314 0.098629  

8a 7960.358 0.025794 3553.832 0.031611 -438.00 0.006742 0.041352 0.082704 
average 
error 

8b 8222.749 0.035091 3542.573 0.094238 -428.74 0.008247 0.100896 0.201793 0.160286 

 

Table D.46 - 757 rear spar data, day 1 

single 
sample                  

  X  y  z  Tot    

  Avg stdev avg Stdev avg Stdev Stdev error  

1s 1799.497 0.131852 6126.564 0.189823 -736.48 0.077756 0.243852 0.487704  

1l 1736.681 0.314096 6130.843 1.58093 -739.12 0.123527 1.616556 3.233113  

3s 3068.349 0.519183 6109.914 0.262967 -692.01 0.189853 0.612166 1.224332  

3l 3001.467 0.30952 6112.31 0.447479 -694.35 0.12885 0.559144 1.118289  

5s 6018.765 1.149884 6065.414 2.256992 -589.50 0.106801 2.535282 5.070563  

5l 5956.276 0.142113 6072.488 0.161801 -592.18 0.04176 0.219361 0.438723  

6s 7919.829 0.157764 6032.927 0.648827 -522.83 0.052807 0.669817 1.339634 
average 
error 

6l 7854.861 0.257847 6046.773 0.556249 -526.01 0.04606 0.614833 1.229667 1.767753 

          

10 
sample                  

  X  y  Z  Tot    

  Avg stdev avg Stdev Avg Stdev Stdev error  

1s 1799.517 0.054226 6126.577 0.091116 -736.48 0.020014 0.107904 0.215808  

1l 1736.631 0.273608 6131.301 1.538192 -739.14 0.079624 1.564364 3.128728  

3s 3068.388 0.456746 6109.937 0.171436 -692.01 0.148515 0.509965 1.01993  

3l 3001.405 0.478764 6112.433 0.309663 -694.36 0.040273 0.571602 1.143203  

5s 6018.845 1.082302 6065.559 2.15053 -589.49 0.090557 2.409223 4.818447  

5l 5956.288 0.048444 6072.524 0.06492 -592.17 0.020036 0.083444 0.166888  

6s 7919.852 0.064785 6032.92 0.135245 -522.83 0.019998 0.151289 0.302578 
average 
error 

6l 7854.891 0.075874 6046.83 0.085913 -526.00 0.019549 0.116276 0.232552 1.378517 
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20 
sample                  

  X  y  Z  Tot    

  Avg stdev avg Stdev Avg Stdev Stdev error  

1s 1799.515 0.045418 6126.567 0.059204 -736.49 0.012288 0.075624 0.151248  

1l 1736.588 0.256863 6131.395 1.481545 -739.14 0.077439 1.50564 3.011279  

3s 3068.374 0.449661 6109.924 0.151 -692.01 0.131947 0.492348 0.984695  

3l 3001.329 0.640914 6112.451 0.415707 -694.36 0.049945 0.765557 1.531115  

5s 6018.813 1.116243 6065.486 2.216637 -589.49 0.090769 2.483488 4.966977  

5l 5956.275 0.033775 6072.516 0.046384 -592.18 0.01435 0.059145 0.11829  

6s 7919.841 0.052527 6032.9 0.109109 -522.83 0.016294 0.122186 0.244371 
average 
error 

6l 7854.885 0.069933 6046.824 0.080343 -526.01 0.013638 0.107385 0.21477 1.402843 

          

50 
sample                  

  X  y  Z  Tot    

  Avg stdev avg Stdev Avg Stdev Stdev error  

1s 1799.494 0.036419 6126.586 0.037591 -736.49 0.006587 0.052753 0.105505  

1l 1736.561 0.262542 6131.634 1.485662 -739.16 0.074861 1.510538 3.021076  

3s 3068.46 0.064981 6109.892 0.035826 -692.05 0.012712 0.075284 0.150568  

3l 3001.471 0.068555 6112.372 0.068897 -694.36 0.019282 0.099088 0.198176  

5s 6018.761 1.153958 6065.367 2.331321 -589.49 0.085876 2.602701 5.205402  

5l 5956.282 0.036865 6072.503 0.023218 -592.18 0.0099 0.044678 0.089356  

6s 7919.833 0.023507 6032.888 0.082839 -522.84 0.010699 0.086772 0.173544 
average 
error 

6l 7854.879 0.042703 6046.813 0.043885 -526.01 0.008146 0.061772 0.123544 1.133396 

 

Table D.47 - 757 front spar data, day 2 

Single 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 766.3195 0.115582 3648.068 0.39204 -688.25 0.071037 0.41485 0.8297  

1b 1022.695 0.270677 3649.393 0.204156 -679.44 0.083902 0.349265 0.698529  

3a 2241.464 0.144084 3627.746 0.293337 -636.28 0.072413 0.33474 0.66948  

3b 2503.236 0.164004 3623.301 0.232919 -627.08 0.068695 0.293031 0.586062  

4a 3526.498 0.169384 3611.494 0.219399 -591.51 0.064508 0.284584 0.569169  

4b 3789.08 0.183168 3600.168 0.247961 -581.61 0.0816 0.318894 0.637789  

5a 4158.948 0.186999 3603.059 0.236075 -570.08 0.065563 0.308218 0.616436  

5b 4418.614 0.144131 3600.946 0.177079 -560.54 0.051693 0.2341 0.468201  

6a 6055.052 0.135244 3575.656 0.246902 -504.37 0.052951 0.286453 0.572906  

6b 6349.418 407.8708 4147.699 1439.987 -504.06 39.95972 1497.17    

7a 7959.315 0.785624 3552.903 0.502323 -437.08 0.75585 1.200351 2.400703 
average 
error 

7b 8223.292 0.168935 3543.204 0.347093 -427.42 0.085777 0.395437 0.790874 0.803623 

          

10 
sample                  

  X  Y  Z  Tot    
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  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 766.3039 0.044605 3647.97 0.278412 -688.26 0.030741 0.283633 0.567267  

