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Abstract 

 

In this paper we develop a general approach to generate all efficient solutions of the 

Multi-Objective Integer Programming (MOIP) Problem.  Our approach, which is based on 

identification of objective efficiency ranges, is an improvement over classical ε-constraint 

method.  Objective efficiency ranges are identified by solving simpler MOIP problems with 

fewer objectives. We first provide the classical ε-constraint method on the Bi-Objective Integer 

Programming problem for the sake of completeness and comment on its efficiency. Then present 

our method on Tri-Objective Integer Programming problem and then extend it to the general 

MOIP problem with k objectives. A numerical example considering Tri-Objective Assignment 

problem is also provided. 
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1. Introduction 

 Multi-Objective Integer Programming (MOIP) is an important research area as many 

practical situations require discrete representations by integer variables and many decision 

makers have to deal with several objectives.   Some note-worthy practical environments where 

the MOIP problems find their applications are supply chain design, logistics planning, 

scheduling and financial planning.  The MOIP problems are theoretically challenging as well, as 

most of them, even their single objective versions, fall into the class of computationally 

intractable problems.  Our aim in this study is to provide a general framework for the solution of 

the MOIP problems with the hope of facilitating this involved decision making process. 

Multi-Objective Combinatorial Optimization (MOCO) problems are special cases of the 

MOIP problems that are distinguished due to their special structured constraint sets.  Bi-

objective, tri-objective or multi-objective versions of scheduling, shortest path, assignment, 

traveling salesman, minimum spanning tree are some noteworthy MOCO problems.  Ehrgott and 

Gandibleux (2000) and Ehrgott and Gandibleux (2004) review the MOCO literature on the exact 

and approximate methods, respectively.  They address some special problem types and discuss 

their solution methodologies.  Ehrgott and Gandibleux (2002) survey some other Multi Criteria 

Optimization problems including, but not limited to, non-linear programming, scheduling, multi-

level programming. 

In recent years, there have been many developments for some particular MOCO 

problems.  However the research on the MOIP problems, is still scarce.  Klein and Hannan 

(1982), Sylva and Crema (2004) and Sylva and Crema (2007) study the Multi-Objective Mixed 

Integer Programming models.  Klein and Hannan (1982) develop an approach based on the 

sequential solutions of the Single-Objective models which use some additional constraints to 

eliminate the known dominated solutions. Their algorithm generates a subset, but not necessarily 

the whole set, of all efficient solutions. Sylva and Crema (2004) improve Klein and Hannan 

(1982)’s approach by incorporating all objectives in a weighted function and guarantee to 

generate all efficient solutions. Sylva and Crema (2007) propose a similar approach for the 

problem of maximizing the infinity-norm distance from the set of known dominated solutions. 

They show that their approach provides a more uniform representation of the efficient set when 

compared to the approach by Sylva and Crema (2004).  The major drawback of all three 



approaches is the difficulty in solving the constrained problems due to the increasing number of 

constraints and binary variables with an increase in the number of the efficient solutions.  

Klamroth et al. (2004) and Ehrgott (2006) study the general MOIP problem.  Klamroth et 

al. (2004) define composite functions to obtain upper bounds on the objective function values of 

the efficient solutions and discuss the use of the upper bounds in generating the efficient set.  To 

form the composite functions, they propose some classical optimization methods like cutting 

plane method and branch and bound algorithm.  Ehrgott (2006) develops some properties of the 

efficient solutions and proposes a scalarization technique to identify any efficient solution. 

In this study we develop a method to identify individual objective efficiency ranges for 

problems with more than three objectives. To best of our knowledge our method is the first of its 

kind to identify these ranges without generating whole set.  We use the solutions of simpler 

(having less objectives) multi-objective problems to obtain efficiency ranges for each objective. 

We use these ranges in constrained multi-objective problems and develop a method to generate 

all efficient solutions for the tri-objective integer programming (TOIP) problems and the general 

multi-objective integer programming (MOIP) problems. In contrast to the classical methods that 

search in feasibility ranges with incremental steps, our method searches within narrower 

efficiency ranges jumping between efficient solutions with large steps. 

We compare the theoretical worst case performances of our method and the classical ε-

constraint method. We illustrate the performances of the methods on a tri-objective assignment 

problem.  

The rest of the paper is presented s follows. In Section 2, we state the well known 

classical ε-constraint method for Bi-Objective IP problems.  In Section 3 we present our 

algorithm for the Tri-Objective IP problems.  We give the generalization of our method to the 

MOIP problem with k objectives in Section 4.  In Section 5, we illustrate our method on a tri-

objective assignment problem instance and compare it with the classical ε-constraint method.  

We conclude in Section 6. 

 

 

 

 

 



2. Bi-Objective Integer Programming (BOIP) Problem 

The Bi-Objective Integer Programming (BOIP) problem is a special case of the Multi-

Objective Integer Programming (MOIP) problem with two objectives.  The BOIP problem is 

defined as: 

(BOIP) Min f1(x) 

Min f2(x) 

s.t. x  X 

where X is the set of feasible solutions in which  xj ≥ 0 and integer for all {1,2,..., }j n . 

The individual objectives are defined as 1

1

1

( )
n

j j

j

f x c x
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=  where ci
j  

is integer for all {1,2}i and {1,2,..., }j n .  

A solution 'x X  is bi-objective efficient if and only if there is no x X such that 

( ) ( ')i if x f x  for  {1,2}i  and ( ) ( ')i if x f x  for at least one i. 

 We provide classical ε-constraint method on BOIP for the sake of completeness and then 

discuss its efficiency.  Some theory on BOIP problems is provided to clarify the presentations in 

Sections 3 and 4. 

