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Summary

Hundreds of millions of users each day search the web and other repositories to meet their information

needs. However, queries can fail to find documents due to a mismatch in terminology. Query expansion

seeks to address this problem by automatically adding terms from highly ranked documents to the query.

While query expansion has been shown to be effective at improving query performance, the gain in

effectiveness comes at a cost: expansion is slow and resource-intensive.

Current techniques for query expansion use fixed values for key parameters, determined by tuning on

test collections. We show that these parameters may not be generally applicable, and, more significantly,

that the assumption that the same parameter settings can be used for all queries is invalid. Using detailed

experiments, we demonstrate that new methods for choosing parameters mustbe found.

In conventional approaches to query expansion, the additional terms are selected from highly ranked

documents returned from an initial retrieval run. We demonstrate a new method of obtaining expansion

terms, based on past user queries that are associated with documents in thecollection.

The most effective query expansion methods rely on costly retrieval andprocessing of feedback doc-

uments. We explore alternative methods for reducing query-evaluation costs, and propose a new method

based on keeping a brief summary of each document in memory. This method allows query expansion to

proceed three times faster than previously, while approximating the effectiveness of standard expansion.

We investigate the use of document expansion, in which documents are augmented with related terms

extracted from the corpus during indexing, as an alternative to query expansion. The overheads at query

time are small. We propose and explore a range of corpus-based document expansion techniques and

compare them to corpus-based query expansion on TREC data. These experiments show that document

expansion delivers at best limited benefits, while query expansion – including standard techniques and

efficient approaches described in recent work – usually delivers good gains. We conclude that document

expansion is unpromising, but it is likely that the efficiency of query expansion can be further improved.
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Chapter 1

Introduction

Large volumes of data on the web or other sources provide users with a wealth of information. How-

ever, archives are becoming more diverse and the language used in text is increasingly diverse; this is

particularly true for the web. Two authors writing about the same topic may usea different vocabulary

to express themselves. Users who try to find information on this topic ideally express their information

need in words that might have been used by both authors. However, this isdifficult without prior knowl-

edge of the authors’ preferred terminology. Query expansion is a methodto overcome this mismatch

in terminology: in addition to the original terms that a searcher used to expresstheir information need,

other related words are appended to the query, so that documents which are on the same topic can be

found even if they do not contain the original query terms.

An example of such a situation is as follows. A mechanic might be interested in the types of spanners

that are available in the marketplace. Situated in Australia, a typical query mightbe: “spanner types”. A

query formulated as such would exclude all spanners sold in the United States, where they are known as

“wrenches”. The query might therefore be expanded to include this term:“spanner wrench types”.

The problem of terminology mismatch is illustrated in Figure 1.1. In some of the recent TREC

collections (described in detail in Section 2.6.2), between 10% and 25% of allknown relevant documents

contain none of the query terms apart from stop words. The actual proportion of relevant documents that

do not contain any of the query terms might be even larger than this figure suggests: in the TREC

framework the relevance of only a relatively small number of documents is judged for each query, and

documents containing the query terms are more likely to have been ranked andsubsequently judged than

those that do not.

In this thesis we show that, despite extensive previous research, queryexpansion does not provide

consistent gains across different query sets and collections. Nevertheless it has potential to be used

effectively for many specialised applications. However, if it can not be made use of efficiently, it will not

be used in an on-demand search system as users are reluctant to wait more than a minimum amount of

time for results.

3
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Figure 1.1: The proportion of relevant documents that contain none, some, or all query terms over

TREC title queries for different collections (all collections are discussed in Section 2.6.2), and query

sets, respectively. Stopping, but no stemming was used to generate this graph.

1.1 How reliable is query expansion?

Although query expansion has been shown to give good improvements on many collections, it is not

clear that queries are consistently improved. An investigation into the robustness of query expansion

is needed to determine whether average improvements of query expansion are hiding the fact that the

retrieval effectiveness of some queries is severely degraded.

Query expansion has been widely researched. In this thesis, we focusprimarily on one particular

form of query expansion, known as local analysis. For this form of expansion, a set of documents is

ranked according to the original query. From the documents of this initial set, terms are selected and

added to the original query. This new, expanded, query is then re-runon the collection.

Two parameters in particular are important in local analysis query expansion. One is the number

of documents from which to retrieve possible expansion terms, and the otheris the total number of

expansion terms to be added to a query. One extreme is to not add any expansion terms to the query,

thus preserving the original query and leaving retrieval effectiveness unchanged. On the other end of

the scale, all available terms would be added to the query. Adding any new term introduces a risk that

the topicality of the original query may be changed, taking search into a different direction. Using the

previous example “spanner types” and adding such a large number of term, the query could drift to

include all different types of tools, rather than only be aimed at spannersor wrenches.
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Most techniques use fixed parameters for expansion. It is therefore valuable to investigate what

impact these parameters have, and whether the underlying assumption that one single optimal setting for

all queries and collections can be determined is correct.

Using comprehensive experiments on two test collections, we have investigated both average ef-

fectiveness and per-query effectiveness for a wide range of parameter choices. Our results show that

it is far from clear that the standard parameter choices are optimal. Other choices of values can lead

to higher effectiveness, but no fixed choice is robust: entirely different values are preferable for dif-

ferent collections. Furthermore, the optimal parameter choices vary widelyfrom query to query. We

conclude that the assumptions underlying most current approaches to query expansion are not well

founded.

However, our results also show that the performance of query expansion has significant scope for

improvement: tuning parameters for individual queries can give much betterperformance than using

fixed values. Whether such tuning is feasible is an open question.

1.2 Can web search effectiveness be improved through query expansion?

Query expansion works well on coherent collections such as newswiredata; see for instance Mitra et al.

(1998). A technique that is designed to increase effectiveness is the association of past user queries to

documents, also known as query association (see Section 5.1.3 for details). We investigate how query

associations can be used for query expansion in a web search environment, and experimentally evaluate

the effectiveness of this approach.

Given a log containing a large number of queries, it is straightforward to build a surrogate for each

document in a collection, consisting of the queries that were a close match to that document. Scholer

et al. (2004) have shown that query associations can provide a useful document summary; that is, the

queries that match a document are a fair description of its content. Here, weinvestigate whether query

associations can play a role in query expansion.

Ranking with query expansion consists of three phases: ranking the original query against the col-

lection or a document set; extracting additional query terms from the highly ranked items; then ranking

the new query against the collection. We show that query associations canbe a highly effective source of

expansion terms. On the TREC-10 data, average precision rises from 0.158 for full text expansion with

optimised expansion parameters to 0.189 for expansion via association, a dramatic relative improvement

of 19.5%.

1.3 How can the efficiency of local analysis query expansion be improved?

Expanding queries through local analysis is one of the most effective methods of reformulating queries

without relying on user input, as detailed in Section 3.3.2. However, in orderfor query expansion to be
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useful in a production environment, it should not slow down query evaluation, as users expect answers in

the shortest amount of time possible. If there is a choice between a system that employs query expansion

to produce slightly better results, and one that does not but returns answers considerably faster, the user

is likely to choose the latter. In this thesis, we investigate the steps in the query expansion process that

have the greatest impact on retrieval speed.

While exploring the aspects of each of the steps in regards to their impact on efficiency, we confirmed

that the largest bottleneck stems from the need to retrieve documents from disk. Disks are a secondary

data storage device, and are significantly slower than main memory and the CPUcache. This makes

disks the slowest of the computer components that are typically used in the query expansion process. Our

results demonstrate that disk accesses are by far the biggest contributorto the overall time requirements

to expand queries. In our experiments, the standard approach to queryexpansion slows down retrieval

by a factor of six.

Since retrieval is mostly slowed down by frequent disk accesses, which are inherently very time-

intensive, we investigate whether it is possible to circumvent disk accessescompletely. We explore alter-

natives for reducing the costs of expanding queries through local expansion. Many of these approaches

compromise effectiveness so severely that they are not of practical benefit. However, one approach is

consistently effective: the use of brief summaries that are a pool of the most important terms of each

document. Thesesurrogatesare much smaller than the source documents, and can be rapidly processed

during expansion. In experiments with several test sets, we show that our approach reduces the time

needed to expand and evaluate a query by a factor of three, while approximately maintaining effective-

ness compared to standard query expansion.

1.4 Is document expansion a viable alternative to query expansion?

Additional terms are appended to queries using query expansion. Seeingthat this process involves at least

a minimal computational overhead, a possible alternative is to reverse the process and expand documents

instead of expanding queries.

We explore the use of document expansion as an alternative to query expansion. In document ex-

pansion, documents are enriched with related terms. Although there is a significant cost associated with

expanding documents, this is undertaken at indexing time; there is only a marginal additional cost at

retrieval time. It is plausible that document expansion should help to resolvethe problem of vocabulary

mismatch, and thus yield benefits like those obtainable with query expansion.

We propose two new corpus-based methods for document expansion. The first method is based on

adding terms to documents in a process that is analogous to query expansion: each document is run as a

query and is subsequently augmented by expansion terms. The second method is based on regarding each

term in the vocabulary as a query, which is expanded using query expansion and used to rank documents.
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The original query term is then added to the top-ranked documents. In bothof these approaches there are

several parameters that need to be tuned.

Our experiments measure the efficiency and effectiveness of query expansion and document expan-

sion on several collections and query sets. We find that, on balance, document expansion leads to im-

provements in effectiveness, but few of the measured gains are statistically significant. Importantly, the

computational cost at query time is small. In contrast, both standard query expansion and the more effi-

cient query expansion that makes use of summaries as proposed above lead to gains in most cases, many

of them significant, while an efficient query expansion process is less than twice the cost of querying

without expansion.

We tested several alternative configurations of document expansion and explored the parameters, but

did not observe useful gains in effectiveness. We conclude that corpus-based document expansion is

unpromising, while we found query expansion to improve retrieval consistently, and thus believe that

further gains in performance may be available.

1.5 Thesis structure

Chapter 2 gives an overview over the relevant background in information retrieval. In particular we

discuss what constitutes an information need and how this might be expressed as a query. We also

introduce document indexing, the concept of relevance, how queries are evaluated in general, and how

they can be evaluated efficiently. In Section 2.6, we describe in detail some retrieval models, in particular

the vector space model, probabilistic models, and language models. Additionaldata that can be made

use of for web retrieval, such as anchor text and past queries, is alsoconsidered. Finally we explain how

we measure the performance of our experiments, in terms of efficiency andeffectiveness, the latter using

the data sets provided by TREC.

A history of relevance feedback and query expansion is given in Chapter 3. We first discuss what

constitutes an optimal query and how relevance feedback can be made useof in order to get arbitrarily

close to the optimal query. We then discuss interactive query expansion, where user input is sought

not on the relevance of documents, but on the usefulness of possible expansion terms. Finally we give

an overview of past and present techniques for expanding queries automatically. In the past, automatic

query expansion focused on thesauri and dictionaries, whereas modern approaches favour a technique

that relies on the documents retrieved using the initial query to deliver appropriate expansion terms,

named local analysis. Efficient approaches to the latter technique are the topic of this thesis.

In Chapter 4 we explore what impact different parameter settings for local analysis query expansion

have on retrieval effectiveness. In particular, we investigate how the effectiveness of query expansion

varies between different collections and individual queries, and whatthe optimal parameter settings for

collections and queries are. We also examine the robustness of local analysis query expansion.
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Our work in Chapter 5 is based on query association. We therefore givean outline of this approach

of linking past user queries to web documents. We then explain how associations can be made use of for

query expansion in the context of web retrieval.

In Chapter 6 we discuss the considerations for a more efficient approach to local analysis. In partic-

ular, we describe in detail what the bottlenecks for query expansion areand speculate about how those

could be alleviated. We propose the use of in-memory data structures to remove the need for disk ac-

cesses to retrieve documents, which is the biggest obstacle to a more efficient query expansion solution.

Document expansion for ad-hoc retrieval is explored as an alternativeto local analysis in Chapter 7.

We propose two different approaches to document expansion, one centred on each document in the

collection, the other on the terms in the vocabulary.

Finally, we conclude this thesis in Chapter 8 and give an outline of avenues for future research.



Chapter 2

Information Retrieval

The largest text repositories today hold terabytes of data. This prompts thequestion: how can large

amounts of data be searched efficiently in order to find the required information? The näıve approach

is a manual search, where the researcher brings up one record afteranother onto the screen and checks

whether it fulfils the search criteria. Due to the numbers of documents in typical repositories, this is

infeasible.

Information retrieval attempts to identify documents that the searcher is lookingfor. Typically this

involves the searcher providing some keywords to the retrieval engine, which then uses these to search

the collection.

2.1 Information needs and queries

To begin with, the user is in aproblematic situation(Belkin et al., 1993) or has areal information need

(Mizzaro, 1998), of which they might not even be fully aware. From this real information need the

perceived information need(or simply information need) arises. The keywords used to formulate the

queryare therefore only a particular representation of what the searcher is looking for.

For instance, an osteoporosis researcher might have the real information need that they lack knowl-

edge about osteoporosis patients that have suffered multiple fractures.While the researcher might not

be completely conscious of this lack of knowledge, they are aware that theywould like to find out more

about those patients, which is an information need. A query is then an attempt by the user to formulate

their information need, whereas the information need may include a much more detailed context. In this

example, a query could be formulated as “osteoporosis multiple fractures”.The information need also

depends on any prior information available that might not be wanted in the result set. In our example,

the searcher might already be familiar with the cases of the last two years in their affiliated hospital, and

therefore would not be interested in records from that time. It is impossible for a query to be an exact

and encompassing formulation of the information need because – even if the user was able to express

9
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their information need completely in the query – it lacks the context in which the user is looking for the

information. The query is therefore not an exact verbalisation of the information need; it does not encap-

sulate all the information the researcher already has and does not need toretrieve again, and it lacks any

contextual information. It follows that the same information need may be expressed as several different

queries, none of which is sufficient to encompass the whole information need on its own.

Conversely, the same query can represent different information needs, since it is a relatively small

and more or less concise statement of what a searcher is looking for. An example would be that a doctor

poses the same query (“osteoporosis multiple fractures”) but rather thanbeing interested in all patients

who had multiple fractures, the doctor may want to retrieve the medical recordof a particular patient

whose name they cannot remember, but still knows why the patient saw them. In this case the query

might take the same form as before but the intended result set is quite different.

Furthermore, an information need is typically not static, that is, the information auser is seeking

changes during the course of a search (Ellis, 1989). One reason is theaforementioned criteria that, in

many search scenarios, information that addresses an aspect of the user’s information need has previ-

ously been seen by the user, and is therefore not helpful in further fulfilling the user’s information need

(Spink and Wilson, 1999). Recent research within the TREC framework (discussed in Section 2.6.2) is

concerned with this issue, in the form of thenoveltytrack (Soboroff and Harman, 2003).

The other – and less predictable – reason is that the actual information needthat a user had at the

outset of the search can change as the user reads more and more documents (Kuhlthau, 1993). It could be

said that the focus of the search is shifting. Often this directional change of the search is large enough that

a change of the initial query is warranted. In the above example the user chooses the query “osteoporosis

multiple fractures” with the intention of finding the medical records of all patientsthat had multiple

fractures. However, while searching and reading the first records,the user discovers that it would actually

be more interesting to investigate the circumstances in which femurs in particular were fractured. Hence

a new query, better suited to the new information need, could be: “osteoporosis fractures femur”. While

this transientnature of searching has strong implications for information retrieval, it is notinvestigated

in this thesis. In this chapter we explain how retrieval systems attempt to satisfy information needs.

2.2 Indexing

Just having access to data is not of much use in cases where the data is large and only a particular part of

the data needs to be viewed. In the example above, the researcher has access to all data about all previous

patients, but without the means to efficiently search those, this is not usefulfor the task at hand. One way

to overcome this is by ordering the data in a meaningful way, however this carries certain difficulties.

When taking the query “osteoporosis multiple fractures” as an example, it would be helpful if data was

sorted by the type of injury or diagnosis. While the data can be arranged in this way – for instance, using
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Document ID Document text

Document 1: “How unfair! Only one health, and so many diseases.”1

Document 2: “The miserable have no other medicine but only hope.”2

Document 3: “Nearly all men die of their medicines, not of their diseases.”3

Document 4: “Medicine, the only profession that labors incessantly

to destroy the reason for its own existence.”4

Table 2.1: Example collection of documents. This collection is used throughout this chapter to illustrate

issues and techniques related to information retrieval.

a sophisticated directory structure – the searcher then faces the problemof finding the relevant records

with minimal effort.

A better option is to use anindex. The first concordance – an elaborate form of an index, where each

term is explained in the contexts it appears in – was completed in 1230 by Hugo de Sancto Charo, who led

500 fellow Dominicans to index the bible in Latin (Witten et al., 1999, page 19). Ininformation retrieval,

an index is a list of the terms that occur in a collection along with references asto where these terms can

be found. As indexes are one of the important building blocks of a searchengine, various construction

algorithms have been developed (see for instance Moffat and Bell, 1995, or Heinz and Zobel, 2003).

Consider the example collection of documents shown in Table 2.1. This collectionis used in the

remainder of this chapter to illustrate issues and techniques related to information retrieval.

A list for each term in a collection contains pairs of document identifiers, together with the number

of occurrences within that document (thedocument frequency). An index of our example collection,

alphabetically sorted by indexed term, is shown in Table 2.2. During query evaluation, discussed in

detail in Section 2.4, the documents within which each query term occurs are found using the index.

The index structure used in most practical information retrieval systems is aninverted indexor in-

verted file. During traditional index construction, a list of terms for each document is created, effectively

forming a large matrix of documents and terms, where the number of term occurrences for each doc-

ument is accumulated. This initial matrix is also referred to as aforward index. Upon completion of

the data gathering process, each row of the matrix gives the number of occurrences of every single term

in the collection for a particular document. The matrix is then inverted, and eachrow now shows the

number of occurrences for each document for a particular term. The listsfor each term detailing where

the term occurs, are referred to asinverted lists.

1Victor Schlichter.
2William Shakespeare’s “Measure for Measure”.
3Moliere.
4James Bryce.
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Term Inverted list Term Inverted list

all: 〈〈3, 1〉〉 men: 〈〈3, 1〉〉

and: 〈〈1, 1〉〉 miserable: 〈〈2, 1〉〉

but: 〈〈2, 1〉〉 nearly: 〈〈3, 1〉〉

destroy: 〈〈4, 1〉〉 no: 〈〈2, 1〉〉

die: 〈〈3, 1〉〉 not: 〈〈3, 1〉〉

diseases: 〈〈1, 1〉 〈3, 1〉〉 of: 〈〈3, 2〉〉

existence: 〈〈4, 1〉〉 one: 〈〈1, 1〉〉

for: 〈〈4, 1〉〉 only: 〈〈1, 1〉 〈2, 1〉 〈4, 1〉〉

have: 〈〈2, 1〉〉 other: 〈〈2, 1〉〉

health: 〈〈1, 1〉〉 own: 〈〈4, 1〉〉

hope: 〈〈2, 1〉〉 profession: 〈〈4, 1〉〉

how: 〈〈1, 1〉〉 reason: 〈〈4, 1〉〉

incessantly: 〈〈4, 1〉〉 so: 〈〈1, 1〉〉

its: 〈〈4, 1〉〉 that: 〈〈4, 1〉〉

labors: 〈〈4, 1〉〉 the: 〈〈2, 1〉 〈4, 2〉〉

many: 〈〈1, 1〉〉 their: 〈〈3, 2〉〉

medicine: 〈〈2, 1〉 〈4, 1〉〉 to: 〈〈4, 1〉〉

medicines: 〈〈3, 1〉〉 unfair: 〈〈1, 1〉〉

Table 2.2: Example of an inverted index: for each termt there is a list that consists of one or more

entries, each containing the identifier of documentd and the number of times t occurs therein (fd,t).

An alternative method of indexing was to usesignature files(see for instance Faloutsos (1985) or

Sacks-Davis et al. (1987)), where each document is allocated a certainnumber of bits, a signature. Every

word in a particular document is hashed several times and bits in the signature are set accordingly.

During query evaluation, a signature for the query is established in the sameway and compared to the

document signatures in the index. When a potential match is found, the actualdocument needs to be

checked whether the query terms actually appeared, since a bit set in the signature could have also been

set because another word with the same signature leads to this bit being set. Zobel et al. (1998) found

that signature files are inferior compared to inverted indexes in terms of query evaluation speed, storage

requirements, and functionality.

In earlier times only a limited number of keywords was assigned to each document to aid the retrieval

of that document (Maron, 1961), often from a physical archive. Modern indexing methods for text

document retrieval typically include all terms that appear in a document in the index.
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term inverted list term inverted list

destroy: 〈〈4, 1〉〉 medicine: 〈〈2, 1〉 〈4, 1〉〉

die: 〈〈3, 1〉〉 medicines: 〈〈3, 1〉〉

diseases: 〈〈1, 1〉 〈3, 1〉〉 men: 〈〈3, 1〉〉

existence: 〈〈4, 1〉〉 miserable: 〈〈2, 1〉〉

health: 〈〈1, 1〉〉 nearly: 〈〈3, 1〉〉

hope: 〈〈2, 1〉〉 profession: 〈〈4, 1〉〉

incessantly: 〈〈4, 1〉〉 reason: 〈〈4, 1〉〉

labors: 〈〈4, 1〉〉 unfair: 〈〈1, 1〉〉

Table 2.3: Example of a stopped inverted index: only non-stopped terms have an entry in the index. As

before, for each term there is an inverted list that consists of one or more entries each containing the

document identifier and the number of occurrences of the term in that particular document.

Although the size of an index is typically only a fraction of the collection at hand, this can be

further reduced through compression techniques. Various techniqueshave been used, including inte-

ger coding schemes, such as Golomb coding (Golomb, 1966) or Elias coding(Elias, 1975). Origi-

nally, compression was used primarily to reduce the space required for anindex. However, by us-

ing different coding schemes, it has since been possible to also reduce query processing time by re-

ducing disk access times (see for instance Bell et al., 1995, or Scholer etal., 2002). The signifi-

cance of compression is likely to increase as the gap widens between processor speeds and disk access

times.

2.2.1 Stopping

Stoppingis the process of removing frequently occurring terms from indexes and queries (Witten et al.,

1999, pages 147–149). The justification for this process is that terms thatoccur in most documents

are not very useful for identifying relevant documents. Although thosestopwordshave a grammatical

function and are important for comprehension of sentences, they are oflittle use in discriminating some

documents from others. For example, the word “the” occurs in most documents. If “the” was used as

part of a query, it would not have a significant impact on the answer set,if any at all.

Stopwords include articles, prepositions, and conjunctions; astoplistmay contain 300–500 terms.

We distinguishstoppingan index from stopping a query: in the first case, inverted lists of stopwords

are purged from the index prior to querying time, whereas, in the latter, stopwords are removed from the

query during querying time. Stopping has two main advantages: first, the index size is reduced by a small

percentage, resulting in decreased storage requirements. Second, during query evaluation, the inverted
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lists for stopwords, which are usually longer than average, need not beprocessed, which can lead to a

considerable time saving.

There are drawbacks to stopping, however: it is difficult to predict exactly which terms will not be of

interest to current and future searchers. For example, it is feasible that a linguist might be interested in

ordering documents by stopwords alone, so as to obtain a subset of documents that is interesting in terms

of word usage characteristics. Another disadvantage is that queries which contain only stopwords, such

as “to be or not to be” or “the who”, cannot be serviced with a stopped index.

Because of these problems, and because the savings in index size due to improved compression

techniques are typically small, in modern search engines the indexes are notusually stopped. A more

common alternative is to stop queries, unless – based on some heuristics or asindicated explicitly by the

user – the inclusion of those terms is required to in answer a query.

The stopped index shown in Table 2.3 is considerably smaller compared to the original, non-stopped

index shown in Table 2.2. However, in a large scale system, the effect of stopping would not be as great

as in this example.

2.2.2 Case folding

Another technique used at indexing time iscase folding, that is to change all upper case letters into lower

case letters or vice versa. This is motivated by the fact that users searching for documents that contain

the term “osteoporosis” are most likely also interested in documents that contain “Osteoporosis”.

2.2.3 Stemming

Stemmingis a technique which removes suffixes (Porter, 1980, Lovins, 1968, Frakes, 1992) from terms

in order to reduce them to a common stem form. In languages other than English, stemming might also

remove prefixes or infixes, as for instance is needed for Bahasa Indonesia (Asian et al., 2005), or Bahasa

Malay (Ahmad et al., 1996). Stemming typically removes gerunds (“ing”), plurals, and past tenses.

In the running example, where the case was already folded, terms are shown stemmed in Table 2.4.

This means that the terms that previously had two or more entries (in this case “medicine” and “medi-

cines”) only have one entry after having been stemmed to the same root. The lists of those terms are then

merged to build a new inverted list for the root.

2.3 Relevance

The purpose of ranking algorithms (some of which we discuss in the next section) is to present the user

with documents that address their information need. A document is deemed to berelevantif it in some

way satisfies a user’s information need. This does not necessarily mean that the document is useful to a

user. As a simple example, if there are two identical documents, both would be considered to be relevant,
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term inverted list term inverted list

destr: 〈〈4, 1〉〉 medicin: 〈〈2, 1〉 〈3, 1〉 〈4, 1〉〉

die: 〈〈3, 1〉〉 man: 〈〈3, 1〉〉

diseas: 〈〈1, 1〉 〈3, 1〉〉 miserabl: 〈〈2, 1〉〉

existen: 〈〈4, 1〉〉 near: 〈〈3, 1〉〉

health: 〈〈1, 1〉〉 profes: 〈〈4, 1〉〉

hope: 〈〈2, 1〉〉 reason: 〈〈4, 1〉〉

incess: 〈〈4, 1〉〉 unfair: 〈〈1, 1〉〉

labor: 〈〈4, 1〉〉

Table 2.4: Example of a stopped and stemmed inverted index; only non-stopped terms have an entry

in the index. As before, for each termt there is an inverted list that consists of one or more entries

each containing the identifier of documentd and the number of occurrencesfd,t of t in that particular

document.

but in most cases only one of them will be beneficial to the user in resolving their information need –

there is no use to see the same document twice. The less often usedutility tries to capture how useful

a document is not only to satisfy a particular information need, but also in respect to a certain retrieval

task (see for instance Brajnik et al., 1996 or Cooper, 1973). These are similar considerations as those

examined in Section 2.1.

Saracevic (1999) proposes a hierarchy of relevance. On the lowestlevel,system or algorithmic rele-

vanceis achieved if a document satisfies a query on a syntactic level (for instance, there is an overlap of

terminology). More grades of relevance (topical or subject relevance, cognitive relevance or pertinence,

situational relevance or utility) determine ever stronger user satisfaction, whilemotivational or affective

relevancecompletely addresses the user’s information need.

Although often challenged and discussed (see for instance Eisenberg and Hu, 1987, Janes, 1991,

Kekäläinen and J̈arvelin, 2002), in information retrieval the simplification ofbinary relevanceis com-

monly made, where a document can only be either relevant or not relevantto an information need.

However, there are many exceptions, such as the field of XML retrieval, where a finer granularity of

relevance is typically used (Fuhr et al., 2004, Kazai et al., 2004).

Relevance is discussed in greater detail in Saracevic (1975), van Rijsbergen, 1979, Chapter 7, Scham-

ber (1994), and Mizzaro (1997).



16 CHAPTER 2. INFORMATION RETRIEVAL

2.4 Query evaluation and ranking

Having constructed an index on a document collection, queries need to be matched to documents and a

list of answers returned. A user query is usually – at least in the contextof a text search engine – a string

of characters, typically comprised of two or three terms. There are two main types of queries:Boolean

queriesandranked queries.

Boolean queries are answered by following Boolean logic to determine whichdocuments should be

listed in response to a query. The basic Boolean logic operators are OR, AND, and NOT. Each pair

of terms in aBoolean queryis separated by the OR or AND operator, or a term is preceded by the

unary operator NOT (Witten et al., 1999, pages 153 and 154). Eachconjunctin turn can be connected

with a further Boolean operator to another term, pair of terms, or other, morecomplex, nested Boolean

constructs.

An example of a Boolean query is: “osteoporosis AND multiple AND (fractures OR (broken AND

bones))”. The answer set for this query would contain documents that include the terms “osteoporosis”,

“multiple” and either the term “fractures” or both of the terms “broken” and “bones”.

Boolean queries were used with early retrieval engines, but lost popularity in favour of other evalua-

tion schemes; however, most modern search engines still support the useof Boolean operators as part of

ranked queries.

Ranked queries can be written in natural language and result in answer sets where documents are

ranked by some similarity measure of how alike a document and the query are.The term “ranked query”

is somewhat of a misnomer as it is the documents in the result set that are ranked, rather than the query

itself. An example of a ranked query is: “osteoporosis multiple fractures”.Typically no Boolean oper-

ators are used, however most search engines connect terms with an implicitAND or OR. That is, either

all documents in the answer set contain all query terms (AND), or returneddocuments contain at least

one of the terms in the query (OR).

A phrase query (Bahle et al., 2002) is a special type of a Boolean AND query, where terms must

not only occur within the same document, but consecutively in the same orderas stated in the query

– that is, they must occur as a phrase. Phrase queries are commonly usedin conjunction with ranked

queries. Using the earlier example, one might search for the phrase “multiplefractures” in the context of

osteoporosis and use the ranked query “osteoporosis ‘multiple fractures”’.

Upon submission of a query by the user to the search system, the query is parsed into different

terms, which may then be case-folded, stemmed, and stopped – depending onthe search system. Once

tokenised, the inverted lists of the query terms are retrieved from disk, if they are not cached from a

previous access. Anaccumulator table, where document scores are entered, is cleared. The first inverted

list is then traversed and the document number as well as the term count (orindividual term offsets, if

these are used) are decoded, as inverted lists are typically stored in compressed form (see for instance
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Scholer et al., 2002). For each document a separately stored documentmap is consulted, where other

document specific information – such as the document length or the documentweight – is stored. Relying

on the term counts and document weights, a partial score is calculated for the current term/document pair

using one of the similarity metrics described in the remainder of this section. If thisparticular document

does not already have an entry in the accumulator table, an entry is createdand the document score is

initialised with the previously calculated partial score. If, however, an entry already exists for the current

document, it is updated by adding the new partial score to the so far accumulated score. This process is

repeated until either all inverted lists have been traversed, or until certainconditions, which are dictated

by efficiency considerations, have been met upon which processing is altered or stopped completely (see

Section 2.4.4 for more detail). Once all lists have been processed, the documents that have the highest

entries in the accumulator table are partially sorted in descending order by their accumulated score,

typically using aheapsort(Knuth, 1978, Volume 3, pages 144–148). Finally, the top documents (say10)

are returned to the user for viewing.

Boolean queries need to be evaluated differently. To evaluate a Boolean query, the inverted lists of

each query term are examined. For each term that the query specifies to be present in a document, the

document identifiers are added to a pool of possible answers. Conversely, for each term that is specified

not to be in a document, the respective document identifier is expressivelyexcluded from the pool of

possible answers. For more complex conjuncts that specify for instance that a particular term is present

while another one is absent, the lists for both of these terms are processed inparallel to identify matches

which are then added to or excluded from the pool. Once all terms have been processed, all documents

remaining in the pool are presented to the user.

All documents in the answer pool are assumed equally likely to be relevant. Unlike for ranked

queries, answers are not sorted in any particular order when presented to the user.

In the following section we describe and derive different similarity metrics.

2.4.1 Vector space model

The framework of the vector space model (see also Witten et al., 1999, page 187) employs a ranking

algorithm that tries to rank documents in order of how much of an overlap there is between the terminol-

ogy of the query and each document (Salton, 1971, Bookstein, 1982),where relatively rare terms have a

comparatively high weight.

In the vector space model all queries and documents are represented asvectors in|V |-dimensional

space, whereV is the set of all distinct terms in the collection (thevocabulary). Conceptually, doc-

uments are ranked by the magnitude of the angle between the document vectorand the query vector.

Mathematical notation is summarised in Table 2.5.
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q A query

~q The query vector of queryq

|~q| The vector length of the queryq

d A particular document

|d| The length of documentd in some suitable unit
~d The document vector of documentd

|~d| The vector length of the documentd

t A particular term

V The set of distinct terms in the vocabulary

|V | The total number of distinct terms in the vocabulary

N The number of all documents in the collection

wq,t The weight of a particular term in the query

wd,t The weight for a particular term in a particular document

ft The number of documents termt appears in

fd,t The number of occurrences of termt within documentd

Table 2.5: Summary of notation for the vector space model.

At the centre of the vector space model is thecosine measure, which is used to measure the angle

between two vectors. The cosine between two vectors is determined as the dot product between each

document vector~d and the query vector~q, normalised by the lengths of the document and the query:

cosine(q, d) =
~q · ~d

|~q||~d|

Since the contribution of any term not in both the document and the query will be 0, it is only

necessary to calculate the dot product for the terms in the intersection. Using query term weightswq,t

and document term weightswd,t and applying the dot product for the intersection of all termst occurring

in the query and the document currently being examined gives:

cosine(q, d) =

∑

t∈q∩d

(wq,t × wd,t)

√

∑

t∈q

w2
q,t ×

√

∑

t∈d

w2
d,t

(2.1)
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The vector space model does not specify how to set the document term weight and the query term weight,

but in practice these weights are often calculated using their collection frequency and within-document

frequency, respectively:

wq,t = ln

(

1 +
N

ft

)

(2.2)

and:

wd,t = 1 + ln(fd,t) (2.3)

whereN is the number of documents in the collection,ft is the number of documents termt occurs in,

andfd,t is the number of times the term appears in documentd. The first equation is also referred to as the

term frequencyor inverse document frequencyand gives a measure of how common or rare a term is in a

collection, and the latter is also known as thedocument frequency, providing a measure of the emphasis

a term is given within a document. Both measures are discussed in further detail in Section 3.3.2.

Since the query length is constant for the evaluation of a single query, we can ignore this factor, while

preserving ranking order. Finally, dropping this factor and substituting the weights for each component

as defined in Equations 2.2 and 2.3 into Equation 2.1, yields:

cosine(q, d)
rank
=

∑

t∈q∩d

(

ln
(

1 + N
ft

)

× (1 + ln(fd,t))
)

√

∑

t∈d

(1 + ln(fd,t))
2

To evaluate a query, all documents are ranked by their similarity score.

The vector space model continues to be used in a variety of information retrieval areas apart from

document retrieval, such as document categorisation (Joachims, 1997, Hull, 1994), collaborative filtering

(Soboroff and Nicholas, 2000) or topic tracking (Connell et al., 2004).