1b 1022.66 0.109119 3649.359 0.085079 -679.45 0.024475 0.140515 0.281029  

3a 2241.437 0.053283 3627.705 0.120256 -636.29 0.02103 0.133202 0.266404  

3b 2503.211 0.054705 3623.252 0.091844 -627.09 0.024166 0.109599 0.219198  

4a 3526.468 0.098354 3611.467 0.113004 -591.52 0.02162 0.151364 0.302727  

4b 3789.054 0.077356 3600.129 0.10143 -581.62 0.025676 0.13012 0.26024  

5a 4158.927 0.117974 3603.012 0.142061 -570.09 0.022301 0.186002 0.372004  

5b 4418.595 0.050837 3600.914 0.065681 -560.55 0.014149 0.084253 0.168506  

6a 6055.023 0.059165 3575.637 0.131916 -504.38 0.018462 0.14575 0.291501  

6b 6326.114 69.9326 3984.936 729.7247 -505.59 16.73202 733.2589    

7a 7959.297 0.485553 3552.859 0.213211 -437.13 0.381356 0.653186 1.306373 
average 
error 

7b 8223.261 0.073775 3543.165 0.183961 -427.43 0.036581 0.201551 0.403102 0.403486 

          

20 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 766.3187 0.036375 3648.012 0.253262 -688.25 0.025723 0.257151 0.514302  

1b 1022.702 0.073505 3649.397 0.05519 -679.44 0.01846 0.093753 0.187506  

3a 2241.466 0.044995 3627.751 0.068992 -636.28 0.017442 0.084194 0.168389  

3b 2503.241 0.040199 3623.29 0.071229 -627.08 0.0153 0.083209 0.166417  

4a 3526.494 0.074208 3611.5 0.093732 -591.51 0.014013 0.12037 0.24074  

4b 3789.08 0.064567 3600.172 0.07675 -581.61 0.018039 0.101906 0.203812  

5a 4158.963 0.110312 3603.031 0.129932 -570.08 0.013852 0.171006 0.342012  

5b 4418.619 0.033209 3600.94 0.04917 -560.54 0.012269 0.060589 0.121179  

6a 6055.042 0.044431 3575.675 0.114846 -504.37 0.014677 0.124013 0.248026  

6b 6334.994 24.6861 4019.023 562.81 -502.79 10.18259 563.4432    

7a 7959.356 0.246222 3552.901 0.153182 -437.12 0.249873 0.382788 0.765576 
average 
error 

7b 8223.288 0.056848 3543.218 0.143548 -427.42 0.027996 0.156912 0.313825 0.297435 

          

50 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 766.3124 0.031939 3648.002 0.208828 -688.25 0.020362 0.212235 0.42447  

1b 1022.69 0.042047 3649.386 0.027101 -679.44 0.013065 0.051702 0.103404  

3a 2241.455 0.033154 3627.747 0.056731 -636.29 0.010447 0.066534 0.133067  

3b 2503.235 0.030936 3623.276 0.060808 -627.08 0.010635 0.069049 0.138098  

4a 3526.477 0.080143 3611.501 0.084168 -591.51 0.010203 0.116668 0.233335  

4b 3789.075 0.050028 3600.161 0.067699 -581.61 0.013892 0.085317 0.170634  

5a 4158.945 0.093595 3603.039 0.108392 -570.08 0.013752 0.143868 0.287737  

5b 4418.613 0.022202 3600.937 0.032315 -560.54 0.00657 0.039754 0.079507  

6a 6055.038 0.039491 3575.664 0.097688 -504.38 0.009288 0.105777 0.211554  

6b 6327.56 7.492178 3875.068 259.11 -502.84 4.056073 259.25    

7a 7959.377 0.121776 3552.88 0.074418 -437.16 0.054324 0.152704 0.305408 
average 
error 

7b 8223.29 0.049034 3543.193 0.13184 -427.42 0.020863 0.142201 0.284403 0.215601 
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Table D.48 - 757 rear spar data, day 2 

single 
sample                  

  X  Y  Z  Tot    

  Avg stdev avg stdev Avg Stdev Stdev error  

1s 1798.44 0.135308 6124.29 0.180885 -736.75 0.063567 0.234666 0.469333  

1l 1731.796 0.200782 6126.921 0.380303 -738.72 0.06425 0.434824 0.869648  

3s 3067.386 0.189499 6108.17 0.184198 -691.54 0.053363 0.269604 0.539207  

3l 3000.732 0.433198 6110.418 0.913795 -694.25 0.786158 1.280908 2.561816  

5s 6035.535 136.7142 6073.649 54.95961 -579.69 75.06205 165.3652    

5l 5952.358 0.150893 6073.544 0.14386 -591.24 0.071866 0.22052 0.441041  

6s 7922.392 0.170581 6040.893 0.253177 -522.56 0.063158 0.311745 0.62349 
average 
error 

6l 7852.605 0.142805 6046.412 0.184584 -525.59 0.084539 0.248216 0.496433 0.857281 

          

10 
sample                  

  X  Y  Z  Tot    

  Avg stdev avg stdev Avg Stdev Stdev error  

1s 1798.425 0.066745 6124.261 0.061349 -736.76 0.023409 0.09363 0.18726  

1l 1731.777 0.068083 6126.881 0.162619 -738.73 0.026235 0.178237 0.356474  

3s 3067.358 0.116197 6108.144 0.09376 -691.55 0.017895 0.150376 0.300752  

3l 3000.704 0.259571 6110.377 0.444236 -694.26 0.504101 0.720306 1.440612  

5s 6031.985 67.94327 6072.132 27.35551 -581.97 38.01256 82.5201    

5l 5952.335 0.052475 6073.521 0.046454 -591.25 0.023461 0.073906 0.147812  

6s 7922.376 0.083988 6040.851 0.131841 -522.57 0.018127 0.157368 0.314736 
average 
error 

6l 7852.585 0.042932 6046.374 0.061067 -525.60 0.020419 0.07739 0.154781 0.414632 

          

20 
sample                  

  X  Y  Z  Tot    

  Avg stdev avg stdev Avg Stdev Stdev error  

1s 1798.456 0.056679 6124.288 0.039947 -736.75 0.01997 0.07216 0.14432  

1l 1731.795 0.059048 6126.915 0.09592 -738.71 0.04327 0.120663 0.241325  

3s 3067.385 0.106374 6108.174 0.082745 -691.54 0.016032 0.135717 0.271434  

3l 3000.731 0.12892 6110.404 0.286779 -694.23 0.25154 0.40266 0.805319  

5s 6028.289 30.42559 6070.635 12.33442 -584.08 18.34235 37.60713    

5l 5952.368 0.065009 6073.548 0.040533 -591.23 0.015944 0.078252 0.156504  

6s 7922.401 0.068772 6040.874 0.112383 -522.56 0.013724 0.132468 0.264937 
average 
error 