The Constrained Weighted Single Objective Integer Programming (CWSOIP) problem is 

defined as:  

(CWSOIP) Min 1 2 2( ) ( )f x w f x+  

s.t.   2 2( )f x l  

x  X 

 

The optimal solution of the CWSOIP problem is bi-objective efficient for the properly set 

values of w2 and l2 .  Classical ε-constraint method to generate all efficient solutions initializes by 

setting  l2 to a general upper bound, and  then decreases the l2 value systematically and stops 

when l2  reaches the lower bound on f2(x).  

Theorem 2.1 presents a property of an upper bound on the fi(x) value of all bi-objective 

efficient solutions provided that fi(x) value is no more than li. 

Theorem 2.1.    A bi-objective efficient solution providing an upper bound on fi(x), for a 

specified li value, gives a lower bound on the other objective, fj(x). 



A range for w2 values that leads to an efficient solution when used in the CWSOIP model 

is identified using  f2
GUB and f2

GLB , the  upper and lower bounds on the f2(x) value of any feasible 

solution.  

Using these bounds, Theorem 2.2 states a range for w2 that returns an efficient solution 

when used in the CWSOIP model for a specified l2 value. 

Theorem 2.2.  The solution of the CWSOIP problem with w2=
2 2

1

1GUB GLBf f− +
 provides an 

upper bound on f2(x) values of all bi-objective efficient solutions for a specified l2 value. 

Theorem 2.3 states that for a properly selected w2 value, the following Weighted Single 

Objective Integer Programming (WSOIP)  problem gives an upper bound on f2(x) values of all 

bi-objective efficient solutions 

(WSOIP) Min 1 2 2( ) ( )f x w f x+  

s.t.    x  X 

Theorem 2.3. The optimal solution of the WSOIP problem with w2=
2 2

1

1GUB GLBf f− +
 provides 

an upper bound on the f2(x) value of all bi-objective efficient solutions. 

We now provide the stepwise description of classical ε-constraint method for the 

generation of all efficient solutions for the BOIP problem.    

 

Procedure 2.1.  Generating all Efficient Solutions of a Bi-Objective Problem 

    (classical ε-constraint method) 

Step 0. Find f2
GUB  and  f2

GLB. 

 Let w2=
2 2

1

1GUB GLBf f− +
  

Let l2=f2
GUB 

Step 1. Solve the CWSOIP problem with l2. 

If the solution is infeasible, then STOP.   

Step 2. Let the optimal solution be x*.  

 E = E  (f1(x
*), f2(x

*)) 

l2= f2(x
*) - 1 

Go to Step 1 



 

The first solution returned by the procedure is (f1
GLB, f2

BUB), and the last solution is (f1
BUB, 

f2
GLB), where f1

BUB
,  f2

BUB,  f1
GLB

,  f2
GLB

  are upper and lower bounds on the f1(x) and f2(x) values of 

all bi-objective efficient solutions, respectively. In other words, f1(x) values of all efficient 

solutions are between f1
GLB and f1

BUB, and their f2(x) values are between f2
GLB and f2

BUB. 

The procedure iterates as the number of efficient solutions, which is upper bounded by 

the pseudo-polynomial value, 
1 1 2 2{ 1, 1}BUB GLB BUB GLBMin f f f f− + − + . Each iteration returns a 

new efficient solution by solving the CWSOIP problem. Hence the complexity of Procedure 2.1 

depends on the complexity of the specific CWSOIP problem solved in Step 1.  

The classical ε-constraint method only iterates within objective efficiency ranges, and 

each solved IP identifies a new efficient solution. The objective efficiency ranges are easy to find 

for the BOIP problem using hierarchical optimization. However no similar efficient method is 

available for the TOIP or general MOIP problems.  For these problems, we present a way to 

identify objective efficiency ranges and use the ranges in developing a new method to generate 

all efficient solutions, in Sections 3 and 4. 

 

3. Tri-Objective Integer Programming (TOIP) Problem 

The Tri-Objective Integer Programming (TOIP) Problem is a special case of the MOIP 

problem with three objectives.   The TOIP problem is defined as: 

(TOIP) Min f1(x) 

Min f2(x) 

Min f3(x) 

s.t. x  X 

where X is the set of feasible solutions in which  xj ≥ 0 and integer for all {1,2,..., }j n . 

The individual objectives are defined as 1
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=  where  ci
j  is integer for all {1,2,3}i and {1,2,..., }j n .  

A solution 'x X is tri-objective efficient if and only if there is no x X such that 

( ) ( ')i if x f x  for all {1,2,3}i  and ( ) ( ')i if x f x  for at least one i. 



 We first present our method to solve TOIP problem, and then provide the classical ε-

constraint method extension, and then compare the two algorithms in terms of their efficiency. 

The Constrained Weighted Bi-Objective Integer Programming (CWBOIP) Problem is 

defined as:  

(CWBOIP)  Min  1 3 3( ) ( )f x w f x+  

Min  2 3 3( ) ( )f x w f x+  

s.t.  3 3( )f x l  

          x  X 

Note that, we consider f3(x), together with f1(x) and f2(x) to ensure tri-objective efficiency.  

Moreover we bound f3(x) by adding the constraint, 3 3( )f x l .  The solution of the CWBOIP 

problem provides a set of bi-objective efficient solutions with respect to f1(x) and f2(x), that are 

also tri-objective efficient, for the properly set w3 and l3 values.  All tri-objective efficient 

solutions can be found by solving the CWBOIP problem for all possible w3 and l3 values.  

However, enumerating all possible values explicitly, may be very impractical, even infeasible, in 

many cases.  Recognizing this fact, we find the right way to set w3 and l3 values.   