2.4.2 Probabilistic retrieval models

Probabilistic retrieval models are used to estimate the probability of documents being relevant to a query

(Robertson and Sparck Jones, 1976, Robertson et al., 1981). This probability is then used to rank all

documents in response to a query (this is also referred to as theprobability ranking principle).

In the following we derive one of the most commonly used probabilistic models,Okapi (Robertson

and Walker, 1999), and in particularOkapi BM25(Robertson et al., 1992). We follow the explanations

given by Sparck Jones et al. (2000) and Robertson et al. (1981). Notation is summarised in Table 2.6.

We assignL to the event that a document is relevant to a query (it is “liked”) andL to the event that

a document is not relevant to a query. ThenP (L|d) is the probability that documentd is relevant, and

P (L|d) that it is not.
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q A query

d A particular document

L The event that documentd is relevant (liked), given queryq

L The event that documentd is not relevant (not liked), given queryq

|d| The length of documentd in some suitable unit

t A particular term

Ai,d Theith attribute used to describe documentd

ai,d The value ofAi,d in documentd

V The set of all distinct terms in the vocabulary

R The set of all relevant documents, given a particular query

|R| The number of all documents inR

rt The number of documents inR that contain termt

N The number of all documents in the collection

C The collection, made up ofN documents

ft The number of all documents that contain termt

fd,t The number of occurrences of termt in documentd

k1, b, k3 Tuning constants

Table 2.6: Summary of notation for the probabilistic model.

Let sim(d, q) = P (L|d)

P (L|d)
, that is, the similarity of a particular documentd to a queryq is defined by

the ratio of probabilities of relevance to that of non-relevance. Bayes theorem
(

P (A|B) = P (B|A)P (A)
P (B)

)

(Gelman et al., 2004, pages 7 and 22) allows us to rewrite this similarity:

sim(d, q) =
P (d|L)

P (d|L)
×

P (L)

P (L)

The ratioP (L)/P (L) is a constant that is independent of the characteristics of particular documents.

Discounting this portion of the equation and using log-odds leads to the simpler,rank-equivalent formu-

lation:

sim(d, q)
rank
= log

P (d|L)

P (d|L)
(2.4)

Sparck Jones et al. introduce the concept ofdocument attributes, which can be any features a docu-

ment may have, such as the structure of a document or images. However, most commonly the document

attributes are taken to be the terms in a document. Sparck Jones et al. make the assumption that docu-

ment attributes are independent of each other. As in this thesis we only consider attributes that are terms,

this assumption means that the occurrence of one term in a document is completely independent from

another term appearing in this document. This assumption simplifies the mathematics involved greatly,
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Relevant Non-relevant All documents

Documents containing termt rt ft − rt ft

Documents not containing termt |R| − rt N − ft − |R| + rt N − ft

All documents |R| N − R N

Table 2.7: Incident contingency table: collection and term statistics are divided into sets of relevant and

non-relevant documents. Although|R| andrt are dependent on an information need, for simplicity, we

do not introduce another subscript, but rather treat this dependency as implicit.

although it does not hold in practice – consider for instance the common co-occurrence of terms such as

“New” and “York” or “United” and “States”. Sparck Jones et al. (2000) refer to van Rijsbergen (1977),

who reports that taking term interdependencies into account has little impact on any resultant ranking.

It follows that the probability of a document being relevant can be calculated by the product over all

i attributesAi,d that describe documentd (or, in the simplified case, terms in the vocabulary), whereai,d

indicates the value of that attribute (whether the term is present or absent):

P (d|L) =
∏

i

P (Ai,d = ai,d|L) (2.5)

Analogously for non-relevant documents:

P (d|L) =
∏

i

P (Ai,d = ai,d|L) (2.6)

Substituting Equations 2.5 and 2.6 into 2.4:

sim(d, q)
rank
=
∑

i

log
P (Ai,d = ai,d|L)

P (Ai,d = ai,d|L)

Furthermore, the sum of the ratio of all probabilities of liked to unliked non-present attributes can be

discounted without changing the ordering of the similarities:

sim(d, q)
rank
=
∑

i

log
P (Ai,d = ai,d|L)

P (Ai,d = ai,d|L)
−
∑

i

log
P (Ai,d = 0|L)

P (Ai,d = 0|L)

sim(d, q)
rank
=
∑

i

log
P (Ai,d = ai,d|L)P (Ai,d = 0|L)

P (Ai,d = ai,d|L)P (Ai,d = 0|L)
(2.7)

After sacrificing the generality of attributes in favour of terms, and re-arranging:

sim(d, q)
rank
=
∑

t∈V

log
P (t present|L)(1 − P (t present|L))

P (t present|L)(1 − P (t present|L))
(2.8)
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Making use ofincident contingencies, summarised in Table 2.7, the probability of termt being

present in a relevant document can be expressed as the ratio of the number of relevant document that

contain that term,rt to the number of relevant documents|R|:

P (t present|L) =
rt

|R|
(2.9)

For non-relevant documents, we introduceN , the total number of documents in the collection and the

term frequencyft, the total number of documents that contain termt:

P (t present|L) =
ft − rt

N − |R|
(2.10)

Substituting Equations 2.9 and 2.10 back into Equation 2.8 gives:

sim(d, q)
rank
=
∑

t∈V

log
rt(N − ft − |R| + rt)

(|R| − rt)(ft − rt)

The value of0.5 is added tort in order to avoid problems where no relevant documents contain one of

the query terms (for example because of vocabulary mismatch):

sim(d, q)
rank
=
∑

t∈V

log
(rt + 0.5)(N − ft − |R| + rt + 0.5)

(|R| − rt + 0.5)(ft − rt + 0.5)

However, in an initial ad-hoc setting no prior information about relevance of documents is available, and

only term statistics can be made use of. Since neither|R| nor rt are known, they are set to0, which

reduces the term weight to:

sim(d, q)
rank
=
∑

t∈V

log
N − ft + 0.5

ft + 0.5
(2.11)

Term frequency weighting

So far it was not specified what theAt = at,d in Equations 2.5 to 2.7 is, but one solution would be to

use the within-document term frequencyfd,t. Robertson and Walker (1994) examine the assumption that

so-calledelite terms follow a different term distribution to more common terms, where elite terms are

effectively those terms that are good discriminators between documents. They employ a 2-Poisson dis-

tribution, associating one distribution with elite terms, and another with all other terms. The assumption

that one set of terms follows a certain probability distribution whereas another set follows a different one

has been underlying information retrieval concepts for some time; Harter (1975) uses this assumption in

order to find suitable keywords as index terms of a sparse index. More recently an n-Poisson model was

proposed and tested (Margulis, 1993). Ponte and Croft (1998) review and critique the 2-Poisson model.

Although Sparck Jones et al. (2000) consider the 2-Poisson model as agood match for their approach,

it is not suited to practical application. An estimation of the 2-Poisson model is therefore used instead,

based on the within document term frequencyfd,t, giving a count of the number of occurrences of a
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particular termt in a particular documentd (Robertson and Walker, 1994). The 2-Poisson estimation

equation((k1 +1)fd,t)/(k1 + fd,t) inserted into Equation 2.11, and reducing the space over which terms

this equation is applied to from all terms in the vocabulary to those appearing in the query, results in:

sim′(d, q) =
∑

t∈q

log

(

N − ft + 0.5

ft + 0.5

)

×
(k1 + 1)fd,t

k1 + fd,t
(2.12)

The first of several tuning constants present in the final Okapi BM25 equation isk1. If it is set to0,

the weight is reduced to the simple term presence, meaning the weight of a termis not increased by the

number of times it appears in a document. If it is set to a large value, the term weight increases roughly

linearly with the term frequency. In our experiments we use the value of1.2, recommended by Robertson

and Walker (1999); this is at the lower end of the range suggested by Sparck Jones et al. (2000).

Document length normalisation

As document length normalisation and the number of re-occurring query terms are of importance to the

experiments in Chapter 6, we discuss these here in detail. Since long documents have a greater likelihood

of containing more distinct terms than short documents, long documents have agreater chance to be

highly ranked for any query, even though the information conveyed in those documents may be of a

different kind to that sought by the query. A factor, that is linked to the lengths of documents, normalises

the contribution of term weights to the matching for documents of different lengths. The length|d| of

documentd is calculated in some suitable measure, for instance the number of terms, the number of

non-stopped terms, or the number of bytes. In the Okapi BM25 similarity measure, document length

normalisation is given by:

(1 − b) + b ×
|d| × N
∑

i∈C |di|

A tuning constant,b, is used to control the impact of the normalisation factor. Ifb is set to0, no

normalisation is performed, while if it is set to1, the full impact of the length normalisation is used. In

our implementation we use the value0.75, as recommended by Robertson and Walker (1999) and Sparck

Jones et al. (2000).

Combining the document normalisation with Equation 2.12 results in:

sim′′(d, q) =
∑

t∈q

log

(

N − ft + 0.5

ft + 0.5

)

×
(k1 + 1)fd,t

k1 ×
(

(1 − b) + b × |d|×N
P

i∈N |di|

)

+ fd,t

(2.13)

Document length normalisation has also been discussed by Singhal et al. (1996).

Re-occurring query terms

It is possible that long queries contain some query terms more than once. Without the use of natural

language processing or other more intelligent approaches to understanding a query than just as a bag-

of-words, this duplication could be taken as emphasising the importance of these terms. The query
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term frequencyfq,t is handled analogously to the within document frequency which was shown earlier.

Adding into Equation 2.13 a query term frequency formulation results in the full Okapi BM25 measure:

BM25(d, q) =
∑

t∈q

log

(

N − ft + 0.5

ft + 0.5

)

×
(k1 + 1)fd,t

k1 ×
(

(1 − b) + b × |d|×N
P

i∈N |di|

)

+ fd,t

×
(k3 + 1)fq,t

k3 + fq,t

(2.14)

wherek3 is a tuning constant that can range from0, where only one instance of each query term con-

tributes to the ranking, to a very large value, such as 10,000, where query terms contribute as often as

they occur. In our implementation we setk3 to a very large constant. In practice,k3 has little impact on

most of the experiments detailed in this thesis, since we use TREC title only queriesthat are typically

short and do not contain any duplicate terms (see Section 2.6.2 for details).An exception is our work on

document expansion, detailed in Chapter 7.

Okapi BM25

The complex Poisson function is estimated by trial and error. The name OkapiBM25 is derived of “BM”,

which is the abbreviation of “Best Match”, and a version number of the latest trial, in this case 25, which

is a combination of BM11 and BM15 (Robertson et al., 1994).

In summary, the first term of the BM25 equation shown in Equation 2.14 abovede-emphasises the

importance of query terms that appear in many documents in the collection. The second term gives

documents that contain query terms in larger numbers a higher weight and normalises by document

length. The third term is used for tuning the impact of duplicated query terms.

The Okapi framework theoretically does not allow for query expansion since it implicitly postulates

that terms that do not occur in the user query have the same likelihood of occurring in relevant and

non-relevant documents (Lavrenko, 2004, page 11). Therefore,adding expansion terms to the query

should not have any statistically significant effect. This, of course, hasbeen proven wrong in many query

expansion experiments including those detailed in this thesis.

2.4.3 Language models

An alternative way of ranking documents has been put forward by Ponteand Croft (1998). In the lan-

guage modelling approach, queries and documents are in principle generated from alanguage model.

Here, documents are not seen as a string of terms put together by an author, but rather as one –

albeit the most likely one – of many possible manifestations of the information that the author wanted

to convey. In other words, a language model for a particular document would not only be based on the

usage of terms and sentence structure that appear in that document, but the document would be seen as a

sample of what the document could also look like, while still conveying the same information. One can

understand this as a document being just one particular version that has been chosen from an unlimited
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q A query

|q| The length of queryq, expressed in the number of term occurrences

d A particular document

|d| The length of documentd, expressed in the number of term occurrences

θd The language model of documentd

θq,t The distribution of terms given the queryq and the termt

θd,t The distribution of terms given the documentd and the termt

t A particular term

fd,t The number of occurrences of termt in documentd

fq,t The number of occurrences of termt in queryq

C The collection, made up ofN documents

Ft The total number of occurrences of termt in the collection

F The total number of occurrences of all terms in the collection

V The set of distinct terms in the vocabulary

|V | The number of distinct terms in the vocabulary

λ Jelinek-Mercer smoothing parameter

α
d

Document dependent smoothing parameter

µ Dirichlet smoothing parameter

R The set of relevant documents, given an information need

R′ A set of documentsassumedto be relevant

Table 2.8: Summary of notation for language models.

number of drafts to convey the information that the document contains. Intuitively, the basis for this

is sensible, as someone might have used slightly different terms or a different sentence structure and

still authored a document with the same information as the one at hand. In practice, due to the lack

of information about the actual language model of a document, the model isinferred from actual term

distributions of the document under examination and those of a wider collectionof documents (such as

the web or a particular collection of newswire documents).

Conceptually, to rank documents, the most likely relations between documents and queries are es-

tablished. There are three main approaches; the first assumes that a query wasgeneratedby a document

model. The second reverses this and assigns probabilities to documents in order of their likelihood of

having been generated by the model of a query. The last one compares the models of both the query and

each document. Each of those is explained in detail in the following sections.
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Language models have also been used for parsing documents andpart of speechtagging, in general

(Jelinek, 1990). Similarly as with speech recognition, language models can help to solve the problem

whether the next item in a stream of text is more likely to be for instance a noun or a verb. Since their

introduction, language models have shown good results, often better than Okapi BM25 (see for instance

Lavrenko and Croft (2001)). For a collection of pertinent papers onlanguage modelling, see Croft and

Lafferty (2003).

Origins of language models

Language models have previously been used in applications such as speech recognition (De Mori and

Brugnara, 1996), where it is often difficult to distinguish similar sounding phonemes. As an example,

when sung, the first line of the Australian National Anthem “Australians all let us rejoice” is often miss-

understood as “Australians all are ostriches”, or the title of a famous book“To kill a Mockingbird”

could be misunderstood as “Tequila Mockingbird”. Using language models,each of the different options

derived from acoustics are given a probability of occurrence. Mixingthe degree of certainty that a

particular phoneme has been accurately recognised and the probability ofthe next character or word

occurring given the previous terms, leads to higher recognition accuracy.

More generally, this idea can also be used on a word level, where each atom is a term, rather than

a character. In particular, the probability of the next term occurring canbe based on previous term

occurrences. These dependencies are also calledn-grams(Chen and Goodman, 1996). The probability

of a strings of lengthl that consists of termst1 to tl is given by:

P (s) = P (t1)P (t2|t1)P (t3|t1t2)...P (tl|t1t2...tl−1) =
l
∏

i=1

P (ti|t1...ti−1)

We briefly examinebigram models, which approximate n-grams in that only the immediately pre-

ceding term has an influence on the identity of the next term:

P (s) ≈ P (t1)P (t2|t1)P (t3|t2)...P (tl|tl−1) =
l
∏

i=1

P (ti|ti−1)

Unlike the application of language modelling for information retrieval, where a language model is

derived for each document, in speech recognition (or the use of n-grams more generally), a model for

the whole collection is established. In order to estimate the probabilities for eachterm pairP (ti−1|ti)

we can use themaximum likelihood estimator(denotedP̂ ), where the number of occurrences (thecount)

of a particular pair are compared to the total number of pairs in the collection (inorder to normalise

occurrences):

P̂ (ti|ti−1) =
count(ti−1ti)

∑

j count(tj−1tj)
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A full derivation of the maximum likelihood estimator is given by Bilmes (1998), who shows that this

estimator will arrive at the best possible estimate, if only a document is given but no collection. The

derivation is based on theEM stepalgorithm (Wu, 1983, Dempster et al., 1977).

Using the running example shown in Table 2.1 as training data for the probabilities, we can estimate

the probability of the strings1 “the only profession” occurring (ignoring case and not applying stemming

or stopping) as:

P (s1) ≈
3

44
×

1

3
× 1 =

1

44
= 2.3%

The calculation above can be explained as following: “the” occurs three times in the example collection

which consists of a total of 44 tokens, and “only” is only preceded once by “the” in three places where it

occurs. “Profession” occurs once only, straight after the term “only”. The string “the only one” has the

same probability using bigrams, but would have a 0 probability if trigrams (or higher order models) were

used, since this string does not occur anywhere in the training data as a complete sequence of terms.

Even though the string “the only medicine” seems like a reasonable string in English, it has a zero

probability of occurring according to this model, as “medicine” is never preceded by “only” in the ex-

ample collection. The problem of completely discounting a particular string – no matter how likely it

might seem to an observer who has greater knowledge of term distributionsthan just those provided by

the training data – stems from the relatively limited sample space that is available to observe probabilities

from. This difficulty can be overcome by the use ofsmoothing, which prevents a missing n-gram from

resulting in a maximum likelihood estimator of zero. We introduce smoothing in the nextsection and

explain it in detail later on.

Query likelihood approach

In the most common language modelling approach for information retrieval, thequery likelihood model,

documents are ranked against a query by the probability that the languagemodel of a document has

generatedthis query. This terminology can be slightly misleading, in that under typical retrieval circum-

stances queries are posed by a user and not generated by a documentmodel, however the idea is that a

query identical to the one posed by the user could have been generated by a document model.

We develop a basic mathematical model of the query likelihood model following theapproach used

by Nallapati et al. (2003). As the basis of this approach, we calculate the probability of a query occur-

ring, given the language model of a particular document. The resulting probability will be used to rank

documents in the collection against the query. The likelihood of a queryq having been generated by the

model of a particular documentd is calculated as the product of the likelihoods of each query termt

being part of the language modelθd of that document:

P (q = t1...tn|θd) =
∏

t∈q

P (t|θd) (2.15)
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where terms are assumed to be independent of each other, as with the probabilistic model. From Equa-

tion 2.15 it can be seen that the traditional query likelihood model (as explained in this thesis) makes use

of unigram models only (that is, terms are not dependent on context), even though higher order models

can be more powerful.

In theory, correct probabilities forP (t|θd) would be determined by randomly sampling terms from

the document’s language model until the probabilities for all terms converge.Since this is not practical

(we do not have access to the actual language model of a document), the maximum likelihood estimator

is used instead. We useP ′(t|θd) instead ofP (t|θd) to make clear that this is only a first approximation;

a better estimate is formulated later. The maximum likelihood estimator assigns the highest possible

likelihood to observed distributions, which in this case means using the within-document frequencyfd,t

of terms:

P ′(t|θd) = P̂ (t|d) =
fd,t

|d|
(2.16)

where|d| is the number of term occurrences in documentd. Note the difference betweenθd andd; the

first refers to the language model of documentd, the latter treats a document just as a bag-of-words.

There is a problem with this formulation. When given a collection, only one concrete instance of a

language model, namely the document, is available. Therefore so the language model for a particular

document cannot be derived from the larger theoretical sample space.Consider the query “who has only

hope, but no pharmaceutical?” and Document 2 from the example collection shown in Table 2.1: “The

miserable have no other medicine but only hope.” After stopping the query becomes “hope pharmaceu-

tical”, for which Document 2 is a good answer, however the terms “pharmaceutical” and “medicine” are

mismatched. From a language modelling point of view, the word “pharmaceutical” would most likely

have been in another draft of the same document, however the maximum likelihood estimator for the

term “pharmaceutical” results in the value of0 for Document 2 as the within-document term frequency

is 0 (this problem is also referred to as thezero-frequency problem). UsingP ′(t|θd) as shown in Equa-

tion 2.16 has the effect that the query likelihood calculated in Equation 2.15 is forced to0 because of the

one missing term and, in the given example, Document 2 would get a0 score against the query. That is,

it has a 0 probability of being relevant, according to the model.

This problem can be addressed by assigning a small but non-zero probability to terms that do not

occur in a document. A technique calledsmoothingdoes this and is described in more detail in Sec-

tion 2.4.3. Although no other drafts of a particular document might be available, this missing “hidden”

part of the language model of the document can be estimated by statistical analysis of the collection as

a whole, in the hope that this will compensate for the “hidden” part. A parameter λ determines how

much probability space is allocated to terms that do not occur. Through this method, the document is

effectively blended in with the rest of the collection. Zero-probability effects of non-occurring terms are

therefore removed by allocating this extra probability to those terms. A side-effect of this is that terms

which actually do occur in a document are given a distribution of probabilitiesthat is closer to what one
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can expect to find given a particular collection. The term distribution is closer to the distribution of terms

in the collection as a whole. A more accurate representation of the probabilityP (t|θd) using a simple

form of smoothing is therefore:

P (t|θd) = (1 − λ)P̂ (t|d) + λP̂ (t|C) = (1 − λ)
fd,t

|d|
+ λ

Ft

F
(2.17)

whereFt is the total number of occurrences of termt in the collectionC, which contains a total ofF

token occurrences.

Re-writing the query likelihood equation forP (q|θd) given in Equation 2.15 using the estimate given

in Equation 2.17:

P (q|θd) =
∏

t∈q

(

(1 − λ)P̂ (t|d) + λP̂ (t|C)
)

=
∏

t∈q

(

(1 − λ)
fd,t

|d|
+ λ

Ft

F

)

(2.18)

The version of smoothing used in Equation 2.18 above leads to themixture model, as the term statis-

tics of both the documents and the collection are linearly interpolated, ormixed, via the parameterλ.

Zhai and Lafferty (2002) found that a wide range of values, typically between0.2 and0.8, achieve good

effectiveness, depending on collections and the length of queries.

The approach detailed above is a version of thequery likelihood model. Versions of this model are

most commonly used in information retrieval systems that make use of language models, since they are

reliable and relatively easy to implement, as well as relatively efficient duringoperation (it is comparable

to the query evaluation time needed by the probabilistic model, described earlier).

The equation given in Equation 2.18 is an example of amultinomialapproach to language modelling,

whereas the original language modelling framework as proposed by Ponteand Croft (1998) was based on

multiple-Bernoullidistributions. This made the approach to language modelling in the field of informa-

tion retrieval less powerful compared to the use of language modelling in areas such as machine learning

or speech recognition, in that the term order of neither query terms nor terms in documents is taken into

account. In the multiple-Bernoulli models only the information content – orentropy(Shannon, 2001) – is

used for analysis. However, the more popular multinomial models (Metzler et al., 2004) see queries and

documents as a sequence of terms and thereby do take term order into account in the form of n-grams,

introduced in Section 2.4.3. As these approaches bring with them a high levelof implementation com-

plexity, unigrams are typically used, even though bigrams have been used successfully in the past (Song

and Croft, 1999). This again means that language models in information retrieval are commonly using

the benefits that language modelling can offer to a lesser extent than theoretically possible. Also, since

the original framework considers probability distributions over a binary event space, only the first occur-

rence of query terms was taken into consideration. Multinomial models however do take re-occurrences

of terms into consideration.
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Similarities with tf.idf ranking

In the following we re-formulate Equation 2.18 in order to develop differentsmoothing methods and

show how language models are similar to thetf.idf weighting of the vector space model and the Okapi

formula. We first break up the formulation into two parts, one that covers terms that occur in both the

query and the document, and a second that contains the remaining terms of thequery (t ∈ (q − d), that

is, the set of terms that appear in the query but not in the document).

P (q|θd) =
∏

t∈q

((1 − λ)P (t|d) + λP (t|C))

=
∏

t∈q∩d

((1 − λ)P (t|d) + λP (t|C)) ×
∏

t∈q−d

(λP (t|C))

As before, substituting withP (t|d) =
fd,t

|d| andP (t|C) = Ft

F
gives:

P (q|θd) =
∏

t∈q∩d

(

(1 − λ)
fd,t

|d|
+ λ

Ft

F

)

×
∏

t∈q−d

(

λ
Ft

F

)

The set for the second part of the equation can be simplified as follows:

P (q|θd) =
∏

t∈q∩d

(

(1 − λ)
fd,t

|d|
+ λ

Ft

F

)

×
∏

t∈q−d

(

λ
Ft

F

)

×
∏

t∈q∩d

(

λFt

F

λFt

F

)

=
∏

t∈q∩d





λFt

F
(1 − λ)

fd,t

|d|

λFt

F

+ λ
Ft

F



×
∏

t∈q∩d

1

λFt

F

×
∏

t∈q−d

(

λ
Ft

F

)

×
∏

t∈q∩d

(

λ
Ft

F

)

=
∏

t∈q∩d





(1 − λ)
fd,t

|d|

λFt

F

+ 1



× λ|q| ×
∏

t∈q

(

Ft

F

)

Taking logs on the right-hand side preserves the ranking (it isrank equivalent) and finally lets us re-write

the equation in a way that provides further insight into the query likelihood model:

P (q|θd)
rank
=

∑

t∈q∩d

log





(1 − λ)
fd,t

|d|

λFt

F

+ 1



+ |q| log λ +
∑

t∈q

log
Ft

F

The final term in this equation is constant for a given query and can be discounted, while maintaining

rank equivalence:

P (q|θd)
rank
=

∑

t∈q∩d

log

(

1 − λ

λ

fd,t

|d|

F

Ft
+ 1

)

+ |q| log λ (2.19)

In this form, it can be seen thatfd,t/|d| acts as aterm frequencycomponent andF/Ft as aninverse

document frequencycomponent. The similarity to the probabilistic model (see Section 2.4.2) is appar-

ent. This is in direct contrast to the claim that “language models do not need atf.idf (or any other) term

weighting algorithm” (Hiemstra et al., 2004). In fact, out of the vector spacemodel, the probabilistic
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models and language models, the latter is the only ranking framework that lead tothe use oftf.idf for-

mulations naturally. In contrast, in the probabilistic modeltf.idf weighting is used because it is a close

fit to the ideal weighting equation, rather than out of mathematical necessity.

This rewriting demonstrates that only terms that appear in both the query and the document currently

ranked are considered in Equation 2.19. This makes ranking using the query likelihood model as efficient

as Okapi BM25 for instance.

An interesting point is that smoothing seems to be redundant since Equation 2.19 only sums over

terms that appear in both the document and the query. Therefore the zero-frequency problem cannot

occur. However, smoothing is vital to the derivation of the model; without it, the inverse document

frequency component would not arise.

Smoothing for language models

As mentioned earlier, smoothing is a solution for thezero-frequency problem, where documents that do

not contain one of the terms in the query can still attain a non-zero probability of being relevant to the

query. Smoothing is also important in other areas, such as text compression, where commonly each

token is assigned a probability of being the next token on the input. In the textcompression domain, the

zero-frequency problem occurs when a term that has not been seenbefore is encountered in the input.

We used the aforementioned mixture model – also known asJelinek-Mercer smoothing(Chen and

Goodman, 1996) – for all smoothing so far in our explanation of language models. Liu and Croft (2004)

refine this model, by also breaking up the collection into clusters, which then contribute to the language

model of each document. A document model therefore is calculated using statistics from the document,

the cluster it has been assigned to, and the collection as a whole.

This model helps to clarify the difference between
∏

t∈V P (t|θd) and
∏

t∈V P (t|d); the first refers to

the true probability distributions of the query terms over documentd, whereas the latter are unsmoothed

distributions that are typically derived using a maximum likelihood estimator.

In the previous section, the last portion of Equation 2.19 is|q| log λ. This does not depend on any

query terms, but only the length of the query. If Jelinek-Mercer smoothingis used, thenλ does not

depend on the documentd and is a constant. In this case the last portion of the equation can be ignored

for ranking.

An alternative smoothing technique isDirichlet smoothing. Here, the document-dependent constant

α
d

is used instead ofλ, and is set to µ
|d|+µ

, whereµ is a constant. This value needs to be computed

for each document, asα
d

is dependent on the number of tokens in documentd (Zhai and Lafferty,

2001b). Dirichlet smoothing takes the document length into account, with the reasoning that smoothing

for large documents – which provide a larger sample space – is necessaryto a smaller degree than for

short documents. An extension of Dirichlet smoothing istwo-stage smoothing(Zhai and Lafferty, 2002)

whereα
d

is maximised by removing one term at a time and calculating the smoothing parameter withthat
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term being absent. It has the advantage over Dirichlet smoothing that no tuning is needed and performs

about as well; see for instance Chen and Goodman (1996) or Zhai and Lafferty (2004) for a comparison

of different approaches to smoothing.

Document likelihood approach

An alternative to the query likelihood model is thedocument likelihood model. It is an inverse of the

query likelihood model; it builds a language model of the query and calculatesthe likelihood of docu-

ments having been generated from this model. The problem with this approachis that queries are often

very short – 20% of web queries in 2002 only contained a single term (Jansen et al., 2005). There-

fore, due to limited data, the models derived from queries are relatively unreliable, and the document

likelihood model tends to perform poorly (Lavrenko, 2004, Table 5.5, page 69). Although better query

language models can be derived using different approaches, as detailed in the next section, other lan-

guage modelling approaches are typically favoured over the document likelihood model. This approach

is not considered further in this thesis.

Model comparison approach

In is themodel comparisonapproach, separate language models are developed for the query andeach

document in the collection. The models are then compared to each other.

At the centre of the model comparison approach is theKullback-Leibler divergence(Kullback, 1959,

page 6), introduced to language modelling by Lafferty and Zhai (2001).It has been used to determine the

query claritywhere the language used in a query is evaluated against the language of the corpus against

which the query is being ranked (Cronen-Townsend et al., 2002). TheKullback-Leibler Divergence

(KLD) compares the language models of a query (θq) and a document (θd):

KLD(θq, θd) =
∑

t∈V

(

θq,t log
θq,t

θd,t

)

=
∑

t∈V

(

P (t|θq) log
P (t|θq)

P (t|θd)

)

whereV is the set of all unique terms in the collection. The Kullback-Leibler divergence can also be

seen as therelative entropy(Manning and Scḧutze, 2003, page 72) between the probability distributions

of the query language model and the document language model, that is, it is ameasure of how many

additional bits would be needed if one distribution was encoded given the distribution of the other. If

both distributions are very similar, few bits would be used and the result of theformulation above is

a small number. If one of the distributions is quite distinct from the other, it would take many bits to

encode the difference. Since the Kullback-Leibler divergence givesthe dissimilarity between the two

sets of probability distributions, documents need to be ranked in inverse order of the resulting value.

The language model for a document can be estimated as for the query likelihood model, however

the problem again (as with the document likelihood model) is to estimate a good language model for the
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query. Analogously to the first estimation of a document model shown in Section 2.4.3, in the simplest

approach we could just use the maximum likelihood estimator over the query, which is then treated

as a bag-of-words. We label this estimationP ′(t|θq) in the following to show that this is only a first

approximation. The unsmoothed probability of a termt given queryq is then calculated by the query

term frequencyfq,t and|q|, the number of terms in the query:

P ′(t|θq) = P̂ (t|q) =
fq,t

|q|
(2.20)

Using this simplistic approximation, the probability of the word “pharmaceutical” in aquery such

as “who has only hope, but no pharmaceutical” would be calculated asP ′(t|θq) = 1/7, when not using

stopping. However, estimating the language model of a query in this way only leads to an approach that

is rank equivalent to the query likelihood model. Therefore, using this simpleapproach of calculating

P (t|θq) is unhelpful (it offers no improvement over the query likelihood model) anda more complex

technique for estimating language models for queries is needed.

Therefore, the language model of a query is formulated in a more effective way by estimating the

model over a large set of documents that could be retrieved by a simple bag-of-words approach or the

query likelihood model. Thus the sparseness problem of the query is side-stepped. This method of

deriving a better query language model is referred to as therelevance modeland could also be used in

the document likelihood approach, but works best when used in combination with model comparisons.

The true Bayesian estimate of any particular word given an information need can be calculated as

follows, where the language model of the query is constructed from the document models of all relevant

documentsR:

P (t|R) =

∫

θ

P (t|θ)P (θ|R)dθ

whereθ is in effect a placeholder for any imaginable multinomial model, since we cannotknow exactly

what the true query model is. We useθ rather thanθq, as we do not want to exclude any model while

deriving a language model for the query.

However, there are two problems with constructing this language model for aquery. First, the set of

relevant documentsR needs to be known. If this set is known a priori, then there would be no need for

a retrieval system.R could be estimated asR′ by some heuristic such as assuming all documents that

contain any or all of the query terms to be relevant. A second, and more difficult problem, is that it is

infeasible to compute the integral over all models. An approximation for the integral needs to be found.

Lavrenko (2004) proposes that the integral can be estimated by summing over the set of documents

assumed to be relevant (R′):

P (t|R′) =

∫

θ

P (t|θ)P (θ|R′)dθ ≈
∑

θ

P (t|θ)P (θ|R′) (2.21)
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This method provides a way to estimate the query language modelθ′R by calculating the divergence

between documents and the relevance model, according to which documents are ranked:

KLD(θ′R, θd) =
∑

t∈V

θR′,t log
θR′,t

θd,t
=
∑

t∈V

P (t|θR′) log
P (t|θR′)

P (t|θd)
(2.22)

whereθR′ is the language model of the set of documents used as a substitute of all relevant documents.

As mentioned earlier, the setR′ can be estimated by for instance using a simple bag-of-words approach,

where all documents containing one or more query terms are assumed to be relevant for the purposes of

creating a language model for the query.

Other approaches for constructing query and document models for usein the comparison method

have been proposed (see for example Hiemstra et al., 2004) but are notconsidered further here.

Even though the model comparison approach produces good results in practice, due to its high com-

putational complexity and therefore low system throughput, it is usually not suitable for a live system.

2.4.4 Efficient query evaluation

The efficient evaluation of queries is essential for information retrieval systems such as web search en-

gines that need to deal with large numbers of users. The efficient evaluation of ranked queries has lead to

considerable research interest; see for example Witten et al. (1999, pages 207–210). Most of the strate-

gies used to speed up evaluation focus on two aspects: reducing the number of inverted lists that need

to be processed in order to service a query; and limiting the portion of the inverted lists that need to be

processed.

Quit and continue strategies

Moffat and Zobel (1994) have proposed two classes of approaches that aim to both reduce the number

of inverted lists and the amount of each list that needs to be processed (see also Moffat et al., 1994).

Both of these are based on the observation that terms that are relatively frequent across the collection are

less likely to change the ranking than those terms that are comparatively more rare. In both approaches,

terms are evaluated in order from the rarest to the most frequent (that is,in order of inverse document

frequency). Thequit strategy stops processing lists as soon as a pre-defined percentage ofthe total

documents in the collection have been given entries in the accumulator table forthe current query. The

continuestrategy differs in that it does not stop processing lists completely after the threshold is reached,

but rather only updates the scores of those documents that already havean entry in the accumulator table.