6l 7852.609 0.035193 6046.406 0.04152 -525.59 0.016724 0.05694 0.113879 0.285388 

          

50 
sample                  

  X  Y  Z  Tot    

  Avg stdev avg stdev Avg Stdev Stdev error  

1s 1798.448 0.049346 6124.283 0.019501 -736.75 0.011046 0.054197 0.108394  

1l 1731.794 0.06216 6126.89 0.136419 -738.78 0.023029 0.151672 0.303344  

3s 3067.393 0.098013 6108.159 0.052415 -691.55 0.011137 0.111705 0.223409  

3l 3000.723 0.082826 6110.374 0.074219 -694.21 0.100442 0.149857 0.299714  

5s 6024.83 8.870751 6069.119 3.611369 -586.77 5.268709 10.93122    



 164 

5l 5952.543 0.544401 6073.605 0.193438 -591.23 0.028064 0.578428 1.156856  

6s 7922.398 0.056793 6040.877 0.098264 -522.56 0.011723 0.114099 0.228199 
average 
error 

6l 7852.604 0.029677 6046.401 0.028586 -525.59 0.009072 0.042192 0.084384 0.343471 

 

Table D.49 - 757 rear spar data, day 3 

Single 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 761.3972 0.138936 3661.838 0.407252 -596.89 0.089945 0.4396 0.879199  

1b 1015.158 0.367408 3663.698 0.282037 -589.02 0.086119 0.471116 0.942232  

3a 2236.5 0.16824 3644.08 0.296372 -550.26 0.072981 0.348522 0.697044  

3b 2495.742 0.184494 3637.694 0.270035 -542.65 0.074366 0.335391 0.670783  

6a 4411.693 0.185429 3615.279 0.237156 -483.57 0.048325 0.304897 0.609794  

6b 4411.693 0.185429 3615.279 0.237156 -483.57 0.048325 0.304897 0.609794  

7a 6048.769 0.142987 3590.053 0.214704 -432.59 0.053188 0.263386 0.526772  

7b 6313.635 10.64403 3649.42 492.3935 -427.10 4.055226 492.5252    

8a 7970.801 177.8228 3583.226 137.7867 -370.05 38.98098 228.3104   
average 
error 

8b 8217.594 0.164388 3557.806 0.295815 -364.56 0.067287 0.345048 0.690095 0.703214 

          

10 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 761.3799 0.056015 3661.831 0.221496 -596.92 0.029219 0.23033 0.460661  

1b 1015.108 0.203625 3663.659 0.144359 -589.04 0.025699 0.250924 0.501848  

3a 2236.475 0.070323 3644.039 0.114994 -550.27 0.019927 0.136257 0.272514  

3b 2495.71 0.067881 3637.666 0.121936 -542.66 0.024867 0.141755 0.283511  

6a 4411.671 0.080998 3615.248 0.10938 -483.58 0.013856 0.136809 0.273618  

6b 4411.671 0.080998 3615.248 0.10938 -483.58 0.013856 0.136809 0.273618  

7a 6048.745 0.057165 3590.018 0.085962 -432.60 0.015495 0.104391 0.208782  

7b 6313.127 4.475438 3629.542 199.5147 -427.31 2.218738 199.5772    

8a 7970.12 74.79 3548.498 181.741 -370.22 17.38948 197.2961   
average 
error 

8b 8217.571 0.0663 3557.765 0.136879 -364.57 0.018812 0.15325 0.3065 0.322631 

          

20 sample                

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 761.3919 0.04198 3661.913 0.200797 -596.90 0.023419 0.206471 0.412942  

1b 1015.179 0.170899 3663.696 0.104222 -589.02 0.02172 0.201347 0.402694  

3a 2236.503 0.058217 3644.104 0.096433 -550.26 0.014604 0.113586 0.227173  

3b 2495.743 0.061009 3637.716 0.100852 -542.65 0.016677 0.119043 0.238087  

6a 4411.701 0.067422 3615.285 0.092221 -483.57 0.010872 0.114755 0.22951  

6b 4411.701 0.067422 3615.285 0.092221 -483.57 0.010872 0.114755 0.22951  

7a 6048.77 0.045341 3590.055 0.05341 -432.59 0.010815 0.07089 0.141779  

7b 6313.394 2.975228 3625.556 132.3583 -426.75 1.558179 132.4009    
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8a 7972.108 63.58401 3562.283 94.06194 -369.06 17.43505 114.8676   
average 
error 

8b 8217.593 0.053023 3557.822 0.121517 -364.56 0.014992 0.133427 0.266853 0.268568 

          

50 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1a 761.3905 0.042263 3661.904 0.137421 -596.91 0.015254 0.14458 0.289161  

1b 1015.165 0.148156 3663.689 0.076439 -589.03 0.018445 0.16773 0.335459  

3a 2236.5 0.048703 3644.097 0.081132 -550.26 0.011118 0.095278 0.190557  

3b 2495.741 0.04813 3637.715 0.090236 -542.65 0.010049 0.102762 0.205524  

6a 4411.678 0.070048 3615.292 0.073569 -483.58 0.011841 0.102271 0.204542  

6b 4411.678 0.070048 3615.292 0.073569 -483.58 0.011841 0.102271 0.204542  

7a 6048.765 0.030943 3590.047 0.026595 -432.59 0.009062 0.041796 0.083592  

7b 6312.823 0.755954 3594.545 23.99256 -426.75 0.990772 24.0249    

8a 7957.54 6.696696 3567.511 22.6872 -372.84 2.467828 23.78329   
average 
error 

8b 8217.593 0.042567 3557.808 0.103929 -364.56 0.008995 0.112668 0.225337 0.217339 

 

single 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1s 1777.377 0.131225 6143.195 0.204177 -617.53 0.082238 0.256265 0.512529  

