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C h a p t e r  O n e  

INTRODUCTION 

This chapter states the research background and clarifies the research objectives. It 

also gives an outline of the thesis and highlights the contributions of the research. 

1.1 Research Background: Navigation and GPS  

The word “navigation” (Latin navis, “boat”; agire, “guide”) has a traditional meaning 

of being the art and science of manoeuvring safely and efficiently from one point to 

another [Rousmaniere, 2003], usually in real time. One of the scientific definitions of 

navigation is to accurately determine position and velocity relative to a known 

reference [Farrell and Barth, 1999]. The long evolution of navigation techniques has 

resulted in a state-of-the-art system named NAVigation Satellite Time And Ranging 

(NAVSTAR) Global Positioning System (GPS). 

The NAVSTAR GPS is an all-weather, space-based radionavigation system 

controlled and operated by the United States Department of Defense [DoD]. With the 

provision of seven dimensional information (three dimensions of position, three 

dimensions of velocity and one dimension of precise time) in the World Geodetic 

System 1984 (WGS-84) [NIMA, 2000], GPS is a total navigation solution of 

positioning, velocity determination and time transfer (PVT) for users anywhere on or 

near the Earth’s surface. 
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One of the main problems of GPS, however, is that under the current category of GPS 

standard positioning service (SPS), a civilian user can only achieve an accuracy level 

of ±10~15m 3-Dimension (3D) Root Mean Square (RMS) [Stenbit, 2001]. This is 

because in a typical GPS observation system, the broadcast satellite ephemeris and 

range measurements from a GPS receiver manifest errors and biases that contaminate 

the position solution. 

The errors and biases, for example, the satellite signal propagation errors in the 

atmosphere, are characterised as having spatial and temporal correlations. Two GPS 

receivers not far away from each other will experience almost the same errors and 

biases from GPS when observing simultaneously. Differential GPS (DGPS) therefore 

becomes the most prevalent technique to take advantage of the correlation 

characteristics where the common errors and biases can be effectively cancelled out. 

Essentially, DGPS is a kind of relative positioning system where at least two sets of 

GPS receivers are required to operate simultaneously. With one (or more) receiver(s) 

functioning as reference station(s) with known coordinates, the relative position of a 

roving receiver can be determined if the differential corrections can be generated and 

applied, either in post-processing or in real time.  

The real-time code range differential GPS system is known as RTD (Real Time 

Differential) and has an accuracy range of ±0.5m~2m. The real-time carrier phase 

differential GPS system is often called RTK (Real Time Kinematic) with centimetre 

level accuracy in real time. The distinction between RTD and RTK lies in the 

different types of observables used and the positional accuracy achievable. In both 

techniques, data links are required for transmission and reception of the differential 

corrections. 

For two decades, research and development of various DGPS systems has been 

undertaken in the GPS community. Since error correlation degrades with the distance 

between a roving receiver and a reference station, and degrades rapidly with the 
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elapse of time, in order to ensure the rover obtains a high level of accuracy, dense 

spacing of reference stations with expensive radio equipment are needed. A huge 

amount of money has been invested on the research and development (R&D) in this 

area, and on the construction of such DGPS infrastructure, which varies from the 

Local Area DGPS (LADGPS) and Wide Area Differential GPS (WADGPS), to the 

expensive and sophisticated Wide Area Augmentation System (WAAS) and Space 

Based Augmentation Systems (SBAS) in general.  

In short, differential GPS techniques have drawn much of the attention and led to 

most of the developments in the area of high accuracy GPS positioning. One of the 

problems with DGPS is that it requires at least two sets of GPS receivers working 

simultaneously. Another drawback is that it relies on inter-receiver data links. Thirdly, 

the accuracy of the rover depends on its distance(s) from the reference station(s) and 

thus DGPS is spatially limited within a local area. Finally, much useful information 

contained in one-way measurements, such as the total electron content along the 

signal profile, the water vapour information in the troposphere, is eliminated or 

discarded in the differential process. 

Not as popular as the differential GPS study, though, pioneer research on the un-

differenced carrier phase data processing has been carried out in Australia at the 

University of New South Wales in early 1990s, showing the mathematical 

equivalence to double-differencing, see Grant [1990] and Grant et al. [1990]. There 

has been an increased interest as more and more people have started their research and 

analyses on Precise Point Positioning (PPP) as a result of the significant improvement 

of the precise ephemeris service from the International GNSS Services (IGS) [Beutler 

et al., 1994]. This is achieved through hundreds of globally distributed tracking 

stations, and IGS’ commitment to provide a precise ephemeris service in near real 

time [Springer and Hugentobler, 2001],  
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PPP is referred to as single GPS receiver positioning, but with centimetre to decimetre 

level of positional accuracy. The concept of PPP can be dated back to the early 1970s 

by P. P. Anderle, who first named the method as “precise point positioning” [Kouba 

and Heroux, 2001]. To achieve a higher accuracy, PPP uses the IGS precise orbital 

data, accurate satellite clock data, a dual-frequency geodetic receiver, and observes in-

view GPS satellites over a long period in static mode. In PPP, since there is no other 

receiver available for generating and applying differential corrections, all the error 

sources in GPS positioning need to be carefully modelled and accounted for, and the 

one-way carrier phase integer ambiguities are estimated together with the user 

position unknowns. The observation time required depends on the time that the 

system needs to converge to a position fix with the desired accuracy. 

As PPP relies heavily on the IGS precise ephemeris whose full accuracy is only 

available in post-processing mode, applications of the PPP method in real time and 

especially in kinematic mode at centimetres accuracy are still an area of challenge. 

Time-relative positioning is among many approaches attempting to improve the 

positional accuracy in standalone mode. The time-relative positioning method was 

first presented by Ulmer et al. [1995], and evaluated by Michaud and Santerre [2001] 

after the removal of Selective Availability. Recently, Balard et al. [2006] proposed to 

use the loop misclosure corrections to improve the accuracy of time-relative 

positioning in quasi real time. This method suffers from the following problems. 

Firstly, it requires a user to occupy a surveyed position at least twice. Secondly, the 

temporal and spatial error correlations degrade with the elapse of time. Finally and 

most fatally, it is just an approximation since there is no one-to-one mapping from the 

accumulated carrier phase and the satellite baseline to the change of receiver positions 

between the two measurement epochs. 

Methods to model the change of receiver position with the carrier phase differences 

between two consecutive epochs to attempt higher positional accuracy face the same 
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problem as with the time-relative positioning. The method proposed by Ford and 

Hamilton [2003] is typical of this genre. The relative position with respect to a 

starting point through accumulated positional changes corrupts over a short period. 

In navigation, state is a terminology used to describe the motion of a system, which 

includes the position and velocity vectors of the system, and the acceleration and jerk 

if available or needed. The state is expressed using a differential equation if the 

system is continuous or a difference equation if the system is discrete. The state 

equation describes how a system state changes from epoch to epoch and what kind of 

dynamics that the system is experiencing. The more accurate the state equation is, and 

the more accurate measurements can be made, the better accuracy with which the 

navigation solution can be achieved. 

Inertial Navigation System (INS) solves the navigation problem by integration. An 

INS usually consists of gyroscopes to sense the angular rates of a system to obtain the 

system orientations, and 3-axis accelerometers to sense the linear inertial 

accelerations. Kinematic accelerations of the system are obtained by subtracting the 

gravitational accelerations from the inertial accelerations. A single integration of 

kinematic accelerations over time gives the system velocity and a double integration 

over time yields the system position. 

INS is an autonomous navigation system because it is self-contained and not 

dependent on external sources. Since an integration system is characterised by its 

unbounded error propagation, particularly in the case of INS progressing, from 

accelerations to a position is a double integration process where the error 

accumulation is much quicker than that in just a single integration. As such, INS only 

has good short-term stability. The three main types of errors in the acceleration 

measurements in INS, i.e. the scale factor error, drift, and random noise, contribute 

together to corrupt the state estimates over a period. Thus, periodic system 

calibrations are required. 
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In contrast to INS, GPS is recognised as having a superb consistent accuracy in PVT 

(Position, Velocity and Time) determination. Therefore, an integration of INS and 

GPS can outperform either single system by combining advantages of the consistency 

of GPS accuracy and the short-term stability of INS. 

With its 7-dimension information, GPS is somewhat similar to INS when taken as an 

integration system. The differences are that the orientations of a GPS receiver are 

mathematically established in the WGS-84 system, and it is just a single integration 

from velocities to positions. To date, with SA switched off and with the improvement 

of receiver technologies, velocities of a GPS user can be determined at an accuracy 

level of centimetres per second, which are several orders of magnitude higher than 

that of the positions. Moreover, the velocities can be measured at a relative high 

sampling rate, say from 10Hz to 100Hz. The velocity, if resolved from the Doppler 

shift method, is an instant velocity at the measurement epoch. This gives the 

opportunity that a GPS receiver can be used like an INS to obtain precise positions in 

real time, with accuracy higher than that from the SPS, by integration of the precise 

velocities with high sampling rate over time. 

Traditionally in navigation the positional accuracy has been of primary interest, 

however, precise velocity determination using GPS potentially is equally important as 

positioning, since velocities with better accuracy can be utilised for a better positional 

result or a longer effective integration time.  

There are also many applications where the accuracy of velocity and acceleration is 

equally important as positioning, and is desired in standalone mode and in real time. 

A good example is in the sport of rowing where precise velocity and acceleration in 

conjunction with the position are sought after at a high output rate so that the in stroke 

velocities and accelerations of an elite rower can be measured and analysed. This 

information would in turn facilitate rowing performance improvement [Zhang et al., 
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2003b]. In fact, due to the competitive nature of rowing, high accuracy of velocity and 

acceleration determination is preferable to accurate positioning.  

Nowadays DGPS techniques are readily available for such an application, however, 

they require additional radio devices and reference stations. This makes the system 

expensive, heavy, and larger than otherwise necessary. A small real-time GPS system 

that can be used in standalone mode to achieve high positional accuracy is desirable 

for many applications. 

In summary, this research seeks to explore autonomous, real-time, high accuracy 

velocity/acceleration determination using GPS in standalone mode, to facilitate the 

improvement of positional accuracy from SPS. 

1.2 The Problem of Velocity and Acceleration Determination using GPS  

The simplest way to get the velocity and acceleration from a GPS receiver is to 

differentiate the GPS determined positions with respect to time. Velocity is the first 

time derivative of positions and acceleration is the second time derivative. The trouble 

is that errors in positions may be amplified through differentiation, and this becomes 

worse when a high output rate is used, since the positional error remains the same but 

the time interval is decreased. 

For precise velocity determination, GPS satellites are moving signal sources from 

which a GPS receiver senses the Doppler shifts that are generated due to the relative 

motion between the observed satellites and the receiver. The ground velocity of the 

receiver can then be determined if Doppler shifts can be measured from four or more 

GPS satellites. 

GPS is designed for and operated by the US military as a radionavigation PVT 

system. Although the system has capabilities to provide precise real-time velocities, 

due to the deployment of SA prior to May 2000 and limitations of the receiver 

hardware, most methods of velocity determination were based on differential 
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techniques to account for the errors induced in satellite orbits and onboard GPS 

clocks.  

Research groups at the Department of Geomatics Engineering, University of Calgary, 

Canada worked actively in the 1990s on precise velocity determination. Fenton and 

Townsend [1994] derived phase velocity, and phase acceleration from the carrier 

phase measurements of NovAtel GPS CardTM receivers, and ±0.28mm/s was achieved 

in a 7km static baseline. Hebert et al. [1997] and Cannon et al. [1998] conducted in-

depth analyses on GPS velocity determination using GPS signal simulators. Velocities 

with up to ±2mm/s 3D RMS accuracy were achieved under low dynamics 

(acceleration<0.5m/s2). Szarmes et al. [1997] presented results of a series of 

differential GPS tests conducted for the purpose of high accuracy aircraft velocity 

determination. Compared with the velocities obtained through receiver generated raw 

Doppler measurements and the carrier phase derived ‘precise’ Doppler, it was 

concluded that under constant velocity or low acceleration conditions, the accuracy of 

the raw Doppler derived velocity estimates is at least as good as the velocity accuracy 

from the first-order central difference approximation of the carrier phase. 

The removal of SA allows a significant velocity accuracy improvement. With SA off, 

±0.2m/sec per axis (95%) accuracy is guaranteed by the GPS system [DoD, 1996]. A 

static velocity accuracy of ±3~5cm/s 3D RMS was first reported in Misra and Enge 

[2001] in standalone mode. Zhang et al. [2003a] conducted a comparison of real-time 

velocities obtained from an inexpensive code-only GPS receiver with the velocities 

from a Trimble 5700 RTK system, and reported that ±3cm/s accuracy was achieved 

using the code-only GPS receiver in both static and dynamic mode. Zhang et al. 

[2004] demonstrated that the same accuracy level had been achieved using an 

inexpensive 1 Hz GPS receiver as with a 10Hz sampling rate in standalone mode. 

Van Graas and Soloview [2003] showed that sub-centimetre per second velocity 

accuracy is achievable whether in static or dynamic, stand-alone or relative mode. It 
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was concluded that what really matters is the receiver quality. Serrano et al. [2004] 

reported that by employing the first-order central difference approximation of the 

carrier phase measurements, better than ±1cm/s (2-sigma) accuracy under high-

multipath conditions can be achieved from a low-cost GPS receiver. Based upon post 

processing of the kinematic data, they reported that accuracy of the phase 

measurements was degraded in a moving environment and there were biases in both 

the static and kinematic results. 

Perhaps the best velocity accuracy published so far in standalone mode is from 

Septentrio’s PolaRx2® receiver; ±1.5mm/s horizontal and ±2.8mm/s vertical 

precision are stated in the product specifications [PolaRx2, 2004]. This dual 

frequency GPS receiver achieves such a high accuracy through the introduction of a 

special scheme which accounts for the change-rate of tropospheric delay [Simsky and 

Boon, 2003], which is previously taken as negligible. 

The author has continued and extended the investigation on precise velocity 

determination, primarily aimed at high output rate, real-time and autonomous 

applications. A series of papers have been published covering topics on real-time GPS 

satellite velocity/acceleration determination algorithms using the broadcast ephemeris, 

error budgets of the precise velocity determination using Doppler shift measurements, 

and the most accurate Doppler shift observation equation with the relativistic effects 

corrected [Zhang et al., 2005a; 2005b; 2006a; 2006b]. A thorough and extensive 

investigation on precise velocity determination using GPS on which these 

publications were based is presented in this thesis. 

Much of the investigation on precise acceleration determination using GPS has been 

carried out in the context of airborne gravimetry. Many issues concerning the position 

differentiation method were examined by Van Dierendonck et al. [1994] and Bruton 

[2000]. Acceleration determination using GPS Doppler rates dates back to the early 

1990s initially by Kleusberg et al. [1990], followed by Jekeli [1994] and Jekeli and 
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Carcia [1997]. Since Doppler rate is not a direct observable in GPS, it must be derived 

from either the Doppler shifts or the carrier phase measurements. A recent report on 

precise acceleration determination in this context is from Kennedy [2003], who used 

differentiators of the 5th order central difference of a Taylor series to derive Doppler 

rates from the carrier phase measurements. Essentially Kennedy’s method is a 

differential GPS approach mainly for post processing applications due to concern that 

the accuracy of GPS satellite orbital accelerations from the broadcast ephemeris might 

not be accurate enough for real-time applications.  

Other investigations on acceleration determination are in the context of attitude 

determination using GPS. Kornfeld et al. [1998] proposed that accelerations derived 

from a single GPS receiver can be used to determine a “2-axis pseudo attitude” for 

aircraft. Psiaki et al. [1999; 2000] extended Kornfeld’s method to a 3-axis absolute 

attitude reference system. They also examined the accuracy of the GPS-derived 

acceleration vectors by position differentiation. The acceleration derivation using GPS 

also appeared in the work by Ellum and Sheimy [2002], which is also based on 

position differentiation. 

This thesis investigates the real-time, high output rate acceleration determination 

using GPS in standalone mode. Satellite acceleration determination algorithms, 

differentiator designs to derive Doppler rate “observables”, and “abnormal” controls 

are investigated. An alternative method is also proposed in the measurement domain 

by extending the state equation to accommodate acceleration as an unknown to be 

determined, which is different from the position differentiation method and the 

Doppler rate approach.  

1.3 Research Scope, Objectives and Methodologies 

As a navigation problem, a position can be obtained from integration of velocities 

over time, as mentioned earlier. The higher the sampling rate of the velocity 
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measurements and the higher the precision of velocity determination can be, the 

higher the positional accuracy is achievable. Thus this research is restricted to real-

time applications where precise velocity and acceleration are required in standalone 

mode and in high dynamics; it is further assumed that the observations can be made at 

a high sampling rate. The ultimate objective of this research is to establish the 

theoretical basis for such applications. 

In GPS, the Doppler frequency shifts directly relate to the relative velocities between 

a GPS receiver and in-view satellites. Since the carrier phase measurement comes 

from the integration of measured Doppler frequency shifts over time, and the Doppler 

shift is the first derivative of the carrier phase measurements with respect to time, the 

inter-relationship is exploited to analyse the error characteristics in both the velocity 

and acceleration determination using GPS. This is to mitigate/eliminate the errors in 

the Doppler shift measurements. 

The change-rate of the Doppler shifts, or the carrier phase acceleration, relates to the 

kinematic acceleration. However, there is no such observable in GPS, and thus 

appropriate differentiators to derive the change-rate of the Doppler shifts are 

investigated. Such differentiators are designed for real-time and dynamic applications. 

Previous Doppler effect in GPS only accounts the correction from the special 

relativity. As the GPS observation system is in the Earth’s gravitational field, the 

general relativity theory is to be used to extend the theory of GPS relativistic Doppler 

effects. 

Therefore, the objectives of this research can be listed as follows: 

• To study the problem of real-time precise velocity and acceleration 

determination in standalone mode 

• To identify all the error sources in GPS Doppler shift measurements 

• To develop models to mitigate/eliminate these errors  
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• To design appropriate differentiators to derive Doppler shifts or their change-

rates for real-time and high sampling-rate applications  

• To investigate the operational issues of velocity and acceleration determination 

in the case of measurements are made at high sampling rates 

1.4 Contributions of This Research 

The primary outcomes of this research are: 

• A new algorithm to compute satellite Earth-Centred-Earth-Fixed (ECEF) 

velocity using the broadcast ephemeris is derived. Polynomial interpolations 

are also proposed to improve the speed of the ECEF satellite velocity 

calculations, which is important for those applications where the receiver 

velocities are estimated at a high sampling rate; 

• A closed-form formula to calculate satellite ECEF acceleration is developed 

using the broadcast ephemeris, which has an accuracy level equivalent to that 

from the precise ephemeris. This assures accurate accelerations of a GPS 

receiver can be determined in real time; 

• A comprehensive error analysis for the range measurement has been 

conducted for PPP. With this knowledge, error corrections for the Doppler 

shift measurements and the errors that affect the change-rate of the Doppler 

frequencies have been elucidated. Several new formulae are derived to 

account for these errors, which benefit the accuracy improvement of ground 

velocity and acceleration determination; 

• An intensive investigation of the Doppler effect on GPS has been carried out 

in order to improve the velocity estimation accuracy. The relativistic Doppler 

effects are elaborated and an accurate Doppler shift observation equation is 

developed; 
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• Methods of differentiator design have been investigated for real-time 

applications of velocity and acceleration determination using GPS. A class of 

first-order Infinite Impulse Response (IIR) differentiators has been derived; 

• It has been demonstrated that, at least in the velocity domain (or the Doppler 

frequency shift domain), the receiver to satellite line-of-sight direction has 

been changed due to the high-speed motion of the satellite in its orbit. This 

discovery potentially contributes a better observation equation for GPS range 

measurements. 

1.5 Thesis Organisation 

Chapter One is an introduction to the research and thesis. The research background 

and problems are stated, and the research objectives are specified. The contributions 

and outcomes of this research are listed. The outline of the thesis is presented. 

Chapter Two gives an overview of the GPS system. An introduction is given for the 

system development history, segmentations, signal structures, and the signal 

transmission and reception. The observables of the GPS system are elucidated, and 

the error sources in GPS are discussed. The concept of Doppler frequency shift is 

introduced and its role in the reception and reconstruction of GPS signal is discussed 

in brief. 

Chapter Three describes the theory of GPS absolute positioning. Fundamentals of 

precise point positioning are introduced in conjunction with the description of 

different coordinate and time systems. Error analyses and modelling are discussed in 

depth for the range measurements. 

Chapter Four elaborates the precise velocity and acceleration determination using 

GPS. The Doppler effect and its relationship with the relative velocity between a 

receiver and transmitter are introduced. Since a GPS satellite moves at a high speed in 

its orbit and the GPS signals propagate in the Earth’s gravity field, the relativistic 
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Doppler effect is discussed with both the special relativity and general relativity 

theories considered. Based on Einstein’s relativity theory, a theoretical GPS 

relativistic Doppler frequency shift formula is derived. Accounting for the error 

sources during signal transmission, propagation and reception, a state-of-the-art 

Doppler shift observation equation is developed. The principles of precise 

acceleration determination using Doppler rates from GPS are also discussed. 

Similar to GPS point positioning, the ECEF velocities and accelerations of the in-

view GPS satellites should be calculated and made known prior to the ground velocity 

and acceleration being determined. The algorithm for ECEF satellite position 

determination using the broadcast ephemeris has been presented in the interface 

control document of ICD-GPS-200, however, the algorithms for ECEF satellite 

velocity and acceleration determination are not included. Chapter Five discusses 

real-time GPS satellite velocity and acceleration determination in the ECEF 

coordinate system using the broadcast ephemeris.  

The errors of GPS range measurement have been extensively investigated, especially 

in the context of PPP. These error sources have effects on the GPS Doppler shift 

measurement as well as the change-rate of Doppler shifts, and consequently degrade 

the accuracy of ground velocity and acceleration estimates. Chapter Six deals with 

the errors associated with the Doppler shift measurement and its change-rate. The 

properties of errors are analysed and the methods to eliminate or mitigate these errors 

are discussed. 

Precise GPS velocity and acceleration determination relies on the Doppler shift and its 

change-rate observables. However, there are no direct Doppler shift rate 

measurements in GPS. Although every GPS receiver measures Doppler shifts, some 

only output ‘raw’ measurements, and some don’t output Doppler shifts at all. In the 

absence of raw Doppler measurements, a differentiator is necessary to derive it from 

the GPS carrier phase observables. For real-time and dynamic application, an ideal 
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differentiator should have a wideband frequency response to cover the dynamics and 

have a group delay as short as possible, and a low order differentiator is preferred for 

easy implementation. Chapter Seven discusses differentiator designs specific to real-

time Doppler or Doppler rate derivation for dynamic applications. 

Miscellanea of velocity and acceleration determination are included in Chapter 

Eight. In the case of receiver clock resets, signal loss-of-locks and cycle slips, the 

derived Doppler shifts and Doppler rates will have “jumps” that in turn deteriorate the 

velocity or acceleration estimates. A treatment of these problems is presented. 

Alternative methods are proposed for dealing with the situation when the sampling 

rate is very high. 

Chapter Nine summarises the major conclusions drawn as outcome of this research. 

It also provides recommendations for future work.  
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C h a p t e r  T w o  

GPS SYSTEM OVERVIEW 

This chapter gives an overview of the GPS system. An introduction is provided of the 

system development history and the principle of positioning. GPS segments, service 

standards, signal structures, and the signal modulation and processing are elucidated. 

GPS error sources are described, as are the GPS observables. A short description of 

reference systems is also given. The primary purpose of this chapter is to consolidate 

the knowledge of a reader in preparation for the later chapters.  

2.1 Introduction to GPS 

The Navigation System with Timing and Ranging (NAVSTAR) Global Positioning 

System is a satellite-based radionavigation and time-transfer system managed and 

operated by the US Department of Defense [DoD]. Designed as a dual-use system 

with the primary purpose for enhancing the effectiveness of US and allied military 

forces, GPS satisfies the requirements from the military to accurately determine 

position, velocity and time (PVT) in the World Geodetic System 1984 (WGS-84), 

anywhere on or near the Earth’s surface in all weather and all time. It also contains 

features that limit the full accuracy of the services only to authorised users and protect 

it from malicious interference through an implementation of Anti-Spoofing (AS). 

The first GPS satellite was launched on the 22nd February 1978 and became 

operational on the 29th March. Initial Operational Capability (IOC) was declared on 

the 8th December 1993 when 18 GPS satellites were operating in their designated 
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orbits, available for navigation use and providing the Standard Positioning Service 

(SPS). The standards of SPS performance can be found in a document signed by 

Stenbit [2001]. The US government provides the SPS for peaceful civilian, 

commercial, and scientific uses on a continuous and worldwide basis, free of direct 

user fees [Goodman and Jacques, 2000]. 

On April 27, 1995, the US Air Force Space Command (AFSC) formally declared the 

GPS satellite constellation as having met the requirements for Full Operational 

Capability (FOC). These requirements include 24 operational satellites (Block II/IIA) 

functioning in their assigned orbits and successful testing completed for operational 

military functionality, known as the Precise Positioning Service (PPS). 

Nominally, GPS consists of 24 operational satellites that are arranged so that four 

satellites are placed in each of the six orbital planes. With such constellation 

geometry, there are at least four satellites visible anywhere on the Earth surface above 

an elevation angle of 10 degrees, at all times.  

Each GPS satellite carries a set of precise atomic clocks to keep time and provide the 

signal standard of the fundamental L-band frequency at f0=10.23MHz. The highly 

accurate time and frequency standards are the heart of the GPS system. Multiplying 

the fundamental frequency by 154 and 120 respectively yields the primary L1 carrier 

frequency at f1=1575.42MHz and the secondary L2 carrier frequency at 

f2=1227.60MHz. These dual frequencies are essential for reducing the ionospheric 

delay, which is one of the major error sources in GPS positioning. 

The GPS system exploits the pseudo-random noise (PRN) coding technique for 

ranging. A Coarse/Acquisition (C/A) code that has a wavelength of 293m is 

modulated upon the L1 carrier for civilian users. Precise code (P1), which has a 

wavelength of 29.3m, is modulated on the L1 carrier as well, but for military users 

only (PPS). Navigation data known as the broadcast ephemeris is also modulated on 

the L1 carrier, providing data from which satellite positions can be calculated as well 



 
22 

as satellite clock corrections. Precise code (P2) is modulated on the L2 carrier for PPS 

only. 

A GPS receiver receives the signals transmitted from GPS satellites. For each 

satellite, the signal travel time can be measured by comparing the replica PRN code 

from the receiver with the PRN code from the received GPS signal. However, due to 

the inaccuracies of the receiver clock (crystal oscillator), the measured time has a bias 

known as the receiver clock delay, which is common to all tracked satellites. 

Multiplying the travel time by c, i.e., the speed of light in vacuum, the receiver to 

satellite distance can be determined. This distance is referred to as a “pseudorange”, 

since it is biased by the receiver clock error.  

At one measurement epoch, the positions of the in-view GPS satellites in WGS-84 are 

known from the broadcast navigation messages. With the measured pseudoranges, the 

three components of the receiver coordinate vector and the biased receiver clock term 

can be determined if at least four GPS satellites are observed simultaneously. 

2.2 GPS Segments 

The GPS system comprises three segments, known as the Space Segment, the Control 

Segment and the User Segment.  

2.2.1 Space Segment 

The space segment consists of nominally twenty-four GPS satellites (there may be 

more). GPS satellites operate in six nearly circular orbits with a height near 

20,200km, an inclination angle of 55º , and a period of about 11 hours and 58 

minutes. Under FOC, the space segment provides for a global coverage with four to 

eight satellites simultaneously observable above 15º elevation angle at any time. If the 

elevation mask is reduced to 10º, occasionally up to ten satellites will be in view 

[Hofmann-Wellenhof et al., 2001]. 
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Each GPS satellite is a platform of radio transmitters, atomic clocks, computers and 

various ancillary equipment for the purpose of transmitting the dual-frequency signals 

to ground users. The signals include two carriers, C/A, P1 and P2 PRN codes, and the 

navigation messages (generally known as the broadcast ephemeris). The broadcast 

ephemeris contains ionospheric correction parameters, Keplerian orbital parameters 

and the corresponding corrections, the system time, satellite clock corrections, and the 

satellite status messages. In addition, an almanac is provided which gives the 

approximate navigation data for each active satellite. This allows a receiver to more 

easily find all satellites in view once the first has been acquired, using the 

approximate positions of the other satellites calculated from the almanac. 

2.2.2 Control Segment 

The control segment at the early times consisted of five globally distributed Monitor 

Stations (Hawaii, Kwajalein, Ascension Island, Diego Garcia, Colorado Springs), 

three Ground Antennas (Ascension Island, Diego Garcia, Kwajalein), and a Master 

Control Station (MCS) located at Schriever AFB in Colorado [SMC/GP, 2004].  

The primary task of the operational control segment is to track GPS satellites in order 

to determine and predict satellite positions, the system integrity and behaviour of the 

satellite atomic clocks, atmospheric data, and the satellite almanac. The control 

segment is also responsible for satellite control and operation. 

The monitor stations track all satellites in view passively, accumulating ranging data. 

The measurements are then transmitted to the MCS where the satellite ephemeris and 

clock parameters are estimated, and predicted forward in time. The MCS utilises the 

ground antennas to periodically upload the ephemeris and clock information to each 

GPS satellite for subsequent broadcasting. The MCS also functions to control satellite 

manoeuvres, reconfigure redundant satellite equipment, monitor satellite health, etc.  
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2.2.3 User Segment 

The user segment includes all military and civilian users equipped with GPS 

receivers. These receivers vary significantly in design and functionality, depending on 

different applications in navigation, surveying, time transfer, or attitude 

determination.  

It is in this segment that the GPS service is categorised into two different levels, i.e. 

the standard positioning service (SPS) and the precise positioning service (PPS). 

The PPS is an accurate positioning, velocity determination and timing service that is 

available only to authorised users. Based on US defence requirements domestically 

and internationally, the DoD determines the authorisation. The authorised PPS users 

include US military forces, NATO military users, and other selected military and 

civilian users such as the Australian Defence Forces and the US National Geospatial 

Intelligence Agency. 

