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Abstract 

The recent downturn in world sugar prices has placed even greater demands upon the 

Australian sugar industry to reduce the costs of sugar manufacture and increase the 

consistency of producing high quality sugar. One of the proposed approaches in increasing 

the consistency of very high quality sugar production and leveraging further avenues for 

cost saving is in the development of a computer based advisory system. This system is able 

to provide expert knowledge in the area of pan stage management and best practices in the 

absence of human experts. This thesis explores the design, key features and outcomes of a 

knowledge based supervisory support system (KBSSS) framework proposed specifically for 

providing cooperative decision support in the area of pan stage operations within a sugar 

mill. To demonstrate the viability of the proposed KBSSS framework a prototype system 

was developed in accordance with the proposed framework. 

The KBSSS utilises three core innovative system technologies that form the core 

components of the proposed KBSSS framework. These technologies are: 1) Dynamic 

industrial pan stage process models for identifying the dynamic relationships between 

sections of pan stage operations to allow for future forecasting of pan stage operating 

conditions, 2) Integration techniques for the merging of the developed pan stage process 

models into the hybrid fuzzy logic expert system rule base to provide localisation adjustment 

to match with local real world factory operational conditions, and 3) Explanatory 

capabilities to provide justification and support of system advice and recommendations.  

As a result of research and development carried out in this thesis, the KBSSS’s test results 

demonstrated in the thesis indicate the viability of the proposed KBSSS framework and 

highlight the forecasting capabilities of the developed system resulting in favourable 

outcomes compared to data from pan stage operations. As a result of the research 

undertaken in the thesis a prototype KBSSS, for pan stage operations, based upon the three 

core supporting intelligent system technologies reported in the thesis has been developed. 

  



 2 

Chapter 1: Introduction 

 

 

1.1 Introduction 

Improved pan stage best practices and management has the potential to help reduce the 

costs of sugar manufacture, increase the consistency of producing high quality sugar and 

assist in broadening the revenue base of sugar factories through measures such as the 

cogeneration of electricity. Economically such improvements have the potential to make 

saving of $250,000 annually per sugar mill with additional non-estimated financial benefits 

from cogeneration of electricity through steam saving (Yu and Broadfoot, 2001). 

The resolution to solve this problem is in the provision of expert advice on best practice and 

management strategies of pan stage control. However this advice is not readily available.  

Further problems result from the complex nature of pan stage operations with no overall 

view of entire operations being available. This problem is further exacerbated by pan stage 

operators often not having specific backgrounding in chemistry to adequately understand 

the sugar making process.  

Due to the relatively large number of Australian sugar mills, the vast distances between 

mills, the long crushing season duration and continuous round the clock processing, the 

limited availability of human experts in this area means that it is not feasible for such 

experts to constantly monitor pan stage operations or provide specialist assistance to pan 

stage operators. Such experts are a scarce commodity.  

With consideration of these factors, there is definite need of a system for providing 

expertise in sugar mill pan stage operations. 

1.2 Objectives 

To explore the viability of a knowledge based supervisory support system (KBSSS), this 

thesis examines a framework proposed and designed specifically for providing cooperative 
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decision support for pan stage operations in a sugar mill. In order to demonstrate the 

merits and feasibility of the approach, a prototype advisory system for the advice of best 

practices and management of the pan stage is developed incorporating several innovative 

software technologies as part of a hybrid fuzzy logic based expert system architecture that 

supports several complementary intelligent system technologies. This system adheres to 

the design principles of the proposed KBSSS framework. 

These innovative technologies, as reported in the thesis, are: 

1. Pan stage process models for identifying dynamic interrelations between sections of 

pan stage operations to allow for future forecasting of pan stage operating 

conditions; 

2. Integration techniques for merger of the developed pan stage process models into a 

hybrid fuzzy logic based expert system rule base; and 

3. Explanatory capabilities for hybrid fuzzy logic based expert system advice and 

recommendations. 

Collectively these technologies will allow for the development of a KBSSS that is able to 

deliver reliable advice for consistent and more optimal control actions by pan stage 

operators. 

The dynamic pan stage models describe segments of the overall pan stage industrial 

process. Together these models work together to collectively realize a unified mechanism to 

allow for forward prediction of future operating conditions. Fuzzy logic allows localized 

refinement of the process models that are integrated into the fuzzy logic rule base, to match 

current factory operating conditions. Such conditions are not available in the static 

knowledge base. Explanatory capabilities provide justification for recommendations and 

advice offered by the system and aid in their acceptance by end users. 

1.3 Significance 

The findings in this thesis will contribute to a better understanding of the possibilities and 

capabilities of the proposed KBSSS and its associated framework. It will also demonstrate 

the viability of the integration of several different kinds of innovative intelligent system 
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software technologies that are capable of forecasting of pan stage operating conditions and 

provide expert advice in the absence of human experts.  

Experts are not available to provide specialist assistance to pan stage operators. Due to the 

relatively large number of Australian sugar mills, the vast distances between mills, the long 

crushing season duration and continuous round the clock processing, the limited 

availability of human experts in this area means that it is not feasible for such experts to 

constantly monitor pan stage operations. Decision support from experts is unable to focus 

on operational assistance or in the provision of operational strategies for specific sugar mill 

locations. Experts are a very scarce commodity. 

Prior specifications (Dodd, Yu, Broadfoot and Chiou, 2002) acknowledge that an expert 

advisory system is unavailable in the area for providing expert advice in best practices and 

management of pan stage operations within a sugar mill industrial environment. Therefore, 

in adhering with these development guidelines, the development of the KBSSS is one means 

of contributing to the solution of optimal control and advice in the absence of human 

experts for pan stage operations.  

Currently, there is no such knowledge based supervisory support system for pan stage 

operations neither in the Australian sugar industry nor in the world sugar industry.  This 

research will make a significant contribution to the development of a pan stage supervisory 

support system for the sugar industry that will reduce the cost of sugar production and also 

result in increased quality of sugar products. The KBSSS will directly increase the financial 

returns for the sugar industry and improve the long term, economically sustainable position 

of the industry. 

There is an increasing need for a supervisory support system for pan stage operations as: 

1. Factories are placing an increased range of duties on operating staff. Staff are 

supervising a wider range of processing operations. A reduction of in staff numbers 

is a response to the increased economic pressures being placed on factories; 

2. The production of premium quality sugar now attracts a substantial financial bonus 

as part of an overall plan to improve Australia’s sugar marketing position; 
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3. The large price disparity that exists between sugar and by-product final molasses 

results in increased financial benefit for improvements in pan stage crystallisation 

yield; and 

4. Many factories are seeking to reduce their steam consumption for raw sugar 

manufacture in order to maximise their export of electricity through cogeneration 

and so achieve additional revenue. 

The atypical KBSSS specifications require substantial extension of the conventional fuzzy 

knowledge based system framework to include novel components such as meta 

consequents (Chiou and Yu, 2007c) so that discourse advices and explanation to justify 

control actions can be provided. Such extensions are required for the system interaction 

with dynamic pan stage interrelation industrial process models, explanation functionality 

for operators and integration of linguistic expressions of human knowledge with numerical 

measurements. 

To the best of the current research knowledge, the research undertaken has a complexity 

that has not been addressed before within fuzzy system theory. The development of the 

knowledge based supervisory support system will further enrich the understanding of 

fuzzy logic rule based expert/knowledge systems and provide practical benchmark 

solutions by integrating several intelligent systems paradigms to work cooperatively to 

address an important industrial problem. 

The knowledge based supervisory support system would be applicable to all Australian 

sugar factories. It would also have application to several overseas sugar industries in the 

future. These applications would most likely be after the implementation within Australian 

sugar mills. In addition, the extended fuzzy knowledge based system framework is 

applicable to other industrial processes such as food processing and chemical processing 

that require better coordination of operators for consistent quality products and high 

efficiency. 

1.4 An Overview of the Proposal, Design and Development Stages 

The research presented in this thesis demonstrates the viability of the proposed KBSSS 

framework through the design, implementation and testing of the developed knowledge 
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Figure 1: Overview of the design and implementation stages for the methodology reported in the thesis. 
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 based supervisory support system software. As defined previously, this system will be 

primarily supported by three software technologies. These technologies are designed 

specifically for the hybrid fuzzy logic based expert system that the overall design is based 

upon. The overview of the proposed KBSSS framework, implementation and testing stages 

in the thesis are shown in Figure 1. 

1.5 Synopsis and Organisation of the Thesis 

This thesis is divided into seven chapters. Chapter 1 is an introduction to the overall thesis 

presenting the objective, significance and structure of the thesis. The thesis structure 

follows the methodology and topics presented in Figure 1. The rest of chapters are organized 

as follows: 

Chapter 2 provides a review on pan stage operations and associated problems. The review 

will also further outline the need for a KBSSS and detail fundamental requirements and 

expectations of such a system. Historical approaches and their results will also be 

presented. Incorporation of the identified factors within the KBSSS framework should help 

overcome current pan stage operational problems and limitations. 

In Chapter 3, the framework for the KBSSS is detailed along with the general supporting 

principles behind the proposal. Layered architecture and framework are presented along 

with explanation of the key features. 

The purpose of Chapter 4 is to describe the overall system design of the KBSSS. This chapter 

details how the three core innovative system technologies, 1) pan stage process models for 

identifying dynamic interrelations between sections of pan stage operations to allow for 

future forecasting of pan stage operating conditions, 2) integration techniques for merging 

the developed pan stage process models into a hybrid fuzzy logic based expert system rule 

base, and 3) explanatory capabilities for hybrid fuzzy logic based expert system advice and 

recommendations, are integrated into the hybrid fuzzy logic based expert system. 

Chapter 5 explains the method and integration of the three core innovative supporting 

features of the KBSSS in detail. The section on the dynamic interrelation industrial pan 

stage models describes the series of developed models used to predict future pan stage 

operating conditions. This is followed by techniques for the integration of these developed 
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models into the fuzzy logic rule base with adaption for local operating conditions. The final 

section describes the mechanics of the explanatory capabilities employed within the KBSSS. 

In Chapter 6 the testing of all system features is demonstrated. Real world pan stage control 

system data is used as the primary system input. Case study results are presented in this 

chapter with system output used to asses the performance and capabilities of the KBSSS. 

System output of recommendations and explanations are demonstrated. 

Finally, this thesis concludes with Chapter 7 presenting conclusions and areas for further 

research. 

1.6 Glossary of Terms 

The following terms are commonly used in the thesis. Although the terms 

(Queensland Sugar Corporation, 1997) pertaining to the Australian sugar industry are 

commonly used, there is some variation in their meanings due to industry variations among 

countries, overseas mills and refineries. 

Bagasse. The final crushed sugar cane fibre remaining after milling. 

Brix. A unit used to express the concentration of solids in aqueous sugar solutions. 

CCS. Commercial cane sugar. CCS represents the sugar content of cane as it is purchased by 

sugar mills. 

Fibre. Fibre is the cane plants vegetable skeleton in which juice is stored and through 

which plant food, dissolved in water, is distributed throughout the plant. In the milling 

process, the fibre cells are ruptured, thus freeing the juice.  

Final molasses. The black syrup, commonly known as molasses or ‘C’ syrup, remaining 

after the sugar syrup has been boiled and passed through the centrifugal for the last time in 

a sugar mill or refinery. The sugar it contains cannot be removed economically.  

Hybrid system. Hybrid systems generally involve multiple individual artificial intelligence 

technologies that are either used in series or integrated in such a way as to produce 

advantageous results through synergistic interactions. 
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Juice. Cane juice consists of water with sugar and other substances dissolved in it and a 

portion of insoluble particles suspended in it. 

Knowledge based supervisory support system (KBSSS). The developed hybrid fuzzy 

logic expert system incorporating dynamic pan stage relational models as part of the rule 

base and in tandem with explanatory capabilities. 

Magma. The mixture produced when sugar crystals and syrup are combined together. 

Massecuite. The mixture of crystals and syrup produced by crystallisation in a vacuum pan. 

The term is French for “cooked mass”. 

Pan stage. Also known as the “crystallisation section” of the sugar factory. This portion of 

the factory is where the process of growing the sugar crystals is undertaken in vacuum 

pans. 

Polarisation (pol). An estimate of the sucrose content of sugar.  

Sucrose. Commonly referred to as sugar. A carbohydrate having the chemical composition 

of C12H22O11. It comprises two simple sugars – glucose and fructose. 

Syrup. In the milling process syrup is the name of the product stream after it leaves the 

evaporators and before it enters the pans. 

Vacuum pan. Cylindrical steel vessels in which a steam heated surface is used to boil sugar 

syrups under partial vacuum at relatively low temperatures. 

1.7 Summary 

This chapter has introduced the problem of pan stage control for industrial operations 

within the sugar mill setting. As a result of this problem, there is need for the development 

of a knowledge based supervisory support system. This system will eventually be used to 

help provide recommendations for improved pan stage control and management. An 

overview has been provided to show the methodology for the proposal, design and 

development stages reported in the remainder of the thesis. The structure of the thesis has 

also been outlined. 
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In the next chapter, the literature review for the research area will be presented. This will 

include a review on pan stage operations and associated problems. The review will also 

further outline the need for a KBSSS and detail fundamental requirements and expectations 

of such a system. Historical approaches and their results will also be presented. 

Incorporation of the identified factors within the KBSSS framework should help overcome 

current pan stage operational problems and limitations. 
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Chapter 2: Review on Background to the Research 

 

 

2.1 Introduction 

This chapter establishes the fundamental basis for the research carried out in the thesis. It 

describes the problem of pan stage management within the sugar mill factory environment 

and the approaches undertaken in an attempt to work towards to an overall solution. The 

remaining sections will discuss the background of decision support with the identification 

of limitations for the current approaches to pan stage control and management. Several 

suggested improvements are introduced that form the basis for a proposal of a knowledge 

based supervisory support system for pan stage operations in a sugar mill setting. 

This chapter is organized as follows. Section 2.2 provides a review of the economic 

significance of Australian sugar production. Section 2.3 provides an overview of the process 

of sugar production for a sugar mill. Section 2.4 then follows describing the process by 

which sugar crystals are grown within the pan stage crystallization section of the sugar mill. 

Section 2.5 provides a comprehensive review of attempts to pass expertise and knowledge 

to stakeholders with focus on the existing decision making process along with traditional 

approaches to models used to describe the overall pan stage process and early attempts in 

attempting to provide an overall solution for pan stage management and control. Section 

2.6 identifies several weaknesses that are evident in current approaches for decision 

support operations for the pan stage. Section 2.7 outlines improvements required in the 

provision of a knowledge based supervisory support system framework and Section 2.8 

outlines the scope of the thesis. 

2.2 Economic Significance 

Sugar production is one of Australias major export industries employing directly in excess 

of 17,000 people in the areas of growing, milling, storage, marketing and refining of raw 

sugar with a further indirect employment of 24,000 people (Queensland Sugar Corporation, 
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1997). The Australian sugar industry provides a major economic base for rural and regional 

areas. Australia’s sugar producing region stretches from Mossman in far north Queensland 

to Grafton in northern New South Wales. The sugar industry processes in excess of 35 

million tonnes of cane annually, producing in excess of 4.75 million tonnes of sugar. Exports 

amount to around 80% of the total sugar production. The sugar industry is heavily 

dependent on achieving cost effective operations in order to compete in the global sugar 

market (Canegrowers, 2008a).  

The production of sugar of very high quality is essential in order for Australia to maintain a 

favoured market position. During the period 1998 to 2000 the world price of sugar more 

than halved from US12c/lb to US5c/lb. With the price somewhat restored to US10c/lb as at 

July 2008 (Canegrowers, 2008b), enormous pressures have mounted on the Australian 

sugar industry to: 

(i) reduce the costs of sugar manufacture; 

(ii) increase the consistency of producing high quality sugar; and  

(iii) broaden the revenue base of sugar factories through measures such as the 

cogeneration of electricity 

The impact, due to the recent sharp decline of world sugar prices, on the regional 

economies of coastal Queensland and northern New South Wales clearly highlights the 

importance of the sugar industry to these regions and to Australia as a whole. The strong 

dependence on export earnings means the sugar industry’s viability in competing in the 

free world market for sugar depends heavily on cost competitiveness. Research, and the 

development and implementation of new techniques, processes and equipment designs 

have played a significant role in keeping the Australian sugar industry as one of the worlds 

lowest cost sugar producers (Yu and Broadfoot, 2001). The low world sugar prices, which 

currently exist, place further real pressure on the industry to find more avenues for cost 

saving and increases in revenues.  

The research to develop a knowledge based supervisory support system for pan stage sugar 

processing operations, as outlined in the thesis, is one such example of the way the industry 

has responded to these pressures through developing solutions to reduce costs and boost 
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revenue. Such research improves the economic strength of the industry and allows it to 

remain a competitive force in world trade. 

Recent financial incentives and changes due to the new raw sugar quality scheme standards 

(Queensland Sugar Corporation, 2003) introduced for the 2003 sugar season, and beyond, 

give premium bonuses and add extra financial incentive for the production of high quality 

sugar. 

2.3 A Review: An Overview of Sugar Production 

The standard operation of a sugar factory involves the processing of large quantity of canes 

for the purpose of sugar production. An overview of this process 

(Queensland Sugar Corporation, 1997) is now presented. The process is as follows: 

After harvesting, cane is transported to the mill where it is weighed and processed at an 

automated cane receival station. Information on the producing farm along with the weight 

of each cane bin is automatically recorded at the cane receival station. Bins of cane may be 

transported to the factory via lorry or tram system. A series of cane bins from a particular 

sugar farm location are collectively known and processed as a “rake”.  

Within the sugar mill setting the bins of cane are sequentially feed to the shredder via a 

cane carrier system. The shredder disintegrates the cane and breaks it down into a fibrous 

material while rupturing the juice cells. An analysis of the first expressed juice of the cane 

allows the determination of the sugar content of the cane and associated payment to the 

canegrower depending upon the juice characteristics. Pairs of rollers feed the cane through 

a series of mills. Each mill consists of three large rollers arranged in a triangular formation. 

This process separates the sugar juice from the fibrous bagasse material. The bagasse is 

used as fuel for the boiler furnaces and the juice is pumped away for further processing. 

There are two main methods of analysis of the composition of the rakes.  The traditional 

method is to send a sample of the first expressed juice from the first rolls of the mills to the 

juice laboratory for analyses.  The juice from a rake is composited so only one sample is 

analysed.  Factories are also moving to the use of near-infrared spectroscopy measurement 

on the cane in the chute to the first mill.  Measurement by near-infrared spectroscopy is 
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undertaken continuously but the result for a rake is combined to provide a single analysis 

for the entire rake. 

The juice extracted by the crushing mills contains impurities. These impurities are removed 

through the addition of lime and then by further heating the juice. The added lime assists in 

neutralizing the acids and to precipitate the impurities. The process coagulates the 

impurities into “flocs” of mud which then settle in large vessels known as “clarifiers”.  

Muddy juice extracted from the bottom of the clarifiers is mixed with fine bagasse material 

and then filtered using vacuum filters to recover the sugar. The mud and bagasse mix that is 

extracted by the filters is recycled for use as fertilizer. Such recycling allows use of the 

phosphorous rich material that is left over. This phosphorous having been taken up from 

the soil by the cane plant during its growth. 

The clear juice from the clarifiers is then further concentrated. This process is undertaken 

in a series of connected vessels called “evaporators” by boiling the juice under vacuum. The 

resulting concentrated juice is known as “syrup”. The syrup is concentrated by boiling in a 

vacuum pan and is seeded with small sugar crystals in a process called “crystallization”. The 

sugar crystals are grown to the required size by adding more syrup and molasses while the 

boiling process continues. This mixture of syrup and crystals is called “massecuite”. The 

massecuite is discharged from the pan when the crystals reach the required size. 

Molasses is separated from the raw sugar crystals in the centrifugals. A centrifugal consists 

of a perforated basket within a casing and spins at very high speed. The molasses 

surrounding the sugar crystals passes through the perforations in the basket and is 

separated. The molasses that is spun off is recycled back into the crystallisation process and 

boiled again allowing the recovery of more raw sugar crystals. This procedure is repeated 

until the amount of sugar obtained from the molasses is too small to be economical for 

further processing. The product molasses, also known as “final molasses”, is the syrup left 

over from the last and final centrifuging process. This is stored for later sale. The raw sugar 

separated by the centrifugalling process is then dried and transferred for storage at the 

sugar mill.  
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Through this series of operations the sugar cane is processed by the mill with resulting 

products of final molasses and product sugar. The byproduct bagasse is used to fuel the 

sugar mill boilers and the byproduct mud recycled for use as fertilizer. 

2.4 A Review: Pan Stage Operations in Sugar Milling 

Raw sugar production from cane sugar is an essentially continuous operation. Sugar 

processing extends through 120-168 hours per week over 20-25 weeks of the harvest 

season. Cane is crushed to extract juice which is then clarified to remove impurities. The 

juice is evaporated at reduced pressure and temperature to give a concentrated liquid 

known as “liquor”. The liquor is pumped to a syrup storage tank in the crystallisation 

section of the factory.  

 

 
 

Figure 2: An overview of pan stage operations showing process material flows and interactions. 
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From the initial point of unloading of the sugar cane bins through to the syrup tank of the 

pan stage, the processing operation is essentially continuous. Buffer tanks interspersed 

between equipment items helps in reducing flow variations effects that can occur as a result 

of many often interacting factors which include the batch and continuous processing styles 

utilized by equipment on the pan stage. 

The crystallisation section, as shown in Figure 2, is commonly referred to as the “pan stage” 

and is the most complex stage of the overall sugar factory process. Several batch wise and 

continuous crystallisation steps take place concurrently within this part of the process. 

Feed forward and feedback recycle streams are superimposed on this series of operations. 

The final stages in the raw sugar factory are the centrifugal station, which separates the 

sugar crystals from the mother liquor, and the sugar drying station (Broadfoot and Beath, 

1998).  

In current practice, two operators are normally employed on the pan stage and their duties 

normally do not extend any further than this section. There is considerable process 

interaction between the pan stage and centrifugal stage although management of the 

centrifugals is undertaken by different operators. The overall strategic management of the 

pan stage is quite difficult because of the large range of process streams of varying 

compositions and crystal growth rate characteristics that must be managed (Miller and 

Broadfoot, 1997). 

The crystallisation process takes place in large batch fed vessels known commercially as 

“batch vacuums pan”, in continuous vacuum pans or in batch and continuous stirred cooling 

vessels referred to as “crystallisers”. Typical factories have between six and ten of these 

pans and about sixteen hours of residence time in the crystallisers. The pan stage has an 

input stream of syrup and intermediate molasses recycle streams. The resulting output 

products from the pan stage are raw sugar and final molasses. 

As part of short term storage solutions for process streams, stock tanks for syrup and 

molasses are used as buffers between equipment items on the stage. Over the long term 

however these temporary storage measures cannot be used to overcome differences in 

interactions between various parts of the factory given the batch and continuous type 

processes that already take place within the pan stage. Stock tank levels rise and fall over 
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time due to the supply and demand of feed materials that they store at different points in 

the overall pan stage schedule. At extremes, undesirable outcomes include the stock tanks 

becoming empty or overflowing. These conditions require serious remedial actions with 

possible processing obstructions and factory shutdown until such problems are solved. 

In comparison to juice flow control, where it is possible by incremental adjustments to 

progressively change the long term average flow rate, such corrective actions are not 

possible on the pan stage. Pan stage decisions often need to result in precise and definite 

action, as a result of batch processing operations. Errors in the decision making process 

often cannot be corrected and may result in severe disruptions to processing for extended 

periods. Such hold ups in the continuous pan stage processing environment which operates 

around the clock also has substantial financial impacts. 

The use of stock tanks as buffer storage is due to the irregular nature of pan stage 

operations, particularly the mixed nature of mixed batch and continuous processing that 

occurs concurrently along with the need for temporary process stream material storage for 

interaction between juice processing and the centrifugal station sections with the pan stage. 

Within the pan stage stock tank levels change as a result of centrifugal station operations 

and the allocation of individual vacuum pans to specific scheduled production duties.  

In the decision making process it is important to recognise when process material stock 

tank level require a change in operational strategies in order to realise improved factory 

process throughput rates and to avoid the previously described problems. Given enough 

instrumentation and computer based resources it is theoretically possible to specify the 

complete operating state of the overall pan stage, including stock tank levels, at any given 

point. However the high implementation costs and complexity of such an approach make 

this unfeasible for practical purposes (Miller, 1987). 

The sugar content and purity characteristics of the sugar cane received by a factory also 

have a strong influence on pan stage operations and in particular the production loadings 

on different equipment on the pan stage (Broadfoot and Pennisi, 2001). Often the pan stage 

is managed in a sub-optimal manner because an overview of operations encompassing 

various sections – cane receival, juice processing station, the pan stage and centrifugal 

station – is not available. 
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2.5 A Review: Decision Support for Pan Stage Operations 

Currently there is no such known supervisory support system in existence for pan stage 

operations which fulfils all known system requirements and objectives that are presented 

in this chapter nor based upon the intelligent expert system based approach. However, 

fragmented attempts have been made in solving portions of the overall problem. The 

following subsections will elaborate on these approaches in further detail. 

2.5.1 Existing Decision Making Process  

An overall encompassing view of the various section of the factory is not available and 

hence operators are not able to predict future pan stage loadings. Computer based 

prediction facilities are not available as a consequence of operators actions. The only 

available predictions are the actual forward estimates the operators intuitively carry out. 

Due to the lack of an overall view of pan stage operations in relating this area to other 

sections of the sugar factory, the overall pan stage complexity and no facility of forecast of 

operations, pan stage management is generally carried out as a reactive approach in 

responding to problems in operation rather than a proactive approach enabling avoidance 

of problems and more optimal strategic management. Decisions are often not based upon 

an analytical approach. Instead decisions are most likely based on and affected by the 

experience of the current pan stage operators on shift.  

Decisions and control actions often suffer from the personal bias and the mental models 

operators have of the pan stage and in management of the crystallisation process. This can 

lead to differences between best practices and actual onsite practices. The pan stage is 

usually accepted as the most difficult process area for new operators to master.  There are 

many interacting factors and problems that can arise and it is often difficult to achieve a full 

understanding of the process (Sugar Research Institute, 2001).  

Pan stage sugar boilers may not have a chemistry background in order to best understand 

the process of sugar production. This leads to reliance on training received during pan 

boilers courses and on the job training. Understanding the theory behind the processes of 

pan boiling and scheduling and knowledge of the variables which are important for optimal 

productivity are vitally important for the role.  
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Due to the pan stages considerable interaction with the centrifugal station, the pan stage 

operators work in close partnership with the centrifugal operators. The existing decision 

making process is reliant upon the operating decisions and actions that operators make. 

Typically pan stage operators and supervisors are required to constantly estimate future 

flows on the pan stage along with available levels of feed materials held in stock tanks. They 

intuitively have to account for current stock tank levels and use their knowledge of pan 

stage processes, along with current and likely future decisions to reach a conclusion on the 

outcomes of future levels given likely feed quantities over the projected forecast period. 

This problem is further exacerbated by the forward look ahead process. Pan stage 

operators will typically be trying to forward estimate not only for their current shift but 

also into the next operators shift as well.  

This scenario is similarly evident for operators selecting duties for swing pans (Broadfoot, 

2003b). Determination of swing pan duties is intuitively performed by operators under the 

previously presented circumstances. Selection problems can be attributed to overall 

operator concerns of particular stock levels and can lead to favoured duties instead of the 

most appropriate decision for optimal production. 

Factories are placing an increased range of duties on operating staff. Staff are being 

required to supervise a wider range of processing operations. Furthermore, a reduction of 

staff numbers in the foreseeable future is a response to increased economic pressures on 

factories. With fewer staff available the decisions of each operator become more critical in 

smooth factory operation. Furthermore, when experienced operators leave or retire, 

factory performance suffers as a consequence of a new operator learning to perform their 

role. 

2.5.2 Early Attempts in Providing a Resolution  

A seminal work in the establishment of an advisory system for pan stage operations was 

attempted at Racecourse mill (located in Mackay, Australia) over three decades ago. A 

supervisory control system was proposed with implementation on early computer systems 

(Frew and Wright, 1976; Frew and Wright, 1977). Given the major limitations of early 

computer technology, programming language capabilities and factory instrumentation a 

rudimentary advisory system to provide guidance to pan stage operators was attempted. 
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Due to these limitations this scheme was not carried through to fruition although the trial 

demonstrated the merits of the approach. 

An early proponent (Watson, 1989) suggested the development and application of expert 

systems to pan stage decision support and control. Potential benefits were recognised to be: 

1) greater confidence in correct decision making and minimisation of time lost due to 

operational errors, 2) less idling of batches therefore saving steam and improving sugar 

quality, and 3) earlier warning of overload on the crystallisation stage. It was noted that 

there was no known expert system implementation for pan stage operations. 

A shift supervisor advisory system with application to the juice clarification area in a sugar 

mill was reported by Pozzetti (1996). The system was designed to support the role of shift 

supervisor and offer advice on process operations, trouble shooting and equipment 

characteristics. Guidance was provided through the provision of decision trees in the 

determination of advice.  

Only one other known instance of a support system for a sugar factory has been reported in 

literature (Van Wissen, Smeets, Muller and Verheijen, 2003; Verwater-Lukszo and Van 

Wissen, 2003; Verwater-Lukszo, Verhofstad and Sturm, 2003). The support system was 

developed for a beet sugar factory in the Netherlands. A recipe based system working in 

tandem with a modified Model Predictive Control system (Van Wissen, Smeets, Muller and 

Verheijen, 2002) and a modified mass balance model of the pan stage incorporating energy 

flows of the pan stage was used to provide assistance for scheduled activities. This system 

was limited to offering advice solely for a single continuous B massecuite production pan on 

the pan stage and was not based upon an expert system approach.  

2.5.3 Orthodox Approaches  

Fairly limited research has been carried out into models that can be used to relate together 

the various sections of the pan stage. Attempts have been made into solving smaller 

portions of the overall problem. 

The fundamentals for the sugar crystallisation process are well understood. A substantial 

and detailed review of the fundamental principles of the crystallisation process, crystal 

growth, pan strike control and management were reported by Wright (1983). Wright 
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described the basic principle of crystal growth and nucleation for vacuum pan boiling. The 

major principles of pan strike control, sequencing, pan turn around automation and pan 

stage management automation were detailed.  

Limited research carried has been out into stock tank models. Previous approaches were 

reliant upon stochastic prediction methods (Miller, 1987; Miller, 1988) for level forecasting 

with limited forecast period and being based solely upon historic level data. 

Historically mass balances (Bureau of Sugar Experiment Stations, 1984) of the overall sugar 

factory have been used to determine the average production rates of process streams. 

While such information carries strategic value in assessing factory operations and 

performance characteristics it gives no insight into the internal works of the pan stage or 

allow for any form of predictive capabilities. Mass balances are carried out, as is typical for 

regional Queensland based mills, on historic data that is typically clustered into weekly data 

segments for an entire crushing season (Mackay Sugar Cane Association, 1995; Mackay 

Sugar Cane Association, 2002c; Mackay Sugar Cane Association, 2002b; Mackay Sugar Cane 

Association, 2002a). 

The prediction of the quantities of sucrose and impurities in syrup from cane receival 

information allows a forward forecasting of the future pan stage loading of syrup which is 

of vital modelling importance since liquor comprises the basic input to the pan stage. 

Previous research into predicting the impurity loading to the pan stage was based on 

assigning impurity losses to factory product streams. These assessments (Broadfoot and 

Miller, 1990) demonstrated huge variability in the estimate of pan stage syrup impurities 

by ±20% during successive weeks of factory operation. Conventional methods for factory 

sucrose and impurity balances (Bureau of Sugar Experiment Stations, 1984) also exhibited 

substantially large variations in the estimate of the sucrose and impurity quantities in syrup 

to the pan stage.   

Factory technical performance indices (Steggles, 1997) are also inadequate for prediction of 

liquor quantities from cane receival data. The technical index is essentially a historical 

performance function involving the estimation of the virtual solids liquor flow rate and the 

virtual liquor purity from cane supply analyses.  The actual sugar production is compared 

with the estimate from this virtual liquor composition.  The technical index is a series of 
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linear equations that have been developed to estimate the virtual liquor composition from 

the cane supply data. However this approach is totally reliant upon historic data in order to 

calculate previously weekly factory performance and as such is unsuitable to be used in a 

predictive manner (Broadfoot, 2003a).  

Earlier research into the determination of vacuum pan feed rates has previously been 

studied through the experimentation of vacuum pan’s operation and by mechanistic 

modelling of batch/continuous pans (Broadfoot, 1980; Wilson, Kapur, White and Lee, 1987; 

Miller and Beath, 2000; Schneider, 2003). However such approaches are overly complex for 

expert system integration with increased requirements for additional vacuum pan 

instrumentation and associated information sources. 

Models of overall pan stage sugar production (Wright, 1996; Broadfoot and Pennisi, 2001) 

are available however lack the localisation required for prediction of specific pan stage 

stock tank levels or process feed streams at a future point in the overall pan stage schedule. 

Such models are very broad based and focus on overall production of the stage with 

reliance on long term steady state pan stage flow quantities and purities for varying boiling 

schemes. These models are useful for overall pan stage modelling and prediction of average 

production quantities under seasonal conditions, however they lack specific localisation 

required for prediction at a low level resolution and on a time scale basis. 

Fundamental research using a set packing method for optimising the scheduling of pan 

stage operations was carried out by Nott and Lee (1999) which has led to further extension 

of multi-objective pan stage schedule optimisation using genetic algorithms (Shaw, Lee, 

Nott and Thompson, 2000). This optimisation approach of pan stage scheduling was an 

attempt to unify batch and continuous processing modes. However problems with the 

varying importance of processing objectives throughout the crushing season were evident 

as seasonal conditions require a modification to processing objectives throughout the cane 

crushing period. Research outcomes however demonstrated the merits of the approach and 

the inherent problems needing to be solved. 

2.5.4 Transfer of Knowledge and Expertise  

The generated result of research and cumulative expertise in the area of pan stage best 

practices and management calls for a medium to facilitate its transfer from these agencies 
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to the factory sugar mill pan stage environment. Several notable early attempts were made 

(Frew and Wright, 1976; Frew and Wright, 1977; Van Wissen, Smeets, Muller and 

Verheijen, 2003; Verwater-Lukszo and Van Wissen, 2003; Verwater-Lukszo, Verhofstad and 

Sturm, 2003). However a best practices and management system using intelligence expert 

system based technologies will improve outcomes for stakeholders (Watson, 1989) and aid 

in efficiently disseminating knowledge. This will result in better pan stage control and 

management outcomes as presented previously in Chapter 1. 

The Sugar Research Institute (located in Brisbane, Australia) forms one of the research 

partners in the provision and development of a KBSSS. The Sugar Research Institute is 

Australia’s premier sugar processing research and development specialist, with 

specialisation in sugar milling, power generation, sugar refining and sugar chemistry. The 

Sugar Research Institute works in close partnership with sugar industry members and 

conducts extensive research programs for clients. It offers a range of commercially available 

consultancy services, contract research and development, along with factory equipment 

designs and products to assist clients in improving productivity and factory performance 

(Sugar Research Institute, 2006). As a result of these collaborative research efforts to 

achieve practical research outcomes for clients there is a need to transfer this gathered 

knowledge to the stakeholders in the provision of a KBSSS. Experts in such an organisation 

are a scarce commodity and there is competition for the availability of such finite resources. 

2.6 Unrealised Expectations for Decision Support in Pan Stage Operations 

In assessing both the historic and current approaches to solving the problem of pan stage 

decision support several common themes are evident highlighting weaknesses and 

limitations. 

These factors are: 

1. Limitations of existing pan stage process models; 

2. Reliance upon discrete algorithms and precision based systems; 

3. Dependence upon rigid software system input data; 

4. Lack of qualitative reasoning mechanisms; 



 24 

5. Reactive approach to decision making; 

6. Computerised outcomes without proper explanation or justification; and 

7. Overly large scale application. 

The following subsections will elaborate on these in further detail. 

2.6.1 Limitations of Existing Pan Stage Process Models 

As presented earlier in Section 2.5, some attempts have been made to develop process 

models establishing relationships for the internal workings of pan stage and its interaction 

with other parts of the overall sugar factory. However use of such existing models is limited 

in the context of development of a KBSSS. Typically these models suffer from:  

1. either not adequately relating or not working towards relating the pan stage, and its 

interconnected factory sections, to the required level of detail; or  

2. not being implemented upon a time scale basis.  

This leads to such models being unsuitable and/or unworkable for implementation in 

providing a forecast of pan stage operating conditions over a prediction period. 

Existing process models are relatively limited and not well suited for the prediction of 

loadings on the various equipment items in the pan stage. Due to the recognised complexity 

of the pan stage environment, adequately suited process models to describe both the 

internal pan stage features as well as the interactions between the pan stage and the rest of 

the factory are a fundamental requirement for pan stage decision support.  

2.6.2 Reliance on Discrete Algorithms and Precision Based Systems 

The algorithmic processes within software system operate upon and are reliant upon the 

precision of the data entered into the system. Such operation provides limited user 

interaction and does not provide the facility for human interaction in shaping system 

inputs.  

Mechanisms for providing heuristic based information are not available as part of 

information processing nor able to influence reasoning capabilities of the underlying 
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software. Current approaches are very inflexible as to the range of system input able to be 

provided which limits overall system interaction. 

2.6.3 Dependence on Rigid Software System Input Data 

Software systems are reliant upon the validity and occurrence of data used as inputs. Data 

of the correct input specification is of critical importance for correct software functionality. 

Due to the heavy software dependence upon inputs provided, this leads to a very structured 

process and limiting for useability in terms of a truly flexible system for user interaction. 

Users are unable to specify new quantitative or qualitative data types that interact with the 

system. 

2.6.4 Lack of Qualitative Reasoning Mechanisms 

Current approaches are dependence upon quantitative reasoning and determination. With 

such heavily reliance upon these sources no facility for implementation of qualitative 

reasoning or implementation of heuristic based information exists as part of current 

systems. The approaches detailed in Section 2.5 are totally reliant upon quantitative data 

sources and preclude the ability of qualitative data from operators for localisation 

adjustments. Such qualitative information can provide adaption to account for localised pan 

stage operating conditions. 

2.6.5 Reactive Approach to Decision Making 

Current practices prohibit future forecasting and are more reliant upon reaction to 

problems. An overview of cane receival, juice processing, pan stage and centrifugal station 

and the impacts of their processing operations is not available. In particular an overview of 

their interactions with the pan stage as well as an overall pan stage overview is recognised 

as greatly assisting pan stage operator decisions (Yu and Broadfoot, 2001; Dodd, Yu, 

Broadfoot and Chiou, 2002). 

The intuitive forecasts that the operators carry out are relatively short term and their 

accuracy is also subject to experience and training. Due to the complexity of pan stage 

operations, the wide range of processing tasks, monitoring of activities and co-competing 

objectives it would be beneficial for operators to have assistance in determining optimal 
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decision strategies through a supervisory support system utilizing look ahead mechanisms 

with predictive capabilities. This leads to a more structured approach to decision making 

and aids in long term planning. 

2.6.6 Computerized Outcomes without Proper Explanation or Justification 

Previous approaches provided no forms of justification or explanation to justify computer 

based outcomes. This additional information is required as supplementary information to 

support system outputs.  

In order to garner user trust, bolster confidence, improve satisfaction and aid in overall 

system adoption, system recommendations and advice may not be accepted as the best 

possible actions. These must be supported by further reasoning based information and 

made available as part of explanatory procedures (Gregor, 2001; Gregor and Yu, 2001). 

2.6.7 Overly Large Scale Application 

Traditional methods of mass balances type schemes for factory and pan stage process 

provide material quantification on an overly large scale. These large scale generic models 

quantify process material rates and characteristics with limited focus on internal pan stage 

workings through a black box style of modelling which models the major input and output 

material flows of the overall pan stage. 

Such approaches also suffer from lack of forecast ability. These models are essentially 

steady state flow systems predicting only long term average production. Results from such 

an approach are not able to be localised or able to reflect instantaneous flows at any given 

point in the overall pan stage schedule. No timescale mechanism is available as part of these 

approaches to aid in prediction or forecasting. 

2.7 Requirements for Decision Support in Pan Stage Operations 

In this thesis a KBSSS framework based on the fuzzy system approach will be proposed to 

integrate several supporting intelligent software technologies. This integration is to 

facilitate the provision of expert advice for application to pan stage best practices and 

management within the industrial setting of a sugar mill. A proposal for the KBSSS 

framework will be presented in Chapter 3 which follows. 