To generate the tri-objective efficient set, efficiently, we initially set l3 to the general 

upper bound on f3(x) value of all feasible solutions and form the bi-objective efficient set with 

respect to f1(x) and f2(x).  We then generate the other bi-objective efficient solution sets by 

decreasing l3 value systemically, towards the set of bi-objective efficient solutions that provide a 

lower bound on f3(x).   

Lemma 3.1 presents a property of an upper bound on the fi(x) value of all tri-objective 

efficient solutions provided that fi(x) value is no more than li. 

Lemma 3.1.    A tri-objective efficient solution that provides an upper bound on objective fi(x), 

for a specified li value, is bi-objective efficient with respect to other two objectives. 

Proof.  A tri-objective efficient solution 'x X  providing an upper bound on fi(x), satisfies 

( ') ( )i if x f x , for all x X ,  hence is not non-dominated in  objective i. The definition of 

efficiency follows that, an efficient solution has at least one non-dominated objective by any 

other efficient solution. So, a solution dominated by all solutions in one objective should be bi-

objective efficient in other two objectives in order have at least one non-dominated objective.   ▀ 

 



We next find a range for w3 values that leads to an efficient solution when used in the 

CWBOIP problem.   In doing so, we define f3
GUB and f3

GLB as the respective general upper and 

lower bounds on f3(x) value of any feasible solution.  As in bi-objective case, the general bounds 

can be obtained by solving the individual single objective problems.  

Using these bounds, Lemma 3.2 specifies a range for w3 that guarantees the generation of 

tri-objective efficient solutions for a specified l3 value. 

Lemma 3.2. The solution of the CWBOIP problem (by Procedure 2.1) with 

w3=
2 2 3 3

1

( 1)( 1)GUB GLB GUB GLBf f f f− + − +
 provides an upper bound on the f3(x) value of all tri-

objective efficient solutions for a specified l3 value. 

Proof.  We solve the following CWBOIP problem in Step 1 of Procedure 2.1: 

Min 1 2 3 3

2 2

1
( ) ( ) ( )

1GUB GLB
f x f x w f x

f f
+ +

− +
 

s.t.  2 2( )f x l  

   3 3( )f x l  

   x  X 

From Lemma 3.1 we know that the tri-objective efficient solutions having the highest 

f3(x) value should be bi-objective efficient with respect to f1(x) and f2(x).  To find the tri-objective 

upper bound on f3(x), one could generate the bi-objective efficient solutions with respect to f1(x) 

and f2(x), thus guarantee bi-objective efficiency and minimize f3(x) over the bi-objective efficient 

set. In place of this two-step hierarchical procedure, we use a single objective in the CWSOIP 

problem and generate the bi-objective efficient solutions that are also tri-objective efficient. 

The CWSOIP problem provides a bi-objective efficient set having the highest f3(x) value, 

if w3 is defined such that the largest decrease in f3(x), will not contribute to the objective function 

as much as the smallest increase in either f1(x) or f2(x).  Since Procedure 2.1 hierarchically 

optimizes f1(x) and then f2(x), the contribution of f2(x) is always smaller than that of f1(x), so one 

can only consider the contribution by f2(x) rather than considering both objectives. The largest 

decrease in f3(x) is no more than (f3
GUB – f3

GLB), and its contribution to the objective function is 

no more than w3(f3
GUB – f3

GLB).  The smallest increase in f2(x) is no less than 
2 2

1

1GUB GLBf f− +
, 

due to the integrality of the parameters and decision variables.  This follows, when 



3 3 3

2 2

1
( )

1

GUB GLB

GUB GLB
w f f

f f
 −

− +
, equivalently  3

2 2 3 3

1

( 1)( )GUB GLB GUB GLB
w

f f f f


− + −
, the 

largest decrease in f3(x) is no more than the smallest increase in f2(x).  As, 

2 2 3 3

1

( 1)( 1)GUB GLB GUB GLBf f f f− + − + 2 2 3 3

1

( 1)( )GUB GLB GUB GLBf f f f


− + −
,  the CWBOIP problem 

with w3=
2 2 3 3

1

( 1)( 1)GUB GLB GUB GLBf f f f− + − +
  provides an upper bound on the f3(x) values of the 

tri-objective efficient solutions, for a specified l3 value.                         ▀ 

 

Through Lemma 3.3 we state that for a properly selected w3 value, the following 

Weighted Bi-Objective Integer Programming (WBOIP) problem gives an upper bound on f3(x) 

values of all tri-objective efficient solutions. 

(WBOIP) Min 1 3 3( ) ( )f x w f x+  

Min 2 3 3( ) ( )f x w f x+  

s.t.  x  X 

Lemma 3.3. The optimal solution of the WBOIP problem (by Procedure 2.1) with 

w3=
2 2 3 3

1

( 1)( 1)GUB GLB GUB GLBf f f f− + − +
 provides an upper bound on the f3(x) value of all tri-

objective efficient solutions. 

Proof. Lemma 3.2 states that the optimal solution of the CWBOIP problem with 

w3=
2 2 3 3

1

( 1)( 1)GUB GLB GUB GLBf f f f− + − +
 provides an upper bound on the f3(x) value of all tri-

objective efficient solutions for a specified l3 value.  Once we set l3 to a very big number no less 

than 3

GUBf , the CWBOIP problem does not skip any tri-objective efficient solution and the 

optimal solution provides an upper bound on the f3(x) value of all tri-objective efficient solutions. 

Moreover the CWBOIP problem reduces to the WBOIP problem, as the constraint 

3 3( )f x l becomes redundant.                                                                                      ▀ 

 

We now state the stepwise description of our procedure to generate all tri-objective 

efficient solutions.   



Procedure 3.1 Generating all Tri-Objective Efficient Solutions  

Step 0. Find f2
GUB 

,    f2
GLB,  f3

GUB  and  f3
GLB. 