Access to the PPS is controlled by two cryptographic technologies, namely, Selective 

Availability and Anti-Spoofing (AS). The AS has been exclusively used for this 

purpose since May 1, 2000 when the SA was terminated. The AS is activated on all 

satellites to negate potential spoofing of the ranging signals, by encrypting the P-code 

into the Y-code. PPS receivers can use either the P(Y) or C/A code, or both, to obtain 

the maximum GPS accuracy. 

The SPS is intended to meet most civilian application requirements. SPS users access 

the C/A code only. However, with the development of GPS receivers, some users may 

be able to obtain P-code-like accurate measurements through advanced technology 

such as the Cross-correlation by Trimble [Rizos, 1999] or the Z-tracking presented by 

Ashtech [Ashjaee and Lorenz, 1992]. The US government reserves the right to 

degrade the SPS if it is necessary, for example, to deny accuracy to a potential enemy 

in time of crisis or war, through reactivating the SA. 
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2.3 GPS Signal Structures 

The GPS satellite transmits two Right Hand Circularly Polarised (RHCP) L-band 

signals known as the L1 at 1575.42MHz and L2 at 1227.60MHz. Three pseudo-

random noise (PRN) ranging codes are in use, namely C/A-code, P-code, and Y-code. 

Appropriate code-division-multiple–access (CDMA) techniques have been used to 

differentiate the satellites even though they all transmit at the same L-band 

frequencies. The adoption of CDMA techniques allows GPS signals to be received 

and processed with the same set of front-end components. This makes it possible for 

end user equipment to be relatively light, small, and low-cost. 

2.3.1 Coarse Acquisition Code 

The C/A code has a 1.023 MHz chip rate, a period of 1 millisecond (ms) and is used 

for the SPS, or as means to acquire the P-code for PPS. Each satellite transmits a 

unique C/A code that is from a Gold code family (PRN codes that are distinguished 

by a very low cross-correlation between any two codes, that is, they are nearly 

orthogonal). 

2.3.2 Precise Code 

The P-code has a 10.23 MHz rate, which is ten times faster than the C/A code. The 

whole length of the P-code sequence is about 266.4 days and each satellite has its own 

weeklong segment of the P-code sequence. This unique one-week segment of the P-

code can be used to identify GPS satellites; for example, a GPS satellite with an ID of 

PRN 10 refers to the GPS satellite that is assigned the tenth-week segment of the PRN 

P-code. P-code is the principal navigation ranging code for PPS, reserved for 

authorised users only. 
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2.3.3 Y-Code 

The Y-code is used in replace of the P-code whenever the AS mode operation is 

activated. In this case, a W-code is used to encrypt the P-code to generate the Y-code. 

2.3.4 Navigation Data 

The navigation data includes satellite ephemeris, GPS system time, conversion 

parameters to the Coordinated Universal Time (UTC), on-board atomic clock 

behaviour data, the satellite status message, the C/A to P(Y)-code handover word, etc. 

The 50 bits per second navigation data are modulo-2 added to the C/A and P(Y) 

codes. The resultant bit-trains are further used to modulate the L1 and L2 carriers. For 

each satellite, the data trains are common for C/A and P(Y) codes on both L1 and L2 

frequencies. 

2.3.5 Signal Modulation 

Current GPS satellites broadcast signals on two L-band frequencies. These signals 

have three components: a carrier signal at the centre frequency, a bi-phase shift key 

(BPSK: phase modulation with φ=±π) modulated PRN code(s), and binary navigation 

data. The C/A code is modulated by a PRN Gold code of 1023 chips at a chipping rate 

of 1.023 MHz, resulting in a null-to-null bandwidth of 2.046 MHz and a repetition 

rate of 1ms. The C/A code is designed for civilian access, but can also be used to hand 

over to the longer P(Y) code which is generated by a modulo-2 addition of two code 

sequences of 15,345,000 chips and 15,345,037 chips respectively. At a chipping rate 

of 10.23 MHz, the P(Y) code has a null-to-null bandwidth of 20.46 MHz. The 50 bits 

per second (bps) navigation data are modulo-2 added to both the C/A and P(Y) codes. 

On L1, the C/A code has a phase lag of 90º to the P(Y) code, known as phase 

quadrature. The L2 frequency is modulated with the P(Y) code only, though, at the 

time of writing, there is an operational Block IIR-M satellite that has a L2C code 
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modulated on L2. This satellite was launched on 25th September 2005 as part of the 

GPS “modernization program”.  

With a 20ms chip (bit) width, the navigation message requires 12.5 minutes to be 

transmitted in its entirety, although the ephemeris and clock information required for 

navigation are repeated every 30 seconds. 

An analysis of the signal structures and modulations are beyond the scope of this 

research. However, there is an official definition in the GPS Interface Control 

Document ICD-GPS-200c [ARINC, 2000], and a thorough description has been given 

by Spilker [1996b] . 

Following Hofmann-Wellenhof et al. [2001], a representation equation is given in Eq. 

2-1, with a slight modification to take the phase noise and oscillator drift component φ 

into consideration  
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where: 

• ai·cos(2πfit) denotes the unmodulated carriers of L1 and L2; 

• fi  is the L1 at 1575.42MHz and L2 frequency at 1227.60MHz respectively; 

• P(t) represents the P-code sequence, with 1 or 0 as state; 

• C/A(t) is the C/A-code sequence, with 1 or 0 as state; 

• W(t) is the W-code sequence, with 1 or 0 as state; 

• D(t) stands for the navigation message; 

• φ represents the phase noise and the oscillator drift component. 
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Note that the first term on the right hand side of Eq.2-1 is referred to as the inphase 

signal, and the second term is termed as the quadrature signal, which has a 90º-phase 

lag. Therefore, GPS L1 signal contains both inphase and quadrature components.  

It should be noted that with the GPS signal “modernization program”, a C/A code 

named L2C, is added on the L2 carrier, which is designed to be available for general 

use in non-safety critical applications. The first Block IIR-M satellite with the L2C 

had been launched and a third civil signal known as L5 at 1176.45MHz will be 

transmitted by the satellites in 2007. More details about the GPS “modernization” can 

be found from the website of the Navigation Center of the US Coast Guard at 

http://www.navcen.uscg.gov/gps/modernization/default.htm.  

2.4 GPS Signal Processing 

The context of GPS signal processing is widely published. A brief description is 

provided here, with an aim of providing an understanding of the roles played by the 

Doppler frequency shift in GPS signal processing and the way to measure the Doppler 

shift. For an in-depth knowledge on GPS signal processing, readers are referred to 

Spilker [1996a], Van Dierendonck [1996], Rizos [1999], and Misra and Enge [2001]. 

The primary task of signal processing for a GPS receiver is to retrieve the range codes 

and navigation message from the tracked GPS signals. For a geodetic type receiver, 

reconstruction of the carrier waves to measure the precise phase is required, and 

multipath mitigation is essential.  

The description of the incoming GPS signal processing is given following Misra and 

Enge [2001]. The general signal processing begins with the GPS signal reception. A 

GPS receiver antenna captures the signal and converts it into electrical voltages and 

currents, which are passed to the Radio-Frequency (RF) front end. The captured, very 

weak signal is amplified while the carrier frequency is down converted to a lower 

Intermediate Frequency (IF). Meanwhile, interfering signals in adjacent frequencies 
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are filtered out. This process is called conditioning. After conditioning, the processed 

signals are digitised by an analog-to-digital (A/D) converter. At this stage, the 

digitised IF signals are ready to pass to the ‘signal processing’ channels where signals 

from each satellite in-view will be treated separately. Figure 2-1 is a simplified 

receiver diagram illustrating the flow of signal reception and processing, where LO 

stands for the local oscillator, I and Q denote inphase and quadrature respectively. 

The signal processor section includes carrier and code tracking loops in Fig.2-2. Both 

the loops work together to deliver output. The output of the signal processing section 

is the raw GPS measurements, which include pseudoranges, Doppler shifts, and the 

carrier phase measurements (integrated Doppler). These measurements are then 

processed by the navigation algorithms to determine the receiver’s position, velocity, 

and time. 

 

 

 

 

 

 

Figure 2- 1: A simplified GPS receiver diagram, from Misra and Enge [2001] 

The reference oscillator has the key role of providing the time and frequency 

reference. The output of the reference oscillator is used in the frequency synthesiser to 

derive local oscillators and clocks (Numerically Controlled Oscillator, NCO) in each 

signal-processing channel, as can be seen in Figure 2-1.  

In GPS signal acquisition, a receiver needs rudimentary knowledge of the Doppler 

frequency and code arrival time for each satellite. This can be demonstrated in the 
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received signal property. The received L1 signal at time t relates to the L1 signal 

transmitted from a satellite as 
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where:  

• τ is the signal travel time from the satellite to the receiver; 

• fd is the Doppler shift due to the relative motion between the satellite and the 

receiver, as well as the frequency error, and drifts of the satellite and the 

receiver clocks. 

 

 

 

 

 

 

 

 

 

 

Figure 2- 2: An illustration of GPS signal processing 
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With rough estimations of fd and τ, the signal can be put into the appropriate tuneable 

working window in a signal processing channel. In the channel, the Doppler shift can 

be estimated in the Doppler removal module through a low pass filter for inphase and 

quadrature processing. The sign of the Doppler shift may also be resolved here, and it 

is possible to estimate the Doppler shift without a good estimate of the carrier phase 

(ibid).  

After the Doppler removal, the inphase and quadrature signals are fed into a Delay 

Lock Loop (DLL). The DLL is used to align the PRN code sequence (C/A or P-code) 

that is contained in the inphase and quadrature signals with the receiver generated 

identical PRN code replica sequence. A correlator in DLL continuously cross-

correlates the local code stream, shifting stepwise against the received code sequence 

until the maximum correlation (i.e. alignment) is achieved. The time used in the 

alignment is equal to the signal transmission time τ if the receiver clock bias is 

neglected. This is achieved through the unique property that a PRN code sequence has 

in cross-correlation 
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The measured time is then converted into a pseudorange by multiplying the speed of 

light in vacuum. The code pseudorange measurement is sometimes referred to as the 

code phase measurement because the code alignment is actually a measure of the 

phase of the received code. 

Once the code-tracking loop is aligned, the PRN code can be removed from the 

satellite signal. The stripped signal is then passed to the phase-tracking loop where the 

satellite message is extracted. Once the local oscillator is locked onto the satellite 

signals it will continue to follow the variations in the phase of the carrier as the 

satellite-receiver distance changes continuously. The integrated carrier beat phase 
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observable is obtained by simply counting the whole elapsed cycles (by noting the 

"zero crossings" of the beat wave) and by measuring the fractional phase of the locked 

local oscillator signal [Rizos, 1999]. 

To close this section, we list the outcome of the GPS signal processing as follows 

• C/A code and P(Y) code pseudoranges; 

• Doppler shifts; 

• Carrier phase measurements; 

• Navigation data (broadcast ephemeris); 

• Signal-to-noise ratio (SNR) information. 

2.5 GPS Error Sources 

There are generally six classes of errors in GPS measurements according to Parkinson 

[1996]. They are ephemeris and satellite clock errors, ionosphere errors, troposphere 

errors, multipath errors, and receiver errors. A short introduction to the errors is 

provided here. In-depth properties of the errors will be analysed, and the error 

modelling methods will be investigated in Chapter Three. The time-varying behaviour 

of error affects the velocity and acceleration determination using GPS, which is the 

main topic of this thesis. 

2.5.1 Satellite Dependent Errors 

The source of ephemeris and satellite clock errors is the GPS control and space 

segments. Although GPS orbits have been carefully observed and calculated, and the 

GPS time has been kept precisely, the predicted satellite orbit and the broadcast 

satellite clock parameters differ from their true values. These errors are in the 

navigation data broadcast by GPS satellites, influence the range measurements, and 

consequently affect GPS positioning. 
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Errors induced by the relativistic effects are also in this category. The relativistic 

effect causes an apparent frequency shift in the satellite oscillator due to the presence 

of the Earth’s gravity field. This frequency shift may be almost compensated by 

reducing by 0.00457Hz the nominal satellite oscillator’s frequency at 10.23MHz. A 

GPS satellite orbits the Earth in a non-circular orbit with a relatively high-speed of 

about 3.8km/s, this produces another periodic error that must be subtracted from the 

satellite clock value [Hofmann-Wellenhof et al., 2001]. More details will be discussed 

in the following chapters. 

2.5.2 Propagation Errors 

GPS signal propagation errors include the ionosphere error, troposphere error and the 

multipath error.  

Due to the presence of free electrons in the ionosphere, GPS signals do not travel at 

the speed of light in vacuum, nor as straight lines, but with bent signal paths. The 

modulation on the signal is delayed in proportion to the total electron number and is 

inversely proportional to the squared carrier frequency. The phase of the radio 

frequency carrier is advanced which is termed as the “phase advance”, the PRN code 

is delayed by the same amount, and is referred to as the “group delay”. The 

ionosphere is thus called a dispersive medium due to this characteristic. The GPS 

system takes advantage of the dispersive property to use two L-band frequencies to 

eliminate the first-order ionosphere range and range-rate errors [Klobuchar, 1996]. 

The troposphere is an electrically neutral atmospheric region that extends up to about 

50km from the surface of the Earth [EL-Rabbany, 2002]. It is a non-dispersive 

medium for radio frequencies below 15GHz [Hofmann-Wellenhof et al., 2001]. As a 

result, the troposphere delays the GPS carrier and code measurements identically, and 

the measured satellite to receiver distance is longer than the true geometric distance. 

The tropospheric delay depends on the temperature, pressure and humidity along the 
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signal path. This path delay is of the order of 2~25m [Spilker, 1996c]. The 

tropospheric delay varies with elevation angles because a lower elevation angle 

produces a longer signal path delay through the troposphere. 

Multipath error occurs when a GPS signal arrives at a receiver antenna through more 

than one path. These paths may be the line-of-sight signal and reflected signals from 

objects surrounding the receiver antenna. The interference by the reflected signals at 

the GPS antenna affects both the carrier phase and code measurements. The 

magnitude of the carrier phase multipath can reach a maximum of a quarter of cycle 

[Hofmann-Wellenhof et al., 2001] while the pseudorange multipath may amount to 

10-20m [Wells et al., 1987]. The multipath error is a function of the wavelength, and 

has a periodic characteristic. More discussions on multipath effect can be found in 

Braasch [1996]. Note that some authors may group the multipath error into the 

receiver dependent error category. 

2.5.3 Receiver Errors 

Errors in a GPS receiver consist of the thermal noise, antenna phase centre variation, 

inter-channel and inter-frequency biases, and the receiver clock error that is the offset 

between the receiver clock and the GPS system time. Receiver errors do depend to 

some extent on the quality of design and manufacturing. In this research, only the 

receiver clock error is of interest.  

2.6 GPS Observables 

There are three types of GPS measurements, namely code pseudorange, carrier phase 

and the Doppler frequency shift. The code pseudorange and carrier phase 

measurements are generally considered as the two basic range observables between 

the observed satellites and the receiver. The Doppler shift observable, as has been 

introduced in §2.4, is a by-product of receiver signal processing. 
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2.6.1 Code Pseudorange Measurement 

In GPS, code pseudorange measurements are often called “pseudoranges”, however 

this is inaccurate since the carrier phase measurements may also be regarded as 

pseudoranges when the integer ambiguities are considered. In this thesis, when the 

term pseudorange is used, it refers to the code pseudorange. Code or code range is 

used as an alias of the code pseudorange. 

Code pseudorange measurements are made by comparing the incoming signal from a 

GPS satellite with the receiver replicated PRN code. The time shift required in 

correlating the two signals is equivalent to the signal propagation time between the 

GPS satellite and the receiver. The distance between the GPS satellite and the receiver 

can therefore be measured; however it is biased due to the lack of synchronisation 

between the receiver and satellite clocks to the GPS time. The code phase observable 

may be expressed as [Teunissen and Kleusberg, 1998] 
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where: 

• Subscript r denotes the receiver where the measurement is made; 

• Subscript i denotes the frequency band of the observation, i=1 for L1, and i=2 

for L2; 

• Superscript s represents the satellite being observed; 

• t is the true epoch time in the GPS time system; 

• )(tP s

r  is the code pseudorange between receiver r and satellite s, at GPS time t 
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• r is a position vector of the three receiver coordinate components (x ,y, z), 

defaults in the WGS-84 system; 

• d is used to represent an error term; 

• sdrrrr  represents the positional error of satellite s; 

• rdrrrr  represents the positional error of receiver r; 

• s

rτ  denotes the signal transmission time from satellite s to receiver r; 

•  is the norm of a vector, or simply the length of the vector; 

• dI denotes the ionospheric delay; 

• dT denotes the tropospheric delay; 

• c is the speed of light in vacuum; 

• dtr is the receiver clock delay; 

• sdt is the satellite clock delay; 

• dm is the multipath effect on the code range; 

• dR is the relativistic effect due to the satellite motion and the presence of the 

Earth gravitational field; 

• ε is the measurement error associated with the observation. 

The code pseudorange measurement )(, tP s

ir is biased with respect to the satellite-to-

receiver geometric distance by the above-listed errors. Note that in Eq.2-4 all error 

terms are in their absolute values, being scaled into unit of metres. 

GPS code signal in the ionosphere is delayed due to the group delay effect, resulting 

in an increased distance measurement, and therefore a positive sign is assigned to the 

ionospheric correction. A time delay also occurs when the signal travels in the 
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troposphere, so the tropospheric correction is also positive. Similarly, a positive sign 

is assigned to the delay due to the receiver clock as it contributes to an extra signal 

travel distance, but a negative sign is with the delay of satellite clock, as this would 

decrease the measured distance. The relativistic effect slows down a satellite clock, 

and therefore has a negative sign (which is the same as the satellite clock correction). 

The multipath effect is caused by indirect signals coming into the receiver antenna by 

reflection. When multipath occurs, the measured distance will always be longer than 

the direct distance, and thus the error has a positive sign. 

In GPS, an observable is referred to as the measurement of signal from its 

transmission to its reception. The signal travel time τ relates a transmitted signal to a 

received signal in the standard GPS time frame. In Eq.2-4, the geometric distance is 

between the position of receiver at reception time t and the satellite position at 

transmission time t-τ.  

2.6.2 Carrier Phase Measurement 

The measure of the carrier phase of the GPS signal does not require knowledge of the 

actual information being transmitted. Once a receiver locks onto a GPS satellite 

signal, the carrier phase is measured by phase comparison between the received 

carrier signal and the receiver generated reference carrier waves. In the Phase Lock 

Loop (PLL), the fractional part of the received phase is precisely measured and an 

integrated Doppler counter accumulates the changes of integer wavelength. The sum 

of the integer cycle count and the fractional phase part is the carrier phase 

measurement. Scaling with the wavelength of the carrier signal and introducing an 

unknown initial integer number of carrier cycles referred to as the integer ambiguity, 

the carrier phase measurement relates to the receiver and satellite position as follows 

[Teunissen and Kleusberg, 1998] 
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where 

• λi is the wave length of carrier phase, 19.03cm for L1 and 24.42cm for L2; 

• )t(s

i,rϕ is the carrier phase observable on the i-th frequency for receiver r and 

satellite s at epoch t; 

• s

i,rN  is the integer ambiguity of the carrier phase measurement of the i-th 

frequency;  

• )0(s

i,rϕ is the initial fraction of carrier phase on the i-th frequency for receiver r 

and satellite s when the receiver achieves initial lock on; 

• ε is the noise of the carrier phase measurement. 

Comparing with the code phase measurement, one may find that a negative sign is 

given for the ionospheric delay; this is due to the “phase advance” (as has been 

already discussed). The multipath effect is capitalised to highlight the significant 

difference in magnitude. The carrier phase pseudorange makes sense if the N•λ term is 

moved from the right hand side of Eq.2-5 to the left hand side. This is depicted in 

Fig.2-3. 

The integer ambiguity, N, is typically not known and is different for each receiver-

satellite pair. As long as the tracking of the satellite is not lost, N remains constant, 

while the fractional phase and the integrated integer Doppler counter change over 

time. The integer ambiguity either can be solved using the code phase measurement in 

the measurement domain or be estimated in the coordinate domain, or be “searched” 

in the ambiguity domain. The change of the integer number of a receiver-satellite pair 
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is referred to as "cycle slip." When a cycle slip occurs, it is necessary to introduce a 

new integer ambiguity [Rizos, 1999]. 

 

 

 

 

 

 

 

 

Figure 2- 3: The carrier phase measurement vs. the integer ambiguity 

2.6.3 Doppler Shift Measurement 

The Doppler shift is the frequency difference between the received signal and the 

source signal due to the relative motion between a receiver and a transmitter. As the 

carrier phase measurement is the difference between the phase of the receiver-

generated carrier signal and the received carrier from a satellite at the instant of 

measurement, a more precise name for the carrier phase measurement is the “carrier 

beat phase measurement”. A GPS signal reaching the antenna of a receiver is Doppler 

shifted in frequency and it is necessary for the GPS receiver to have an estimate of the 

Doppler shift in order to bring the received signal (RF/IF) into the signal tracking 

loops. Otherwise the signal would be out of the working “window”, or rather, the 

receiver’s working bandwidth. As a result, there is no phase to beat! The more 

accurate the Doppler shift is estimated, the smoother a carrier-tracking loop will work, 

and consequently the more precise a carrier phase will be measured.  

Nλ 

λφ 
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The carrier phase measurement of a GPS receiver is actually the integrated Doppler 

shift measurements [Seeber, 1993; Rizos, 1999; Hofmann-Wellenhof et al., 2001]. 

Thus, the Doppler shift, a “by-product” of the GPS receiver signal processing, relates 

to the carrier phase measurement as its first derivative with respect to time. With this, 

the Doppler shift observation can be written 
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where a dot over a variable represents its first derivative with respect to time. 

Compared to Eq.2-5, the carrier phase observation, it can be seen that the integer 

ambiguity term and the initial fraction part have vanished, or in other words, the 

Doppler shift is free of integer ambiguity problems.  

GPS Doppler shift observables in general are much “cleaner” than the carrier phase 

observables, since the errors and biases are the time derivatives of the error sources in 

the carrier phase measurements.  

2.7 Coordinate Systems 

World Geodetic System 1984 (WGS-84) is officially used by the GPS system as the 

datum. The broadcast ephemeris is calculated in WGS-84 and therefore, by default, 

user positions from GPS are generated in the WGS-84 coordinate system. 

The WGS-84 coordinate system is a realisation of the Earth-Centred-Earth-Fixed 

(ECEF) coordinate system, which is fixed to the Earth and rotates with the Earth. The 

ECEF WGS-84 is defined as [ARINC, 2000]: 

• Origin at the Earth’s centre of mass; 

• Z-axis extends through the IERS (International Earth Rotation Service) 

reference pole; 
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• X-axis directs to the intersection of the IERS reference meridian (IRM) and the 

plane passing through the origin and normal to the Z-axis; 

•  Y-axis completes the right-hand coordinate system, passing through the 

equator and 90° longitude east of the X-axis. 

The major parameters of the WGS-84 system are given in Table 2-1 [cf. Seeber, 

2003] 

Parameter Notation Value Unit 

Semi-major axis a 6378137 m 

Flattening f 1/298.257223563  

Angular velocity ω 7.292115·10-5 rad·s-1 

Geocentric gravitational constant GM 398600.4418 km3s-2 

Second zonal harmonic 
0,2C  -484.16685·10-6  

Table 2- 1: Major Parameters of WGS-84 

Newtonian mechanics work in inertial systems that are neither rotating, nor 

accelerating. For the description and prediction of the motion of a GPS satellite, an 

Earth-centred inertial reference system is needed. Due to the presence of the Earth’s 

gravitational field (and therefore gravitational accelerations), such an Earth centred 

inertial system can only be obtained by approximation and careful designation of the 

origin and 3-axis directions such that the resultant system is non-rotational with each 

axis directed to a fixed celestial point. 

An implementation of such an inertial system is the Earth-Centred-Inertial (ECI) 

system, which is defined as 

• Origin at the centre of mass of the Earth; 

• Z-axis along the Earth’s rotation axis, pointing to the north pole; 
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• X-axis in the equatorial plane directing to the vernal equinox; 

• Y-axis completes the right-hand coordinate system, passing through the equator 

and 90˚ longitude. 

 

 

 

 

 

 

 

 

 

Figure 2- 4: ECEF and ECI coordinate systems 

Figure 2-4 depicts the relationship between the ECEF and ECI systems where angle 

GAST stands for the Greenwich Apparent Sidereal Time (GAST), which changes 

with respect to time and is related to the Earth rotation rate by 

)tt()t(GAST)t(GAST 00 −+≈ ω  2- 7 

where t0 is a reference time. 

Note that approximations have been made in both Fig.2-4 and the GAST. Due to the 

polar motion, nutation and precession of the vernal equinox, the precise definition of 

ECI requires the specification of the positions of the pole and vernal equinox at a 

specific convention epoch such as the J2000. This allows correction of the 
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instantaneous pole and vernal equinox to their conventional positions fixed in the 

celestial system. Readers are referred to the work by Bock [1998], and for space 

geodesy applications, to McCarthy [2000]. It is sufficient to use the GAST to 

distinguish ECEF from ECI for most real-time applications using GPS.  
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C h a p t e r  T h r e e  

PRECISE ABSOLUTE GPS POSITIONING 

This chapter elucidates the precise point positioning for real-time applications. From 

the simplest navigation solution, the least squares adjustment and accuracy 

assessment are then introduced. Error modelling of one-way un-differenced 

observation is elaborated using the methods developed in PPP. The error analyses are 

important as all the error sources in PPP have effects on precise velocity and 

acceleration determination. The relativistic effects and troposphere modelling are 

emphasised since they are the two major error sources limiting the accuracy of precise 

velocity determination using GPS.  

3.1 GPS Point Positioning  

To begin with, all the inherent errors in GPS measurements are neglected except the 

receiver clock error. This simplification assumes that those neglected errors have been 

properly modelled and accounted for. As such, the code pseudorange measurement 

from receiver r to satellite s at epoch t is expressed as 

ε+⋅+−τ−= rr

s

r

ss

r dtctttP )()()( rrrrrrrr  3- 1 

where: 

• )(tP s

r  is the code pseudorange between receiver r and satellite s at GPS time t; 
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• s

rτ  denotes the signal propagation time from satellite s to receiver r; 

• ssssrrrr  is the satellite position vector (x
s
,y

s
,z

s
)
T in the orbit, which is assumed 

known; 

• rrrrrrrr  is the receiver position vector (xr, yr, zr)
T on the Earth, which is the unknown 

to be estimated; 

•  is the norm of a vector, or simply its length; 

• c is the speed of light in vacuum; 

• dtr is the receiver clock delay; 

• ε is the measurement error associated with the observation. 

In the above simplified observation equation there are four unknowns: three 

components in the receiver position vector and one receiver clock delay. At least four 

observations are required in order to solve the four unknowns at one epoch. 

Redundant measurements exist if more than four measurements are available. In the 

case of redundant measurements, the least squares adjustment procedure can be 

applied to obtain an improved positioning estimation.  

3.1.1 Linearisation 

However, the least squares adjustment requires the observation equation system to be 

linear. For the geometric distance between receiver r and the satellite s 
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can be calculated. The linearisation can be carried out using the Taylor series 

approximation, with higher order terms neglected 
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where  

• s

rn  is the line-of-sight unit vector, a normal vector sometimes referred to as the 

direction cosine vector; 

• rr∆ is the receiver position discrepancy vector, i.e. the position correction. 

With this, the GPS code pseudorange observation equation can be rewritten into the 

following linear form  

ε+⋅+∆⋅−= rr

s

rg

s
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s

r dtcPtP rn
0

)(  3- 4 

Usually it is assumed that the measurement error ε is of normal distribution in 

statistics, with a zero mean and a variance of σ2, i.e. ε~N[0, σ
2]. The equivalent error 

equation for the code pseudorange measurement is then given as 
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where: 
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• v is the residual of an observation, i.e. the difference between the observation 

and its estimated value; 

• f is a constant term which is the difference between the measurement and its 

nominal value calculated using the approximations of the unknown parameters. 

3.1.2 Least Squares Solution 

When a GPS receiver observes more than four satellites simultaneously, a set of 

linearised observation error equations can be formed based on Eq.3-5 
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where n denotes the number of the observed satellites (n>4), G is a n × 4 matrix 

characterising the receiver-satellite geometry through the line-of-sight unit vectors.  

The observations are assumed to be independent on each other, with equal 

measurement weight P=In, (unit matrix), i.e. equal measurement precision σ2. The 

least squares estimation of the unknown corrections of the receiver position and clock 

delay can be obtained by assuming that the estimated parameters minimise the sum of 

weighted square residuals, i.e. VT
PV=min 

FGGGPFGPGGX TTTT ⋅=⋅= −− 11 )()(ˆ  3- 7 
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The least squares estimation is the best linear unbiased estimates (BLUE) of the above 

equation system. Iterations may be needed for least squares estimation; however, 

typically just one or two iterations may be sufficient for convergence.  

3.1.3 Positioning Precision Assessment  

The precision of the least squares estimates can be evaluated through the variance-

covariance matrix of the estimates by 
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where 
4n

ˆ
T

2

−
=

VV
σ  is the estimated measurement variance of σ2.  

Equation 3-8 shows that the accuracy of estimates of a user’s position and clock is in 

terms of the code pseudorange measurement precision and the G matrix, which is the 

design matrix containing the components of line-of-sight unit vectors. In other words, 

a user’s positional estimates are dependent of the measurement accuracy and the 

satellite geometry at the instant of observation. 

In GPS applications, Dilution of Precision (DOP) is often used to quantify the satellite 

geometry, and the quality of the estimates that may be obtained under such geometry. 

To introduce DOP, H matrix from Eq.3-8 is defined as 
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and elements of hii, the i–th on the diagonal of H matrix are used to define different 

DOPs, for instance: 
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• Position: 332211 hhhPDOP ++≡       3- 10 

• Geometric: 44332211 hhhhGDOP +++≡      3- 11 

• Time: 44hTDOP ≡         3- 12 

Other DOPs such as the HDOP (H for horizontal) and VDOP (V for vertical) in GPS 

will need coordinate rotations to the H matrix to conduct transform from the ECEF 

system to a local navigation systems such as the NEU (North-East-Upward) system.  