 27 

However before proceeding with the proposal of the KBSSS, that will be applied specifically 

for the pan stage environment, it is important that several of the shortcomings identified 

within Chapter 2 be overcome. The primary requirements of the proposed KBSSS 

framework should be capable of: 

1. Fulfilment of pan stage control and management objectives; 

2. Seamless integration of system components; 

3. Heuristic inference; 

4. Pre-emptive and predictive problem solving capabilities; and 

5. Descriptive recommendations with explanatory facility. 

2.7.1 Fulfilment of Pan Stage Control and Management Objectives 

The system recommendations, prediction of future pan stage operating conditions and 

advice justifications that the pan stage operators receive from the KBSSS should:  

1. Result in a formal structure to the decision making procedure and reduce the 

number of ad hoc decisions and, consequently, the number of incorrect and 

suboptimal decisions; 

2. Achieve increased productivity with the existing equipment, by employing strategies 

that are recommended by the KBSSS; 

3. Make improved use of the equipment capabilities to achieve sugar recovery, sugar 

quality and steam consumption targets while fulfilling the production rate 

requirements; and 

4. Forewarn of potential problems with the current operating strategies. 

As identified in previous literature (Yu and Broadfoot, 2001), in order to achieve these 

objectives the KBSSS is required to use the following information in its determination: 

1. Projected cane crushing conditions and calculation of syrup input to the pan stage;  

2. Projected production loading on the different pan stage operations; 



 28 

3. Status of each pan, buffer storage tank and product receiver - accounting for the 

stage in production cycle or level of equipment; 

4. Operating status of the centrifugal station; 

5. Serviceability of all equipment items; 

6. Minimum cycle times for each pan for current operating circumstances; and 

7. Steam consumption requirements for the individual pans to meet different target 

production rates. 

Cogeneration is of emerging importance to the Australian sugar industry. In the future 

energy efficient operation of pan stages will be an important processing objective. The 

steam consumption of each pan depends upon a large number of factors over which the 

operator often has little knowledge or control. Identified factors (Miller, 1988) which 

determine the consumption rates include: 

1. Concentration of feed streams; 

2. Concentration of pan contents; 

3. Heating steam pressure; 

4. Operating vacuum and temperatures; 

5. Current crystal size and percentage of crystal; 

6. Level of material in the pans; 

7. Inherent crystallisation characteristics of the material; 

8. Operator intervention including mistakes and errors of judgement; and 

9. Equipment failure ranging from minor nuisances to major breakdowns. 

These factors influence the steam consumption rates of vacuum pans. Minimisation of 

steam usage is critical for the cogeneration of electricity and the knowledge based 

supervisory support system is to be developed to schedule assist in the determination of 

efficient steam usage. 
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The knowledge based supervisory support system must also handle the processing 

objectives of pan and fugal stations. These are to: 

1. achieve the required processing throughput; 

2. maximise yield; and 

3. produce shipment raw sugar of high quality within the nominated marketing 

specifications. 

2.7.2 Seamless Integration of System Components 

The pan stage is recognised as the most complex section of factory operations (Sugar 

Research Institute, 2001). There is considerable process interaction between the pan stage 

and centrifugal stage although management of the centrifugals is undertaken by different 

operators.  The overall strategic management of the pan stage is quite difficult because of 

the very large number of process streams of varying compositions and crystal growth rate 

characteristics which must be managed (Miller and Broadfoot, 1997). Often the pan stage is 

managed in a sub-optimal manner because an overview of operations encompassing 

various sections of the sugar factory - cane receival section, juice processing stations, the 

pan stage and centrifugal station - is not available. This limitation has been identified as one 

of the major shortcomings for current pan stage operations.  

In the provision of facilities to provide an overview of the various section it is required that 

a wide variety of information sources from not only these sections of the sugar factory are 

integrated but also information sources ranging from pan stage operators, heuristic based 

rules and developed industrial process models relating the pan stage and its interaction 

with the overall sugar factory. These information sources are further detailed in Chapter 3. 

A melding of system components allows the collective capabilities of each component to act 

cooperatively resulting in a significantly more powerful and effective inter-system 

interactions while reducing the limitations of an individual component acting on a stand 

alone basis. Such hybrid systems generally involve multiple individual artificial intelligence 

technologies that are either used in series or integrated in a way as to produce 

advantageous results through synergistic interactions (Lin and George Lee, 1996; Tsoukala 

and Uhrig, 1997). 
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2.7.3 Heuristic Inference 

The system should have the capability of operating with both algorithmic dependant data as 

well as heuristic rules. The dynamic interrelation models for the pan stage operations are 

numerical in nature while the expert system is linguistic. These are described further in 

Chapter 3. Heuristic capabilities allows informal knowledge to be included as part of the 

inference process. This allows qualitative data types and heuristic based information to be 

modelled and integrated as part of system knowledge. 

Although fuzzy logic provides the benefits of resilience, robustness, capabilities to work in 

presence of missing rules and the ability to handle uncertain, vague and imprecise 

information it is not able to function on missing or arbitrarily noisy data (Cox, 1995; Berkan 

and Trubatch, 1997; Cox, 1999). The system also needs to be able to handle unreliable and 

missing data along with localised information provided as part of heuristic based rules. 

2.7.4 Pre-emptive and Predictive Problem Solving Capabilities 

Predictive problem solving capabilities will allow forecasting of potential future problems, 

and allows operators to take precautions before problems occur (Dodd, Broadfoot, Yu and 

Chiou, 2005b; Dodd, Broadfoot, Chiou and Yu, 2008b). In the context of pan stage 

operations, predictive models for pan stage processes based upon a time scale basis can be 

used to monitor and predict future operating conditions of the pan stage to take 

preventative measure and help avoid unwanted scenarios.  

Such a pre-emptive approach to pan stage control and management, when working towards 

the previously presented goals for pan stage control and management, can help to provide 

preventative measures and aid in best practices by helping to improve remedial actions and 

provide assistance in selection of control strategies. 

2.7.5 Descriptive Recommendations with Explanatory Capabilities 

Previous research (Johnson and Ye, 1995; Gregor and Benbasat, 1999; Gregor, 2001; Gregor 

and Yu, 2001) has showcased the need for expert system recommendations to be further 

accompanied by explanations to aid in the understanding and justification of presented 
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advices. Realised benefits include increased user acceptance and confidence with improved 

system adoption outcomes.  

A user-friendly supervisory support system interface for the pan stage operations is 

recognised as being beneficial in assisting these personnel to perform their task more 

effectively (Yu and Broadfoot, 2001). Since the KBSSS is to provide technical information on 

which decisions should be based, it is mandatory that its output, advices and 

recommendations are accompanied with an explanation to assist the user to understand the 

underlying rationale. In some circumstances, the end user may see an offered advice or 

recommendation as not being the best available solution. The system needs to be able to 

justify its outcome in assisting users in making critical decisions. 

2.8 Limitations and Scope of the Research 

Due to the scope of the research, the thesis is limited to the following areas: The limitations 

of this research project are highly dependent on one another and can be summarized as 

follows: 

• Scope. This research project is specifically focused on the development of a hybrid 

fuzzy logic expert system, integrating the three define innovative software 

technologies previously defined. The project is limited to application on the pan 

stage in a sugar mill and the development of a prototype system showcasing the 

viability of the research approach. The software implementation is limited to only 

featuring the selected innovative supporting technologies discussed in this thesis. 

• Limited funding, time and resource constraints. The main limitation is that the 

research has to be carried out in the PhD degree timeframe. A major portion of the 

research involves the design and implementation of a hybrid fuzzy logic expert 

system and as such the major resources needed are computer hardware and a 

software development environment. Software systems are heavily reliant upon 

computer processing power and memory. The computer hardware provided for the 

research was a parameter that must be worked within. Software development was 

undertaken using a modern integrated development environment and backend 
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databases were constructed to store information under an industry standard RDBMS 

database server.  

• Empirical based modelling approach. Stock tank and vacuum pan feed rate 

models are based upon an empirical approach. Models for prediction of sucrose and 

impurity loadings to the pan stage also use an empirical modelling method for their 

derivation. 

• Test data. Test data is restricted to the information provided by Racecourse sugar 

mill during the September 2003 period of the crushing season. The availability of 

specific control system data also provides a fundamental basis for the sugar mill 

control system information data sources used to interface with the developed KBSSS.  

The availability of specific data from the sugar mill control system helped form a 

boundary on the development of the pan stage process models and their associated 

implementation in the prototype system. This is due to the need to work within the 

constraints of available information. 

• Prototype. Given the timeframe, basis for the device and testing the concept by 

developing a benchmark prototype, only a prototype of the knowledge based 

supervisory support system will be developed. It is envisaged that 

commercialisation of the developed knowledge based supervisory support system 

would take place as part of follow-on research. 

• Results. Although outcomes generated as a result of the research may be able to be 

generalized to other case studies and implementations at other sugar mills, the 

specific results presented in this thesis pertain to direct outcomes at Racecourse 

sugar mill pan stage. 

• System advice and recommendations. Provision of advice is for standard pan 

stage operations. The prototype system is not developed to offer advice in situations 

of equipment failures, interruptions or circumstances leading to excessive delays 

and deviation from the standard pan stage schedule or the A, B, C massecuite boiling 

arrangement that is common to Australian sugar factories. Other similar 

circumstances would include the commencement of crushing during the start of 
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season or factory closure at end of season typically where there are specialized 

procedures for the building or depletion of process material stock tank levels.  

It is envisaged that further research and development would be undertaken as part 

of a follow-on project to incorporate the provision of such advice under these 

scenarios. Advice under these and other non-listed but uncommon circumstances is 

not within the scope of the prototype KBSSS. 

2.9 Summary 

This chapter has provided the background on the problem of pan stage control and 

management within a sugar factory environment and provided an overview of the sugar 

production and pan stage processes. It has reviewed the attempts, and their subsequent 

limitations, made in order to provide a knowledge transfer for better support and 

management for the sugar mill pan stage setting. The role of decision support pertaining to 

pan stage operations has been assessed and its critical limitations identified. Considerations 

for specific requirements have been proposed that may assist in overcoming these 

limitations. The limitations and scope of the research have also been outlined. 

Based upon the requirements presented in this chapter, the details of the proposed 

knowledge based supervisory support system framework will be described in the following 

chapter. A brief description will also be provided of the three core innovative supporting 

technologies that will be employed to support the functionality of the proposed framework. 

These three supporting technologies are the dynamic industrial process models describing 

the pan stage process inner workings and the pan stage interaction with other sections of 

the sugar factory, integration of the process model within the fuzzy expert system rule base 

and supporting explanatory capabilities for offered system advice and recommendations. 

 

 



 34 

Chapter 3: Proposal for a Knowledge Based 
Supervisory Support System Framework 
 

 

3.1 Introduction 

In the previous chapter, critical limitations for approaches undertaken to assist in pan stage 

decision support were identified and requirements for overcoming these were suggested. 

These factors will help form the fundamental basis for a knowledge based supervisory 

support system for pan stage operations. In this chapter, a knowledge based supervisory 

support system framework will be proposed for the pan stage best practices and 

management which will build upon the identified factors from Chapter 2. A review of the 

commonly accepted fuzzy logic based expert system framework will be undertaken and 

extended in order to mitigate previously identified limitations and address the additional 

system requirements. These extensions will include the incorporation of dynamic industrial 

process models relating the fundamental features of the pan stage and its interaction with 

the sugar mill, integration mechanisms to merge these models within the expert system 

rule base and explanatory capabilities for justification of system advice and 

recommendations.  

This chapter is organised as follows. Section 3.2 provides the premise and rationale for a 

KBSSS. Section 3.3 details the proposed KBSSS framework.  Section 3.4 details the layered 

component architecture that the framework adheres to. The final sections outlines the 

innovative features that support the KBSSS, namely: dynamic industrial pan stage process 

models in Section 3.5, integration of pan stage process models into a fuzzy expert system 

rule base in Section 3.6 and explanatory capabilities using discourse semantics in Section 

3.7. 
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3.2 Premise for a Knowledge Based Supervisory Support System 

Framework 

As reviewed in Chapter 2, there are specific requirements for decision support for the pan 

stage. The higher overall goal is to develop a framework that can be integrated within the 

existing sugar factory industrial environment and work cooperatively with existing 

infrastructure and factory support personnel in order to affect improved best practices and 

management strategies for pan stage operations. Also reviewed in Chapter 2, the sugar 

industry’s eagerness to innovate is a result of the very real pressures that exist on the 

industry as a whole along with the relatively low existing world sugar prices. The industry 

has responded to such pressure through developing innovative solutions to reduce costs 

and boost revenues. This provides the rationale for the proposal of a KBSSS and forms the 

foundation for a hybrid fuzzy logic based expert system that is based upon existing pan 

stage practices and further enhanced through the provision of intelligent system 

technologies (Dodd, Broadfoot, Yu and Chiou, 2005a; Dodd, Broadfoot, Yu and Chiou, 2008). 

The KBSSS is fundamentally a hybrid fuzzy logic based expert system incorporating fuzzy 

logic, dynamic interrelational process models of the crystallisation stage and explanatory 

capabilities. The expert system knowledge base is primarily composed of human operator 

knowledge of factory procedures and best practices coupled with the dynamic 

interrelational industrial process models that describe future pan stage operating 

conditions. 

3.3 Proposed Framework 

The KBSSS works in tandem with the pan stage operator and current pan stage computer 

control systems to perform the requirements specified in Chapter 2.  

Figure 3 provides a visual depiction of interactions between the current systems and the 

operator. Existing pan stage infrastructure consists of sugar mill control system that 

interfaces directly with, and controls the pan stage operations. A pan stage operator 

interacts directly with this system. 

The KBSSS is part of a cooperative control strategy and works in conjunction with the sugar 

mill control system and pan stage operators. It takes operator input along with information 
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from the existing sugar mill control system via a real time parasitic data feed from the sugar 

mill control system databases. The KBSSS influences pans stage processes through the 

actions performed by the operators. The operators use advices/recommendations, in line 

with the reasoning process from the KBSSS, to influencing pan stage operations through 

their interaction with the sugar mill control system. Such an arrangement also serves to 

keep human decision making as part of the process. 

The KBSSS uses intelligent system technologies to provide a standardized approach for pan 

operations by integrating data from a variety of information sources from different sections 

of the sugar mill, along with dynamic process models of the pan stage and the collective 

knowledge and expertise of pan stage operators.  The innovative KBSSS framework 

presented in this chapter allows the unification fragmented systems of data. These sources 

range from pan stage operators, fuzzy rule base, developed industrial process models of the 

pan stage and information sources across varying sections of the sugar mill to solve an 

important industrial control problem. Across the sugar mill the KBSSS draws information 

from cane receival sections, juice processing station, the pan stage, centrifugal station and 

the pan stage operators as depicted in Figure 3. The mathematical relationships existing 

between major system process variables and empirically derived relationships from real 

world knowledge are recognised as being complimentary information sources for real time 

 
 
 

 
 

Figure 3: System interaction of the proposed knowledge based supervisory support system 
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knowledge based systems (Leitch, Kraft and Luntz, 1991). 

The integration of the wide variety of information sources along with the requirements and 

expectations of such a system, as presented in the Chapter 2, leads to a challenge in the 

design and development of the KBSSS. Previous research (Dodd, Yu, Broadfoot and Chiou, 

2002) acknowledges that no conventional software engineering methods exist to provide 

an overall solution to this industrial problem due to the magnitude of its complexity, the 

wide variety of information sources required to be managed, overall management 

objectives, lack of adequate sugar mill crystallisation stage process models and 

requirements for advisory strategies and supporting advice to validate recommendations. 

Such wide and varied requirements are not easily managed and no such software based 

system for their unification currently exists to provide a unified solution.  

An innovative modular system architecture based upon a layered system framework is now 

presented along with major system features. The major features of this framework that are 

described in the following sections are: 

1. Layered component architecture; 

 
 

 
 

Figure 4: Major sources of input for the proposed KBSSS framework 
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2. Dynamic interrelational pan stage process models; 

3. Integration techniques for merging the dynamic interrelational pan stage process 

models into a fuzzy  rule base; and 

4. Explanatory capabilities through discourse semantics. 

These features are outlined in the following sections. 

3.4 Layered Component Architecture 

The overall architecture is layered with components performing layered tasks. The 

structural partitioning and layering of the hybrid fuzzy logic based system components in 

the architecture has been identified as key factors in promoting system ownership, security, 

maintenance, accountability, upgradeability, adaptability and flexibility (Chiou, Yu and 

Lowry, 2002).  

Modular design helps to reduce software complexity, facilitates software maintenance and 

results in easier implementation by encouraging parallel development of different parts of 

the system (Pressman, 1997). Such modularity assists in the overall system construction, 

testing and debugging of the system modules and leads to their independent development 

allowing parallel system development. 

Layering aids in the security of information. Because the pan stage expert system draws on 

a variety of sugar factory data sources a modular independence ensures data separation 

with no interference on existing factory information sources or infrastructure. Interactions 

are also simplified through connectivity to sugar mill information sources occurring 

through only a single input layer. 

3.4.1 Modular System Architecture 

The KBSSS modular architecture is based upon conventional expert systems (Leung and 

Wong, 1990; Gisolfi and Balzano, 1993) and conventional If-Then fuzzy rule based systems 

design (Goel, Modi, Shrivastava, Chande and Gaiwak, 1995; Berkan and Trubatch, 1997) 

with substantial extension of the conventional fuzzy knowledge base system framework 

(Chiou, Yu and Lowry, 2002; Yu, Chiou and Dodd, 2005; Yu, Chiou and Dodd, 2007). 
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Specialist adaption is also required in order to convert the framework to meet the specific 

requirements of pan stage decision support (Dodd, Broadfoot, Yu and Chiou, 2008). 

The classical fuzzy expert system architecture is presented in Figure 5. This architecture is 

typically constructed of the following layers: 

• Editor Layer – Fuzzy variable function editor and If-Then rule editor. 

• Data Layer – System knowledge base. 

• System Layer – Fuzzifier, inference engine and defuzzification components. 

• Input layer – User interface for system inputs. 

• Output layer – User interface for defuzzified system results. 

In order to support the three innovative technologies specified in Section 1.2 modifications 

to the classical fuzzy expert system architecture have been undertaken. Compared to the 

conventional fuzzy logic expert system design, as presented in Figure 6, the editor layer is 

 
 
 

  
 

Figure 5: Classical fuzzy expert system architecture 
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essentially unchanged with only the addition of an editor to customize parameters of the 

industrial process models of the pan stage. The data layer now also includes the dynamic 

interrelation models of the crystallisation stage. The defuzzification component that is 

typical of fuzzy logic expert systems has been replaced by a meta-consequent function 

(Chiou and Yu, 2007c). The support and real-world layers have also been added. The input 

and output layers have also been separated. The industrial process models of the pan stage 

are now tightly integrated with the expert system rule base and work in tandem with the 

inference process. 

Figure 6 provides a simplified representation of the extended system framework. This 

representation gives a clear comparison to the “standard” fuzzy logic expert system 

framework that is commonly used and highlights the extensions that have been engineered. 

The proposed architecture gives rise to the following modified layers: 

 

 

 

 

Figure 6: Proposed KBSSS system architecture extended from previous research (Chiou, Yu and Lowry, 2002)  
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• Editor Layer – Fuzzy variable function editor, If-Then rule editor and dynamic pan 

stage process model parameter editor. 

• Data Layer – Knowledge base and dynamic interrelational pan stage process model 

components. 

• System Layer – Fuzzifier, inference engine and meta-consequent (Chiou and Yu, 

2007c) components. 

• Input layer – Parasitic data link to sugar mill control system information sources 

and pan stage operator input. 

• Output layer – Discourse advices and output for process control components. 

• Support layer – Discourse semantics (Chiou and Yu, 2007a) and discourse 

explanatory components. 

• Real world layer – Data from external information sources via user interface 

component. 

As depicted in Figure 6 the KBSSS is a modular architecture with clustered elements 

performing the layered tasks described. It is important to realise that the discourse 

semantics (Chiou and Yu, 2007a) and meta-consequent functionality (Chiou and Yu, 2007c) 

mechanisms presented here are the results of other research for fuzzy logic based expert 

systems and are specialised components in the extended framework. 

3.4.2 Inter-Layer Data Communication 

In upholding the previously discussed design principle of the system architecture, the 

layers are separated and do not communicate directly. This separation allows for error 

checking of data flows between the layers and data validation. Data is checked for accuracy 

and for acceptable range and tolerance. 

The location of the database storage system used by the KBSSS may not reside with the 

client application software. The KBSSS draws from database systems native to the software 

application as well as sugar mill control systems data as presented in Figure 3. Information 

storage for control system data resides across the sugar mill for the cane receival sections, 
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juice processing station, the pan stage and centrifugal station sections of the factory. The 

KBSSS draws from information sources for each of these sections. Communication with 

these information sources is done in a read-only manner to adhere with factory information 

technology procedures and policy in maintaining the critical control systems information 

sources. 

3.5 Process Models  

As described in Chapter 2 the pan stage is a complicated feed-forward and feed-back series 

of operations superimposed upon a series of batch and continuous processing operations. 

In order to forward predict future pan stage operating conditions, a sequence of process 

models to describe the overall process is necessary. A series of models collectively working 

together to describe the primary inputs and outputs are required along with actual models 

of the internal workings of the pan stage itself. In order to overcome potential limitations, 

as identified previously in Chapter 2, these models are required to have the capability of 

prediction upon a time scale basis. For modelling purposes Figure 7 provides a simplified 

representation of a sugar mill factory with some factory features, discussed in Section 2.2, 

merged into the representation for simplification. 

Models are required to quantify both the input and output features of the pan stage 

 

 

Figure 7: Modelling representation of the major product streams for a sugar factory 
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processing section of the sugar factory. This equates to establishing relationships for juice 

processing and the centrifugal station and how they interact with the pan stage. In order to 

achieve this, models for both the overall juice processing section and the centrifugal station 

need to be constructed. Output from the juice processing section forms the input to the pan 

stage. The centrifugal station uses pan stage outputs and also has recycle streams of C sugar 

and molasses feeds returning to the pan stage. 

In order to fulfil the requirements of advice for the KBSSS and in keeping with the 

objectives and system requirements presented in Chapter 2, a series of models are also 

required to relate together the internal workings of the pan stage as depicted in Figure 2. In 

determining pan stage stock tank levels the rates of usage of the feed materials used by the 

vacuum pans throughout the various phases of their operation are determined empirically 

and combined with the schedule that the vacuum pans adhere to. This allows a forecast of 

stock tanks levels when coupled with models determining input quantities occurring as 

part of the future schedule. This integrated approach also requires the determination of the 

current phase in the schedule of the vacuum pans and centrifugals for use over the forecast 

period. The power afforded by empirical knowledge and its specialised role in knowledge 

based industrial automation systems was discussed in previous research (Leitch, Kraft and 

Luntz, 1991). 

The author proposes to develop and integrate a series of pan stage process models, with 

supporting intelligent systems techniques as proposed in Section 3.6, for the prediction of 

future pan stage operating conditions. These models will work together collectively to 

describe the relationships of the internal pan stage components along with the pan stage 

interaction with the overall sugar factory.  

These interrelational industrial process models collectively describe the dynamic features 

of the pan stage processes and form a key component of the proposed KBSSS architecture. 

These models which are further described in Chapter 5 are: 

Syrup rate prediction model. Syrup comprises the primary input to the pan stage. This 

model predicts the future syrup loading quantities to the pan stage by relating cane receival 

data with juice processing information through use of an empirical factory operational 

fraction. This measure determines the fractional sucrose and impurity losses through 
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bagasse and mud by-products and consequently the sucrose and impurity quantity loadings 

to the pan stage; 

Steady state steady state flow model. Predicts the long term production rates and flow 

characteristics for the equipment items on the pan stage and centrifugal station and 

calculates required footing quantities for seed pans to produce sugar of the required size; 

Empirical vacuum pan models. These models quantify the rate at which feed materials 

are used during each phase of vacuum pan operations; 

Vacuum pan phase determination and forecast model. This model provides a status 

determination of the batch vacuum pans operating status and which potion of the strike 

they are operating within. A list of expected operational phases the pans will go through 

during strikes over the forecast period is then dynamically built using the empirical vacuum 

pan models; 

Stock tank prediction models. Models used to predict future stock tank levels of A 

molasses, B molasses and syrup stock tanks on the pan stage by accounting for feed 

materials taken from the stock tanks during the pan stage schedule and integrated with 

expected tank input quantities from juice processing and centrifugal station returns; and 

Schedule optimization model. This model provides advise on vacuum pan start and drop 

times to mesh in with the current operational schedule and provide assistance for vacuum 

pan steam usage rates and the selection of optimal duties for swing pans. 

Individually these models provide information on smaller portions of the overall pan stage. 

These models are then collectively combined to relate together the various sections of the 

pan stage along with key features of the internal working status of the pan stage. The 

innovation of these models is prediction of the following characteristics for the listed 

equipment items over the forecast period: 

1. Vacuum Pans  

- expected feed material consumption rates for syrup, A molasses, B molasses and 

steam throughout the phases of pan duties. 

2. Receivers  
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- level;  

- holding time till fugalling commences; and 

- expected time of pan drop to receivers. 

3. Centrifugals  

- massecuite fugalling rates from receivers; 

- start and completion times of fugalling; 

- duration of fugalling massecuite from receivers; and 

- molasses production quantity returns to stock tanks. 

4. Stock Tanks 

- level; 

- expected feed demand quantities; and 

- expected supply quantities. 

Prediction of these characteristics allows for forward forecasting of pan stage operating 

conditions at a future point in the overall schedule. These models work in tandem with the 

fuzzy rule base described in the next section and also interact via a blackboard system 

described in the following Chapter 4. 

3.6 Integration of Process Models into Fuzzy Rule Base 

The interface between the linguistic knowledge base and the numerical mathematical 

models is built using the fuzzy logic approach. Fuzzy logic and systems techniques are ideal 

for dealing with hybrid numerical measurements and linguistic operator knowledge data 

types (Lin and George Lee, 1996), and used to build the expert system knowledge base. The 

dynamic interrelation models for the pan stage operations are numerical in nature while 

the expert system is linguistic. The technical challenge lies in the integration of linguistic 

expressions of human knowledge and dynamic process models which has not been fully 

addressed in fuzzy systems research (Yu and Broadfoot, 2001).   
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The overall system architecture is developed in combination with the expert system shell so 

that “interpretation” of dynamic interrelation models can be integrated with the meta 

knowledge representation of the expert knowledge base. This incorporation of fuzzy meta-

knowledge  supports localisation refinement of the fuzzy expert system rules and is an 

extension of the conventional fuzzy knowledge based framework to include meta 

consequent functionality (Chiou and Yu, 2007c).  

The system knowledge base is static in nature however localised conditions for pan stage 

processing are not able to be predefined. This warrants adjustment to both model input and 

output conditions, through the use of fuzzy rules, to account for current operating 

conditions. These localised operating conditions are not known until system runtime. The 

real world layer helps provide this additional information to aid in the process of 

determining how the final defuzzified output is mapped to produce system output. 

The author proposes to use fuzzy logic to cater for localisation adjustment due to real world 

operating conditions. A pre-processing adjustment is to be undertaken for the proposed 

pan stage industrial process model (as proposed in Section 3.5) input parameters with 

further adaptation to occur for process model output results. Integration of the dynamic 

industrial pan stage process models with the fuzzy expert system rule base is needed to 

relate to the real world operating conditions that exist at system runtime. 

The fuzzy rule base is built upon the conventional fuzzy rule based approach with pan stage 

process models forming a significant component of the knowledge base. These dynamic pan 

stage process models encapsulate the understanding of segments of the pan stage process 

and form part of the system knowledge base. These models are chained together through a 

model hierarchy and used during the inference process.  

The fuzzy rules are used in the adaption process to integrate these process models and 

relate to current operating conditions. This is a core feature in the functionality delivered 

by the proposed KBSSS and helps to facilitate the localised adaption of model results and 

customisation of parameters forming model input to match current real world data trends. 

Pan stage process model outputs are further adapted using fuzzy rules and defuzzified crisp 

results from this process are fed forward to other process models further down the model 
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hierarchy. Such a scheme allows process model integration with the expert system rule 

base. An integration scheme is proposed and presented in Chapter 5. 

3.7 Explanatory Capabilities (Discourse Semantics) 

Previous research (Johnson and Ye, 1995; Gregor and Benbasat, 1999; Gregor, 2001; Gregor 

and Yu, 2001) has showcased the need for expert system recommendations to be further 

accompanied by explanations to aid in the understanding and justification of presented 

advices. Realised benefits include increased user acceptance and confidence with improved 

system adoption outcomes. The need for such improvements in the field of expert and 

knowledge based systems has long been recognised (Clancey, 1983; Swartout, 1983; 

Swartout and Smoliar, 1987; Chandrasekaran, Tanner and Josephson, 1989) with several 

frameworks presented in attempts to resolve shortcomings. 

Specifically, very limited research into explanatory capabilities in the area of fuzzy logic 

based expert systems has been carried out (Gregor and Yu, 2000) with the need identified 

for further research into the provision of such enhancements. In recent times some 

innovation, in area of fuzzy logic based expert systems, has been performed with the 

development of discourse semantics (Chiou and Yu, 2007a). The discourse semantics 

approach has been demonstrated through empowering a fuzzy logic based expert system 

with justification techniques for advice offered in the management and control of 

parthenium weed. 

A user-friendly supervisory control system interface for the pan stage operations is 

recognised as being beneficial in assisting these personnel to perform their task more 

effectively (Yu and Broadfoot, 2001). Since the KBSSS is to provide technical information on 

which decisions should be based, it is mandatory that its output, advices and 

recommendations are accompanied with an explanation to assist the user to understand the 

underlying rationale. In some circumstances, the end user may see an offered advice or 

recommendation as not being the best available solution. The system needs to be able to 

justify its outcome in assisting users in making critical decisions. 

The author proposes a system using textual semantics in tandem with graphical methods in 

offering explanations to support final system advice. Discourse semantics will be integrated 
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with the fuzzy rule base and process model integration approach, previously proposed in 

Section 3.6, with results from the pan stage process models displayed graphically. 

3.7.1 Discourse Using Textual Semantics 

In order to support the primary system outputs, the rationale behind the decision making 

process should be presented to end users. Justification should be part of the expert systems 

explanation and is a distinctive process to explanation (Wick and Slagle, 1989b).  

Supplementary knowledge is needed to explain rules (Wick and Slagle, 1989a) as the 

system rule base is built upon expert knowledge but the reasoning behind the importance 

of these rules is not encoded into standard expert systems. Traditional methods such as 

trace-based justification and information tagging for standard expert systems have 

application to be extended to the fuzzy expert system framework. 

3.7.2 Discourse Using Graphical Methods 

Aside from English based textual justification, justification for recommendation can be 

provided as a series of graphs or measures to show data trends on the pan stage schedule, 

productivity and feed material usage. Results on forward prediction of future pan stage 

conditions can be presented showing the results of current pan stage operations and assist 

in further explanation on how the system recommendations can provide improvements to 

aid in better management of the pan stage under current operating conditions. 

3.8 Summary 

This chapter has outlined a proposed knowledge based supervisory support system 

framework for pan stage operations. This framework has introduced several innovative 

supporting technologies to resolve the limitations identified in Chapter 2. The overall 

framework has been based upon the standard design approach for conventional fuzzy logic 

based expert systems with extension to include dynamic industrial process models 

describing the pan stage and its internal features, integration of these process models 

within the expert system rule base and explanatory capabilities to support system 

recommendations. 

In the following chapter, the overall application design and structure for the proposed 

framework will be presented. This application is based upon the specifications and 
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requirements for the provision of expert advice in pan stage management and control. The 

major features of software layers are outlined and the overall software structure is 

presented. A blackboard system architecture that will be utilized in support of the 

integration of the intelligent system software components within the knowledge based 

supervisory support system will also be reviewed. 
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Chapter 4: Overall Application Design and Structure 

 

 

4.1 Introduction 

The previous chapter outlined a proposal for a knowledge based supervisory support 

system. The fundamental features of a framework to support the complex issues within the 

pan stage section of a sugar mill in providing cooperative decision support were presented. 

The framework is used as a fundamental foundation for the design and implementation of a 

software system in the provision of such support. This chapter details a software 

application design and structure which adheres to the software framework presented in 

Chapter 3. The following sections present the specifications and requirements for the key 

control strategies in best practices and management of pan stage operations within a sugar 

mill industrial environment. This is followed by a review of blackboard system architecture 

detailing how the major subsystem components are integrated within the software system.  

This chapter is organised as follows. Section 4.2 outlines the specifications and 

requirements in the design and implementation of the application. Section 4.3 details the 

overall application design and the specific features of the layers in the design in adhering to 

the decision support system framework. Section 4.4 reviews the blackboard system 

technology that is used to support the integration of the major intelligent system software 

subsystems within the application. Section 4.5 describes the software structure and how it 

fits into the overall application framework. 

4.2 Specifications and Requirements of the Application 

Chapter 2 reviewed the complex issues surrounding the management of the pan stage 

within the sugar mill industrial setting. Due to the constraints of resources limitations in the 

availability of experts in the area, the provision and adoption of a decision support system 

modelling such experts has been proposed.  
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The system specifications for key KBSSS features require that the system recommendations 

and expert advice provide four core control strategies (Yu and Broadfoot, 2001).  

Additionally, the final system recommendations provided by the KBSSS should be 

supported through the justification and explanation facilities in order to provide the 

rationale behind the recommended outcomes. The KBSSS implements this by supplying 

explanatory capabilities and a prediction of pan stage operating conditions over a forecast 

period. This prediction helps to identify proactive measures and more optimal management 

strategies by maintaining a forward look ahead mechanism to assist pan stage operators in 

identifying potential problems and limitations of the current decision making process. Even 

though the capability to provide a forecast of pan stage operating conditions is formally 

specified as a supporting component of the KBSSS, its role helps dictate the core control 

strategies for improving pan stage decision making. 

The four core control strategies for the primary system output are: 

1. Pan duty management; 

2. Pan control strategy; 

3. Pan schedule management;  and 

4. Stock tank management. 

Additionally, these core control strategies are supported by a further two secondary system 

outputs: 

5. Prediction of future pan stage operating conditions for given current operational 

conditions and operating environment; and 

6. Explanatory and justification capabilities. 

These secondary outputs are critical in providing reasoning and justifications for the 

recommended system advices. The following sections detail how the overall application 

integrates several innovative supporting technologies via subsystems to achieve these 

defined strategies. 
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Figure 8: Detailed application design extended from previous research (Chiou and Yu, 2007b) 
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4.3 The Overall Application Design 

The KBSSS utilizes three key subsystems to carry out data processing of the two major 

sources of system input. These are transformed into the six required system outputs. The 

subsystems perform the following tasks:  

1. dynamic interrelational process models of the pan stage allowing a prediction of 

future pan stage operating conditions; 

2. fuzzy inference engine with fuzzy localisation adjustments to match for real world 

operating conditions; and 

3. explanatory and justification facilities. 

Figure 8 displays the modular architecture of the application design. The design architecture 

is modular with clustered elements performing layered tasks. This architecture is based 

upon the framework proposed in Chapter 3. The application framework is adapted from 

previous research (Chiou and Yu, 2007b) but with modifications for supervisory decision 

support in pan stage operations. Further extension was made in order to integrate the 

dynamic interrelational process models of the pan stage with the fuzzy rule base. 

Associated changes also include an innovative blackboard system that functions as both a 

working memory for data exchange between the fuzzy inference engine and industrial pan 

stage process models. Also incorporated were facilities for both parameter storage and 

parameter tuning of the dynamic pan stage process models. 

The overall application design includes seven layers – input layer, real world layer, editor 

layer, data layer, system layer, support and output layers. A detailed description of these 

layers in covered in the following sections. These layers and their associated functions 

adhere to that of the proposed layered component framework presented in Figure 6 of 

Chapter 3 with similarly specified functionality. These layers and their major features are 

presented in the following subsections. 

4.3.1 Input Layer and Real World Layer 

The input layer draws data from the cane receival, juice processing, pan stage and 

centrifugal station sections of the sugar mill via a parasitic data feed from the mills 
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computer based control system. Information is provided in a standard RDBMS format with 

information updated in real time. Access is provided in read-only mode to prevent 

modification or interference with data.  

Further information from the crystallisation stage operators, through the graphical user 

interface, can be provided to assist in determination of equipment performance ratings and 

operational problems and characteristics of the syrup, molasses and sugar process streams 

along with crushing season information. This information is accepted by the KBSSS through 

the input layer. Although the real world and input layer, from the framework presented in 

Chapter 3, are shown in Figure 8 in a merged format, it is important to realise that each has 

separate input sources which do not interact or conflict with each other. These sources 

remain isolated. 

The importance of a relatively good the user interface for expert systems was highlighted 

by (Hendler, 1988; Payne and McAurthur, 1990). Since the system interaction is carried out 

though the user interface, a well designed and easy to use system can help support system 

adoption. A variety of interfaces are possible given the various systems users. These may be 

shift supervisor, pan stage operator, knowledge engineer or content expert. Each user has 

specific system requirements and differing tasks required to be performed. The provided 

interface view is customised to the type of end user interacting with the system and 

provides different functionality depending upon operational tasks expected to be 

performed within the software system and classification duties of the current end user. 

4.3.2 Editor Layer  

The editor layer provides facilities for specialized users interacting with the system with 

abilities to perform knowledge development and fine-tuning of KBSSS subsystems. This 

allows adaption of knowledge/If-Then rule base, explanatory/discourse base and pan stage 

process model parameter databases. These changes are undertaken by knowledge 

engineers, content experts and pan stage process experts with specialised domain 

knowledge and understanding pertaining to each of the major KBSSS subsystems. 

This layer provides the knowledge engineer and content expert with the capabilities to 

modify the fuzzy membership function parameters and fuzzy rules associated with the 

dynamic process models and to assign or modify the explanations tagged to each of the 
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rules. Facilities for the pan stage expert to tune the default process model parameters that 

are associated with each pan stage process model are also provided.  

4.3.3 Data Layer  

The data layer consists of a series of databases for information storage. All databases use a 

standard RDBMS for interoperability and system interfacing. The final membership 

functions and fuzzy If-Then rule base are stored in the knowledge base at the data layer 

along with parameters specific to the industrial pan stage models and discourse knowledge 

bases. The data layer also includes an innovative blackboard system that acts as a dynamic 

storage repository for results from the dynamic interrelational models of the pan stage. The 

blackboard system stores all major results for each future time interval prediction of 

process model variables. Sugar mill control system data containing information from cane 

receival, juice processing station, the pan stage and the centrifugal station is also stored. 

Dynamic user input from the pan stage operator is also captured for later use. 

4.3.4 System Layer  

The system layer is the most complex of the layers in the KBSSS architecture and essentially 

comprising the majority of system software operations. These three innovative modules 

utilize multithreading for each subsystem. Each module runs as part of a separate thread to 

ensure system execution will continue even under the event of a subsystem failure. These 

core subsystems as shown in Figure 8 are: 

1. Dynamic interrelational process models of the pan stage for prediction of future pan 

stage operating conditions; 

2. Inference engine delivering fuzzy meta results; and 

3. Explanatory and justification facilities. 

The interrelational process models developed to describe the dynamic features of the pan 

stage process and provide a forecast of future pan stage operating conditions and forms one 

of the key subsystems in this layer. The development and mechanics of these models are 

described in previous research by the author (Dodd, Broadfoot, Yu and Chiou, 2005a; Dodd, 

Broadfoot, Yu and Chiou, 2005b; Dodd, Broadfoot, Chiou and Yu, 2008b). A basic overview 
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of these models was provided in Section 3.5 of Chapter 3. The major features and 

implementation details for each of these models will be presented the next chapter, Chapter 

5. These models, restated for convenience, are: 

1. Pan and fugal phase determination models; 

2. Syrup prediction model; 

3. Steady state pan stage pan stage flow model; 

4. Empirical vacuum pan models; 

5. Stock tank prediction models; and 

6. Schedule optimization model. 

This subsystem provides a prediction of future pan stage operating conditions under 

current operations. The development and major functions of these models along with some 

specific results were presented by the author in literature (Dodd, Broadfoot, Yu and Chiou, 

2005a; Dodd, Broadfoot, Yu and Chiou, 2005b; Dodd, Broadfoot, Chiou and Yu, 2008b). 