Let w3 =
2 2 3 3

1

( 1)( 1)GUB GLB GUB GLBf f f f− + − +
  

Let l3 = f3
GUB 

Step 1. Solve the CWBOIP problem with l3 using Procedure 2.1. 

If the solution is infeasible, then STOP. 

Step 2. Let the bi-objective solutions set be BE*.  

 E = E   BE* 

Set l3  = *

3max{ ( ), }f x x BE - 1. 

 Go to Step 1 

 

Set E returned by Procedure 3.1 resides all tri-objective efficient solutions.  Lemma 3.4 states 

this result formally. 

Lemma 3.4. Procedure 3.1 generates all tri-objective efficient solutions. 

Proof. In Step 0, no feasible, hence efficient, solution is eliminated, as  l3 is set to the general 

upper bound value on f3(x).   From Lemma 3.2 we know that, Step 1 provides an efficient 

solution whose f3(x) value, *

3max{ ( ), }f x x BE ,  is an upper bound on the f3(x) value of all 

efficient solutions for a specified l3 value, by identifying the bi-objective efficient set.  As 

*

3max{ ( ), }f x x BE  is an upper bound, there cannot exist any tri-objective efficient solution 

whose f3(x) value is between *

3max{ ( ), }f x x BE +1 and l3. Due to the integrality of the 

parameters and decision variables, the next f3(x) value is upper bounded by *

3max{ ( ), }f x x BE - 

1.  So setting l3 to *

3max{ ( ), }f x x BE - 1 does not eliminate any tri-objective efficient solution, 

and identify the next efficient solution if there exists any.  Each iteration identifies a bi-objective 

efficient solution set by solving the CWBOIP problem for a specified l3 value.  The procedure 

terminates when the CWBOIP problem returns an infeasible solution.  An infeasible solution 

shows that there is no tri-objective efficient solution having f3(x) value smaller than or equal to 

the last specified l3 value, thus all tri-objective efficient solutions are identified.                         ▀                               

 



Procedure 3.1 starts with l3= f3
GUB and finds f3

TUB, i.e., an upper bound on the f3(x) values 

of all tri-objective efficient solutions.  The last f3(x)  value returned by the algorithm, f3
GLB , is a 

lower bound on the f3(x) value of all tri-objective efficient solutions.  Hence the f3(x) values of all 

tri-objective efficient solutions are between f3
GLB and f3

TUB. 

The procedure iterates at most as the product of any two objective ranges which is upper 

bounded by pseudo-polynomial value  Max {(f1
TUB - f1

GLB +1) (f2
TUB – f2

GLB +1), (f1
TUB - f1

GLB 

+1)( f3
TUB – f3

GLB +1), (f2
TUB – f2

GLB +1)( f3
TUB – f3

GLB +1)}.  Hence the complexity of the 

procedure depends on the complexity of the specific CWBOIP problem. 

An upper bound on the number of iterations can also be expressed as a function of the 

number of tri-objective efficient solutions, |E|. In Procedure 3.1, each update of l3 eliminates one 

tri-objective efficient solution from the search space. The maximum number of bi-objective 

efficient solutions that can be identified at iterations 1,2,…,  |E |  are |E|. |E|-1, …, 2, 1,  

respectively.  Hence, the total number of such solutions is 
1

( 1)

2

E

i

E E
i

=

+
= .  

We now present the extension of classical ε-constraint method, consider the following 

CWBOIP problem. 

Min 1 2 3

2 2 2 2 3 3

1 1
( ) ( ) ( )

1 ( 1)( 1)GUB GLB GUB GLB GUB GLB
f x f x f x

f f f f f f
+ +

− + − + − +
 

s.t.  2 2( )f x l  

   3 3( )f x l  

   x  X 

 

Procedure 3.2.  Generating all Efficient Solutions of a Tri-Objective Problem 

    (classical ε-constraint method) 

Step 0. Find f2
GUB,  f2

GLB, f3
GUB  and  f3

GLB.  

Let l2=f2
GUB 

Step 1. Let l3=f3
GUB 

Step 2. Solve the CWBOIP problem with l2, and l3. 



Step 3. If the solution is infeasible, go to Step 5. 

Step 4. Let the optimal solution be x*.  

 E = E  (f1(x
*), f2(x

*) ,f3(x
*)) 

l3= l3 - 1 

Go to Step 2 

Step 5. If l2 ≥ f2
GLB, l2 = l2 -1, go to Step 1. 

 Otherwise STOP. 

 

The procedure iterates at most as the product of any two objective general ranges which 

is upper bounded by pseudo-polynomial value  Max {(f1
GUB - f1

GLB +1) (f2
GUB – f2

GLB +1), (f1
GUB - 

f1
GLB +1)( f3

GUB – f3
GLB +1), (f2

GUB – f2
GLB +1)( f3

GUB – f3
GLB +1)}.  Hence the complexity of the 

procedure depends on the complexity of the specific CWBOIP problem. 

The number of times Procedure 3.1 iterates is bounded by the tighter objective efficiency 

ranges, whereas the same number for Procedure 3.2 is bounded by the general objective ranges.  

2

1

Max # of iterations Procedure 3.1
~

Max # of iterations Procedure 3.2

GUB GLB

i i

TUB GLB
i i i

f f

f f=

 −
 

− 
  

The difference between these two ranges enlarges with the increase in the size of the 

problem and the variability of the problem parameters. Moreover, l2 and l3 are decreased by unit 

decrements in Procedure 3.2, however their values are decreased to the related value of the next 

efficient solution in Procedure 3.1.  

In Section 5, we provide a numerical example considering the Tri-Objective Assignment 

Problem that also compares the efficiency of these two methods. 

