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Abstract 

The dynamic nature and heterogeneity of modern execution environments such as mobile, 

ubiquitous, and grid computing, present major challenges for the development and efficient 

execution of the applications targeted for these environments. In particular, applications tai-

lored to run in a specific environment will show different and most likely sub-optimal behav-

iour when executed on a different and/or dynamic environment. Consequently, there has been 

growing interests in the area of application adaptation which aims to enable applications to 

cope with the varying execution environments. 

Adaptive application partitioning, a specific form of non-functional adaptation involving 

distribution of mobile objects across multiple host machines, is of particular interest to this 

thesis due to the diversity of its uses. In this approach, certain runtime information (known as 

context) is used to allow an object-oriented application to adaptively (re)adjust the placement 

of its objects during its execution, for purposes such as improving application performance 

and reliability as well as balancing resource utilisation across machines. Promoting the adop-

tion of such adaptation requires a process that requires minimal human involvement in both 

the execution and the development of the relevant application. These challenges establish the 

main goals and contributions of this work, which include: 

1) Proposing an effective application partitioning solution via the adoption of a decen-

tralised adaptation strategy known as local adaptation. 

2) Enabling adaptive application partitioning which does not require human intervention, 

through automatic collection of required information/context. 

3) Proposing a solution for transparently injecting the required adaptation functionality 

into regular object-oriented applications allowing significant reduction of the associ-

ated development cost/effort. 
 

The proposed solutions have been implemented in a Java-based adaptation framework 

called MobJeX. This implementation, which was used as a test bed for the empirical experi-

ments undertaken in this study, can be used to facilitate future research relevant to this par-

ticular study. 
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Chapter 1 .  Introduction and Rationale 

The dynamic nature and heterogeneity of modern execution environments such as mobile, 

ubiquitous, and grid computing, present major challenges for the development and efficient 

execution of the applications targeted for such environments. More specifically, applications 

tailored to run in a specific environment will show different and most likely sub-optimal be-

haviour when deployed in a different context (e.g. a different device or network environ-

ment). Furthermore, given the dynamic nature of device usage, network connectivity, and 

power consumption, it is not practical to predict in advance the exact conditions in which an 

application may run. Consequently, there has been growing interests in the area of applica-

tion adaptation [38, 87, 109] [144] [73] [186] [53], the aim of which is to enable applications 

to cope with varying execution environments by adjusting application/middleware behaviour 

according to the specific characteristics of the execution environment and the application it-

self. Such applications are commonly known as adaptive or adaptable applications. 

At the minimum, the tasks required to perform adaptation can be categorised into: collect-

ing contextual information (e.g. memory usage), making adaptation decisions based on col-

lected information, and adapting according to the established decisions. Contextual informa-

tion, which is also known as context [16] [50], refers to information about particular execu-

tion conditions which include characteristics about the running application (e.g. execution 

duration) and its execution environment (e.g. CPU usage). In order to remove the need for 

human intervention during application execution, it is important that context is collected 

automatically (e.g. by adaptive applications), and as such, one of the aims of this thesis is to 

address the automatic collection and management of context as discussed further in section 

1.1. 

A form of adaptation which is of particular interest to this thesis is application partition-

ing, which refers to the separation and distribution of relatively independent components (of 

an application) to multiple machines. Amongst the many benefits offered by such adaptation, 

which are discussed in detail in section 2.2, is the improvement of application performance 

through the distribution of application components to machines which match their specific 

system resource (e.g. processor, memory) requirements. The maximisation of the perform-

ance improvement gained from adaptive application partitioning (also known as the effective-

ness of adaptation), is also a focus of this thesis and as such is discussed in section 1.1. 

In addition to the aforementioned goals regarding the effectiveness and automation of 

adaptive application partitioning, the overhead involved in the development of applications 

supporting such adaptation is also of particular concern to this work. Consequently, this the-

sis proposes a solution for facilitating the development of adaptive applications through an 
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automatic process involving injection of adaptation capabilities into existing applications as 

discussed in more detail in section 1.1. 

1.1 Scope and Goals 

The scope and primary directions of this research are discussed in this section. Throughout 

the discussion, a brief description of the major issues and limitations in the current state of 

related research is provided in order to outline specific high-level goals, which serve to estab-

lish the research questions presented in section 1.2. On the other hand, a more detailed dis-

cussion of related work, which serves to provide a comprehensive analysis and comparison 

between existing approaches, is provided in the literature review presented in Chapter 2. 

As mentioned, this thesis focuses on a specific form of adaptation which is achieved via 

application partitioning. A popular approach for partitioning an application is through object 

mobility (also known as object migration) [134] [79] [147], which refers to the ability of an 

object-oriented application to migrate some of its constituent objects (known as mobile ob-

jects) to different machines. The mechanics concerning object migration have been suffi-

ciently investigated in previous work (e.g. [134], [79], [147]), thereby allowing this thesis to 

instead focus on issues related to decision making (e.g. determining objects to be migrated) 

and context management (e.g. collecting context required for decision making). 

The manner in which adaptation decisions are made depends heavily on whether the 

adopted solution applies a local or global adaptation scheme. In local adaptation, which is the 

focus of this thesis, each collaborating machine shares adaptation responsibility by making 

decisions regarding the (re-)location of objects presently residing on the machine. This is in 

contrast to the more traditional global adaptation strategy (e.g. [73] [186] [53]), wherein ad-

aptation decisions are made by a single centralised component, which provides a performance 

bottleneck as well as a single point of failure. 

Since, in the case of local adaptation, (partial) decision making is carried out independ-

ently by each participating machine, producing good quality decisions is a major challenge. 

Note that the quality of adaptation decisions is often measured in terms of the effectiveness of 

achieving a specific goal(s), which in the case of this work is to improve application perform-

ance. Consequently, improving the effectiveness of application partitioning in a local-

adaptation scheme is one of the research questions in this thesis as discussed further in sec-

tion 1.2. 

Additionally, due to the distributed nature of local adaptation, there exist complexities re-

lated to the management of context, in terms of when, where and how context (required for 

adaptation) is collected, delivered, and/or exchanged. Furthermore, there is also the challenge 

for automating the whole process involved in the management of context, for the purpose of 
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supporting continuous (online) adaptation, which refers to the case in which an application 

continuously observes and adapts to changes in its execution context. Such adaptation is pre-

ferred over the offline (i.e. prior to application execution) and the startup-only approach (i.e. 

only once during application start-up), because it is more suitable for addressing unpredict-

able (e.g. dynamic) execution conditions (which are commonly exhibited by modern comput-

ing paradigms such as mobile computing), as discussed in section 2.1. Consequently, this 

work aims to address the aforementioned challenges through the investigation of relevant is-

sues (e.g. how context should be represented) as well as the formulation of an efficient solu-

tion (e.g. for collecting context), as outlined in section 1.2. 

In this work, context is collected in the form of metrics, the purpose of which is to pro-

vide quantitative measures of certain attributes of the execution (e.g. CPU usage, execution 

duration), as discussed further in 2.4. An advantage of such an approach is that it allows the 

obtained measures to be used in mathematical formulas for the purpose of making adaptation 

decisions, as demonstrated in existing work on local-adaptation [144], which is used as a 

baseline for the (improved) decision making algorithm proposed in this thesis. 

The formulation of generic solutions for adaptation decision making and metrics man-

agement that are applicable to various object-oriented applications, is made possible because 

application partitioning is a form of non-functional adaptation, which as explained in section 

2.1, refers to the alteration of behaviour that is not directly related to the domain-specific 

functionality or services provided by the application. One benefit of this type of adaptation, in 

comparison to functional adaptation (e.g. auto-adjustment of video playback quality), is that 

its realisation does not rely heavily on the presence of domain-specific implementa-

tion/knowledge. 

As such, not only does this promote the reusability of the formulated solutions, but it also 

opens the possibility of reducing software development effort through the provision of ge-

neric support from development frameworks and middleware. Such an advantage is highly 

relevant to this work, since the concerned adaptation approach (application partitioning) re-

quires additional functionality (e.g. metrics collection, remote communication) to be imple-

mented in the adapted application (as discussed in detail in section 2.1), thereby implying that 

additional development effort is required despite the endeavour to implement common func-

tionality in external components, e.g. middleware. 

Various frameworks (e.g. [53] [134] [51] [147]) have been proposed in previous work to 

facilitate the development of applications supporting dynamic (i.e. either adaptive or requir-

ing human decisions) application partitioning via object mobility. Different frameworks dif-

fer in terms of the supported functionality (e.g. adaptation, context collection, concurrency 

management) as well as the provided development transparency (i.e. how much developer 

involvement is required), as reviewed in detail in section 2.5. A popular approach adopted by 
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existing frameworks to address development transparency is through code transformation, 

which in the context of this discussion, refers to the automatic process of transforming (the 

source/byte code of) a regular non-adaptive application into an adaptive application. 

A similar approach is adopted in this work, wherein code transformation is used to facili-

tate functionality or capability injection, a process referring to the automatic injection of ad-

aptation functionality (e.g. metrics collection) into a regular (object-oriented) application. In 

this approach, the majority of injected functionality is encapsulated in object proxies (i.e. in-

termediary objects which bridge the interaction between two objects), which as discussed in 

detail in section 2.5.1, play important roles in adaptive application partitioning. Despite also 

addressing other aspects, such as flexibility and portability, the proposed solution is primarily 

concerned with the transparency of capability injection in terms of not breaking existing code 

(i.e. the original application) in an effort to minimise development effort, as emphasised in 

section 1.2. 

In order to further promote development transparency, Java, which is a cross-platform 

technology (thus providing better support for applications running on heterogeneous plat-

forms as discussed further in section 2.5.2), is the main focus of this thesis to the extent that 

the proposed solutions: 1) were implemented and evaluated using Java, and 2) are aimed at 

facilitating adaptive partitioning of Java applications.  

1.2 Research Questions 

Having discussed the background, scope and goals of this research, the following are the 

three distinct research questions that this thesis aims to answer: 
 

1. How can the effectiveness of application partitioning in a local-adaptation scheme be 

improved? 
 

In order to answer this question, an existing local-adaptation algorithm originally pro-

posed by Rossi and Ryan [144] was investigated. A number of limitations in the 

original algorithm were identified and addressed, which consequently results in the 

formulation of the proposed algorithm discussed in Chapter 3. Changes in the pro-

posed algorithm include those for facilitating: 1) the use of alternative metrics which 

more accurately reflect the represented attributes (e.g. the CPU requirement of an ob-

ject), 2) the introduction of new metrics to address specific limitations of the original 

algorithm (e.g. unnecessary object migrations), and 3) the incorporation of additional 

information into adopted metrics (e.g. the degree of interaction between individual 

objects) in order to enable more complete understanding of the present execution con-

ditions.  
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These improvements result in more effective adaptation in terms of the improved 

performance (i.e. reduced execution duration) of the adapted application, as con-

firmed in the evaluation in Chapter 5, which demonstrates the effectiveness of the 

proposed algorithm in scenarios involving heterogeneous and dynamic execution 

conditions. 
 

2. How can metrics be collected and managed automatically in order to support the live 

execution of adaptive application partitioning? 
 

Answering this question, which is the focus of Chapter 4, involves addressing issues 

related to: 1) the collection of metrics required by the extended algorithm and 2) the 

delivery of collected metrics to the distributed adaptation engines. The proposed met-

rics management solution, which does not require human intervention (during appli-

cation execution), is particularly concerned with the efficiency of the involved tasks 

as well as the accuracy of the collected metrics, because an efficient solution mini-

mises its impact on the performance of the running application, whereas accurate met-

rics enable more optimal decision making (thus more effective adaptation). This work 

further extends the notion of metrics accuracy through the consideration of the tempo-

ral characteristics (e.g. recentness) of metrics, which also serve to improve the quality 

of decision making. 
 

3. How can the transparency of the injection of adaptive application partitioning func-

tionality be improved? 
 

This question is answered through the provision of a solution for automatically inject-

ing object proxies into regular object-oriented applications, the core contribution of 

which is concerned with the transparency of object proxies in terms of allowing prox-

ies to be injected without breaking existing application code, as presented in Chapter 

6. While it is inevitable that the injected proxies (and the included adaptation func-

tionality) alter the original functional behaviour of the application, the solution pays 

particular attention to the prevention of undesirable changes of non-application-

specific semantics, such as the polymorphic behaviour of methods/invocation. 

The second part of the injection solution, which is addressed in Chapter 7, con-

cerns the code transformation tasks (e.g. modifying existing code, generating new 

code artefacts) that are required by the proposed proxy transparency solution. The 

code transformation solution addresses requirements specific to the development of 

adaptive applications, which often involves manual customisation (e.g. extension, 

fine-tuning) of the injected/produced adaptation functionality. Additionally, issues re-

lated to the transformation of distributed applications for execution in heterogeneous 
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execution environments, which are inherent in adaptive application partitioning, are 

also addressed. 

1.3 Contributions 

As implied from the discussion in sections 1.1 and 1.2, this study serves as an exploration and 

investigation into different but related research areas, which include adaptation, application 

partitioning, and software metrics, for the purpose of addressing the heterogeneous and dy-

namic nature of the execution environments of contemporary applications. A primary out-

come of this study is the design and implementation (in a supporting middleware and frame-

work) of a completely automated solution for enabling runtime/online adaptation via applica-

tion partitioning, which (as discussed in section 5.3) is empirically shown to improve applica-

tion performance in unpredictable and dynamic execution environments. The solution does 

not require domain-specific knowledge and therefore is applicable to various applications, 

including those which exhibit dynamic behaviour (i.e. change its behaviour during execu-

tion). Additionally, despite primarily targeting specific local-adaptation algorithms, the core 

of the proposed metrics management solution is generic and is therefore applicable to other 

adaptation algorithms and strategies (e.g. global adaptation), as discussed further in section 

4.1. 

A further contribution of this study is the investigation of issues related to transparent ca-

pability injection, the outcome of which allows adaptation capabilities to be injected into ex-

isting applications with significantly reduced human involvement. Such a contribution plays 

an important role in the adoption of the proposed adaptation solution, since this allows the 

solution to be used with minimal effort, which not only implies lower software development 

cost but also indicates better software quality (e.g. fewer human errors). The injection solu-

tion is generic and as such can be applied to other forms of adaptation, such as that achieved 

by dynamically swapping a particular object with another compatible object. 

The proposed solutions (i.e. adaptation, metrics management, and capability injection) as 

well as the complementary functionality (e.g. error handling) have been implemented in a 

Java-based mobile object framework called MobJeX. Not only did this implementation en-

able the execution of the empirical experimentation presented in this thesis, it also serves as a 

basis for future studies on related topics. Furthermore, although not yet of production stan-

dard, the implemented solutions are sufficiently functional that various real-world applica-

tions may benefit from the provided adaptation support. 
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1.4 Thesis Structure 

This thesis is structured as follows. Chapter 2 reviews existing literature on related topics, 

which include application adaptation, application partitioning, object mobility, context man-

agement, software metrics, and capability injection. The literature review serves to outline 

specific issues and limitations in previous work (e.g. using inaccurate metrics, involving sub-

stantial development effort) as well as to provide a background on general approaches of 

relevance to this work (e.g. local versus global adaptation, source-code versus byte-code 

transformation). Chapter 3 involves a detailed discussion on the adopted local-adaptation so-

lution with particular emphasis on the differences between the proposed decision making al-

gorithm and the existing algorithm proposed by Rossi and Ryan [144]. Chapter 4 presents a 

solution for supporting the collection and management of specific metrics required by the ad-

aptation algorithm proposed in chapter 3. Chapter 5 presents an evaluation of the effective-

ness and overheads of the adaptation and metrics management solutions proposed in chapters 

3 and 4. Chapter 6 addresses various issues related to the transparency of proxy injection 

(such as the structural compatibility between a proxy class and the proxied class), whereas 

chapter 7 discusses the code transformation solution for facilitating such injection. Finally, 

chapter 8 concludes this thesis with a summary of contributions and a discussion of future 

work. 

Despite primarily focusing on Java (as mentioned in section 1.1), as much as possible, the 

discussions in subsequent chapters are presented in a general rather than Java-specific con-

text. Consequently, non-Java related work is also included in the literature review in Chapter 

2 to establish the background and scope of this research. On the other hand, when analysing 

existing approaches, the survey primarily focuses on Java-related work due to its direct rele-

vance to this thesis. The adaptation and metrics management solutions proposed in Chapter 3 

and Chapter 4 are generic although complementary discussions on the implementation as-

pects are specific to Java. The experiments discussed in Chapter 5 were undertaken using 

Java, but the majority of the resulting conclusions should still apply to the case where other 

technologies were used instead (e.g. the proposed algorithm is more effective in certain exe-

cution environments). On the other hand, the capability injection solutions presented in Chap-

ter 6 and Chapter 7 are specific to Java and therefore can only be discussed in the context of 

Java. 
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Chapter 2 . Literature Review 

This chapter reviews existing work in the areas of application adaptation (e.g. [87], [38], 

[109]) as well as context awareness (e.g. [188], [41]), which show significant similarities, 

although the two areas focus on different issues. Application adaptation is mostly used to ad-

dress variability in hardware resources such as processor load, whereas context-awareness 

primarily concerns information about the user of the application as well as his/her surround-

ings, although the term context also encompasses information used in application adaptation 

(e.g. hardware resources) as discussed in detail in section 2.4. 

This review also includes work on specific issues related to the automatic management of 

context (required by adaptation) and the development of applications supporting adaptive ap-

plication partitioning. It serves to compare and analyse existing approaches for the purpose 

of: 1) emphasising quality attributes (e.g. portability, development flexibility) that are of in-

terest to this work, and 2) establishing a basis for the adaptation solution proposed in this the-

sis. 

To begin, section 2.1 provides a high-level discussion of different types of adaptation and 

the different ways in which an application can adapt. Next, section 2.2 discusses object mo-

bility, which is of particular interest to this thesis due to its role in supporting adaptive appli-

cation partitioning. Sections 2.3 and 2.4 investigate alternatives for performing adaptation 

and managing the required context. Lastly, sections 2.5 and 2.6 are concerned with the mini-

misation of the effort/cost of developing applications supporting adaptation via object mobil-

ity. 

2.1 Adaptation Variations 

Due to the wide-ranging benefits and promises offered by application adaptation (e.g. auto-

matic load balancing [15] [125], adaptive application partitioning [87] [144]), existing work 

in the area of application adaptation varies greatly in terms of approach and complexity, de-

pending upon the aims of a particular study. For instance, specific adaptation tasks such as 

collecting contextual information (also known as context), making adaptation decisions and 

performing the actual adaptation, can be executed in different software components depend-

ing on where they are implemented [150].  

According to the classification of [150], at one extreme is laissez-faire adaptation, which 

involves adaptation tasks performed entirely by the application itself. At the other extreme is 

application-transparent adaptation (e.g. [70] [143]), in which adaptation is carried out inde-

pendently of the application, by separate entities such as libraries, middleware systems or the 

operating system. Finally, adaptation that falls somewhere between these two extremes is 
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termed application-aware adaptation (e.g. [87], [38], [186]), in which adaptation is per-

formed collaboratively between the application and external support components. 

Laissez-faire is the least desirable approach because it increases the complexity of the ap-

plication, thereby potentially affecting both performance and maintainability. Consequently, 

the application of such an approach was not found in the literature. On the other hand, al-

though application-transparent adaptation reduces developer effort and does not require 

changes to the original application, the range of adaptation capabilities that can be supported 

is limited since the adaptation does not consider the characteristics of a specific application. 

Consequently, such an approach is not suitable for adaptation achieved via object mobility 

[87], which requires application-specific information such as runtime coupling1 between ob-

jects [9].  

Application-aware adaptation, which is a compromise between the two extremes, ad-

dresses this limitation by delegating common functionality such as thread management and 

remote communication, to external components, while leaving application-specific operations 

to the application itself. Such an approach supports different forms of adaptation with varying 

degrees of complexity (as discussed later in this section), thereby introducing new challenges 

related to the development of adaptive applications, the complexity of which positively corre-

lates to that of the supported adaptation. Consequently, one aspect that is of particular interest 

to this thesis is development transparency, which refers to the amount of developer effort re-

quired to develop adaptive applications, as discussed further in section 2.6. 

Adaptation can be classified into offline and online depending on the phase in which it is 

performed. Offline adaptation (e.g. [186] [84] [167] [110]) is performed prior to the execu-

tion of the application, i.e. during application deployment, whereas online adaptation (e.g. 

[87], [109], [189], [65]) is carried out at run time. Offline adaptation is achieved by tailoring 

the original application code to realise the targeted runtime behaviour, which does not neces-

sarily change during application execution (examples are provided in the next paragraph). 

This type of adaptation is application-transparent since adaptation is never performed by the 

application but rather by an external entity (e.g. a compiler or framework). 

In its simplest form, offline adaptation can be used to introduce new behaviour to specific 

applications as applied in [167], which addresses the adaptation of a single-user application 

into a collaborative multi-user application. Other applications of offline adaptation include 

modifying functionality/services provided by the application as well as managing the distri-

bution of application components to match the static characteristics of the target device(s). 

                                                      

1 Object coupling may also be referred to as object dependency [40] J.-L. Chen, F.-J. Wang, and Y.-L. Chen, "Program 

Slicing: An Application of Object-oriented Program Dependency Graphs," in Proceedings of the Technology of Object-

Oriented Languages and Systems, Beijing, China, 1997, p. 121. 
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For example, in the absence of adequate support on the target device, video rendering func-

tionality can be dropped from a multimedia player, thus leaving it with only audio playback 

functionality [84].  

Furthermore, application code can be modified in such a way that certain functionality, 

encapsulated as runtime components (i.e. application objects), is distributed to different de-

vices in an attempt to match resource requirements (e.g. processor usage) to device character-

istics (e.g. processor capacity) as addressed in [84] and [186]. Note that the latter work [186], 

which investigates distribution/migration of live application objects, in fact uses a combina-

tion of offline and online approaches. In this case, adaptation decisions are made at deploy-

ment-time (i.e. offline) using information acquired via code analysis and offline profiling, 

whereas object migration is performed during application startup. The migration operation 

can be classified as startup-only adaptation as opposed to the more conventional continuous 

adaptation. 

Both offline and startup-only (online) adaptation approaches are suitable for addressing 

the issue of platform heterogeneity (e.g. various device capabilities) rather than the issue of 

dynamic execution context (e.g. changing resource usage/availability), which is the primary 

aim of continuous (online) adaptation. Furthermore, in continuous adaptation, the application 

also adapts (albeit indirectly) to the heterogeneity of the execution environment, although ad-

aptation might not occur immediately depending on the specific behaviour of the adaptation 

algorithm and the availability of the required information/context. Consequently, since mod-

ern computing paradigms such as pervasive, mobile, and grid computing, involve execution 

environments that are heterogeneous, unpredictable, and dynamic, continuous (online) adap-

tation is the focus of this thesis and thus of subsequent discussions. 

There are different ways in which adaptation can be performed, which include modifica-

tion of certain behavioural parameters, composition of application components, and mobil-

ity/migration of application components. Adaptation via parameter manipulation was applied 

in [116] and [24] to adjust the resource consumption (e.g. network usage) of the application 

based on the availability of the relevant resources. Such behaviour is appropriate for QoS 

(Quality of Service) applications such as adaptive image servers [24] or video playback ap-

plications [120] [21], wherein service quality can be sacrificed for reduced resource con-

sumption. On the other hand, there has been increasing interest in more versatile adaptation 

approaches such as those achieved via component composition and mobility. Adaptation via 

component composition involves substituting specific application components (e.g. objects, 

services) with compatible replacements as addressed in [36], [78], [118], etc. On the other 

hand, adaptation via component mobility is achieved via physical distribution of certain ap-

plication components (e.g. objects, executions/threads) such as that applied in [87], [186], 

and [148]. 
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Component composition is often used for adaptation concerning the modification of spe-

cific functionality of a given application, which is hereinafter referred to as functional adap-

tation (e.g. [109], [35], [159]). On the other hand, component mobility is generally used in 

non-functional adaptation, which refers to the modification of operations that are not directly 

related to the functionality/services provided by the application. One important difference 

between the two types of adaptation is that the realisation of functional adaptation relies 

heavily on the presence of domain-specific implementation, whereas this is not necessarily 

the case in non-functional adaptation. 

As such, it is difficult (if at all possible) to implement functional adaptation that works 

well with different types of applications, despite efforts made to generalise the particular 

functionality. Examples of such cases can be found in work related to content adaptation [35] 

[116] and protocol adaptation [109] [158] [11]. Content adaptation refers to the dynamic 

transformation of certain display content of the application (e.g. images, text) according to 

the characteristics of the host device. In contrast, protocol adaptation refers to the adjustment 

of the protocol that is used for communication between multiple devices (e.g. clients and 

servers), which generally requires prior negotiation between the devices. 

As an example of content adaptation, MobCon [35] implements a solution for adapting a 

server-based image from its original form, to a resolution and colour depth matching the 

characteristics/capabilities of a specific client device. Although this approach can be applied 

to arbitrary digital images as opposed to specific image files, the solution does not necessarily 

apply to applications displaying different types of media such as video. Similarly, Fractal 

[109], which addresses protocol adaptation, considers gzip compression as a possible ap-

proach/implementation for transferring data between a server and a client device. Compared 

to sending raw data (i.e. without intermediary processing), gzip reduces the size of transferred 

data at the expense of higher computing overhead on both the sending and receiving devices. 

Again, although the gzip protocol applies to any kind of data, for certain data types it is not as 

effective as specialised compression algorithms, for example the mp3 format which specifi-

cally targets music files. 

To summarise, due to the domain-specific nature of functional adaptation, application-

specific adaptation functionality needs to be provided for different types of applications. 

Consequently, this increases developer effort even in the presence of supporting 

tools/components such as middleware platforms and frameworks. Adaptation middleware 

such as MADAM [55], MobiPADS [36], and MIDAS [135], serve to facilitate the execution 

of adaptive applications by managing common operations such as component/service re-

composition [55] [36]. Although this alleviates developers from the intricacies of implement-

ing common runtime operations, support for the development of application-specific adapta-
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tion functionality (e.g. different compression algorithms as previously explained) is generally 

lacking. 

On the other hand, adaptation frameworks such as Fractal [109], CASA [118], MoCA 

[145], and others [133] [157] [117] [155] [37], simplify the development of adaptive applica-

tions by providing support via libraries/APIs and/or automatic code transformation. The pro-

vided support is generic and therefore significant involvement from the application developer 

is often still required (to provide domain-specific adaptation functionality). Note that the dis-

tinction between standalone middleware and application development frameworks has be-

come less clear because many recent middleware platforms perform byte-code transformation 

(to simplify application development) and similarly, most frameworks also include one or 

more middleware components. Consequently, subsequent discussions use the terms middle-

ware and framework interchangeably unless explicitly specified otherwise. 

As previously mentioned, in contrast to functional adaptation, non-functional adaptation 

is not as heavily dependent on domain-specific implementation since it targets operations that 

are not directly related to the domain functionality/services provided by the application. Op-

erations of this type include those concerning application components such as mobility [87] 

[186] [148], [191] [147] [80] [134], self-healing [111] [23], and replication [165] [111], as 

well as those related to the underlying middleware such as concurrency management and ser-

vice discovery (e.g. [70] [143]).  

Application component mobility/migration, which is widely known as code mobility, is an 

area that is of particular interest to this thesis because of the many potential benefits that it 

offers, which as reviewed in [58] and [191], include load balancing and improving applica-

tion performance, robustness, availability, scalability, etc. Furthermore, as shown in existing 

work [87] [186], application-specific implementation, which is a requirement (and thus a 

limitation) in functional adaptation, is not necessary in such adaptation, although the presence 

of domain-specific knowledge could be beneficial (e.g. for fine-tuning). Note that this thesis 

focuses on adaptation carried out via mobility/migration in response to changes in the origi-

nal execution environment  as opposed to adaptive migration [44], which refers to adaptation 

executed in response to the changes caused by the migration of an application or its compo-

nents. 

Code mobility can be applied to non-executing (i.e. static/stateless) code such as Java 

classes or applets [169], as shown in [38], which presents a solution for offloading class 

compilation to a remote machine in an attempt to reduce the energy consumption of the 

original device (i.e. an energy-constrained machine). Other work of this type includes mobil-

ity concerning stateless services [128] [127] [114] [142] which is performed at the level of 

Java classes or OSGi modules [124]. Such adaptation is characterised by the relatively simple 

tasks that are required, such as collection and analysis of attributes at class level as opposed 
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to at the finer-grained object level. The application of stateless code migration for facilitating 

adaptation is limited and rare, and consequently subsequent reviews concern mobility involv-

ing stateful or executing (i.e. live) application components such as threads or objects, which 

is the focus of this thesis.  

Stateful code mobility can be categorised into strong and weak mobility [58]. Strong mo-

bility refers to the migration of the current execution state of an application as well as the mi-

gration of the code and data required to continue the execution after migration (i.e. in the des-

tination machine). In contrast, weak mobility does not include the migration of application 

execution state, thereby imposing constraints, such as requiring execution to be restarted in 

the destination machine, or prohibiting components from executing during migration. Con-

ceptually, strong mobility often involves suspending and resuming the currently executing 

thread and thus is synonymous with the terms execution migration or thread migration [139] 

[192] [56]. Note that strong mobility can be extended to migrate all threads of the application, 

thereby achieving full mobility [20], which is synonymous to process migration [115] [66] 

[161] [33] [81] or application migration [190] (a term commonly used in Cloud Computing 

[184]). 

In practice, due to the lack of native support provided by existing platforms (e.g. compil-

ers, virtual machines), different techniques (e.g. [139], [122]) with varying degrees of com-

plexity, portability, and efficiency, have been used to realise strong mobility and full mobility. 

For example, solutions used in Amoeba [161] and MPVM [33] [32] require modifications to 

the underlying operating system and thus are only applicable to homogeneous operating sys-

tems. On the other hand, specialised virtual machines were presented in [192] (i.e. 

JESSICA2) and [139] (i.e. Mobile JikesRVM), which although can be used independently of 

the underlying operating systems, are still limited in terms of portability due to the lack of 

ubiquity compared to standard virtual machines, such as those implemented according to Java 

or .NET specifications. 

In contrast, [59] applies a portable solution that enables migrations at particular execution 

points (also known as checkpoints) specified by the application developer, which as a conse-

quence reduces development transparency. A more transparent solution relying on automatic 

insertion of checkpoints is used in [179] and [122], at the expense of longer execution time 

due to the lack of domain-specific knowledge. On the other hand, flexibility was sacrificed 

for simplicity and performance in [57] by inserting checkpoints only at the entry point of 

thread executions, i.e. in java.lang.Thread.run() for the case of Java applications. 

On the other hand, weak mobility involves less complexity since it does not require the 

migration of low-level execution state. Weak mobility is often used in object-oriented appli-

cations, wherein application objects (e.g. Java objects) are generally viewed as the smallest 

migratable units. Nevertheless, migration at a finer granularity (i.e. method level) is feasible 
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as investigated in [67], however the solution is somewhat limited since it does not address the 

automation of the adaptive decision making process, and lacks portability due to its depend-

ence on a modified JVM. This thesis focuses on object migration (e.g. [87], [186]) because it 

is believed to be applicable to a wider range of application domains, since objects in a prop-

erly designed/implemented object-oriented application represent a cohesive application com-

ponent encapsulating specific execution logic (i.e. methods), as well as the required data (i.e. 

fields2). Existing work on object migration is reviewed in section 2.2 with emphasis on spe-

cific issues related to application adaptation. 

Note that even though objects do not define active executions (which are represented by 

threads instead), object migration might be used in the underlying implementation of strong 

mobility as shown in [20]. Consequently, even though the contribution of this thesis was pri-

marily developed around the concept of weak mobility, the presented solution and practical 

application could be extended to support strong migration. 

2.2 Adaptation via Object Mobility 

Object mobility has been used in various application domains such as mobile agents [174] 

[74] [69] and application partitioning [108] [186] [51]. Object mobility facilitates the distri-

bution of mobile agents for enabling autonomous execution of tasks such as information re-

trieval [69], on target machines. Adapting the distribution of mobile agents often involves 

specialised solutions as shown in [174], which focuses on moderating the population of 

agents in order to control resource consumption.  

On the other hand, application partitioning, which involves distributing constituent ob-

jects across multiple host machines, is more generic since it applies to most object-oriented 

applications. In this approach, the distribution of an object is based on specific criteria, such 

as matching the resource requirements of an object to the resource availability of a machine. 

As argued in [108], application partitioning provides a more portable alternative for compo-

nent/object distribution in comparison to solutions requiring changes to the underlying plat-

forms, which include distributed-shared-memory (DSM) systems, such as cJVM [8], Jackal 

[181], and Emerald [94].  

Application partitioning can be used in non-adaptive or adaptive schemes. Non-adaptive 

partitioning is applied in [108], in which application objects are manually distributed (e.g. by 

a system administrator) based on their roles. For example, objects accessing peripherals, such 

as projectors or interactive whiteboards, are migrated to machines in the vicinity for faster 

responses. Other examples include [131] and [132], which propose solutions for automati-

                                                      
2 In object-oriented programming, fields are also commonly known as member variables or data members. 
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cally partitioning a sequential application into a distributed/asynchronous version for the pur-

pose of promoting parallel executions on multiple machines. However, even though the parti-

tioning was automated, the support for automatic distribution of the resulting partitions (i.e. 

groups of objects) was not present. Note that this thesis refers to sequential applications as 

those that run one main thread but may also have supporting threads, hence are not necessar-

ily single-threaded.  

On the other hand, adaptive application partitioning can be categorised into offline and 

online partitioning depending on the type of information (i.e. static versus dynamic) used for 

making partitioning decisions. For instance, [186], [160] and [46] present solutions for parti-

tioning applications based on static device information (e.g. memory size) as well as ap-

proximated application characteristics (e.g. memory consumption of objects/classes, interac-

tion/dependency between objects/classes), which is acquired via analysis of application code. 

Although offline partitioning solutions provide meaningful initial placement of objects, they 

do not cope well with changing/dynamic user or application behaviour and resource availabil-

ity. 

An alternative approach is online application partitioning, which uses runtime information 

or context, allows an application to adaptively (re)adjust the placement of its objects, i.e. ac-

cording to changes in execution context. For instance, [180] and [14] apply a solution for im-

proving the reliability of partitioned applications by automatically retracting distributed ob-

jects in order to bring a partitioned application to its original state upon context changes, such 

as disconnection of participating devices. Despite addressing automatic object retraction, 

which is achieved by reversing the process of object distribution, the automation of initial 

object distribution was not discussed. 

[148] presents a performance-oriented (i.e. response time) object-distribution solution, 

which considers runtime processing information such as CPU load and object execution in-

tensity. However, the application of the algorithm is limited in practice since it does not con-

sider network conditions and object interaction, which are major factors in the performance 

of a distributed application. As such, this solution is a relatively simple form of application 

partitioning, since without the analysis of object interaction, objects are distributed independ-

ently of each other, thus eliminating the notion of partitions. 

 In contrast, although [73] considers object interaction for minimising remote communica-

tion overhead, it does not consider processing (i.e. CPU-related) factors since its main objec-

tive is to relieve the memory constraint of the mobile device. Moreover, the presented solu-

tion targets a specific partitioning scenario, in which only two devices are involved: a mem-

ory-constrained device and a more powerful nearby machine. In addition, the solution re-

quires modified JVMs which limit its applicability in heterogeneous environments since dif-

ferent devices might run different JVM implementations and versions. 



CHAPTER 2. LITERATURE REVIEW  

17 

 

Although work on object replication such as [189] and [165], shares similarities to appli-

cation partitioning since replication in distributed systems requires object mobility, such work 

mainly focuses on aspects such as synchronisation between replicas and the intensity of 

read/write operations, which are not relevant to this thesis. Object mobility was also used to 

facilitate parallel executions, as demonstrated in [63], in which active objects (i.e. objects that 

execute asynchronously/independently of other objects) are distributed to different machines. 

The distribution is done adaptively to match the resource consumption of a particular active 

object to the resource availability of a given machine. Such an approach not only promotes 

parallel execution, but also ensures that objects execute on the most suitable environ-

ment/machine. However, this burdens the application developer since applications have to be 

tailored to fit into the active object programming model.  

In comparison, [87] and [52] provide better development transparency since their work 

automatically analyses and groups objects based on their relevance to certain application 

threads (also referred to as tasks). Next, each task/thread and the related objects (i.e. those 

heavily used by the thread) are assigned to a specific machine in order to parallelise execu-

tion of independent threads. Such adaptation is however domain specific and thus benefits 

only a limited set of applications, i.e. those that can be partitioned into smaller computation 

units that execute concurrently. 

On a related note, adaptive load balancing solutions [51], [57] [53] [126] should be appli-

cable to sequential applications despite parallel applications being the targeted domain (e.g.  

[51], [57], and [53]), since no thread-specific information was used in the decision making. In 

[51], objects are offloaded to other machines when the processor or memory load of the 

source machine hits a threshold specified by the application deployer. However, as is also the 

case with [57] and [126], specifics of the actual load balancing algorithm were not provided, 

thus it is not known whether the algorithm simply picks random objects for offloading or 

considers the processor/memory consumption of individual objects, which introduces more 

complexity in the decision making and the collection of context information as addressed in 

Chapter 3 and Chapter 4. 

On the other hand, although processor consumption of objects was considered in [53], it 

was only estimated using invocation frequency (i.e. the frequency at which the methods of an 

object get invoked), thereby loosely reflecting processor consumption due to variations in 

object/method implementation and input parameters. Another limitation of [53] is that a ho-

mogeneous network is assumed wherein all machines have the same resource (i.e. processor) 

capacity. Finally, network load and object interaction, which are major contributors to the 

overhead of distributed applications, were not considered in either [51] and [53].  

Many of these limitations were addressed in [144], which proposes a multi-purpose algo-

rithm, which at present, supports adaptation for improving application performance (i.e. re-
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sponse time) and for balancing resource utilisation (i.e. processor, network, and memory). 

Consequently, the algorithm considers context related to processor, network, and memory 

utilisation as well as context related to the running application such as object/method execu-

tion and interaction. This context is represented as metrics, which serve to quantify execution 

attributes such as processor load or object interaction intensity, as discussed further in section 

2.4. 

In such adaptation, metric accuracy, which refers to how closely a metric reflects an at-

tribute/condition, is important, because migration/distribution will result in improved per-

formance (i.e. shorter response time) only when object characteristics (i.e. resource consump-

tion) are properly matched to machine characteristics (i.e. resource availability). In contrast, 

the distribution of parallel applications which exploit the availability/existence of multiple 

processors, will likely result in better performance even in a suboptimal object distribution 

scenario. Consequently, a solution which addresses the efficiency and accuracy of con-

text/metrics collection is proposed in Chapter 4. 

Unlike most existing approaches, [144] uses the local adaptation (i.e. decentralised) ap-

proach, which as will be discussed further in section 2.3, provides better reliability and scal-

ability than the traditional global adaptation (i.e. centralised) approach. Consequently, this 

thesis uses the solution proposed in [144], as a basis for the development of ideas/concepts 

for achieving adaptive application partitioning via object mobility. Although the evaluation of 

the base/original local adaptation solution [144] shows promising preliminary results, the so-

lution has several limitations that are of particular concern to this thesis, which include the 

absence of a solution for automating adaptation (e.g. automatic collection of context) and the 

use of impractical/inaccurate context (which results in sub-optimal decision making). The 

high-level adaptation strategy adopted in [144] is described in 2.3, whereas the operational 

specifics of the algorithm are discussed in section 3.1. 

2.3 Adaptation Strategy 

Since the adaptation solution proposed in this thesis is derived from the solution presented in 

[144], for clarity and brevity, the base solution will hereinafter be referred to as the original 

solution, whereas the extended version which is presented as a contribution of this thesis will 

be referred to as the proposed solution. 

Adaptation can be performed reactively or proactively. The original solution [144] uses a 

reactive approach, which refers to the execution of adaptation after the triggering event (i.e. 

changes of execution context). This is currently the more widely used approach in compari-

son to the proactive approach, in which an application adapts based on predicted future 

events.  
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Nevertheless, the proactive approach serves an important role for dealing with execution 

failures, because it allows applications to anticipate and address future failures. An example 

of such adaptation was investigated in [78], which focused on service-based applications 

wherein required services are sometimes dynamically discovered at runtime. A fail-

ure/deviation in terms of functionality or quality of service could occur when newly discov-

ered services do not behave as expected. Consequently, prior to using a newly discovered 

service, fault-detection in the form of regression and online testing, is performed independ-

ently of the main application thread. Upon detection of (potential/future) faults, adaptation 

will be performed, e.g. by rediscovering an alternative service. 

Proactive adaptation was also used in [29] to allow physical actions (e.g. turning on or off 

a fan), to be performed automatically based on the history of user behaviour. Arguably, such 

an approach is not as promising when applied to the adaptation of interest to this thesis (i.e. 

application partitioning), since the concerned context (i.e. application behaviour and execu-

tion condition) is becoming increasingly dynamic due to the wide adoption of pervasive and 

mobile computing paradigms. For example, accurately predicting the connection speed of a 

device involves the consideration of various factors, such as connection type (e.g. wireless), 

error rate (e.g. dropped packets), distance (e.g. from the access point), or competing proc-

esses (e.g. external applications), each of which could change suddenly and drastically due to 

the characteristics exhibited by the aforementioned computing paradigms. Nevertheless, de-

spite using a reactive approach, the solution presented in this thesis (i.e. the proposed solu-

tion), considers historical data (as is the case with proactive adaptation) for addressing short-

term fluctuations in context changes because such fluctuations could negatively affect adapta-

tion decision making as discussed in section 4.1.4.  

Depending on the distribution of adaptation decision making, application adaptation can 

be categorised into local adaptation and global adaptation. The local adaptation scheme dis-

tributes the decision making responsibility to the individual hosts/nodes in the network, 

whereas in global adaptation, adaptation decisions are made by a single centralised compo-

nent. As a consequence, the global adaptation scheme suffers from the issues of having a per-

formance bottleneck as well as a single point of failure. On the other hand, local adaptation 

generally produces less optimal adaptation decisions due to the limited information available 

to individual nodes.  

For example, existing application partitioning solutions [73] [186] [53], which assume the 

existence of a centralised adaptation engine (i.e. global adaptation), perform a specific parti-

tioning technique (e.g. min-cut algorithm [163]), on a graph representing the architecture of 

the application. In the graph, a vertex represents an application object, whereas an edge 

represents an invocation relationship between two objects. Each vertex and edge may be 

weighted based on the resource consumption of the represented object/relationship. For ex-
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ample, a weight can be assigned to a vertex to indicate the execution intensity (e.g. CPU con-

sumption) of the object, whereas a weight representing the interaction intensity (e.g. band-

width consumption) of a pair of objects may be assigned to the relevant edge. 

On the other hand, such an approach is not feasible in local adaptation since not only is it 

costly to exchange detailed object information between distributed adaptation engines, the 

decision making in such adaptation is inherently isolated, i.e. objects are managed by the ad-

aptation engine running on the same node. Furthermore, as discussed in section 2.4, the man-

agement of context (which is represented as metrics) in such adaptation is not trivial, since 

the distributed nature of decision making presents questions related to when, where and how 

metrics are delivered and/or exchanged. 

2.4 Context Management 

The domains in which application adaptation (e.g. [87], [38], [109]) and context awareness 

(e.g. [16], [50], [164]) are applied, often differ, although both areas involve similar operations 

and goals, which is to address variability of certain entities/attributes (e.g. user location, 

availability of resources) by altering application behaviour. In particular, application adapta-

tion is traditionally concerned with variability in the utilisation or availability of hardware 

resources (e.g. processor, network bandwidth) as reviewed in sections 2.1, 2.2, and 2.3, 

whereas context-aware applications (e.g. [188], [41]) concern information about the user (of 

the application) and the physical environment in which he/she is located. 

Consequently, automation, which is the primary goal of application adaptation, may not 

be fully achieved in context-aware applications despite being an objective, because some 

context-aware applications require user-provided information (e.g. user preferences [106] or 

constraints [41]). For instance, [41] presents a tourist guide application, which is able to 

navigate a tour group from one attraction to another, based on the user‟s location (automati-

cally obtained) and time constraints (manually specified). Despite the difference in focus, 

work on context awareness is nonetheless included in this review, due to its extensiveness in 

the investigation of issues related to context management, some of which are directly relevant 

to this thesis, as outlined in the following discussion on the history of context.  

As surveyed in [16], the term context aware was first introduced in [152], which defines 

context as the location and identities of nearby entities (e.g. people and physical objects) as 

well as changes to those entities. Such a restrictive definition reflects the focus of early work 

on context-aware systems [188] [152] [2], which considers location (of a person or physical 

object) as the primary attribute/context for altering application behaviour. For instance, [188] 

proposes a system capable of determining the closest telephone to a user wearing a location-

aware badge, and routing phone calls (targeted at the user) to the telephone.  
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As studies on context awareness become more pervasive, the term context is used to refer 

to a broader range of information [45] [106] [137] [85] [154]. For example, [137] identifies 

logical context such as user‟s goals and business processes, as an alternative to the tradition-

ally used physical context. A more general definition is used in [85], which considers context 

as any aspects of the current situation. Similarly, [106] describes context as anything other 

than the explicit inputs (to a program) that affects the computation and outputs of the pro-

gram.  

[45] provides a more elaborate definition for context, in which three distinct types of enti-

ties were considered: places (e.g. rooms, streets), people (e.g. individuals, groups) and things 

(e.g. physical objects, software components). Each of these entities can be further classified 

into: identity, location, status, and time, which as a result, allows information, such as hard-

ware resource conditions (e.g. bandwidth availability) and internal application attributes (e.g. 

object interaction) to be considered as context (i.e. under the “status” category). Such infor-

mation is directly relevant to this thesis since it is required for dynamic/adaptive application 

partitioning. 

In comparison to existing work on application adaptation (e.g. [87],  [109]) which gener-

ally focuses on how adaptation is performed as opposed to how the required information is 

collected and managed, work on context-awareness (e.g. [75], [129] [13]) explicitly addresses 

context management, including context modelling, context measurement, context delivery, 

and context sharing. Issues that are of particular relevance to this thesis include context mod-

elling (e.g. [75]), context measurement, and context delivery, which refer to how context and 

its relationships are modelled, how context is obtained, and how it is delivered to the adapta-

tion engine, respectively. On the other hand, context sharing, which refers to the task of ex-

changing context between independent information sources (e.g. application components), is 

of lesser concern to this thesis, as discussed below.  

Context sharing addresses the issue of incompleteness [153], which refers to the inability 

of a single context source to capture all required context. Context may be shared between dif-

ferent applications (i.e. inter-application) or between different components of an application 

(i.e. intra-application). In general, the former scenario deals with heterogeneity since the col-

laborating applications do not necessarily share common information semantics, communica-

tion protocols, etc., whereas this is not so with the latter case because semantics and protocols 

can be predefined. Inter-application context sharing presents interoperability challenges in 

several areas of operation, such as the retrieval of context (e.g. [93]), the management of con-

flicts/contradictions (e.g. [129]), and the maintenance of semantic consistency (e.g. [39]).  

Context retrieval was addressed in [93] by using a context management system that is or-

ganised as a virtual database which supports SQL-like queries, thus allowing context to be 

accessed via a well-understood and consistent interface. Similarly, [141] presents a context 
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query language which satisfies a set of requirements compiled based on the characteristics of 

context (e.g. static/dynamic, temporal) and context sources (e.g. distributed, mobile). Among 

the querying supports provided by the language is the ability to incorporate mecha-

nisms/functions for complex filtering and aggregation of context. 

Due to the various ways in which context is represented in different applications, it is im-

portant to ensure that the semantics of the shared context are consistent. Such a requirement 

leads to the use of languages/technologies for authoring ontologies, such as Resource De-

scription Framework (RDF) (e.g. [102]) or Web Ontology Language (OWL) (e.g. [50]), be-

cause as commonly applied in the Semantic Web [19], such technologies facilitate semantic 

mapping between various vocabularies used by the collaborating components. At the archi-

tectural level, the consistency issue is addressed in [39] through the deployment of an intelli-

gent broker, which serves to obtain and manage context from multiple sources, as well as re-

distribute them to multiple clients. 

Conflict management addresses context mismatches [129] [13] [30] [140] [93] [101], 

which refers to conflicts or even contradictions in context of the same type (e.g. user loca-

tion) that are gathered from multiple sources, e.g. GPS (Global Positioning System) enabled 

navigation devices and mobile phones. These are often addressed (e.g. [101]) by attaching 

quality indicators [72], such as resolution, accuracy/confidence, coverage, etc. to collected 

context, allowing context to be ranked and chosen/used according to their quality. Such a di-

rection has led to the investigation on how Quality of Context (QoC) can be modelled [101] 

[175] and measured [98] in previous work. 

The aforementioned issues are not applicable to intra-application context sharing, which 

is the focus of this thesis, since variability in retrieval strategies and context semantics, can be 

prevented by using predefined or pre-agreed retrieval mechanisms (e.g. via an API), context 

models (e.g. ontology-based models [164]), and context types (e.g. network bandwidth utili-

sation). Furthermore, as demonstrated in Chapter 4, context management can be coordinated, 

so that each component of the application is assigned non-overlapping responsibilities (e.g. 

collecting different context), thus preventing conflicts. 