Naturally, quit results in faster query evaluation, although it achieves a relatively poor accuracy. The

continue strategy only marginally increases evaluation speed; more surprisingly, it sometimes improves

effectiveness compared to exhaustive evaluation. When either of thesestrategies are used, accumulator

table sizes are typically only1% of the number of documents in the collection at hand.
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Frequency ordered indexes

Even though a particular query term might occur very infrequently, this alone is not necessarily a good

basis for the decision that the inverted list of this term should not be evaluated, as detailed above. A

potential shortcoming of this method is that the number of times a term appears in a document is not

taken into account. A frequent term can still have a large impact on the ranking of a document if the term

appears relatively often in that document compared to a rare term that appears only once.

Frequency ordered indexesmake use of this information by storing document information in in-

verted lists in order of the within-document frequency, rather than in the order in which documents were

indexed, which is typically an arbitrary ordering. During query evaluation, lists are not processed se-

quentially, but in parallel, starting with those lists that begin with the greatest within-document term

frequency. The quit or continue strategies can optionally be employed. This approach has been shown

to work at least as well as just employing the quit or continue strategies and leads to similar storage

requirements for the index (Persin et al., 1996).

Impact ordered indexes

A frequent term that appears frequently in a large document probably does not contribute as much to

the ranking as a rare term appearing once only in a relatively short document. Impact ordering, another

technique for ordering entries in inverted lists, also takes the document length into account (Anh and

Moffat, 2002, 2004). Here the order of the entries is given by the overall impact on the ranking a term

has in a particular document on the overall ranking. As for the stop strategy described earlier, using this

ordering means that the processing of lists can be stopped once a dynamic threshold is reached, leading

to faster query evaluation. In addition, the inverted lists can be capped at aminimum threshold during

indexing time, so that terms with an impact below the threshold are not included in the inverted list.

This means that storage requirements are reduced, which in turn reducesthe times required to fetch the

inverted lists from disk during query evaluation. Through a pruning effect similarly to that achieved by

employing the quit or continue strategies, effectiveness is slightly improved using this approach while

evaluation time is decreased (Anh and Moffat, 2002).

2.5 Additional information useful for document ranking on the web

In addition to ranking documents according to their textual content, other sources of evidence can be

made use of. For example metadata in the form of author details, or the creationdate of a document, can

give clues about the relevance of a document. Web search, in particular, gives opportunities for using

additional information.

One web-specific form of metadata is the web address. When looking for acompany’s web page, in

addition to the text appearing on the home page of a company, the address – or universal resource locator
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(URL) – can be a good indicator of the relevance of this page. For example, when a user is looking for

the web site of Qantas, the URL (http://www.qantas.com.au/) contains the name of thecompany.

Another resource of information is given by the links that connect resources on the web. To make use

of this information, the Google founders developedPageRank(Page et al., 1998), where pages distribute

a score amongst the pages that they point to while receiving a share of thescore of pages that they in

turn are referenced by. Since this is a recursive process, the page score continues to be updated over

several iterations, until the score of each page converges. Convergence can be achieved more quickly

if the initial weight of each page is carefully chosen. The scorepr(P ) of pageP linked to by pageB,

which containsOutDegree(B) links, can be calculated as follows:

pr(P ) =
β

N
+ (1 − β) ×

∑ pr(B)

OutDegree(B)

whereβ is the probability that a user might make a random jump to any pageP , rather than following

one of the links on the current page, and there areN pages in the web graph (Xi et al., 2002). However,

PageRank has not been shown to increase retrieval effectiveness ina controlled research environment

(Upstill et al., 2003). An alternative methodology based on links is the hub-and-authority approach

(Bharat and Henzinger, 1998).

2.5.1 Anchor text

Links in web pages can be bound to any component of a web page, such as pictures or text. The string

of terms that make up such a link is calledanchor text. Craswell et al. (2001) examined the effectiveness

of document surrogates created from such anchor text in order to findentry pages to web sites. In

their work, the text content of hypertext links or anchor tags thatin-link to a document is extracted and

compiled into a document surrogate. Experiments show that document surrogates derived from anchor

text are significantly more effective than full-text retrieval for a named page-finding task (Hawking and

Craswell, 2001). However, anchor text was not found to be useful for topic-finding tasks. Therefore, for

example, anchor text could be expected to aid retrieval for queries suchas “Qantas Airways”, but not

for queries such as “dealing with air sickness”. We examine the use of anchor text as a source for query

expansion terms in Chapter 5.

2.5.2 Past queries

A query logis a list of queries previously posed by users to a search service and maycontain additional

data such as the time when a query was posed, the IP address of the browser from which the query

was issued, and click-through data (Joachims, 2002). The latter indicateswhich links a user followed

subsequent to viewing search results. Search engines commonly keep query logs to enable caching of

queries and the associated results, to aid reporting of statistics (such as Google’s Zeitgeist, http://www.

google.com/press/zeitgeist.html), and for future research.
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One technique that makes use of past user queries is query association,which was proposed for the

creation of document summaries, in order to aid users in judging the relevance of answers returned by a

search system (Scholer and Williams, 2002). In this thesis, we make use of associated queries as a source

of terms for query expansion, as detailed in Chapter 5.

2.6 Evaluation of information retrieval systems

In information retrieval it is often necessary to compare the implementation of twoalgorithms against

each other in order to check whether a new algorithm constitutes an advance over a previous one. There

are typically two dimensions that need to be tested. The first is efficiency, which is a measure of the

amount of resources used for an algorithm to perform a certain task. This can be further divided into

space and time efficiency. The second major performance dimension is the effectiveness of the algorithms

used; it measures whether the ranking produced by a new algorithm is more satisfactory for a user than

that of a previous one. In the following we examine these performance measures.

2.6.1 Measuring efficiency

Efficiency can be measured in both the time and space domain. For many applications in the area of

information retrieval and in particular query expansion, time is of principal importance and the only

aspect of this thesis where we are interested in space efficiency is in Chapter 6, where we measure the

amount of main memory taken up by data.

The use of memory can either be measured through reporting built into the testapplication, or through

external profilers, such asValgrind (Nethercote and Seward, 2003). Timings can be obtained in addition

to using either of these methods, by using operating system tools such astimex()on a Unix platform.

In this thesis, except where noted otherwise, we use 10,000 stopped queries taken from two query logs

collected from the Excite search engine (Spink et al., 2002) to obtain durations for the average query

evaluation time.

2.6.2 TREC testbed

One of the most commonly used testbeds in modern information retrieval research is provided by the

annualText REtrieval Conferences(TREC) by the National Institute of Standards and Technology of

the United States (http://trec.nist.gov/). One of the reasons that this conference was set up was to give

researchers from different countries the opportunity to test their systems against common collections and

queries and therefore compare them on a sound basis.

Each year, TREC consists of a number of tracks, where each track represents a different task, such

as web retrieval (Hawking and Craswell, 2004) or question answering (Voorhees, 2003). For each track

a collection of documents (such as a newswire collection, or a subset of theweb (Voorhees and Harman,
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1999, 2000)) is distributed to participants along with a set of queries (theseare described in detail be-

low). The participants then rank the documents in the collection against the queries provided, where the

algorithms used for ranking depend on the track the participants are subscribed to. After the participants

submit their results, the relevance of the top answers (usually 100) for each run of results is pooled and

assessed by a team of human assessors (Voorhees, 1998). It is important to note that documents that have

not been judged for a particular query are assumed to be non-relevantto the query.

The accumulated collections and query sets of previous years give researchers the opportunity to

compare new algorithms using consistent effectiveness measurements.

TREC collections

Several test collections, including newswire data, genomic data, and web data have been used as part of

TREC. Collection sizes have increased over the years, starting from around 2 GB at TREC 1 to 426 GB

at TREC 2004. Each collection is made up of a number of documents, rangingfrom a few thousand to

several million. Documents are marked up using SGML in a specific TREC format. This consists of a

unique TREC document identifier, the content itself, and optionally some metadata such as authorship

and a time stamp. An example TREC document is shown in Figure 2.1.

We make use of the following collections in this thesis (some details are given in Table 2.9):

• WSJ2: a portion of the Wall Street Journal collection that was distributed onTREC TIPSTER

disk 2, containing news articles from the years 1990 to 1992.

• AP: Associated Press newswire articles from the years 1988 and 1989.

• NW: a group of newswire collections, described by Voorhees and Harman (1999). It is made up of

four sources:

– FT: the Financial Times from 1991 to 1994;

– FR94: the Federal Register from 1994;

– FBIS: collections of the Foreign Broadcast Information Service from 1994; and

– LA-Times: a collection of news articles from the Los Angeles Times from 1989and 1990.

• WT10g: a 10 gigabyte crawl of web data. It was designed to resemble a representative portion of

the web and exhibits a large degree of interconnectivity so that anchor text and link structure could

be made use of for retrieval experiments. It is a subset of the VLC (VeryLarge Collection) that

was crawled in 1997 (Hawking et al., 1998). The WT10g collection is described in more detail by

Bailey et al. (2003).
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<DOC>

<DOCNO> WSJ870323-0181 </DOCNO>

<HL> South Korea’s Current Account </HL>

<DD> 03/23/87 </DD>

<SO> WALL STREET JOURNAL (J) </SO>

<IN> FREST MONETARY NEWS, FOREIGN EXCHANGE, TRADE (MON) </IN>

<DATELINE> SEOUL, South Korea </DATELINE>

<TEXT> South Korea posted a surplus on its current account of

$419 million in February, in contrast to a deficit of

$112 million a year earlier, the government said.

The current account comprises trade in goods and

services and some unilateral transfers.

</TEXT>

</DOC>

Figure 2.1: Example TREC document. Shown is Document 2 of the WSJ newswire collection used at

TRECs 6 to 8. The TREC document identifier (ordocument number) is specified and other – collection

specific – metadata includes the headline and date of the news article. Typically all text between the

<TEXT> and</TEXT> flags and some of the metadata is indexed, such as the headline.

TREC queries

Each TREC collection has typically 50 to 100 corresponding queries. A TREC query is structured as

follows: it contains a unique TREC query identifier; a topic title; a more detailed description of the

information need; and a narrative that explains under what circumstances a document should be judged

relevant or not relevant to a query. A sample TREC query is shown in Figure 2.2.

In all of our experiments we use the title field of queries only, since these aresimilar to how many

users would actually formulate their information needs (Jansen et al., 2005). For the TREC-9 web track,

the topic titles were taken from search engine logs (Hawking, 2000).

In this thesis we primarily use queries 351 to 450, which is the data used at TREC-7 and 8 (Voorhees

and Harman, 1998, 1999), and the query sets (451 to 550) that were developed as part of the web tracks

at the TREC-9 and 10 conferences (Voorhees and Harman, 2000, 2001).

2.6.3 Measuring effectiveness

Multiple measures have been proposed for measuring effectiveness for information retrieval systems.

Although Voorhees (2000) discusses that relevance assessors do not often agree in their judgements,
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Collection name Number of documents Size Average size (terms)

WSJ2 74,520 242 MB 508

AP 164,597 491 MB 471

NW 528,155 1.9 GB 498

FT 210,158 564 MB 413

FR 55,630 395 MB 645

FBIS 130,471 470 MB 544

LA-Times 131,896 475 MB 326

WT10g 1,692,096 10 GB 597

Table 2.9: Characteristics of some of the most common TREC collections.

she found that the TREC based measurement of system effectiveness isreliable. However, using more

than two dimensions of relevance can lead to unstable measurements, as Voorhees (2001) found using

ternary relevance judgements. In this thesis we therefore consider only measures that are based on the

assumption of binary relevance, as discussed in Section 2.3. An effectiveness measure is based on the

ranks of relevant and non-relevant documents in the answer set. The main two measures,recall and

precisionare discussed in the following.

Recall

One important aspects of results is how many of the relevant documents in a collection have been found.

Recallshows how many of the relevant documents a user could possibly come across when reading all

documents in the answer set. It is calculated as follows:

Recall=
number of relevant documents retrieved

number of relevant documents

Therefore the higher the level of recall, the better the system is.

Consider the following example, where a search engine has retrieved ten documents in response

to a query. From Table 2.10, which shows a ranked answer set, we can see that only four relevant

documents are amongst the top ten retrieved documents. Given that there are eight relevant documents in

the collection, recall would be|R| = 4/8 = 50%. Since all documents in a collection could conceivably

be presented in the rankings (where the recall would be 100%), it is necessary to note at which level of

cutoff this recall was produced. The recall achieved at cutoff level 10 would be 50% in the example,

whereas the recall at level 5 would be 12.5%.

This and the following effectiveness measures have been widely discussed, see for example Voorhees

and Harman (1998, 1999).
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<num> Number: 405

<title> cosmic events

<desc> Description:

What unexpected or unexplained cosmic events or celestial

phenomena, such as radiation and supernova outbursts or

new comets, have been detected?

<narr> Narrative:

New theories or new interpretations concerning known

celestial objects made as a result of new technology are

not relevant.

Figure 2.2: Example TREC query, including the query number, the title, a description of the information

need and a narrative, which gives instruction on how to judge a document inresponse to a query.

Precision measures

Arguably, what is more important in a typical retrieval setting – where a usermight be interested in

finding more information on a particular topic and one of many relevant documents can satisfy a user’s

information need – is how many relevant documents a user can expect to findamongst a certain number of

top ranked documents. The associated measure is calledprecisionand is calculated using the following

equation:

Precision=
number of relevant documents retreived

number of retrieved documents

The maximum (and optimal) precision value would be 100% and the worst possible precision of 0%

is achieved when not a single relevant document was found. As in the case of recall, precision must

always be stated at a certain cutoff level. In the running example, precision at the cutoff level of 10

would be Precision@10 = 4/10 = 0.4 = 40%. This is denoted asP@10. Since we know from

Table 2.10 that amongst the top 5 results only Document 2 is relevant, we can calculate the precision at 5

documents asP@5 = 1/5 = 20%. Precision is commonly stated at the cutoff levels of 10, 20, and 100.

A special value for the precision cutoff level is the number of relevant documents that exist in a

collection for a particular query. Precision values at that point are calledR-Precision(R-Pr.). It is

maximised if every single relevant document appears in the ranking beforeany non-relevant document.

In the above example, there are 8 relevant documents, so therefore R-Precision= Precision@8 = 3/8 =

37.5%.

A commonly used measure is theaverage precision, which is calculated over the whole answer set

of ranked documents. It results in a single value for the whole ranking andis calculated by averaging the

precision values obtained after each relevant document is retrieved. Ifa relevant document is not ranked,
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Rank Relevance judgement

1 non-relevant

2 relevant

3 non-relevant

4 non-relevant

5 non-relevant

6 non-relevant

7 relevant

8 relevant

9 non-relevant

10 relevant

Table 2.10: Ranked answer set with relevance judgements used in example of effectiveness measures.

Shown are the ranks of four of eight relevant documents in total.

a zero will be added during the averaging process. As all relevant documents are thus contributing to

the single value, it is not only a measure of precision but also of recall. Unlike the previously described

precision-at-cutoff measure, it has the advantage that it is sensitive to theentire ranking order. If another

system ranks the document currently at rank 2 at rank 3 instead, the average precision value will change,

which is not the case for the non-averaged precision value, which wouldremain the same (for cutoff

values above two). The average precision measure is also relatively stable, that is, a change as described

above would result in only a fairly small change in the average precision value. Another advantage is

that an average precision figure is influenced to a greater degree by relevant documents at higher ranks,

while lower ranked documents play a smaller role. This could be seen as reflecting the perception of the

usefulness of a system to a user in a typical retrieval situation (for examplewhen exhaustive search is not

performed).

In the above example, the average precision would be calculated as:

Average Precision=
1

8
×

(

1

2
+

2

7
+

3

8
+

4

10

)

=
1

8
×

140 + 80 + 105 + 108

280
=

435

2240
= 19.4%

Themean average precision(MAP) is used for the average precision figures over a number of different

queries. The measures described above are used throughout this thesis.

Mean reciprocal rank

One other measure that is particularly relevant for the home page and namedpage finding tasks (Hawking

and Craswell, 2004) is themean reciprocal rank(MRR). This measure is calculated by the inverse rank
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of the first relevant document (or correct answer, which is a better terminology to use in this context),

or 0, if no relevant document was ranked. MRR has also been used forthe question answering task; for

example, see (Clarke et al., 2001) and in many other contexts.

Statistical significance testing

It is a mistake to claim a significant change in performance based only on different effectiveness scores

(Zobel, 1998). While post-hoc analysis of error rates can give valuable information about the properties

of a collection – see for example Voorhees and Buckley (2002), who calculate error rates for the TREC-3

to TREC-10 data empirically – such thresholds cannot safely be extended tofuture runs; as these runs

were not themselves part of the calculation, per-query variability would not be taken into account. A

statistical significance test, on the other hand, enables conclusions to be drawn about whether a variation

in retrieval technique leads to consistent performance gains.

In this thesis, we evaluate the significance of our results using the Wilcoxon matched-pairs signed

rank test (see for instance Sheskin, 1997, pages 291–302). This is anon-parametric procedure used to test

whether there is sufficient evidence that the median of two probability distributions differ in location. For

information retrieval experiments, it can be used to test whether two retrieval runs based, for example,

on different query expansion techniques, differ significantly in performance. As it takes into account the

magnitude and direction of the difference between paired samples, this test ismore powerful than the

sign test (Daniel, 1990). Being a non-parametric test, it is not necessaryto make any assumptions about

the underlying probability distribution of the sampled population.

The t-test, an alternative, parametric test for paired difference analysis, assumes that the data is

normally distributed. Zobel (1998) analysed the results of retrieval experiments from TREC-5, and

concluded that the Wilcoxon signed rank test is a more reliable test for the evaluation of retrieval runs.

Hull (1993) compared various statistical tests and suggests that where multiple treatments exist, they

can be combined in one statistical test.

2.7 Summary

In this chapter, we considered how an information need is conceived by auser, and saw that the user

query is only an approximation of the underlying information need. An information need can there-

fore be expressed through different queries, while the same query can be the manifestation of different

information needs.

We explained that indexes provide a means to quickly find documents that contain search terms.

During indexing, all documents are parsed, and the encountered terms maybe case folded, stemmed and

stopped. For each term that occurs in the document at hand, an entry is made in that term’s inverted list.
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We considered how queries are processed by matching documents against them. There are a variety

of methods. We discussed Boolean queries, for which documents are returned to the user depending on a

simple term matching algorithm. Documents are returned in no particular order aslong as they fulfil the

criteria of the user query: they contain the terms that the user specified relevant documents must contain,

and they do not contain those that the user explicitly excludes. All retrievalmodels discussed make use

of ranked queries, where documents are returned in a ranked order,according to specific heuristics. The

vector space model translates queries into a vector space. All documents are represented in this vector

space and documents are ranked in inverse order of the size of angle between the query and document

vectors. In the probabilistic model, documents are ranked by their likelihood of being a good match to

the current query. The model estimates the overlap in terminology between a query and a document,

where rare terms are given a greater weight than frequent terms. Language models, a further class of

retrieval models, on the other hand rank documents by their likelihood of having generated a user query.

Next we considered common techniques for evaluating queries more efficiently by biasing results

towards the rare query terms. In addition, depending on some heuristics, the impact of more frequent

terms can be neglected so that only part of the inverted lists have to be processed.

We explained that anchor text (and other link information) can have a largeimpact on retrieval on the

web, as anchor text is typically a good descriptor of the page it is referring to. We also described the role

of query logs, where past user queries are stored alongside other related information from which entities

such as user access patterns, or query reformulation patterns, can bededuced.

Finally we described the TREC testbed used for evaluation of our experiments in this thesis and

defined the most commonly used evaluation measures, namely recall and precision and related measures.
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Query Reformulation

A user query is, in general, only one of many possible formulations of the information need that a

user may have. As a result, user queries often do not reflect the exactterminology of a document that

fulfils that information need, as discussed in Section 2.1. Whereas a document might contain the exact

information that a user is seeking, this document cannot be retrieved if it does not contain any of the

keywords used in the user’s query, if an exact matching algorithm such as the vector space model or

Okapi BM25 is used (see Sections 2.4.1 and 2.4.2, respectively). Reformulating a query is an attempt to

improve poor user queries by: removing terms that degrade retrieval performance; adding terms that aid

retrieval; re-weight existing or new query terms to give the query a different emphasis; or a combination

of those methods.

A possible side-effect of query re-formulation is that queries can suffer fromquery drift, where badly

performed expansion leads to a change in the topical direction of a query (Mitra et al., 1998). For ex-

ample, a user might be interested in the state of mind reputedly achieved by Buddha, and a succinct

query relating to this information need might be “Nirvana”. When expanded,the query might become

“nirvana cobain kurt band live music”, which focuses on a completely different topic from the intended

query. (This query is number 494 of TREC 9 (Voorhees and Harman, 2000), where the information

need was to “find information on members of the rock group Nirvana”, unlikein the example given

above. The corpus searched – a subsection of the web – was amenable tothis request and in our ex-

periments the query was in fact expanded as above, leading to a good increase in effectiveness for this

query.)

In a typical retrieval session, a user will formulate a query that satisfies their information need in

several iterations. The first attempt at formulation of a query with a particular information need in mind

is often inaccurate and can result in an answer set that does not satisfythe user’s information need.

The query might have been too broad, resulting in a wide range of documents being returned in the

answer set, so the relevant documents are sparsely mixed in with documents that are far from the topic

sought. Alternatively, the query might have been too narrow, only identifying a small subset of relevant

45
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documents. A third alternative is that the query entered by the user was completely deficient and the

intended set of documents and the actual result set have no intersection.

In this last case, it is probably not possible to help the user other than encouraging them to start over

with a new query. In either of the first two cases, however, the query can be improved. In the ideal case,

the user will reformulate the query. Jansen et al. (2005) show that users – at least in a web setting –

increasingly take this option, with more than 50% of users modifying their initial queries in 2002, up

from 20% four years earlier.

After reading some of the documents in the initial result set, or the query-biased summaries that

many querying interfaces provide (see for instance Tombros and Sanderson, 1998), the user might append

additional terms to the query that they feel would clarify a particular topic, ormight lead to the inclusion

of particular documents that they may have found to be missing from the results. The user can also

remove terms from the original query that they perceive to have been detrimental in the retrieval process,

either because those terms overly restricted the result set, or because they were found to lead the query

off-topic. The user then re-issues the updated query and the processis repeated. Leading on from our

earlier example, after being presented with documents that are on the topic ofthe rock band nirvana,

the user re-issues their modified query “nirvana buddhism” in order to shift the result set toward their

information need. As the user reformulates their query upon judging the relevance of some of the answers

provided in the result set, this approach is a form of manualrelevance feedback, which is discussed in

the following section.

In this chapter we give a brief history of query reformulation schemes, withan emphasis on auto-

matic relevance feedback based on local analysis algorithms, which are thefocus of this thesis. For a

comprehensive review of query reformulation schemes that include a greater emphasis on other groups

of algorithms, see Efthimiadis (1996), Ruthven and Lalmas (2003) or Spink and Losee (1996). Docu-

ment routing and filtering are related to relevance feedback; however wedo not go into detail about these

topics here. Instead, please see for instance Broglio et al. (1994) or Buckley et al. (1995) for routing and

Robertson and Soboroff (2001) for filtering.

3.1 Relevance feedback

Relevance feedbackrequires a user to classify documents in an answer set as relevant or non-relevant.

Non-judged documents are often assumed to be non-relevant to the user’s information need. Algorithms

then make use of this knowledge in order to construct a better query.

Relevance feedback is a particular method of manual query reformulation,where the user carefully

checks the answer set resulting from an initial query, and then reformulates the query. This places the

burden of the query reformulation task on the searcher. This method is therefore often undesirable from

a search provider’s point of view, as the user may give up on the current search and seek an alternative
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q A query

~q The weighted query vector of queryq

d A particular document
~d The weighted document vector of documentd

C, N The set and number of all documents in the collection

C ′, N ′ The set and number of all seen documents

V , |V | The set and number of distinct terms in the vocabulary

ft The number of documents termt appears in

f ′
t The number of seen documents termt appears in

R, |R| The set and number of all relevant documents, given a particular query

R′ A subset of relevant documents, typically all relevant documents retrieved

R
′

A subset of non-relevant documents, typically all non-relevant documents retrieved

r′t The number of documents inR′ that contain termt

x An item such as a term or document, that can be either relevant or non-relevant

Ft The total number of occurrences of termt in the collectionC

F The combined total number of occurrences of all terms in the collection

Table 3.1: Summary of notation needed for the construction of an “optimal” query using relevance

feedback. Note thatseen documentsare those that a user has judged for relevance.

search service. Since the 1960s (see for instance Salton, 1971), it has been thought that the task of

reformulating a query could be done by a computer; an algorithm might be morethorough than relying

on a user, and have a greater chance of getting the final query right, since it can employ information that

is not known to a user, such as collection statistics.

3.1.1 Construction of an optimal query

Before discussing how a query can be improved through relevance feedback, it is important to under-

stand what constitutes an ideal query. A query is optimal if it ranks all relevant documents before

those that are not relevant, that is, it would lead to a ranking with an average precision of1.0. If a

ranking system based on term matching is used (such as the vector space model or Okapi), a query

is most likely to achieve a ranking that is as close to optimal as possible if it contains all terms that

appear in all relevant documents, but explicitly discounts all terms that occur in non-relevant docu-

ments.
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Consider a collectionC, consisting ofN documents. Then, using our definition of optimality, an

“optimal” query vector could be constructed from the document vectors~d of all |R| documents in the

relevant setR of documents (Rocchio, 1971):

~qoptimal =
1

|R|

∑

~d∈R

~d −
1

N − |R|

∑

~d∈(C−R)

~d

where the first part of the equation adds terms that appear in relevant documents and the second removes

terms (or gives a negative weight in the query vector to terms) that occur innon-relevant documents.

(The symbols used in this chapter are summarised in Table 3.1.)

This approach does not guarantee that all relevant documents are ranked before all non-relevant doc-

uments, and would almost certainly fail if a new relevant document was introduced to the collection with-

out updating the query. A query constructed in this way will therefore almost certainly be suboptimal.

3.1.2 Approaching optimality: the Rocchio method

Unfortunately the construction of an optimal query is hardly realistic. If the set of all relevant docu-

mentsR was known at the outset of a search session, then the use of a retrievalsystem would not be

necessary.

Instead, we consider construction of a sub-optimal query using partial relevance judgements; here,

the user only needs to identify a relatively small set of relevant and non-relevant documents. Rocchio

(1971) proposed the following formula, which is used to improve an initial query q with partial sets of

relevant documents (R′) and non-relevant documents (R′):

~qnew = α × ~qinitial +
β

|R′|

∑

d∈R′

~d −
γ
∣

∣R′
∣

∣

∑

d∈R′

~d (3.1)

whereα, β, andγ are tuning constants with typical values of1, 8, and1, respectively;α governs the

influence of the original query, whileβ andγ regulate the impact of relevant and non-relevant documents

respectively. Equation 3.1 adds weighted terms from judged documents to theoriginal query, denoted as

~qinitial. The judged documents act as positive and negative examples of the terms that should occur in

relevant and non-relevant documents. The modified query is then re-issued, with the expectation that the

remaining relevant documents will be ranked more highly (Rocchio, 1971, Ruthven and Lalmas, 2003).

The formula can be applied in several iterations, while ideallyqnew gets closer to the “optimal” query

with each iteration. However, if the terminology and term distribution of the intended set of relevant

documents is not sufficiently distinct from that of the non-relevant documents, then the query will never

become close to optimal.

A simplified use of the formula above is achieved when settingγ to 0, and thus not using any non-

relevant documents in the feedback process. In most applications of the Rocchio algorithm, negative ex-

amples are not used, that is, nonegative feedbackis employed. This algorithm and variations thereof have

found wide usage in information retrieval and related areas such as text categorisation (Joachims, 1997).
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In the context of routing, Buckley and Salton (1995) extend Rocchio’s work by training the term

weights of query terms on a training set of documents with relevance judgements. They achieve a relative

improvement of 10% to 15% on one test collection.

Relevance feedback has been used widely in order to improve upon search effectiveness (Salton and

McGill, 1983, van Rijsbergen, 1979, Frakes and Baeza-Yates, 1992,Chapter 11, Leuski, 2000, Baeza-

Yates and Ribeiro-Neto, 1999, Chapter 5). However, research shows that users are reluctant to make use

of negative relevance feedback, that is, providing information that a document is not relevant, as opposed

to indicating the relevance of a document (Belkin et al., 1995, 1996). Users feel that their indications

of non-relevance might be mis-interpreted by the system and could lead to a low ranking of relevant

documents or even to an omission of those documents from the result set.

3.1.3 Relevance feedback methods

In this section, we describe some of the most commonly cited relevance feedback mechanisms, other

than Rocchio’s as detailed above. An explanation and evaluation of those methods is given by Salton and

Buckley (1990).

Evaluating retrieval effectiveness when employing relevance feedback

Before examining some of the relevance feedback mechanisms, it is worth noting that the evaluation

measures typically used in information retrieval (see Section 2.6.3) are insufficient for measurement of

manual relevance feedback techniques. Typically the positions of all retrieved relevant and non-relevant

documents are taken into consideration when calculating effectiveness. However, when manual relevance

feedback is used, where documents are confirmed as either relevant ornot, and this has an influence on

the next iteration of queries, then the resulting ranking of documents is affected by the user judgements.

Depending on the effectiveness of the feedback mechanism, documents confirmed to be relevant are

typically ranked before any other documents, and documents that are confirmed to be non-relevant are

either ranked very low, or not ranked at all, if not all documents are ranked. This effect artificially

inflates evaluation measurements. It is desirable that only documents that arenot assessed – theunseen

documents– are used for evaluation of a feedback mechanism.

Chang et al. (1971) offer three options to control for this effect. The first is calledmodified freezing.

It is a modification of the freezing method (full freezing), where the ranks of all documents assessed

so far are frozen and only unseen documents are re-ranked. In modified freezing, only the ranks of

documents up to the lowest ranked relevant document are frozen. A problem with this approach is that

at later iterations, an increasingly large number of the ranking is frozen and that the effectiveness of the

relevance feedback mechanism can seem worse than it actually is.



50 CHAPTER 3. QUERY REFORMULATION

A second option isresidual ranking, where documents that are used for relevance feedback are re-

moved from the collection before ranking with the reformulated query. A problem here is that eventually

all relevant documents will be eliminated from the collection, which has an undesirable impact on eval-

uation measurements.

Finally, one can usetest and control groups, where the collection is split into two groups: one

from which documents are drawn for feedback, the second to evaluate the feedback mechanism. A

problem with this approach is to find a good way of splitting the collection; it is neither guaranteed that

the distribution of relevant documents is similar in both sub-collections, nor thatthose terms that may

successfully distinguish relevant from non-relevant documents in one part of the collection are useful in

the other.

As all of the approaches above have some disadvantages and might havea different impact on an

experiment, depending on what is tested, various approaches have been used by different researchers.

Ide dec-hi and Ide regular

Two methods which are both similar to the Rocchio method shown earlier have been developed by Ide

(1971); see also Ide and Salton (1971). Both are named after the author. The first is calledIde dec-hiand

uses all relevant documents retrieved so far during the search process as positive examples, but only the

first returned document that was identified as non-relevant is used fornegative feedback:

~qnew = ~qinitial +
∑

d∈R′

~d − ~dtop non−relevant

Ide regularis only different in that it treats all non-relevant documents as negative examples:

~qnew = ~qinitial +
∑

d∈R′

~d −
∑

d∈R′

~d

In either case, the full weights of terms are used to modify the query, as opposed to a dampened weight

such as used in the Rocchio method, given in Equation 3.1.

According to Salton and Buckley (1990), Ide dec-hi performs consistently better than the Rocchio

method with parameters ofβ = 0.75 andγ = 0.25, whereas Ide regular leads mostly to worse results.

Probabilistic relevance feedback

Similarly to the derivation of the Okapi BM25 method given in Section 2.4.2, the probabilistic approach

to relevance feedback is based on the ratio between the probability of an itemx (such as a term or

document) being relevant or non-relevant (Robertson and Sparck Jones, 1976, Robertson et al., 1981):

P (x|relevant)
P (x|non-relevant)

(3.2)
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Assuming that terms appear independently of relevance in documents, and binary relevance of doc-

uments is used, the weightw′
t of each term can be determined as follows:

w′
t = log

pt(1 − qt)

qt(1 − pt)
(3.3)

wherept andqt are defined asP (t = present|relevant) andP (t = present|non-relevant), respectively.

This weight is also referred to as thebinary independence weight, because it assumes that terms appear

in documents independently of the relevance of these documents (Robertson et al., 1981).

Note that, where a group of documents is considered in the context of relevance feedback with users

judging the relevance of documents, this group of documents is the set ofseendocuments during a

retrieval session, rather than the whole document collection, where unseen documents are assumed to

be non-relevant. We therefore useN ′ in the following discussion in order to distinguish it fromN in

previous and following sections. The use off ′
t is analogous to that ofN ′.

Following on from Equation 3.3, the statistics of the incident contingencies given in Table 2.7 give

good fits forpt andqt asr′t/|R
′| and(f ′

t − r′t)/(N ′ − |R′|), respectively. Here,r′t is the number of seen

relevant documents that contain termt. These can be used to formulate a new weight:

wt = log

(

r′t
|R′| − r′t

×
N ′ − |R′| − f ′

t + r′t
f ′

t − r′t

)

Using similar considerations to those in the previous chapter, where missing evidence can lead to proba-

bilities with a value of zero, the value of0.5 is added to the final feedback values of the formulation:

wpoint-5
t = log

(

r′t + 0.5

|R′| − r′t + 0.5
×

N ′ − |R′| − f ′
t + r′t + 0.5

f ′
t − r′t + 0.5

)

(3.4)

The resulting formula is known as theF4point-5algorithm. A modified version (F4modified) was devised

(Robertson, 1986), where instead of eliminating the possibility of arriving at infinite values with0.5,

f ′
t/N

′ and1 − f ′
t/N

′ is used as appropriate:

wmodfied
t = log

(

r′t +
f ′

t

N ′

|R′| − r′t + 1 −
f ′

t

N ′

×
N ′ − |R′| − f ′

t + r′t + 1 −
f ′

t

N ′

f ′
t − r′t +

f ′

t

N ′

)

(3.5)

According to Salton and Buckley (1990), this method performs slightly worseon average than the stan-

dard Rocchio technique with the same parameters as given earlier.

3.1.4 Other approaches to relevance feedback

Manual relevance feedback requires active input from the user. Asit can be difficult to persuade users to

make use of relevance feedback features (as discussed in Section 3.3), alternative approaches have been

investigated.

