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Abstract: There are many water quality characteristics which could influence the filterability of 
biologically treated effluent from Melbourne’s Western Treatment Plant (WTP). Statistical 
correlation was used to identify the key water characteristics affecting the microfiltration (MF) 
and ultrafiltration (UF) filterability in terms of permeate volume of the treated effluent. The 
models developed showed that turbidity, dissolved organic carbon (DOC) and total suspended 
solids (TSS) were the key factors which influenced the MF and UF filterability. Turbidity was the 
dominant factor affecting the accuracy of the model for MF filterability while DOC was the major 
factor affecting the accuracy of the model for UF filterability. A prediction accuracy of 85% was 
obtained for MF and 86% for UF filterability of the WTP effluent. The characteristics of the 
organic components of the wastewater were demonstrated by EEM spectra to have seasonal 
variation which would have reduced the prediction accuracy. As turbidity, DOC and TSS can be 
determined on-line, the models would be useful for rapid prediction of the filterability of WTP 
effluent and this may assist the control of low-pressure membrane filtration processes.  

Keywords: Biologically treated effluent; low-pressure membrane filtration; filterability; statistical 
correlation 

 
 

INTRODUCTION 
Western Treatment Plant (WTP) treats approximately 52% of Melbourne’s sewage using a 
combined activated sludge–lagoon treatment (AS-lagoon) process run as two parallel systems (25W 
and 55E). The sewage first passes through activated sludge ponds with anoxic and aeration zones 
where biodegradable matter is consumed by naturally-occurring bacteria. The biologically treated 
effluent then passes through a clarifier and a chain of lagoons before it goes to the Head of the Road 
Storage pond (HORS) where it is released as Class C recycled water without disinfection or as Class 
A recycled water after disinfection. The recycled water is currently used for various on-site and off-
site purposes, however, due to catchment issues such as industrial waste input and saline aquifer 
infiltration, its salt content limits its long term sustainable use for some applications, such as 
agriculture, without additional treatment (Melbourne Water, 2005). Pilot-scale membrane salt 
reduction trials at WTP, which utilised microfiltration (MF) or ultrafiltration (UF) as a pretreatment 
prior to reverse osmosis, have demonstrated that the product water from this process is suitable for 
various applications including agriculture and domestic use.  
 
Particles, colloids, salts, organic matter, algae and soluble microbial products (SMP) derived from 
biological wastewater treatment processes can adsorb and deposit on the membrane surface, and 
result in fouling. Membrane fouling leads to a decline in membrane permeability and thus reduces 
throughput and water recovery. Fouling in low-pressure membrane filtration of biologically treated 
effluent can be due to effluent organic matter (EfOM) (Shon et al., 2006), inorganic (Zularisam et 
al., 2006), colloidal (Schäfer et al., 2000) and biological matter (Kimura et al., 2004) in the feed 
water. Algal organic matter (AOM) derived from blue green algae (Lee et al., 2006) and 
extracellular organic matter (EOM) released from algae (Babel et al., 2002) also contribute to 
fouling in low-pressure membrane filtration. Fouling due to organic and inorganic components can 
occur simultaneously, and the components may interact in terms of mechanism (Amjad, 1992). 
Low-pressure membrane fouling mechanisms are not only a function of membrane type (MF or UF) 
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but also depend on feed water characteristics (Lee et al., 2004). Therefore the overall fouling process 
of MF and UF membranes used for pretreatment of biologically treated effluent is complex and 
difficult to predict. 
 
The aim of this work was to determine if the MF and UF filterability (measured in terms of permeate 
volume collected at a final flux of 40 L m-2 h-1) of the treated effluent from WTP could be modelled 
by a simple mathematical relationship in terms of turbidity, total suspended solids (TSS), total 
dissolved solids (TDS), algal count, dissolved organic carbon (DOC) and conductivity. This could 
be used to identify the relative importance of these parameters in influencing the fouling propensity 
of the secondary effluent in low-pressure membrane filtration. 
 
 
METHODOLOGY 
Effluent samples 
Samples of biologically treated effluent prior to disinfection were collected monthly from the 
storage pond (HORS) at WTP over Mar 07-Sept 08. Two series of samples were collected at 
different times each month: the first series was used for the development of models, while the 
second series, which was collected separately over the sampling period, was employed to determine 
the prediction accuracy of the models.  HORS samples were stored at 4oC and tested as soon as 
possible after collection. Samples were warmed to room temperature (22 ± 1oC) immediately before 
MF and UF experiments. The samples were filtered (0.45 µm) prior to the measurement of DOC and 
fluorescence analysis. 
 
