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Cocyclic Butson Hadamard matrices and
Codes over Zn via the Trace Map

N. Pinnawala and A. Rao

Abstract. Over the past couple of years trace maps over Galois fields and

Galois rings have been used very successfully to construct cocyclic Hadamard,

complex Hadamard and Butson Hadamard matrices and subsequently to gen-
erate simplex codes over Z4, Z2s and Zp and new linear codes over Zps . Here

we define a new map, the trace-like map and more generally the weighted-trace

map and extend these techniques to construct cocyclic Butson Hadamard ma-
trices of order nm for all n and m and linear and non-linear codes over Zn.

1. Introduction

The cocyclic map has been used to construct Hadamard matrices (see [2]) and
these Hadamard matrices were found to yield binary extremal self-dual codes [1].
The nature of the cocyclic map allowed for substantial cut-down in the computa-
tional time needed to generate the matrices and then the codes. In [12] the authors
exploited this property to construct cocyclic Complex and Butson Hadamard ma-
trices by defining the cocycle maps via the trace maps over Galois rings GR(4,m)
and GR(2e,m) respectively. In [13], this method was extended to construct some
new linear codes over Zpe for prime p > 2 and positive integer e. A challenging
open problem was the extension of this method to construct Butson Hadamard ma-
trices of order n for any positive integer n. The prime factorization of n, i.e., n =
pe1
1 pe2

2 . . . pek

k and the isomorphism Zn
∼= Zp

e1
1
×Zp

e2
2
×. . .×Zp

ek
k

paves the way to fo-
cus our attention on the ring R(n, m) = GR(pe1

1 ,m)×GR(pe2
2 ,m)×. . .×GR(pek

k ,m),
where m is a positive integer. However there is no known map over this ring simi-
lar to the trace map over Galois rings and Galois fields. In this paper, we define a
new map, the trace-like map, over the ring R(n, m). A generalization of this map,
called the weighted-trace map, is used in [9] for Fourier transforms. These maps
satisfy fundamental properties parallel to the other trace maps, and can be used
in a similar manner to the trace maps in [12] and [13] to first uniformly construct
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2 N. PINNAWALA AND A. RAO

cocyclic Butson Hadamard matrices of any order n and then linear and non-linear
codes over Zn.

A linear code C of length n over the integers modulo k (i.e., Zk = {0, 1, 2, . . . ,
k − 1}) is an additive subgroup of Zn

k . An element of C is called a codeword
and a generator matrix of C is a matrix whose rows generate C. The Hamming
weight WH(x) of an n-tuple x = (x1, x2, . . . , xn) in Zn

k is the number of nonzero
components of x and the Lee weight WL(x) of x is

∑n
i=1 min {xi, k − xi}. The

Euclidean weight WE(x) of x is
∑n

i=1 min {x2
i , (k−xi)2} and the Chinese Euclidean

weight WCH(x) of x is
∑n

i=1

{
2− 2 cos

(
2πxi

k

)}
. The Hamming, Lee, Euclidean

and Chinese Euclidean distances between x, y ∈ Zn
k are defined and denoted as

dH(x, y) = WH(x−y), dL(x, y) = WL(x−y), dE(x, y) = WE(x−y) and dCE(x, y) =
WCE(x− y) respectively.

A cocycle is a set mapping, ϕ : G×G → C, which satisfies

ϕ(a, b)ϕ(ab, c) = ϕ(b, c)ϕ(a, bc), ∀ a, b, c ∈ G,

where G is a finite group and C is a finite abelian group. The matrix Mϕ =
[ϕ(x, y)]x,y∈G is called a cocyclic matrix.

Butson Hadamard matrices were first introduced by Butson in 1962 [4]. A
square matrix H of order n ≥ 2 all of whose elements are complex pth roots of
unity (p not necessarily a prime) is called a Butson Hadamard matrix, denoted by
BH(n, p), iff HH∗ = nI, where H∗ is the conjugate transpose of H and I is the
identity matrix of order n. In 1979, Drake [6] introduced generalized Hadamard
matrices. A square matrix H = [hij ] of order n ≥ 2 over a group G is called a
generalized Hadamard matrix GH(n, G) if for i 6= j the sequence {hixh−1

jx } with
1 ≤ x ≤ n contains every element of G equally often. For prime p the definition of
a BH(n, p) and a GH(n, Cp) are equivalent, where Cp denotes the multiplicative
group of all complex pth roots of unity. On the other hand, if p = mt, where m is a
prime and t > 1, then there exists a Butson Hadamard matrix of order m over Cp,
but certainly no generalized Hadamard matrix of order m over Cp (Remark 1.3,
[6]). The authors have been unable to find a reference for uniform construction of
Butson Hadamard matrices. This paper provides such a uniform construction.

In Section 2 we study the Galois ring GR(pe,m) and the properties of the
trace map over GR(pe,m). A cocycle over GR(pe,m) is defined and the cocyclic
Butson Hadamard matrix of order pem is constructed. This matrix is then used to
construct linear codes over Zpe . Section 3 details the ring R(n, m) = GR(pe1

1 ,m)×
GR(pe2

2 ,m), n = pe1
1 pe2

2 , and the properties of the trace-like map over R(n, m). The
trace-like map is then used to construct cocyclic Butson Hadamard matrices of
order nm and the exponent matrices are used to construct cocyclic codes over Zn.
In addition, these results are easily extended to construct codes over Zn for n =
pe1
1 pe2

2 . . . pek

k . We also point out the relationship to the senary simplex codes of type
α in [8]. In Section 4 the Hamming, Lee, Euclidean and Chinese Euclidean distances
of these codes are calculated. A further generalization of the trace-like map, called
the weighted-trace map (which first appeared in [9]) is studied in Section 5 and used
to construct cocyclic Butson Hadamard matrices and consequently to construct
non-linear codes over Zn. Finally, in Section 6, we summarize the results of this
paper.
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2. The Galois ring GR(pe,m), the trace map and cocyclic Zpe - linear
codes

For the study of Zpe -codes, we first need a brief review of the Galois ring of
characteristic pe and dimension m. For more details on Galois rings of this type,
the reader is referred to [11] and [14]. Here we give in detail the results for primes
p > 2, but the case p = 2 is similar and details can be found in [12].