Rather than requiring the user to judge the relevance of a whole set of documents, Aalbersberg (1992)

sidesteps the issue by only displaying one document at a time and thereby effectively forcing the user
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to participate in relevance feedback. Usingincremental relevance feedback, the user is able to see the

next document only by clicking on one of two buttons that are displayed with the current document

(labelled, for example, “document relevant” and “document non-relevant”) and therefore has no option

but to provide feedback to the system. Aalbersberg shows that incremental feedback can work better than

conventional relevance feedback. However, there is an increased risk that the order of documents may

influence the relevance judgements by the user (Eisenberg and Barry, 1988), particularly in this narrow

context. Vinay et al. (2004) use a similar approach in the context of mobile devices, where display area

is limited.

Campbell (1995) proposes a graphical system forostensive browsingwhere the user is shown a set

of documents previously retrieved that are distributed along branches ofthe search so far. The user

then can backtrack or move forward on the current branch or move to a different branch altogether. All

documents (images) up to the current node are taken into consideration forrelevance feedback for the

expansion of the current node. Campbell’s system was designed for image retrieval, however the same

approach could also be used for text retrieval. Relevance feedback was also made use of in the related

area of cross-language image retrieval (Clough and Sanderson, 2004).

3.2 Interactive query expansion

Full reformulation of an initial, typically somewhat deficient, user query – including alteration of query

term weights, adding terms, and subtracting terms – seems to be a sensible option, as this allows fine

tuning of the query. There is a relatively high cost involved in this approach, however, as the weights of

a potentially large number of terms have to be finely tuned. Because of this overhead, together with the

common hypothesis that an initial user query is a good starting point for constructing a query that will

result in a satisfying answer set, has the consequence that queries aretypically expanded rather than fully

reformulated. Negative feedback, where negatively weighted terms areadded to the query with the effect

that documents containing those terms are ranked lower, is not commonly used. Therefore, most modern

approaches to query reformulation are referred to asquery expansion, where the initial query is refined

by adding new terms, rather than removing or replacing original terms, or altering their weights. Over

the last decades, research into query expansion has generated a larger number of papers than relevance

feedback.

In this and the following sections we discuss the use of query expansion, while concentrating on

interactive query expansionin this section and onautomaticapproaches in the remainder of this chapter.

In contrast to automatic query expansion, interactive query expansion relies to at least some extent

on the input of the user. Although the interactive aspect of query expansion could involve marking seen

documents as relevant or non-relevant by a user, more commonly interactive query expansion refers to

a process whereby a user chooses the expansion terms. Typically, the user is presented with a list of
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candidate terms(potential expansion terms) during the retrieval session. In order to limit thecognitive

load for the user, this list is kept brief. Therefore, an important aspectof interactive query expansion is

the determination of a relatively small subset of candidate terms. Harman (1988) investigated the possi-

ble usefulness of interactive query expansion. She asked testers to select expansion terms from lists of

candidate terms that were generated by one of three methods: relevance feedback, deriving variants of

the original terms, or retrieving terms from a manually constructed thesaurus(see also Section 3.3.1).

Limiting the number of candidate terms presented to 20, Harman used differentmechanisms to select

candidate terms to be shown to the user and found that – in a limited experiment withone small collec-

tion – sorting candidate terms bytf.idf -based heuristics results in greatly improved retrieval. In another

experiment she only added candidate terms that occurred in at least one of the relevant documents not

seen by the user up to that point. This resulted in a further improvement, but isof limited usefulness,

since in a typical retrieval session the relevance or non-relevance of unseen documents is not known to

the system.

Magennis and van Rijsbergen (1997) expanded Harman’s result, by ranking 20 candidate terms and

asking the user to select either none, 3, 6, 10, or all 20 terms for expansion, while comparing results

with using 0 terms for no expansion and all 20 ranked terms for automatic expansion (which is ex-

plained in detail in the next section and the remainder of this chapter). In contrast to Harman’s experi-

ment, Magennis and van Rijsbergen used term weighting for expansion terms. Repeating the experiment

with different queries in effect allowed users to make different choicesfor the number of expansion

terms based on each query, which is a clear advantage over automatic expansion, where the number of

terms added is typically constant. They found that interactive query expansion can improve retrieval

significantly. The results achieved through automatic expansion were less stable than those achieved

through interaction. However Magennis and van Rijsbergen conclude that terms need to be selected

by experienced or trained users. More recently, graphical user interfaces for the suggestion of expan-

sion terms have been developed (Joho, Sanderson and Beaulieu, 2002). Joho, Coverson, Sanderson and

Beaulieu (2002) and Joho et al. (2004) find that hierarchical presentation of search terms leads to sta-

tistically insignificant improvements in effectiveness, although users need less time to perform search

tasks in this new retrieval environment; they are able to handle a large numberof concepts more effi-

ciently.

After a sensible set of candidate terms has been selected, the weighting of terms is of importance.

Harman (1988) did not pre-calculate the weights of expansion terms, that is, she just added terms to the

original query and then treated the expanded query as if it was a query fully entered by the user with-

out any interaction. In later experiments Harman (1992b) improved her previous methods by weighting

expansion terms according to how many of the relevant documents those occurred in. She also con-

firmed two other interesting aspects of query expansion: first, expansionis more beneficial than just

re-weighting the original query terms heuristically. Second, the expansionprocess leads to even greater
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improvements when multiple iterations are used. The second finding can certainly be the case in an

expansion process where the user has some involvement, but in automatic query expansion – discussed

in the next section – this is not necessarily the case. It is more likely that the query will drift off-

topic.

In the following, we explain some of the mechanisms that can be employed to rankterms in order

of the estimated usefulness to increase retrieval effectiveness. Efthimiadis evaluates eight term ranking

methods for interactive query expansion (Efthimiadis, 1993, 1995), including theF4 algorithms dis-

cussed in Section 3.1.3. Depending on the system, either the user is shown thislist of terms and selects

terms, while their choice is guided by the order of the terms presented, or the system will automatically

select a number of top ranked terms, and the user interaction is restricted to identify relevant documents.

Each of the terms is then added to the initial query.

Of the eight ranking methods Efthimiadis evaluates, he identifies the following methods as being

good in ranking candidate terms. Note that we are usingN ′, the number ofseendocuments, rather

thanN , the number of documents in the collection, and similarlyf ′
t rather thanft so as to not con-

fuse relevance feedback with automatic query expansion. Efthimiadis usedN ′ = 25 documents in his

experiments.

3.2.1 Porter

ThePorter algorithm(as described by Efthimiadis, 1995) essentially sorts terms by the number of doc-

uments amongst the top|R′| documents that each occurs in:

wporter
t =

r′t
|R′|

−
f ′

t

N ′

where|R′| is the number of seen relevant documents,r′t is the number of seen relevant documents that

contain termt, f ′
t is the number of all seen documents that contain termt, andN ′ is the total number

of seen documents. The second part of the equation above does not have a big impact, since it tends

to vary less than the first part and the fraction is typically very small, compared to that of the first

one.

3.2.2 Expected mutual information measure

The expected mutual information measure(EMIM) algorithm makes use of the incident contingencies

given in Table 2.7 (van Rijsbergen, 1977, Harper and van Rijsbergen,1978, van Rijsbergen et al., 1981):

wemim
t =

∑

t,wq

(

∆t,q × P (t, wq) × log
P (t, wq)

P (t) × P (wq)

)

wheret indicates presence (1) or absence (0) of a term, andwq indicates whether a document is relevant

(1) or non-relevant (0).∆t,q indicates the value of a term as a relevance discriminator and evaluates to 1
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if t = wq (that is, botht andwq are in agreement – either the term is present and a document is relevant,

or term t is absent and the current document is non-relevant), or−1 otherwise. This gives the term

weight either a negative or positive weighting.P (t) is the probability of the current term being present,

given the document at hand,P (wq) is the likelihood that the current document is relevant, andP (t, wq)

is the likelihood that the particular termt is absent or present while the current document is relevant or

non-relevant, respectively.

Collapsing both the document and term dimensions together, while keeping track of relevance and

term occurrence and absence, we get:

wemim
t = r′t × log

r′t
f ′

t

N ′ ×
|R′|
N ′

− (f ′
t − r′t) × log

f ′
t − r′t

f ′

t

N ′ ×
N ′−|R′|

N ′

− (|R′| − r′t) × log
|R′| − r′t

N ′−f ′

t

N ′ × |R′|
N ′

+ (N ′ − f ′
t − |R′| + r′t) × log

N ′ − f ′
t − |R′| + r′t

N ′−f ′

t

N ′ × N ′−|R′|
N ′

This formula is derived by considering each of the four cases in the incident contingency table in turn,

that is a term is present and the document is either relevant or non-relevant (the first two cases), or a

term is not present with the documents currently examined being relevant ornon-relevant (the final two

cases). The value of the two middle cases is subtracted from the weight forthe current termt, since in

either of those cases the term appears either in a non-relevant document,or does not occur in a relevant

document.

3.2.3 WPQ

Thewpqalgorithm (Robertson, 1990) is an extension of theF4 weighting function, given in Equation 3.4.

TheF4 function is based on several assumptions of independence: first, that terms are distributed inde-

pendently of each other in relevant and non-relevant documents; and second that expansion terms are

statistically independent of terms appearing in the original query, or any other previous search formu-

lation, such as an earlier iteration of an expansion algorithm (Efthimiadis, 1995). However, the set of

relevant documents can be further divided into two groups: those that contains a termt that is considered

as a candidate term, and another group that does not. The wpq weighting scheme takes this further step

into account:

wwpq
t = wt × (pt − qt)

wherewt is any previously derived term weight of termt (Efthimiadis uses theF4 weight, which we also

make use of in the following equation), andpt as well asqt are the probabilities that the term occurs in a
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relevant or non-relevant document, respectively. Again, making use of the incident contingency table,pt

andqt can be determined and the formulation above is expanded to:

wwpq
t = log

(

r′t + 0.5

|R′| − r′t + 0.5
×

N ′ − |R′| − f ′
t + r′t + 0.5

f ′
t − r′t + 0.5

)

×

(

r′t
|R′|

−
f ′

t − r′t
N ′ − |R′|

)

(3.6)

Algorithms based on the relevance weighting theory attempt to increase effectiveness for each part of

a recall-precision curve, which means that relevant documents ranked anywhere in an answer set are

expected to be pushed towards the top. This is attempted through the formulationof the probability

ranking principle (Robertson, 1977). In effect, theF4 scheme models this behaviour, and incorporates it

in the above formula through the log factor. Incorporating infrequent terms that are just frequent amongst

the top relevant documents may lead to higher precision at the top ranks, andfrequent terms may lead to

a higher recall; however, it may be that terms that are between those two extremes are more helpful for

retrieval effectiveness. This is what the wpq algorithm aims to make use of.

Experiments by Efthimiadis show that wpq achieves better retrieval effectiveness than theF4 mea-

sure. This confirms Robertson’s original concern, that measures whose aim is to identify those terms

already part of the query that discriminate best are not necessarily good at selecting new terms (Robert-

son, 1977).

3.2.4 R-LoHi

The r-lohi algorithm (Efthimiadis, 1993) ranks terms in the relevant set of documents byr′t, that is the

number of (seen) relevant documents that contain the term. Terms that are ranked equally are differ-

entiated by the term frequencyf ′
t , from low to high frequencies, giving rise to the second part of the

algorithm name – lohi (low-high). The resulting ranking could be formulated as follows:

wr-lohi
t = r′t +

(

1 −
ft

N

)

(3.7)

wherer′t is the dominant part of the weight, while the second part will always evaluateto between 0

and 1 and so therefore never interchange the ranking positions of terms that have adjacentr′t values.

3.3 Pseudo relevance feedback

Interactive query expansion can significantly increase effectiveness (Magennis and van Rijsbergen, 1997),

although on average – for non expert users – automatic expansion is morelikely to lead to better perfor-

mance (Ruthven, 2003). We consider how queries can be expanded automatically in this section.

Users are generally reluctant to provide information on whether they are satisfied with a particular

document or not. Dennis et al. (1998) found that, even though users could successfully be trained to use

novel expansion techniques, they were not likely to use those methods because of the cognitive load asso-

ciated with using them. Ruthven (2003) and Taghva et al. (2004) recently found that algorithms are just
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as likely as non-expert users to correctly identify terms that enhance (orconversely, do not enhance) re-

trieval. Research activity has slowly shifted over the last two decades topseudo relevance feedback(also

known asautomatic, blind or ad-hoc relevance feedback), even though users are also somewhat weary of

using this type of feedback, as they lack control over the search process (Hancock-Beaulieu et al., 1999).

Here, terms are sourced either from the document collection at hand or from external sources. If terms

are heuristically found to be related to the topic of the original query, they are added to the query. User in-

tervention is not required at any stage other than the formulation of the original query. In the early 1990s,

this was the most popular strategy employed for query expansion (Buckleyet al., 1994). It has since been

the employed in much research on query expansion (see for instance Robertson and Walker, 1999, 2000).

As with manual relevance feedback, the purpose of query expansion isto adapt an original query so that it

is better suited to target relevant documents. It does so by making queries more similar to the documents

it is targeting, thus aiming for a greater term overlap between the query and relevant documents.

Two main approaches are used to expand queries automatically. One groupof expansion methods

relies on knowledge structures such as thesauri, whereas others make use of an initial set of search results.

Both classes are described separately in this section.

3.3.1 Expansion through knowledge structures

The group of expansion techniques that make use of knowledge structures are based on the following

hypothesis (van Rijsbergen, 1979):

“If an index term is good at discriminating relevant from irrelevant documents then any

closely associated index term is also likely to be good at this.”

When using knowledge structures, expansion terms are determined from pre-fabricated term depen-

dency matrices or lookup tables, and no significant work has to be done during query time to expand

queries.

Collection-independent knowledge structures

Efthimiadis (1996) lists the following as examples ofcollection-independent knowledge structures:

• Manually constructed, domain-specificthesauri. A thesaurus is a manually crafted or automati-

cally composed list of synonyms or related concepts. It has also been referred to as a “treasury of

words” (Foskett, 1997). A thesaurus is domain-specific, if it contains terms from predominantly

one particular area, such as medicine or architecture.

• General-purpose thesauri, such as WordNet (Miller, 1995).

• Dictionaries and lexicons, such as Collins dictionary (Hanks, 1988).
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Query expansion algorithms based on such references are also knownasexternal techniquesas they

do not make use of corpus statistics in order to find candidate terms. During query time, queries are

expanded simply by looking up related terms in the appropriate structures.

Voorhees (1994) expanded queries using WordNet, and found that individual queries that are not

well formulated, or do not describe the underlying information need well, can be improved significantly.

However, automatic expansion can degrade overall performance. Mandala et al. (1998) describe experi-

ments employing automatically created thesauri as well as using WordNet to expand queries, but do not

detail whether they achieve better effectiveness over a baseline.

Algorithms using this method are not researched widely any more and we do not describe related

approaches any further in this thesis.

Collection-dependent knowledge structures

In contrast to the collection-independent techniques such as the hand-crafted thesaurus used in the pre-

vious class of expansion techniques, according to Efthimiadis (1996),collection-dependent knowledge

structuresincludepseudoclassification(Salton, 1980) and automatically constructed thesauri, such asas-

sociation thesauri(see for instance Jing and Croft, 1994, Qiu and Frei, 1993, or Gauch and Wang, 1997).

Automatically constructed thesauri were explored as early as 1965 by Doyle (1965) and even earlier as

clumps(Needham and Sparck Jones, 1964), which are closely related to the emergence ofautomatic

indexing(Maron, 1961), but which are still used recently, for instance by Grefenstette (1994) and Evans

and Lefferts (1993). Thesauri can be constructed in various different ways; Crouch and Yang (1992) for

instance describe experiments where documents are clustered and term relationships are deduced from

the clusters obtained. Although Lesk (1969) for instance uses a manually crafted thesaurus (discussed

in the previous section) and concludes that these are superior to automatically ones, Crouch (1988) in

contrast shows later that automatically constructed thesauri can work better than those that are manually

constructed. Mandala et al. (1999) find that a combination of different kinds of thesauri is generally more

useful for expansion than any one kind.

Expansion methods based on collection dependent knowledge structuresare also referred to asglobal

analysis techniquesand can also rely on suffix stripping or stemming (see Section 2.2.3), or soundex

coding (Hall and Dowling, 1980).

A good example of this class of expansion methods isterm co-occurrence. Smeaton and van Rijsber-

gen (1983) discuss the use of maximum spanning trees, where term-to-termdependencies are captured

in a tree structure, that specifies the most strongly statistically related neighbour for each term, and the

use of index terms from known relevant documents (at this time, it was not usually the case that all

terms in a document were used for indexing). They found that terms selected using any of these ap-

proaches degraded results more than using randomly selected expansionterms. Peat and Willett (1991)

conclude that expansion terms found using term co-occurrence do notdiscriminate well between relevant
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and non-relevant documents as they tend to have relatively high documentfrequencies. Sanderson and

Croft (1999) suggest the use of co-occurring terms found throughsubsumptionfor query expansion. A

term (“term1”) is said to subsume a second term (“term2”), if “term2” occursin a strict subset of the

documents in which “term1” occurs. Therefore “term1” generalises the concept of “term2”. However,

Sanderson and Croft do not report any experiments involving expansion.

A less elaborate grouping of terms isterm clustering, where terms are grouped together along any

pre-defined criteria, such as their frequency of use in a collection. WhileMinker et al. (1972) found

that there was no considerable improvement using term clustering, and claiminstead that using term

clusters to expand queries can lead to significant degradations, SparckJones and Jackson (1970) reports

that automatically obtained term classification can increase retrieval effectiveness, especially when using

infrequent terms.

Latent semantic indexing, also known aslatent semantic analysis, builds on both term co-occurrence

and term clustering and was first described by Dumais et al. (1988) and later by Deerwester et al. (1990)

in more detail (see also Berry et al. (1995) for a survey of related papers). It was designed to automatically

assign high quality keywords to documents, but has later found application for query expansion.

Latent semantic indexing creates an index of collection terms, after removing common adjectives

and terms that either appear in all documents or only in a single one. Terms arethen organised in a

multidimensional space, where they are effectively clustered together so that terms that frequently appear

close to each other are located close to each other. During query evaluation, a term can then easily be

expanded using closely related terms, while the distance between each expansion term and the original

query term conveniently gives an indication of an appropriate weighting ofeach expansion term.

Latent semantic indexing has some shortcomings. One is the difficulty in determining the optimal

number of dimensions in which single value decomposition should occur, as thischanges from collec-

tion to collection. For instance, Dumais (1994) usedk = 200 to 350 dimensions, whereas Dumais et al.

(1988) used only50 in their original work. Since the single value decomposition algorithm is highly

complex, with costO(N2 × k3), using trial and error to determine a good number of dimensions is pro-

hibitive. This cost also makes it difficult to use latent semantic indexing in a setting where new documents

are added to a collection since all term relations would need to be re-calculated. Another problem is that

automatically linking terms based on semantic relations derived from statistics is not failsafe, particularly

since word order or syntactic relations are not used (Landauer et al., 1998). For instance, although the

terms “hot” and “cold” are opposites, on another level they both describethe temperature of an object.

Because one would expect to often find them in close proximity to each other,this would be reflected in

the matrix created by a latent semantic analyser. However it would be wrong touse one as a synonym

for the other. This is perhaps a problem with any automatic approach to classifying terms. Furthermore,

Park and Ramamohanarao (2004) found that using latent semantic indexingfor information retrieval is

inferior to the vector space model for all but one of the collections and query sets they used for testing.
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Figure 3.1: Local analysis query expansion.

Latent semantic indexing has been used for automatic query expansion with moderate success (Du-

mais, 1994). Ozcan and Aslandogan (2004) also experimented with latent semantic indexing and query

expansion, but results were inconclusive. Dumais (1990, 1991) testedmanual relevance feedback on a

number of small scale test collections with a relative improvement in average precision of 67%. Park and

Ramamohanarao (2004) achieve reasonably good expansion results using expansion terms derived from

a latent semantic index, but using the vector space model to rank documents.

3.3.2 Expansion based on initial search results

The problem with the approaches discussed so far in this section is that onlythe context of individual

query terms can be captured and used to find expansion terms.

Guo et al. (2004) remark that using synonyms for expansion increasesrecall as more documents are

identified that may be relevant to the topic the user is interested in; however, precision is decreased as

the inclusion of documents is too indiscriminant and the expansion terms may be tooambiguous to help

differentiate relevant from non-relevant documents.

One way to overcome the problem of mismatched terms while not being able to rely on the user for

feedback, is to retrieve an initial set of results using the original query. Acertain number of terms is

selected from all terms that occur in the top documents, taking into account thefrequency of those terms

amongst the set of retrieved documents as well as collection statistics. The terms with the highest score

(which is discussed in greater detail in Section 3.3.2) are added to the query, with a reduced weighting.

The modified query is then run again. This method is calledlocal analysisand was first suggested by

Croft and Harper (1979). A diagram detailing this process is shown in Figure 3.1.
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Of the various approaches to automatic query expansion, those that are reliant solely on external

knowledge structures are least successful (Mandala et al., 1999, R.Mandala, 2000) and the use of thesauri

and global analysis mechanisms in general have been shown to be less successful than local analysis (Xu

and Croft, 2000). As noted earlier, the difference in effectiveness isbased on the problem that a term can

take on different meanings, depending on the context that it appears in.This is particularly a problem

for very short queries (Sanderson, 1994). Local analysis methodsinherently disambiguate word senses

better, as expansion terms are sourced from documents that are retrieved with the whole query, rather

than individual query terms. This is one of the reasons why we examine this method for the remainder

of this thesis and will refer to this process as query expansion, to the exclusion of any of the other

approaches discussed previously. In particular, we follow the approach of Robertson and Walker (1999)

when describing term selection and weighting.

While local analysis in general performs much better than other expansion approaches, the method

also suffers from some shortcomings. One major disadvantage of local analysis methods, from the point

of view of search providers, is that they are generally much less efficient than global methods, since

terms occurring in thelocal setof documents need to be assessed. The local set is made up of a number

of top documents that are assumed to be relevant and that are chosen to base the term selection heuristics

on. This set of top ranked documents needs to be retrieved through a series of expensive disk accesses.

The efficiency problem is explored in detail in Chapter 6.

Another problem with this approach is that queries have an increased riskof query drift, as the top

ranked documents are assumed to be relevant, while they may in fact not be (Croft and Harper, 1979).

While query drift was reduced in more recent years by Mitra et al. (1998), who used term co-occurrence

and Boolean filters to place restrictions on the local set of documents, about 25% of queries are still

affected by query drift.

In the following sections, we examine different selection heuristics for selecting terms and describe

how we assign weights to expansion terms in this thesis. Note that we use the symbols as in Ta-

ble 3.1, howeverR′ in this context is the local set, or the set of documents that isassumedto be rel-

evant.

Term selection measures

In local analysis, after choosing the term selection and weighting functions, the size of the local set can

be varied, as can the number of terms added to the query. Changing the parameters can have a large

impact on retrieval effectiveness; we examine the impact of changing the size of the local set and the

number of terms to add to the query in detail in Chapter 4.

Another parameter that can be varied is the minimum number of documents in whicha term has to

appear in, in order to be considered as an expansion term. In Figure 3.2 we examine how effectiveness

varies with different minimum thresholds for the local term frequency. In this thesis we use one of three
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Figure 3.2: Various selection measures and the impact of limiting the numberof documents in the local

set that contain a candidate term. Results are shown for TREC 8 data.

selection measures, described in the following. It is reasonable to expectthat settingr′t to a minimum

of 2 would yield good results, as this means that the evidence of a particular term being a good candidate

term is corroborated by two documents, rather than just one. Interestingly, we foundr′t ≥ 3 seems

consistently good (mean average precision peaks for all three selection measures at this cutoff) for this

particular query set and collection, whereasr′t ≥ 2 does not work as well. Since a particular query set

and collection (namely TREC 8) is used, this is not a conclusive experiment giving a definitive answer

as to which of the selection measures is best, but rather it is a depiction of the impact that limiting the

minimum local term frequency can have.

A variation on the term selection measures presented below is given by Hoashi et al. (1999), who

measure the “word contribution”. In this approach each term in a particulartop-ranked document is

assigned a score related to how much this term contributes to the similarity of the document and the

query. Terms with high scores, usually those that appear in the query andthe document under ob-

servation, indicate that the term contributes heavily to the similarity. Low scoreson the other hand

mean that a term contributes little to the similarity. Hoashi et al. assume that a term witha low score

that appears in one of the top-ranked documents would be a good expansion term since it is presum-

ably on the same topic as the query, but is different to the terms the user employed in the original

query.

We now describe the three selection measures used in this thesis.
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Term selection value Theterm selection value(TSV) was first proposed in this form by Robertson and

Walker (1999), where|E| terms are chosen from the top|R′| ranked documents:

TSVt =

(

ft

N

)r′t

×

(

|R′|

r′t

)

whereft is the number of documents in the collection in which termt occurs in,N is the total number

of documents in the collection,|R′| the size of the local setR′, andr′t is the number of documents in

the setR′ in which termt occurs. Note that the second factor in the formula above can be calculatedas
|R′|!

r′t!(|R
′|−r′t)!

. We use this scheme in our experiments for ranking candidate terms unless stated otherwise.

Robertson and Walker (1999, 2000) suggest using the following threshold to determine which terms

to use for expansion:

TSVt >
1

|V | × ec

where|V | is the size of the vocabularyV , that is the number of unique terms occurring in the collection.

A value of c = 0 means that the threshold is 1/|V |. A value ofc = 4.6 (or a threshold of1/(100V ))

“corresponds to having a less than 1% chance of accepting any noise terms” (Robertson and Walker,

1999). The authors suggest that a slightly negative value ofc might be suitable. However, we do not

use this threshold in our work as we found in unpublished experiments that using a cutoff is of varying

effectiveness, improving retrieval for some collections but not for others. Our finding was confirmed

through unpublished correspondence with Chris Buckley, who told us that the use of thresholding as

suggested by Robertson and Walker is not recommended.

We found that the term selection value provides a good function to rank candidate values and we use

this in all experiments in the remainder of this thesis, except where indicated otherwise.

Kullback-Leibler divergence Another ranking scheme for candidate terms is theKullback-Leibler

divergence(KLD). As discussed in Section 2.4.3, the Kullback-Leibler divergence specifies the distance

between two probability densities. In the context of local analysis query expansion, each term in the

local set of documents is assigned a value associated with the relative rareness of a term in the current

set as opposed to the whole collection. In the context of local analysis, theKullback-Leibler divergence

can be calculated as (Croft, 2000, page 154):

KLDt =
r′t
|R′|

× log

(

r′t
|R′|

×
F + 0.01 × |V |

Ft + 0.01

)

whereFt is the total number of occurrences of termt in the collection andF is the combined total

number of occurrences of all terms in the collection.

The resulting weight of terms that occur relatively often in the local set in contrast to the rest of the

collection is higher than that of terms that appear as often within the local set as their term frequency

suggests. Conversely, a lower weight is associated with terms that are relatively rare in the local set.
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We found that the ranking of candidate terms based on this divergence is often equivalent to using

the term selection value, however, in particular applications, it does not work as well (see for instance

Figure 3.2).

tf.idf A third heuristic for ranking candidate terms is to use theirtf.idf value. As with the term selection

value, thetf.idf is dependent on both the presence of a term among the top ranked documents (theirterm

frequencyor tf ), and its overall collection frequency (inverse document frequency, or idf ). The term

frequency is usually formulated as a variant offd,t or log(1 + fd,t), whereas the inverse document

frequency is usually mathematically described as1/ft, N/ft, or log (N/ft). Together they may build

the product:

tf .idf = log (1 + fd,t) × log

(

N

ft

)

wherefd,t is the frequency of termt in documentd. Note that thetf component is formulated slightly

differently in the context of local analysis, since the frequency of a termin the local set has to be taken

into consideration:

tf .idf = log

(

1 +

∑

d∈R′ fd,t

|R′|

)

× log

(

N

ft

)

The tf.idf measure is often used to determine the importance of a particular term in a particular

document. The vector space model, the probabilistic model, and the language modelling approach to

ranking documents (detailed in Section 2.4) all rely on some variant of this formulation.

Before the 1990s,logs were not used for the formulation of either the term frequency or the inverse

document frequency. Laterlog normalisation was used to improve retrieval in the early TREC collec-

tions. For VLC2, the 100 GB TREC collection, taking thelog of log can provide improvements. The

usage oflogs is also referred to asimpact-normalisation; it addresses the practical problem of collection

growth, but no justification exists in principle.

Although we tried thetf.idf measure in various experiments, we found that terms were often better

ranked according to their term selection value or using the Kullback-Leiblerdivergence, even though it

seems competitive with the term selection value in Figure 3.2.

Term weighting: Robertson/Sparck Jones weight

In the context of this thesis, we use the Robertson/Sparck Jones relevance weight (Robertson and Sparck

Jones, 1976, Robertson and Walker, 1999) for weighting expansion terms (see also Section 3.1.3, where

this weight is used for ranking candidate terms, and Section 2.4.2, where therelevance weight is used in

the derivation of the Okapi formulation). This weight is used for expansion terms, instead of their weight

as determined by the Okapi formula. It is is calculated as follows:

wt =
1

3
× log

(r′t + 0.5)/(ft − r′t + 0.5)

(|R′| − r′t + 0.5)/(N − ft − |R′| + r′t + 0.5)
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The dampening factor of 1/3 was recommended by unpublished correspondence with Stephen Robertson.

It de-emphasises expansion terms and helps to prevent query drift.

Salton and Buckley (1988) give an overview of term weighting functions used for retrieval in general.

In the context of query expansion though, term weighting schemes usuallyrevolve around term ranking

functions, unlike the approach detailed above, where the weighting function is distinct from the ranking

function (Robertson and Walker, 1999, 2000). For example, in TREC tasks previous to 1999, Robertson

and Walker used the Robertson/Spark-Jones weight not only to weight expansion terms, but also to rank

them (Robertson et al., 1998). Similarly, Mandala et al. (1998) weight andrank their expansion terms

according to their similarity to the query.

3.3.3 Combinations of different feedback mechanisms

Lee (1998) combines the results from multiple expanded versions of an original query, using for instance

automatic versions of some of the methods described in Section 3.1. Their results show that many

different combinations achieve higher average precision than most singleexpansion methods.

The most notable approach that combines both local and global analysis techniques islocal context

analysisby Xu and Croft (1996, 2000). At first a local set of documents is retrieved, the documents of

which are subsequently broken up into passages of 300 terms each. Then, treating the local set as the

document collection and the passages as the documents within that collection, global analysis is per-

formed, by building collection-dependent knowledge structures from thepassages. Terms for expansion

are ranked by their context score, which is based on the work by Qiu andFrei (1993) and arrived at as

follows.

The degree of co-occurrence (co-degree) is measured by the number of passages that contain both

the query termt and the conceptc, where concepts are either nouns or noun phrases appearing in the

local set:

co-degree(c, t) = log10(co(c, t) + 1) ×
idf(c)

log10 |R
′|

where|R′| is the number of documents in the local set. The contextco(c, t) is calculated by:

co(c, t) =
∑

p∈R′

(fp,c × fp,t)

wherefp,c andfp,t are the number of occurrences of the conceptc or termt in passagep, respectively.

idf(c) is calculated as follows:

idf(c) = min

(

1.0,
log10

N
fc

5.0

)

wherefc is the global concept frequency, that is, the number of documents that contain conceptc. Finally

the degree of co-occurrence of all query terms is combined (δ is used as part of a smoothing technique):

f(c, q) =
∏

t∈q

(δ + co-degree(c, t))idf(t)
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Xu and Croft (2000) find that breaking up the local set of documents intopassages or just performing

conventional local analysis works equally well. However, comparing theirwork against a local analysis

baseline that is based on the method suggested by Buckley et al. (1994), Xu and Croft show in a series

of experiments that local context analysis achieves consistently higher mean average precision than local

analysis query expansion. As the addition of passages does not contribute much to the performance, they

conclude that the improvement achieved through local context analysis is mainly due to using a better

term selection metric.

3.3.4 Standard language modelling approach to automatic query expansion

The standard approach for query expansion used in the framework oflanguage modelling (see Sec-

tion 2.4.3) is to use the model comparison method, where the document modelθt,d biased on termt is

calculated for each documentd in the local setR′ (see for instance Larkey et al. (2002)). Each term in that

set is then ranked according to the sum of divergences between its prevalence in each document it occurs

in and the importance of the term in the whole collection (see Table 2.8 for language modelling notation):

scoret =
∑

d∈R′

(

θt,d log
θt,d

θt,C

)

=
∑

d∈R′

(

P (t|d) log
P (t|d)

P (t|C)

)

=
∑

d∈R′





(

λ
fd,t

|d|
+ (1 − λ)

Ft

F

)

log
λ

fd,t

|d| + (1 − λ)Ft

F

Ft

F





=
∑

d∈R′

((

λ
fd,t

|d|
+ (1 − λ)

Ft

F

)

log

(

λ
fd,t

|d|

F

Ft
+ 1 − λ

))

where the probabilitiesP (t|d) andP (t|C) are calculated as derived for Equation 2.18.

Seeing thatθt,d

θt,C
leads to very small scores for terms that occur frequently in the collection, the

Kullback-Leibler divergence seems to be a good candidate for the ranking of possible expansion terms.

This is similar to thetf.idf weighting measure described in Section 3.3.2.

This approach – albeit unsmoothed – is also employed by Carpineto et al. (2001), using classical

probability formulations, rather than the language modelling framework. Zhaiand Lafferty (2001a)

also use the Kullback-Leibler divergence. Further, they propose a second approach that calculates the

language model of an improved query for use with the query likelihood, or model comparisons, approach:

log P (F|θq) =
∑

d∈F

∑

t∈V

(fd,t × log ((1 − λ)P (t|θq) + λP (t|C)))

whereθq is the language model of the query that is estimated from the feedback documentsF . They

achieve good improvements using this method, and consistently outperform theRocchio method, detailed

in Section 3.1.2.
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There are also several other methods for expanding queries in this framework. Berger and Lafferty

(1999) for instance proposestatistical translationfor the purpose of matching the models of a query and

target documents; their method could easily be extended to incorporate query expansion.

3.4 Summary

In this chapter, we presented an overview of query reformulation schemes, such as relevance feedback

and interactive query expansion, and examined automatic query expansion in detail.

In particular, we explained that a query is optimal if it ranks all relevant documents before all non-

relevant documents, and how such an ideal query could be constructedwithin the framework of the

vector space model. Since full knowledge of the relevance of all documents is needed, this is only of

limited practical usefulness; in real retrieval environments, such knowledge is not available. We therefore

discussed how query optimality can be approached using relevance feedback, where users indicate the

relevance of documents that they have see so far. Incrementally refininga query using such a technique

(for instance using the Rocchio method) will, after some iterations, lead to a query that is close to

optimal, depending on whether an optimal query is possible at all (if the set ofrelevant documents is

not sufficiently distinct from the set of non-relevant documents). We also discussed relevance feedback

techniques other than the Rocchio method, and considered how effectiveness measurements can take into

account the fact that actual relevance judgements influence the document rankings, and therefore skew

results.