The fuzzy inference engine is another core subsystem in the system layer. The meta-

consequent component in this subsystem replaces the defuzzier found in traditional fuzzy 

logic based expert systems and instead of providing defuzzified results it produces meta-

results through the use of fuzzy meta-consequent functionality (Chiou and Yu, 2007c). The 

meta-consequent functionality provides an adjustment to the results of the inference 

process. It modifies the dynamic pan stage process models output to correlate with 

information provided by the pan stage operators through the input layer and matches rules 

from the fuzzy rule base to localised operating conditions.  

This subsystem is complimented by information from the real world layer to provide a 

method for mapping information on equipment performance ratings, operational problems 

and characteristics of the syrup, molasses and sugar process streams to the dynamic 

process models. This provides meaningful interpretation of the inference process output by 

matching it to the operating conditions at the crystallisation stage. The inference engine 

subsystem involving meta-consequent functions works in tandem with dynamic 
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interrelational process models of the pan stage to determine the primary system output 

control strategies. 

These outputs are further justified by the explanatory subsystem which provides system 

explanation of final control strategies. Explanations tagged to each rule in the If-Then fuzzy 

rule base are triggered and propagate through the inference mechanism upon a rule firing. 

This information is further passed to the support layer for further processing, as discussed 

in the following section. 

4.3.5 Support and Output Layers  

On completion of the system layer processes, the final results are passed to the output and 

support layers. The four primary control strategy recommendations are passed to the 

output layer for formatting. The secondary supporting results are passed to the support 

layer for formatting and display. 

The support layer works to consolidate the inference process by formatting justifications 

for the presented advice in the most appropriate format. The method of presentation is an 

integral part of the output layer. The justification process is independent of the inference 

process which provides the final control output values as a part of the system 

recommendations. 

Aside from English based textual justification, justification for recommendation can be 

provided as a series of graphs or measures to show data trends on the pan stage schedule, 

productivity and steam rate usage. These can be presented against forward predictions of 

current pan stage operations and provide assistance is highlighting how the system 

recommendations can provide improvements to the current process. 

The method of presentation is an important part of acceptance of final system 

recommendations. Since the KBSSS is a rather complex software system the overall end 

user acceptance of system recommendations and advices lies in their structuring and 

presentation. In a similar fashion to the support and input layers, a variety of interfaces are 

possible given the varying requirements systems users. These may be shift supervisor, pan 

stage operator, knowledge engineer or content expert. Each interface view is customised to 

the type of end user interacting with the system and provides different functionality 
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depending upon the commitments and responsibilities that the user has as part of their 

personnel duties on the pan stage. 

4.4 A Review: Blackboard Systems Structure 

As mentioned previously, the knowledge based supervisory support system is designed, in 

accordance with the structured design framework presented in Chapter 3. An integration 

type system is required to aid in the merger of the major subsystems, presented in Figure 8. 

This system is required to manage the different information sources that result from 

subsystem processing. These subsystems each implement different intelligent systems 

technologies. 

A blackboard system is used to facilitate this information. The subsystems share the results 

of their specific processing activities through a common information repository know as a 

blackboard which is responsible for the overall feature integration and allows subsystems 

of differing technologies to communicate via an intermediary storage system.  

4.4.1 The Blackboard Model 

The blackboard system is an artificial intelligence solution founded on the blackboard 

architectural-based model. The initial development of the blackboard system approach is 

synonymous with the Hearsay-II speech understanding system (Erman, Hayes-Roth, Lesser 

and Raj Reddy, 1980) for which the original approach was developed and consequently 

showcased as a major artificial intelligence  system technology to aid in the solution of 

complex problems. 

The use of a blackboard system is analogous to a team of experts solving a problem. 

Collectively the team of experts, know as “knowledge sources”, work towards an overall 

problem solution. Due to the individual expertise of knowledge sources they each work on 

providing solutions to parts of the problem that are specific to their domain. Once an 

overall specification of the problem has been constructed, each knowledge source interacts 

with the blackboard when information specific to their domain becomes available. This 

contribution then allows other knowledge sources the chance to apply themselves. This 

incremental approach continues with each knowledge source adding portions of the overall 

problem solution until it is finally solved. A control mechanism is implemented which 
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dictates the order that the knowledge sources may interact with the blackboard system. 

This establishes an effective and coherent method of interaction in problem solving. 

A blackboard system consists of three major components: 

1. Knowledge sources. Knowledge sources are the expert modules that interact with 

the blackboard. 

2. Blackboard. The blackboard is the shared information repository. 

3. Control mechanism. The control mechanism is the component used for scheduling 

the reading and writing of knowledge sources to the blackboard. This scheduling is 

used to organise the knowledge sources interaction with the blackboard in the most 

effective and coherent manner. 

These blackboard model components and their interaction are depicted in Figure 9 with the 

control mechanism scheduling the overall interactions of the knowledge sources with the 

blackboard.  

The blackboard approach allows diversity in the problem solving approaches able to be 

used by the knowledge sources, since these sources are totally independent and do not 

interact. This blackboard system relies upon the need for a common system for interaction 

between the blackboard and the knowledge sources. Efficient retrieval of blackboard 

information is also required along with methods for activation of the knowledge sources to 

provide blackboard updates. The blackboard can be viewed as a shared information 

repository of partial solutions, suggestions and contributed information that has been 

provided by knowledge sources. 

The blackboard approach is a powerful problem solving architecture allowing diversity 

amongst knowledge sources, provides a framework for combining fundamentally different 

knowledge sources and promotes modularity and independence during the design, 

implementation, testing and maintenance lifecycle phases of the application (Corkill, 1991).  

Within this scheme knowledge sources do not communicate directly. This allows great 

flexibility in the type of knowledge sources and commits to the upgradeability, adaptability, 

maintenance and flexibility factors mentioned in Section 3.4. Knowledge sources can also be 
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upgraded or modified without affecting the rest of the software. Additional knowledge 

sources can be incorporated into the overall design easily with no interference to current 

operations. The only major requirement of these changes is that the final subsystem 

outputs must still maintain a consistent format for interaction with the blackboard so that 

knowledge sources may understand the presented results. 

Knowledge sources can be treated as black box systems that are diverse in the technologies 

that they may implement and are particularly powerful and effective for implementation as 

part of expert systems. Blackboard systems are recognised as a very flexible and powerful 

system technique for expert systems applications requiring dynamic control decision and 

applications that combine multiple technologies (Corkill, Gallagher and Johnson, 1987; 

Corkill, 1991; Carver, 1997; Corkill, 1997). Furthermore, blackboard systems are 

recognized as having no equal for their powerful combination of capabilities. The benefits 

of the blackboard approach allows information exchange between knowledge sources that 

may be fundamentally different and implemented using totally different technologies. 

 

 

 

Figure 9: Blackboard system component interaction 
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Typically knowledge sources inform the blackboard system of blackboard information they 

are interested in, instead of directly scanning the blackboard itself. When this event occurs 

the blackboard system considers the activation of such a knowledge source to allow 

processing. The control mechanism provides this scheduling process and allows knowledge 

sources to contribute to the blackboard. The control mechanism also ensures all facets of 

the problem are receiving appropriate attention in development of the overall solution. 

Knowledge sources are not restricted to only interfacing with the blackboard information 

sources. They can also take other system inputs as part of their processing (Corkill, 1997) 

and function as independent systems.  Each knowledge source is recognised as providing 

specialist services in being able to solve certain portions of the overall problem. The critical 

requirements for a blackboard system design are the needs for a standardised information 

storage interface for interacting with the blackboard and an effective and coherent method 

of scheduling knowledge source interaction with the blackboard. 

Blackboard systems are a mature intelligent system technology with techniques available 

for ensuring their efficiency and flexibility (Corkill, Gallagher and Johnson, 1987) despite 

the relatively limited publicity and awareness afforded to them, even within the area of 

intelligent systems (Clancey, 1983). Given the requirements for an integration technique for 

the varying intelligent system technologies that form the basis for the three subsystems in 

the KBSSS design, the blackboard model is well suited to allow their integration and provide 

data exchange abilities. 

4.5 Software Structure 

The software development was undertaken using a modern integrated development 

environment and backend relational databases were constructed to store information 

under an industry standard RDBMS database server. This ensured database interoperability 

with sugar mill data sources and provides a standardised system storage method. 

Extensive use of exception handling throughout the programming phase of implementation 

aids as precautionary measures in prevention of abnormal system conditions resulting in 

system failure. Object oriented programming was used throughout design and 
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implementation phases to support the objectives outlined in Section 3.4. Atomic 

transactions are used for database information processing. 

Figure 10 illustrates the overall software structure of the KBSSS implementing the 

application framework presented in Figure 8. Only system layers pertaining to the subsystem 

interaction have been presented. The major software subsystems interact via a blackboard 

system as outlined in the previous section. The overall software structure consists of the 

following major components: the 3 major subsystems, representing the innovating 

intelligent system technologies supporting the software application, and a blackboard 

supporting control mechanism for scheduling the subsystems (as knowledge sources) as 

detailed in the previous section, Section 4.4. 

This control mechanism thread ensures the correct interaction of the subsystems with the 

blackboard system. Figure 10 also presents the major sources of output occurring as a result 

of subsystem processing in conjunction with information sources from the data layer. The 

control mechanism was not previously presented in Figure 8 since it is an ancillary 

supporting function for use in the management of the execution order of the major 

application subsystems. The software adheres to scheduling as provided by the master 

scheduling thread in determining blackboard interactions.  

Since the KBSSS acts in a control system supporting fashion, it reruns its entire processing 

regime at regular predefined intervals to provided updated advice on pan stage best 

practices and management. In this fashion the entire system work cooperatively and in 

tandem with existing sugar mill infrastructure as presented in Figure 3 of Section 3.3. User 

input decides upon overall system termination. 

The required execution order of the major subsystems and dynamic industrial process 

models is due to the data dependencies that exist within information processing and the 

need for subsystems to access the blackboard, mentioned in the previous section, in an 

orderly and timely fashion. The series of developed industrial pan stage process models are 

firmly embedded in the fuzzy logic based expert system rule base. These processes are 

complimentary with information shared through the blackboard process. This relationship 

will be further detailed in Chapter 5. 
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Due to the need for updating of advice, recommendations and justifications from the KBSSS 

on a recurring basis, each update interval also requires all user input and databases to be 

reviewed for updated information. The information sources pertaining to the cane receival, 

juice processing, pan stage and centrifugal sections of the sugar factory are updated with a 

live data stream of up to date information during around the clock sugar processing 

operations. 

 

Figure 10: The software structure illustrating system multithreading and subsystem interaction 
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4.6 Summary 

This chapter has demonstrated how the knowledge based supervisory support system is 

designed, in accordance with the structured design framework presented in Chapter 3. The 

adoption of this framework leads to the overall application and design as presented. The 

major features of each layer in the architecture have been detailed. 

As the knowledge based supervisory support system is a relatively complex design, the 

features and integration model for the major subsystems composing the system layer are 

also presented. The intelligent behaviour of the design is facilitated through the 

incorporation of three primary intelligent subsystems. The blackboard system architecture 

for information exchange between the subsystems has been reviewed. The overall design 

the software structure that the application design adheres to has also been outlined and 

detailed. 

The three primary subsystems were designed to meet the needs of the formal system 

specifications and requirements. In the next chapter, the method and implementation of the 

three subsystems which comprise the intelligent core of the overall KBSSS will be 

presented. These are: 1) Dynamic interrelational process models of the pan stage for 

prediction of future pan stage operating conditions; 2) Integration techniques for the 

merger of the dynamic industrial pan stage process models with the fuzzy expert system 

rule base; and 3) Explanatory capabilities used to justify and support the primary system 

recommendations and advice. 
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Chapter 5: KBSSS: Method and Implementation 

 

 

5.1 Introduction 

In the previous chapter, the overall software application and structure of the knowledge 

based supervisory support system was presented adhering to the adopted framework 

presented in Chapter 3. The major features of each element in the layered architecture were 

described, along with the blackboard system structure used to integrate the major 

subsystems. The software structure of the application was also presented. 

This chapter will present the implementation features of the three core innovative 

supporting technologies for the knowledge based supervisory support system. These 

technologies are: 

1. Dynamic interrelational process models establishing relationships for the internal 

working of the pan stage and the pan stage interaction within the overall sugar 

factory process; 

2.  Integration techniques for merging the dynamic industrial pan stage process models 

with the fuzzy expert system rule base; and 

3. Explanatory capabilities used to justify and support the primary system 

recommendations and advice. 

This chapter is organised into four main sections. Section 5.2 presents the innovative 

dynamic pans stage process models developed specifically to relate together the segments 

of the pan stage. Section 5.3 proposes two core system supporting functions utilized as part 

of the dynamic pan stage interrelational models. Section 5.4 proposes a method for 

integration of the dynamic pan stage process model within the fuzzy logic expert system 

rule base to allow prediction of pan stage operating conditions. Section 5.5 details the 

mechanics of the explanatory capabilities. 
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5.2 Dynamic Interrelational Pan Stage Process Models 

A major challenge in the development of the KBSSS is the development of dynamic 

interrelational process models of the sugar mill pan stage to relate the various sections 

together. An overview of the approach was presented in Section 3.5 with a review and 

limitations of existing modelling approaches presented in Section 2.5.  

In order to relate together the sections of the pan stage an innovative modeling approach 

has been taken. By developing empirical boil-on rate models for each of the vacuum pan 

feed material streams through the different stages of its strike, the liquor, A molasses and B 

molasses feed rates for all the pans at a given point in the schedule can be summated given 

knowledge of the pan stage schedule. This model takes advantage of the repetitive pan 

stage schedule and consistency in successive pan strikes. A detection mechanism to 

establish the current point in the vacuum pan strike is also required as part of this 

approach. 

Once the model for each pan is established then the boil-on rates for each feed stream at the 

different stages of the pan stage schedule can be determined by summing the liquor, A 

molasses and B molasses feed rates for all the pans at future points in the pan stage 

schedule.  

Given the expected syrup production rate and C sugar remelt production rate to the liquor 

tank during this interval, the predicted tank levels can be determined for the liquor tank. 

Similarly the predicted tank levels for the A and B molasses streams can be calculated from 

the production rates and the molasses return from the centrifugal station and the sum of 

the consumption rates on the individual pans at a specific point in the pan stage schedule.  

Combining projected vacuum pan feed rates into the pan stage schedule with predictions of 

sucrose and impurity quantities from cane receival data allows forward forecasting to 

ensure there are sufficient quantities of materials in stock during standard season 

operation, forewarn of potential problems with the current operating strategies and advise 

corrective procedures. 

Building upon these models, adjustments to the length pan strike times within the pan stage 

schedule can be undertaken through optimization to aid in the quality of product sugar, 
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improved pan stage recovery, efficient steam rate usage and optimal pan stage productivity. 

The proposed dynamic process models are integrated and work cooperatively in tandem 

with the KBSSS expert system rule base framework. 

5.2.1 Syrup Prediction Model 

The syrup prediction model as formulated in supporting thesis research (Dodd, Broadfoot, 

Yu and Chiou, 2005a) determines the future flow of syrup to the pan stage for bins of sugar 

cane entering the factory after the harvesting process. A prediction of the quantities of 

sucrose and impurities in syrup allows a forward forecasting of the future pan stage loading 

of syrup. The syrup prediction model uses cane receival data combined with juice 

processing station information to forward predict syrup quantities and composition. Figure 

11 presents the segment of the factory that the syrup prediction model pertains to. This 

model is of key importance as syrup comprises the basic input to the pan stage with direct 

feed to the pan stage liquor tank. The liquor tank is considered the first equipment item 

within the pan stage section.  

This model to forward predict the quantity of sucrose and impurities in syrup to the pan 

stage from quantities of sugar cane was developed as part of sucrose and impurity balances 

on sugar factory data (Mackay Sugar Cane Association, 2002a; Mackay Sugar Cane 

Association, 2002b; Fedrick, 2003) provided for Racecourse and Marian sugar mills 

 

 

Figure 11: Syrup prediction model in relation to an overall of the sugar mill 
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(located in Mackay, Queensland, Australia) for 2002 crushing season. Further information 

on the model derivation is provided in Appendix A. 

The derived equation, to predict the future quantity of sucrose in syrup to the pan stage, is 

presented in Equation (5.1). The relationship for impurities in syrup to the pan stage is 

presented in Equation (5.2). When summated these models predict the quantity of syrup to 

the pan stage. This total quantity of syrup is the quantity of solids, taken as the sum of 

sucrose and impurities, and excludes the quantity of water that is present in practice. 

s = fqp/100               (5.1) 

 

where, 

 

s is quantity of sucrose in syrup to the pan stage (t) 

f is an empirical factory operational fraction 

q is the quantity of cane crushed (t) 

p is pol%cane of crushed cane (%) 

 

i = fqp(100-t)/t              (5.2) 

 

where, 

 

i is quantity of impurities in syrup to the pan stage (t) 

q is the quantity of cane crushed (t) 

t is purity of syrup to the pan stage (%) 

The data required for the model represented by Equation (5.1) and Equation (5.2) are 

pol%cane, quantity of cane crushed and the purity of the syrup. The purity of syrup 

corresponding to the cane crushed in a shift (or shifts depending upon sampling methods) 
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will not be available until the lab analysis is performed later in the day. The previous day’s 

information on syrup purity is instead used as an approximation for the current days value. 

The empirical factory operational fraction determines the fractional sucrose and impurity 

losses through bagasse and mud by-products and consequently the sucrose and impurity 

quantity loadings in syrup to the pan stage. Collectively this determines future syrup 

quantities loadings to the pan stage and allows a forward forecast of the future pan stage 

loading of syrup.  The relationship of the process material product steams is highlighted in 

Figure 11 in establishing a relationship from cane to syrup over the juice processing and cane 

receival sections of the sugar factory. 

Given that there is approximately a 96 minute delay from cane entering the factory and 

being processed to its associated syrup flows to the pan stage, this forms a fundamental 

boundary on the forward prediction of the overall liquor stock tank prediction model. 

Further forward prediction beyond this interval relies upon similar syrup production rates 

being achieved through continued sugar cane crushing rates and factory processing 

performance.  

An innovative dynamic allocation model is proposed in Section 5.3.1 and details how the 

syrup prediction model is used in order to predict future forecast syrup and impurity 

quantities to the pan stage based upon cane receival data. This supporting functionality is 

required in order to implement the proposed models presented in Equation (5.1) and 

Equation (5.2). 

The syrup prediction model in the presented equation format is restricted to only being 

able to predict quantities. The dynamic allocation algorithm is required to apportion these 

quantities to future time intervals. This provides the background technology to allow 

predictions over a forecast horizon. These two systems are tightly bound and work in 

tandem. This relationship is further detailed in Section 5.3.1. 

5.2.2 Pan Stage Steady State Flow Model  

The proposed pan stage steady state flow model, as reported by the author in thesis 

supporting research (Dodd, Broadfoot, Chiou and Yu, 2008a), predicts the long term 

material flows, and associated purity, for each major equipment item in the pan stage under 



 70 

the three massecuite boiling scheme that is commonly used for sugar production 

throughout Australian sugar mills.  This pan stage steady state flow model has been 

developed to calculate the average flow rates and purities of process streams, using mass 

balances (Bureau of Sugar Experiment Stations, 1984), at each vacuum pan, fugal, 

massecuite receiver, tank, sugar screw and bin. The model determines the average 

production rates of massecuite, C sugar remelt, molasses and sugar streams given inputs of 

the syrup flow rate and purity to the pan stage.  

As presented in Figure 12, this model relates the pan stage with the centrifugal section of 

the pan stage. Within the KBSSS this model is directly used to provide information in the 

determination of: 

• C sugar footings to A/B seed pans which is a core system recommendation for the 

production of quality sugar of specification size sugar; 

• Long term expected final molasses and product sugar rates and purity; and 

• Average remelt rate for use in prediction of liquor stock tank levels. 

The major equipment item sets, as depicted in Figure 13, utilized in this model are: 

 

 

 

Figure 12: Pan stage steady state flow model in relation to an overall of the sugar mill 
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Pans {A Seed, B Seed, C Seed, A, B, C} 

Fugals {A, B, C} 

Massecuite Receivers {A, B, C} 

Tanks {Remelt, Liquor, Final Molasses, A molasses, B molasses, C molasses} 

Sugar Screws {A, B, C} 

Bins {Product Sugar} 

Each equipment item is modelled in software using the object oriented approach. Typically 

each item has data members for output solids flow rate and purity. The liquor, A molasses 

and B molasses tanks, B sugar screw and C sugar screw additionally have their output 

product being fractionally split and consequently have these flows used as feed material for 

other equipment items on the pan stage. This solids flow information is stored against the 

producing item along with the fractional values used in splitting these flows. The 

occurrence of fractional splits to other devices is visually represented in Figure 13. The 

model is capable of varying pan stage arrangements under the three massecuite boiling 

scheme through customization of the product fractions from the major equipment devices. 

The default model parameters used (Dodd, Broadfoot, Chiou and Yu, 2008a) are typical of 

mid seasonal sugar factory conditions for the production of Brand 1 grade sugar (Broadfoot 

and Pennisi, 2001).  

In following the three massecuite boiling scheme, which is common for pan stage sugar 

processing within Australian sugar mills, there exists three major process streams within 

the model. These are the production of A sugar, B sugar and C sugar. C sugar is used as 

footings for the production of A and B sugar with the excess sent to the remelt tank. A and B 

sugar are combined to form the final product sugar. The A molasses and B molasses 

products result from fugalled A and B massecuite respectively and along with liquor are 

used as feed products in the A, B and C sugar production segments of the process. C 
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Figure 13: Pan stage steady state flow model 
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molasses from fugalled C massecuite is sent for storage as final molasses, and sold.  

The overall algorithm, as presented in Figure 14 consists of two main program loops with 

several conditional branches ensuring purities of the seed pans are achieved through local 

optimization. Calculations to ensure C sugar footings to the seed pans produce product 

sugar within the nominated specification size are also performed. All initial flows are set to 

small positive values to allow calculation of process material flow purities during the first 

iteration through the flow update loop. 

The key model input is the syrup rate and purity to the liquor tank which is the first major 

item in the overall model. Customizable model parameters are used to establish initial 

conditions for the model. The setting of key model parameters guides the initial flows and 

purities on the seed pans and flows are sequentially fed forward throughout the network.  

The primary loop controls purity and sugar sizing calculations and contains a secondary 

loop responsible for calculations of equipment item flows and purities and validation using 

mass balance checks. After the primary loop runs the secondary loop it checks to see if the 

maximum number of iterations for the mass balances has been reached or if all the mass 

balances have converged to within specified limits. If neither of these conditions has been 

reached the inner secondary loop is repeated until one is met. Otherwise control moves 

back to the primary loop.  

Within the secondary loop, flow and mixed purity calculations (Sugar Research Institute, 

2000) are used to determine process material solids flow rates and associated purities for 

each equipment item in the model. A mass balance (Bureau of Sugar Experiment Stations, 

1984) on each equipment device is then conducted to ensure that the quantities of sugar 

solids entering a device is equivalent to that leaving adhering to a set tolerance value for 

calculations. Process material flows essentially feed forward through the network, during 

each secondary loop iteration, one device at a time and radiating outwards from the 

primary syrup input to the liquor tank.  

After completion of the secondary loop control passes back to the primary loop. A check is 

made to see if the A massecuite purity of the A seed pan is within allowable target limits. If 

this has not occurred fractional changes to the split of A molasses quantities from the A 
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Figure 14: Pan stage steady state flow model algorithm 
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molasses tank to the A and B seed pans are made to incrementally adjust the A massecuite 

purity towards the target.  

Next a check is made to see if the B massecuite purity of the B pan is within allowable target 

limits. If this has not occurred fractional changes to the split of liquor quantities from the 

liquor tank to the A and B seed pans are made to incrementally adjust the B massecuite 

purity towards the target. 

One final purity check is made. This is to determine if the C graining purity of the C seed pan 

is within the allowable target limits. If this has not occurred fractional changes to the split of 

A molasses quantities from the A molasses tank to the B and C seed pans are made to 

incrementally adjust the C graining purity towards the target. 

After this series of purity checks and calculations are carried out, a check on the sugar sizes 

is performed through calculation of the A and B sugar sizes as well as the combined product 

sugar. If the product is not within the allowed limits, for the nominated A and B sugar 

characteristics, calculation of the required C sugar footings to the A and B seed pans is 

performed. Since these sugar quantities come from the C fugals the excess quantity of sugar 

that is not used for footings is calculated for diversion to the remelt tank. The crystal sizing 

calculations (Broadfoot, 2004a) determine the necessary quantities of C sugar needed for 

the A and B seed pans to ensure final product sugar is within specified size and tolerance. 

This sequence of operations with the initial secondary loop operations is iteratively 

performed as part of the primary loop. This continues until the maximum number of purity 

iterations has been reached for the optimisation process or all target purities have 

converged. 

The final model results are solids flow rates and purities for each equipment device, and 

sugar sizing information along with convergence data for target purities and mass balances 

for each equipment item. The solids flow excludes the quantity of water present in practice. 

A conversion to actual flows is made at the successful completion of the model. The model 

results are then written to a blackboard system resulting in algorithm completion. 
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5.2.3 Empirical Vacuum Pan Models  

Individual pan production rates have been modelled by constructing empirical 

relationships (Dodd, Broadfoot, Yu and Chiou, 2005b) for the rate at which each pan uses 

feed material (liquor, A molasses or B molasses) during each phase of the pan's strike. This 

boil-on rate for feed materials is a function of the massecuite level and phase of the pan, 

steam rate, head space pressure (vacuum), brix and purity of the feed liquor/molasses. 

Using this method it is possible to construct a piece-wise model of pan feed rate 

characteristics during each phase of the pan’s operation for each of the vacuum pans. Figure 

15 illustrates the empirical model phases for Racecourse mill batch vacuum pan number 3 

level with respect to time during A massecuite strikes on 04/09/2003. Feed material 

consumption rates are associated with each of these phases to build a piece-wise model for 

operation over the entire strike. 

The batch vacuum pan empirical pan models have the following set formulations: 

batch vacuum pans = {b1,b2...bi}  

where, 

i is the number of batch pans operating within the pan stage schedule. 

dutyj = {d1...dj} 

where, 

dutyj is the defined massecuite production duty for batch vacuum pan i. It is important to note 

that only batch vacuum pans designated as “swing” pans will have both A and B massecuite 

production duties. 

phasesij = {p1,p2...pk} 

where, 

k is the number of phases for batch pan i associated with massecuite production duty j. 

dataijk = {syrup feed rate, A molasses feed rate, B molasses feed rate, phase duration, time 

since start of pan strike to commencement of phase} 
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where, 

dataik is phase information for the kth phase of batch vacuum pan i with duty j. 

This series of models is maintained and stored as series of database records for each of the 

vacuum pans assigned duties. For each phase, information on its duration and syrup, A 

molasses and B molasses feed rates is stored along with required time from the start of the 

pan strike to when the actual phase commences. 

Time since pan 
strike has 

commenced 
(min) 

Phase 
duration 

(min) 

A 
molasses 
feed rate 

(t/h) 

B 
molasses 
feed rate 

(t/h) 

Syrup 
feed 
rate 
(t/h) 

Phase information tag 

0 8 0.00 0.00 0.00 Footing  
8 31 0.00 0.00 15.24 Liquor feed 

39 33 18.54 0.00 0.00 A molasses feed 
72 52 16.65 0.00 0.00 A molasses feed 

124 16 0.00 0.00 0.00 Heavy up 

140 103 0.00 0.00 0.00 
Pan drop and preparation 
for next strike 

 

Table 1: Empirical pan model phases and feed rates for Racecourse mill batch vacuum pan number 3 

 

Figure 15: Racecourse mill batch vacuum pan number 3 level vs time during A massecuite strikes on 
04/09/2003 annotated with empirical pan model phases. 
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An example of the empirical pan model phases and their associated feed rates for the batch 

vacuum pan in Figure 15 is presented in Table 1. The feed rate information and phases are 

derived from the empirical pan model information in Appendix B. A piecewise model is 

similarly constructed for each batch vacuum pan in the pan stage schedule and stored 

within the KBSSS local parameter database for the empirical pan models. 

Due to the uniform nature of continuous vacuum pan operation, feed material consumption 

rates and consequently information storage differ compared to batch vacuum pan empirical 

models. Empirical vacuum pan models for continuous batch pans require substantially less 

information and are simpler than batch vacuum pans and can be modelled using a much 

more compact data representation. This is due to not having to store information on strike 

phases or information on differing massecuite production duties. Continuous vacuum pans 

have a single defined massecuite production duty and essentially continuous process 

material feed rate requirements. 

Continuous vacuum pan empirical pan models have the following set formulations: 

continuous vacuum pans = {c1,c2...ck}  

where, 

k is the number of continuous vacuum pans operating within the pan stage schedule. 

continuous_datak = {syrup feed rate, A molasses feed rate, B molasses feed} 

where, 

continous_datak is the set of material feed rates for operation of continuous vacuum pan k.  

A molasses 
feed rate 

(t/h) 

B molasses 
feed rate 

(t/h) 

Syrup feed 
rate (t/h) 

0.00 27.00 0.00 
 

Table 2: Empirical pan model feed rates for Racecourse mill continuous vacuum pan number 8 

An example of feed rates for the continuous vacuum pan number 8 at Racecourse sugar mill 

is presented in Table 2. The feed rates for this continuous vacuum pan model is determined 

empirically and presented in Appendix B. Racecourse sugar mill only has a single 
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continuous vacuum pan for massecuite production on the pan stage, however this 

information format for empirical modelling of continuous vacuum pans would be also used 

if there was other continuous vacuum pans operating within the schedule. 

This compact data set representation models the process material feed rates for continuous 

vacuum pans. This information, similar to the batch vacuum pan representation is also 

stored as a series of database records. These empirical vacuum pan models are maintained 

as a database lookup system and used in combination with the vacuum pan phase 

determination models, proposed in the next section. The vacuum pan phase determination 

models generate the sequence of phases that a pan will go through over a specified forecast 

period. This is then extended through incorporation of the feed rates, from the empirical 

vacuum pan models, within the sequence of phases to assist in determining feed quantities 

used from stock tanks for vacuum pan operations. This information is a major feature of the 

stock tank models presented in Section 5.2.5. 

5.2.4 Vacuum Pan Phase Determination and Forecast Model  

This model determines the phase of the strike each batch vacuum pan is currently 

operating in and then dynamically builds a sequence of phases over the defined prediction 

period using phase information from the empirical pan models. This model takes advantage 

of the repetitive pan stage schedule and consistency in successive pan strikes due to the pan 

stage operating schedule. Figure 16 shows Racecourse sugar mill batch vacuum pan number 

3 performing A massecuite duties on 04/09/2003 and presents level details for three 

successive strikes over a twelve hour period. The repetitive nature of batch vacuum pan 

operations, under standard operating conditions, is highlighted by this diagram and this 

repetitive nature is similarly evident for the other batch vacuum pans on the pan stage. 

The software algorithm for this model is presented in Figure 17. This model makes use of the 

empirical batch vacuum pan models, as presented in Section 5.2.3, as primary input to build 

a similarly repetitive schedule of future pan phases over the forecast period. This sequential 

phase allocation is similar to that in Figure 15 however over a much greater time period. The 

extended time period required is determined by the forecast period.  
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For each batch vacuum pan, current massecuite production duties are determined and the 

appropriate empirical pan model lookup for the vacuum pan is performed. A determination 

is then made using the time of the last pan strike commencement which is used as the 

reference point for the forecast. Calculations using phase information, from the empirical 

vacuum pan models, are used to determine at what point of which phase the pan is 

currently operating in and how much time in this phase has elapsed. With the current 

operating phase determined, a repeatable sequence of phases that the pan will proceed 

through during each strike is dynamically generated over the specified forecast period.  

Two main event loops comprise the fundamental structure of the algorithm. The outer loop 

passes information on each batch vacuum pan in the schedule to the inner loop. The inner 

loop performs a lookup of empirical pan model data for each batch vacuum pan under 

scheduled production duties. This information is then transformed into a data set consisting 

of the starting time of phase, A molasses feed rate, B molasses feed rate and syrup feed rate. 

The If-Then-Else statement block that forms the majority of processing within the inner 

event loop determines the starting time of the phase.  

 

 

Figure 16: Racecourse mill batch vacuum pan number 3 level versus time during A massecuite strikes on 
04/09/2003 
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Figure 17: Vacuum pan phase determination algorithm 
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A sequence of these data sets, representing the scheduled sequence of phases, is 

determined over the specified forecast period. This represents the sequence of scheduled 

phases that the vacuum pan will go through as part of the pan strike operations. These 

processed data sets are now in the correct format to be parsed by the dynamic allocation 

algorithm, detailed in Section 5.3.1. This algorithm determines forecast intervals over the 

prediction horizon, discretized into predefined periods, and apportions feed material 

quantities to each period. Results of the model are then passed to the blackboard system for 

information storage and access by further pan stage process models and KBSSS subsystems.  

By coupling the previously described empirical pan models, from Section 5.2.3, the feed 

materials quantities used over the forecast period can be determined. This information is a 

key requirement in the stock tank predictive models presented in Section 5.2.5.  

5.2.5 Stock Tank Predictive Models  

Considering the problem of stock tank interaction on the pan stage, a mass balance (Bureau 

of Sugar Experiment Stations, 1984) over a generic stock tank yields the governing 

differential equation as: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆 − 𝐷𝐷𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑                           (5.3) 

 

where, 

Level is the stock tank level, 

Supply is the process return streams to the stock tank,  

Demand is the process feed streams from the stock tank. 

 

Equation (5.3) leads to the following liquor tank model: 

 



 83 

𝑑𝑑(𝑑𝑑+1) =  𝑑𝑑(𝑑𝑑) + ∫ 𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑+1
𝑑𝑑 + ∫ 𝑅𝑅 𝑑𝑑𝑑𝑑𝑑𝑑+1

𝑑𝑑 − ∫ 𝐹𝐹 𝑑𝑑𝑑𝑑𝑑𝑑+1
𝑑𝑑           (5.4) 

 

where, 

L is the liquor tank level, 

S is the syrup process stream input,  

R is the remelt sugar process stream return, 

F is the syrup feed rates for all vacuum pans, 

t is a specific point in the overall pan stage schedule. 

 

Equation (5.3) also leads to the following generic molasses tank model, with application to 

both A molasses and B molasses stock tanks: 

 

𝑀𝑀(𝑑𝑑+1) =  𝑀𝑀(𝑑𝑑) + ∫ 𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑+1
𝑑𝑑 − ∫ 𝑉𝑉 𝑑𝑑𝑑𝑑𝑑𝑑+1

𝑑𝑑               (5.5) 

 

where, 

M is the molasses tank level, 

C is the centrifugal molasses process stream return,  

V is the molasses feed rates for all vacuum pans, 

t is a specific point in the overall pan stage schedule. 

Vacuum pans, producing massecuite to be used for processing to product sugar, have their 

contents dropped to receivers. These receivers are used as temporary storage before the 

centrifuging process and allow the vacuum pans to continue in their next strike. As detailed 

in Section 2.3 the massecuite is processed by the centrifugals on the fugal station resulting 
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in the intermediate products of molasses and raw sugar. This processing regime is 

repetitive due to the nature of the pan stage schedule and highlighted in Figure 18. 

This process is modelled through the following method. Upon pan drop the massecuite 

contents of the pan are transferred to the receiver. After a fugalling delay the contents of 

the receiver are fugalled at a steady rate until the receiver reaches a minimum level. These 

three key pieces of information comprise the fugalling model of the receivers - fugalling 

delay, fugalling rate and minimum receiver level. This relationship is presented in Figure 19. 

The pan to receiver relationship and fugalling models have the following set formulations: 

batch vacuum pans = {b1,b2...bi}  

where, 

i is the number of batch pans operating within the pan stage schedule. 

receivers = {r1,r2...rj}  

where, 

j is the number of receivers operating within the pan stage schedule. 

 

Figure 18: Fugalling model characteristics for the fugalling of Racecourse mill receiver number 2 
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receiver dataj = {receiver number, minimum receiver level, fugalling rate} 

where, 

receiver dataj is the receiver information stored for the kth receiver. 

pan-receiver dataij = {batch vacuum pan number, receiver number, average fugalling delay} 

where, 

pan-receiver dataij is information relating the ith batch vacuum pan dropping to the kth 

receiver. 

Batch 
Vacuum Pan 

Number 

Receiver 
Number 

Average 
Fugalling 

Delay (min) 
2 1 42 

 

Table 3: Pan to receiver relationship data for pan number 2 dropping to receiver 1 

 

 

 

Figure 19: Racecourse mill batch vacuum pan number 2 dropping to receiver number 1 during strikes on 
02/09/2003 
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Receiver 
Number 

Minimum 
Receiver 
Level (t) 

Average 
Fugalling 
Rate (t/h) 

1 10 120.80 
 

Table 4: Fugalling model data for receiver number 1 

An example of batch vacuum pan to receiver relationship and fugalling model is presented 

in Table 3 and Table 4 respectively for batch vacuum pan number 2 dropping to receiver 

number 1. This relationship corresponds to Figure 19 displaying receiver and pan levels for 

fugalling performed on 03/09/2003. The average fugalling delay, minimum receiver level 

and average fugalling rate are determined empirically from this historic pan stage control 

system data.  

The complicating factor due to the pan stage schedule arrangement is to handle the 

condition when multiple pans are dropped to the one receiver. This may necessitate the 

fugalling of several quantities of massecuite, depending upon scheduled drop times, with 

these dropped quantities occurring at close intervals. Massecuite drops to receivers occur 

from different pans scheduled to perform the same product massecuite duties. This 

 

Figure 20: Batch vacuum pans numbers 3 and 4 dropping to receiver number 2 after completion of strikes 
on 03/09/3003 
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situation is highlighted in Figure 20 where batch vacuum pans 3 and 4 drop massecuite to 

receiver number 2 during strikes performed on 03/09/2003. Pan number 4 drops 

massecuite product to receiver number 2 at approximately 4:30am. The fugals then 

commence operation and the receiver levels drop due to the fugalling process. At 

approximately 4:50am pan number 3 drops its product massecuite and the receiver level 

rises. This final massecuite quantity is then fugalled until the receiver is emptied. 

The software algorithm provides a syrup tank level prediction through the collation of data 

governed by the stock tank level equation in Equation (5.4). Some further information 

processing is required in quantifying the molasses return quantities from the centrifugal 

station for determination of molasses tank levels governed by Equation (5.5). The stock 

tank level model is dependent upon the models presented in Section 5.2.1 through to 

Section 5.2.4. The syrup prediction model, pan stage steady state flow model, phase 

detection and forecast model, working in tandem with the empirical pan models, all 

contribute information towards stock tank level model.  

The overall algorithm consists of three main event loops with associated information 

processing and presented in Figure 21. The algorithm starts after the phase determination 

and forecast algorithm has been run to determine syrup and molasses feed quantities for 

the batch and continuous pans over the forecast horizon. The syrup feed quantity 

information from this model is collated with the current syrup stock tank levels, average C 

sugar remelt rate from the steady state pan stage flow model and syrup production 

quantities from the syrup rate production model to build a forecast of stock tank levels. 

After collation this information is then stored to the system blackboard. Fugalling 

information is retrieved from the pan stage steady state flow model for later use along with 

the list of receivers. 

The main event loop processes information iteratively for each receiver. For each receiver 

the pans dropping to it along with their assigned massecuite duties are determined. 

Dependant upon massecuite production duties additional fugalling information is retrieved 

from the blackboard for the pan stage steady state flow model results. Within the event loop 

a further two loops perform the bulk of processing work.  
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Figure 21: Stock tank model algorithm 
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The first loop continues the described processes and iteratively builds a projected list of 

pan drops over the forecast horizon. For each pan dropping to the current receiver, within 

this event loop, the algorithm the last known pan drop quantity and time of drop along with 

duration of the pan strike. For the pan drop the associated fugalling start time, duration and 

end time is calculated and added to data lists tracking this information. Over the forecast 

period a sequence of this information is constructed for each projected pan drop for each of 

the pans dropping to the receiver. Since multiple pans may have dropped to a receiver this 

series is lists is sorted depending upon the fugalling batch start times.  