Let p > 2 be a prime and e be a positive integer. The ring of integers modulo pe

is the set Zpe = {0, 1, 2, . . . , pe − 1}. Let h(x) ∈ Zpe [x] be a basic monic irreducible
polynomial of degree m that divides xpm−1 − 1. The Galois ring of characteristic
pe and dimension m is defined as the quotient ring Zpe [x]/(h(x)) and is denoted by
GR(pe,m). The element ζ = x + (h(x)) is a root of h(x) and consequently ζ is a
primitive (pm − 1)th root of unity. Therefore we say that ζ is a primitive element
of GR(pe,m) and GR(pe,m) = Zpe [ζ]. Hence GR(pe,m) =< 1, ζ, ζ2, . . . , ζm−1 >
and |GR(pe,m)| = pem. It is well known that each element u ∈ GR(pe,m) has
a unique representation: u =

∑e−1
i=0 piui, where ui ∈ T = {0, 1, ζ, ζ2, . . . , ζpm−2}.

This representation is called the p-adic representation of elements of GR(pe,m)
and the set T is called the Teichmüller set. Note that u is invertible if and only
if u0 6= 0. Thus every non-invertible element of GR(pe,m) can be written as
u =

∑e−1
i=k piui, k = 1, 2, . . . , e − 1, and we can represent all the elements of

GR(pe,m) in the form u(k) =
∑e−1

i=k piui, k = 0, 1, 2, . . . , e − 1. Using the p-
adic representation of the elements of GR(pe,m), the Frobenius automorphism f
is defined in [3], [5] and [14] as

f : GR(pe,m) → GR(pe,m)
f(u) =

∑e−1
i=0 piup

i .
Note that when e = 1, f is the usual Frobenius automorphism for the Galois field
GF (p, m) (see [10]). The trace map over GR(pe,m) is then defined by

Tr : GR(pe,m) → Zpe

Tr(u) = u + f(u) + f2(u) + . . . + fm−1(u).
From the definition of f and Tr the trace map satisfies the following properties:

For any u, v ∈ GR(pe,m) and α ∈ Zpe

i. Tr(u + v) = Tr(u) + Tr(v).
ii. Tr(αu) = αTr(u).
iii. Tr is surjective.

In addition to these properties the trace map also satisfies the following prop-
erty.

Theorem 2.1. [[13], Lemma 2.1] Given a Galois Ring GR(pe,m), let Dk =
{pkt | t = 0, 1, . . . , pe−k−1} ⊆ Zpe and u(k) be an element in GR(pe,m), as defined
above. As x ranges over GR(pe,m), Tr(xu(k)) maps to each element in Dk equally
often, i.e., pe(m−1)+k times, where k = 0, 1, 2, . . . , e− 1.

We are now in a position to use the trace map to construct Butson Hadamard
matrices and linear codes over Zpe . Let ω = exp( 2π

√
−1

k ) be the complex kth root
of unity and Ck be the multiplicative group of all complex kth roots of unity. i.e.,
Ck = {1, ω, ω2, . . . , ωk−1}. It is well known that

S =
k−1∑
j=0

ωj = 0.(2.1)



4 N. PINNAWALA AND A. RAO

Let H = [hi,j ] be a square matrix over Ck. The matrix E = [ei,j ], ei,j ∈ Zk,
which is obtained from H = [ωei,j ] = [hi,j ] is called the exponent matrix associated
with H.

Theorem 2.2. [[13], Proposition 3.1] Let p be a prime, p > 2. Let GR(pe,m)
be the Galois ring of characteristic pe and Cpe be the multiplicative group of all
complex pe th roots of unity.

i. The set mapping
ϕ : GR(pe,m)×GR(pe,m) → Cpe

ϕ(ci, cj) = (ω)Tr(cicj)

is a cocycle.
ii. The matrix Mϕ = [ϕ(ci, cj)]ci,cj∈GR(pe,m) is a Butson Hadamard matrix

of order pem.
iii. The rows of the exponent matrix of Mϕ (i.e., A = [Tr(cicj)]ci,cj∈GR(pe,m))

form a linear code over Zpe with parameters [n, k, dL] =[
pem,m, pe(m−1)

(
p2e−p2(e−1)

4

)]
.

3. Ring R(n, m) and cocyclic Zn-linear codes

Let R(n, m) be the direct product of Galois rings. In this section we will look at
the structure of the ring R(n, m) and define a new map over R(n, m) using the trace
maps over the component Galois Rings. We call this map the trace-like map since
it satisfies properties similar to that of the trace maps over Galois rings and Galois
fields. We then use this map to construct cocyclic Butson Hadamard matrices of
order nm for all positive integers n and m.

In the first instance let us look at the case n = pe1
1 pe2

2 , where p1 6= p2 ≥ 2
are primes and e1, e2 are positive integers. It is well known that Zn

∼= Zp
e1
1
× Zp

e2
2

and hence for any positive integer m, Zm
n
∼= (Zp

e1
1
× Zp

e2
2

)m. For more details on
these results see for example [7]. Let f1(x) and f2(x) be basic monic irreducible
polynomials of degree m over Zp

e1
1

and Zp
e2
2

respectively. As in Section 2 the Galois
rings of characteristics pe1

1 and pe2
2 and common dimension m are defined as the

quotient rings Zp
e1
1

[x]/(f1(x)) and Zp
e2
2

[x]/(f2(x)) respectively. These rings are
denoted by GR(pe1

1 ,m) and GR(pe2
2 ,m). If ζ1 and ζ2 are defined to be ζ1 = x +

(f1(x)) and ζ2 = x+(f2(x)), the two rings can then be expressed as GR(pe1
1 ,m) =<