We then discussed interactive query expansion, where the user’s interaction with the system – in

contrast to relevance feedback – is limited to judging the usefulness of candidate terms that are suggested

by the search system. We explained the most cited algorithms used for rankingcandidate terms.

Finally we discussed the concept of blind or automatic relevance feedback, where the user does not

interact with the system at all, apart from submitting an initial query, and eventually viewing the results.

No interaction is required during the expansion stage. Automatic query expansion can be carried out

using knowledge structures, or it can be based on initial search results.When drawing expansion terms

from knowledge structures, collection-independent term sources such as dictionaries, or manually crafted

domain specific thesauri, can be used. When using collection dependent structures, terms are drawn from

automatically constructed thesauri.

The method analysed and used for experiments in this thesis is local analysis query expansion, where

a set of results is ranked from the initial query. Candidate expansion termsare then ranked based on

some heuristics, and the highest ranked terms are selected and added to theoriginal query. Finally we

considered some of the alternative term selection measures that can be employed.
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Chapter 4

Local Analysis: Effects of Varying

Parameters

Search systems are the principal mechanism used for finding documents onthe web (Schwartz, 1998).

These engines use information retrieval techniques to match queries, typically expressed as a series of

terms, to the documents that are judged the most likely to answer the users’ needs. When queries are

well formulated, typically consisting of topic-specific keywords that together specify the information

need with low ambiguity, search engines can return good matches in the top-ranked documents.

However, queries are resultant from a complex thought process undertaken by a user (as described

in Section 2.1) and are often not well-formulated (as discussed in Chapter 3). They may be ambiguous,

insufficiently precise, or use terminology that is specific to a country or dialect – recall the example used

in Chapter 1: whereas the term “wrench” is commonly used in the United States,a “spanner” is the

UK equivalent. The majority of queries posed to search engines are brief, with about 60% of queries

containing only one or two key terms, while the average query length in 2001 was 2.6 terms (Spink et al.,

2002). These problems are more acute when the user wishes to find large numbers of relevant documents:

all reviews of a particular movie, for example, or all commentary on a particular topic. Many relevant

documents may not contain the terms used in the query.

In this chapter, we investigate the performance of one successful approach to query expansion, as

used in the Okapi/Keenbow system (Robertson and Walker, 1999, 2000). In common with all local anal-

ysis query expansion methods, this approach requires two parameters, namely the number of documents

in the initial ranking and the number of expansion terms. Settings for these parameters were determined

through experiments on a particular test collection, and have since then been used in many experiments

without variation.

Our results show that it is far from clear that these parameter choices areoptimal. Using compre-

hensive experiments on a test collection, we have investigated both averageeffectiveness and per-query

69
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effectiveness for a wide range of parameter choices. These results show that other choices of values can

give higher effectiveness, but that no fixed choice is robust: entirelydifferent values are preferable for

other collections. Worse, the best choices vary wildly per query. Current approaches to query expansion

are not well founded.

However, our results also show that the performance of query expansion has significant scope for

improvement: individually tuning parameters to queries can give much better performance than the use

of fixed values. We hope to be able to develop a method for predicting parameter values, and thus obtain

greater effectiveness than is available with current methods.

Preliminary versions of this chapter appeared as Billerbeck and Zobel (2003, 2004a).

4.1 Experimental setup

To ensure that the measurements of effectiveness and efficiency – the latter being important for the work

in later chapters – were realistic, we usedLucy (experiments in Chapter 5 were also based on Lucy,

but experiments in Chapters 6 and 7 were conducted usingZettair, a later version of the same software;

differences between Lucy and Zettair are described in Section 6.3). Lucy/Zettair is an open source search

engine being developed at RMIT University by the Search Engine Group. The primary aim in developing

Lucy/Zettair is to test techniques for efficient information retrieval. It was used at TREC the first time in

2004 (Billerbeck et al., 2004) and is available from http://www.seg.rmit.edu.au/.

We used the Okapi BM25 measure as discussed in Section 2.4.2 and the Robertson and Walker (1999,

2000) method of expanding queries (see Section 3.3.2). We confirmed the suitability of the dampening

factor mentioned in Section 3.3.2 in limited experiments (see Figure 4.1).

Differences in details such as parsers, stopping and stemming, can have amarked impact on effec-

tiveness, making it difficult to exactly reproduce reported experimental results. Preliminary experiments

(not reported here) suggested that using passages in place of whole documents does not improve effec-

tiveness, however it might be an interesting topic to revisit, as other work has indicated that passages

can increase effectiveness (Kaszkiel and Zobel, 2001, Xu and Croft, 2000). Some systems stem terms

aggressively, or some index the content of HTML tags (or of selected tags) while others do not; and there

are numerous other variations.

In our experiments, we use case folding, but do not make use of stemming. We also stop queries,

using a stoplist of 477 terms, including all single alphabetical characters. Our indexes contain term offsets

for the work in this and the next chapter, but not for Chapters 6 and 7 (this and other variations to the

experimental setup for those two chapters are discussed in Section 6.3). Inverted lists are stored on disk

in a variable-byte compressed format (Scholer et al., 2002), where document identifiers are stored using

d-gapping (Witten et al., 1999, page 115). The vocabulary is held in memoryduring query evaluation

and we use thecontinuestrategy (see Section 2.4.4) for efficient query evaluation.
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Figure 4.1: The influence of the dampening factor on effectiveness is shown for TREC 8 data. It can be

seen that the specially marked default factor is an acceptable choice.

Even though all these different settings and optional use of techniques may have a considerable

impact on the effectiveness (and efficiency) of experiments, our results with Lucy and Zettair are highly

consistent with those reported by Robertson and Walker (1999, 2000),and we are therefore confident of

our implementation.

For all our experiments, unless stated otherwise, we use the TREC testbed (see Section 2.6.2) and

run only the title field for the initial query, as this is most representative of a typical web information

retrieval task.

4.2 Where query expansion fails

Using local analysis, Robertson and Walker (1999, 2000) have shownthat the approach as outlined above

improves effectiveness by about 10% over an already high Okapi baseline. A fixed number of25 terms

is appended to the query, and although thresholds for the TSV (see Section 3.3.2) have been trialled

(Robertson and Walker, 2000), these were only of marginal effectiveness on a small number of data sets.

In the Okapi work, fixed values were used for key parameters. In someof our experiments (de-

scribed in the following), we also used fixed values for the number of documents in the initial ranking

(|R′|) and the number of expansion terms (|E|). These values (10 and 25 respectively) were chosen by

experiments on a particular collection, and were observed to give an overall improvement in effective-

ness. In other experiments, a fixed value was used for|R′| and a fixed upper bound was imposed for

TSV.
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In our experiments, we have primarily used TREC disks 4 and 5 (see Section2.6.2 for details of

TREC collections) and the title field only of queries 401–450, which is the data used at TREC 8 in 1999.

In some additional experiments, we have used the TREC 9 10-gigabyte web track with queries 451–500.

Using the standard parameters of|R′| = 10 and|E| = 25, query 405cosmic eventsis expanded to:

cosmic events asteroid asteroids astronomers astronomical astronomy

cobe comet comets cosmological data dust earth issledovaniya jovian

kosmicheskiye nasa orbits particles planet scientists solar space

spaceguard sunless telescope

Average precision for this query increases from 0.061 to 0.216, and therecall (for the first 1,000 ranked

documents) increases from 13 to 31 documents. Most of the expansion terms are specific to that topic

and narrow the search; the original query is fairly general. Due to the nature of local analysis, a particular

topic is selected from all possible topics one could deduce from the originalquery. In this case the correct

topic was expanded and the query did not drift (see Chapter 3). From this example it is apparent that

we did not use stemming. An explanation of why stemming might not be helpful forquery expansion is

that the expansion process automatically identifies variant forms of terms, and simplistically introducing

further variants is unlikely to be helpful.

In contrast, consider query 440,child labor, for which the expansion terms are:

child labor age ballboys batboys clac detrimental dol employed

employers employment flsa hazardous hours minors nonagricultural

nonschool occupational occupations olds permissible reg school

subpart wecep workers young

Average precision for this query falls from 0.093 to 0.003. In this case, query expansion degrades the

query, by introducing low-relevance and general terms. In absolute terms, the decline in average precision

is not large, but it is certainly clear that for these parameters query expansion is unhelpful.

4.3 Parameterisation of query expansion

As explained in Section 3.3.2, local analysis query expansion is a highly parameter-dependent process.

Local analysis can be split into two steps: the first is to identify relevant documents from which expan-

sion terms are drawn, and the second is to rank possible terms by their perceived usefulness. Hence,

parameters for the number of documents used for the local set|R′| and the number of terms appended

to the initial query|E| need to be chosen (as in the previous chapter, we useR′ for the local set to indi-

cate that we are using pseudo relevance feedback; that is, the relevance of the documents inR′ is only

assumed).
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In previous work, these parameters have often been chosen arbitrarily, and, for different experiments,

different parameters were used. In many experiments, only a particular parameter pair is used, while the

choice of expansion parameters is seemingly peripheral to the experiments performed. Buckley et al.

(1994) for instance use 30 documents to expand with 500 terms and an additional 10 phrases for a TREC

run. In different experiments Xu and Croft (2000) make use of 30 and70 concepts for expansion using

local context analysis (described in Section 3.3.3). Voorhees and Harman (1998) state that each group

participating at TREC use different parameter settings for a particular ad-hoc track. Harman (1992b) uses

20 terms for her experiments, and Haines and Croft (1993) use around150 terms. Kwok (2002) measures

the term co-occurrence of candidate terms in small text windows for re-ranking and query expansion.

For this successful method (achieving about 10% improvement in conjunction with re-ranking) he uses

a fixed number of 40 terms for every query.

In other work, one parameter is held constant, while different settings are explored for the other

parameter. For example, Harman (1988) reports that the number of expansion terms is dependent on

specific collections. Magennis and van Rijsbergen (1997) use different numbers of expansion terms for

interactive query expansion while keeping the number of documents to 20. Although not optimal, this

provides a more stable framework for expansion; see Ruthven and Lalmas(2003, page 35). Conversely,

Mitra et al. (1998) vary the size of the local set from 50 to 500 documents.

Others try different settings for both parameters using a trial and error approach: Lam-Adesina and

Jones (2001) establish various baselines for their expansion method based on human-readable document

summaries, using a combination of 5, 10, and 20 documents and terms. Once they establish their baseline,

they try their various algorithms with both 5 and 20 documents as the local set size. Lundquist et al.

(1997) experiment with varying the number of phrases and terms used forexpansion and – after tuning –

conclude that 20 phrases and 50 terms are optimal for the TIPSTER collection (Harman, 1992a), which

is in contrast to our results presented in the following.

The problem of choosing good parameters is already evident in the earlierwork on interactive query

expansion, described in Section 3.2, where test subjects were asked to add a certain number of query

terms to the query; see for instance Magennis and van Rijsbergen (1997).

4.4 Exploring query expansion

As local analysis query expansion is highly dependent on two parameters|R′| and|E|, it is interesting to

find ways of making local analysis more robust. As an initial step, in this chapter we explore the choice

of values for those parameters.
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4.4.1 Collection dependency

In our first experiment, we explore all combinations of|R′| and|E| from 1 to 100, that is, we explore

the effect of varying the number of documents used for expansion terms and the number of expansion

terms chosen. For each of the 10,001 combinations (including the baseline ofno expansion), we run all

50 queries from TREC 8 and measure mean average precision.

Results are shown in the top graph in Figure 4.2. The graphs show all 10,000data points (the base-

line of no expansion at coordinate (0,0) is not assigned a colour). White areas indicate parameter pairs

for which expansion degraded effectiveness on average for this query set. The darker the data point, the

greater the increase in mean average precision compared to the baseline. Thus, roughly, the greatest im-

provement can be seen for|R′| between 8 and 16 documents, and for|E| between 7 and 42 terms. Choos-

ing |R′| of around 50 documents and keeping the number of expansion terms lower than 40 also gives

good results. The vertical stripes correspond to areas where mean average precision for a single query

was dramatically improved (or degraded) by retrieval of an additional document with excellent (or awful)

expansion terms. On the other hand, sensitivity to the number of expansion terms is comparatively low.

The original expansion parameters of|R′| = 10 and|E| = 25 are just within the dark “best” area.

The mean average precision at this point is 0.254, up from 0.216 with no expansion. These are not quite

the best choices; parameters of|R′| = 13 and|E| = 15 give slightly better overall results of 0.260. How-

ever, the original values (both the parameter settings, as well as the resultof mean average precision) are

impressively close to these settings. Contrasting results are shown in the bottom graph in Figure 4.2, for

the TREC 9 WT10g collection, comprising of 10 Gb of web data. Expansion is on average much less

successful, with little overall improvement observed. The best effectiveness is at|R′| = 98 and|E| = 4

(which is not in the neighbourhood of other successful points), and was only a slight improvement on ef-

fectiveness without expansion. Indeed, even at this point most queries perform better without expansion.

A possible explanation for why local analysis query expansion works withthe TREC 8 collection, but

not with the TREC 9 collection, is that TREC 8 consists of newswire articles, whereas TREC 9 is made

up of web data. The former consists of carefully reviewed text with a relatively controlled vocabulary

on specific topics, whereas web data is usually interspersed with links and other information that is more

diverse. The language used in web data is often erratic and text commonly serves only to describe or

otherwise accompany images, tables, or other items that are infrequent in newswire data.

Although this approach to query expansion does not lead to higher effectiveness on TREC 9 data,

other methods are more successful. In Chapter 5 we show that using query associations as a source

of expansion terms leads to greater accuracy. On the other hand, this method is not applicable in an

environment like that of TREC 8, for which there is no suitable large collectionof queries from which

query associations could be constructed. This seems to suggest that no one particular method of query

expansion can be used to reliably expand queries on all possible collections.
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Figure 4.2: Mean average precision for each combination of number of documents (|R′|) and number of

expansion terms (|E|). Top: TREC 8 data, disks 4 and 5. Bottom: TREC 9 10-gigabyte web data.Dark

areas: high mean average precision. Light areas: low mean averageprecision. White: mean average

precision worse than or equal to no expansion.
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4.4.2 Query variability

Another problem with query expansion is highlighted in Figure 4.3, which shows the parameters at which

expansion is beneficial for two queries. For query 405, it can be seenthat, in terms of average precision,

expansion outperforms the unexpanded query for almost any parameterpair (in the region of the graph).

For query 440, however, expansion is only beneficial at very limited numbers of parameter pairs; for

almost all combinations of those two parameters, the query is degraded.

However, most of the difficult-to-expand queries do have sets of parameters at which expansion is

beneficial. Although one of the ad-hoc queries from TREC 9 does not benefit from expansion for any

combination of parameters, for all other queries at least some parameter pairs exist, for which average

precision is improved.

4.4.3 Optimal parameters for individual queries

Interestingly, neither the default (|R′| = 10,|E| = 25) nor the optimal parameter settings (13,15) are

particularly effective for either of these two queries. It can also be seen that parameter pairs that work

well for one query don’t work anywhere near as well for another. Query 405 is best expanded with the

combination of (11,65), with large increase in average precision from the baseline of 0.061 to 0.317,

while for query 440 the best parameter pair is (61,4), which results in a moderate increase from 0.093

to 0.124. Using the optimal pairs on the respective other query does not work well, as can be seen from

Figure 4.3; using the pair (61,4) on query 405 gives average precisionof 0.119, worse by almost a factor

of three; using the parameters (11,65) for query 440 gives 0.015, which is worse by a factor of eight.

More generally, the best expansion parameters vary wildly between queries, as illustrated in Fig-

ure 4.4, which on the top shows the optimal parameter pair for each of the 50 queries. If expansion was

applied with the optimal parameters for each query, mean average precisionwould increase from 0.260

to 0.330, where 0.260 is the best result observed when the same parameters are used for all queries.

Whereas this graph shows that no two queries have the same optimal parameter pairs, the graph on

the bottom of Figure 4.4 shows that some queries can achieve an average precision that is quite close

to optimality, when using the best parameter pairs of a specific different query. In particular, this graph

shows the 100 coordinates with the highest average precision with descending point sizes for each of the

50 queries. It can be seen that some of the marks are covering each other. Most top coordinates for each

query are clustered around the parameter pair that achieves best mean average precision when using a

single parameter pair for all queries (this can also be seen on the left handside). Coordinates associated

with an individual query are clustered in one of three possible ways:

• For some queries the coordinates are clustered along the x-axis, building a“horizontal band”,

which means that a particularly important term is found (often in a specific document and therefore

the corresponding streak starts at a certain x position).
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Figure 4.3: Parameter pairs for which expansion of TREC 8 query 405 (on the top) and 440 (on the

bottom) achieves higher average precision than non-expansion. Darkspots mark high average precision

values, as before.
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Figure 4.4: The top figure shows parameter pairs for each query whereexpansion achieves maximum

average precision. The bottom figure shows the best 100 parameter pairs in descending point size for

each query.
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• Conversely to the first case, for other queries the cluster is stretched along the y-axis and is there-

fore organised in a “vertical band”. This means a document that has particularly good expansion

terms was added to the local set.

• The last possibility is a combination of both, where coordinates are more closely centred on a

particular coordinate (or rather the cluster stretches out along both axis from a certain coordinate

onward), which means, that as long as a certain document has entered thelocal set and a particular

term is added to the list of expansion terms, the query performs well.

The coordinates of a query where average precision has greatly changed (either improved or decreased)

are likely to be arranged in one of the first two ways. Interestingly, for allqueries the top 100 pairs were

clustered together in some way.

4.4.4 Lack of robustness

Per-query improvements in average precision due to query expansion are shown in Figure 4.5. The

baseline, shown as a line at 0.0, is the performance without expansion achieved by Lucy. Also shown are

the change in effectiveness from Lucy using the standard Robertson-Walker parameters, and the change

using the best parameters for that collection and query set. Finally, the performance with individually

tuned optimal parameters for each query is shown.

For the TREC 8 data, the standard parameters and best parameters are little different (|R′| = 10 and

|E| = 25 versus 13 and 15, respectively). However, choosing optimal parameters per query gives much

greater effectiveness. For TREC 9, the standard parameters are very poor, with around half of the queries

degraded and less than a third improved. The best parameters of 98 documents and 4 expansion terms

give much better performance; a small number of queries are degraded,but only slightly. With choice of

the best parameters per query, all queries improve to some degree, or are not degraded, at a minimum.

In Figure 4.6 the top graph of Figure 4.5 is repeated, but here queries are sorted by their ID (again

shown from 1 to 50 for simplicity) rather than by their change in effectiveness from the baseline. Using

this view, it can be seen that the result achieved when using the best fixedparameters pair for the query

set overall is in most cases fairly close to that achieved by using the default parameter, except for queries

at positions 30 and 35, where the former parameter set significantly improves or degrades performance,

respectively. For these two queries, this change is so pronounced thatwhere a query performs worse

through expansion with the default parameter set, it is improved by using the best average parameter pair,

and vice versa. Overall, however, the best average parameter set results in a fairly robust improvement

of expansion – only a small minority of queries performs worse. It is also interesting to note that the best

individual parameter settings can sometimes achieve large improvements, evenfor some queries that do

not improve through expansion with any of the other parameter settings, such as for queries at position 9

and 41.
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Figure 4.5: Average precision at 1,000 documents ranked with differentparameter settings shown. Each

curve is sorted individually by the magnitude of the difference in average precision. The line that shows

the results ofindividually optimal parameter settingprovides an upper bound for the effectiveness of

local analysis query expansion. TREC 8 results are shown on the top andTREC 9 are displayed on the

bottom.



4.5. ATTEMPTS AT MAKING EXPANSION MORE ROBUST 81

10 20 30 40 50
Queries (sorted by query ID)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
iff

e
re

n
ce

 in
 a

ve
ra

g
e

 p
re

ci
si

o
n no expansion

default parameters (10,25)
maximum for average query (13,15)
maximum for individual query

no expansion
is better

query expansion is better

Figure 4.6: The same (TREC 8) information is conveyed as in the top graph of Figure 4.5, except that

here the data producing the individual lines are not sorted by average precision, but by query ID. This

view makes it possible to see how the different parameter settings affect each individual query.

4.5 Attempts at making expansion more robust

Intuition suggests that queries that are effective prior to expansion should be good candidates for query

expansion, since many relevant documents with well-suited expansion terms are used as sources in the

query expansion process. This intuition is strengthened by the observation that query expansion that is

based only on relevant documents in the top|R′| is superior to query expansion based on all documents, as

we have seen in our experiments and as reported for example by Mano andOgawa (2001). However, we

found that there is no relationship between the average precision that the original query achieves and by

how much query expansion improves average precision. Using the Pearson product moment correlation

(Gravetter and Wallnau, 1991, pages 471–481), no correlation was found between the improvement

of average precision through query expansion and the average precision of the original query. This is

illustrated in Figure 4.7, for which the Pearson product moment correlation rejects the null hypothesis

of correlation between the two axes of the graph. Note that for generatingthis particular graph we used

the optimal parameter pairs for each individual query, which is why all changes in average precision are

positive. In other unreported experiments, we did not observe a correlation between the default parameter

pair and the improvements in average precision for each query, either.

There is also an argument to be made for the converse: queries that did not perform well to begin

with have greater scope for improvement through expansion. This also is not supported by the Pearson

product moment correlation.
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Figure 4.7: Improvement through query expansion versus averageprecision of original query. No

correlation is observable between those two quantities.

An interesting question is then whether some property of the original query can be used to predict

whether expansion will be effective. We explored a range of query metrics, but without clear success.

These included the similarity score of the documents fetched in the original ranking; a measure of how

distinct these documents were from the rest of the collection; specificity of the query terms; and an ap-

proximation toquery clarity(Cronen-Townsend et al., 2002), where the language of a query is compared

to that of the background collection, from which it is deduced whether the query will find good matches

in the collection (see also Section 2.4.3). None of these were effective. However, since this research was

conducted, Amati et al. (2004) found – albeit using a single collection for their experiments – that there is

a relationship between the change of effectiveness and query clarity. They measure the clarity score of the

initial and that of the expanded query, and then issue either the initial or the expanded query, depending

on the difference in scores. Cronen-Townsend et al. (2004a) also applied a variation of query clarity to se-

lectively expand some queries with some success (see Cronen-Townsend et al. (2004b) for the full paper).

Classification of queries – such as that by Broder (2002) into navigational, informational, and trans-

actional – and using the hypothesis that only informational queries are expandable, might lead to im-

provements. Employing an automatic query classification scheme, such as thatproposed by Kang and

Kim (2003), makes selective expansion feasible and warrants further investigation.

Sakai and Robertson (2001) have suggested varying the parameters per query by classifying queries

into one of 10 bins, according to measures such as the similarity score of the highly-ranked documents.

As we did not observe any correlation between such scores and improvements due to expansion, we are

not convinced that such a strategy is likely to be successful.
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Carpineto et al. (2001) experimented with varying|R′| for some fixed|E|, and with varying|E| for

some fixed|R′|, considering the impact on average effectiveness for two data sets. They conclude that

some limit on the number of expansion terms is warranted, but did not observethat the various settings

had different impact on different queries. Our work generalises theirresults.

4.6 Reliable information access workshop

Our findings above – which date from early 2003 – were later validated through thereliable information

access workshopheld in late 2003, where the National Institute of Standards and Technology of the

United States (NIST) brought together a number of different researchorganisations and ran a set of

experiments on each of seven systems (Harman and Buckley, 2004). Thesystems used ranged from

traditional vector space models (such as the SMART system (Salton, 1971), see also Section 2.4.1) to

those based on language models (see Section 2.4.3).

The main findings were as follows:

• Sensitivity to R
′: Systems are very sensitive to the initial set of documents in the local analysis

process, with results varying between 10% and 50% for different systems, when running each

system with the initial set from the other systems.

– Montgomery et al. (2004) show how retrieval effectiveness varies withthe size of the local

set of documents, which follows a different curve for each system, butgenerally the best

results are achieved at around 10 to 15 documents and then decreases as more documents

are added. They also find that there is no correlation between either the query length or the

number of relevant documents and the optimal number of of feedback documents.

– Warren and Liu (2004) find that all systems achieved good improvements byusing about

6 documents in the initial set, and only marginally improving retrieval by adding any more

documents.

– The mismatch of initial retrieval stages and expansion phases of differentsystem is examined

by Lynam et al. (2004). They demonstrate that systems can perform betterwhen using a set of

initial documents ranked by a different system, even if that system would not have achieved

improvements using a local set of documents ranked by itself. Furthermore,the combination

of multiple local sets of documents can lead to improvements. Lynam et al. report a 13%

improvement over the best individual system when fusing the initial sets of all systems.

• Variable |E|: Choosing the best number of expansion terms can increase results by 30%over a

fixed number of terms added.

• Choice ofE: Finally, even with the same set of initial documents, only 15% to 25% of expansion

terms were the same when selected by different systems.
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The original report of this workshop was written by Buckley and Harman (2004). The large volume

of data resulting from this workshop has since been analysed in detail by various research groups (some

of which has been shown above).

Buckley (2004) groups topics into difficulty classes. Sorting the cause ofthe failure in terms of

their natural language understanding (Allen, 1995) needed to overcomethe various problems, some of

the categories were: general technical failure (such as stemming); one aspect of topic was emphasised,

while another was missed; emphasising a non-relevant aspect of the topic,while missing the point of the

topic; not performing question answering type analysis on the query to findwhat terms of the topic are of

interest; or not expanding a topic correctly that would need human intervention, such as “new methods”

in the topic “what are new methods of producing steel”.

Gu and Luo (2004) compared blind relevance feedback from documentsto that of passages and

found that retrieval becomes generally more stable when passages are retrieved for the local set. Inter-

estingly, the improvement offered by passage retrieval over that achieved by document retrieval seems to

be dependent on the length of relevant documents. In particular, passage retrieval performs best on short

documents with less than 500 terms and on long documents that have more than 2000 terms.

4.7 Summary

Query expansion is a successful method for improving the average effectiveness of an information re-

trieval system, particularly for cases where there is a vocabulary mismatch between query and relevant

document. Expansion is most successful when the documents that match the original query include topic-

specific terms that can be automatically identified and then used to fetch furtherdocuments. For some

queries, however, automatic expansion can introduce non-relevant terms that degrade effectiveness.

Furthermore, the precision of a certain proportion of queries is greatly increased or decreased, to the

point where differences approaching 50% in absolute terms are observed. Surprisingly, the success or

failure is often determined by a single expansion term, while most expansion terms have almost no effect

on the query at all.

We have quantified the performance of a successful query expansiontechnique, by exploring be-

haviour as parameters are varied. This exploration has identified an upper bound on the improvement

available via the Okapi approach to query expansion on two test collections, and showed that the use of

fixed parameters for all queries can be significantly improved upon.

We have identified that query expansion is much less reliable than previouslysuggested in the rele-

vant literature. Despite the positive results reported in many previous papers, in our experiments query

expansion failed on many queries and behaviour is highly inconsistent from collection to collection.

What is not clear is how the parameters should be chosen. We have explored a range of options, but

have not identified a metric that provides a method for guiding expansion. Weare exploring how to use
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the results in this chapter to develop new techniques for robust query expansion, as well as techniques for

predicting whether expansion will be of value. Nonetheless, with appropriate parameter choices query

expansion is a successful way of enhancing the effectiveness of queries, particularly on collections with

typically consistent documents.
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Chapter 5

Query Expansion using Associated Queries

In web retrieval, a user’s information need is typically expressed as a query consisting of a small number

of terms (Spink et al., 2001), and answer documents are chosen based on the statistical similarity of

the query to the individual documents in the collection. Much research overseveral decades has led to

development of statistical similarity measures that are reasonably effectiveat finding answers for even

the shortest queries (see Chapter 2).

In the previous chapter we found not only that the standard parameters for local analysis query expan-

sion are inappropriate for web data, but that, even with the best parameters (found by tuning to that data

and query set), the performance gains are small. However, we also found that the addition of good expan-

sion terms to the original query in a more controlled environment – such as newswire data – can lead to

significant improvements in effectiveness. It is a reasonable propositiontherefore, if we could get a more

controlled vocabulary view of web data, we should be able to achieve goodimprovements here, too.

In this chapter we propose an alternative approach to query expansion. The general approach we

consider is that the source of expansion terms need not be the collection itself, but could be any set of

documents whose topic coverage is similar to that of the collection, and may thus suggest additional

query terms. We explore a novel way of expanding queries, where – instead of using the top ranked

documents as sources for expansion terms – we select terms from past user queries that are associated

with documents in the collection. Since user queries are typically carefully constructed to retrieve in-

formation, the vocabulary employed is therefore more controlled than that ofweb pages, which often

consist of unrelated terms that for instance co-occur in tables (see also Williams and Zobel, 2005).

Specifically, we investigate whetherquery associationcan be used for query expansion (Scholer,

2004). Given a query log containing a large number of queries, it is straightforward to build a surrogate

for each document in a collection, consisting of the queries that were a close match to that document.

Scholer and Williams (2002) have shown in earlier work that query associations can provide a useful

document summary; that is, the queries that match a document are a fair description of its content. Here,

we investigate whether query associations can play a role in query expansion.

87
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earthquakes seismicity weekly seismic reports for northern california

richter seismograph

seismograph nevada earthquake seismological seismicity usgs

earthquakes neic volcanic activity recent

richter scale maps of recent major earthquakes

kobe earthquake magnitude and body and wave

san andreas fault past earthquakes earthquake magnitude

predicting earthquakes university of washington earthquake center

tectonic plates earthquake epicenter

Figure 5.1: Sample query log queries on the topic “earthquakes”. Queries shown make a good pool of

candidate terms on a query on that topic.

Consider the query “earthquakes”, where a user wants to find out moreabout this topic. When

using documents in a web collection as a source for expansion terms, local analysis is designed to find

terms that are related to this topic from the top ranked documents. If other minor topics are present in

some of the top ranked documents, it is plausible that terms not related to earthquakes would be used

for expansion. However, consider the rich source of highly relevantterms in the past queries shown in

Figure 5.1. These queries are very concise and all focus on the topic athand. A difficulty of finding

relevant queries from a log is that many of the queries that would be a useful addition to the pool of

queries from which expansion terms are drawn cannot be found in the first place, if they do not contain

the original query term (only about half the queries in Figure 5.1 contain theterm “earthquakes”). Query

associations provide a way to make use of topical queries. With our proposed method we are targeting

these pools of queries as a source of expansion terms. Although these queries could also be on minor

related topics, this is unlikely, since they have been associated with the main topicof the document.

As we will explain later, they otherwise would not have been associated with the document, since the

document would not have been ranked highly against this query.

As discussed in Chapter 3, ranking can be broken up into three phases:first, the original query is

ranked against the collection; second, additional query terms are extracted from highly ranked docu-

ments; and third, the new query is ranked against the collection. We show that query associations are a

highly effective source of expansion terms. Our scheme is effective for query expansion for web retrieval:

our results show relative improvements over unexpanded full text retrieval of 26%–29%, and 18%–20%

over an optimised, conventional expansion approach.

A preliminary version of this chapter appeared as Billerbeck et al. (2003).
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5.1 Background

This chapter explores refinements to automatic query expansion by considering alternative ways in which

candidate expansion terms can be chosen. In this section, we consider related background work in the

areas of query expansion and the use of past user queries.

5.1.1 Past queries

Past queries have been shown to be useful for increasing retrieval effectiveness (Fitzpatrick and Dent,

1997, Furnas, 1985, Raghavan and Sever, 1995). Fitzpatrick and Dent investigated the use of past queries

to improve automatic query expansion, by using the results of those queries toform affinity pools, from

which expansion terms are then selected. The process works as follows:for a query that is to be ex-

panded, up to three past queries that are highly similar to the current query are identified. The top 100

documents that were returned for each of these past queries are then merged, forming the affinity pool.

Candidate expansion terms are identified by running the original query against this pool. Next, individ-

ual terms are selected from the top-ranked documents using atf.idf term-scoring algorithm. Fitzpatrick

and Dent experiment with the TREC-5 ad-hoc collection, using past queries from the ad-hoc tracks from

TRECs 3 and 4, and demonstrate that their technique results in a 15% relativeimprovement in average

precision over a non-expanded baseline run.

In our work, we propose a different approach the use of past queries. We also choose expansion

terms from past queries directly, rather than using them to construct sets of full text documents from

which terms are then selected.

5.1.2 Query expansion based on past user queries

A detailed description of query expansion is given in Section 3.3.2, and is not repeated here. In the

context of this chapter, however, it is noteworthy that Komarjaya et al. (2004) make use of past queries

as well as local analysis by linking document headings to query terms, especially since there is not much

previous work on using past queries for query expansion, with the exception of the work described in

the following section. In the context of online public access catalogs, Komarjaya et al. choose subject

headings depending on how many query terms of the past queries they areassociated with and the co-

hesion of associated titles. After a thesaurus of past queries and subject headings is built, queries are

then processed and expanded based on the degree of co-occurrence between the query and thesaurus

entries:

g(hd, q) =
∏

t∈q

(δ + co-degree)
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Similar to the work by Qiu and Frei (1993), which we describe in Section 3.3.3,theco-degreeis calcu-

lated as follows:

co-degree(hd, t) = f(hd) × ln
m

fh,t

whereδ is a smoothing factor used to avoid the zero frequency problem describedin Section 2.4.3 and

is set to0.001 in the work at hand;m is the number of distinct query terms in queryq; f(hd) is the

frequency with which the query termt co-occurs with the subject headinghd; andfh,t is the number of

distinct terms that co-occur with termt in the thesaurus.

Komarjaya et al. argue that using a thesaurus made up of past queries is agood way of expanding

queries, because subject headings are less ambiguous and are edited by experts of the subject matter.

Their work demonstrates a relative improvement in average precision by 31%, in a relatively small-scale

experiment. Our work differs from the method described here in that we donot make use of a thesaurus,

but rather use past queries more directly, as explained later. We also relyonly on past queries, rather than

on subject headings or any other data, which are only indirectly connected to the past queries.

5.1.3 Query association

Query associationis a technique whereby user queries become associated with a document if they share a

high statistical similarity with the document. This technique was proposed for the creation of document

summaries, to aid users in judging the relevance of answers returned by a search system. It has been

successfully used to increase the weighting of terms that encapsulate the “aboutness” of a document

(Scholer and Williams, 2002, Scholer, 2004).