Note that in this thesis, intra-application context sharing is not an independent task, but 

rather is part of context delivery, which refers to the process of delivering context from indi-

vidual context sources to the adaptation engines, as addressed in section 4.1.2. The context 

sources include those belonging to the application (e.g. application objects or injected prox-

ies) and those belonging to the supporting middleware/framework (e.g. middleware compo-

nents).  

Since the proposed solution targets applications authored in the same programming lan-

guage (e.g. Java) as the middleware/framework, the use of consistent development paradigms 

(e.g. object-orientation) and protocols (e.g. Java RMI) can be enforced, thereby simplifying 
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the solution and its implementation. For example, remote communication can be imple-

mented using the default protocol of Java RMI (i.e. Java Remote Method Protocol) rather 

than more complex protocols such as CORBA (e.g. RMI-IIOP) or web services (e.g. SOAP), 

which are required for heterogeneous language-level interoperability.  

2.4.1 Context Modelling 

Since interoperability has been a major concern in existing work [164] [50] [187] [39] [68], 

there has been substantial adoption of ontologies for modelling collected context. Since on-

tology-based modelling also provides support for logic inferencing and knowledge reuse, 

such an approach was favoured in [164], which also considers five other types of model: key-

value models (e.g. [151]), markup scheme models (e.g. [31]), graphical models (e.g. [75]), 

logic-based models (e.g. [4], [72]), and object-oriented models (e.g. [41], [25]).  

The key-value modelling approach [151] uses a key-value pair to model context, in which 

generally, the key portion represents the type of specific context information, and the value 

portion represents the collected context or the result of certain computation (e.g. averaging of 

values collected over time). Due to its simplicity, such an approach is more suitable for appli-

cations in which less information (e.g. context metadata, relationships) needs to be main-

tained. 

The markup scheme approach uses markup languages such as XML (Extensible Markup 

Language), which is useful for storing hierarchically interrelated context information as well 

as its metadata. An XML-based model benefits from the availability of supporting technolo-

gies such as XML schema, as used by the middleware presented in [31] to enforce model va-

lidity. Similarly, information retrieval and querying the model is facilitated using XPath ex-

pressions. 

The graphical approach models various context information and its relationship as a 

graph, such as that applied in [75], which was based on the ORM (Object Role Modelling) 

approach. In the solution, the graph is used to define a series of facts (e.g. located at), each of 

which connects two entities (e.g. a person and a building). A fact will be tagged as “alterna-

tive” as opposed to “ordinary”, upon detected conflicts/ambiguity, in order to provide more 

informed reasoning of context. 

Context reasoning is facilitated in [72], by using first-order predicate logic as a formal 

representation, in order to model collected context in the form of propositions and relations. 

Note that such an approach is considered as a logic-based modelling approach, even though it 

is similar to ontology models such as RDF, which uses subject-predicate-object expressions. 

In fact, according to the classification of context modelling presented in [164], a context 
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model might fall into multiple categories. For example, an RDF-based model that is ex-

pressed in XML format can be considered as ontology and/or markup-based modelling. 

In object-oriented modelling [25], context is represented as objects, thereby enabling en-

capsulation of a specific context (e.g. execution time) and tasks related to the management of 

the context (e.g. time measurement). Furthermore, such a model allows grouping of context 

(e.g. time-based context), encourages code reusability, and promotes abstraction through in-

heritance and polymorphism. According to the survey and evaluation done in [164], the ob-

ject-oriented modelling approach is favoured over most approaches, with the exception of 

ontology-based approaches. This is due to weaker support for interoperability in comparison 

to ontology models, which however as previously mentioned, is not a concern in this thesis. 

Note that given enough information being available in the context objects, it should be 

possible to build different models (e.g. ontologies) based on the object model when neces-

sary. Consequently, since the object-oriented approach has many benefits as described above, 

and fits naturally into the concerned development paradigm (i.e. object-orientation) as dem-

onstrated in Chapter 4, the object-oriented context management approach is adopted in this 

thesis. 

2.4.2 Context Measurement 

Context measurement refers to the activity of obtaining context, which in the case of this the-

sis, is a specific form of software measurement, because the context of interest is that related 

to software, be it directly (e.g. response time) or indirectly (e.g. factors affecting response 

time which include system resource availability). 

In software measurement, metrics (e.g. response time) are used to provide a measure of 

the degree to which an entity (e.g. application, component) possesses an attribute (e.g. per-

formance). A measure refers to the value obtained by making a measurement, where meas-

urement refers to the act of assigning a value to a specific attribute. According to such defini-

tions, which have been commonly used in previous work although not unanimously [62], the 

semantic difference between metrics and measures is subtle, and as such the terms are often 

used interchangeably in this field of software engineering [54]. For simplicity, the term met-

rics will be used in the majority of discussions in this thesis (unless a precise distinction, such 

as that presented in the next paragraph, is essential), because measure by itself is not useful 

since it is not representative of the measured attribute. Similarly, in high-level discussions, 

the term context might be used in place of metrics or measures. 

Although in software engineering, measures are often obtained in the form of numbers 

(i.e. quantitative), according to the ISO/IEC 9126 (2001-2004) definition, measures can also 

be in the form of categories. Such a definition adopts a classification of measurement scales 
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that was based on the original classification proposed in [162], which consists of four types 

(from the least to the most informative): nominal, ordinal, interval, and ratio.  

The nominal scale represents a categorisation through the use of non-quantitative labels, 

and therefore it only has one empirical relation, i.e. equality, which can be mapped to formal 

relations “=” and “≠”. An example of this scale is that used in [76] to determine whether a 

specific user has access to a given communication channel, the result of which matches either 

“=” or “≠”. 

 The ordinal scale represents a categorisation and a rank order. Possible empirical rela-

tions include equality and ordering (formal relations “<” and “>”). For example, the context 

presented in [100] for quantifying the sound intensity of the surroundings was defined on an 

ordinal scale, with possible values of “silent”, “moderate”, or “loud”. 

The interval scale represents a quantitative scale where the difference between two meas-

ures of the same scale is empirically meaningful, but not the ratio. Possible empirical rela-

tions include equality, ordering, and difference (formal relations “-“ and “+”). A familiar ex-

ample is the quantification of temperature context [100] in the Celsius scale. 

The ratio scale represents a quantitative scale where both the difference and ratio between 

measures are empirically meaningful. Possible empirical relations include equality, ordering, 

difference and relative difference (formal relations “/” and “*”). All context/measures inves-

tigated in this thesis, which include number of invocations, response time, and resource utili-

sation, fall into this scale category, thereby enabling direct uses of the measures in non-trivial 

mathematical formulas, such as those presented in Chapter 3. 

Metrics of relevance to this thesis will be discussed in Chapter 3, which shows how the 

required metrics are applied in the proposed adaptation solution. The presented metrics in-

clude both base and derived metrics. Base metrics refer to those that do not depend on other 

metrics and thus can be obtained via direct measurement as addressed in Chapter 4. On the 

other hand, as demonstrated in Chapter 3, derived metrics are acquired through calculation 

involving other metrics, which is a process known as indirect measurement. Depending on 

whether the measured attribute changes during the lifetime of the application, metrics can be 

either static or dynamic, a distinction which is considered in Chapter 4 to determine whether 

metrics should be collected offline (i.e. prior to application execution) or online (i.e. at run-

time). 

2.4.3 Context Delivery 

Since application partitioning involves multiple collaborating machines, the measurement of 

context is inevitably distributed across multiple machines. Furthermore, in a modular mid-

dleware architecture such as that used in this thesis (as discussed in section 2.5.1), context 



CHAPTER 2. LITERATURE REVIEW  

26 

 

may be measured in different application/middleware components. Such a scenario compli-

cates the delivery of context from the originating components (i.e. context sources), to the 

adaptation engines, which are also distributed in the case of local adaptation. Consequently, 

context delivery in local adaptation, which involves sharing of context between application 

components (i.e. intra-application), is addressed in Chapter 4. 

Context can be shared using a pull method (e.g. [112]) in which a client polls a specific 

component (i.e. context provider) for context, or push mechanism (e.g. [100]), where a con-

text provider actively delivers context to the client. A more advanced form of push-based so-

lutions can be achieved by applying the blackboard concept [16], where context providers 

and clients are decoupled using the publish-subscribe messaging paradigm. Such an approach 

can be extended further by enabling automatic discovery of context providers [83]. Both pull 

and push approaches are applied in this thesis for addressing different situations as discussed 

further in Chapter 4. However, the blackboard solution is not adopted because in the case 

where context is exchanged internally between components of the application, loose-coupling 

is an unnecessary performance overhead. 

A hierarchical context delivery solution, which organises collaborating nodes/machines in 

terms of a tree of clusters, was presented in [112]. In the solution, a cluster pulls context from 

the immediate child clusters. The acquired context is aggregated at that particular cluster and 

delivered to the parent cluster upon request. This thesis uses a similar technique, which is ap-

plied to application and middleware components as opposed to machine clusters as will be 

demonstrated in section 4.1.2.  

2.5 Mobile Object Frameworks 

Many frameworks (e.g. [53] [134] [51] [147] [17] [3] [74] [77], [107]) have been developed 

to facilitate the development of applications supporting object mobility due to the complexity 

involved in converting standard application objects into location-aware objects. The com-

plexity is even higher in the case of adaptive applications since adaptable objects (i.e. mobile 

objects) need to monitor their activities in order to obtain context required for adaptation. 

Note that the term mobile object is used to refer to an object of the application that can 

migrate to different machines. A mobile object is remote (i.e. known as a remote object), 

meaning that it is remotely accessible by objects running on different hosts. Depending on the 

intended level of granularity, not all objects of the application need to be mobile or remote. In 

practice, it is the role of the application deployer to tag certain objects/classes as remote or 

mobile, prior to the deployment of the application.  

Another type of remote object is a stationary object, which is an object that stays on a 

single machine but is still accessible remotely (by objects located on different machines). An 
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example of a stationary object is a database connector object which in general should remain 

in the same machine as the target database. As another example, Graphical User Interface 

(GUI) objects might also need to be made stationary depending on the domain-specific use 

cases of a given application. 

Existing frameworks vary in terms of provided functionality (such as adaptation or con-

currency management) as well as development transparency (i.e. how much developer in-

volvement is required) as reviewed in sections 2.5.1 and 2.5.2. 

2.5.1 Middleware Architecture 

Due to the differences in the target applications and domains, existing mobile object frame-

works, although focusing on the same problem area (i.e. object mobility), vary in terms of 

supported capabilities. For instance, JavaParty [134] and JavaSymphony [51] specifically ad-

dress issues related to the development of parallel object-oriented applications such as asyn-

chronous invocation of remote objects and synchronisation of concurrent operations, however 

both frameworks lack support for adaptation. Similarly, [191] provides a mechanism to defer 

object migration until a later point, at which migration can take place with minimal overhead 

(i.e. less transferred data), which although is beneficial for applications dealing with large 

amounts of data (e.g. image processing), does not address the criteria (e.g. low resource 

availability) for initiating object migration  in the first place.  

FarGo [64] [79] [80] provides preliminary adaptation support through its monitoring sub-

system, which allows monitoring of application-related information without mixing applica-

tion and monitoring logic. However, a working implementation of usable monitoring func-

tionality and adaptation decision making is not provided. A similar limitation also applies to 

other adaptation frameworks such as MobJeX [147], Mobile Code Toolkit [123], and a 

CORBA-based framework presented in [96]. The ADAJ framework [53] [52], which is based 

on JavaParty, provides better adaptation (including monitoring) support. However, as men-

tioned in section 2.2, the supported adaptation specifically targets parallel applications as op-

posed to the more conventional sequential applications. 

Despite the differences, existing mobile object frameworks share similarities in terms of 

the supported basic functionality (e.g. location tracking, remote communication, object mi-

gration, etc.) and how it is managed by the provided middleware support/component(s). Con-

sequently, in order to provide a background for the discussion of the adaptation and metrics 

management solutions presented in Chapter 3 and Chapter 4, a general architectural overview 

of mobile object middleware follows. 

In the simplest case, all runtime operations of a mobile-object-based application are man-

aged by a single middleware component running in each participating host/node in the net-
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work. Examples of such frameworks include FarGo [79] and JavaParty [134], in which each 

running application is managed by a component known as a core in FarGo or a LocalJP in 

JavaParty. On the other hand, a more modular system design is adopted by the MobJeX 

framework [147] whereby the runtime operations are executed through collaboration of mul-

tiple cohesive components. For instance, host-related tasks are handled by a host manager 

which is also known as a service in MobJeX. On the other hand, process-specific operations 

which include those related to the application(s) running in the process, are handled by a 

component called a runtime. Note that the MobJeX framework includes several other compo-

nents as discussed in section 4.3, which addresses issues related to the implementation of the 

metrics management solution proposed in Chapter 4. 

The discussion of the solutions proposed in Chapter 3 and Chapter 4 assumes that in order 

to manage the execution of an application, a mobile object framework should have at least a 

host manager and a runtime even if in frameworks such as FarGo and JavaParty, these are 

only logical functions of a single middleware component. This is done for clarity, since the 

adaptation solutions discussed in section 3.1 (i.e. the original solution) and 3.2 (the proposed 

solution) involve two distinct sets of tasks, i.e. those related to a specific host and those to a 

specific process. As shown in Figure 2-1, the mobile object system running in each host/node 

consists of a group of objects that are interconnected in a tree-like structure. At the root of the 

system is the host manager, which has the role of managing all the runtimes running on the 

host in addition to managing certain host-specific operations such as communicating with 

other hosts. Underneath the host manager is the runtime which is responsible for managing 

the remote objects of the contained application. Note that although MobJeX allows multiple 

applications to be managed by a single runtime (as discussed further in section 4.3), for sim-

plicity, subsequent discussion assumes one application per runtime. 

 
Figure 2-1. An Example of Mobile Object Systems 
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In existing mobile object frameworks, remote objects are accessed via proxies (also 

known as stubs) as depicted in Figure 2-1. In this work, the term proxy is used to refer to an 

object-level proxy, which refers to an application object that intermediates the communication 

between two objects, as opposed to an application-level proxy, a common example of which 

is a web proxy. The use of object-level proxies offers various benefits, making it a suitable 

approach for many domains including object mobility and adaptation as will be discussed in 

detail in section 2.6. 

2.5.2 Development Support 

As the main purpose of mobile object frameworks is to reduce application develop-

ment/deployment effort, its portability, which allows application/framework code to run on 

heterogeneous machines without modification, is essential. Consequently, Java, including its 

complementary platforms/technologies (e.g. JVM, RMI), is a popular choice for the devel-

opment of existing frameworks (e.g. [178] [147] [134] [80]), in which the targeted/supported 

applications are those written in Java. Nevertheless, in the specific case where interoperabil-

ity is a main concern, technologies such as CORBA, can be used [86] [96]. However, in this 

case, the advantage of interoperability comes at the expense of limited supporting tools and 

application coverage (i.e. since fewer applications are developed with support for CORBA). 

In addition to providing middleware support, which was described in section 2.5.1, many 

mobile object frameworks provide basic development support in the form of an API, through 

which applications can access functionality and services supported by the framework. Rely-

ing on such support alone places a greater burden on application developers since the imple-

mentation of adaptive application partitioning via object mobility (which is a type of applica-

tion-aware adaptation) involves authoring of non-trivial functionality such as that which en-

ables location-transparent communication between remote objects. 

Consequently, frameworks supporting distributed applications such as FarGo [80], Java-

Party [134], Shadows [34] or Arjuna [130], support automatic generation of stubs or proxies. 

Note that subsequent discussions only focus on Java-based frameworks due to the fundamen-

tal differences between various technologies, which include platform portability (e.g. Java 

does not have issues with byte-ordering) and language constraints (e.g. Java does not support 

multiple inheritance).  

In FarGo, the generated stub/proxy class contains functionality required to locate and 

communicate with a complet (i.e. the smallest migration unit which comprises multiple ob-

jects). The main limitation of such an approach is that it introduces a new development model 

wherein objects are grouped as complets, and thus additional development effort is required 

for defining complet interfaces and adhering to specific APIs. 
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On the other hand, frameworks such as JavaParty, J-Orchestra, and MobJeX, provide a 

more transparent solution in which not only does additional code get generated automatically, 

but the generated code also gets injected into a normal application (e.g. a standard Java appli-

cation) with reduced human intervention. The injection is done through a process known as 

code transformation, which involves modifying existing application code. Such a solution is 

traditionally performed at source-code level however transformation at byte-code level is 

possible in byte-code oriented languages such as Java. Such flexibility serves as a motivating 

factor for targeting Java applications (as is the focus of this thesis), since there has been con-

siderable work on Java-based transformation technologies and tools, such as AspectJ [10] and 

ASM [28]. 

Among the code that gets injected is code related to proxies (of remote objects), which as 

will be discussed in section 2.6, serve an important role in the realisation of adaptive applica-

tion partitioning via object mobility. Consequently, proxy injection which refers to the proc-

ess of automatically inserting proxy code into existing application code (via code transforma-

tion) is a major concern in this thesis as elaborated in section 2.6. 

2.6 Capability Injection 

This section introduces the challenges in capability injection, which in the specific context of 

this work refers to the injection of capabilities into an ordinary/non-adaptive application for 

the purpose of converting an application into that capable of adapting via object mobility. 

Such injection not only eases the development of new applications, since the developer can 

focus on the application logic (rather than the added/extra capabilities), but also assists the 

extension of existing applications with reduced development effort. The realisation of such 

capability injection relies heavily on the properties of proxies (i.e. object-level proxies) as 

discussed below. 

An object proxy, which intermediates the interaction between two objects (i.e. inter-

object communication), can be used for deferring the creation/initialisation of the target ob-

ject (i.e. lazy initialisation), redirecting the communication target to one or more objects, per-

forming additional capabilities before/after communicating with the target object, etc. As 

such, proxies have been applied for various purposes, such as memory efficiency (through 

lazy initialisation) [60], remote communication [173] (including data marshal-

ling/unmarshalling and distributed garbage collection [156]), and concurrent data evalua-

tion/processing (in the form of a future object) [136].  

In application adaptation, proxies allow applications to dynamically reconfigure them-

selves (e.g. changing its components, altering its functional behaviour) transparently, without 

the awareness of the rest of the components in the application as utilised in existing adapta-
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tion frameworks, such as ADAJ [52] or MoCA [145]. More specifically, in adaptation 

achieved via object mobility, proxies serve to provide location transparency [185] to the 

caller/client objects, allowing the callee/mobile object to migrate independently without af-

fecting the rest of the application. This is because a proxy manages tasks such as track-

ing/updating the current location of the proxied mobile object and serialising/marshalling in-

vocation messages (i.e. parameters and return values) for remote communication.  

Proxies also enable additional processing of invocation messages in order to simulate the 

pass-by-reference behaviour as opposed to pass-by-copy, which is the default behaviour for 

remote communication, as addressed in previous work [147] [176]. Furthermore, certain op-

timisations can be applied in the proxies so that when the caller and callee are in the same 

runtime (and thus in the same process), the communication is performed via direct/local ref-

erence (as opposed to the computationally less efficient inter-process invocation). Proxies 

also play an important role in facilitating the collection of interaction-related metrics such as 

invocation frequency as discussed in detail in section 4.1.1.2. 

While proxies are normally used to support generalised capabilities (such as those men-

tioned above) that is common to different classes and applications, the proxies themselves are 

not generic since each proxy class has to be explicitly authored for a specific class. Conse-

quently, proxy classes, including the contained capabilities (e.g. remote communication), are 

often automatically generated (at source-code or byte-code level) in order to avoid the routine 

task of writing repetitive and duplicated functionality. A common limitation in previous work 

is that even though proxy classes are generated, substantial developer involvement is still re-

quired for incorporating the proxies into the application. For example, Java RMI (Remote 

Method Invocation) [173] and Dynamic Proxy API [170] require the application developers 

to write an interface consisting of the methods to be proxied prior to the generation of the 

proxy/stub class.  

Similarly, FarGo [79] requires manual authoring of complet interfaces as mentioned in 

section 2.5.2. On the other hand, approaches adopted by frameworks such as EJB 3.0 [171], 

JavaParty [134], MobJeX [147], and J-Orchestra [178], provide better development transpar-

ency by allowing proxied objects to be accessed without requiring a separate interface, thus 

enabling the application to be written in a manner similar to a normal Java application. The 

transparency is achieved via code transformation whereby proxy-related classes (which con-

tain the to-be-injected capabilities) are automatically generated and incorporated into the 

original application via automatic modification of existing code. The more compatible the 

generated/inserted code, in terms of not breaking existing application code (syntactically or 

semantically), the more transparent the solution is.  

However, existing proxy approaches have limitations in terms of the diversity of design 

and implementation scenarios that can be supported. For instance, EJB 3.0 [171], which uses 
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proxies to manage the interaction of session beans, lacks inheritance capability between the 

proxied classes (i.e. session beans). On the other hand, although frameworks such as J-

Orchestra [178] allow a proxied class to inherit/extend another proxied class, inheritance in-

volving a non-proxied parent class is not supported, thereby implying a constraint in which a 

proxied class is not allowed to extend a library class (e.g. a class belonging to the Java API), 

since as discussed in detail in Chapter 6, it is generally not safe to proxy such a class. 

Furthermore, there are other issues affecting proxy transparency such as proxy instantia-

tion, field access, identity semantics, etc., as described in section 6.1, which outlines existing 

approaches (used to address these issues) as well as the limitations in these approaches. The 

identified limitations are addressed in section 6.2, which focuses on the transparency of proxy 

injection in terms of how proxy-related code should be generated and inserted into existing 

applications without breaking existing code. 

On the other hand, issues related to the actual code transformation that is required by the 

proxy injection solution (proposed in Chapter 6), are addressed in Chapter 7 which focuses 

on the process and architectural aspects of code transformation as opposed to the specifics of 

the transformation since tools and technologies for generating and modifying code are ade-

quately available. Examples of such tools/technologies include: 1) specialised program trans-

formation systems such as TXL [43], Stratego/XT [183] [27], and DMS [18], 2) source code 

transformation tools such as Javacc [89] and Antlr [7], 3) byte-code transformation tools, 

such as JOIE [42], ASM [28], and Byteman [91], and 4) Aspect Oriented Programming 

(AOP) tools, such as AspectJ [10].  

Note that although proxy injection shares certain similarities with AOP in terms of the 

ability to inject addition functionality into existing applications, proxies are generally used to 

bridge inter-object communication rather than intra-object communication which is more ap-

propriately addressed using AOP. Such a distinction differentiates the contribution of this 

thesis from the majority of work focusing on AOP (e.g. [135], [22]). Furthermore, the focus 

of this work is not on choosing specific technologies/tools but rather on the adoption of ap-

propriate transformation approaches/techniques, such as source-code versus byte-code trans-

formation and online (e.g. runtime) versus offline (e.g. compile-time) transformation, based 

on considerations specific to the development and deployment of applications supporting 

adaptive application partitioning. For instance, even though ideally, no manual authoring of 

addition code is required in the presence of transparent capability injection, in practice, man-

ual customisation (e.g. extension, fine-tuning) of the injected/produced adaptation functional-

ity might be necessary. Furthermore, the heterogeneity of the target machines (of specific ap-

plication deployment) should also be taken into consideration as this presents issues related to 

the compatibility of the produced code as addressed  in section 7.1.3. In addition, common 
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quality attributes such as efficiency, portability, and flexibility, are also considered in the 

adoption of certain transformation approaches and techniques. 

The next chapter (i.e. Chapter 3) proposes an adaptation algorithm for achieving one of 

the main objectives of this thesis, which is to improve the effectiveness of local adaptation 

via application partitioning. As discussed in Chapter 3, adaptation effectiveness is quantified 

by how much the response time of an application can be reduced using adaptive application 

partitioning.     
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Chapter 3 .  Local Adaptation 

As discussed in section 2.3, this work focuses on adaptive application partitioning (via object 

mobility) performed using a local adaptation scheme, in which case, adaptation decision mak-

ing responsibility is distributed across individual hosts/nodes in the network. An existing so-

lution for local adaptation [144] is used as a basis of the solution presented in this chapter 

since preliminary evaluation of the base solution has shown promising results. The base solu-

tion is hereinafter referred to as the original solution (or the original algorithm when particu-

larly referring to the adopted decision making algorithm), whereas the algorithm/solution 

proposed in this chapter is referred to as the proposed algorithm/solution. 

In the original solution, an adaptation engine, which exists in each participating 

node/machine, is responsible for adapting mobile objects currently residing in the relevant 

node. As such, an adaptation engine can be implemented as a sub-component of a host man-

ager, which as introduced in section 2.5.1, is responsible for managing activities related to a 

particular node. When adaptation is triggered (e.g. due to changes in resource availability), 

the adaptation engine in the adapting (source) node makes decisions on which mobile objects 

to migrate and to which (target) nodes the objects should be migrated. The decisions are 

made based on the characteristics of the adapted objects and the target nodes as well as the 

goals of the adaptation (e.g. improving the overall response time of the running application). 

The characteristics of the mobile objects and the target nodes could be captured by ana-

lysing relevant context information (i.e. metrics), the collection of which is the main focus of 

Chapter 4. On the other hand, the adaptation goals depend on the chosen adaptation algorithm 

and how it is configured (by the application deployer) as discussed in the next section (i.e. 

3.1), which provides an overview of how adaptation decisions are made in the original algo-

rithm [144] while also emphasising certain limitations, which will be addressed in the pro-

posed algorithm (presented in section 3.2). Since adaptation only concerns mobile objects as 

opposed to other types of objects (e.g. stationary objects), subsequent discussions are mainly 

aimed at mobile objects, and as such, for simplicity, the term object is used to refer to a mo-

bile object unless explicitly stated otherwise. 

Both the original and the proposed algorithms presented in sections 3.1 and 3.2 have been 

implemented in an existing Java-based mobile object framework called MobJeX [147]. How-

ever, since the implementation is straight-forward, detailed discussion about the framework 

will instead be provided in Chapter 4, which concerns the management of metrics required 

for adaptation. Empirical evaluation concerning the behavioural correctness and the effec-

tiveness (in terms of how much benefit is gained) of the two adaptation algorithms is pre-
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sented in Chapter 5 since the latter requires the metrics management solution presented in 

Chapter 4. 

3.1 Original Algorithm 

The original algorithm proposed in [144] utilises a scoring system for its adaptation decision 

making. In this approach, a score is assigned to each pair of mobile object and potential des-

tination node. The score for the object-node pair reflects the degree of improvement (e.g. ap-

plication response time) that would be gained by migrating the mobile object to the node in 

that pair. The more improvement expected from the adaptation/migration, the higher the 

score is. 

Another factor that affects the score is the adaptation score threshold, which is pre-

configured by the application deployer. The lower the threshold, the higher the calculated 

score, as can be seen from the pseudo-code of calculate() presented in Figure 3-1, which 

subtracts the specified threshold from the calculated value iScore. Note that iScore does 

not refer to the final score (which is calculated in evaluate()), but rather refers to an inter-

mediate indicator value which contributes to the final score as will be explained later in this 

section. One limitation of the original adaptation algorithm is that the specification of the 

score threshold (i.e. by the application deployer) relies heavily on a trial-and-error approach. 

This issue will be discussed in more detail in section 3.2.2.4. 

The calculation of the score is done in such a way that the resulting score is always be-

tween 0 and 1 as shown in calculate(). As such, the middle value of 0.5 is used to deter-

mine whether a migration should occur, as shown in adapt(). The object-node pair produc-

ing the highest score (among all pairs) that is above 0.5, will trigger a migration in which the 

object in the highest-scoring pair will be migrated to the node in that same pair. This behav-

iour exhibits an important characteristic of the algorithm whereby a mobile object is adapted 

and migrated independently from other objects. This characteristic could result in less opti-

mal adaption decision making as will be described in detail in section 8.3. 

 

adapt() { 

   do { 

      maxScore = 0 

      maxObject = null 

      maxNode = null 

      for each mobile object m in source node { 

         for each target node n { 

            score = evaluate(m, n) 

            if (score > maxScore) { 

               maxScore = score 

               maxObject = m 
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               maxNode = n 

            } 

         } 

      } 

      if (maxScore > 0.5) { 

         Move maxObject to maxNode 

      } 

   } while (maxScore > 0.5); 

} 

 

   // See Figure 3-2 for the mathematical formula representing evaluate() 

evaluate(object, node) { 

   totalScore = 0 

   for each indicator i { 

      if (i.weight > 0) { 

         totalScore += i.weight *  

             Math.pow(calculate(i, threshold, object, node), power)) 

      } 

   } 

   return Math.pow(totalScore, 1 / power) 

} 

 

calculate(indicator, threshold, object, node) { 

   // Figure 3-3 shows how the score of performance indicator is calculated 

   iScore = indicator.calculateScore(object, node) 

   // Ensure that the returned score is between 0 and 1 

   // maxIndicatorScore refers to the maximum possible value returned by  

   // indicator.calculateScore() 

   return (0.5 + (0.5 * ((iScore - threshold) / (2 * maxIndicatorScore)))); 

   } 

 

Figure 3-1. General Control Flow of Local Adaptation Algorithm 
 

After the migration of a particular object, the score calculation process is repeated until 

none of the scores in that iteration is above 0.5. Strictly speaking, this score recalculation is 

not required since none of the computation variables (e.g. metrics) used in the calculation 

have changed at any point in the adaptation. The recalculation was in fact introduced in the 

original algorithm [144] for future use, which as will be discussed in section 3.2.1 is essential 

for the proposed algorithm. 

With regard to adaptation goals, the original algorithm proposes different types of im-

provement that can be expected/gained from an adaptation/migration, which include resource 

usage balancing (e.g. processor, memory, and network) and application performance (e.g. re-

sponse time). In the pseudo-code (Figure 3-1) and the main formula (Figure 3-2), these im-

provement types are referred to as indicators. Each indicator is calculated in a different way 

(e.g. using different metrics), but multiple indicators can be considered in the score calcula-

tion. The importance of the individual indicators can be adjusted by assigning a certain 
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weight to each indicator as can be seen in evaluate() in Figure 3-1 and in the mathematical 

formula (representing evaluate()) in Figure 3-2. 
 

𝑆𝑐𝑜𝑟𝑒 = (𝑊𝑅𝑇𝐼
𝑃
𝑅𝑇 + 𝑊𝑃𝑈𝐼𝑃𝑃𝑈 + 𝑊𝑁𝑈𝐼𝑃𝑁𝑈 + 𝑊𝑀𝑈𝐼𝑃𝑀𝑈)1/𝑃 

 

Where: 

W  = Weight of each indicator 

I  = 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑆𝑐𝑜𝑟𝑒 = 0.5 + 0.5 (𝑑 − 𝑡)/(2 × 𝑚𝑎𝑥) 

     d   = Raw difference = significance in improvement (see Figure 3-3) 

     t   = Threshold 

     max = Maximum possible value of d 

P  = Weight power 

RT = Response time improvement 

PU = Processor usage balancing 

NU = Network usage balancing 
MU = Memory usage balancing 

 

Figure 3-2. The Main Local Adaptation Formula 
 

The power variable shown in evaluate() and in the formula, provides a more flexi-

ble/sophisticated way of tuning the relative weights between indicators by the means of a 

non-linear weighted power mean technique as explained in detail in the original work [144]. 

However, since this thesis focuses solely on one indicator, which is on application perform-

ance (IRT), the weight and power are unnecessary and thus are not discussed further. 

IRT is chosen as the main focus of this thesis because amongst the four indicators consid-

ered in the formula (Figure 3-3), the calculation of IRT, which will be covered in section 3.1 

and 3.2, is the most complex. Furthermore, the core metrics required for calculating the re-

source usage balancing indicators (i.e. IPU, INU, and IMU) are subsets of the metrics used in IRT. 

This is especially the case in the proposed algorithm which uses a more involved set of met-

rics than the original algorithm. Consequently, this and the remaining sections will only dis-

cuss the calculation of performance scores, which in the specific case of the original algo-

rithm is defined as the application response time. Section 3.1.1 provides a detailed discussion 

of the scoring formula, whereas section 3.1.2 shows how individual metrics apply to the for-

mula. 

3.1.1 Performance Prediction Formula 

As mentioned in section 3.1, the adaptation/migration of a mobile object occurs independ-

ently from other mobile objects, thus the scoring for application performance (i.e. response 

time) only uses variables/metrics specific to the mobile object being adapted. This is done 

with the assumption that other aspects of the application (including the location of other ob-

jects) remain the same, which is correct at the point when the scoring is being calculated.  
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* See Table 3-1 for information on the required metrics. 
 

 1  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑂𝑅𝑇𝑠𝑟𝑐 −  𝑂𝑅𝑇𝑑𝑠𝑡 −  𝑀𝑇 

Where: 

src = Source machine (before adaptation/migration) 

dst = Destination machine (after adaptation/migration) 

 

(1.1) 𝑂𝑅𝑇𝑠𝑟𝑐 =   𝑀𝑅𝑇𝑠𝑟𝑐𝑖

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 × 𝑁𝐼i 

Where: 

Xi = The metric X that is measured during the invocation of method i 

 

 1.2  𝑂𝑅𝑇𝑑𝑠𝑡 =   𝑀𝑅𝑇𝑑𝑠𝑡𝑖

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 × 𝑁𝐼i 

=   (𝐸𝑇𝑑𝑠𝑡𝑖

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

+ 𝐼𝑇𝑑𝑠𝑡𝑖) × 𝑁𝐼i 

=   ((𝐸𝑇𝑠𝑟𝑐𝑖

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

×
𝑃𝐴𝑠𝑟𝑐

𝑃𝐴𝑑𝑠𝑡
) + ((𝑀𝑅𝑇𝑠𝑟𝑐i − 𝐸𝑇𝑠𝑟𝑐i) ×

𝑁𝐴𝑠𝑟𝑐

𝑁𝐴𝑑𝑠𝑡
)) × 𝑁𝐼i 

 

 1.3  𝑀𝑇 =  𝑀𝐼𝑇 + 𝑀𝐶𝑇 

Note: MT was introduced as a concept but was not implemented 

 

Figure 3-3. Performance Prediction Formula in the Original Algorithm 
 

In formula 1 in Figure 3-3, calculating the performance score for a object-node pair in-

volves three main computation components: 1) ORTsrc (Object Response Time in source 

node), which refers to the response time of the mobile object when it is in the source node, 

i.e. prior to migration; 2) ORTdst, which refers to the predicted/computed response time when 

the mobile object is in the destination node, i.e. after migration; and 3) MT (Migration Time), 

which refers to the time required to migrate the object to the destination node. Table 3-1 lists 

all the metrics that are required by the original formula (Figure 3-3). Some metrics have been 

named differently from the original version so that they are consistent and distinguishable 

from the additional metrics introduced in the proposed algorithm presented in section 3.2. 
 

Metrics Description Unit 

S
co

ri
n

g
 Object Response Time (ORT) The time required to invoke and execute all 

methods of a mobile object 

ms 

Migration Time (MT) The total time required to migrate a object ms 

    

S
o

ft
-

w
ar

e 

Method Response Time (MRT) The time required to invoke and execute a 

method 

ms 

Execution Time (ET) The time required to execute a method body ms 
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Invocation Time (IT) The time required for invoking a method (ex-

cluding the ET portion) 

ms 

Number of Invocations (NI) The number of times a method is invoked (and 

thus executed) 

integer 

Migrate Instance Time (MIT) The time required to migrate an object ms 

Migrate Class Time (MCT) The time required to migrate the class of an ob-

ject and other classes referenced by the class 

ms 

    

R
es

o
u

rc
e 

Processor Availability (PA) The processor/computing power of a host/node 

that is available to the application 

instructions/s 

Network Availability (NA) The network bandwidth of a host that is avail-

able to the application 

bytes/s 

Host Processor Capacity (HPC) The processor capacity of a host instructions/s 

Host Network Capacity (HNC) The bandwidth limit of a host bytes/s 

Host Processor Usage (HPU) The processor utilisation of a host instructions/s 

Host Network Usage (HNU) The network utilisation of a host bytes/s 

    

Table 3-1. Metrics Required by the Original Formula in Figure 3-3 
 

In the formula (Figure 3-3), the ORTdst computed in equation 1.2 is subtracted from the 

ORTsrc computed in equation 1.1, to determine how much ORT would decrease (i.e. per-

formance would improve) had the mobile object been in the destination node instead. The 

larger the difference, the more the performance improvement gained from the adapta-

tion/migration. On the other hand, a negative subtraction result indicates that the object (or 

the application as a whole) will fare worse in the destination node. This would happen if the 

destination node had lower availability of certain resources, such as processor time or net-

work bandwidth. On the other hand, a zero result means that there is no difference in resource 

availability between the two nodes, and thus there is no incentive for migration. In fact, mi-

grating the object in this case will slow down the application execution due to the migration 

overhead (i.e. extra operations involved in migrating an object), which has also been consid-

ered in the formula (sub-formula 1.3). 

A detailed explanation of sub-formulas 1.1, 1.2, and 1.3 will be provided in section 3.1.2, 

wherein the discussion will also cover how certain metrics fit into the sub-formulas. The re-

quired metrics (presented in Table 3-1) are grouped into 3 categories: scoring, software, and 

resource. The scoring category refers to conceptual metrics that are used only for the purpose 

of presenting the scoring formula. The software category refers to metrics that capture the 

application behaviour/characteristics and thus should be measured in the application itself, as 

discussed further in Chapter 4. Lastly, the resource category refers to resource-related metrics 
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which are essentially environmental metrics, and hence can be measured independently from 

the application, e.g. by a middleware/framework or the operating system (OS). 

3.1.2 Performance Prediction Metrics 

This detailed discussion of the sub-formulas in Figure 3-3 is structured as follows. Section 

3.1.2.1 discusses the general concept and the metrics that are involved in the calculation of 

ORT (Object Response Time). Section 3.1.2.2 explains how the general ORT calculation can 

be extended to predict the after-migration ORTdst. Finally, section 3.1.2.3 describes the cal-

culation of the object migration overhead/time. In the discussions, certain limitations of the 

original algorithm, which provide a basis for the extensions and improvements presented in 

section 3.2, will be outlined along with the specific sections where they will be addressed. 

3.1.2.1 Calculating ORT 

As shown in equation 1.1 in Figure 3-3 (section 3.1.1), which concerns the before-adaptation 

calculation (i.e. in the source node), the response time of the adapted mobile object (i.e. ORT) 

is defined as an aggregate of the time required to invoke and execute each method (i.e. 

Method Response Time) of the object. On the other hand, equation 1.2 calculates/predicts the 

after-adaptation ORT (i.e. in the destination node), by breaking down Method Response Time 

(MRT) into Execution Time (ET) and Invocation Time (IT) metrics. This is because as op-

posed to equation 1.1 which can simply use metrics that were collected prior to the adapta-

tion, the prediction in equation 1.2 requires finer-grained computation as discussed in section 

3.1.2.2. 

ET refers to the time taken to execute the body/operations of a method, whereas IT refers 

to the time required to call/invoke the method but excluding the time spent on the execution 

of the method body. The reason for separating ET and IT is to split apart the resource re-

quirements of the two actions, in which ET is primarily associated with the processor con-

sumption of the method execution whereas IT is primarily associated with the network band-

width usage of the invocation. However, one limitation of this approach is that the ET and IT 

metrics are not accurate representatives of processor and network consumption respectively. 

More specifically, ET does not differentiate between CPU-based and I/O-related operations 

(e.g. disk accesses), and therefore a long ET does not necessarily imply a CPU-intensive 

method execution. Furthermore, ET is influenced by external factors such as the load of the 

machine which is affected by external programs or processes.  

Similarly, IT is also affected by the present condition of the network, e.g. the currently 

available bandwidth. Other limitations of IT are due to the significant differences in the col-

lected measures between local and remote invocations. More specifically, in a local method 

invocation situation, in which the caller and the callee objects are in the same process or run-
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time (e.g. Java Virtual Machine), IT is insignificant, i.e. very close to 0 milliseconds, because 

the invocation messages (i.e. parameters and return values) are passed by reference within a 

single process. 

In contrast, the IT measure of a remote invocation could be significant due to the over-

head of passing a complete copy of the invocation messages over a slower communication 

channel (i.e. inter-process versus intra-process communication). This overhead is of particu-

lar concern in this problem domain since the executed adaptation (i.e. object migration) could 

result in two objects being in different nodes (thus different processes) thereby requiring in-

ter-process communications between the objects. However, due to the absence of certain in-

teraction information in the original adaptation solution, the co-locality (i.e. local versus re-

mote) of a method call cannot be determined accurately. Consequently, this issue will be ad-

dressed in the proposed solution presented in section 3.2 which requires the collection of IT 

at a finer granularity (as addressed in section 4.2.1.3). 

In addition, since local IT measures (i.e. the ITs of local invocations) are always very 

close to 0 milliseconds due to the minimal overhead of reference passing, remote ITs cannot 

be accurately derived from local ITs, thus affecting the prediction of ORTdst from sub-

formula 1.2 of Figure 3-3. This is of particular concern when all objects are located in the 

same process, and thus all of the collected IT measures are for local invocations (i.e. roughly 

0 ms). Such a case usually happens in the first adaptation execution since all objects initially 

execute on a single machine (i.e. source machine), unless offline application partitioning (e.g. 

[186]) is performed prior to application start-up. The aforementioned issues effectively im-

pact on the quality (and thus effectiveness) of the adaptation decision making and as a conse-

quence, more accurate metrics are proposed in section 3.2.2.1. 

Due to the difficulty of accurately measuring IT [61], it is presented in the formula as a 

concrete measure, but in practice, it is calculated by subtracting ET from MRT which are 

both directly measured. However, since it was not the aim of the work on the original adapta-

tion algorithm [144] to address the collection of the required metrics, certain metric-related 

aspects were left unaddressed. For instance, the work did not consider in what form the 

measures (e.g. ET) that are collected during the lifetime of the application should be pre-

sented to the adaptation engine. A solution might for example consider presenting only the 

last collected measure or presenting the average of collected measures depending on the con-

sidered benefits/trade-offs as addressed in section 4.1.4. Additionally, other issues, such as 

the feasibility and the efficiency of metrics collection tasks, also need to be addressed (as is 

the focus of Chapter 4) in order to enable automated/live adaptation (i.e. using real metrics). 

As can be seen from sub-formulas 1.1 and 1.2, ET and IT are multiplied with NI (Number 

of Invocations) to show the significance of a method/object based on how many times it is 

invoked or executed. One potential issue with this approach is that it might undesira-
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bly/incorrectly favour (i.e. place higher scores upon) a small group of objects for a long pe-

riod of time. In the case where an object executes frequently at the start of the application 

execution, it might take some time before other objects can come to the same level of signifi-

cance. Furthermore, this behaviour also indicates that more preference/importance is placed 

on objects with longer life spans as the value of NI accumulates. Since this limitation is 

caused by the lack of temporal information in the measured NI, an alternative metric which 

incorporates temporality/periodicity will be presented in section 3.2.2.1. 

3.1.2.2 Predicting ORT for the Destination Node 

As mentioned, calculating ORTdst is more complicated than calculating ORTsrc, which 

simply requires software metrics (i.e. MRT and NI) that were measured prior to the adapta-

tion. This is because metrics concerning the adapted object were collected in the source node, 

thus representing the execution in the source node, but not the destination node. Conse-

quently, in order to predict ORTdst, the original metrics (i.e. ETsrc and ITsrc) are computed 

against the ratio of the resource availability between the source and destination nodes. The 

ratio serves as a multiplier showing which of the two machines provides computing/network 

resources that are more suitable for the object, i.e. will allow shorter response time. As shown 

in sub-formula 1.2 in Figure 3-3, ETsrc is multiplied with the PA ratio whereas ITsrc is mul-

tiplied against the NA ratio.  
 

 

𝑃𝐴 = 𝐻𝑃𝐶 − 𝐻𝑃𝑈 

𝑁𝐴 = 𝐻𝑁𝐶 − 𝐻𝑁𝑈 

 

Where: 

PA  = Processor Availability                NA  = Network Availability  

HPC = Host Processor Capacity               HNC = Host Network Capacity  

HPU = Host Processor Usage                  HNU = Host Network Usage 

 

For more information regarding the involved metrics, refer to Table 3-1.  
 

Figure 3-4. Resource Availability Definition According to the Original Formula 
 

In this formula, resource availability is defined as the difference between the resource ca-

pacity and the current usage of the machine as shown in Figure 3-4. According to the defini-

tion, resource availability in either machine (i.e. source or target) refers to the additional re-

source as opposed to the actual amount that the machine can offer to the application. The 

former is generally lower than the latter because it does not include the amount that is being 

used by the application itself (i.e. internal load), which in fact also contributes to the amount 

that the application can utilise. Figure 3-5 provides an example in which the original algo-

rithm perceives that the availability (of a particular resource, e.g. CPU) between two ma-

chines (i.e. M1 and M2) is the same, but in reality M1 has higher availability because, due to 

the nature of a sequential application (which is the focus of this thesis), an object can execute 

with minimal contention from the internal load (e.g. from other objects of the same applica-
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tion), thereby implying that internal load/usage contributes to the resource available to the 

application (as shown in the depiction of “Real Availability” in Figure 3-5). Note that re-

source contention from the internal load should be minimal even though sequential applica-

tions might consist of multiple threads (as mentioned in section 2.2), because most of the 

threads are just supporting threads which rarely execute concurrently with the main thread. 

 
Figure 3-5. Resource Availability in Original Algorithm 

 

The inaccuracy in the resource availability calculation of the original algorithm often 

causes incorrect migration decisions as illustrated in Figure 3-6, which provides a simple ex-

ample wherein three mobile objects in an application (i.e. O1, O2, and O3) execute one after 

another in a specified order. For instance, O1 executes at T1 and O2 executes at T2 wherein 

each T refers to a specific time slot/unit. The objects have been distributed in such a way that 

O1 and O3 are located in the source node whereas O2 executes in the destination machine. 

 
Figure 3-6. An Example of the Ping-pong Phenomenon 

 

For simplicity, the following assumptions are made. The resource (e.g. CPU) capacity of 

the two machines is assumed to be equal. No other threads or processes are running or com-

peting for resources. The execution of each object is assumed to consume the same amount of 
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resources. Finally, the measurement of the resource availability is assumed to be performed at 

every 3T. Consequently, in the adaptation executed at T4, the source machine is perceived to 

have ~33% availability as opposed to the 66% of the target machine. As such, due to the per-

ceived lower availability of the source machine, O1 would be migrated to the target node. 

Since O1 would execute in the target node (thus consuming the resource of the node) at T5, 

the adaptation at T8 would move the object back to the source machine. 

This is known as the ping-pong phenomenon wherein objects get offloaded back and forth 

between two machines. Such migrations do not offer any benefit because the source and tar-

get machines actually have the same capacity and no other processes are competing for the 

resource, thus both machines indeed have the same amount of resources if the usage of the 

application being migrated is considered. In all likelihood, this behaviour will actually result 

in the degradation of application performance due to the overhead of the involved migrations.  

Consequently, resource availability is redefined in section 3.2.2.2 to use additional met-

rics. Note that the described ping-pong phenomenon, which was explained using a simplistic 

scenario concerning two machines with similar resource availability, is a specific case of un-

necessary migration, which refers to a state where objects are migrated unnecessarily to other 

machines, but not necessarily back-and-forth between two machines. Another factor causing 

such occurrences is when adaptation is overly agile, which refers to the characteristic where 

an application adapts as soon as certain changes (e.g. in the execution environment) are de-

tected. These changes might in fact be short-term, thus rendering the migration unnecessary. 

Such an issue is addressed in section 4.1.4 through the use of metrics representation, which 

applies an averaging technique to moderate the agility of adaptation. 

Occurrences of unnecessary migration, especially when the original adaptation algorithm 

is used, can be seen in experiments concerning live adaptation (i.e. using real metrics), which 

will be presented in section 5.3.  

3.1.2.3 Calculating Migration Time 

Sub-formula 1.3 presents the calculation of the migration overhead/time of a mobile object as 

a sum of MIT (Migrate Instance Time) and MCT (Migrate Class Time). MIT refers to the 

time required to migrate the object itself, where MCT refers to the time required to migrate 

the classes of the object (i.e. Java byte code). This sub-formula was only presented as a con-

cept, but was not implemented/evaluated in the original work [144] and as such its feasibility, 

especially in terms of how MCT can be obtained accurately requires further investigation as 

is described in section 3.2.2.3. 
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3.2 Proposed Algorithm 

This section presents the proposed local-adaptation algorithm which forms the main contribu-

tion of this chapter. As is the case with the original algorithm proposed in [144], the adapta-

tion engine in the adapting/source node iterates through all mobile objects in the node as well 

as all potential destination nodes to find the object-node pair with the highest score. The se-

lected pair defines the object that should migrate and the destination (node) of the migration. 

The most notable improvement of the proposed algorithm is the quality/effectiveness of 

the adaptation decision making as shown in the experimentation results in section 5.3. As dis-

cussed in more detail in sections 3.2.1 and 3.2.2, the improvement is achieved by modifying 

the algorithm to cater for: 1) the substitution of certain metrics (e.g. Number of Invocations) 

of the original algorithm with more accurate alternatives (e.g. Invocation Frequency), 2) the 

introduction of additional metrics (e.g. Runtime Processor Usage) to address specific limita-

tions of the original algorithm (e.g. unnecessary object migrations), and 3) the incorporation 

of more comprehensive information (e.g. interaction between individual objects) into the 

adopted metrics to allow more precise predictions. 