1l 1712.866 0.732181 6143.568 0.636181 -619.46 0.129931 0.978621 1.957241  

3s 3061.063 0.355979 6126.41 0.407941 -576.52 0.32998 0.634054 1.268107  

3l 2991.434 0.168549 6128.147 0.181301 -578.98 0.05759 0.254157 0.508313  

5s 6027.861 61.05366 6093.14 24.76673 -486.25 77.38013 101.6298    

5l 5948.944 0.169897 6090.281 0.176327 -487.24 0.054817 0.25092 0.501841  

6s 7906.896 0.493936 6062.52 0.35032 -426.98 0.36467 0.706881 1.413762 
average 
error 

6l 7845.104 0.17235 6067.593 0.2446 -428.88 0.0816 0.310149 0.620298 0.96887 

          

10 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1s 1777.356 0.035906 6143.168 0.098738 -617.54 0.029104 0.10902 0.218041  

1l 1712.74 0.645935 6143.448 0.56118 -619.48 0.082002 0.859581 1.719162  

3s 3064.874 28.19624 6131.798 39.74111 -571.92 34.01519 59.42573    

3l 2991.407 0.071611 6128.12 0.075452 -578.99 0.020268 0.105981 0.211962  

5s 6024.099 26.5564 6091.466 11.2029 -488.68 39.27193 48.71378    

5l 5948.922 0.078766 6090.249 0.076787 -487.25 0.016705 0.111263 0.222526  

6s 7906.861 0.160818 6062.463 0.122883 -427.00 0.113664 0.232126 0.464252 
average 
error 

6l 7845.074 0.099099 6067.57 0.133815 -428.89 0.02355 0.168171 0.336343 0.528714 

          

20 
sample                  

  X  Y  Z  Tot    
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  Avg stdev Avg Stdev Avg Stdev Stdev error  

1s 1777.374 0.038385 6143.199 0.099527 -617.54 0.021789 0.108875 0.217751  

1l 1712.691 0.629686 6143.43 0.535075 -619.48 0.077147 0.829917 1.659834  

3s 3064.533 18.80245 6131.294 26.53176 -572.38 22.95307 39.80339    

3l 2991.436 0.062685 6128.153 0.063061 -578.98 0.012729 0.089822 0.179645  

5s 6024.489 22.67522 6091.691 10.22992 -485.54 18.73688 31.14302    

5l 5948.953 0.067303 6090.269 0.055926 -487.24 0.011517 0.088261 0.176523  

6s 7906.888 0.185331 6062.492 0.128328 -426.98 0.11048 0.25104 0.502081 
average 
error 

6l 7845.093 0.088572 6067.613 0.118934 -428.88 0.017589 0.149331 0.298662 0.505749 

          

50 
sample                  

  X  Y  Z  Tot    

  Avg stdev Avg Stdev Avg Stdev Stdev error  

1s 1777.371 0.029428 6143.184 0.059398 -617.54 0.011461 0.067272 0.134544  

1l 1712.631 0.612223 6143.373 0.521927 -619.49 0.071496 0.807673 1.615346  

3s 3066.24 19.29834 6133.747 27.32 -570.34 23.24033 40.72986    

3l 2991.43 0.058601 6128.144 0.043835 -578.98 0.008405 0.073663 0.147327  

5s 6020.681 6.738122 6090.103 3.763391 -486.24 5.024979 9.20955    

5l 5948.974 0.104328 6090.283 0.084065 -487.24 0.007345 0.134183 0.268367  

6s 7906.866 0.071893 6062.479 0.048578 -427.00 0.022071 0.08953 0.17906 
average 
error 

6l 7845.093 0.06327 6067.604 0.074963 -428.88 0.014391 0.099145 0.198289 0.423822 

 

Table D.50 - Summary of  757 spar data 

Samples Test 1   Test 2   Test 3   Average   

  front Back Front Back front back Front back 

1 0.71509 1.76775 0.80362 0.857281 0.703214 0.96887 0.740643 1.197968 

10 0.29361 1.37851 0.40348 0.414632 0.322631 0.528714 0.33991 0.773954 

20 0.23340 1.40284 0.29743 0.285388 0.268568 0.505749 0.266471 0.731327 

50 0.16028 1.13339 0.21560 0.343471 0.217339 0.423822 0.197742 0.633563 
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D.3 757 main section data 

Table D.51 - 757 main jig, single data point 

location X st-x Y st-y Z St-z St err 

1 11504.6 0.113244 4344.176 0.173991 -536.04 0.045447 0.212515 0.42503 

2 13301.87 0.971376 5291.338 0.594722 -550.60 0.101634    

3 11080.03 792.521 5087.771 391.3186 -559.21 47.77004    

4 9698.556 0.14627 4599.278 0.223107 -571.78 0.079688 0.278427 0.556853 

5 9147.669 0.14663 4883.37 0.220541 -586.21 0.059198 0.271372 0.542744 

6 7311.645 0.127124 5749.33 0.214541 -654.68 0.097086 0.267608 0.535217 

7 8103.213 0.176686 5036.177 0.206391 -609.87 0.065065 0.279372 0.558743 

8 6214.349 0.140067 5779.157 0.187091 -677.23 0.114594 0.260295 0.52059 

9 7040.943 0.120155 5221.029 0.17428 -636.76 0.04439 0.21629 0.43258 

10 5120.05 0.159655 5883.122 0.308205 -701.18 0.087311 0.357915 0.71583 

11 5581.507 0.200393 5405.133 0.234207 -668.94 0.100148 0.324099 0.648198 

12 7595.327 0.150212 5661.183 0.203595 -648.62 0.050829 0.258066 0.516132 

13 8867.248 0.162571 5386.122 0.211575 -612.70 0.104786 0.286659 0.573317 

14 6860.139 0.135131 5095.049 0.25654 -634.36 0.063302 0.296783 0.593567 

15 8395.465 0.168079 5109.579 0.192349 -605.67 0.054853 0.261261 0.522523 

16 10424.42 0.149947 5037.661 0.246901 -583.66 0.088134 0.302013 0.604026 

17 11460.63 0.124036 4528.047 0.184118 -543.53 0.064733 0.231246 0.462492 

18 9594.358 0.149466 5330.045 0.195241 -605.86 0.047115 0.250358 0.500716 

19 10526.57 0.12221 5406.91 0.206476 -595.12 0.048479 0.244781 0.489563 

20 12242.6 0.11631 4325.769 0.245398 -523.42 0.054779 0.277036 0.554072 

       max 0.71583 

       average 0.541788 

       min 0.42503 

 