The second loop performs an update on batch quantities to be fugalled if a successive batch 

occurs within the expected fugalling duration of the current batch. Each batch is iteratively 

processed and this check performed. If this occurs the quantities associated with the 

current and successive batch are adjusted. The current batch to be fugalled will not be 

processed for the previously expected duration. Instead processing only runs until the 

successive batch is scheduled to run. The remaining quantity of massecuite to be fugalled is 

added to this successive batch.  

Once all the batches to be processed from the receiver have been checked then batch 

information is passed to the dynamic allocation algorithm. This algorithm, as detailed in 

Section 5.3.1, is used to apportion the molasses quantities from the fugalling process to 

discrete intervals over the forecast prediction period and writes the results to the system 

blackboard. This concludes the processing regime for the main event loop. 

In a similar fashion to the collation of data for the syrup stock tank levels, a similar process 

is performed to predict stock tank levels for both A and B molasses. The molasses return 

rates from the described algorithm are collated with the current molasses stock tank levels 

along with molasses feed rates projected from the phase determination and forecast model.  

Final tank level results for both A and B molasses tank level predictions over the forecast 

period are then stored by the system blackboard. The algorithm then terminates. 

5.2.6 Schedule Optimisation 

Using the previously established pan stage steady state flow model in conjunction with 

multi parameter optimization, the scheduling of when pans should start and complete 

strikes can be made in order to avoid vacuum pan idling time, while minimizing steam 
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usage on the overall pan stage and adhering to sugar production productivity, recovery and 

quality requirements. This is accomplished through the adjustment of the length of the legs 

in the pan stage schedule. The high grade pan stage schedule for Racecourse sugar mill 

2003 cane crushing season is presented in Figure 22. The elementary cycle time for each leg 

of pan strikes is to be noted. 
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Figure 22: Racecourse mill pan stage high grade schedule used during 2003 cane crushing season 
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Previous research (Sugar Research Institute, 2000) indicates the importance of the 

following rules for scheduling: 

• The leg for each pan in the schedule must be of the same duration. The longest 

duration for any leg in the schedule is known as the elementary cycle time and is the 

time taken for a particular point in the pan strike cycle to reappear. Any pan running 

on a cycle time shorter than this will gain no benefit and will instead have to wait for 

pan stage operations to catch up. This imposes a limit to cycle time being the 

duration of the slowest leg of operation. 

• Idling time for pans should be minimised or totally prevented. Instead each pan 

should run for the duration of the schedule cycle time. 

• Strike pans should be staggered to enable better use of receivers and fugals for 

massecuite processing. This also assists in staggering the demands for molasses and 

syrup process materials throughout pan strikes. 

• Some flexibility should be allowed to accommodate the boiling of extra A/B 

massecuite for swing pans. The A/B ratio is typically in a range of 1.5 to 2.5 and the 

schedule arrangement may not exactly match for the pan stage sugar boiling 

formula. Occasionally an extra A or B pan will be required to bring molasses stock 

tank level into balance. 

The key criteria for optimal scheduling are the sugar quality, pan stage recovery, vacuum 

pan steam rate usage and pan stage productivity. These concepts interrelate and often co-

compete. These criteria are now discussed in terms of building an optimal schedule for pan 

stage operations: 

Sugar quality. The ten quality parameters introduced for the 2003 raw sugar quality 

scheme (Queensland Sugar Corporation, 2003) were defined as polarisation, moisture, ash, 

filterability, starch, fine grain, colour, dextran, specific soluble impurities and temperature 

with bonuses of $1.50 to $5.00 per tonne as part of a sliding scale bonus achieved in sugar 

production for sugar meeting all ten of the criteria. As part of these bonuses it is considered 

(Broadfoot, 2004b) that pan stage operations could influence bonuses of $2.50 to $3.00 per 

tonne of sugar produced. The pan stage can only assist in meeting some of these criteria.  
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Figure 23: Premium sugar bonus related to schedule elementary cycle time 

The time taken for pan duties essentially defines the sugar quality criteria of “fine grain”. 

This in turn is indirectly responsible for other factors of pol consistency at the fugals and 

temperature and moisture at the dryers. In relating sugar production premiums back to the 

pan stage schedule it is envisaged that if pan cycle times are greater than 3.5 hours in length 

there is certainty that quality premiums of $2.50 to $3.00 per tonne of sugar will be 

achieved. For pan cycle times of less than 3 hours the likelihood of obtaining premium 

sugar is assumed to be zero. A linear relationship is assumed to exist between these two 

points with a graph of this relationship presented in Figure 23. The bonuses likely to be 

achieved by the pan stage are taken as the mid range value of $2.75 per tonne. 

Pan stage recovery. The pan stage steady state model already provides quantification of 

the long terms flows and purities for pan stage process materials. Modified input 

parameters for the final crystal content of vacuum pans dropping as a function of pan cycle 

time are used as a primary input for the pan stage steady state flow model. Shorter pan 

cycle times yield less exhaustion (ie lower cystal content factors) with the affect of higher A 

and B molasses purities and consequently higher C massecuite purity. Essentially a C 

massecuite purity rise of 1 unit will increase C molasses purity by 0.4 units. Previous 

research (Broadfoot, 2002) shows that a final molasses purity drop from 46.5% to 45.5% 

for a factory processing 2 million tonnes of cane in a season could increase revenue by 

$191, 640. This quantifies the financial value of the amount of sucrose tied up in the final 

molasses stream.  
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Vacuum pan steam rate usage. Steam usage rates affect the pan duty time and hence pan 

productivity rate. The aim is to minimise steam on the non-critical legs of the schedule. 

However no overall benefit is produced if legs in the schedule for any individual pans 

exceed their defined cycle time. A pan exceeding the elementary cycle time of the pan stage 

schedule must wait (ie. idle) until the other operations catch up. The aim is to make use of 

the full length of the allocated cycle time and avoid idling of pans. 

For simplification of modelling and inline with the steam rate modelling approach 

presented in Appendix B a fixed steam rate is assumed over the pan cycle times to 

approximate actual rates. It is noted that steam ramping occurs after the initial pan footing 

phase is undertaken with total steam cut off during periods of pan content transfers and a 

decline before pan drop. However these periods form a minor part of the overall strike 

duration. 

Pan stage productivity. Increasing vacuum pan steam rate, particularly on pans in the 

critical legs of the schedule, will increase throughput and likely result in lower steam usage 

per tonne of sugar produced. However with constrained supplies of sucrose available, 

through syrup quantities forming the pan stage input, the pan stage cannot be driven any 

harder than to accommodate processing of the current syrup supply – even if it is capable. 

Driving pans harder through increased steam usage will result in reduced crystal content of 

the final massecuite. This competes against the objective of increased recovery of the pan 

stage. For the production rates and operating conditions forecast the best choice of A/B 

massecuite production duties must also be determined. 

When the cane CCS is low, which is typical of early and late season conditions (Broadfoot 

and Pennisi, 2001) with peak CCS occurring during mid-season, the A and B massecuite 

production rates will be lower with longer cycle times available for the pan stage schedule. 

The aim should be to use the time for returns from increased recovery, improved quality 

and reduced steam usage. Figure 23 indicates the period of focus for this improved recovery 

with longer cycle times to be scheduled dependant upon the point of season. 

The overall objective is to maximise profit from the sugar creation process with molasses 

by-product accounting for the costs of steam and the bonuses for quality sugar production. 

The profit function is defined as: 
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𝑃𝑃 =  ∫ 𝑀𝑀𝑉𝑉 ∗ 𝑀𝑀𝑅𝑅  𝑑𝑑𝑑𝑑𝑑𝑑1
𝑑𝑑0

+ ∫ (𝑆𝑆𝑉𝑉 +  𝐵𝐵) ∗ 𝑆𝑆𝑅𝑅  𝑑𝑑𝑑𝑑𝑑𝑑1
𝑑𝑑0

− ∑ ∫ 𝐶𝐶𝑉𝑉 ∗ 𝐶𝐶𝐷𝐷  𝑑𝑑𝑑𝑑𝑑𝑑1
𝑑𝑑0

𝑖𝑖=1
𝐷𝐷                     (5.6) 

 

where, 

P is the profit value in dollars, 

MV is the value of product molasses in dollars,  

MR is the molasses production rate in tonnes per hour, 

SV is the value of product sugar in dollars,  

B is the premium sugar bonus in dollars, 

SR is the sugar production rate in tonnes per hour, 

CV is the value of steam in dollars,  

Cn is the steam rate in tonnes per hour for vacuum pan n, 

t0 is the initial point in time, 

t1 is the point in time from t0  with separation of the strike cycle duration. 

The equation presented in Equation (5.6) is used to evaluate possible solutions of pan stage 

schedule cycle times. These solutions are results from the pan stage steady state flow model 

with adapted inputs of the pan cycle time duration. The value of the premium sugar bonus, 

B is determined by the function presented in Figure 23. 

Steam quantity, premium sugar bonus, product sugar quantity and product molasses 

quantity results from the adapted pan stage steady state flow model are used as 

contributing components in determining an optimal scheduling solution. The other primary 

model inputs are the default local model parameters as discussed in Section 5.2.2 and the 

average syrup production rate from the model presented in Section 5.2.1. The primary 

model outputs are seed pan footing quantities, swing pan duties, pan steam rates and strike 

start and completion times. The model interaction between these components is presented 

in Figure 24.   
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Figure 24: Schedule optimisation model utilising the pan stage steady state flow model 

The schedule optimisation algorithm is based upon the vacuum pan phase detection and 

forecast algorithm from Section 5.2.4 and the steady state pan stage flow model from 

Section 5.2.2. Iteratively cycle times based across the schedule cycle time of Figure 23 are 

used as the functional inputs during for the steady state flow model. Flow model results are 

evaluated using Equation (5.6). The solution obtaining the maximum profit value is then 

used to establish the designated model outputs. 

An alternative schedule is inferred upon the completion of the current high grade seed pan 

cycle and then branching to pan duties as defined by Figure 22. The vacuum pan phase 

detection and forecast algorithm from Section 5.2.4 are used to establish the current point 

in operational phase of the high grade seed pan and the current drop point forecast. From 

this information and the defined cycle time the new schedule is established and the start 

and completion points of each pans in the schedule is calculated. Optimal swing pan duties 

are calculated upon this basis and the pan steam rates, based upon the scheduled strike 

duration, are used with the seed pan footing value calculated from the average seed pan 

flow rates taken from the adapted pan stage steady state flow model. 
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5.3 Fundamental System Supporting Technologies 

Several supporting technologies have been developed specifically to support the overall 

software infrastructure. These features are fundamental to the success of the KBSSS and are 

pivotal to the successful implementation of the process models and their ability to integrate 

within the KBSSS. These technologies were designed and developed specifically as core 

supporting functions for the software engines of the KBSSS.  

A time based methodology is employed for mapping forecast production 

quantities/consumption rates and apportioning them to future time intervals. This 

technique is a fundamental and core component of the KBSSS that acts cooperatively with 

the process models to provide forecast capabilities and addresses the limitation identified 

in Section 2.6.1 in the provision of a time based horizon for predictive models. The 

developed system is innovative, unique and developed specifically for supporting the 

dynamic interrelational pan stage process models. 

A blackboard system has also been designed and implemented for information exchange 

between the KBSSS major subsystem. This allows the storage and retrieval of numeric 

based information pertaining to each of the major software engines through the use of a 

database solution for data storage. As part of this system, a blackboard scheduler is 

responsible for the execution order of the KBSSS subsystems interactions with the 

blackboard. 

These two features are of fundamental importance to the KBSSS and are discussed in the 

following sub-sections. 

5.3.1 Dynamic Allocation for Forecast Quantities Algorithm  

The dynamic allocation algorithm was initially established as part of background 

supporting technology for the syrup prediction model however supports several other 

dynamic interrelational pan stage process models as established later in this section. The 

following section proposes a unique and innovative dynamic allocation algorithm for use as 

a prediction mechanism to allocate forecast quantities over a prediction horizon. This 

section references the syrup prediction problem in presenting the development and the 

application of the dynamic allocation algorithm. 
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The syrup prediction model, as established in research by the author (Dodd, Broadfoot, Yu 

and Chiou, 2005a), predicts the future syrup loading quantities to the pan stage by relating 

cane receival data with juice processing information through use of an empirical factory 

operational fraction. This measure determines the fractional sucrose and impurity losses 

through bagasse and mud by-products and consequently the sucrose and impurity quantity 

loadings in syrup to the pan stage. Collectively this determines future syrup quantities 

loadings to the pan stage and allows a forward forecast of the future pan stage loading of 

syrup.  

This model is of key importance as syrup comprises the basic input to the pan stage with 

direct feed to the pan stage liquor tank. Given that there is approximately a 96 minute delay 

from cane entering the factory and being processed to its associated syrup flows to the pan 

stage, this provides the prediction window for future syrup quantities flowing to the pan 

stage based upon cane receival crushing information.  

It is important to realize that cane receival information is non-discrete and may be entered 

into the sugar mill cane receival system at any time. There may also be subsequent delays 

till information for the first expressed juice sample is available from the juice laboratory. 

These information sources need to be collated together for each rake of cane to allow an 

estimate of the sucrose quantity in syrup produced from the juice to be calculated. 

The processing duration to crush a rake of cane will differ between rakes depending upon 

the number of bins in the rake and the transport system at the factory. For smaller factories 

that receive cane through lorry delivery the cane tipped per bin is about 6 minutes of 

crushing time. For factories with tramway systems no juice sample is used to analyse the 

cane unless there are at least three to four bins, each with an approximate weight of 4 

tonnes. Hence this could equate to 16 tonnes of cane to be crushed. In a large factory this 

may correspond to only 1 or 2 minutes of crushing. The typical range of rakes correspond 

to 10 to 30 minutes of crushing but this is solely dependant upon the number of bins within 

the rake, factory crushing rate and cane delivery system in place. 

Such varying factors bring about a challenge to the development of a forward prediction 

model for relating syrup quantities to the pan stage from cane quantities being crushed and 

in allocating these syrup quantities to future forecast intervals over the prediction horizon. 
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In order to realize a predictive model for the allocation of quantities to future time intervals 

an innovative dynamic forecasting algorithm was developed specifically to overcome the 

previously detailed problems. This method is tightly integrated into and works in tandem 

with the pan stage process models to provide forecast abilities. 

Given a specified forecast period for forward prediction at 15 minute intervals, the 

forecasting algorithm determines and apportions the sucrose and impurity quantities for 

each batch of cane to the associated prediction intervals over the forecast horizon. 

Determining the exact intervals that these quantities are apportioned to and the 

apportioned quantities forms the overall goal of the proposed algorithm.  

Key requirements in the development of the dynamic allocation process are the: 

• determination of projected starting and finishing points for future batch processing 

accounting for process delays; 

• ability to handle date/time points for any period in the day; 

• robust handling of date/time for rollover periods across the midnight period of the 

day; 

• number of batches to be processed is not initially known so the algorithm must be 

generic enough to handle an undefined amount; 

• batches can exhibit differing processing rates so starting time information for 

batches may differ; 

• forecast horizon must be flexible; 

• forecast interval resolution fixed to 15 minutes discrete phases; and 

• software components are reusable and able to be applied to other forward forecast 

process models for the pan stage. 
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Figure 25: Dynamic allocation algorithm used to allocate predicted quantities to future forecast intervals 
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The overall algorithm as depicted in Figure 25 consists of two major event loops. The first 

event loop progressively moves through each batch in a list and determines to which 15 

minute phase in the day that the start and end batch belong to. The overall quantity for the 

batch is determined by the sucrose and impurity model (Dodd, Broadfoot, Yu and Chiou, 

2005a). This batch quantity is linearly apportioned to each phase dependant upon how 

many minutes of the overall duration occur within each phase. The difference between the 

batch start and end phase numbers is used as the basis for allocating quantities to the 

intervals occurring between the start and the end of the batch. With no difference, 

quantities are allocated to a single phase. If a large difference exists then the quantities are 

apportioned over a greater time period and allocated to multiple phases. The overall batch 

is temporarily broken down into a series of phases which store the allotted quantity 

information. Each element in the individual batch array is then mapped back to the major 

data array for storage. This process is depicted in Figure 26. 

In this manner the algorithm iterates through each batch in the list, determines the number 

of required phases and quantities for each phase. Each phase is then mapped to the overall 

phase data for the day. A day period consists of 96 discrete 15 minute phases – however 

this mapping only needs to be started from the initial phase number of the very first batch. 

The initial phase number for the start of the first batch is stored for compact data 

representation and used as an offset for array access. Further date/time accountability is 

ensured by extending the array beyond this 96 phase “soft limit” if a batch start or end 

period, encountered throughout the iterative process, moves into a new day. This is only 

performed for the allocation of syrup quantities with prediction intervals that cross the 

midnight threshold into a new day period. 

Figure 26 shows the updating and mapping process used to translate quantities allocated in 

individual phases to the overall data array. Several batches may update quantities to a 

particular phase interval and act in an additive fashion to existing array data. While the 

majority of syrup quantities for a cane rake will only be allocated to a single or two time 

intervals, the approach is robust and flexible enough to handle cane rakes of a much larger 

processing duration and will allocate them appropriately. 

The second event loop in the algorithm progressively passes through each element in the 

major data array and determines the actual prediction time that the array element 
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corresponds to. This determination is provided by ancillary information from the initial 

setup of the major data array. Final results are then written to the blackboard system for 

further use in the liquor stock tank model and steady state flow model. 

Given that this proposed algorithm deals with assigning quantities of materials to future 

forecast intervals this methodology, with some minor modification to handle process delays 

and the method used to determine projected quantities to be apportioned during batch 

processing, is also used for: 

• Forward prediction of syrup usage during forecast batch pan operational 

phases. 

• Forward prediction of A molasses usage during forecast batch pan 

operational phases. 

 

 
 

 

Figure 26: Updating of major data array with quantities from individual batch array phases corresponding to the 
processing of sucrose/impurity batches. 
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• Forward prediction of B molasses usage during forecast batch pan 

operational phases. 

• A molasses return rates from centrifugals after A massecuite pan drop to 

receiver. 

• B molasses return rates from centrifugals after B massecuite pan drop to 

receiver. 

Furthermore, this approach facilitates a unification method for batch and continuous 

processing regimes in the prediction of feed and production rates of process materials. This 

methodology makes it easy to integrate continuous processing streams. For each time 

interval continuous process flow rates and hence quantities are fixed. The only modification 

required is to locate the interval period relevant to the continuous flows and perform the 

required quantity updates in an additive manner. Since the time intervals are readily 

available over the forecast period this is a simple process to interrogate the future time 

interval forecast list and update the associated quantities. The structured methodology 

presented makes seamless unification of batch and continuous processing possible when 

forward predicting process stream feed or production rates. 

5.3.2 Blackboard System  

A blackboard system is utilised to store results from the major subsystems while the system 

builds a forward forecast of operating conditions, system advice and recommendations and 

justifications. Given the variety of knowledge sources used to carry out the overall forward 

prediction, the blackboard system is used to incrementally build a solution over the forecast 

period and work towards providing the prediction. The blackboard system, as an 

information storage repository, holds all major results for each completed run of the 

process models and acts as the intermediary for the fuzzy inference engine to interact with. 

At each prediction point the KBSSS builds a forward prediction and stores the value of each 

major process variable for each forecast point across the forecast period. This information 

is not only stored for information exchange between the subsystem models and access 

between the pan stage process models but also to allow review of archived data from 
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previous forecasts. This is important to aid in performance reviews of the major system 

components through retrospective inspection. 

Logically the blackboard storage structure representation appears in Figure 27. At each 

prediction point a series of data values are determined through use of the dynamic 

industrial process models working in tandem with the fuzzy rule base to generate a 

prediction of future pan stage operating conditions over the forecast period. The forecast 

period is broken down into a series of discrete predefined intervals over this forecast 

horizon and process variables tracked at each of these points. Successive predictions p 

build up a series of prediction matrices consisting of variables v stored at each forecast 

interval t. 

The blackboard system implementation uses a relational database to store the information 

from the KBSSS knowledge sources. The retrieval/insertion of objects within this 

blackboard structure are performed using retrieval/insertion methods as supported in 

previous research (Corkill, Gallagher and Johnson, 1987) in order to affect efficient and 

consistent blackboard interaction. Standard SQL queries are used for the insertion and 

querying of information sources within the blackboard system. 

Implementation-wise the underlying database uses the logical structure, presented in Figure 

27, and maps this to a predefined database table structure. The tuple representing a row in 

the blackboard database is: 

{KnowledgeSource, VariableName, ForecastTime, PredictionTime, VariableValue} 

where, 

KnowledgeSource is the name of the knowledge source contributing the data, 

VariableName is the name of the variable that data is being stored against, 

ForecastTime is a date/time paired data value representing a forecast interval within the 

forecast period, 

PredictionTime is a date/time paired data value representing the time that the forecast was 

generated, 
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VariableValue is the actual data value stored.  

This compact representation allows flexible information storage for knowledge sources 

with varying forecast periods. For example, Section 5.2.1 details the syrup prediction model 

being restricted to a 96 minute forecast period which forms the operational prediction 

boundary on this particular pan stage process model. 

A blackboard scheduling system controls the sequence for interaction of the fuzzy inference 

engine and the pan stage process models and with blackboard. Due to logical data flow from 

these operations, the blackboard scheduling system also schedules the discourse and 

explanatory integrator subsystem processing. A predetermined scheduling action is 

required due to the data dependencies that exist both within the models and the inference 

process. An information hierarchy exists within the process models determining the order 

of their processing. Figure 28 shows the pan stage process model hierarchy. Pan stage 

process models higher in the hierarchy are dependant upon information from the more 

fundamental models at the lower levels. The arrows in the diagram display information 

 

Figure 27: Blackboard system component implementation 
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flow between the process models. The empirical vacuum pan models, as one of the essential 

and key developed pan stage process models, do not take part in scheduling by the 

blackboard scheduling system. The empirical vacuum pan models are static in nature and 

are used as local process model parameters for vacuum pan phase determination and 

forecast models. This relationship is in Figure 28 indicated by the broken arrow. 

At the most significant hierarchical level 3, the schedule optimisation model utilises the pan 

stage steady state flow model and vacuum phase determination and forecast process model. 

This use is through direct interaction with components blackboard results from the pan 

stage process models and the use of the actual models themselves. 

Models are iteratively processed based upon level within the defined hierarchy. Lower level 

models are scheduled for completion first with the next level of models in the hierarchy 

successively scheduled after their completion consecutively. Due to the dependence 

between local trend adjustment through the fuzzy inference process and also the process of 

generation of explanations to support system advice, the pan stage process models require 

additional information processing to be performed in one atomic transaction. This 

relationship is presented in Figure 29 with the blackboard system scheduler in charge of 

directing the subsystem components displayed in the shaded area. Annotated numbers 

within the figure refer directly to the order of processing steps for pan stage process model 

evaluation working in tandem with the fuzzy rules base and the KBSSS explanatory system.  

 

 

 

Figure 28: Model hierarchy for blackboard scheduling 
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These steps are: 

1. Pre-processing adjustment of pan stage process model parameters due to localised 

conditions. As part of the fuzzy inference process the explanations tagged to rules 

are stored for later collation and presentation by the discourse and explanation 

integration subsystem (detailed in Section 5.5). This step of the process draws from 

the fuzzy knowledge and rule base, end user input and local model parameters for 

the process model under processing. 

2. Pan stage process model evaluation. The fuzzy inference process adapts local 

process model parameters. These adapted parameters are combined with the 

default model parameters as detailed in Section 5.4. This localisation allows 

adaption to current real world operating conditions that are unknown to the KBSSS 

until runtime. Results from the pan stage process model are stored within the 

 

Figure 29: Blackboard system scheduling with simplified subsystem data interaction for pan stage process model 
processing 
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blackboard data repository for further use in the fuzzy inference process and by 

process models further up the model hierarchy. 

3. Post-processing adjustment of pan stage process model results. Post-processing of 

the pan stage process model results occurs to also provide a match with local 

operating conditions. Explanations tagged to these rules further assists in the 

justification process of system advice and recommendations.  

The blackboard scheduling system iterates through each of the pan stage process models as 

defined by the hierarchy in Figure 28 with the information processing order for fuzzy 

inference engine pre-processing and post-processing of rules working in tandem with rule 

tagging, for explanations, and evaluations of the process models as dictated by Figure 29. As a 

final event in the schedulers role, it calls the discourse and explanatory integrator 

subsystem for collating and formatting supporting justifications as presented in Figure 10.  

This entire iterative regime is repeated each time the KBSSS performs a forecast of future 

operating conditions and its generation of system advice and recommendations with 

supporting justifications. 

The following section further describes in further detail on the method used to integrate the 

pan stage process models with the fuzzy rule base. 

5.4 Integration of Process Models into the Fuzzy Rule Base 

The fuzzy inference engine is a core subsystem of the KBSSS as presented in Chapter 4. This 

system processes user responses against the systems knowledgebase to produce system 

recommendations and advice. The operation of this subsystem is based upon conventional 

fuzzy If-Then rule based systems mechanics. To ensure refinement of its advice and in 

matching against real world conditions, that do not form part of the static predefined 

knowledgebase, the system must be able to provide adjustment to match local operating 

conditions. In the provision of this capability, techniques for the merger of the dynamic pan 

stage industrial process models with the fuzzy rule base are proposed in the following 

section. 

In overcoming the limitation of existing approaches presented in Chapter 2, this method 

allows the: 
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• prediction of future pan stage operating conditions based upon approximate 

information; 

• inclusion of heuristic based information to support real world operating conditions 

based upon current operating circumstances and localised trends; 

• adaption of localised parameters without the need for modification of the pan stage 

industrial process models; and 

• functioning of pan stage process models in the absence of user supplied local trend 

information. 

The following subsections review the fuzzy If-Then rules in relation to the KBSSS 

implementation. This is then followed by the method for pan stage process model 

integration within the fuzzy rule base and methodology in providing a prediction of future 

pan stage operating conditions. 

5.4.1 Fuzzy Linguistic Variables  

Unlike classical logic which requires a deep understanding of a system, exact equations, and 

precise numeric values, fuzzy logic incorporates an alternative way of thinking. Such 

modelling of complex systems using fuzzy logic utilizes a higher level of abstraction that 

originates from knowledge and experience. Fuzzy logic allows for the expressing of 

imprecise knowledge with linguistic descriptions such as very long, high temperature, and 

low yield. 

This approach is based upon seminal research first presented by Zadeh (1965) in the 

development of fuzzy set theory. For example, the fuzzy linguistic variable level 

representing the process material quantities in a stock tank may be represented as in Figure 

30. The linguistic values of empty, low, mid, high and full that the fuzzy variable may take are 

each represented by a membership function. A stock tank holding a quantity of 63 tonnes of 

process material would have a degree of fulfilment (Berkan and Trubatch, 1997) of 0.23 for 

the empty fuzzy set and a degree of fulfilment of 0.77 for the low fuzzy set. 
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This modelling approach allows for approximate information such as human experience 

and knowledge to be encoded as part of knowledge representation and provides a powerful 

framework for information modelling of imprecise concepts. 

Unlike classical logic which requires a deep understanding of a system, exact equations, and 

precise numeric values, fuzzy logic incorporates an alternative way of thinking. Such 

modelling of complex systems using fuzzy logic utilizes a higher level of abstraction that 

originates from knowledge and experience. Fuzzy logic allows for the expressing of 

imprecise knowledge with linguistic descriptions such as very long, high temperature, and 

low yield. 

This approach is based upon seminal research first presented by Zadeh (1965) in the 

development of fuzzy set theory. For example, the fuzzy linguistic variable level 

representing the process material quantities in a stock tank may be represented as in Figure 

30. The linguistic values of empty, low, mid, high and full that the fuzzy variable may take are 

each represented by a membership function. A stock tank holding a quantity of 63 tonnes of 

process material would have a degree of fulfilment (Berkan and Trubatch, 1997) of 0.23 for 

the empty fuzzy set and a degree of fulfilment of 0.77 for the low fuzzy set. 

 

 

Figure 30: Fuzzy membership functions for the fuzzy variable level representing quantity of process material in a 
stock tank  
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This modelling approach allows for approximate information such as human experience 

and knowledge to be encoded as part of knowledge representation and provides a powerful 

framework for information modelling of imprecise concepts. 

5.4.2 Fuzzy If-Then Rules  

Fuzzy If-Then rules provide a mapping functionality for domain knowledge between fuzzy 

sets that exist in a relationship. This allows associations to be developed between fuzzy 

neighbourhoods within a region. The modelling capabilities afforded by this approach allow 

the capturing of inexact information which comprises human knowledge. 

The standard fuzzy rule is of the form: 

IF x is A THEN y is B                                                                                                                   (5.7) 

where,  

x is the linguistic variable of the rule antecedent, 

A is the linguistic value of the rule antecedent, 

y is the linguistic variable of the rule consequent, 

B is the linguistic value of the rule consequent. 

Each of the fuzzy values represented for the fuzzy rules in (5.7) is composed of a 

membership function as detailed in the previous subsection. The left hand side component 

of this rule is known as the antecedent and the right hand side is known as the consequent. 

An example of human knowledge for the pan stage process may be the following 

relationship: 

IF fugal wait time is high THEN duration till receiver is fugalled is long 

This fuzzy rule is depicted visually in Figure 31. The fuzzy antecedent variable fugal wait time 

is mapped against the fuzzy consequent variable duration till receiver is fugalled. Fuzzy 

values within the diagram occupy regions and allow associations to be established as 

highlighted by the connecting arrows. 
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5.4.3 Method of Integration for Process Models with Fuzzy If-Then Rules 

This section covers the approach used in the implementation and merger between the 

dynamic industrial pan stage process models and the fuzzy logic rules for use in the 

prediction process. This implementation and integrationary approach will be explained 

using process diagrams together with functional definitions of the fuzzy process. The 

following sections will present an overview of the approach used for fuzzy logic based pre-

processing and post-processing adjustments for pan stage process model input parameters 

and output data respectively given. A summary of the integration process is then provided. 

Previous research (Takagi and Sugeno, 1985) has proposed the approximate modelling of  

complex systems through approximations of the behaviour of smaller segments of the 

solution. A sub class of this approach is the zero-order Sugeno fuzzy model having fuzzy 

rules of the following form: 

 

 

 

 

Figure 31: Fuzzy rule relationship displaying antecedent mappings to associated consequent components 
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IF x is A THEN y = b                                                                                                          (5.8)  

where,  

x is the input value from the system consultation process, 

A is the linguistic value of the rule antecedent, 

y is the output, 

b is the fuzzy singleton membership function value. 

In following the zero-order Sugeno fuzzy model approach of Equation (5.8) the fuzzy 

singleton representation is used for consequent membership functions representation due 

to ease of dynamically allocating the process model numeric results. This representation 

also allows pan stage process model input parameters to be statically specified as 

consequent fuzzy singletons. 

The fuzzy rule format from (5.8)  is modified to: 

IF (user input:variable value) is (linguistic value)  

THEN (process model:parameter variable) = (constant value) (5.9) 

 

IF (user input:variable value) is (linguistic value)  

THEN (output variable) = (process model:output value * constant value) (5.10) 

where, 

user input:variable value is the value determined through the user consultation 

process and reflects real world information that is not part of the predefined system 

knowledge base, 

process model:variable value is a defined data variable for a pan stage process 

model, 

linguistic value corresponds to a particular fuzzy value for a given fussy set, 
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constant value is a predefined static numeric value, 

output variable is the resulting storage parameter for the results of the fuzzy 

inference process. 

Equation (5.9) and Equation (5.10) are derived from Equation (5.8) to allow for the 

incorporation of the pan stage process model into the fuzzy rule base. The defined pan stage 

process models now becomes part of the expert system rule and is chained into the fuzzy 

rule antecedent and consequent components. The components comprising the consequent 

function represent the functional value of the fuzzy singleton membership function location 

in the consequent fuzzy set universe of discourse. This approach assigns the fuzzy singleton 

membership function value from the results of a pan stage process model through a simple 

lookup process. This results in a tightly bound relationship between the fuzzy rule 

consequent function component of Equation (5.8) and the pan stage process model.  

The fuzzy singleton membership function for fuzzy rule consequents is presented in Figure 

32. This function is characterised by a degree of fulfilment of unity at one particular 

universe of discourse point and zero for all others. Related research into dynamic singleton 

membership function adaption was undertaken by the author for fuzzy system control 

based upon neural network learning (Dodd, 2007). However in the KBSSS implementation 

singleton adaption is due to user supplied information, from the consultation process, to 

match against real world operating conditions. The uniqueness of the approach is in 

integrating the meta-knowledge adaption (Chiou and Yu, 2007c) with the proposed pan 

stage process models and fuzzy rule singleton consequent functionality from the zero-order 

Sugeno model approach. 

The final crisp defuzzified output value is determined by the commonly accepted weighted 

average value method for the fuzzy rules according to (5.11) : 

              𝑆𝑆′ =  ∑ 𝐷𝐷𝐷𝐷𝐹𝐹𝑖𝑖𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1
∑ 𝐷𝐷𝐷𝐷𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖=1

                                                            (5.11)  

For each rule i having a consequent output value of yi with an rule antecedent degree of 

fulfilment value of DOFi then the final defuzzified output value, for a system with N fuzzy 

rules, is y’. This defuzzification process converts the singleton rule consequents into one 

crisp output depending upon rule firing strengths from the inference process. 
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Figure 32: Relationship between fuzzy consequent membership functions and pan stage process model 
inputs 

 

5.4.3.1 Fuzzy Pre-processing  

Fuzzy logic is used as the pre-processor for pan stage process models input parameters in 

providing localised to suit real world operating conditions that are not part of the 

predefined static KBSSS knowledge base. The inference process is carried out from 

information elicited from end user queries working in conjunction with the fuzzy 

knowledge base to adapt pan stage process model parameters to suit localised data trends 

for real world operating conditions. The functional definition for this process working in 

tandem with the fuzzy inference process is: 

PreprocessingFuzzyRule(DatasourceKnowledgeBase: q1, q2.... qm, 

        DatasourceModelParameters: p1, p2.... pn) 

                    = (OutputModelParameters: p1’, p2’.... pn’) 

Within this functional definition q1, q2.... qm are the submitted end user responses from the 

consultation process inferred against the knowledge base data source, 

DatasourceKnowledgeBase and provides localised adaption of the model parameters, p1, p2.... pn, 

from local KBSSS pan stage process model data sources. The return values of 

PreprocessingFuzzyRule are the parameters p1’, p2’.... pn’ corresponding to pan stage 



 115 

process model parameters. These results are a localised variation of the original default 

model parameters having being adapted to match real world operating conditions. 

Fuzzy rules for the pre-processing process follow the format presented in Equation (5.9). 

After the fuzzy inference process (Berkan and Trubatch, 1997; Cox, 1999) has been 

undertaken by the KBSSS, the defuzzification process from Equation (5.11) is performed to 

resolve the rule firing strengths in combination with the fuzzy rule consequent singleton 

membership function values into a single crisp output.  This output then forms one of the 

major inputs to the pan stage process models. This process is depicted in Figure 32. 

5.4.3.2 Pan Stage Process Model Forecast 

After the pre-processing adaption is performed, the proposed pan stage process models 

detailed in Section 5.2, are run to provide a forward forecast of future pan stage operating 

conditions. 

The functional definition for this process working in tandem with results from fuzzy pre-

processing method detailed in the previous section is: 

ProcessModel (DatasourceBlackboard: b1, b2.... bm,  

 DatasourceModelParameters: p1’ Φ p1, p2’ Φ p2.... pn’Φ pn, 

 DatasourceControlSystem: c1, c2.... ck) 

 = (DatasourceBlackboard: o1, o2.... op) 

Within this functional definition b1, b2.... bm are the data dependencies from other pan stage 

process models and drawn from the blackboard system data source DatasourceBlackboard. 

Outputs from pan stage process models can be fed forward to process models further down 

the hierarchy as depicted in Figure 28. Information sources are retrieved from the KBSSS 

blackboard system. Recall from Section 5.3.2 that the blackboard system is used as an 

information repository for working results from the pan stage process models and works as 

an intermediary for interaction between the proposed pan stage process models. 
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Control system data c1, c2.... ck is drawn from a parasitic data feed to existing control system 

data source DatasourceControlSystem as depicted in Figure 3. The information sources required is 

particular to the individual pan stage process model and has been outlined in Section 5.2. 

The process model local default parameters, p1, p2.... pn, are drawn from the model data 

source, DatasourceModelParameters, are aggregated with the results p1’, p2’.... pn’  of the fuzzy pre-

processing source OutputModelParameters outlined in the previous section. Default parameters 

have lower precedence and are always overridden by their fuzzy logic derived counterparts 

– the results of the pre-processing operation are used instead. An aggregation operator Φ is 

used which provides this precedence. For each of the required pan stage process model 

input parameters this aggregation method is used. 

Although fuzzy logic is robust and able to deal with imprecise data, fuzzy logic is unable to 

function in the event of missing data (Berkan and Trubatch, 1997; Cox, 1999) required for 

the inference process. Due to the method used in merging the fuzzy logic rule base with the 

dynamic pan stage process models, in the absence of fuzzy inference localised adaption for 

process model input and output, the system will function though the use of default 

parameters for the process models. However local model parameters have lowest 

precedence and are always overridden. Use of the default process model parameters will 

yield a generic process model without localisation capabilities accounting for current 

operational conditions. This approach ensures continued system functioning in absence of 

the fuzzy pre-processing of parameters. 

The values returned from ProcessModel are the parameters o1, o2.... op corresponding to 

pan stage process model output values as a result of running the proposed models are then 

stored against the blackboard data source, DatasourceBlackboard. These values are then 

available for fuzzy post-processing adjustment to provide localised adaption of results in 

order to suit real world conditions that are not part of the predefined knowledge base. 

5.4.3.3 Fuzzy Post-processing 

Outputs from the pan stage process models can be adapted to suit localised conditions in a 

similar process to that occurring in the pre-processing phase. Fuzzy logic is used as the 

post-processing adjustment for pan stage process models output values to provide localised 
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adaption to suit real world operating conditions that are not part of the predefined static 

KBSSS knowledge base. 

The inference process is carried out from information elicited from end user queries 

working in conjunction with the fuzzy knowledge base to adapt pan stage process model 

output data to suit localised data trends for real world operating conditions. The functional 

definition for this process working in tandem with the fuzzy inference process is: 

PostProcessingFuzzyRule(DatasourceKnowledgeBase: q1, q2.... qm, 

        DatasourceBlackboard: o1, o2.... op) 

                   = (Outputvariables: o1’, o2’.... op’) 

Within this functional definition q1, q2.... qm are the submitted end user responses from the 

consultation process inferred against the knowledge base data source, 

DatasourceKnowledgeBase and provides localised adaption of the process model output values, 

o1, o2.... op, from local KBSSS pan stage process model data sources. The return values of 

PostProcessingFuzzyRule are the parameters, o1’, o2’.... op’, corresponding to pan stage 

process model output variable values. These results are a localised variation of the original 

pan stage process model output data, o1, o2.... op, stored in the blackboard system data 

repository, DatasourceBlackboard. 

When compared to the pre-processing phase, the minor difference is that pan stage process 

models results are chained into the fuzzy If-Then rule consequent component with the 

location of the singleton membership function dynamically scaling due to the affects of the 

output function of the rule consequent component. Fuzzy rules for the post-processing 

process follow the format presented in Equation (5.10). Process model results are used to 

assist in dynamically allocating the fuzzy singleton membership function location defined 

by the fuzzy rule consequent component. For the KBSSS, simple scaling adjustment of the 

pan stage process model output as part of the fuzzy If-Then rule consequent output function 

suits the application requirements. 

Similar to the pre-processing phase, after the fuzzy inference process (Berkan and 

Trubatch, 1997; Cox 1999) has been undertaken by the KBSSS, the defuzzification process 

from Equation (5.11) is performed to resolve the rule firing strengths in combination with 
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Figure 33: Relationship between fuzzy consequent membership functions and pan stage process model 
outputs 

 the fuzzy rule consequent singleton membership function values and defined consequent 

constant values into a single crisp output.  This resulting output then forms the final output 

for the process model output under consideration. This process is depicted in Figure 33. 