  

 

 

 

 

 

 

 

 



4. K-Objective (Multi Objective) Integer Programming (MOIP) Problem 

The Multi-Objective Integer Programming problem with k-objectives (MOIP) is defined 

as: 

(MOIP)  Min f1(x) 

Min f2(x) 

. 

. 

.   

Min fk(x) 

s.t. x  X 

where X is the set of feasible solutions, where xj ≥ 0 and integer for all {1,2,..., }j n . 

 

A solution 'x X  is k-objective efficient if and only if there is no x X such that 

( ) ( ')i if x f x  for all {1,..., }i k  and ( ) ( ')i if x f x  for at least one i. 

The individual objectives are defined as 1

1

1

( )
n

j j

j

f x c x
=

= , 2

2

1

( )
n

j j

j

f x c x
=

= ,..., 

1

( )
n

k

k j j

j

f x c x
=

= where  ci
j  is integer for all i and j. 

We first present our method to solve MOIP problem, and then provide the classical ε-

constraint method extension, and then compare the two algorithms in terms of their efficiency. 

The Constrained Weighted (K-1)-Objective Integer Programming (CW(K-1)OIP) problem 

is defined as:  

(CW(K-1)OIP)  Min 1( ) ( )k kf x w f x+  

Min 2( ) ( )k kf x w f x+  

. 

. 

.   

Min 1( ) ( )k k kf x w f x− +  

s.t.   ( )k kf x l  

x  X 



Note that, we consider the kth objective fk(x) together with f1(x), f2(x),…, fk-1(x) to ensure              

k-objective efficiency.  Moreover we bound the fk(x) value via the constraint, ( )k kf x l . The 

solution of the CW(K-1)OIP problem provides a set of (k-1)-objective efficient solutions, that are 

also k-objective efficient, for the properly set wk and lk  values.  All k-objective efficient solutions 

can be found by solving the CW(K-1)OIP problem for all possible wk  and lk values.  However, 

enumerating all possible values explicitly, may be very impractical, even infeasible, in many 

cases.   Recognizing this fact, we find the right way to set  wk  and lk  values. 

To generate the k-objective efficient set, efficiently, we initially set lk to the general upper 

bound on fk(x) value of all feasible solutions and find the corresponding (k-1)-objective efficient 

set.  We then generate the other (k-1)-objective efficient solution sets by decreasing lk 

systemically, towards the set of (k-1)-objective efficient solutions that provide a lower bound on 

fk(x) value.  

 

Lemma 4.1 presents a property of an upper bound on the fi(x) value of all k-objective 

efficient solutions provided that fi(x) value is no more than li. 

Lemma 4.1.    A k-objective efficient solution that provides an upper bound on one objective 

fi(x), for a specified li , is (k-1)-objective efficient with respect to other k-1 objectives. 

Proof.  A k-objective efficient solution providing an upper bound on fi(x), satisfies ( ') ( )i if x f x , 

for all 'x X ,  hence is not non-dominated in objective i. The definition of efficiency follows 

that, an efficient solution should have at least one non-dominated objective by any other efficient 

solution. In order to have at least one non-dominated objective, an efficient solution not non-

dominated in objective i, should be (k-1)-objective efficient in other k-1 objectives.          ▀ 

 

We next find a range for wk value that leads to an efficient solution when used in the 

CW(K-1)OIP problem.   In doing so, we define fk
GUB and fk

GLB as the respective general upper 

and lower bounds on fk(x) value of any feasible solution.  The general bounds can be obtained by 

solving the individual single objective problems.  

Using these bounds, Lemma 4.2 specifies a range for wk that guarantees the generation of 

k-objective efficient solutions for a specified lk value. 



Lemma 4.2.  The solution of CW(K-1)OIP problem (by Procedure 4.1) with 

  wk=
2 2 3 3

1

( 1)( 1)...( 1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
 provides an upper bound on the fk(x) 

value of all k-efficient solutions for a specified lk value. 

Proof.  The CW(K-1)OIP problem solved within Procedure 4.1 can be stated as follows: 

Min 1 2 3

2 2 2 2 3 3

1 1
( ) ( ) ( ) ...

1 ( 1)( 1)GUB GLB GUB GLB GUB GLB
f x f x f x

f f f f f f
+ + +

− + − + − +
 

1

2 2 3 3 1 1

1
( ) ( )

( 1)( 1)...( 1)
k k kGUB GLB GUB GLB GUB GLB

k k

f x w f x
f f f f f f

−

− −

+ +
− + − + − +

 

s.t.    2 2( )f x l  

   3 3( )f x l   

.  

. 

  ( )k kf x l  

x  X  

From Lemma 4.1 we know that the k-objective efficient solutions having the highest fk(x) 

value should be (k-1)-objective efficient for other k-1 objectives. To find an upper bound on fk(x) 

values of k-objective efficient solutions, one can generate the (k-1)-objective efficient solutions 

with respect to objectives f1(x), f2(x), . . ., fk-1(x),  thus guarantee (k-1)-objective efficiency and 

minimize fk(x) over the (k-1)-objective efficient set.  In place of this two-step hierarchical 

procedure, we solve a single CW(K-1)OIP problem and generate the (k-1)-objective efficient 

solutions which are also k-objective efficient. 

The CW(K-1)OIP problem provides a (k-1)-objective efficient set having the highest fk(x) 

value, if wk  is defined such that the largest decrease in fk(x), will not contribute to the objective 

function as much as the smallest increase in either f1(x) or f2(x)or ... or fk-1(x).  Since  f1(x), f2(x), . 