1, ζ1, ζ
2
1 , . . . , ζm−1

1 > and GR(pe2
2 ,m) =< 1, ζ2, ζ

2
2 , . . . , ζm−1

2 > respectively. This
tells us that GR(pe1

1 ,m) = Zp
e1
1

[ζ1] and GR(pe2
2 ,m) = Zp

e2
2

[ζ2]. Hence any element
a ∈ GR(pe1

1 ,m) can be expressed as an m-tuple a = (a0, a1, . . . , am−1) over Zp
e1
1

while b ∈ GR(pe2
2 ,m) as b = (b0, b1, . . . , bm−1) over Zp

e2
2

.
Now consider the direct product of the two Galois rings. Let R(n, m) =

GR(pe1
1 ,m) × GR(pe2

2 ,m). Any element c ∈ R(n, m) can be written as c = (a, b),
where a ∈ GR(pe1

1 ,m) and b ∈ GR(pe2
2 ,m) and further as c = (a0, a1, . . . am−1,

b0, b1, . . . , bm−1). Since Zn
∼= Zp

e1
1
× Zp

e2
2

, c can also be written as an m-tuple
c = (c0, c1, . . . , cm−1) over Zn, where ci = (ai, bi) i = 0, 1, 2, . . . ,m − 1, ai ∈ Zp

e1
1

and bi ∈ Zp
e2
2

.
Let c, c′ be elements in R(n, m). It is easy to see that R(n, m) is a ring un-

der the addition c + c′ = ((c0 + c′0), (c1 + c′1), . . . , (cm−1 + c′m−1) and the multi-
plication cc′ = (c0c

′
0, c1c

′
1, . . . , cm−1c

′
m−1). Also |R(n, m)| = nm = (pe1

1 pe2
2 )m =

|GR(pe1
1 ,m)||GR(pe2

2 ,m)|.
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In this context, it is well known that:

if p is a prime and a is any integer then ap≡ a (mod p).(3.1)

The next result follows immediately from the Chinese remainder theorem.

Lemma 3.1. Let n = pe1
1 pe2

2 . Then Zn
∼= Zp

e1
1
× Zp

e2
2

and given α ∈ Zn

there exist α1 ∈ Zp
e1
1

and α2 ∈ Zp
e2
2

such that α = (α1p
e2
2 + α2p

e1
1 ) mod n. Thus

Zn = {(α1, α2)|α1 ∈ Zp
e1
1

, α2 ∈ Zp
e2
2
}.

Theorem 3.2 (Trace-like map). Let Tr1 and Tr2 be the trace maps over
GR(pe1

1 ,m) and GR(pe2
2 ,m) respectively. For any c = (c1, c2) ∈ R(n, m), the

map T over R(n, m) defined by

T : R(n, m) → Zn

T (c) = pe2
2 Tr1(c1) + pe1

1 Tr2(c2)

satisfies the following properties: For any c, c′ ∈ R(n, m) and α ∈ Zn

i. T (c + c′) = T (c) + T (c′).
ii. T (αc) = αT (c).
iii. T is surjective.

Proof:

i. Let c, c′ ∈ R(n, m) = GR(pe1
1 ,m) × GR(pe2

2 ,m). Then c = (c1, c2) and
c′ = (c′1, c

′
2), where c1, c

′
1 ∈ GR(pe1

1 ,m) and c2, c
′
2 ∈ GR(pe2

2 ,m). Since
c + c′ = (c1 + c′1, c2 + c′2) we have

T (c + c′) = pe2
2 Tr1(c1 + c′1) + pe1

1 Tr2(c2 + c′2)
= (pe2

2 Tr1(c1) + pe1
1 Tr2(c2)) + (pe2

2 Tr1(c′1) + pe1
1 Tr2(c′2))

= T (c) + T (c′).

ii. Let any α ∈ Zn and c ∈ R(n, m).

T (αc) = pe2
2 Tr1(αc1) + pe1

1 Tr2(αc2)

= pe2
2 (αc1 + αp1g1(c1) + . . . + αpm−1

1 g1(c1))

+pe1
1 (αc2 + αp2g2(c2) + . . . + αpm−1

2 g2(c2))
= pe2

2 α(Tr1(c1)) + pe1
1 α(Tr2(c2)) from (3.1)

= αT (c).

Here g1 and g2 are the Frobenius automorphisms over GR(pe1
1 ,m) and

GR(pe2
2 ,m) respectively.

iii. Since Tr1 and Tr2 are both surjective and not identically zero, there exist
elements c1 ∈ GR(pe1

1 ,m) and c2 ∈ GR(pe2
2 ,m) such that Tr1(c1) = 1

and Tr2(c2) = 1. Then c = (c1, c2) ∈ R(n, m) and T (c) = pe1
1 Tr2(c2) +

pe2
2 Tr1(c1) = pe1

1 + pe2
2 . For all α ∈ Zn we have proved in (ii) that

T (αc) = αT (c) and since pe1
1 + pe2

2 is not a multiple of either p1 or p2,
T (αc) = αT (c) should represent every element in Zn and hence T is
surjective. �

Since the trace-like map is a combination of the Galois ring traces, it is equi-
distributed, just as the component trace maps are equi-distributed. We prove this
in the next theorem.
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Theorem 3.3. For any c ∈ R(n, m), as x ranges over R(n, m), T (cx) takes
each element in

Si,j =

{
pi
1p

j
2t|t = 0, 1, 2, . . . ,

n

pi
1p

j
2

− 1

}
(3.2)

equally often pi
1p

j
2n

m−1 times, where 0 ≤ i ≤ e1 and 0 ≤ j ≤ e2.

Proof: We first prove that T (cx) ∈ Si,j . Since c, x ∈ R(n, m), c = (c1, c2) and
x = (x1, x2), where c1, x1 ∈ GR(pe1

1 ,m) and c2, x2 ∈ GR(pe2
2 ,m). In the case c = 0,

T (cx) = 0.
If c 6= 0 and both c1 and c2 are non-zero, then as they are both elements of

Galois Rings, their p-adic representations are given by:

c1 = u
(i)
1 =

e1−1∑
k=i

pk
1u1k; 0 ≤ i ≤ e1 − 1, u1i 6= 0.

c2 = u
(j)
2 =

e2−1∑
k=j

pk
2u2k; 0 ≤ j ≤ e2 − 1, u2j 6= 0.