GDOP is the geometric effect of the spatial relationship of the in-view satellites in 

relation to a user receiver. It can be viewed as the “strength of figure” of the 

trilateration computation. A low GDOP value normally reflects good satellite 

geometry and thus a potential good position fix. 

In summary, the navigation solution through the least squares approach requires the a 

priori position of a receiver, more than four satellites in view, and an iterated solution. 

A non-iterative analytical navigation solution is provided by Bancroft [1985], which 

is capable of solving the position unknowns and clock bias when there are only four 

satellites. More details of this approach and its development can be found in Goad 

[1998], Yang and Chen [2001]. 

3.1.4 Earth Rotation Correction 

A GPS satellite has an orbit height of almost 20,200 kilometres above the Earth 

surface. It takes about 0.075 seconds for GPS signals to reach a ground receiver. The 

reception signal has travelled an extra distance during this short signal propagation 

time due to the Earth rotation. Ashby and Spilker [1996] considered this as a 

relativistic error known as the Sagnac effect, and provided a formula to correct for it. 

The Sagnac correction will be discussed later. In this section, a simple iterative 

treatment for the navigation solution is introduced as an alternative. 
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The vertical bars in Eq.3-2 represent the geometric distance between the satellite and 

receiver, which is valid in an inertial system [ARINC, 2000]. Because the satellite 

positions are calculated from the broadcast ephemeris, which is provided in ECEF 

system, and the user position is in ECEF, the Earth rotation must be accounted for to 

make sense of this inertial geometric distance. In-depth descriptions of the calculation 

of the geometric distance term when using ECEF coordinates are provided by Goad 

[1998], the following gives the procedure to compensate for the Earth rotation 
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where R3(θ) is the rotation matrix for rotating angle θ counter-clockwise around Z-

axis (the third axis that subscript 3 stands for), which is given as 
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Such a treatment fixes the instantaneous ECEF orientation at time t as the orientation 

of the inertial system.  

Therefore, in a practical navigation solution, one needs to apply a rotation first to the 

ECEF satellite position at the transmitting time using Eq.3-13 to obtain the correct 

geometric distance. More specifically, this process is an iterative process since the 

propagation time is unknown. A commonly used method begins with setting 

τ0=0.075s, followed by calculating the satellite ECEF position using the ICD-200-

GPSc algorithm [ARINC, 2000], and applying the rotation to the satellite position to 

account for the Earth rotation, and finally calculates the travel time τ1.. The procedure 

is iterated until τi converges to a certain level. Leick [1995] has given a very intuitive 

description in this regard. 
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3.2 GPS Errors and Modelling 

The navigation solution for GPS point positioning described in § 3.1 does not account 

for the observation errors. As has been mentioned in Chapter Two, GPS 

measurements manifest many errors and biases. In order to achieve a higher accuracy 

from the absolute point positioning, these errors and biases should be appropriately 

modelled and corrected for. The modelling methods are discussed, following the 

sequence of satellite dependent errors, propagation errors, and receiver dependent 

errors, as was done in Chapter Two. 

3.2.1 Satellite Dependent Errors 

3.2.1.1 Ephemeris Errors 

Since this research mainly concentrates on real-time GPS applications, the discussion 

is constrained only to the broadcast ephemeris errors. These errors are the same for 

both code pseudoranges and carrier phase pseudorange measurements, as can be seen 

from the term sdrrrr in both Eq.3-1 and Eq.3-2. With SA off, the quality of the clock 

and ephemeris parameters in the broadcast navigation message has been significantly 

improved. Currently it is widely recognised that the broadcast orbit error is of the 

order of ±2~5m RMS.  

The ephemeris error contains three components, i.e. radial, tangential and cross-track 

errors. The tangential and cross-track errors are much larger than the radial error 

[Roulston, 2001]. The satellite orbit error affects a user position fix in two ways: first, 

it affects the range measurement accuracy through a projection of the orbital position 

error components along the line-of-sight direction; secondly, it influences the user 

position accuracy through intersection of the biased positions of GPS satellites. 
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3.2.1.2 Satellite Clock Errors 

GPS onboard satellite clocks, although being highly accurate, have errors that must be 

corrected. The GPS control segment utilises a set of precise atomic clocks to define 

the GPS time standard and monitors the onboard clocks. The satellite clock errors are 

calculated, predicted into the future, and uploaded to GPS satellites for broadcasting. 

Polynomials are used to determine the effective SV PRN code phase offset referenced 

to the phase centre of the antenna (∆tsv) with respect to GPS system time, at the time 

of signal transmission. The broadcast parameters of the satellite clock account for the 

deterministic SV clock error characteristics of bias, drift and aging, as well as for the 

SV implementation characteristics of the group delay bias and the mean differential 

group delay. The algorithm to correct satellite clock errors is given in ICD-GPS-200c 

[ARINC, 2000]. A user receiver should correct the time received from a SV with the 

following equation in seconds 

ss dttt −=  3- 15 

where: 

• t is the true GPS time in seconds; 

• t
s represents the effective PRN code phase time at the transmission time in 

seconds; 

• dt
s
 is the SV PRN code phase time offset in seconds. 

The satellite PRN code phase offset is given by 

2

210 )()( ocfocff

s ttattaadt −+−+=  3- 16 

where: 
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• af0, af1, af2  are the polynomial coefficients in subframe one of the navigation 

message; 

• toc represents the clock data reference time in seconds.  

The satellite group delay Tgd is due to the satellite hardware bias. It is similar to the 

initial phase bias in GPS receiver errors (see §2.6.2). Tgd is initially calibrated by the 

satellite manufacturer to account for the effect of satellite group delay differential 

between L1 P(Y) and L2 P(Y), and then updated by the GPS control segment to 

reflect the actual orbital group delay difference. Single-frequency users (using only 

L1 or L2 measurements) need to apply this correction to the satellite clock error dt
s by  
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3.2.1.3 Relativistic Effect Corrections 

Since a GPS satellite orbits the Earth at high speed, transmitting signals that travel 

through the Earth’s gravity field at the speed of light, Einstein’s theories of general 

and special relativities are applicable. Details of the relativistic effects in GPS is 

referred to Ashby and Spilker [1996], Jaldehag et al. [1998], and Ashby [2003]. In 

general, the relativistic effects are on GPS signal propagation and behaviour of the 

board satellite clocks. 

The special and general relativistic effects on GPS onboard clocks due to the motion 

in circular orbits have been already accounted for by the GPS system. This is 

accomplished by shifting the system fundamental frequency of 10.23 MHz to 10.229 

999 999 543MHz, i.e. (-0.004647 Hz correction) [Ashby and Spilker, 1996]. Thus, a 

user needs not be concerned about this error. In this section, only the significant 

relativistic effects that must be corrected for PPP are discussed. The research focus, 
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however, is to investigate their effects on Doppler measurements, which will be 

detailed in the following chapters. 

Orbit Eccentricity Correction for Satellite Clock 

The slight eccentricity of a satellite orbit causes a periodic relativistic effect on 

satellite clocks. When the satellite is at the perigee, it travels faster and has a lower 

gravitational potential. As a result, the satellite clocks run slower. Since the clock 

parameters in the navigation message do not include corrections for this relativistic 

effect, a user must determine the requisite relativistic corrections. In the ICD-GPS-

200c, this relativistic correction is calculated and applied as an additional term in the 

satellite clock correction in seconds [ARINC, 2000]. As a separate term in the GPS 

pseudorange observation equation, however, it is more convenient to scale it into an 

equivalent distance in metres as 

ktyeccentrici Eae
c

GM
R sin

2
⋅⋅−=δ  3- 18 

where : c 

• GM =3.986005×10
14

 m
3
/s

2
, is the product of the universal gravitation constant 

G and  the Earth’s mass M; 

• e represents the eccentricity of the satellite orbit; 

• a is the semi-major axis of the satellite orbit; and 

• Ek is the orbital eccentric anomaly. 

The above relativistic correction is normally obtained after solving the Kepler’s 

equation, however, in this thesis and its associated programming, an alternative but 

equivalent form is used, which is expressed in terms of the satellite position and 

velocity by 
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ss
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where srɺ  is the instantaneous velocity vector of the GPS satellite. 

The GPS control segment utilises Eq.3-19 to estimate the navigation parameters. 

Since GPS satellite velocity and acceleration will always be estimated in this research, 

it is straightforward to calculate this correction. Moreover, one may find it 

advantageous to analyse the change-rate, which will be discussed in Chapter Six. 

This correction may reach a maximum of 21m in range measurements according to 

Leva et al. [1996].  

Sagnac Effect Correction 

The Sagnac effect due to the Earth rotation has been mentioned in §3.1.4, where an 

iterative treatment is given. Here an alternative treatment is introduced than can apply 

corrections to the raw pseudorange measurements directly. 

Aberration is the alternative term used for the Sagnac effect in space geodesy. A 

theoretical formula of the aberration correction for the integrated Doppler 

measurement can be found in Seeber [2003]  

)()(
c

1
R r

ss

eaberration rrrΩ −•×=δ  3- 20 

where Ωe=(0,0, ωe)
T is the vector of the angular rotation rate of the Earth. By 

applying vector operations, the range correction can be simplified as 
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The Sagnac effect correction given by Ashby and Spilker [1996] is in the form of 

c

2
R e

Sagnac

AΩ •
=δ   3- 22 

where A is the shading area of the triangles swept out by an arrow with its “tail” at the 

Earth centre and its “head” following the electromagnetic signal wave. Nevertheless, 

the two corrections are identical. A simple proof is given as follows 
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The Sagnac effect is an error that must be accounted for due to the extra signal 

propagation arising from the Earth rotation in PPP. However, whether or not to apply 

this correction depends on how the Earth rotation is treated. If the satellite ECEF 

position at the signal transmission time has been rotated and the iteration scheme as 

described in § 3.1.4 has been applied, the Sagnac effect will be automatically 

eliminated. 

Secondary Relativistic Effects 

Several additional significant relativistic effects should be taken into consideration 

when analysing the Very Long Baseline Interferometry (VLBI), Satellite Laser 

Ranging (SLR) and GPS measurements. These include the signal propagation delay 

effect on the geometric distance, phase wind-up, and the effects from other solar 

system bodies. Ashby [2003] classified the following relativistic errors as secondary. 

(1)  Signal Propagation Delay  

The signal propagation delay for a user in the ECEF is given in the form of (ibid) 
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where 0Φ  is the effective gravitational potential on the geoid, which consists of both 

the Newtonian mass gravitational potential and the centrifugal potential due to Earth 

rotation. 
2

0

c

Φ
=6.969290134×10-10 is the value adopted by the International 

Astronomical Union [IAU, 2000]. 

This correction is also referred to as the Shapiro time delay (when scaled into 

seconds). The second logarithm term on the right hand side has a maximum value of 

18.7 millimetres according to Hofmann-Wellenhof et al. [2001], who refer to it as the 

“space-time curvature correction”, which is significant only in an inertial system. For 

ECEF systems, the signal propagation delay tends to be small because the presence of 

the first term nearly cancels out the logarithm term. Thus, it is a secondary effect. 

(2)  Effect on Geometric Distance 

A spatial curvature effect should be considered if requiring accuracy at the few 

millimetre level. The correction formula is given as (ibid) 

r

s

2
ln

r

r

c

GM
Rsc =δ  3- 25 

The value of this correction is approximately 4.43•ln(4.2)=6.3 millimetres. This is 

caused by the fact that coordinates and distances are different in different relativistic 

frames. It becomes important if one compares distances computed in one frame with 

those in another frame [Mueller and Seeber, 2004].  
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3.2.1.4 Satellite Attitude Effects 

According to Kouba and Héroux [2001], there are two satellite related error sources 

that have not been covered yet, one is the satellite antenna offset, the other is the 

phase wind-up error. 

Satellite Antenna Offset 

Satellite antenna offset error is due to the offset between the satellite’s mass centre 

and the phase centre of its antenna(s). The observations made by a user are relative to 

the antenna phase centre of a satellite, while the precise ephemeris provided by IGS is 

actually relative to the satellite mass centre because the force model used for satellite 

orbit determination refers to that mass centre. The IGS provides the offsets table, and 

a correction method can be found in the thesis of Witchayangkoon [2000].  

Since a satellite position from the broadcast ephemeris is with respect to the phase 

centre of the satellite antenna, GPS users for real-time applications using the 

broadcast ephemeris are free of this error. However, attention should be paid when 

comparing the satellite positions from the precise ephemeris and the broadcast 

ephemeris. 

Phase Wind-up Correction 

The relative orientation of the satellite and receiver antenna has an effect on GPS 

measurements because the GPS signal is a right hand circularly polarised radio wave. 

A rotation of either receiver or satellite antenna around its bore axis would affect the 

carrier phase measurement, and the maximum effect may theoretically reach one 

cycle [Ashby, 2003]. As the apparent satellite movement is relatively slow, this effect 

remains even for a stationary GPS receiver. The phase wind-up correction formula is 

provided by Wu et al. [1993]. Ashby [2003] grouped the phase wind-up error as a 
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secondary relativistic effect and reported that this error had been experimentally 

detected with a GPS receiver spinning at a rotation rate of 8 circles per second.  

3.2.2 Signal Propagation Errors 

3.2.2.1 Ionosphere Errors 

The ionosphere is a dispersive medium, that is, the effect of ionosphere on signal is a 

function of the signal frequency. More precisely, by neglecting the effects of higher 

order terms of the ionospheric refractivity, the ionospheric delay is proportional to the 

inverse of signal frequency squared. As has been stated earlier, the free electrons in 

the ionosphere affect the GPS signal propagation. The total free electrons along the 

signal path may be expressed by an integral of the local electron density Ne that is in 

units of electrons per cubic metres (el/m3), as 

∫ ⋅=
path

e dsNSTEC
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where  

• STEC stands for the Slant Total Electron Content; 

• ds is an infinitesimal length along the signal path. 

The ionospheric delay is given as [cf. Leick, 1995]  

STEC
f

dI
i

s

ir ⋅=
2,

30.40
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where i specifies the GPS signal frequency, 1 for f1 =1575.42MHz and 2 for 

f2=1227.60MHz respectively. 
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Linear Combination of GPS Observables to Extract/Eliminate Ionospheric Error 

With measurements from a dual-frequency GPS receiver, it is possible to retrieve the 

ionospheric delay, i.e. STEC which could be further used to establish the TEC model 

based on the observed real ionosphere data. From Eq.2-4 , P2-P1 relates to STEC as 
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STEC information may also be extracted from the more precise carrier phase 

observables through the following linear combination of carrier phase measurements 
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Although the STEC from the carrier phase measurements may be more accurate than 

that from P2-P1, a constant ambiguity bias is present due to the integer ambiguity 

term in both the carrier phase observables. 

The above linear combination is popularly referred to as the geometry-free 

combination, which contributes to the precise ionosphere modelling. As the 

ionosphere changes smoothly, in general the geometry-free carrier phase observation 

can be used to detect cycle slips very efficiently, provided there are no concurrent 

cycle slips at the same integer number on both L1 and L2. 

Neglecting the higher order terms of ionospheric refractivity, the ionospheric delay 

may be practically eliminated by forming so-called ionosphere-free combinations 

applicable for both the code and the carrier phase measurements. The ionosphere-free 

code measurement is formed as 
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and the ionosphere-free carrier phase measurement on L1 is  
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The ionosphere-free carrier phase measurement has been widely used in GPS baseline 

processing over long distances and in PPP applications, however the integer property 

of the ambiguity has been lost and the measurement has a larger noise level than the 

original L1 and L2 carrier phase measurements. In fact, all the above linear 

combinations amplify the noise magnitudes. 

The different sign but equal magnitude of the group delay and the phase advance 

makes it possible to eliminate the ionosphere by a sum of the code phase and the 

carrier phase measurements. However, this method suffers from the poor accuracy of 

code measurements and the presence of the integer ambiguity in the carrier phase 

measurements.  

Standard Ionosphere Correction Model 

For a single-frequency GPS user, a standard ionospheric correction algorithm is used 

by the GPS system and the eight parameters for this algorithm are broadcast in the 

navigation message. The algorithm is based on Klobuchar’s single layer ionosphere 

model, which assumes that the ionospheric delay can be represented by projecting the 

zenith delay in the single layer to the signal line-of-sight direction using a slant factor. 

The algorithm is capable of correcting for approximately 50% of the ionospheric 

range error [Klobuchar, 1996; ARINC, 2000].  
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The Klobuchar model uses a constant plus half-cosine waveform to represent the 

diurnal variation of TEC for the simplified ionospheric layer. The constant is 

presumed to be 5.0×10-9, and the peak TEC to appear at 14:00h local time. Four of the 

eight model parameters are used to represent the amplitude of the cosine wave; the 

other four model the period of the cosine wave. The algorithm requires receiver 

knowledge of the geodetic latitude uφ , longitude λu, and the azimuth A and elevation 

E to each satellite. They are used to calculate the sub-ionospheric point (ionospheric 

pierce point) and the slant projection factor. The algorithm is given in the Appendix. 

3.2.2.2 Troposphere Errors 

The troposphere is a neutral, non-dispersive medium. The delay of a GPS signal 

passing through is not dependent upon frequency, which means that there is no 

distinction between the carrier phase and code phase measurements, nor is it possible 

to eliminate it through combination of dual-frequency observations. The troposphere 

error is one of the main accuracy-limiting factors in GPS positioning, especially for a 

standalone user. Thus appropriate modelling is required. Simsky and Boon [2003] 

showed that the change of troposphere delay over time is the most important 

parameter to model in order to achieve sub-centimetre per second velocity accuracy. 

In this section, a thorough literature review of the troposphere modelling is provided. 

For more comprehensive discussions, the reader is referred to Spilker [1996c], 

Mendes [1999], and Hofmann-Wellenhof et al. [2001]. 

For modelling purposes, the troposphere delay can be simply considered as having a 

hydrostatic (dry) component and a non-hydrostatic (wet) component. The hydrostatic 

component depends on the locality, season and altitude; and is relative stable. On the 

other hand, the non-hydrostatic component varies with the local weather conditions 

and changes quickly. As a result it is very hard to model the wet troposphere 

component. Fortunately, the wet component only contributes approximately 10% of 
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the tropospheric delay; hence 90% of the delay is due to the more predictable 

hydrostatic air. Figure 3-1, which is modified from Hofmann-Wellenhof et al. [2001], 

is given to depict the thickness of the polytropic layers of the troposphere as well as 

the bent signal path. 

 

 

 

 

 

 

Figure 3- 1: Troposphere layers and the signal path, adapted from [Hofmann-Wellenhof et al., 2001]  

The tropospheric path delay experienced by a GPS signal is an integral of the 

tropospheric refractivity NT along the signal path 
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where NT has been partitioned into a hydrostatic component Nd and a wet component 

Nw. The Nd changes with height, temperature and pressure; and the Nw changes with 

height, temperature and partial pressure of water vapour. The difficulty lies in that it is 

impractical to measure these parameters along a real signal path, and to precisely 

determine the troposphere delay through the above integration. However, the 

refractivity at the Earth’s surface is well known and can be expressed in the following 

forms 

dry hd≈40km 
z 

wet 

signal path 

Z0 

hw ≈11km 

Observation Site 
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where : 

• P0  is the ground atmospheric pressure in millibars (mb); 

• T0 represents the ground temperature in Kelvin (K); 

• e0 is the partial pressure of water vapour in mb;  

• ci are empirical coefficients which may change with location. 

The knowledge accumulated through vertical radiosondes by atmospheric researchers 

enables us to relate vertical refractivity to the surface refractivity through empirical 

formulae. With the zenith refractivity model, analogous to the ionosphere modelling, 

slant factors can be introduced to represent the tropospheric delay as 
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where: 

• z

dN  is the dry zenith refractivity, a function of the altitude and surface 

meteorological parameters; 

• z

dN  is the wet zenith refractivity, changing with altitude and surface 

meteorological data; 

• )(Zmd  and )(Zmw  are mapping functions (slant factors) to scale the zenith 

delays to the signal path. 
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With such an approximation it is feasible to complete the integration along the 

vertical tropospheric path and therefore model the troposphere delay using surface 

meteorological data. Then the tropospheric delay may be written in the following 

succinct form 
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Hopfield Model 

Hopfield [1969] proposed a representation of the zenith dry refractivity empirically 

based on global meteorological observations. The vertical dry refractivity in height h 

is expressed in terms of surface dry refractivity 0

dN by a quartic form 
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where hd is assumed to be 40.136km. The Hopfield model for wet refractivity 

assumes a similar relationship  
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where the mean value of hw is set 11.0km. An Eq.3-33-like Hopfield model is given in 

Misra and Enge [2001] with 
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There are many variations of the Hopfield model that can be obtained by choosing 

different hd and hw values, varying from heights above sea level to lengths of position 

vectors, and using different mapping functions as well. The modified Hopfield model 

[Goad and Goodman, 1974] and the simplified Hopfield model [Wells, 1974] are 

typical examples and have been implemented as optional models in the Bernese 

software [Rothacher et al., 1996] 

Saastamoinen Model 

The Saastamoinen model has been widely used in geodesy. The Bernese software, for 

example, takes the Saastamoinen model as the a priori model to account for 

tropospheric delays (ibid). This model is based on the laws associated with ideal gas 

refraction. Saastamoinen [1972; 1973] presented two tropospheric delay models, one 

is the standard tropospheric model, and the other is a more precise model. The 

standard tropospheric delay model is for radio frequency ranging to satellites with 

elevation angles greater than 10 degrees, and has the following form 
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Similar to the Hopfield model, the Saastamoinen model has been refined to account 

for signal bending, height and even the location of the observation site by introducing 

more terms into the above equation [Spilker, 1996c], for example 
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where: 

• D=0.0026 cos2φ+0.00028h, is a term that accounts for the variations of the 

receiver in latitude and height (h is in unit of kilometres); 
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• B is a function of the height in mb;  

• δR term depends on the height and elevation of a radio signal source. 

The B and δR variables can be obtained by interpolation of tables given in Spilker 

[1996c], Hofmann-Wellenhof et al. [2001].  

Neglecting δR, the refined Saastamoinen model can be easily partitioned into dry and 

wet zenith delays like the form of Eq.3-33, see [Misra and Enge, 2001, p.147],  
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In the Bernese software, only the B correction term in the refined equation has been 

implemented [Rothacher et al., 1996].  

UNB Models 

Based on the precise Saastamoinen model, researchers at the University of New 

Brunswick developed a series of tropospheric delay models designated as UNBx 

models. Rather than just using the three ground meteorological parameters of T0, e0 

and P0, another two parameters, the temperature lapse rate β and water vapour 

decreasing rate ,λ are introduced to model the changes with height along the vertical 

tropospheric profile.  

The temperature lapse rate β is assumed linear with height h  

hThT ⋅β−= 0)(  3- 42 

while the water vapour lapse rate λ is in the power form of 
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Saastamoinen’s hydrostatic zenith delay is in the following form [Davis et al., 1985] 
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and the Saastamoinen wet zenith delay is in the form given by Thayer [1974], Askne 

and Nordius [1987] 
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In the above equations 

• Rd is the gas constant for dry air; 

• gm is the gravitational acceleration at the centroid of the vertical tropospheric 

profile; 

• Tm represents the mean temperature of the water vapour, 
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; 

• k1,k’2,k3 are refractivity constants [Thayer, 1974]. 

With these five parameters and the equations 3-41 to 3-44, the hydrostatic zenith 

delay can be given in terms of surface meteorological data as 
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and the zenith wet delay is given by 
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Thorough reviews of the development of UNB models can be found in a series of 

publications [Collins and Langley, 1996; Collins et al., 1996; Collins and Langley, 

1997], where tables associated with the models are also provided. The UNB1 adopts a 

set of 5 parameters with their global mean values; in the UNB2 model, the 5 

parameters are provided by a table that reflects their changes in latitude with an 

interval of 10˚. The improvement of UNB3 model is that the annual variation of the 5 

parameters have been accounted for using a sinusoidal function of day-of-the-year, 

which is taken from the concept of Niell’s mapping function [Niell, 1996]. In UNB3 

model the mean values of the 5 parameters are given at 15˚ intervals in latitude, 

accompanied by their variation amplitudes. This allows a user to calculate each of the 

5 parameters from linear interpolations by specifying the latitude and day-of-the-year 
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where: 

• ξ  represents a required parameter among the 5 parameters; 

• φ, and DoY are the user latitude and the time in day-of-the-year; 

• )( im ϕξ is the mean value of the parameter in the corresponding nearest latitude 

specified in the UNB3 table, )( 1+im ϕξ is the mean value of the parameter in the 

next nearest latitude specified in the UNB3 table; 
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• 28 indicates that the peak variation appears on January 28. 

As temperature lapse rate has little variation above a certain troposphere boundary 

layer across all latitudes, a constant temperature lapse rate of 6.5K/km is adopted, and 

zero annual amplitude is assumed. This is the distinction between the UNB4 and 

UNB3 models. Last notes for the UNB models are that the unit of height h is in 

kilometres rather than metres, and it might be proper to set the peak variation time in 

the southern hemisphere to July 28, since the climate is contrary to that in the northern 

hemisphere. 

3.2.2.2.4 Mapping Functions 

There are numerous mapping functions to scale the modelled zenith delay to a signal 

path delay. The elevation angle E which relates to the zenith angle Z with E=90˚-Z is 

popularly used in the literature of mapping functions. The simplest mapping function 

model is to apply m(E)=1/sinE for both the zenith hydrostatic and water vapour 

components, which assumes that the Earth is planar, and thus is not suitable for low 

elevation satellites. This mapping function may be improved using [Misra and Enge, 

2001] 

2)001.1/(cos1

1
)(

E
Em

−
=  3- 49 

Most of geodetic-quality mapping functions use a continued fraction form. This 

functional form for the mapping functions was first proposed by Marini [1972] and 

further developed by Chao [1974] , Davis et al. [1985], Ifadis [2000] , Herring [1992] 

and Niell [1996; 2000]. Marini’s original form is given as 
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where a, b, c, etc. are the mapping function parameters to be determined. They may 

be constants or functions of other variables such as the latitude, height, surface 

temperature and pressure, and the day-of-the-year. Herring [1992] specified Marini’s 

formula with three constants and normalised this function to be unity at the zenith 
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However, accurate mapping functions distinguish the difference in dry and wet 

delays. Chao [1974] adopted Marini’s form but separated mapping functions for the 

hydrostatic and dry components. Only the first two terms are used in Chao’s 

functions, with a replacement of the second sinE by tanE. The specific dry and wet 

mapping functions by Chao are as follows 
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Chao’s mapping functions can be used down to 10˚ of elevation. The merits of Chao’s 

formulae are simple in forms, and independent on location and user height. As no 
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meteorological data are required, these mapping functions are suitable for kinematic 

applications. 

Niell [1996] kept the form of the Herring’s formula, but introduced an extra height 

correction term. He assumed that the elevation dependence was a function of the site 

position (latitude and height above sea level) and day-of-the-year. The proposed 

mapping functions are 
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where: 

• hs is the receiver height above sea level in unit of kilometres; 

• Mr is a mapping function to account for station height; 

• ah,bh,ch are constants of 2.53×10-5, 5.49×10-3, 1.14×10-3 respectively; 

• ad,bd,cd are Niell’s dry parameters, which change with latitude and observation 

time in day-of-the-year. 

As has been introduced in the UNB3 model, tabulated mean values of ad,bd,cd are 

given at an interval of 15˚, and the temporal variation amplitudes are provided. Linear 
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interpolation is required for arbitrary latitude of a user using the same scheme as in 

the UNB3 model 
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Half-year days should be added to DoY (day-of-the-year) if a location is in the 

southern hemisphere to account for the weather difference. Neill’s wet zenith 

mapping function takes the form of Herring (see Eq.3-40). The wet mapping 

parameters of a, b, and c only depend on site latitude, and no annual variations are 

assumed. A user’s mapping parameters can be obtained by a simple linear 

interpolation from the given table. 

These precise mapping functions are developed for geodetic applications such as 

VLBI, SLR, and precise permanent GPS tracking. The accuracy is at the millimetre 

level even down to elevation of 3~5˚, which is suitable for extracting water vapour 

information contained in low elevation GPS signals. “GPS meteorology” for water 

vapour monitoring has therefore attracted much research attention. 

3.2.2.3 Multipath Errors 

Multipath error occurs when a GPS signal reaches an antenna via more than one path. 

The reflected signal travels a longer distance than the direct signal and is thus 

delayed. The errors of the multipath in GPS signals, both code and carrier phase, 

depend upon the reflected signal strength and the way that the signal is reflected. 

Although it affects both the carrier and code measurements, the magnitudes of the 

error differ significantly. Signals from low satellite elevation manifest greater 

multipath errors than signals from high elevation, and therefore a simple mitigation 

method is to raise the allowable elevation cut-off angle. 
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The multipath error in code measurements varies from ±1m in a benign environment 

to ±10~20m, and it may even grow to about 100m or more in the vicinity of buildings 

[Hofmann-Wellenhof et al., 2001]. However, the typical range of multipath error in 

code pseudorange measurements is ±1~5m [Misra and Enge, 2001] which is still two 

orders of magnitude higher than the multipath error in the carrier phase measurements 

(±1~5cm).  

A mathematical scheme to illustrate the multipath effect on the carrier phase is given 

in Hofmann-Wellenhof et al. [2001]. The interfered receiving signal contains a direct 

line-of-sight part, and a reflected signal part with a phase shift ∆φ and an amplitude 

attenuation β 

)cos(cos ϕ∆+ϕ⋅β+ϕ= AAsignalreceived  3- 56 

Through trigonometric relationships, the errors in the carrier phase due to the 

multipath δφ can be determined 
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The strongest possible reflection is defined by β=1. From Eq.3-57 it is clear that the 

error in the carrier phase measurement due to the multipath does not exceed a quarter 

cycle. For the GPS L1 carrier phase signal that has a wavelength of about 20cm, this 

is equivalent to ±5cm. It also indicates that the multipath effect has a periodic 

property, thus, a longer observation time would benefit the multipath reduction in 

static GPS applications. 

More accurate modelling of multipath is based on Eq.3-57, but taking all incoming 

signals into consideration [Leick, 1995] 
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And a multipath estimation approach is also described by Blewitt [1998]. 