. ., fk-1(x) are hierarchically optimized in that order,  the contribution of fk-1(x) is always smaller 

than those of f1(x), f2(x), . . ., fk-2(x), so one can only consider the contribution by fk-1(x) and 

ignore the other contributions.  The largest decrease in fk(x) is no more than (fk
GUB – fk

GLB), and 

its contribution to the objective function is no more than wk(fk
GUB–fk

GLB).  The smallest increase 



in fk-1(x) is no less than 
2 2 3 3 1 1

1

( 1)( 1)...( 1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− −− + − + − +
, due to the 

integrality of the parameters and decision variables.  This follows, when 

 
2 2 3 3 1 1

1
( )

( 1)( 1)...( 1)

GUB GLB

k k kGUB GLB GUB GLB GUB GLB

k k

w f f
f f f f f f− −

 −
− + − + − +

, equivalently    

2 2 3 3 1 1

1

( 1)( 1)...( 1)( )
k GUB GLB GUB GLB GUB GLB GUB GLB

k k k k

w
f f f f f f f f− −


− + − + − + −

,  the (k-1)-

objective efficient solutions are also k-objective efficient for a specified lk, are found.  As 

2 2 3 3

1

( 1)( 1)...( 1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
<

2 2 3 3 1 1

1

( 1)( 1)...( 1)( )GUB GLB GUB GLB GUB GLB GUB GLB

k k k kf f f f f f f f− −− + − + − + −
, the CW(K-1)OIP 

problem with wk=
2 2 3 3

1

( 1)( 1)...( 1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
  provides an upper 

bound on the fk(x) values of the k -objective efficient solutions for a specified lk  value.          ▀ 

 

Through Lemma 4.3 we state that for a properly selected wk value, the following 

Weighted (K-1)-Objective Integer Programming (W(K-1)OIP) problem gives an upper bound on 

fk(x) values of all k-objective efficient solutions. 

 

(W(K-1)OIP) Min 1( ) ( )k kf x w f x+  

Min 2( ) ( )k kf x w f x+  

. 

. 

.   

Min 1( ) ( )k k kf x w f x− +  

s.t.    x  X 

 



Lemma 4.3. The optimal solution of the W(K-1)OIP problem (by Procedure 4.1) with 

wk=
2 2 3 3

1

( 1)( 1)...( 1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
 provides an upper bound on the fk(x) 

value of all k-efficient solutions. 

Proof. Lemma 4.2 states that the optimal solution of the CW(K-1)OIP problem (by Procedure 

4.1) with wk=
2 2 3 3

1

( 1)( 1)...( 1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
provides an upper bound on 

the fk(x) value of all k-efficient solutions for a specified lk value.  Once we set lk to a very big 

number no less than GUB

kf , the CW(K-1)OIP problem does not skip any k-objective efficient 

solution and the optimal solution provides an upper bound on the fk(x) value of all k-objective 

efficient solutions. Moreover the CW(K-1)OIP problem reduces to the W(K-1)OIP problem, as 

the constraint ( )k kf x l becomes redundant.                  ▀ 

 

We now state the stepwise description of our algorithm to generate all k-objective 

efficient solutions.  The procedure uses the solution of CW(K-1)OIP problem using the same 

procedure with the first (k-1)-objective in each iteration. 

 

Procedure 4.1 Generating all K-Objective Efficient Solutions  

Step 0. Find the general bounds f2
GUB 

,    f2
GLB,  f3

GUB,  f3
GLB,…, fk

GUB  , fk
GLB 

Let wk=
2 2 3 3

1

( 1)( 1)...( 1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
  

Let lk=fk
GUB 

Step 1. Solve the CW(K-1)OIP problem with lk using this procedure with the first k-1 objectives. 

If the solution is infeasible, STOP. 

Step 2. Let the (k-1)-objective solutions set be ME*.  

 E = E   ME* 

lk= *max{ ( ), }kf x x ME - 1 

Go to Step 1 

Set E returned by the above procedure resides all k-objective efficient solutions.  Lemma 4.4 

states this result formally. 

 



Lemma 4.4. Procedure 4.1 generates all k-objective efficient solutions. 

Proof. In Step 0, no feasible, hence efficient, solution is eliminated as lk is set to the general 

upper bound value of fk(x).  From Lemma 4.2 we know that, Step 1 provides an efficient solution 

whose fk value, *max{ ( ), }kf x x ME , is an upper bound on the fk(x) values of all efficient 

solutions for a specified lk value, by identifying the (k-1)-objective efficient set.  As 

*max{ ( ), }kf x x ME  is an upper bound, there cannot exist any k-objective efficient solution 

whose fk(x) value is between *max{ ( ), }kf x x ME + 1  and  lk.  Due to the integrality of the 

parameters and decision variables, the next fk(x) value cannot be higher than 

*max{ ( ), }kf x x ME -1. So setting lk to *max{ ( ), }kf x x ME -1 does not eliminate any k-

objective efficient solution, and identifies the next one if there exists any.  Each iteration 

identifies a (k-1)-objective efficient solution set by solving the CW(K-1)OIP problem with an 

updated lk value.  The procedure terminates when the associated CW(K-1)OIP problem returns 

an infeasible solution.  An infeasible solution implies that there is no k-objective efficient 

solution having fk(x) value smaller than or equal to the specified lk value, thus all k-objective 

efficient solutions are generated.                                                                                     ▀ 

 

Procedure 4.1 starts with lk = fk
GUB and provides an upper bound on the fk(x) values of the 

k-objective efficient solutions, i.e., fk
kUB.  The last feasible solution returned by the algorithm 

gives a lower bound on the fk(x) value, i.e., fk
GLB.  Hence the fk(x) values of all k-objective 

efficient solutions are between fk
GLB  and fk

kUB. 