A minor improvement is also incorporated into the proposed algorithm to prevent the mi-

gration of a mobile object to a specific machine or runtime if the machine/runtime does not 

have sufficient memory. In the case where objects are migrated to memory-constrained ma-

chines, the performance of the relevant application will degrade due to page faults. On the 

other hand, when object migration involves runtimes allocated with limited memory, applica-

tion execution will likely halt due to failures. The memory availability (MA) checking re-

quires the collection of various metrics, which include Object Memory Size (OMS), Runtime 

Memory Capacity (RMC), and Host Memory Capacity (HMC), as considered in the metrics 

management solution proposed in Chapter 4. 

The checking is performed prior to the calculation of the adaptation scores discussed in 

sections 3.2.1 and 3.2.2 to prevent unnecessary calculation (when insufficient memory is de-

tected). For clarity, the discussion of the proposed score calculation is structured as follows. 

Section 3.2.1 presents the basic improvement/extension using metrics that are directly com-

parable to those used in the original algorithm to outline certain differences between the algo-

rithms. Section 3.2.2 further elaborates the proposed algorithm by introducing additional met-

rics into the formula. 

3.2.1 Performance Prediction Formula 

As shown in Figure 3-7, the proposed algorithm improves upon the original algorithm by re-

defining the performance of an object as ORUI (Object Resource Usage Intensity), which re-
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fers to the degree to which an object spends its time performing operations that require hard-

ware resources such as CPU cycles and network bandwidth. The main motivation for the re-

definition is that the original definition, i.e. ORT (Object Response Time), suffers the same 

limitation as NI (Number of Invocations) which tends to undesirably/incorrectly assign 

higher scores to objects with certain characteristics, e.g. objects with a long life span. This 

limitation is due to the fact that ORT/NI does not reflect the temporality/periodicity of the 

captured application behaviour as mentioned in section 3.1.2.1. On the other hand, ORUI 

which uses IF (Invocation Frequency) instead of NI, does not suffer from this limitation due 

to the advantages offered by IF as will be discussed in section 3.2.2.1.  

A further advantage of using ORUI is that due to its more accurate representation of the 

resource usage intensity of the object, the configuration of adaptation-related thresholds is 

simplified as will be discussed further in 3.2.2.4. Table 3-2 presents the core metrics that are 

used in the proposed formula, the role of which will be discussed in detail in section 3.2.2. 
 

 

* See Table 3-2 for information on the required metrics. 

 

 1  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑂𝑅𝑈𝐼𝑠𝑟𝑐 −  𝑂𝑅𝑈𝐼𝑑𝑠𝑡 −  𝑀𝐶 

Where: 

src = Source machine (before adaptation/migration) 

dst = Destination machine (after adaptation/migration) 

 

 1.1  𝑂𝑅𝑈𝐼𝑠𝑟𝑐 =  𝑀𝑅𝑈𝐼𝑠𝑟𝑐𝑖  𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 + 𝑀𝑅𝑈𝐼𝑠𝑟𝑐𝑖  𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 

Where: 

 1.1.1  𝑀𝑅𝑈𝐼𝑠𝑟𝑐𝑖  𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 = (  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑠𝑟𝑐𝑖𝑗 ) 

𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑠𝑟𝑐

𝑗=1

 

 

 1.1.2  𝑀𝑅𝑈𝐼𝑠𝑟𝑐𝑖  𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 = (  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑠𝑟𝑐𝑖𝑗 ) + (𝐼𝐹𝑖 × 𝑀𝑃𝑇𝑠𝑟𝑐𝑖) 

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑠𝑟𝑐

𝑗 =1

 

Where: 

RCallees_src = Callee objects that are remote to the adapted object, i.e. lo-

cated in a node other than the source node 
 

RCallers_src = Caller objects that are remote to the adapted object, i.e. lo-

cated in a node other than the source node 
 

Xij           = The metric X that is measured during the invocation/interaction 

between method i (either as a caller or a callee) and object j  
 

Xi            = The metric X that is measured during the interaction between 

method i and any object 

 

 1.2  𝑂𝑅𝑈𝐼𝑑𝑠𝑡 =  𝑀𝑅𝑈𝐼𝑑𝑠𝑡𝑖  𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 + 𝑀𝑅𝑈𝐼𝑑𝑠𝑡𝑖  𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 

Where: 
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 1.2.1  𝑀𝑅𝑈𝐼𝑑𝑠𝑡𝑖  𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 = (  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑑𝑠𝑡𝑖𝑗 ) 

𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑑𝑠𝑡

𝑗=1

 

= (  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑠𝑟𝑐𝑖𝑗 ×
𝑁𝐴𝑠𝑟𝑐

𝑁𝐴𝑑𝑠𝑡
) 

𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑑𝑠𝑡

𝑗=1

 

 

 1.2.2  𝑀𝑅𝑈𝐼𝑑𝑠𝑡𝑖  𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 = (  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑑𝑠𝑡𝑖𝑗 ) + (𝐼𝐹𝑖 × 𝑀𝑃𝑇𝑑𝑠𝑡𝑖) 

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑑𝑠𝑡

𝑗=1

 

= (  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑠𝑟𝑐𝑖𝑗 ×
𝑁𝐴𝑠𝑟𝑐

𝑁𝐴𝑑𝑠𝑡
)

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑑𝑠𝑡

𝑗=1

+ (𝐼𝐹𝑖 × 𝑀𝑃𝑇𝑠𝑟𝑐𝑖 ×
𝑃𝐴𝑠𝑟𝑐

𝑃𝐴𝑑𝑠𝑡
) 

 

Where: 

RCallees_dst = Callee objects that are remote to the migrated object, i.e. lo-

cated in a node other than the destination node 

RCallers_dst = Caller objects that are remote to the migrated object, i.e. lo-

cated in a node other than the destination node 

 

 1.3  𝑀𝐶 = log 𝑀𝐼𝑇 
 

Figure 3-7. Performance Prediction Formula in the Proposed Algorithm 
 

As is the case with ORT, ORUI is calculated with regard to resource availability which 

means that the same mobile object would have a different ORUI value if it was placed in a 

machine with different resource availability. A higher ORUI value indicates that an object 

has to spend a longer period of time to complete operations that utilise certain resources (i.e. 

processor or network) of the machine. ORUI is calculated through the aggregation of the re-

source utilisation intensity of each method of the object, i.e. MRUI (Method Resource Usage 

Intensity).  
 

Metrics Description Unit 

S
co

ri
n
g
 

Object Resource Usage Inten-

sity (ORUI) 

Aggregate resource utilisation intensity for all 

methods of a mobile object. 

integer 

Method Resource Usage Inten-

sity (MRUI) 

The degree to which a method spends its time to 

perform CPU/network-bound operations. Varia-

tions include: outgoing and incoming MRUI. 

integer 

Migration Cost (MC) The cost of migrating a mobile object. integer 

    

S
o

ft
w

ar
e 

Invocation Frequency (IF) The frequency at which a method is invoked. integer/ms 

Method Transfer Time (MTT) The duration it takes to execute the network-

bound operations of a method. 

ms 

Method Process Time (MPT) The duration it takes to execute the processor-

bound operations of a method. 

ms 

Migrate Instance Time (MIT) The time required to migrate an object. ms 
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R

es
o

u
rc

e 

Processor Availability (PA) The CPU/computing power available for an ap-

plication to execute the methods of an object. 

instructions/ms 

Network Availability (NA) The bandwidth available for the communication 

between two remote objects. 

bytes/ms 

    

Table 3-2. Core Metrics Required by Proposed Algorithm (Figure 3-7) 
 

A further extension to the original algorithm is the decomposition of the formulas (Figure 

3-7) into the sub-formulas for calculating MRUI for outgoing calls and incoming calls as 

shown in equations 1.1 and 1.2. This extension helps produce better adaptation decisions in 

comparison to the original formula which only considers incoming calls. Note that the fol-

lowing discussion is presented interchangeably between method-level (i.e. MRUI) and ob-

ject-level (i.e. ORUI) operations depending on the context of the discussion. 

The calculations for outgoing and incoming calls are done separately because not only do 

incoming calls reflect the degree of interaction (i.e. interaction intensity) between the caller 

and the object being adapted, but they also affect its execution intensity, which refers to how 

frequently and how long the adapted object (i.e. the methods of the object) executes. On the 

other hand, outgoing calls only affect the interaction intensity of the mobile object. An object 

with intensive method executions, i.e. high execution frequency and long processor usage 

time, will produce a higher ORUI especially when the processor availability is low. On a 

similar note, if the object performs intensive remote interactions, i.e. high invocation fre-

quency and long network usage time, its ORUI will be heavily dependent on the availability 

of the network resource. On the other hand, since local interactions do not have significant 

contributions to the overall application performance, especially when compared to remote 

calls, they are omitted from sub-formulas 1.1.1, 1.1.2, 1.2.1, and 1.2.2 for the calculation of 

interaction intensity. 

Due to the difference in how local and remote invocations affect the resource utilisation 

intensity (i.e. MRUI and ORUI), a separation between the two types of invocation is required. 

This is achieved by keeping track of the caller or the callee of the adapted object for each re-

corded method invocation. The co-locality of the invocation (i.e. local or remote) is then de-

termined based on the location of the adapted object and the location of its caller or callee. In 

order to compute the interaction intensity of a method, the interaction metrics of those invo-

cations that have the same co-locality (i.e. from/to the same machine) should be 

summed/aggregated, as shown in sub-formulas 1.1.1 and 1.2.1 for callee‟s co-locality (i.e. 

outgoing calls) and sub-formulas 1.1.2 and 1.2.2 for caller‟s co-locality (i.e. incoming calls).  

It is important to note that since co-locality is determined based on the current location of 

the object relative to the caller/callee, the determined co-locality might be different for the 
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calculation of the before-adaptation scenario (i.e. the object is in the source/original machine) 

and the after-adaptation scenario (i.e. the object gets migrated to the target machine). Conse-

quently, the two scenarios have to be treated separately when calculating the interaction in-

tensity of an object. As shown in sub-formulas 1.1.1 and 1.2.1, RCallees_src and 

RCallees_dst are used to differentiate between the remote callees in the two scenarios. Simi-

larly, RCallers_src (1.1.2) and RCallers_dst (1.2.2) are used to refer to the potentially differ-

ent sets of remote callers in the two scenarios. Note however that the differentiation does not 

apply to the calculation of execution intensity since it does not need to distinguish between 

local and remote invocations (sub-formulas 1.1.2 and 1.2.2).  

On a similar note, after a successful migration of a mobile object to a specific node, the 

adaptation scores for the other mobile objects have to be recomputed, because it is likely that 

the change in the application object layout also changes the interaction intensity of the ob-

jects. This score recalculation is already supported in the original algorithm as mentioned in 

section 3.1 and shown in the pseudo-code in Figure 3-1.  

The overhead of migrating a mobile object in the original algorithm is defined as the time 

required to migrate the object, which is not applicable to the proposed algorithm since per-

formance is not quantified in terms of time (i.e. ORUI instead of ORT). Instead, the migration 

overhead is defined as a cost which is calculated based on migration time as will be discussed 

further in section 3.2.2.3. 

3.2.2 Performance Prediction Metrics 

This section provides a discussion of how certain metrics (listed in Table 3-2) are used in the 

proposed algorithm/formula (shown in Figure 3-7) to facilitate more informed and thus more 

effective adaptation decision making. Additionally, a revised version of the proposed for-

mula, which includes additional metrics, is also included as shown in Figure 3-9.  

For uniformity, all time-related metrics are assumed to be in milliseconds, which should 

be sufficiently precise for quantifying any relevant attributes/information. In practice, some 

metrics, such as network bandwidth usage (per time unit), cannot be measured at that level of 

detail and are therefore measured in seconds as will be described in section 4.3.1, which ad-

dresses the implementation issues related to the collection of the required metrics. 

3.2.2.1 Calculating ORUI  

As mentioned in section 3.2.1, the resource utilisation intensity of a mobile object (i.e. ORUI) 

is the sum of the resource utilisation intensity of all the methods (i.e. MRUI) of the object. 

Two essential components for calculating MRUI are the Method Process Time (MPT) and 

Method Transfer Time (MTT) metrics, which refer to the time a method spends executing 

operations that require CPU cycles (i.e. processing data) and network bandwidth (i.e. trans-
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ferring data), respectively. MPT and MTT are more accurate than their counterparts in the 

original algorithm, i.e. ET (Execution Time) and IT (Invocation Time), because the measured 

values of ET and IT are contaminated by several factors, such as operations involving unre-

lated resources (e.g. disk accesses) and external applications competing for the same resource 

(i.e. processor or network). 

Both MPT and MTT are abstract metrics that are presented in the formula (Figure 3-7) to 

improve clarity/readability as well as simplify the related discussion, but in practice these 

metrics are derived from other metrics as explained in the discussion that follows. Metrics 

related to MPT, which are of particular interest to this work, include PUT (Processor Usage 

Time) and NEI (Number of Executed Instructions). In the context of method executions, PUT 

refers to the total time a method spends using the CPU of the machine. The problem with 

PUT is that a PUT measure is only meaningful in the context of a specific machine, i.e. when 

the processor capacity of the machine is known. As such, there is no guarantee that a method 

with a certain PUT measure will have the same measure on a different machine even when its 

behaviour on the two machines is consistent.  

On the other hand, this thesis argues that NEI (Number of Executed Instructions) which 

refers to number of instructions (e.g. Java instructions) that are executed by a specific 

method, is more universal than PUT and therefore is a more suitable metric for deriving 

MPT. NEI was first introduced in [146] to support the discussion of the presented preliminary 

work on adaptation via object mobility. However, as the adopted adaptation algorithm fa-

voured the use of ET, the discussion of how NEI could be used in the algorithm was not pro-

vided. 

Directly measuring NEI is impractical since it either requires potentially inaccurate code 

analysis or possibly platform-dependent low-level instrumentation/profiling which are both 

difficult to achieve due to the involved complexity. Consequently, the NEI metric is instead 

derived from both PUT and the processor capacity of the source machine (HPC), i.e. the ma-

chine where PUT was measured/collected, as shown in Figure 3-8, which also includes the 

complete steps for deriving MPT, as well as the relationships between other metrics as will be 

discussed later in the section. Information regarding the new/additional metrics (e.g. PUT) 

introduced in this section is presented in Table 3-3. The final/complete version of formula, 

which makes use of the additional metrics, is presented in Figure 3-9. 
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* See Table 3-2 and  

Table 3-3 for more information on the involved metrics. 
 

 

1) 𝑁𝐸𝐼 = 𝑃𝑈𝑇𝑠𝑟𝑐 × 𝐻𝑃𝐶𝑠𝑟𝑐  
 

NEI = Number of Executed Instructions 

PUT = Processor Usage Time 

HPC = Host Processor Capacity 
 

 The tag „src‟ means that the relevant metric 

represents a certain attribute in the context of 

the source machine, whereas „dst‟ is used for 

the destination machine. 

 The value of NEI is universal and it can only 

be derived from metrics that are measured in 

the source machine since the metrics for the 

destination machine will not be available until 

after the object gets migrated. 
 

 
 

2) 𝐼𝐹 =
𝑁𝐼

𝑀𝐷
 

 

IF = Invocation Frequency 

NI = Number of Invocation 

MD = Measurement Duration 
 

 The value of IF is not affected by the availability of any 

resources and therefore the distinction between „src‟ 

and „dst‟ is not necessary. 
 

 

3) 𝑀𝑃𝑇𝑠𝑟𝑐 =  
𝑁𝐸𝐼

𝑃𝐴𝑠𝑟𝑐
 

4) 𝑀𝑃𝑇𝑑𝑠𝑡 =  𝑀𝑃𝑇𝑠𝑟𝑐 ×
𝑃𝐴𝑠𝑟𝑐

𝑃𝐴𝑑𝑠𝑡
 

 

=
𝑁𝐸𝐼 

𝑃𝐴𝑠𝑟𝑐
×

𝑃𝐴𝑠𝑟𝑐

𝑃𝐴𝑑𝑠𝑡
 

 

=
𝑁𝐸𝐼 

𝑃𝐴𝑑𝑠𝑡
 

 

MPT = Method Process Time 

NEI = Number of Executed Instructions 

PA = Processor Availability 
 

 

5) 𝑀𝑇𝑇𝑠𝑟𝑐 =  
𝑆𝑆𝑃

𝑁𝐴𝑠𝑟𝑐
 

6) 𝑀𝑇𝑇𝑑𝑠𝑡 =  𝑀𝑇𝑇𝑠𝑟𝑐 ×
𝑁𝐴𝑠𝑟𝑐

𝑁𝐴𝑑𝑠𝑡
 

 

=
𝑆𝑆𝑃 

𝑁𝐴𝑠𝑟𝑐
×

𝑁𝐴𝑠𝑟𝑐

𝑁𝐴𝑑𝑠𝑡
 

 

=
𝑆𝑆𝑃 

𝑁𝐴𝑑𝑠𝑡
 

 

MTT = Method Transfer Time 

SSP = Size of Serialized Parameters 

NA = Network Availability 

 

7) 𝑃𝐴𝑠𝑟𝑐 = 𝐻𝑃𝐴𝑠𝑟𝑐 + 𝑅𝑃𝑈𝑠𝑟𝑐 

8) 𝑃𝐴𝑑𝑠𝑡 = 𝐻𝑃𝐴𝑑𝑠𝑡 + 𝑅𝑃𝑈𝑑𝑠𝑡 
 

9) 𝐻𝑃𝐴𝑠𝑟𝑐 = 𝐻𝑃𝐶𝑠𝑟𝑐 − 𝐻𝑃𝑈𝑠𝑟𝑐 

10) 𝐻𝑃𝐴𝑑𝑠𝑡 = 𝐻𝑃𝐶𝑑𝑠𝑡 − 𝐻𝑃𝑈𝑑𝑠𝑡 
 

PA = Processor Availability 

HPA = Host Processor Availability 

RPU = Runtime Processor Usage 

HPC = Host Processor Capacity 

HPU = Host Processor Usage 
 

 

11) 𝑁𝐴𝑠𝑟𝑐 =  𝐻𝑁𝐴𝑠𝑟𝑐 < 𝐻𝑁𝐴𝑜𝑝  ? 𝐻𝑁𝐴𝑠𝑟𝑐 ∶ 𝐻𝑁𝐴𝑜𝑝  

12) 𝑁𝐴𝑑𝑠𝑡 =  𝐻𝑁𝐴𝑑𝑠𝑡 < 𝐻𝑁𝐴𝑜𝑝  ? 𝐻𝑁𝐴𝑑𝑠𝑡 ∶ 𝐻𝑁𝐴𝑜𝑝 
 

13) 𝐻𝑁𝐴𝑜𝑝 =  𝐻𝑁𝐶𝑜𝑝 –  𝐻𝑁𝑈𝑜𝑝 +  𝑅𝑁𝑈𝑜𝑝 

14) 𝐻𝑁𝐴𝑠𝑟𝑐 =  𝐻𝑁𝐶𝑠𝑟𝑐  –  𝐻𝑁𝑈𝑠𝑟𝑐 +  𝑅𝑁𝑈𝑠𝑟𝑐 

15) 𝐻𝑁𝐴𝑑𝑠𝑡 =  𝐻𝑁𝐶𝑑𝑠𝑡 –  𝐻𝑁𝑈𝑑𝑠𝑡 +  𝑅𝑁𝑈𝑑𝑠𝑡 
 

NA = Network Availability 

HNA = Host Network Availability 

RNU = Runtime Network Usage 

HNC = Host Network Capacity 

HNU = Host Network Usage 
 

 The tag „op‟ refers to the machine where the opposite 

object (i.e. caller or callee of a method) is located. 
 

Figure 3-8. Metrics Definitions and Relationships 
 

In order to compute the data transfer time of a method (i.e. MTT), this work uses the Size 

of Serialised Parameters (SSP) metric which refers to the total size of the serial-

ised/marshalled parameters (including return values) that are transferred between the com-



CHAPTER 3. LOCAL ADAPTATION  

52 

 

municating remote methods. As is the case with NEI, SSP was introduced in [146] as a sup-

porting metric. However, unlike NEI which needs to be derived from other metrics, it is 

straightforward to collect SSP through direct measurement as described in section 4.2.1.3.  
 

Metrics Description Unit 

S
o

ft
w

ar
e 

Number of Executed Instructions 

(NEI) 

Number of Java instructions of a certain 

execution 

instructions 

Size of Serialised Parameters (SSP) Size of serialised parameters and return 

values 

bytes 

Processor Usage Time (PUT) The time that a thread/process spends in 

using the processor of a machine 

ms 

Size of Serialised Object (SSO) The size of a serialised object bytes 

    

R
es

o
u
rc

e 

Host Processor Capacity (HPC) The processor capacity of a host instructions/ms 

Host Network Capacity (HNC) The network capacity of a host bytes/ms 

Host Processor Availability (HPA) The CPU (cycles) availability of a host. 

This is not to be confused with PA which 

refers to the availability from the point of 

view of the application. 

instructions/ms 

Host Network Availability (HNA) The unused network bandwidth of a host. 

This is not to be confused with NA 

which refers to the availability from the 

point of view of the application. 

bytes/ms 

Host Processor Usage (HPU) The processor load of a host instructions/ms 

Host Network Usage (HNU) The network usage of a host bytes/ms 

Runtime Processor Usage (RPU) The CPU load of a runtime (i.e. the ap-

plication running in the runtime) 

instructions/ms 

Runtime Network Usage (RNU) The network usage of a runtime (i.e. the 

application running in the runtime) 

bytes/ms 

Refer to Table 3-2 for a list of the core metrics 
 

Table 3-3. Additional Metrics for the Complete Version of the Proposed Formula 
 

Another improvement that is included in the proposed algorithm is the use of IF (Invoca-

tion Frequency) in place of NI (Number of Invocations), to show the significance of a 

method. As mentioned in section 3.1.2, NI has several limitations which originate from the 

fact that it does not reflect the temporal aspect of the invocations. IF addresses this issue by 

dividing the measured number of invocations with the duration of the measurement, which 

effectively results in the number of invocations per time unit (i.e. millisecond). One advan-

tage of the division is that the resulting calculation is not biased towards objects that have 

longer life spans. Moreover, this approach provides the possibility of splitting the IF collec-
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tion into smaller interval windows (e.g. every N seconds) rather than for the whole duration 

of the application execution. This flexibility allows decision making to place more 

weight/importance on newer IF values by applying certain time-series formulas such as the 

exponentially weighted moving average, which will be presented in section 4.1.4 on metrics 

representation. 
 

* See Table 3-2 and  

Table 3-3 for information on the required metrics. 
 

 1.1  𝑂𝑅𝑈𝐼𝑠𝑟𝑐 =      𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑠𝑟𝑐𝑖𝑗  +
𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑠𝑟𝑐

𝑗 =1
  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑠𝑟𝑐𝑖𝑗  

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑠𝑟𝑐

𝑗 =1
+  𝐼𝐹𝑖 × 𝑀𝑃𝑇𝑠𝑟𝑐𝑖  

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 

=      𝐼𝐹𝑖𝑗 ×
𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑠𝑟𝑐
 +

𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑠𝑟𝑐

𝑗 =1
  𝐼𝐹𝑖𝑗 ×

𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑠𝑟𝑐
 

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑠𝑟𝑐

𝑗=1
+  𝐼𝐹𝑖 ×

𝑁𝐸𝐼𝑖
𝑃𝐴𝑠𝑟𝑐

  

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 

=      𝐼𝐹𝑖𝑗 ×
𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑠𝑟𝑐
 +

𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑠𝑟𝑐

𝑗=1
  𝐼𝐹𝑖𝑗 ×

𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑠𝑟𝑐
 

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑠𝑟𝑐

𝑗 =1

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

+  𝐼𝐹𝑖 ×
𝑃𝑈𝑇𝑠𝑟𝑐𝑖 × 𝐻𝑃𝐶𝑠𝑟𝑐

𝐻𝑃𝐶𝑠𝑟𝑐 − 𝐻𝑃𝑈𝑠𝑟𝑐 + 𝑅𝑃𝑈𝑠𝑟𝑐
   

Where: 

NAsrc = (HNAsrc < HNAop) ? HNAsrc : HNAop 

 

 1.2  𝑂𝑅𝑈𝐼𝑑𝑠𝑡 =      𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑑𝑠𝑡𝑖𝑗  +
𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑑𝑠𝑡

𝑗 =1
  𝐼𝐹𝑖𝑗 × 𝑀𝑇𝑇𝑑𝑠𝑡𝑖𝑗  

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑑𝑠𝑡

𝑗 =1
+  𝐼𝐹𝑖 × 𝑀𝑃𝑇𝑑𝑠𝑡𝑖  

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 

=      𝐼𝐹𝑖𝑗 ×
𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑑𝑠𝑡
 +

𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑑𝑠𝑡

𝑗=1
  𝐼𝐹𝑖𝑗 ×

𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑑𝑠𝑡
 

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑑𝑠𝑡

𝑗=1
+  𝐼𝐹𝑖 ×

𝑁𝐸𝐼𝑖
𝑃𝐴𝑑𝑠𝑡

  

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

 

=      𝐼𝐹𝑖𝑗 ×
𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑑𝑠𝑡
 +

𝑅𝐶𝑎𝑙𝑙𝑒𝑒𝑠 _𝑑𝑠𝑡

𝑗=1
  𝐼𝐹𝑖𝑗 ×

𝑆𝑆𝑃𝑖𝑗

𝑁𝐴𝑑𝑠𝑡
 

𝑅𝐶𝑎𝑙𝑙𝑒𝑟𝑠 _𝑑𝑠𝑡

𝑗=1

𝑀𝑒𝑡𝑜𝑑𝑠

𝑖=1

+  𝐼𝐹𝑖 ×
𝑃𝑈𝑇𝑠𝑟𝑐𝑖 × 𝐻𝑃𝐶𝑠𝑟𝑐

𝐻𝑃𝐶𝑑𝑠𝑡 − 𝐻𝑃𝑈𝑑𝑠𝑡 + 𝑅𝑃𝑈𝑑𝑠𝑡
   

Where:  

NAdst = (HNAdst < HNAop) ? HNAdst : HNAop 

 

 1.3  𝑀𝐶 =  log 𝑀𝐼𝑇 

=  log
𝑆𝑆𝑂

𝑁𝐴
 

Where: 

NA = (HNAsrc < HNAdst) ? HNAsrc : HNAdst 

 

Figure 3-9. Final Form of the Proposed Formula 
 

Multiplying IF with MPT (Method Process Time) produces a value that partially contrib-

utes to MRUI (Method Resource Usage Intensity). More specifically, it results in the MRUI 
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portion defining the intensity of processor-bound operations. Similarly, the portion for net-

work-bound operations is obtained by multiplying IF with MTT (Method Transfer Time).  

The calculation of MRUI has to be done at the finest possible granularity in order to 

achieve maximum accuracy. In the case of processor-bound operations, the calculation 

should involve only those IF and NEI (which is used to derive MPT) values that are measured 

for a specific method since different methods get called at different rates/frequencies and exe-

cute different sets of instructions. On the other hand, the calculation for network-bound op-

erations, should involve only those IF and SSP (which is used to derive MTT) values that are 

measured for the communication between the method and a specific caller/callee. This is so 

that the co-locality of the method owner (i.e. the adapted object) and the caller/callee can be 

determined even after the co-locality changes, e.g. due to adaptation/migration. As this re-

quires more detailed information to be recorded and maintained, the collection of the relevant 

metrics involves higher complexity as discussed in section 4.1.1.2, which addresses the col-

lection of the metrics related to object interactions. 

In theory, due to the inverse relationships between IF and MPT/MTT, in sequential appli-

cations, ORUI (which is the aggregate of MRUIs) should never exceed the value of 1. For 

instance, when the IF of a method is high (e.g. 5 invocations per second), MPT/MTT will be 

low (e.g. at most 0.2 seconds). On the other hand, when the total of MPT and MTT is high 

(e.g. 10 seconds), IF will only be at most 0.1 invocation per second. However, in practice, 

this assumption does not always hold as there are two reasons that could cause the value of 

ORUI to be larger than 1. The first reason is the inaccuracies that are present in the metrics 

collection process which includes the inaccuracy of the relevant measurement (section 4.3.1) 

as well as the representation of metrics (section 4.1.4). Another situation where ORUI could 

exceed 1 is when calculating the ORUI for the destination node (as presented in section 

3.2.2.2) in which the resource availability of the destination node is much higher than the 

source node. 

3.2.2.2 Predicting ORUI for the Destination Node 

In order to compute ORUI/MRUI for the destination node (i.e. after adaptation/migration), 

the calculation presented in section 3.2.2.1 should be extended to include resource metrics 

such as processor- or network-related metrics, in addition to the software metrics presented in 

the section (i.e. section 3.2.2.1). This is done in a similar fashion to the original algorithm 

whereby certain metrics (e.g. MPT) are calculated based on the ratio between the resource 

availability (e.g. processor availability) of the source and the destination machines for the 

purpose of estimating the values of the metrics in the destination node. In the case of the pro-

posed algorithm, MPTsrc and MTTsrc (i.e. for the source node) are computed against the ra-
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tio of the processor and network availability respectively, in order to obtain MPTdst and 

MTTdst (i.e. for the destination node), as can be seen from Figure 3-8. 

The computation of MPT for the destination node is straightforward since calculating 

Processor Availability (PA) only requires processor-related metrics/information regarding a 

specific host (e.g. source or destination host). On the other hand, calculating MTT is more 

involved since obtaining Network Availability (NA) requires the network-related metrics of 

the two hosts involved in the remote communication. In particular, the HNA (Host Network 

Availability) of the two hosts need to be compared, the lower of which will be used to repre-

sent the network bandwidth available for the remote communication since that will be the 

greatest bottleneck of the communication.  

It is acknowledged that such an approximation could be inaccurate due to reasons such as 

the existence of intermediary network devices that bridge the communication between the 

two machines. Another limitation of the approximation of NA is that it considers only band-

width, but ignores network latency which also contributes to the overhead of remote commu-

nications. However since addressing the mentioned limitations is non-trivial and because the 

aim of this thesis is to enable live/automated adaptation and demonstrate its usefulness, this 

limitation is left to future work.  

Nevertheless, the lack of latency information is somewhat compensated by the fact that 

additional information (e.g. metrics propagated from proxies to mobile objects as explained 

in section 4.2.1.3) needs to be passed during method invocation, which means that remote 

calls always incur non-zero network overhead even though no parameter is passed by the ap-

plication itself. Another consequence is that objects exhibiting high frequency of communica-

tion are considered to be of higher significance (i.e. bigger impact on application perform-

ance) than objects which communicate large data. In particular, an object with X IF (Invoca-

tion Frequency) and Y SSP (Size of Serialised Parameters) from an object O is considered to 

have higher interaction intensity than an object with Y IF and X SSP from O. Note that the 

mentioned SSP refers to the size of the parameters (and the return value) of the original non-

adaptive application, whereas the actual SSP used by in decision making is the collective SSP 

which includes the additional transmitted information. 

In terms of defining/calculating the resource availability of a machine, the original defini-

tion used in section 3.1.2 is extended so that resource availability refers to the entire resource 

that is available to the application/object rather than just the additional resource, which as 

explained in section 3.1.2.2, could increase occurrences of unnecessary migration. As shown 

in Figure 3-8 and Figure 3-9, the modification involves adding the resource that the applica-

tion process is currently using, e.g. Runtime Processor Usage (RPU) or Runtime Network 

Usage (RNU), to the calculation of resource availability, in order to compensate for the re-

sources that the application/runtime has been using (i.e. internal load) which as a result, low-
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ers the resource availability of the host/node. As illustrated in Figure 3-10, such addition al-

lows more accurate calculation of resource availability in comparison to the calculation in the 

original algorithm (which was described in section 3.1.2.2). 

The use of runtime-related metrics (e.g. RPU, RNU) to reflect the internal load of a par-

ticular application is sufficient for the scope of this work for two reasons. Firstly, this work 

assumes that each runtime can only manage a single rather than multiple applications, be-

cause the latter is not supported in most mobile object frameworks reviewed in 2.5, with the 

exception of the MobJeX framework [147]. Furthermore, this work focuses on sequential ap-

plications, in which (as argued in section 3.1.2.2), an object can execute (i.e. using the proc-

essor and network) with minimal contention from other threads, and thereby implying that the 

majority of resources that are available to the application, is also available to the object.  

On the other hand, this expectation is not applicable for parallel applications wherein 

there are often other threads which are consuming the resources in parallel with the execution 

of an object, thus rendering the calculated resource availability inaccurate (i.e. higher than the 

actual availability since resources are shared by multiple threads). Addressing this issue re-

quires the complex analysis of the relationships between individual threads and objects, simi-

lar to the work done in [87] and as such this issue is left for investigation in future work. 

 
Figure 3-10. Resource Availability in Original versus Proposed Algorithm 

 

Regardless of whether the application is sequential or parallel, the use of runtime resource 

utilisation metrics leaves a possibility for inaccuracy since the measured RPU and RNU met-

rics also include the utilisation of the containing middleware/framework due to the middle-

ware functionality executing in the same runtime as the application. This means that the cal-

culated resource availability is slightly higher than the actual amount available to the applica-

tion but is generally tolerable as long as the middleware does not perform resource intensive 

operations that are independent of the adapted object. On the other hand, middleware opera-

tions related to the adapted object such as the collection of software metrics (e.g. IF, SSP), do 

not contribute to the inaccuracy since the resource consumption will follow wherever the ob-
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ject migrates thus is considered as a part of the object. Using thread-level resource utilisation 

metrics should provide more accurate information, however for simplicity, runtime-level met-

rics are used in this work because of the implementation/technical issues described in section 

4.3.1. 

3.2.2.3 Calculating Migration Cost 

As shown in Figure 3-9, the cost of migrating an object is calculated using the Size of Serial-

ised Object (SSO) metric, which refers to the size of the serialised form of the object. For a 

similar reason to the selection of SSP (Size of Serialised Parameters), the serialised size is 

preferred to the in-memory size since it more accurately reflects the number of bytes that will 

be transferred to the destination node during the migration of the object. In the calculation, 

the SSO of the adapted object is firstly divided with NA (Network Availability) in order to 

obtain the estimated time for migrating the object, i.e. MIT (Migrate Instance Time). 

The calculated MIT is then provided as an input to a logarithmic function to produce the 

migration cost. A logarithmic function is used instead of more “sensitive” functions such as 

linear functions since the latter are more susceptible to having a strict upper limit whereby 

objects with sizes larger than the limit will never migrate unless the network availability is 

comparably high, but in reality the associated one-off cost may be acceptable considering that 

the gained benefit (i.e. performance improvement) is cumulative (over the remaining period 

of execution). In this solution, the log base should be configurable so that it can be set to a 

value that is most appropriate for the application (i.e. according to the characteristics of the 

application and its constituent objects). To ease such configuration, the log base can be auto-

matically calculated based on the expected cost for a specific migration time specified by the 

application deployer. 

A practical example of such a configuration is that if the average performance improve-

ment (i.e. the difference between ORUIsrc and ORUIdst) gained from adaptation is identified 

to be roughly 0.1, the deployer could specify that a migration time of 2 seconds should trans-

late to the migration cost of 0.1. Such a configuration implies that a 2-second migration is 

considered to be the acceptable upper limit, which means that a longer estimated time (i.e. > 

2 seconds) would not trigger a migration except in special cases where the destination node 

could offer an improvement of more than the average of 0.1. Note that for the purposes of the 

discussion, this is a simplified case in which, the adaptation score threshold addressed in sec-

tion 3.2.2.4 is not considered (i.e. assumed to be non-existent or zero). 

The appropriate log base for the scenario described above is 210 , which is derived from 

the two input properties specified by the application deployer, i.e. the acceptable migration 

time limit and the expected migration cost for that time limit. The formula is as follows:  

𝐿𝑜𝑔𝐵𝑎𝑠𝑒 = 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
(

1
𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡

)
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Note that in practice, migrating a mobile object (e.g. a Java object) might require the 

classes of the object to be transferred and loaded at the destination node, which adds to the 

cost of migrating the object. However, obtaining MCT is difficult since it is hard to predict 

whether the required classes (e.g. Java classes) might or might not need to be migrated since 

this depends on whether the compatible classes are already in the classpath of the destination 

runtime. Due to this complexity, this implementation issue is left to future work. 

3.2.2.4 Determining Score Threshold 

The following discussion concerns the configuration of the adaptation score threshold, which 

serves to determine whether a certain object migration should take place depending on the 

relative difference between the calculated/expected performance improvement and the speci-

fied threshold as explained in section 3.1. The specification of the score threshold in the pro-

posed solution is more intuitive compared to the original solution, which requires an arbitrary 

trial-and-error configuration as explained in the next paragraph. On the other hand, even 

though determining the appropriate thresholds in the proposed solution might require several 

iterations of fine-tuning/reconfiguration, logical reasoning can be applied when specifying 

the initial score threshold. 

The main reason for this advantage is the better comprehensibility of ORUI (i.e. used in 

the proposed solution) compared to ORT (i.e. the original solution), which represents the re-

sponse time of an adapted object accumulated during an arbitrary/indefinite period of time. 

On the other hand, ORUI is clearly defined as the degree of resource utilisation of an object 

per time unit (i.e. millisecond), which as explained in section 3.2.2.1, has a theoretical upper 

limit of 1 which refers to a 100% utilisation of resources during the whole sampling period 

(i.e. the period in which the relevant metrics are collected). 

Common factors that should be considered in configuring the score threshold include the 

average usage intensity of objects and the lowest acceptable improvement. For example, in a 

simplified scenario where the deployed application consists of 5 objects of equal characteris-

tics (i.e. high execution intensity) and execution probability, the average usage intensity of an 

object can be assumed to be roughly equivalent to 0.2. In the case where the lowest accept-

able improvement is set to be 20% (i.e. objects should migrate only if at least 20% perform-

ance improvement can be gained), the score threshold would be specified as 20% of 0.2 

which is 0.04. 

Having presented an algorithm for local adaptation via application partitioning, the next 

chapter will address the automatic collection and management of information that is required 

by the proposed algorithm.  
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Chapter 4 .  Metrics Management 

This chapter presents a context management solution for the primary purpose of automating 

the local-adaptation solution proposed in section 3.2. Note that although automating such ad-

aptation solution might also require a robust fault-tolerance mechanism, the discussion of 

such a topic is beyond the scope of this thesis. 

Section 4.1 presents a generic solution for addressing the efficiency and accuracy of the 

management of context (in the form of metrics). Although primarily targeting the proposed 

adaptation solution, this solution can be extended to facilitate other adaptation solutions, such 

as the original solution described in section 3.1 or a global-adaptation solution, and therefore 

where possible, its flexibility and generality will also be discussed.  

Section 4.2 extends the solution presented in section 4.1 to specifically facilitate the man-

agement of metrics required by the proposed adaptation solution (presented in section 3.2). 

Finally, section 4.3 explains the implementation of the presented metrics management solu-

tion with emphasis on how they were implemented in Java and in a mobile object framework 

called MobJeX. The evaluation of the metrics management solution/implementation in terms 

of the incurred resource utilisation overheads (e.g. memory usage) and its impacts on the per-

formance (i.e. response time) of the supported application, is presented in Chapter 5 (along 

with the evaluation of the proposed adaptation algorithm). 

4.1 General Overview 

Challenges involved in the management of metrics-related operations include those for: 1) 

collecting metrics through measurement (addressed in section 4.1.1), 2) delivering collected 

metrics to adaptation engines (section 4.1.2), 3) controlling individual management tasks us-

ing customisable criteria (section 4.1.3), and 4) representing metrics for the purpose of cap-

turing temporal information (section 4.1.4). 

The adopted solution for addressing the aforementioned challenges, is based on the ob-

ject-oriented context modelling approach (introduced in section 2.4) as illustrated in Figure 

4-1. Consequently, objects are used to represent relevant information encapsulated in the 

form of model entities, metric containers, and metrics. Model entities serve to model all mid-

dleware/application components in the system (which as mentioned in section 2.5.1, includes 

host managers, runtimes, and mobile objects) and their hierarchical relationships. Metric con-

tainers are used to manage the collection of metrics belonging to specific components. Lastly, 

a metric object encapsulates data and operations related to the collection of a particular metric 

(e.g. Invocation Frequency). 
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Figure 4-1. Generic Metrics Collection Process 
 

As can be seen in Figure 4-1, a host model entity, which represents a specific host man-

ager, relies on a host metric container to manage the collection of host-related metrics (e.g. 

Host Processor Usage). Similarly, a runtime model entity represents a particular runtime and 

manages its metrics through a runtime metric container. The parent-child relationship be-

tween the host manager and its runtime(s) is also captured in the relevant model entities. Each 

mobile object in the application should also have a corresponding object model entity. Object 

model entities are not required for other types of objects such as stationary remote objects 
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and non-remote objects, which as mentioned in section 2.5 are not adaptable (i.e. cannot mi-

grate) and therefore do not need to collect metrics.  

The aforementioned model objects (i.e. model entities, metrics and their containers) as 

well as their interconnections are maintained (as a system model) in an adaptation engine to 

facilitate the analysis of system state for the purpose of making adaptation decisions. Due to 

the complex relationships represented by the system model, the extraction of metrics from the 

model is achieved using the visitor design pattern [60], in which a visitor object is used to 

assist the traversal of the model, starting from the root of the model (i.e. service model entity) 

down to the individual leaves (i.e. mobject model entity). The extracted metrics are then used 

for adaptation processing purposes such as calculating the performance scores of mobile ob-

jects (as discussed in Chapter 3). 

Depending on the chosen adaptation scheme (e.g. local versus global), multiple adaptation 

engines might exist, in which case multiple system models are managed across different ad-

aptation engines. Furthermore, each component in the system may maintain its own model, 

which is a subset of the entire system model. For example, a runtime may maintain a runtime 

model entity, whereas a host manager may maintain a host model entity containing the model 

entities of its runtimes. 

Note that even though proxies of mobile objects (introduced in section 2.5.1) also play a 

role in the collection of metrics as will be discussed in section 4.2.1.3, they are not included 

in the system model because of the difficulty/complexity involved in maintaining the relevant 

model entities due to the following reasons. Firstly, since a proxy is essentially a more so-

phisticated form of regular object references, as is the case with object references, there can 

be multiple references/proxies to the same mobile object. Furthermore, references/proxies can 

be volatile in that they can be created and destroyed at any time (e.g. due to code scoping).  

Despite the exclusion of proxy model entities, proxy metric containers, which are respon-

sible for managing proxy-related metrics collection tasks, are still considered in the metrics 

collection process. Unlike other metric containers (i.e. those belonging to mobile objects, run-

times, and host managers), proxy metric containers are not part of the model. However, the 

inclusion of a proxy metric container in Figure 4-1 serves mainly to capture certain delivery 

relationships which as will be discussed in section 4.1.2, define how metrics are delivered 

from the originating/measuring component to the adaptation engine. Figure 4-1 also shows 

the use of criteria at different places, which as discussed further in section 4.1.3, serve to 

control certain metric-related operations, usually for efficiency purposes. 
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4.1.1 Metrics Collection 

Section 4.1.1.1 describes the adopted metrics collection approaches, the flexibility of which is 

demonstrated in section 4.2.1 through the discussion of the collection of various metrics re-

quired by the proposed adaptation algorithm (presented in section 3.2). On the other hand, 

section 4.1.1.2 discusses specific approaches used to address the collection of metrics related 

to object interaction, such as Size of Serialised Parameters (SSP) and Invocation Frequency 

(IF). 

4.1.1.1 Common Approaches 

Since this work adopts the object-oriented context modelling approach, each metric is encap-

sulated in a specific object/class which is responsible for performing tasks related to the col-

lection of the metric. For instance, the RMUMetric class/object is responsible for acquiring 

memory usage information of a runtime (RMU) and storing the obtained information (in the 

form of integer-typed measures). Note that although RMU is not used in the proposed adapta-

tion score calculation formula, it is used prior to score calculation to determine whether a tar-

get machine has sufficient memory to receive a particular mobile object, as described in sec-

tion 3.2. The encapsulation of metric-specific responsibilities allows different metrics to ap-

ply different management policies such as metrics representation or collection/delivery crite-

ria, as discussed in section 4.1.4 and 4.1.3. Furthermore, class inheritance allows metrics of 

similar types such as host-resource metrics, which include HPU (Host Processor Usage), 

HNU (Host Network Usage), etc., to be grouped and treated in the same way (i.e. polymor-

phically). 

Considerations involved in metrics collection include determining the location/component 

where the relevant measurement takes place as well as when the measurement should be ini-

tiated. In terms of measurement location, it is most appropriate to collect host/node-related 

metrics such as HPU and HNU, in the host manager. Similarly, runtime metrics, such as 

RMU, should be collected in the relevant runtime as discussed further in section 4.2.1. Con-

sequently, as opposed to the illustration shown in Figure 4-1 (of section 4.1), which is pre-

sented for simplicity, metrics collection does not occur in a single model, but is rather exe-

cuted in separate models maintained by individual components. 

In terms of its initiation, measurement can be triggered using timers recurring at a regular 

interval. Such an approach is hereinafter referred to as time-based measurement initiation, 

whereas the relevant collection/measurement is called timer-initiated collec-

tion/measurement. This is in contrast to application-based initiation, in which case, the 

measurement is initiated by the application (e.g. through method invocations) and hence is 

also known as application-initiated measurement. A hybrid of the two initiation approaches 
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(i.e. time-based and application-based) is also required for certain metrics (e.g. Invocation 

Frequency) due to the specific reasons explained in section 4.2.1. 

An important characteristic of application-initiated measurement is that its occurrences 

are heavily dependent on the specific behaviour of the application. For instance, a frequently 

invoked method would lead to high frequency of measurement which could introduce signifi-

cant performance overhead. Furthermore, unlike timer-initiated measurement which is han-

dled by a separate timer thread, application-initiated measurement executes on application 

threads, thereby affecting the performance of the adaptive application. Consequently, as illus-

trated in Figure 4-1 (of section 4.1), criteria are placed in measuring components (e.g. mobile 

objects) to control the frequency of the relevant measurement, thereby reducing the associ-

ated overheads, as discussed in more detail in section 4.1.3.  

4.1.1.2 Approaches for Collecting Interaction Metrics 

Interaction metrics, which refer to metrics related to object interaction or method invocation 

(e.g. Invocation Frequency), should be associated with the caller/callee involved in a particu-

lar method invocation, which as mentioned in section 3.2.1, serves to distinguish between 

local and remote calls. Since interaction metrics should be collected for both incoming and 

outgoing calls, in the scenario where a mobile object invokes a method of another mobile ob-

ject, the metrics will be collected twice, i.e. once for each mobile object.  

Because the measurement for incoming calls can be done in the callee object/method it-

self, the required instrumentation task (i.e. inserting the measurement code into the invoked 

method) is straight forward. On the other hand, the instrumentation for outgoing calls, which 

requires modification of the caller code, involves higher complexity since such code may be-

long to an external library rather than the application itself. The instrumentation is further 

complicated by the fact that method invocations in object-oriented languages such as Java, 

are polymorphic, thus requiring the instrumented code to be complemented with runtime 

checking. Furthermore, modifying/instrumenting certain code such as native code (i.e. written 

in lower-level languages such as C) is impractical if possible at all. Such a limitation affects 

the transparency of the application development which as mentioned in section 2.6, is also a 

concern of this thesis due to its impact on the required development effort/cost. The general 

solution to this type of issue is to bridge the communication between the caller/callee objects 

using the proxy design pattern [60], which fits the role of proxies in mobile object frame-

works as discussed in section 2.6. 

Since mobile objects are accessed via proxies, the measurement code for outgoing calls 

can simply be inserted into the proxies, more specifically, before/after the proxy forwards 

calls to the corresponding mobile object. However, this approach introduces a new problem 

whereby the collected outgoing-call metrics are (by default) stored in the proxy instead of the 
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caller object, which is the object associated with the collected metrics. This is especially 

problematic since as mentioned in section 4.1, proxies are volatile by nature thereby compli-

cating the delivery of metrics to the adaptation engine. 

A simple solution involves returning the metrics from the proxy back to the caller, how-

ever this affects development transparency since it requires changing the return type of the 

proxy method, making it incompatible with the original method. Instead, this thesis proposes 

a solution based upon a registry approach, which has traditionally been used to provide con-

tact points (known as registries) for clients to acquire particular objects based on their associ-

ated names. In this work however, a registry is used as the main contact point for a callee ob-

ject to obtain information regarding its caller. 

In doing so, the registry traces the flow of application execution by maintaining a list of 

all mobile objects that are involved in the execution. The list is managed as a stack reflecting 

the current execution flow, thereby allowing the caller of a specific object to be discovered by 

peeking at the stack. As shown in Figure 4-2, using this solution, a proxy can pass the outgo-

ing interaction metrics collected in the proxy to the rightful owner of the metrics, i.e. the 

caller object. In the case where the stack is empty, it is assumed that none of the preceding 

objects in the call chain (i.e. the caller and its callers) is a mobile object since only mobile 

objects get pushed into the stack. Other objects (e.g. stationary objects) are not pushed since 

they are not adaptive, and thus do not need to collect metrics. 