The association process works as follows: a query is submitted to a searchsystem, and a similarity

score is calculated based on the similarity of the query at hand to documents that contain query terms (for

example, using the Okapi BM25 ranking function described in Section 2.4.2). The query then becomes

associated with the topA documents that are returned. For efficiency, an upper boundB is imposed on

the number of queries that can become associated with a single document. Once a document has a full

set ofB associations, the least similar associated query can be dynamically replacedwith a new, more

similar query.

Consider the following brief example, where we start with no stored associations, and use association

parameter settings ofA = 5 andB = 2. A user runs an initial queryq1. This query becomes associated

with the top five answer documents returned by the search system. Supposethat a second queryq2,

retrieves a further five documents, one of which was also retrieved by thefirst query. Then this document

now has two associations, while eight other documents in the collection have one. A final queryq3 also

retrieves the document that already has two associations as one of its answers. If the similarity scores

between queries and the common document are ordered such thatq1 < q2 < q3, thenq1 will be replaced

with queryq3 as an association for that document.
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Figure 5.2: Example web page for which associated queries are shown in Figure 5.3.

Scholer et al. (2004) report that appropriate parameter settings for thistask areB = 5 andA = 3,

leading to small summaries composed of high-quality associations. Keeping the summaries small was

important for reducing cognitive processing costs for the user. In this chapter, we use associated queries

as a source of terms for query expansion. It is therefore not imperative that the number of associated

queries be kept low. We discuss the choice of parameters further in the Section 5.3.1.

A web page that was found to be relevant to the query “earthquakes” byrelevance assessors in the

2001 TREC web track using ad-hoc queries is partially shown in Figure 5.2.Figure 5.3 contains the

queries that were associated by our system with that web page.

5.2 Generalised expansion

In this section, we describe our approach to query expansion and, in particular, focus on the novel use

of query associations in the expansion process. Our generalised methodfor query expansion proceeds as

follows: first, a query is submitted to our search system, and the top|R′| answer documents are obtained,
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tectonic plates earthquakes in canada earth

earthquakes earthquake recent earthquake in california

earthquake on hawaii map of usa virtual locations maps

earthquakes seismograph united states map showing states

earthquake epicenter university of washington earthquake center

united states earthquakes earthquake earthquakes

earthquakes nevada earthquakes in canada earthquake

recent earthquakes maps of recent major earthquakes

earthquake alaska earthquakes in california

california earthquakes

Figure 5.3: Associated queries for document shown in Figure 5.2.

based on a particular collection of documents or surrogates thereof (notation used in this chapter – in

line with that used in previous chapters – is summarised in Table 5.1). From this initial retrieval run, it

is possible to identify a set of candidate expansion terms; these may be basedon the top|R′| documents,

or surrogates corresponding to these documents. Then the top|E| expansion terms are selected, using

Robertson and Walker’s term selection value formula (see Section 3.3.2). Finally, selected terms are

appended to the original query, which is then run against the target text collection.

Within this general framework, if we use a single collection of documents for all steps, then query

expansion is of the standard form, as for example proposed by Robertson and Walker (1999, 2000). We

call this schemeFULL-FULL, as steps one and two of the expansion process are based on the full text of

documents in the collection.

Instead of initially searching or choosing expansion terms from the full textof a document, another

possibility is to use surrogate documents constructed from query associations. In this approach, queries

are associated with documents as described earlier, then the set of associated queries for a document

is used to represent the document. These can be incorporated into the expansion framework in either

the first step (ranking), the second step (term selection), or both. In detail, these three options and the

conventional approach are as follows (see also Figure 5.4 for a graphical representation of the different

approaches to expansion).

• FULL-FULL

The original query is ranked on the full text collection, after which the top|E| expansion terms are

selected from the top ranked|R′| documents returned from running the original query. This option

is labelledFULL-FULL and gives a reference point to compare to for the following expansion runs

of our experiments.
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R′, |R′| The set and number of documents assumed relevant that are used for local analysis

E, |E| The set and number of expansion terms added to a query

A The number of documents returned for each query during the associationprocess

B The number of queries maximally associated with a document

Table 5.1: Notation used for query expansion based on associated queries.

• FULL-ASSOC

The original query ranks documents of the full text collection, and expansion terms are selected

from the set of queries that have previously become associated with the topdocuments returned

from running the original query. We call this schemeFULL-ASSOC, as step one of expansion is

based on the full text of documents in the collection, while step two is based on query associations.

• ASSOC-FULL

In this scheme, surrogates that have been built from associations are used for the initial ranking,

while expansion terms are chosen from the original documents. We call this schemeASSOC-FULL.

• ASSOC-ASSOC

The document surrogates are used for both the initial ranking and for theterm extraction, where

the |E| expansion terms are selected from the top|R′| ranked surrogates. We call this scheme

ASSOC-ASSOC, as associations are used for both steps 1 and 2 of expansion.

An alternative way to find candidate terms for query expansion from pastuser queries is to treat the

individual queries as documents. We can then source expansion terms byinitially ranking the individual

queries, and selecting|E| terms from the top|R′| past queries returned. We call this schemeQUERY-

QUERY. Note that, as the individual queries have no direct relation with any particular full text document

in the collection (in contrast to the association case above), it does not makesense to have aFULL-QUERY

or QUERY-FULL scheme.

The use of past queries for expansion is attractive for several reasons. One is that it means that the

additional terms have already been chosen by users as descriptors of topics. This is particularly important

in the context of web retrieval, where the vocabulary is less controlled thanin a collection of newswire

data for example; the associated queries are arguably of higher quality than the average web document,

in terms of the selection of vocabulary. Another reason, particularly relevant for associations (as opposed

to single queries as described in theQUERY-QUERY scheme), is that there is more evidence of relevance:

a surrogate document constructed from associations has many more terms than an individual query. The

fact that the queries have become associated with the document means that, insome sense, the terms

have topical relationships with each other.
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Figure 5.4: Using query associations for query expansion.Top left: the FULL-FULL scheme is shown,

which is the conventional approach to query expansion and provides uswith a baseline for our exper-

iments.Top right: the FULL-ASSOCscheme ranks documents initially from the full text collection, but

sources expansion terms from associated queries.Bottom left: the ASSOC-FULL scheme ranks associa-

tions initially and extracts candidate terms from the full documents.Bottom right: associations are used

for both, the initial ranking and the term extraction in theASSOC-ASSOCscheme.
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Unlike other methods that make use of the top-ranked documents, such as expansion from document

summarisations by Lam-Adesina and Jones (2001),ASSOC-ASSOCdoes not rely directly on the docu-

ment collection that is searched. The second and third expansion variations (schemesASSOC-FULL and

ASSOC-ASSOC) do not rely on ranking the documents in the collection to find relevant associations, but

treat the associations themselves as documents that are ranked and used as sources for expansion terms.

Thus, in contrast to using thesauri (see Section 3.3.1), the “aboutness”of the individual documents is

captured and made use of.

Another source of terms for query expansion that we have experimentedwith is anchor text (see also

Section 2.5.1). Inlinks (text from anchor tags in other documents that pointto a document) have a direct

relationship with documents in the collection. We consider one approach usinganchor text, where we

select|E| expansion terms from the top|R′| anchor text surrogates, and then search the surrogates again

using the expanded query. We call thisLINK -LINK .

Most of the schemes described above have parameters that need to be determined, in particular|R′|

and |E|. Rather than make arbitrary choices of values, in most cases we used the TREC-9 queries

and relevance judgements described below to find good parameter settings,using the average precision

measure, and then report only these settings on TREC-10. Thus the TREC-9 results are the best possible

for that method on that data, with post hoc tuning, while the TREC-10 results are blind runs.

5.3 Experiments

In this section, we describe our experimental environment, discuss the methods used to validate our

results, and present the results of our experiments with query expansiontechniques for web collections.

5.3.1 Setup

For our experiments, we use the same setup as detailed in Section 4.1. We used50 queries for our training

and test sets from TRECs 9 and 10 respectively (see Section 2.6.2). We made this choice of training and

test set because the two query sets are quite different in terms of their amenability to expansion (as

explored in Chapter 4). In Chapter 6, we reversed the order of trainingand test sets intentionally, in order

to avoid any possible collection-dependent effect on our experiments.

The approach used for creating associations is that described in Section5.1.1. The query associations

were built using two logs from the Excite search engine, each taken from asingle day in 1997 and 1999

(Spink et al. (2002) provide a comprehensive analysis of the properties of these query logs). After

filtering the logs to eliminate profanities, and removing duplicates and punctuation, we were left with

917,455 queries to associate with the collection. The average number of associations per document after

processing was 5.4, and just under 25% of documents in the collection had zero associations. While we

built our associations as a batch job, in a production system associations would be made in real time as
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Type MAP P@10 P@20 P@30 R-Pr. |R′| |E|

Base 0.1487 0.2714 0.2235 0.2000 0.1710 — —

ASSOC-ASSOC 0.1893‡ 0.3429‡ 0.2888‡ 0.2503‡ 0.2204‡ 06 17

ASSOC-FULL(I) 0.1820‡ 0.3184† 0.2796‡ 0.2497‡ 0.2222‡ 06 17

ASSOC-FULL(II) 0.1618‡ 0.3041† 0.2510‡ 0.2231‡ 0.1969‡ 98 04

FULL-FULL(I) 0.1584 0.2796 0.2571‡ 0.2333‡ 0.1809 10 25

QUERY-QUERY 0.1567 0.2755 0.2357‡ 0.2116† 0.1861‡ 65 02

FULL-FULL(II) 0.1553 0.2857 0.2388 0.2184† 0.1867† 98 04

FULL-ASSOC 0.1549 0.2571 0.2276 0.2068 0.1786 06 17

LINK -LINK 0.1454† 0.2653 0.2153 0.1905 0.1685 37 02

Table 5.2: Results for query expansion by using query associations. Performance of expansion tech-

niques of TREC-10 queries on the TREC WT10g collection, based on meanaverage precision (MAP),

precision at 10 (P@10), precision at 20 (P@20), precision at 30 (P@30), and R-Precision (R-Pr.).

Schemes are ordered by decreasing MAP. Results that show a significant difference from the baseline

using the Wilcoxon signed rank test at the 0.05 and 0.10 levels are indicated by ‡ and† respectively.

each query is submitted to the system, or after a number of queries have beenaccumulated. The costs of

this process are explored by Scholer (2004, Chapter 6).

Effective settings for query association were established by Scholer etal. (2004). It was found that

association parameters ofB = 19 andA = 39 worked well, that is, each document has a maximum

of 19 associated queries and the top 39 documents returned in response toa query are associated with

that query. This was determined by creating document surrogates from the associated queries based

on different parameter combinations, and testing retrieval effectiveness by evaluating searches on these

surrogates. We use these parameter settings for our results reported in the following.

For our experiments where expansion terms are chosen directly from queries (with no association),

we also use the 917,455 filtered entries from the Excite 1997 and 1999 Excitelogs. The anchor text for

our experiments was obtained by identifying anchor tags within the WT10g collection, and collating the

text of each anchor that points in to a particular document into a surrogate for that document.

We evaluate the significance of our results using the Wilcoxon signed rank test as described in Sec-

tion 2.6.3.

5.3.2 Results

In our experiments, we have compared a baseline full text retrieval run with the expansion variants we

have described in Section 5.2. Our results are presented in Table 5.2, which shows retrieval performance
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Type Q1 Median Q3 Variance

ASSOC-ASSOC -0.0239 0.0040 0.0814 0.7327

ASSOC-FULL(I) -0.0073 0.0116 0.0738 0.4286

ASSOC-FULL(II) -0.0119 0.0030 0.0308 0.1201

FULL-FULL(I) -0.0265 0.0007 0.0302 0.2633

QUERY-QUERY -0.0150 -0.0000 0.0082 0.1108

FULL-FULL(II) -0.0211 -0.0004 0.0177 0.1319

FULL-ASSOC -0.0370 -0.0007 0.0306 0.2077

LINK -LINK -0.0049 -0.0001 0.0002 0.0410

Table 5.3: Quartiles and variance of different expansion methods on the TREC WT10g collection

(TREC-10). Each number is the effectiveness relative to the baseline of noexpansion.

based on five precision metrics: precision at 10 returned documents (P@10), precision at 20 (P@20),

precision at 30 (P@30), mean average precision (MAP), and R-precision (R-Pr.).

In these results, theFULL-FULL scheme is the conventional approach to query expansion. We show

results with two parameter settings: firstFULL-FULL(I), the parameter settings used by Robertson and

Walker (1999, 2000) of|R′| = 10 and|E| = 25; and, second,FULL-FULL(II), the optimal parameters

we found in exhaustive tests (we discuss this further below). Perhaps surprisingly – but in agreement

with our work in Chapter 4 and recent observations by Carpineto et al. (2001) – theFULL-FULL schemes

do not offer significantly better results than no expansion, except in the R-Precision measure for our

optimal parameter settings (where the relative improvement is 9%, corresponding to an absolute increase

of 0.016).

Our novel association-based schemes are effective for query expansion. In relative terms, theASSOC-

ASSOCscheme is 18%–20% better in all three measures thanFULL-FULL(I) expansion (an absolute dif-

ference of 0.03–0.05), and 26%–29% better than the baseline no-expansion case (an absolute difference

of 0.04–0.07). TheASSOC-FULL schemes are even more effective in the R-Precision measure; all results

are significant at least at the 0.10 level. We conclude that query association is an effective tool in the

initial querying stage prior to expansion; this is a particularly useful resultsince query associations are

compact and can be efficiently searched.

Another perspective on the results is shown in Table 5.3. All of the methods improve median perfor-

mance to approximately the same extent – that is, not at all. At the lower quartile,all the methods have

degraded performance somewhat; the extent of degradation has little relationship to average effective-

ness. At the upper quartile, however, the differences between the methods are clear. However, note that

it is often the case that a query improved by one method is not improved by another.
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Type MAP P@10 P@20 P@30 R-Pr. |R′| |E|

Base 0.1895 0.2708 0.2042 0.1806 0.2290 — —

ASSOC-ASSOC 0.2231‡ 0.3104† 0.2323† 0.2132‡ 0.2398 06 17

QUERY-QUERY 0.1996 0.2958† 0.2094 0.1875 0.2402 65 02

ASSOC-FULL(I) 0.1966‡ 0.2604 0.2115 0.1944 0.2167 06 17

LINK -LINK 0.1939 0.2708 0.2177 0.1799 0.2201 37 02

FULL-FULL(II) 0.1923 0.2813 0.2042 0.1819 0.2287 98 04

ASSOC-FULL(II) 0.1856‡ 0.2875 0.2229† 0.1924 0.2176 98 04

FULL-ASSOC 0.1804 0.2417† 0.2052 0.1910 0.1954‡ 06 17

FULL-FULL(I) 0.1607 0.2729† 0.2083 0.1854 0.1806† 10 25

Table 5.4: Training results for query expansion using query associations. Performance of expansion

techniques on the training data (TREC-9). We used these queries to determine parameter settings and

included them for reference. Schemes are again ordered by decreasing MAP.

An example of the behaviour of theASSOC-ASSOCscheme illustrates its utility over theFULL-FULL

approach. For the query “earthquakes” (TREC query 513), the average precision for theASSOC-ASSOC

scheme is 0.171, compared to 0.134 for no expansion and 0.116 for theFULL-FULL approach. This is a

direct result of the choice of terms for expansion. For theASSOC-ASSOCscheme, the expanded query is

large and appears to contain only useful terms:

earthquakes earthquake recent nevada seismograph tectonic faults perpetual 1812 kobe

magnitude california volcanic activity plates past motion seismological

In contrast, for theFULL-FULL(II) scheme the query is the more narrow:

earthquakes tectonics earthquake geology geological

These trends in the success of expansion withASSOC-ASSOCare consistent with our empirical inspec-

tions of other queries.

The QUERY-QUERY, FULL-ASSOC, and LINK -LINK schemes offer limited benefit for expansion.

Without association to documents, the queries are ineffective: this is probably due to the median length

of the queries being two words, that is, the queries have very little content when not grouped together

as associations. TheFULL-ASSOCscheme is ineffective for similar reasons: query associations are an

excellent source of expansion terms, but in order to identify which associations to retrieve candidate terms

from, they need to be ranked in the initial step also. TheLINK -LINK scheme is significantly worse than

no expansion for the average precision measure; this is perhaps unsurprising, since anchor text has been

shown to be of utility in home or named page finding tasks, while the queries we use are topic finding
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Type Q1 Median Q3 Variance

ASSOC-ASSOC -0.0057 0.0040 0.0604 0.5814

QUERY-QUERY -0.0022 0.0000 0.0049 0.0688

ASSOC-FULL(I) -0.0044 0.0006 0.0458 0.8446

LINK -LINK -0.0067 -0.0001 0.0019 0.0938

FULL-FULL(II) -0.0093 0.0000 0.0075 0.1272

ASSOC-FULL(II) -0.0028 0.0020 0.0295 0.4789

FULL-ASSOC -0.0259 -0.0040 0.0197 0.3155

FULL-FULL(I) -0.0423 -0.0072 0.0086 0.8487

Table 5.5: Quartiles and variance of different expansion methods on the training data (TREC-9).

tasks (see Broder (2002) for a classification of web queries). For these reasons we did not experiment

further with expansion based anchor text, that is, we did not evaluate schemes such asFULL-LINK or

LINK -FULL.

As discussed earlier, we tuned parameters prior to running experiments. Specifically, |R′| and |E|

were identified through an exhaustive search on the same collection, but using TREC-9 queries. The

results of this process with the TREC-9 queries are shown for reference in Tables 5.4 and 5.5.

We have tried similar experiments on TREC disks 4 and 5, which consist of newswire and similar

data. These were unsuccessful. The problem appears to be that the query logs, drawn from the web, are

inappropriate for this data: based on a small sample, it seems that many of the queries in the log do not

have relevant documents. Thus the process of creating newswire associations from search-engine logs

is unlikely to be successful. Query association based expansion is therefore only of utility if queries are

available that are appropriate for the collection being searched.

5.4 Summary

Conventional wisdom has held that query expansion is an effective technique for information retrieval.

However, recent experiments have contradicted this in some circumstancesand shown that parameter

settings that work well for one set of queries may be ineffective on another. In this chapter, we have

investigated alternative techniques for obtaining query expansion terms, with the aim of identifying tech-

niques that are robust for different query sets.

We have identified a successful expansion source for web retrieval. This source is query associations,

that is, past queries that have been stored as document surrogates for the documents that are statistically

similar to the query. In experiments with almost one million prior query associations, we found that

expanding TREC-10 web track topic finding queries using query associations and then searching the full
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text is 26% – 29% more effective than no expansion, and 18% – 20% better than an optimised conven-

tional expansion approach. Moreover, our results are significant under statistical tests. We conclude that

query associations are a powerful new expansion technique for web retrieval.



Chapter 6

Efficient Local Analysis with Auxiliary

Data Structures

As we have shown in Chapter 5, local analysis query expansion can significantly improve the effec-

tiveness of retrieval tasks. However, since local analysis depends on a dynamically determined set of

documents, these need to be retrieved from disk, which is costly.

It is therefore useful to consider whether it is possible to improve efficiency of local analysis algo-

rithms and associated data structures. Although there has been a great deal of research on the efficient

evaluation of ranked queries (see Section 2.4.4), there is no prior work on efficient local analysis for text

retrieval. Query expansion through knowledge structures, such as theuse of thesauri for global analysis

(see Section 3.3.1), is typically very efficient, as only limited work is required during query evaluation.

However, local analysis has been found to be superior in terms of effectiveness (Xu and Croft, 2000)

and remains the focus of our efforts, although recently it was found thatconstructing a thesaurus from

external sources can be beneficial for queries that are typically hardto answer (Voorhees, 2004). We

use a conventional approach to local analysis as our baseline (a detailedexplanation of local analysis is

provided in Section 3.3.2).

In the previous chapter, we presented a technique for expanding queries using a synchronised side

corpus consisting of query associations. The associations consisted ofqueries that were taken from

a query log and run against the document collection. The resulting associated queries were grouped

into documents and formed surrogates from which candidate terms were retrieved, instead of using the

documents in the collection as a source of terms.

Since we placed the restriction on queries that all query terms must be present in the document a

query was associated with, we have, in effect, created a summary of eachdocument.

In this chapter we take this approach one step further, and propose thatbrief summaries of documents

can be held in memory. The local set for query expansion is conventionallydetermined by ranking the

101
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document corpus, but here summary terms are directly accessed from a much smaller corpus that may fit

in main memory, avoiding expensive disk accesses. Some of these terms are then chosen for expansion,

using the heuristics described in Section 3.3.2. Using this approach, it is possible to approximate the

effectiveness of the conventional approach to expansion, while significantly reducing the time required

for query expansion by a factor of five to nine.

We also explore other alternatives for reducing the costs of local analysis, but these approaches

compromise effectiveness so severely that they are not of practical benefit.

The remainder of the chapter is structured as follows. The steps involved inexpanding queries using

local analysis techniques are examined in terms of the effect on query throughput in Section 6.1. We then

propose several approaches that are aimed at increasing efficiencywhile addressing the investigated prac-

ticalities in Section 6.2. Finally, we describe the experiments undertaken and analyse the performance of

the new approaches in Section 6.3.

A preliminary version of this chapter appeared as Billerbeck and Zobel (2004b) and has been pub-

lished – in a more extensive form – in Billerbeck and Zobel (to appear).

6.1 Local analysis practicalities

In most expansion methods that make use of local analysis, there are five key stages:

• Initial ranking: First, the original query is used to rank an initial set of documents.

• Fetching documents:This set is then retrieved from disk.

• Extracting candidate terms: All terms are extracted from the initial set of documents.

• Selecting expansion terms:Terms are ranked in order of their potential contribution to the query.

• Final ranking: The top-ranked terms are appended to the query, and finally the reformulated

query is re-issued and a final set of documents is ranked.

We will investigate the impact on evaluation time each of these stages has in greater detail in this section.

Each phase of the ranking process has scope for efficiency gains, but some of the gains involve

heuristics that can compromise effectiveness. In this section we also explore these options, providing

a focus for the experiments reported later in this chapter. Some of the concepts introduced here – in

particular, associations and surrogates – are described in more detail in Section 6.2.

6.1.1 Initial ranking

During the first stage, documents are ranked according to the original query. For each query term the

inverted list is retrieved (unless it has already been cached from a previous access) and processed. As
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explained in Section 2.2, an inverted list specifies which documents a query term occurs in. For each

document referenced in the list, a score is calculated and added to a list of scores that is kept for, say,

20,000 documents (Moffat and Zobel, 1996). Once all query terms havebeen processed, the topR

documents are used for the next stage.

The cost of accessing an inverted list depends on the disk access time which is made up of three

components: the seek time, the rotational delay, and the transfer time (see forinstance Ramakrishnan

and Gehrke, 2003, page 308).

Before examining these three quantities in more detail, we briefly describe the structure of a simple

magnetic disk (Hennessy and Patterson, 2002, pages 680–684). A hard disk is made up of one or more

platters. Logically the data is organised in concentric circles around the centre of the platter. These

circles are also calledtracks, or cylinderswhen mentioned in the context of multiple platters. The outer

tracks can hold more data than the inner ones, since the circumference of those is larger and – at constant

data density – more data can be stored. Each track is divided up intosectorsthat hold typically between

half and four kilobytes of data (the average sector size is increasing as disk and main memory sizes

increase over time). For each platter there is adisk headthat moves over the platter, from the innermost

to the outermost track.

• Seek time: The time taken for a disk head to move to the track where the desired data is stored,

or where the first part of that data is stored. Currently, a typical hard disk has an average seek

time of around 9 ms (any performance data of hard disks cited here are obtained from Patterson

and Hennessy (2005, page 573)). The seek time is only indirectly dependent on the list size, since

average seek times are lower if inverted lists to be fetched are small, as they are more likely to be

proximate on disk.

• Rotational delay: The time taken for the disk to spin until the first sector that contains the data to

be read is located underneath the disk head. Depending on the rotational velocity of the disk, the

average rotational delay in modern disks is about 4 ms. Since the rotational delay is a reasonably

small component of the total access time and it is difficult to reduce, we do notconsider it further.

• Transfer time: Thetransfer timeis the time required to read a file from the hard drive into memory

once the head is positioned correctly. It is directly proportional to the size of the file and depends

on the disk throughput. Disk throughput is the rate at which bytes are readfrom disk and fed

onto the bus. It is typically of the order of 50 MB per second. The transfer time for an inverted

list of query terms would usually be smaller than the 9 ms cited above, since inverted lists in most

systems are stored in compressed form, and the size of a typical inverted listfor a query term is less

than 1 MB for the collections we use. As an example, for the WT10g collection (see Section 2.6.2

for details) the compressed inverted list of a common term (such as “the”) is up to 45 MB in size.

This size shrinks to 2 MB if the list does not contain term offsets, but only thedocument numbers
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and a count of how often a term appears within that document. The list of a less common term

would be around 200 Kb (or 100 Kb without term offsets). Term offsetsare needed in order to

evaluate phrase queries. We do not use term offsets in our experiments as we only use TREC title

queries, as explained in Section 6.3.

If the list is organised by document identifier, the whole list must be fetched for each query term. A

way of reducing the cost of retrieving and processing the inverted lists is tocut down the volume of list

information that has to be retrieved. For example, Anh and Moffat (2002)proposed a technique where

documents are not stored in the order they are encountered during indexing, but in order of the impact

that a term has in a particular document, as discussed in detail in Section 2.4.4.For instance, a term has

a greater impact in a document in which it occurs twice than in another document of the same length in

which it occurs once only. Using this ordering means that either the processing of lists can be stopped

once a threshold is reached, or that the lists are truncated at an estimated threshold to begin with, leading

to lower storage requirements, reduced seek times, and allowing more lists to becached in memory. We

have not used impacts in our experiments, but the performance gains that impact ordering can provide are

expected to be in addition to the gains that we achieve with our methods. Efficiency should be increased

even more than can be expected from using impact-ordered indexes, since the expanded queries are – by

definition – longer than original queries and therefore stand to gain considerably by using such indexes.

Another way to reduce list length, discussed in more detail in Section 6.2.2, is toindex only a fraction

of the document collection for the initial ranking. In all previous work – except for our work on query

associations detailed in the last chapter and explained in the context of this chapter in Section 6.2.1 –

ranking is performed on the document collection at hand, but there is no particular reason why other,

smaller, collections should not be used. A drawback of these approaches is that the full index still needs

to be available for the final ranking and thus is loaded at the same time as auxiliary indexes. This means

that some of the advantage of using shorter lists is negated by having less space available to cache them.

However, using the full text collection makes the initial ranking relatively lessefficient, since in this

case the index, including the in-memory dictionary and the inverted lists (storedon disk), is large. This

means that disk seek and transfer times for the inverted lists are increased,while the likelihood of an

inverted list being cached is decreased, given that memory volume is fixed and that the dictionary as well

as all inverted lists cannot be held in memory simultaneously when dealing with large collections.

6.1.2 Fetching documents

Having identified the highly ranked documents, these need to be fetched. Assuming a typical memory

size, these documents are not cached from a previous expansion or retrieval process and therefore have

to be fetched from disk, at a delay of a few milliseconds each. Fetching documents or surrogates from

disk is costly, since disk accesses are slower than memory accesses by several orders of magnitudes
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(Hennessy and Patterson, 2002, pages 390–391), and the larger thecollection accessed, the higher the

typical cost, due to greater seek times and reduced opportunity for caching.

Traditionally, full-text documents are fetched. Due to the high cost associated with disk accesses, this

is the most expensive stage of expansion and therefore the area wherethe greatest gains are available.

We have shown in the last chapter that surrogates – which are a fraction of the size of the documents

– can be more effective than full-text documents. Using surrogates suchas query associations is more

efficient, provided that those surrogates can be pre-computed, as discussed in Section 6.2.1.

Another approach is to limit the number of documents available for the extractionof terms, which

should result in higher efficiency, due to reduced cache misses when retrieving the remaining documents

and otherwise smaller seek times, if the limited number of documents are clustered on disk. Documents

could be chosen by, for example, discarding those that are the least often accessed over a large number

of queries (Garcia et al., 2004).

A more radical measure is to use in-memory document surrogates that provide a sufficiently large

pool of expansion terms, as described in the following section. If such a collection can be made suffi-

ciently small, the total cost of expansion can be greatly reduced. Typically full text document collections

do not fit into main memory, but well-constructed surrogates may be only a smallfraction of the size

of the original collection. Our surrogates are designed to be as small as possible while maintaining

effectiveness.

6.1.3 Extracting candidate terms

In the second phase of the expansion process, candidate terms are extracted from the previously fetched

documents. This phase largely depends on the previous phase; if full text documents have been fetched,

these need to be parsed and terms need to be stopped. (We do not use stemming in our experiments.) In

the case of query associations, the surrogates are pre-parsed and pre-stopped and extraction is therefore

much more efficient. Since no additional information from disk is needed, costs are roughly proportional

to the number of documents fetched, and their length.

The in-memory surrogates we propose can be based on pointers rather than the full terms in memory.

The pointers reference terms in the dictionary used for finding and identifying statistics and inverted lists.

They have a constant size (4 bytes) and are typically smaller than a vocabulary term.

6.1.4 Selecting expansion terms

In this phase, all candidate terms are considered, using the heuristics from whichever expansion method is

being employed, and the best terms are then appended to the original query. The information (such as the

inverse document frequency) necessary for calculation of a term’s term selection value (see Section 3.3.2)

is held in the vocabulary, which may be held on disk or, as in our implementation, inmemory. Even when
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held on disk, the frequency of access to the vocabulary means that much of it is typically cached in main

memory. As a result, this phase is the fastest, and can only be sped up by providing fewer candidate

terms for selection.

Query associations typically consist of 20–50 terms, as opposed to the average of 200 or more for

web documents. Use of surrogates could make this stage several times more efficient than the standard

approach. Surrogates are a strict subset of full text documents, andusually are a tiny fraction thereof,

ensuring that selection is efficient. As we use pointers to terms in the in-memory dictionary rather than

storing the terms themselves (as explained in the previous stage), no mapping of terms to dictionary

entries is needed for this approach.

6.1.5 Final ranking

Finally the document collection is ranked against the reformulated query. Similar considerations as in

the first phase are applicable here. We have shown in the previous chapter that final ranking against

surrogates is, unsurprisingly, ineffective. The only option for significant efficiency gains at this stage is

to use an approach such as impact-ordering, as discussed in Section 2.4.4.

6.2 Methods of increasing efficiency for local analysis

In the previous section we identified the costs in the query expansion process and proposed approaches

for reducing them. In this section, we consider the most promising methods in moredetail and construct a

framework for experiments. In particular, we propose the novel strategy of using bag-of-word summaries

as a source of expansion terms.

6.2.1 Query associations

Query associations (Scholer and Williams, 2002) capture the topic of a document by associating past

user queries with the documents that have been highly ranked by that query. Typically, for the association

process a query log is used. Associations are derived as follows: every query in the query log is submitted

to a search system in turn, and a similarity score is calculated based on the similarity of the query at hand

to documents that contain query terms. The query then becomes associated with a fixed number of top

ranked documents that are returned. For efficiency, an upper boundis imposed on the number of queries

that can become associated with a single document. Once a document has a full set of associations, the

least similar associated query can be dynamically replaced with a new, more similar query. Associations

are described in more detail in Chapter 5.

In the previous chapter, we have shown that associations are effective when appropriate query logs are

available. A disadvantage of using associations is that an extra index needs to be loaded and referenced

during query evaluation. This extra index is small but not insignificant. Thesize of the associations
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is roughly 3% of the full text collection: for the 2 GB newswire collection usedin TRECs 5 to 8,

associations take up 73 MB. For the 10 GB WT10g collection from TREC 9 and10, associations occupy

233 MB. The advantages of using associations are that they are usually:pre-stemmed and stopped; stored

in a parsed form; and cheap to retrieve. Most importantly, though, disk access times are much reduced.

Transfer times are reduced since associations are smaller than the documents they represent, which also

means that seek times are reduced, assuming that associations are stored contiguously on disk. The cost

of the term selection phase is also lower, since fewer candidate terms need tobe considered.

Rather than indexing the associations, it would in principle be possible to rank using the standard

index, then fetch and expand from the associations, but in our previouschapter we found that it was by

far more effective to rank against the associations themselves (see Tables 5.2 and 5.4).

We have assumed in the discussion above that associations are pre-computed; in a live environment

such as the web, associations might need to be updated continuously, whichmay incur additional disk

accesses if associations are too large to be held in memory.

6.2.2 Reducing collection size for sourcing expansion terms

The intuition underlying expansion is that, in a large collection, there should bemultiple documents

on the same topic as the query, and that these should have other pertinent terms. However, there is

no reason why the whole collection should have to be accessed to identify such documents. Plausibly,

documents sampled at random from the collection should represent the overall collection in respect of the

terminology used. In our experiments, we sampled the collection by choosing everynth document, forn

of 2, 4, and 8. Other options would be to use centroid clusters or other forms of representative chosen on

the basis of semantics. Documents could also be stored in a pre-parsed format (such as a forward index,

see for instance Brin and Page (1998)), which we have not tested.

6.2.3 In-memory document summaries

The major bottleneck of local analysis is the reliance on the highly ranked documents for useful expan-

sion terms. These documents typically need to be retrieved from disk. We propose that summaries of all

documents be kept in memory, or in a small auxiliary database that is likely to remaincached.

A wide range of document summarisation techniques have been investigated (Goldstein et al., 1999),

and in particular Lam-Adesina and Jones (2001) have used summarisation for query expansion. Lam-

Adesina and Jones use human-readable document summaries as term poolsfor document expansion.

They experiment with query-biased summaries (which need to be generatedat query time, requiring

retrieval and parsing of documents; see for instance Tombros and Sanderson (1998)), as well as context-

independent summaries, basing their work on Luhn (1958), who automatically created abstracts of tech-

nical papers and magazine articles. In their work, representative sentences are selected by attributing
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Pyongyang’s response to the latest South Korean proposal for resump-

tion of inter-Korean talks seems to score polemical points against the

South and its preference for negotiating with Washington over Seoul

on the nuclear issue.

Pyongyang countered Seoul’s proposal for a 1 March working-level con-

tact with a later date, a counterproposal that seemed aimed mainly at

gaining some perceived polemical advantage over Seoul. Pyongyang’s at-

tempt to delay the North-South meeting for two days seemed to violate

an agreement it had reportedly reached with Washington for resumption

of high-level DPRK-U.S. talks. Pyongyang has been showing its concern

about the issue of nuclear inspections and its continued reluctance to

deal with anyone but Washington on the nuclear issue.