The aggregation operation used for pre-processing is similarly used as part of the collation 

of result post-processing. The results of the pan stage process model, o1, o2.... op,  are then 

combined through the use of the aggregation operator Φ with the possible post-processing 

crisp defuzzified values, o1’, o2’.... op’. Post-processing results have precedence over the pan 

stage process model direct output. This results in the final output stored to the blackboard 

system information repository, DatasourceBlackboard. This results in final stored output of: 

DatasourceBlackboard: o1’ Φ o1, o2’ Φ o2.... op’Φ op 

This final resulting output is stored as part of the blackboard system data sources and 

available to other models in the hierarchy presented in Figure 28. Recall from Section 5.3.2 

that the blackboard system stores information that is shared between the proposed process 

models in building a forward prediction of future pan stage operating conditions over a 

forecast horizon. 
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Figure 34: Annotated pan stage process model interaction diagram with fuzzy inference pre-processing and 
post-processing functionality of process model input and output data 

5.4.3.3 Integration Summary of Process Models with Fuzzy If-Then Rules 

A summary of the integration procedures, for the merger of the pan stage process models 

with fuzzy If-Then rules used for localisation adaption to match real world operating 

conditions, that have been covered in this section now follows. 

The dotted lines in Figure 34 indicate optional processes that may be performed. The pre-

processing and post-processing phases are only undertaken on the provision that fuzzy If-

Then rules have been defined for the particular pan stage process model under 

consideration. This approach promotes independent development of pan stage process 

models and linkage with rules. 
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Annotated numbers within the figure refer directly to the order of processing steps for the 

fuzzy inference pre-processing and post-processing localisation adjustments working in 

tandem with the pan stage process models and the KBSSS explanatory subsystem.  

These steps are: 

1. Fuzzy pre-processing localisation of pan stage process model input parameters is 

performed to match with real world operating conditions. 

2. Rule service tags for firing If-Then fuzzy rules are appended to the active tracking 

table to assist in the justification and explanation process. This process is detailed in 

Section 5.5 and works to assist in providing explanation and justification capabilities 

of the system results and how they were achieved. 

3. Defuzzification is used to provide crisp data from results of the fuzzy inference pre-

processing phase. Aggregation of these results with the default process model 

parameters then occurs with higher precedence given to the use of the results of the 

pre-processing phase. 

4. The current pan stage process model to be evaluated is run. An individual model 

assists in the process of building an overall forward forecast of pan stage operating 

conditions. 

5. Fuzzy post-processing localisation of pan stage process model output results is 

performed to match with real world operating conditions. 

6. This step functions in the same manner as step 2. 

7. Defuzzification is used to provide crisp data from results of the fuzzy inference post-

processing phase. Aggregation of these results with the process model output results 

then occurs with higher precedence given to the use of the results of the post-

processing phase. 

8. Final pan stage process model results are saved to blackboard data repository for 

use by other process models in building the forecast of future pan stage operating 

conditions. 
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This iterative process is undertaken until all of the pan stage process models have been run 

in line with the scheduling directives of the blackboard system scheduler component and in 

meeting with the data dependencies that exist between the process models as presented in 

Figure 28. 

5.4.4 Prediction Methodology for Integrated Pan Stage Process Models with 

Fuzzy Rule Base 

The following section details the methodology used in the merger of the dynamic pan stage 

process models and the fuzzy rule base. Program statement blocks are used to show the 

sub-tasks undertaken in the prediction process. Scheduling of the procedures called within 

the main forecast block is undertaken by the blackboard scheduling system and maintains 

the data integrity and order presented in Figure 28. One possible sequence of calling 

subsystem pan stage process models in order to carry out the forward prediction has been 

presented. This sequence of operations builds the forward prediction of pan stage 

operating conditions and works in tandem with the fuzzy rule integration methodology 

presented in Section 5.4.3. 

begin procedure_forecast 

call procedure_P1 //Syrup rate prediction model 

call procedure_P2 //Pan stage steady state flow model 

call procedure_P3 //Empirical vacuum pan models 

call procedure_P4 //Vacuum pan phase determination and forecast models 

call procedure_P5 //Stock tank prediction models 

call procedure_P6 //Schedule optimisation 

end function_forecast 

 

begin procedure_P1 //Syrup rate prediction model 

 infer input parameters against knowledge base //Fuzzy inference pre-processing 

 aggregate input and call procedure_syrup_rate_prediction_model 

 infer output //Fuzzy inference post-processing 

 aggregate output and save results to blackboard 

end procedure_P1 
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begin procedure_P2 //Pan stage steady state flow model 

 infer input parameters against knowledge base //Fuzzy inference pre-processing 

 aggregate input and call procedure_pan_stage_steady_state_flow_model 

 infer output //Fuzzy inference post-processing 

 aggregate output and save results to blackboard 

end procedure_P2 

 

begin procedure_P3 //Empirical vacuum pan models 

 infer output //Fuzzy inference post-processing of static models 

 aggregate output and save results to blackboard 

end procedure_P3 

 

begin procedure_P4 //Vacuum pan phase determination and forecast models 

 infer input parameters against knowledge base //Fuzzy inference pre-processing 

 aggregate input and call procedure_vacuum_pan_phase_determination_and_forecast_models 

 infer output //Fuzzy inference post-processing 

 aggregate output and save results to blackboard 

end procedure_P4 

 

begin procedure_P5 //Stock tank prediction models 

 infer input parameters against knowledge base //Fuzzy inference pre-processing 

 aggregate input and call procedure_stock_tank_prediction_models 

 infer output //Fuzzy inference post-processing 

 aggregate output and save results to blackboard 

end procedure_P5 

 

begin procedure_P6 //Schedule optimisation 

 infer input parameters against knowledge base //Fuzzy inference pre-processing 

 aggregate input and call procedure_schedule_optimisation 

 infer output //Fuzzy inference post-processing 
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 aggregate output and save results to blackboard 

end procedure_P6 

 

5.5 Explanatory Capabilities (Discourse Semantics) 

In order for the KBSSS to provide explanatory capabilities, a slimline version of the Rule 

Explanation for Expert Systems Using Service Tags, Tables and Tracing (REST3) method 

developed in previous research (Chiou and Yu, 2007a) has been adapted and implemented. 

Each fuzzy If-Then rule in the KBSSS has an information tag component that acts as a 

reference to stored explanatory information. This information assists in justifying the 

rationale behind the fuzzy rules. For each rule fired as part of the inference process, the 

explanatory subsystem builds a table of active rules and then works collectively with the 

discourse/explanatory knowledge base to provide supporting information. 

This generation of supporting justifications does not interact in any way with the pan stage 

process models or fuzzy inference process that takes place. This mechanism is kept 

separate in order to act as an independent and impartial subsystem. In line with the KBSSS 

requirements simple English based sentences are used to provide explanatory support on 

system recommendations and advice. The system explanations are stored in database 

format as part of the discourse/explanatory knowledge base presented in Figure 8. At the 

end of the process the supporting explanations are integrated and formatted for 

presentation to support the final KBSSS justifications and recommendations. 

When fuzzy rules fire as part of the inference process the service tag appended to the rule 

along with the degree of fulfilment value from the rule predicate and the rule number are 

transferred and stored as an entry in the Active Table. The tuple representing a row in the 

Active Table is: 

{ServiceTag, RuleNumber, DegreeOfFulfilment, ModelName} 

where, 

ServiceTag is an integer value representing a unique identifier for reference with the 

discourse/explanation knowledgebase, 
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RuleNumber is a unique integer identifier of the firing fuzzy rule, 

DegreeOfFulfilment is the degree of fulfilment from the fuzzy rule predicate, 

ModelName is a character string sequence identifying the pan stage process model that the 

fuzzy rule is identified with. 

This system provides a linear rule trace for active rules that are firing due to the inference 

process. If the degree of fulfilment exceeds the threshold, which is defined as part of the 

fuzzy rule parameters, then an active database lookup is performed to retrieve the 

explanation for the associated ServiceTag from the Discourse/Explanation Knowledge Base. 

The tuple representing a row in the Discourse/Explanation Knowledge Base is: 

{ServiceTag, Explanation} 

where, 

ServiceTag is an integer value and unique identifier for explanations stored within the 

discourse/explanation knowledgebase, 

Explanation is a sequence of characters forming the rule supporting explanation in English. 

The ServiceTag and Explanation information are appended to a Discourse Proforma Table as 

active explanations along with the associated name of the process model associated with 

the firing fuzzy rule. This modification is unique to the KBSSS implementation and 

associates explanations and supporting advice with the individual process model associated 

with the active fuzzy rules to assist in final formatting. The tuple representing a row in the 

Discourse Proforma table is: 

{ServiceTag, Explanation, ModelName, ProcessingType} 

where, 

ServiceTag is an integer value and unique identifier for explanations stored within the 

discourse/explanation knowledgebase, 

Explanation is a sequence of characters forming the discourse explanation in English, 
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ModelName is a character string sequence identifying the pan stage process model that the 

fuzzy rule is identified with, 

ProcessingType is integer identifying whether the discourse explanation is associated with 

fuzzy rule pre-processing or post-processing localisation. 

The program structure for the explanatory subsystem is presented in Figure 35. The 

subsystem is scheduled by the blackboard system scheduler, as outlined in Section 5.3.2, 

after the forward forecast by the pan stage process models working in tandem with the 

fuzzy inference process has been undertaken.  

Service tags resulting from the inference process form the primary input for this major 

subsystem. These tags are collated for further processing by the described REST3 process. 

 

 

Figure 35: Program structure for discourse semantics in providing explanatory capabilities adapted from 
previous research (Chiou and Yu, 2007a) 
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As part of this process they are cross referenced with explanation information stored in the 

discourse/explanatory knowledge base and consolidated as part of the discourse proforma 

before final formatting. This proforma information is formatted to display the final systems 

explanations and justifications to provide support for the primary KBSSS advice and 

recommendations. 

5.6 Summary 

This chapter has covered in detail the design and implementation of the three core 

intelligent system supporting technologies. The first subsystem reviewed within this 

chapter provides a prediction of pan stage operating conditions. A series of dynamic 

industrial pan stage process models were proposed to describe the interactions of the pan 

stage with the syrup production and centrifugal sections along with stock tank models, 

using vacuum pan phase determination and empirical vacuum pan models, to forecast stock 

tank levels. A schedule optimisation model based upon an adapted pan stage steady state 

flow model approach was also developed, encompassing the proposed models, in order to 

affect efficient scheduling of vacuum pans on the stage while minimising steam usage, 

boosting productivity and maintaining adequate stock material levels. 

These models were aiding by two core supporting technologies developed specifically for 

model functionality. A time based methodology was employed for mapping forecast 

production quantities and apportioning them to future time intervals. It provided a unifying 

system for pan stage process model forecasting though the allocation of prediction 

quantities to future forecast intervals. This technique is a fundamental and core component 

of the KBSSS that acts cooperatively with the process models to provide forecast 

capabilities. A blackboard system for information exchange between major subsystems and 

dynamic industrial process models was also developed. A blackboard scheduling system 

was also proposed due to the hierarchical nature of the proposed pan stage process models 

and their interaction with the fuzzy inference engine for localisation adaption.  

An integration method for merger of the dynamic industrial pan stage process models was 

proposed as part of the second core KBSSS subsystem. This method utilised fuzzy logic pre-

processing and post-processing adjustment applied to pan stage process model input 

parameters and output results respectively for the proposed process models. This 
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incorporation of the dynamic process models as part of the fuzzy If-Then rule consequent 

components allowed features particular to each model to be isolated for localisation 

adaption to account for local trends through the influence of dynamic real world data only 

known at system runtime.  

The final subsystem described in this chapter is the explanatory capabilities. A fuzzy rule 

based system using tags and tables has been adapted from previous research for use within 

the KBSSS. This mechanism allows the KBSSS to provide explanation and justification 

support to garner user acceptance of primary system recommendations. 

In the following chapter the functionality of the KBSSS will be demonstrated in two ways. 

The first will demonstrate how expert knowledge is transformed into a fuzzy If-Then rule 

using the proposed industrial process models working in tandem with the fuzzy inference 

system and explanatory capabilities. The second phase will demonstrate the KBSSS’s 

capabilities in the provision of strategies for management and best practices. Predictions of 

future pan stage operating conditions will be compared and evaluated against pan stage 

control system information to assist in validation of the proposed pan stage process models 

working in conjunction with the fuzzy inference engine. 
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Chapter 6: Modelling, Testing and Results 

 

 

6.1 Introduction 

This chapter will demonstrate the functionality and capabilities of the developed KBSSS 

software application. This will include the process on how fuzzy If-Then rules are 

developed and implemented as part of expert knowledge and testing of the results provided 

by the KBSSS. These results will be tested against control system data for their evaluation. A 

discussion of the test results will be undertaken after each stage of the test is performed. 

This chapter is structured as follows. Section 6.2 details the operational levels within the 

KBSSS and the system interaction with different users. Section 6.3 details the knowledge 

acquisition process in building and storing expert knowledge as part of the KBSSS 

knowledge and discourse bases. Section 6.4 outlines the process of system consultation 

with Section 6.5 presenting and discussing KBSSS test results. 

6.2 Process Flow and Operation Levels 

The KBSSS is supported by the seven databases detailed in Figure 8 of Chapter 4. During 

KBSSS operation, the access and modification of data within these information sources 

occurs at two levels of operation. These levels are: 

1. Knowledge acquisition process, and 

2. Consultation process. 

Through the knowledge acquisition process knowledge engineers, content experts and pan 

stage experts model pan stage knowledge with the information extracted from thisprocess 

stored as part of the KBSSS data sources. The consultation process level allows end users to 

interact with the KBSSS for advice, recommendations and supporting information in the 

provision of best practices and management for pan stage operations. 
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Systems users fall into four distinct categories. End users interact in a consulting fashion 

with the KBSSS in the provision of its advice. Knowledge engineers and content experts 

develop and maintain the system knowledge and discourse bases used in modelling expert 

knowledge and explanatory capabilities. Pan stage experts develop and maintain the 

dynamic industrial pan stage process models and their default model parameters used in 

the prediction of future operating conditions. The final system group is a pseudo-user 

interaction maintained by the sugar mill control system data sources. Information sources 

from cane receival, juice processing station, pan stage and centrifugal station are real world 

information sources that the KBSSS draws from during its operation. 

The seven database systems used in the KBSSS are grouped depending upon functionality. 

This clustering is: 

1. Real world databases consisting of user dynamic data and sugar mill dynamic data; 

2. System supporting database consisting of blackboard database; 

3. Knowledge bases consisting of the KBSSS knowledge base and fuzzy If-Then rule 

base; 

4. Discourse base comprising the discourse/explanation knowledge base; and 

5. Model parameter database comprised of databases storing default pan stage 

process model parameters. 

These functional groups are annotated with the same clustering levels in Figure 36 which 

shows interaction with the detailed KBSSS user groups as part of the consultation and 

knowledge acquisition phases of operation. Reference to this diagram is made in the 

proceeding subsections in the explanation of the knowledge acquisition and consultation 

processes.  

6.2.1 Knowledge Acquisition Level  

The knowledge acquisition process is outlined in Figure 36. The users at this level are the 

content experts, knowledge engineers and pan stage experts. 
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The knowledge bases are developed by the knowledge engineers to establish relationships 

in best practices and management of the pan stage. Knowledge is translated into fuzzy 

membership functions as part of the process of building fuzzy If-Then rules to model pan 

stage relationships. This transformation occurs through the use of the knowledge base 

editor. Content engineers then establish the discourse relationships between the fuzzy rules 

and explanations. 

The dynamic industrial pan stage process models are initially developed by pan stage 

experts and hardcoded into the KBSSS software application. This relationship is indicated 

by the broken line in Figure 36 since the implemented pan stage process models are not able 

 
 

Figure 36: KBSSS process flow showing interaction of the major user groups with the major information sources for 
the knowledge acquisition and consultation processes 
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to be directly changed and exist as software. These models directly form part of the hard 

coded system knowledge detailing the pan stage process and dynamic interrelations 

between segments in complex factory environment, as detailed in Section 5.2. The pan stage 

experts also develop the industrial process model default parameters that are used as part 

of the pan stage process models. These parameters are transformed through the pan stage 

process model editor and saved to the appropriate model databases. These defaults are 

overridden by the fuzzy If-Then rules to provide adaption to account for real world 

operating conditions and local trends.  

Information sources from the real world databases are fundamentally different in 

comparison to the static knowledge bases. Whereas the knowledge bases are essentially 

static over the lifetime of the KBSSS, given allowance for maintenance procedures, the real 

world databases provide information sources that are dynamic and vary with time.  

Dynamic user data is elicited in consultation with the end user in providing system advice 

and recommendations. Information provided by end users has a much greater lifespan than 

control system information which is essentially a constant information stream. Information 

sources from the sugar mill controls system provides real time information on cane 

receival, juice processing, pan stage and centrifugal sections of the sugar mill through a 

parasitic data link to existing sugar mill infrastructure. Given the changing nature of these 

information sources, updated information from these sources is required each time the 

KBSSS carries out its processing regime in the generation of advice, recommendations, 

supporting explanations and a future forecast of pan stage operating conditions. 

An additional key information source is the system supporting database composed of the 

blackboard system. This information storage repository stores partial solutions in building 

the forward forecast of pan stage operations as presented in section 5.2.3 with information 

flows controlled by the blackboard scheduling system.  

6.2.2 Consultation Process Level  

The consultation process as shown in Figure 36 involves interaction between the end user, 

sugar mill control system data sources and the KBSSS. The end user supplies information 

real world information on current operating conditions and trends. This information along 

with data provided by the sugar mill control system is captured and stored for use in both 
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the inference process and by the dynamic industrial pan stage process models. As detailed 

in the previous section, updated information is required each time the KBSSS carries out its 

processing regime. 

User supplied information from the consultation process, along with pan stage control 

system data is used in the inference process and prediction of future pan stage operating 

conditions by the industrial pan stage process models. These two major subsystems and 

their cooperative interactions were specified in Chapter 5. The results of this process are 

the primary systems recommendations with supporting outputs as detailed in Section 4.2. 

The consultation process ends with the generation of the final system outputs. Based upon 

the system recommendations and reasoning presented, the end user will determine which 

operational decisions should be made using the pan stage forecast of future operating 

conditions as supporting information in the decision making process. 

6.3 An Example of the Knowledge Acquisition Process 

This section will demonstrate the procedure, through example, of extracting fuzzy If-Then 

rules from expert knowledge and outline the construction of the underlying KBSSS 

knowledge bases used in the storage of rule information. These modelled rules will later be 

used in the test case presented in this chapter. As part of this example the storage 

mechanisms for the implementation of service tags for explanatory capabilities will also be 

covered. An example of model parameters and associated database storage for the pan 

stage process model, that is associated with the developed fuzzy If-Then rule, will also be 

detailed.  

Given that the knowledge bases of the KBSSS are static in nature, the knowledge acquisition 

process and development of fuzzy rules need only occur once during the KBSSS lifecycle. 

Periodic adjustments to factory infrastructure, factory upgrades and changes to factory 

operational procedures may however necessitate some maintenance and fine-tuning of 

both the fuzzy If-Then rules and default process model parameters throughout the lifespan 

of the KBSSS. These maintenance procedures are beyond the scope of the thesis. 



 133 

6.3.1 Process Model Default Parameters and Database Structure 

The pan stage process models are specialised components forming part of the overall 

system knowledge base. The default model parameters for the pan stage steady state flow 

model, for which a fuzzy If-Then rule is developed in subsequent sections, follow. These 

customizable model parameters are typical of mid seasonal sugar factory conditions for the 

production of Brand 1 grade sugar (Broadfoot and Pennisi, 2001). The defined parameters 

pertain to the process model detailed in Section 5.2.2. The customisable parameter sets, 

with their initial settings, for this model are: 

Sugar Purity {A, B, C} = {99.326, 98.898, 88.0} % 

Fugal Molasses Purity Rise {A, B, C} = {1.481, 2.286, 1.723} % 

Target Purities {A Massecuite, B Massecuite, C Graining, Final Molasses} = {88.59, 82.0, 70.0, 

48.4} % 

Target Sugar Crystal Length {A Sugar, B Sugar, C Sugar, Product} = {0.9, 0.85, 0.28, 0.88} mm 

Coefficient of Variation of Sugar Crystal Length {A Sugar, B Sugar, C Sugar, Product} = {0.27, 

0.35, 0.35, 0.35} 

B Sugar Fractions {A Seed, Product, Remelt} = {0.0, 1.0, 0.0} 

Graining Fraction {C Pan} = {0.22} 

C Sugar Fractions {A Seed, B Seed, Remelt} = {0.11, 0.08, 0.81} 

Liquor Tank Fractions {A Seed, B Seed} = {0.5, 0.5} 

A Molasses Tank Fractions {A Seed, B Seed, C Seed, Final Molasses} = {0.45, 0.45, 0.1, 0.0} 

B Molasses Tank Fractions {B Seed, C Seed, Final Molasses} = {0.0, 1.0, 0.0}  

Crystal Content on Solids {A Pan, B Pan, C Pan, C Sugar Screw} = {57.6, 51.9, 32.0, 35.0} % 

Dry Substance Values {A Massecuite, B Massecuite, C Massecuite, Syrup, Remelt, A Molasses, B 

Molasses, C Molasses} = {90.66, 91.48, 92.01, 68.0, 67.0, 69.0, 69.0, 77.0} % 

Maximum Iterations for Optimisation Loops {Mass Balance, Purity Balance} = {30, 1000} 
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Tolerance Values {Mass Balance Convergence, Purity Target Convergence, Sugar Size} = {0.01 

t/h, 0.01 %, 0.001 mm} 

A Sugar Purity  99.326 
B Sugar Purity  98.898 
C Sugar Purity  88.000 
A Fugal Molasses Purity Rise  1.481 
B Fugal Molasses Purity Rise  2.286 
C Fugal Molasses Purity Rise  1.723 
A Massecuite Target Purity 88.59 
B Massecuite Target Purity 82.00 
C Graining Target Purity 80.00 
Final Molasses Target Purity 48.40 
A Sugar Target Sugar Crystal Length 0.90 
B Sugar Target Sugar Crystal Length 0.85 
C Sugar Target Sugar Crystal Length 0.28 
Product Sugar Target Sugar Crystal Length 0.88 
A Sugar Coefficient of Variation of Sugar Crystal Length 0.27 
B Sugar Coefficient of Variation of Sugar Crystal Length 0.35 
C Sugar Coefficient of Variation of Sugar Crystal Length 0.35 
Product Sugar Coefficient of Variation of Sugar Crystal Length 0.35 
B Sugar Fraction To A Seed 0.00 
B Sugar Fraction To Product Sugar 1.00 
B Sugar Fraction To Remelt 0.00 
C Pan Graining Fraction 0.22 
C Sugar Fraction To A Seed 0.11 
C Sugar Fraction To B Seed 0.08 
C Sugar Fraction To Remelt 0.81 
Liquor Tank Fraction To A Seed 0.50 
Liquor Tank Fraction To B Seed 0.50 
A Molasses Tank Fraction To A Seed 0.45 
A Molasses Tank Fraction To B Seed 0.45 
A Molasses Tank Fraction To C Seed 0.10 
A Molasses Tank Fraction To Final Molasses 0.00 
B Molasses Tank Fraction To B Seed 0.00 
B Molasses Tank Fraction To C Seed 1.00 
B Molasses Tank Fraction To Final Molasses 0.00 
A Pan Crystal Content on Solids 57.60 
B Pan Crystal Content on Solids 51.90 
C Pan Crystal Content on Solids 32.00 
C Sugar Screw Crystal Content on Solids 35.00 
A Massecuite Dry Substance Value 90.66 
B Massecuite Dry Substance Value 91.48 
C Massecuite Dry Substance Value 92.01 
Syrup Dry Substance Value 68.00 
Remelt Dry Substance Value 67.0 
A Molasses Dry Substance Value 69.0 
B Molasses Dry Substance Value 69.0 
C Molasses Dry Substance Value 77.0 
Mass Balance Maximum Iterations for Optimisation Loops 30 
Purity Balance Maximum Iterations for Optimisation Loops 1000 
Mass Balance Convergence Tolerance Value 0.010 
Purity Target Convergence Tolerance Value 0.010 
Sugar Size Tolerance Value 0.001 

 

Table 5: Pan stage steady state flow model database parameters 



 135 

These parameters are transformed into the database entry, shown in Table 5, with process 

model parameters forming the table column names and parameters forming the tuple 

entry. 

Model parameters are stored as specialised databases constructed under an industry 

standard RDBMS database server. Separate databases are used to store information 

particular to each of the process models. Use of an industry standard RDBMS database 

server ensures system interoperability and ease of consultation for data access. 

Default model parameters for each of the pan stage process models can be adjusted through 

the use of the pan stage model parameter editor. An editor interface through the KBSSS 

allows for adjustment of the major model default parameters. These parameters are loaded 

and used in the absence of fuzzy rules providing pre-processing localisation adjustments 

which accounts for real world operating conditions.  

Each of these default parameters controls functionality of the pan stage steady state flow 

model. The initial model parameter settings and adjustment through the KBSSS 

maintenance phase of software lifecycle are undertaken by experts with knowledge specific 

to pan stage operations. These experts have an understanding of the functionality and 

rationale of the process model characteristics, performance and operational mechanics and 

how these factors are influenced by the default process model parameters. 

Similarly, default model parameters exist for all of the pan stage process models with these 

default parameters able to be customized to suit a generic implementation of the process 

model. The following sections detail the procedures for creation of Fuzzy If-Then rules 

which allows localisation of input model parameters to account for real world data that is 

not part of the predefined static knowledge base and allows for a mechanism to override of 

the default model parameters. This approach was previously presented in Section 5.4.3. 

6.3.2 Fuzzy Modelling and [Basic] If-Then Rule Extraction  

This section details how one of the rules from the KBSSS’s knowledge and rule base is 

modelled and subsequently transformed into a fuzzy If-Then rule. By way of this process a 

statement such as “If it is early season then the A fugal purity rise is 1.635 units” which is 

inferred from prior research (Broadfoot and Pennisi, 2001) can be transformed into a fuzzy 
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representation and then developed into a fuzzy If-Then rule by knowledge engineers. In the 

modelling process the fuzzy variables and predicates are defined as part of the first step. 

Syrup quantity and purity is the greatest contributing factor to results from the pan stage as 

this is the primary inputs to this section of the sugar factory. With the end of cane crushing 

season it is normally assumed that conditions are reasonably similar to early season cane in 

general. Compared to the mid-season period, the CCS levels of cane and consequently syrup 

purity to the pan stage falls with the concentration of soluble impurities rising.  The syrup 

purity falls to comparable levels to those existing at early season (Broadfoot and Pennisi, 

2001). This effect creates a see-saw like effect where conditions at early season are similar 

to those existing at the end of season but differ during the mid-season cane crushing period. 

Typically the cane crushing season last for between 20-25 weeks of the year. This forms the 

basis for the universe of discourse for the fuzzy season set. The early season is typically of 

the first four or so weeks of the season with the mid season period lasting for 6 or more 

weeks (Broadfoot and Pennisi, 2001). Since the late season has conditions typical of early 

season the same period can be assumed. From this information the fuzzy antecendent 

linguistic variable season can be inferred along with the predicates early, mid and late. 

The fugal purity rise is the difference between the purity of molasses from the fugals and 

the purity of the mother syrup surrounding the sugar crystals in the massecuite. This 

increase in the purity of molasses during the fugalling process can be attributed to the 

following conditions when fugalling the massecuite (Sugar Research Institute, 2004): 

• for batch centrifugalling the basket wash dissolves some of the sugar;  

• some sugar crystal passes through the fugal gauze; and 

• some sugar crystal is dissolved by the fugal spray wash. 

This results in a purity rise typically in the range of one to four units. Figure 37 provides a 

simplified version of the process material streams resulting from the centrifugal actions. 

In this example the fugal purity rise has a defined fixed value. The defined fugal purity rise 

value is defined through the use of a fuzzy singleton. These fuzzy functions have a degree of 

fulfilment value of 1 for a single universe of discourse value and are 0 elsewhere. For the 
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statement to be modelled we can now infer that the consequent linguistic variable A fugal 

purity rise has an associated predicate value of 1.635 units. In conjunction with prior 

research (Broadfoot and Pennisi, 2001) it can also be determined that the mid season A 

fugal purity rise is 1.481 units. The consequent linguistic variable now has the predicate 

values of “1.635” and “1.481” units. Accounting for the previously discussed seasonal 

influences on pan stage processing, the fuzzy membership functions for the antecedent and 

consequents are as indicated in Figure 38. 

The corresponding If-Then fuzzy set of rules is: 

 If season is early  Then steady_state_flow_model:AFugalPurityRise = 1.635 

If season is mid     Then steady_state_flow_model:AFugalPurityRise = 1.481 

If season is late  Then steady_state_flow_model:AFugalPurityRise = 1.635 

This is an example of modelling of a fuzzy If-Then rule represented in Equation (5.9) of the 

previous chapter. The A fugal purity rise value of the rule consequent rule is attached to the 

steady state flow model, from Section 5.2.2, as one of the process model input parameters. 

After completion of the modelling process, the fuzzy data can be converted for system use 

through fuzzy variable editing through the KBSSS input layer. This process facilitates the 

declaration of the fuzzy variables. The fuzzy variable is allocated a name along with 

minimum and maximum values for the defined universe of discourse. A resolution is 

specified for the incremental step allowed when allocating membership functions within 

the universe of discourse. The type of variable is declared either being allocated as a rule 

antecedent (specified as type 1) or consequent (specified as type 2) variable. This 

 

 
 

Figure 37: Centrifugal material stream interaction denoting the molasses purity rise 
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information determines the relational linkage between the data source and data source 

variable name in being linked to the fuzzy variable. Each declared fuzzy variable is 

identified with a unique identifying number allocated automatically by the RDBMS upon 

creation of the data base record for the fuzzy variable. 

Each fuzzy predicate within the fuzzy set is also sequentially allocated a predicate ID 

number to uniquely identify them. A predicate name along with membership function type 

is stored for each of the fuzzy predicates. Each of the predicates is allocated a membership 

function and based upon the type of shape the associated membership function type is 

stored. A parameter value of 1 indicates a left-shouldered triangle, 2 is a standard triangle, 3 

is a right-shouldered triangle, and 4 is a singleton. Additionally, the provision for custom 

membership functions is also allowed. For each fuzzy membership function, representing 

the fuzzy predicate, a list of parameters is required. The number of parameters is allocated 

sequentially and dependant upon the fuzzy membership function selected. The triangle 

based fuzzy membership functions require the storage of all store three parameters and 

fuzzy singletons have data requirements for a single parameter. Each parameter is allocated 

sequentially and has a unique identifying ID. This is stored with the fuzzy variable ID and 

predicate ID as part of the relational database storage mechanics to allow for compact data 

storage and ease of information lookup. 

After declaration of the fuzzy variables and predicates, the next step in the process is the 

declaration of the fuzzy If-Then rules. Each of the three fuzzy If-Then rules declared in the 

 
 

Figure 38: The membership for the antecedent rule component is the point in season and the consequent rule 
component is the A fugal purity rise 
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rule block previously are allocated sequentially. Due to the relational database format only 

previously defined fuzzy predicates with their associated fuzzy variables are able to be 

allocated at this step. 

For each fuzzy If-Then rule, the fuzzy set ID and fuzzy predicate ID entering into the 

relationship on both the antecedent and consequent sides of the rule are required. This is 

stored against a unique rule ID which identifies the fuzzy If-Then rule being added to the 

KBSSS fuzzy rule base. Additional antecedent and consequent components of the fuzzy rule 

may be linked through compound fuzzy AND (fuzzy intersection) or OR (fuzzy union) 

operators in order to conform with standard fuzzy compound based rules. Additionally, the 

process model that the fuzzy rule is associated with is stored as well as the processing type. 

This may either be a rule for pre-processing as indicated by a 1 value or a post-processing 

rule as indicated by a value of 2. This determines whether the rule is evaluated before or 

after the defined process model as part of fuzzy localisation for real world data. For each of 

the defined fuzzy rules, service tags for discourse explanations are also stored. This is 

discussed next in Section 6.3.3. 

After completion of these defined steps in the fuzzy variable, predicate and rule creation 

process, the KBSSS makes appropriate changes to the knowledge and rule bases and inserts 

the appropriate data entries into the system tables. The database table entries for the 

knowledge base and If-Then rules are presented in Section 6.3.4. 

6.3.3 Implementing Explanatory Service Tags  

The KBSSS provides facilities for editing the discourse/explanatory knowledge base 

through the knowledge base/content expert editing interface with interactions depicted in 

Figure 8. These facilities allow the attachment of rule explanations to each of the fuzzy If-

Then rules with this information then stored in the system databases. In keeping within 

KBSSS requirements, explanations formed in plain English sentences are used to provide 

explanatory support on system recommendations and advice. The KBSSS specifications do 

not require complex supporting information so this format is acceptable for end user 

advice. The following service tag identifies the mid-season discourse entry associated with 

the fuzzy If-Then rule developed in the preceding section. The database table entries are 

presented in Section 6.3.4. 
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Service Tag Number: 7 

“The fugal purity rise varies with the point in the cane crushing season. Compared to 

the mid-season, the fugal purity rise is higher during the early and late season. The 

current point in the crushing season is mid.” 

Associated with a specific fuzzy If-Then rules/s the service tag numbers are unique and 

allocated sequentially by the RDBMS when the insertion of new rules to the 

discourse/explanatory base occurs. This unique numbering allows identification and access 

to specific discourse explanations. 

The discourse explanations are linked with the fuzzy If-Then rules through the service tag 

number and the fuzzy If-Then rule number which are unique identifiers in establishing the 

data relationship. Also entering into this relationship is the degree of fulfilment threshold 

for the fuzzy rule that the discourse explanation is developed for. For service tag number 7 

a value of 0.5 allows explanatory discourse activation when the rule degree of fulfilment 

exceeds this value. 

Tagged explanations to rules are also associated with pan stage process models. This helps 

in determining appropriate formatting for presentation to end users. The use of degree of 

fulfilment thresholds, used in determining when the rule is active within the explanatory 

process, was previously outlined in Section 5.5. 

6.3.4 Knowledge Rule Base and Discourse Base Structure  

As a result of the data acquisition process the following tables will be constructed as part of 

the knowledge base, fuzzy If-Then rule base and discourse/explanation bases. The 

previously defined fuzzy variables, fuzzy predicates, membership functions, fuzzy If-Then 

rules and discourse for explanations will be inserted as table data within Table 6, Table 7, 

Table 8, Table 9, Table 10 and Table 11. 

 

 

 



 141 

Fuzzy variables: 

FuzzyVarID FuzzyVariableName MinValue MaxValue Resolution Type Datasource VariableName 

7 Season 0 24 1 1 UserInput season 

8 AFugalPurityRise 0 2 0.001 2 SteadyStateFlowModel AFugalPurityRise 
 

Table 6: Table data for fuzzy set declarations 

Fuzzy predicates: 

FuzzyVarID PredicateID PredicateName MFType 

7 1 early 1 

7 2 mid 2 

7 3 late 3 

8 1 1.481 4 

8 2 1.635 4 
 

Table 7: Table data for fuzzy predicate declarations 

Consequent dynamic linkage to either singletons or data sources: 

FuzzyVarID LinkageType 
8 1 

 

Table 8: Table data for consequent dynamic linkage 

Fuzzy membership function parameters: 

FuzzyVarID PredicateID ParameterID Value 

7 1 1 0 

7 1 2 4 

7 1 3 12 

7 2 1 4 

7 2 2 12 

7 2 3 20 

7 3 1 12 

7 3 2 20 

7 3 3 24 

8 1 1 1.481 

8 2 1 1.635 
 

Table 9: Table data for fuzzy membership function parameter declarations 
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Fuzzy If-Then Rules: 

RuleID ServiceTagID LHSSetID LHSPredID RHSSetID RHSPredID Type ProcessModelName DOFThreshold 

19 6 7 1 8 2 1 SteadyStateFlowModel 0.5 

20 7 7 2 8 1 1 SteadyStateFlowModel 0.5 

21 8 7 3 8 2 1 SteadyStateFlowModel 0.5 
 

Table 10: Table data for fuzzy If-Then rule and explanatory declarations 

Discourse explanations: 

ServiceTagID Explanation 
6 The fugal purity rise varies with the point in 

the cane crushing season. Compared to the 
mid-season, the fugal purity rise is higher 
during the early and late season. The 
current point in the crushing season is 
early. 

7 The fugal purity rise varies with the point in 
the cane crushing season. Compared to the 
mid-season, the fugal purity rise is higher 
during the early and late season. The 
current point in the crushing season is mid. 

8 The fugal purity rise varies with the point in 
the cane crushing season. Compared to the 
mid-season, the fugal purity rise is higher 
during the early and late season. The 
current point in the season is late. 

 

Table 11: Table data for discourse declarations 

These databases utilise the relational database storage methodology for compact 

representation and adhere to database normalisation standards (Kroenke, 1997). This 

database structuring allows for ease of use and efficient information storage, retrieval and 

modification with no data anomalies. 

6.3.5 Summary of the Knowledge Acquisition Phase Process Flow  

The knowledge acquisition process can be summarised by Figure 39. The knowledge 

acquisition process starts with the modelling and development process of the pan stage 

process models and derivation of the key default parameters which allows a generic 

implementation of the pan stage process models. 
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After establishing the fuzzy sets, predicates and membership functions, fuzzy If-Then rules 

are then developed by relating antecedent and consequent predicates from the fuzzy sets 

together. Fuzzy sets may then be linked to the pan stage process models, with the fuzzy If-

Then rules providing capabilities for pre-processing and post-processing localisation 

adjustments to the pan stage process model input parameters and output data. 

Explanations are then tagged to each of the fuzzy rules, to allow for the use of discourse 

advice, along with threshold level required for their activation. The final results of this 

process are database records stored at the knowledge base, fuzzy If-Then rule base and 

discourse/explanatory base level. 

6.4 Consultation Process 

The second portion of this chapter examines simulation results from the KBSSS. These 

results will be compared against pan stage control system data provided by Racecourse 

sugar mill (located in Mackay, Queensland).  

A sample test case will be detailed in the following sections focusing on the following 

system outputs: 

1. prediction of pan stage operating conditions; and 

2. final advice to end users. 

The user input provided from the consultation process is combined with the fuzzy inference 

process along with control system data required for pan stage process model, described in 

Section 5.2, and their default parameters. Collectively this combination of data forms the 

KBSSS system inputs. 
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Figure 39: An overview of the knowledge acquisition process 
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6.4.1 Method of Testing  

In order to validate the modelling approach in relating the sections of the sugar factory to 

the pan stage, and in modelling the internal workings of the pan stage, stock tank levels are 

used. The stock tank predictive models unify: 

• syrup prediction model; 

• steady state pan stage flow model; 

• empirical vacuum pan models; 

• vacuum pan phase determination and forecast model; 

• dynamic allocation of predicted quantities to forecast intervals algorithm; 

• blackboard system; and 

• fuzzy logic pre-processing and post-processing adjustments to account for real 

world operating conditions. 

The comparison of KBSSS simulated results to stock tank data is used to validate the 

fundamental modelling approach and to demonstrate the viability of the predictions and 

the underlying modelling approach of using boil-on rate models of pan stage feed materials 

in conjunction with pan stage schedule and feed material return rates. 

Stock tank levels were recorded by the Racecourse sugar mill (Mackay, Queensland) Citect 

control system over the period over 03/09/2003 and 04/09/2003 on a 30 second interval 

basis along with the key process variables required for the pan stage process models 

developed in Section 5.2. A simulation was performed for the time of 11:45PM on 

03/09/2003 over an eight hour time forecast horizon with a resolution of 15 minute 

discrete intervals during this prediction period. This simulation utilised control system data 

for the time period leading up to 11:45PM 03/09/2003.  

Hypothetically under ideal circumstances prediction from the KBSSS over the forecast 

period should be similar to the levels displayed by the control system data for the stock 

tank levels. Of key importance are the peaks and troughs that would occur in the tank levels 
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during pan stage operations. The prediction of stock tank level peaks and troughs for level 

prediction are of key significance. Normal factory operation is prevented during stock tank 

overflow or empty conditions and serious remedial actions are required. These scenarios 

occur at stock tank level peaks and troughs and should be avoided. 

The following sections will describe each of the major test components with reference to 

the consultation process undertaken by the end user.  

6.4.2 Consultation Process: Input  

The consultation process is undertaken by the end user of the KBSSS. Due to the relatively 

slow change in real world operating condition to be supplied the consultation process is not 

a time consuming process and requires relatively limited maintenance of information in 

providing KBSSS consultation updates on information of real world operating conditions. 

The continuous processing nature of pan stage operations and the nature of KBSSS support 

in offering advice means that the consultation input required for the current KBSSS 

processing regime should be relatively similar to the previous. 