It is important to note that a separate stack needs to be maintained for each executing 

thread since each thread defines a different flow of execution. Such a safe guard is required 

even though the focus of this thesis is on sequential applications (as opposed to parallel ap-

plications), since as mentioned in section 2.2, a sequential application might consists of mul-

tiple executing threads. 
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Figure 4-2. Using Stack-based Registry for Collecting Interaction Metrics 
 

In addition to passing information to the caller, the registry has another important role in 

the collection of interaction metrics (i.e. SSP and IF), which as previously mentioned, need to 

be associated with the relevant caller/callee. More specifically, the registry facilitates the col-

lection of metrics for incoming interactions because the caller object needs to be identified. 

As previously mentioned, recording the caller object allows the adaptation engine to deter-

mine whether the relevant call is local or remote depending on the current location of the 

caller. 

Since each registry is used to maintain information about the execution of a particular 

thread, its information is not distributed across machines. In particular, a mobile object that is 

called remotely will not be able to access the caller through its registry, since the registry of 

the caller is located on another machine. Consequently, certain information required for iden-

tifying the caller (e.g. a unique number) needs to be passed to the callee during the invocation 

of the relevant method. Note that, since this can be done without modifying the method sig-

nature of the proxy, existing code will not be affected, thereby providing development trans-

parency. 

In some cases, the proxy could fail to retrieve the caller information from the registry 

stack due to it being empty because none of the preceding objects is mobile. In such a situa-

tion, the information regarding the current runtime/process (of the caller) would get used in-
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stead. Using this information, the co-locality of the call (i.e. local versus remote) can still be 

accurately determined during adaptation decision making since stationary objects will always 

execute in the same runtime. In the case of outgoing interactions, the registry is not needed 

since the relevant callee can be determined via its proxy since a proxy should have informa-

tion about the object, to which it is referring. 

This registry-based solution is used for the collection of interaction metrics (e.g. SSP and 

IF) as discussed in detail in section 4.2.1.3. 

4.1.2 Metrics Delivery 

The delivery of metrics from one to component to another is illustrated in Figure 4-1 (of sec-

tion 4.1) as a unidirectional relationship/arrow connecting model entities, metric containers, 

and metric objects. Note that even though the diagram (Figure 4-1) only shows the delivery 

relationships between model entities (e.g. host model entity), in practice, metrics delivery 

might also involve interaction between the represented components (e.g. host manager). As 

shown in the diagram, metrics are collected in individual components (including proxies) and 

then delivered to the parent components, using either a push or a pull approach (introduced in 

section 2.4.3). 

The push strategy involves a chain of propagations to convey metrics that are measured in 

a particular component to the immediate parent component. Since such a strategy enables de-

livery upon update, whereby metrics are delivered when there are updates or changes, it plays 

an important role in adaptation initiation by allowing decision making to be triggered when 

the newly received metrics satisfy certain criteria (e.g. upon detection of low resource avail-

ability), as discussed further in section 4.1.3. On the other hand, a pull strategy which allows 

delivery upon demand, is particularly useful for reducing unnecessary deliveries (thus the im-

plied performance overhead) as applied in section 4.2.2. 

The delivery overhead is of particular concern in inter-process delivery in which metrics 

are delivered to a receiving component running in a different process space to the sender. 

Unlike local delivery, in which metrics are delivered between components running in the 

same process via reference passing, inter-process delivery involves serialisation and de-

serialisation of metrics, which introduces considerable performance overhead even though 

network communication is not involved.  

In particular, the cost of delivering metrics from a mobile object to its managing runtime 

is negligible (since both execute in the same process), but this is not necessarily the case with 

the delivery from a runtime to the host manager, since in practice, a host/machine can only 

have one host manager but can run multiple applications/runtimes, thus requiring execution 

in separate processes. The cost is even higher in inter-host delivery, which is a specific form 
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of inter-process delivery, involving components executing on different machines, thereby re-

quiring network communication. In global adaptation, such a case applies to the delivery of 

metrics from individual host managers to the central adaptation engine, whereas in local ad-

aptation, this applies to metrics delivery amongst distributed adaptation engines as discussed 

further in section 4.2.2. 

Consequently, in order to reduce the potentially high overhead of metrics delivery, the 

aforementioned criteria approach could also be applied, as described in section 4.1.3. Fur-

thermore, since the overhead introduced by inter-process and inter-host delivery is particu-

larly affected by the size of the pushed metrics, fine-grained delivery is favoured in this work 

over coarse-grained delivery. In fine-grained delivery, metrics are delivered either as individ-

ual metric objects (e.g. RMUMetric) or as a group of metric objects. On the other hand, in the 

coarse-grained approach, the delivery involves an entire model entity (e.g. host model en-

tity), which includes a container of its metrics (e.g. host metric container) as well as the con-

tained child entities (e.g. the model entities of all the runtimes managed by the service). The 

main advantage of such an approach is that the containment relationships between the inter-

connecting model entities (i.e. parent and child entities) as well as all their metrics will get 

delivered to the adaptation engine as a cohesive bundle, thereby allowing the adaptation en-

gine to directly use the received model entity (including its child entities) rather than having 

to reconstruct certain information (e.g. relationships between entities). 

However, since in practice, the overhead of marshalling/serialising the complicated rela-

tionships as well as synchronising the marshalling process (i.e. to prevent inconsistency due 

to concurrent updates on the model entity) outweigh the provided benefits, fine-grained de-

livery is favoured in this thesis. In the fine-grained approach, each delivered metric (e.g. run-

time processor usage) is accompanied with certain metadata such as a Uniform Resource 

Identifier (URI), to identify the measured entity (e.g. a particular runtime). This enables the 

adaptation engine to reconstruct the relationships between system components and their met-

rics (by allowing correct placement in the model) to facilitate adaptation decision making. 

4.1.3 Management Criteria 

This work proposes the use of criteria in the form of self-contained strategy objects [60] for 

controlling operations related to the management of metrics (e.g. collection and delivery of 

metrics). As shown in Figure 4-1 (of section 4.1), criteria are attached to individual metrics to 

control the collection of the corresponding metrics. Similarly, criteria are also attached to 

metrics containers and model entities in order to control the delivery of metrics. 

The criteria approach allows the application deployer to specify the criterion for a particu-

lar operation based on the specific knowledge of the application and the target plat-
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form/environment. Although the primary objective is to reduce unnecessary overhead (thus 

improve efficiency), criteria also enable the encapsulation of other type of functionality such 

as that for triggering adaptation, as demonstrated in the solution presented in section 4.2.3.  

Criteria can be implemented in any form, ranging from a simple filtering criterion aimed 

at reducing the frequency of a specific operation (for the purpose of reducing the associated 

overheads), to a more complicated implementation involving aggregation of metrics, similar 

to the concept of context aggregation used in [112], in which context information is gathered 

at a specific cluster node prior to its delivery to the parent cluster. In this work, metrics ag-

gregation is used to reduce the overall delivery/communication overhead, as discussed further 

in section 4.2.2, which presents the criteria designed according to the specific characteristics 

of the proposed adaptation solution. 

4.1.4 Metrics Representation 

Adaptation decision making could be improved by providing the adaptation engine access to 

the temporal information of metrics because it allows the change/update trends of the metrics 

to be obtained/analysed. For instance, when temporal information is not used but rather the 

last recorded metric value is used, the adaptation decisions become too agile [121] [120], i.e. 

sensitive to metric changes. This sensitivity causes the application to respond/adapt not only 

to “real” changes in metrics, but also to sudden and temporary changes, which would result in 

inaccurate adaptation decisions and thus unnecessary migrations.  

The most basic approach to capture the temporal information of a metric is by maintain-

ing a history of the metrics values that are recorded during the application execution. How-

ever, this approach introduces significant management overheads, most notably on the mem-

ory required for maintaining the history and/or the network bandwidth for delivering it to the 

adaptation engine. Consequently, this work adopts an approach in which a representation is 

used to efficiently capture the temporal characteristics of the recorded values of a metric (i.e. 

measures). Simple approaches for building/maintaining the representation include summing 

or averaging up all the recorded measures to date.  

The effect of using such a representation is that the importance/weight of the newer val-

ues becomes less/lower as time elapses, due to the accumulation of old values. This makes 

the application less agile, i.e. less sensitive to metric changes, which is the opposite of the 

adaptation behaviour exhibited when no temporality is used at all, i.e. using last value only. 

Consequently, an exponentially weighted moving average (EWMA) function was chosen to 

overcome the mentioned agility-related limitations since it decreases the significance of the 

older values and as a result places more weight on newer values. EWMA has been used in 

similar work [87], however the specifics of how it was applied and what effects it had to the 
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calculation of the relevant metrics were not provided. Consequently, these issues are dis-

cussed below. 

The overhead of maintaining a metric representation using EWMA is very low, especially 

compared to maintaining a history of metrics, because the calculation involves only the old 

average and the latest metric value as shown in the formula in Figure 4-3. The degree to 

which the weight of the older value decreases is determined using a smoothing factor α, 

whereby the higher the value of α, the faster the rate of decrease of the older values. The 

value of α ranges between 0 and 1 and should ideally be configured by the application de-

ployer depending on the nature (e.g. how dynamic) of the application and the execution envi-

ronment. 
 

 

𝐴𝑣𝑔𝑡 = 𝛼 × 𝑁𝑒𝑤 + (1 − 𝛼) × 𝐴𝑣𝑔𝑡−1 
 

Where: 

Avg = The calculated average value at a specific time period 

New = The last collected measure 

α   = The chosen smoothing factor 

t   = A time period t 

 

Figure 4-3. The EWMA Formula 
 

The formula does not explicitly take into account the collection time of the values since 

the values are generally assumed to be collected at regular time intervals. As such, even 

though the formula works well with metrics (e.g. Host Processor Usage) collected using a 

regular interval timer, it is not necessarily suitable for application-initiated measurement 

(concerning software metrics such as Processor Usage Time and Size of Serialised Parame-

ters), since as mentioned in section 4.1.1, such measurement is triggered upon method invo-

cation which does not necessarily occur at uniform intervals. 

The issue could be addressed by dynamically determining α based on the elapsed time be-

tween the latest method invocation and the previous invocation, which will effectively adjust 

the decrease rate of the old average value according to its recentness as shown in Figure 4-4. 

In the modified formula (equation 1), α is defined as the measurement duration d divided by 

the maximum acceptable duration m. As an example, if 3600 seconds is chosen as the maxi-

mum duration (i.e. m = 3600), a measurement that occurs 900 seconds (i.e. d = 900) after 

the last measurement will be calculated using α = 0.25. In the case where the elapsed dura-

tion exceeds the maximum duration, a maximum α value of 1 is used as shown in equation 2. 
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 1 𝐴𝑣𝑔𝑡 =
𝑑

𝑚
 × 𝑁𝑒𝑤 +

𝑚 − 𝑑

𝑚
× 𝐴𝑣𝑔𝑡−1 , 𝑑 < 𝑚 

 2 𝐴𝑣𝑔𝑡 = 𝑁𝑒𝑤 , 𝑑 ≥ 𝑚 

 

Where: 

Avg = The calculated average value at a specific time period 

New = The last collected metric value 

t   = A time period t 

d   = Duration since last measurement 

m   = Pre-defined maximum tolerable duration 

 

Figure 4-4. The EWMA Formula for Metrics Collected at Irregular Intervals 
 

Although this formula (which targets irregular-interval measurement) has been imple-

mented, a thorough evaluation of the formula is beyond the scope of this work since the aim 

is to demonstrate the role of metric representations in addressing the aforementioned agility 

issues. Nevertheless, since IF is collected at a uniform interval (as discussed in 4.2.1.3), ap-

plying EWMA to IF would capture certain trends in the software metrics (e.g. access pat-

terns). Doing this should sufficiently assist the adaptation decision making since both of the 

calculation of the execution intensity (i.e. MPT) and interaction intensity (i.e. MTT), involves 

IF, thus the aforementioned limitation concerning Processor Usage Time (PUT) and Size of 

Serialised Parameters (SSP) can be compensated. 

Due to code encapsulation being an advantage of object-oriented context modelling, 

switching to a different representation (in the future) requires minimal maintenance effort. 

Furthermore, encapsulation also allows the use of different strategies (e.g. simple averaging) 

and parameters (e.g. α value) for different metrics, which is especially useful in the case 

where certain strategies are not applicable to the concerned metrics. As an example, the pre-

sented EWMA strategy only applies to metrics measured in ratio measurement scale (dis-

cussed in section 2.4.2), since the calculation involves multiplication and division.  There-

fore, in the case where a metric is of a less powerful measurement scale (e.g. the interval 

scale), a different representation strategy is required. However, this is not a concern in this 

thesis since all the metrics required by the adaptation algorithms presented in sections 3.1 and 

3.2 are of ratio scale. 

4.2 Solution for Local Adaptation 

A specialisation of the general metrics management solution presented in section 4.1, is pro-

vided in this section to address the management of metrics required by the proposed adapta-

tion algorithm (presented in section 3.2). In particular, section 4.2.1 addresses the collection 

of the required metrics, whereas section 4.2.2 discusses the optimisation of metrics delivery 



CHAPTER 4. METRICS MANAGEMENT  

71 

 

based on the specific characteristics of the adopted adaptation solution (e.g. local adaptation). 

Finally, section 4.2.3 presents a discussion of the adopted metrics criteria such as the initia-

tion criterion, which has the role of controlling the triggering of adaptation decision making.  

 

Figure 4-5. Metrics Collection Process for Local Adaptation 
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Figure 4-5 provides an illustration of the solution, listing all relevant metrics and their re-

lationships with metric containers and model entities. Other aspects shown in Figure 4-5, 

such as the delivery of metrics from the host model entity to a context server, will be dis-

cussed in the relevant section (e.g. 4.2.2). 

4.2.1 Metrics Collection 

Since the calculation required for obtaining derived metrics has been addressed in section 3.2 

in sufficient detail, this section is concerned with the collection of base metrics, which are 

acquired through direct measurement. As such, metrics that fall into the scoring category, 

which include ORUI (Object Resource Usage Intensity), MRUI (Method Resource Usage 

Intensity), and MC (Migration Cost), are excluded from subsequent discussion. Similarly, the 

discussion also excludes software or resource metrics obtained through derivation, which as 

mentioned in section 3.2.2 include MTT (Method Transfer Time), MPT (Method Process 

Time), NEI (Number of Executed Instructions), PA (Processor Availability), NA (Network 

Availability), HPA (Host Processor Availability) and HNA (Host Network Availability). 

The rest of the metrics, which are collected using direct measurement techniques, will be 

described in the following subsections, which begin with a discussion of the collection of re-

source metrics (in section 4.2.1.1). The collection of software metrics that are not related to 

object interaction is discussed in section 4.2.1.2. Finally, the collection of interaction metrics, 

which uses the registry-based approach described in section 4.1.1.2, is addressed in section 

4.2.1.3. 

4.2.1.1 Resource Metrics 

The collection of resource metrics applies a time-based initiation approach (introduced in sec-

tion 4.1.1.1), in which a recurring timer is used to poll the most relevant computing entities 

(e.g. OS) for the most current information (i.e. measures). Particularly, the collection of proc-

ess-related metrics, RMU (Runtime Memory Usage) and RMC (Runtime Memory Capacity), 

is achieved by retrieving certain information from the relevant runtime. In the case of host-

related resource metrics such as HPU (Host Processor Usage), HNU (Host Network Usage), 

and HNC (Host Network Capacity), the information is simply obtained from the operating 

system. As is the case with the majority of metrics concerned in this work, HNC is consid-

ered as a dynamic metric (as opposed to static metric), especially in a wireless configuration, 

which is heavily dependent on factors such as signal strength. As such, its collection should 

be performed repeatedly though not necessarily as frequently as more transient metrics such 

as HPU and HNU. 

Since there is no straight-forward solution for obtaining HPC (Host Processor Capacity) 

in the unit required by the proposed adaptation algorithm (i.e. instructions per second), the 
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measurement requires intervention from the application deployer as will be discussed in de-

tail in section 4.3.1. However, this will not compromise the automation of the adaptation be-

cause HPC is generally unchanged, except for high-end servers supporting CPU hot swap-

ping, and thus can be treated as a static metric, which is collected once, prior to application 

execution (i.e. offline). 

4.2.1.2 Non-interaction Software Metrics 

Similar to the collection of resource metrics, the time-based initiation approach is also used 

for collecting specific software metrics, namely SSO (Size of Serialised Object) and OMS 

(Object Memory Size), in which, relevant information is acquired from each mobile object at 

a regular interval. The low level details for acquiring the information (i.e. object sizes) will be 

discussed in section 4.3.1. These are the only two metrics collected at object level rather than 

at method level as is the case with the rest of the concerned software metrics, which include 

PUT (Processor Usage Time), SSP (Size of Serialised Parameters) and IF (Invocation Fre-

quency). 

Such metrics are collected at method level mainly because the relevant measurements are 

initiated by the execution/invocation of a specific method (i.e. application-initiated meas-

urement). The PUT of a method execution is acquired by first measuring the current usage at 

the beginning and at the end of the relevant method, and then subtracting the resulting values. 

An additional task is required if the executed/measured method (i.e. caller) contains invoca-

tion to another mobile object (i.e. callee), in which case, the measured PUT of the callee 

should be subtracted from the caller, in order to separate the processor usage of the two mo-

bile objects (i.e. caller and callee objects), which may migrate independently to different ma-

chines. 

Since SSP and IF represent attributes related to object interaction, the collection of these 

metrics, which introduces additional complexity as described in section 4.1.1.2, is addressed 

in section 4.2.1.3. 

4.2.1.3 Interaction Metrics 

Obtaining the SSP of a specific invocation is achieved by measuring the serialisation size of 

the parameters at the beginning of the method call as well as the return value at the end of the 

call. Due to the necessity of collecting SSP for both incoming and outgoing calls, the in-

volved operations become redundant, which would significantly affect performance when the 

measured messages (i.e. parameters and return value) contain large/complex objects because 

measuring such objects involves complex traversal of the (other) objects that are referenced 

by the measured object.  

Consequently, the redundant measurement operations should be prevented by communi-

cating the measurement results between the proxy and the callee rather than repeating the 
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measurement of the same data. In this approach, prior to the invocation to the callee, the 

proxy performs the following tasks: 1) measures the parameter size, 2) stores the result in its 

outgoing SSP data holder (i.e. SSPMetric object), and then 3) passes the result together with 

the invocation parameters to the callee. The callee then: 1) stores the result in its incoming 

SSP data holder, 2) executes the invoked method, 3) measures the size of the return value, 4) 

adds the result to the data holder, and 5) passes the result and the return value back to the 

proxy. Finally, the proxy adds the received measurement result to the relevant/outgoing SSP 

data holder. Note that although this approach technically increases network usage due to the 

transferring of extra information (i.e. SSP value), in practice this should be minimal since the 

value is a single integer. 

The SSP collection could be further optimised by measuring the flat/serialised form of the 

object where possible, instead of the in-memory view of the object which as previously men-

tioned requires the traversal of its references. This optimisation takes advantage on the fact 

that any messages (i.e. parameters plus return value) that are transferred over the network 

have to be marshalled/serialised anyway. Consequently, acquiring SSP using such an ap-

proach is as simple as monitoring the number of bytes that pass through the socket used for 

transferring the messages. The overhead of such measurement is minimal, but this technique 

is only applicable for remote communications. This technique however, has not been imple-

mented in this work due to the complexity concerning the delivery of the measurement result 

from the measuring socket (which is exclusively managed by Java RMI) to the mobile object. 

In contrast to SSP, the performance overhead of collecting IF is minimal because it sim-

ply involves maintaining a counter (i.e. number of invocations) over a period of time (i.e. 

sampling period) and then dividing the counter with the sampling period. As such, there is no 

real incentive for removing the redundant measurements (for incoming and outgoing calls), 

which would increase the complexity of the solution. Keeping track of the number of invoca-

tions is achieved by simply incrementing the relevant counter at each method invocation. 

Two alternatives for deciding when IF should be calculated (i.e. dividing the invocation 

counter with the sampling period), were considered.  

The first alternative uses a count threshold wherein the calculation is performed when the 

counter reaches a certain limit, i.e. after a certain number of invocations. In this invocation-

based approach, specifying a threshold of 1 means that IF will be calculated for every invoca-

tion. Since in this approach, IF will not be collected until the relevant method gets invoked, 

the currently recorded IF values might not be temporally accurate in that they no longer ac-

curately represent the most current interaction behaviour. Furthermore, this approach is not 

suitable for applications containing methods that get executed frequently and rapidly, because 

this will result in frequent calculation of IF which although not expensive, could potentially 
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trigger numerous metric deliveries (depending upon how criteria have been set), which might 

be costly depending on the location of the target component as explained in section 4.1.2.  

Consequently, this work applies an alternative time-based approach which utilises a timer 

to trigger the calculation of IF at a fixed interval, thereby implying a constant overhead which 

is not affected by application behaviour as is the case with the invocation-based approach. 

Furthermore, this approach produces more temporally accurate metrics since IF will always 

be collected whether or not the relevant method gets invoked. Note that such a collection ap-

proach is a hybrid between the application-initiated measurement approach (which is applied 

for keeping track of the invocation counter) and the timer-initiated measurement approach 

(which is applied for triggering the calculation of IF). In terms of the implementation of such 

an approach, a scalability issue related to the utilisation of timers will be addressed in section 

4.3.1.  

4.2.2 Metrics Delivery 

Depending on their relevance to the initiation of adaptation, metrics required by the proposed 

adaptation algorithm, are categorised in two groups, in order to determine how often certain 

metrics need to be delivered to the local adaptation engine. The first group consists of metrics 

that are required for triggering/initiating adaptation (i.e. initiation group), whereas the other 

group contains metrics that are only required for making adaptation decisions (i.e. non-

initiation group). Note that the categorisation is not necessarily exclusive meaning that met-

rics that are classified into the initiation group might also serve some purpose in the adapta-

tion decision making. 

Ideally, metrics in the initiation group should always be provided to the local adaptation 

engine at every measurement in order to let it decide whether adaptation is required. On the 

other hand, non-initiation metrics do not need to be delivered to the adaptation engine until 

adaptation has been triggered, i.e. the engine is ready to make adaptation decisions. In effect, 

since adaptation is generally triggered by changes in the execution environment (i.e. resource 

metrics) instead of the application behaviour (i.e. software metrics), software metrics are only 

delivered to the local adaptation engine when required (i.e. during decision making).  

On the other hand, not only do newly collected resource metrics need to be propagated to 

the local adaptation engine for triggering purposes, they also need to be delivered to remote 

adaptation engines in order to facilitate decision making on remote machines. This require-

ment exists because the proposed adaptation algorithm (presented in section 3.2) requires re-

source metrics concerning destination (i.e. remote) hosts for predicting performance im-

provement. Specific criteria are used to reduce the overhead of these inter-host propagations, 

as described in section 4.2.3.  



CHAPTER 4. METRICS MANAGEMENT  

76 

 

Since exchanging metrics between hosts (e.g. through multicasting) is non-trivial due to 

the possible overloading of the network as well as the ability of the individual node to receive 

the metrics, in this work, metrics are delivered to remote adaptation engines via a centralised 

context server [16]. In this approach, collected resource metrics are propagated from the par-

ticipating host managers to the context server. At a later stage, an adapting host retrieves the 

metrics (of other nodes) from the context server using the pull mechanism, which as men-

tioned in section 2.4.3, offers the benefit of deferring the delivery of metrics until requested, 

thereby preventing unnecessary data transfer. 

Note that the pull mechanism is also applied for the delivery of software metrics (from the 

containing runtime to the local adaptation engine) since these metrics are not required until 

the decision making phase. In contrast to resource metrics, software metrics are not required 

for decisions made on remote hosts, and thus not delivered to the centralised context server. 

4.2.3 Management Criteria 

In the proposed metrics solution, criteria are used to specify the interval of timer-initiated 

measurement (e.g. for collecting resource metrics) in order to control the frequency of such 

measurement. Furthermore, depending on the characteristics of the deployed application, fre-

quency-based criteria can be used for controlling expensive measurement such as that for col-

lecting SSP, so that such measurement occurs every N
th

 opportunity as opposed to every pos-

sible opportunity (i.e. every method invocation). 

Criteria are also used for disabling the propagation of software metrics which as ex-

plained in section 4.2.2, will instead be explicitly pulled upon request (by the local adaptation 

engine). In addition, criteria are used to control the delivery of resource metrics to the central-

ised context server, in which case, the criteria serve to improve communication efficiency by 

delivering a family of metrics as a collective group rather than individually. For example, 

HPU (Host Processor Usage) and HNU (Host Network Usage) are always delivered together 

(i.e. considered as the same family) because both are host-related metrics and are collected at 

the same interval (e.g. every 5 seconds). 

By using criteria to control operations (e.g. delivery to the adaptation engine) that are spe-

cific to the adopted adaptation solution, switching to a different solution can be achieved with 

minimal effort. For maximum flexibility, the decision of whether adaptation should be trig-

gered is also handled by a criterion (i.e. initiation criterion), which first checks the absolute 

and relative availability of the system resources (e.g. bandwidth, CPU) against the initiation 

thresholds configured by the application deployer. Absolute availability refers to the level of 

the availability of a particular resource, whereas relative availability refers to the difference 

in the availability between the current and the previous measurement (i.e. the degree of 
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change in availability). In either case (i.e. absolute or relative), the threshold can be defined 

either as a concrete value (e.g. 100Kbps) or as a percentage (e.g. 10%). Due to the heteroge-

neity of target platforms being a strong motivator for application adaptation, the use of per-

centage-based thresholds is generally more appropriate. 

If resource availability is low such that the thresholds were reached, the initiation crite-

rion then determines whether the relevant node has the privilege (in the form of a shared to-

ken or lock) for performing adaptation. The adaptation token/lock serves to ensure that adap-

tation is performed in a consistent state (i.e. no other host is adapting at the same time), which 

could otherwise negatively impact on the accuracy of the result/decisions. The lock is ex-

changed upon demand, in which case, the requesting node will wait until the lock has been 

released by an adapting node, i.e. a remote node that is holding the lock. Once the lock has 

been acquired, an adaptation thread is launched in order to promote concurrency by ensuring 

that decision making is carried out independently from the metrics management activities and 

application execution. 

4.3 Implementation 

In contrast to the implementation of adaptation algorithms, which as mentioned in Chapter 3 

is straight forward, the implementation concerning the metrics management solution pro-

posed in this chapter, presents technical issues which are to be addressed in this section. In 

particular, the discussion is concerned with how the collection, representation, and delivery 

of metrics required by the proposed adaptation algorithm, is implemented in a Java-based 

mobile object framework: MobJeX [147]. Note that although it is not the focus of this thesis 

to address the management of metrics required by the original algorithm, such functionality 

was also implemented (in MobJeX), in order to facilitate the empirical evaluation presented 

in Chapter 5. The involved implementation effort is minimal particularly due to the flexibility 

and generality of the solution as well as due to the similarity between the original and the 

proposed algorithms. 

To begin, a brief description of the MobJeX framework is provided as follows. MobJeX 

consists of two distinct support components for application adaptation: offline and online 

support. The offline support deals with compile-time injection of adaptation capabilities into 

an ordinary Java application, as discussed further in Chapter 7, which addresses the automa-

tion of such injection. On the other hand, the online support, which is implemented as mid-

dleware containers (e.g. host managers, runtimes), manages runtime operations such as object 

migration. Note that prior to this work, the provided support (i.e. both offline and online) was 

limited in that there was not support for adaptation as well as complementary functionality 

such as management of metrics and injection of adaptation capabilities. 
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MobJeX allows application objects to migrate from one machine to another as long as 

each participating machine runs an instance of the host manager, which in MobJeX is known 

as a service. A service is the main contact point of an individual machine, thereby enabling 

discovery/communication with other services and with the context server which is located in 

a centralised middleware component called the system controller. As is the case with the host 

manager described in section 2.5.1, a service handles the life cycle of all the runtimes running 

on the host. In MobJeX however, a runtime has the role of managing application managers, 

rather than directly managing mobile objects as shown in Figure 4-6, which provides an ex-

ample of relationships between all the components involved in a deployed MobJeX system. 

 
Figure 4-6. An Example of MobJeX Architecture 

 

As the name suggests, the main role of an application manager is to administer a particu-

lar application, more specifically, the mobile objects (also known as mobjects) belonging to 

that application. The introduction of application managers allows multiple applications to 

execute independently (i.e. on separate threads, using different sets of classes) in the same 

runtime/process, thereby increasing efficiency at the expense of stability since a failed proc-

ess will crash multiple applications. Note however that this flexibility is not exploited by the 
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proposed adaptation algorithm, since the algorithm as well as some of the adopted metrics 

such as RPU (Runtime Processor Usage), assume that the represented runtime is equivalent to 

the application itself, as discussed in section 3.2.2. 

As is the case with the solution based upon system modelling discussed in section 4.2, the 

relationships between MobJeX components mentioned above, which include services, run-

times, application managers, and mobjects are modelled as interconnected model entities. 

Similarly, the relationships between the different components also dictate how metrics are 

propagated. For instance, metrics are pushed from a mobject (i.e. mobile object) to its imme-

diate parent (i.e. an application manager) which further propagates the metrics as discussed in 

section 4.3.2. 

In order to support various adaptation solutions, different implementations of metric-

related objects (e.g. metric containers and metrics) need to be provided and grouped accord-

ing to their relevance to a particular algorithm since certain objects are not applicable to other 

algorithms (e.g. IFMetric is used in the proposed algorithm but not the original algorithm). 

As such, in order to facilitate the grouping of related objects, the instantiation of these objects 

is managed using the abstract factory pattern [60], in which a separate factory is imple-

mented for each supported adaptation solution. Each factory is responsible for creating ob-

jects (e.g. metrics, metric containers, criteria) that are relevant to the targeted adaptation solu-

tion. Since these factories implement the same interface, switching to a different adaptation 

solution can be done simply by swapping the chosen factory object (assuming that the im-

plementation of the replacement solution exists). 

Implementation issues related to metrics collection, metrics delivery, management crite-

ria, and metrics representation are addressed in section 4.3.1, 4.3.2, 4.3.3, and 4.3.4, with par-

ticular emphasis on portability, code maintainability, metrics accuracy, and runtime effi-

ciency/scalability. 

4.3.1 Metrics Collection 

For maximum portability, as much as possible the chosen implementation techniques should 

utilise the functionality provided by Java (i.e. JVM and API) rather than that specific to cer-

tain platforms (e.g. operating systems). However, certain measurements such as those for ob-

taining host metrics are reliant on the underlying support provided by the OS (Operating Sys-

tem). For example, in the case of MobJeX, when running on Windows XP or later, resource 

information is acquired from the operating system using a native C/C++ API called “per-

formance monitoring”. For consistency, the unit of the acquired information (e.g. in seconds) 

might need to be converted into a specific unit used by other metrics (e.g. in milliseconds). 

Although the measurement itself uses a non-portable native library, the initiation of the 
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measurement can be triggered using a standard Java timer, which is portable across various 

platforms. 

The collection of metrics involving native support relies on Java Native Interface (JNI) to 

bridge the framework (i.e. implemented in Java) and the operating system (i.e. native code).  

The framework code applies the bridge design pattern [60] to accommodate the varying met-

rics (e.g. HPU, HNU) as well as the different implementations for the supported operating 

systems (e.g. Windows, Linux). This approach allows new resource metrics to be introduced 

while also enforcing that relevant functionality be implemented for all of the supported oper-

ating systems. 

The above solution applies to most host-related resource metrics with the exception of 

HPC (Host Processor Capacity), the collection of which requires human involvement due to 

the need for obtaining the relevant measures in instructions-per-second, which is more uni-

versal/cross-platform than widely available information such as cycles-per-second, as argued 

in section 3.2.2.1. Note that such a requirement does not affect the automation of adaptation 

since as mentioned in section 4.2.1.1, HPC is considered as a static metric and therefore only 

needs to be collected once, prior to application execution. The collection is achieved by 

means of calibration, whereby the duration of the execution of a simple program/method (e.g. 

consisting of an empty loop) is measured. Note that the more variety of instructions included 

in the program/method (instead of just an empty loop), the more accurate the approximation 

is, due to heterogeneity. Next, the approximated total executed instructions (in this case, the 

loop count), are divided with the duration in order to obtain the number of instructions that 

the processor is capable of executing per time unit (e.g. second). 

Certain runtime-related resource metrics such as RMU (Runtime Memory Usage) and 

RMC (Runtime Memory Capacity) can be obtained from the JVM and thus imply a platform-

independent implementation. On the other hand, a more complicated solution is required for 

collecting RNU (Runtime Network Usage) since even in the latest Java version (i.e. Java 6 as 

of this writing), the support for directly obtaining the network usage of a runtime is not avail-

able. The adopted solution involves replacing the default sockets used by Java RMI (Remote 

Method Invocation) with custom sockets for measuring the incoming/outgoing bytes that are 

transferred to/from the runtime. The feasibility of this solution relies on the fact that all the 

network communications that are performed by a MobJeX runtime, including those per-

formed by the mobjects (mobile objects) executing inside the runtime, are achieved using 

Java RMI. While framework functionality (included in the middleware and the injected capa-

bilities) can be enforced such that RMI is always used for remote communication, the appli-

cation itself (which was developed independently) may use a different technique (e.g. com-

municating directly through sockets), in which case, the measured network usage will be in-

accurate, i.e. lower than the actual usage. 
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The custom sockets (i.e. byte-measuring sockets) are created transparently from the RMI 

framework using the factory method design pattern [60]. The pattern is adopted in RMI to 

allow the specification of user-defined client and server socket factories, which are responsi-

ble for creating the custom client/server sockets. As shown in Figure 4-7, a client socket is 

used to monitor the outgoing traffic of the runtime, whereas a server socket monitors the in-

coming traffic. The results of the monitoring (i.e. in byte lengths) are accumulated and tem-

porarily stored in the relevant metric object (i.e. RNUMetric), which at every fixed interval, 

will divide the accumulated number with the interval in order to obtain the latest sample of 

RNU. 

 
Figure 4-7. RNU Collection Using RMI Socket 

 

As illustrated in Figure 4-7, a decision must be made regarding which type of socket (i.e. 

standard or custom socket) is used depending on the components involved in the communica-

tion. Custom sockets are used only for runtimes and their child components including appli-

cation managers and mobjects (since the aim is to measure the network usage of runtimes). 

On the other hand, non-runtime components such as services (i.e. host managers) and system 

controllers use a standard RMI socket. 

Since the collection of RNU utilises standard functionality provided by the JVM, the solu-

tion should be applicable to various JVMs and different operating systems. In comparison, 

the collection of RPU (Runtime Processor Usage) is platform-dependent, since it requires ac-

cess (i.e. through JNI) to the process information provided by the OS. A possible improve-

ment to this solution is to instead use the thread-level processor usage information provided 

by Java Management Extensions (JMX). Even though the finer-grained information (i.e. at 

thread level) could be beneficial (as explained in section 3.2.2.2), the solution involves higher 

complexity due to the need for identifying all the execution threads that are related to a par-

ticular application. In practice, this proves difficult due to the transient nature of certain 

threads such as timer threads and as such this solution has not been implemented in MobJeX. 

With regard to software metrics, the metrics required by the proposed solution are those 

related to certain mobjects and their constituent methods. These include SSO (Size of Serial-

ised Object), OMS (Object Memory Size), PUT (Processor Usage Time), SSP (Size of Serial-

Runtime_2 Runtime_1 Non-runtime 

Standard RMI server socket Custom (RNU measuring) server socket  

Standard RMI client socket Custom (RNU measuring) client socket  
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ised Parameters), and IF (Invocation Frequency). Disregarding their initiation (i.e. time-based 

versus application-based) and location (i.e. mobject versus method), SSO and SSP are similar 

in that the relevant measurement is performed using object serialisation. The measurement is 

platform independent because it only makes use of the standard serialisation functionality 

provided by Java, in which the measurement subject (i.e. the measured object) is serialised 

through a custom stream object, which has the role of keeping track of the total number of 

bytes passing through the stream. Note that any other objects directly referenced by the 

measured object (i.e. not via proxies) are also included in the measurement. 

In the case of SSO, the measurement subject is a mobject, whereas in the case of SSP, the 

subject includes zero or more objects depending on the communicated messages, i.e. the pa-

rameters and return values. In fact, the measurement subject of SSP never includes a mobject 

due to the constraint in remote communication in which a proxy should be passed (as pa-

rameters or return values) in place of the proxied object (i.e. mobject). 

PUT and OMS are similar in terms of the portability of the measurement techniques since 

both require certain support from the JVM that is not universally available. The collection of 

PUT is achieved using Java Management Extensions (JMX) technology, whereas obtaining 

OMS requires certain instrumentation functionality provided by the JVM Tool Interface 

(JVMTI). Both technologies are only available in newer versions of JVM (i.e. Java 5 or 

above), but are not supported in the older versions or in cut-down implementations such as 

those targeted for mobile devices (e.g. IBM J9), in which case alternative techniques would 

be applied as follows. 

The alternative for collecting OMS, which involves using SSO as a substitute metric, is 

less favourable than the main approach which uses JVMTI for two reasons. Firstly, SSO, 

which reflects the serialised size of the object, only provides an approximation of the in-

memory size (OMS). Secondly, the tasks involved in measuring the serialised size of an ob-

ject are less efficient than those involved in measuring its memory size. Note that the substi-

tution also works the other way, meaning that in the presence of the required JVMTI support, 

OMS could be used as a substitute to SSO as a trade-off between efficiency and accuracy. 

In the case of PUT, a native implementation similar to that used for collecting RPU can 

be used (in the absence of JMX support). This produces less accurate results compared to the 

JMX-based implementation because the measurement result reflects the usage of the entire 

runtime/process rather than the executing thread (i.e. the thread in which the method exe-

cutes). Nevertheless, the inaccuracy will not have much impact on the adaptation of sequen-

tial applications due to the minimal resource contention from other threads, as mentioned in 

section 3.2.2.2. 

Other than the issues that have been addressed in section 4.2.1.3, the implementation of 

the IF (Invocation Frequency) collection is fairly straight forward, except for a potential scal-
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ability issue with the application of a timer-based approach. For instance, assigning a timer to 

exclusively handle the collection of IT concerning a particular method could result in a large 

number of timer threads depending on the size (i.e. number of methods) of the application. 

Such an overhead was in fact identified during the preliminary runs of the empirical overhead 

evaluation presented in section 5.4. Consequently, the preferred approach, which was subse-

quently implemented as part of this work, is to employ a pool of shared timers, each of which 

handle a certain number of methods (e.g. 100 methods). The use of multiple timers (which 

run in separate threads) serves to distribute the load in order to reduce the average waiting 

time of the involved operations. This solution can be further extended to support other timer-

based metrics such as OMS and SSO, as long as the relevant measurement occurs at the same 

interval. 

4.3.2 Metrics Delivery 

Since resource metrics are exchanged between adaptation engines (i.e. services) through the 

centralised context server (i.e. system controller), a mechanism to allow the discovery of the 

system controller and the participating services, is required. At present, MobJeX only sup-

ports a manual discovery mechanism whereby the application deployer should either provide 

the location of the services to the context server or provide the individual services with the 

location of the context server. 

The adopted push mechanism (e.g. for delivering software metrics to the local adaptation 

engine) is implemented using a queue-based approach, in which new metrics are appended to 

a queue for delivery. The queued metrics are then retrieved by a dispatcher, which propagates 

the metrics one at a time in a first-come-first-serve manner. The dispatching operation runs in 

an independent thread in order to minimise the performance impact of metrics delivery (e.g. 

caused by communication overhead) on application execution. In comparison to the push so-

lution, the pull implementation is straight forward as it is achieved via direct remote method 

calls using RMI. 

In the fine-grained delivery approach (described in section 4.1.2), delivered metrics 

should be accompanied by certain metadata in order to facilitate the reconstruction of missing 

information (e.g. the relationship between metrics, metric containers and model entities). At 

the minimum, the metadata should consist of the following information (or something 

equivalent): 1) a URI (Uniform Resource Identifier) used for identifying the measured com-

ponent (e.g. a specific object), 2) a class reference (i.e. java.lang.Class) to identify the 

measured attribute (e.g. SSP), and 3) (if applicable) a method reference (i.e. 

java.lang.Method) to identify the method in which the metric was collected, for the pur-
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pose of calculating metrics concerning the same method (e.g. multiplying IF and SSP of a 

particular method to get the interaction intensity of that method). 

4.3.3 Management Criteria 

All the criteria mentioned in section 4.2.3, which include those for controlling metrics collec-

tion and metrics delivery, have been implemented in MobJeX as normal Java classes which 

implement certain predefined interfaces. The implemented criteria also include other basic 

criteria such as the always criterion which indicates that the operation should always be car-

ried out or the never criterion which permanently prevents the execution of the relevant op-

eration.  

The criteria approach was designed and implemented in such a way that different criteria 

can be selectively used for different components (e.g. individual mobjects) and different op-

erations. For instance, the collection of PUT might use an always criterion due to its rela-

tively low overhead, whereas SSP might apply a frequency-based criterion to limit the meas-

urement frequency to occur once every 5 invocations. A factory is also provided to control 

the instantiation of criteria (in terms of determining which criterion is used for which compo-

nent/operation) based on the configuration specified by the application deployer. 

4.3.4 Metrics Representation 

The implementation of the proposed metrics solution allows different strategies (e.g. moving 

average, standard average) to be used for representing various metrics. This is achieved by 

creating a representation object for every metric object (e.g. RPUMetric), which as mentioned 

in section 4.1.1, serves to encapsulate the functionality related to the corresponding metric 

(e.g. RPU). Nevertheless, in the specific case of MobJeX, an exception is applied to the im-

plementation of SSP and IF, which for efficiency reasons, is combined into one single class 

due to the cohesiveness of the related operations (e.g. collection, calculation, delivery). 

The different types of representation described in section 4.1.4 have been implemented in 

MobJeX. These include: basic representations with no temporal information (i.e. only uses 

the last measured value); representations using standard average (i.e. arithmetic mean); and 

representations using Exponentially Weighted Moving Average (EWMA). The implementa-

tion of these representations is efficient both computationally and space-wise, since none of 

them requires the maintenance of metrics history. 

Since the different implementations follow the same interface (i.e. method signatures), 

they can be swapped with each other without affecting the manner in which the adaptation 

engine processes/uses the metrics. In addition, a factory method pattern [60] was used to cen-
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tralise the creation of the representations, thus enabling easy switching between different sets 

of representations. 

The evaluation of the metrics management solution presented in this chapter as well as the 

adaptation algorithm proposed in Chapter 3, will be presented in the next chapter, which fo-

cuses on aspects such adaptation effectiveness, efficiency, and scalability.   
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Chapter 5 .  Adaptation Evaluation 

As discussed in section 4.3, both the original and the proposed adaptation algorithms (pre-

sented in Chapter 3) as well as complementary functionality, such as that related to metrics 

management and adaptation initiation (as addressed in Chapter 4), have been implemented in 

a mobile object framework MobJeX in order to facilitate the empirical evaluation presented 

in this chapter. Sections 5.2-5.4 present the experiments undertaken using the framework to 

1) validate the behaviour of the proposed decision making algorithm, 2) evaluate its effec-

tiveness in terms of improving the performance (i.e. execution duration) of the adapted appli-

cation, and 3) evaluate the overheads of decision making and metrics management in terms of 

their effect on application performance and system resource utilisation (i.e. processor, net-

work, memory).  

Note that the rest of this chapter is structured such that experimental materials and proce-

dure that are common to certain experiments are presented in a section preceding the discus-

sion of the experiments. On the other hand, additional materials and procedure which are spe-

cific to a particular experiment are presented as a sub-section of the relevant discussion. The 

experimental materials and procedure applicable to all experiments are presented in section 

5.1 below.  

5.1 Common Experimental Materials and Procedure 

The experimental materials used to execute all experiments described in this chapter consist 

of machines with quad-core CPUs (i.e. Intel Q9550) clocked at 2.83 GHz, connected via 100 

Megabits per second (Mbps) Ethernets. However, for the majority of the experimentation, 

multi-core capability was disabled through BIOS settings, because the existence of multiple 

cores reduced the predictability and reproducibility of experiments as explained further in 

section 5.3. The exception to this was the last phase of the experiment presented in section 

5.3.4 and the overhead evaluation presented in section 5.4, in which multi-core capability was 

enabled in order to show its performance implication in terms of enabling parallel execution 

of application-specific as well as adaptation-related operations (e.g. decision making, metrics 

delivery) on multiple cores. 

Each machine ran 32-bit Windows XP Service Pack 3 and all test applications were de-

veloped in Java and executed using the JVM from the Sun Java SDK version 1.6.0_17 distri-

bution (the newest stable version as of this writing). Although disabling the Just-in-time (JIT) 

compilation feature of the JVM theoretically allows more consistent execution, this was not 

done due to an identified bug, which as documented in [168], would result in fluctuating exe-

cution duration over successive execution runs. Consequently, the experiments were con-
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ducted using the default JIT compilation mode, in which methods are compiled into native 

code at runtime in a selective manner, i.e. depending on how many times the relevant meth-

ods execute.  

Rather than containing real-world functionality, test applications were written such that 

they exhibited deterministic characteristics (e.g. pre-defined interaction behaviour) in order to 

facilitate the relevant validation or evaluation (e.g. objects exhibiting intensive remote com-

munication should favour machines with more network bandwidth). The specific characteris-

tics are discussed in detail in the relevant section (i.e. 5.2.2 or 5.2.3). 

The following experimental procedures are common to all experiments. Firstly, the test 

application (used in a particular experiment) was converted into an adaptive application 

through capability injection, which as addressed in Chapter 7, involved code transformation. 

Such injection was performed at deployment time using the support from the MobJeX 

framework developed as part of this thesis (as discussed in Appendix C). On the other hand, 

the execution of the injected application was facilitated by middleware components (also a 

part of the framework), which as mentioned in section 2.5.1, includes services (i.e. host man-

agers) and runtimes. 

Prior to execution, adaptation behaviour was configured according to the specific charac-

teristics of the experiment. The performance improvement indicator, which as introduced in 

section 3.1, refers to the extent to which adaptation decision making should favour perform-

ance improvement as the goal of adaptation, was set to a maximum value of 1. On the other 

hand, other indicators, which include those related to balancing of processor, network, and 

memory load, were set to 0 to indicate that the sole objective of the adaptation concerned in 

this experimentation is performance improvement. 

The migration cost calculation formula (which was addressed in section 3.2.2.3) was con-

figured such that migrating a 1MB object over a 100Mbps network link would offset per-

formance improvement by 2%. Such an offset was chosen since it was sufficiently large that 

the difference in migration priority (i.e. sequence) between objects of small and large sizes 

was noticeable, as demonstrated in section 5.2.2. 

The Host Processor Capacity (HPC) metric, which is required for adaptation, was col-

lected using the calibration technique described in section 4.3.1, which revealed that the 

CPUs (or more precisely each CPU core) used in this experimentation, can execute up to ap-

proximately 700 millions of Java instructions per second. 

5.2 Decision Making Behaviour Validation 

The experiments in this section aim to verify the correctness of the object placement behav-

iour of the proposed algorithm in terms of conformance to a set of axioms, which express the 
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behaviour of the proposed algorithm in cases where it is expected to differ from the original 

due to the improvements (e.g. changing existing metrics, adding new metrics) applied to the 

original score calculation formulas, as presented in section 3.2.  

The experiment concerning decision making pertaining to the processor and memory 

availability of machines is presented in section 5.2.2, whereas validation involving network 

availability is conducted as a separate experiment (i.e. section 5.2.3) in order to isolate the 

associated complexity, thus allowing more accurate analysis of decision making behaviour.  

Although not the primary focus, the first experiment (section 5.2.2) also facilitates the 

verification of the correctness of adaptation-related functionality, e.g. to ensure that adapta-

tion is: 1) triggered at the appropriate time (e.g. when resource availability is low) and 2) per-

formed exclusively (by a single adaptation engine at any one time) in order to prevent con-

flicting decisions, as described in section 4.2.3. However, such verification will not be dis-

cussed further since not only is it implementation-specific, but the associated process (which 

involves analysis of log statements) is straight forward. 

The experimental procedure which is common to the experiments presented in sections 

5.2.2 and 5.2.3, are discussed in the following section. 

5.2.1 Experimental Procedure for Behaviour Validation 

In order to explicitly demonstrate the behavioural difference between the original and the 

proposed algorithms, each of the concerned experiments (presented in sections 5.2.2 and 

5.2.3) was executed in two adaptation modes: one using the original algorithm and another 

involving the proposed algorithm.  

Resource metrics were pre-scripted in order to control the characteristics (in terms of re-

source availability or usage) of the execution environment, whereas software metrics (i.e. 

those related to application characteristics) could be automatically collected without scripting 

(using the metrics management solution presented in Chapter 4) since application behaviour 

was controlled by the test application having been purposely written to exhibit specific char-

acteristics (e.g. execute for X seconds) as elaborated in sections 5.2.2.1 and 5.2.3.1.  