Here u1k and u2k are in the Teichmüller sets of the respective Galois rings. From
Theorem 2.1, as x ranges over R(n, m), since T (cx) = pe2

2 Tr1(c1x1)+pe1
1 Tr2(c2x2),

the two trace maps Tr1(c1x1) and Tr2(c2x2) will take values in the sets Di =
{pi

1t1 | 0 ≤ t1 ≤ pe1−i
1 − 1} and Dj = {pj

2t2 | 0 ≤ t2 ≤ pe2−j
2 − 1} respectively. Thus

T (cx) ∈ {pe2
2 pi

1t1 + pe1
1 pj

2t2 | 0 ≤ t1 ≤ pe1−i
1 − 1, 0 ≤ t2 ≤ pe2−j

2 − 1}
= {pi

1p
j
2 (pe2−j

2 t1 + pe1−i
1 t2) | 0 ≤ t1 ≤ pe1−i

1 − 1, 0 ≤ t2 ≤ pe2−j
2 − 1}.

Since the calculation are done modulo n, {(pe2−j
2 t1 + pe1−i

1 t2) | 0 ≤ t1 ≤
pe1−i
1 − 1, 0 ≤ t2 ≤ pe2−j

2 − 1} ⊆ Zn. From Lemma 3.1, {(pe2−j
2 t1 + pe1−i

1 t2) | 0 ≤
t1 ≤ pe1−i

1 − 1, 0 ≤ t2 ≤ pe2−j
2 − 1} ∼= Z

p
e1−i
1 p

e2−j
2

. Hence T (cx) ∈ {pi
1p

j
2t | 0 ≤ t ≤

pe1−i
1 pe2−j

2 − 1} = Si,j .
If c 6= 0 and c1 = 0 (or c2 = 0) then T (cx) = pe1

1 Tr2(c2x2) (respectively T (cx) =
pe2
2 Tr1(c1x1)), and we are reduced to the Galois ring case. From Theorem 2.1,

Tr2(c2x2) ∈ Dj (respectively Tr1(c1x1) ∈ Di) which implies T (cx) ∈ {pe1
1 pj

2t2 | 0 ≤
s ≤ pe2−j

2 − 1} = S0,j (respectively T (cx) ∈ Si,0).
In addition Tr1(c1x1) ( respectively Tr2(c2x2)) takes each value in Di (respec-

tively Dj) equally often p
e1(m−1)+i
1 (respectively p

e2(m−1)+j
2 ). Hence T (cx) will take

each value in Si,j , equally often p
e1(m−1)+i
1 p

e2(m−1)+j
2 = pi

1p
j
2n

m−1 times. �
Since the map T satisfies properties similar to those satisfied by the trace map

over Galois fields and Galois rings, we call it the trace-like map.

Example 3.4. Consider the ring R(6, 2) = GF (2, 2) × GF (3, 2) and the irre-
ducible polynomials f(x) = x2 +x+1 over Z2 and g(x) = x2 +x+2 over Z3. Thus
GF (2, 2) = Z2[x]/(f(x)) and GF (3, 2) = Z3[x]/(g(x)). If ζ1 = (f(x)) + x then
f(ζ1) = 0 and hence GF (2, 2) = Z2[ζ1]. Similarly if ζ2 = (g(x)) + x then g(ζ2) = 0
and hence GF (3, 2) = Z3[ζ2].
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The Frobenius automorphisms f1 and f2 over GF (2, 2) and GF (3, 2) are given
by

f1 : GF (2, 2) → GF (2, 2) and f2 : GF (3, 2) → GF (3, 2)
f1(c1) = c2

1 f2(c2) = c3
2

respectively.
The trace maps Tr1 and Tr2 over GF (2, 2) and GF (3, 2) are given by

Tr1 : GF (2, 2) → Z2 and Tr2 : GF (3, 2) → Z3

Tr1(c1) = c1 + f1(c1) Tr2(c2) = c2 + f2(c2)

respectively. Table 1 illustrates the values of the trace maps.

Element c1 Tr1(c1)
00 = 0 + 0 0 0
10 = 1 + 0 1 0
01 = 0 + ζ1 ζ1 1
11 = 1 + ζ1 ζ2

1 1

Element c2 Tr2(c2)
00 = 0 + 0 0 0
10 = 1 + 0 1 2
01 = 0 + ζ2 ζ2 2
12 = 1 + 2ζ2 ζ2

2 0
22 = 2 + 2ζ2 ζ3

2 2
20 = 2 + 0 ζ4

2 1
02 = 0 + 2ζ2 ζ5

2 1
21 = 2 + ζ2 ζ6

2 0
11 = 1 + ζ2 ζ7

2 1
Table 1. Trace map values over GF (2, 2) (left) and GF (3, 2) (right)

The trace-like map T over the ring R(6, 2) is defined as follows:

T : R(6, 2) → Z6; T (c) = 3Tr1(c1) + 2Tr2(c2),

where c1 ∈ GF (2, 2) and c2 ∈ GF (3, 2). Since Z6
∼= Z2 × Z3, elements of Z6 can

be represented by 0=(0,0), 1=(1,2), 2=(0,1), 3=(1,0), 4=(0,2), 5=(1,1). Table 2
illustrates the elements of R(6, 2) and the values of the trace-like map over R(6, 2).

We are now in a position to define a cocycle using the trace-like map.

Theorem 3.5. Let ω = exp
(

2πi
n

)
be a complex nth root of unity, where n =

pe1
1 pe2

2 and Cn be the set of all complex nth roots of unity.

i. The set mapping ϕ : R(n, m) × R(n, m) → Cn; ϕ(a, b) = ωT (ab) is a
cocycle.

ii. The matrix Mϕ = [ϕ(a, b)]a,b∈R(n,m) is a Butson Hadamard matrix of
order nm.

iii. The rows of the exponent matrix associated with Mϕ, (i.e., A = [T (ab)]
for a, b ∈ R(n, m)), form a linear code over Zn with parameters [n, k] =
[nm,m]. In the case p1 < p2 and e1 ≤ e2, the minimum Hamming weight
is given by dH = (n− pe1

1 pe2−1
2 )nm−1.