The procedure iterates at most as the product of any k-1 objective ranges which is upper 

bounded by pseudo-polynomial value   Max {g1 . g2 .…, gk} where gi  = [(f1
kUB - f1

GLB +1) (f2
kUB – 

f2
GLB +1) … (fk

kUB – fk
GLB +1) ]/ (fi

kUB – fi
GLB +1).  Hence the complexity of the procedure depends 

on the complexity of the specific CW(K-1)OIP problem. 

 

 

 

 

 



An upper bound on number of iterations can also be expressed by the number of k-

objective efficient solutions, |E|. In procedure 4.1, each update of li eliminates one k-objective 

efficient solution from the search space.  The sum of maximum number of (k-1)-objective 

efficient solutions that can identified by solving C(K-1)BOIP problem is, 

3 2

2 2 1

1

1 1 1

( 1) ( 2)

2.3 ( 1)
k

E i i

i i i

E E E k
i

k
− = = =

+ + −
=

−
  .  

 

We now present the extension of classical ε-constraint method, consider the following          

CW(K-1)OIP problem. 

Min 1 2 3

2 2 2 2 3 3

1 1
( ) ( ) ( ) ...

1 ( 1)( 1)GUB GLB GUB GLB GUB GLB
f x f x f x

f f f f f f
+ + +

− + − + − +
 

2 2 3 3

1
... ( )

( 1)( 1)...( 1)
kGUB GLB GUB GLB GUB GLB

k k

f x
f f f f f f

+
− + − + − +

 

s.t.    2 2( )f x l  

   3 3( )f x l   

.  

. 

  ( )k kf x l  

x  X  

 

Procedure 4.2.  Generating all Efficient Solutions of a Multi-Objective Problem 

    (classical ε-constraint method) 

Step 0. Find f2
GUB,  f2

GLB, …, fk
GUB  and  fk

GLB.  

Let l2=f2
GUB 

Step 1.1. Let l3=f3
GUB 

Step 1.2. Let l4=f4
GUB 

… 

Step 1.k-2. Let lk=fk
GUB 

Step 2. Solve the CW(K-1)BOIP problem with l2, l3, …,  and lk. 



Step 3. If the solution is infeasible, go to Step 5. 

Step 4. Let the optimal solution be x*.  

 E = E  (f1(x
*), f2(x

*), ..., fk(x
*)) 

lk= lk - 1 

Go to Step 2 

Step 5.1. If lk-1 ≥ fk-1
GLB, lk-1 = lk-1 -1, go to Step 1.k-2.  

Step 5.2. If lk-2 ≥ fk-2
GLB, lk-2 = lk-2 -1, go to Step 1.k-1. 

… 

Step 5.k-1. If l3 ≥ f3
GLB, l3 = l3 -1, go to Step 1.2. 

Step 5.k-2. If l2 ≥ f2
GLB, l2 = l2 -1, go to Step 1.1. 

       Otherwise STOP. 

 

The procedure iterates at most as the product of any k-1 objective general ranges which is 

upper bounded by pseudo-polynomial value   Max {g1 . g2 .…, gk} where gi  = [(f1
GUB - f1

GLB +1) 

(f2
GUB – f2

GLB +1) … (fk
GUB – fk

GLB +1) ]/ (fi
GUB – fi

GLB +1).  Hence the complexity of the 

procedure depends on the complexity of the specific CW(K-1)OIP problem. 

The number of times Procedure 4.1 iterates is bounded by the tighter objective efficiency 

ranges, whereas the same number for Procedure 4.2 is bounded by the general objective ranges.  

1

1

Max # of iterations Procedure 4.1
~

Max # of iterations Procedure 4.2

GUB GLBk
i i

kUB GLB
i i i

f f

f f

−

=

 −
 

− 
  

The difference between two ranges increases with an increase in the size of the problem 

and the variability of the problem parameters.  In Procedure 4.2, l2, l3, … lk decrease by one unit, 

however, in Procedure 4.1, these values decrease by the value of the next efficient solution.  

 In the next section, we provide a numerical example to demonstrate the efficiency of our 

procedure in comparison with the classical ε-constraint method. 

 

 

 

 

 

 



5. An Example Problem 

  

  In this section we compare the performance of our procedure with the extension of 

classical ε-constraint method, on a Tri-Objective Assignment Problem (TAP) instance. We 

consider a 5 by 5 problem instance and generate the objective function coefficients randomly 

from a discrete uniform distribution between 1 and 100. Table 5.1 has the three objective 

coefficients for assigning each row to each column. We represent each solution by a sequence of 

column index values assigned to rows 1 through 5.  Accordingly in sequence 5-4-3-2-1, row 1 is 

assigned to column 5 and row 2 is assigned to column 5. 

 

Table 5.1 Three objective coefficients for the example problem instance 

c1 1 2 3 4 5  c2 1 2 3 4 5  c3 1 2 3 4 5 

1 99 19 74 55 41  1 28 39 19 42 7  1 29 67 2 90 7 

2 23 81 93 39 49  2 66 98 49 83 42  2 84 37 64 64 87 

3 66 21 63 24 38  3 73 26 42 13 54  3 54 11 100 83 61 

4 65 41 7 39 66  4 46 42 28 27 99  4 75 63 69 96 3 

5 93 30 5 4 13  5 80 17 99 59 68  5 66 99 34 33 21 

     

 Using the single objective assignment solutions one can identify general upper and lower 

bounds on individual objectives as;  

f1
GLB= 86, 2-1-4-3-5 

f2
GLB= 128, 1-5-4-3-2 

f3
GLB= 129, 3-2-1-5-4  

f1
GUB=358, 4-2-3-5-1 

f2
GUB=411, 4-2-1-5-3 

f3
GUB=451, 4-5-3-1-2 

We now give the iteration details of Procedure 3.1. We report the number of IPs solved, 

the l2 and l3 bound values. The objective function values of the bi-objective solutions are staed in 

groups each representing a single execution of Step 1. 