Timer-based measurement, which applies to the collection of resource metrics (the values 

of which were pre-scripted in this experiment), was set to be performed every 1 second, 

thereby implying adaptation (which is triggered by the detection of low resource availability) 

would be executed at most once every second. This frequency is sufficiently high for adapta-

tion to be executed at least once before the application finishes executing. 

Certain variables (as listed below) were controlled in order to facilitate the prediction and 

validation of specific decision making behaviour (for example the sequence in which objects 

would get migrated) in a reliable and reproducible manner. 
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o Instead of allowing adaptation to be performed at any point in application execution 

(which is the case in regular execution since decision making runs independently of the 

application thread), synchronisation was used to ensure that prior to each occurrence of 

decision making, all mobile objects had been executed a pre-defined numbers of times 

(which might vary between objects). This was done so that decision making behaviour 

could be accurately assessed because object characteristics were known at the time adap-

tation decisions were made. 

o The collection of software metrics involved the most comprehensive configuration, in 

which metrics were collected at every possible opportunity rather than selectively (as 

explained in section 4.1.3), since the focus was on traceability (e.g. X invocations imply 

exactly X occurrences of software-metrics collection) as opposed to efficiency.  

o Metrics temporality (section 4.1.4), which was concerned with weighting the importance 

of metrics depending on their age, was ignored/disabled since this would otherwise pre-

sent additional variables which would unnecessarily complicate behaviour prediction.  
 

The adaptation initiation threshold was specified such that adaptation was triggered when 

the availability of a particular resource was equal to or less than 80%. Such a threshold was 

chosen because it is relatively low compared to the ideal condition of 100% availability that 

adaptation might bring performance benefit. At the same time the threshold is not so low that 

adaptation agility (which refers to how fast the application adapts to changes) is compro-

mised. Such configuration was shown to be appropriate in the experiment presented in sec-

tion 5.3, which suggested that there was no notable performance improvement (gained from 

adaptation) when CPU availability was higher than 80%. 

The adaptation improvement score threshold for the migration of a particular object (as 

explained in section 3.2.2.4) was set to 5%, thereby implying expected minimum improve-

ment of 25-35% assuming that all mobile objects of the test applications (which comprise 5-7 

mobile objects) are adapted/migrated. Such a threshold was chosen because 25-35% repre-

sented sufficiently significant (and thus realistic) expected improvement, although in practice, 

the gained improvement is less (i.e. < 25-35%) due to the associated overhead (of decision 

making, metrics management, etc.) and due to the fact that, some objects might not migrate 

(thus not gaining 5% improvement per object) because of their low resource requirements. 

The chosen threshold was also low enough that significant objects (i.e. those with relatively 

high resource requirements) would eventually be offloaded to other machines (with better 

conditions), thereby facilitating comprehensive analysis of decision making behaviour in 

terms of migration priority (i.e. the sequence in which objects migrate) and destinations (i.e. 

to which machine a particular object migrates). 

The correctness of the tested behaviour was verified through analysis of the produced log 

statements (e.g. calculated decision-making scores) as well as observation of migration 
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events via a graphical administration interface which shows up-to-date information (e.g. loca-

tion, state) about objects and machines. 

5.2.2 Validation Pertaining to Processor and Memory Availability 

This experiment aims to demonstrate correct object placement in a scenario involving objects 

and machines with heterogeneous processor and memory utilisation (network is covered in 

section 5.2.3). Not only does this experiment demonstrate that the proposed algorithm con-

forms to the axioms defining the expected object placement behaviour (listed below), but it 

also provides comparison with the original algorithm, as analysed in section 5.2.2.2. 
 

Axiom 1: When comparing two runtimes as a possible destination for an object, assuming 

equal resource availability between machines, the runtime with higher resource 

utilisation is favoured because in sequential applications, the resource utilisation of 

a runtime (which reflects the utilisation of the application objects currently man-

aged by the runtime) contributes to the overall amount of resources that are avail-

able to the application, as explained in section 3.2.2.2. Note that this axiom assumes 

the case in which each runtime manages a single rather than multiple applications, 

because the support for the latter is not commonly available in existing frameworks, 

as mentioned in section 3.2.2.2. 
 

Axiom 2: Objects never migrate to a runtime which does not have sufficient memory despite 

its superiority over other machines with regard to the availability of other resources 

(e.g. CPU). This is due to the consequential execution failure discussed in section 

3.2. 
 

Axiom 3: Decision making favours migration of objects with CPU-intensive methods, regard-

less of execution duration which is affected by non-CPU operations, such as thread 

suspension, I/O accesses, etc., as addressed in section 3.2.2.1. 
 

Axiom 4: The higher the cost of migrating a given mobile object (i.e. larger size), the less 

likely the object will migrate, as explained in section 3.2.2.3. 

5.2.2.1 Experimental Materials  

The specific materials used in this experiment, which include a synthetic test application and 

machines of particular configuration, are described below. 

 Table 5-1 describes the unique characteristics of each of the five mobile objects in the test 

application. 
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Mobile Object CPU Usage Intensity In-memory Size 

M1 High Small 

M2 High Large 

M3 Low Small 

M4 Low Large 

M5 Vary gradually (low to high) Small 

   

Where: High = 100% CPU usage 

Low = 0% CPU usage  

Large = 10 MB 

Small = 1 KB 

Table 5-1. Objects with Various CPU and Memory Requirement 
 

 

Mobile objects M1-M5 are executed in sequence, for a number of iterations (i.e. 10) 

in order to allow sufficient time for the application to adapt. In each iteration, each object 

executes for the same amount of time (i.e. 1 second), but the intensity of the execution 

varies in terms of CPU usage (as shown in Table 5-1). This is done in order to facilitate 

the validation of the decision making behaviour stated in axiom 3. CPU usage intensity is 

controlled by interleaving two operations: the execution of a sequence of CPU-intensive 

operations, and the suspension of the executing thread (i.e. switching the thread into 

sleep/idle mode). As such, the longer the execution of the operations (relative to the 

thread sleep time), the higher the resulting CPU usage intensity (of a method/object).  

Note that execution frequency was kept the same for all objects to avoid affecting 

network resource usage, which is instead the focus of section 5.2.3. Furthermore, all of 

the methods are void (no parameters or return values), again to avoid affecting network 

resource usage. In terms of size, application objects are split into two groups. One group 

represents large objects with the size of 10 MB, whereas the other represents smaller ob-

jects (i.e. 1 KB). Rather than emulate real-world execution scenarios, in which 1 KB is 

not necessarily considered small, such variation serves to facilitate the validation of be-

haviour concerning the prevention of migration to memory-constrained target runtimes 

(axiom 2) and prioritising migration based on estimated cost derived from object size 

(axiom 4). 

 Table 5-2 describes the unique characteristics of the machines involved in this experi-

ment. 

Machine Host Processor 

Availability (HPA) 

Runtime Processor 

Utilisation (RPU) 

Runtime Memory 

Availability (RMA) 

S Vary (high to low) High High 

T1 Low High High 

T2 High Low High 

T3 High High Low 
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T4 High Medium High 

    

Where: High = 50% of HPC 

Low = 25% of HPC 

High = 50% of HPC 

Medium = 35% of HPC 

Low = 25% of HPC 

High >= 10MB 

Low < 10MB 

 HPC = Host Processor Capacity  
 

Table 5-2. Execution Environments with Varying CPU and Memory Availability 
 

 

The source machine S (the machine in which all objects of the test application initially 

executes) is connected to target machines: T1-T4. The resource availability of these ma-

chines is varied in specific ways (as shown in Table 5-2) in order to present a meaningful 

scenario for validating the concerned adaptation behaviour as described below. 

As shown in the second column of Table 5-2, the CPU availability of the source ma-

chine is configured to gradually decrease during application execution, in order to help 

verify that adaptation is triggered accordingly. The gradual decrease also serves to pro-

vide sufficient time for the application to execute and metrics to be collected before adap-

tation gets triggered. In contrast, each target machine is configured with a fixed (i.e. un-

changed) CPU availability in order to enable more accurate prediction of and more repro-

ducible decision making behaviour. CPU availability is varied through the manipulation 

of CPU usage, which is achieved using a technique similar to the aforementioned ap-

proach for varying the CPU usage intensity of objects, i.e. by interleaving CPU-intensive 

operations and thread suspension. 

As can be seen from the third column (of Table 5-2), the manipulation of CPU usage 

also applies to the runtime executing on each machine, in order to enable validation of the 

behaviour stated in axiom 1. Runtime CPU usage for T2-T4 is varied in order to demon-

strate that the proposed algorithm favours one over the other, despite the equal CPU 

availability of the relevant machines (i.e. High HPA). Note that the variation of RPU dif-

fers from real-world scenarios, in which case the CPU utilisation of a runtime is directly 

influenced by objects (of the test application) executing on the runtime. Additionally, in 

practice, since all objects initially execute on the source machine/runtime, the CPU usage 

of target runtimes should be insignificant (or even zero if middleware management tasks 

are not accounted for), which is not the case in this experiment since as mentioned in sec-

tion 5.2.1, resource metrics are pre-scripted. 

The last column of Table 5-2 shows the different memory availability of runtimes, 

which serves to verify that in the proposed algorithm, objects should never migrate to 

runtimes that do not have sufficient available memory, as stated in axiom 2. 
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5.2.2.2 Analysis of Decision Making Behaviour 

The outcome of the experiment conducted using the proposed algorithm demonstrates that the 

exhibited behaviour conforms to all the previously stated axioms. Table 5-3 summarises the 

outcome by outlining the relative sequence in which objects are migrated (column 1) and the 

destination of each object (column 3). The following discussion, the primary purpose of 

which is to explain the experimentation outcome, is complemented with a brief description of 

the behaviour that is exhibited when the original algorithm is used. 
 

Order Object Machine 

1 M1 T3 

2 M2 T4 

3 M5 T3 

Never migrate M3 N/A 

Never migrate M4 N/A 

Table 5-3. Object Placement Based on CPU and Memory Availability (Proposed Algorithm) 
 

 

As stated in axiom 1, the destination T3, which has high HPA and RPU, is perceived to 

have the highest CPU availability (i.e. essentially 100% assuming there is no interference 

from background processes). This is verified through the migration of CPU-intensive objects 

with low memory requirement (i.e. M1 and M5) to T3. In comparison, using the original al-

gorithm, objects are migrated to either T2, T3, or T4, because these destinations are perceived 

to have the same CPU availability due to the limitation described in section 3.2.2.2, in which 

internal load (i.e. the load contributed by the application itself or its runtime) is ignored. Such 

a limitation results in suboptimal decision making and overhead caused by unnecessary (or 

even ping-pong) migrations, as demonstrated later in the results from experiments involving 

live adaptation (i.e. using real metrics) presented in section 5.3.2 and 5.3.3. 

The behaviour stated in axiom 2 is validated through the fact that M2, which has high 

memory requirement, is migrated to a runtime having sufficient free memory (i.e. T4) despite 

its slightly inferior CPU availability (when compared to T3). In contrast, memory constraint 

is not considered in the original algorithm and thus all objects (including M2) are migrated to 

either T2, T3, and T4 for the same reason mentioned in the preceding paragraph. Since run-

time memory availability is only simulated, execution failure (due to insufficient memory) is 

not exhibited in this particular experiment. 

According to axiom 3, objects of lower CPU intensity should have lower migration prior-

ity. This is demonstrated by the fact that M3 and M4 are not migrated, but rather remain in 

the source machine. Furthermore, the migration of M5 occurs at a later stage since its CPU 

requirement, which gradually increases, is not yet significant early in the execution. In con-

trast, in the original algorithm, all objects (including M3 and M4) are migrated because they 
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are perceived to be of the same significance due to their equal execution duration. Further-

more, the migration occurs in an implementation-specific order (i.e. the order in which ob-

jects get registered to the adaptation engine) as opposed to a more meaningful sequence (i.e. 

according to their significance with regard to how much improvement can be gained). 

The conformance to axiom 4 is demonstrated by the fact that M2, which is of larger size 

(than M1), migrates after M1. Such behaviour, which is due to the implied higher migration 

cost (thus having lower migration priority), is not exhibited by the original algorithm, which 

as mentioned, migrates objects in an implementation-specific order. 

5.2.3 Validation Pertaining to Network Availability 

This experiment aims to test object placement behaviour in a scenario involving varying net-

work bandwidth availability and object interaction intensity. The following axioms state the 

network-related behaviour that should be exhibited by the proposed algorithm. 
 

Axiom 1: The migration of an object that is CPU-bound favours machines with higher proc-

essor availability unless the object has high network bandwidth demand, in which 

case machines that can offer higher communication bandwidth are favoured. Note 

that communication bandwidth availability is defined as the lower availability of 

the two communicating machines since this represents the bottleneck of communi-

cation. 
 

Axiom 2: Objects exhibiting a higher degree of interaction with each other, i.e. higher Invo-

cation Frequency (IF) and larger Size of Serialised Parameters (SSP), are more 

likely migrated to the same machine (than those with a lower degree of interaction). 
 

Axiom 3: Varying the outgoing IF of a method, changes the ratio between its interaction and 

execution intensity, whereas varying its incoming IF does not. This is because out-

going IF only affects interaction intensity, whereas incoming IF affects both execu-

tion and interaction intensity as explained in section 3.2.1. 
 

Axiom 4: In the context of remote outgoing communication, varying IF by a particular factor 

is nearly although not equivalent to changing SSP by the same factor. More specifi-

cally, increasing IF results in higher interaction intensity because of the additional 

information (e.g. metrics) that is communicated in each invocation, as explained in 

detail in section 3.2.2.1. 

5.2.3.1 Experimental Materials  

The specific materials used in this experiment, which include a synthetic test application and 

machines of particular configuration, are described below. 
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 Figure 5-1 illustrates the specific interaction behaviour exhibited by individual mobile 

objects of the test application, wherein mobile objects are accessed (through method in-

vocation) by a stationary object S1 for a number of iterations (i.e. 10) in order to allow 

sufficient time for the application to adapt. 

 
Figure 5-1. Objects with Various Interaction Characteristics 

 

As mentioned in section 2.5, stationary objects are applied in real-world applications 

for objects such as those representing database connectors or GUI components. However, 

the role of stationary objects in this experiment, is to prevent a straight-forward adapta-

tion outcome in which all mobile objects are migrated to a single machine (for the pur-

pose of minimising network communication), thereby allowing the behaviour stated in 

axiom 1 to be validated. 

Despite executing the same CPU-intensive operation (for 200 milliseconds), the over-

all duration in which each mobile object executes may vary in each iteration, depending 

on how many times the object is accessed by the source object S1. The duration may vary 

further since each object accesses a target object (which might be located remotely) for a 

particular number of times during its execution. In most cases, the target object is another 

stationary object S2, except for the case of M7, which as depicted in Figure 5-1, accesses 

M1 instead, in order to demonstrate conformance to axiom 2.  

The interaction intensity between a particular mobile object and its source as well as 

target objects is varied in terms of number of invocations (which correlates with IF) and 

SSP in order to assist the validation of the behaviour stated in axiom 3 and axiom 4. The 

exact number of invocations and SSP of individual objects (which are shown in Figure 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

S1 S2 

High IF: 16 invocations 

Low IF: 4 invocations 

High SSP: 100 KB 

Low SSP: 25 KB 

Method duration: 200 milliseconds 

S: Stationary Object 

M: Mobile Object 
 

High1: High IF, Low SSP 

High2: Low IF, High SSP 

Low: Low IF, Low SSP 

 

Low High2 

Low High1 

High1 

Low 

Low 

Low 

High2 

High1 

Low 

High1 

Low 

High2 
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5-1) were chosen using a trial-and-error approach, the purpose of which is to find a good 

balance between interaction and execution intensity.  

For instance, the value 200 ms was chosen for Processor Usage Time (PUT) because 

this is considered relatively low compared to the average interaction intensity of mobile 

objects in this experiment, thereby allowing the impact of object interaction on decision 

making to be observed. Nevertheless, it is important that PUT is still high enough that ad-

aptation (and the resulting migration) will bring performance benefit. Another considera-

tion is that IF and SSP were specified such that: High IF × Low SSP == Low IF × High 

SSP (as detailed in Figure 5-1), in order to show that although the two interaction charac-

teristics are mathematically equal, decision making concerning these characteristics ex-

hibit a different outcome as stated in axiom 4. 

 Table 5-4 describes the characteristics of the machines involved in this experiment. 

Machine Host Processor 

Availability (HPA) 

Host Network 

Availability (HNA) 

S Vary (100% to 0%) Medium 

T1 High Low 

T2 Medium Medium 

T3 Low High 

   

Where: High = 80% of HPC 

Medium = 65% of HPC 

Low = 60% of HPC 

High = 75% of HNC 

Medium = 50% of HNC 

Low = 25% of HNC 
  

Table 5-4. Execution Environments with Varying CPU and Network Availability 
 

As is the case with the first experiment, the processor availability of the source ma-

chine S, which is the machine where all mobile objects are initially located, is set to 

gradually decrease in order to let metrics be collected before adaptation gets triggered. On 

the other hand, the target machines T1-T3 are configured to have unchanged CPU avail-

ability in order to promote predictability and reproducibility. 

CPU and network bandwidth availability across target machines are varied in certain 

ways (as shown in Table 5-4) in order to demonstrate conformance to the established axi-

oms. For example, “low” CPU is defined to be slightly lower than “medium” in order to 

show that T3 is effectively a slower execution platform than T2 despite its superiority in 

bandwidth availability, which does not offer additional benefit due to the bandwidth limi-

tation of other machines, as stated in axiom 1. As this fact is not accounted for in the 

original algorithm, a different behavioural outcome between algorithms is expected. Oth-

erwise, had “low” CPU been set to be significantly lower than “medium”, this behav-

ioural difference might not be noticeable. 
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5.2.3.2 Analysis of Decision Making Behaviour 

The summary of the experimentation outcome (using the proposed algorithm) is presented in 

separate tables based on the destinations (i.e. either T1 or T2) of mobile objects, because the 

sequence of object migration is deterministic only when the same destination is concerned, 

due to the difference between the two destinations in terms of the availability of resources 

(i.e. CPU and network) which are not directly comparable (e.g. X amount of CPU and Y 

amount of network are not necessarily equal to X network and Y CPU). Due to the significant 

difference in how interaction intensity is calculated in the original and proposed algorithms 

(as explained in section 3.2.1), the established axioms, which primarily target the proposed 

algorithm, cannot be used as a baseline for comparison between algorithms and therefore, a 

general comparison between the two algorithms is instead provided at the end of this section. 

Sequence Object Destination 

1 M1 T1 

2 M7 T1 

3 M3 T1 

Table 5-5. Migration of Objects to Target Machine T1 
 

The conformance to axiom 1 is demonstrated by the fact that objects that communicate in-

tensively with stationary objects S1 and S2, which include M4-M6, are migrated to T2 (as 

shown in Table 5-6), because T2 is (correctly) perceived to be the most suitable destination 

due to its higher bandwidth availability compared to T1 and due to the fact that the extra 

bandwidth provided by T3 cannot be exploited (because the limited bandwidth of T1 and T2 

is a bottleneck in the communication with T3). 

Sequence Object Destination 

1 M2 T2 

2 M4 T2 

3 M5 T2 

4 M6 T2 

Table 5-6. Migration of Objects to Target Machine T2 
 

Conforming to the behaviour described in axiom 2, M7, which has a unique characteristic 

of being coupled with M1 (as opposed to S2), migrates to the same machine as M1 (i.e. T1). 

Analysis of log statements shows that the calculated improvement score of the relevant ob-

ject-node pair (i.e. M7 to T1), increases considerably after the migration of M1 to T1, thereby 

causing the migration (of M7 to T1) to follow immediately. 

The behaviour described in axiom 3 is validated through the fact that M1 and M3, which 

differ only in the frequency at which they are accessed by the source object, migrate to the 

same machine (i.e. T1). In this case, both objects are perceived to be more execution (rather 

than interaction) intensive and furthermore varying their incoming IF (i.e. “High1” versus 
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“Low”) does not affect the ratio between execution and interaction intensity. On the other 

hand, M2, which has the same incoming IF as M1 but higher outgoing IF (thus higher inter-

action intensity), migrates to a machine having higher network availability (i.e. T2). Note that 

although both M1 and M3 favour the same destination machine, their migration priorities are 

different. In particular, due to its higher execution frequency which results in higher execu-

tion intensity, M1 has a higher priority and thus migrates earlier. 

The proposed algorithm conforms to axiom 4 due to the fact that M4, which differs from 

M6 only in that its outgoing interaction intensity is largely contributed by high IF (as opposed 

to SSP), migrates before M6. This is because of the expected behaviour stated in axiom 4, in 

which, compared to SSP, IF has higher impact on interaction intensity. 

In comparison to the proposed algorithm, the original adaptation algorithm is not able to 

distinguish local from remote calls and thus assumes all of the recorded calls of an object to 

be remote calls. Such behaviour favours a machine having higher free network bandwidth. 

Consequently, using the original adaptation algorithm, all mobile objects are migrated to T3, 

which is perceived to be the most powerful machine due to its high network availability 

(which is incorrect as stated in axiom 1). Although such behaviour is less optimal than that 

exhibited by the proposed algorithm, its impact on application performance is minimal, due 

to another more severe limitation (in the original algorithm), which causes unnecessary mi-

grations as demonstrated in the evaluation presented in sections 5.3.2 and 5.3.3. 

5.3 Adaptation Effectiveness Evaluation 

This section discusses the three experiments conducted to evaluate the overall effectiveness 

of the proposed adaptation solution, which is defined in terms of the impact (i.e. improve-

ment) of adaptation on the performance (i.e. execution duration) of the adapted application. 

Consequently, not only does such an evaluation serve to assess of the quality of decision 

making (which affects the degree of performance improvement), but it also serves to demon-

strate that the overheads of the involved operations (e.g. decision making and metrics man-

agement) are low relative to the gained performance improvement. Nevertheless, these adap-

tation overheads will be discretely evaluated in section 5.4 in order to provide better under-

standing of their characteristics (e.g. trends) as well as their impact on scalability. 

The first and the second experiments, which will be presented in sections 5.3.2 and 5.3.3, 

apply configurations similar to the experiments concerning decision making behaviour vali-

dation presented in sections 5.2.2 and 5.2.3. This is because such configurations adequately 

cover various experimentation scenarios through the inclusion of objects and machines of dif-

ferent characteristics. Additionally, these experiments serve to demonstrate how the behav-
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iour exhibited and analysed in the base experiments, affects application performance in live 

adaptation (using real metrics).  

The third experiment (presented in section 5.3.4) extends the scope of experimentation by 

evaluating the effectiveness of the proposed adaptation solution in dynamically changing 

execution conditions, which include those related to the application itself as well as its execu-

tion environments. Such an evaluation complements the previous two experiments, which 

primarily address the heterogeneity of execution conditions as opposed to their dynamic na-

ture, which is also a motivator for application adaptation.  

All three experiments involve three distinct execution modes. In the first mode, a test ap-

plication is executed in its original form, thus not involving additional operations such as ob-

ject mobility, metrics management, and adaptation execution. In contrast, the other two 

modes involve adaptation performed using either the original algorithm or the proposed algo-

rithm. These execution modes serve to show the difference in the effectiveness of the two ad-

aptation algorithms as well as the extent of the resulting performance improve-

ment/degradation (compared to the original non-adaptive application). 

Note that the application used in the work [144] on the original adaptation algorithm (i.e. 

a Taxi Dispatching System) was considered but not used in this experiment, since it was 

deemed to be inappropriate for performance-based adaptation due to its low CPU utilisation. 

Such an application would not benefit from adaptation in a real scenario (despite the encour-

aging results shown in the original work) because the application of live metrics collection 

(which was ignored in the work) would incur runtime overheads, which consequently offset 

the little benefit gained by applications with low CPU demand. 

5.3.1 Experimental Procedure for Effectiveness Evaluation 

The execution of the first, second, and third experiments, which are discussed in sections 

5.3.2, 5.3.3, and 5.3.4, applied the following procedure.  

Two versions of the test application were used. The first was the adaptive version which 

was used for execution with either the original adaptation algorithm or the proposed algo-

rithm, in order to compare their effectiveness. The second was the original non-adaptive test 

application, which provides a baseline for calculating application performance (which is a 

measure of adaptation effectiveness). More specifically, the effectiveness of a particular solu-

tion was calculated by subtracting the duration of adaptive execution using the chosen solu-

tion, from the duration of non-adaptive execution, as summarised in equation 1 of Figure 5-3. 

Adaptation effectiveness is also presented (in sections 5.3.2, 5.3.3, and 5.3.4) as a percentage, 

which as shown in equation 2, was calculated by dividing the result from the calculation de-
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scribed in the preceding sentence, with the baseline duration (i.e. the duration of non-adaptive 

execution), then multiplied by 100%. 
 

 1  𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  𝑁𝑜𝑛𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 − 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 
 

 2  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡  =  
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑇𝑖𝑚𝑒

𝑁𝑜𝑛𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒
 × 100% 

 

Where:  

AbsoluteImprovement = Adaptation effectiveness in milliseconds 

RelativeImprovement = Adaptation effectiveness as a percentage 

NonAdaptive = The duration of non-adaptive execution (in milliseconds) 

Adaptive = The duration of adaptive execution using the original or the proposed algorithm (in milliseconds) 
 

 

Figure 5-2. Adaptation Effectiveness Calculation 
 

The collection and management of metrics required for adaptation (which was addressed 

in Chapter 4) was configured as follows. The measurement of time-based metrics (e.g. re-

source metrics) was performed every second, in order to cope with dynamic execution condi-

tions. Such configuration, despite being less important in the first and second experiments 

(since dynamic execution conditions were not a concern), serves to represent a worst-case 

scenario since 1 second is the most frequent sampling rate supported by the underlying oper-

ating system (i.e. Windows XP), thereby incurring the largest possible overhead. Neverthe-

less, in order to represent a realistic scenario, appropriate criteria were used to moderate the 

overhead incurred by metrics management. In particular, expensive metrics were collected at 

every fifth opportunity, i.e. SSP at every 5
th

 invocation and SSO every 5 seconds. Further-

more, similar metrics were grouped and delivered (to the context server) collectively, as de-

scribed in section 4.2.3, in order to reduce the associated overheads. 

Since resource metrics were collected every one second, adaptation decision making is 

triggered at most once every second. However, in order to prevent the original algorithm 

from constantly migrating objects between machines (a behaviour which was observed in the 

preliminary execution of this experiment due to the limitation described in section 3.2.2.2), 

the original algorithm was complemented with a time-based workaround for preventing deci-

sion making unless 5 seconds had elapsed since the last adaptation decision. This workaround 

has a negative effect of lessening adaptation agility (i.e. the ability to quickly respond to 

changing conditions), but is a reasonable compromise considering it prevents constant migra-

tion of objects (i.e. every second). Note that this workaround is not needed for the proposed 

algorithm even though it is not completely free from unnecessary migration (which may hap-

pen due to inaccurate metrics, etc.). 

The exponentially weighted averaging strategy (which was described in section 4.1.4) 

with an alpha value of 0.6, was used to capture the temporal characteristics of metrics. Note 
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that determining an ideal value for alpha is left for investigation in future work since this re-

quires in-depth analysis of the relationships between the chosen alpha value, the dynamic 

characteristics of execution conditions, as well as the associated impact on adaptation agility 

and effectiveness. 

For reasons similar to the experimentation concerning behaviour validation (discussed in 

section 5.2.1), an adaptation initiation threshold was specified such that adaptation was trig-

gered when the availability of a particular resource was equal to or less than 80%. Again, for 

the same reason, the adaptation improvement score threshold for individual objects was set to 

5%. 

In contrast to the behaviour validation presented in sections 5.2.2 and 5.2.3, in which test 

applications were written so that adaptation could only be executed at specific times (in order 

to ensure that mobile objects have executed a pre-defined numbers of times), in this experi-

mentation, adaptation was allowed at any point in application execution (particularly, when-

ever newly collected metrics reflected low resource availability). For simplicity, all mobile 

objects of the test applications did not maintain any state (i.e. were immutable), thus allowing 

migration to be performed safely during the execution of the relevant objects. Otherwise (in 

cases where mobile objects maintain mutable state), an advanced synchronisation mechanism 

is required, which would be beyond the scope of this work since it is not directly relevant to 

the decision making process. Note however that such configuration favours the original adap-

tation algorithm, since in the case where advanced synchronisation was involved, the associ-

ated overhead would heavily impact on the running application, due to the many occurrences 

of unnecessary migration. 

The network availability of machines was controlled through the transmission of dummy 

data between relevant machines. CPU availability was varied by controlling the CPU con-

sumption of an independent process: CPU loader, which applies a technique involving inter-

leaving execution of CPU-bound and non-CPU-bound operations, similar to that used to vary 

the CPU usage intensity of objects (as described in section 5.2.2). Since both the CPU loader 

and the test application were executed normally, both were assigned the same scheduling pri-

ority (i.e. the default priority) and thus should have equivalent shares of the CPU. 

With the exception of the last part of experiment 3 (section 5.3.4), all experiments were 

conducted without multi-core capability (i.e. to simulate single-core machines) because in 

multi-core systems, results would be heavily affected by how the underlying operating sys-

tem assigned the execution of particular threads to available cores. An example scenario is a 

quad-core configuration, in which the CPU loader is written to launch four CPU-intensive 

threads in order to allow CPU load to be distributed across all four cores. The implication is 

that depending on how thread executions are scheduled (by the operating system), all four 

CPU-loading threads might get executed on three cores, leaving one core exclusively for the 
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test application, thereby resulting in significantly faster execution compared to the behaviour 

in which all CPU-loading threads execute on all cores (thus competing with the test applica-

tion). 

More importantly, it is difficult3 to prevent such inconsistency in scheduling behaviour, 

because even slight differences (e.g. the time gap between launching the CPU loader and the 

test application) in the execution of the same experiment may produce significantly different 

results. Even more so because scheduling behaviour is hard to trace (thus hard to predict) 

since a particular thread may execute on different cores at different times, a phenomenon en-

couraged by the fact that a thread might sleep for a period of time (i.e. in order to simulate 

less than 100% CPU load), thereby leaving its core idle and thus available for other threads 

(previously running on different cores).  

Preliminary experimentation results showed that the difference between multiple execu-

tions of a 2-minute experiment varied up to 30%. Consequently, despite the possibility of ob-

taining more consistent results through more and longer executions, the main body of this 

experimentation was performed without multi-core capability (allowing results to be repro-

duced within insignificant margins of error). The exception was the last phase of experiment 

3 (section 5.3.4), in which execution using single-core and multi-core machines was com-

pared. 

5.3.2 Experiment 1: Adapting to Processor Availability 

The main purpose of this experiment is to evaluate the effectiveness of adaptive application 

partitioning in a simple scenario involving varying processor availability. Both the proposed 

and the original algorithms are expected to improve the performance of the test application 

running on a loaded machine, with the proposed algorithm being more effective (i.e. larger 

performance improvement) than its counterpart due to differences in behaviour as analysed in 

section 5.2. 

5.3.2.1 Experimental Materials  

The test application used in this experiment is based on that used in the behaviour validation 

presented in section 5.2.2, because the base application covers sufficiently diverse objects 

characteristics that the differences between the original and the proposed algorithms (in terms 

of the quality and thus the effectiveness of decision making) can be observed. The test appli-

cation contains a client object continuously accessing five objects (i.e. M1-M5) of various 

sizes and execution intensity as shown in Table 5-7.  

                                                      
3 Although the inconsistency in scheduling behaviour may be prevented by modifying the scheduling algorithm of open-

source operating systems (e.g. Linux), such a tailored implementation (which does not represent a real-world scenario) 

would not provide a useful benchmark. 
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Mobile Object CPU Usage Intensity In-memory Size 

M1 High Small 

M2 High Large 

M3 Low Small 

M4 Low Large 

M5 Vary gradually (low to high) Small 

   

Where: High = 100% CPU usage 

Low = 0% CPU usage  

Large = 10 MB 

Small = 1 KB 

Table 5-7. Objects with Various CPU and Memory Requirement 
 

Mobile objects M1-M5 are executed one after another for 20 iterations. Such a configura-

tion was chosen to allow sufficient time for: 1) necessary information/context to be collected 

before adaptation can be performed and 2) essential decision making behaviour to be ob-

served. For example, in scenarios where resource availability is quite balanced across ma-

chines, migration might not occur immediately (i.e. the first time required context has been 

collected), because in such scenarios, decision making is more susceptible to inaccuracy in 

collected metrics or unintended interference (i.e. resource contention) from other processes. 

Another example is the unnecessary migration (e.g. ping-pong phenomenon) exhibited by the 

original algorithm, which is more noticeable in sufficiently long execution. Note however 

that, the execution duration is not so long that it greatly favours execution involving adapta-

tion, in which case, mobile objects get to execute in more ideal execution environments (i.e. 

after migration) for a long period 

Table 5-8 describes the machines involved in this experiment, which unlike the adopted 

test application, are significantly different from those used in the behaviour validation pre-

sented in section 5.2.2. This is because simulating characteristics such as runtime processor 

usage and memory availability (as was the case in the experiment presented section 5.2.2), is 

unnecessary since the aim is not to test specific decision making behaviour but rather to 

evaluate the effectiveness of adaptation. 

Machine Host Processor Availability (HPA) 

Source Vary Independently (0%-100%) 

T1 75% 

T2 75% 

T3 100% 

T4 85% 
 

Table 5-8. Execution Environments with Varying CPU 
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As stated in Table 5-8, the CPU availability of the source machine was varied4 (from 0% 

to 100% in 20% increments) in separate runs in order to facilitate more comprehensive analy-

sis of the difference in behaviour (and thus effectiveness) between the compared adaptation 

algorithms. Amongst all target machines (T1-T4), the target machine T3 represents the most 

ideal execution environment, whereas the others were configured to represent less desirable 

alternatives in order to emphasize the main difference between the compared algorithms in 

terms of their vulnerability to unnecessary migrations (e.g. migrating objects to less powerful 

machines) as explained in section 5.2.2. 

5.3.2.2 Analysis of Effectiveness When Adapting to Processor Availability 

As depicted in Figure 5-3, without adaptation, the performance (i.e. duration in seconds) of 

the test application degrades exponentially as the load of the source machine increases, which 

is as expected, since if an application executes for 1 second at 0% load (i.e. 100% CPU avail-

ability), it takes roughly 1.25 seconds at 20% load (i.e. 100/(100-20)), 1.67 seconds at 40%, 

2.5 seconds at 60%, and so on. Note that however, in practice, the exhibited performance 

degradation is not as severe as the above calculation, since the CPU utilisation of the external 

CPU-loading process will also be compromised (as further discussed later in this section), 

given that both the test application and the CPU loader have the same process priority (and 

thus should have equivalent CPU share). 

 
Figure 5-3. Application Performance in Various Execution Modes 

 

In comparison, when adaptation is involved (be it using the proposed or the original algo-

rithms), performance degradation is significantly moderated such that as load increases, ap-

                                                      
4 Note that the actual resource availability might be slightly different from the stated/intended availability due to interference 

from background processes. 
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plication performance decreases linearly. Consequently, adaptation effectiveness, which is 

measured as the difference in performance between non-adaptive and adaptive execution, 

grows exponentially to the increase in CPU load, i.e. similar to the manner in which the non-

adaptive application degrades, as confirmed by the results shown in Figure 5-4. One point to 

note is that when the CPU load is low (i.e. 0% load), adaptive applications (using either the 

original or the proposed algorithm) perform slightly worse than the non-adaptive counterpart. 

This is because the initial placement of application objects (i.e. all located on the source ma-

chine) is already optimal, and thus not only is adaptation not beneficial, it instead causes per-

formance degradation due to the overhead of the supporting functionality, such as metrics 

management and decision making. 

 
Figure 5-4. Performance Improvement Resulted from Adaptation 

 

As shown in Figure 5-4, application performance is consistently better (i.e. between 1.5% 

and 2%) when the proposed algorithm is used instead of the original algorithm. This is be-

cause the latter is more susceptible to migrating objects unnecessarily due to the following 

reasons. Firstly, all objects are perceived as important (i.e. requiring migration) due to their 

long method execution, which is incorrect since long execution does not necessarily equal 

high CPU usage, and hence, there are not necessarily benefits from migration (to more pow-

erful machines), as discussed in section 5.2.2. Furthermore, the original algorithm also incor-

rectly detects low resource availability in an adapting machine since it does not distinguish 

between internal load (contributed by the application itself or its runtime) from external load 

(contributed by other applications or processes), as confirmed in the behaviour validation 

presented in section 5.2.2. The consequence of such behaviour is that not only are objects in-
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the first migration (also due to high internal load), even though there is no change in resource 

availability. 

The performance improvement of up to 27% (as shown in Figure 5-4) is encouraging con-

sidering that unlike parallel applications, the performance of which improve relative to the 

number of available machines (since more machines indicate more tasks can be executed 

concurrently on multiple machines), sequential applications (which are the focus of this the-

sis) do not directly benefit from having a larger number of machines (e.g. 3 machines with 

100% CPU availability do not speed up execution by 300%), although it can be argued that 

having more machines, especially in heterogeneous environments, provides more options to 

migrate a particular object with specific resource demand (e.g. high processor, low network, 

and low memory usage). 

As mentioned, when there are other processes contending for CPU, a given process con-

sequently gets a smaller share of CPU (i.e. the reduced usage) than it would otherwise (i.e. 

the maximum usage). Such behaviour also applies to the CPU-loading process, which com-

petes with the test application, and it consequently consumes less than the configured load 

percentage as confirmed by the results illustrated in Figure 5-5, which show that the meas-

ured usage of the CPU loader (i.e. the reduced usage) never reaches 100% despite (the maxi-

mum usage) being configured to vary between 0 to 100%.  

 
Figure 5-5. Impact of Adaptation on External CPU Usage 
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prove the performance of the test application), which is to relieve the load of the source ma-
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Figure 5-5, shows increases of up to 15% compared to the execution without adaptation. The 

graph also shows that the proposed algorithm allows slightly higher consumption by the CPU 

loader (i.e. between 0.5% and 1%) compared to the original algorithm due to it being more 

efficient (e.g. fewer migrations). 

Although the maximum usage more accurately represents the actual load (i.e. without con-

tention from other processes) of a machine, such information is not easily obtained5 and thus 

is not used in the proposed algorithm which instead uses the reduced usage. As a result, the 

algorithm often underestimates machine load, which could result in unnecessary migrations. 

However, such inaccuracy is not as severe as the limitation of the original algorithm, which 

often significantly overestimates machine load (since both internal and external load are con-

sidered as contributing factors, as mentioned in section 5.2.2). 

5.3.3 Experiment 2: Adapting to Network Availability 

This experiment aims to evaluate the effectiveness of adaptation in scenarios involving com-

plex relationships between application objects and their potential hosts (i.e. participating ma-

chines). This evaluation also concerns the relationship between the execution and interaction 

intensity of objects, in terms of their opposite impact on adaptation effectiveness. More spe-

cifically, unlike intensive execution, which favours adaptation (i.e. higher improvement 

gained from migrating objects to less loaded machines), intensive interaction incurs higher 

overheads for the communication between objects located on different machines. 

5.3.3.1 Experimental Materials 

In this experiment, the experimental materials related to the test application and its execution 

environment, are based on those used in the experiment presented in section 5.2.3 due to their 

extensive coverage of different object interaction behaviour and network characteristics. As 

shown in Figure 5-6, the test application consists of a stationary object S1 continuously ac-

cessing mobile objects (M1-M7) in varying manners (i.e. varying IF and SSP). The majority 

of the mobile objects have an outgoing relationship with another stationary object S2, with 

the exception of M7 which is instead coupled to M1. The mobile objects M1-M7 are exe-

cuted in a loop of 10 iterations for the same reasons as those explained in the first experiment 

(section 5.3.2), e.g. provide sufficient time to observe interesting behaviour such as unneces-

sary migrations.  

 

                                                      
5 Estimating the maximum/actual machine load would require in-depth knowledge on the thread/process scheduling behav-

iour of the underlying operating system. 
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Figure 5-6. Objects with Various Interaction Characteristics 

 

In order to facilitate the observation of the inverse relationship between execution and in-

teraction intensity, in terms of its impact on application performance, several modifications 

were applied to the original test application described in section 5.2.3. First, instead of exe-

cuting CPU-intensive operations for a fixed duration, the duration in which an object exe-

cutes (i.e. when its method is invoked) was varied between 300, 500, and 700 milliseconds in 

order to have scenarios involving different execution-interaction ratios. Additionally, in order 

to allow a more noticeable impact when varying the aforementioned duration, object interac-

tion intensity was moderated by reducing object/method invocations to 50% of the original. 

Machine Host Processor Availability 

(HPA) 

Host Network 

Availability (HNA) 

S Vary Independently (0-100%) Medium 

T1 High Low 

T2 Medium Medium 

T3 Low High 

   

Where: High = 80% of HPC 

Medium = 65% of HPC 

Low = 60% of HPC 

High = 75% of HNC 

Medium = 50% of HNC 

Low = 25% of HNC 
  

Table 5-9. Execution Environments with Varying CPU and Network Availability 
 

The resource availability of participating machines is the same as that used in the base 

experiment, except that the CPU availability of the source machine is varied in separate runs, 

for the same reason mentioned in the first experiment (i.e. to allow more comprehensive 

analysis), as shown in Table 5-9. 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

S1 S2 

High IF: 8 invocations *(modified) 

Low IF: 2 invocations * 

High SSP: 100 KB 

Low SSP: 25 KB 

Method durations: 300, 500, 700ms * 

S: Stationary Object 

M: Mobile Object 
 

High1: High IF, Low SSP 

High2: Low IF, High SSP 

Low: Low IF, Low SSP 

 

Low High2 

Low High1 

High1 

Low 

Low 

Low 

High2 

High1 

Low 

High1 

Low 

High2 
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5.3.3.2 Analysis of Effectiveness When Adapting to Network Availability 

Figure 5-7, Figure 5-8, and Figure 5-9 illustrate the results of execution involving varying 

object execution intensity, from the lowest to the highest (i.e. 300, 500, 700 milliseconds), 

which confirm that the more intensive the execution (relative to the interaction), the higher 

the performance benefit gained from adaptation. Most notably, the second graphs (i.e. those 

on the right hand side) of Figure 5-7, Figure 5-8, and Figure 5-9, which present adaptation 

effectiveness as percentages, show that the largest performance improvement (of approxi-

mately 39%) is gained in the scenario involving the highest execution intensity (i.e. Figure 

5-9). Furthermore, the second graph of Figure 5-7 (i.e. the scenario involving low execution 

intensity) shows that adaptation, using either the original or the proposed algorithm, causes 

performance degradation at 40% load, whereas Figure 5-9 (i.e. the scenario involving high 

execution intensity) shows that performance improves at the same load. 

  

Figure 5-7. Impact of Adaptation on Application Performance (Low Execution Intensity: 300ms) 
 

  
Figure 5-8. Impact of Adaptation on Performance (Medium Execution Intensity: 500ms) 
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Figure 5-9. Impact of Adaptation on Performance (High Execution Intensity: 700ms) 

 

The main cause of performance degradation (regardless of the adopted adaptation algo-

rithm) is that the little benefit gained from adaptation due to low execution intensity and/or 

low source-machine load, is offset by the consequential communication overheads (due to 

intensive interaction between remote objects), which is exacerbated by the limited network 

bandwidth availability of participating machines (i.e. 25-50%). Furthermore, since the least 

loaded target machine (i.e. T1) has 80% CPU availability (see Table 5-9), migration is obvi-

ously not beneficial when the CPU availability of the source machine is 80% or higher (i.e. 

<= 20% load). 

These factors are correctly interpreted by the proposed algorithm and thus, migration did 

not occur when the CPU load of the source machine was relatively low (e.g. 0-20%), which is 

why, as can be seen from Figure 5-7, Figure 5-8, and Figure 5-9, the performance degrada-

tion using the proposed algorithm (which is primarily contributed by the overheads of manag-

ing metrics) is minimal. As can be observed from the first graphs (i.e. on the left hand side) 

of Figure 5-7, Figure 5-8, and Figure 5-9, an interesting behaviour is shown when the CPU 

load is 40% or 60%, in which case, performance is slightly worse even when compared to 

worse cases (i.e. lower load). This is because at 40% or 60% load, unnecessary migration 

may occur due to the source machine S being perceived to be roughly equivalent to the target 

machine T1 (in terms of its suitability for hosting mobile objects), since although S is more 

loaded than T1 (which only has 20% load), it offers the benefit of not involving remote 

communication (thus not incurring overhead). Such a phenomenon may happen due to inac-

curacy in collected metrics (which causes incorrect or suboptimal decisions), overestimation 

of machine load (as described in section 5.3.2.2), etc. 

In comparison to the proposed algorithm, the original algorithm generally results in worse 

performance due to its tendency to migrate objects unnecessarily because of the limitations 
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explained in section 3.2.2.2. Furthermore, due the same limitations, object migration, which 

does not bring benefits when the machine load is low (e.g. 0-20%), is not prevented, thereby 

causing significantly worse performance degradation compared to the proposed algorithm. 

Note that the performance would have been worse (due to constant unnecessary migration), 

had a simple workaround (as described in section 5.3.1), in which decision making is pre-

vented unless 5 seconds have elapsed since last decision making, not been applied. 

5.3.4 Experiment 3: Adapting to Dynamic Execution Conditions 

This experiment aims to evaluate the effectiveness of the proposed adaptation algorithm in 

scenarios involving dynamically changing execution conditions, including those related to the 

application itself (e.g. interaction behaviour) as well as its execution environment (i.e. re-

source availability).  

5.3.4.1 Experimental Materials and Procedure 

This experiment involves a total of 5 machines: one source machine (in which the application 

initially executes) and four target machines. Each machine executes a CPU-loading applica-

tion, which plays a role similar to the CPU loader described in section 5.3.2, with the primary 

difference being instead of exhibiting fixed CPU and network usage, its usage, which is ran-

dom (between 0-100%), changes at different points in application execution in order to simu-

late a dynamically changing execution environment. 

Changes in resource consumption are applied every 20 seconds, a duration, which al-

though representing a dynamic environment, is sufficiently long that the application does not 

constantly adapt, which would be detrimental to its performance, as discussed further in sec-

tion 5.3.4.2. Given that in this experiment, the duration of application execution varies from 

240 to 300 seconds (depending on factors such as dynamic versus static application behav-

iour, multi-core versus single-core machines as explained later), such a duration implies that 

adaptation is required (i.e. object placement needs to be re-adjusted) from 12-15 times. 

In order to enable the reproducibility of a particular scenario, pre-defined random seeds 

were used to generate a sequence of random numbers, each representing a particular change 

in resource usage. Different seeds are used for different machines, and therefore at any one 

time, the participating machines may have different resource availability, although the aver-

age usage over the whole execution duration is similar for all machines (i.e. roughly 50%). 

As discussed further in section 5.3.4.2, two scenarios were used in order to demonstrate that 

despite involving randomly changing environments, some scenarios are better for adaptation 

(in terms of performance improvement) than others. 

The test applications used in this experiment are based on the high-execution-intensity 

application adopted in experiment 2, because applications having lower execution intensity, 
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which were shown in section 5.3.3 to suffer performance degradation at 40% load, would 

unlikely benefit from adaptation in this experiment due to the following reasons. The average 

(i.e. random) CPU availability is roughly 50% in this experiment, which is lower that the 

highest (i.e. fixed) CPU availability in experiment 2 (which is 80%), thereby implying that 

less benefit may be gained from adaptation. Moreover, the continuously changing resource 

availability of machines represents a scenario which is worse than that applied in experiment 

2, since such a scenario means that there is less time for objects to settle in an optimal place-

ment. 

This experiment is undertaken in two batches, i.e. using two different variations of the test 

application. The first batch uses the original form of the test application (hereinafter referred 

to as the static application), which can be considered as having “static behaviour”, since it 

invokes (methods on) one object after another in a pre-defined sequence. The invocation se-

quence is repeated 10 times (thus a total of 70 invocations since the application consists of 7 

mobile objects), thereby providing enough time for multiple changes in resource availability 

(i.e. 10-15 times depending on the actual execution duration). In the second batch, the test 

application is modified so that objects are invoked in a random sequence, in order to simulate 

“dynamic behaviour”. Note that although the application (hereinafter referred to as the dy-

namic application) also involves 70 invocations, unlike the static version, mobile objects M1-

M7 are not necessarily invoked the same number of times, which is why the total execution 

duration is different (i.e. longer than the static application) as shown in the results from sec-

tion 5.3.4.2. 