Microfiltration and ultrafiltration experiments 
The MF and UF filterability of HORS samples was determined using a bench-scale dead-end stirred 
cell rig (Amicon 8050, effective membrane area 13.4 cm2) which was connected to a feed reservoir 
and operated at a constant pressure regulated using nitrogen gas at 70 kPa (MF) or 110 kPa (UF) and 
stirrer speed of 430 rpm. The permeate flux was determined using a top-loading electronic balance 
(BP6100, Sartorius, accuracy ± 0.1g) connected to a computer for continuous data logging. 
Hydrophilic polyvinylidene fluoride (PDVF) membranes (Durapore GVWP 0.22 µm) were used for 
MF and hydrophilic polyethersulphone (PES) membranes (Amicon PBKHK 100 kDa) were used for 
UF tests. Only those membranes for which the pure water flux (Jo) was in the range of 3269 ± 179 L 
m-2 h-1 (MF) or 1567 ± 90 L m-2 h-1 (UF) were used for the filterability tests. As noted above, a 
benchmark for filterability of permeate volume collected at a final flux of 40 L m-2 h-1 was used. 
 
Analytical methods 
Turbidity was measured at room temperature (21 ± 1oC) as Formazin Attenuation Units (FAU) using 
a Hach DR 4000 spectrophotometer. DOC was determined using a Sievers 820 TOC analyser. Other 
water quality parameters such as conductivity, TDS, TSS and algal count were routinely measured 
by Ecowise Environmental (Victoria) Pty Ltd. Excitation-emission matrix (EEM) analysis of water 
samples was carried out using a Perkin Elmer Luminescence Spectrometer LS50B. 
 
Statistical methods 
Standard variation (SVAR), defined in the same manner as standard deviation, provides a measure 
of variability which reflects the difference between the measurements and the average measurement. 
The SVAR for n measurements is expressed as: 
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Relative variation (RVAR) is the ratio of the standard variation to the average value and given as 
percent: 
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Multiple linear regression (MLR) models were developed using MiniTab 15 statistical software and 
experimental data from the first series of samples. The accuracy of the model for the second series 
of samples was determined by examining the agreement between the experimental values and the 
values calculated from the model. The accuracy of a MLR model for predicting the filterability of 
WTP effluent is defined as: 
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where predictedalexperiment VV   is the absolute value of ( predictedalexperiment VV  ). 

 
 
RESULTS AND DISCUSSION 
Variation of water quality characteristics and MF and UF filterability  
The seasonal variation of water quality parameters and MF and UF filterability of HORS water over 
the sampling period is shown in Table 1. An example of seasonal variation of turbidity, TSS and 
DOC is shown in Figure 1. The RVAR values for turbidity, algal count and TSS were high 
compared with those for DOC, TDS and conductivity. The large variability of algal count may be 
attributed to seasonal change over the sampling period which also contributed to the large variation 
in turbidity and TSS levels. The effect of seasonal change was less significant for DOC, TDS and 
conductivity than for algal count, turbidity and TSS. The variability for MF and UF filterability were 
similar. 
 
Table 1. Seasonal variation of water quality parameters, MF and UF filterability for the first series of HORS 

samples. 
 

Parameter Range RVAR (%) 
 

Turbidity (FAU) 1 - 8 51 
TSS (mg L-1) 2 - 11 39 
Algal count (cells mL-1) 650 - 31,860 77 
DOC( mg L-1) 9.3 - 11.6 9 
TDS (mg L-1) 870 - 1200 8 
Conductivity (µS cm-1) 1,700 - 2,100 5 
MF filterability ( L m-2 at 40 L m-2 h-1) 348 - 1,001 33 
UF filterability (L m-2 at 40 L m-2 h-1) 197 - 555 32 
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(In Figure 1b, units for turbidity are FAU and the units for TSS and DOC are mg L-1.) 

cluded. The correlation between 
ater quality parameters and MF filterability of HORS water was: 

 
VM = 1603 - 54.3 T - 48.6 O - 4.5 S - 0.278 D - 0.008 C - 0. 65 A                        (1) 

here: 

lume (L m 2) 

) 

DS (mg L ) 

 A = Algal count (10  cells mL ) 

t model was 
etermined.  The model for MF filterability of HORS water with highest accuracy was: 

Figure 1. Variation of (a) algal count and (b) turbidity, TSS and DOC of HORS water. 