Multipath mitigation can be achieved by locating the antenna away from reflectors, 

raising the height of the antenna, applying a ground plate to the antenna to mask the 

reflecting signal from lower angles, adopting an expensive choke ring antenna if it is 

feasible, or all of the above. The antenna and receiver designs from manufacturers 

play key roles in multipath error mitigation. Techniques such as the narrow correlator 

spacing, the strobe correlator multipath rejection, and the multipath estimating delay 

lock loop may reduce most of the error [Hofmann-Wellenhof et al., 2001]. The phase 

signal to noise ratio (SNR) has also been used as an indicator of the magnitude of 

multipath effects, and contributes to a better multipath estimation. References for 

further study are in Georgiadou and Kleusberg [1988], Braash [1996], and Comp and 

Axelrad [1996]. 

Multipath effects in kinematic applications are more severe than in static applications 

because the motion of a receiver antenna causes large fluctuations in the signals 

reflected from the surroundings [Grewal et al., 2001]. Therefore, special treatment of 

multipath is always required in order to improve the positioning accuracy. 

3.2.3 Receiver Dependent Errors 

3.2.3.1 Receiver Clock Error 

Subject to the cost of manufacturing, a GPS receiver clock is normally made from a 

quartz crystal oscillator, which is different from the GPS time by a clock offset, and 

this offset tends to drift. The receiver clock offset at the instant of measurement has 
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the same effect on all tracked satellite observables, thus it becomes the fourth 

unknown in addition to the three coordinate components for GPS point positioning.  

The receiver clock error may be estimated as the fourth unknown when more than 

four satellites are observed; it may also be eliminated by double-differencing or 

between-satellite single-differencing. However, the residual of the clock error may 

remain. Unlike satellite clocks, the receiver clock information is not readily known 

and consequently a good estimation benefits almost all GPS applications. In this 

research, however, the receiver clock drifts are of particular interest. 

There are two schemes for manufacturers to deal with the receiver clock drift. One is 

to steer the receiver clock continuously, an algorithm that can be implemented in the 

receiver’s embedded software. The clock drift is adjusted epoch by epoch.  The other 

approach is to allow the drift to reach a certain threshold (typically 1ms), and then 

reset the clock with a jump to a new epoch. The former is referred to as receiver clock 

“steering”, and the latter is referred to as receiver clock “reset”. The receiver clock 

reset has a detrimental effect on some applications in terms of signal sampling since 

many discrete signal-processing (DSP) techniques are based on equal spaced time 

intervals. Whenever there is a clock reset, there is a change of the time intervals of the 

sampled signals.  

There are many approaches to model the receiver clock error. The simplest way is to 

model the receiver clock in a similar way to the correction of the satellite clock errors, 

that is, to use a polynomial to represent the error of the receiver clock by 

2
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where: 

• a0,a1,a2 are the polynomial coefficients, some times referred to as the clock 

bias, clock rate, and clock drift respectively; 
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• tref is the reference time; the observation beginning time may be chosen as the 

reference time. 

Another way to model the clock error is a variation of Eq.3-59, given as 

2
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where a dynamic modelling concept is used by introducing the change-rate and 

acceleration of the receiver clock. 

An alternative to model the clock error utilises the physical character of a crystal 

clock. The clock error comes from the errors in the frequency and phase of a crystal 

oscillator, which are assumed to be random walk processes over a reasonable time 

span [Brown and Hwang, 1992; Farrell and Barth, 1999]. A two-state Kalman filter is 

used and a discrete dynamic state equation is given as 
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where ωf is the frequency noise and ωg is the phase noise. The noise behaviours can 

be modelled by the following driving noise matrix 
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where Sf and Sg are the power spectral densities of the frequency and phase error 

respectively, which can be determined via the Allan variance parameters. Typical 

Allan variance parameters can be found in Brown and Hwang [1992].  
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3.2.3.2 Receiver Site Displacement 

Precisely speaking, a receiver position changes with time, even though it is static on 

the ground. This is because in a global sense, the station undergoes real or apparent 

periodic movement due to tectonic motions, tidal effects, and loadings from the 

atmosphere and oceans. The movements may reach a few decimetres level, and thus 

must be modelled by adding the site displacement correction terms. 

Kouba [2001], Kouba and Héroux [2003] list the displacement terms for effects with 

magnitudes more than ±1cm: 

• Solid Earth tides: are the deformations of the solid Earth as it rotates within the 

gravitational fields of the Sun and the Moon. Similar to ocean tides, the Earth 

deforms because it has a certain degree of elasticity. The solid Earth tidal 

correction can be mathematically expressed in terms of: 1) the gravitational 

parameters of the Earth, the Moon and the Sun; 2) the position vectors of the 

station, the Moon and the Sun. 3) Spherical harmonics of degree and order 

(n,m) characterised by the Love number hnm and the Shida number lmn . The 

magnitudes may reach about 30cm in the radical and 5cm in the horizontal 

directions. Consequently neglecting this correction may result in systematic 

position errors up to 12.5cm in the radial and 5 cm in the north directions. 

• Ocean loading: the Earth’s surface dips under the load of the ocean tide and 

thus the magnitude of this deformation is dominated by diurnal and semidiurnal 

periods of the tide. Ocean loading may exist everywhere on the Earth but has 

significant effects on costal areas, with the same temporal frequencies as the 

tide. However, for single epoch positioning at ±5cm level or static positioning 

longer than 24 hours, or inland surveying, the effects of ocean loading can be 

neglected.  
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• Rotational deformation due to polar motion: Similar to the solid Earth tide 

effect due to attractions from the Sun and the Moon, the Earth polar motion 

(changes of the Earth rotation axis) results in station positional deformation 

with periodical characteristics due to minute changes in the Earth centrifugal 

potential. Analogous spherical harmonic expansions are used with second 

degree Love and Shida numbers. The polar motion may reach up to 0.8 

arcsecond, and the corresponding site displacements may reach about 0.7 cm in 

horizontal directions, and over 2.5cm in vertical.  

• Earth rotation parameters (ERP): the pole position (Xp, Yp) and UT1-UTC, 

along with the conventions for sidereal time, precession and nutation facilitate 

accurate transformations between terrestrial and inertial reference frames. Users 

who utilise software working in an inertial system should apply this correction.  

The correction models and equations for receiver site displacement may also be found 

in Kouba and Héroux [2001; 2003], Kouba [2003]. Another good reference is in Bock 

[1998]. 

3.3 Summary 

The principles of absolute GPS positioning or PPP are introduced in this chapter, by 

further formation of the observation equations, performing the least squares 

adjustment and evaluating the position estimates. GPS errors and modelling methods 

are elaborated from the point of views of PPP.  

Since the Doppler shift is the first-order derivative of the carrier phase, all errors in 

the carrier phase measurements would have some effects on the measured Doppler 

shifts. Amongst the various error sources in the range measurements, the relativistic 

effects and the troposphere errors are comprehensively discussed . This is because 

they are the two major error sources limiting the accuracy of precise velocity 

determination using the GPS. 
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C h a p t e r  F o u r  

PRECISE VELOCITY AND ACCELERATION DETERMINATION 

USING GPS 

Velocity is the first derivative of position with respect to time, and acceleration is the 

second-order derivative of the position with respect to time. Therefore, one may 

obtain the ground velocity and acceleration of a GPS receiver directly through 

position differentiation. However, the accuracy of the resultant velocity and 

acceleration is degraded due to the poor GPS positional accuracy in standalone mode 

under SPS. The objective of this chapter is to introduce an alternative method of 

determining precise velocity and acceleration using the GPS Doppler shift 

measurements. 

A GPS receiver-satellite pair is in the Earth’s gravity field and GPS signals from the 

satellite travel at the speed of light, hence both Einstein’s special and general 

relativity theories are to be considered in the Doppler effects of GPS. 

This chapter establishes the relationship between the measured Doppler shift and the 

user’s ground velocity by considering both the special and general relativistic effects. 

A unified Doppler shift model is developed, which accommodates both the classical 

Doppler effect and the relativistic Doppler effect. A highly accurate GPS Doppler 

shift observation equation is presented with all major GPS error sources considered. 

The principle of acceleration determination using GPS is also discussed. This method 

uses a virtual GPS observable, i.e. the change-rate of the Doppler shift or simply the 
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Doppler shift rate. The methods to obtain the Doppler shift rate “observable” will be 

discussed in Chapter Seven. 

4.1 Doppler Effect and Velocity Determination 

Designed as a PVT system, GPS is capable of providing instantaneous velocity for a 

moving user [Hofmann-Wellenhof et al., 2001]. With SA turned off, ±0.2m/sec per 

axis accuracy (95%) is guaranteed by the GPS system for standalone GPS users 

[DoD, 1996]. To date, such an accuracy level of velocity can be easily achieved by 

code-only low-cost GPS receivers [Zhang et al., 2003a]. Ground velocity accuracy at 

the sub-centimetres per second level, has also been shown to be achievable in 

standalone mode [Van Graas and Soloview, 2003; Serrano et al., 2004]. 

Compared to the positional accuracy specifications under SPS, it is obvious that the 

above velocity accuracy is not obtained through direct differentiation of the GPS 

determined positions with respect to time.  

For high accuracy velocity determination, GPS satellites are assumed to be known 

signal sources from which a GPS receiver senses the Doppler frequency shifts due to 

the relative motion between the observed satellites and the receiver. The velocity of 

the GPS receiver is resolved if Doppler shifts from at least four GPS satellites have 

been measured. 

4.1.1 Classical Doppler Effect  

The Doppler effect is the apparent change in frequency of a wave that is received by 

an observer moving with respect to the source of the emitted wave [Wikipedia, 2004]. 

The Doppler effect was named in honour of Christian Doppler, an Austrian 

mathematician who first proposed the idea in 1842 when he observed the coloured 

lights of a double star named Albireo (β Cygni). He proposed that the differences in 
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colour were due to the motion of the stars, since the frequency of the light could be 

increasing from an approaching star and decreasing from a receding star. 

Doppler’s conjecture was proven by an experiment designed by C. H. D. Buijs-Ballot 

in 1845 [Calvert, 2004]. He tested for sound waves by standing next to a rail line and 

listening to a rail-car full of musicians as they approached him and after they passed 

him. He confirmed that the frequency of the sound was higher as the sound source 

approached him, and lower as the sound source receded from him. 

The changes of sound frequency in the air fall into the category of the classical 

Doppler effect wherein the velocity of the sound wave is much less than the speed of 

light. In the classical Doppler Effect, the following formula holds [Wikipedia, 2004] 
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where: 

• A dot over a vector represents the first derivative of the vector with respect to 

time; 

• s denotes the transmitter; 

• r represents the receiver; 

• fr is the received frequency from the receiver; 

• fs is the original frequency of the sound wave (transmitter or sender); 

• c0 represents the speed of the wave (sound) in the air; 

• s
rn  is the receiver-transmitter line-of-sight unit vector; 

• s
rr is the receiver-transmitter vector;  

• s
rrɺ is the relative velocity vector between the signal transmitter and the receiver. 
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The Doppler shift D can be related to the relative velocity by rewriting Eq.4-1 into the 

following form 
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where 
f

c
s

0=λ is the wavelength of the wave. Note that the Doppler shift D is defined 

as having a positive sign when the receiver and the transmitter approach each other 

and a negative sign when they depart from each other. This equation can be rewritten 

into the following form 

s
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rsD rn ɺ•=λ  4- 3 

4.1.2 Relativistic Doppler Effect 

4.1.2.1 Special Relativity Only 

The GPS signal propagation is quite different from sound propagation in the air since 

GPS satellites orbit the Earth at high speed (approximately 3.8km/s), transmitting 

electromagnetic wave signals that travel at the speed of light. In this case Einstein’s 

relativity theory applies. This is the relativistic Doppler effect, wherein the received 

signal frequency is [Wells et al., 1987; Seeber, 1993] 
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where: 

• v is the magnitude of the satellite velocity; 
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• c is the speed of light in vacuum;  

• θ is the angle between the satellite velocity vector and the receiver to satellite 

line-of-sight vector. 

 

 

 

 

 

 

Figure 4- 1: A sketch of the receiver to satellite pair in space 

A further explanation of the relativistic Doppler effect expressed by Eq.4-4 is given in 

Fig.4-1. It can be seen that the satellite velocity v may be mapped into the receiver to 

satellite range-rate by multiplying cosθ  

θcos⋅= vr s

r
ɺ           4- 5 

Therefore, Eq.4-4 can be rewritten in the vector form by replacing θcosv  with 
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The denominator in Eq.4-6 can be expanded using the binomial series 
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When the higher order terms in Eq.4-7 are neglected, the Doppler shift becomes 
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where once again  D is positive when satellite s is approaching and negative when the 

satellite is departing. Eq.4-8 gives the relationship between the Doppler shift and the 

receiver-satellite line-of-sight range-rate. This form of expression for Doppler shift D 

has been widely used in velocity determination from GPS measurements. 

Equation 4-6 is the relativistic Doppler effect equation under special relativity. Since 

the satellite speed v<<c, the denominator in Eq.4-6 is approximately unity and a 

rearrangement of term s

r

s

r rn ɺ• with the substitution of θcosv− gives the classical 

Doppler Effect in the form of Eq.4-2, as shown in Eq.4-8. Hence, the relativistic 

Doppler effect is in a more generic form.  

Among the neglected terms in Eq.4-6, only the second-order v/c term may have some 

numerical effect on the frequency reception. Seeber [1993] terms it the “transversal” 

Doppler effect, whereas Ashby and Spilker [1996] refer to it as the “second-order 

Doppler effect”. The magnitude of this effect may be evaluated from 
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Since GPS signals have very high frequencies (L1= 1575.42 MHz, L2=1227.60MHz) 

and as a result rf∆  is greater than 0.1Hz, which is equivalent to over 2cm/s error in the 

range-rate. Therefore, the second-order Doppler effect should be taken into 

consideration for precise applications. 

4.1.2.2 GPS Relativistic Doppler Effect 

The range vector from satellite s to receiver r is 
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From the above equation, the difference between the coordinate time of reception and 

the coordinate time of transmission is 

c
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Differentiating Eq.4-11 with respect to coordinate time  
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This can be formulated as 
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The ratio of the received frequency fr and the transmitted frequency fs can be 

expressed as 
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At every space-time point, if the field is weak, then the proper time τ is related to the 

coordinate time t by [Ashby and Spilker, 1996] 
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where g00 is the classical approximation of the zero-zero component of the metric 

tensor in a rotating frame such as the ECEF system 
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where Φ is the total energy that a receiver or satellite has.  

For a ground receiver, the total energy is the sum of the effective gravitational 

potential, kinetic energy and the centrifugal potential. However, the kinetic energy 

term can be neglected, as the ground velocity is normally very small when compared 

with the speed of light (especially when squared). The metric tensor for the receiver is 
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, where V(rr) is the receiver gravitational potential, 

which can be approximated by only taking into account the Earth equatorial 

oblateness as 












−−= )(sin)(1 2

2

2 r

r

e

r

r BP
a

J
GM

V
rr

       4- 17  

where 

• GM is the product of the universal gravitation constant G and the Earth’s mass 

M; 

• J2=1.08262998905Η10-3 is the Earth’s second zonal harmonic coefficient, also 

known as the dynamical form factor; 

• Br is the latitude of the receiver; 

• P2 is the Legendre polynomial of degree two, P2(x)=0.5(3x2-1); 

• ae is the semi-major axis of the WGS-84 ellipsoid. 

Substituting g00 into Eq.4-15 and expanding it with the binomial series, the following 

expression for receiver r is obtained 
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For satellite s in the orbit, the total energy is the sum of gravitational potential and the 

kinetic energy, i.e. 
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In its high orbit, the Earth gravitational potential can be derived from the field of point 

mass. Substituting Eq.4-14, 4-18 and 4-19 into Eq.4-13, the relationship between the 

received frequency fr and the transmitted frequency fs can be formulated as  
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The above equation can be rewritten into 
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Since the sum of the potential energy and the kinetic energy for a GPS satellite is 

constant during the motion in its orbit, this gives [Montenbruck and Gill, 2000] 
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where aorb is the semi-major axis of the satellite orbit. 

Substituting Eq.4-22 into Eq.4-21 yields 
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Since the GPS system has already adopted a rate adjustment [Ashby and Spilker, 1996] 

by  
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where f0 is the nominal GPS frequency, after incorporating the rate adjustment, Eq.4-

23 changes to  
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This is the theoretical relativistic Doppler effect on GPS. As has been stated, this 

equation is tailored to applications in ECEF frames. The equivalent relativistic 

Doppler frequency shift equation for applications in an inertial system is given by 

Ashby [2003, p.27], which is in the form of 
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As most high accuracy velocity determination applications are in the ECEF frame, 

Eq.4-25 can be conveniently used along with the GPS positioning. Moreover, it has 

several intuitive meanings:  

• the last term 
ss

r

r
s
r

c

1
1

c

1
1

rn

rn

ɺ

ɺ

•−

•−
 is due to the special relativity induced by the relative 

motion of satellite s and receiver r; and 

• the terms in the square brackets are the contributions to the Doppler frequency 

shift from the general relativity, where the second term
2
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c

)( rrΦ−Φ
 is the 

correction of the receiver potential difference from the geoid, and the third term 

)
a

(
c
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112
2

−  is the effect from the orbit eccentricity. 

Hence, one can see that in GPS signal reception, extra frequency shifts are introduced 

due to the presence of the satellite orbital eccentricity and the receiver gravity 

potential difference. 

The special relativity term in Eq.4-24 can be further expanded into the following form 
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where r
ss

r rrr ɺɺɺ −= . Neglecting the last term on the right hand side of Eq.4-27 and the 

terms in the square brackets of Eq.4-26, then it agrees with the Doppler frequency 

shift under the condition of special relativity only. 

Substituting Eq.4-27 into Eq.4-26 






•
+−•+

Φ−Φ
•+






 •
+−+

Φ−Φ
+≈

•
+

•
+














−+

Φ−Φ
+=

233

0

22

0
00

222

0
0

)
11

(
2)]([

)
11

(
2)(

)1()
11

(
2)(

1

cac

GM

c

cac

GM

c
ff

ccac

GM

c
ff

s

r

s

s
orb

s

r

s

r
rs

r

s

r

s

r

s

r

s
orb

r

s

r

ss

r

s

r

s
orb

r
r

rr

r
rn

r
rn

rn

r

r

rrrn

r

r

ɺɺ
ɺɺ

ɺ

ɺɺɺ

    4- 28 

This can be further simplified as 
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Scaling the Doppler frequency shift into the velocity domain  
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where
c

srɺ
acts as a line-of-sight direction correction applied to the range-rate due to 

the satellite velocity. The meaning of Eq.4-30 is clear. It shows that the Doppler shift 

relates to a “direction changed” receiver-to-satellite range-rate with the relativistic 

biases of the receiver potential difference and the satellite orbital eccentricity. 

4.1.3 Doppler Shift Observation Equation 

Thus far, we have established the inter-relationship of the theoretical Doppler shift 

and the relative motion between satellite s and receiver r, with the Earth’s gravity 

field considered. Due to imperfections of the satellite clock and receiver clock, the 

presence of non-vacuum media such as the ionosphere and troposphere, and other 

inherent errors in a GPS observation, there are other terms in the measured GPS 

Doppler shift. Taking account for all the aforementioned effects, the proposed 

Doppler shift observation equation is as follows 
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where: 

• subscript i designates the frequency L1 or L2; 
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• SagnacdR  is the Sagnac correction for range measurements, and  SagnacRd ɺ  is the 

corresponding correction for the Doppler shift observables; and 

• Rd ɺ  is the remaining relativistic correction for the Doppler shift measurements. 

4.1.4 Receiver Velocity Determination 

The velocity of a GPS receiver can be determined in an analogous way to GPS point 

positioning. To simplify the observation equation 4-31, it is assumed that all the errors 

and biases have been well modelled and corrected for by neglecting all except the 

receiver clock rate, as 
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where: 

• s

rn  is the receiver to satellite line-of-sight unit vector; 

• r

ss

r rrrrɺɺɺ −≡ rr  is the receiver to satellite range-rate vector; 

• )t(td r
ɺ  is the receiver clock rate. 

Since the satellite velocity in the orbit can be calculated using the broadcast 

ephemeris, which will be discussed in Chapter Five, there are only four unknowns in 

Eq.4-32. These unknowns are the three vector components of the user velocity and 

one receiver clock rate. The linearisation process is also analogous to the case of point 

positioning, using the calculated satellite velocity, receiver velocity approximation 

and the computed Doppler value. Neglecting the tedious process, the final error 

equation for the Doppler measurement can be expressed in the form of 
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where s

rf  is the difference between the Doppler measurement and its nominal value 

calculated using the a priori values of the unknown parameters.  

With at least four Doppler shift measurements at one epoch, the error equation system 

can be formed as 
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Comparing the above error equation with Eq.3-6, the design matrix is identical. This 

property eases the computational load for velocity determination. The velocity can be 

easily established along with the position because one can “reuse” the normal 

equation to save computational time.  

When the Doppler measurements are used in a static mode, one can obtain a position 

fix with only three GPS satellites since there are six observables while there are only 

five unknowns, i.e. three position vector components, one clock bias and one clock 

rate [Hofmann-Wellenhof et al., 2001]. 

The above mentioned velocity determination method can be used to obtain the a 

priori receiver velocity. Rigorous velocity determination can then be carried out based 

on Eq.4-31, with all the errors in Doppler shift measurements corrected for. 

4.2. Acceleration Determination Using GPS 

There are generally two methods of acceleration determination using GPS. Both 

methods have been widely used in airborne gravimetry where differential GPS 

techniques are employed. Data from the GPS receiver whose antenna is mounted on 

an aircraft are processed together with data from the ground reference GPS receivers. 
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The most popular method of determining aircraft acceleration from such systems is 

the position method, whereby positions in the aircraft trajectory are twice 

differentiated with respect to time. Typical applications of this method can be found 

in the literature [Brozena et al., 1989; Wei and Schwarz, 1995; Bruton et al., 1999; 

Psiaki et al., 1999; 2000; Bruton and Schwarz, 2002]. The position method requires 

the positional accuracy to be as high as possible since the double differentiation 

amplifies the noise rather quickly. 

The alternative method is the Doppler rate method where the change-rate of Doppler 

shift is derived from either the carrier phase (second-derivative) or the precise 

Doppler measurement (first-derivative). Although in the literature this method is 

generally referred to as the carrier acceleration method, it is not restricted to carrier 

measurements and the author believes it is more appropriate to refer to as the Doppler 

rate method. The change-rate of Doppler shifts has been derived and used to 

determine the receiver’s acceleration.  

4.2.1 Range Acceleration 

Following Jekeli and Garcia [1997], vector operation is used to derive the range 

acceleration. It can be seen from Fig.4-2 that  

 

 

 

 

 

 

 

Figure 4- 2: Geometric relationships of receiver-satellite vectors 
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where rr
s can be expressed in terms of the unit vector nr

s and the range ρr
s 
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From Eq.4-36, the range ρr
s can be expressed by  
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Differentiating Eq.4-37 with respecte to time gives 

s

r

s

r

s

r

s

r

s

r rnrn ɺɺɺ •+•=ρ          4- 38 

Note that s

rnɺ  is perpendicular to vector rr
s, therefore their dot product is zero. This 

leads to 
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In Eq.4-39, the range-rate is a dot product of the line-of-sight unit vector and the 

relative velocity between the satellite and receiver. This is the fundamental velocity 

equation used in the derivations in § 4.1.  

From the fundamental velocity equation, the range change-rate between receiver r to 

satellite s, s

rρɺ , can be rewritten as follows 
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Differentiating Eq.4-40 with respect to time yields 
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There are only two unknowns in Eq.4-41: rrɺɺ  and s

rnɺ . The latter is an intermediate 

unknown that must be solved first. To obtain it, differentiating the first term on the 

right hand side of equation 4-36, and then rearranging terms 
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Substituting s

rnɺ  into equation 4-36 and replacing s

rrɺ  with s
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acceleration is 
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where unit vector properties of 1s

r

s

r =• nn  and 0s

r

s

r =• nnɺ  have been employed in 

the derivation process. It can be seen that the receiver to satellite range acceleration 

consists of two parts: one is the acceleration caused by the relative motion of the 

receiver and satellite pair projected into the line-of-sight direction; and the other is a 

centrifugal-like acceleration (ibid).  

The “centrifugal” acceleration term has very good tolerance for velocity errors owing 

to the long receiver to satellite distance in the denominator. Since the GPS satellite 

acceleration can be calculated with better than ± 0.1mm/s2 level of accuracy (see 

Chapter Five), if the range acceleration can be precisely obtained, then a receiver’s 

acceleration may be resolved with relatively high accuracy. 

4.2.2 Doppler Rate Observation Equation 

In GPS, unfortunately, there is no direct observation of the range acceleration s

rρɺɺ . 

However, the change-rate of the Doppler shift (Doppler rate hereafter) measurements 

with respect to time can be numerically obtained and used as a “virtual” measurement, 

which relates to the range acceleration by 

s

riiii ttD ρ=Φλ=λ ɺɺɺɺɺ )()(         4- 44 

This virtual observable has been introduced by Jekeli [1994], and followed by Jekeli 

and Garcia [1997] and Kennedy [2003]. The Doppler rate is the first-derivative of 

Doppler shift with respect to time, and the second-derivative of the carrier phase 
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measurement. In order to obtain precise Doppler rate, different differentiators have 

been adopted based on precise carrier phase observables. However, various methods 

of differentiation may have various effects on the resultant derivative, and their 

suitability varies from situation to situation. A good reference for differentiator design 

in GPS applications is Bruton et al. [1999]. However, a comprehensive discussion on 

differentiator designs is provided in Chapter Seven, with an emphasis on real-time 

and dynamic applications. 

Similar to the GPS range and Doppler measurements, this virtual observable is biased 

by GPS errors, and therefore relates only to the “pseudo range acceleration” [Jekeli 

and Garcia., 1997] 
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where: 

• Id ɺɺ  is the second derivative of the ionospheric errors with respect to time; 

• Td ɺɺ  is the second derivative of the tropospheric errors with respect to time; 

• dtr, dt
s are the receiver clock and satellite clock errors respectively. The double 

dots over them represent the second derivatives with respect to time; 

• Md ɺɺ is the second derivative with respect to time of the multipath errors; 

• Rd ɺɺ  is the second derivative with respect to time of the relativistic effect errors. 

Comparing Eq.4-45 with Eq.4-31, there are no terms corresponding to the line-of-

sight correction and the receiver potential difference terms. One of the explanations is 

that they might be present in the Doppler rate “observable”; however, the magnitudes 

are so small that they are negligible.  
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4.2.3 Receiver Acceleration Determination 

Receiver acceleration determination is analogous to point positioning and receiver 

velocity determination described in § 4.1.4. The acceleration of a GPS receiver r can 

be determined by assuming that the errors and biases in the Doppler rate 

“observations” at epoch t have been appropriately corrected for with the receiver 

clock acceleration as the only term remaining, and the Doppler rate observables have 

been derived. As such, the simplified Doppler rate “observation” equation for the 

receiver r and satellite s is 
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Since the satellite velocity and acceleration are known, and the receiver to satellite 

range-rate can be calculated, and this leaves four unknowns in Eq.4-46. They are the 

three receiver acceleration components and the second time derivative of receiver 

clock.  

Therefore, at one epoch if there are at least four satellites being tracked, and for each 

satellite tracked the Doppler rate Dɺ  can be derived from Doppler measurements or 

carrier phase measurements, then the instantaneous receiver acceleration can be 

determined.  

4.3 Summary 

The principles of velocity and acceleration determination using a GPS receiver in 

standalone mode have been presented in this chapter. Doppler and Doppler rate 

measurements are used in precise velocity and acceleration determination 

respectively. Taking the velocities and accelerations of the in-view satellites as 

known, the velocity and acceleration determination using GPS is very similar to GPS 

point positioning. 
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A highly accurate Doppler shift observation equation has been developed with both 

the special and general relativity theories taken into consideration. It is demonstrated 

that the line-of-sight direction has a slight change towards the satellite motion 

direction. An interesting research question is therefore raised to see if this also applies 

in the range measurement. It is also illustrated that there is a general relativistic effect 

term due to the receiver potential difference from that of the geoid, and a relativistic 

correction due to the satellite orbit eccentricity. 

The principle of acceleration determination using GPS is discussed based on a virtual 

GPS observable, i.e. the change-rate of the Doppler shift or simply the Doppler shift 

rate. The methods to obtain the Doppler shift rate “observable” will be discussed in 

Chapter Seven. 

The satellite ECEF velocity and acceleration determination using the broadcast 

ephemeris will be discussed in Chapter Five, and methods of error correction for the 

Doppler and Doppler rate measurements will be presented in Chapter Six. 
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C h a p t e r  F i v e  

SATELLITE VELOCITY AND ACCELERATION DETERMINATION 

USING THE GPS BROADCAST EPHEMERIS 

The principles of position, velocity and acceleration determination using GPS have 

been given in the previous chapters where the satellite ECEF position, velocity and 

acceleration (PVA) have been assumed to be known. The question is how to obtain 

the satellite PVA in the ECEF system. The satellite ECEF position algorithm using 

the broadcast ephemeris is described in the GPS interface control document ICD-

GPS-200c. However, the algorithms for real-time satellite ECEF velocity and 

acceleration determination are not available. This chapter deals with the topic of 

satellite ECEF velocity and acceleration determination using the GPS broadcast 

ephemeris. 

Section 5.1 introduces the natural satellite orbit system and addresses its distinction 

from the orbit system adopted by the GPS control segment. The method of GPS 

ECEF velocity determination using the ordinary rotation method is given in detail. 

The complexity of the rotation method has resulted in an easy alternative using a 

simple positional differentiation method.  

A closed-form satellite ECEF acceleration algorithm is also presented, and the 

accuracy of this closed form formula is tested by a comparison with the accelerations 

from the IGS SP3 precise ephemeris. Many real-time applications require that the 

PVA information from GPS receivers can be output at a high rate, thus polynomial 
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representation schemes for the satellite PVA are discussed in order to speed up the 

satellite PVA determination. 

5.1 Satellite Orbit Representation by Keplerian Parameters 

A satellite orbiting the Earth can be described by Kelpler’s laws. However, due to the 

Earth’s oblate mass distribution, the gravitational attractions from the Sun and the 

Moon, and other disturbing forces, there are perturbations in the GPS satellite orbit. 