5.3.4.2 Analysis of Effectiveness When Adapting to Dynamic Execution Conditions 

Figure 5-10 and Figure 5-11 show the duration of application execution in two execution sce-

narios: bad and good adaptation scenarios. The difference between the two scenarios will be 

outlined later in this section. Each scenario involves executions in various modes, which as 

shown in Figure 5-10 and Figure 5-11 (from left to right), include: 1) an execution involving 

a non-adaptive application running on an unloaded machine (i.e. having 100% CPU and net-

work availability), 2) an execution of the same application on a loaded machine, 3) an adap-

tive execution using the proposed algorithm (on loaded machines), and 4) an adaptive execu-

tion using the original algorithm (on loaded machines). Note that although machines are 

loaded randomly, the same random sequences (through pre-defined seeds as mentioned in 

section 5.3.4.1) are used for execution in modes 2, 3, and 4. 
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Figure 5-10. Application Performance in a Dynamic Execution Environment (Bad Scenario) 

 

 
Figure 5-11. Application Performance in a Dynamic Execution Environment (Good Scenario) 

 

The difference between the good and the bad scenarios are the seeds used to randomise 

the CPU load of the involved machines, which consequently impacts the effectiveness of ad-

aptation in various ways. Firstly, in the bad scenario, the average load of the source machine 

is lower, a condition which does not favour adaptation since this implies less improvement 

from migration. Furthermore, the average load of the target machines is also slightly higher 

(than the good scenario), thus implying that migration (to more loaded machines) would not 

bring as much benefit. Last, the participating machines often have similar load at any particu-

lar time, which is not favourable to adaptation due to the limited options for migration desti-

nation (e.g. all machines are heavily loaded). In fact, such a condition could be detrimental, 
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since balanced machine conditions often cause unnecessary migration between machines due 

to factors mentioned in 5.3.3.2 (e.g. inaccuracy in collected metrics). 

Consequently, compared to the good scenario, in which the proposed algorithm improves 

application performance by approximately 10%, adaptation in the bad scenario only brings an 

improvement of 2% (as can be seen from Figure 5-10 and Figure 5-11). Using the original 

algorithm, adaptation in fact causes performance degradation (of 7%) in the bad scenario 

(Figure 5-10). As such, the rest of this section focuses on the results from the good scenario 

since it presents more interesting results for analysis and discussion. 

As can be seen from Figure 5-11, the shortest execution duration is exhibited by applica-

tions (i.e. be it static or dynamic) running in mode 1 (i.e. unloaded) which represents an ideal 

execution environment since there is no other process contending for resources. On the other 

hand, the execution involving adaptation (modes 3 and 4), which although worse off com-

pared to the ideal case (mode 1), has better performance compared to the non-adaptive execu-

tion (mode 2).  

As shown in Figure 5-11, the difference in adaptation effectiveness between execution in-

volving the static application (i.e. 10%) and the dynamic application (i.e. 9.7%) is negligible, 

a result which is contrary to the general expectation that adaptation should be more effective 

for applications with static behaviour due to their predictability. This is because even though 

the static application always behaves the same way by executing objects in the same order, 

the interleaving execution of objects (i.e. M1-M7 execute one after another) causes inaccu-

racy when the adaptation algorithm assesses the importance of objects based on the recent-

ness of their execution. For example, adaptation which is triggered immediately after the exe-

cution of a particular object (e.g. M1), would assign a higher migration priority to the object 

(due to its recent execution). Such behaviour is not necessarily beneficial because not only 

does the object (in this case M1) have short remaining duration to execute after its migration 

(to a more ideal machine), it would have to wait for the completion of subsequent execution 

(concerning other objects, e.g. M2-M7) before it can execute again. In this particular experi-

ment, performance improvement can still be gained, because average resource 

load/availability changes every 20 seconds, thereby providing sufficient time for subsequent 

execution of M1. A more dynamic environment, wherein changes in resource availability are 

more frequent (i.e. less than 20 seconds), would likely result in worse performance. Such a 

shortcoming can be improved (in future work) by taking into account seasonal changes in 

metrics, which as addressed in [82], can be incorporated into the adopted metrics representa-

tion formula, i.e. exponentially weighted moving average (which is presented in section 

4.1.4).  

Nevertheless, the results of this experiment are encouraging since in addition to the poten-

tial improvement mentioned above, further improvement can be achieved by increasing the 
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number of participating nodes. This is because despite the incurred overheads, which are 

manageable (as will be discretely evaluated in section 5.4), it increases the probability that at 

any one time, there is at least one node with high resource availability, thereby enabling more 

effective migration (i.e. resulting in higher performance improvement compared to when all 

machines have low resource availability). A further improvement can be achieved by opti-

mising the implementation of functionality involving expensive operations such as remote 

communication. For example, a more efficient implementation of remote invocation func-

tionality, such as that presented in [99] and [119], can be used instead of the standard Java 

RMI. 

Figure 5-12 shows the results of re-executing the experiment (concerning the proposed 

algorithm) on multi-core CPUs, which serve to demonstrate that application performance 

could be further improved by minimising CPU contention between operations belonging to 

the application itself, and the adaptation support (e.g. decision making, metrics management). 

 
Figure 5-12. Application Performance in Multi-core Machines 

 

However, despite the improvement in application performance compared to the single-

core mode (i.e. when multi-core is disabled), the results show that adaptation actually results 

in performance degradation. Analysis shows that this is because increasing the usage of a 

multi-core CPU (i.e. loading all of its cores by the X%), does not produce the same effect as 

loading a single-core CPU by the same percentage. The reason being that when the CPU core 

on which the test application initially executes is busy, the execution may be scheduled (by 

the operating system) to a different core (which may be idle at the time) with minimal over-

head. The exception to such behaviour is when all cores are busy (i.e. heavily loaded), which 

is not the case in this experiment, wherein due to the average load being roughly 50%, much 

of the time, the execution can be carried out immediately (on a different core) instead of hav-

ing to wait for the completion of the contending execution. 
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As such, as can been seen from Figure 5-12, the performance of the non-adaptive applica-

tion in the loaded scenario is already close to the performance in the ideal scenario where the 

machines are not loaded. The performance degradation exhibited by the adaptive application 

can be attributed to the overheads incurred by adaptation (e.g. migration, decision making, or 

metrics management) as well as the lack of explicit consideration for parallel execution in the 

proposed algorithm (since this is not the focus of this work). New metrics may be required in 

the future for coping with and exploiting the specific characteristic of parallel execution and 

multi-core CPUs. 

 
Figure 5-13. Application Performance in Multi-core Machines (Higher Load) 

 

Nevertheless, a separate execution, which involves CPU loaders consisting of more 

threads (i.e. six instead of four), was conducted in order to demonstrate that applications run-

ning on heavily-loaded multi-core machines can still benefit from adaptation. As shown in 

Figure 5-13, such configuration, which implies an average of 75% (instead of 50%) load 

across machines, has more impact on application performance, and thus allows performance 

improvement to be gained from adaptation. 
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common experimental materials and procedure applied in both experiments (sections 5.4.2 

and 5.4.3). 

5.4.1 Experimental Materials and Procedure 

The evaluation presented in sections 5.4.2 and 5.4.3 involved applications of various charac-

teristics (e.g. numbers of mobile objects, number of methods per mobile objects) in order to 

show the scalability of the proposed adaptation solution (i.e. decision making and metrics 

management) as well as to serve as general guidelines for determining the overheads of 

adapting applications with particular characteristics (e.g. few versus many objects). Further-

more, the evaluation also helps understand how the number of available nodes (which serve 

as possible migration destinations) affects adaptation overheads. 

 Table 5-10 shows all the execution characteristics (e.g. number of objects, number of 

nodes) which were of concern to this evaluation due to their potential impact on various op-

erations related to adaptation. On the other hand, other characteristics such as the number and 

size of parameters (passed during method invocation), were not included, due to the obvious 

expectation in that increasing the number and size (i.e. the complexity of object references) of 

invocation parameters would result in slower SSP measurement (due to serialisation over-

head), but would not affect other aspects of metrics management or decision making. 
 

Characteristic / Variation Index 1 2 3 4 5 

Number of mobile objects 10 20 30 40 50 

Number of methods per object 10 20 30 40 50 

Number of participating nodes 10 20 30 40 50 

Number of invocations 100 200 300 400 500 
 

Table 5-10. Application Characteristics Affecting Decision Making Overhead 
 

When evaluating the impact of varying a particular characteristic (e.g. number of objects), 

default fixed values were used for other characteristics, as listed in the grey column of Table 

5-10 (i.e. variation index 3). The evaluation concerning a particular combination of character-

istics (e.g. a scenario involving 10 objects, 30 methods, 30 nodes, and 300 invocations) was 

always conducted in a separate run for consistency since initial execution tends to be slower 

due to certain initialisations, e.g. those performed by the supporting framework (MobJeX).  

Instead of aiming to represent real-world scenarios, the variation of characteristics (e.g. 

10-50 mobile objects) was specified such that their impact on adaptation overheads was no-

ticeable. Nevertheless, it is believed that the upper value of each factor represents the charac-

teristics of large applications or complex scenarios. For example, 50, which is the largest 

number of mobile objects in this evaluation, represents a large-scaled application since the 

majority of the objects of an application are usually non-mobile (including those which form 

a cohesive migratable unit, e.g. non-mobile objects referenced by a mobile object). Similarly, 
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objects/classes containing 50 methods are generally present only in a large application, ex-

cept for classes belonging to an external library (e.g. Java API), which often contain more 

functionality than required by the application (i.e. having many unused methods). Such 

classes, however, are not a concern in this evaluation because given proper configuration 

(during the deployment of the relevant application), unused methods would not affect adapta-

tion decision making and metrics management (thus not incurring overheads) as addressed in 

section 6.3. 

The number of mobile objects was varied by altering the number of iterations in which 

mobile objects were created, whereas different numbers of methods were obtained by author-

ing multiple classes having different sets of methods. Changing the number of participating 

nodes was simulated by running multiple host managers on a single machine due to the lim-

ited number of machines available for the experiments. Varying the number of invocations 

was achieved by changing the number of iterations in which a particular method of a specific 

mobile object was executed. The method was written to execute for approximately 50 milli-

seconds in order to allow sufficient time for multiple occurrences of metrics collec-

tion/delivery and decision making, before the application terminates. In its most basic form, 

i.e. without adaptation and using the default characteristics (i.e. 30 objects, 30 methods, 30 

nodes, and 300 invocations), the application would execute for approximately 15.5 seconds. 

The executed operations were 100% CPU-intensive in order to show the performance 

overhead of adaptation in a worst-case scenario, since application performance would be af-

fected by the slightest contention for CPU from concurrent adaptation operations (e.g. deci-

sion making, metrics management) when running on single-core machines. For completeness, 

the performance overhead of adaptation was also evaluated on a multi-core system (i.e. with 

four cores) in order to evaluate the concurrency of the solution in terms of how performance 

overhead can be minimised (e.g. higher concurrency leads to better application performance 

since contending operations may execute on separate cores). 

5.4.2 Decision Making Overheads 

In addition to the general experimental procedure described in section 5.4.1, the evaluation of 

decision making overheads applies some specific procedure as discussed in section 5.4.2.1. 

The analysis of the evaluation is presented next, in section 5.4.2.2. 

5.4.2.1 Experimental Procedure  

In order to have a worst-case scenario, adaptation thresholds were configured in such a way 

that decision making was always triggered when new resource metrics (e.g. memory avail-

ability) were obtained, regardless of whether adaptation was necessary (i.e. the machine was 

loaded). Such configuration implied that decision making occurred every 1 second since this 
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was the frequency at which resource metrics (which trigger adaptation) were collected. Adap-

tation thresholds were also configured so that objects would always migrate (as a result of 

decision making), in order to further simulate a worst-case scenario, since the migration of a 

particular object requires adaptation scores concerning other objects to be recalculated as ana-

lysed in section 5.4.2.2. Note that the migration of objects was simulated since the aim was to 

evaluate decision making overheads. The simulation involved removing the model entity rep-

resenting the migrated object in order to prevent the object from being processed in subse-

quent decision making. Such a simulation did not affect the evaluation of adaptation decision 

making (other than separating out migration overhead) since the evaluation only concerns a 

particular adapting node in a local adaptation scheme, thereby not requiring objects to be 

physically migrated to other nodes. 

Decision making overheads were obtained by calculating the difference in measurement 

(e.g. of memory usage, execution duration) between the test application executing in two dif-

ferent modes: 1) with metrics management but without decision making, and 2) with metrics 

management and decision making. Such calculation produces the overheads of the decision 

making process, excluding the overheads incurred by automatic metrics management, which 

are discretely evaluated in the next section (section 5.4.3). Prior to the above calculation, the 

results of the measurement of resource (i.e. memory, network, and processor) usage, which 

occurs every 1 second, were averaged. On the other hand, execution duration (which is a 

measure of performance overhead) was measured once, prior to application termination.  

Note that despite metrics management being the pre-requisite of decision making, the 

specific manner in which metrics management operations are configured (e.g. specifying cri-

teria used for various management operations), does not affect decision making overheads 

and thus is not discussed in this section, but instead in the section concerning metrics man-

agement overhead (section 5.4.3.1). 

5.4.2.2 Analysis of Decision Making Overheads 

The results of this experiment show that despite the variation of the characteristics listed in 

Figure 5-14, the average memory usage of adaptation decision making is roughly constant 

(ranging between 160 to 190 KB), because even though the increase in the number of mobile 

objects, methods, etc., implies that more information needs to be processed to make adapta-

tion decisions, this information is only temporarily stored/used (i.e. during decision making). 

As such, much (although not all) of this information has been discarded prior to the meas-

urement of memory usage, since garbage collection is explicitly requested prior to each 

measurement. 

Similarly, the average processor usage overhead of decision making is also constant, 

which is as expected because the relevant application is processor-bound, and thus already 
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exhibits maximum average processor consumption even without the additional consumption 

attributed to the adaptation decision making thread. On the other hand, the accumulative 

processor usage overhead, i.e. taking into account the duration of usage, is already implicitly 

measured when evaluating application performance overhead. Figure 5-14 shows the growth 

trend of performance overhead in relation to the increase in mobile objects, methods, nodes, 

and invocations. The growth is shown in terms of how much additional time (in seconds) is 

required to execute the application when adaptation decision making is enabled. Note that 

unlike other characteristics (e.g. the number of mobile objects) which are varied from 10 to 

50, the number of invocations is varied from 100 to 500. 

 
Figure 5-14. Performance Overhead of Adaptation Decision Making 

 

As depicted in Figure 5-14, performance overhead is not affected by the num-

ber/frequency of method invocations, meaning that increasing method invocation causes 

longer execution duration regardless of whether adaptation decision making is enabled. On 

the other hand, the number of methods and nodes linearly affects performance overhead. Lar-

ger numbers of methods imply more processing required for computing the interaction inten-

sity between objects when making adaptation decisions. Similarly, the more nodes available 

as possible migration destination, the more processing required to determine the suitability 

(i.e. adaptation score) of all object-node pairs, as explained in section 3.1.  

A significantly steeper growth trend can be seen from Figure 5-14 when increasing the 

number of mobile objects. This is due to the behaviour of a portion of the algorithm depicted 

in Figure 3-1 of section 3.1, which consists of two co-existing loops that are affected by the 

number of mobile objects. The inner loop serves to iterate all objects to calculate the score for 

each object-node pair, whereas the outer loop is used to repeat the score calculation upon 

changes in object co-locality which are caused by the migration of a specific object. Given 

that the execution duration of the original non-adaptive application is approximately 15.5 

seconds (as mentioned in section 5.4.1), the largest performance overhead, which was re-
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corded at 3 seconds (i.e. when the number of objects equals 50), constitutes approximately 

35% of the original duration, which is acceptable since the execution configuration can be 

considered as a worst-case scenario involving a large-scale but short-lived application run-

ning on a network of 30 nodes. Nevertheless, an improvement (to the algorithm) can be made 

in order to reduce the computational complexity involved, as demonstrated in ongoing work 

[1], which however focuses on balancing machine load as opposed to improving application 

performance. 

In terms of network overhead, as shown in Figure 5-15, the only factor affecting network 

bandwidth usage is the number of nodes, since this dictates the amount of information (i.e. 

about individual nodes) that needs to be retrieved (via network) from a centralised context 

server, which runs on a separate machine. In contrast, other information, such as that related 

to objects and methods, is accessed locally since an adaptation engine in local adaptation only 

makes decisions for local objects, and therefore does not affect network bandwidth utilisa-

tion.  

 
Figure 5-15. Network Usage Overhead of Decision Making 

 

 

As can be seen from Figure 5-15, increasing the number of participating nodes by 10 in-

curs a network overhead of approximately 1 kilo byte per second (KBps). As such, since de-

cision making is performed every second, this implies that the overhead of delivering infor-

mation about a single node, is approximately 100 bytes, which is accounted for by consider-

ing the need to deliver identity information (e.g. URI) in addition to the resource metrics re-

lated to the relevant host and runtime. In practical terms, such an overhead is nominal except 

for execution in constrained networks (e.g. those using dialup connections). Note that this 

overhead is attributed to the decision making process as opposed to the metrics management 

tasks (which also concerns metrics delivery), because such an overhead is incurred only when 

decision making is enabled or involved. 
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The following describes the results of re-executing the same experiment on multi-core 

systems, which as shown in Figure 5-16, significantly reduces overhead (i.e. by roughly 

95%), but does not change the trend of performance overhead (e.g. the number of mobile ob-

jects still has the largest impact). This outcome serves to demonstrate the concurrency of de-

cision making (with regard to the adapted application), since the existence of multiple cores 

allows decision making tasks/threads to be executed independently with minimal impact 

(which still exists due to locking/synchronisation, thread scheduling, etc.) on the running ap-

plication. 

 
Figure 5-16. Performance Overhead of Decision Making in Multi-core Systems 

 

Since most decision making tasks can be performed in conjunction with application exe-

cution, execution on multi-core systems also reveals the additional CPU usage required by 

decision making, which as shown in Figure 5-17, follows the same trend as the incurred per-

formance overhead. Given that (as mentioned in section 5.1) a single core of the CPUs used 

in this experiment, can execute up to 700 million instructions per second (mips), the largest 

CPU usage overhead, which was recorded to be 230 million instructions per second (i.e. 

when the number of objects is 50), constitutes approximately 33% of the CPU capacity of the 

core the adaptation support is running on. 
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Figure 5-17. CPU Usage Overhead of Decision Making in Multi-core Systems 

 

On a final note, according to the experiment results, the number of invocations has no im-

pact on the overheads of decision making at all, i.e. on performance and resource usage. This 

factor was included in this experiment for completeness, since as discussed in section 5.4.3, it 

affects metrics collection/management overheads. 

5.4.3 Metrics Management Overheads 

This experiment aims to evaluate the overheads (i.e. performance and resource usage) of col-

lecting and managing metrics required for adaptation, in a manner similar to that presented in 

section 5.4.2, with the primary difference being decision making is disabled in this experi-

ment. Consequently, despite being related to metrics management, the delivery of remote-

node metrics to the local node (i.e. the node making adaptation decisions) is not included in 

this evaluation, because such an activity is carried out during adaptation decision making and 

thus has been measured in the respective experiment (presented in section 5.4.2). In contrast, 

this experiment considers overheads which are incurred regardless of the execution of deci-

sion making. An example is the overhead involved in the propagation of resource metrics to a 

centralised context server (as addressed in section 4.2.2). 

5.4.3.1 Experimental Procedure 

The following describes the experimental procedure which specifically applies to this evalua-

tion. The same test applications used in 5.4.2 were executed in two separate runs: 1) with 

metrics management, and 2) without metrics management. The results from the two runs 

were then subtracted in order to obtain the overheads (in terms of performance and resource 

utilisation) incurred by metrics management on the running application. For completeness, an 
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additional step was undertaken to measure the overheads of managing metrics on the central-

ised context server. 

All timer-initiated measurement, such as that concerning all resource metrics and some 

software metrics (e.g. Object Memory Size), was performed every 1 second in order to pre-

sent a worst-case scenario. For the same reason, metrics using application-initiated meas-

urement were collected at every opportunity, i.e. every method invocation. Furthermore, col-

lected metrics were always immediately propagated to the appropriate components for tem-

porary storage (prior to delivery to adaptation engines), as described in section 4.2.2. For ex-

ample, software metrics were propagated and stored in the managing runtime, whereas run-

time resource metrics were propagated to the context server via the appropriate host manager. 

5.4.3.2 Analysis of Metrics Management Overheads 

The results of this experiment show that network usage is constant (approximately 4.3 kilo-

bytes) regardless of the variation of characteristics, which include numbers of: mobile ob-

jects, methods, invocations, and nodes. One reason for this behaviour is that application-

related characteristics (e.g. mobile objects, methods, and invocations) do not affect network 

communication since software metrics, such as Invocation Frequency (IF) and Size of Serial-

ised Parameters (SSP), are only propagated to the containing runtime which executes in the 

same process as the application in which they are collected. Furthermore, the number of par-

ticipating nodes does not affect the network usage of the application (and the containing run-

time and host manager), since participating nodes do not communicate (i.e. exchange met-

rics) with each other directly, but rather through a context server, thereby affecting its net-

work utilisation as will be discussed later in this section. 

The average processor usage overhead of decision making is also constant due to the fact 

that the original (non-adaptive) application already consumes the maximum amount of proc-

essor time for the duration of its execution (on a single-core system), as explained in section 

5.4.2. On the other hand, performance overhead, which is measured in terms of execution du-

ration (in seconds), is shown in Figure 5-18, to increase linearly to the growing number of 

objects, methods, and invocations. 
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Figure 5-18. Performance Overhead of Metrics Management 

 

Steeper overhead growth is seen when increasing method invocation, because this causes 

higher frequency of application-initiated metrics collection, which as mentioned in section 

4.2.1.3, includes the potentially expensive/slow collection of the Size of Serialised Parame-

ters (SSP) metric. On the other hand, increasing the number of methods, which consequently 

causes more occurrences of timer-based measurement (e.g. for collecting Invocation Fre-

quency), does not cause as much overhead since the measurement is triggered at a lower fre-

quency of every 1 second (instead of every method invocation). 

In comparison, the addition of new objects incurs a similar performance overhead, since 

this effectively increases the overall number of methods to the same extent as varying the 

number of methods, e.g. adding 10 objects (i.e. 10 new objects containing 30 methods) im-

plies an increase in the occurrence of measurement by 300. As such, in comparison, the addi-

tional overhead of collecting object-related metrics (e.g. Object Memory Size), is not as sig-

nificant. 

As shown in Figure 5-19, memory usage overhead is influenced by the number of objects 

and methods, each of which requires additional information to be maintained for the duration 

of application execution, and therefore increases the memory usage of the application. Exam-

ples of such information include that used for measuring object-related metrics such as Ob-

ject Memory Size (OMS), and that used for measuring method-related metrics such as Proc-

essor Usage Time (PUT). Note that the lines concerning the two variation scenarios (i.e. 

numbers of objects and methods) are slightly adjusted for visibility purposes, but in reality 

there is no notable difference between them, despite the theoretical higher memory usage re-

quired for measuring object-related metrics, e.g. OMS, when increasing number of objects. 
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Figure 5-19. Memory Usage Overhead of Metrics Management 

 

Although the memory usage overhead of metrics management, which is in the order of 

megabytes (as can be seen from Figure 5-19), may seem high, profiling shows that this is due 

to the prototypical nature of the implementation, which uses standard as opposed to optimised 

(in terms of memory usage) functionality or libraries. As an example, URIs, which are used 

to identify system components such as mobile objects or runtimes, can be represented in a 

binary instead of a human-readable form. As an implementation issue, this does not hinder 

the purpose of the experiment, which is primarily to show the growth trends of metrics man-

agement overhead. 

 
Figure 5-20. Performance Overhead of Metrics Management in a Multi-core System 
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Figure 5-20 shows that the use of multi-core systems reduces the performance overhead 

of metrics management by roughly 55%, a figure which although significantly lower com-

pared to decision making (in which overhead is reduced by 95%), is expected considering 

that a substantial portion of the overhead is contributed by application-initiated measurement 

(introduced in section 4.1.1.1), e.g. for collecting SSP, which is inherently sequential to the 

execution of the running application (and thus difficult to parallelise). The supporting evi-

dence is that in comparison to the results from the execution on a single-core system (Figure 

5-18), increasing the number of invocations causes a steeper overhead growth relative to that 

caused by the increase in the number of objects and methods, thereby confirming that the 

former, which increases the frequency of application-initiated measurement, gains limited 

benefit from concurrency, unlike the latter, which affects the frequency of timer-based met-

rics (which can be collected concurrently). 

  

Figure 5-21. Memory and Network Usage Overheads on Context Server 
 

As previously mentioned, despite not affecting the overhead of the running application, 

the number of nodes affects the resource utilization of the context server, particularly its net-

work and memory usage, as shown in Figure 5-21. The network usage overhead, which is 

shown to be around 4 kilobytes per second for each node, appears high considering that only 

six metrics (i.e. runtime and service metrics) are propagated every second. This is caused by 

the utilisation of standard, un-optimised Java RMI and serialisation. Similarly, memory usage 

is also higher than originally expected, due to the overhead of maintaining a complete system 

model which consists of model entities representing participating runtimes and services (as 

well as their metrics) as discussed in section 4.1. However, this should not affect the scalabil-

ity of the adopted solution since both network and memory usage increases linearly to the 

number of nodes. Note that the processor usage overhead of the context server is negligible 

(i.e. close to zero) and as such is not shown. 
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The focus of the discussion in the next chapter is the transparency of object proxy injec-

tion, which as described in section 2.5, facilitates the development of applications supporting 

functionality such as that concerned in this thesis, i.e. adaptive application partitioning using 

mobile objects.     
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Chapter 6 .  Proxy Injection 

This chapter addresses the transparency of the injection of proxies into existing applications 

since as mentioned in section 2.6, not only do proxies play an important role in supporting 

adaptation via object mobility, but they have also been applied in other application domains. 

Such injection allows various capabilities (including those for supporting the proposed adap-

tation algorithm such as the collection of required metrics) to be encapsulated in proxies and 

be transparently injected into existing applications (in which case a higher degree of transpar-

ency implies less human intervention required in the process). 

The proposed proxy solution focuses on specific code transformation for ensuring the 

structural and semantic compatibility of the injected proxy classes and the original/proxied 

class, as opposed to how the code transformation is carried out, which is the focus of Chapter 

7. Structural compatibility refers to the equivalence between the structure of the proxy class 

and the original class in terms of type compatibility, method signatures/modifiers etc., 

whereas semantic compatibility ensures that the injection of proxies does not change non-

application-specific semantics, such as the polymorphic behaviour of methods/invocation. 

The solution improves various limitations of previous work (which are discussed in sec-

tion 6.1), and thus is more transparent than existing approaches, although the exact degree of 

transparency was not evaluated due to the impracticality of testing such a solution against all 

possible scenarios/applications. Nevertheless, common transparency concerns (e.g. various 

inheritance scenarios, visibility modifiers) are tested in order to demonstrate the structural 

and semantic correctness/compatibility of the solution (as discussed in section 6.4.1). 

Since a common application of proxies is to provide middleware-supported functionality, 

the proposed proxy approach is designed with such an application in mind and thus, where 

necessary, the supporting framework or middleware (e.g. MobJeX) is mentioned. Since the 

ideas, concepts, and solutions conceived in this work are implemented in Java, the proposed 

transparency solution also focuses on Java. Nevertheless, some aspects of it should also apply 

to languages/technologies (e.g. C#) exhibiting similar characteristics such as the lack of sup-

port for multiple-inheritance, which is generally addressed by implementing multiple inter-

faces (for type compatibility) and delegating method calls to other objects (to promote code 

reuse), as applied in the solution presented in section 6.2.1. 

6.1 Transparency Issues 

Sections 6.1.1-6.1.8 introduce the fundamental issues of proxy transparency, the majority of 

which were identified though not necessarily addressed adequately in previous work such as 
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[49], [178], [136]. Discussion of how existing work approached the issues is provided along 

with emphasis on the strengths and limitations of the approaches. 

6.1.1 Proxy Inheritance 

In order to maximise type compatibility between the proxy class and the original to-be-

proxied class, a proxy class should also extend/inherit from the parent of the original class. 

Several aspects of proxy inheritance, such as proxying the members (i.e. fields and methods) 

of the parent classes and extending external classes (e.g. system/core or library classes), have 

yet to be adequately addressed in previous work. 

The traditional proxy approach adopted in previous work, such as [147], [80], [173], uses 

a Java interface acting as a common interface (also known as the domain type) for both the 

proxy and original class, thereby allowing methods of the proxy and the original object to be 

accessed in the same manner. Ryan et al. [147] proposed a solution for allowing the proxy 

class to be used transparently in place of the original class.  

Figure 6-1 (the left-most diagram) illustrates this approach, in which, an interface A is 

named after the original class A and declares the public methods of the original class. The 

source code of the original class is transformed into an implementation class AImpl6, contain-

ing the inserted capabilities. Likewise, the generated proxy is named AProxy. This approach 

has some limitations; the major one being the inheritance hierarchy of the original class A is 

not fully reflected in the domain interface because a Java interface cannot extend a class, i.e. 

the parent of the original class as discussed further in section 6.2.1.3. 

 

Eugster [49] proposed a flexible class structure for proxies whereby the proxy class ex-

tends/inherits from the original class to maintain the type compatibility between the proxy 

and the original class, thereby allowing the proxy to be used wherever the original type is ex-

pected. Note that even though the proxy class AProxy can directly access the functionality 

                                                      
6 Subsequent discussions will refer to the original class that is being, or has been, transformed as the implementation class as 

opposed to the original class which is the class prior to transformation. 

+a()

A

+a()

AImpl

+p1()

+p2()

Proxy

delegates+a()

AProxy

+a()

A
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Figure 6-1. Existing Approaches (left to right): Ryan [147], Eugster [49], and JavaParty 

[90]/J-Orchestra [178] 
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implemented in A via inheritance as depicted in Figure 6-1 (the middle diagram), in practice, 

the proxy does not execute (i.e. completely ignores) the inherited functionality/methods, but 

rather it overrides the methods for the purpose of forwarding/delegating the execution to a 

separate instance of A (i.e. implementation object).  

Otherwise, if AProxy simply uses the inherited functionality without delegating to an in-

stance of A, the solution would degenerate into a decorator design pattern (Gamma et al., 

1995). In this case, the role of the AProxy is to decorate (i.e. extend the functionality of) the 

implementation class A, which is not what this thesis aims to address. Such a distinction can-

not be shown in a class diagram (i.e. Figure 6-1) in which instance-level relationships are ab-

sent, particularly with regard to the (inheritance and delegation) relationships between the 

proxy class (e.g. AProxy) and the implementation class (e.g. A). Figure 6-2 provides an in-

stance-level illustration of the proxy approach proposed by Eugster [49]. 

 
Figure 6-2. Eugster Proxy Approach [49] in Object Diagram 

 

 Although this class structure is flexible enough for accommodating the inheritance case 

where a proxied class A extends another proxied class B as will be discussed in section 

6.2.1.2, an explicit discussion of the solution and its overhead implication was not provided 

in [49] and is therefore considered in section 6.2.1.2. 

On the other hand, although the work on JavaParty [90] and J-Orchestra [178] addressed 

this inheritance case, the proxy class structure proposed in that work, which is illustrated in 

Figure 6-1 (right), does not accommodate the case where the parent class B is an external 

class. This is because these frameworks require the proxy class B to extend a special class 

(i.e. Proxy in the case of JavaParty and UnicastRemoteObject in J-Orchestra) and modify-

ing an external class to extend the special class will likely affect existing dependent code, e.g. 

another child class of B, which belongs to a different application. 

In order to improve proxy transparency, this thesis proposes and compares several alter-

native proxy class structures (in section 6.2) to address various class inheritance cases. Fur-

thermore, other related issues such as proxying parent methods with various modifiers, e.g. 

final, private, etc. are also addressed (in section 6.2.2).  

+a()

A

+a()

proxy:AProxy

+a()

implementation:Adelegates
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Subsequent sections (6.1.2-6.1.8) discuss issues which are generally applicable to all of 

the aforementioned proxy class structures (i.e. those adopted by Ryan [147], Eugster [49], 

and JavaParty [90]/J-Orchestra [178], unless explicitly specified otherwise. 

6.1.2 Proxy Instantiation 

In order to be able to use proxies in an ordinary Java application without explicit authoring of 

proxy-related code, there has to be a mechanism to transparently acquire the proxy instances. 

Some technologies such as Java RMI [173] and Dynamic Proxy API [170], mandate the pro-

grammer to explicitly create a proxy/stub using the provided API methods (e.g. UnicastRe-

moteObject.exportObject()). As such, any derivative of such technologies such as that 

proposed by Eugster [49] which was based on Dynamic Proxy, also has the same limitation.  

Other technologies such as EJB 3.0 [171] provide a more transparent solution by utilising 

a concept called dependency injection, which prevents the programmer from having to ex-

plicitly instantiate proxies but instead provides a setter method for the proxied component 

(e.g. a session bean). The EJB container/middleware will then create a proxy instance and 

pass the instance to the setter method during the application initialisation phase. Although 

this approach improves transparency by removing the need for explicit instantiation, applica-

tions have to be written according to the styles/policies imposed by the framework.  

In contrast, the proxy approach used by JavaParty [90] and J-Orchestra [178] provides a 

fully transparent means of instantiating a proxy, since the proxy is named after the original 

class. As such, when a client attempts to instantiate the class (e.g. using the “new” operator), 

the corresponding proxy gets instantiated instead. The instantiation of the target/original class 

is then done automatically (and transparently from the point of view of the client) by the 

proxy. Though proxy instantiation is not an issue that requires an explicit solution in Java-

Party and J-Orchestra, this might not be the case in other proxy approaches (e.g. those 

adopted in [147] or [49]), in which case a solution is required as will be discussed in section 

6.2.4.1.  

6.1.3 Field Access 

In Java, the client of an object interacts with the object via its fields and methods (including 

those that are inherited from the parent class). Methods of a target/proxied object can be in-

voked in a transparent manner via method call forwarding, wherein an invocation is for-

warded from a method of the proxy to the corresponding method of the proxied object. How-

ever, this solution is not applicable for field access because unlike a method, in which the 

functionality can be arbitrarily defined (i.e. thus can implement the forwarding logic), a field 
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only has a fixed set of operations, i.e. read and write, thus a proxy cannot delegate to the 

proxied object when its field is accessed.  

The solution to this issue involves generating the corresponding field accessors (i.e. a set-

ter method for writing and a getter method for reading) as well as modifying the client code 

to invoke the appropriate field accessors instead of directly accessing a field. This solution 

has been discussed in sufficient detail in [49], and therefore section 6.2.4.2 only discusses 

outstanding field-related issues. 

6.1.4 Reflective Operations 

In addition to standard object creation using the “new” operator, Java provides two other 

ways of instantiating a class via the Java reflection API. Note that the term “reflection” used 

in this thesis should not be confused with the ability of an application to reflect and modify 

its components/behaviour accordingly, which is synonymous with application adaptation. In-

stead, the term “reflection” is used to refer to the ability to perform class/object-level opera-

tions (e.g. instantiation, method invocation) without the need to explicitly hardcode certain 

information (e.g. class/method names) during the development of the application. 

As such, in the case of reflective instantiation, unlike the issue described in section 6.1.2, 

there is no reliable static/compile-time solution since the concrete type of a class accessed by 

reflection can only be accurately determined at runtime. Since none of the reviewed work has 

addressed this problem in detail, section 6.2.4.1 describes a solution to this problem so that 

transparency can be maintained even in the event where the proxy (or target class) is instanti-

ated using reflection.  

On the other hand, reflective method invocation does not pose a new problem since 

method invocation in Java is always resolved dynamically at runtime due to polymorphism, 

regardless of whether the invocation is done via reflection. In contrast, reflective field access 

introduces a problem similar to reflective instantiation, i.e. the field and the class in which the 

field is declared cannot always be determined at compile time as will be discussed in section 

6.2.4.2. 

6.1.5 Static Members 

Static members (i.e. fields and methods) in Java refer to those that belong to a class rather 

than a specific instance/object. In traditional applications, there is only a single copy of each 

static member, which is shared by all instances of the same class. In a standard Java Virtual 

Machine (JVM), this member sharing behaviour only works within the scope of a single JVM 

instance/process. Consequently, this presents an issue in distributed applications, in which 

static fields are not shared between different machines since each machine loads a separate 
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copy of the class, therefore the value of these fields are not automatically kept consistent 

across machines.  

J-Orchestra addressed this issue by generating an additional proxy class SP to manage the 

synchronisation of the static fields of a class. Any attempt to access a static field will be dele-

gated to an SP instance to synchronise the values of the distributed static fields. Additionally, 

this approach also provides the flexibility of implementing extra functionality in SP. Since the 

issue of static field synchronisation has been appropriately addressed in previous work, it is 

not discussed any further. 

6.1.6 Private Methods 

Proxies are generally used to bridge inter-object communication (as mentioned in section 2.6) 

rather than for intra-object communication which is more appropriately addressed using an 

Aspect Oriented Programming (AOP) [97] technology such as AspectJ [10]. Nevertheless, 

private methods might need to be proxied, since even though invoking these methods is re-

stricted to code residing in the same class, it is possible that the invocation is made by a dif-

ferent instance (of the same class), thus qualifying it as inter-object communication.  

Proxying a private method requires the method to be exposed (e.g. making it public) so 

that it is accessible from the proxy. However, doing this could change the semantics of the 

method declaration. For example, if a class A has a child class B, exposing a private method of 

A could cause the method to be unexpectedly overridden by the child class B if a method with 

the same name exists in B. Such a semantic is inconsistent with that of the original class be-

cause private methods are not polymorphic (i.e. cannot be overridden) since they are not visi-

ble from the child class. 

This issue was addressed by Eugster by introducing a new non-private method (called 

stub method) which simply delegates/forwards to the original private method. The stub 

method is given a unique name, such as being prefixed with the qualified class name (i.e. 

package + class name), so that it does not conflict/override a method of the parent class. Ad-

ditionally, the original private method m() is proxied according to the following call se-

quence: XProxy.m(), XImpl.X_m_stub(), XImpl.m(), where X_m_stub refers to the gen-

erated stub method. However as will be discussed in section 6.2.3.2, this solution needs to be 

extended in order to cope with the issues introduced by proxy inheritance and parent method 

proxying. 

6.1.7 Self Referencing 

A common issue in any proxy-based approach is that passing a self-reference (i.e. using the 

keyword “this”) of a proxied object to another object, will expose the proxied object, thus 
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undesirably allowing direct access to the object instead of via a proxy. This could break the 

semantic of the object interaction since the functionality supported by the proxy would not 

get executed in subsequent inter-object communication. 

In EJB [171], this issue is addressed by requiring the developer to manually acquire the 

handle/proxy of a particular EJB component via the relevant API method, prior to pass-

ing/returning the proxy to other components. In contrast, the Java RMI framework automati-

cally replaces a remote object with a proxy (RMI stub) when the object gets passed to, or re-

turned from, a remote machine. This approach is transparent to the developer however it has 

the shortcoming that the automatic object substitution is only performed during remote invo-

cation, which although appropriate for remote communication, might not be suitable for local 

proxy-based functionality (e.g. collecting interaction metrics) 

J-Orchestra proposed that code transformation be used to substitute the “this” reference 

with the relevant proxy whenever the reference is explicitly used. Due to the minimal discus-

sion (found in existing work) on the specific conditions that need to be satisfied for an ex-

pression to be substituted (i.e. substitution rules), such conditions/rules will be presented in 

section 6.2.3.1. Moreover, an extension to the original substitution technique, which allows 

self-references to be correctly passed/returned from any class in the inheritance hierarchy of 

the implementation class, will also be presented. 

6.1.8 Identity Semantics 

Cases that can cause issues related to the identity semantics of a proxy object were identified 

in [136] as follows: 1) checking reference equality using the “==” operator; 2) synchronising 

thread executions, and 3) testing an object type. As explained further in subsequent para-

graphs, the first two cases only cause a problem when there are multiple proxy instances re-

ferring to a single object, since even though the proxies represent the same implementation 

object, in actuality they are not the same object. In mobile-object systems, which are distrib-

uted by nature, having multiple proxies of a single object is inevitable because multiple proxy 

instances are needed to communicate with a remote object from different machines. 

The first case involves testing the equality (e.g. using the == operator) of two proxy in-

stances, wherein the result might be inconsistent with the original application (i.e. when ob-

jects are directly compared without proxies) because the two proxy instances are always con-

sidered different despite referring to the same (proxied) object. This issue is addressed in sec-

tion 6.2.4.3. 

Similarly, synchronising multiple execution threads on a proxied object might not work if 

the synchronisation is performed on different proxy instances. However, this issue has been 

addressed in [178] and therefore further discussion is not necessary in this thesis. 
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Another identity-related issue concerns type checking of a proxied object, either explicitly 

using getClass() (e.g. proxyOfA.getClass() == A.class) or polymorphically using the “in-

stanceof” operator. A transparent proxy approach should maintain type compatibility be-

tween the proxy class and the original class, so that both checking mechanisms return correct 

results, as addressed in section 6.2.4.3. 

6.2 Transparency Solutions 

Section 6.2.1 considers alternative proxy class structures based on their suitability in address-

ing the issue of proxy inheritance (introduced in section 6.1.1) as well as facilitating various 

adaptation capabilities. Next, the solution for addressing specific transparency issues dis-

cussed in section 6.1 as well as other issues arising from the solution, is presented, classified, 

and structured according to the classes that are transformed: the proxy class (section 6.2.2), 

the original class (section 6.2.3), and the proxy clients (section 6.2.4).  

Issues related to the structural compatibility between the proxy class and the origi-

nal/implementation class, which include class members (e.g. fields, methods), member modi-

fiers (e.g. protected, final), and parent type hierarchy (i.e. super class and interfaces), are ad-

dressed in sections 6.2.1, 6.2.2, and 6.2.3. On the other hand, issues related to semantic com-

patibility (i.e. maintaining original application semantics) are addressed in sections 6.2.3 and 

6.2.4. 

6.2.1 Class Structuring Approaches 

In supporting a proxy class hierarchy that is compatible with the original/proxied class, this 

thesis considers three alternative class structures, each of which is based on an existing ap-

proach (discussed in section 6.1.1). In each approach, two fundamental proxy inheritance 

cases are considered: a proxied class extending another proxied class and a proxied class ex-

tending an ordinary (non-proxied) class. The first inheritance case is used in an ideal scenario 

in which it is safe to transform the parent of the proxy class, thus allowing the parent class to 

also be proxied. On the other hand, the second inheritance case is generally applied when the 

parent class belongs to an external library (as opposed to the injected application) since struc-

turally modifying such a class could affect dependent classes beyond those belonging to the 

injected application. 

On the other hand, the scenario in which a non-proxied class extends a proxied class is 

not addressed in this thesis, since although it involves a proxy as well as class inheritance, it 

does not concern the type compatibility of a proxy class. Moreover, not only is this scenario 

uncommon, solutions for such a scenario are domain-specific, since the child (non-proxied) 
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class may either extend the (generated) parent proxy class or the (transformed) implementa-

tion class, depending on application requirements. 

6.2.1.1 Alternative 1: the replace approach 

The first approach improves upon the approach adopted in JavaParty [90] and J-Orchestra 

[178], in which the generated proxy class is named after the original class A, whereas the im-

plementation class is named AImpl. In the case where a proxied class B extends another 

proxied class A, the proxy class B extends the parent proxy A, whereas the original class 

BImpl extends AImpl as illustrated in Figure 6-3. Consequently, the child proxy B automati-

cally inherits all the functionality (e.g. methods) supported by parent proxy A, thus making 

parent methods (e.g. a()) accessible through the child proxy B. 

The main difference between this proposed approach and the one adopted in JavaParty 

and J-Orchestra (explained in section 6.1.1), is that a proxy class does not extend a class other 

than the one extended by the original class, thus class type compatibility can be maintained. 

Furthermore, this thesis also considers the case where a proxied class extends a non-proxied 

class as illustrated in Figure 6-4. In this case, the proxy class B extends the unmodified parent 

class A for type compatibility. Additionally, class B should forward/delegate method calls to 

BImpl as well as A in order to maintain functional compatibility.  
 

 
Figure 6-3. Replace approach: extending 

another proxied class A 

 
Figure 6-4. Replace approach: extending a 

non-proxied class A 

 

In practice however, not all methods need to be proxied, since some (especially those be-

longing to library classes) are never invoked, and thus can be omitted from the proxy class 

(i.e. not forwarded/delegated). Such a case will be discussed in more detail in section 6.3, 

which addresses the efficiency of proxies through configurable proxy class transforma-

tion/generation. Note that proxy classes are made to implement the Proxy interface (as shown 
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in Figure 6-3 and Figure 6-4) so that they can be distinguished from the implementation ob-

jects and can be accessed in a polymorphic way by the supporting framework (e.g. MobJeX).  

For clarity, subsequent discussion also refers to this proxying approach as the replace ap-

proach, since in this approach, the proxy class takes the name (thus the place) of the original 

class. The replace approach has the advantage of requiring simple code transformation when 

compared to the other alternatives, which will be presented in sections 6.2.1.2 and 6.2.1.3. 

Furthermore since the proxy class now represents (i.e. has the same name as) the original 

class, the semantics of type equality checking such as proxyOfA.getClass() == A.class, can 

be retained without specific code modification, which is required by the other two proxying 

approaches as discussed in section 6.2.4.3. 

Nevertheless, this approach has a limitation in that it does not support dynamic and trans-

parent wrapping/unwrapping of proxies (i.e. dynamically swap a proxy with the implementa-

tion object and vice versa) without breaking existing code, since there is no common type be-

tween the proxy and the implementation classes. Note that the wrapping and unwrapping 

functionality referred to here is dynamic, insofar as it can be performed at any point in the 

application execution (without breaking the client code), and as such, is more powerful than 

the static wrapping/unwrapping feature discussed in [178], which is only applicable at prede-

fined places because client code has to be authored/modified accordingly. 

Depending on the application/utilisation of the proxies, wrapping/unwrapping may or 

may not be required. For example, certain client/source objects may need to interact with a 

target object directly (i.e. without going through the proxy) for various reasons including: 1) 

improving performance and efficiency, 2) enforcing semantic correctness by preventing the 

execution of the proxy functionality which could undesirably modify certain states/data, and 

3) addressing the issue caused by unmodifiable client code (e.g. native code) [178] [177], 

namely the inability to apply solutions requiring client-code modification, such as proxying 

field access. 

Proxy wrapping/unwrapping is important in this thesis to provide flexibility in terms of 

the range of capabilities that can be supported or injected into an adaptive application, as will 

be discussed further in section 6.2.1.3. In comparison to the first (i.e. replace) approach, the 

wrapping/unwrapping capability is supported in the second (i.e. extend) and third (i.e. do-

main) approaches as described in sections 6.2.1.2 and 6.2.1.3. 

6.2.1.2 Alternative 2: the extend approach 

The second approach extends the class structure proposed by Eugster [49] to explicitly ad-

dress issues in proxy inheritance. In this approach, the implementation class A is named after 

the original class A, while the proxy class AProxy extends the implementation class A for type 

compatibility. In a normal inheritance scenario (depicted in Figure 6-5), the child proxy 
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BProxy extends the implementation class B, which then extends the parent implementation 

class A. As such, BProxy is compatible with both implementation classes (i.e. A and B), 

whereas AProxy is compatible with class A because it extends A. This approach is also re-

ferred to as the extend approach, since type compatibility between the proxy and the original 

classes, is maintained by extending the original class. 

 
Figure 6-5. Extend approach: extending 

another proxied class A 

 
Figure 6-6. Extend approach: extending a 

non-proxied class A 

 

Figure 6-7 illustrates (for completeness) an alternative class structure for the first inheri-

tance case, which however has a drawback with regard to efficiency since class B unnecessar-

ily inherits the functionality (i.e. methods, constructors) and data (i.e. fields) of AProxy, 

which without proper care, might also result in semantic errors. Consequently, such a class 

structure is less desirable in comparison to the solution depicted in Figure 6-5. 

 
Figure 6-7. Extend approach: extending another proxied class A (not preferred) 

 

Since in the preferred approach (i.e. Figure 6-5) the child proxy BProxy does not have an 

inheritance relationship with the parent proxy AProxy, it does not automatically handle (i.e. 
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forward/delegate) the methods of the parent class. Consequently, BProxy, which initially only 

forwards calls to methods of the child class B, needs to be “extended” to further allow access 

to methods of the parent implementation class A. This could be done by inserting proxy func-

tionality for the parent methods into the child proxy, but this could result in a lot of duplica-

tion, despite effort made to minimise code generation by implementing common functionality 

(e.g. core metrics collection/management capability) in the supporting framework (e.g. Mob-

JeX) instead of in the generated proxy.  

As such, a delegation approach is used; wherein overridden methods are delegated to the 

corresponding methods of the parent proxy, i.e. BProxy delegates the methods of domain 

class A to AProxy. However, such an approach is not applicable to the second inheritance 

case since the parent class A does not have a proxy, as shown in Figure 6-6. Instead, if any of 

the parent methods need to be accessible from the child proxy; these methods should be in-

serted (with proxy functionality such as metrics management) into the child proxy BProxy. 

As mentioned, the extend approach is more flexible than the replace approach in terms of 

being able to support dynamic wrapping/proxying or unwrapping/unproxying of objects. 

However, the drawback of this approach is that since BProxy extends B, it inherits all the 

fields declared in B, which are never used because as previously mentioned the execution of 

the functionality is delegated to a separate instance. Even though precautionary steps can be 

taken to ensure that the fields will never get initialised, they still consume a certain amount of 

memory.  

Moreover, since the proxy automatically inherits the capabilities of the implementation 

class, there could be confusion or uncertainty over whether the proxy really requires/uses the 

capability. One such example is a proxy which indirectly implements a tagging interface7 

java.rmi.Remote, as a result of extending an implementation class which explicitly imple-

ments such an interface (to indicate that it supports RMI remote communication capability). 