Table D.52 - 757 main jig, 10 data point 

location X st-x Y st-y Z St-z st err 

1 11504.58 0.055458 4344.149 0.07321 -536.05 0.014586 0.092995 0.185989 

2 13301.78 0.509391 5291.272 0.312096 -550.62 0.054559    

3 11084.96 778.1166 5091.755 383.839 -561.22 43.03261    

4 9698.535 0.047383 4599.244 0.079737 -571.79 0.025669 0.09624 0.192479 

5 9147.645 0.060115 4883.341 0.080986 -586.22 0.026754 0.104347 0.208694 

6 7311.624 0.051944 5749.297 0.081464 -654.69 0.043087 0.105788 0.211576 

7 8103.185 0.064771 5036.148 0.085731 -609.87 0.029914 0.111535 0.22307 

8 6214.326 0.054563 5779.128 0.07441 -677.24 0.038661 0.100043 0.200086 

9 7040.924 0.053907 5221.001 0.062664 -636.76 0.013843 0.083812 0.167623 

10 5120.028 0.105203 5883.07 0.128915 -701.19 0.032166 0.169474 0.338948 

11 5581.475 0.070067 5405.103 0.09173 -668.95 0.04763 0.12487 0.249739 

12 7595.304 0.095353 5661.148 0.09363 -648.63 0.016829 0.134692 0.269384 

13 8867.222 0.069841 5386.088 0.096398 -612.72 0.058969 0.132844 0.265688 

14 6860.115 0.058098 5095.006 0.09528 -634.37 0.021929 0.11373 0.227461 
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15 8395.439 0.082488 5109.549 0.075005 -605.68 0.014874 0.112478 0.224955 

16 10424.4 0.056772 5037.63 0.125851 -583.67 0.060824 0.150868 0.301736 

17 11460.61 0.054008 4528.013 0.052451 -543.54 0.025034 0.079339 0.158678 

18 9594.333 0.059819 5330.015 0.089882 -605.87 0.011516 0.10858 0.217161 

19 10526.54 0.04071 5406.879 0.087799 -595.13 0.012707 0.097608 0.195216 

20 12242.58 0.056955 4325.727 0.091829 -523.43 0.015314 0.109138 0.218276 

       max 0.338948 

       average 0.225376 

       min 0.158678 

 

Table D.53 - 757 main jig, 20 data point 

location X st-x Y st-y Z st-z st err 

1 11504.6 0.044962 4344.179 0.059095 -536.04 0.011341 0.075116 0.150232 

2 13301.88 0.318404 5291.337 0.209128 -550.60 0.058189    

3 11098.27 770.4684 5107.255 360.9208 -562.00 37.06567    

4 9698.56 0.02845 4599.273 0.051428 -571.78 0.019225 0.061838 0.123675 

5 9147.665 0.04456 4883.376 0.051516 -586.21 0.017245 0.070263 0.140526 

6 7311.643 0.035612 5749.33 0.060589 -654.68 0.019905 0.073044 0.146088 

7 8103.214 0.04111 5036.181 0.060887 -609.86 0.018846 0.075844 0.151689 

8 6214.349 0.028049 5779.157 0.046746 -677.23 0.024655 0.059831 0.119662 

9 7040.945 0.047435 5221.029 0.050566 -636.76 0.011155 0.070224 0.140448 

10 5120.05 0.091839 5883.124 0.10909 -701.17 0.016144 0.143512 0.287024 

11 5581.495 0.065051 5405.139 0.076706 -668.93 0.03014 0.104995 0.209989 

12 7595.324 0.082257 5661.183 0.084647 -648.62 0.011334 0.118574 0.237148 

13 8867.246 0.051236 5386.117 0.084013 -612.70 0.053901 0.1122 0.224399 

14 6860.139 0.043633 5095.052 0.06986 -634.36 0.018214 0.084356 0.168712 

15 8395.46 0.061549 5109.581 0.063504 -605.67 0.007707 0.088772 0.177544 

16 10424.42 0.04367 5037.663 0.101067 -583.66 0.056745 0.123861 0.247722 

17 11460.63 0.045163 4528.041 0.040009 -543.53 0.010478 0.061239 0.122478 

18 9594.356 0.046686 5330.048 0.068559 -605.86 0.006155 0.083174 0.166347 

19 10526.56 0.031262 5406.912 0.053625 -595.13 0.010818 0.063008 0.126016 

20 12242.6 0.041444 4325.761 0.059094 -523.42 0.013617 0.073451 0.146903 

       max 0.287024 

       average 0.171478 

       min 0.119662 

 

Table D.54 - 757 main jig, 50 data point 

location X st-x Y st-y Z st-z st err 

1 11504.59 0.028378 4344.172 0.053759 -536.04 0.008793 0.061422 0.122843 

2 13301.86 0.302333 5291.319 0.213038 -550.60 0.048515    

3 11115.13 705.6862 5123.197 321.7345 -566.24 26.89094    

4 9698.559 0.022137 4599.264 0.027896 -571.79 0.00859 0.036634 0.073268 

5 9147.658 0.024181 4883.378 0.02612 -586.21 0.008091 0.036503 0.073006 

6 7311.638 0.018241 5749.313 0.025095 -654.68 0.009627 0.032484 0.064967 

7 8103.208 0.010242 5036.173 0.016576 -609.87 0.011917 0.022841 0.045682 

8 6214.347 0.015919 5779.151 0.028921 -677.23 0.007914 0.033948 0.067896 
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9 7040.941 0.026897 5221.024 0.026904 -636.76 0.006707 0.03863 0.07726 

10 5120.039 0.047956 5883.109 0.075928 -701.17 0.008402 0.090197 0.180393 

11 5581.489 0.043835 5405.134 0.048921 -668.94 0.019677 0.068571 0.137142 

12 7595.33 0.054339 5661.169 0.050279 -648.62 0.005357 0.074225 0.148451 

13 8867.244 0.02966 5386.11 0.051303 -612.71 0.037617 0.070191 0.140382 

14 6860.136 0.026439 5095.045 0.02845 -634.37 0.009987 0.040102 0.080204 

15 8395.452 0.030191 5109.569 0.032766 -605.67 0.003958 0.04473 0.08946 

16 10424.41 0.025454 5037.663 0.069241 -583.66 0.053381 0.091059 0.182118 

17 11460.62 0.025094 4528.033 0.023886 -543.53 0.003658 0.034837 0.069674 

18 9594.352 0.029461 5330.041 0.048164 -605.86 0.004755 0.05666 0.11332 

19 10526.56 0.02078 5406.908 0.038891 -595.13 0.006514 0.044573 0.089146 

20 12242.6 0.022813 4325.75 0.028213 -523.42 0.010475 0.037764 0.075528 

       max 0.182118 

       average 0.101708 

       min 0.045682 

 