 

 

 

 

 

 

 

 

Figure 5- 1: Keplerian elements and satellite orbit 

Figure 5-1 illustrates the representation of a satellite position using the Keplerian 

elements. Satellite positions in an ideal, non-perturbing orbit can be represented by: 

• Size and shape of the ellipse: semi-major axis a and eccentricity e; 

• Orientation of the orbital plane relative to the Earth: orbit inclination I and 

longitude of the ascending node Ω; 

• Orientation of the ellipse in the orbital plane: argument of perigee ω; 

• Satellite position in the ellipse: true anomaly U;  

• Reference time: t (time of perigee passage), or toe (time of the reference 

ephemeris). 
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5.1.1 Satellite PVA in “Natural” Orbital Plane 

The “natural” satellite orbital plane system is defined as follows: the origin is located 

at one focus of the elliptical orbit, which corresponds to the position of the mass 

centre of the Earth. The X-axis and Y-axis are defined as being along the major axis 

and parallel to the minor axis respectively. Figure 5-2 illustrates the natural orbital 

system where the perigee is in line with the X-axis. 

 

 

 

 

 

 

Figure 5- 2: Satellite position in the orbital plane coordinate system 

A satellite position in the natural orbit plane system can be expressed [Beutler, 1998; 

Misra and Enge, 2001] by 
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where: 

• a is the semi-major axis of the satellite orbit; 

• e is the eccentricity of the orbit; 

• E is the orbital eccentric anomaly; 
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• r is the instantaneous distance between the satellite and the centre of mass of 

the Earth; and 

• U is the true anomaly. 

The satellite velocity in the natural orbital plane system is given by (ibid) 
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where n is the mean motion of the satellite. The satellite acceleration in the orbital 

plane system is (ibid) 

rr ɺɺɺ ⋅−=
3r

GM
 5- 3 

where G is the universal gravitational constant and M is the Earth’s mass. 

5.1.2 Transform Satellite Position to ECEF System 

It can be seen from Fig.5-1 that the transformation of a satellite position from the 

orbital coordinate system to the ECEF may be carried out by three rotations in the 

following way 

• First rotate the argument of the perigee ω clockwise to the ascending node; 

• Then rotate the angle of I clockwise to the equatorial plane; 

• Finally rotate the angle of the longitude of ascending node Ω clockwise to the 

Greenwich prime meridian. 

The corresponding transform equation is  

rRRRr ⋅ω−⋅−⋅Ω−= )()()( 313 IECEF  5- 4 
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where Rn(θ) is the rotation matrix, the subscript n = 1,3 corresponding to the rotation 

axes of X and Z respectively. The rotation matrixes R3(θ) R1(θ) are given as [Farrell 

and Barth, 1999, p.34] 
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5.2. ICD-200 Orbital Coordinate System 

The algorithm for GPS satellite ECEF position determination from the broadcast 

ephemeris is presented in the ICD-GPS-200c. It is important to stress that the orbital 

coordinate system used in the ICD-GPS-200c (ICDorb) is slightly different from the 

above “natural” orbital system. The ICDorb system sets the X-axis aligned to the right 

ascending node rather than the perigee. The difference is reflected mainly in the 

parameterisation and calculation of the three pairs of amplitudes of harmonic 

correction terms for the sinusoid correction models of the argument of latitude, the 

orbit radius, and the inclination angle, see Eq.5-16 and Eq.5-17.  

By such a coordinate system definition, there are only two rotations to transform the 

satellite position from the “natural” orbital system to the ECEF system, i.e. 

ICDorb

e

iICDorb1c3ECEF )I()( rRrRRr ⋅≡⋅−⋅Ω−=  5- 6 

where e

iR  is defined as the rotation matrix from the ICDorb to the ECEF. According 

to the ICD-GPS-200c, the rotation matrix has the following form 
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where Ωc is the corrected right ascension of the ascending node, which is calculated 

by  

oeeke0c tt)( ⋅Ω+Ω−Ω+Ω=Ω ɺɺɺ

  5- 8 

where: 

• 0Ω is the right ascension of the ascending node at reference time; 

• Ωɺ  is the change-rate of the right ascension; 

• eΩɺ  is the angular change-rate of the Earth’s rotation; 

• tk is the calculation time;  

• toe is the reference time of the ephemeris parameters. 

To better represent the satellite positions in the orbit, three change-rate parameters are 

used to describe the linear change characteristics of the satellite mean motion n, Ωc, 

and I. These rate parameters are vitally important for the ECEF satellite velocity and 

acceleration determination. 

The adoption of the ICD-GPS-200c orbit representation scheme by the GPS Control 

Segment has some advantages. Firstly, the satellite position calculation could become 

more effective given the fact that the GPS orbit is near circular and the effective orbit 

representation time is short (2~3 hours), there are only two rotations to transform an 

orbital position in the ECEF system. Secondly, there is no need to introduce another 

parameter, i.e. the change-rate of the argument of perigee thus reducing the payload of 

the navigation message. Since the perigee itself is hard to define in orbits with small 

eccentricities [Montenbruck and Gill, 2000: p.30], the adopted broadcast orbit 

representation scheme not only alleviates the navigation payload but also avoids the 

difficulty in defining the change-rate of the argument of perigee. However, as will be 
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discussed later, it is rather complicated when the satellite velocity needs to be 

determined.  

5.3 Transform GPS Orbital Velocity to ECEF 

The transformation of a GPS satellite velocity from the ICDorb system to the ECEF 

may be simply given through differentiation of Eq.5-6 by 

ICDorbICDorb

e

iECEF rRrRr
e

i
ɺɺɺ ⋅+⋅=   5- 9 

where: 

• e

iRɺ  is the first-derivative of the rotation matrix e

iR  with respect to time; 

• ICDorbrɺ  is the velocity of the satellite in the ICDorb system. 

These two unknowns must be resolved prior to obtaining the ECEF velocity. 

5.3.1 Determination of e

iRɺ  

To determine the first-derivative of the rotation matrix e

iRɺ , it is necessary to obtain 

the derivatives of the corrected longitude of ascending node Ωc and the inclination I. 

These can be done simply through their own definitions by 

iI

ec

ɺɺ

ɺɺɺ

=

Ω−Ω=Ω
 5- 10 

where iɺ is IDOT, the inclination change-rate, which is one of the parameters in the 

broadcast ephemeris. 

Differentiating Eq.5-7 with respect to time, and then substituting the above rates 



 
108 

















⋅−⋅

⋅Ω−Ω⋅Ω⋅Ω−Ω⋅Ω−Ω⋅Ω

⋅Ω+Ω⋅Ω⋅Ω+Ω⋅Ω−Ω⋅Ω−

=

IIII

IIIIII

IIIIII

cccccccc

cccccccc

e

i

ɺɺ

ɺɺɺɺɺ

ɺɺɺɺɺ

ɺ

sincos0

coscossinsinsincoscossincos

cossinsincossinsincoscossin

R

  5- 11 

The magnitude of Iɺ is of the order of 10-10 to 10-12 [Gurtner, 2001], while the 

magnitude of the sinI and cosI terms are less than 1.0, so Eq.5-11 can be simplified by 

neglecting those Iɺ  terms without losing numerical precision to become 
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5.3.2 Determination of ICDorbrɺ  

The satellite coordinate in the ICDorb system is calculated by 
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where rc is the corrected radius and Vc is the corrected argument of latitude. Note that 

subscript c is used to indicate that they are “corrected” and calculated relative to the 

ascending node. These two variables can be calculated by 

drEearc +⋅−= )cos1(   5- 14 

dUUVc +ω+=   5- 15 

where dr, dU are the harmonic perturbation corrections given by 

)(2sin)(2cos ω+⋅+ω+⋅= UcrsUcrcdr   5- 16 
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)(2sin)(2cos ω+⋅+ω+⋅= UcusUcucdU  5- 17 

where crc, crs, cuc, cus are the harmonic perturbation parameters in the broadcast 

ephemeris for rc and Vc respectively. It is evident from the above equations that the 

ICDorb system is actually defined with the X-axis pointing to the ascending node and 

the broadcast ephemeris is parameterised accordingly. 

The orbital velocity can be obtained by differentiating Eq.5-13 with respect to time 
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Equation 5-18 shows that the derivatives of rc and Vc should be determined prior to 

the calculation of satellite velocity in the ICDorb coordinate system. 

5.3.2.1 Derivation of crɺ  

crɺ  may be derived by differentiating Eq.5-14 with respect to time. The differentiation 

could be carried out in two steps.  

The first step is to differentiate the first term on the right hand side of Eq.5-14 as 

EEeaEea ɺ⋅⋅⋅=⋅− sin)]'cos1([  5- 19 

where the superscript prime is a differentiation operator and Eɺ  may be obtained from 

the Kepler’s equation [Marshall, 2002], or simply from a comparison of Eq.5-1 and 

Eq.5-2 
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It can also be numerically computed along with the solution of Kepler’s equation in 

an alternative form as 

Ee
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EEeEM
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The second step is to obtain the derivative of the second term, dr, on the right hand 

side of Eq.5-14 through differentiating Eq.5-16, assuming that ω is an invariant 

UUcrsUcrcdr ɺ)](2cos)(2sin[2]'[ ω+⋅−ω+⋅−=  5- 22 

where the change-rate of the true anomaly Uɺ  is still unknown. To comply with 

Kepler’s second law which states equal area in an infinitely small time interval dt by 

dtneadtUrc ⋅⋅−=⋅ 22
1ɺ   5- 23 

leads to 
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5.3.2.2 Derivation of cVɺ  

cVɺ  , the derivative of the argument of latitude with respect to time, can be derived in a 

similar manner by differentiating Eq.5-15 and holding ω as a constant 

]'[dUUVc += ɺɺ   5- 25 

where the only unsolved quantity is the second term on the right hand side. This may 

be easily obtained by differentiating Eq.5-17, taking ω as an invariant 
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UUcusUcucdU ɺ)](2cos)(2sin[2]'[ ω+⋅−ω+⋅−=   5- 26 

A C++ implementation of the above velocity algorithm can be found in the source 

code from the National Geodetic Service (NGS) website[Marshall, 2002]. It is 

embedded in function bccalc(…) in the program file  skyplot.cpp. Recently, an 

independent program using the same algorithm was presented by Remondi [2004] at 

the NGS website. Remondi’s derivation and subsequent publication were to answer 

the questions originally raised by the author in this regard when consulting with Steve 

Hilla who is in charge of the NGS GPS Toolbox. 

The algorithm is detailed in this chapter since firstly it is presented in the form of 

source code and pseudo-code respectively in both references, and secondly the 

derivation of the satellite ECEF acceleration requires some of the equations in the 

velocity determination. 

The derivation of the GPS satellite velocity in the ICDorb system is “complicated”, as 

commented in the source code skyplot.cpp. The complexity is caused mainly by the 

derivation of change-rates of the corrected radius and the corrected argument of 

latitude, which is due to the ICD-GPS-200’s orbital system and its effects on the 

representation of the harmonic perturbation parameters. The process of calculating Eɺ  

also contributes to the complexity of the algorithm. Note that by taking ω as a 

constant several times in the derivation process, it may cause an extra error in the 

resultant ICDorb velocity. 

Table 5-1 lists both the velocities and accelerations (for PRN 07 on August 20, 2002) 

derived using the IGS SP3 precise ephemeris. The accelerations were derived using 

the first-order central difference of a Taylor series of IGS SP3 velocities. The 

velocities in Table 5-2 are calculated using the rotation matrix method, and the 

accelerations are determined using the proposed acceleration formula. Table 5-1 and 

Table 5-2 have the same period for the same satellite so one can compare the accuracy 
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of velocity and acceleration from the broadcast ephemeris with the precise ephemeris 

directly. It is useful to point out that, although the precise ephemeris is defined with 

reference to the mass centre of a satellite, which differs from the antenna centre to 

which the broadcast ephemeris is referenced, the velocities can be directly compared 

with each other. 

Time Ax (m/s2) Ay (m/s2) Az (m/s2) Vx (m/s) Vy (m/s) Vz (m/s) 

22:19:01 0.2055 -0.3022 0.1413 329.9513 -888.5965 -2997.0555 
22:19:02 0.2054 -0.3022 0.1414 330.1568 -888.8987 -2996.9141 
22:19:03 0.2054 -0.3022 0.1414 330.3622 -889.2009 -2996.7727 
22:19:04 0.2053 -0.3023 0.1415 330.5676 -889.5032 -2996.6312 
22:19:05 0.2053 -0.3023 0.1415 330.7729 -889.8055 -2996.4897 
22:19:06 0.2052 -0.3023 0.1416 330.9782 -890.1078 -2996.3481 
22:19:07 0.2052 -0.3023 0.1417 331.1834 -890.4101 -2996.2064 
22:19:08 0.2051 -0.3023 0.1418 331.3886 -890.7124 -2996.0646 
22:19:09 0.2051 -0.3024 0.1418 331.5937 -891.0147 -2995.9228 
22:19:10 0.2050 -0.3024 0.1419 331.7988 -891.3171 -2995.7809 

Table 5- 1: Acceleration and velocity from the IGS SP3 precise (PRN07, 20 August 2002) positions and velocities 

Time Ax (m/s2) Ay (m/s2) Az (m/s2) Vx (m/s) Vy (m/s) Vz (m/s) 

22:19:01 0.2055 -0.3022 0.1412 329.9518 -888.5962 -2997.0552 
22:19:02 0.2054 -0.3022 0.1413 330.1573 -888.8985 -2996.9138 
22:19:03 0.2054 -0.3022 0.1413 330.3627 -889.2007 -2996.7724 
22:19:04 0.2053 -0.3022 0.1414 330.5680 -889.5030 -2996.6309 
22:19:05 0.2053 -0.3022 0.1415 330.7733 -889.8052 -2996.4894 
22:19:06 0.2052 -0.3022 0.1415 330.9786 -890.1075 -2996.3478 
22:19:07 0.2052 -0.3023 0.1416 331.1838 -890.4098 -2996.2061 
22:19:08 0.2051 -0.3023 0.1417 331.3890 -890.7121 -2996.0643 
22:19:09 0.2051 -0.3023 0.1417 331.5941 -891.0145 -2995.9225 
22:19:10 0.2050 -0.3023 0.1418 331.7992 -891.3168 -2995.7807 

Table 5- 2: Acceleration and velocity from the rotation method using the broadcast ephemeris 

It can be seen from Table 5-1 and Table 5-2 that although there are small biases in 

each axis, the velocities derived from the broadcast ephemeris are close to those from 

the precise ephemeris, well within ±1mm/s for each axis component. 
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5.4 Transform GPS Orbital Acceleration to ECEF 

Since the orbital acceleration formula is in terms of the position vector, which is 

independent on the orbital orientation, the transformation is much easier, see Eq.5-3. 

One only needs to account for the second-derivative of the rotation matrix e

iR  with 

respect to time, and then the acceleration transformation can be carried out through 

differentiating Eq.5-9 with respect to time. This yields 
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e
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e
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where e

iRɺɺ  is the second-derivative of the rotation matrix e

iR . Taking Iɺɺ , Ωɺɺ  and thus 

cΩɺɺ as zero, and those Iɺ  terms also as zero, the second-derivative of the rotation 

matrix can be derived from Eq.5-11 as 
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In Eq.5-27, the satellite position vector ICDorbr  is readily derived from Eq.5-13, e

iR  

and e

iRɺ  are obtained from Eq.5-7 and Eq.5-12 respectively, ICDorbrɺ  can be calculated 

using Eq.5-18, and the ICDorb acceleration can be obtained in terms of ICDorbr  using 

Eq.5-3. Since the perturbations of the satellite orbit have been accounted for by the 

harmonic correction terms provided by the broadcast ephemeris, Eq.5-27 is capable of 

delivering accurate GPS satellite accelerations. 
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Figure 5- 3: Residuals of the accelerations from the closed-form formula and SP3 velocities using the first-order 

central difference of a Taylor series approximation (PRN=07, 22:18:56~22:20:32, 08/20/2002) 

The acceleration from the IGS precise ephemeris is very accurate and thus can be 

considered as a “ground truth”. The accelerations obtained using Eq.5-27 from the 

broadcast ephemeris have better than ±0.1mm/s2  accuracy when compared with the 

accelerations from the SP3 precise ephemeris, which is evidenced by Fig.5-3 as well 

as Table 5-1 and Table 5-2. Thus, the derived formula can be confidently used in real-

time applications. This overcomes the concerns raised by Kennedy [2003a] about the 

accuracy of acceleration determination using GPS due to the accuracy limitations of 

the broadcast ephemeris. 

It is perhaps understandable that even the broadcast ephemeris is capable of achieving 

such high acceleration accuracy since the satellite motion in its high orbit is very 

stable; and mathematically the large radius of GPS orbit in the denominator of Eq.5-3 

can greatly suppress the error propagation. 

5.5 Alternatives to Get ECEF Satellite Velocity and Acceleration 

It is well known that the satellite position from the broadcast ephemeris has an 

accuracy level of ±1m~5m. Due to the error propagation, the straightforward method 

of differentiating the ECEF positions to obtain the satellite ECEF velocity may lead to 
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large errors. The velocity could be too noisy because of the amplification due to the 

differentiation process. However, due to the complexity of the velocity algorithm, the 

position method was tested using the first-order central difference of a Taylor series 

approximation 
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where t is the time of the calculation epoch, and ∆t is the time interval, which is set as 

one second. Unexpectedly the results are close to the precise velocity of SP3 by better 

than ±1.0mm per second per axis, as reflected by Fig.5-4 which depicts the 

performance of this position differencing method. Once again the differentiation 

scenario works even in the satellite orbit. 

The promising result of the ECEF satellite velocity obtained through differentiation is 

explained by the realisation that the errors associated with the orbit position of a 

satellite are not Gaussian white. The position may manifest systematic bias and 

correlated errors due to errors in the broadcast ephemeris, which have been 

significantly mitigated through differentiation. 

 

Figure 5- 4: Residuals of the position-differenced ECEF satellite velocities compared with the velocities from the SP3 
precise ephemeris (PRN=07, 22:19:00~22:21:00, 08/20/2002) 
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Given the excellent performance of the position-differentiation method for ECEF 

velocity determination, it is sensible to test the performance of the differential method 

for acceleration determination, i.e. 
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where ∆t is set to be again one second. 
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Figure 5- 5: Residuals of the position-differenced ECEF satellite accelerations and the accelerations obtained from 
the precise SP3 velocities using the first-order central difference of a Taylor series approximation (PRN=07, 

22:18:56~22:20:32, 08/20/2002) 

Figure 5-5 illustrates that the performance of the differentiation procedure is good. 

However, the quality of the results is inferior to the accelerations derived from the 

closed-form formula. 

The differentiator used is a simple Finite Impulse Response (FIR) filter. The 

frequency response of the FIR differentiator is shown in Fig.5-6. It approximates the 

ideal differentiator for lower frequencies, which better suits the GPS satellite 

dynamics in a high orbit. Since even an ideal differentiator has a fixed phase delay, 

the central difference gives the velocity exactly at the desired epoch. Thanks to the 

high stability of the orbit of a GPS satellite, one can set ∆t to be one second which 

gives ±0.5 as the filter coefficients, which can further suppress the errors associated 
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with the two positions. More details concerning differentiator design are given in 

Chapter Seven. 
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Figure 5- 6: Frequency response of the differentiator of the first-order central difference of a Taylor series 
approximation 

Thus a practical alternative of satellite ECEF position, velocity and acceleration 

determination algorithm using the broadcast ephemeris is proposed as follows: 

• Obtain positions of )(tECEFr and )( ttECEF ∆±r  by using the ICD-GPS-200c 

algorithm; 

• Calculate velocity by using the position differentiation method, see Eq.5-29;  

• Determine acceleration by using the closed-form rotation formula of Eq.5-27. 

5.6 Polynomial Representation 

There are many GPS applications where the position and velocity information is 

required to be output at a high sampling rate. In the sport project associated with this 

research, velocities and accelerations determined from GPS are to be output at an 

update rate of 10Hz. With advances in GPS receiver technologies, the sampling rate 

of GPS receivers has increased to as high as 100Hz. VBOX [2004] is a typical 

example of such receivers, which is designed for automobile breaking tests, where the 

positions and velocities of a car are output at a rate of 100Hz. 
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The determination of a GPS satellite position from the broadcast ephemeris requires 

cumbersome computations, where the Kepler’s equation has to be resolved in a 

recursive way. Taking the VBOX receiver as an example, and assume that at every 

epoch, six GPS satellites have been tracked. Then in a one-second-observation period, 

the receiver needs to calculate 600 satellite positions and velocities, and to form and 

solve the 4×4 normal equation 2×100 times for position and velocity determination. 

With such a heavy computational load, it is desirable that the satellite position and 

velocity computation be significantly accelerated.  

Since the movement of a GPS satellite is relatively stable and therefore predictable, 

polynomials can be used to represent GPS orbital positions. The satellite position at a 

given epoch within the representation period can be numerically interpolated. 

Remondi [1991] studied the polynomial representation of the orbit and concluded that 

it is sufficient for an accuracy of about 10-8 using a 30-minute interval and a 9th-order 

interpolator for the IGS precise ephemeris.  

5.6.1 Lagrange Polynomials 

Many polynomials can be used to represent satellite orbits. Among them, the 

Chebyshev and Lagrange polynomials are the two most frequently used. In this 

research, the Lagrange polynomial representation is adopted. 

The general Lagrange polynomial is in the form of [cf. Xu, 2003] 
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where 

• ∏ is a multiplying operator from k=0 to k=m, m is the order of the 

polynomials; 

• y(t) is the given data at the time t; 

• L(t) is the base function of order m; 

• t is the time at which data will be interpolated.  

t should be placed in the middle of the time span (t0, tm) if possible, and m is usually 

selected as an odd number.  

For the equal distance Lagrange interpolation 
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where ∆t is the data interval. Then a simplified form is given by 

jk
tkj

tktt
tL

m

k
j ≠

∆−

∆−−
= ∏

=

,
)(

)(
)(

0

0

 

5- 34 

In the program developed in this research, the 9th-order Lagrange polynomials fitted 

with 5-minute intervals are used to represent GPS satellite positions derived from the 

broadcast ephemeris. 

5.6.2 Two Schemes of Satellite PVA Representation 

The simplest satellite PVA representation scheme uses three separated Lagrange 

polynomials to represent the satellite positions, velocities and accelerations. For the 

entire fitting period of t0 to t0+m·∆t, the satellite position, velocity and acceleration are 

calculated at each fitting epoch. Since there are only a few fitting epochs, the rotation 
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matrix method of the satellite velocity calculation can be applied since the complexity 

of the algorithm doesn’t matter in this case. This scheme has been adopted in this 

research. 

The second scheme for satellite PVA representation is suggested by the success of 

ECEF velocity determination using the central difference of a Taylor series of the 

satellite positions. The success of the position differentiation method implies that, 

when the polynomial interpolation is employed to represent satellite positions, the 

precise satellite ECEF velocity can be directly obtained through numerical 

differentiation of the polynomial coefficients. In this scheme, it is sufficient to use 

only two sets of Lagrange polynomials, one representing the satellite positions and the 

other for acceleration representation.  

5.7 Summary 

This chapter supplements the ICD-GPS-200c algorithms for ECEF satellite position 

determination, with formulae for velocity and acceleration determination.  

Both the conventional rotation method and the proposed positional differentiation 

method deliver better than ±1mm/s satellite velocity using the broadcast ephemeris. 

The proposed closed-form formula for ECEF satellite acceleration determination 

using the broadcast ephemeris produces ±0.1mm per second square accuracy when 

compared with the accelerations derived from the IGS precise ephemeris.  

The polynomial representation of ECEF satellite PVA is discussed and the Lagrange 

polynomial interpolation is introduced for real-time and high output rate GPS 

applications. Two schemes for the PVA representation are proposed. It is concluded 

that when the polynomials are used for satellite position representation, the satellite 

velocity can be directly obtained through numerical differentiation of the polynomial 

coefficients.  
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C h a p t e r  S i x  

ERROR ANALYSIS AND MODELLING FOR DOPPLER SHIFT 

MEASUREMENTS 

In the preceding chapters, the underlying principles of velocity and acceleration 

determination using GPS have been discussed by assuming that the errors in the GPS 

observables have been somehow accounted for. With the real-time calculation of 

satellite orbital velocity and acceleration in ECEF described, it is now appropriate to 

consider how to improve the real-time accuracy of velocity and acceleration 

determination using GPS in standalone mode.  

There are over twenty kinds of errors and biases that have effects on a GPS range 

measurement. As the most important considerations in precise point positioning, these 

error effects have been identified, investigated and catalogued in §3.2. Since the 

carrier phase is the integrated Doppler shift over time, all errors in the carrier phase 

range measurement would have effects on the Doppler frequency shift measurement, 

through the first-order time derivatives of the source errors. This property will be 

exploited to analyse and model the inherent errors in the Doppler shift measurement, 

which forms the main content of this chapter. Many error correction formulae are 

derived and error elimination or mitigation methods are proposed. This chapter also 

discusses the error corrections for the Doppler rate “measurement”. 
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6.1 Doppler Shift Observation Equation 

In Chapter Four a highly accurate Doppler shift observation equation has been 

developed, with both the special and general relativity theories considered. The 

derived observation equation is in the form of (see Eq.4-41) 
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For the purpose of error analysis, a modification of the above equation is more 

favourable. Analogous to the form of Eq.2-6, the errors in srɺ  and rrɺ  as well as the 

multipath effects are considered. This leads to 
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where sdrɺ and rdrɺ can be interpreted as the first-order time derivative of the satellite 

positional error and the receiver positional error respectively.  

6.2 Doppler Shift Error Analysis  

The following sections discuss the error sources and error behaviours in the order of 

their appearance on the right hand side of Eq.6-2. 
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6.2.1 Line-of-Sight Correction 

Line-of-sight correction is the correction applied to the receiver-satellite line-of-sight 

unit vector to account for the relativistic effect induced by the high speed of the 

satellite in its orbit. This is a special relativistic effect. 

As can be seen from Eq.6-2, the “received” receiver-satellite range-rate differs from 

the line-of-sight direction by 
c

srɺ
. This correction changes with the satellite velocity 

over time, and the direction of the correction term coincides with the direction of 

satellite motion. Since it changes the line-of-sight direction toward the direction of 

movement, it is termed the line-of-sight correction.  

Most of this correction is absorbed into the estimated receiver clock rate. The 

contribution of the line-of-sight correction to the receiver velocity estimation applies 

mainly in the vertical direction, since under good satellite geometry the horizontal 

errors might be averaged out. However, a bias of velocity estimation in the horizontal 

directions may be introduced when the satellite geometry is poor. 

6.2.2 Satellite Velocity Error sdrɺ  

sdrɺ , the first time-derivative of the satellite positional error, sdr , refers to the satellite 

velocity error due to satellite ephemeris. Since this research has been restricted to deal 

with real-time applications only, it is the error in the broadcast ephemeris. This has 

been discussed in Chapter Five.  

Generally, the accuracy of ECEF satellite velocity from the broadcast ephemeris can 

be summarised as: 

• In each axis, the velocity accuracy is better than ±0.5mm/s; 

• The total accuracy is well within ± 1mm/s; 
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• There is a slight bias in each axis. 

The above characteristics of the ECEF satellite velocity can be reflected by Fig.5-4, 

which is a typical representation of the accuracy of GPS orbit velocity. The biases 

will enter the determined velocity of a user, resulting in a biased solution. 

6.2.3 Receiver Positional Error rdrɺ  

The receiver error term rdrɺ , is the first-order time derivative of the receiver site 

displacement error which is due to the ocean load, atmospheric load, solid Earth tide 

and rotational deformation due to the polar motion. Section 3.2.3.2 gives the 

magnitude of each displacement. The magnitudes of their effects in the position 

domain are listed in Table 6-1. 

Site Displacement Maximum Magnitude Length of the period 

Solid Earth tides 
12.5 cm in radial 

5.0 cm in the north 
combination of the long period, 
diurnal and semidiurnal periods 

Ocean loading 
M2: 5cm 
K1: 3cm 

same as the solid Earth tide 

Rotational deformation 
0.7 cm in horizontal 

2.5cm in vertical 
same as the solid Earth tide 

Table 6- 1: Maximum magnitudes and lengths of the periods of various site displacement errors 

where M2 and K1 are the harmonic terms in the ocean loading. It can been seen from 

Table 6-1 that the site displacement components due to the solid Earth tide, ocean 

loading, and polar motion are associated with small magnitudes but very long periods. 

As a result their change-rates are negligible and consequentially have little effects on 

the instantaneous Doppler measurements. Therefore, it is concluded that the receiver 

site displacement error is negligible.  
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6.2.4 Ionospheric Error Id ɺ  

6.2.4.1 Dual Frequency Doppler Measurements  

For a dual-frequency geodetic GPS receiver which is capable of outputting Doppler 

shift measurements on both frequency bands, the ionosphere-free linearised Doppler 

observable can be formed using the same coefficients as applied in the ionosphere-

free carrier phase observable, i.e. [Rothacher et al., 1996:p.139] 

2211222

2

2

1

2

2
112

2

2

1

2

1 5457.15457.2 λ−λ≈λ
−

−λ
−

≡− DDD
ff

f
D

ff

f
D freeion  6- 3 

Note that in the above ionosphere-free Doppler “measurement”, the Id ɺ  term has been 

deleted. 

6.2.4.2 Dual-Frequency Receiver with L1 Doppler Measurement Only 

For those dual-frequency receivers which make Doppler measurements on L1 only, 

such as the Trimble 5700 GPS receivers, the ionospheric delay at the L1 frequency 

can be precisely measured from the geometry-free carrier phase observable [Langley, 

1998]. This delay, however, is biased by a constant due to the integer ambiguities, i.e. 
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where Lg is the geometry-free linear combination of L1 and L2 carrier phase 

observables. Thus, the ionospheric correction for Doppler measurements can be 

obtained by differentiating the above equation with respect to time. This leads to 

gLId ɺɺ 5456.11 =  6- 5 
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Figure 6-1 shows a 1.5456Lg observable time series of 200 seconds in an ionosphere-

calm day, with the satellite elevation angle changing from 20.8º to 19.6º. It can be 

clearly seen that the ionosphere delay in the one-way observation is in a linear 

fashion, changing smoothly. There is about a ±5.0mm per second ionospheric rate 

correction for the Doppler shift measurements. 