 
 

Multiple linear regression (MLR) model for MF filterability 
As a first step in the development of a MLR model for MF filterability, all water quality parameters: 
turbidity, DOC, TSS, TDS, conductivity and algal count, were in
w

w
 

- VM = MF permeate vo
 T = Turbidity (FAU) 

-1 O = Dissolved organic carbon, DOC (mg L
 S = Total suspended solids, TSS (mg L-1) 

-1 D = Total dissolved solids, T
 C = Conductivity (µS cm-1) 

3 -1

 
The prediction accuracy of this model was evaluated using the second series of 12 samples which 
were not employed in the development of the model. The agreement between the experimental and 
the predicted values calculated from Model 1 was 84.9%.  To study the effect of each water quality 
characteristic on the accuracy of Model 1, each variable was removed one at a time so that a new 
model was established and the effect of this variable on the accuracy of the subsequen
d

 



 
VM = 1673 - 56.7 T - 49.3 O - 4.1 S  - 0.192 C - 0.39 A                                (2) 

iction accuracy. Therefore, a suitable model for prediction of MF 
filterability of HORS water was: 

VM = 1391 - 58.8 T – 57 O - 5.3 S                                                           (3)

, and the removal of all parameters 
xcept turbidity (T) reduced the accuracy of Model 1 to 82.3%. 

 
Table 2. Effect of quality parameters on the accuracy of the MLR models for MF filterability. 

 
MLR model 

included in model 
Accuracy of 
m (%) 

 
As shown in Table 2, conductivity (C), algal count (A) and TDS (D) can be omitted from Model 1 
with very little change in the pred

 
 
 

Omission of TSS (S) in addition to algal count, conductivity and TDS (D) led to only a minor 
reduction in prediction accuracy of Model 1 from 84.9% to 83.9%
e

Parameters not 
odel 

VM  = 1603 - 54.3T - 48.6 O - 4.5 S - 0.278 D - 0.008 C - none 84.9 
0.65A       
VM  = 1607 - 55.7 T -  48.6 O - 4.2 S - 0.268 D - 0.019 C A 85.0 
VM  = 1597- 54.2 T - 48.7 O - 4.6 S - 0.286 D - 0.66 A   C 84.9 
VM  = 1673 - 56.7 T - 49.3 O - 4.1 S - 0.192 C - 0.39 A   D 85.1 
VM  = 1632 - 58.8 T - 48.6 O - 0.260 D - 0.046 C - 0.28 A   S 84.0 
VM  = 1395 - 56.1 T  - 4.5 S - 0.315 D - 0.146 C - 0.68 A   

- 0.556 D + 0.129 C - 4.67 A   
    - 5.3 S  

58.1 O  
VM  = 800 - 63.2.T  -  6.7 S A, C, D, O 82.6 
VM  = 767 -  69.5 T   A, C, D, O, S 82.3 

O 83.5 
VM  = 1651 - 52.9 O  - 17.8 S T 79.7 
VM = 1391 - 58.8 T – 57 O A, C, D 84.8 
VM  = 1377- 63.6 T - A, C, D, S 83.9 

 
 
Multiple linear regression model for UF filterability 
For UF, the MLR m
 

s little change in the prediction accuracy of Model 4 when algal count (A), 
onductivity (C) and TDS (D) were removed, therefore a suitable model for the UF filterability of 

HORS water was: 

mission of all parameters but DOC (O) from Model 4 changed the accuracy of this model from 

urbidity, DOC and TSS can 

odel for HORS water with highest prediction accuracy was:  

VU = 1505 - 70.3 O - 13.8 S - 14.6 T - 0.115 C - 1.57 A                                      (4) 
 

The effect of each water quality characteristic on the prediction accuracy of Model 4 is shown in 
Table 3. There wa
c

 
VU = 1328 - 75.1 O - 18.6 T - 13.8 S                                                       (5) 

 
O
85.1% to 79.8%.  
 
As shown in Model 3 for MF filterability and Model 5 for UF filterability, turbidity, DOC and TSS 
were the key factors affecting the MF and UF filterability of HORS water. The extent of the 
influence of these water quality parameters on the accuracy of the models was different.  Turbidity 
was the dominant factor affecting the accuracy of the MLR model for MF, and DOC was the major 
factor affecting the accuracy of the model for UF (Tables 2 and 3).  As t

 



be determined on-line (van den Broeke et al., 2006), Model 3 and Model 5 would be useful for rapid 
predicti

 
Table 3. Effect of quality parameters on the accuracy of the M filte

 
Parameter not 

included in model 
A  of 
m (%) 

on of the MF and UF filterability, respectively, of HORS water. 
 