In the best case, this only reduces code readability and thus complicates development and 

maintenance of the application/framework, but in other cases, this could incur unnecessary 

overheads, introduce unexpected behaviour, or even change the semantics of the original ap-

plication. 

Another more minor drawback is that unlike the replace approach, explicit identity check-

ing such as proxyOfA.getClass() == A.class (as introduced in 6.1.8), will return a different 

result since A refers to the implementation class instead. Such an issue, which also applies to 

the third approach, is addressed in section 6.2.4.3. Note that this issue does not apply to po-

lymorphic identity checking using the “instanceof” operator, since the proxy class (e.g. 

                                                      
7 Tagging interfaces refer to interfaces which do not define any particular methods, but are used by the supporting frame-

work (e.g. MobJeX) to identify the behaviour of classes (e.g. remote, serialisable). 
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AProxy) extends the implementation class (e.g. A), thus according to the inheritance rule, 

AProxy is of type A. 

6.2.1.3 Alternative 3: the domain approach 

The third approach is based upon the solution proposed by Ryan et al. [147] with the primary 

difference being an abstract class is used as the domain type instead of a Java interface. Such 

a modification allows the domain class to extend the original parent class to maintain type 

compatibility, which was not always possible using an interface because unlike in the first 

inheritance case (i.e. a proxied class B extends another proxied class A) wherein the domain 

interface (of the child class) B can extend the domain interface (of the parent class) A (as 

shown in Figure 6-8), in the second inheritance case, the parent class is not proxied and thus 

has no domain interface. 

 
Figure 6-8. Domain approach: extending another proxied class A (not preferred) 

 

On the other hand, the preferred class structuring approach, which uses an abstract class 

as opposed to an interface, is illustrated in Figure 6-9 and Figure 6-10. In the first inheritance 

case, transformation is applied to both the child class B and the parent class A, and thus there 

exist implementation, proxy, and domain classes for each A and B, as depicted in Figure 6-9. 

On the other hand, in the second inheritance scenario, the domain class (B) extends the origi-

nal parent class (A) as shown in Figure 6-10. Similar to the extend approach, to reduce code 

duplication, the child proxy BProxy should delegate parent method invocations to AProxy 

where possible (i.e. if the parent is also proxied). Subsequent discussion refers to this ap-

proach as the domain approach, since a domain type is used to maintain compatibility be-

tween the proxy and the original classes. 
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Figure 6-9. Domain approach: extending 

another proxied class A 

 
Figure 6-10. Domain approach: extending a 

non-proxied class A 

 

In comparison to other alternatives (i.e. the replace and extend approaches), such an ap-

proach involves more complex proxy class structures. Consequently, it requires more com-

plex code transformation, which as a result generates more code/classes as evaluated in sec-

tion 6.4. Furthermore, it requires more memory than the replace approach, although not nec-

essarily so compared to the extend approach since this depends on specific application char-

acteristics in terms of number of fields per proxied class, etc., as evaluated in section 6.4.3. It 

also has the same identity checking limitation as the extend approach, which requires an addi-

tional transformation task (as addressed in section 6.2.4.3), thereby further increasing code 

transformation complexity. 

Nevertheless, in this thesis, the domain approach is favoured due to its flexibility. In par-

ticular, unlike the replace approach, it allows wrapping and unwrapping, thus allowing a 

wider range of proxy functionality to be supported. One such functionality is object cluster-

ing, which allows mobile objects to be grouped as a cluster, ensuring that objects belonging 

to the same cluster always migrate together. Such a scenario implies that proxies and their 

included functionality, such as remote invocation and metrics collection capabilities, are not 

required for communication between objects in the same cluster as described in more detail in 

section Appendix A. Not only does this offer the obvious benefit of increased efficiency, but 

also reduces deployment complexity (thus also improving reliability) as explained in section 

Appendix A. 

Although the larger amount of code generated in the domain approach implies higher 

memory overhead (since classes have to be loaded into memory before they can be used), the 

domain approach is also more scalable than the second alternative (i.e. the extend approach) 

as demonstrated in section 6.4.3, which shows that the memory requirement of the extend 

approach increases at a higher rate as the number of proxy instances increases. In addition, 
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the domain approach is more flexible in that although in general a proxy has to implement all 

the regular interfaces implemented by the original class in order to enable polymorphism, the 

inclusion of a tagging interface (e.g. java.rmi.Remote) is not necessary, allowing the deci-

sion to be made based on specific application requirements (e.g. whether a proxy should be 

accessible remotely). In the case of this work, although implementation objects (e.g. mobile 

objects) need to be accessible remotely (via a proxy), proxies do not need such functionality 

(thus not requiring/extending the java.rmi.Remote interface). 

6.2.2 Parent Class Transformation 

This section discusses aspects of the class structuring approaches (presented in section 6.2.1) 

that influence the structural properties (e.g. method visibility modifiers, constructor declara-

tions) of a proxy class, which as a result might require changes to/transformation of the par-

ent classes (i.e. all classes that are directly or indirectly extended by the proxy class). The ma-

jority of the described transformation is generic (i.e. applies to all class structuring ap-

proaches: replace, extend, and domain) unless otherwise explicitly specified. As will be re-

vealed in this section, the modification/transformation of the parent classes is minimal and 

more importantly does not break dependency with other existing classes.  

6.2.2.1 Parent Constructor and Initialisation 

In the domain approach, the domain class should have a matching constructor declaration for 

each constructor of the original parent class, i.e. with exactly the same signature/arguments. 

These constructors are needed to forward calls from the constructors of the implementation 

class (i.e. via the ”super” keyword) to the corresponding constructors of the original parent. 

Similarly, an additional constructor should also be inserted into classes that are ex-

tended/inherited (directly or indirectly through other classes) by the proxy class for reasons 

explained in subsequent paragraphs. This requirement applies to all proxying approaches, al-

beit in slightly different ways. In the case of the replace approach, this only applies to the 

second inheritance case, in which the additional constructor is inserted into the parent class 

(e.g. class A) and all other classes up in the inheritance hierarchy, i.e. indirect parent classes, 

including java.lang.Object. In the extend approach, the injected classes include the im-

plementation class and indirect parent classes, whereas in the domain approach, the injection 

involves the domain class and indirect parent classes.  

Such an approach is based on a solution proposed in [49] whereby the inserted constructor 

receives a single argument with a unique class type, e.g. myframework.CreationInfo to en-

sure that its signature does not conflict with any of the existing constructors. The purpose of 

introducing a new constructor in the parent classes is to allow the proxy class to explicitly 

invoke the new constructor instead of relying on the default Java behaviour, which is to in-
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voke an empty argument list constructor of the parent class, which might not exist. Even if 

the constructor exists, the initialisations done in the constructor could have a negative impact 

on performance, efficiency and transparency (e.g. unexpectedly modifying certain 

data/states). As such, the introduction of the new constructor also serves to prevent unneces-

sary or irrelevant initialisations during the construction of a proxy. 

For the same reason, declaration-time field initialisations (sometimes referred to as in-

stance initialisers) in parent classes should be prevented. This type of initialisation is similar 

to the initialisations done in the constructor except that they are performed earlier (i.e. prior 

to the constructor execution). In order to solve this issue while still maintaining the same se-

mantics, these initialisations have to be moved to the beginning of every constructor in the 

class except for the newly inserted constructor. 

6.2.2.2 Method Modifiers 

This section discusses how methods with various modifiers (i.e. final and various visibility 

modifiers) can be proxied in the proposed approaches. 

Any final (non-overridable) method of the parent class A that is proxied/included in the 

child proxy (e.g. B or BProxy depending on the adopted approach) should be made non-final, 

because proxying such a method requires the method to be overridden in the proxy. The final 

keyword is used mainly for improving code quality (e.g. maintainability, readability) and 

since the code transformation works on a separate copy of the code, removing this keyword 

during the transformation should not affect the quality of the original code. However, doing 

so could potentially introduce security issues, but these can be prevented if the application 

never uses classes from untrusted sources, which is the responsibility of the application and 

the supporting middleware (e.g. MobJeX), and thus is beyond the scope of this thesis.  

In order to retain the accessibility semantics/constraints of proxied methods, the visibility 

modifiers (e.g. public, protected) of the original methods should be copied/reflected in the 

implementation class, the proxy class, and the domain class (if applicable). However, meth-

ods of package-private modifier (i.e. the default modifier in Java) are not overridable by a 

proxy class located in a different package, thus might require altering of the modifier to pro-

tected. Such a restriction only applies to methods belonging to the parent class (e.g. A) as op-

posed to the proxied class itself (e.g. B), since the classes might be located in packages which 

are different from the proxy class (in this case BProxy). 

In addition, as mentioned in section 6.1.6, proxying a private method requires the inser-

tion of a non-private stub method, which enables the call sequence: AProxy.m(), 

AImpl.A_m_stub(), AImpl.m(). In this case, the methods AProxy.m and AImpl.A_m_stub 

can be of package-private modifier, since it may only be invoked from other instances of the 

same class (i.e. AImpl), which can be placed in the same package as AProxy.  
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However, as it is, such an approach could cause a problem when a child proxy exists (e.g. 

BProxy), since AProxy.m() might accidentally be overridden by a method of BProxy that 

happens to have the same name. To avoid this problem, the proxy method has to be renamed, 

thus the call sequence becomes: AProxy.A_m_stub(), AImpl.A_m_stub(), AImpl.m(). 

This ensures that each of the parent and child classes may have a non-conflicting private 

method called m(), which can be proxied and invoked independently of each other since one 

is called A_m_stub, while the other is called B_m_stub. As a consequence, any code that in-

vokes the original private method should be modified accordingly as will be discussed in sec-

tion 6.2.3.2. 

6.2.3 Implementation Class Transformation 

This section discusses the modification of the implementation class required to maximise 

transparency in the proposed proxy approaches. Such modification only affects the internal 

implementation of the original class, and thus does not syntactically affect other classes. 

Nevertheless, since the issues addressed by this modification, which include self-referencing 

(introduced in section 6.1.7) and proxying private methods (introduced in section 6.2.2.2), 

also apply to the parent classes of an implementation class, the modification should also be 

performed on the parent classes. All of the modification is independent of the chosen class 

structuring approach. 

6.2.3.1 Self-referencing 

This section presents the rule for identifying the statements/expressions that need to be modi-

fied for the purpose of substituting a self-reference “this” of an implementation object with 

a proxy instance. This is so that a direct reference of the object does not get passed to other 

objects, which as described in section 6.1.7 could break the semantics of the proxied object 

interaction. Note that when substituting an occurrence of a “this” keyword in AImpl, it can-

not be assumed that an instance of AProxy should be used as the substitution, because the 

“this” reference might refer to a child class, e.g. BImpl, in which case an instance BProxy 

should be used instead. As such, runtime type checking should be performed to determine the 

concrete type of the self-reference “this”. 

A negation is used for specifying the substitution rules, which consist of a list of 

cases/conditions where an occurrence of the self-reference should not be wrapped/substituted 

with a proxy. As such, during the code transformation, every occurrence of the “this” key-

word should be checked against the conditions, and if none of them holds, the keyword gets 

substituted with proxy instantiation code. The conditions are as follows: 

1)  Method invocation, e.g this.call() 

2)  Field access, e.g. this.var 
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3)  Explicit class instance method invocation, e.g. OuterClass.this.call() 

4)  Explicit class instance field access, e.g. OuterClass.this.var 

5)  Implicit toString() call, e.g. println(“Self: “ + this) 

This negation logic serves as a safe guard where in exceptional cases (such as those when 

it cannot be determined whether a substitution is required), a self-reference will nonetheless 

be wrapped to guarantee consistent proxying behaviour. As an example of such cases, proxies 

are not needed when the self-reference is only passed between methods of the same object. 

However it is difficult to identify this case in a reliable manner without sophisticated code 

analysis (and complementary runtime checking) and therefore, in the absence of such code 

analysis support, the self-reference will be wrapped/proxied, which generally does not change 

the application semantic but instead introduces small performance and memory overheads. It 

should be noted however that it is uncommon for properly written Java code to pass a self-

reference within the same object, as the reference is always directly accessible. 

Additional type checking is required when applying this solution to a parent class (of a 

particular implementation class), since the class might be extended by other classes, which 

might not be proxied. Consequently, at runtime, it should be ensured that the “this” keyword 

refers to a proxied object, before the substitution can be performed. 

6.2.3.2 Proxying Private Methods 

As mentioned in section 6.1.6, any code that accesses a proxied private method needs to be 

modified to instead call the corresponding stub method. Note that since private methods are 

only accessible from within the declaring class, the code transformation only needs to be per-

formed on the declaring class (i.e. implementation class). The transformation involves modi-

fying obj.m() so that the “obj” reference is first checked whether it is a proxy, as shown in 

Figure 6-11.  

The checking is necessary because “obj” could be a direct reference to the implementa-

tion object due to the unwrapping capability described in section 6.2.1.1. Furthermore, in the 

case where the transformation is being performed on a parent class extended by proxied and 

non-proxied classes, the reference “obj” might refer to a non-proxied object. If “obj” is a 

proxy, the relevant stub method (i.e. A_m_stub()) should be invoked instead, as shown in 

Figure 6-12. 
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Figure 6-11. Private Child Method 

 

Figure 6-12. Private Parent Method 

 

Note that a similar solution is required for the field accessors (i.e. setter and getter meth-

ods as discussed in section 6.1.3) of a private field, although in this case, the insertion of a 

stub method is not strictly required since the field accessor itself can serve the role of a stub 

method, i.e. exposing the visibility of the private field and having a unique name to avoid 

(accidentally) overriding a parent method. 

6.2.4 Client Class Transformation 

This section addresses the transparency issues that are most appropriately solved by trans-

forming client classes, i.e. any application classes (including implementation and parent 

classes) that potentially access another implementation class via a proxy. The involved modi-

fication only applies to the body (i.e. internal implementation not external structure) of the 

client class, therefore does not affect other classes. The majority of the transformation is ge-

neric, except for the proxied class instantiation solution, which as discussed in section 

6.2.4.1, primarily targets the extend approach and the domain approach. 

6.2.4.1 Proxied Class Instantiation 

This section addresses transparent proxy instantiation as introduced in section 6.1.2, particu-

larly targeted for the extend approach and the domain approach, since in these approaches, 

the proxy class uses a different name from the original class name. Consequently, the original 

instantiation code needs to be modified so that the corresponding proxy class is instantiated 

and returned to the client. The implementation class can be instantiated immediately or at a 

later time (e.g. when the proxy is first accessed) depending on specific application require-

ments. 

The standard instantiation mechanism (i.e. using “new” operator) is addressed by travers-

ing potential client classes and searching for the relevant instantiation code (e.g. “new A()”). 

The potential client classes are limited to those that belong to the application, since instantiat-

ing a class using the “new” operator requires the class name to be explicitly specified at com-

pile time. However, this assumption does not apply to reflective instantiation (i.e. using Java 

reflection API), which allows dynamic resolving of class types, thus enabling instantiation to 

be performed by external classes, such as framework classes. As such, addressing reflective 

// Original code in class A 

B obj = ... 

((A) obj).m();   

 

// Transformed code 

(obj instanceof Proxy) ? 

  ((A) obj).A_m_stub() : ((A) obj).m(); 

// Original code in class B 

B obj = ... 

obj.m(); 

 

// Transformed code 

(obj instanceof Proxy) ? 

obj.B_m_stub() : obj.m(); 
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instantiation involves traversing all classes in the execution class path to search for classes 

that need to be transformed, even if only a few classes require such a transformation. Such a 

comprehensive approach is generally not required since not only is the use of reflective in-

stantiation rare, but it usually requires the name of the instantiated class to be explicitly speci-

fied such as via a configuration file, in which case the name of the proxy class can be speci-

fied instead (in the configuration file), thereby removing the need for code transformation. 

Reflective instantiation presents another issue whereby, a static substitution/modification 

of code does not suffice due to the supported dynamic class resolving. As such, the solution, 

which relies on runtime type checking, should first replace the original instantiation code 

with the invocation of a newly introduced/inserted method reflectionNew, as shown in the 

example in Figure 6-13. At runtime, the method determines whether a proxy should be cre-

ated based on the type of the to-be-instantiated class. Figure 6-14 shows an example specific 

to the domain approach, in which it is first determined whether the target class is a domain 

class. If it is, the relevant implementation and proxy classes will be instantiated and the proxy 

object will be returned to the client. 
 

 

 
 

Figure 6-13. Replacing Instantiation 

 
 

Figure 6-14. Proxying Created Instance 
 

One drawback of such a solution (which requires modification of client code) is that there 

is no straight forward solution for the case where the client code is not modifiable, e.g. native 

code written in C/C++. However, it is unusual for a Java class to be instantiated from native 

code, since due to non-portability, native code is used sparsely and usually for low-level plat-

form-specific operations. 

6.2.4.2 Field Access of Proxied Objects 

As mentioned in section 6.1.3, proxying field access has been addressed in previous work, the 

solution of which requires transformation of client classes. Due to the static nature of field 

access (i.e. non-polymorphic), the code transformation can be performed at compile time and 

most of the time, only the application classes need modifying since these fields are never ac-

cessed by external classes unless done via the Java reflection API.  

In order to handle reflective field access, the relevant statement needs to be checked at 

runtime to determine whether it is accessing a field of a proxy, in which case the inserted 

getFieldValue method of the proxy is invoked instead, as depicted in Figure 6-15. The get-

Object reflectiveNew(Class c) { 

  if (isDomain(c)) { 

    Class ic = getImplClass(c); 

    return createProxy( 

        ic.newInstance()); 

  } 

  return c.newInstance(); 

} 

 

// Original code 

java.lang.Class c =... 

... c.newInstance(); 

 

// Transformed code 

java.lang.Class c =... 

... reflectiveNew(c); 
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FieldValue method then forwards the call to the corresponding field accessor (i.e. set-

ter/getter method) described in section 6.1.3. 
 

 

 
 

Figure 6-15. Proxying Reflective Field Access 
 

 

Due to the same reason outlined in section 6.2.4.1, it is not possible to proxy a field that is 

accessed from unmodifiable code (e.g. native code). Nevertheless, a proxy can be unwrapped 

(i.e. substituted with the target object) before it is passed to the native code, in which case the 

field of the target object will be accessed directly. 

6.2.4.3 Equality Checking 

In order to address the proxy reference equality checking issue discussed in section 6.1.8, 

when such a statement is detected (Figure 6-16), a special method will be invoked to assist 

the equality checking by firstly ensuring whether the second object being compared is a 

proxy as depicted in Figure 6-17. If it is, both of the proxies being compared will be un-

wrapped so that the actual implementation objects can be tested for equality. In this work 

however, unwrapping is unnecessary, since Java RMI provides a mechanism for testing the 

equality of two remote objects without the need to have the objects on the same ma-

chine/JVM. 
 

 
 

Figure 6-16. Handling Reference Equality Checking 

 
 

Figure 6-17. Testing Proxy Comparison 

 

Note that the proxy identification (i.e. the “instanceof” expression) shown in Figure 

6-16 only works if the compared objects are not primitive values and as such a compile-time 

code analysis is required to determine whether the original code should be modified. 

boolean refEq(Object o) { 

  if(o instanceof Proxy) { 

    return this.getImpl() == 

      ((Proxy) o).getImpl(); 

  } 

  return false; 

} 

 

// Original code 

if(o1 == o2) { ... } 

 

// Transformed code 

if(((o1 instanceof Proxy)?  

  ((Proxy)o1).refEq(o2) : (o1 == o2))) { ... } 

// Original code 

Java.lang.reflect.Field f = ... 

value1 = (Integer) f.get(obj);  

 

// Transformed code 

value1 = (Integer) ((obj instanceof Proxy) ?  

    ((Proxy) obj).getFieldValue(f) : f.get(obj)); 
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Figure 6-18. Handling Proxied Class Type Comparison 

 

A similar approach can also be applied for checking the type of a proxied class as shown 

in Figure 6-18. The key to this solution is the getOrigType method, which should return a 

class reference having the same name as the original class, i.e. the proxy class in the case of 

the replace approach, the implementation class in the extend approach, and the domain class 

in the domain approach. 

6.3 Reducing Transparency Overhead  

This section addresses the configurability of the proposed proxy approaches, particularly to 

reduce the overheads that are introduced as a result of making them more transparent. The 

concept behind this configuration solution is that the application deployer will usually have 

knowledge of the deployed application, thereby enabling domain-specific optimisation of de-

ployment configurations. 

Firstly, the solution allows the application deployer to explicitly specify potential client 

classes. Doing this improves the efficiency of the code transformation process since the code 

transformation tool (provided by the supporting framework) only needs to inspect a smaller 

set of classes as discussed in Appendix C on the implementation of the adopted code trans-

formation solution (in the MobJeX framework). 

Moreover, the transformation also optionally allows the deployer to explicitly in-

clude/exclude individual methods of a proxied class in the generated proxy class for the pur-

pose of reducing the storage overhead of both the transformation and the execution of the ap-

plication. Non-volatile storage (e.g. disk) usage is reduced due to the smaller amount of gen-

erated code, whereas volatile storage (e.g. RAM) usage is minimised since less memory is 

required for supporting proxy functionality such as that for collecting method-related metrics 

(e.g. Invocation Frequency). 

The flexibility to exclude certain methods from the proxy class is especially important if 

the parent class is a library class, since library classes tend to contain many more methods 

than will be used by a single application. As an example, proxying a class that extends the 

java.awt.Frame from the Java 5.0 library will generate at least 300 proxy methods, of which 

only a very small subset will generally be used by the application. 

// Original code 

if(o.getClass() == A.class) { ... } 

 

// Transformed code 

if(((o instanceof Proxy)?  

  ((Proxy)o).getOrigType() : o.getClass()) == A.class) { ... } 
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6.4 Evaluation 

In order to facilitate the code transformation required by the solution described in sections 

6.2.1-6.2.4, transformation support at both source-code and byte-code levels, has been im-

plemented in MobJeX and a complementary transformation tool called Mobjexc. Issues re-

lated to the actual code transformation process are addressed in Chapter 7. As will be dis-

cussed in section 7.3, the proxy solution has been used to enable automatic injection of capa-

bilities (e.g. metrics collection, location tracking) required for performing adaptive applica-

tion partitioning via object mobility, thus demonstrating its transparency in terms of minimis-

ing development effort. 

Since the domain approach was chosen as the primary solution for addressing proxy class 

inheritance in this work, the majority of the implementation focuses on this approach. Most 

of the transformation tasks described in sections 6.2.1-6.2.4 have been implemented, with the 

exception of those required for the issues of proxy reference comparison, field access, private 

methods, and reflective instantiation. This is because the transformation involves the com-

plexity of requiring a certain degree of automatic code analysis, the support for which is not 

yet fully implemented in Mobjexc. 

Arguably, the first two issues do not occur very often since firstly, in object oriented pro-

gramming, logical equality checking (i.e. via the equals method) is generally preferred over 

reference comparison. Similarly, directly exposing the fields of a class is not considered good 

practice as it is better to use setter/getter methods which provide the flexibility to embed fu-

ture functionality (e.g. value validation) into the methods. In contrast, while the last two is-

sues are not uncommon, they are usually isolated in a specific method or class (e.g. reflective 

instantiation is normally handled by a factory class [60]), thus when required, manual modifi-

cation can be performed on the relevant method or class. 

Despite the limitations described above, the correctness, performance, and resource usage 

of the entire solution, including all the proposed class structures (i.e. extend, replace, and 

domain) has been evaluated as discussed in sections 6.4.1, 6.4.2, and 6.4.3. Furthermore, the 

limitations have been addressed by manually performing the required code modification. The 

experiments were undertaken using Sun JDK version 1.6.0_17 executing on a quad-core ma-

chine (i.e. Intel Q9550) running Windows XP Service Pack 3. 

6.4.1 Experiment 1: Correctness 

The aim of this experiment is to evaluate the correctness of the three solutions (replace, ex-

tend, and domain) described in section 6.2. Several test applications were written to explicitly 

evaluate the structural and semantic correctness (as introduced at the start of this chapter) of 
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the proposed proxy solutions. These applications consist of a client accessing one or more 

proxied classes/objects to test various scenarios, such as self referencing, field access, etc. 

The invocation of the inherited and overridden parent methods was also tested. Furthermore, 

the tests cover accessing different class members with different modifiers and each applica-

tion differs in terms of the proxy inheritance hierarchy: 

1)  A proxied class (P) extends a non-proxied class (NP) which extends another non-proxied class 

(NP). 

2)  P extends P which extends NP 

3)  P extends P which extends P 
 

Note that none of these scenarios involves a case where NP extends P, since as mentioned in 

section 6.2.1, such a case is not related to the inheritance hierarchy of a proxy class.  

Several complex capabilities supported by the framework, such as object mobility, con-

currency management, etc., were injected into the proxied classes to ensure that the insertion 

of the capabilities did not affect the correctness of the solutions. In addition, a separate test 

consisting of clients residing in different packages was conducted to more rigorously validate 

the visibility semantic of the proxied class.  

Where possible, the tests were verified automatically using assertion statements, other-

wise manual verification was done by inspecting the produced source code and tracing 

through the log statements printed during the execution of the test applications. The results of 

the tests confirmed that the transformed (i.e. proxy-based) applications exhibit the same be-

haviour as the original versions and proxies were indeed used where they were expected to 

be. 

A separate test was also conducted to further verify the usability and transparency of the 

proposed solution. The test involved a simple GUI (Graphical User Interface) application de-

veloped using a standard graphical library, i.e. AWT (Abstract Windowing Toolkit). AWT 

was chosen due to the adopted class design, which involves complex inheritance and associa-

tion relationships between graphical components. The test application included a 

frame/window containing (and thus communicating with) several user interface components 

(which extend java.awt.Component) through proxies.  

Two classes were written: one extends/inherits the panel class (i.e. java.awt.Panel) and 

the other extends the button class (i.e. java.awt.Button), in order to address the limitation 

(in proxy-based solutions) in which system classes cannot be directly proxied (due to the con-

straint mentioned in section 6.1.1 wherein modifying such classes would affect dependent 

code). Next, these classes, with which the frame communicates, were transformed into 

proxied classes (and injected into the application). The test was considered successful since 

the frame including its content, was displayed, and responded to user input, in exactly the 

same manner as the original application (i.e. without proxies). 
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6.4.2 Experiment 2: Performance Overhead 

Experiment 2 aims to measure the runtime performance overhead (i.e. response time) that is 

introduced by the proposed solution, specifically when instantiating a proxy and accessing its 

methods/fields. The experiment also considers operations performed using the Java reflection 

API, which include proxy instantiation, method invocation, and field access. The experiment 

includes two inheritance cases: a proxied class (P) extending a non-proxied class (NP) and a 

proxied class (P) extending another proxied class (P). In order to simulate a worst-case sce-

nario in which the functionality of the original application was minimal, only basic operations 

such as storing and returning a single integer value, were implemented in the proxied classes. 

Furthermore, proxy classes were generated with no additional functionality as they simply 

delegated method calls to the implementation class. 

All the tested operations were repeated in a 200,000 iteration loop, in order to obtain more 

reliable (averaged) results as well as to amplify the overhead differences between various 

class structuring approaches and inheritance cases. Nevertheless, the outcome shows no no-

ticeable difference between the various scenarios, except when a method of a parent class 

was accessed through the child proxy. In this case, an additional overhead of roughly 0.0001 

milliseconds per invocation, is introduced in the second inheritance scenario (i.e. P extends 

P), when either the extend approach or the domain approach is used. This is because in these 

approaches, method invocation needs to be forwarded from the child proxy to the parent 

proxy. On the other hand, such an overhead is not applicable to the replace approach because 

invocation forwarding is not necessary since the relevant method is inherited by the child 

proxy. 

In comparison to the original application, in which objects are not accessed through prox-

ies, the proxy solution (using any of the class structuring approaches) introduces 4-8 times 

more performance overhead for most of the tested operations. Proxy instantiation overhead 

was shown to be higher because in MobJeX, proxies are instantiated dynamically (i.e. with-

out hardcoding of class names) using reflection even though the original instantiation code is 

static (i.e. using “new” operator). Such an approach provides more control and flexibility, 

such as the ability to unwrap a proxied object (i.e. returning a direct reference instead of a 

proxy) and to create multiple proxies for a single implementation object.  

Upon changing the instantiation behaviour into a static approach, in which the instantia-

tion of the proxy and the implementation classes were injected into the transformed code, the 

overhead was reduced to 4 times that of the original application. Another finding from this 

test is that field access takes roughly the same time as method invocation since it is essen-

tially an invocation to the getter/setter of the field. 
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Note that although the overhead figures are relatively high (between approximately 400% 

and 800%), this is considered acceptable for the following reasons. Firstly, the proxy solution 

is no worse (i.e. no measurable difference) than a less-transparent proxy solution, as con-

firmed by comparing the results of the proposed approaches (i.e. replace, extend, and do-

main) with the well-known interface-based approach described in section 6.1.1. Secondly, the 

experiment was conducted using dummy classes containing minimal implementation (of in-

significant processing overhead), thereby showing a worst case scenario for the resulting 

overhead percentages.  

6.4.3 Experiment 3: Storage Overhead 

This experiment aims to evaluate the impact of the adopted proxy approach on both volatile 

(e.g. RAM) and non-volatile (e.g. disk) storage. Non-volatile storage consumption is deter-

mined by the size of the generated classes (e.g. proxy, domain, and implementation classes), 

whereas volatile storage consumption is affected by the size of both the classes and runtime 

instances. The setup of the experiment is similar to the setup used for evaluating the perform-

ance overhead, with the exception that the client class only contains code for instantiating 

proxied objects since method invocation and field access are irrelevant. 

 
Figure 6-19. Volatile Memory Consumption in Inheritance Case 1 

 

Figure 6-19 shows that in the first inheritance case (i.e. proxied class extends non-proxied 

class), both the replace approach and the domain approach consume equal amount of volatile 

memory (e.g. RAM). On the other hand, the extend approach consumes more memory be-

cause the proxy unnecessarily inherits the fields of the implementation class. The number of 

(integer) fields is varied in both the parent and the child classes between 1, 10, and 20, in or-

der to show how it affects memory consumption. 
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Figure 6-20. Volatile Memory Consumption in Inheritance Case 2 

 

Figure 6-20 shows that in the second inheritance case (i.e. proxied class extends another 

proxied class), the replace approach has the least volatile memory consumption. On the other 

hand, the extend approach has the highest utilisation because the aforementioned overhead 

(i.e. of inheriting unnecessary fields from the implementation class) applies to both the child 

proxy and the parent proxy (to which the child proxy delegates). 

 
Figure 6-21. Impact of Proxied Child Methods on Non-volatile Storage Overhead 

 

In terms of the size of the generated code artefacts, the domain approach has the largest 

overhead due to its more complex class structure. Figure 6-21 shows the non-volatile storage 

overhead of each approach (in number of bytes), which primarily depends on the number of 

methods that are proxied (i.e. included in the proxy class). Due to this fact, in the second in-

heritance case, wherein the number of proxied parent methods is varied, the replace approach 

has the lowest overhead as shown in Figure 6-22, because the child proxy inherits the meth-

ods of the parent proxy, and therefore does not require duplicate declaration of the same 
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methods (for the purpose of delegating method invocation) as is the case with the other ap-

proaches. 

 
Figure 6-22. Impact of Proxied Parent Methods on Non-volatile Storage Overhead 

 

The high non-volatile storage consumption in the domain approach (caused by the large-

sized code artefacts) is not particularly a concern in this thesis since non-volatile storage is 

generally abundant. On the other hand, although class sizes affect volatile memory usage, 

classes are only loaded once (in each participating runtime) during the execution of an appli-

cation, thus should not present scalability issues. This is in contrast to the extend approach, in 

which memory consumption may be a concern in large applications consisting of many 

proxied objects (e.g. mobile objects). 

6.4.4 Summary of Evaluation 

The experiment presented in 6.4.1 demonstrates the transparency of the proposed proxy solu-

tion (which includes various class structuring approaches, i.e. replace, extend, and domain) 

through the validation of structural and semantic correctness involving various transparency 

scenarios (e.g. inheritance, visibility modifiers). Note that the exact degree of transparency 

was not evaluated due to the difficulty of: 1) setting up a test which covers every possible 

transparency scenario (including the use of native code, which as discussed in section 6.2.4, 

might break transparency), and 2) establishing a metric for measuring transparency (e.g. the 

issue concerning native code constitutes X% of transparency). 

In terms of performance, improving the transparency of a proxy-based solution does not 

introduce noticeable performance overhead as confirmed by the experiment presented in sec-

tion 6.4.2. The results from the experiment also show that the performance difference be-

tween the different class structuring approaches (i.e. replace, extend, and domain) is negligi-

ble (i.e. 0.0001 milliseconds). Although the proposed proxy solution (using any of the class 
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structuring approaches) incurs relatively high performance overhead (i.e. 400-800%) com-

pared to the original (non-proxied) application, such an overhead is tolerable considering the 

many benefits of proxies (e.g. supporting remote communication), as discussed in section 2.6. 

In terms of storage, the overall requirement (be it volatile or non-volatile) of the replace 

approach is lower than the other approaches (i.e. extend and domain), as discussed in section 

6.4.3. In terms of class size, which affects both non-volatile and volatile storage, the domain 

approach has the largest overhead, which however is not a major concern since non-volatile 

storage is not as scarce as volatile storage and since the volatile storage overhead is more 

scalable than that incurred by the extend approach, as discussed in section 6.4.3. Conse-

quently, considering the practical benefits (e.g. flexibility in terms of supporting dynamic 

wrapping/unwrapping) of the domain approach over the other approaches (particularly the 

extend approach), as discussed in section 6.2.1.3, this thesis favours the use of the domain 

approach for the injection of capabilities (e.g. metrics management, object mobility) for sup-

porting adaptive application partitioning. 

The proxy injection solution proposed in this chapter is complemented by the architec-

tural solution presented in the next chapter, which focuses on the automation of such injec-

tion using code transformation.  
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Chapter 7 .  Code Transformation 

This chapter describes an architectural solution for accommodating the code transformation 

required by the proxy solution presented in Chapter 6, and demonstrates its applicability in 

terms of facilitating the injection of capabilities for supporting adaptive application partition-

ing via object mobility. The solution concerns requirements specific to the development of 

adaptive applications, which often involve manual customisation (e.g. extension, fine-tuning) 

of the injected adaptation functionality. Additionally, the solution addresses issues related to 

the transformation of distributed applications, especially with regard to the heterogeneity of 

target machines, since application partitioning (including object mobility) implies distribu-

tion. The aforementioned concerns and issues influence the selection of techniques (e.g. byte-

code versus source-code transformation) and technologies (to facilitate the chosen transfor-

mation technique), as discussed in detail in section 7.1, which compares existing tech-

niques/technologies and the associated benefits in terms of quality attributes such as transpar-

ency, customisability, and portability. 

The presented solution primarily focuses on architectural aspects of code transformation 

(e.g. the software components involved and their primary roles) as opposed to specific trans-

formation issues such as technologies and tools; however, the adoption of certain technolo-

gies and tools is also discussed in order to provide a more complete picture of the architec-

tural solution. A more elaborate discussion of the solution (which is briefly described in sec-

tion 7.2) in terms of the specific functions of individual architectural components as well as 

the interaction between components during the transformation of (or the injection of capabili-

ties into) an application, is discussed in Appendix B. Furthermore, issues related to the im-

plementation of the solution in a mobile object framework, MobJeX [147], are addressed in 

Appendix C.  

Although the solution targets object mobility, due to its generality and flexibility, the in-

jection of different forms of adaptation, such as that achieved by dynamically swapping an 

application object with another compatible object, is also supported, as discussed further in 

the case study presented in section 7.3. As is the case with the proxy solution, the proposed 

transformation solution also targets Java applications. Also note that in this work, code trans-

formation is used to facilitate the injection of capabilities for supporting online adaptation 

(i.e. via application partitioning) into a non-adaptive application, rather than directly perform-

ing adaptation on the application code (e.g. removing certain functionality from the original 

application), which as discussed in section 2.1, is a process known as offline adaptation. 
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7.1 Design Decisions 

Since executable units in Java are represented as classes, the transformation of a Java pro-

gram is normally done by modifying individual classes. This section discusses alternative 

techniques and technologies for addressing the issues and challenges of class transformation 

in Java with an emphasis on evaluating the trade-offs between alternatives. In particular, 

common quality attributes such as efficiency, portability, and flexibility, are considered in 

addition to the aforementioned primary concerns, namely transparency and customisability. 

7.1.1 Minimisation of Code Transformation 

This section is concerned with the minimisation of code resulting from transformation (i.e. 

injection of adaptation capabilities) in order to improve efficiency, code readability, and ease 

of development, whilst still effectively implementing the desired behaviour. This is because 

although an arbitrary amount of code can be easily generated using appropriate technologies 

(as discussed in section 7.1.5 on generation of code fragments), it is generally not desirable to 

have static code duplicated in different locations since this bloats application code and thus 

reduces maintainability of both the transformed code as well as the transformation system 

itself.  

Therefore, as much as possible, common code should be grouped in shared methods (e.g. 

as a standalone library, framework, or API) as applied in technologies, such as RMI [173], 

EJB [171], etc. This approach provides another advantage since not only can compilation er-

rors in the implementation be detected at an early stage, but the behaviour and logic can also 

be independently tested using an automated testing framework. Note that although some 

technologies such as ASF+SDF [26], ensures that syntactically correct code is generated us-

ing templates (i.e. concrete syntax), the verification capability is not necessarily dependable 

in every possible case. For example, although it can be ensured that modifying the name of a 

particular class does not syntactically break the class itself, such modification may break de-

pendent classes (which still refer to the old class name). 

The proxy approach presented in section 6.2 can provide a beneficial side effect of mini-

mising code transformation, because injected capabilities can be implemented centrally in the 

proxies rather than duplicated in each caller/client. Additionally, proxies allow capabilities to 

be injected while retaining original method signatures, thereby minimising the need to mod-

ify the relevant client code. 
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7.1.2 Source Code versus Byte Code 

Application code transformation can be performed at different abstraction levels, including 

source-code and byte-code level. Although theoretically it can also be done at native-code 

level, the approach is not popular and is not considered in this thesis due to its lack of port-

ability. 

The main advantage of source code transformation is that the output of the transformation 

is human-readable, and thus facilitates manual tasks such as testing/debugging the produced 

code (e.g. white-box testing), implementing additional capabilities (e.g. prototyping or proof 

of concepts), or customising the injected functionality (e.g. fine-tuning, bug-fixing). The lat-

ter is more important in fields such as application adaptation, since both the application and 

the injected adaptation functionality might need to be fine-tuned according to the specific 

characteristics of both the target environment (software/hardware/network) and the applica-

tion itself. Note that in order to accommodate the customisation of the produced source code, 

the framework should provide a mechanism for the application to communicate with the 

framework, either by specifying explicit interfaces/contracts (e.g. callback methods) to be 

followed by the customised application classes or by providing a set of API methods accessi-

ble from the classes.  

The main drawback of source code transformation is that the source code of the applica-

tion and its dependencies, is not always available and obtaining source code via decompila-

tion (e.g. [138]) is not always appropriate due to various issues related to feasibility (e.g. lack 

of reliable tools) or ethicality/legality (e.g. decompiling without owner permission). Further-

more, generic decompilers do not work on protected classes (such as those that require de-

cryption using a custom classloader or JVM), although byte-code transformation does not 

work in this situation either. 

In contrast, whilst byte code transformation has the convenience of not requiring source 

code or decompilation, it is generally more cumbersome to work with, particularly for com-

plex transformations, such as those required by the presented proxy solutions (section 6.2). 

Furthermore, in the absence of dedicated support tools, it is harder to debug than the source 

code transformation approach as evaluated in [42]. One advantage of byte code transforma-

tion is that it provides the option/flexibility to perform online transformation (i.e. at runtime).  

However since this introduces overhead to the running application, which is especially of 

concern when the involved code transformation is as complex as that required by the proxy 

solution presented in section 6.2, the transformation solution presented in this thesis focuses 

mainly (although not solely) on source-code level transformation as discussed in section 

7.1.3. The term pre-compilation is used since the transformation is performed prior to class 
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compilation, producing modified Java source which is then compiled to byte code using a 

standard Java compiler. 

7.1.3 Offline versus Online 

This section discusses two transformation approaches: offline transformation, which refers to 

transformation performed prior to application execution; and online transformation, which 

involves transformation performed during application execution. Offline transformation is 

traditionally performed at pre-compile time (i.e. prior to class compilation), whereas online 

transformation is performed at class-load time (i.e. when a class gets loaded by the JVM). 

Another offline approach known as post-deploy-time transformation, which refers to trans-

formation performed after the deployment of an application but prior to its execution, is also 

considered in this thesis. Such an approach addresses certain limitations of pre-compile-time 

and class-load-time transformation as outlined in subsequent discussions which compare and 

contrast the different approaches. 

One disadvantage of offline transformation, which applies to both pre-compile-time and 

post-deploy-time transformation, is that it is not adequate for certain applications of code 

transformation such as that described in [5] for optimising object serialisation, which should 

be performed at runtime since the transformation requires information that can only be ob-

tained during the execution of the application, such as which objects are referenced by the 

fields of a particular object. However, such a constraint is not relevant in this work since the 

information required for injecting the concerned capabilities (e.g. metrics management) can 

be acquired statically, i.e. via static code analysis, configuration, etc. 

In the pre-compilation approach, transformation is performed only as many times as the 

number of versions of the deployed application. A deployment version refers to the output of 

a particular transformation, using specific configurations (e.g. with certain capabilities en-

abled or disabled), for purposes such as testing or fine tuning. In contrast, in distributed sys-

tems, class-load-time transformation, which affects the performance of the running applica-

tion, needs to be (re-)executed in each participating node. Despite the possibility of shar-

ing/distributing transformed classes among nodes to avoid repeating the same transformation, 

such a solution is not always applicable to system classes due to potential incompatibility be-

tween the different versions of JVMs running on different nodes. Runtime performance im-

pact is a major concern in this thesis, since as shown in Appendix E, the supported adaptation 

capabilities require complex and substantial transformations (e.g. generating classes for prox-

ies as described in section 6.2), which could potentially cripple the performance of an appli-

cation. This is especially relevant in pervasive environments given the likelihood that the tar-
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get machine (the machine to which the application gets deployed) is constrained in terms of 

hardware resources, e.g. CPU or memory. 

Furthermore, online (i.e. class-load-time) transformation of system classes (i.e. classes be-

longing to the standard Java API) is only possible in JVM implementations/versions provid-

ing low-level instrumentation support, thereby reducing the portability of such an approach. 

Additionally, such a transformation approach does not support early syntax/code verification, 

which is important in distributed/mobile applications and applications in similar domains 

such as J2EE/EJB [172], because the deployment of such applications is often a time con-

suming process, in which case it is important for the produced code to be syntactically veri-

fied (e.g. using a compiler) at the earliest stage possible. 

Post-deploy-time transformation shares similar limitations to the class-loading approach, 

which include the re-execution of transformations and lack of early syntax verification. Nev-

ertheless it does not impact on runtime application performance, since it is executed prior to 

application execution (i.e. offline). Consequently, pre-compile-time transformation, which is 

performed at source code level in contrast to the other two alternatives (i.e. class-load-time 

and post-deploy-time), is adopted in this work for the main transformation tasks such as gen-

erating proxy-related classes, modifying implementation classes, etc.  

However, the pre-compilation of system classes (i.e. classes belonging to the Java 

SDK/API) might present a mismatch between the compilation environment and the execution 

environment of the transformed application, as will be elaborated in subsequent paragraphs. 

Such a limitation implies that the pre-compilation approach is not always appropriate for 

transformations concerning parent classes (of a proxy class or an implementation class) since 

as mentioned in section 6.2.1, parent classes might belong to external libraries (including the 

Java API) rather than the application itself. 

For subsequent discussions, the term compilation environment is used to refer to a Java 

compiler and the associated Java API version, whereas execution environment refers to a 

JVM implementation and the Java API version used for application execution. 
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Figure 7-1. Normal Deployment Scenario 

 
Figure 7-2. Transformation Scenario 

The aforementioned limitation of the pre-compile approach, which often occurs in hetero-

geneous computing environments, is illustrated in an example deployment scenario shown in 

Figure 7-1 and Figure 7-2, where application code is compiled in a Java 5 environment and 

then deployed/executed in a Java 6 environment. Note that it is difficult to prevent such envi-

ronments since application partitioning requires collaboration between multiple machines 

which are likely heterogeneous. Such a configuration does not present any problem in a typi-

cal scenario shown in Figure 7-1 (i.e. without transformation), since newer Java specifica-

tions are backward-compatible with older specifications. On the other hand, as shown in Fig-

ure 7-2, the transformation of system classes (which is applicable to some of the di-

rect/indirect parent classes of a proxied class, as discussed in section 6.2) presents class link-

ing errors, caused by any the following scenarios. 

Firstly, deploying a subset of system classes (i.e. only those that were transformed) likely 

causes linking errors since the classes in the execution environment (i.e. Java 6) do not com-

municate in the same way (i.e. by invoking the same methods) as the classes from the compi-

lation environment (i.e. Java 5). This problem exists even with the presence of well-defined 

backward-compatible Java APIs, since APIs only define classes and methods that are acces-

sible externally, but do not define those intended to be used internally between system 

classes. Furthermore, deploying the entire set of system classes is not a viable option, because 

some system classes (e.g. AWT classes) interact closely with the JVM, thereby causing in-

compatibility between the transformed classes and the JVM. Additionally, such a problem 

occurs not only when the versions of the compilation and execution environments differ (e.g. 

Java 5 versus Java 6), but also when implementations differ (e.g. Sun JDK versus IBM J9). 
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Consequently, as a rule of thumb, the transformation of system classes should be per-

formed on each target machine as opposed to a single source machine, thus providing the mo-

tivation for adopting the post-deployment approach (to complement the pre-compilation ap-

proach), which as previously mentioned, is preferred over the class-loading approach due to 

runtime efficiency. The complete deployment life cycle of an adaptive application using the 

code transformation techniques described in this thesis, as facilitated by both pre-compile-

time and post-deploy-time transformation is discussed in Appendix D. Note that the majority 

of code transformation described in this thesis is performed at pre-compile time, and is thus 

the focus of subsequent sections. 

7.1.4 Transformation Techniques 

This section considers a variety of techniques and tools for transforming source code, espe-

cially that written in Java. One option for performing simple transformations is using lexical 

techniques/tools, such as grep, awk, etc., however such an approach is limited in its ability to 

express complex logic and thus is unsuitable for complex transformations such as those ad-

dressed in section 6.2. 

An alternative is to use direct transformation whereby output code is generated while the 

original code is being parsed, e.g. by a grammar-based parser generated using tools such as 

Javacc [89] or Antlr [7]. However, such an approach may not be desirable due to the devel-

opment complexity resulting from mixing parsing logic and transformation/generation code. 

Another disadvantage is the overhead of repeatedly parsing the same input code for the gen-

eration of multiple code artefacts, which although is applicable to this work since the adopted 

proxy solution requires multiple classes (e.g. proxy class, domain class) to be generated from 

a single (proxied) class (as discussed in section 6.2), is not a runtime-performance concern 

since source code transformation is performed at pre-compile time. 

Another alternative is to use a specialised program transformation system, such as TXL 

[43], Stratego/XT [183] [27], and DMS [18], which although offering rich support for code 

analysis, requires significant understanding of the adopted language syntaxes and paradigms. 

On the other hand, Extensible Stylesheet Language Transformation (XSLT), an XML-based 

transformation system, is favoured in this thesis due to XML being an open and widely 

adopted standard, thus providing advantages in terms of the availability of supporting tools; 

technologies; documentation; and communities.  

Note that although XSLT is integral to the presented transformation solution (as demon-

strated in the pre-compilation process presented in Appendix B), the solution should be appli-

cable to other transformation engines, especially those adopting a similar approach, i.e. the 

intermediate-representation approach. In this approach, Java source code is first translated 
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into an intermediate representation, commonly known as a parse tree (e.g. in XML format). 

Next, the parse tree is analysed, processed, and transformed into a new parse tree, which is 

then converted back into Java code, producing a modified application (e.g. containing new 

capabilities). This process can be modularised in order to allow some of the involved sub-

tasks (e.g. injection of certain capabilities) to be skipped, repeated, etc. depending on de-

ployment requirements or preferences, as discussed in Appendix B. In comparison to Aspect 

Oriented Programming (AOP) [97] technologies such as AspectJ [10], which aim to provide 

convenience to developers by hiding the detail of the transformation, the parse-tree transfor-

mation approach provides full control over the transformation process. Such control is neces-

sary to facilitate the various types of transformation described in this thesis, which as demon-

strated in Appendix E, include generating new code artefacts (i.e. classes, interfaces), chang-

ing class structures (e.g. inheritance, class name, methods), modifying class content (e.g. 

statements), etc. 