Proof:
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c c = (c1, c2) T (c) c c = (c1, c2) T (c)
00 (00)(00) = ((00), (00)) 0 10 (12)(00) = ((10), (20)) 2
01 (00)(12) = ((01), (02)) 5 11 (12)(12) = ((11), (22)) 1
02 (00)(01) = ((00), (01)) 4 12 (12)(01) = ((10), (21)) 0
03 (00)(10) = ((01), (00)) 3 13 (12)(10) = ((11), (20)) 5
04 (00)(02) = ((00), (02)) 2 14 (12)(02) = ((10), (22)) 4
05 (00)(11) = ((01), (01)) 1 15 (12)(11) = ((11), (21)) 3
20 (01)(00) = ((00), (10)) 4 30 (10)(00) = ((10), (00)) 0
21 (01)(12) = ((01), (12)) 3 31 (10)(12) = ((11), (02)) 5
22 (01)(01) = ((00), (11)) 2 32 (10)(01) = ((10), (01)) 4
23 (01)(10) = ((01), (10)) 1 33 (10)(10) = ((11), (00)) 3
24 (01)(02) = ((00), (12)) 0 34 (10)(02) = ((10), (02)) 2
25 (01)(11) = ((01), (11)) 5 35 (10)(11) = ((11), (01)) 1
40 (02)(00) = ((00), (20)) 2 50 (11)(00) = ((10), (10)) 4
41 (02)(12) = ((01), (22)) 1 51 (11)(12) = ((11), (12)) 3
42 (02)(01) = ((00), (21)) 0 52 (11)(01) = ((10), (11)) 2
43 (02)(10) = ((01), (20)) 5 53 (11)(10) = ((11), (10)) 1
44 (02)(02) = ((00), (22)) 4 54 (11)(02) = ((10), (12)) 0
45 (02)(11) = ((01), (21)) 3 55 (11)(11) = ((11), (11)) 5

Table 2. Trace-like map values over R(6,2)

i. Let any a, b, c ∈ R(n, m). Then

ϕ(a, b) = ωT (ab)

ϕ(a + b, c) = ωT ((a+b)c) = ωT (ac)+T (bc)

ϕ(b, c) = ωT (bc)

ϕ(a, b + c) = ωT (a(b+c)) = ωT (ab)+T (ac)

From these equations we have

ϕ(a, b)ϕ(a + b, c) = ϕ(b, c)ϕ(a, b + c)

Thus ϕ is a cocycle. This proof also follows from Proposition 2.4 [2].
ii. Let Mϕ = [ϕ(a, b)]a,b∈R(n,m). To prove that MϕM∗

ϕ = nmI, consider the
sum

S =
∑

x∈R(n,m)

ϕ(a, x)ϕ(x, b),(3.3)

where ϕ(x, b) is the complex conjugate of ϕ(x, b). From the properties
of the trace-like map (Theorem 3.2)

S =
∑

x∈R(n,m)

ωT (x(a−b)).(3.4)

When a = b, S = nm.
When a 6= b, from Theorem 3.3 we have
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S = pi
1p

j
2n

m−1

n

pi
1p

j
2
−1∑

t=0

ωpi
1pj

2t,(3.5)

where 0 ≤ i ≤ e1 − 1 and 0 ≤ j ≤ e2 − 1 . From the equation (2.1) we
have S = 0. Thus the matrix Mϕ is a Butson Hadamard matrix of order
nm.

iii Let B = [Tr1(c1αc2α)] for c1α, c2α ∈ GR(pe1
1 ,m) and D = [Tr2(c1βc2β)]

for c1β , c2β ∈ GR(pe2
2 ,m) be the codes over Zp

e1
1

and Zp
e2
2

respectively. Let
GB and GD be the generator matrices of the codes B and D respectively.

Then a generator matrix for A is given by the m× nm matrix:

GA = pe2
2 [pe2m

2 copies of GB ] + pe1
1 [pe1m

1 copies of GD] ,(3.6)

i.e.,

GA = pe2
2


pe2m
2 copies of {Tr1(c1l)}

pe2m
2 copies of {Tr1(ζ1c1l)}

...
pe2m
2 copies of {Tr1(ζ

m−1
1 c1l)}

 + pe1
1


pe1m
1 copies of {Tr2(c2t)}

pe1m
1 copies of {Tr2(ζ2c2t)}

...
pe1m
1 copies of {Tr2(ζ

m−1
2 c2t)}

,

where l = 1, 2, . . . , pe1m
1 and t = 1, 2, . . . , pe2m

2 .
We need to show that the rows of GA are linearly independent and

generate A. This is easy to see since the kth row of GA, 0 ≤ k ≤ m − 1
can be written as

~xk = pe2
2

[
Tr1(ζk

1 c1l)
]
+ pe1

1

[
Tr2(ζk

2 c2t)
]
,(3.7)

where l ranges from 1 to pe1m
1 and t ranges from 1 to pe2m

2 . Clearly the
~xk are linearly independent nm-tuples over Zn, since the ζk

i are linearly
independent in GR(pei

i ,m), i = 1, 2, and the Tri are surjective and not
identically zero.

In addition the code A can be generated by taking all the linear com-
binations of the rows of GA. If we consider the rows of A as codewords
over Zn then from Theorem 3.3 the Hamming weight of each nonzero
codeword is given by (n − pi

1p
j
2)n

m−1, where i = 0, 1, 2, . . . , e1 and j =
0, 1, 2, . . . , e2. If p2 > p1 and e2 ≥ e1, the minimum Hamming weight
is given by (n − pe2

2 pe1−1
1 )nm−1. Since A is a linear code the mini-

mum Hamming distance dH = (n − pe2
2 pe1−1

1 )nm−1. Thus [n, k, dH ] =[
nm,m, (n− pe2

2 pe1−1
1 )nm−1

]
. �

Example 3.6. In this example we illustrate the code constructed by using the
trace-like map over R(6, 2) = GF (2, 2)×GF (3, 2). Let T be the trace-like map over
R(6, 2), Tr1 be the trace map over GF (2, 2) and Tr2 the trace map over GF (3, 2).

The code over GF (2, 2) obtained via the trace map Tr1 is:

B = [Tr1(a1b1)]a1,b1∈GF (2,2) =


0 0 0 0
0 0 1 1
0 1 1 0
0 1 0 1

 ; and GB =
[

0 0 1 1
0 1 1 0

]
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is the generator matrix. Whereas the code over GF (3, 2) obtained via the trace
map Tr2 is:

D = [Tr2(a2b2)]a2,b2∈GF (3,2) =



0 0 0 0 0 0 0 0 0
0 2 2 0 2 1 1 0 1
0 2 0 2 1 1 0 1 2
0 0 2 1 1 0 1 2 2
0 2 1 1 0 1 2 2 0
0 1 1 0 1 2 2 0 2
0 1 0 1 2 2 0 2 1
0 0 1 2 2 0 2 1 1
0 1 2 2 0 2 1 1 0


which has generator matrix:

GD =
[

0 2 2 0 2 1 1 0 1
0 2 0 2 1 1 0 1 2

]
.