The party paper Nodong Sinmun ridiculed President Kim Yong-sam

for allegedly acting "as if he receives U.S. reports on

DPRK-U.S. talks".

Figure 6.1: Example document (modified TREC document FBIS-3) withhighly ranked tf.idf terms.

Please refer to Table 6.1 for a ranking of those terms.

significance scores to sentences that contain a high density of closely related terms, giving an abbrevi-

ated human-readable document. Lam-Adesina and Jones demonstrate relative improvements of roughly

10% over a standard local analysis approach (using the relevance weight described in Section 3.3.2 for

selecting terms). Not surprisingly, perhaps, their best method is based onquery-biased summaries, which

cannot be pre-computed, and are therefore less efficient.

However, summaries to be used for query expansion do not need to be suitable for human consump-

tion. Instead, we propose summaries that consist of the terms with the highesttf.idf values, that is, the

terms that the expansion process should rank highest as candidates if given the whole document. We use

the followingtf.idf formulation, (as derived in Section 3.3.2):

tf .idf = log (1 + fd,t) × log

(

N

ft

)

whereN is the number of documents in the collection,ft of which contain termt, andfd,t is the number

of occurrences oft in documentd.

Given these values, we can then build summaries in three ways:

• Fixed number (S) of terms per summary.

The first option is to use a fixed number of terms per document. TheS highest ranked terms for

each document are used in their summaries.
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Summarisation method

Summary term Fixed Global Percentage of

number (S) threshold (C) document (P )

inter-korean 1 0.47 1.6%

pyongyang 2 0.49 3.2%

resumption 3 0.56 4.8%

polemical 4 0.56 6.5%

seoul 5 0.57 8.1%

sinmun 6 0.59 9.7%

korean 7 0.63 11.3%

high-level 8 0.63 12.9%

ridiculed 9 0.65 14.6%

reluctance 10 0.70 16.1%

nodong 11 0.70 17.7%

nuclear 12 0.71 19.4%

working-level 13 0.72 21.0%

kim 14 0.75 22.6%

talks 15 0.77 24.2%

Table 6.1: The highest ranked terms from the document shown in Figure 6.1, listed in order of descending

tf.idf value. Any of three methods can be used in order to determine how many of the terms are included

in the summary.

• Terms with a weight lower than a global threshold (C).

The second option is to choose a global thresholdC, where each summary consists of all the terms

appearing in the document at hand whose invertedtf.idf value (1/tf.idf ) is lower thanC.

• Have the summary size dictated by a percentage of the document size (P ).

The third option to compose summaries is to limit the volume of terms used in the summary to

P% of the underlying document, where this percentage is limited to (the somewhat arbitrarily

chosen number of) 100 terms so that extraordinarily large documents do not take up too much

memory. The length of the document is measured in stopped, unique terms. Again, the terms with

the highesttf.idf scores are chosen.

In each of these cases, terms for the document summary are chosen froma ranked list oftf.idf terms.

See Table 6.1 as an example, where only the highest ranked terms are shown, as displayed for the example

document in Figure 6.1. How queries are expanded from disk-based documents or in-memory summaries

is also shown in Figure 6.2.
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Figure 6.2: Document and summary based local analysis query expansion. In both figures data that is

stored on diskandheld in memoryis shown. The left figure depicts how queries are expanded through

terms that are extracted from documents, whereas expansion terms aretaken from in-memory summaries

on the right hand side. The summaries are created at indexing time and are held in memory during query

evaluation, limiting the need for disk accesses.

Instead of representing summaries as sequences of terms, it is straightforward to instead use lists of

pointers to the vocabulary representation of the term, reducing storage costs and providing rapid access

to any statistics needed for theTSV (see Section 3.3.2). During querying, all terms in the surrogates that

have been ranked against the original query are then used for selection. This not only avoids long disk

I/Os, but also means that the original documents – typically stored only in their raw form – do not need

to be parsed.S, C, andP can be chosen depending on collection size or available memory.

Although query-biased summaries could be more effective as a source ofexpansion terms, such a

method cannot be applied in the context of efficient local analysis, as query-biased summaries cannot be

pre-computed.

6.2.4 Other approaches

Since the original query terms effectively get processed twice during theranking processes (once for the

initial ranking of documents, and once more for the final ranking), it wouldbe plausible to process the

original query terms during the initial ranking, and subsequently processthe expansion terms without

clearing the accumulator table that was used for the initial ranking.
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However, Moffat and Zobel (1996) demonstrated that limiting the number ofaccumulators may aid

efficiency and effectiveness (we make use of this optimisation in all our experiments). To support this

strategy, query terms must be sorted by their inverse document frequency before the query is processed.

Because most expansion terms have a high inverse document frequency– that is, they appear in few

documents and are relatively rare – they must be processed before mostof the original query terms, which

typically have lower values. (The effect is similar, albeit weaker, to that ofimpact ordered indexes as

discussed in Section 2.4.4.) This means that the accumulator table must be cleared after the initial ranking

and the original query must be processed again with the expansion terms for final ranking. Intuition

suggests that this argument is incorrect, and the original query terms should be allowed to predominantly

choose the documents in order to prevent query drift and give the highest impact to user-chosen terms.

However, we found that it is essential to process the original terms a second time, potentially after having

processed some of the expansion terms. For instance, we found that standard expansion improves MAP

for TREC 7 queries from 0.191 to 0.229, whereas not clearing the accumulator and ranking using only

expansion terms in the final ranking gives lower results of 0.222. The corresponding figures are 0.221,

0.248, and 0.242 respectively for TREC 8.

Processing only expansion terms in the second phase reduced costs, but leads to poor effectiveness.

Even if we could use the existing accumulators and therefore not rank the original query terms again,

the time savings achieved would be relatively small, because the original query terms are only a small

minority of the overall number of terms in the expanded query and the invertedlists of the original terms

are most likely cached from the initial ranking at any rate and would not need to be retrieved from disk.

Other strategies could also lead to reduced costs. Only some documents, perhaps chosen by fre-

quency of access (Garcia et al., 2004) or sampling, might be included in theset of surrogates. A second

tier of surrogates could be stored on disk, for retrieval in cases wherethe highly-ranked documents are

not amongst those selected by sampling. Any strategy could be further improved by compressing the

in-memory surrogates, for example with d-gapping (Witten et al., 1999, page115) and a variable-byte

compression scheme (Scholer et al., 2002). We leave the evaluation of these strategies for future work.

Note that our summaries have no contextual or structural information, and therefore cannot be used

– without major modifications – in conjunction with methods that use such information, such as the local

context analysis method of Xu and Croft (2000) or the summarisation method ofGoldstein et al. (1999).

6.3 Experimental setup

We conducted a variety of experiments to evaluate the impact of these approaches on overall effective-

ness, and whether they lead to reduced query evaluation time.

The search engine that we used for our experiments is described in Section 4.1. However, for the

experiments detailed in this chapter and in Chapter 7, we made several changes to the search engine:
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in contrast to the experiments run in Chapters 4 and 5, any indexes used donot contain term offsets;

the vocabulary is initially stored on disk, but term information is cached permanently, once it has been

retrieved for the first time. Finally, we indexed only terms that contain no more than four non-alphabetical

characters (Williams and Zobel, 2005). This reduces the total number of unique terms by between 30%

to 40% (depending on which collection is being indexed), and leads to a similar decrease in the combined

size of the inverted lists. In addition, it increases the likelihood that in-memory summaries contain useful

candidate terms, as “junk terms” – such as terms that only appear once in the whole collection – are

also likely to have a high inverse document frequency component of thetf.idf score but are typically not

useful for expansion.

The test data is drawn from the TREC conferences, outlined in Section 2.6.2. We used two col-

lections: the first is composed of newswire data, used at TRECs 7 and 8. The second is the WT10g

collection, consisting of 10 gigabytes of web data crawled in 1997 (Bailey etal., 2003), used at TRECs 9

and 10. Each of these collections has two sets of 50 topics and accompanying relevance judgements. As

queries, we used the title field from each TREC topic (see Figure 2.2). We use the Wilcoxon signed rank

test to evaluate the significance of the effectiveness results, as described in Section 2.6.3.

For timings, we used 10,000 stopped queries taken from two query logs collected for the Excite

search engine (Spink et al., 2002); these are web queries and thus suitable for the WT10g experiments.

Since we were not able to obtain appropriate query logs for the newswire data, we used the same 10,000

queries for this collection. We used a dual Intel Pentium IV 2.8 GHz with 2 GB of main memory running

Fedora Core 2. In earlier experiments, not reported here, we used anotherwise similar machine with

much less main memory (768 MB) and observed comparable differences in timings (Billerbeck and

Zobel, 2004b).

6.4 Results

We used the TREC 8 and 10 query sets to test parameter settings. Results aresummarised in Table 6.2

and details are shown in Tables 6.3 and 6.4. We applied the best methods found in these tables to the

TREC 7 and 9 query sets, as shown in Table 6.5, without any further tuningof our approach. A second

index is needed for the runs where associations or fractional collectionsare used for initial ranking and

candidate term extraction.

For TREC 8, and to a lesser extent TREC 10, standard local analysis improves over the baseline, but

in both cases query evaluation takes around nine times as long.

6.4.1 Expansion using query associations

Several of the methods proposed do not succeed in our aims. Expandingqueries using associations takes

nearly as long as standard local analysis, and effectiveness is only marginally increased over the baseline.
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Data Expansion Query Mem

set Method Time (ms) MAP P@10 R-Pr. (MB)

None 15 0.221 0.440 0.262 n/a

Standard 98 0.248‡ 0.464 0.291‡ n/a

S = 76 24 0.246‡ 0.462 0.285‡ 146

C = 1.25 23 0.246‡ 0.456 0.287‡ 82

T
R

E
C

8

P = 15 22 0.246‡ 0.460 0.279‡ 55

None 30 0.163 0.298 0.190 n/a

Standard 296 0.186 0.304 0.205 n/a

S = 60 83 0.188† 0.318 0.212 336

C = 1.05 81 0.185† 0.312 0.202 200T
R

E
C

10

P = 17 76 0.187‡ 0.316 0.205 171

Table 6.2: Summarising the best effectiveness results from tuning collections TRECs 8 and 10 shown in

Tables 6.3 and 6.4, respectively.

(Due to developments in the software (described in Section 6.3) some of the baselines have changed from

those detailed in Chapter 5. We spent considerable time to run follow-up experiments explicitly seeking

the cause for this discrepancy. Although we were not able to identify the cause we are confident that the

experiments detailed in both chapters are valid.) For TREC 8 the surrogates are arguably inappropriate,

as the web queries used to build associations may not be pertinent to the newswire data; however, this

issue highlights the fact that associations cannot be used without an appropriate query log.

6.4.2 Expansion through collection subsets

Using halves (n = 2), quarters (n = 4), or eighths (n = 8) of the collection also reduces effectiveness,

and has little impact on expansion time; this is due to the need to load and access a second index. Results

for different halves and quarters are shown as Quarter 1, Quarter 2, and so on in Tables 6.3 and 6.4. Larger

n led to smaller improvements in query expansion; in experiments withn = 8, expansion gave no im-

provements. Reducing the local setR to roughly a quarter of its original size in order to cater for a smaller

number of relevant documents – as intuition might suggest – only further degrades results. These results

are consistent with previous work which shows that retrieval effectiveness, especially in the top-ranked

documents, is greater for larger collections than for sub-collections (Hawking and Robertson, 2003). This

means that there is a higher likelihood of sourcing expansion terms from relevant documents when using

local analysis if the largest collection is used. It was also found that expansion works best when terms are

sourced from collections that are a superset of documents of the one targeted (Kwok and Chan, 1998).
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Expansion Query Mem
Method Time (ms) MAP P@10 R-Pr. (MB)
None 15 0.221 0.440 0.262 n/a
Standard 98 0.248‡ 0.464 0.291‡ n/a
Associations 72 0.227 0.444 0.269† index
Eighth 1 80 0.183 0.330‡ 0.228 index
Eighth 2 71 0.172 0.338‡ 0.211† index
Eighth 3 85 0.175 0.360‡ 0.222 index
Eighth 4 70 0.200 0.364‡ 0.243 index
Eighth 5 73 0.143‡ 0.334‡ 0.190‡ index
Eighth 6 72 0.147‡ 0.328‡ 0.199† index
Eighth 7 71 0.186 0.368‡ 0.227 index
Eighth 8 69 0.177† 0.356‡ 0.230 index
Quarter 1 55 0.182† 0.362‡ 0.234 index
Quarter 2 55 0.206 0.394 0.245 index
Quarter 3 69 0.234 0.410 0.280‡ index
Quarter 4 56 0.227 0.396 0.269 index
Half 1 76 0.234 0.428 0.281‡ index
Half 2 65 0.236 0.426 0.280† index
S = 1 20 0.232‡ 0.448 0.265 6
S = 10 20 0.237‡ 0.444 0.272‡ 24
S = 25 21 0.241‡ 0.450 0.274† 54
S = 50 22 0.244‡ 0.452 0.277‡ 102
S = 76 24 0.246‡ 0.462 0.285‡ 146
S = 100 26 0.242‡ 0.456 0.279‡ 179
C = 0.5 21 0.231† 0.416† 0.273‡ 11
C = 1.0 22 0.244‡ 0.446 0.278‡ 54
C = 1.25 23 0.246‡ 0.456 0.287‡ 82
C = 1.5 24 0.244‡ 0.446 0.280‡ 106
C = 3.0 24 0.241‡ 0.458 0.279‡ 79
C = 0.25 − 1.25 22 0.243† 0.454 0.284‡ 81
P = 1 21 0.230† 0.452 0.275‡ 8
P = 10 21 0.244‡ 0.446 0.272† 38
P = 15 22 0.246‡ 0.460 0.279‡ 55
P = 25 23 0.244‡ 0.454 0.279‡ 85
P = 50 25 0.241‡ 0.456 0.281‡ 137
P = 100 25 0.242‡ 0.456 0.279‡ 179

Table 6.3: Effectiveness of expansion of TREC 8 queries on the TREC newswire data. Results shown

are mean average precision (MAP), precision at 10 (P@10), and R-Precision (R-Pr.). Also shown is the

average query time over 10,000 queries and the amount of overhead memory required for each method;

“index” marks the need to refer to an auxiliary index during expansion. A† marks results that are

significantly different to the baseline of no expansion at the 0.10 level, and‡ at the level of 0.05.S is

the number of summary terms used,C specifies the cutoff threshold for the selection value, andP is the

maximal percentage of the original document to be used for summaries.Figures inbold are the best

results for the summary based technique.
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Expansion Query Mem

Method Time (ms) MAP P@10 R-Pr. (MB)

None 30 0.163 0.298 0.190 n/a

Standard 296 0.186 0.304 0.205 n/a

Associations 264 0.171 0.278 0.212 index

Eighth 1 273 0.142 0.206‡ 0.175 index

Eighth 2 259 0.125† 0.218‡ 0.155 index

Eighth 3 279 0.143 0.263 0.172 index

Eighth 4 270 0.127‡ 0.214‡ 0.147‡ index

Eighth 5 249 0.146 0.267 0.172 index

Eighth 6 259 0.143 0.247‡ 0.173 index

Eighth 7 297 0.149 0.229‡ 0.185 index

Eighth 8 253 0.130† 0.220‡ 0.163 index

Quarter 1 277 0.157 0.247† 0.188 index

Quarter 2 258 0.142 0.245‡ 0.164 index

Quarter 3 276 0.153 0.265 0.202 index

Quarter 4 269 0.134‡ 0.218‡ 0.163† index

Half 1 303 0.164 0.282 0.197 index

Half 2 283 0.145 0.229‡ 0.173 index

S = 1 62 0.158 0.280 0.201 19

S = 10 78 0.176 0.300 0.212† 76

S = 25 81 0.179 0.306 0.202 165

S = 50 82 0.184 0.314 0.208 292

S = 60 83 0.188† 0.318 0.212 336

S = 100 86 0.186† 0.302 0.208 476

C = 0.5 79 0.166 0.296 0.190 44

C = 1.0 83 0.183† 0.312 0.202 186

C = 1.05 81 0.185† 0.312 0.202 200

C = 1.5 84 0.184 0.308 0.206 306

C = 3.0 86 0.186† 0.302 0.208 444

C = 0.25 − 1.05 79 0.182 0.308 0.202 197

P = 1 71 0.170 0.294 0.214 27

P = 10 75 0.180† 0.312 0.206 114

P = 17 76 0.187‡ 0.316 0.205 171

P = 25 79 0.187‡ 0.302 0.208 225

P = 50 81 0.184† 0.306 0.206 348

P = 100 82 0.186† 0.302 0.208 477

Table 6.4: Effectiveness of expansion of TREC 10 queries on the WT10g collection. See Table 6.3 for

an explanation of methods and symbols used.
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Data Expansion Query Mem

set Method Time (ms) MAP P@10 R-Pr. (MB)

None 15 0.191 0.452 0.246 n/a

Standard 98 0.229‡ 0.450 0.282‡ n/a

S = 76 24 0.219‡ 0.440 0.272‡ 146

C = 1.25 23 0.216‡ 0.438 0.270‡ 82

T
R

E
C

7

P = 15 22 0.210 0.432 0.268‡ 55

None 30 0.195 0.271 0.228 n/a

Standard 296 0.182 0.260 0.210† n/a

S = 60 83 0.166 0.265 0.184† 336

C = 1.05 81 0.166† 0.262 0.174‡ 200

T
R

E
C

9

P = 17 76 0.168† 0.267 0.187 171

Table 6.5: As in Table 6.2, but showing results for test collections TRECs 7 and 9.

6.4.3 Expansion using in-memory summaries

Simple tf.idf summaries work well. Even one-term (S = 1) summaries yield significantly improved

average precision on TREC 8, for a memory overhead of only a few megabytes. The best results were

obtained forS = 60 on TREC 10 andS = 76 on TREC 8; total processing costs were less than one-

third those of standard local analysis, making this method of expansion between five (summary based

expansion time overhead / conventional expansion time overhead = (83ms -30ms) / (296ms - 30ms) =

19.9%) and nine times (9 ms / 83 ms = 10.8%) more efficient than standard local analysis. These gains

are similar to those achieved by Lam-Adesina and Jones (2001) with summariesof between six and nine

sentences each, but our summaries are considerably more compact, showing the advantage of a form of

summary intended only for query expansion. While the memory overheads are non-trivial – over 300

megabytes for TREC 10 – they are well within the memory capacity of a desktop machine.

Results using the summaries on the test set for the newswire data (TREC 7) are equally satisfac-

tory, with good effectiveness and low overheads. Results on the test set of queries for the web data

(TREC 9) are, however, disappointing. We had already discovered in our previous chapter that expan-

sion on TREC 9 does not improve effectiveness, and Table 6.5 shows that the standard local analysis

approach leads to worse results than no expansion; in that light, our results here are unsurprising. The

principal observation is that query expansion based on summaries is still ofsimilar effectiveness to that

based on full documents, while offering efficiency benefits.

Figure 6.3 shows how much time during query evaluation is spent on the different phases neces-

sary to expand queries as described in Section 6.1. These graphs showthat fetching of documents is
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Figure 6.3: The amount of time spent in the different stages necessary for local analysis during query

expansion. The top graph shows the timings for the newswire collection, whereas the bottom is based on

the WT10g collection. In each case, theS approach was used to create summaries, with the best values

(that is 60 and 76 respectively used). Interestingly, the time need to rank documents is reduced due to

improved caching of lists.
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a relatively large component of the query expansion process and is notneeded when using in-memory

summaries. They also confirm that time spent accessing terms from the in-memory summaries is negli-

gible when compared to time spent extracting terms from documents that need to be parsed after having

been retrieved from disk. Furthermore, term selection costs are drastically reduced as well, since much

fewer terms are available for selection using the summaries. Although the graphs in Figure 6.3 seem to

indicate this time is not reduced to 0, the term selection time is roughly a quarter of the time needed for

the conventional approach.

Unexpectedly, the times needed to rank the documents against the unexpanded and the expanded

queries are reduced (this is particularly pronounced with the larger WT10g collection). The explanation

for this is that – although a large amount of memory is used for the summaries thatare held in memory –

overall the ability to cache inverted lists is improved since no lists are swapped out of memory in order to

make room for documents that are retrieved. Although the documents loadedtake up a relatively small

amount of memory, the random nature of loading up many documents destroyslocality of the cache.

This reduction in ranking time is even greater than the combined savings achieved by not having to fetch

documents from disk or parsing those. To ensure that the effects of caching can be properly observed, we

averaged the query times that were used to produce the graphs in Figure 6.3 over 100,000 queries (that

is 10 times the amount of queries used for other experiments detailed in this chapter).

6.4.4 Sensitivity of expansion to summary parameters

We show results for several parameter settings. These lead to comparableeffectiveness for similar mem-

ory overhead. The choice ofS, C, andP for determining the size of summaries is further examined in

Figures 6.4 and 6.5 for newswire and web data respectively. These show that a wide range ofS (top

figure),C (centre figure), andP values (bottom figure) lead to improved effectiveness, in some cases

exceeding that of standard local analysis. Note that the total memory overhead for the in-memory sum-

maries are not linear in the top graphs of Figures 6.4 and 6.5, as it may appear to be, but rather the amount

of memory used increases more slowly than the number of terms held. This is the case as we include the

total size of all associated data structures needed and a certain amount ofspace is a fixed overhead for

holding the in-memory summaries and associated pointers.

The middle graph in Figure 6.4 shows a drop in average precision if summariesconsist only of terms

with extremely low invertedtf.idf values, of below0.25. This would suggest that average precision could

be optimised by using only terms that have an invertedtf.idf value which falls into the band between0.25

and1.25 for TREC 8 and between0.25 and1.05 for TREC 10, where the drop in average precision at

the lower cutoff is even more pronounced. However, as shown in Tables6.3 and 6.4, this is not the case,

which leads to the conclusion that some terms with a low invertedtf.idf value are chosen as expansion

terms from a small pool of candidate terms to the detriment of queries.
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Figure 6.4: Varying average precision and associated memory cost withthe number, cutoff value of

summary terms, and percentage of document used for summaries respectively. Results were obtained

using the TREC 8 data set.
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Figure 6.5: As in previous figure, except that the TREC 10 collection and queries are used.
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6.4.5 Reliability of expansion methods

Figure 6.6 compares the robustness of the different expansion methods on the training and test data

shown in Tables 6.2 and 6.5. As can be seen, the effectiveness of our proposed summaries is comparable

to that of the standard local analysis approach. However, improvements through summary-based query

expansion are generally more moderate and a minority of queries are degraded more severely. This is

most noticeable for the TREC 9 query set.

6.5 Summary

We have identified the main costs of query expansion and, for each stage of the query evaluation process,

considered options for reducing costs. Guided by preliminary experiments, we explored two options

in detail: expansion via reduced-size collections and expansion via document surrogates. Two forms

of surrogates were considered: query associations, consisting of queries for which each document was

highly ranked, andtf.idf summaries.

The most successful method was the use oftf.idf summaries. These are much smaller than the

original collections, yet are able to provide effectiveness close to that of standard local analysis. The size

reduction and simple representation means that they can be rapidly processed. Of the three methods for

building summaries, slightly better performance was obtained with those consisting of a fixed number of

terms. The key to the success of this method is that it eliminates several costs: there is no need to fetch

documents after the initial phase of list processing, and the selection and extraction of candidate terms is

trivial.

Many of the methods we explored were unsuccessful. Associations can yield good effectiveness

if a query log is available, but are expensive to process. Reduced-size collections yielded no benefits;

it is possible that choosing documents on a more principled basis would lead to different effectiveness

outcomes, but the costs are unlikely to be reduced. Streamlining list processing by carrying accumulator

information from one stage to the next led to a collapse in effectiveness. Our tf.idf summaries, in contrast,

maintain the effectiveness of local analysis query expansion while reducing query evaluation time by a

factor of five to nine.
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Figure 6.6: Per-query-differences in average precision between each of the methods and the respective

baselines on test and training data. Queries are individually sorted by increasing MAP values (nor-

malised by the baseline).



Chapter 7

Document Expansion for Ad-hoc Retrieval

As has been discussed in the previous chapters, query expansion canimprove queries and thus make the

search experience for a user more satisfying. However, a disadvantage of query expansion is the inherent

inefficiency of reformulating a query. These inefficiencies have largelynot been investigated, with the

exception of our work reported in Chapter 6 and comments on the effect oflarger number of documents

used in the local set by Gu and Luo (2004). In Chapter 6 we proposed improvements to the efficiency

of query expansion by keeping a brief summary of each document in the collection in memory, so that

during the expansion process no time-consuming disk accesses need to bemade. While some of the

methods that we proposed maintain effectiveness, expanding queries using the best of these methods still

takes between 30% to 150% longer than evaluating queries without expansion, depending on collection

size and system hardware.

The best possible result for efficient query expansion – the principaltopic of this thesis – is to not have

to expand queries at query time at all, but still benefit from alleviation of termmismatch. A promising

avenue to achieve this isdocument expansion, which we explore in this chapter as an alternative to

query expansion. In document expansion, documents are enriched withrelated terms. When expanding

documents all costs are incurred at indexing time, and there is only a marginalcost at retrieval time.

Most retrieval systems match documents and queries on a syntactic level, thatis, the underlying

assumption is that relevant documents contain exactly those terms that a user chooses for the query (as

explained in Chapters 2 and 3). Typical search engines therefore onlyreturn documents that contain at

least one of the terms in the query. However, Furnas et al. (1987) found that two users, who are asked to

describe a certain topic with particular keywords, choose the same keyword with a likelihood of less than

20%; and we have observed that many documents that have been judged relevant in the TREC context

(see Section 2.6.2) do not contain query terms. Figure 1.1 in Chapter 1 shows that as many as 25% of

documents that are judged to be relevant do not containany terms that appear in a concise query. The

actual proportion might be much larger than this figure suggests, since in theTREC framework – from

which the graph was produced – the relevance of only a relatively small number of documents is judged

123
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for each query. Furthermore, the documents that are judged are generally found through direct matching

of query terms against document terms. Thus term mismatch (the problem that the graph is illustrating)

may result in a much larger number of relevant documents not being identified. Document expansion, as

proposed in this chapter, adds related terms to a document, so that those documents will be included in

the ranking.

We propose two new corpus-based methods for document expansion. The first method is based on

adding terms to documents in a process that is analogous to query expansion: each document is run as a

query and is subsequently augmented with expansion terms. The second method is based on regarding

each term in the vocabulary as a query, which is expanded using local analysis query expansion and used

to rank documents. The original query term is then added to this new set of top-ranked documents.

Our experiments measure the efficiency and effectiveness of query expansion and document ex-

pansion on several collections and query sets. We find that, on balance,document expansion leads to

improvements in effectiveness, but few of the measured gains are statistically significant. The compu-

tational cost at query time is small, as one would expect. In contrast, both standard query expansion

and the efficient query expansion that we proposed in Chapter 6 lead to gains in most cases, many of

them statistically significant. Our efficient query expansion technique incurs less than twice the cost of

querying without expansion.

Our experiments were, within the constraints of our resources, reasonably exhaustive. We experimen-

tally evaluated several alternative configurations of document expansion and explored the parameters, but

did not observe useful gains in effectiveness. We conclude that corpus-based document expansion is un-

promising. We did not explore query expansion to the same extent, yet found effectiveness to consistently

improve, and thus believe that further gains in performance may be available.

A preliminary version of this chapter appeared as Billerbeck and Zobel (2005).

7.1 Document expansion background

While document expansion has recently been applied in various areas of information retrieval, it has

not been used as an alternative to query expansion in order to improve ranking effectiveness (with one

exception, detailed below). In this section, we discuss previous work on document expansion and show

the areas where it has been applied.

Ide and Salton (1971) propose a technique for updating vector representations. Unlike the document

expansion techniques considered in this chapter, they use relevance feedback, relying on the help of the

user (see Section 3.1). In their work, the query representation is changed to obtain a query vector that

is closer to that of the relevant documents (for instance, by adding those terms to the query that appear

in many of the relevant documents); this is similar to the Rocchio method (see Section 3.1.2). They

also propose a second method, where the document vector space is changed so that relevant documents
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are closer to the query vector. One of the approaches adds query termsto the vectors of relevant docu-

ments (or increase the weighting of those terms). Another approach is to interchange the vector space

representation of two documents – one relevant and one non-relevant –with respect to a query. Thereby

the vector of a document that was found to be relevant to the query is movedcloser to the vector space

representation of that query, while the vector of another document, that was found to be non-relevant, but

was originally in closer proximity of the query vector, is moved further away,by respectively adding to

or subtracting from the weights of query terms in those vectors. In either case the document vectors are

normalised to retain their original vector length; that is, the weights of terms already in documents are

reduced. Using these methods, they achieve effectiveness improvementsof 10% to 15%.

True document expansion (that is, not just manipulating document vectors, but actually adding terms

to documents) was first used by Singhal and Pereira (1999) in the context of speech retrieval. Although

speech recognition has since improved, at the time of publication of their work, speech recognition was

unreliable with an error rate of up to 60%. Singhal and Pereira expand transcribed documents with related

terms from a side corpus (not unlike the methods we considered in Section 3.3.1). This method achieves

a relative increase in MAP of 12% over a baseline that was established employing pseudo relevance

feedback based on the technique proposed by Rocchio (1971).

Li and Meng (2003) use document expansion forspoken document retrieval, where they expand doc-

uments by augmenting them with highly valuedtf.idf terms that have been retrieved from a side corpus.

Their method is very similar to that of Singhal and Pereira. Li and Meng found a 56% relative improve-

ment in Cantonese monolingual retrieval and 14% relative improvement in Mandarin cross-language

retrieval.

Both Lester and Williams (2002) and Levow and Oard (2002) have used document expansion for

topic tracking. Whereas Lester and Williams use document expansion to enrich topic profiles and do

not specify whether it bears any benefit, Levow and Oard obtain consistent improvements in Mandarin

cross-lingual retrieval by expanding the documents to be tracked.

Document-self expansionwas used by Tseng and Juang (2003) for text categorisation. They propose

two techniques. The first is summary-based expansion, where top-ranked sentences from each category

are combined to form new documents in their respective categories. The second is term-based expansion,

where representative terms for categories that only contain a few trainingdocuments are used to form

documents, consisting of only that term. Document expansion here is somewhat of a misnomer since

Tseng and Juang produce new documents rather than expanding existingones. A better name might have

beencollection expansion.

In the context of latent semantic indexing (see Section 3.3.1), Cristianini et al. (2002) consider “a

kind of document expansion” in order to link documents that share related terms. To this end they

briefly consider expanding documents by adding all synonyms of terms contained within that document;

however, they do not describe any experiments making use of document expansion.
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Scholer et al. (2004) augment documents by associating queries (see Section 5.1.3) obtained from

a query log in order to increase retrieval effectiveness. However, they do not reduce the problems of

vocabulary mismatch, as they only add queries to documents where all queryterms are already part

of the document. Instead, they emphasise terms that are central to a document. The differences be-

tween our method explained in this chapter and query association are discussed in more detail in Sec-

tion 7.2.2.

With the exception of Lester and Williams (who use expansion only on translateddocuments) and

Cristianini et al., all previous work mentioned above uses document expansion in the context of enriching

possibly incorrectly translated documents. Additional work on document expansion has been in the area

of speech recognition and speech retrieval (particularly at TREC); asthis work is not directly related to

our proposed document expansion approaches, we do not survey ithere.

The only direct reference to document expansion for document retrieval was made by van Rijsber-

gen (2000), who pondered whether document expansion could be used in this context. However, no

experiments are reported in his paper.

7.2 Methods of document expansion for document retrieval

Rather than expanding a query from an initially retrieved set of documents,which is time-consuming,

document expansion modifies documents by adding potential query terms thatoccur in similar docu-

ments. While this expansion process is reasonably costly, it is done at indexing time. Query times are

only slightly increased (compared to conventional query expansion), since inverted lists are on average

slightly longer (10%, say), depending on which document expansion method is chosen.

There are several ways to expand documents. All methods aim to eliminate inefficient run-time query

expansion, while benefiting from the effectiveness of a local analysis mechanism. Each of the following

proposed methods makes use of local analysis at indexing time and expandsthe original documents with

additional terms.

There are some parallels between document expansion and smoothing, as employed by language

modelling approaches to information retrieval (see Section 2.4.3). However, in contrast to smoothing,

document expansion leads to a document being augmented with terms that are related to the topics

covered in the respective documents, which tend to be relatively rare across the collection. Smoothing

can be seen as enriching a document mainly with high frequency, and, to a lesser extent, rare terms.

7.2.1 Expansion via documents as queries

For this approach to document expansion, each complete document is run as a query. Standard local

analysis query expansion (see Section 3.3.2 and Figure 7.1a) is performed and a setE of expansion terms

for this document is defined. The top|E| candidate terms are then simply appended to the document.
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Figure 7.1: The figure on the left (a) shows the central part of any expansion process proposed in this

chapter. The right hand figure (b) shows how this is conventionally usedfor query expansion.

This method is conceptually similar to conventional query expansion (see Figure 7.2a). We refer to this

approach also asdocument centric expansion.

Although the process of expanding documents in this way is reasonably time consuming, it can be

sped up considerably by, for instance, using only the toptf.idf terms from each document to formulate

the query that will determine the local set from which expansion terms are sourced, or by making use of

impact ordered indexes (see Section 2.4.4). For the experiments detailed in this chapter we did not make

use of impact ordering. Both approaches are left as future work.

In Section 7.4.1 we give further details (such as choice of document expansion parameters) that have

arisen from tuning with a training data set and explain other practicalities.

7.2.2 Expansion via vocabulary terms as queries

Our other approach to document expansion mimics more closely a reversal of the conventional local

analysis algorithm. Imagine a query that consists of only one term. The role ofquery expansion is to

identify documents that areabout this term, but do not necessarily include this term. This is done by

adding terms to the query that co-occur with the query term within the local setof documents. After

expansion, we may therefore retrieve documents that do not contain the query term itself but that do

contain expansion terms. Document expansion inverts this scenario: it putsthe query term into those

documents that contain the expansion terms. This has the effect of adding potential query terms that are

on the same topic as the document, but are missing from that document. In otherwords, we aim to add

those terms to a document that would have lead to the document being ranked highly if that term had

been run as the only original term in an expanded query. Our hypothesisis that this technique will be

a good proxy for expansion of queries consisting of single terms. However, it is by the same reasoning

a less good match for the case of multi-term queries, as we perform the document expansion based on

single vocabulary terms only.
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Figure 7.2: The left hand figure (a) shows how documents can be expanded by running each document

as a query and adding the expansion terms back into the document. In the right figure (b) documents

are expanded by running vocabulary terms as a queries and adding theterms to the top ranked docu-

ments. “Expand” in either graph refers in either case to the conventional expansion process shown in

Figure 7.1a.