LR models for UF rability. 

MLR model ccuracy
odel 

VU  =  1472 - 69.9 O – 14 S - 13.5 T - 0.128 D - 0.031 C - 1.69A  none 86.1 
VU  =  1483 -70 O - 13S - 17.1 T - 0.101 D - 0.057 C  A 86.4 
VU  =  1447 - 70.3 O - 14.2 S - 13.3 T - 0.155 D - 1.73 A   
V

C 85.7 
U  =  1505 - 70.3 O - 13.8 S - 14.6 T - 0.115 C - 1.57 A    D 86.7 

VU  =  1561 - 69.9 O - 27.4 T - 0.072 D - 0.146 C - 0.53 A 
.181 D - 0.23 C - 1.73 A 

 0.197 D + 0.003 C - 2.69 A   
 18.6 T - 13.8 S    

VU  =  1341 - 78.3 O - 18.5 S A, C, D, T 83.7 
VU  =  1291 – 78 O - 31.2 T  A, C, D, S 84.1 
V =  1292 - 87.2 O  A, C, D, T, S 79.8 

S 85.4 
VU  =  1172  - 14 S - 16.1 T - 0 O 77.2 
VU  =  1484 – 71 O - 17.3 S - T 83.5 
VU  =  1328 - 75.1 O - A, C, D 86.4 

U  

 
 
 
Trends for MF and UF filterability  
Comparisons of the experimental and predicted values calculated from Models 3 and 5 for the 
filterability of the second series of samples of HORS water (which was not used for the development 
of the models) are shown in Figure 2.  For most samples, the predicted values for MF filterability 
were higher than the experimental values, except for sample 4 which had an experimental value 
significantly higher than the predicted value (Figure 2a).  The predicted and experimental values for 
UF filterability were fairly similar, except for samples 7 and 9 for which the predicted values were 
considerably higher (Figure 2b). The differences between the experimental and the predicted values 
in Figures 2 may be due to the MF and UF filterability of the HORS water being not only influenced 
by basic water quality parameters such as turbidity, DOC and TSS as shown by the developed 
models, but also by other factors such as the presence of supra-colloidal particles in the feed water 
(te Poele et al., 2004; Soffer et al., 2004), variation of the organic components in the feed water, and 
the chemical and physical interactions of organic components and the MF and UF membranes 

ong and Elimelech, 1997). These factors, which were not included in the development of the 

 should be noted that fresh membranes were used for each filterability test which meant that the 
fluence of biofouling was not investigated in this study. The effect of biofouling on the accuracy 

nd applicability of the models should be considered in longer term trials at pilot-scale. 

(H
models, would affect the prediction accuracy of the models for MF and UF filterability. The effect 
of these factors on the accuracy of the developed models requires further investigation.  
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m = 
60/330 nm) which are related to simple aromatic proteins (Determann et al., 1994). Region III 

The differences in 
uorescent component content of these samples are also illustrated in the regional volumes for the 

organic components, which were calculated according to the method proposed by Chen et al. (2003) 
(Table 4). The Dec 07 sample, which had higher regional volumes for proteins, SMP, fulvic- and 

 
Figure 2. The trends for the experimental and predicted results for (a) MF and (b) UF filterability of 
HORS water. 

 
 
Characterisation of the fluorescent organic components  
Both MF and UF models show that DOC had a strong effect on the filterability of HORS samples. 
Excitation and emission matrices (EEMs) obtained by fluorescence spectroscopy were employed to 
characterise the dissolved organic compounds in the feed water. EEM spectra were divided into five 
regions: regions I and II contain peaks at shorter excitation and emission wavelengths (Ex/E
2
comprises peaks (Ex/Em = 260/380 nm) which are associated with fulvic-like materials (Nguyen et 
al., 2005). Region IV consists of peaks (Ex/Em = 260 - 340 nm/380 nm) which are related to soluble 
microbial products (SMPs) (Sheng and Yu, 2006).  Region V includes peaks (Ex/Em = 260/380 nm) 
which are associated with humic-like organics (Mounier at al., 1999).  
 