GA = 3 [ 9 copies of GB ] + 2 [4 copies of GD ]

= 3
[

0 0 1 1 . . . 0 0 1 1
0 1 1 0 . . . 0 1 1 0

]
+ 2

[
0 2 2 0 2 1 1 0 1 . . .
0 2 0 2 1 1 0 1 2 . . .

]
=

[
0 4 1 3 4 2 5 3 2 . . .
0 1 3 4 2 5 3 2 4 . . .

]
is a generator matrix for the code A = [T (ab)]a,b∈R(6,2) with parameters [36, 2, 18]
given in Figure 1 below.

It is relatively straight forward to extend these results to the case n =
∏k

i=1 pei
i .

Theorem 3.7. Let Tri be the trace map over GR(pei
i ,m), i = 1, . . . , k as

defined in section 2. The mapping defined over R(n, m) by

T : R(n, m) → Zn

T (c) =
k∑

i=1

n

pei
i

Tri(ci)

satisfies the following properties: For any c, c
′ ∈ R(n, m) and α ∈ Zn

i. T (c + c
′
) = T (c) + T (c

′
)

ii. T (αc) = αT (c)
iii. T is surjective
iv. For any c ∈ R(n, m), as x ranges over R(n, m), T (cx) takes each element in

Sl =

{
k∏

i=1

pli
i t|t = 0, 1, 2, . . . ,

n∏k
i=1 pli

i

− 1

}
(3.8)

equally often
∏k

i=1 pli
i nm−1 times, where l = (l1, l2, . . . , lk), 0 ≤ li ≤ ei for i =

1, 2, . . . , k.

Theorem 3.8. Let ω = exp
(

2π
√
−1

n

)
be the complex nth root of unity, where

n =
∏k

i=1 pei
i , and Cn be the set of all complex nth root of unity.

i The set mapping
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0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 1 3 4 2 5 3 2 . . . 5 2 0 5 3 4 4 3 1 2 2 3 5
0 2 2 0 2 4 4 0 4 . . . 4 4 0 4 0 2 2 0 2 4 4 0 4
0 0 3 3 0 0 3 3 0 . . . 3 0 0 3 3 0 0 3 3 0 0 3 3
0 4 4 0 4 2 2 0 2 . . . 2 2 0 2 0 4 4 0 4 2 2 0 2
0 2 5 3 2 4 1 3 4 . . . 1 4 0 1 3 2 2 3 5 4 4 3 1
0 1 3 4 2 5 3 2 4 . . . 2 0 5 1 0 4 3 1 2 2 3 5 4
0 2 0 2 4 4 0 4 2 . . . 4 0 4 2 0 2 0 2 4 4 0 4 2
0 3 3 0 0 3 3 0 0 . . . 0 0 3 3 0 0 3 3 0 0 3 3 0
0 4 0 4 2 2 0 2 4 . . . 2 0 2 4 0 4 0 4 2 2 0 2 4
0 5 3 2 4 1 3 4 2 . . . 4 0 1 5 0 2 3 5 4 4 3 1 2
0 5 4 1 0 1 2 5 0 . . . 1 2 5 0 3 2 1 4 3 4 5 2 3
0 0 1 5 2 0 5 1 4 . . . 3 2 4 1 3 0 4 5 5 0 2 1 1
0 1 4 3 4 5 2 3 2 . . . 5 2 3 2 3 4 1 0 1 2 5 0 5
0 2 1 1 0 4 5 5 0 . . . 1 2 2 3 3 2 4 1 3 4 2 5 3
0 3 4 5 2 3 2 1 4 . . . 3 2 1 4 3 0 1 2 5 0 5 4 1
0 3 5 4 4 3 1 2 2 . . . 0 4 5 5 0 0 5 1 4 0 1 5 2
0 1 0 1 2 5 0 5 4 . . . 5 0 5 4 3 4 3 4 5 2 3 2 1
0 5 1 4 0 1 5 2 0 . . . 4 2 5 3 0 2 1 1 0 4 5 5 0
0 3 2 1 4 3 4 5 2 . . . 3 4 5 2 3 0 5 4 1 0 1 2 5
0 4 2 2 0 2 4 4 0 . . . 2 4 4 0 0 4 2 2 0 2 4 4 0
0 5 5 0 2 1 1 0 4 . . . 4 4 3 1 0 2 5 3 2 4 1 3 4
0 0 2 4 4 0 4 2 2 . . . 0 4 2 2 0 0 2 4 4 0 4 2 2
0 1 5 2 0 5 1 4 0 . . . 2 4 1 3 0 4 5 5 0 2 1 1 0
0 2 3 5 4 4 3 1 2 . . . 1 0 4 5 3 2 0 5 1 4 0 1 5
0 3 0 3 0 3 0 3 0 . . . 3 0 3 0 3 0 3 0 3 0 3 0 3
0 4 3 1 2 2 3 5 4 . . . 5 0 2 1 3 4 0 1 5 2 0 5 1
0 5 0 5 4 1 0 1 2 . . . 1 0 1 2 3 2 3 2 1 4 3 4 5
0 0 4 2 2 0 2 4 4 . . . 0 2 4 4 0 0 4 2 2 0 2 4 4
0 1 1 0 4 5 5 0 2 . . . 2 2 3 5 0 4 1 3 4 2 5 3 2
0 2 4 4 0 4 2 2 0 . . . 4 2 2 0 0 2 4 4 0 4 2 2 0
0 3 1 2 2 3 5 4 4 . . . 0 2 1 1 0 0 1 5 2 0 5 1 4
0 4 5 5 0 2 1 1 0 . . . 5 4 4 3 3 4 2 5 3 2 4 1 3
0 5 2 3 2 1 4 3 4 . . . 1 4 3 4 3 2 5 0 5 4 1 0 1
0 0 5 1 4 0 1 5 2 . . . 3 4 2 5 3 0 2 1 1 0 4 5 5
0 1 2 5 0 5 4 1 0 . . . 5 4 1 0 3 4 5 2 3 2 1 4 3