Table D.55 - Summary of 757 main assembly jig data 

Location Data points     

  1 10 20 50 

1 0.42503 0.185989 0.150232 0.122843 

2 NA NA NA NA 

3 NA NA NA NA 

4 0.556853 0.192479 0.123675 0.073268 

5 0.542744 0.208694 0.140526 0.073006 

6 0.535217 0.211576 0.146088 0.064967 

7 0.558743 0.22307 0.151689 0.045682 

8 0.52059 0.200086 0.119662 0.067896 

9 0.43258 0.167623 0.140448 0.07726 

10 0.71583 0.338948 0.287024 0.180393 

11 0.648198 0.249739 0.209989 0.137142 

12 0.516132 0.269384 0.237148 0.148451 

13 0.573317 0.265688 0.224399 0.140382 

14 0.593567 0.227461 0.168712 0.080204 

15 0.522523 0.224955 0.177544 0.08946 

16 0.604026 0.301736 0.247722 0.182118 

17 0.462492 0.158678 0.122478 0.069674 

18 0.500716 0.217161 0.166347 0.11332 

19 0.489563 0.195216 0.126016 0.089146 

20 0.554072 0.218276 0.146903 0.075528 

Max 0.71583 0.338948 0.287024 0.182118 

Average 0.541788 0.225376 0.171478 0.101708 

Min 0.42503 0.158678 0.119662 0.045682 
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D.4 777 measurement data 

Table D.56 - 777 main assembly jig trials 

Trial 1          

IPS points   LT points           difference 

X Y z x Y z X y z scalar 

0 0 0 -1.21591 0.53365 1.022415 -1.21591 0.53365 1.022415 1.675875 

336.8479 -159.56 3.289806 337.5213 -159.236 3.336041 0.673363 0.324746 0.046235 0.74901 

865.4313 -899.37 951.4715           

1103.568 -1018.9 514.6293 1103.377 -1018.96 514.9835 -0.19074 -0.03393 0.354146 0.403675 

1869.396 -1388.6 843.7518 1869.809 -1389.12 843.2989 0.413678 -0.46491 -0.45294 0.769692 

3312.231 -2102.1 212.3049 3311.917 -2102.7 212.4024 -0.31332 -0.55819 0.097531 0.647501 

3698.3 -2265.9 849.9926           

6820.674 -3760.0 1017.617 6821.735 -3761.22 1018.258 1.061123 -1.20238 0.641561 1.727226 

7910.312 -4291.4 792.9766 7910.734 -4291.31 792.8546 0.422184 0.087186 -0.12195 0.44801 

9039.399 -4841.4 550.9817 9038.992 -4840.65 550.7317 -0.40721 0.750571 -0.25 0.889764 

9989.859 -5303.6 349.6275 9989.263 -5303.46 349.8023 -0.59577 0.146906 0.174758 0.638013 

11065.73 -5813.1 115.6817 11065.73 -5813.4 115.8339 -0.00218 -0.25238 0.152222 0.294736 

          

Trial 2          

IPS data     Laser tracker data   Difference     difference 

X Y z X Y z X y z scalar 

0 0 0 -1.24921 0.473852 0.600302 -1.24921 0.473852 0.600302 1.464725 

336.8479 -159.56 3.289806 337.4875 -159.297 2.92065 0.639585 0.264024 -0.36916 0.784254 

865.4313 -899.37 951.4715         NA 

1103.568 -1018.9 514.6293 1103.413 -1018.85 514.7568 -0.15503 0.079593 0.127466 0.215912 

1869.396 -1388.6 843.7518 1869.891 -1388.89 843.0904 0.494896 -0.24099 -0.66142 0.860511 

3312.231 -2102.1 212.3049 3311.904 -2102.71 212.2342 -0.32682 -0.56128 -0.07066 0.653332 

3698.3 -2265.9 849.9926         NA 

6820.674 -3760.0 1017.617 6821.829 -3760.96 1018.161 1.155489 -0.94283 0.544016 1.587465 

7910.312 -4291.4 792.9766 7910.793 -4291.14 792.7844 0.481302 0.262703 -0.19214 0.58102 

9039.399 -4841.4 550.9817 9039.013 -4840.56 550.6899 -0.38585 0.836034 -0.29181 0.965914 

9989.859 -5303.6 349.6275 9989.253 -5303.45 349.7844 -0.60578 0.157566 0.156903 0.6453 

11065.73 -5813.1 115.6817 11065.68 -5813.48 115.8382 -0.04858 -0.32867 0.156512 0.367256 
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E.3 HdH CMM data – Plate 3 



 174 

E.4 HdH CMM data – Numerical 

Table E.57 - CMM data of plates supplied by HdH 

Plate 1   ID x   Y   dist from A variation     

pattern    nominal Actual Nominal actual Nominal actual nominal actual dist 

40 A 33 182.9692 182.827 20.5733 20.785         

40 B 31 168.9725 168.532 68.8652 69.315 50.27937 50.59158 0.279372 0.59158 0.59158 

40 C 36 231.8715 232.049 9.4208 9.704 50.15788 50.45388 0.157883 0.453878 0.453878 

40 D 35 148.8864 148.999 -15.362 -15.146 49.52782 49.34947 -0.47218 -0.65053 0.650528 

50 A 34 186.0507 185.988 11.3549 11.577         

50 B 32 171.7766 171.46 59.2168 59.597 49.94508 50.16954 -0.05492 0.169544 0.169544 

50 C 37 234.7956 235.022 -0.2841 0.001 50.11518 50.38191 0.115183 0.381911 0.381911 

50 D 30 151.6786 151.79 -24.967 -24.814 50.00722 49.93804 0.007216 -0.06196 0.061958 

            