The fluorescent component content of samples with similar DOC levels but collected on different 
dates can differ markedly (Figure 3). For example, samples collected in Dec 07 and July 08 had 
similar DOC levels of 9.6 and 9.5 mgL-1, respectively. The EEM spectra show that the Dec 07 
sample contained more proteins (regions I and II), fulvic-like substances (region III), SMPs (region 
IV) and humic-like materials (region V) than the July 08 sample (Figure 3a). 
fl

(b) 

(a) 

 



humic-like materials than the July 08 sample, had lower MF and UF filterability.  The results 
obtained for the Feb 08 and Aug 08 samples showed a similar trend (Figure 3b).  
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(a) 
                                         HORS – Dec 07                    HORS – July 08   
 

 
(b) 

                                     HORS - Feb 08         HORS - Aug 08                                            
 

   
(c) 

HORS – Feb 08                          25W – Feb 08                            55E – Feb 08 
 

     Figure 3.  EEM spectra (contour maps) of HORS samples which had similar DOC levels (a,b); and 
HORS, 25W and 55E samples when water ratio in HORS of 25W and 55E was 2:3, respectively(c). 

 



 
 
Table 4. Quantification of fluorescent organic components of selected HORS samples of similar DOC level 
collected over sampling period. 
 

7 08 Feb-08 Aug-08  Dec-0 July-
DOC (mg L-1) 9.6 9.5 10.0 10.1 
Volume (Φ i) for Protein 

2
(Region I + Region II) 

)  
SMPs  29.6 3.5 25.5 1.2 

-like materials ( Region V ) 
-nm )  

1

UF permeate volume 484 555 216 499 

(×105AU-nm
13.6 1.6 10.4 0.6 

Volume (Φ i) for 
(Region IV) 
(×105AU-nm2)  
Volume (Φ i) for fulvic-like materials (Region III ) 
(×105AU-nm2)  

56.3 6.6 48.1 2.5 

Volume (Φ i) for humic
2(×105AU

01.6 11.6 85.3 4.4 

MF permeate volume 
(L m-2) 

539 731 396 1001 

(L m-2) 
 

A previous study by Nguyen et al. (2009) showed that humic-like materials, SMPs, and protein-like 
extracellular matter were prominent in the fouling layer of the fouled MF and UF membranes used 
for low-pressure membrane filtration of biologically treated effluent.  Therefore, the difference in 
MF and UF filterability of the samples having similar DOC levels could be due to the differences in 
humic-like materials, SMPs, and protein-like extracellular matter between these samples and this 
would affect the prediction accuracy of the models when these samples were used for the 

 lagoons would explain 
ome of the difficulty in establishing models to predict the MF and UF filterability of HORS water. 

The predictability of the model may be better for more uniform wastewater. 

he models show that turbidity was the dominant factor affecting the accuracy of the model for MF 

development of the models.  
 

HORS water comprised varying proportions of treated water from the 25W and 55E systems 
depending on operational issues such as turbidity, ammonia concentration and algal blooms.  For 
example, the HORS sample collected in February 08 comprised 25W and 55E water at a ratio of 2:3.  
EEM spectra show that there was marked difference in the organic components between HORS, 
25W and 55E water (Figure 3c). HORS water contained more protein (region II), fulvic-like 
substances (region III), SMPs (region IV) and humic-like materials (region V) than 25W, but less 
than that of 55E. The variation in the organic content in HORS and its source
s

 
 

CONCLUSION 
Statistical correlations between the water quality parameters and the MF and UF filterability showed 
that turbidity, DOC and TSS were the dominant factors affecting the MF and UF filterability of the 
WTP effluent. As turbidity, DOC and TSS can be determined on-line, the models could be used for 
rapid prediction of the MF and UF filterability of the effluent with an accuracy of 85% and 86%, 
respectively; thus there is potential for using the models for process control in low-pressure 
membrane filtration of the effluent from WTP. The accuracy of the model for MF filterability was 
only marginally reduced when algal count, conductivity, TDS, dissolved organic carbon and TSS 
were omitted, ie., it depended only on turbidity. It was shown that algal count, conductivity, TDS 
and TSS can be removed from the model for UF filterability to give only marginally less accuracy. 
T
filterability, while DOC was the major factor affecting the accuracy of the model for UF filterability. 
 

 



The numerical models developed in this paper would not be directly applicable to other biologically 
treated water sources, but the methodology is applicable and the key water parameters affecting 

ability are likely to be relevant. The applicability of the models to pilot-scale using various 
ater sources and membrane materials needs further investigation. 
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