 

Figure 6- 1: A 1.5456 Lg ‘observable’ series of 200 seconds (elevation 20.8º~19.6 º) 

With a magnitude as large as such, the ionospheric correction is critical for precise 

velocity determination at an accuracy level of sub-centimetre per second.  

The ionospheric delay rate Id ɺ can be numerically obtained by using a differentiator 

with Lg time series as the filter input. Since the ionosphere changes smoothly and 

almost linearly, a low-pass differentiator is sufficient for this purpose. Details of 

differentiator design are given in Chapter Seven. 

6.2.4.3 Single-Frequency Receiver 

There are two methods to obtain the ionospheric correction Id ɺ for single-frequency 

GPS receiver. One is based on the actual code and carrier phase measurements; the 

other method is to use the standard Klobochar model. 
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Code-Carrier Method 

This method takes advantage of the property of GPS signal propagation in the 

ionosphere. The different sign but equal magnitude of the group delay and the phase 

advance makes it possible to eliminate the ionosphere effect by a summation of the 

code and carrier phase measurements, as described in § 3.2.2.1.1. This characteristic 

also makes it possible to retrieve the ionospheric delay by a substraction of the code 

and carrier phase measurements.  

Subtracting Eq.2-5 from Eq.2-4 and neglecting the difference in magnitude of the 

multipath effects between the code and carrier phase measurements leads to 

)0(2)()( 1111111 ϕλλϕλ ++⋅=− NdIttP  6- 6 

where N1 is the integer ambiguity value and )( 01ϕ is the receiver initial phase bias. 

Note that both of them are constants. 

Multiplying 0.5 to both side of Eq.6-6 and then differentiating with respect to time 

yields the desired Id ɺ as 

[ ])()(5.0 111 ttP
dt

d
Id ϕλ−⋅=ɺ  6- 7 

Compared to Eq.6-7 and Eq.6-5, it is clear that the ionospheric delay rate derived 

from the geometry-free carrier phase combination has much higher accuracy. 

However, the code-carrier method is affected by the lower precision of the PRN code 

measurement and the presence of code multipath effect. Since the ionospheric delay 

changes smoothly and linearly during a short time period, Id ɺ can be obtained from a 

simple numerical differentiator with either the Lg or code-carrier time series as the 

filter input. 
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Standard Klobuchar Model 

The Klobuchar model is an empirical ionospheric model developed for GPS single-

frequency receivers to correct for approximately 50% of the ionospheric delay error 

[Klobuchar, 1996]. The GPS control segment has adopted it as the standard 

ionospheric model and broadcasts the 8 model parameters in the navigation message 

to GPS users. 

The ionospheric delay rate can be analytically derived as 
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where according to Eq.A-3 in the Appendix, xɺ  can calculated as 
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Details about the terms and algorithms can be found in the Appendix. In Eq.6-8, 

taking the ionospheric change-rate as zero when |x|≥1.75 is an approximation by 

neglecting the change-rate of the elevation angle. For brevity, no further explanation 

is provided here. 

Alternatively and preferably, the ionospheric delay can also be numerically obtained 

by a differentiator with the time series of the calculated ionospheric corrections as the 

filter input. 

6.2.5 Tropospheric Error Td ɺ  

Most reference books suggest that the contribution of the troposphere to the Doppler 

measurement is so small that it can be neglected. However, according to Simsky and 
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Boon [2003], not properly accounting for the tropospheric delay rate could result in 

nearly centimetre per second level noise and a significant bias. 

A tropospheric delay model for range measurement corrections consists of a 

hydrostatic and a non-hydrostatic component. The delay can be modelled with a 

zenith delay model and a mapping function, in the form of 

wet

zenith

wetdry

zenith

dry mdTmdTdT ⋅+⋅=  6- 10 

The dry component contributes 90% of the total tropospheric delay while the wet 

component contributes approximately 10%. The tropospheric delays in the zenith 

direction, according to Kouba and Heroux [2001], vary in time by a relatively small 

amount, of the order of a few centimetres per hour and thus can be viewed as a 

constant for Doppler measurement. Hence it is sufficient to choose a standard model 

such as the Saastamoinen model [Saastamoinen, 1972] based on standard 

meteorological data to represent the zenith delays. In this case, what really matters is 

the adoption of mapping functions. 

Ordinary mapping functions in simple cosecant E (elevation) forms are unable to 

reflect the tropospheric change-rate since the elevation angle changes very slowly, at 

a rate of about ±0.1millirad per second due to the slow change of satellite geometry 

[Simsky and Boon, 2003]. This requires that precise geodetic mapping functions 

should be used for the tropospheric delay rate modelling. 

The global mapping function developed by Niell [1996] may be used to model the 

tropospheric delay rate. This model is precise even when the elevation angle is down 

to 3º to 5º; however its calculation is complicated. In kinematic applications, an 

elevation cut-off angle of 15º is normally set. Up to this elevation angle, other 

geodetic mapping functions such as Chao’s mapping functions [Chao, 1974] may be 

considered 
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Chao’s formulae are simple in form and independent upon location and height. Since 

no meteorological data is required, these mapping functions are attractive for 

kinematic applications. 

One may numerically obtain the tropospheric delay change-rate after applying the 

tropospheric correction to the range measurement, through a simple differentiator. 

That is, differentiate the calculated tropospheric delays with respect to time 

)(dT
dt

d
Td =ɺ  6- 12 

This avoids the computation of the bulky expressions of the derivatives of the 

mapping functions, cf. Simsky and Boon [2003]. As the tropospheric delay changes 

slowly, a low-pass differentiator is sufficient for this purpose.  

Figure 6-2 illustrates the tropospheric delay rate from Chao’s model. In this 

simulation, the vertical dry delay is set as 2.4m, and the vertical wet delay is set as 

0.24m. This resembles the maximum tropospheric effect on GPS signals. Figure 6-2 

shows the importance of troposphere modelling since even at higher elevation angles 

there are still contributions in millimetres per second level to the Doppler 

measurements. Thus, the tropospheric delay rate is a main error factor limiting precise 

velocity determination using GPS. 
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Figure 6- 2: Tropospheric delay rate from Chao's model 

6.2.6 Clock Rate Corrections 

6.2.6.1 Receiver Clock 

Similar to navigation point positioning, the clock rate becomes the fourth unknown 

and is solved for along with the receiver velocity unknowns if at least four Doppler 

shift measurements are observed. A GPS receiver clock is typically a quartz crystal 

oscillator, thus the clock rate stability depends on the quality of the receiver’s crystal 

oscillator. The errors introduced through the receiver oscillator affect the quality of 

the measured Doppler shifts, and therefore degrade the velocity estimations. 

Fortunately, with improvements in technology many quartz crystal oscillators used in 

GPS receivers are capable of providing relatively high short-term stability, which 

results in accurate Doppler shift measurements. 

6.2.6.2 Satellite Clock  

In the ICD-GPS-200c, the satellite PRN code phase time offset is given by 

2

210 )()( ocfocff
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where: 
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• af0, af1, af2 are the polynomial coefficients in sub-frame one of the navigation 

message; 

• toc represents the clock data reference time in GPS seconds.  

From Eq. 6-13, the satellite clock rate correction for the Doppler measurement can be 

derived as 

)(2 21 ocff

s ttaatd −+=ɺ  6- 14 

Another error associated with the satellite clock is the satellite group delay Tgd, which 

is due to the satellite hardware bias. As a constant it cancels by differentiation with 

respect to time. Hence, the satellite group delay has no effect on Doppler 

measurements. 

6.2.7 Receiver Potential Difference 

The term
c

)( r0 rΦΦ −
 is a site-dependent general relativistic correction term 

attributed to the gravity potential of the receiver. It becomes zero when a receiver is 

located at the geoid.  

The receiver potential difference is a common term in each Doppler shift 

measurement at a specific epoch and thus contributes to the user velocity in the same 

way as the receiver clock rate. Neglecting the receiver potential difference will cause 

a biased receiver clock rate estimate, but do little harm to the user velocity estimation. 

This may be the reason why this term has been historically neglected for velocity 

determination using GPS. 

The potential difference can be simply estimated by the approximation 

rr0 gH)( =− rΦΦ  where g is the gravity acceleration and Hr is the height of the 

receiver. The maximum effect of this term on the Earth’s surface is at the peak of Mt. 
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Everest, which is less than 0.3mm/s. The magnitude of this term varies with the 

receiver position (mainly in height); it increases for aviation and space applications.  

6.2.8 Orbital Eccentricity Correction 

The orbital eccentricity correction is a general relativistic correction term. This 

relativistic correction for the range of receiver r and satellite s depends on the satellite 

orbit. The alternative expression of the orbital eccentricity correction for range 

measurement is in terms of the satellite position and velocity [ARINC, 2000, p.89]  
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This correction is not sensitive to whether the vectors of position and velocity are 

expressed in an ECEF rotating coordinate system or in an ECI coordinate system 

(ibid). The eccentricity correction for range measurement is a periodic function. It is 

the biggest correction due to GPS relativity (see § 3.2.1.3.1). 

Simply differentiating the above equation with respect to time gives 

[ ]sss

tyeccentrici
c

Rd rrr ɺɺɺ •+⋅−= 2)(
2

 6- 16 

where srɺɺ is the satellite acceleration. Since a satellite conserves energy while in orbit, 

according to the Vis-Viva equation [Montenbruck and Gill, 2000, p.20] 
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and the satellite acceleration is, for example [Misra and Enge, 2001, p.99] 
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Substituting Eq.6-17 and Eq.6-18 into the brackets of Eq.6-16 yields 
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This proves that the term )
1

a

1
(

c

GM2
s

orb r
− is the relativistic correction for the orbit 

eccentricity. Here the term “orbit eccentricity correction” is an intuitive term, since 

this term vanishes for a circular orbit where s

orba r= . 

6.2.9 Earth Rotation Correction (Sagnac Effect) 

As described previously, the rotation of the Earth during the GPS signal propagation 

period causes another relativistic error that is known as the Sagnac effect. The 

incoming signal has an extra signal passage than would otherwise be the case. 

The Sagnac Effect correction given by Ashby and Spilker [1996] is in the form of 
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where Ωe=(0,0, ω)
T is the vector of the angular rate of the Earth’s rotation and A is 

the shading area of the triangles formed by the Earth’s centre, the receiver and the 

GPS signal. As such, the Sagnac correction for range measurement can be calculated 

using 
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which is identical to the aberration correction formula given by Seeber [2003, p.198].  

With this, the Sagnac correction for Doppler can then be obtained by differentiating 

the above equation with respect to time. This leads to 
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This correction is generally very small, but the maximum may reach several 

millimetres per second and therefore requires consideration. 

It’s worthwhile to point out that whether or not to apply the Sagnac correction in a 

real GPS application depends on different treatments of the signal propagation delay 

due to the Earth’s rotation [Ashby and Spilker, 1996, p.675], see also the discussion in 

§ 3.2.1.3.2. There is no need to apply the Sagnac effect correction if the real signal 

transmission time is determined recursively and the rotation has been applied to the 

satellite ECEF position at the signal transmission epoch. 

6.2.10 Secondary Relativistic Effects 

For integrity, the secondary relativistic Doppler correction term is included in Eq.6-2. 

This term corresponds to the first derivatives of the secondary relativistic correction 

terms for the GPS range measurement (see § 3.2.1.3.3).  

Under this category, significant relativistic corrections for range measurements 

include the signal propagation delay, spatial curvature, satellite antenna offset, phase 

wind-up correction, and even the effects from other bodies in the solar system.  

The secondary relativistic effects on the instantaneous Doppler shift measurement are 

too small to sense. This is due to the small magnitudes and the long periods associated 

with them. Their effects are therefore neglected. 
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6.2.11 Multipath Effect 

Thus far, no significant multipath effects on velocity determinations have been 

observed; even though some of the field trials were conducted on water,  thought to be 

a high multipath environment [Zhang et al., 2003b]. Nor have other researchers 

reported any significant deterioration in velocity determination due to multipath. 

According to Serrano et al. [2004], ±1cm/s velocity accuracy was achieved despite 

multipath-rich conditions. 

Theoretically the multipath effect reaches a maximum of one quarter of a cycle for the 

phase observable, and changes periodically [Hofmann-Wellenhof et al., 2001]. This 

may indicate that the multipath errors associated with the Doppler shift would have 

been averaged out, since the Doppler frequency shift is the first-derivative of the 

carrier phase with respect to time. However, further research is needed before drawing 

a decisive conclusion. 

6.3 Numerical Analysis 

A numerical analysis of each of the errors that have been discussed has been carried 

out, and the results are summarised in Table 6-2. 
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Table 6- 2: Main error sources and their estimated magnitudes in Doppler measurements 

It can be seen that the relativity effect is the largest error source for the Doppler shift 

measurements. Fortunately, it can be well modelled and corrected for. The 

atmosphere effects are relatively small. However, due to their unpredictable nature 

they are hard to model and therefore critical to sub-centimetre per second accuracy 

velocity determination. 

6.4 Errors in Doppler Rate “Measurement” 

The Doppler rate “observation” equation is rewritten as 

 Error Terms 
Apply Correction for 

Doppler Measurements 
Magnitude Estimated 

Satellite Orbit Broadcast Ephemeris Optional ±1mm/s 

Satellite Clock Correction Yes Negligible Satellite Clock 

L1-L2 Correction 
(Group delay) 

No Negligible 

Orbit Eccentricity Yes Several cm/s 

Sagnac Optional** Several mm/s 

Receiver Potential 
Difference 

Yes Sub-mm/s 

Relativity 

Secondary Relativistic 
Effects 

No Negligible 

Ionospheric Correction Yes mm/s ~ cm/s Atmosphere 

Tropospheric Correction Yes mm/s ~ cm/s 

Receiver Site Displacement No Negligible 

Multipath Correction No Negligible 

Receiver 

Receiver Clock 
As an unknown to be 

estimated 
 
 

(**: Whether or not to apply the Sagnac correction depends on different treatments of the propagation delay due to the Earth’s 

rotation) 
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It can be seen that in the Doppler rate observable, errors in both the satellite 

acceleration and satellite velocity have some effects. In Chapter Five, by comparing 

the satellite accelerations derived from the broadcast ephemeris with those derived 

from the precise IGS SP3 ephemeris, it was concluded that the accuracy of satellite 

ECEF accelerations is of the order of ±0.1mm/s2 per axis. This level of accuracy is 

rather high, though one should be aware that the magnitude of satellite ECEF 

acceleration tends to be small owing to the stability of GPS satellites in their high 

orbits.  

The relative receiver-satellite velocity is coupled with the Doppler rate observable, 

thus the inherent errors in both the satellite velocity and the receiver velocity would 

affect the Doppler rate “measurement”. However, these errors are tolerable due to the 

long distance between the receiver and satellite, since it is in the denominator.  

The other errors that affect the Doppler shift rate “measurement” are the second-order 

derivatives of the corresponding range errors. As has been demonstrated, the change-

rates of the range errors are generally small, varying from a few millimetres to several 

centimetres, and therefore the rate of their change-rates are generally so small that 

they can be neglected. 

The only exception is the satellite clock drift, which is one of the navigation 

parameters, and should be taken into account. The correction formula is given by 

differentiating Eq. 6-14 with respect to time 

22 f

s atd =ɺɺ  6- 24 
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However, in most cases, the broadcast af2 is zero. Thus, this virtual observable is 

rather “clean”. 

6.5 Summary 

A thorough investigation and analysis of the inherent errors of the Doppler shift 

measurement have been carried out in this chapter. The error correction formulae and 

methods have been proposed. 

From the error analysis, it is demonstrated that the relativistic effects are the largest 

error sources in precise velocity determination using GPS. The explicit relativistic 

correction formulae presented in this chapter are ready to be applied. For those 

interested in the highest velocity accuracy that GPS can provide, the relativistic 

corrections must be considered. 

The ionospheric delay rate correction is provided for dual-frequency GPS receivers, 

by either forming the ionosphere-free Doppler ‘observable’ or obtaining the first-

derivative of the geometry-free carrier phase ‘observables’. For single-frequency GPS 

users, the differentiator methods based on both the code-carrier measurements and the 

empirical standard model are proposed. However, the accuracy of both methods is 

limited.  

The tropospheric delay rate correction has been identified as requiring the appropriate 

mapping functions that may best represent the change of tropospheric delay along 

signal profiles. This requires that precise geodetic mapping functions be used.  

Since both ionospheric and tropospheric delay rates contribute several millimetres per 

second level errors to Doppler measurements, and since their changes are hard to 

predict and to model, the atmosphere becomes the major error source degrading the 

velocity accuracy using GPS. 
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If all the inherent errors in Doppler measurement are properly accounted for, 

millimetres per second levels of velocity accuracy are achievable in real time for 

standalone GPS users. Much higher accuracy can be achieved in post processing 

mode using the IGS products. However, this depends on the quality of the available 

Doppler shift measurements.  

It is demonstrated that the virtual “Doppler rate” measurement is rather clean. Only 

the satellite clock correction is required to be applied in the virtual “Doppler rate” 

observable. A receiver’s acceleration can be determined to a relatively high accuracy 

as long as the precise “Doppler rate” observables can be derived, either from the 

Doppler shift measurements or from the accurate carrier phase measurements. This 

inevitably requires the design of different differentiators, which is the topic of Chapter 

Seven. 
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C h a p t e r  S e v e n  

DIFFERENTIATOR DESIGN 

Previously proposed methods for GPS velocity and acceleration determination fall 

into two categories: one is to derive velocity and acceleration directly from GPS 

determined positions, the other is based on the use of Doppler shift measurements. 

The latter has several advantages: it doesn’t rely on the precision of the positions 

derived from GPS, nor will the accuracy dramatically degrade with an increase of 

sampling rate (say 10Hz or more). Since there is no direct Doppler rate observable in 

GPS measurements, as a “virtual” observable it must be derived in order  that Eq.4-44 

[Jekeli and Garcia., 1997] can be applied directly in the Doppler shift method.  

Every GPS receiver measures Doppler shifts, however, primarily as an intermediate 

process to obtain accurate carrier phase measurements. Thus, the quality of Doppler 

shift output varies from receiver to receiver. The Trimble 5700™ geodetic receiver, 

for example, has a measurement precision of ±1mm/s. The observed Doppler is 

obtained from a tracking loop that is updated at a very high rate. This also enables the 

receiver to sense the phase acceleration [Harvey, 2004]. Unfortunately the sensed 

phase acceleration and the Doppler shift on L2 are discarded. Some other GPS 

receivers, for example the Superstar II™ from NovAtel, have only C/A code and L1 

phase outputs [SuperstarII, 2004]; and the Doppler shifts are not output. To obtain 

accurate velocity and acceleration using these types of receivers, it is necessary to 

derive the Doppler shifts, i.e. the change-rates of the carrier phase from the measured 

carrier phase measurements. 
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Differentiators are required to obtain the Doppler rate “observable” for any type of 

receiver, or to generate the Doppler shift from the carrier phase measurements. In 

real-time and dynamic applications it is also desirable that the differentiator should 

have a wideband frequency response to cover the system dynamics and have a group 

delay as short as possible in order that the Doppler shift or Doppler rate can be 

derived instantaneously. For those receivers that output only “raw” Doppler shifts, the 

derivation of precise Doppler from the carrier phase plays a key role in precise 

velocity and acceleration determination since the precision of the carrier phase 

observables can be fully exploited.  

Differentiators are also required to derive the tropospheric delay rate and the 

ionospheric change-rate, as stated previously in Chapter Six. The objective of this 

chapter is to explore approaches to derive the Doppler rate from GPS measurements, 

or to derive the precise Doppler shift from the carrier phase in real time and dynamic 

situations.  

Several investigations have been conducted for this purpose in the GPS measurement 

domain, and the proposed methods can be categorised into:  

• Curve fitting [Fenton and Townsend, 1994];  

• Kalman smoother/filtering [Hebert et al., 1997]; 

• Taylor series approximation [Cannon et al., 1998; Bruton et al., 1999]; 

• Finite Impulse Filter (FIR) filter by using Fourier series with window 

techniques [Bruton et al., 1999]; 

• FIR optimal design using the Remez exchange algorithm (ibid). The FIR 

filtering technique based on the Taylor series approximation was recently 

adopted by Kennedy [2003] to derive phase accelerations. 
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This chapter briefly introduces the digital differentiator theory and describes the 

design problem in real-time dynamic GPS applications. It is followed by a 

comprehensive review on each method mentioned above. By comparing the various 

differentiator designs, a series of first-order Infinite Impulse Filters (IIR) are 

presented which are capable of delivering the derivatives from input signals in real-

time dynamic situations. An adaptive scheme is also proposed for noise attenuation.  

7.1 The Ideal Differentiator 

7.1.1 Digital Filtering  

To introduce the digital filter concept, GPS is used as an example. Signals from GPS 

satellites are measured and recorded at the sampling epochs by a GPS receiver. It is 

assumed that the sampled date have equal time intervals. The recorded GPS data are 

discrete measurements of C/A code, L1 carrier phase and D1, etc. In other words, 

rather than continuous GPS signals for a receiver-to-satellite pair, there is a discrete 

time series of C/A code ranges, a discrete time sequence of L1 carrier phase 

measurements, and a discrete sequence of the Doppler shift measurements. These data 

may be equally spaced; for example, with a time interval T of 0.1s if the GPS receiver 

has a 10Hz sampling rate. 

Suppose that a sequence of xn are such a set of equally spaced L1 carrier phase 

measurements from the continuous L1 signal of x(t), where n is an integer and t 

denotes the continuous variable (t=n·T), then a digital filter can be defined as follows 

[Hamming, 1977, p.2]  
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where ck and dk are the coefficients which are referred to as the impulse response of 

the filter. The impulse response of a filter is denoted as h(n), which is the filter 

response for a unit input signal pulse (ibid).  
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The digital filter can be taken as a linear combination of equally spaced samples xn-k 

of some function x(t) together with the computed values of the output yn-k. By setting 

different coefficients of the filter, it can be used to selectively suppress or enhance 

particular parts of the signals.  

Note that Eq.7-1 is in a generic form. Without the second term on the right hand side, 

the filter is referred to as a non-recursive filter. With the second term on the right 

hand side, the filter is called recursive since the output of yn-k has been recursively 

used. The filter coefficients ck and dk are taken as time-invariant, i.e. constant in the 

case of classical filter design. However, their values can be varied to achieve a desired 

filtered result. This is referred to as adaptive filter design. For practical applications, 

the length of a realisable digital filter is always finite. 

7.1.1.1 Transfer Function 

The transfer function allows us to describe a filter by means of a convenient and 

compact expression. The Z-transform has been popularly used to determine the 

transfer function of filters. With the transfer function, the characteristics of a filter can 

be analysed, such as its frequency and amplitude responses.  

Z-Transform 

The Z-transform of a discrete-time signal value of xn is defined as  

n

k

knkn xzzXxZ −
−− == )()(         7- 2 

where z is a complex variable. The Z-transform is a linear transformation. For a causal 

discrete filter n is normally defined to begin at time n=0. One important property of 

the Z-transform is that the Delay Theorem allows z-1 to relate the Z-transform of the 

current input value xn to the Z-transform of the previous input value xn-1 by  

)()()()( 1
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Therefore z-1 serves as a unit delay operator. For a filter, for example having the form 

of 

221122110 −−−− −−++= nnnnnn ybybxaxaxay       7- 4 

the Z-transform of the filter is 
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One can just take the Z-transform as the discrete-time cousin of the continuous 

Laplace transform. z
-n is the general form for the solution of the linear difference 

equation similar to the function e-sT (where s is the complex variable associated with 

the Laplace Transform, and T is the sampling period of the ideal impulse sampler) 

which is the general form for the solution of the linear differential equation [Lyons, 

2004, p.229].  

Transfer Function of Filter 

The transfer function of a discrete filter is defined as the rate of the Z-transform of the 

filter output signal over the Z-transform of the input signal, i.e.  
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Therefore, the transfer function of the filter that has the form of Eq.7-4 is 
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The transfer function of a digital filter is the most important aspect of filter design and 

analysis. With the transfer function of a filter determined, one can directly obtain the 

impulse response of the filter, and analyse the performance of the filter either in the 

state space or in the frequency domain.  



 
146 

7.1.1.2 Frequency and Amplitude Response 

The frequency response of a filter is defined as the spectrum of the output signal 

divided by the spectrum of the input signal, it can be easily evaluated in the unit 

circle, i.e. H(e
jωt

) where the variable z in the transfer function is replaced by ejωt. 

Accordingly the frequency response of the above example filter is 

ω−ω−

ω−ω−

++

++
=

ω

ω
=ω

jj

jj

ebeb

eaeaa

X

Y
H

2

21

2

210

1)(

)(
)(       7- 8 

For a 5-point averaging filter in the form 
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the frequency response is 
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It can be deduced that the frequency response of a digital filter is actually the discrete 

Fourier transform of the impulse response, i.e. (see Eq.7-1) 
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The amplitude response of the filter is defined as the magnitude of the frequency 

response, i.e. 

)(ω= Hresponseamplitude        7- 12 

This allows the amplitude response of the filter to be analysed along with the 

frequency response. In practice it is more efficient to factor the frequency response 

into the form of  
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where G(ω) is the gain of the amplitude response and Θ(ω) is the phase response. The 

phase response Θ(ω) of a digital filter gives the radian phase shift experienced by 

each sinusoidal component of the input signal.  

It is often more intuitive to consider the phase delay defined by 

ω

ωΘ
=

)(
delayphase         7- 14 

which gives the time delay in seconds experienced by each sinusoidal component of 

the input signal. There is a more commonly encountered representation of the phase 

response, which is called the group delay, defined by 

)(ωΘ
ω

=
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In the case of a filter that has a linear phase response, the group delay and the phase 

delay are identical, i.e. ω
π

ω
2

)( =Θ .  

7.1.1.3 Noise Amplification  

A digital filter is a linear combination of the input signals that are usually corrupted 

by noises. For simplicity, the noises are assumed Gaussian white, and hence  the error 

propagation law applies. This permits the estimation of the noise amplification of the 

filter. Assume the noise of a series of L1 carrier phase observables of nnn exx += 0  to 

be Gaussian white, i.e. 
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and the outcome of a non-recursive filter is 
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then the variance of the filter can be calculated [Hamming, 1977, p.14] 
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This shows that the sum of the squares of coefficients of the filter determines the 

noise amplification of the filtering process. 

Suppose that the variance of the recursive filter (see Eq.7-1) is 2

nyσ , similar to the 

above procedure, it can be expressed as 
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Further assume that 2222

21 nMnnn yyyy σσσσ ===
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⋯ , then the variance of the filter can 

be estimated by  
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This suggests that one can either roughly estimate the variance of the recursive filter 

using Eq.7-20; or “precisely” calculate the filter variance as follows: first compute the 

initial variance of the recursive filter using Eq.7-20, and then estimate the variance of 

the filtered signals using Eq.7-19. 

7.1.2 Frequency Response of Ideal Differentiator 

If x(t) is the input signal applied to a differentiator and the output of the signals is y(t), 

then the first-order time derivative of x(t) is 
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This is a differential equation. Applying the Laplace transform to the above equation 

leads to 

)()( sYssX =           7- 22 

Since the frequency response function H(ω) is defined as the rate of the Fourier 

transform of y(t) over the Fourier transform of x(t), i.e. Y(ω) over X(ω), where ω is the 

simplified notation of e
jω, the transform function of the differentiator can be easily 

obtained from Eq.7-22 by replacing s  with jω [Stearns, 2003, p.127] 
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Thus in digital filtering theory, the ideal differentiator is defined as having the 

frequency response of 

ω=ω jH )(           7- 24 

Analogous to the first-derivative, the ideal Nth order derivatives can be deduced and 

defined as having frequency response of 

NjH )()( ω=ω          7- 25 

With this, one can obtain the ideal second-order differentiator as having the frequency 

response of [Ellum and Sheimy, 2002] 

2)( ω−=ωH           7- 26 

7.1.3 Criteria for Differentiator Design 

The process of selecting a filter's length and coefficients is called “filter design”. The 

objective is to define these parameters such that certain desired stop-band and pass-

band parameters will be obtained by the filter.  

Differentiator design has been the subject of extensive investigation in digital signal 

processing. A major issue is that a differentiator amplifies noise at high frequencies. 

This grows with the order of derivatives to be estimated, and with the required 
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bandwidth of the filter [Carlsson et al., 1991]. As GPS signals generally have of low-

frequency characteristics (see GPS signal spectral figures below in Fig.7-1), it seems 

that a low-pass filter would be suitable for the design of a differentiator. 

 

 

 

 

 

 

Figure 7- 1: Power spectral densities for the 10Hz (Left) and 1Hz (Right) carrier phase signals in static mode 

However, one should be aware that changes of receiver dynamics are normally of 

high frequency, and therefore it is required to deal with this complexity with a 

broad/full-band differentiator. Another difficulty arises from the signal correlation. 

GPS carrier signals can be regarded as Gaussian white only when the sampling rate is 

lower than 1Hz. When the sampling rate increases, time correlations need to be 

considered [Bona, 2000; Borre and Tiberius, 2000]. Thirdly, the differentiation may 

be affected by lack of information on future signals in the case of real-time 

applications. Finally, there may be aliasing problems due to limited sampling. 

Therefore the problem is to obtain the time derivatives from GPS observations when 

both the signals and the noise are random in character. In the case of corrupting noise 

being wideband white and the signal being a Gauss-Markov process (suitable for GPS 

applications), it is apparent that no differentiator is going to perfectly yield the desired 

time derivative whilst suppressing the noise [ Brown and Hwang, 1992, p.172], even 

though the frequency response of the filter is known exactly. This is a typical Wiener 

filter problem (ibid), i.e. what should the filter’s frequency response be in order to 
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give the best possible separation of signal from noise? The solution is a compromise 

between good differentiation and low noise sensitivity to achieve a small total error. 

The Kalman filter is a space-state solution of the Wiener filter problem (ibid), by 

formulating the minimum mean-squares-error estimation criterion into a two-step 

recursive procedure. By assuming that both the process driving noise and the 

measurement noise are Gaussian white and there is no correlation between each other, 

it first predicts the signal state by using the system dynamic equation, and then 

updates the prediction with the measurements to get the estimates.  