Plate 2   ID x   Y   dist from A variation     

pattern    nominal Actual Nominal actual Nominal actual nominal actual dist 

140 A 10 58.9685 -17.473 59.106 -17.292         

140 B 6 84.7063 -60.179 84.986 -60.247 49.86226 50.14884 -0.13774 0.148843 0.148843 

140 C 16 9.1492 -18.484 9.47 -18.2 49.82957 49.6443 -0.17043 -0.3557 0.355696 

140 D 24 83.1667 26.2298 82.966 26.601 49.95529 49.95893 -0.04471 -0.04107 0.041066 

150 A 11 53.9124 -9.0958 53.991 -8.877         

150 B 5 79.5948 -51.602 79.857 -51.3 49.66292 49.68663 -0.33708 -0.31337 0.313373 

150 C 59 4.0132 -9.8302 4.612 -9.127 49.9046 49.37963 -0.0954 -0.62037 0.620367 

150 D 23 78.1036 34.7887 78.323 35.19 50.11051 50.33832 0.110513 0.338323 0.338323 

240 A 60 75.299 17.0221 75.297 17.448         

240 B 26 101.3128 -25.920 101.48 -25.851 50.20725 50.59993 0.207246 0.59993 0.59993 

240 C 13 25.3676 16.1047 25.626 16.335 49.93983 49.68347 -0.06017 -0.31653 0.316532 

240 D 19 99.3884 60.9769 99.32 61.242 50.12308 49.95016 0.123085 -0.04984 0.049835 

250 A 8 66.6334 11.6527 66.868 11.867         

250 B 27 92.2496 -30.873 92.466 -30.667 49.64507 49.64271 -0.35493 -0.35729 0.357289 

250 C 14 16.4997 10.8841 16.735 11.007 50.13959 50.14038 0.139591 0.140376 0.140376 

250 D 20 90.5049 55.7903 90.543 56.196 50.17944 50.25501 0.17944 0.255008 0.255008 

260 A 9 57.9953 6.6477 58.24 6.954         

260 B 3 83.6349 -35.773 83.771 -35.646 49.56718 49.6648 -0.43282 -0.3352 0.335204 

260 C 15 7.7496 6.0117 7.907 6.323 50.24973 50.33696 0.249725 0.336955 0.336955 

260 D 21 81.7954 50.905 81.913 51.383 50.2509 50.3423 0.250904 0.342298 0.342298 

270 A 12 49.4479 1.4226 49.542 1.685         

270 B 4 75.4691 -41.681 75.735 -41.48 50.34901 50.4905 0.349014 0.490499 0.490499 

270 C 17 -0.2147 -0.257 -0.001 0 49.69099 49.57165 -0.30901 -0.42835 0.428354 

270 D 22 73.75 45.0104 73.819 45.452 49.90479 50.04921 -0.09521 0.049206 0.049206 

440 A 40 219.4569 -0.6718 218.946 -0.676         

440 B 18 193.1665 41.7441 192.602 41.799 49.90284 49.98132 -0.09716 -0.01868 0.018684 

440 C  273.5692 -0.2376 273.134 -0.001 54.11404 54.1922 4.114042 4.192204 4.192204 

440 D 46 200.02 -45.299 199.937 -45.414 48.67674 48.60896 -1.32326 -1.39104 1.391043 

450 A 38 210.7056 -5.8277 210.019 -5.683         

450 B 29 184.3606 36.6638 184.097 36.784 49.99587 49.75335 -0.00413 -0.24665 0.246647 

450 C  265.1234 -5.1436 264.743 -4.977 54.4221 54.72855 4.4221 4.728554 4.728554 

450 D 45 191.6053 -50.936 191.519 -50.741 48.98588 48.70804 -1.01412 -1.29196 1.291958 

460 A 36 202.1175 -10.975 201.677 -10.963         

460 B 32 175.8673 31.459 175.496 31.556 49.89732 49.93306 -0.10268 -0.06694 0.066944 

460 C  256.7424 -10.608 256.219 -10.752 54.62613 54.54241 4.62613 4.542408 4.542408 
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460 D 48 183.1968 -56.226 182.841 -56.331 49.04729 49.12281 -0.95271 -0.87719 0.877191 

540 A 41 212.2456 9.6841 211.884 9.732         

540 B 28 185.3299 52.065 185.14 52.175 50.20553 50.16622 0.205533 0.166222 0.166222 

540 C  262.3687 11.556 261.951 11.516 50.15804 50.09877 0.158042 0.098774 0.098774 

540 D 35 189.3964 -35.011 189.136 -35.073 50.19779 50.24898 0.197792 0.248975 0.248975 

550 A 39 203.8132 4.3628 203.543 4.452         

550 B 30 176.9634 46.6784 176.328 46.68 50.11509 50.23804 0.115085 0.238035 0.238035 

550 C  253.9829 6.0914 253.682 5.998 50.19947 50.16283 0.199471 0.162829 0.162829 

550 D 43 181.1239 -40.413 181.041 -40.414 50.19709 50.19261 0.197094 0.192609 0.192609 

560 A 37 195.2813 -1.1026 194.895 -1.015         

560 B 31 168.3466 41.3617 168.252 41.688 50.28613 50.33285 0.28613 0.332849 0.332849 

560 C  245.5178 0.7971 245.111 0.81 50.27241 50.24915 0.272406 0.249152 0.249152 

560 D 42 172.5971 -45.728 172.223 -45.774 50.05996 50.17358 0.059957 0.173575 0.173575 

            