Formally, the algorithm of this approach is to run each single vocabulary termt in turn as a queryq.

This one-term query is then used to rank a local setR′, consisting of10 documents. From this set, the

standard local analysis algorithm (see Section 3.3.2) is used to obtain a setE of 25 expansion terms that

are added to the single original query termt, buildingq′. The new queryq′ is run against the collection.

For each of the top 100 documents that are returned, the triplet oft, d, s is stored, wheres is the similarity

score between queryq′ and documentd.

Once all terms in the vocabulary have been processed in this way, terms from the list of triplets are

added to the current document. We choose those terms with the highest similarityscores, and add terms

until the size of the document has been increased by 10%. See Figure 7.2bfor an illustration of this

process, which we refer to asterm centric expansion. Algorithm 1 also gives a formal definition of this

approach to document expansion.

Term-centric expansion is considerably faster than the document-centric expansion method previ-

ously described. However, a problem that does not occur with the previous method arises in a setting

where the collection grows, as frequently occurs in a web setting, for instance. Since the basis for se-

lecting terms with which documents are enriched, that is the collection as a whole,is changing with

the addition of new documents, the expansion terms chosen for a particular document might not be the

best suited any more. (This is not a problem with the document-centric expansion method to the same

extent, since each new document can still be expanded individually against the old collection without a

large deviation from the best possible expansion terms, until the collection has changed to a large de-
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Algorithm 1 Term-centric document expansion

1: for all terms (t) in a vocabulary (V ) do

2: run t as a queryq

3: rank documentsd againstq

4: select top10 documentsR′ as the local set

5: rank candidate terms usingTSV

6: select top|E| = 25 terms and append toq, formingq′

7: rankq′ against collection and take top100 documents (X)

8: for all documentsd in X do

9: savet, d, s triplets (s is the similarity score ofq′ to d)

10: end for

11: end for

12: for all documentsd in collectionD do

13: determine lengthl = |d| of documentd

14: select0.1 × l of terms with the highests and add tod

15: end for

gree.) Furthermore, it is difficult to determine the best expansion terms for the added documents, as those

documents did not exist when documents were originally ranked against terms. An – admittedly very

expensive – solution would be to re-run the document expansion process every time a certain number of

documents has been added. Optimisations may be possible but are outside the scope of this thesis. These

could be revisited in future work.

Our proposed document expansion techniques involve a number of parameters that need to be chosen;

we discuss these in Section 7.4.1.

Query association, as described in Section 5.1.3, differs from the abovetechniques in several ways.

First, our techniques have the extra step of expanding a query with terms before ranking documents that

a query becomes associated with. Second, associations are based on external information in the form

of query logs, whereas document expansion relies on within-collection data and statistics only. More

importantly, the query association results (Scholer et al., 2004) show that augmenting documents with

associated queries works best when placing the restriction on queries to be associated with a document

that all query terms must be present in the document. The effect of this restriction is that pertinent terms

in a document are emphasised (their term count is increased and therefore the ranking of those documents

is improved subsequently when query terms are used that appear in past queries that have been associated

with that document), rather than new terms – which address the problem of vocabulary mismatch – are

added to the document. Adding new terms makes a document retrievable to queries that originally would

not have ranked this document, even though it may be on the same topic.
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7.2.3 Expansion via phrases as queries

An extension to the document expansion approach described above is to use phrases rather than individual

vocabulary terms for term-centric document expansion. This addressesa potential shortfall of the method

above, which is a good match for queries consisting of single terms only.

Phrases are extracted as suggested by for instance Kim and Wilbur (2001). A phrase consists of two

or more contiguous terms occurring in any document that are not separated by either a stop word (our

stoplist contains 477 items), an HTML or TREC tag, or any of the following characters: ?!,;:(){}[]. Note

that this is a much cruder attempt at identifying phrases than the approachesrecently used by Joho and

Sanderson (2000) and Liu et al. (2004). We leave using a more sophisticated approach of identifying

phrases for future work.

In separate experiments, we use maximal-length phrases, and overlappingtwo-term phrases that

were derived from the maximal length phrases. The phrases are then added to documents, using the

term-centric document expansion method.

7.3 Experimental setup

We evaluate the proposed document expansion approaches using the Zettair search engine, described in

Section 6.3. Although the local analysis parameters|E| and |R′| are collection dependent, we did not

tune those for each collection. Instead we use the default parameters of25 and10, respectively, in all

cases, since these are more easily comparable with other approaches detailed in the research literature and

secondly, they have been found to be reasonably good for some of the target collections (see Section 4)

whereas for others no tuning information is at hand.

7.3.1 Test collections

All our test data is drawn from the TREC conferences (see Section 2.6.2). To tune document expan-

sion parameters and choose appropriate selection measures we used the Wall Street Journal articles from

TREC disk 2, which consists of articles from 1990–1992. We refer to this subset as WSJ2. With this col-

lection we used the TREC 3 topics 151–200 and associated relevance judgements. In all our experiments

we used the title field only as queries.

We used several collections to evaluate our techniques. These include theAssociated Press data (AP)

from disks 1 and 2 to match the TREC 3 topics and relevance judgements. We also used the newswire

collection (which we call NW) from TREC 7 and 8. This collection is drawn from TREC disks 4 and 5,

without the congressional record collection. NW was used as a whole, and also as several sub-collections,

namely the Financial Times 1991–1994 (FT), the Foreign Broadcast Information Service (FBIS) and the

LA Times (LA). We tested these collections against topic sets of TRECs 6, 7, and 8.
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Time (in milliseconds)

WJS2 AP NW FBIS FT LA

E
xp

an
s.

m
et

ho
d

Lrg Ltl Lrg Ltl Lrg Ltl Lrg Ltl Lrg Ltl Lrg Ltl

None 4.7 7.4 6.9 11.7 11.4 22.8 5.0 8.0 6.8 12.1 6.8 11.3

QE 25.4 47.1 29.0 52.5 145.9 211.2 49.4 123.5 41.2 87.6 32.6 62.3

S = 40 7.5 14.8 11.4 22.5 20.9 52.0 8.1 16.3 11.8 24.4 10.6 20.6

Q = D 5.3 8.6 7.7 13.3 12.1 24.8 5.5 9.4 7.6 13.7 7.3 13.3

Q ∈ V 4.9 7.4 7.0 11.8 11.7 22.9 5.1 8.2 6.9 12.1 6.9 11.3

Q = P 4.9 7.6

Q = B 4.8 7.6

Table 7.1: Efficiency of expansion techniques. The table shows the average query time over 100,000

queries on a machine with a large amount of main memory (Lrg) and one with little (Ltl). The expansion

method denoted asNonespecifies the respective baselines,QEshows the standard local analysis results,

andS = 40 shows the results for a summarisation technique.Q = D is a document expansion technique

where documents are expanded by treating them as queries at indexing time (document centric expan-

sion). Q ∈ V (or term centric expansion), Q = P , andQ = B are document expansion techniques

where terms, phrases, or bigrams respectively are added to documents.

7.3.2 Timings

For timings, we used 100,000 stopped queries taken from two query logs from the Excite search engine

(Spink et al., 2002). Although these queries are web queries and not ideally suited to match the newswire

data (we were not able to obtain a more suitable query log), these queries are adequate for testing the

throughput – rather than effectiveness – of the system. We only used queries that do not contain phrases.

Timing experiments were run on two machines. The first is an Intel Pentium IV 2.8 GHz machine

with hyper-threading and 2 GB of main memory, running GNU/Linux kernel 2.6. The second is a dual

Intel Pentium III 866 MHz with 768 MB of main memory, running kernel 2.2. InTable 7.1 these are

denoted asLrg andLtl, respectively.

Lrg has ample amount of memory that easily fits – at least for the experiments with smallcollections

– the whole document collection as well as the inverted indexes and any major auxiliary data structures,

such as document summaries, if applicable. Even though the main memory was flushed before timings

were commenced, thus eliminating any influence of caching from any previous timed runs, as all 100,000

queries are processed, all data is eventually cached. The effect of this to the conventional query expansion

method is that the additional time requirement over the baseline is purely that of parsing documents,

evaluating terms and processing a greater number of inverted lists, rather than the main cost associated

with expanding queries from a local set in a typical environment, which is retrieving documents from
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disk. In practice, for larger collections, this scenario is unrealistic. We therefore also show timings for a

machine that can fit only part of the document collection and inverted lists in mainmemory (Ltl).

7.4 Results

Results for timings are shown in Table 7.1 and effectiveness performanceis shown in Table 7.2. We

specify mean average precision (MAP), precision at 10, and R-Precision values (see also Section 2.6.3)

for the baseline and various expansion measures. Only methods that weresuccessful on our training data

are reported. TheS = 40 rows in Tables 7.1 and 7.2 give results for one of the most successful methods

we previously explored when using in-memory document summaries in Chapter6. For this method each

document is summarised by the top40 tf.idf terms of that document. During query time, the summaries

for all documents are kept in memory (although we did not prevent the operating system from swapping

sections of this data structure out of memory). The parameter ofS = 40 was not tuned for WSJ2 or any

other collection. The memory overheads for this method are as follows: WSJ2: 11.7 MB, AP: 26.1 MB,

NW: 84.0 MB, FBIS: 20.8 MB, FT: 33.2 MB, and LA: 20.4 MB.

Since the average and R-Precision figures for the experiments with phrases are no better than the

other document expansion runs, while resource requirements for phrase experiments are significantly

greater than the other techniques, we did not experiment with phrases further.

7.4.1 Tuning of document expansion approaches

From the discussion of our document expansion methods in Sections 7.2.1 and 7.2.2, it can be seen that

both the document-centric and term-centric approaches involve several parameters. We now discuss how

these parameters should be set.

Document centric expansion

As for our other experiments, we used the Okapi BM25 similarity function forthe first document expan-

sion scheme, where whole documents are run as queries. As explained in Section 2.4.2, generally we

set the Okapi parameterk3 to a value of0, meaning that each query term contributes only once to the

ranking of documents, even though the same term might appear multiple times in a query. This is reason-

able for short queries such as those that might be expected in a web search environment. The document

expansion scheme, however, adds a whole document to the query; it is therefore likely that many terms

appear multiple times. It stands to reason that the expansion technique would be improved ifk3 was set

to a large value for this experiment, so that terms can contribute more to the similaritycalculation if they

appear more frequently. A large value ofk3 would give those terms that are rare across the document

collection as a whole, but appear frequently in the document at hand (thatis, those terms with a high
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Exp.Coll.
method

MAP P@10 R-Pr. MAP P@10 R-Pr. MAP P@10 R-Pr.

None 0.251 0.363 0.275
QE 0.325‡ 0.388 0.324‡
S = 40 0.286‡ 0.380 0.287†
Q = D 0.265‡ 0.361 0.280
Q ∈ V 0.264 0.378 0.283
Q = P 0.259 0.371 0.276

W
S

J2

Q = B

T
R

E
C

3

0.260 0.380 0.268†
None 0.243 0.430 0.262
QE 0.327‡ 0.468‡ 0.333‡
S = 40 0.290‡ 0.454‡ 0.301‡
Q = D 0.251 0.416 0.286‡

A
P

Q ∈ V

T
R

E
C

3

0.248 0.420 0.276‡
None 0.195 0.458 0.251 0.222 0.438 0.262
QE 0.232‡ 0.452 0.285‡ 0.250‡ 0.464 0.289‡
S = 40 0.208 0.438 0.263 0.234 0.434 0.269
Q = D 0.199 0.476 0.259 0.213 0.444 0.263

N
W

Q ∈ V

T
R

E
C

7

0.195† 0.444 0.243

T
R

E
C

8

0.220 0.434 0.261
None 0.223 0.260 0.232 0.208 0.318 0.218 0.269 0.319 0.281
QE 0.237‡ 0.266 0.226 0.222 0.292† 0.243‡ 0.270 0.305 0.256
S = 40 0.231 0.274 0.226 0.217 0.308 0.224 0.268 0.309 0.274
Q = D 0.220‡ 0.257 0.235 0.205 0.300‡ 0.218 0.264‡ 0.312 0.279

F
B

IS

Q ∈ V

T
R

E
C

6

0.233 0.260 0.237

T
R

E
C

7

0.228 0.318 0.239‡
T

R
E

C
8

0.278 0.321 0.284
None 0.214 0.250 0.244 0.224 0.271 0.241 0.290 0.331 0.298
QE 0.209 0.261 0.220 0.233 0.287 0.234 0.298 0.361† 0.282
S = 40 0.217 0.276‡ 0.221 0.216 0.269 0.229 0.261 0.341 0.249
Q = D 0.211† 0.243 0.235 0.229 0.277 0.242 0.299 0.316 0.312

F
T

Q ∈ V

T
R

E
C

6

0.206 0.237 0.229

T
R

E
C

7

0.212 0.287‡ 0.221

T
R

E
C

8

0.295 0.325 0.304
None 0.198 0.231 0.232 0.211 0.300 0.234 0.233 0.260 0.238
QE 0.226‡ 0.254‡ 0.218 0.251‡ 0.316 0.269† 0.207 0.256 0.223
S = 40 0.213‡ 0.244‡ 0.222 0.240† 0.306 0.263† 0.216 0.262 0.237
Q = D 0.209 0.227 0.221 0.225 0.304 0.242 0.237 0.256 0.248

LA

Q ∈ V

T
R

E
C

6

0.216 0.237† 0.237

T
R

E
C

7

0.224 0.288 0.250

T
R

E
C

8

0.235 0.256 0.242

Table 7.2: Effectiveness of expansion techniques. The WSJ2 data was used for tuning. Effectiveness

results are averaged over 50 queries. Shown are mean average precision (MAP), precision at 10 (P@10),

and R-Precision (R-Pr.). The expansion method denoted asNonespecifies the respective baselines,QE

shows the local analysis results andS = 40 shows the results for a summarisation technique.Q = D is

a document expansion technique where documents are expanded by treating them as queries at indexing

time (document centric expansion). Q ∈ V (or term centric expansion), Q = P and Q = B are

document expansion techniques where terms, phrases or bigrams, respectively, are added to documents.

Results that are statistically significant different to the baseline at the 0.10 and0.05 levels are marked

with † and‡ respectively.
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tf.idf value), a large impact on the ranking of documents for the local set. Arguably (and local analysis

is based on this assumption), those terms are most defining the topic of the document.

However, we found in preliminary experiments, not reported here, that using a large value fork3 or,

alternatively, using the the vector space model (see Section 2.4.1) chosenwith the same consideration,

degrades results considerably.

Furthermore, using our training data, we found that selecting terms with theKLD (Kullback-Leibler

divergence measure, discussed in Section 3.3.2) worked consistently better than selecting terms based

on theirtf.idf value orTSV(see Section 3.3.2). Interestingly, it became clear in initial experiments that

allowing terms which are already contained in a document to be appended to thisdocument, decreases

effectiveness compared to restricting additions to new terms. We also foundthat augmenting a document

with around10% of the number of tokens in a document works best, rather than adding a fixed number

of terms or using a global threshold value for the selection value of each candidate term. That is, a

document that contains100 words is augmented with10 more words. As mentioned earlier, a side effect

of document expansion is therefore that document collections and associated indexes are roughly10%

longer than the original collection and indexes after expansion.

A potential problem with document expansion is that terms that are used for augmenting documents

tend to be quite rare across the collection. Adding rare terms to documents means that, after expansion,

those terms will be less rare, which will have an effect on retrieval behaviour. An analysis of this effect

of “diluting” collection frequencies is left as future work.

Term centric expansion

In our experiments, we rank100 documents against an expanded term, although we found that ranking

any number between90 and up to110 documents works equally well. Contrary to the document centric

expansion method, we found that using theTSV to select terms worked better than choosing candidate

terms based on theirKLD values, possibly because this more closely mimics the local analysis algorithm.

We allowed terms to be added to documents even though they might already appear in that document.

Surprisingly, we found that excluding terms on this basis leads to lower increases in effectiveness, unlike

with the document centric expansion method.

7.4.2 Effectiveness

In the following discussion we treat any sub-collection as a full collection and neglect a change of

0.005 or less in the respective effectiveness measurements. Out of 13 collections, the standard approach

to query expansion lead to an increase in MAP for ten collections, while decreasing it for two. The

document-centric expansion technique (Q = D) improved MAP for five collections and degraded the

results of one. For the term-centric document expansion method (Q ∈ V ), these figures are six and
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two respectively. Query expansion improved precision-at-10 in nine instances and decreased it in three

cases. Using either document expansion technique increased P@10 three times and decreased it five

times. Ignoring for a moment the magnitude of changes in effectiveness andusing only those terms as

outlined above for comparison, the document summarisation techniqueS = 40 performs the same as

query expansion, with the exception of the FT collection where it is mostly worse than query expansion.

Increases in effectiveness for document expansion methods are typically very small compared to

those of query expansion. Furthermore, improvements achieved by query expansion are mostly statisti-

cally significant whereas document expansion improvements are not.

7.4.3 Efficiency

The term-centric document expansion technique (Q ∈ V ) slows down retrieval by around only 2% in

most cases, but the document-centric method (Q = D) adds roughly 10% to retrieval cost. These figures

do not vary from one machine to the other, as there is enough main memory on either machine for all

inverted lists to be cached.

On the machine with large amounts of memory (Lrg), query expansion slows retrieval down by a

factor of five to seven. Caching does not work well at all, since from one query to the next many inverted

lists have to be purged in order to load new lists and to make room for documentsto be fetched from

disk. This problem is exacerbated on the machine with less main memory, where the overhead increases

from five to fifteen-fold, depending on the size of the collection.

For Lrg, the additional data needed for the technique involving summaries (S = 40) fits well into

memory, while leaving adequate room for inverted lists to be cached. This is why query times are

increased only by around 50%. OnLtl, the in-memory summaries need to be swapped in and out of

memory more often and the penalty is relatively high, leading to a decrease in query throughput to

roughly half that of the baseline.

7.4.4 Robustness

Figures 7.3 and 7.4 show the robustness of different retrieval techniques, illustrating how many queries

are degraded or improved in respect to the baseline, and by how much. The baseline is constructed by

running queries in their original form against the non-modified collection. All lines intersect the x-axis at

roughly the same point, which means that all methods examined in this chapter exhibit similar robustness

for each collection.

7.5 Analysis

A possible explanation for the relatively poor improvements of document expansion is that – as for query

drift (see Page 45) – the topic of the expanded documents is changed too much from the original topic by



136 CHAPTER 7. DOCUMENT EXPANSION FOR AD-HOC RETRIEVAL

0 25 50
-0.1

0.0

0.1

0.2

0.3

WSJ2

0 25 50
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

AP

0 25 50 75 100
Queries

-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

baseline
QE
S = 40
Q = D (document-centric)
Q in V (term-centric)
Q = P
Q = B

D
iff

e
re

n
ce

 in
 a

ve
ra

g
e

 p
re

ci
si

o
n

NW

Figure 7.3: Per-query-differences in average precision between each of the methods and the respective

baselines for the WSJ2, AP and NW data. The same notation is used as in Table7.2. Each curve is sorted

individually by the magnitude of the difference in average precision. Data forphrases and bigrams is

only shown for the WSJ2 data.
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Figure 7.4: As for Figure 7.3, except effectiveness is shown for FBIS, FTand LA data.
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terms that are not sufficiently centred on the original topic. This problem could be overcome by reducing

the weight of document expansion terms, which would lead to a reduced impact of the appended terms.

In our implementation we have not modified weights of terms that are appended todocuments and leave

this for future work.

A further explanation, and a more substantial one, could be that the lack ofcontext during the ex-

pansion of documents is unhelpful; whereas, during conventional localanalysis, several query terms

(usually more than one) set a particular context that determines the intersection of documents in the local

set. No such context is available during index-time. The only information available during indexing time

(in absence of a very large query log that is suitable for the collections at hand) is – depending on the

expansion method chosen – either a single vocabulary term or a document. This means that the term

might have been added to documents that contain other, related, terms for theterm-centric approach. For

the document-centric approach more terms for a particular document may have been found that might be

suitable for that document. In neither case, though, were these additionalterms helpful in making this

document more retrievable for relevant queries.

Our experiments involving phrases try to address this problem of a missing context; however, the

generation method of phrases is most likely insufficient. Additionally, phrases are extracted from the

collection at hand (rather than being sourced from a suitable query log for example) and therefore no

new context from outside the collection is found.

7.6 Summary

A series of experiments cannot prove that a family of methods is not viable. Establishing a positive result

is straightforward; establishing a negative result involves demonstrating that all reasonable avenues of

progress have been investigated and found wanting. Nonetheless, we believe we have found that corpus-

based document expansion is not promising. Other document expansion methods, based on extracting

terms from external resources, have been found to give limited gains in some circumstances. However,

while query-time costs are low, we were unable to use corpus-based document expansion to significantly

improve effectiveness, and the index-time costs are considerable.

In contrast, our fresh investigation of query expansion showed that it was generally of benefit in the

newswire collections used in our experiments, and that the evaluation costs can be much reduced while

broadly maintaining the effectiveness gains. These results, we believe, should help focus future research

in the area, by demonstrating that work on document expansion may not be warranted and by suggesting

promising further directions for improving the efficiency and effectiveness of query expansion.



Chapter 8

Conclusions and Future Work

In this chapter we summarise our results and draw conclusions from our experiments. We also outline

future research that the work in this thesis may lead to.

8.1 Robustness of local analysis query expansion

Although query expansion is a successful method for improving the average effectiveness of an informa-

tion retrieval system, we found in Chapter 4 that blind relevance feedbackcan degrade results for some

queries. In particular, we found that – depending on the collection and query set – roughly a quarter of

queries are degraded, whereas for another quarter effectiveness is increased. For those queries, differ-

ences in average precision of up to 50% in absolute terms can be observed. The effectiveness of the bulk

of queries is little changed. In effect, query expansion is less reliable thansuggested previously in much

of the relevant literature.

We examined the performance of a standard approach to local analysis query expansion by exploring

the impact of two key parameters on the effectiveness of this technique. One of the two parameters

we examined was the number of documents ranked against the initial query. This set of documents is

assumed to be relevant to the query, and subsequently used as the local set from which expansion terms

are drawn. The second parameter we examined was the number of terms added to the initial query. While

varying these two parameters, we observed the following outcomes:

• Using the parameters that are suggested as default in the research literature (Robertson and Walker,

1999) on average improves the effectiveness of query expansion. In the case of the TREC 8

collection and query set, MAP increased from 21.6% to 25.4%.

• Tuning these parameters for a particular collection and query set can further increase these results,

in the case of TREC 8, to 26.0%.

139
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• The optimal parameters vary from query to query. Whereas one query isbest improved with a low

number of terms drawn from a small local set, another might be best expanded using a larger num-

ber of terms that have been retrieved from a substantial number of documents. Yet other queries

are improved best with a single expansion term that is sourced from a largelocal set, or vice versa.

• Whereas some queries can be expanded successfully using the optimal set of parameters (for in-

stance, average precision for TREC query 405 was improved to 31.7% from a baseline of 6.1%),

for others even the best combination of parameters only leads to a marginal improvement (such as

query 440, where average precision increased from 9.3% to 12.4%).

• The optimal choice of parameters varies between collections. For TREC 8, the best combination

of parameters was to choose 15 terms from 13 documents, whereas for TREC 9 optimality was

achieved by drawing 4 terms from 98 documents.

• An approach that uses a fixed set of parameters for all queries can significantly be improved upon,

by using an optimal set of parameters for each individual query. For TREC 8, using parameters

that are individually tuned for each query, improves MAP to 33.0%. This suggests an upper bound

for performance of query expansion for the query set.

• What is not clear is how the parameters should be chosen. In our experiments, the optimal param-

eters were found using post-hoc tuning. Although we explored a range of options, we have not

identified a metric that provides a method for guiding expansion.

Nonetheless, with appropriate parameter choices local analysis query expansion is a successful way of

enhancing the effectiveness of queries, particularly on collections with typically consistent documents.

As discussed above, our results show that the performance of query expansion has significant scope

for improvement: individually tuning parameters to queries can give much better performance than using

fixed values. In future, we hope to be able to develop a method for predicting parameter values, and thus

obtain greater effectiveness than is available with current methods.

In addition to this, we would like to investigate how many of the added terms have animpact on the

effectiveness of a query. In preliminary experiments (not detailed in this thesis) we found that often the

most dramatic change in effectiveness (whether this be positive or negative) is due to the addition of a

single term. An interesting question is then whether these terms are likely to have some common feature,

such as having a particularly high or lowtf.idf value.

Furthermore, with the existing method, terms are weighted using the Robertson/Spark Jones rele-

vance weight, where the number of terms added to the query and their assigned weight is independent

of the weight of the initial query terms. It might be interesting to see whether query drift can be pre-

vented by for instance distributing a combined weight over the expansion terms that is not greater than

the combined weight of the initial query terms.
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8.2 Use of past queries for query expansion

Although local analysis query expansion on average increases the effectiveness of queries, web queries –

which are used in an environment where the language and vocabulary is less controlled than for instance

a newswire collection – are often not well expanded and the use of expansion may lead to lower average

effectiveness.

In Chapter 5 we explored a method that does allow web queries in particular tobe expanded well.

We make use of query association, where past user queries (which may be harvested from a query log)

are associated with documents that are ranked highest in response to each query. For each web document

a surrogate document is provided, which contains all associated queries.

These surrogates have the benefit that they consist of a more controlledvocabulary, as each query has

been composed by users – at least indirectly – picking terms that best described the document at hand.

Since we placed the restriction on associations that a query can only be associated with a document if

the document contains all query terms, the surrogate can in effect be a concise and carefully worded

summary of the document.

When expanding a query, instead of retrieving candidate terms from the web documents themselves,

terms are sourced from the surrogates. We used almost one million past queries for associations in our

experiments. We found that this method of expanding queries yields a relative improvement of 26%–29%

over an unexpanded baseline, or an 18%–20% relative improvement over the standard approach to local

analysis, where expansion parameters have been optimised for the baseline. The results achieved were

found to be statistically significant. We conclude that query associations canbe a powerful expansion

method for web retrieval.

However, no improvements were found when we used a collection of individual past queries as

expansion term sources, as those are too sparse to contain good expansion terms that are not in the initial

query to begin with. Similarly, the use of surrogates consisting of anchor text instead of past queries was

unsuccessful, in this case presumably because the test queries we usedwere topic-finding queries for

which anchor text is not well suited.

We plan to pursue several directions in our future work. We will investigatethe optimal parameters

for query association in the context of query expansion; the work in Chapter 5 uses parameters that were

determined through a surrogate retrieval task. We also plan to investigate whether fixed parameters for

query association are appropriate, and whether all queries should be associated to documents. Further-

more, we are interested to evaluate the efficiency tradeoff between maintaining query associations in a

live system, and being able to use associations for expansion (rather thanhaving to rely on the inferior

conventional approach).
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8.3 Efficient query expansion using in-memory document summaries

We examined the costs involved in local analysis and made suggestions for reducing these costs in Chap-

ter 6. In particular, there are five stages to local analysis: ranking an initial set of documents against the

original query, retrieving these documents, extracting candidate terms from the local set of documents,

selecting expansion terms, and ranking the final set of results.

The two ranking stages can be addressed with conventional approaches to more efficient query eval-

uation (see Section 2.4.4). The term selection phase is of low cost, and attempts toreduce the time to

select candidate terms can only yield limited benefits. However, we identified theneed for retrieving

documents from disk as the main bottleneck of local analysis query expansion, in combination with the

need to parse those documents.

In order to eliminate the time penalty for retrieving documents from disk, we storebrief summaries

for each document in main memory. The summaries consist of the most pertinentterms of each docu-

ment, as identified by atf.idf measure. We proposed three ways of determining the summary size: one is

to take a constant number of terms from each document, the second is basedon a threshold of thetf.idf

value of summary terms, and the last uses a percentage of unique terms encountered in each document.

We found that summary sizes of between 20 and 70 terms deliver the most effective expansion results.

While the amount of memory needed for the summaries is considerable (up to 150Mb for a 2 Gb collec-

tion and 250 Mb for a 10 Gb collection), it is well within the capabilities of modern desktop machines.

Overall, the summaries are as effective as the conventional approach to local analysis, while reducing

expansion time by a factor of five to nine. This increase in efficiency is due toseveral factors:

• The time needed to access in-memory summaries is negligible, when compared to retrieving doc-

uments. Using the conventional approach, due to the low probability of the need to access an

already cached document, most documents need to be retrieved from disk.

• The time taken to extract terms is reduced as summaries consist of pre-selected terms only; no

parsing or stopping is needed.

• Although term selection is only a minor contributor to the total cost of local analysis expansion,

it is still reduced heavily in comparison through the use of in-memory summaries,as only a very

small number of terms need to be considered for selection.

• Surprisingly, the stages that were impacted the most by the use of in-memory summaries are the

ranking phases. While we expected that the large usage of memory for the summaries would have a

negative effect on caching of inverted lists and thereby increasing the timeneeded to rank queries,

the opposite was true. Because of the use of summaries, the erratic loading ofdocuments, which

caused inverted lists to be purged, is no longer necessary. This improvedthe caching of inverted

lists, and ranking times are reduced by between 10% and 20%.
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We also considered two other approaches to speed up expansion. One isto make a sub-collection

available for the initial ranking and extraction of terms. The motivation for this approach is that the

sub-collection should be representative of the whole collection and expansion terms should be similarly

useful, since inverted lists are short, the initial ranking should be fast, whileat the same time the likeli-

hood of caching documents that are used in the expansion process is increased. The second approach is to

use query associations (described earlier) in order to have pre-parsed, smaller document surrogates avail-

able, again with the aim of improving caching. In terms of efficiency, neither of these two approaches

proved to be successful. For either strategy a second index needs to beused for ranking, which eliminates

the expected benefit of improved caching.

As mentioned earlier, more efficient query evaluation schemes can have a marked impact on the

overall efficiency of query expansion. As future work, it would be interesting to see whether our approach

of using in-memory summaries is comparatively efficient when a more efficientevaluation scheme – such

as impact ordering (Anh and Moffat, 2004) – is used.

Furthermore, we could use a hybrid approach of our in-memory summaries and using a sub-collection

of documents by keeping only summaries of selected documents (for instancechosen by frequency of

access (Garcia et al., 2004)) in memory. This would reduce the overall memory requirements and should

increase the likelihood that needed inverted lists are cached. In addition to this, a second tier of sum-

maries could be stored on disk, for retrieval in cases where not many of the highly-ranked documents are

among the pre-selected set.

Finally, we would expect further improvements to any strategy by compressing the in-memory sur-

rogates.

8.4 Use of document expansion instead of query expansion

We detailed approaches to document expansion for text retrieval in Chapter 7. Although document

expansion has been used previously for other tasks, such as speechretrieval (Singhal and Pereira, 1999),

it had not been used for automatic query expansion.

We suggested two techniques for document expansion where documents are increased by up to 10%

of their original size. Thedocument centricapproach treats each document in turn as a query that is

subsequently expanded. The identified expansion terms are added to the document. Theterm centric

approach issues each vocabulary term as a query. This query is expanded and the term is appended to

those documents that were ranked with the expanded query. We also investigated alternatives to the

second approach whereby phrases, which were previously identifiedfrom the document collection at

hand, are used as queries.

Using either technique, documents are expanded at considerable cost during indexing time. However,

as no expansion of queries is performed during querying, querying time isonly minimally increased, due
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to the slightly longer inverted lists. The document centric approach slowed query evaluation by between

10% and 15%, while the term centric approach had a much smaller impact (roughly a 2% increase in

query time).

Although document expansion has been shown to be not as useful as query expansion, it has been

shown to be more effective than no expansion in some cases. Thereforedocument expansion might be

worthwhile to consider in contexts where query expansion is impractical. In this case, future research into

document expansion could focus on more efficient approaches of expanding documents during indexing

time. Document expansion could be considerably sped up by, for instance, using only a certain number

of highly valuedtf.idf terms instead of the whole document when constructing queries from documents,

thus speeding up query evaluation time considerably (far fewer inverted lists have to be read). Another

possibility is to use impact order indexes (see Section 2.4.4), where only those terms with the highest

impact on the ranking will be evaluated, instead of all document terms.

Our experiments involving phrases were not as robust as other experiments in this thesis, since our

approach to extracting phrases from the collection is somewhat naı̈ve. Instead we could extract phrases

on a more principled basis, for instance following the technique suggested by Joho and Sanderson (2000)

or Liu et al. (2004).

A potential problem with any of the document expansion techniques we usedis that – in the main

– relatively rare terms are added to documents, since those typically have a high selection value. This

has the effect that the number of documents containing these terms is increased considerably in some

instances, which distorts the term distribution statistics in the collection, and can therefore have an effect

on retrieval performance. This effect could be quantified in future work, and avenues to eliminate or at

least reduce these effects could be explored.

A related problem is that the full weight of terms is used during query time, once these terms are

appended to documents. That is, there is no distinction between expansion terms and original document

terms. In future work, we could reduce the weight of document expansion terms.

However, the effectiveness results are not encouraging. We conducted experiments with multiple

query sets and collections. Although more often than not mean average precision is improved through

document expansion, the increases are only small and not statistically significant. On the other hand,

the standard local analysis approach, and the technique involving in-memory summaries detailed earlier,

show good improvements.

An avenue for future work is to use reduced weighting for document expansion terms. Currently

terms are appended without their weight being diminished, unlike for the conventional approach, where

expansion term weights are downgraded by two thirds.

It is not possible to prove that a family of methods or variants thereof are not viable using a series of

experiments. While a positive result can be confirmed; in order to show a negative result, one needs to

show that all reasonable avenues lead to bad results. Nonetheless, we believe that corpus-based document
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expansion is not promising while document expansion based on external resources has been shown to

only give limited gains in some experiments.

However, as we compared the document expansion techniques to standard local analysis and the

in-memory summary approach, we confirmed with other data sets that the latter twoapproaches can

deliver good effectiveness results. This work also confirmed that expansion based on in-memory-based

summaries is promising in terms of both effectiveness and efficiency and is a good avenue for future

research into making query expansion more effective.

8.5 Summary

We have shown in this thesis that local analysis query expansion is a viable method for improving queries,

although there is considerable room for improvement in the choice of parameter settings. We found

a novel approach to expanded web queries that have in the past been particularly difficult to expand.

Although document expansion as an alternative to query expansion is notpromising, we have shown an

efficient technique for expanding queries. Using in-memory summaries, thecost of expanding queries

can be reduced by a factor of five to nine.
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