A successful Kalman filter requires the appropriate modelling of system dynamics 

and the associated stochastic random process. Blewitt [1998] elaborated the 

interrelationship between the functional model and the stochastic model in the sense 

of equivalence. That is, their functionalities are equivalent so as to achieve the 

modelling accuracy. Errors not included in the functional model need to be described 

stochastically, and vice versa. This is applicable to Kalman filtering as well. The less 

than satisfactory performance of the Kalman filter in the case of Hebert et al. [1997] is 

not due to the Kalman filter approach itself, but due to the improper modelling of the 

system state when it is highly dynamic. 

When the sampling rate increases, the state equation tends to be adequate to describe 

the system, even under dynamic conditions. The theoretical difficulties with Kalman 

filtering, however, are mainly in the determination of the random process of the 

system driving noise, and dealing with the correlations in measurements and the 

cross-correlations between the signals and noise. Another associated practical 

problem is the heavy computational load for a real-time data processor. Finally the 

outcome of a Kalman filter is a smooth, band-limited solution [Bruton et al., 1999]. 

Therefore, it is reasonable to find solutions in the frequency domain, rather than in the 

state space using Kalman filtering. 
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The digital differentiator design oriented in the frequency domain should still consider 

the variance of the output. Thus the criteria of our differentiator design can be 

summarised as follows: 

• The magnitude of frequency response is accurate in lower frequencies and is as 

close to H(ω)=jω as possible in a broad/full-band sense depending on the 

system dynamics; 

• The phase response is linear or approximately linear; 

• The group delay is acceptably small; 

• The sum of the squares of filter coefficients can be minimised; 

• Easy to be implemented in real time, i.e. to be causal and in low-order form 

since there might be cycle slips and loss-of-lock of signals. 

7.2 Taylor Series Approximations 

The Taylor series approximations have been widely used to derive differentiators. The 

differentiators used by Cannon et al. [1998], Hebert [1997] and Hebert et al. [1997], 

and Kennedy [2002; 2003] are low-order Taylor series. All of them are in the form of 

central difference approximations as 
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where N is the order of the filters. Eq.7-27 represents a FIR filter of type III [Chen, 

2001, p.299] which is characterised as having zero amplitude response in both ω=0 

and ω =1 (normalized frequency), as can be seen in Fig.7-2. 
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Figure 7- 2: Normalized magnitude response of low order central difference Taylor series approximation 

From Fig.7-2 it is apparent that the higher the order is, the closer that a Taylor series 

approximation is to the ideal differentiator. This indicates that broad-band 

differentiators can be designed based on the Taylor series, and this can be observed in 

the work of Khan and Ohba [1999], who gave the explicit coefficients ci as 
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A FIR filter of type III has an odd length (2N+1) and an anti-symmetric impulse 

response property. Since there is a restriction that the amplitude response must go to 

zero at the Nyquist frequency, it is impossible to define a full-band differentiator 

using a finite number of coefficients. This can be seen in Fig.7-3, where a transition of 

frequency range from 0.85 to 1.0 is associated with the differentiator of the 150th-

order Taylor series approximation. 

 



 
154 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized Magnitude Responses

5th 

10th 

20th

30 

40 

50 

100 

150 

Figure 7- 3: Normalized magnitude responses for arbitrary order Taylor series approximation 

Considering that FIR filters using central difference of Taylor series approximations 

are non-causal and of type III, they are therefore not suitable for real-time 

applications. However, the Taylor series approximation is still useful for post 

processing and for low dynamic applications [Hebert et al., 1997]. They might be 

designed as a full-band differentiator if it can be changed from type III to type IV.  

A FIR filter is of type IV if it has an even length and an anti-symmetric impulse 

response. The type IV FIR is favoured over the Type III as a differentiator in terms of 

the frequency response. This can be noted from the simplest 2-point FIR differentiator 

of yn=xn- xn-1, which has a frequency response of 
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The corresponding amplitude response is shown below Fig.7-4. 

It can be seen that even though the differentiator is the simplest in form, it is close to 

the ideal at low frequencies (<0.2), and has a better amplitude response in the rest of 

the frequency band than its type IV counterpart of the first-order. It has a linear 

frequency response and therefore has a constant delay of half the sampling period. 

The type IV FIR differentiators are superior to the type III in terms of the frequency 

response since they do not have the undesirable characteristic of being zero at the 

Nyquist frequency. 
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Figure 7- 4: The frequency response of the simplest differentiator versus type III low-order Taylor Series FIR filters 

Since the frequency response of type IV FIR filters outperforms the type III at the 

higher frequency band, this suggests that full-band differentiators can be designed 

from Taylor series approximations. The explicit formulae for the determination of the 

full-band filter coefficients were given by Khan and Ohba [1999] and were 

mathematically proven by Khan et al. [2000]. The differentiators are in the form of 
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where the double factorial is defined as .1)4)(2(!! ⋯−−= xxxx The iterative 

algorithm to improve the computation efficiency was provided and a modification 

was also proposed to narrow the disclosure at the Nyquist edge (ibid). In summary, 

the Taylor series approximation can be employed in post processing applications. 

7.3 Curve Fitting with Window 

Differentiators using the curve fitting with window are popular for velocity and 

acceleration determination using GPS. Jekeli and Garcia [1997] applied a fifth-order 
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B-splines approximation to derive phase accelerations, while Fenton and Townsend 

[1994] adopted a parabolic approximation to obtain the precise Doppler shift. The 

cited curve fitting techniques use “sliding” windows, where the data are fitted into the 

polynomials using the least squares approach. The time derivative of the central point 

of the window is obtained by differentiating the polynomials with respect to time.  

For a discrete signal series of x(ti), if a “sliding” window is set such that the window 

is centred around time t0, and the length of the window is from t-k to tk, then a 

polynomial approximation of order N can be used to best fit the signals as [Bruton et 

al., 1999] 
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The coefficients of the polynomial can then be determined using the standard least 

squares estimation of the above equation, and the first derivative with respect to time 

can be obtained by 
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Bruton et al [1999] gave an in-depth review of the curve fitting differentiators. It is 

concluded that whether a curve fitting uses the approximation of polynomials, 

parabolas, or cubic splines, it closes to the ideal differentiator only at low frequencies. 

Since the resultant differentiator is band-limited and low-pass, it is suitable only for 

low dynamic or static applications. Furthermore, performing the least squares 

estimation involves intensive computational load since the obtained derivative is only 

for the central point at t0. Moreover, to obtain the current derivative at t0, one has to 

use the data at tk, which is an observable in the future. Thus the windowed curve 

fitting approach is inappropriate for real-time dynamic applications.  
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7.4 FIR Filters 

A Finite Impulse Response (FIR) filter consists of a series of multiplications followed 

by a summation. This is generally referred to as convolution. The FIR filter operation 

can be represented by the following equation [Hamming, 1977] 
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This is a familiar form as the differentiator designs based on the Taylor series are in 

such a form. The FIR filter gets its name since its response to an impulse dies away 

after a finite number of samples. Notice that this form is non-causal and not realisable, 

and therefore it is not suitable for real-time applications due to the requirement of 

signal inputs from the future. In order to design a causal FIR differentiator, a change 

of the form is required. This leads to 
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7.4.1 Type IV FIR Differentiators 

Chen [2001, p.332] showed that for a good differentiator design, the frequency 

response of an ideal Nth-order FIR differentiator should be  

ω−⋅ω=ω Nj

d ejH 5.0)(          7- 36 

which has a linear phase of 0.5Nω and thus has a constant group delay of 0.5N. Since 

FIR differentiators of type IV have much better frequency response, here a general 

description of the procedures to determine the filter coefficients is provided following 

Chen [2001]. 

The FIR filter of Type IV has an anti-symmetric impulse response with an even 

length. Firstly, define M=N/2 and suppose that the sampling time interval is T=1, then 
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the impulse response can be calculated by the inverse Fourier transform [Antoniou, 

1979] 
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where the infinite length of the Fourier terms has been truncated. The truncation may 

cause discontinuity at the edges of the window and lead to residual oscillations known 

as the Gibbs oscillations (ripples in the amplitude response against frequency).  

The Fourier transform works on the assumption that the data are periodic, however 

this is not the case for finite discrete time series. If not quite an integral number of 

cycles fit into the total duration of the measurements, then the end of one signal 

segment does not connect smoothly with the beginning of the next, and therefore there 

are small glitches at regular intervals. Different window methods can be used to 

smooth the glitches, truncate the filter coefficients, and sharpen up the filter’s 

frequency response. By adopting an appropriate window function, for example the 

Hamming window function, the FIR coefficients can be determined as [Antoniou, 

1979] 
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where wH is the Hamming window function given as 
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Such a type IV filter of the 7th- order, for example, minimises  
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and has a transfer function  
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This is an optimal differentiator in the sense of least squares, with an excellent 

frequency response at high frequency band. The noise amplification can be calculated 

from Eq.7-18 to be σ2
(yn)=3.2887, which is acceptable.  

It is expected that a type IV FIR obtained from the Remez exchange algorithm is able 

to deliver a better performance. This is because the Remez exchange algorithm is a 

minimax optimal, i.e. 

{ } 10:)]()(max[minimise <<∀− ωωω designedideal HH    7- 42 

and is more difficult to mathematically compute, but guarantees that the worst case 

error has been reduced to a quantifiable value. To verify this, two graphs of the 

frequency response have been presented for the 7th and 25th order filters using the 

Remez algorithm in Fig.7-5 
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Figure 7- 5: Frequency responses of the type IV FIR filters by Remez exchange algorithm 

The FIR filter design using the Remez algorithm is referred to as the “equal ripple 

design” since this method can suppress the ripples from the Gibbs phenomenon to a 

certain level, and convert them into equal ripples in both the pass-band and stop-band. 

It seems that type IV FIR filters using the Remez exchange algorithm will give us a 

closed solution, however it has been found that wide-band type IV differentiators are 
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associated with heavy noise amplification and a large bias. This has been reconfirmed 

with the performance tests on the type IV FIR using the Taylor series approximations 

(see Eq.7-31). It is found that only the simplest two-point differentiator of type IV can 

produce acceptable first-order derivatives. It may require more investigations on type 

IV FIR filters for differentiator design.  

7.4.2 Type III FIR Differentiators 

Since FIR filters of type IV perform poorly in the state space, it is worthwhile to 

investigate type III filters. A FIR filter of type III has an odd length and an anti-

symmetric impulse response. In this case, the coefficients of the differentiator are 

[Chen, 2001] 
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To eliminate the Gibbs phenomenon due to the finite truncation, a window function is 

required (as mentioned earlier) . 

Among many windows available, the Kaiser window [Farlex, 2004] 
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is the most popular since it can be evaluated to any desired degree of accuracy using 

the rapidly converging series of the zero-order Bessel function of the first kind 
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where the first 15 to 20 terms are sufficient for the filter to converge. Fig.7-6 depicts 

FIR differentiators of length 31 with and without the Kaiser window respectively. 
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 The ripple of the stop-band is controlled by the adjustable variable α. In our case, it is 

found that α=7.8  
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Figure 7- 6: FIR differentiator (filter length=31) with/without Kaiser window 

is optimal for the Doppler/Doppler rate derivation when the FIR filter length is 31 to 

meet the optimality criteria given by Kumar and Roy [1988b], Selesnick [2002] 
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With the above procedures one can design FIR differentiators with different cut-off 

frequencies, as can be seen from Fig.7-7. A closer look at Fig.7-7 indicates that the 

frequency responses of the filters are not linear at both the low and high frequencies. 

This can be improved, however, see Calsson [1991], Kumar and Roy [1988b].  

 

 

 

 

 

Figure 7- 7: Magnitude responses of FIR differentiators based on the window technique 
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Theoretically, FIR differentiators of type III can be designed to meet the requirement 

at nearly all frequencies, as long as N in Eq.7-35 can be increased. Although such 

filters are causal and linear in phase, the actual derivatives that yielded are with 

respect to time t-(N/2)T. This means that the more taps in a FIR filter, the longer the 

group delay will be. This property of the FIR filter is detrimental to real-time 

requirements. However, it can be eased if the sampling period T is small. The 

difficulty is that increasing the sampling frequency will result in more noisy 

derivatives. Therefore, a trade-off and compromise must be made when introducing 

FIR filters in such applications. 

In a series of publications, Kumar and Roy [1988a; 1988b; 1989a; 1989b] presented 

optimal and maximally linear FIR differentiators for low-frequency range, mid-

frequency range, and around spot frequencies. They presented explicit formulae and 

efficient recursive algorithms to calculate the impulse response of the filters. Their 

contributions have been highly acknowledged, for example, as state of the art 

differentiators by Al-Alaoui [1993]. In the case where signals have low frequency 

components that are contaminated by wide-band noise, FIR differentiators of 

optimum white-noise attenuation are desirable. Kavanagh [2001] investigated the 

impact of quantisation noise of signals from systems with low-frequency rates of 

change, and reported that the differentiator proposed by Vainio et al. [1997] 
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has an optimum white-noise attenuation and a constant group delay. A better 

differentiator is proposed when the rate experiences a slow change [Kavanagh, 2001] 
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which has the characteristic of minimising the worst-case error. Clearly, it is the 

simplest two-point differentiator when N=2 and the FIR filter of the three-point first-

order ‘central’ difference of a Taylor series approximation when N is 3.  

7.5 IIR Filters 

There is another category of filters referred to as the Infinite Impulse Response filters 

(IIR). A causal IIR filter is represented by  
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where the output signal at a given instant is obtained as the weighted sum of the 

current and past inputs xn, and the past outputs of yn. As suggested by its name, an 

impulse signal input has a response that lasts forever since the output will be 

recursively used. Notice that Eq.7-49 also represents the Auto Regressive Moving 

Average (ARMA) model. Since the previous outputs are recursively used, IIR filters 

can be implemented with a lower order, which gives better performance when 

compared with FIR filters. Thus they are attractive for real-time applications.  

The transfer function of the above IIR filter is 
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and the magnitude of the frequency response is 
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The phase response of the IIR filter is the phase of the numerator minus the phase of 

the denominator [Lyons, 2004, p.237], i.e.  
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An IIR filter is unstable if its response to a transient input increases without bound. 

Poles and zeros are used to analyse the stability of the IIR filter. The poles are the 

roots of the denominator and the zeros are the roots of the numerator in the transfer 

function. The IIR filter described by H(z) is stable if and only if all poles of H(z) are 

inside the unit circle on the z-plane [Stearns, 2003, p.83].  

IIR filters cannot be designed by calculating the impulse response from the known 

frequency response as was done for FIR designs. Many IIR filters can be derived from 

the analogue filter designs and then transformed into the sampled z-plane. Another 

popular method is the bilinear transform. This method relies on the existence of a 

known s-domain transfer function (Laplace transform) of the filter to be designed. 

The s-domain filter coefficients are then transformed into z-domain coefficients.  

The IIR differentiator design has been of considerable interest for long [Rabiner and 

Steiglitz, 1970]. Among various recursive differentiator designs, the Al-Alaoui’s IIR 

family [1992; 1993; 1994; 1995] has been highly acknowledged and widely used 

[Chen and Lee, 1995]. The novel approach of designing digital differentiators by Al-

Alaoui is an extension of the method used for designing analogue differentiators by 

using integrators. That is, in analogue signal processing differentiators are often 

obtained by inverting the transfer functions of analogue integrators. 

The general procedures to derive the Al-Alaoui family of IIR filters are as follows 
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• Design an integrator that has the same range and accuracy as the desired 

differentiator; 

• Invert the obtained transfer function of the integrator; 

• Reflect the poles that lie outside the unit circle to inside, in order to stabilise the 

resultant transfer function;  

• Compensate the magnitude using the reciprocals of the poles that lie outside the 

unit circle. 

7.5.1 Differentiator from Simpson’s Integrator 

The transfer function of the Simpson’s integrator is [Al-Alaoui, 1994] 
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Figure 7-8: Frequency response, zeros, and poles of the differentiator from the Simpson’s integrator 

Applying Al-Alaoui’s procedures, the transfer function of the differentiator is given 

by 
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As can be seen in Fig.7-8, this second-order IIR differentiator approximates the 

magnitude of the ideal differentiator up to 0.4 of the full frequency band and has a 

linear phase close to the ideal for low frequencies. With the pole well inside the circle, 

the proposed IIR filter is stable.  

7.5.2 Differentiator Families 

7.5.2.1 Second-Order Family 

Having observed that the ideal integrator response lies between the response of the 

traditional trapezoidal and Simpson integrators, Al-Alaoui proposed that weighting 

interpolations could be used to reach the ideal from the above integrators. This can be 

expressed by 
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This is a class of integrators characterised by the zeros being reciprocal pairs around 

the unit circle in the z-plane. Varying α may result in different integrators such as the 

Tick’s when α=0.8495 for example [Al-Alaoui, 1993]. Applying the same procedures 

developed by Al-Alaoui, the corresponding class of differentiators is derived with the 

transfer function of 
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where r2 is set to locate the poles inside the unit circle from the reciprocal pair. This 

results in the designed IIR filters being stable.  

Al-Alaoui [1993] reported that the derived low-pass differentiator class has smaller 

delay and superior performance than the differentiators of Kumar and Roy [1988b]. In 

the range of low frequencies of interest to this research, the differentiators have a near 

linear property and thus are attractive for many real-time applications. 

7.5.2.1 First-Order Family 

A first-order IIR differentiator was developed by Al-Alaoui [1995] with an effective 

range of 0.8 of the Nyquist frequency based on a non-minimum phase digital 

integrator. The integrator is a synthesis of the rectangular integrator and the 

trapezoidal integrator. By assigning weighting factors of ¾ and ¼ to the transfer 

functions of the integrators, the ideal integrator that has the following transfer 

function is approximated  
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Reflecting the zero z=-7 with its reciprocal z=-1/7 and compensating the magnitude 

by multiplying r=7 results in a minimum phase digital integrator with transfer 

function  
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Inverting the above transfer function yields Al-Alaoui’s stabilised IIR differentiator of 

the first-order 
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which has the characteristics as depicted in Fig.7-9. 

The new differentiator is able to approximate the ideal differentiator up to 0.78 of the 

full frequency band, and has an outstanding “linear phase” response. Al-Alaoui 

reported that within the effective frequency range, it has a less than 2.0% magnitude 

error. Since the pole is -1/7, it is rather stable; and since it is of first-order, the delay 

of the filter is just half of the sampling interval and thus it meets every requirement 

for use in real-time. 
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Figure 7- 9: Characteristics of Al-Alaoui’s first-order IIR differentiator 

Al-Alaoui contributed this differentiator as an individual; however, a family of such 

first-order differentiators can be derived following the same methodology. That is, 

while Al-Alaoui designated the weighting factors of ¾ and ¼ empirically, one may 

obtain the optimal weights experimentally. To achieve this, a variable α is introduced 

to adjust the weighting factor in the following way 
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where α servers as a “tuner” to adjust the integrator so that it better approximates the 

ideal. α =¾ can be used as a reference to refine the integrator in the desired range of 

frequencies. This leads to the following transfer function  
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where 10 << α . Obviously, it has a zero outside the unit circle. Applying Al-

Alaoui’s procedure to reflect the zero with its reciprocal and compensating for the 

magnitude, a variable integrator is obtained as 
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which represents a set of a minimum phase digital integrators. Inverting the transfer 

function gives a new set of differentiators with transfer functions as 
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since the poles are at 
α+

α−
−

1

1
, which is inside the unit circle and therefore the 

resultant differentiators are stable. Setting α with 0.75 gives the transfer function 

proposed by Al-Alaoui, and slightly changing α around 0.75 results in differentiators 

that perform well in the target bandwidth. The noise amplification of this kind of 

differentiators can be evaluated using Eq.7-20, which is a little bit nosier than the 

simplest two-point differentiator is.  

7.6 Summary 

General theories on digital filter design have been introduced, with the aim of finding 

an appropriate differentiator that can be used to derive Doppler shifts or Doppler rates 

from GPS observables in real-time and dynamic applications. The differentiators from 
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both the curve fitting and Kalman filtering approaches require intensive computation 

and are low-pass, and thus not suitable for this purpose.  

Type III FIR differentiators have the inherent characteristic of the frequency response 

going to zero at the Nyquist frequency. To extend the performance of type III FIR 

filters to high frequency bands one has to increase the filter taps. This results in a 

longer time delay, which is detrimental for real-time applications that require the 

group delay of the differentiator to be as short as possible.  

Type III FIR filters can be used to derive Doppler/Doppler rate ‘observables’ in the 

post-processing mode, and higher order central difference of Taylor series 

approximations might outperform those based on windowed Fourier series, since 

there are no truncations and no associated Gibbs phenomenon.  

Type IV FIR differentiators using Fourier series have outstanding frequency response, 

however they are usually noisy and biased. In this research, it is observed that only 

the Kavanagh [2001] differentiators of type IV (including the simplest two-point 

differentiator) deliver good first-order time derivatives. However, they approximate 

the ideal differentiator only for the range lower than 0.2 of the Nyquist frequency.  

IIR filters are more suitable for real-time operation. Since the outputs of the filter are 

recursively used, they have much lower orders than the FIR filters. The first-order IIR 

differentiator from Al-Alaoui is ideal in terms of frequency response, phase linearity 

and half sample group delay. The proposed class of first-order IIR differentiators 

allows us to define the optimal parameters in the desired frequency range.  

It is suggested that the Kavanagh [2001] differentiators can be used for static or in 

constant velocity modes, and the proposed IIR differentiators of the first-order be 

adaptively used when systems experience higher dynamics. 
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C h a p t e r  E i g h t  

MISCELLANEA OF VELOCITY AND ACCELERATION 

DETERMINATION 

The physical and mathematical principles of ground velocity and acceleration 

determination have been elaborated in the previous chapters. With a set of 

differentiators designed in Chapter Seven, the ground velocity and acceleration can be 

determined from either the carrier phase measurements or the Doppler shift 

measurements in real time. 

However, there are many operational issues in utilising such a set of differentiators 

with a GPS receiver operating in real time. Amongst them, the effects of receiver 

clock reset, cycle slips and loss-of-lock of signals require further discussions.  

The output of a differentiator inevitably becomes noisy when increasing the sampling 

rate, which would result in deterioration of the ground velocity and acceleration 

estimates. In particular, the acceleration determined based on the Doppler rate method 

would be severely affected due to the amplification of noise if the incoming signals 

are carrier phase measurements. 

This chapter discusses the above issues. §8.1 describes the effects caused by the 

receiver clock reset, loss-of-lock of signals and cycle slips, and investigates the 

corresponding treatments in differentiation processes. §8.2 discusses the second-order 

differentiator design and proposes the use of a cascade scheme. §8.3 presents 

alternative methods to derive ground accelerations in both the measurement and 
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velocity domains, which are expected to have better performance in high sampling 

rate scenarios. 

8.1 Issues in DSP of GPS Receiver  

The differentiator design discussed in Chapter Seven is directly related to Discrete 

Signal Processing (DSP), where both FIR and IIR filters generally work on the basis 

that incoming digitised discrete signals have equal time intervals. It is assumed that 

there is no abnormal signal in the incoming time series. These conditions, however, 

are too ideal for GPS observations. 

Time-tags of GPS measurements are dependent on the Numerically Controlled 

Oscillator (NCO) and subsequently corrected for the estimated receiver clock biases, 

which are desired from the navigation solution. Due to the instability of the oscillator, 

and the bias and drift of the receiver clock, the GPS measurements are not equally 

time-spaced in a strict sense. 

Quite often loss-of-lock of signals occurs in a receiver when tracking a GPS satellite. 

As a result, there will be blank records in the time series of measurements. Neglecting 

the zeros would lead to an incorrect output from the differentiator, producing 

erroneous Doppler shifts and Doppler rates, and subsequentially poor velocity and 

acceleration estimates. 

In the case that the carrier phase measurements are used as the input of a 

differentiator, it is also necessary to take into account the carrier phase cycle slips. 

8.1.1 Receiver Clock Reset and Edge Effect  

It has been stated in §3.2.3.1 that there are two different schemes for manufacturers to 

handle GPS receiver clock drifts: one is receiver clock steering, and the other is 

receiver clock reset.  
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Under the scheme of receiver clock steering, receiver clock drifts are adjusted epoch 

by epoch by the receiver internal software so as to synchronise the receiver clock to 

the GPS system time. In this circumstance, the sampled measurements (L1, C/A, D1, 

etc.) can be regarded as being output at equal time intervals, and thus poses no 

problems.  

For those receivers utilising the receiver clock reset, the clock is allowed to drift until 

a threshold of one millisecond is reached, and then there will be an increment of the 

clock to correct the time at that epoch [Farrell and Barth, 1999, p.151]. When this 

occurs, the sampling time intervals will be non-uniform. As a result there are edge 

effects on the derivatives when the signal at the reset epoch is used as an input. If the 

differentiator were an IIR filter, theoretically it would have effects on each derivative 

thereafter. Hence signal re-sampling is necessary. 

Figure 8-1 illustrates the concept of receiver clock reset and signal re-sampling. 

Suppose that the differentiator used for Doppler shift or Doppler rate derivation is an 

IIR filter of first-order or a 3-point FIR filter of the central difference of a Taylor 

approximation. In the implementation of the filter, there should be a queue acting as a 

container to manage the time series of measurements that are the filter input. Note that 

the container is usually set longer than the length of the actual filter. 

In the case of a clock reset as shown in Fig.8-1, the sampling space is one millisecond 

shorter than the normal time interval. This is rendered in yellow in the first two states. 

If the time series are the carrier phase measurements and the previously derived 

Doppler shift is 6,000Hz for example, then neglecting this 1ms time shortage would 

cause ±6Hz error in the derived Doppler shift at this epoch. The edge effect would 

affect each derivative of the measurements at the reset epoch and the neighbouring 

epochs as well unless appropriately treated. 

To eliminate the edge effect caused by the receiver clock reset, the measurement of 

the reset epoch should be re-sampled to the normal time, i.e. from Xn(tr) to 
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X’n(tr±1ms) where tr indicates the time of the receiver clock reset. This is shown in the 

first and second states in Fig.8-1, where an extrapolation of the measurements is 

required. The slim red bar represents the compensation time interval needed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8- 1: Receiver clock reset and states of signal re-sampling 

The prediction can be conducted using a polynomial approximation. In this case, there 

are five measurements (Xn, Xn-1, …Xn-4) in the queue, so a polynomial of order 4 can 

be formed and the expected value can be extrapolated at t=tr+1ms.  

The transition of states of the receiver clock reset is also illustrated in Fig.8-1. In State 

3, with the push-in of a new measurement, the extrapolated value should be replaced 

by a recalculation using the polynomial interpolation. This improves the accuracy 

since extrapolations are inferior to interpolations in nature. It can also be seen that the 

reset epoch dies out in State 6 when the uniform sampling space is resumed. 
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The method described above uses raw observations only. An alternative method to 

deal with the receiver clock reset may use aids from the derived derivatives, where a 

simple linear prediction scheme might be sufficient. A brief description is provided. 

When a new observation is made and the queue is shifted to State 3, from left to right, 

the data set (Xn-2 ,Xn-3, Xn-4) needs to be interpolated as an equally spaced set (X’n-2, 

X’n-3, X’n-4), where the primes stand for the re-sampled input values. Many 

interpolation methods can be used for this purpose. However, the Hermite 

interpolation may be most suitable since there are not only the measurements at each 

epoch, but also the derived first-derivatives as additional information. Moreover, it 

has the advantage of working on un-tabulated points. 
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8.1.2 Signal Loss-of-Lock  

A GPS receiver may lose track of signals from a particular satellite due to reasons 

such as a failure in the receiver internal tracking loop, or a signal blockage. When a 

signal loss-of-lock occurs, there will be no observation at this epoch. Consequently, 

an abrupt derivative will be generated through the differentiation process unless there 

is an appropriate treatment of this effect. 

When a blank observation is detected, one should determine whether it is due to the 

satellite falling below the elevation cut-off angle mask. If this is the case, then no 

extra manipulation is required since the tracking of the satellite is over. If it is 

determined that the blank observation is a real loss-of-lock, then a prediction of the 

observation is required.  

 

 

 

 

 

 

Figure 8- 2: Loss-of-Lock Signal Handling 

Figure 8-2 shows the transition of the three states of a signal loss-of-lock. State 1 

indicates a blank observation occurring where the measurement is zero. The 

prediction of the signal is then carried out in State 2, which is rendered in yellow (In 

fact, State 1 and State 2 are still the same state since no new signal comes into the 

system, the transition involves replacing the blank observation). When the successive 

signal is measured at the next epoch, the predicted value should be replaced by an 

Xn-4 

Xn-4 

Xn-

Xn-3 Xn-2 X”n-1 Xn 

Xn-3 Xn-2 Xn-1 X’n 

Xn- Xn-2 Xn- 0 
interval 

Loss-of-lock 

signal occurs 

Prediction 

State 1 

State 2 

State 3 

Interpolation 



 
178 

interpolation in order to improve the accuracy. This is represented through the shift 

from State 2 to State 3. The same procedures as in §8.1.1 apply in both the prediction 

and interpolation processes. 

If consecutive blank observations occur it is recommended that the differentiator 

should be re-initialised. In addition, the differentiator needs to be reinitialised if there 

is a concurrence of a receiver clock reset and a signal loss-of-lock. These treatments 

of the receiver clock reset and signal loss-of-lock demonstrate why it is desirable that 

the differentiator design should be of low order. For a real-time system, managing 

many taps of the filter is a nontrivial task. 

8.1.3 Cycle Slips 

If carrier phase measurements are used as the input of differentiators, it is important to 

have a cycle slip detection scheme as the carrier phase measurements occasionally 

experience cycle slips. When a cycle slip occurs, similar to the receiver clock reset, 

the time derivatives will be affected. Since the magnitude of cycle slip varies, it is 

hard to quantify the effects on the derivatives.  