Figure 1. Code A = [T (ab)]a,b∈R(6,2) with parameters [36, 2, 18]

ϕ : R(n, m)×R(n, m) → Cn

ϕ(a, b) = ωT (ab)

is a cocycle.
ii The matrix Mϕ = [ϕ(a, b)]a,b∈R(n,m) is a Butson Hadamard matrix of

order nm.
iii The rows of the exponent matrix associated with Mϕ (i.e., A = [T (ab)]

for a, b ∈ R(n, m)) form a linear code over Zn with parameters [n, k] =
[nm,m]. In the case p1 < p2 < . . . < pk and e1 ≤ e2 ≤ . . . ≤ ek, the
minimum Hamming weight is given by dH(n− pe1

1 pe2
2 . . . pek−1

k )nm−1.

The generator matrix GA of the code A is given by
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GA =
k∑

i=1

(
n

pei
i

) [(
n

pei
i

)m

copies of Gi

]
,

where Gi is the generator matrix of the code Ai =
[
Tri(cc

′
)
]

c,c′∈GR(p
ei
i ,m)

.

Note that each row of GA contains the elements of Zn equally often nm−1 times.
In the case n = 6, the code obtained by the construction above can be shown to

be the senary simplex code [8]. Let Gα
m be a m× 2m3m matrix over Z6 consisting

of all possible distinct columns. Inductively, Gα
m is written as

Gα
m=

[
00 . . . 0 11 . . . 1 22 . . . 2 33 . . . 3 44 . . . 4 55 . . . 5
Gm−1 Gm−1 Gm−1 Gm−1 Gm−1 Gm−1

]
with Gα

1 = [012345]. The code sα
m generated by Gα

m, is called a senary simplex
code, because its codewords are equidistant with respect to the Chinese Euclidean
distance. Thus we have shown the following:

Corollary 3.9. In the case of p1 = 2, p2 = 3, e1 = e2 = 1, the generator
matrix GA is permutation equivalent to Gα

m. Hence the code generated by GA is
a senary simplex code of type α and in particular this is a cocyclic senary simplex
code of type α.

4. Lee, Euclidean and Chinese Euclidean Weights of the codewords of
A

Let n =
∏k

i=1 pei
i and A = [T (ab)]a,b∈R(n,m) the code defined in Theorem

3.8,(iii). For i = 1, 2, . . . , k, let l = (l1, l2, . . . , lk), 0 ≤ li ≤ ei, nl =
∏k

i=1 pli
i and

n̄l = n/nl.
From Theorem 3.7(vi), if x is a codeword in A, then the coordinates of x take

values in Sl = {nlt | t = 0, 1, 2, . . . , n̄l − 1} equally often nln
m−1 times.

Then depending upon the range of the li, the Lee (WL(x)), Euclidean (WE(x))
and the Chinese Euclidean (WCE(x)) weights of x are as per the table below:

Case I: p1 = 2, pi > 2, 2 ≤ i ≤ k

Range of l1 Range of li nl WL(x) WE(x) WCE(x)
2 ≤ li ≤ k

0 ≤ l1 ≤ e1 − 1 0 ≤ li ≤ ei 2l1
∏k

i=2 pli
i

1
4
nm+1 nm(n2+2n2

l )

12 2nm

l1 = e1 0 ≤ li ≤ ei − 1 2e1
∏k

i=2 pli
i

nm−1(n2−n2
l )

4

nm(n2−n2
l )

12

Case II: pi > 2 ∀i

0 ≤ l1 ≤ e1 0 ≤ li ≤ ei

∏k
i=0 pli

i
nm−1(n2−n2

l )

4

nm(n2−n2
l )

12
2nm
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5. The Weighted-Trace map

So far we have studied the trace-like map and its fundamental properties parallel
to the trace maps over Galois rings and Galois fields. The ring R(n, m) was the
direct product of Galois rings and Galois fields of the same degree (say m). It
is fairly straight forward to extend this notion to the ring R(d, n) constructed by
taking the direct product of Galois rings and Galois fields of different degrees (say
m1,m2, . . . ,mk). Here d = pe1m1

1 pe2m2
2 . . . pekmk

k and n = pe1
1 pe2

2 . . . pek

k .
Let GR(pei

i ,mi) be the Galois ring of characteristic pei
i and degree mi, where

i = 1, 2, . . . , k. Let R(d, n) be the direct product of these rings. i.e., R(d, n) =
GR(pe1

1 ,m1)×GR(pe2
2 ,m2)×. . .×GR(pek

k ,mk), where d = pe1m1
1 pe2m2

2 . . . pekmk

k and
n = pe1

1 pe2
2 . . . pek

k . Any element c ∈ R(d, n) can be written as c = (c1, c2, . . . , ck),
where ci ∈ GR(pei

i ,mi), for i = 1, 2, . . . , k. Since GR(pei
i ,mi) ∼= Zmi

p
ei
i

we can write

ci as an mi - tuple over Zp
ei
i

. i.e., ci = (c1
i , c

2
i , . . . , c

mi
i ), where cj

i ∈ Zp
ei
i

, for

j = 1, 2, . . . ,mi. Let M =
∑k

i=1 mi. We can now write the elements of R(d, n) as
M -tuples c = ((c1

1, c
2
1, . . . , c

m1
1 ), (c1

2, c
2
2, . . . , c

m2
2 ), . . . , (c1

k, c2
k,

. . . , cmk

k )), where cj
i ∈ Zp

ei
i

, for j ∈ {1, 2, . . . ,mi}.
Let c, c

′ ∈ R(d, n) and define the addition and multiplication of c, c
′
as follows:

c + c
′
= (c1 + c

′

1, c2 + c
′

2, . . . , ck + c
′

k) and cc
′
= (c1c

′

1, c2c
′

2, . . . , ckc
′

k).
It is easy to show that R(d, n) is a ring under these binary operations and also

that the number of elements of R(d, n), denoted by d is given by d =
∏k

i=1 peimi
i ,

i.e., d =
∏k

i=1 |GR(pei
i ,mi)|, where |GR(pei

i ,mi)| is the number of elements of
GR(pei

i ,mi).