Conducive to the fuzzy variables and their universe of discourse the following information 

may be required to be supplied as part of the consultation process, dependant upon their 

change since the previous consultation process was performed. These parameters influence 

the future prediction of the pan stage operation conditions. In order to undertake the 

prediction regime the following parameters may be required as part of the inference 

process supported by fuzzy pre-processing and post-processing functionality working in 

tandem with the industrial pan stage process models and system explanatory capabilities: 

1. Current progression point through the cane crushing season; 

2. For each receiver, expected time delay after pan drop until fugalling commences; 

3. For each vacuum pan, the equipment performance rating of each vacuum pan (i.e. 

scaled tubes, vacuum leaks);  

4. The crystallisation characteristic factor for A molasses, B molasses and syrup feed 

materials; and  

5. Syrup purity data from the daily laboratory analysis. 
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These factors are assumed to be relatively straight forward knowledge from pan stage 

operator experience and this information able to be readily acquired. In the event of 

unknown values the KBSSS can default to pre-determined values. This is one of the 

fundamental advantages and a credit to the fuzzy logic based approach. System stability and 

robustness can be maintained even in the absence of unknown data and without degrading 

system performance. Additionally several of these parameters can be sourced elsewhere or 

approximated through additional means. The current point in the season can be 

approximated using the current KBSSS system date and an approximation for the expected 

cane crushing season duration. Using the locality of reference principle syrup purity data can 

default to the previous days recorded value if unknown. 

Once this data is supplied by the end user, and in line with the blackboard scheduling 

component directives, the interaction of the pan stage process models will be undertaken 

along with the retrieval and activation of the inference process for the fuzzy If-Then rules as 

part of pre-processing and post-processing localisation adjustments. User supplied data is 

iteratively matched against the fuzzy rules as part of the inference process and control 

system data, drawn from external parasitic external factory data sources, is utilized by the 

industrial pan stage process models. As a result of the pre-processing localisation 

adjustments carried out by the fuzzy rules, input model parameters are adapted. Process 

model outputs are similarly adapted as part of the post-processing process with 

defuzzification occurring on results of the inference process to yield crisp output values. 

This localisation adaption refines the pan stage process models to account for real world 

external conditions that is not part of the predefined static knowledge bases. Storage of 

working results used during the process of formulating the prediction of future pan stage 

operating conditions occurs with the blackboard system presented in Section 5.3.2. The 

final inferred results are then passed to the output layer for formatting and presentation.  

6.4.3 Consultation Process: Output  

Upon completion of the inference processes, pan stage process model processing, 

prediction of future pan stage operating conditions and explanatory subsystem processing, 

final results are consolidated to be displayed by the KBSSS output layer. For the test case 

simulation, the system results will be presented to the end user and composed of several 
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key elements. Each of these elements corresponds to the primary and secondary outputs as 

detailed for the output layer specifications and requirements presented in Section 4.2. The 

KBSSS presents its advice and recommendations to end users through graph and diagram 

display and tabular format supported by explanatory supporting information. 

In the following sections, the KBSSS simulated test results will be provide output consisting 

of the following elements. These elements forming the primary and secondary system 

outputs are as follows:  

1. Control strategies (primary output); 

2. Prediction of future pan stage operating conditions (secondary output); and 

3. Explanatory discourse and justifications supporting the above elements (secondary 

supporting output). 

The purpose of each of these elements and how they are generated will be detailed in the 

following sections. 

6.4.4 Primary Output: Control Strategies 

Pan stage control requires the operational management of multiple vacuum pans operating 

concurrently to a repetitive schedule and the maintenance of sugar crystal growth 

characteristics, along with the management of feed material stocks. The pan stage interacts 

with the juice processing section of the sugar factory and the centrifugal stations and has 

incoming process materials from these segments of the factory. These interactions must 

also be managed. 

The strategic management and control requirements for pan stage operations and the 

fundamentals of the sugar boiling process has been well documented in literature (Frew 

and Wright, 1976; Frew and Wright, 1977; Wright, 1983; Miller and Broadfoot, 1997; Beath 

and Miller, 2000; Miller and Beath, 2000; Broadfoot and Pennisi, 2001; Sugar Research 

Institute, 2001). 
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The four core control strategies for the primary KBSSS system output are: 

• Pan duty management. This strategy involves defining the most appropriate duties 

for “swing” vacuum pans that may have multiple possible massecuite production 

duties. The management task is to match the required A/B massecuite production 

ratio and also to ensure adequate quantities of A molasses and B molasses are 

maintained in stock. 

• Pan control strategy. Due to the sugar crystal volumetric growth limitations on 

vacuum pans and requirements for multiple successive pan strikes for sugar crystal 

growth (Wright, 1983), the footing quantities provided at the seed creation stage of 

the process plays a pivotal role in the size of the final product sugar crystals. As part 

of this management strategy steam usage rates also affect the pan strike duration 

and must be accounted for to ensure that it meshes into the pan stage schedule. 

• Pan schedule management. This strategy requires management of vacuum pans to 

ensure that they mesh into the pan stage boiling schedule and interact together while 

maintaining continuous operation and repetitive cycles. This requires the scheduling 

of pan strike start time and pan drop time with adequate time for pan preparations. 

Only modifications to the length of the legs in the pan stage schedule is undertaken. 

• Stock tank management. This strategy involves the management of levels of liquor, 

A molasses and B molasses to ensure there is adequate quantities in stock for 

processing operations. Adequate stock tank materials must be maintained to avoid 

conditions of empty or overflow. Directed actions for the other control strategies 

influence the projected stock tank level outcomes. Management of stock tank levels 

to avoid remedial conditions is a fundamental requirement of the KBSSS 

specifications. 

These control strategies are the primary tasks undertaken by pan stage operators and 

KBSSS output in each of these key areas will aid in pan stage operator decision making 

strategies. 
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6.4.4.1 Representation for Control Strategies  

Due to the concise nature of the control strategy output, quantitative data pertaining to the 

above mentioned control strategies are presented. In the provision of this capability, the 

KBSSS employs a tabular representation to conveniently express the intended control 

actions and strategies to the end users. Given the complex nature of the KBSSS only a simple 

data presentation is required for final control strategy output. The complexity of the KBSSS 

is through the underlying functionality required in arriving at these recommendations. The 

recommendations themselves are relatively straight forward control actions required to be 

undertaken by the pan stage operators.  Final results of the KBSSS are control actions that 

the operators perform in conjunction with existing pan stage control system infrastructure 

as depicted in Figure 3. The embedding of the KBSSS into existing infrastructure is detailed in 

Chapter 7. 

Each control strategy is listed sequentially in a table format. For each of these strategies the 

tuple representing a row in these tables is described: 

Swing Pan Duty {Vacuum Pan Number, Duty, Expected Strike Start Time} 

where, 

Vacuum Pan Number is the number uniquely identifying the vacuum pan, 

Duty is either the task of “A” or “B” massecuite production, 

Expected Strike Start Time is the date/time combination signifying the expected time that 

the strike will commence. 

This signifies the duties for the defined vacuum pan. Since vacuum pans run continuously 

around the clock processing the expected strike start time indicates the strike that the 

duties are to be assigned to. 

Pan Schedule {Vacuum Pan Number, Strike Start Time, Strike Drop Time} 

where, 

Vacuum Pan Number is the number uniquely identifying the vacuum pan, 
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Strike Start Time is the date/time combination signifying the expected time that the strike 

will commence, 

Strike End Time is the date/time combination signifying the expected time that the strike will 

drop. 

This representation matches the vacuum pans with expected strike start and completion 

times in order to mesh with the proposed schedule of operations. 

Steam Rate {Vacuum Pan Number, Start Time, End Time, Steam Rate} 

where, 

Vacuum Pan Number is the number uniquely identifying the vacuum pan, 

Start Time is the date/time combination signifying the expected time that the strike will 

commence, 

End Time is the date/time combination signifying the expected time that the strike will drop, 

Steam Rate is the rate (t/h) of steam projected to be required for the pan to fill its production 

duties within the required time period to mesh into the pan stage schedule. 

This relationship signifies the steam rate required for the vacuum pan between two defined 

time points in the schedule.  

Seed Pan Footing Quantity {Vacuum Pan Number, Footing Quantity, Expected Strike Start 

Time} 

where, 

Vacuum Pan Number is the number uniquely identifying the vacuum pan, 

Footing Quantity (t) is required quantity of footing material required for the vacuum pan, 

Expected Strike Start Time is the date/time combination signifying the expected time that 

the strike will commence. 

This signifies the required footing quantity for the defined vacuum pan. The particular 

strike is identified by its starting time. 
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Nett Stock Tank Levels {Type, Initial Level, Prediction Horizon, Sum of Feed Material 

Quantities, Sum of Return Material Quantities, Projected Final Level, Maximum Occurring 

Level, Time of Maximum Occurring Level, Minimum Occurring Level, Time of Minimum 

Occurring Level} 

where, 

Type is the feed material type of the stock tank, 

Initial Level (t) is the current quantity of stock material within the tank, 

Prediction Horizon is the period over which the forecast was made, 

Sum of Feed Material Quantities (t) is the quantity of feed materials taken from the stock 

tank over the prediction horizon, 

Sum of Return Material Quantities (t) is the quantity of materials being fed back to the 

stock tank over the prediction horizon, 

Projected Final Level (t) is the projected stock tank level at the end of the prediction horizon 

period, 

Maximum Occurring Level (t) is the maximum occurring quantity over the prediction 

horizon period, 

Minimum Occurring Level (t) is the minimum occurring quantity over the prediction horizon 

period, 

Time of Maximum Occurring Level is the date/ time combination that the maximum stock 

tank level have occurred at within the prediction horizon period, 

Time of Minimum Occurring Level is the date/ time combination that the minimum stock 

tank level have occurred at within the prediction horizon period. 

Over the projected forecast horizon data pertaining to the points at which the maximum 

and minimum tank levels occurred along with the sum of both the feed and return material 

quantities is collated. The initial stock tank level along with projected final level is also 

presented. 
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6.4.5 Supporting Output: Prediction of Future Operating Conditions and 

Explanatory Capabilities  

As presented in the previous sections, the KBSSS’s primary output is supported by two 

other supporting outputs which provide a prediction of future pan stage operating 

conditions and explanatory discourse to explain and justify the outcome of the primary 

outputs. The following subsections detail the operation of these two outputs. 

6.4.5.1 Generating the Prediction of Future Pan Stage Operating Conditions  

The pan stage process models are used to generate a forward prediction of future pan stage 

operating conditions. These process models are chained together in a hierarchical structure 

due to the data dependencies that exist between them. Fuzzy logic provides pre-processing 

and post-processing localisation adaption to account for real world operating conditions 

that are not part of the KBSSS knowledge bases. This approach provides adaption for the 

process models based upon the specified fuzzy If-Then rules. The individual process models 

run as presented in Section 5.2. The fuzzy logic pre-processing and post-processing 

adaptive processes function as specified in 5.4.3. The scheduling of these processes, in 

accordance with the data dependencies that exist between the process models, is 

undertaken by the scheduling component of the blackboard system presented in Section 

5.3.2. 

 This scheduling of the pan stage process models is depicted in Figure 27 with the fuzzy logic 

based pre-processing and post-processing localisation adjustments performing as 

presented in Figure 34. The overall prediction methodology adhered to in generating the 

prediction of the future pan stage operating conditions is presented in Section 5.4.4.1 

Intermediate and final results are stored by the blackboard data repository system. 

Collectively the pan stage process models and the fuzzy inference system utilze databases 

storing information on dynamic user consultation data, sugar mill control system data, 

blackboard system data, knowledge base, fuzzy If-Then rule base, process model default 

parameter database and explanatory discourse knowledge base. 
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6.4.5.2 Representation for the Prediction of Future Operating Conditions 

Based upon the prediction procedures outlined in the previous section, a forward forecast 

is built across the forecast horizon based upon existing conditions. Final blackboard system 

data, resulting from the pan stage process models working in tandem with the fuzzy If-Then 

rules, is formatted to a graphical representation. 

The pan stage process models resulting in graphical output layer elements are the: 

1. syrup prediction model; 

2. pan stage steady state flow model; and 

3. stock tank prediction models for liquor, A molasses and B molasses feed materials. 

The prediction of future operating conditions is done through a series of graphical displays. 

Recall from Section 5.2 that the empirical vacuum pan models essentially consist of a 

database lookup scheme of previously developed models and that the vacuum pan phase 

detection and forecast model provides background support in building results for the stock 

tank models. The schedule optimisation model uses the developed pan stage steady state 

flow model as the fundamental supporting feature to enable the provision of control actions 

and advice. Results of these supporting models do not form part of the prediction process 

formatted output. 

Results from the syrup prediction model are presented in graph format with a time scale 

axis plotting against predicted quantities utilizing standard line chart formatting. The 

projected sucrose and impurity quantities over the forecast period are displayed as well as 

the combined total quantity. Since this model predicts the solids flow amounts to the pan 

stage, the resulting total solids quantities are also converted into actual occurring 

quantities. 

The pan stage steady stage flow model implements a compact representation of Figure 13 

with alternative views for both solids flows and actual flows. Information on flows and 

purities are presented along with key crystal content and dry substance measures for the 

process material flows are provided. Due to the large quantity of data generated by this 

process model, a compact representation is used to convey results. Pan stage equipment 



 155 

items are merged together for easier representation with the major process purities and 

flows indicated against each device. 

Stock tank model results for liquor, A molasses and B molasses feed materials are presented 

in a similar representation to results from the syrup prediction model. Predicted tank level 

quantities are plotted against a time scale over the prediction period. 

6.4.5.2 Generating Explanations 

The technique for enabling explanatory capabilities was presented in Section 5.5 using an 

adapted version of the REST3 method (Chiou and Yu, 2007a). This system uses a linear 

based trace system using rule tags and trace tables in conjunction with the inference 

process. Predefined explanations, tagged to fuzzy If-Then rules, are generated when the 

fuzzy rules exceed defined degree of fulfilment measures during the inference process. 

These mechanics generate active supporting advice that are used to provide support for the 

test case results and are presented to help support the KBSSS output.   

This technique is not an intelligent system approach. Instead it uses simple tagged 

explanations to provide the supporting explanations and justifications. Within the following 

simulated test, the generated explanations are using to support the primary system output. 

Working in tandem with the primary supporting advice the generated explanations 

provides comprehensive information. 

6.5 Test Results 

In the following test results, comparisons will be made between predictions undertaken by 

the KBSSS process as outlined in Section 5.4.4 of the thesis and actual occurrences based 

upon data from sugar mill control system data. Some subjectivity is required in assessing 

control system recommendations. Further factory trials are envisaged as part of follow on 

research for validation of offered output and recommendations.  

To facilitate the evaluation of the simulated results in comparison to actual occurrences, the 

reader is to note that the primary goal of the simulation is to assess whether the KBSSS can 

provide reasonable prediction of future operating conditions given the absence of existing 

pan stage forecast methods. Recall from Chapter 2 the current lack of existing modelling 
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approaches available to relate together the sections of the sugar factory in order to forecast 

future pan stage operating conditions. Advice and recommendations are based upon the 

KBSSS forecast mechanics to provide support for end users in the pan stage decision 

making process. 

Racecourse sugar mill simulated predictions were made for an 8 hour forward prediction 

period for the point in time of 11:45PM on 03/09/2003. Data leading up to this point is also 

used in generated a forecast of the future pan stage operating conditions. This point in time 

was chosen as allows for a mid-point of prediction given the two days of available control 

system data. 

6.5.1 Input Data  

Both sets of data from the human end users and the KBSSS were based upon conditions 

existing at the time the forecast was performed. All relevant data was entered into the 

KBSSS to initiate the consultation process. Data for testing was supplied by Racecourse 

sugar mill (located in Mackay, Queensland) for the days of 03/09/2003 and 04/09/2003. 

Data before the prediction period is used in the forecast period and validated with control 

system data from after this point. Details of the control system data sources and input 

information are presented in Appendix D.  

The end user data supplied to the KBSSS were based upon real world information existing 

at the time of the prediction. A summary of these is: 

1. Point through the cane crushing season. Current progression point through the 

cane crushing season. At 03/09/2003 the cane crushing season was mid-way 

through; 

2. Fugalling delay after pan drop. For each receiver, the expected processing delay 

after pan drop until fugalling of the massecuite could occur. This was dependant 

upon the fugalling section operations and occurring wait times for dropping pans to 

receive fugalling of their massecuite that has been placed in receivers; 

3. Equipment performance rating. For each vacuum pan, the equipment performance 

rating of each vacuum pan. All vacuum pans on the pan stage were operational and 
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in excellent working order with no operational problems such as vacuum leaks or 

scaled surfaces reported; 

4. Crystallisation characteristic factor. The crystallisation characteristic factor for A 

molasses, B molasses and syrup feed materials. Crystallisation characteristics of the 

feed material streams were excellent. Stand over cane was not being processed at 

the time; and 

5. Syrup purity data. Syrup purity data from the daily laboratory analysis. The syrup 

purity value was measured in laboratory shift analyses on 03/09/2003 and 

determined to be 89%. 

6.5.2 Control Strategies  

With discretisation into 15 minute prediction intervals and mid-season conditions focusing 

on pan stage productivity as depicted in Figure 23 evaluations were undertaken for schedule 

strike durations of 3.5 hours, 3.25 hours and 3 hours. The pan stage high grade schedule 

was considered with the assumption that steam rates for low grade pans were fixed and 

subsequently did not enter into calculations. Major model inputs featured the average syrup 

production rate and purity from the syrup prediction model. Results for the syrup 

prediction model are detailed in 6.5.3.1. Based upon the schedule optimisation process 

detailed in Section 5.2.6 and the profit function detailed in Equation (5.6) the following 

values were used in the evaluation of the three schedule strike durations: 

1. product sugar was valued at $300 per tonne,  

2. final molasses was valued at $60 per tonne; and  

3. steam was valued at $6 per tonne. 

The premium sugar bonus under the defined schedule strike durations was as defined in 

Figure 23. Results of the schedule optimisation process are presented in Table 12. 

The sugar premium bonuses combined with the reduced steam consumption rates in Table 

12 results in higher profit per on a normalised per hour basis and indicates a longer 

schedule strike cycle duration under current operating conditions is favourable. A schedule 
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strike cycle duration of 3.5 hours results in a normalised hourly profit of $4414.44 for the 

previously defined profit function. 

  Schedule Cycle Duration (h) 
Schedule Optimisation Data 3.00 3.25 3.50 

Product Sugar Rate (t/h) 16.27 16.35 16.45 
Product Sugar Quantity (t) 48.810 53.138 57.575 
Final Molasses Rate (t/h) 7.46 7.22 6.97 
Final Molasses Quantity (t) 22.380 23.465 24.395 
C Sugar Footing Rate to A Seed Pan(t/h) 1.06 1.06 1.05 
C Sugar Footing Rate to B Seed Pan(t/h) 0.85 0.85 0.86 
C Sugar Quantity (t) 6.208 6.685 7.163 
Sugar Premium Bonus ($) 0.000 1.375 2.750 
Steam Quantity Usage (t) 648.00 611.00 574.00 
Profit ($) 12097.800 13756.214 15450.531 
Normalised Hourly Profit ($) 4032.600 4232.681 4414.438 

 

Table 12: Results of the schedule optimisation for the forecast time of 11:45PM 03/09/2003 

 
High grade seed vacuum pan number 1 is used as the basis for undertaking the new 

schedule as this is the initial growth pan for the high grade schedule. From the schedule 

optimisation algorithm this pans most recent strike commencement prior to the prediction 

point of 11:45PM 03/09/2003 was at 9:59PM 03/09/2003. Using the empirical pan models 

as reference the next strike determined to commence at 12:33AM 04/09/2003. The 

schedule optimisation model builds a future schedule of operations with defined strike 

cycle duration of 3.5 hours commencing from this point with recommendation of vacuum 

pan steam rates to meet this schedule. A compact representation of the generated schedule 

is presented in Figure 40.  

Under this schedule, the pan commencement and drop points for the high grade section of 

the pan stage are specified along with recommendations of swing pan duties for batch 

vacuum pans number 2 and 9. The time offset for scheduled duties, based upon a 

commencement of initial high grade seed pan number 1 at 12:33AM 04/09/2003, is 

presented in Figure 40. Based upon this schedule and results of the optimisation process the 

following control strategies are advised. Swing pan duties are presented in Table 13, the 

individual vacuum pan schedule is presented in Table 14, steam rate requirements for batch 

vacuum pans to mesh into the schedule is presented in Table 15, seed pan footing quantities 

are presented in Table 16.  
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Figure 40: Optimised schedule with a fixed strike cycle duration of 3.5 hours 

For the recommended control system strategies data pertaining to the next recommended 

pan strike, under the optimised schedule with pan strike cycle duration of 3.5 hours, only 

control actions for the next occurring pan strike has been presented. This is to aid in clarity 

of output. Strike times after this point however are readily calculated due to the repetitive 

nature of strikes. An allowance of 15 minutes (minimum defined schedule resolution 

period) must be allowed between the strike cycle durations for the vacuum pan steam out 
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preparation phase before a subsequent pan strike can occur. Strike durations remain 

unchanged.  

The 15 minute interval for pan clean up and preparation for subsequent strikes takes the 

elementary pan cycle duration of the schedule to 3.75 hours which is the duration required 

for a cycle to repeat itself. Using this time interval the footing quantities to batch vacuum 

pan number 1, performing high grade seed duties, the hourly rate of C sugar return feed 

rates to the A and B seed pan from the modified steady state pan stage flow model are 

summated. Racecourse sugar mill uses batch vacuum pan number 1 collectively for high 

grade seed operations. There is no separate A seed and B seed preparation duties as 

presented in Figure 13 so the C sugar footing return rates are merged over the elementary 

pan cycle duration. 

A summary of the stock tank level prediction undertaken for the point of 11:45PM 

03/09/2003 is also presented in Table 17. Detailed results for this management data are 

presented in Section 6.5.3.3. The presented data summary provides a reference for critical 

projected peak and trough level times during pan stage operations over the forecast 

horizon. Highlighting these times of concern can aid in forewarning pan stage operators of 

potential future operational problems with stock tank levels. 

 

Vacuum Pan Number Duty Expected Strike Start Time 
2 A Massecuite 6:18AM 04/09/2003 
9 B Massecuite 5:18AM 04/09/2004 

 

Table 13: Swing pan duties for the optimised schedule with a fixed strike cycle duration of 3.5 hours 

 

Vacuum Pan Number Strike Start Time Strike Drop Time 
1 12:33AM 04/09/2003 4:03AM 04/09/2003 
2 6:18AM 04/09/2003 9:48AM 04/09/2003 
3 4:48AM 04/09/2003 8:18AM 04/09/2003 
4 4:03AM 04/09/2003 7:33AM 04/09/2003 
6 5:33AM 04/09/2003 9:03AM 04/09/2003 
9 5:18AM 04/09/2003 8:48AM 04/09/2003 

 

Table 14: Individual vacuum pan schedule for the optimised pan stage schedule with a fixed strike cycle duration 
of 3.5 hours 
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Vacuum Pan Number Start Time End Time Steam Rate (t/h) 
1 12:33AM 04/09/2003 4:03AM 04/09/2003 25 
2 6:18AM 04/09/2003 9:48AM 04/09/2003 32 
3 4:48AM 04/09/2003 8:18AM 04/09/2003 25 
4 4:03AM 04/09/2003 7:33AM 04/09/2003 25 
6 5:33AM 04/09/2003 9:03AM 04/09/2003 32 
9 5:18AM 04/09/2003 8:48AM 04/09/2003 25 

 

Table 15: Steam rates required for vacuum pans to mesh into the pan stage schedule with a fixed strike cycle 
duration of 3.5 hours 

 

Vacuum Pan Number Footing Quantity (t/h) Expected Strike Start Time 
1 7.163 12:33AM 04/09/2003 

 

Table 16: Seed pan footing quantities required for the pan stage schedule with a fixed strike cycle of 3.5 hours 

 

Type Syrup A Molasses B Molasses 
Initial Level (t) 121.05 66.66 94.37 

Prediction Horizon (h) 8 8 8 
Sum of Feed Material Quantities (t) 607.99 457.07 185.19 

Sum of Return Material Quantities (t) 683.33 457.58 221.66 
Projected Final Level (t) 196.39 67.17 130.84 

Maximum Occuring Level (t) 215.78 168.38 140.19 
Time of Maximum Occuring Level 7:15AM 04/09/2003 1:00AM 04/09/2003 5:30AM 04/09/2003 

Minimum Occuring Level (t) 23.10 50.77 76.37 
Time of Minimum Occuring Level 1:15AM 04/09/2003 2:45AM 04/09/2003 3:00AM 04/09/2003 

 

Table 17: Projected stock tank data for the stock tank level forecast undertaken for the time of 11:45PM 
03/09/2003 

6.5.3 Prediction of Pan Stage Operating Conditions  

The following sections detail results of the prediction of future pan stage operating 

conditions based upon the initial pan stage operating conditions at and leading up to 

03/09/2003 11:45PM, as identified earlier. In establishing a prediction of future pan stage 

operating conditions a forecast of syrup quantities to the pan stage, steady state flows of 

process material quantities and purities and stock tank levels of vacuum pan feed materials 

is determined.  



 162 

6.5.3.1 Syrup Prediction Model 

A 90 minute forward forecast of sucrose and impurity quantities loadings to the pan stage 

was built as part of the KBSSS prediction process as presented in Section 5.4.4. This 

prediction was made for Racecourse sugar mill (Mackay, Australia) cane rake data at 

11:45PM on 03/09/2003 for information specific to the 2003 cane crushing season. Further 

information on Racecourse sugar mill data information sources is presented in Appendix D. 

This prediction is based upon the cane rake data in the 96 minute period prior to 

03/09/2003 11:45PM. A 96 minute time frame is used when establishing valid cane rake 

data for the prediction period as this is the approximate time it takes syrup from crushed 

cane to reach the pan stage. 

Cane quantities were measured at the cane receival station while pol%cane was calculated 

from juice laboratory analysis of the first expressed juice sample. The syrup purity value 

was measured in laboratory shift analyses on 03/09/2003 and determined to be 89%. The 

empirical operational factory fraction used was established in previous research (Dodd, 

Broadfoot, Yu and Chiou, 2005a) and set as 0.9725 for Racecourse sugar mill, as determined 

in Appendix A. 

Using the previously presented prediction methodology, sucrose and impurity quantities 

were allocated to the intervals shown in Table 18 and Table 19 respectively. The break down 

of sucrose and impurity quantities to each 15 minute interval over the forecast horizon is 

presented with reference to the logical rake numbers identified within the previous 96 

minute interval from cane receival data. Recall from Section 5.3.1 the use of the dynamic 

allocation algorithm to apportion batch quantities to interval durations over the forecast 

period. The predicted sucrose and impurity quantities allocated use the syrup prediction 

model presented in Section 5.2.1. When summated these quantities indicate the expected 

syrup solids quantity to the pan stage after cane crushing. 

A collation of results from Table 18 and Table 19 is presented in Table 20 with conversion of 

the expected syrup solids total provided as actual real world quantities. The total quantity 

of syrup is the quantity of solids, taken as the sum of sucrose and impurities, excludes the 

quantity of water that is present in practice. 
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Logical 
Rake 

Number
11:45
PM

12:00
AM

12:15
AM

12:30
AM

12:45
AM

1:00
AM

1:15
AM

1 0.54 0.40
2 1.85 0.46
3 1.45
4 0.17 1.82
5 0.62 1.86
6 0.62 0.91
7 0.10
8 0.63
9 0.73 1.76

10 0.60
Total 

Impurities 
(t) 0.54 2.25 2.08 2.44 2.48 2.37 2.36

Impurity quantity allocated (t) to time interval

 
 

Table 18: Breakdown of impurity quantities for syrup prediction model made at 03/09/2003 11:45PM using the 
dynamic allocation model  

 

Logical 
Rake 

Number
11:45
PM

12:00
AM

12:15
AM

12:30
AM

12:45
AM

1:00
AM

1:15
AM

1 4.37 3.28
2 14.94 3.74
3 11.70
4 1.34 14.72
5 5.01 15.04
6 3.67 7.34
7 0.82
8 5.11
9 5.92 14.21

10 4.86
Total 

Sucrose (t) 4.37 18.22 16.78 19.73 18.71 19.19 19.07

Sucrose quantity allocated (t) to time interval

 
 

Table 19: Breakdown of sucrose quantities for syrup prediction model made at 03/09/2003 11:45PM using the 
dynamic allocation model 

 

Prediction 
T ime

Sucrose 
Quantity (t)

Impurity 
Quantity (t)

Total 
Solids (t)

Actual 
Quantity (t)

11:45:00 PM 4.37 0.54 4.91 7.22

12:00:00 AM 18.2 2.3 20.5 30.1

12:15:00 AM 16.8 2.1 18.9 27.7

12:30:00 AM 19.7 2.4 22.2 32.6

12:45:00 AM 18.7 2.5 21.2 31.2

1:00:00 AM 19.2 2.4 21.6 31.7

1:15:00 AM 19.1 2.4 21.4 31.5  

Table 20: Summary of prediction quantities for syrup prediction model made at 03/09/2003 11:45PM using the 
dynamic allocation model 
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The sucrose and impurity quantities from Table 20 along with the total syrup solids are 

presented in Figure 41 with the final predicted syrup quantities presented in Figure 42. The 

syrup production rate is very consistent at approximately 31 tons of syrup being delivered 

to the pan stage at each 15 minute interval as a result of the crushing and juice processing 

operations undertaken on cane rakes received by the sugar factory in the 96 minutes 

  
Figure 42: Predicted syrup flow quantity results from the syrup prediction model at 03/09/2003 11:45PM 
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Figure 41: Solids flow quantity results from the syrup prediction model at 03/09/2003 11:45PM 
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leading up to the prediction performed for 03/09/2003 11:45PM.  

Measurements of factory control system data in the case for syrup production rates were 

unable to be obtained for the 2003 cane crushing season due to inadequate factory 

instrumentation calibration. Recall that the derivation of the syrup prediction model and its 

predictive performance is presented in Appendix A. 

6.5.3.2 Pan Stage Steady State Flow Model 

Syrup forms the primary input to the pan stage steady state flow model. The average syrup 

production quantity values are used from syrup prediction model in line with the data 

dependencies exhibited in Figure 28 and the prediction methodology detailed in Section 

5.4.4. The default parameters for the flow model were listed in Section 6.3.1. Validation of 

the pan stage steady state model approach is presented in Appendix C with test results 

compared against a reference model from pan stage research (Broadfoot and Pennisi, 

2001). 

Final results of the pan stage steady state model are the prediction of long term production 

rates of process materials, product sugar and final molasses. Determination of C sugar 

footings rates required for seed pans along with quantification of the long term remelt rate 

to the syrup tank are also generated. Due to the large volume of model data results 

generated, a streamlined representation of the key process material solids flows and their 

associated purities is presented in Figure 43. The overall layout is similar to the overall 

model schematic shown in Figure 13.  In this reduced representation certain equipment 

items and their associated flows have been clustered together for a compact results display. 

Total process material flows and purities are presented in Figure 44. 

For the results presented in Figure 43 and Figure 44, a summary of process material flows is 

presented in Table 21 with purities of these process material flows presented in Table 22. The 

presented results allow for the quantification process material flows for interactions of pan 

stage process with the juice processing and centrifugal sections of the sugar mill. This 

provides a determination of the long term pan stage production rates and purity measures. 

Specifically these results quantify the C sugar footing quantities to seed pans, long term 
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Figure 43: Solids process material flow results from pan stage steady state flow model 

 

 

Figure 44: Total process material flow results from pan stage steady state flow model 
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production rates of product sugar, final molasses and C sugar remelt rates for use in liquor 

tank level prediction.  

Flow from Flow to
Solids flow 
(t/h)

Actual flow 
(t/h)

Liquor Tank A Pans 16.01 23.54

Liquor Tank B Pans 6.07 8.93

A Fugals A Pans 0.38 0.55

A Fugals B Pans 6.28 9.1

A Fugals C Pans 0.87 1.25

B Fugals C Pans 6.52 9.45

C Fugals A Pans 0.96 1.06

C Fugals B Pans 0.78 0.86

A Fugals A Sugar 9.82 9.91

B Fugals B Sugar 6.61 6.71

A/B Sugar Product Sugar 16.44 16.62

C Fugals Final Molasses 5.00 6.49

A Pans A Fugals 17.35 19.14

B Pans B Fugals 13.14 14.36

C Pans C Fugals 7.39 8.12  

Table 21: Steady state flow model process material predicted solids flows and conversions to actual flows 

Flow from Purity (%) 

Liquor Tank 88.94 

A Pans 88.58 

B Pans 82.01 

C Pans 66.01 

A Fugals 74.55 

B Fugals 64.88 

C Fugals 88.00 

A Sugar 99.33 

B Sugar 98.90 
Product 
Sugar 99.15 
Final 
Molasses 46.40 

 
Table 22: Steady state flow model process material flow purities 

 

6.5.3.3 Stock Tank Level Prediction Models 

Stock tank level modelling applies the techniques for prediction detailed previously. Prior 

thesis supporting research (Dodd, Broadfoot, Chiou and Yu, 2008b) has detailed the 

approach used in stock tank level modelling. The stock tank level predictions are based 
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upon the initial conditions at and leading up to 11:45PM 03/09/2003 with a forecast made 

over the following eight hour period.  

The results of the prediction process are presented in Table 23 with predicted stock tank 

level values presented against the actual occurrences along with the differences between 

these sets of values. Racecourse sugar mill control system data was used as the reference 

for stock tank levels occurring at the prediction times. The corresponding graphs of syrup, 

A molasses and B molasses stock tank level predicted values along with actual occurring 

level values are plotted in Figure 45, Figure 46 and Figure 47 respectively.  

Results from the syrup, A molasses and B molasses tank level predictions trend well with 

data for the actual occurring levels. The exhibited peaks and troughs are generally 

occurring at the correct time intervals. The existing discrepancies highlight the fixed nature 

of the empirical pan models. Over an extended period minor deviation of actual pan strikes 

from these models will compound and exacerbate the level differences exhibited by the 

stock tank predictive models as evidenced in Figure 45. Furthermore the stock tank 

modelling approach is dependant upon the quantification and forecast of pan drop times, 

fugalling delays for processing massecuite dropped to receivers and the molasses return 

quantities from fugalling receivers. Inaccuracies in determining return streams have a 

direct affect on stock tank levels and will cause stock tank level differences. 

For the syrup stock tank level prediction, Section 5.2.1 details that the syrup prediction 

model is limited in its forecast abilities to a 96 minute window. This is the approximate time 

it takes for syrup from the cane crushing process to reach the pan stage. Beyond this period 

the average syrup rate is used. During the period in which the average syrup rate is used, if 

the cane crushing rate increases or decreases this will introduce syrup stock tank level 

discrepancies as the syrup supply will either be overstated or understated. This limitation 

may also have had an affect on the outcome of the syrup stock tank level prediction results, 

in Figure 45, during the latter intervals of the forecast. 
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Forecast 
Time 

Predicted 
Syrup 
Tank 

Level (t) 

Actual 
Syrup 
Tank 
Level 

(t) 

Syrup 
Prediction 
Difference 

(t) 

Predicted 
A 

Molasses 
Tank 

Level (t) 

Actual A 
Molasses 

Tank 
Level (t) 

A 
Molasses 
Prediction 
Difference 

(t) 

Predicted 
B 

Molasses 
Tank 

Level (t) 

Actual B 
Molasses 

Tank 
Level (t) 

B 
Molasses 
Prediction 
Difference 

(t) 

12:00:00 AM 96.34 135.52 39.18 79.47 76.01 -3.46 96.13 108.46 12.33 

12:15:00 AM 73.47 118.14 44.67 109.53 86.63 -22.90 84.57 117.44 32.87 

12:30:00 AM 73.50 98.51 25.01 135.86 110.81 -25.05 87.09 111.32 24.23 

12:45:00 AM 57.63 74.86 17.23 162.22 125.46 -36.76 97.69 107.81 10.12 

1:00:00 AM 48.30 56.29 7.99 168.38 139.04 -29.34 108.28 102.67 -5.61 

1:15:00 AM 23.10 35.07 11.97 167.00 159.54 -7.46 115.85 97.43 -18.42 

1:30:00 AM 26.98 19.56 -7.42 149.44 161.34 11.90 110.61 94.63 -15.98 

1:45:00 AM 45.63 17.77 -27.86 125.83 149.93 24.10 104.89 91.13 -13.76 

2:00:00 AM 66.98 31.06 -35.92 99.38 125.86 26.48 99.18 87.95 -11.23 

2:15:00 AM 88.34 53.16 -35.18 72.87 100.71 27.84 93.46 81.48 -11.98 

2:30:00 AM 109.69 79.20 -30.49 59.00 83.43 24.43 87.75 78.41 -9.34 

2:45:00 AM 131.04 103.07 -27.97 50.77 72.13 21.36 82.03 75.18 -6.85 

3:00:00 AM 152.40 124.33 -28.07 54.71 65.35 10.64 76.37 71.96 -4.41 

3:15:00 AM 161.50 150.47 -11.03 60.30 90.68 30.38 85.45 65.98 -19.47 

3:30:00 AM 149.53 135.95 -13.58 62.51 95.44 32.93 94.23 75.14 -19.09 

3:45:00 AM 156.16 136.90 -19.26 59.53 90.92 31.39 100.21 85.75 -14.46 

4:00:00 AM 148.00 159.90 11.90 67.16 100.20 33.04 110.39 91.92 -18.47 

4:15:00 AM 120.69 147.53 26.84 95.65 109.75 14.10 111.92 102.01 -9.91 

4:30:00 AM 126.30 130.83 4.53 126.65 123.72 -2.93 107.00 103.86 -3.14 

4:45:00 AM 108.11 113.55 5.44 152.97 143.73 -9.24 110.31 97.17 -13.14 

5:00:00 AM 102.95 86.23 -16.72 160.63 155.74 -4.89 121.70 90.90 -30.80 

5:15:00 AM 86.04 70.24 -15.80 160.72 165.46 4.74 133.09 102.65 -30.44 

5:30:00 AM 75.61 41.64 -33.97 150.13 171.50 21.37 140.19 115.90 -24.29 

5:45:00 AM 90.21 27.58 -62.63 130.67 152.91 22.24 135.83 128.19 -7.64 

6:00:00 AM 109.32 29.59 -79.73 111.14 127.61 16.47 130.84 129.20 -1.64 

6:15:00 AM 130.67 45.82 -84.85 82.62 99.58 16.96 125.30 131.13 5.83 

6:30:00 AM 152.02 66.03 -85.99 61.78 78.79 17.01 119.76 130.37 10.61 

6:45:00 AM 173.38 93.42 -79.96 52.71 57.46 4.75 114.22 124.03 9.81 

7:00:00 AM 194.73 122.54 -72.19 49.85 48.50 -1.35 108.69 117.35 8.66 

7:15:00 AM 215.78 147.40 -68.38 54.67 49.32 -5.35 109.61 110.40 0.79 

7:30:00 AM 206.09 166.60 -39.49 60.41 77.32 16.91 120.23 102.23 -18.00 

7:45:00 AM 196.39 146.43 -49.96 67.17 82.33 15.16 130.84 108.82 -22.02 
 

Table 23: Results of stock tank level prediction for the forecast time of 11:45PM 03/09/2003 
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Figure 45: An eight hour forward prediction of syrup tank levels made at 11:45PM 03/09/2003 
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Figure 46: An eight hour forward prediction of A molasses tank levels made at 11:45PM 03/09/2003 
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From the evaluations of the predictions of the KBSSS generated future stock tank levels, the 

forecast values compare favourably with the actual stock tank levels that occur. In the 

absence of human experts, end users using the predicted stock tank levels in conjunction 
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Figure 47: An eight hour forward prediction of B molasses tank levels made at 11:45PM 03/09/2003 
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with the strategies provided by the KBSSS, can apply the KBSSS recommendations with 

confidence in the KBSSS forecasting mechanics. 

6.5.4 Explanatory Discourse  

Explanatory discourse supporting information is based upon active If-Then rules from the 

fuzzy inference proces. This information provides additional support and justification of the 

input parameters and output data from the pan stage process models. Information from the 

explanatory process is referenced directly to the related pan stage process model and 

associated with either the pre-processing or post-processing phases of the prediction 

process as presented in Section 5.5.  

Table 24 details results of the discourse and explanation process undertaken during the 

forecast process for the simulation undertaken for the time of 11:45PM 03/09/2003. 