Cycle slip detection has been a topic that has attracted much research attention. This 

is because the accuracy of conventional GPS baseline solutions relies on “cycle slip 

free” carrier phase measurements and “fixed integer ambiguities”. Many cycle slip 

detection approaches for static baseline processing and RTK have been developed, 

which can be grouped into the following schemes: 

• Comparing the difference between consecutive carrier phase and code values 

(range residual); 

• Comparing successive ionospheric residuals; 

• Comparing the residuals with a curve fitting; 

• Comparing with the Doppler shift values. 
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In the measurement domain, a dual-frequency GPS receiver has more options to 

detect and even estimate cycle slips than a single-frequency receiver. The changes of 

Lg, the geometry-free linear combination of L1 and L2 observations, can be used to 

detect cycle slips very effectively. The only limitation of using Lg is that it does not 

have the ability to detect concurrent cycle slips with the same cycles on both L1 and 

L2. Since the possibility of this cycle slip happening is very low, it is recommended to 

use Lg time series to detect cycle slips for dual-frequency GPS receivers. 

Although it is rarely used, the principle of utilising the Doppler shifts to facilitate 

cycle slip detections can be demonstrated by the fact that any deviation between the 

predicted carrier phase and the actual carrier phase measurements is due to either the 

measurement noise or a cycle slip, i.e. 

[ ]tDD nnnnresidual ∆++ϕ−ϕ=ϕ −− )(5.0 11       8- 4 

Suppose measurements are recorded at an interval of one minute, the carrier phase 

residuals calculated by the above equation are suspect since there might be large 

Doppler shift changes during this long time interval. It is therefore not viable for use 

in cycle slip detection for static GPS applications with low sampling rates. 

However, in the case when the sampling rate is high, say 10Hz or even higher, the 

Doppler aiding becomes an effective tool to detect and estimate cycle slips since the 

dramatic change of φresidual can be attributed to a cycle slip. This method does not 

depend on the measurements from another frequency band, and thus is more 

favourable for single-frequency GPS applications. 

As this research targets single-frequency GPS applications, Doppler aiding is adopted 

as the sole means for detecting and estimating the cycle slip values of carrier phase 

measurements. By managing the queue of the carrier phase measurements and the 

derived Doppler shifts, a carrier phase measurement is firstly predicted using Eq.8-4 

where the current Doppler shift is estimated using an extrapolation of the relative 



 
180 

velocity between the receiver and the satellite. A cycle slip is flagged if the calculated 

residual φresidual exceeds a preset threshold.  

+IIR_Dif4DopNrate()

+~IIR_Dif4DopNrate()
-DetectBlankObs(in L : double)

-DetectCycleSlip(in currentTime : double, in L : double)

-DetectCycleSlip(in currentTime : double, in L : double, in D : double)

+getDifferentiator(inout *drvdDop : double, inout *drvdRate : double, in iMethod : int)
+getEleInQue()

-IIR_Filter(inout *A : double, inout *B : double, in Na : int, in Nb : int)

-Interp_Hmt(inout *x : double, inout *y : double, inout *dy : double, in n : int, in t : double)
-Interp_smp(in Y_3 : double, in Y_2 : double, in Y0 : double)

+isBlankObservation()

+setDifferentiator(in obsL : double, in tmInGPSWKsec : double, in dT : double, in svNo : unsigned short, in ClkRest : bool)

+setDifferentiator(in obsL : double, in obsRawDop : double, in tmInGPSWKsec : double, in dT : double, in svNo : unsigned short, in ClkReset : bool)
+operation1(in obsL : double, in tmInGPSWKsec : double, in dT : double, in svNo : unsigned short, in ClkRest : bool)

-isBlankObs

-isInitialized

-isRecClkReset

-nLength
-PRN

-queD

-queDD
-queL

-queTime

-T

art_kal::IIR_Dif4DopNrate

 

Figure 8- 3: The IIR differentiator class design in UML 

Figure 8-3 shows the IIR differentiator class designed in this research, which is 

expressed in the Unified Modelling Language (UML) [Booch et al., 1999]. This 

figure is automatically generated from the C++ source code by the Microsoft Visio™ 

software.  

Whenever a new observation arrives, the public member function 

IIR_Dif4DopNrate:: setDifferentiator() is called. It detects the receiver clock reset at 

the epoch, issuing a Boolean true to IsRecClkReset when there is a real receiver clock 

reset. IsRecClkReset is one of the private member variables of the IIR class, taking a 

Boolean false in most of the time. When it becomes true, the signal re-sampling 

procedures described in §8.1.1 will be activated. A blank observation will be detected 

and corrected using the scheme described in §8.1.2. Interpolation and prediction are 

also carried out when required in the case of a receiver clock reset or a signal loss-of-

lock. Meanwhile, a cycle slip is monitored through calling DetectCycleSlip(…), a 
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private member function of the class. A detected cycle slip will trigger a re-

initialisation of the differentiator (meaning that the carrier phase measurements will 

not be used to derive Doppler shifts until the differentiator is re-initialised). All these 

are accomplished by the private member functions that have minus signs in front of 

their names in Fig.8-3.  

For brevity, no further coding details of the implementation are presented here since 

they may vary with different systems and platforms. However, the point is that when 

designing such systems, one must be aware of the operational problems due to the 

presence of the receiver clock reset, blank observations and cycle slips. A successful 

implementation requires these effects to be considered and appropriately treated.  

8.2 Differentiator for Second-Order Time Derivatives 

A differentiator for second-order time derivatives is able to directly derive the 

Doppler rate from the carrier phase observables. The simplest way of designing such a 

second-order differentiator is to use the Taylor series approximations. A FIR filter of 

any length can be designed in this way. Low-order filter coefficients can be found in 

many mathematical handbooks [cf. Beyer, 1980]. 

An alternative method of FIR filter design uses the Fourier transform. The ideal 

frequency response of the second-order differentiator is (see § 7.1.2)  

2)( ω−=ωH           8- 5 

With the frequency response, the impulse response of the filter (filter coefficients) can 

then be determined using the inverse Fourier transform. The procedures are similar to 

those described in § 7.4.1, and readers are referred to Antoniou [1979] for more 

details. 

Nevertheless, it is found that the derived second-time derivatives are very noisy at 

10Hz rate, regardless of the chosen method. The errors in the carrier phase 
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measurements have been greatly amplified. Although both the Taylor series 

approximation and the Fourier transform methods have their own successful 

applications in other areas, they are not suitable for Doppler rate derivation for 

acceleration determination using GPS at high-sampling rates. 
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Figure 8- 4: Cascade differentiators for the second-order time derivatives 

Cascade differentiators are therefore designed whereby there are two columns of the 

first-derivative differentiators running in cascade. The outputs of the differentiators in 

the first column, which are the first-order time derivatives (Doppler shifts), are 

redirected as the input of the second differentiator column. Figure 8-4 illustrates the 

implementation of such cascade differentiators. 

The second-order time derivatives from the cascade differentiators generally have 

better performance in noise suppression; however, they are still too noisy when the 

sampling rate increases. 
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8.3 Alternative Methods of Ground Acceleration Determination 

The acceleration determination described earlier is based on the virtual observables of 

the Doppler rate that are derived through specially designed differentiators. It is 

necessary that there are differentiators running for each tracked satellite. This is not 

trivial, especially when it is in real time and the sampling rate is high, since the 

system would experience very heavy computational load and the accuracy of the 

derivatives could degrade. So it is useful to develop alternative methods of ground 

acceleration determination. 

Another reason to develop such alternatives is to maximally exploit the high precision 

of both the GPS Doppler shift and the carrier phase measurements. One may expect 

an improved accuracy of acceleration by derivation in the measurement domain than 

in the coordinate domain.  

In this section, two alternatives of ground acceleration determination are presented. 

8.3.1 Ground Acceleration from Doppler Observations 

To introduce the concept one may write the Doppler observation equations at two 

consecutive epochs 
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The change of Doppler shift between these two epochs is due to the relative motion of 

receiver r and satellite s, and other differences such as the change-rates of the 

ionosphere and troposphere, and the measurement noise. Intuitively, the change of 

receiver velocity can be modelled by 

ttttt rr ∆⋅+∆−= )()()( αrr ɺɺ         8- 8 

where α(t) is the receiver acceleration. More precisely, α(t) is the average acceleration 

of receiver r during the time interval ∆t. Differencing between the successive epochs 

and neglecting the relativistic terms and propagation errors 
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This equation can then be rewritten into 
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In Eq.8-10 all the terms on the right hand side are known except the acceleration 

vector. The unknowns are the three components of the average ground acceleration. 

Therefore one can solve the receiver acceleration after the velocity determination by 

using a least-squares estimation scheme.  

Since the contributions from the line-of-sight corrections for two consecutive epochs 

are numerically identical when the sampling rate is high, they vanish through the 
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differencing process. Thus one may simplify Eq.8-10 by neglecting the line-of-sight 

correction terms. This leads to 

ε+∆−⋅−⋅+

τ−⋅−∆−τ−∆−⋅+

∆⋅∆−−⋅∆−+⋅−

τ−∆−⋅∆−−τ−⋅=λ∇

)()(

))(())((

)()()()()()(

)]([()()]([()(

tttdcttdc

tttdctttttdc

ttttttttt

ttttttttD

rr

s

r

ss

r

s

s

rr

s

rr

s

r

s

r

ss

r

s

r

ss

r

s

r

ɺɺ

ɺɺ

ɺɺ

ɺɺ

αnrnrn

rnrn

    8- 11 

The satellite clock terms can be further simplified using the broadcast correction 

model, however they may be left in the above form since their values can be re-used if 

saved. 

The resultant acceleration is the average for the entire period of t-∆t to t. The benefits 

of this method are obvious. It is free of cycle slips and the effect of the receiver clock 

reset. When the sapling rate increases, an averaging filter would be helpful to obtain a 

smoothed acceleration. 

8.3.2 Ground Acceleration from the Carrier Phase Observations 

In this section a method for ground acceleration determination based on carrier phase 

observations is described. The ground velocity is derived from the between-epoch 

differencing of the carrier phase observables. This velocity is the average speed of the 

receiver during the period between the two epochs. Acceleration is then derived from 

differentiation of the velocities with respect to time. This method suits receivers with 

carrier phase measurements, but without Doppler shift output. 

8.3.2.1 Ground Velocity Determination 

Similar to the approach of determining the acceleration from Doppler measurements, 

it is assumed that the change of carrier phase between two consecutive epochs is 

caused by the change of system states, i.e. 
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t)t()tt()t( rr ∆⋅+∆−= Vrr  8- 12 

where the receiver is regarded as travelling at a constant velocity V(t). Note that 

significant modelling errors are present when the sampling space is too long or the 

system experiences high dynamics. 

The observation equation for a carrier phase measurement is 
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where s

rdR  stands for the relativistic corrections of the carrier phase measurement. 

The between-epoch difference of the carrier phase observables can be formed as 
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if no cycle slip occurs. This equation can be simplified by approximating the line-of-

sight vectors associated with the receiver positions to that at the central time, and 

substituting the proceeding receiver position with the current receiver position, as 

follows 

ε+∆−τ−∆−−τ−⋅−∆−−⋅+

∆∆−+∆−τ−∆−⋅∆−−τ−⋅≈λϕ∇

))](())(([)]()([

)
2

1
())(()())(()(

ttttdtttdtcttdttdtc

tttttttttttt

s

r

ss

r

s

rr

s

r

s

r

ss

r

s

r

ss

r

s

r Vnrnrn
 

          8- 15 

where )t
2

1
t(s

r ∆−n  is the corrected line-of-sight vector at the central time. The 

receiver velocity can be therefore resolved by observing four or more satellites since 

there are only four unknowns.  
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Note that the velocity obtained through the Doppler shift measurements is an 

instantaneous velocity, while the velocity obtained from the carrier phase is with 

respect to the central time between two epochs, or in other words, an average velocity. 

8.3.2 2 Ground Acceleration Determination 

The ground acceleration may then be derived using a differentiator with the derived 

ground velocities as the filter input. It is preferred that the differentiator in our 

application be able to mitigate the effects of high-frequency noise. The output of the 

differentiator is a smoothed ground acceleration with a fixed time lag. 

8.3.3 Kalman Filter Design for Acceleration Determination 

Running Kalman filters for each tracked satellite to derive Doppler and Doppler rate 

involves a significant computational overload. However, if the receiver velocity has 

been obtained, then a Kalman filter may be used for ground acceleration 

determination in the velocity domain. 

 

 

 

Figure 8- 5: Gauss-Markov process as the driving noise of acceleration 

As the receiver may experience high dynamics, rather than just using a white noise or 

random walk process as the system driving noise, the Gauss-Markov random process 

model can be used to represent the system driving noise. Figure 8-5 illustrates the 

shaping process of white noise to become the driving noise of acceleration through 

the Gauss-Markov random process and the driving noise of velocity through a further 

integration. In this case the noise of the observed velocity is modelled by an 

White noise series u(t)~ [0,σ2] 
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integrated Gauss-Markov random process, which is originally generated from a 

Gaussian white process.  

The Gauss-Markov random process model uses an exponential autocorrelation 

function that has the ability to represent the correlations of system dynamics. That is, 

a close correlation represents the system in static or at constant speed, while a loose 

correlation suggests that the system is experiencing high dynamics.  

The adopted Kalman filter has the following state equation in a continuous differential 

form 
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where β is referred to as the correlation time constant which determines the degree of 

correlation of the representing random process, σ represents the Gaussian white noise. 

The corresponding transition matrix for the state is given as [Brown and Hwang, 

1992] 
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This Kalman filter is characterised with the integrated Gauss-Markov process as the 

system driving noise, which can be expressed by 
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where the tilde bar denotes the vector of measurements, and the corresponding state 

driving noise covariance matrix Q=E[wk,wk
T] is given by  
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In the above model, the acceleration of the current epoch is related to the acceleration 

at the previous epoch by  

kk

t

k we +⋅= ∆⋅β−
+ αα 1          8- 20 

It can be seen that by steering β to different values, various receiver dynamic states 

could be accommodated by this integrated Gauss-Markov process model. That is, for 

example, a large β indicates less correlation in the acceleration, which suggests that 

the system may change acceleration dramatically and thus be in a highly dynamic 

mode; a small β indicates high correlations in acceleration which implies that the 

system is in a stable mode. If β approaches infinity, the Gauss-Markov model will 

approach the random walk process. It is in this sense that one may anticipate that the 

Gauss-Markov model could be superior to the random walk model, and therefore 

could be used to accommodate different dynamics. 

To use this Kalman filter one needs to predefine all the parameters, especially to 

assign a fixed value to β so as to suit the system dynamics. For a real-time application, 

it is most desirable that β can be adaptively determined to best fit the changes of state. 

This is referred to as adaptive Kalman filter design. 

The adaptation can be accomplished by augmenting the correlation constant β into the 

state using extended Kalman filter techniques [Grewal et al., 2001]. In the 

implementation, it should be noted that even though β is a constant, it must be treated 

as a random variable [ Chui and Chen, 1987, p.117] 

β+ σ+β=β kk 1           8- 21 

where σβ is a Gaussian white noise.  

Then the augmented Kalman filter is given by 
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Equation 8-22 is obtained by calculating the dynamic Jacobian, which agrees with the 

dynamic model given by Grewal et al. [2001, p.211] when β is large. The 

corresponding Q-matrix is 
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In conjunction with the velocity measurements, this Kalman filter can be used to 

derive acceleration in dynamic situations. 

8.4 Summary 

This chapter presents miscellaneous topics associated with  velocity and acceleration 

determination. It outlines the causes of abnormalities in the Doppler shift or Doppler 

rate derivation. General procedures for handling receiver clock resets, blank 

observables and cycle slips were discussed. Doppler aiding for real-time cycle slip 

detection and estimation was presented. 

Alternatives for ground acceleration determination are introduced. These methods 

have the capability of exploiting the high precision of the GPS system to generate 

ground acceleration without using differentiators in the measurement domain. Rather 

than deriving acceleration from the GPS-determined positions, which is generally a 

second-order differentiation process, the acceleration derived directly from precise 

velocities has a better accuracy. For this purpose, Kalman filtering techniques were 
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presented and an adaptive Kalman filter was proposed to suit changes of receiver 

dynamics. 
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C h a p t e r  N i n e  

CONCLUSIONS AND RECOMMENDATIONS 

Position and velocity determination are associated with the scientific definition of 

navigation. An improvement in the accuracy of either may lead to an improvement of 

accuracy of the other. In this research, an intensive investigation into precise velocity 

determination using GPS has been conducted, with an aim to ensure positional 

accuracy improvement.  

Issues in relation to real-time precise velocity and acceleration determination using 

GPS in standalone mode have been discussed in the context of this thesis. The 

following is a summary of the conclusions of this research and recommendations for 

future work. 

9.1 Conclusions 

As part of the navigation solution, a user’s velocity can be determined using GPS in 

real time. This velocity, thanks to the latest hardware development, can be measured 

at a very high sampling rate. From a known starting point, the relative positions of the 

user can be determined through an integration process with high sampling rate 

velocities as the input. 

The positions from such a scheme may have a better accuracy than those derived from 

the SPS within a prescribed period. The more accurate these velocities can be 

determined, the longer such a prescribed time will last. This research serves this 
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pursuit through a comprehensive investigation into high accuracy velocity 

determination using GPS. 

It is found that among various methods of GPS velocity determination, the Doppler 

shift method has the advantage of producing ground velocity with the highest 

accuracy, and the resolved velocity is the instant velocity at the measurement epoch 

(if the delay due to signal processing time is negligible).  

All the error sources that affect the positional accuracy in Precise Point Positioning 

have corresponding effects on velocity determination. The magnitude of a specific 

error source on Doppler shift measurements is the first time derivative of the source 

error in the range measurements.  

It is demonstrated that the GPS satellite velocities from the broadcast ephemeris have 

better than 0.001m/s accuracy for each axis. Such an accuracy level of satellite 

velocity can be obtained using the rotational matrix method, differentiation of 

positions or position polynomials. 

Through a comprehensive error analysis, it has been concluded that the relativistic 

effects are the largest error sources in a receiver to satellite Doppler shift 

measurement. An in-depth analysis of the relativistic Doppler effects provides 

intuitive views in the frequency domain, which is analogous to the Fourier transform. 

From the Doppler shift observation equation developed here, it can be seen that the 

high velocity of a satellite in orbit bends the receiver to satellite line-of-sight towards 

the satellite travel direction, causing a small frequency shift. The readily known orbit 

eccentricity correction for satellite clock is a periodic function in terms of orbit 

eccentricity, orbit semi-major axis, and the orbital eccentric anomaly, i.e. 

kEae
c

GM
sin

2
⋅⋅  (see Eq.3-18) where the role of the orbit eccentricity is not 

obvious. However, in the frequency domain the corresponding term is in the form of 
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)
11

(
2

s
orbac

GM

r
− . It is apparent that this relativistic term is caused by orbit 

eccentricity, since in a circular orbit it becomes zero. It also can be seen that the 

difference of the receiver gravitational potential to that at the geoid, 
c

)( r0 rΦΦ −
, 

contributes an extra frequency shift. This frequency shift is characterised as being the 

same for all the Doppler shift measurements of satellites in view. Therefore the 

receiver potential difference only causes a biased receiver clock rate estimate, and it 

won’t affect a user’s velocity. Although the Earth’s rotation correction is discussed 

and its correction formula is developed, a user can neglect it if an iteration scheme to 

account for the propagation time is adopted. 

The ionospheric delay rate can be easily handled for dual-frequency GPS receivers. It 

can be eliminated by forming the “ionospheric free” Doppler measurements, or 

derived by a low-pass differentiator with the geometry-free carrier phase linear 

combination Lg as filter input. 

It is difficult for single-frequency GPS users to correct for the ionospheric delay rate. 

Although the delay rate can be derived from the time series of “code–carrier phase”, 

the accuracy is degraded due to the poor accuracy of code range measurements. The 

change-rate from the Klobuchar model also suffers from poor accuracy problems. 

In this research, the tropospheric delay rate correction has been identified as requiring 

appropriate mapping functions that may best represent the change of the tropospheric 

delay along the signal profile. This requires precise geodetic mapping functions to be 

used. A simulation using Chao’s model found that the delay rate on Doppler 

measurements is several centimetres per second in elevation range from 10° to 30°. 

Up to 60°, half centimetre per second delay rate remains. As such, it is better to use 

the tropospheric model with the highest accuracy available, and apply a differentiator 

to get the delay rate correction. 
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Since both the ionospheric and tropospheric delay rates contribute a few millimetres 

to centimetres per second errors to Doppler measurements, and since their changes are 

hard to predict and model, it is concluded that the atmosphere is the major error 

source degrading the velocity accuracy. 

Ground velocity at sub-centimetre per second level is now achievable from GPS 

Doppler shift measurements. However, the velocities derived manifest a small bias 

and coloured noise due to the presence of unmodelled errors and an uneven 

distribution of GPS satellites.  

The virtual Doppler rate “measurement” is rather clean since major error sources have 

no numerical effects on it except the real-time satellite orbital accelerations from the 

broadcast ephemeris, which is still better than ±0.1mm/s. Thus, ground accelerations 

can be potentially determined at a relatively high accuracy. Although the derived 

accelerations may be slightly biased, they have no drift compared to using an 

accelerometer. 

The main problem associated with the Doppler rate method is that there are no 

Doppler rate observables in GPS receivers. It must be derived either from the carrier 

phase measurements or from the Doppler shift measurements. As the sampling rate 

increases, the noise corrupts the accuracy of the derived Doppler rates, and 

consequently degrades the ground acceleration results. In addition, a heavy 

computational load is required when using this method, demanding more powerful 

CPUs and memory. Therefore, it may be more economic and effective to employ an 

accelerometer when high sampling rate accelerations are required. 

The methods used to determine acceleration using GPS are computationally 

cumbersome. The inclusion of acceleration for low dynamic motion modelling has 

minor contributions to the resolution of the state when high sampling position and 

velocity can be obtained. Since inertial acceleration can be directly sensed with 

accelerometers, it is more convenient to rely on the inertial sensors to obtain the 
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kinematic accelerations. GPS in this case, is more suitable for calibrating the sensed 

accelerations. 

The IIR differentiators derived in this research are not subject to Doppler/Doppler rate 

derivation. They are ideal for many real-time applications owing to their 

characteristics, such as the broadband frequency response, linear phase response and 

short group delay, and easy implementation.  

It is sensible to acknowledge that the errors of the GPS derived velocity and 

acceleration are not Gaussian white. Consequently, the adaptive Kalman filter 

designed in §8.3.3 applies only for the case that the driving noise of velocity complies 

with an integrated Gauss-Markov random process.  

In summary, this research has continued and extended the velocity and acceleration 

determination using GPS to a higher level. All the tools and algorithms required for 

real-time precise velocity and acceleration determination using GPS have been 

developed with enough thoroughness and at the highest accuracy. Together they form 

the theoretical basis for such applications. 

9.2 Recommendations for Future Work 

It is recommended that further study of the multipath effect on the Doppler shift 

measurements be undertaken in order to draw a decisive conclusion. 

Further work needs to be carried out into the implementation of the theories and 

approaches developed in this research. In particular, it is worthwhile to implement 

Neill’s mapping function and the adaptive Kalman filtering developed in Chapter 

Eight into the C++ package and carry out real-world tests. 

Future tests need to be carried out on the calibration of velocity bias and the 

recognition of velocity driving noises of any GPS system of interest. This is because 

any bias in the derived velocities would be accumulated through integration, causing 
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rapid divergence of the position solution. On the other hand, failure in recognition of 

the driving noise process of derived velocity will lead to a failure in Kalman filtering. 

However, such system recognition tends to be costly and time-consuming.  

The investigation into the differentiator of type IV FIR filters is still at an early stage. 

Differentiator and integrator designs have been open topics for decades; one may 

easily find hundreds of papers in IEEE journals. Further research may be needed since 

this type of differentiator gives an almost ideal frequency response. 

Further research into the relativistic “line-of-sight correction” term of the Doppler 

shift measurement is recommended. It is demonstrated in this thesis that the line-of-

sight direction is tilted toward the satellite motion direction in the frequency domain. 

However, it is still unclear whether the satellite velocity term accidentally maps into 

the line-of-sight direction or its presence has more physical meaning. Since the 

frequency, distance and propagation time are inter-correlated with each other, it is 

sensible to investigate whether or not the line-of-sight direction is changed in a GPS 

measured distance. 

It is recommended to investigate
c

r )(0 rΦ−Φ
, the relativistic Doppler shift correction 

term induced by the receiver gravitational potential difference to the geoid. As the 

Earth’s gravity field determination is one of the main tasks in geodesy, it is interesting 

that the Doppler frequency shift contains the Earth gravitational potential information. 

Due to the presence of c in the denominator, it is not possible to solve )( rrΦ directly 

with enough accuracy given the current GPS frequencies and measurement accuracy. 

The author believes that further research on how to achieve competitive accuracy of 

)( rrΦ using Doppler shift measurements from a satellite system could be useful. 

Finally, further work can be done on determining the velocities of CHAMP and 

GRACE satellites by applying the theory and algorithms developed in this research. 

Although the high sampling rate Doppler observations of the Black Jack GPS 
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receivers are not provided in the public accessible archives, contact with the ISDC of 

CHAMP/GRACE at the GFZ may solicit Doppler observations that are worthwhile 

for scientific purposes. 
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APPENDIX 

In this appendix, the algorithm of Klobuchar model is presented following Klobuchar 

[1996] and ARINC [2000], since it is used to analyse the correction of the ionospheric 

change-rate.  
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In the above equations, AMP and PER represent the amplitude and the period of the 

half-cosine wave respectively, αi, and βi are the broadcasting ionosphere parameters, t 

is the local time at the sub-ionospheric point, mφ  is the geomagnetic latitude of the 

sub-ionospheric point, E is the elevation of the satellite, and F is the slant factor 

which converts a vertical ionospheric delay to the line-of-sight direction.  
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The calculations of the variables that must be solved for in the above equations are as 

follows  

• Calculate the Earth-centred angle, ψ  

)(022.0)11.0/(0137.0 semicircleE −+=ψ  A- 6 

• Compute the sub-ionospheric latitude, Iφ  
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 where uφ  is the user’s latitude. 

• Then, compute the sub-ionospheric longitude, λI 

)()cos/sin( semicircleA IuI φψ+λ=λ  A- 8 

 where λu is the user’s longitude 

• Find the geomagnetic latitude, mφ , of the sub-ionospheric location looking 

toward each GPS satellite 

)()617.1cos(064.0 semicircleIum −λ+φ=φ  A- 9 

• Calculate the local time, t, at the sub-ionospheric point 
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NOTATIONS, SYMBOLS AND ACRONYMS 

Notations 

• Matrices are in upper case and bold typeface 

• Vectors are in lower case and bold typeface 

• Variables are specified in italic in the context 

• The following notations specify an arbitrary quantity X: 

• X  true value 

• X0  initial value 

• Xk  value at epoch k 

• X(t)  value at epoch t 

• X
  

normal or length of vector X 

• X̂   estimated value of X 

• Xɺ   first derivative of X with respect to time 

• Xɺɺ   second derivative of X with respect to time 

• 
TX  transpose of X 

• 
1X −
 inverse of X 

• The following notations specify a GPS observation variable 

• s
rX
 

superscript s denotes satellite s, subscript r stands for receiver r, 

s
rX  specifies the variable associated with receiver r and satellite s 
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• s
irX ,
 

subscript i specifies that the variable is at Li frequency band: 1 

for L1 (1575.42MHz) and 2 for L2 (1227.60MHz) 

• sX   variable associated with satellite s 

• rX   variable associated with receiver r 

Symbols 

Symbols are defined when used within the text. Commonly used symbols are listed 

below for quick reference 

• α  acceleration 

• B  geodetic latitude 

• c  speed of light in vacuum 

• D  Doppler frequency shift 

• d  representation of an error  

• dI  ionospheric error 

• dT  tropospheric error 

• dτ  clock error 

• dM(dm) multipath error 

• ε   measurement noise 

• E  elevation angle 

• f  frequency 

• G  universal gravitation constant 

• GM  product of the universal gravitation constant G and the  
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•           Earth’s mass M 

• Ω  angular rate of the Earth’s rotation 

• P  code (phase) range 

• Q  process driving noise matrix 

• L  geodetic longitude 

• λ  wavelength, or astronomic longitude 

• n  normal vector used to represent a line-of-sight unit vector 

• N  integer ambiguity 

• ϕ   carrier phase  

• r  position vector or range vector 

• R  measurement noise matrix in Kalman filtering 

• v  velocity 

• ρ   geometric range between receiver and satellite 

• dR  relativistic error 

• Z  variable for Z-transform 

Acronyms 

The following acronyms are used frequently. Their corresponding meanings are given 

as 

AS  Anti-Spoofing 

BPS  Bits per Second 

BPSK  Bi-Phase Shift Key 

C/A  Coarse/Acquisition  



 
204 

CEP  Circular Error of Probability 

DD  Double-Difference 

DGPS  Differential Global Positioning System 

DLL  Delay Lock Loop 

DoD  Department of Defense  

DOP  Dilution of Precision 

ECEF  Earth-Centred-Earth-Fixed  

ECI  Earth-Centred-Inertial 

FIR  Finite Impulse Response 

FOC  Full Operational Capability 

GAST  Greenwich Apparent Sidereal Time 

GDOP  Geometric Dilution of Precision 

GPS  Global Positioning System 

HDOP  Horizontal Dilution of Precision 

IERS  International Earth Rotation and Reference Service 

IF  Intermediate Frequency 

IGS  International GNSS (former GPS) service 

IIR  Infinite Impulse Response 

INS  Inertial Navigation System 

L1  Primary GPS carrier signal frequency at 1575.42 MHz 

L2  Secondary GPS carrier signal frequency at 1227.60MHz 

NAVSTAR Navigation System with Timing and Ranging  

NCO  Numerically Controlled Oscillator 

NGS  National Geodetic Service 

PLL  Phase Lock Loop 

PPK  Post-Processing Kinematic 

PPS  Precise Positioning Service 

PPP  Precise Point Positioning 

PRN  Pseudo Random Number, used to identify GPS satellites 

PVA  Positioning, Velocity and Acceleration 
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PVT  Positioning, Velocity and Timing 

R&D  Research and Development 

RF  Radio Frequency 

RMS  Root Mean Square 

RTD  Real-Time Differential 

RTK  Real-Time Kinematic 

SA  Selective Availability 

SD  Single-Difference 

SPS  Standard Positioning Service 

SV  Space Vehicle 

TEC  Total Electron Content 

US  United States  

UTC  Universal Time Coordinated 

VLBI  Very Long Baseline Interferometry 

WAAS  Wide Area Augmentation System 

WGS-84 World Geodetic System 1984 
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