Plate 3                       

pattern   ID x   Y  dist from A variation    

Number    nominal actual Nominal actual nominal actual nominal actual dist 

340 A 31 70.566 -98.584 70.566 -98.584         

340 B 37 109.273 -66.326 109.273 -66.326 50.38661 50.38661 0.386609 0.386609 0.386609 

340 C 36 79.861 
-

147.843 79.861 
-

147.843 50.1283 50.1283 0.128296 0.128296 0.128296 

340 D 28 24.257 -81.54 24.257 -81.54 49.34594 49.34594 -0.65406 -0.65406 0.654064 

350 A 32 63.45 
-

104.722 63.45 
-

104.722         

350 B 38 102.449 -72.157 102.449 -72.157 50.80749 50.80749 0.807492 0.807492 0.807492 

350 C 35 72.398 
-

154.074 72.398 
-

154.074 50.15662 50.15662 0.156621 0.156621 0.156621 

350 D 29 16.51 -88.118 16.51 -88.118 49.79012 49.79012 -0.20988 -0.20988 0.209876 

360 A 33 55.509 -111.26 55.509 -111.26         

360 B 39 94.352 -78.807 94.351 -78.807 50.61596 50.6152 0.615964 0.615197 0.615197 

360 C 34 64.643 
-

160.501 64.643 
-

160.501 50.08099 50.08099 0.080995 0.080995 0.080995 

360 D 30 8.788 -94.272 8.788 -94.272 49.71362 49.71362 -0.28638 -0.28638 0.28638 

640 A 26 27.684 -9.607 27.684 -9.607         

640 B 15 -10.377 -43.056 -10.377 -43.056 50.67026 50.67026 0.670261 0.670261 0.670261 

640 C                 

640 D 21 73.978 -26.523 73.978 -26.523 49.28778 49.28778 -0.71222 -0.71222 0.712218 

650 A 24 35.213 -3.343 35.213 -3.343         

650 B 13 -2.739 -36.498 -2.739 -36.498 50.39453 50.39453 0.394527 0.394527 0.394527 

650 C 41 24.998 45.304 24.998 45.304 49.70792 49.70792 -0.29208 -0.29208 0.292085 

650 D 20 81.77 -19.777 81.77 -19.777 49.37237 49.37237 -0.62763 -0.62763 0.627633 

660 A 23 42.859 3.376 42.859 3.376         

660 B 10 5.183 -29.779 5.183 -29.779 50.187 50.187 0.187 0.187 0.187 

660 C 40 32.603 51.813 32.603 51.813 49.51089 49.51089 -0.48911 -0.48911 0.489107 

660 D 19 89.317 -13.436 89.317 -13.436 49.40637 49.40637 -0.59363 -0.59363 0.593633 

740 A 27 34.078 -17.168 34.078 -17.168         

740 B 16 -3.503 -50.298 -3.503 -50.298 50.09919 50.09919 0.099186 0.099186 0.099186 

740 C 42 21.618 38.099 21.618 38.099 56.65415 56.65415 6.654152 6.654152 6.654152 

740 D                 

750 A 25 41.81 -10.595 41.81 -10.595         

750 B 14 4.152 -43.544 4.152 -43.544 50.0376 50.0376 0.037602 0.037602 0.037602 

750 C                 

750 D                 

760 A 22 49.321 -4.196 49.321 -4.196         
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760 B 12 11.426 -37.488 11.426 -37.488 50.44193 50.44193 0.44193 0.44193 0.44193 

760 C                 

760 D                     

E.5 Test results 

Table E.58 - Positional error of robotic drill tests 

Robot only testing IPS positioning Bump 1 Bump 2 

Trial error Trial Error Trial Error Trial error 

1 0.565329 1 0.322099 1 0.469909 1 0.171324 

2 0.204471 2 0.250891 2 0.512868 2 0.197824 

3 0.181868 3 0.338152 3 0.314712 3 0.251859 

4 0.424021 4 0.389657 Mean 0.432496 4 0.460826 

Mean 0.343922 5 0.39133   5 0.438082 

  6 0.327524   6 0.423247 

  
20 
sample 0.322686   mean 0.32386 

  Mean 0.33462     

Table E.59 - Summary of positional error of robotic drill tests 

Test Error 

Robot only 0.343922 

IPS 0.33462 
IPS 20 
sample 0.322686 

Bump 1 0.432496 

Bump 2 0.32386 

 

E.6 Data analysis 

The calculation of data is performed using Microsoft excel, using a best fit analysis.  

Extensive data is far too large in include in printed form, and is therefore not deemed 

necessary for this dissertation.  A methodology was therefore included here  The stages are as 

follows: 

1. Determine arrangement for receivers on end effector and workpieces. 

2. Record locations of each workpiece and end effector receivers. 

3. Use best fit analysis to determine position and orientation of each part in the system. 
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4. Identify displacement from the TCP to required drilling location. 

At this point, the displacement is known in global coordinates. 

5. The data is then converted to Robot end effector coordinates for movement. 

6. This process is repeated until the location is within 0.1mm, then the location is drilled. 

7. This process is repeated for each drilling location. 

The mathematics and process behind this is shown in the following sections. 

E.6.1 Calculations 

The calculation for determining position and orientation is completed using the following 

translation of rotation and translation matrices.  These are an adaptation from Labrooy 

[1991], Paul [1981] and Roskam [1995]. 
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It is also important to retain the order of translation and rotation, therefore the process for 
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these calculations between a frame (noted A) and a second frame (noted B) is shown to be: 

Frame A → Roll(ф) → Pitch(θ) → Yaw(ψ) → Trans(x,y,z) → Frame B 

The reverse of each translation is required, to calculate the inverse of a matrix, we use the 

following relationship. 

If :    [ ]
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Therefore the inverse of the process is as follows: 

Frame B → Trans(x,y,z) -1 → Yaw(ψ) -1 → Pitch(θ) -1 → Roll(ф)-1 → Frame A 

To determine the required translation and rotation values, a spreadsheet is developed, a 

reduced example of this is presented in Figure E.82. 
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These values are 
varied 

 

    Roll Pitch Yaw 

   X Y z 

       

Measured positions Rec 1 Rec 2 Rec 3 Rec 4 

Roll      

Pitch      

Yaw      

Trans      

Translated and rotated 
data Rec 1 Rec 2 Rec 3 Rec 4 

Known data Rec 1 Rec 2 Rec 3 Rec 4 

Difference R1 R2 R3 R4 

      
sum of 
delta 

Figure E.82 - Presentation of rotation and translation matrix determination 

The flowchart in Figure E.83 depicts the process by which this data is analyzed using 

Microsoft excel. 

 

Figure E.83 - Data analysis for robot positioning 

 

{MEE}1 {MP1}1 {MP2}1 

{MP1}2 {MP2}2 {MEE}2 

{MP1}1[P1]-1[EE] {MP2}1[P2]-1[EE] 

Determine required move 
in Tool coordinates 

Move robot and measure again 

This must be 
equal to zero 

{MEE}, {MP1}, {MP2} 

• Measurement and 
analysis as depicted 
in Figure E.82 for 
end effector, plate 1 
and plate 2 
respectively. 

[EE], [P1], [P2] 

• Transformations as 
depicted in Figure 
E.82 for end 
effector, plate 1 and 
plate 2 respectively. 