Supporting information for the pan stage steady state flow model, empirical pan models 

and stock tank prediction models is presented. This discourse information helps to explain 

and justify the pre-processing and post-processing phases of the prediction.  
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Model Discourse 
Association Discourse Explanation 

Stock 
Tank 
Level 

Prediction 
Model 

Pre-processing 
For Batch Vacuum Pan Number 2 dropping product massecuite to Receiver 
Number 1 for fugalling, the expected delay till the receiver contents are able to be 
processed affects the point at which molasses returns to the stock tanks will 
commence. The expected residence time till fugalling operations will commence 
for Receiver Number 1 is moderate.  
 
With Batch Vacuum Pan Number 2 designated as a swing pan the molasses return 
type, for fugalling of the dropped massecuite, is dependant upon its current 
allocated massecuite production duties. 

Stock 
Tank 
Level 

Prediction 
Model 

Pre-processing 
For Batch Vacuum Pan Number 9 dropping product massecuite to Receiver 
Number 9 for fugalling, the expected delay till the receiver contents are able to be 
processed affects the point at which molasses returns to the stock tanks will 
commence. The expected residence time till fugalling operations will commence 
for Receiver Number 9 is moderate.  
 
With Batch Vacuum Pan Number 9 designated as a swing pan the molasses return 
type, for fugalling of the dropped massecuite, is dependant upon its current 
allocated massecuite production duties.  

Stock 
Tank 
Level 

Prediction 
Model 

Pre-processing 
For Batch Vacuum Pan Number 3 dropping product massecuite to Receiver 
Number 2 for fugalling, the expected delay till the receiver contents are able to be 
processed affects the point at which A molasses returns to the A molasses stock 
tank will commence. The expected residence time till fugalling operations will 
commence for Receiver Number 2 is nil.  
 
Batch Vacuum Pan Number 3 is designated for A massecuite production and A 
molasses will be returned to the A molasses stock tank.  

Stock 
Tank 
Level 

Prediction 
Model 

Pre-processing For Batch Vacuum Pan Number 4 dropping product massecuite to Receiver 
Number 2 for fugalling, the expected delay till the receiver contents are able to be 
processed affects the point at which A molasses returns to the A molasses stock 
tank will commence. The expected residence time till fugalling operations will 
commence for Receiver Number 2 is nil.  
 
Batch Vacuum Pan Number 4 is designated for A massecuite production and A 
molasses will be returned to the A molasses stock tank.  

Stock 
Tank 
Level 

Prediction 
Model 

Pre-processing For Batch Vacuum Pan Number 6 dropping product massecuite to Receiver 
Number 3 for fugalling, the expected delay till the receiver contents are able to be 
processed affects the point at which B molasses returns to the A molasses stock 
tank will commence. The expected residence time till fugalling operations will 
commence for Receiver Number 3 is nil.  
 
Batch Vacuum Pan Number 6 is designated for B massecuite production and A 
molasses will be returned to the B molasses stock tank. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 1 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 
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Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 2 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 3 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 4 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 5 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 6 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 7 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing Continuous Vacuum Pan Number 8 has excellent operational performance. 
Operational performance affects the vacuum pans liquor and molasses boil-on rates 
if problems such as low vacuum or scaled tube surfaces are evident.  

Empirical 
Vacuum 

Pan 
Models 

Post-processing Batch Vacuum Pan Number 9 has excellent operational performance. Operational 
performance affects the vacuum pans liquor and molasses boil-on rates if problems 
such as low vacuum or scaled tube surfaces are evident. The reduced boil-on rates 
of feed materials increases pan strike times. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing The crystallisation characteristics for syrup feed materials is excellent. Poor 
crystallisation characteristics when processing syrup feed materials decreases the 
syrup boil-on rates for vacuum pans during the processing of ‘slow growth’ 
materials. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing The crystallisation characteristics for A molasses feed materials is excellent. Poor 
crystallisation characteristics when processing syrup feed materials decreases the 
syrup boil-on rates for vacuum pans during the processing of ‘slow growth’ 
materials. 

Empirical 
Vacuum 

Pan 
Models 

Post-processing The crystallisation characteristics for B molasses feed materials is excellent. Poor 
crystallisation characteristics when processing syrup feed materials decreases the 
syrup boil-on rates for vacuum pans during the processing of ‘slow growth’ 
materials.  

Pan Stage 
Steady 
State 
Flow 

Model 

Pre-processing 
The fugal purity rise varies with the point in the cane crushing season. Compared 
to the mid-season, the fugal purity rise is higher during the early and late season. 
The current point in the crushing season is mid. 

Table 24: Discourse supporting information for the forecast performed for 11:45PM 03/09/2003 

From the results of this test it can be concluded that the KBSSS is capable of supporting 

discourse explanation to assist in justification of pan stage process model input parameters 
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and output data through the reproduction of discourse information from its discourse and 

explanation databases. The power of the explanatory capabilities is afforded in being able to 

directly reproduce explanatory and discourse databases. 

The explanatory and justification supporting capabilities are not complex and are only 

limited to the discourse information constructed by the discourse/explanation engineers 

for the textual based explanations. Although these explanations are relatively simple they 

suit the fundamental KBSSS requirements and the supporting information. The 

explanations provided are both appropriate and sufficient to assist in the justification and 

support of the pan stage process models prediction process. 

6.6 Summary 

This chapter has demonstrated the two key functional phases of the KBSSS which are: 1) 

knowledge acquisition; and 2) consultation process. A test of the KBSSS has been performed 

to evaluate system performance. 

Within the knowledge acquisition section, fuzzy modelling was undertaken to provide 

localisation adaption of one of the pan stage process model input parameters with this 

knowledge gathered from research. This knowledge was then transformed into a series of 

fuzzy If-Then rules. The constructed fuzzy sets, predicates, rules and associated explanatory 

discourse were then demonstrated by saving these parameters to databases storing 

information on knowledge base, fuzzy If-Then rule base and the discourse/explanatory 

base. 

This section was then followed by a consultation of the KBSSS through invoking the 

software application to provide pan stage recommendations for test case data. Test results 

demonstrate the viability of the modelling approach undertaken to relate sections of the 

pan stage and the feasibility of the KBSSS mechanics in providing localisation adjustments, 

through integration of the pan stage process models with fuzzy If-Then rules, for adaption 

of input/output process model parameters. 

In the next chapter, a summary of the research undertaken in this thesis is presented. This 

is followed by a discussion of the deployment issues on how the KBSSS application can be 
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embedded in existing infrastructure. The chapter concludes the thesis by providing areas of 

future research.  
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Chapter 7: Conclusions and Further Research 

 

 

7.1 Introduction 

This is the final thesis supporting chapter and provides a summary of research carried out 

within the thesis. Based upon the preceding chapters, this chapter provides a summary of 

the proposed KBSSS for improved pan stage best practices and management. This is 

followed by coverage of the deployment issues to allow the integration of the proposed 

KBSSS into existing sugar mill factory infrastructure. The chapter concludes with the 

presentation of areas for further research. 

This chapter is structured as follows. Section 7.2 provides a summary of the research. 

Section 7.3 outlines deployment issues and Section 7.4 reviews areas of further research. 

7.2 Summary of Research and Results 

The recent downturn in world sugar prices has placed even greater demands upon the 

Australian sugar industry to reduce the costs of sugar manufacture and increase the 

consistency of producing high quality sugar. In order to take advantage of financial 

incentives introduced for the 2003 sugar season onwards, increase the consistency of very 

high quality sugar and leverage further avenues for cost saving, a smarter strategy for 

operations are required. As reviewed in Chapter 2, there is a need for expert advice in the 

area of pan stage operations however there exists a shortage of pan stage experts with 

constraints already existing on their time. These factors results in the recognition of a 

KBSSS scheme for the sugar mill pan stage environment as being beneficial in providing 

advice to operators in the areas of pan stage management and best practices given the 

absence of human experts. In Chapter 3, a KBSSS framework was proposed, to overcome 

the aforementioned problems, through the provision of an intelligent systems architecture 

specifically developed for pan stage operations within the sugar mill environment. To 

demonstrate the viability of the proposed KBSSS framework a specialised software 
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application design and structure was presented in Chapter 4, in accordance with the 

proposed framework. 

This has been accomplished though the three core innovative system technologies, 

presented in Chapter 5, that form the core components of the proposed KBSSS framework. 

These technologies are:  

1) Pan stage process models for identifying dynamic interrelations between sections of pan 

stage operations to allow for future forecasting of pan stage operating conditions,  

2) Integration techniques for merging the developed pan stage process models into the 

hybrid fuzzy logic expert system rule base, and  

3) Explanatory capabilities for hybrid fuzzy logic based expert system advice and 

recommendations.  

In order to forward predict future pan stage operating conditions, a sequence of pan stage 

process models to describe the crystallisation process was necessary. This series of models 

collectively works together to describe the pan stage relationship with other segments of 

the sugar mill, along with actual models of the internal workings of the pan stage itself. This 

pre-emptive approach, through the use of pan stage process models to forecast future 

operating conditions can aid in providing preventative measures through identifying 

problem scenarios before they occur. 

A fuzzy If-Then rule based merger technique for the integration of process models into 

fuzzy rule antecedent and consequent components has been proposed. This allows the 

encoding of the developed pan stage process models as a major part of the system 

knowledge base and provides adaption of pan stage process models to suit current 

operating conditions. This is achieved through the inclusion of heuristic data that is not part 

of the predefined static knowledge base and matching against existing real world 

conditions for localisation adjustment. 

The final technology presented was the mechanics of the explanatory capabilities employed 

within the KBSSS. A trace based rule tagging system was adapted and extended for use 

within the KBSSS to allow for justification and support of offered system advice and 

recommendations to end users.  
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In Chapter 6 the testing of all major system features was demonstrated. Pan stage control 

system data was used as the primary system input. Case study results were presented in 

this chapter with system output used to asses the performance and capabilities of the 

KBSSS. Results demonstrated in this thesis indicate the viability of the proposed KBSSS 

framework, as implemented for the specified problem, and highlight the forecasting 

capabilities of the developed intelligent system application resulting in favourable 

outcomes compared to data from pan stage operations.  

7.3 Deployment Issues 

The proposed implementation and deployment of the KBSSS as presented in Chapter 3 is a 

cooperative pan stage solution working in conjunction with existing infrastructure and pan 

stage operators. The developed KBSSS application cannot exist as stand alone software. The 

KBSSS requires information sources ranging from pan stage operators, knowledge base, 

fuzzy rule base and industrial process models of the pan stage to data from cane receival 

sections, juice processing station, the pan stage and centrifugal station sections of the sugar 

mill. Whilst existing sugar mill control system data is available in existing infrastructure, 

there is no readily available mechanism for facilitating the embedding of a secondary 

system such as the KBSSS.  

Due to the underlying data interaction that occurs as part of the proposed KBSSS 

framework, the underlying rationale for deployment of the system and integration with 

existing infrastructure has already been committed to indirectly, although not formally 

specified, as part of the system framework in Chapter 3. This deployment infrastructure is 

not a separate system to the proposed KBSSS architecture and works in as part of the 

proposed system framework. 

The proposed deployment infrastructure can be decomposed into the following six levels: 

1. Data sources; 

2. Knowledge base; 

3. Industrial process models; 

4. KBSSS software application; 
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5. System access; and 

6. End users. 

7.3.1 Data Sources, Knowledge Base and Industrial Process Models  

The data source level consists of all information sources supplying data to the KBSSS. Local 

operating knowledge is elicited from end users though the consultation process and is 

archived for access in database format. 

Sugar mill information from the cane receival, juice processing, pan stage and centrifugal 

sections of the factory is supplied to the data source level via parasitic data feeds from 

existing factory control systems infrastructure. There is no readily available solution to 

ensure correct information exchange between these two major systems and customisation 

of the underlying data sources will need to occur to ensure they mesh together correctly. In 

order to provide a partial solution to this problem all databases in the KBSSS have been 

constructed with an industry standard relational database management system running on 

server technology. This supplied information is used directly in the dynamic industrial pan 

stage models to provide a future forecast of pan stage operating conditions. The relational 

database management system is separate from the KBSSS client application software and 

database systems do not have to reside locally. These databases exist on a database server 

allowing dedicated computer hardware performance in the sharing of KBSSS information 

sources. 

Industrial process models are a major feature of the knowledge base. The underlying 

process model algorithms are hardcoded into the overall system yet flexibility is 

maintained by the ease of adaptability and customisation of input and output parameters 

through the fuzzy logic localisation process to account for real world conditions. These 

features alone justify the design and development of the KBSSS. As part of factory 

implementation, adaption of the underlying empirical based models to suit the target 

implementation factory is required. Customisation of the pan stage schedule representation 

and steady state flow model to suit local pan stage arrangements would also be required. 

Since these models are specific to onsite equipment and factory performance 

characteristics this modelling and updating process would be performed by an expert with 

experience specific to pan stage operations. 
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The underlying KBSSS knowledge base, fuzzy If-Then rule base and explanation knowledge 

base consists of knowledge from experts with specialised knowledge in the area of pan 

stage management and best practices. They provide the practical knowledge that is 

captured and modelled in the KBSSS. This knowledge is stored at the KBSSS knowledge 

base level. 

7.3.2 KBSSS Software Application  

The prototype system implemented to showcase the viability of the proposed framework 

forms the KBSSS software application. The design, architecture and major supporting 

features have been extensively detailed in this thesis.  

The KBSSS software application interacts directly with: 

1. pan stage experts providing information at the knowledge base level;  

2. pan stage operators providing information on real world conditions that are not 

part of the static predefined knowledge base; and  

3. information sources from segments of the sugar factory through parasitic data feed 

from existing control system infrastructure.  

The final system output is presented to pan stage operators to aid in the pan stage decision 

making process. 

7.3.3 System Access and End Users  

The deployment access level specifies how end users can access the KBSSS. The system is 

developed for use by pan stage operators and support staff within the sugar mill pan stage 

environment. For practicality, the software would run on hardware systems located in the 

pan stage control centre, due to the KBSSS functioning in a human cooperative support 

manner in the decision making process. It is important to recall that the KBSSS contains no 

automated feedback loop for pan stage control. Pan stage operators already have computer 

based access to control systems as part of their existing duties. Factory automation uses 

computer based control so computer infrastructure and computer networking facilities 

already exists as part of standard factory operations. 
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End users require database access permissions to KBSSS system databases. Modification of 

these critical database system systems without the use of KBSSS software application is not 

recommended. However it is technically possible with understanding of the specific 

information storage mechanics and familiarity with the specific software routines that 

collectively form the KBSSS.  

Access permissions to control system data pertaining to information sources for the KBSSS 

are also required. Additionally such access is only to be permitted in a read-only fashion to 

prevent data modification of critical control system information. 

7.4 Suggested Future Research 

It is envisaged that the following future research avenues would continue to provide further 

improvements to the research undertaken as part of this thesis. 

For full factory implementation further development of empirical vacuum pan models over 

a wider range of seasonal conditions and feed material conditions would be needed. The 

customisation of the empirical models used within the KBSSS would be required to suit 

other specific factory location for implementation. Customisation of the pan stage steady 

state flow model to suit local pan stage arrangements would also be required. These model 

updates would specifically be needed to match onsite factory equipment and factory 

performance characteristics. 

The proposed system would require further development to handle different boiling 

schemes. The prototype KBSSS developed in this thesis was based upon the three 

massecuite boiling scheme that is common to Australian sugar mills. For system use with 

other boiling schemes modification to the steady state flow models and pan stage schedule 

representation would be required. A dynamic model loading system would also be required 

that would depend upon the massecuite boiling scheme used within the targeted factory for 

KBSSS implementation.  

Further system development would be required to cover a wider range of uncommon 

situations such start up and shutdown periods of the cane crushing season. The developed 

KBSSS has been designed to operate during standard operational periods. For situations 
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such as the start up and shutdown periods of the sugar crushing season stock tank levels 

will be either starting from empty levels or being run down to empty levels. 

Only a prototype system was developed for the thesis supporting research in order to show 

the viability of the primary supporting intelligent system technologies. Further validation is 

required to be undertaken particularly for schedule optimisation models. Additional 

development of this model would include the integration with the stock tank predictive 

models to ensure a secondary level of checking through the provision of predictive 

mechanics to forecast receiver and stock tank levels. Additional research is also required 

for sugar crystal population balance numbers within the pan stage steady state model. As 

presented in Appendix C some discrepancies exist. 

As a result of the research undertaken in the thesis a prototype KBSSS for pan stage 

operations has been developed with expectations of commercialisation for industry use 

upon refined development. Process models have also been developed for prediction of 

future pan state operating conditions with fuzzy localisation capabilities provided through 

adaption of input model parameters and output data. Supporting this innovation is 

explanatory capabilities used to provide information to support the primary KBSSS outputs. 

Building upon the research presented in the thesis would be the end goal of full pan stage 

factory automation without the need for operators or with only minimal human operator 

supervision. The research contained in this thesis is a step towards this far reaching target. 

In achieving this goal a feedback loop and interface with pan stage control hardware would 

need to be undertaken given the associated adaption to the underlying KBSSS framework.  

7.6 Summary 

This chapter has concluded the research undertaken in the thesis. An overview of the 

research area and rationale for the research has been outlined. An implementation of the 

proposed KBSSS framework was undertaken in order to demonstrate the viability of the 

approach. This implementation was an intelligent system software application to provide 

pan stage operator support within the sugar mill environment in the provision of pan stage 

management and advice on best practices. 
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This chapter has also provided a summary of the three core intelligent system technologies 

supporting the KBSSS. These core technologies were pan stage process models for 

identifying dynamic interrelations between sections of pan stage operations to allow for 

future forecasting of pan stage operating conditions, integration techniques for merging the 

developed pan stage process models into the hybrid fuzzy logic expert system rule base and 

explanatory capabilities for hybrid fuzzy logic based expert system advice and 

recommendations. Test results demonstrated in the thesis indicate the viability of the 

proposed KBSSS framework and highlight the forecasting capabilities of the developed 

intelligent system application resulting in favourable outcomes compared to data from pan 

stage operations. Deployment issues were also presented on how the proposed KBSSS 

framework can be integrated into existing infrastructure. As a result of the research 

undertaken in the thesis a prototype KBSSS, for pan stage operations, based upon the three 

core supporting intelligent system technologies reported in the thesis has been developed.  



 184 

References 

BEATH, A. C. & MILLER, K. F. (2000) Improved control and throughput in batch pans. 
Mackay, Australia, Sugar Research Institute. 

BERKAN, R. C. & TRUBATCH, S. L. (1997) Fuzzy Systems Design Principles: Building Fuzzy IF-
THEN Rule Bases, New York, IEEE Press. 

BROADFOOT, R. (1980) Design of continuous sugar pans. Brisbane, Australia, University of 
Queensland. 

BROADFOOT, R. (2002) Exercise on Revenue from Additional Sugar Recovery. Mackay, 
Queensland, Australia, Sugar Research Institute. 

BROADFOOT, R. (2003a) Meeting with Chris Steggles at Pleystowe Mill on 11th June 2003. 
IN DODD, R. (Ed.) Summary of meeting ed. Mackay, Queensland, Sugar Research 
Institute. 

BROADFOOT, R. (2003b) Racecourse Meeting 4 March 2003. IN DODD, R. (Ed.) Meeting held 
at Racecourse sugar mill on 04/03/2008 discussing pan stage activities and 
operational improvements. ed. Mackay, Australia. 

BROADFOOT, R. (2004a) Iteration on crystal numbers IN DODD, R. (Ed.) Notes regarding 
the development of a pan stage steady state flow model ed. Mackay, Australia. 

BROADFOOT, R. (2004b) Optimisation criteria for schedule synchronisation. IN DODD, R. 
(Ed.) Email correspondence ed. Mackay, Queensland, Australia. 

BROADFOOT, R. & BEATH, A. C. (1998) Modelling of batch sugar centrifugal performance. 
Chemeca 98. Port Douglas, Queensland. 

BROADFOOT, R. & MILLER, K. F. (1990) Impurity transfer in raw sugar manufacture: 
impurity mass balance anomalies. Mackay, Australia, Sugar Research Institute. 

BROADFOOT, R. & PENNISI, S. N. (2001) Pan/fugal station modeling for planning factory 
upgrades. Australian Society of Sugar Cane Technologists. Mackay, Australia. 

BUREAU OF SUGAR EXPERIMENT STATIONS (1984) The Standard Laboratory Manual for 
Australian Sugar Mills: Principles and Practices, Brisbane, Australia, Bureau Of Sugar 
Experiment Stations. 

CANEGROWERS (2008a) About the Industry. Canegrowers. 



 185 

CANEGROWERS (2008b) Daily Sugar Price. Brisbane, Australia, Canegrowers. 

CARVER, N. (1997) A Revisionist View of Blackboard Systems. Midwest Artificial Intelligence 
and Cognitive Science Society Conference. 

CHANDRASEKARAN, B., TANNER, M. C. & JOSEPHSON, J. R. (1989) Explaining Control 
Strategies in Problem Solving. IEEE Expert, 4(1), 9 - 15, 19-24. 

CHIOU, A. & YU, X. (2007a) Industrial Decision Support System (IDSS) in Weed Control and 
Management Strategies: Expert Advice Using Descriptive Schemata and Explanatory 
Capabilities. The 33rd Annual Conference of the IEEE Industrial Electronics Society. 
Taipei, Taiwan. 

CHIOU, A. & YU, X. (2007b) A Large-Scale Agro Decision Support System: Framework for 
(Physical) Fusion of a Multi-Input and Multi-Output Hybrid System. 2007 
International Conference on Intelligent Sensors, Sensor Networks and Information 
Processing. Melbourne, Australia. 

CHIOU, A. & YU, X. (2007c) Remote Sensing in Decision Support Systems: Using Fuzzy Post 
Adjustment in Localisation of Weed Prediction. 2007 International Conference on 
Intelligent Sensors, Sensor Networks and Information Processing. Melbourne, 
Australia. 

CHIOU, A., YU, X. & LOWRY, J. (2002) P-Expert: A Prototype Expert Advisory System in the 
Management and Control of Parthenium Weed in Central Queensland. IN DIMITROV, 
V. & KOROTKICH, V. (Eds.) Fuzzy Logic: A Framework for the New Millenium. 
Heidelburn, Physica-Verlag. 

CLANCEY, W. J. (1983) The Epistemology of a Rule-Based Expert System: a Framework for 
Explanation. Artificial Intelligence, 20(3), 215-251. 

CORKILL, D. D. (1991) Blackboard Systems. AI Expert, 6(9), 40-47. 

CORKILL, D. D. (1997) Countdown to Success: Dynamic objects, GBB, and RADARSAT-1. 
Communications of the ACM, 40(5), 48-58. 

CORKILL, D. D., GALLAGHER, K. Q. & JOHNSON, P. M. (1987) Achieving flexibility, efficiency, 
and generality in blackboard architectures. National Conference on Artificial 
Intelligence. Seattle, Washington. 

COX, E. D. (1995) Fuzzy Logic for Business and Industry, Rockland, MA, Charles River Media. 

COX, E. D. (1999) The Fuzzy Systems Handbook, San Diego, CA, Academic Press. 



 186 

DODD, R. (2007) Improving the Learning Capabilities of Fuzzy Neural Networks. Faculty of 
Informatics and Communication. Rockhampton, Australia, Central Queensland 
University. 

DODD, R., BROADFOOT, R., CHIOU, A. & YU, X. (2008a) Pan Stage Steady State Flow Model 
for Integration within a Knowledge Based Supervisory Support System. to appear 
IEEE International Conference on Industrial Technology 2009. Churchill, Victoria, 
Australia. 

DODD, R., BROADFOOT, R., CHIOU, A. & YU, X. (2008b) Process Models for a Sugar Mill 
Crystallisation Stage Industrial Decision Support System. Proceedings of I*PROMS 
Virtual International Conference. Cardiff, UK. 

DODD, R., BROADFOOT, R., YU, X. & CHIOU, A. (2005a) Development of Smart Supervisory 
Control System in a Sugar Mill Crystallisation Stage. Proceedings of I*PROMS Virtual 
International Conference. Cardiff, UK. 

DODD, R., BROADFOOT, R., YU, X. & CHIOU, A. (2005b) Empirical Pan Modelling of Vacuum 
Pans for a Sugar Mill Crystallization Stage. Australian Society of Sugar Cane 
Technologists. Bundaberg, Australia. 

DODD, R., BROADFOOT, R., YU, X. & CHIOU, A. (2008) Framework for a Smart Supervisory 
Control System for a Sugar Mill Crystallisation Stage. 6th IEEE International 
Conference of Industrial Informatics. Deajeon, Korea. 

DODD, R., YU, X., BROADFOOT, R. & CHIOU, A. (2002) Development of a smart supervisory 
control system for pan stage operations in sugar factories. Information Technology in 
Regional Areas 2002. Rockhampton, Australia. 

ERMAN, L. D., HAYES-ROTH, F., LESSER, V. R. & RAJ REDDY, D. (1980) The Hearsay-II 
Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty. 
Computing Surveys, 12(2), 213-253. 

FEDRICK, A. (2003) MSCA Stocks. Mackay, Australia, Sugar Research Institute  

FREW, J. & WRIGHT, P. G. (1976) Sugar Crystallisation: A Pan Stage Advisory Scheme. 
Queensland Society of Sugar Cane Technologists. Cairns, Australia. 

FREW, J. & WRIGHT, P. G. (1977) Pan Stage Advisory Scheme at Racecourse Mill. 
Commonwealth Scientific and Industrial Research Organization Australia. 

GISOLFI, A. & BALZANO, W. (1993) Constructing and Consulting the Knowledge Base of an 
Expert Systems Shell. Expert Systems, 10(1), 29-35. 



 187 

GOEL, S., MODI, K., SHRIVASTAVA, M., CHANDE, P. & GAIWAK, A. (1995) Design of a Fuzzy 
Expert System Development Shell. 1995 IEEE Annual International Engineering 
Management Conference. 

GREGOR, S. (2001) Explanations from Knowledge-based Systems and Cooperative Problem 
Solving: An Empirical Study. International Journal of Human-Computer Studies, 54(1), 
81-105. 

GREGOR, S. & BENBASAT, I. (1999) Explanations from Intelligent Systems: Theoretical 
Foundations and Implications for Practice. MIS Quarterly, 23(4), 497-530. 

GREGOR, S. & YU, X. (2000) Exploring Explanatory Capabilities of Intelligent Systems 
Technologies. IN V., D. & V., K. (Eds.) Second International Discourse with Fuzzy Logic 
in the New Millennium. Physica-Verlag. 

GREGOR, S. & YU, X. (2001) Exploring Explanatory Capabilities of Intelligent Systems 
Technologies. IN V., D. & V., K. (Eds.) Fuzzy Logic in the New Millennium. Springer-
Verlag. 

HENDLER, J. A. (1988) Expert Systems: The User Interface, Norwood, N.J., Ablex Publishing 
Corporation. 

JOHNSON, P. E. & YE, L. R. (1995) The impact of explanation facilities on user acceptance of 
expert system advice. Expert Systems with Applications, 9(4), 543-556. 

KROENKE, D. M. (1997) Database Processing: Fundamentals, Design and Implementation, 
Upper Saddle River, New Jersey, Prentice Hall International, Inc. 

LEITCH, R., KRAFT, R. & LUNTZ, R. (1991) RESCU: a real-time knowledge based system for 
process control. IEEE Proceedings - Control Theory and Applications, 138(6), 217-
227. 

LEUNG, K. S. & WONG, M. H. (1990) An Expert-System Shell Using Structured Knowledge: 
An Object-Oriented Approach. Computer, 23(3), 38-46. 

LIN, C. T. & GEORGE LEE, C. S. (1996) Neural Fuzzy Systems: A Neuro-fuzzy Synergism to 
Intelligent Systems, Upper Saddle River, NJ, Prentice Hall Inc. 

MACKAY SUGAR CANE ASSOCIATION (1995) Databank Weekly Production and Efficiency 
Data - Farleigh Mill 1995. Mackay, Australia, Mackay Sugar Cane Association. 

MACKAY SUGAR CANE ASSOCIATION (2002a) Databank Weekly Production and Efficiency 
Data - Farleigh Mill 2002. Mackay, Australia, Mackay Sugar Cane Association. 



 188 

MACKAY SUGAR CANE ASSOCIATION (2002b) Databank Weekly Production and Efficiency 
Data - Marian Mill 2002. Mackay, Australia, Mackay Sugar Cane Association. 

MACKAY SUGAR CANE ASSOCIATION (2002c) Databank Weekly Production and Efficiency 
Data - Racecourse Mill 2002. Mackay, Australia, Mackay Sugar Cane Association. 

MILLER, K. F. (1987) Short Term Forecast of Process Tank Levels for a Sugar Mill 
Crystallisation Stage. Rockhampton, Australia, Capricorn Institute of Advanced 
Education, Department of Mathematics and Computing. 

MILLER, K. F. (1988) Forecasting Pan Stage Tank Levels. Australian Society of Sugar Cane 
Technologists. Cairns, Australia. 

MILLER, K. F. & BEATH, A. C. (2000) Improved Control and Throughput of Batch Pans. Sugar 
Research Institute. 

MILLER, K. F. & BROADFOOT, R. (1997) Crystal growth rates in high grade massecuite 
boilings. Australian Society of Sugar Cane Technologists. Cairns, Australia. 

NOTT, P. H. & LEE, P. L. (1999) Sets formulation to schedule mixed batch/continuous 
process plants with variable cycle times. Computers and Chemical Engineering, 23(7), 
875-888. 

PAYNE, E. C. & MCAURTHUR, R. C. (1990) Developing Expert Systems: A Knowledge 
Engineer's Handbook for Rules & Objects, New York, USA, John Wiley and Sons Inc. 

POZZETTI, C. (1996) An Advisory System for the Juice Handling System at Farleigh Mill. 
Australian Society of Sugar Cane Technologists. Mackay, Australia. 

PRESSMAN, R. (1997) Software Engineering: A Practitioner's Approach, Singapore, McGraw-
Hill. 

QUEENSLAND SUGAR CORPORATION (1997) Sugar Notes. Queensland Sugar Corporation. 

QUEENSLAND SUGAR CORPORATION (2003) New Raw Sugar Quality Scheme Standards. IN 
WHITE, I. (Ed.), Queensland Sugar Corporation. 

SCHNEIDER, P. A. (2003) Evaluation of an alternative vacuum pan control scheme. 
Australian Society of Sugar Cane Technologists. Townsville, Australia. 

SHAW, K. J., LEE, P. L., NOTT, P. H. & THOMPSON, M. (2000) Genetic algorithms for 
multiobjective scheduling of combinedbatch/continuous process plants. The 2000 
Congress on Evolutionary Computation. La Jolla, CA, USA. 



 189 

STEGGLES, C. (1997) New Approach to Technical Performance Indices. Mackay, Australia, 
Mackay Sugar Co-operative Association Limited. 

SUGAR RESEARCH INSTITUTE (2000) Handbook of Chemical Process Supervision, Mackay, 
Australia. 

SUGAR RESEARCH INSTITUTE (2001) Sugar Boilers' Course for Maryborough Sugar Factory, 
Mackay, Queensland, Australia, Sugar Research Institute. 

SUGAR RESEARCH INSTITUTE (2004) Useful definitions for pan stage work. Mackay, 
Queensland, Australia, Sugar Research Institute. 

SUGAR RESEARCH INSTITUTE (2006) SRI | About Us. Brisbane, Australia. 

SWARTOUT, W. R. (1983) XPLAIN:A System for Creating and Explaining Expert Consulting 
Programs. Artificial Intelligence, 21(3), 285-325. 

SWARTOUT, W. R. & SMOLIAR, S. W. (1987) On making expert systems more like experts. 
Expert Systems, 4(3), 196-207. 

TAKAGI, T. & SUGENO, M. (1985) Fuzzy identification of systems and its applications to 
modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 18, 116-
132. 

TSOUKALA, L. H. & UHRIG, R. E. (1997) Fuzzy and Neural Approaches in Engineering, New 
York, NY, John Wiley & Sons. 

VAN WISSEN, M., SMEETS, J. F. C., MULLER, A. & VERHEIJEN, P. J. T. (2002) Modeling and 
optimization of a sugar plant using Batch Model Predictive Control. European 
Symposium on Computer Aided Process Engineering 12th. The Hague, The 
Netherlands, Elsevier Science. 

VAN WISSEN, M., SMEETS, J. F. C., MULLER, A. & VERHEIJEN, P. J. T. (2003) Discrete event 
modeling and dynamic optimisation of a sugar plant. Foundations of Computer Aided 
Process Operations 2003. Coral Springs, Florida, USA. 

VERWATER-LUKSZO, Z. & VAN WISSEN, M. (2003) Improved Integration of Enterprise and 
Control Level with Combining ISA Batch Standards and Process Models. Foundations 
of Computer Aided Process Operations 2003. Coral Springs, Florida, USA. 

VERWATER-LUKSZO, Z., VERHOFSTAD, F. & STURM, W. (2003) Enhancement of batch 
process predictability by integration of scheduling and processing. European 
Symposium on Computer Aided Process Engineering 13th. Lappeennranta, Finland., 
Elsevier Science. 



 190 

WATSON, L. J. (1989) Expert Systems - Possibiliites and Applications in the Raw Sugar 
Industry. Australian Society of Sugar Cane Technologists. Tweed Heads, Australia. 

WICK, M. R. & SLAGLE, J. R. (1989a) An explanation facility for today’s expert systems. IEEE 
Expert, (Spring), 26-35. 

WICK, M. R. & SLAGLE, J. R. (1989b) The partitioned support network for expert system 
justification. IEEE transactions on systems, man and cybernetics, 19(3), 528-535. 

WILSON, D., KAPUR, P., WHITE, E. & LEE, P. (1987) Control strategies for an experimental 
small scale sugar pan. Australian Society of Sugar Cane Technologists. Mackay, 
Australia. 

WRIGHT, P. G. (1983) Pan and Pan Stage Control. Sugar Technology Reviews, 10, 39-96. 

WRIGHT, P. G. (1996) The Modelling of Crystallisation Schemes in a Raw Sugar Factory. 
Australian Society of Sugar Cane Technologists. Mackay, Australia. 

YU, X. & BROADFOOT, R. (2001) Developing a Smart Supervisory Control System for Pan 
Stage Operations in Sugar Factories. Australian Research Council. 

YU, X., CHIOU, A. & DODD, R. (2005) A Novel Decision Support Framework for Industrial 
Processes 31st Annual Conference of IEEE Industrial Electronics Society. North 
Carolina, USA. 

YU, X., CHIOU, A. & DODD, R. (2007) A Smart Decision Support Framework and its 
Applications. in revision to appear 2008. 

ZADEH, L. A. (1965) Fuzzy Sets. Information and Control 8, 338-353. 
 

  



 191 

Appendix A – Syrup Prediction Model 

The following appendix provides the data used to derive an empirical factory operational 

fraction. This measure is used in the prediction of syrup quantities to the pan stage. The 

empirical factory operational fraction determines the fractional sucrose and impurity losses 

through bagasse and mud by-products and consequently the sucrose and impurity quantity 

loadings in syrup to the pan stage for cane entering the sugar factory. This determines 

future syrup quantity loadings to the pan stage and allows a forward forecast of the future 

pan stage loading of syrup.   