 

 

 

 



 l3 ≤ 451  l2 ≤   l3 ≤ 366  l2 ≤   l3 ≤ 341  l2 ≤ 

# f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)  

1 86 214 324 411  6 86 214 324 411  10 86 214 324 411 

2 96 186 204 213  7 96 186 204 213  11 96 186 204 213 

3 125 131 342 185  8 125 131 342 185  12 180 183 229 185 

4 209 128 367 130  9 Infeasible  130  13 253 132 328 182 

5 Infeasible  127        14 Infeasible  131 

 Max(f3(x)) 367    Max(f3(x)) 342    Max(f3(x)) 328  
 

 l3 ≤ 327  l2 ≤   l3 ≤ 323  l2 ≤   l3 ≤ 319  l2 ≤ 

# f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)  

15 86 214 324 411  20 91 246 314 411  25 91 246 314 411 

16 96 186 204 213  21 96 186 204 245  26 96 186 204 245 

17 180 183 229 185  22 180 183 229 185  27 180 183 229 185 

18 269 173 320 182  23 269 173 320 182  28 Infeasible  182 

19 Infeasible  172  24 Infeasible  172       

 Max(f3(x)) 324    Max(f3(x)) 320    Max(f3(x)) 314  
 

 l3 ≤ 313  l2 ≤   l3 ≤ 228  l2 ≤   l3 ≤ 204  l2 ≤ 

# f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)  

29 96 186 204 411  32 96 186 204 411  34 171 261 191 411 

30 180 183 229 185  33 Infeasible  185  35 179 233 194 260 

31 Infeasible  182        36 224 187 190 232 

            37 Infeasible  186 

 Max(f3(x)) 229    Max(f3(x)) 204    Max(f3(x)) 194  
 

 l3 ≤ 193  l2 ≤   l3 ≤ 190  l2 ≤   l3 ≤ 189  l2 ≤ 

# f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)  

38 171 261 191 411  42 188 269 133 411  46 188 269 133 411 

39 212 242 173 260  43 212 242 173 268  47 212 242 173 268 

40 224 187 190 241  44 224 187 190 241  48 Infeasible  241 

41 Infeasible  186  45 Infeasible  186       

 Max(f3(x)) 191    Max(f3(x)) 190    Max(f3(x)) 173  
 

 l3 ≤ 172  l2 ≤   l3 ≤ 139  l2 ≤   l3 ≤ 132  l2 ≤ 

# f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)   # f1(x) f2(x) f3(x)  

49 188 269 133 411  52 188 269 133 411  54 291 348 129 411 

50 283 261 140 268  53 Infeasible  268  55 Infeasible  347 

51 Infeasible  260             

 Max(f3(x)) 140    Max(f3(x)) 133    Max(f3(x)) 129  
 

 

 



 l3 ≤ 128  l2 ≤ 

# f1(x) f2(x) f3(x)  

56 Infeasible  411 

 

Table 5.2, below, lists the efficient solutions. 

 

Table 5.2 The efficient solutions for the example problem 

f1(x) f2(x) f3(x) r1 r2 r3 r4 r5 

86 214 324 2 1 4 3 5 

91 246 314 2 1 5 3 4 

96 186 204 5 1 2 3 4 

125 131 342 5 1 4 3 2 

171 261 191 5 4 2 1 3 

179 233 194 1 4 2 3 5 

180 183 229 1 5 2 3 4 

188 269 133 3 1 2 5 4 

209 128 367 1 5 4 3 2 

212 242 173 3 4 2 1 5 

224 187 190 5 3 2 1 4 

253 132 328 5 3 4 1 2 

269 173 320 5 3 1 4 2 

283 261 140 1 3 2 5 4 

291 348 129 3 2 1 5 4 
 

A total of 56 IPs are solved to identify 15 tri-objective efficient solutions.   If  Procedure 

3.2, an extension of classical ε-constraint method, was used then Min {(f1
GUB - f1

GLB +1) (f2
GUB – 

f2
GLB +1), (f1

GUB - f1
GLB +1)( f3

GUB – f3
GLB +1), (f2

GUB – f2
GLB +1)( f3

GUB – f3
GLB +1)}= 77532 IP 

problems would  be solved. Note that for this example problem, our proposed method provides 

1400 folds improvement over the classical method, in the number of IPs solved.  For larger 

problem instances with wider feasibility ranges, the improvements can be much more significant. 

 

 

 

 

 

 



6. Conclusions 

In this study we develop a method to identify individual objective efficiency ranges for 

multi objective problems. Our method uses simpler (having less objectives) multi-objective 

problems to obtain efficiency ranges of the individual objectives. By modifying and generalizing 

this range identification method to the constrained problems we develop a method to generate all 

efficient solutions for tri-objective and general multi-objective integer programming problems. 

We also present the classical ε-constraint method for the bi-objective integer 

programming (BOIP) problem, and provide its extensions for the tri-objective (TOIP) and multi-

objective (MOIP) integer programming problems. 

We compare the theoretical worst case performances of two algorithms based on the 

number of IPs solved for generating the efficient set.  We demonstrate our method on a small 

size tri-objective assignment problem, and observe significant improvement over the classical ε-

constraint method in the number of IPs solved. The amount of improvement mainly depends on 

the difference between feasibility and efficiency ranges, and the number of the efficient 

solutions.  

We hope our study helps to stimulate future work on the Multi-Objective Integer 

Programming area.  Future work may include the applications to some practical problems like 

supply chain design, scheduling, logistics and location.  Our general results when applied to 

these special problems may trigger the development of some specialized procedures.  Another 

promising research area may include the development of the procedures for the optimal solution 

of the pre-specified function of the k-objectives.   
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