Definition 5.1 (Weighted-trace map). [9] Let Tri be the trace map over the
Galois ring GR(pei

i ,mi), where i = 1, 2, . . . , k. The weighted-trace map over the
ring R(d, n) is defined by

Tw : R(d, n) → Zn

Tw(x) =
k∑

i=1

n

pei
i

Tri(xi).

As in Theorem 3.2 we can prove that the weighted-trace map satisfies the
following properties:

Theorem 5.2. Let Tw be the weighted-trace map over the ring R(d, n), where
d = pe1m1

1 pe2m2
2 . . . pekmk

k and n = pe1
1 pe2

2 . . . pek

k . For c, c
′ ∈ R(d, n) and α ∈ Zn the

following properties are satisfied by Tw:
(i) Tw(c + c

′
) = Tw(c) + Tw(c

′
).

(ii) Tw(αc) = αTw(c).
(iii) Tw is surjective.

The weighted-trace map Tw also satisfies the following property which is very
similar to that of the trace-like map in Theorem 3.3.

Theorem 5.3. Let c = (c1, c2) ∈ R(d, n) and Tw be the weighted-trace map
over R(d, n) as above. As x ranges over R(d, n), Tw(cx) takes each element in
Sl = {

∏k
i=1 pli

i t|t = 0, 1, 2, . . . , n̄l − 1} equally often i.e., dnl/n times, where for
i = 1, 2, . . . , k, l = (l1, l2, . . . , lk), 0 ≤ li ≤ ei, nl =

∏k
i=1 pli

i , and n̄l = n/nl.
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We use Tw to construct cocyclic Butson Hadamard matrices of order d and
consequently to construct non-linear codes over Zn as follows:

Theorem 5.4. Let n =
∏k

i=1 pei
i and ωn = e

2π
√
−1

n be the complex nth root of
unity. Let Cn be the multiplicative group of all complex nth roots of unity and Tw

be the weighted-trace map over the ring R(d, n) as defined above. Then
(i) The set mapping defined by

ϕ : R(d, n)×R(d, n) → Cn

ϕ(a, b) = ω
Tw(ab)
n

is a cocycle. (ii) Matrix Hw = [ϕ(a, b)]a,b∈R(d,n) is a Butson Hadamard matrix of
order d.
(iii) The exponent matrix of Hw, i.e., Aw = [Tw(ab)]a,b∈R(d,n) forms a non-linear
code over Zn with the parameters (d, N,wH), where d =

∏k
i=1 peimi

i is the length
of the code, N =

∏k
i=1 peimi

i is the number of codewords and wH = d(p1 − 1)/p1)
is the minimum Hamming weight provided that pe1

1 < pe2
2 < . . . < pek

k and m1 <
m2 < . . . < mk.

Proof:
(i) and (ii) are similar to that of Theorem 3.5.
(iii) Since the number of elements in R(d, n) is d, it is clear that the length of
the code Aw is d =

∏k
i=1 peimi

i and the number of codewords in Aw, N , is also
=

∏k
i=1 peimi

i = d. From Theorem 5.3 it is clear that the Hamming weight of
each codeword in Aw is given by d −

∏k
i=1 p

ei(mi−1)+li
i , where 0 ≤ li ≤ ei for

i = 1, 2, . . . , k. When pe1
1 < pe2

2 < . . . < pek

k and m1 < m2 < . . . < mk the minimum
Hamming weight of codewords in Aw is wH = d− pekmk

k . . . pe2m2
2 pe1m1−1

1 = d(p1−
1)/p1. Thus Aw is a (d, d, d(p1 − 1)/p1) code over Zn. �

The next example illustrates this result.

Example 5.5. Consider the ring R(12, 6) = GF (2, 2) × GF (3, 1). The trace
maps Tr1 and Tr2 over GF (2, 2) and GF (3, 1) are given by

Tr1 : GF (2, 2) → Z2 and Tr2 : GF (3, 1) → Z3

Tr1(c1) = c1 + c2
1 Tr2(c2) = c2

respectively.
The following tables illustrate the values of trace maps.

c1 Tr1(c1)
00 0
10 0
01 1
11 1

c2 Tr2(c2)
0 0
1 1
2 2

The weighted-trace map Tw over the ring R(12, 6) is

Tw : R(12, 6) → Z6

Tw(c) = 3Tr1(c1) + 2Tr2(c2),

where c1 ∈ GF (2, 2) and c2 ∈ GF (3, 2).
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The elements of the ring R(12, 6) and their weighted-trace values are given in
the following table.

c Tw(c) c Tw(c)
(0, 0), 0 0 (0, 1), 0 3
(0, 0), 1 2 (0, 1), 1 5
(0, 0), 2 4 (0, 1), 2 1
(1, 0), 0 0 (1, 1), 0 3
(1, 0), 1 2 (1, 1), 1 5
(1, 0), 2 4 (1, 1), 2 1

The code Aw = [Tw(ax)]a,x∈R(12,6) is

Aw =



0 0 0 0 0 0 0 0 0 0 0 0
0 2 4 0 2 4 0 2 4 0 2 4
0 4 2 0 4 2 0 4 2 0 4 2
0 0 0 0 0 0 3 3 3 3 3 3
0 2 4 0 2 4 3 5 1 3 5 1
0 4 2 0 4 2 3 1 5 3 1 5
0 0 0 3 3 3 3 3 3 0 0 0
0 2 4 3 5 1 3 5 1 0 2 4
0 4 2 3 1 5 3 1 5 0 4 2
0 0 0 3 3 3 0 0 0 3 3 3
0 2 4 3 5 1 0 2 4 3 5 1
0 2 4 3 1 5 0 2 4 3 1 5


and its parameters (d,N,wH) are (12, 12, 6)

Clearly Aw is a non-linear code since the sum of the 10th and 12th rows is not
a codeword in Aw.

6. Conclusion

In this paper we introduced a new map, the trace-like map and in general the
weighted-trace map, to construct Butson Hadamard matrices and consequently to
construct linear and non-linear cocyclic codes over Zn for n = pe1

1 pe2
2 and more

generally for n = pe1
1 pe2

2 . . . pek

k .
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