Syrup rates for the results presented in Table 1 and Table 2 were measured by magnetic 

flow meter. Cane quantities were measured at the cane receival station while pol%cane was 

calculated from juice laboratory analysis of the first expressed juice sample. Sucrose%syrup 

and dry substance%syrup values were measured in laboratory shift analyses.
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Standard 
Week

Crushing 
Week

Pol % 
Cane

Cane 
Crushed 
(tonnes)

Dry 
Substance 
% Syrup

Sucrose 
% Syrup

Purity % 
Syrup

Liquor 
Produced 
(tonnes 92 brix)

Liqour 
Produced 
(actual tonnes)

Sucrose 
in Cane 
(tonnes)

Sucrose 
in Syrup 
(tonnes)

16 1 13.06 19155 66.79 59.19 88.62 2562.00 3529.03 2501.64 2088.83
17 2 13.19 77924 66.43 59.43 89.46 12392.00 17161.88 10278.18 10199.31
18 3 13.74 81333 67.31 60.85 90.40 13232.00 18085.63 11175.15 11005.11
19 4 14.21 82735 69.27 62.72 90.54 13635.00 18109.14 11756.64 11358.05
20 5 14.59 83637 70.14 63.44 90.45 14160.00 18573.14 12202.64 11782.80
21 6 14.65 78954 69.43 63.32 91.20 13507.00 17897.80 11566.76 11332.88
22 7 14.93 84327 69.42 62.42 89.92 14680.00 19454.91 12590.02 12143.76
23 8 15.06 83086 69.72 63.15 90.58 14653.00 19335.57 12512.75 12210.41
24 9 15.03 76645 69.15 62.61 90.54 13508.00 17971.60 11519.74 11252.02
25 10 15.25 85692 69.15 62.88 90.93 15039.00 20008.50 13068.03 12581.35
26 11 15.84 82823 69.17 62.93 90.98 15212.00 20232.82 13119.16 12732.51
27 12 16.14 78426 69.26 63.29 91.38 14641.00 19448.05 12657.96 12308.67
28 13 16.31 80746 69.11 62.76 90.81 15469.00 20592.50 13169.67 12923.86
29 14 16.59 83181 67.14 61.23 91.20 15945.00 21848.97 13799.73 13378.13
30 15 16.75 74999 67.83 61.60 90.82 14565.00 19754.98 12562.33 12169.07
31 16 16.99 79182 66.88 60.98 91.18 15455.00 21259.87 13453.02 12964.27
32 17 17.18 80974 66.92 60.89 90.99 16163.00 22220.50 13911.33 13530.06
33 18 17.36 77695 66.61 60.63 91.02 15987.00 22080.83 13487.85 13387.61
34 19 17.33 70969 69.52 62.74 90.25 14419.00 19081.53 12298.93 11971.75
35 20 17.43 75186 68.97 61.97 89.85 15305.00 20415.54 13104.92 12651.51
36 21 17.55 76946 68.26 61.53 90.14 15891.00 21417.70 13504.02 13178.31
37 22 17.28 73227 67.86 61.16 90.13 14692.00 19918.42 12653.63 12182.11
38 23 16.88 72705 69.18 61.55 88.97 14526.00 19317.61 12272.60 11889.99
39 24 16.53 79155 68.12 59.84 87.84 15574.00 21033.59 13084.32 12586.50
40 25 16.33 17564 67.45 59.49 88.20 3266.00 4454.74 2868.20 2650.12

Average 15.85 74290.64 68.36 61.70 90.26 13779.12 18528.19 11804.77 11458.36
St Dev 1.38 17262.88 1.14 1.31 0.96 3404.57 4587.12 2875.24 2852.11
Stats on weeks: 1-25 1-25 1-25 1-25 1-25 1-25 1-25 1-25 1-25  

 

Table 1. Racecourse sugar mill 2002 crushing season empirical factory operational fraction determination 



 193 

 

Empirical Factory 
Operational Fraction 
(Sucrose in Syrup / 
Sucrose in Cane)

Sucrose 
Prediction 
(tonnes)

Difference 
(tonnes)

Cane 
Impurities 
(%)

Impurities 
in Cane 
(tonnes)

Impurities 
in Syrup 
(tonnes)

Empirical Factory 
Operational Fraction 
(Impurities in Syrup / 
Impurities in Cane)

Impurity 
Prediction 
(tonnes)

Difference 
(tonnes)

0.8350 2443.35 -354.52 1.68 321.21 268.21 0.8350 313.73 -45.52
0.9923 10038.69 160.61 1.55 1210.62 1201.33 0.9923 1182.41 18.92
0.9848 10914.77 90.33 1.46 1186.38 1168.33 0.9848 1158.74 9.59
0.9661 11482.71 -124.66 1.48 1227.77 1186.15 0.9661 1199.17 -13.02
0.9656 11918.32 -135.52 1.54 1288.74 1244.40 0.9656 1258.71 -14.31
0.9798 11297.26 35.63 1.41 1116.12 1093.56 0.9798 1090.12 3.44
0.9646 12296.67 -152.92 1.67 1411.89 1361.84 0.9646 1378.99 -17.15
0.9758 12221.20 -10.79 1.57 1301.80 1270.35 0.9758 1271.47 -1.12
0.9768 11251.33 0.68 1.57 1203.31 1175.34 0.9768 1175.27 0.07
0.9628 12763.54 -182.20 1.52 1303.06 1254.53 0.9628 1272.70 -18.17
0.9705 12813.49 -80.97 1.57 1300.87 1262.53 0.9705 1270.56 -8.03
0.9724 12363.03 -54.35 1.52 1194.00 1161.05 0.9724 1166.18 -5.13
0.9813 12862.82 61.04 1.65 1332.50 1307.62 0.9813 1301.45 6.18
0.9694 13478.19 -100.07 1.60 1331.97 1291.27 0.9694 1300.93 -9.66
0.9687 12269.63 -100.57 1.69 1270.51 1230.73 0.9687 1240.91 -10.17
0.9637 13139.57 -175.30 1.64 1301.62 1254.33 0.9637 1271.29 -16.96
0.9726 13587.20 -57.14 1.70 1377.65 1339.90 0.9726 1345.55 -5.66
0.9926 13173.59 214.02 1.71 1330.32 1320.43 0.9926 1299.32 21.11
0.9734 12012.36 -40.61 1.87 1329.08 1293.73 0.9734 1298.12 -4.39
0.9654 12799.58 -148.06 1.97 1480.30 1429.09 0.9654 1445.81 -16.72
0.9759 13189.38 -11.07 1.92 1477.04 1441.41 0.9759 1442.62 -1.21
0.9627 12358.80 -176.69 1.89 1386.19 1334.53 0.9627 1353.89 -19.36
0.9688 11986.65 -96.67 2.09 1521.36 1473.93 0.9688 1485.92 -11.98
0.9620 12779.46 -192.96 2.29 1810.46 1741.58 0.9620 1768.28 -26.70
0.9240 2801.37 -151.25 2.19 383.78 354.60 0.9240 374.83 -20.24

0.9725 11529.72 -71.36 1.71 1255.94 1218.43 0.9725 1226.68 -8.25
0.0089 2808.24 122.77 0.23 305.08 302.28 0.0089 297.97 14.24

2-24 1-25 1-25 1-25 1-25 1-25 2-24 1-25 1-25  

Table 1 (continued). Racecourse sugar mill 2002 crushing season empirical factory operational fraction determination 
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Standard 
Week

Crushing 
Week

Pol % 
Cane

Cane 
Crushed 
(tonnes)

Dry 
Substance 
% Syrup

Sucrose 
% Syrup

Purity % 
Syrup

Liquor 
Produced 
(tonnes 92 brix)

Liquor 
Produced 
(actual tonnes)

Sucrose 
in Cane 
(tonnes)

Sucrose 
in Syrup 
(tonnes)

16 1 13.80 79302 70.15 63.80 90.95 12342 16186.23 10943.68 10326.81
17 2 14.04 114609 70.50 64.50 91.49 18317 23903.04 16091.10 15417.46
18 3 14.24 109851 70.63 64.10 90.75 18567 24184.68 15642.78 15502.38
19 4 14.48 109488 70.92 64.40 90.81 18457 23943.09 15853.86 15419.35
20 5 14.64 116825 70.06 63.80 91.06 19722 25898.14 17103.18 16523.02
21 6 14.81 116220 69.71 63.70 91.38 19799 26129.79 17212.18 16644.68
22 7 15.04 113603 72.36 64.40 89.00 20633 26233.22 17085.89 16894.20
23 8 15.01 114838 70.06 64.40 91.92 19942 26187.04 17237.18 16864.45
24 9 14.88 113768 69.30 63.30 91.34 19579 25992.32 16928.68 16453.14
25 10 15.39 112993 69.38 63.20 91.09 20232 26828.25 17389.62 16955.45
26 11 15.71 115999 69.18 63.40 91.64 21674 28823.47 18223.44 18274.08
27 12 15.73 111550 69.86 63.60 91.04 20311 26747.95 17546.82 17011.70
28 13 15.93 122947 69.74 64.40 92.34 22554 29752.91 19585.46 19160.87
29 14 16.25 111825 68.32 62.40 91.33 21395 28810.60 18171.56 17977.81
30 15 16.39 103406 68.69 62.90 91.57 19501 26118.68 16948.24 16428.65
31 16 16.59 89778 68.68 62.60 91.15 17215 23060.28 14894.17 14435.74
32 17 16.87 108979 68.18 62.70 91.96 21228 28644.41 18384.76 17960.05
33 18 16.91 102101 67.98 62.00 91.20 20264 27424.07 17265.28 17002.92
34 19 16.98 114146 67.89 61.70 90.88 22620 30653.12 19381.99 18912.97
35 20 16.94 114302 67.27 60.60 90.08 22875 31284.38 19362.76 18958.33
36 21 16.97 112667 67.46 61.10 90.57 22389 30533.47 19119.59 18655.95
37 22 16.63 108492 67.48 60.40 89.51 21241 28959.28 18042.22 17491.40
38 23 16.68 118976 69.20 61.60 89.02 23696 31503.35 19845.20 19406.07
39 24 16.39 25852 69.25 60.20 86.93 0 0.00 4237.14 0.00

Average 15.72 106772 69.26 62.88 90.79 20198 26860.95 16770.70 16899.02
St Dev 1.05 19550 1.24 1.36 1.18 4726 6395.65 3255.59 3941.11
Stats on weeks: 1-25 1-25 1-25 1-25 1-25 1-25 1-25 1-25 1-25  

Table 2. Marian sugar mill 2002 crushing season empirical factory operational fraction determination 
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Empirical Factory 
Operational Fraction 
(Sucrose in Syrup / 
Sucrose in Cane)

Sucrose 
Prediction 
(tonnes)

Difference 
(tonnes)

Cane 
Impurities 
(%)

Impurities 
in Cane 
(tonnes)

Impurities in 
Syrup 
(tonnes)

Empirical Factory 
Operational Fraction 
(Impurities in Syrup / 
Impurities in Cane)

Impurity 
Prediction 
(tonnes)

Difference 
(tonnes)

0.9436 10688.69 -361.87 1.37 1089.22 1027.83 0.9436 1063.84 -36.02
0.9581 15716.18 -298.72 1.31 1496.85 1434.18 0.9581 1461.97 -27.79
0.9910 15278.31 224.07 1.45 1593.56 1579.26 0.9910 1556.43 22.83
0.9726 15484.47 -65.12 1.47 1605.08 1561.09 0.9726 1567.68 -6.59
0.9661 16704.68 -181.66 1.44 1678.15 1621.22 0.9661 1639.05 -17.82
0.9670 16811.14 -166.46 1.40 1623.94 1570.40 0.9670 1586.11 -15.71
0.9888 16687.79 206.41 1.86 2111.86 2088.16 0.9888 2062.65 25.51
0.9784 16835.56 28.90 1.32 1514.95 1482.19 0.9784 1479.65 2.54
0.9719 16534.24 -81.10 1.41 1604.61 1559.54 0.9719 1567.23 -7.69
0.9750 16984.44 -28.99 1.50 1700.44 1657.99 0.9750 1660.82 -2.83
1.0028 17798.84 475.25 1.43 1661.38 1666.00 1.0028 1622.67 43.33
0.9695 17137.97 -126.28 1.55 1727.09 1674.42 0.9695 1686.85 -12.43
0.9783 19129.12 31.76 1.32 1624.01 1588.81 0.9783 1586.17 2.63
0.9893 17748.17 229.65 1.54 1723.97 1705.59 0.9893 1683.80 21.79
0.9693 16553.35 -124.70 1.51 1560.10 1512.27 0.9693 1523.75 -11.48
0.9692 14547.14 -111.40 1.61 1446.59 1402.06 0.9692 1412.88 -10.82
0.9769 17956.39 3.65 1.47 1606.83 1569.71 0.9769 1569.39 0.32
0.9848 16863.00 139.92 1.63 1665.26 1639.96 0.9848 1626.46 13.50
0.9758 18930.39 -17.42 1.70 1944.48 1897.43 0.9758 1899.18 -1.75
0.9791 18911.61 46.73 1.86 2131.18 2086.67 0.9791 2081.53 5.14
0.9758 18674.10 -18.15 1.77 1990.19 1941.93 0.9758 1943.82 -1.89
0.9695 17621.84 -130.43 1.95 2114.88 2050.32 0.9695 2065.61 -15.29
0.9779 19382.80 23.26 2.06 2448.43 2394.25 0.9779 2391.38 2.87
0.0000 4138.42 -4138.42 2.46 636.98 0.00 0.0000 622.14 -622.14

0.9767 16379.94 -185.05 1.60 1679.17 1683.10 0.9767 1640.04 -27.07
0.0099 3179.74 861.10 0.28 357.40 443.20 0.0099 349.07 127.96

2-24 1-25 1-25 1-25 1-25 1-25 2-24 1-25 1-25  

Table 2 (continued). Marian sugar mill 2002 crushing season empirical factory operational fraction determination
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The empirical factory operational fraction can be calculated using data from the mill 

under consideration. Using 2002 weekly crushing season data from Racecourse and 

Marian Sugar Mills (excluding data for the first and final weeks of the season where 

potential errors in stock tank levels are substantial) the relationships presented in Table 

3 were derived. This summary is presented from the data provided in Table 1 and Table 

2. 

 

Sugar mill 

Length 
of 

crushing 
season 
(weeks) 

Average 
weekly 

empirical 
factory 

operational 
fraction 

Seasonal 
standard 
deviation 

of 
empirical 
factory 
fraction 

Racecourse 25 0.9725 0.0089 

Marian 24 0.9767 0.0099 

 
 

Table 12: Seasonal empirical operational coefficients for Marian and Racecourse 2002 crushing season 

 

The empirical factory operational fractions appear to be consistent among the various 

weeks for a particular factory and between factories. This is evidenced by the low values 

of standard deviation and similar mean values. This fraction determines the quantity of 

sucrose and impurities from cane that reaches the pan stage after losses due to the mud 

and bagasse factory product stream along with the inclusion of analytical errors for 

measurements. 

It may be considered that: 

e = 1.0-f                                      (1) 

where, 

e is a fractional estimate of impurity/sucrose loss between cane receival and the pan 

stage (i.e. impurity/sucrose losses to mud and bagasse), 

f is the empirical factory operational fraction. 

Equation (1) indicates that the collective analytical errors in measurements and 
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impurity/sucrose losses to bagasse and mud appear to be fairly consistent both within 

the mill crushing season and across mills. 

The derived equation, to predict the future quantity of sucrose in syrup to the pan stage, 

is presented in Equation (2). The relationship for impurities in syrup to the pan stage is 

presented in Equation (3). When summated these models predict the quantity of syrup 

to the pan stage. This total quantity of syrup is the quantity of solids, taken as the sum of 

sucrose and impurities, and excludes the quantity of water that is present in practice. 

 

s = fqp/100             (2) 

 

where, 

 

s is quantity of sucrose in syrup to the pan stage (t) 

f is an empirical factory operational fraction 

q is the quantity of cane crushed (t) 

p is pol%cane of crushed cane (%) 

 

i = fqp(100-t)/t            (3) 

 

where, 

 

i is quantity of impurities in syrup to the pan stage (t) 

q is the quantity of cane crushed (t) 

t is purity of syrup to the pan stage (%) 

The data required for the model represented by Equation (2) and Equation (3) are 

pol%cane, quantity of cane crushed and the purity of the syrup. The purity of syrup 

corresponding to the cane crushed in a shift (or shifts) will not be available until the lab 

analysis is performed later in the day. The previous days information on syrup purity is 

instead used as an approximation for the current days value. 
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The prediction of the quantities of sucrose and impurities in syrup from cane receival 

information has been decomposed to a solution of only several variables while 

maintaining a high overall predictive capability. The defined relationships are used to 

establish a link between cane receival information and sucrose and impurity quantities 

to the pan stage. 
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Appendix B – Empirical Vacuum Pan Models 

Background 

One approach to modeling the individual pan production rates is to set up empirical 

relationships for the rate at which each pan takes feed material (liquor, A molasses or B 

molasses) during the different phases of the pan's operation.  This boil-on rate for feed 

materials is a function of the massecuite level and phase of the pan, steam rate, head 

space pressure (vacuum), brix and purity of the feed liquor/molasses. 

The approach has been applied to the pan stage of Racecourse Mill. An example is given 

in Figure 1 for pan 3 which is a single run-up small A strike pan. The pan takes a footing 

of approximately 40 tonnes of high grade seed massecuite, boils on liquor initially and 

then A molasses to complete the A massecuite strike at a pan full level of approximately 

60 tonnes. The liquor feed rate during different phases may be determined from the 

change in level during the run up from the footing to the end of the liquor feeding 

period. To determine this rate, the brix of the massecuite in the pan, the brix of the 

starting seed footing and the brix of the liquor feed were measured. Similarly, 

massecuite samples at the start and end point of the A molasses feeding phase were 

taken and the brix measured to determine the A molasses feed rates achieved during 

pan operation.  

Using this method it is possible to construct a piece-wise model of pan feed rate 

characteristics during each phase of the pan’s operation for each of the pans detailed in 

Table 4. Racecourse Mill utilizes batch pans for all operations except for the C 

massecuite production. Thus, the model for the boil-on rate can be established for each 

feed material during each phase (based on massecuite level) as the pan progresses to 

each target level where a cut out, change in feed material or pan discharge occurs. The 

boil-on rate models for each pan are determined by undertaking similar measurements 

through the different phases of each pan’s operation.  This is the modeling approach 

undertaken. 
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Figure 1. Data for pan 3 at Racecourse sugar mill during an operating cycle on 

04/09/2003. 

The boil-on rate model is a function of the following parameters: evaporation rate, 

vacuum, pan level and feed material purity and brix. 

 

Pan number Maximum pan 
capacity (t) Pan duty 

1 88 High grade seed 
2 113 B 
3 75 A 
4 203 A 
5 42 C seed 
6 135 B 
7 59 C seed 
8 179 Continuous C 
9 120 A 

 

Table 4. Vacuum pan specifications for Racecourse sugar mill. 

The maximum evaporation rate should also be determined for each pan for conditions of 

processing fresh, good quality cane. These rates could be determined by 

experimentation of the pan’s operation or by mechanistic modeling of batch or 
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continuous pans (Broadfoot, 1980; Wilson, Kapur, White and Lee, 1987; Beath and 

Miller, 2000; Schneider, 2003). 

The KBSSS (Dodd, Yu, Broadfoot and Chiou, 2002) will utilize such models to 

recommend a steam rate to ensure that the pans 'mesh' into the target schedule and 

advise on the best practice of steam usage throughout a pan’s strike given the current 

cane conditions and status of the pan stage. Reduced steam consumption of pans for a 

given duty, through reduced use of balancing water and idling of pans, impacts on the 

potential cogeneration output and production of surplus bagasse.  

Methodology 

Samples of massecuite from high grade pan strikes at Racecourse Mill were taken at 

different times on 03/09/2003 and 04/09/2003 and the solids content measured using 

a brix refractometer. Samples were taken from pan 1 (high grade seed); pans 3, 4 and 9 

on A massecuite duty and pans 2 and 6 on B massecuite duty; pans 5, 7 and 8 on C 

massecuite duty. 

Racecourse sugar mill control system data on pan level, stirrer load, liquor/molasses 

feed and valve positions, injection/movement water feed and valve positions, steam rate 

and valve positions were recorded. 

Racecourse mill laboratory analysis data provided total solids measurements for A 

molasses, B molasses, liquor, A massecuite, B massecuite and C massecuite on 

03/09/2003 and 04/09/2003. 

Empirical models were built based on the previous discussion and analysis of the 

control system data. 

Results 

Conditions at the time of sampling were typical of mid-season operations with the 

exception that liquor purity was relatively low. Table 5 shows the data for pan level and 

massecuite brix for pans 4 and 6 while Table 6 shows the corresponding data for pans 1, 

2, 3 and 9. Table 7 contains the results of the analyses from Racecourse Mill laboratory. 
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Pan 
number Stage of pan operation 

Pan level 
(t) 

Time 
of 

sample 
Measured brix 
of sample (%) 

6 
 

Boiling steadily and on A 
molasses feed 78.52 10:22 89.5 
Level at about 66% 92.87 10:49 89.6 
End of A molasses feed 128.47 12:09 94.0 
Before drop 135.02 12:44 95.0 

4 
 

On liquor feed 119.18 10:38 87.1 
Before A molasses feed 153.90 11:.03 86.7 
End of A molasses feed 185.61 11:59 90.8 
Before drop 187.21 12:17 93.8 
Once boiling 91.50 12:48 87.9 
Before cut out to pan 3 132.32 13:14 87.3 
Before cut out to pan 6 126.73 13:.53 87.1 
Before cut out to pan 3 127.11 14:27 86.4 

 

Table 5. Refractometer brix data gathered at Racecourse sugar mill during A and B 

strikes on 03/09/2003. 

 
 

Pan 
number Stage of pan operation Pan level 

(t) 

Time 
of 

sample 

Measured brix 
of sample (%) 

2 
 

Boiling steadily 60.33 9:48 90.2 
End of A molasses feed 92.39 11:11 92.5 
Before drop 100.89 11:45 94.3 

3 
 

Boiling steadily 45.49 9:43 88.4 
End of liquor feed 51.64 10:14 90.9 
Before drop 60.15 11:04 94.3 

9 
 

End of liquor feed 87.71 9:37 82.0 
End of A molasses feed 96.50 10:03 84.7 
Before drop 100.05 11:20 92.9 
Boiling steady 76.09 12:10 86.0 
Before cut 81.93 12:22 85.8 

1 
 

Before liquor feed 61.52 9:02 87.0 
Before drop 84.93 10:49 88.2 
Start liquor feed 61.71 13:07 88.1 
Level at approx 75% and at the 
start of the liquor feed 69.44 13:51 87.9 

 

Table 6. Refractometer brix data gathered at Racecourse sugar mill during A and B 
strikes on 04/09/2003. 
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Factory stream 
Total solids (%) 

03/09/2003 04/09/2003 
A Molasses 71.8 70.4 
B Molasses 75.9 77.6 
Syrup 66.1 66.4 
A Massecuite 90.9 90.6 
B Massecuite 92.3 91.3 
C Massecuite 92.3 92.4 

 

Table 7. Racecourse sugar mill laboratory analysis of pan stage samples on 03/09/2003 
and 04/09/2003. 

 

Tables 8 and 9 show the calculated boil-on rates, estimates of liquor and molasses feed 

rates, average net evaporation rates and average movement water rates for the high 

grade pans, based on the data in Tables 5, 6 and 7. Table 10 shows the corresponding 

data for the two C seed production pans (pans 5 and 7). 
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Pan 
number Phase period 

Time 
(minutes) 

Starting 
level (t) 

Ending 
level (t) 

Starting 
brix (%) 

Ending 
brix (%) 

Liquor 
consumed 

(t/h) 

A molasses 
consumed 

(t/h) 

Average 
movement 
water rate  

(t/h) 

Average net 
evaporation 

rate (t/h) 

Boil on rate 
massecuite 

(t/h) 

 

6 

10.06am to 10.22am 16 68.00 78.52 87.12 89.50 62.53  6.19 0.04 39.45 

10.22am to 10.49am 27 78.52 92.87 89.50 89.62  40.04 4.38 12.54 31.89 

10.49am to 12.09pm 80 92.87 128.47 89.62 94.02  39.18 4.30 16.78 26.70 

12.09pm to 12.44pm 35 128.47 135.02 94.02 95.08   11.35   11.22 

4 

 

12.48pm to 1.14pm 26 91.50 132.32 87.98 87.38 122.48  0.00 28.28 94.20 

1.30pm to 1.53pm 23 94.48 126.73 87.38 87.12 109.80  0.00 25.67 84.13 

2.07pm to 2.27pm 20 100.86 127.11 87.12 86.48 99.99  0.00 21.24 78.75 

10.38am to 11.03am 25 119.18 153.90 87.14 86.70 107.28  0.56 24.51 83.33 

11.03am to 11.59am 56 153.90 185.61 86.70 90.80  52.32 3.41 21.75 33.98 

11.59am to 12.17pm 18 185.61 187.21 90.80 93.80   2.21   5.33 

 

Table 8. Average pan feed consumption calculations for data gathered at Racecourse sugar mill during A and B strikes on 03/09/2003. 

 

Pan 
number 

Phase period 
Time 

(minutes) 
Starting 
level (t) 

Ending 
level (t) 

Starting 
brix (%) 

Ending 
brix (%) 

Liquor 
consumed 

(t/h) 

A molasses 
consumed 

(t/h) 

Average 
movement 
water rate  

(t/h) 

Average net 
evaporation 

rate (t/h) 

Boil on rate 
massecuite 

(t/h) 

2 

 

8.57am to 9.48am 51 45.00 60.33 87.12 90.28 27.01  0.00 0.01 27.01 

9.48am to 11.11am 83 60.33 92.39 90.28 92.56  31.84 0.00 8.67 23.17 

11.11am to 11.45am 34 92.39 100.89 92.56 94.34  24.20 8.24 17.44 24.20 
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3 

 

9.14am to 9.43am 29 40.43 45.49 87.38 88.42 15.24   0.02 15.24 

9.43am to 10.14am 31 45.49 51.64 88.42 90.96  18.54 2.05 8.69 18.54 

10.14am to 11.04am 50 51.64 60.15 90.96 94.36  16.65 4.92 11.37 16.65 

9 

 

12.10pm to 12.22pm 12 76.09 81.93 86.00 85.80 36.57  0.00 0.05 36.57 

8.54am to 9.37am 43 65.52 87.71 85.80 82.00 32.98  0.00 0.01 32.98 

9.37am to 10.03am 26 87.71 96.50 82.00 84.78  32.38 0.00 12.10 32.38 

10.03am to 11.20am 77 96.50 100.05 84.78 92.90   0.74 0.00  2.76 

1 

 

9.02am to 10.49am 107 61.52 84.94 87.00 88.22 18.06       18.06 

1.07pm to 1.51pm 44 61.71 69.44 88.19 87.98 13.69       13.69 

 

Table 9. Average pan feed consumption calculations for data gathered at Racecourse sugar mill during A and B strikes on 04/09/2003. 

 

Pan 
number 

Phase period 
Time 

(minutes) 
Starting 
level (t) 

Ending 
level (t) 

Starting 
brix (%) 

Ending 
brix (%) 

Molasses 
consumed 

(t/h) 

Average 
movement 
water rate  

(t/h) 

Average net 
evaporation 

rate (t/h) 

Boil on rate 
massecuite 

(t/h) 

5 

 2.49am to 3.14am 25 0.00 27.04   

39 

(A mol ) 2   n/a 

2.49am to 3.14am 25 0.00 27.04   

21 

(B mol) 2   n/a 

4.50am to 7.00am 130 26.37 33.44 85.501 87.001 

2.46 

 (B mol) 1.44 1.89 3.26 

7 
2.50am to 6.12am 202 44.71 57.17 87.001 89.001 4.69 1.36 0.00  
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  (B mol) 3.70 

1 Estimate 2 Graining blend 

Table 10. Average pan feed consumption calculations for data gathered at Racecourse sugar mill during low grade strikes on 
03/09/2003. 

 

 

 

Figure 2. Operating quantities for the B molasses tank and the two batch C seed pans on 03/09/2003.



 

 207 

Figure 2 shows the quantity of B molasses held in the stock tanks and the quantity of 

massecuite in pans 5 and 7. From Figure 2 the B molasses tank level increases when the 

high grade fugals are processing B massecuite from pans 2 and 6. Feeding of pans 5 and 7 

and number 8 continuous pan causes the B molasses tank level to decrease. The average B 

molasses consumption rate of the continuous C pan (pan 8) can be derived directly from 

information on the B molasses stock tank levels in conjunction with the average B molasses 

consumption rates for pan numbers 5 and 7 from Table 10. Calculations of the B molasses 

consumption rate for pan 8 were undertaken for three periods for the data shown in Figure 

2. These data are shown in Table 11 and indicate that the B molasses consumption rate for 

pan 8 was relatively steady at approximately 27 t/h. 

Phase period 
Time 

(minutes) 
Starting 
level (t) 

Ending 
level (t) 

Molasses 
tank feed 
rate  (tph) 

Pan 8 
molasses 

consumption  
(tph) 

8:19am to 9:26pm 67 86.78 47.47 35.20 28.05 

12:03pm to 1.15pm 72 84.13 43.43 33.91 26.76 

4:23pm to 5:19pm 56 71.19 40.04 33.39 26.24 

 

Table 11. Pan 8 consumption rates on 03/09/2003. 

Variation of Production Rate with Steam Rate 

In order to determine a relationship between steam usage rates and the expected pan strike 

times a level based iterative computer simulation for a batch pan was developed. The model 

utilized a series of increments between footing level and pan full level. The feed added in 

each increment was determined by feedback control to the conductivity set point. At each 

interval the steam rate conditions were checked against the heat transfer capabilities of the 

pan and also that the supersaturation and crystal content of the massecuite were at 

appropriate levels. At the specified target level the feed material change was made. The pan 

simulation ended when the massecuite had undergone a simulated heavy-up and reached 

the target crystal content.  

Simulations of strike development were carried out for the conditions shown in Table 12. 

These data are for the supply of liquor and molasses that would typically be processed from 
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a fresh cane supply. The results for steam rate simulations for A, B and C strikes are given in 

Figures 3, 4 and 5 and show the different times taken to complete the strike due to the 

different boil-on rates. 

Conditions A strike B strike C strike 
Dropping quantity (t) 200 200 200 
Footing  quantity (t) 66 80 66 
Footing purity (%) 88 88 67 
Footing dry substance (%) 87 87 87 
Initial massecuite crystal content (%) 38 38 20 
Liquor feed purity (%) 90 90 n/a 
B molasses purity (%) n/a n/a 64 
A molasses purity (%) 72 72 n/a 
Average crystal starting size (micrometers) 550 550 150 
CV of crystal distribution  0.25 0.25 0.25 

 

Table 12. Conditions for strike simulations. 

 

Figure 3. Simulations for A pan strikes at different steam rates. 
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Figure 4. Simulations for B pan strikes at different steam rates 

 

 

Figure 5. Simulations for C pan strikes at different steam rates 

 

The rate of evaporation in a pan determines the rate at which sucrose in the mother 

molasses in the pan is made available for crystallisation. The rate of making sucrose 

available should match the sucrose deposition rate if the supersaturation and crystal 

content are to remain constant. Based on the relationships generated in Figures 3, 4 and 5 

simple correlations can be developed between the average massecuite production rate and 

steam rate for each pan.  
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Miscellaneous Factors which Influence Boil-on Rates 

If the crystallisation rate slows e.g. because of stale cane, the rate of steam addition must be 

reduced to hold the process conditions (supersaturation, crystal content as indicated 

through the measured value of conductivity) at pre-defined values.  Hence the maximum 

steam rate that can be used depends on the crystallisation properties of the feed material at 

the time.  This will be affected by the freshness of the cane supply, the purity of the feed 

materials and the presence of any growth rate impeding impurities.  

The results of the vacuum pan simulations for each phase of the strike can be analyzed to 

provide correlations between the boil-on rates of the liquor and molasses streams. For the 

given feed material conditions in Table 12 the boil-on rates for A, B and C strike simulations 

are presented in Figures 6, 7 and 8. 

 

Figure. 6. Boil-on rates for A molasses and liquor feed streams for A pan strike simulations 

at different steam rates 
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Figure 7. Boil-on rates for A molasses and liquor feed streams for B pan strike simulations 

at different steam rates 

 

Figure 8. Boil-on rates for B molasses feed streams for C pan strike simulations at different 

steam rates 

 

It is proposed to use a 'crystallisation characteristic factor' for the liquor, A molasses and B 

molasses streams to allow for changes in feed boil-on rates when processing ‘slow growth’ 

materials. In practice these factors would not be changed very often and would be set by the 

factory supervisor as appropriate, for operations over a period of several days. Separate 

factors would be used for these three streams to relate to the inherent differences of each 

stream. The ‘crystallisation characteristic factor’ would be defined as a fraction to set the 

appropriate liquor and molasses boil-on rates for each stage of a pan cycle, depending on 

the feed properties at the time.  These factors would be set based on the experience of 

production staff when processing similarly affected materials. 

An equipment performance factor is to be incorporated for each pan. This fractional factor 

would be imposed to the liquor and molasses boil-on rates if problems such as low vacuum 

or scaled tube surfaces have an effect on an individual pan’s performance. Such operational 

problems would increase pan strike times and may impact on the entire pan stage schedule 

if the key pan(s) of the stage are affected. This factor is to be brought into the decision 

making process for pan stage schedule synchronization. 
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Summary 

Once the model for each pan is established then the boil-on rates for each feed stream at the 

different stages of the pan stage schedule can be determined by summing the liquor, A 

molasses and B molasses feed rates for all the pans at that point in the schedule. Given the 

expected liquor production rate, C sugar remelt production rate and raw wash return from 

the refinery to the liquor tank during this interval, the predicted tank levels can be 

determined for the liquor tank. Similarly the predicted tank levels for the A and B molasses 

streams can be calculated from the production rates and the molasses at the centrifugal 

station and the sum of the consumption rates on the individual pans at a specific point in 

the pan stage schedule. 

A steam profile for A, B and C massecuite duties has been developed to assist in relating 

strike time to steam consumption of the vacuum pans. Given the expected schedule and 

operating status of vacuum pans the strike times of pans within the schedule can be 

adjusted to avoid idling time and better improve productivity on rate limiting pans.  

The developed models will form a core component of the KBSSS, allowing a forward 

prediction of stock tank levels at a future point in the pan stage schedule and assisting in 

forewarning of problems with the current operating strategies. Early decisions, such as 

changes to steam rates, or allocation of pans to different duties (e.g. A or B massecuite) can 

then be made to avoid production rate difficulties, and maintain good operational 

performance with respect to sugar quality, sugar recovery and minimization of steam 

consumption on the total pan stage. 
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Appendix C – Pan Stage Steady State Flow Model 

Validation 

In order to validate the functionality of the proposed steady state flow model algorithm, 

presented in Section 5.2.2, and demonstrate its viability the model is compared to previous 

research (Broadfoot and Pennisi, 2001) which is used as a reference model for comparative 

measure. The steady state flow model is run with the parameters presented in Section 6.3.1 

and an input syrup solids rate of 17.59 t/h and purity value of 92.5%. 

Due to the large volume of model data results generated, a streamlined representation of 

the key process material solids flows and their associated purities is presented in Fig. 1. In 

this reduced representation certain equipment items and their associated flows have been 

clustered together for a compact results display.  

Model solids flow rates are presented in Table 1 and purities are presented in Table 2 and 

compared to the reference model with relative difference calculations highlighting the 

 
 

 

Figure 1. Solids flow results from pan stage steady state flow model. 
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variations between results. 

The majority of solids flows presented in Table 1 closely match production quantities for 

the reference model. The major differences between the two approaches exist for the C 

sugar footing quantities for the seed pans. The cause of the difference is attributed to the 

population balance calculation, which needs to be investigated further.  As a result solids 

flows for the C sugar quantities from the C fugals to the seed pans differ from their 

counterparts in the reference model.  

The purities presented in Table 2 match reference model results very closely with an 

extremely low relative difference. This close matching of purity values is to be expected 

within the model. Once the target purities for the seed pans are correctly reached within the 

model, through the optimization of the fractional values for feed materials to the equipment 

items, consistent purity values in the remainder of the model should follow. 

 

Flow from Flow to 

Solids 
flow 
(t/h) 

Reference 
model 
solids 
flow (t/h) 

Absolute 
difference 
to 
reference 
model 
(%) 

Liquor 
Tank A Pans 14.95 15.70 4.78 
Liquor 
Tank B Pans 2.70 2.90 6.90 

A Fugals A Pans 4.10 4.10 0.00 

A Fugals B Pans 4.16 4.30 3.26 

A Fugals C Pans 0.48 0.50 4.00 

B Fugals C Pans 3.62 3.80 4.74 

C Fugals A Pans 1.12 0.60 86.67 

C Fugals B Pans 0.43 0.30 43.33 

A Fugals A Sugar 11.42 11.60 1.55 

B Fugals B Sugar 3.68 3.80 3.16 

A/B Sugar 
Product 
Sugar 15.10 15.30 1.31 

C Fugals 
Final 
Molasses 2.78 2.30 20.87 

A Pans A Fugals 20.17 20.40 1.13 

B Pans B Fugals 7.30 7.50 2.67 

C Pans C Fugals 4.11 4.20 2.14 

 
Table 1. Steady state flow model flows compared to reference model. 
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Flow from 
Purity 
(%) 

Reference 
model 
purity 
(%) 

Absolute 
difference 
to 
reference 
model (%) 

Liquor Tank 92.48 92.20 0.30 

A Pans 88.59 88.59 0.00 

B Pans 82.00 82.00 0.00 

C Pans 66.01 66.09 0.12 

A Fugals 74.58 74.60 0.03 

B Fugals 64.87 65.00 0.20 

C Fugals 88.00 88.00 0.00 

A Sugar 99.33 99.33 0.00 

B Sugar 98.90 98.90 0.00 
Product 
Sugar 99.22 99.22 0.00 
Final 
Molasses 46.40 46.80 0.85 

 
Table 2. Steady state flow model flow purities compared to reference model. 
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Appendix D – Racecourse Sugar Mill Control System 

Data Sources 

Data from Racecourse sugar mill control system sources Citect control system was 

extracted via the Plant2Business interface. This sourced information is from the cane 

receival, juice processing, pan stage and centrifugal station sections of the factory. The data 

presented is for the period up until 03/09/2003 11:45PM when the forward forecast of 

future operating conditions was made by the KBSSS in Section 6.5 of the thesis.  

An explanation of each of the individual data types used for this information is beyond the 

scope of the thesis, however the information source requirements for the pan stage process 

models have been discussed in Section 5.2. The tables are headed with column names of the 

control system tags used to identify information sources within the Racecourse sugar mill 

control system. For system interoperability with the underlying data sources these have 

been preserved. 

The information sources have been extracted and made available in Microsoft Access 

database format on DVD in the back section of the thesis. This information consists of the 

following four tables: 

• Tanks. Tank levels for factory stock tanks and receivers. 

• CaneReceival. Collated information from the cane receival and juice processing 

sections of the factory. All cane payment information and identifying information has 

been removed from this data in order to protect the privacy of the producing cane 

farmer. 

• PanData. Batch vacuum pan data on tank levels, stirrer load, movement water, 

injection water and steam process variables, set point and control output 

information. 

• ContinuousPanData. Steam usage process variables and set point information on 

the cells comprising the continuous pans. 
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These information sources are stored against time/date occurrences. For the vacuum 

pan and tank level data this information was captured on a 30 second interval basis. 

Cane receival information is collected for each rake of cane entering the factory and 

collated with juice processing information from the first expressed juice sample taken. 

The Tanks table has a level for the stock tanks and receivers at each time interval. Cane 

data in each rake of the CaneReceival table has associated analysis information from 

the cane weighing and juice processing sections of the factory. Familiarisation with cane 

rake analysis measures specific to the sugar industry is required for interpretation of 

this data. 

For the PanData table the following Racecourse sugar mill control system tags assist in 

understanding the information sets:   

    Pan 

Measure Units 1 2 3 4 5 6 7 9 

Level t R_BO848 R_PO591 R_PO641 R_PO691 R_PO741 R_PO791 R_PO841 R_P1041 

Stirrer Load Amps   R_PO565       R_PO765 R_PO815   

Feed CV Output % R_BO847_CO R_PO594_CO R_PO644_CO R_PO694_CO R_PO744_CO R_PO794_CO R_PO844_CO R_P1044_CO 

Feed CV PV mS R_BO847_PV R_PO594_PV R_PO644_PV R_PO694_PV R_PO744_PV R_PO794_PV R_PO844_PV R_P1044_PV 

Feed CV SP mS R_BO847_SP R_PO594_SP R_PO644_SP R_PO694_SP R_PO744_SP R_PO794_SP R_PO844_SP R_P1044_SP 

IW CV Output % R_BO841_CO R_PO596_CO R_PO648_CO R_PO696_CO R_PO746_CO R_PO796_CO R_PO846_CO R_P1046_CO 

IW CV PV kPa R_BO841_PV R_PO596_PV R_PO648_PV R_PO696_PV R_PO746_PV R_PO796_PV R_PO846_PV R_P1046_PV 

IW CV SP kPa R_BO841_SP R_PO596_SP R_PO648_SP R_PO696_SP R_PO746_SP R_PO796_SP R_PO846_SP R_P1046_SP 

MW CV Output % R_BO844_CO R_PO598_CO R_PO646_CO R_PO698_CO R_PO748_CO R_PO798_CO R_PO848_CO R_P1048_CO 

MW CV PV tph R_BO844_PV R_PO598_PV R_PO646_PV R_PO698_PV R_PO748_PV R_PO798_PV R_PO848_PV R_P1048_PV 

MW CV SP tph R_BO844_SP R_PO598_SP R_PO646_SP R_PO698_SP R_PO748_SP R_PO798_SP R_PO848_SP R_P1048_SP 
Steam CV 
Output % R_BO843_CO R_PO600_CO R_PO650_CO R_PO700_CO R_PO750_CO R_PO800_CO R_PO850_CO R_P1050_CO 

Steam CV PV tph R_BO843_PV R_PO600_PV R_PO650_PV R_PO700_PV R_PO750_PV R_PO800_PV R_PO850_PV R_P1050_PV 

Steam CV SP tph R_BO843_SP R_PO600_SP R_PO650_SP R_PO700_SP R_PO750_SP R_PO800_SP R_PO850_SP R_P1050_SP 

 
Table 1. Vacuum pan control system tags used by Racecourse sugar mill. 
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For the ContinuousPanData table the following Racecourse sugar mill control system 

tags assist in understanding the information sets for continuous vacuum pan number 8:   

Control Output Process Variable Set Point
B Mol Heater R_P0851_CO R_P0851_PV R_P0851_SP
B Mol Dilution R_P0854_CO R_P0854_PV R_P0854_SP
C Seed Pump Load R_P0860
C Seed / B Mol Ratio R_P0860E_CO R_P0860E_PV R_P0860E_SP
IW CV R_P0886_CO R_P0886_PV R_P0886_SP
Cell 1 - Steam Flow R_P0889_CO R_P0889_PV R_P0889_SP
Cell 2 - Steam Flow R_P0891_CO R_P0891_PV R_P0891_SP
Cell 3 - Steam Flow R_P0893_CO R_P0893_PV R_P0893_SP
Cell 4 - Steam Flow R_P0895_CO R_P0895_PV R_P0895_SP
Feeder 1 - Water Flow R_P0902
Feeder 1 - Water CV R_P0903_CO R_P0903_PV R_P0903_SP
Feeder 1 - Feed CV R_P0905_CO R_P0905_PV R_P0905_SP
Feeder 2 - Water Flow R_P0909
Feeder 2 - Water CV R_P0910_CO R_P0910_PV R_P0910_SP
Feeder 2 - Feed CV R_P0912_CO R_P0912_PV R_P0912_SP
Feeder 3 - Water Flow R_P0917
Feeder 3 - Water CV R_P0918_CO R_P0918_PV R_P0918_SP
Feeder 3 - Feed CV R_P0920_CO R_P0920_PV R_P0920_SP
Feeder 4 - Water Flow R_P0924
Feeder 4 - Water CV R_P0925_CO R_P0925_PV R_P0925_SP
Feeder 4 - Feed CV R_P0927_CO R_P0927_PV R_P0927_SP
Feeder 5 - Water Flow R_P0931
Feeder 5 - Water CV R_P0932_CO R_P0932_PV R_P0932_SP
Feeder 5 - Feed CV R_P0934_CO R_P0934_PV R_P0934_SP
Feeder 6 - Water Flow R_P0951
Feeder 6 - Water CV R_P0952_CO R_P0952_PV R_P0952_SP
Feeder 7 - Water Flow R_P0954
Feeder 7 - Water CV R_P0953_CO R_P0953_PV R_P0953_SP
Feeder 6 & 7 - Feed CV R_P0956_CO R_P0956_PV R_P0956_SP
Feeder 8 - Water Flow R_P0961
Feeder 8 - Water CV R_P0962_CO R_P0962_PV R_P0962_SP
Cells 6,7 & 8 - Steam Flow R_P0966_CO R_P0966_PV R_P0966_SP
Cell 6 Stirrer R_P0980_AMPS R_P0980_SET
Cell 7 Stirrer R_P0981_AMPS R_P0981_SET
Cell 8 Stirrer R_P0982_AMPS R_P0982_SET  

Table 2. Continuous vacuum pan number 8 control system tags used by Racecourse sugar 
mill. 
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