Note that in practice, parse trees for Java source code can be represented in a number of 

formats, including tool-specific Abstract Syntax Trees (AST) exposed for external/public use, 

such as Antlr AST 8 and Eclipse AST [103], with each format offering potential benefits. For 

example, Antlr provides a simple mechanism for traversing and transforming the parse tree 

using compact syntax, whereas eclipse AST provides powerful element bindings allowing 

easy extraction of type information (e.g. class type) for each element in the code (e.g. vari-

able). Nevertheless, JavaML [12], which is an XML-based representation, was used instead 

due to the previously mentioned benefits of XML and due the sufficiently rich and detailed 

information that can be expressed. The JavaML specification fully complies with Java 1.4 

and since it is open source, can easily be extended to support later versions of Java. Open 

source libraries and XSLT style sheets for converting Java code into JavaML and vice versa 

are also available (e.g. Java2XML project [88]).  

Although XML-based representations such as JavaML are not the most efficient, JavaML 

was chosen since the previously mentioned benefits were considered more important than 

efficiency, especially because the transformation is done statically at compile-time (i.e. does 

not affect the running application). In the case where compile-time efficiency was a primary 

concern, a binary intermediate representation could be used instead [6] at the expense of hu-

man-readability. 

7.1.5 Generation of Code Fragments 

The transformation of a class involves locating specific parts (i.e. code fragments) of the class 

for the purpose of injecting new code or modifying existing code. In either case, new code 

                                                      
8 Antlr is a parser generator while Antlr AST is the tree that is (optionally) generated by the parser. 
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needs to be generated before it can be used for injection or as a replacement for old code. 

Such a task is generally difficult to achieve in the specific language used by the adopted 

transformation system, especially in the case where the amount of generated code is signifi-

cant, a limitation that also applies to the adopted approach due to the verbosity of XSLT style 

sheets, which are expressed in XML. 

Consequently, existing transformation systems, such as TXL and Stratego/XT, support 

concrete syntax [182], which allows the syntax of the subject language (e.g. Java) to be used 

as opposed to the specific syntax used by the transformation system, which is known as ab-

stract syntax. Similarly, Antlr uses a templating engine, StringTemplate [166], which allows 

arbitrary code to be generated in plain text. However, such a feature/approach is not directly 

applicable to transformation that works on an intermediate representation (e.g. Eclipse AST 

or JavaML), since the generated textual code is not compatible with the representation. Con-

sequently, before generated code can be used (i.e. inserted into the parse tree), it needs to be 

first converted into a compatible format. Furthermore, since code generation often requires 

information collated from various sources (e.g. class information, configuration), which in-

troduces additional complexity, an architectural component (i.e. the Code Generator) de-

signed to address such issues is presented in section 7.2 and discussed further in Appendix B. 

The Code Generator uses StringTemplate as the code generation engine due to its simplicity 

compared to alternatives, such as Velocity [71], Jumbo [95], etc. 

7.2 Pre-compilation Architecture 

This section provides an overview of the primary software components involved in the pre-

compilation (i.e. transformation at source-code level) of an application for the purpose of in-

jecting adaptation capabilities into the application. These components, which were designed 

according to the constraints, requirements, and decisions mentioned in section 7.1, play an 

important role in facilitating the execution of the transformation tasks required by the proxy 

solution described in Chapter 6, which include generating additional classes (e.g. domain 

classes, proxy classes); and modifying implementation and client classes. 

For brevity, this section describes the newly developed transformation architecture and 

processes at high level, with more details in Appendix B. The discussion also serves to pro-

vide background information for the case study presented in section 7.3, which demonstrates 

the practical utility of the presented components, such as performing specific transformation 

on a class according to the specified type (e.g. mobile object class), as described later in this 

section. Note that byte-code transformation, which is minimal since it is required only for 

transformation concerning parent classes (due to the possibility of belonging to system 
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classes as mentioned in section 6.2.1), is addressed in Appendix C, which concerns the im-

plementation of the code transformation solution in the MobJeX framework [147]. 

The architecture-level relationships between the various components of the transforma-

tion solution are illustrated in Figure 7-3 and summarised below, whereas the explicit interac-

tion between these components during the transformation of application source code (i.e. the 

pre-compilation process), is presented in Appendix B. 

 
Figure 7-3. Main Pre-compilation Components 

 

The main role of the Pre-compilation Manager is to perform high-level management tasks 

involved in the pre-compilation of a specific application, which include 1) managing the life 

cycle (e.g. initialisation) of other components (e.g. Configuration Manager), 2) performing 

preliminary setup operations (e.g. identifying classes requiring transformation), and 3) ad-

ministering the pre-compilation of multiple deployment versions, which as discussed in sec-

tion 7.1.3, are produced from the same application/code but based on different configuration 

(e.g. different sets of injected capabilities).  

The Configuration Manager supplies deployer-specified information to other components 

(e.g. Transformation Manager) in order to enable customisation of capability injection (e.g. 

enabling/disabling metrics management capability). It supports various configuration tech-

niques which are ordered according to their priorities. For instance, Java annotations, which 

are embedded in application source code for configuring specific code elements (e.g. whether 

a method should collect metrics upon invocation), override higher-level (thus having lower 

priority) configuration such as that specified in a system-wide configuration file. 

The Transformation Manager is responsible for transforming individual Java classes 

based on the specific class type (e.g. mobile, stationary, creator, normal) assigned by the ap-

plication deployer. The mobile type is assigned to classes whose instances can migrate be-
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tween hosts, thereby involving the injection of proxies along with the included capabilities 

for supporting remoteness (e.g. remote invocation, data marshalling/unmarshalling, etc.), 

mobility (e.g. object migration, location tracking, etc.), adaptation (e.g. metrics management), 

etc. Since stationary objects are accessible remotely, the injection tasks applied to stationary 

classes are largely the same as mobile classes, with the primary difference being stationary 

classes do not require capabilities concerning mobility and adaptation. The client type is as-

signed to classes whose instances potentially instantiate or access the fields of, proxied ob-

jects (e.g. mobile or stationary objects). Finally, normal classes refer to classes, which do not 

require type-specific transformation in the way that mobile, stationary, and client classes do, 

but may still involve generic transformation such as renaming the package of a class (thus 

essentially moving the class to a different package), which is applicable across all class types. 

The main role of the Code Generator is to produce code according to pre-defined tem-

plates and return the code in a format that is compatible with the adopted intermediate repre-

sentation (e.g. XML/XSLT). The code templates are defined in a format supported by the 

adopted templating engine (e.g. StringTemplate), which allows the majority of the generated 

code to be pre-specified, leaving dynamic information (e.g. class names, method names) to be 

inserted into designated place holders during code generation. The dynamic information is 

acquired from various sources, which include the transformation engine (e.g. XSLT), the 

Configuration Manager, the Class Manager, etc.  

The System Facade serves as an intermediary component which allows access from the 

transformation engine (e.g. XSLT) to other components in the system (e.g. the Configuration 

Manager), during the transformation of a class. Not only does this extra layer hide the other 

components in the system, but it also provides a strict and well-defined interface for access-

ing them, thus minimising the chance of breaking the interaction between the transformation 

engine (e.g. XSLT) and the system components (e.g. Java objects) upon modification (e.g. 

refactoring), which is important because such interaction is usually not verifiable at compile 

time.  

The role of the Class Manager is to obtain class structural information (e.g. fields, meth-

ods, or implemented interfaces) as required by other components (e.g. the Code Generator). 

One main issue addressed by the Class Manager is the difference in which structural informa-

tion can be obtained from the class being transformed (which belongs to the pre-compiled 

application) and from other classes that are referenced from the class under transformation 

(which may belong to an external library). In particular, although obtaining the former is 

straight forward as it can be easily extracted from the parse tree under transformation, acquir-

ing the latter presents complexity in that the relevant source code might not be readily avail-

able, as addressed in Appendix B. 
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7.3 Case Study 

This section presents a case study to demonstrate the practical applicability of the code trans-

formation solution described in this chapter as well as the proxy solution presented in Chapter 

6. A case study was chosen in favour of a formal experimental evaluation due to the difficulty 

of accurately measuring the concerned quality attributes (e.g. transparency, flexibility, and 

configurability), caused by the absence of a reliable benchmark (e.g. an existing solution for 

injecting the same sets of capabilities). Furthermore, an objective evaluation of development 

transparency is hard to achieve, since such an evaluation depends heavily on the specific 

characteristics of the transformed application. For example, some applications may be written 

using native code which could affect transparency (as discussed in section 6.2.4) or contain 

functionality which conflicts with the injected capabilities, whereas others might favour ca-

pability injection insofar as capabilities can be injected without breaking existing code. 

Section 7.3.1 provides an overview as well as outlines the objectives, of the case study, 

whereas section 7.3.2 discusses the materials and procedures applied in the case study. Fi-

nally, section 7.3.3 analyses the outcome of the case study with regard to the objectives speci-

fied in section 7.3.1. 

7.3.1 Overview 

In order to facilitate the case study, the adopted code transformation solution was imple-

mented in the MobJeX framework [147] (as well as a complementary transformation tool, 

Mobjexc), as discussed in detail in Appendix C. As a result, MobJeX supports the injection of 

various capabilities including those related to adaptation via application partitioning and via 

implementation swapping, which refers to the dynamic substitution of an implementation 

(e.g. in the form of objects) with another compatible implementation for the purpose of 

changing the functional behaviour of the application. 

In addition to the many synthetic applications that have been developed for testing pur-

poses (e.g. as used in the experiments presented in Chapter 5), MobJeX has been used to de-

ploy and run various prototypical applications with domain-specific functionality. These in-

clude a mobile-device compatible (e.g. PDA) application for managing photographic statis-

tics, a Taxi Dispatching System (TDS), and a prototype of a virtual world application. Since 

none of these applications require the unimplemented proxy transformation tasks mentioned 

in section 6.4, the deployment of these applications does not require manual modification of 

proxy-related code. Instead, only a small amount of declarative configuration was required 

(between 10 – 40 lines per application), although more configuration/fine-tuning could poten-

tially result in more optimal execution.  
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This case study focuses on the deployment of the aforementioned virtual world applica-

tion, in which the application was injected with various capabilities (e.g. metrics manage-

ment) concerning adaptive application partitioning via object mobility. The primary objec-

tives are to demonstrate that the newly developed capability injection solution can: 1) handle 

non-trivial transformations (such as those required by the proxy solution presented in Chapter 

6); 2) inject non-trivial capabilities (such as those required by adaptive application partition-

ing); and 3) achieve the objectives stated in items 1 and 2 with minimal human intervention 

(e.g. without requiring manual modification of application code). 

7.3.2 Materials and Procedure 

A prototype of a virtual world application, which was written without any networking capa-

bilities, was used as the base application for the injection of capabilities supported by Mob-

JeX via code transformation. The main goal of the transformation was to provide two main 

application domain level functionalities: 1) network-based multiplayer functionality, which 

was achieved by employing object mobility to distribute user interface objects to the ma-

chines used by the participating players and 2) dynamic migration of objects based on the 

execution context, e.g. resource utilisation of the machines, geographical location of the play-

ers, etc., in order to improve application response time. The latter can be achieved manually 

via an interactive administration interface or automatically using an adaptation solution such 

as that presented in Chapter 3 

The transformation goal was achieved via the injection of proxies containing the required 

capabilities, which included object mobility, metrics management, concurrency management, 

error handling, and object clustering. On the other hand, decision making algorithms (which 

include the original and the proposed algorithms) were implemented entirely in the MobJeX 

middleware, thereby requiring no additional code injection. Object mobility consists of sev-

eral sub-capabilities, such as location tracking and remote communication, which are con-

cerned with providing client/caller objects (through proxies) the ability to locate and commu-

nicate with a mobile object. 

Metrics management, as addressed in Chapter 4, enables the collection and management 

of both application-specific (e.g. execution time, number of invocations) and environmental 

information (e.g. processor usage, network usage). The former, which reflects the behaviour 

of the application and the user/player, is the main concern of the injection, since the latter, 

which reflects external (execution) conditions, can be supported entirely by the MobJeX 

middleware independently of application awareness. 

The injection also concerns functionality for managing synchronisation between concur-

rent application and middleware operations, e.g. migrating an object while its state is chang-
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ing. An error handling mechanism is especially relevant since there is a greater likelihood of 

failure in remote communication. Furthermore, object clustering is beneficial for objects that 

are tightly coupled (e.g. AWT/Swing Frames and Panels) and hence are always located in the 

same host. A more detailed discussion on the advantages of object clustering is provided in 

Appendix A. 

Despite the ideal case wherein an application could be developed independently of the in-

jected capabilities, to a certain extent, the virtual world application was designed with object 

mobility in mind. One example is that the application was designed around the Model-View-

Controller (MVC) pattern, which enabled modular separation of models and views, thereby 

allowing objects of the same type to be clustered and loosely-coupled objects to be migrated 

to and thus executed in, different hosts. Another example is that although the application did 

not support the remote capability, it did provide basic multiplayer functionality, such as chat-

ting or character interaction, on a single machine via multithreading. Such a design would 

have little practical utility in the absence of the injected distribution capability. 

The code transformation was configured to produce two sets of classes: one with metrics 

management and one without metrics management, with the intention that when automatic 

adaptation (by the adaptation engine) was needed, the version with metrics management 

would be used. On the other hand, when manual object migration (by a system administrator) 

was more suitable, the other version, which is more efficient since there is no metrics man-

agement overhead, would be used. Therefore, one of these two sets of classes was placed in a 

different java package in order to avoid naming conflicts thus utilising the automatic package 

renaming transformation mentioned in section 7.2.  

Although the virtual world application was designed as a demonstrator and test case 

rather than a fully functioning application, it was still architecturally representative of a real 

world system, even if not of commercial scale and functionality. The original virtual world 

application consisted of 35 code artefacts (i.e. classes and interfaces) containing a total of 

1853 lines of code (excluding empty lines and comments).  

Nine classes were configured to be mobile object classes, while four classes were tagged 

as creators (introduced in section 7.2). The rest were tagged as normal (by default). Out of 

the nine mobile object classes, five classes were assigned into the same cluster in order to en-

sure that these classes always migrate together, whereas the rest of the classes were able to 

migrate independently. In addition, in the metrics-enabled injection, four classes were con-

figured (using Java annotations) to disable metrics collection/management for reasons of effi-

ciency. This is an example of the application of domain-specific knowledge for optimising 

injected capabilities (in this case to reduce metrics management overhead, e.g. memory us-

age), in which the collection of metrics for certain classes is perceived as unimportant be-
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cause it was known in advance that the instances of these classes are infrequently invoked, 

thereby not having as much impact on application performance as other classes. 

The results of the transformation were first verified manually by human inspection at the 

source code level to ensure that code was produced according to the configuration, e.g. 

whether the required artefacts such as proxies were generated correctly; whether metrics 

management code should exist; etc. Next, the produced code was deployed to three machines 

and post-deployment transformation (which as mentioned in section 7.1.3 is performed at 

byte-code level) was executed on each target machine (using the automatically generated de-

ployment scripts discussed in Appendix D). The resulting code was then launched to ensure 

that the application ran and behaved as expected with the injected capabilities, which pro-

vided automatic distribution of multiple players over a network, transparently creating a dis-

tributed, real-time, multi-user application. 

7.3.3 Analysis 

The deployment arrangement described in section 7.3.2 required only 40 lines of configura-

tion information since most of the default configuration values were already suitable for the 

code transformation. The transformation produced 142 code artefacts, half of which belong to 

the version with metrics management, while the other half belongs to the version without 

metrics management. The former consists of 10912 lines of code, while the latter consists of 

10178 lines of code.  

In the transformed application, a new player window could be created and migrated to a 

specific machine upon a request made by a newly participating user/player. In this case study, 

a player window was requested from each of the three target machines (mentioned in section 

7.3.2) to simulate the participation of three players. Once the requesting machine received the 

window, the player could control its character in the virtual world and interact with other ob-

jects in the world.  

Even though adaptive object mobility was also injected, its behaviour was not tested in 

this scenario since this required more realistic scenarios in which the application contained 

more computationally expensive operations (thus able to benefit from migration to less 

loaded machines) and had players interacting with the application simultaneously from vari-

ous machines at different geographical locations (thus allowing improvement in terms of re-

ducing communication overhead by migrating relevant objects based on player interaction in 

virtual space). 

Nevertheless, the deployment (including the injection of capabilities) of the virtual world 

application, was considered a success, because the objectives mentioned in section 7.3.1 were 

met, as explained below:  
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1. The injection involved non-trivial transformations on a number of classes which covered 

the different proxy-inheritance cases addressed in section 6.2 (e.g. a proxied class ex-

tending another proxied class). 

2. The injection involves complex capabilities as was shown by the (previously mentioned) 

amount of the produced code (an example of which is provided in Appendix E). Note 

that the generation of repetitive code has been minimised as it is one of the design deci-

sions as discussed in section 7.1.1. In fact the majority of the injected code only served to 

connect to (i.e. to access the functionality provided by) the MobJeX middleware, as 

shown in Appendix E. 

3. The deployment was almost completely automated since no additional Java code was re-

quired and thus only involved human intervention for performing configuration, setting 

up runtime environments, and initiating executions (e.g. post-deploy transformation, 

launching the application). 

4. Both versions of the application were successfully deployed and launched, and were se-

mantically/operationally correct. 
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Chapter 8 .  Summary and Conclusion 

This chapter concludes this thesis by providing a summary of the research goals as well as 

how these goals were realised, as presented in section 8.1. Furthermore, the implication of 

this realisation in terms of practical benefits is discussed in section 8.2. Finally, section 8.3 

discusses the main limitations of this work, which open the path for future investigation to 

improve certain aspects of the proposed solutions. 

8.1 Summary 

The goals of this research were: 1) to improve the effectiveness (in terms of performance im-

provement) of local-adaptation via application partitioning, 2) to automatically collect and 

manage metrics required by the adaptation, and 3) to facilitate the transparent development of 

applications supporting such adaptation. The realisation of these goals resulted in various in-

ter-related solutions for adaptation decision making, metrics management, and capability in-

jection. 

The proposed decision making solution, which was derived from an existing solution 

[144] (also referred to as the original solution), improved the quality of decision making 

through the use of alternative metrics (e.g. processor usage time instead of execution time) 

which more accurately represent certain execution conditions (e.g. the CPU usage of an ob-

ject). Decision making quality was further improved by employing additional information 

(e.g. to capture the interaction between individual objects), which enabled more accurate es-

timation of application performance. The proposed solution, which is more effective than the 

original adaptation solution, can improve application performance (compared to the non-

adaptive execution of the same application) in scenarios involving heterogeneous and/or dy-

namic execution conditions (i.e. application behaviour and execution environments), as dem-

onstrated in section 5.3. 

The proposed metrics management solution was established through the identification of 

the different characteristics of metrics that are required by the adopted adaptation algorithm. 

The solution concerns metrics collection in terms of how, when, and where the relevant 

measurement (for obtaining certain metrics) should be performed. Other concerns relate to 

the delivery of collected metrics to distributed adaptation engines and the efficient representa-

tion of metrics for the purpose of capturing their temporal characteristics. The solution, which 

can be extended to support different adaptation solutions, was used to facilitate adaptation as 

demonstrated in the experiments presented in Chapter 5, which evaluated the effectiveness of 

the proposed solution in comparison to the original decision making algorithm. 
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The proposed capability injection solution was presented in two parts. The first part con-

cerned the transparency of object proxies, the main role of which is to support automatic in-

jection of additional functionality (e.g. metrics collection) into existing applications. Al-

though the resulting (partial) solution does not attempt to achieve full transparency (i.e. al-

lowing capabilities to be injected without breaking the original application in all possible 

scenarios), it offers major improvement in transparency compared to existing solutions as 

discussed in Chapter 6. Furthermore, this solution is not specific to adaptation but is applica-

ble to any problem/situation requiring object proxies, which as reviewed in section 2.6, repre-

sents a large variety of applications. 

The second part of the injection solution addressed practical issues concerning capability 

injection, with particular focus on facilitating the code transformation tasks required by the 

proposed proxy transparency solution. Additionally, the solution addressed issues which are 

typical to adaptive applications, such as manual customisation (e.g. fine-tuning) of injected 

functionality and deployment on heterogeneous platforms. Together with the proxy transpar-

ency solution, this forms a collective solution which significantly reduces the effort of devel-

oping applications supporting adaptive application partitioning, while providing flexible sup-

port for the human involvement that is still required, e.g. for configuration, fine-tuning. Al-

though scientific evaluation of the code transformation solution was not performed (due to 

the difficulty of objectively measuring transparency as discussed in section 7.3), the solution 

has been used to automatically inject capabilities (including those related to application parti-

tioning as well as other types of adaptation, e.g. functional adaptation via implementa-

tion/object swapping) into various applications, as discussed in section 7.3.  

8.2 Practical Applicability 

The proposed adaptation solution was shown (in the evaluation presented in section 5.3) to be 

beneficial for applications which can be decomposed into relatively detached objects or 

groups of objects (i.e. low interaction intensity). Consequently, the solution offers obvious 

benefits in the domain of component-based (e.g. Enterprise Java Beans) or service-oriented 

systems (e.g. those based on web services), since such systems are developed in terms of 

functionality which is implemented as isolated components or services. Note that even 

though the functionality of service-oriented systems is exposed as services, which are not 

necessarily compatible with the object-oriented paradigm, the internal implementation of 

such systems can be object-oriented.  

Nevertheless, further investigation is required to fully exploit the benefits promised by 

adaptive application partitioning in component-oriented or system-oriented systems. For ex-

ample, systems such as those using EJB, require support from specialised middleware, and 
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thus issues related to how adaptation functionality can be seamlessly incorporated into the 

middleware, need to be investigated. Furthermore, due to the common application of compo-

nent-oriented or service-oriented systems in the web domain, web-specific properties such as 

multi-threading (i.e. client requests are served in separate threads), statelessness (i.e. client 

state is maintained in external storage such as a database, instead of in the application itself), 

and dynamic usage patterns (i.e. access frequency varies on specific times, days, etc.), should 

be considered. While the issue of dynamic usage patterns, which affects application behav-

iour, has been addressed by the ability to adapt to dynamic application behaviour (as demon-

strated in the presented evaluation), multi-threading and statelessness can be exploited by ap-

plying features such as parallelism analysis (e.g. [87], [52]) and object replication (e.g. 

[165]), as discussed further in section 8.3. 

Due to its ability in coping with heterogeneous and dynamic execution environments, the 

proposed adaptation solution is suitable for applications running on platforms exhibiting such 

characteristics, such as those concerning grid and mobile computing. The solution is likely to 

be particularly beneficial to applications targeted for mobile devices, since available re-

sources are generally limited (e.g. low computational power) and volatile (e.g. unstable wire-

less signal strength). A general approach to address resource limitation, is to have the major-

ity of the objects of a resource-demanding application (e.g. video manipulation software) 

execute on more powerful machines, but leaving the graphical interface on the mobile device 

for user interaction. Adaptation allows objects to be relocated later as a result of changes in 

machine conditions (e.g. machine load) as well as user location (e.g. longer distances cause 

slower network access). 

Despite the expected suitability in specific domains, the proposed solution concerning ad-

aptation and metrics management, should be beneficial to many applications, because the 

manner in which metrics are collected and used in decision making, is generic and thus is po-

tentially applicable to any object-oriented application. Furthermore, the accompanying solu-

tion for facilitating application development through capability injection, is generic such that 

not only is it potentially applicable to any applications written in Java, it can also be used to 

inject capabilities required by future extension (e.g. new functionality, improved adaptation 

algorithms), be it concerning object mobility or other types of object-based adaptation (e.g. 

dynamic object swapping, replication of objects). 

Since the proposed solutions concerning adaptation, metrics management, and capability 

injection as well as the complementary functionality (e.g. object mobility, concurrency man-

agement) have been implemented and tested in the MobJeX framework, the solutions are 

readily usable through the development and runtime support (i.e. pre-compiler and middle-

ware components) provided by the framework. Consequently, not only does the framework 

facilitate the collective injection of related capabilities (for example adaptive application par-
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titioning as well as the supporting capabilities, e.g. metrics management), but it also supports 

the injection of capabilities independently of each other. For example, object mobility can be 

injected without the presence of adaptation in order to enable networking capability (for an 

originally non-distributed application) or to allow explicit user-driven (i.e. non-automated) 

object migration. Such support from the framework can facilitate future studies on related 

topics (e.g. adaptation, metrics, and mobility) in terms of significantly reducing the involved 

implementation work. 

8.3 Limitations and Future Work 

Despite the promising results from the proposed local-adaptation algorithm, a number of ex-

tensions can be applied in order to improve its effectiveness in different execution scenarios, 

such as those involving multi-threaded applications and/or multi-core CPUs. In particular, as 

the adoption of multi-threading increases (even for the development of regular non-parallel 

applications, e.g. desktop applications) due to the emergence of multi-core systems, there is 

increasing appeal to incorporate parallelism analysis in decision making, similar to the ap-

proach proposed in [87]. On a related note, decision making can also be extended to better 

exploit multi-core machines by taking into account specific characteristics of multi-core sys-

tems (e.g. the probability in which a particular thread execution is migrated to a different 

core) and individually analysing its state (e.g. the degree of load). 

Another possible improvement is the consideration of additional hardware resources, such 

as disk storage, the investigation of which was left for future work due to the complexity in-

volved wherein different types of disk operations (e.g. read/write, cached/direct read) have a 

different impact on application performance. Additional adaptation goals, such as load bal-

ancing (as proposed in [144]), improving application robustness (using migration and replica-

tion), or conserving energy (through analysis of battery state, consumption rate, etc.), can also 

be introduced in order to enable multi-goal decision making, which is supported by the 

adopted solution through the use of multiple indicators as explained in section 3.1. 

The aforementioned improvements primarily involve extending the proposed algorithm, 

which consequently requires extension to the metrics management solution to support addi-

tional metrics such as those related to disk I/O or energy consumption. On the other hand, as 

will be explained in subsequent paragraphs, improvements such as those for enabling early 

optimisation of object placement as well as for enabling adaptation of collective objects, po-

tentially require significant changes to the calculation of adaptation scores. 

Early optimisation of object placement is concerned with bringing the application to a 

more optimal layout as early as possible, instead of relying on the traditionally adopted con-

tinuous adaptation (introduced in section 2.1), which only takes place once sufficient metrics 
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have been collected. One envisaged approach is similar to that adopted in [186], in which ob-

ject migration is performed at application start-up, based on software metrics obtained via 

code analysis (prior to application execution). Host resource metrics can also be collected 

prior to application execution by profiling the capacity and average load of participating ma-

chines (independently of the application). 

Adaptation of collective objects addresses a limitation of the proposed algorithm in which 

objects are not migrated due to their insignificant contribution to application performance 

when analysed individually, despite their potential significance when migrated as a group. 

For example, an object which interacts heavily with a group of objects, is of low migration 

priority due to the implied high network usage (after it is migrated to a separate machine), 

which can be prevented by migrating all of these objects collectively. One particular issue 

requiring investigation is how objects are clustered dynamically (at runtime) in order to allow 

them to be migrated as cohesive groups.  

Future work could also involve an investigation of alternative techniques to the adopted 

scoring system for making adaptation decisions, which include the adoption of inference and 

learning techniques such as Bayesian network [92]. Another possible investigation on the 

subject of adaptation decision making is the replication of local adaptation engines, which 

serves to alleviate the burden of an adaptation engine when all objects are migrated to the 

same machine. 

A potential improvement to the proposed metrics management solution is the decentrali-

sation of the metrics delivery process, allowing metrics to be exchanged between machines, 

without a centralised context server, which is a potential performance bottleneck and a single 

point of failure. However, in order to adopt such an approach, the inherent issue of network 

congestion which is caused by the flooding of exchanged information needs to be addressed 

[105]. Another metrics-related improvement concerns the prediction of future metrics, which 

can be realised by extending metrics representations (e.g. exponentially weighted moving av-

erage) to take into account seasonal changes as discussed in section 5.3.4. A more sophisti-

cated approach is to apply function approximation through the use of techniques such as arti-

ficial neural networks [113]. 

In terms of capability injection, extensions can be made to support injection concerning 

applications developed using other object-oriented languages, such as C# (.NET), through the 

modification of the proposed solutions concerning proxy transparency (Chapter 6) as well as 

the required code transformation (Chapter 7). The former is not expected to involve signifi-

cant effort due to the conceptual similarity between Java and languages such as C#, whereas 

the latter is particularly challenging due to the unique compilation processes applied by dif-

ferent technologies (e.g. .NET generates assemblies instead of class byte code), thereby po-

tentially requiring a significantly different code transformation solution. 
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Appendix A. Object Clustering 

Object clustering, which allows mobile objects to be grouped as a cluster, ensures that objects 

belonging to the same cluster, always migrate together. Such a scenario implies that proxies 

and the included functionality, such as remote invocation and metrics collection capabilities, 

are not required for communication between objects in the same cluster.  

 
Fig. A-1. A System Consisting of Four Object Clusters 

 

Remote invocation is not required because these objects are always local to each other 

(i.e. running on the same process/machine) as illustrated in Fig. A-1. Furthermore, collecting 

metrics related to object invocation such as IF (Invocation Frequency), PUT (Processor Us-

age Time), and SSP (Size of Serialised Parameters), is not necessary, because these objects 

will never be separated anyway, therefore IF and SSP, which are used to measure the degree 

of remote interaction between objects (as discussed in section 3.2), are not required. Further-

more, the measurement of PUT for individual objects within the cluster (e.g. between O2, 

O3, and O4) is not necessary, because adaptation concerns the overall PUT (i.e. since objects 

move as a group), which can be measured when O1 invokes O2 as demonstrated in Fig. A-2. 

 
Fig. A-2. An Illustration of Metrics Collection within an Object Cluster 
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One useful application of object clustering is to group objects representing GUI (Graphi-

cal User Interface) components, such as those belonging to Java AWT (Abstract Windowing 

Toolkit) or the derivative Swing Framework. For instance, a window (e.g. java.awt.Frame) 

generally contains sub-components (e.g. Panels and Buttons), which in most cases, are in-

tegral to the main window, and therefore inseparable. Although the solution presented in sec-

tion 6.2 allows proxies to be used transparently (i.e. without affecting semantics) for bridging 

communication between these objects (e.g. Frames, Panels, Buttons), removing unneces-

sary proxies could result in significant improvement in terms of processing and memory 

overheads. Such overheads could be significant since some classes in the AWT/Swing 

frameworks contain many methods as outlined in section 6.3. Furthermore, although the gen-

erated proxies can be configured to include only particular methods for efficiency, using ob-

ject clustering removes this need thus promoting deployment simplicity.  
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Appendix B. Pre-compilation Process 

This section presents a pre-compilation process based upon the constraints, requirements, and 

decisions introduced in section 7.1, which covers the majority of the transformation tasks re-

quired by the proxy solution described in Chapter 6, such as the generation of additional 

classes (e.g. domain classes, proxy classes), and the modification of implementation and cli-

ent classes. Other transformation, which concerns parent classes, should be performed at 

post-deploy time and thus at byte-code level as addressed in Appendix C, since as mentioned 

in section 6.2.1, these classes might belong to an external library, and thus are potential sys-

tem classes. 

Subsequent discussion focuses on generic architectural challenges as opposed to imple-

mentation-related and MobJeX-specific issues, which are instead addressed in Appendix C. 

That said, the adoption of certain technologies and tools is discussed where necessary in or-

der to facilitate the presentation of the complete process. 

1. Architectural Components 

Fig. B-1 illustrates the relationship between the main software components involved in the 

architecture of the presented transformation process. The roles of these components in terms 

of supporting application transformation (i.e. capability injection) as well as the configurabil-

ity of such transformation are the main focus of subsequent discussions. 

- 

Fig. B-1. Main Pre-compilation Components 
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Pre-compilation Manager 

The main role of the Pre-compilation Manager is to perform high-level management tasks 

involved in the pre-compilation of a specific application as described below. It uses parame-

ters supplied by the application deployer (e.g. input files/directories, output directory, etc.) to 

perform preliminary setup operations such as verifying the provided file/directory paths, 

identifying classes requiring transformation, etc. The Pre-compilation Manager also adminis-

ters the pre-compilation of multiple deployment versions, which as discussed in section 7.1.3, 

are produced from the same application/code but based on different configuration (for exam-

ple in terms of which specific capabilities are injected)  as supplied by the deployer. 

However, instead of directly executing specific pre-compilation tasks, the Pre-

compilation Manager coordinates the collaboration between different pre-compilation system 

components, namely the Configuration Manager, the Transformation Manager, the Code 

Generator and the Class Manager, the roles of which are discussed in subsequent sections. 

Consequently, it is responsible for managing the lifecycle of the components, in terms of their 

initialisation and re-initialisation (for subsequent transformation), which requires particular 

care since certain initialisations have to be done in specific orders due to the dependencies 

between components. For example, the initialisation/execution of the Transformation Man-

ager requires prior initialisation of the Configuration Manager, because the transformation of 

a class requires configuration information provided by the Configuration Manager. 

Configuration Manager 

The Configuration Manager holds an important role in capability injection because it enables 

a flexible injection whereby application deployers can control the added capabilities (e.g. 

fine-tune their behaviour, enable/disable capabilities) with reduced effort (i.e. minimal au-

thoring of logic/code). The adopted configuration mechanism is based on a concept popular-

ised by Enterprise Java Beans (EJB) 3.0 [171], “Configuration by Exception”, which aims to 

reduce deployment effort by requiring explicit configuration (using Java annotations) only 

when the standard behaviour (of EJB components) needs to be overridden. In this approach, 

Java annotations are used to provide configuration information in the form of metadata at-

tached to specific code elements, such as classes, methods, and variables. 

Nonetheless, a more powerful approach is needed to allow configuration at higher levels, 

such as global configuration, which unless overridden by lower level configurations, affects 

all pre-compilation executions (as opposed to only specific code elements). Furthermore, al-

though source code level configuration is appropriate for the configuration of application 

classes (i.e. those belonging to the application), it might not be the case for external classes 

for which the source code might not be available, thus providing a motivation for a configura-

tion approach that can be applied independently from source code.  
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Fig. B-2. An Example of Chaining Configuration Model  

 

Consequently, in order to support varying configuration approaches, this thesis applies a 

chaining model based on the well-known chain of responsibility design pattern [60]. In this 

model, each supported configuration level is managed by a handler in the chain, which spans 

from the lowest-level configuration handler to the highest, thereby prioritising the more spe-

cialised lower-level configurations. Not only does this provide an elegant functional solution, 

it also allows handlers to be independently inserted into the chain in order to add another 

level of configuration. 

Obtaining a particular configuration property from the Configuration Manager begins 

with the execution of the lowest-level handler (e.g. handler 1 as shown in Fig. B-2). If the 

first handler cannot determine the property value (e.g. not specified), the next handler (e.g. 

handler 2) will be executed. The process continues until a value can be determined or until 

the end of the chain is reached, which constitutes a deployment error, since default values 

should be specified in the highest-level configuration (e.g. handler 4). Appendix C discusses 

the handlers that have been implemented and proven useful in various deployment scenarios 

related to the work described in this thesis. 

Transformation Manager 

The Transformation Manager is responsible for applying transformations to Java classes at 

source-code level. An important characteristic of the transformation is that it does not always 

produce one output for a single input. Multiple code artefacts may be produced as a result of 

the transformation of a given class, as demonstrated in the proxy solution proposed in section 

6.2, in which not only is the original class modified, but at the minimum a separate proxy 

class and domain interface are generated. Furthermore, two additional artefacts (i.e. local and 

remote interfaces) are required for the injection of capabilities (e.g. metrics collection, object 

mobility) addressed in this work as discussed in Appendix E.  

In the proposed solution, class transformation is decomposed into a series of modular 

tasks in order to promote reusability as described below. The solution is based on the strategy 

design pattern [60], whereby multiple transformation strategies were implemented for differ-

ent groups of capabilities. In this approach, a class (generally considered as the smallest 

transformable unit), is assigned a type, which may be done manually via configuration or 

automatically via code analysis. The class types of relevance to this thesis, such as the mobile 

object type, will be discussed in detail in Appendix C.  

falls back falls back falls back 
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Fig. B-3. Relationships between Types/Strategies, Manipulations, and Manipulation Lists  
 

As depicted in Fig. B-3, each class type corresponds to a transformation strategy which 

defines a manipulation list consisting of a series of manipulation tasks required for the class. 

For clarity, the rest of this discussion uses the term transformation to refer to the entire proc-

ess of transforming a class based on its type, which consists of multiple individual manipula-

tion tasks.  

In its simplest form, each manipulation task serves to inject a specific capability into the 

input class although in practice this is not always the case. For instance, a task can be written 

to move a Java class to a different package for purposes such as avoiding naming conflicts, 

and therefore not involving capability injection at all. Furthermore, although the design of 

manipulation tasks should ideally be modular in order to promote reuse and simplify the task 

of enabling/disabling optional capabilities (based on configuration), some capabilities are im-

plemented into a single manipulation task due to the close interaction between these capabili-

ties. 

An example is the injection of error handling mechanisms for addressing the reliability is-

sues/challenges (e.g. machine disconnection) presented by other capabilities (e.g. object mo-

bility), which only makes sense when complemented with the injection of the relevant capa-

bilities (e.g. object mobility). Arguably, in this case, the injected error handling mechanisms 

can be considered as part of object mobility, as is the case with other sub-capabilities associ-

ated with object mobility, such as remote communication, object location tracking, pass-by-

reference emulation in remote calls, etc.  

Each manipulation task is carried out by modifying the (in-memory) XML document rep-

resenting the class to be manipulated, which involves one or more XSLT style sheets depend-

ing on the number of code artefacts to be generated. Since manipulation tasks can easily be 
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added to the manipulation list; taken out from the list; and queued in a different order, new 

transformation strategies (which correspond to particular class types) can be introduced and 

existing strategies can be extended with minimal effort, although in practice, there may be 

issues arising from the interaction between capabilities (e.g. conflicting functionality, missing 

dependencies), as has been investigated in previous work on feature or aspect interaction [48] 

[47] [104] [149]. However, such issues, which are domain-specific, are not of concern in this 

work because they have been prevented either by applying manipulation tasks in a specific 

order or by implementing tightly-coupled capabilities into a single manipulation task (as 

mentioned in the previous paragraph). 

Code Generator 

The main role of the Code Generator is to produce code according to pre-defined templates 

and return the code in a format that is compatible with the adopted intermediate representa-

tion (e.g. XML/XSLT). The code templates are defined in a format supported by the adopted 

templating engine (e.g. StringTemplate), which allows the majority of the generated code to 

be pre-specified, leaving dynamic information (e.g. class names, method names) to be in-

serted into designated place holders during code generation. The dynamic information is ac-

quired from various sources, which include the transformation engine (e.g. XSLT), the Con-

figuration Manager, the Class Manager, etc. Since the chosen intermediate representation for 

transformation is XML-based (i.e. JavaML), the code produced by StringTemplate, which is 

in plain text, should be converted into an XML node or node list (according to the structure 

defined by the JavaML specification) in order to allow generated code to be inserted into the 

main parse tree, which represents the class that is being transformed. 

System Facade 

The System Facade serves as an intermediary component which allows access from the trans-

formation engine (e.g. XSLT) to other components in the system (e.g. the Configuration 

Manager), during the transformation of a class. Not only does this extra layer hide the other 

components in the system, but it also provides a strict and well-defined interface for access-

ing them, thus minimising the chance of breaking the interaction between the transformation 

engine (e.g. XSLT) and the system components (e.g. Java objects) upon modification (e.g. 

refactoring), which is important because such interaction is usually not verifiable at compile 

time. Furthermore, since the facade decouples the details of class transformation from the rest 

of the system, it reduces the impact on other system components when switching to a differ-

ent representation (e.g. JavaML) or technologies (e.g. XSLT).  

In addition to providing necessary information (e.g. configuration properties, generated 

code) to the transformation engine, the System Facade may also receive notification of the 
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current transformation state (e.g. current class name, package name) and caches it for later 

use (e.g. subsequent operations and transformations). In doing so, the facade may delegate to 

other components for complex operations such as deciding the inclusion of functionality/code 

based on configuration information (with the help of the Configuration Manager), generating 

code for insertion into an existing method body (with the help of the Code Generator), etc. 

Class Manager 

The role of the Class Manager is to obtain class structural information (e.g. fields, methods, 

or implemented interfaces) as required by the Configuration Manager, Transformation Man-

ager, and Code Generator. Certain tasks, such as transformation employing the proxy inheri-

tance solution proposed in section 6.2.1, require structural information related to the class be-

ing transformed (which belongs to the pre-compiled application) as well as referenced classes 

(which may belong to an external library). Although obtaining the former is straight forward 

as it can be easily extracted from the parse tree under transformation, acquiring the latter pre-

sents complexity in that the relevant source code might not be readily available. Conse-

quently, since the byte code of a class (be it an application or an external class) is always ac-

cessible, for uniformity, structural information of classes is predominately acquired using the 

standard Java reflection API, which has a further advantage of being simpler and more effi-

cient, because it does not require traversal of source code (or the parse tree) to retrieve basic 

structural information. 

In order to allow an application to execute on heterogeneous machines running varying 

Java environments, the Class Manager has the role of ensuring that classes are transformed 

against the API of the environment providing the lowest common functionality (which is 

non-trivial as discussed further in Appendix C). For example, if the target machines run either 

Java 5.0 or Java 6.0, the application should be pre-compiled against the Java 5.0 API in order 

to ensure it runs on all the machines. It should be noted that such a scenario will only work if 

the pre-compiler has access to the Java 5.0 API, and the original application is written for 

Java 5.0 or lower, thus not requiring newer functionality. Another responsibility of the Class 

Manager is to keep track of modified class information (e.g. new packages, renamed classes) 

in order to provide consistent information to other components. 

2. Overall Process 

This section discusses the detail of the proposed pre-compilation process by bringing together 

the previously mentioned components (i.e. Pre-compilation Manager, Configuration Man-

ager, Transformation Manager, Code Generator, System Facade, and Class Manager) and de-

scribing their roles in the execution of the involved tasks. For completeness, the discussion 
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also includes specific implementation details, such as the tools or libraries used in certain 

steps/tasks (e.g. converting Java source code to JavaML files). Fig. B-4 illustrates a high-

level overview of the pre-compilation process.  

 

Fig. B-4. Overview of the Pre-compilation Process 
 

The pre-compilation process is initiated with the execution of the Pre-compilation Man-

ager, which immediately initialises the Configuration Manager and the Class Manager to load 

configuration information such as input files/directories, output directory, and class type (e.g. 

mobile object), as provided by the application deployer in the form of command line argu-

ments, configuration files, and/or annotated source code. Next, classes requiring transforma-

tion as well as the assigned transformation types (e.g. mobile object, stationary object) are 

identified by traversing annotated source code in the input directory. 

Depending on the specified configuration, the Pre-compilation Manager will initiate the 

pre-compilation to produce one or more deployment versions. Loaded information, such as 

class structural information, is cached to allow reuse by subsequent pre-compilations for dif-

ferent deployment versions. Note that the pre-compilation of different versions may be per-

formed in parallel if speed is a concern, but this presents complexity in the synchronisation of 

the cache access. 

The Transformation Manager is then executed to handle the transformation of each of the 

identified to-be-transformed classes. For each class, the source code is converted into the in-
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termediate representation (e.g. JavaML) as illustrated in Fig. B-5. A sequence of transforma-

tion tasks is then executed, which as a final result, produces one or more transformed source 

files per class, depending on whether multiple code artefacts (i.e. classes or interfaces) are 

required for the injected capabilities. For instance, in the case of classes requiring proxies, 

such as mobile object classes, multiple files (e.g. proxy class, domain interface) are produced 

as discussed in section 6.2.1. 

 

Fig. B-5. Transformation of a Java Class 
 

As shown in Fig. B-6, a code artefact is produced by firstly performing specific transfor-

mation on the intermediate representation (e.g. JavaML) of the original code and then con-

verting the resulting representation back to a Java source file (e.g. using the XSLT style sheet 

from the JavaML project9). Optionally, the produced code can be formatted using a Java 

source code beautifier to make it more readable, making it easier to modify/extend manually. 

 
 

                                                      
9 JavaML project homepage: www.badros.com/greg/JavaML/ 
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Fig. B-6. Generation of a Specific Class 
 

Fig. B-7. Class Manipulation Process 

The detail of class transformation is shown in Fig. B-7, wherein the relevant intermediate 

representation is manipulated (e.g. using selected XSLT style sheets) based on the assigned 

class type (e.g. mobile object). During the transformation, the System Facade can be invoked 

as many times as required (e.g. using XSLT extension functions) to acquire configuration in-

formation (from the Configuration Manager) or to generate a substantial amount of code 

(with the help of the Code Generator). After each transformation, the resulting representation 

can be validated (e.g. against the JavaML Document Type Definition) to ensure that the pro-

duced code is syntactically correct. If further manipulation is required, such as for injecting 

other capabilities, the transformation step can be re-executed (e.g. using a different set of 

style sheets). 
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Appendix C. Code Transformation in MobJeX 

This section discusses using specific examples of how the primary pre-compile-time trans-

formation (i.e. pre-compilation) and the complementary post-deploy-time transformation is 

supported by MobJeX. Due to the extensiveness and complexity of the tasks involved in the 

pre-compilation process, the pre-compilation functionality is implemented in a separate tool 

called Mobjexc.  

Subsequent discussions explain the roles of the Configuration Manager, the Transforma-

tion Manager, the Code Generator, and the Class Manager, in the specific pre-compilation 

supported by Mobjexc (i.e. for injecting adaptation capabilities). Furthermore, the discussions 

also address the implementation of the Post-deploy-time Transformer, the role of which is to 

manage the required additional transformation concerning parent classes, which as mentioned 

in Appendix B, is performed on class byte code, after application deployment. 

Configuration Manager 

As discussed in Appendix B, the Configuration Manager employs a chaining model consist-

ing of multiple handlers with varying priorities. The configuration handlers that have been 

implemented in Mobjexc are presented in Fig. C-1, listed from the most generic (i.e. lowest 

priority) to the most specific (i.e. highest priority) handlers. Fig. C-1 also includes informa-

tion regarding the implementation technique used for specifying the corresponding configura-

tion, as well as the scope in which the configuration takes effect. Depending on the property 

that is being configured, some of the handlers are not needed. For example, the property for 

determining whether objects of a class should be mobile, is used only at class level, and is 

thus not applicable to methods. 
 

Handler Implementation Technique Scope 

Global Global properties file All pre-compilations 

System property JVM parameters, properties file, or  

System.setProperty() 

Specific pre-compilations 

Overridden class Class annotations Specific classes 

Class Class annotations Specific classes 

Overridden method Method annotations Specific methods 

Method Method annotations Specific methods 

Deployment descriptor XML configuration file Specific applications 
 

Fig. C-1. Handlers in Chained Configuration Model 
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The main goal of having global configuration is to allow application deployers to specify 

the default/standard pre-compilation behaviour. For example, disabling metrics management 

support at this level will affect subsequent pre-compilations, thereby effectively disabling 

automatic adaptation of all pre-compiled applications, unless more specific/low-level con-

figuration is specified. Nevertheless, objects of the application can still be migrated manually 

(i.e. through an administration interface), assuming that the support for object mobility is en-

abled. 

Configuration using system properties allow configuration on a per pre-compilation basis, 

thus is useful where a particular pre-compilation is different from the rest. Since this configu-

ration is more specific (thus having a higher priority) than global configuration, specified 

properties will override those specified in global configuration.  

 

Fig. C-2. Class-level and Method-level Annotations 
 

 

Class-related configuration, which includes overridden class, class, overridden method, 

and method, enables configuration of individual classes/methods or groups of 

classes/methods. Overridden class configuration allows a child class to inherit the configura-

tion of the parent class. Such a configuration provides a convenient way to specify configura-

tion common to the child classes of a particular class. Class configuration can be used to 

specify configuration properties for a particular class as well as the default configuration val-

ues for all methods of the class. Overridden method configuration allows an overriding 

method in a subclass to inherit the configuration of the overridden method from the super-

class. Method configuration enables the configuration of a specific method of a given class.  

Fig. C-2 shows the use of class-level annotations to tag a class as a mobile object class 

and to specify that public and protected methods of the class should be proxied. Furthermore, 

a method-level annotation is used to disable proxying of a particular method, thus effectively 

overriding the default class configuration. The annotation approach is considered superior to 

the approach adopted in JavaParty [134], in which a non-standard Java keyword is used to 

specify a class as mobile, thereby preventing the original application from being compiled 

using standard Java compilers. This approach is also favoured over the XDoclet-style con-

figuration (as used in [35]), which although having an advantage of not requiring native sup-

1 @Mobile 

2 @DefaultProxied( { Visibility.PUBLIC, Visibility.PROTECTED }) 

3 public class A { 

4  

5   @Proxied(false) 

6   public void m() { 

7     ...  // Method body 

8   } 

9   ...  // Other declared instance methods 

10 } 
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port from the Java compiler since configuration properties are embedded in comment blocks, 

is not accessible at byte-code level (e.g. via Java reflection API). 

 

Fig. C-3. Configuration using XML Files  

 

Lastly, deployment descriptors are used to specify configuration properties for the pre-

compilation of a specific application. This handler has the highest priority since it is the most 

specific and flexible configuration approach, allowing different descriptors/files to be used 

for different pre-compilations and even different applications. Moreover, such configuration 

addresses a limitation of embedded configuration (e.g. annotations) by allowing the configu-

ration of specific classes/methods even in the absence of source code (e.g. classes belonging 

to external libraries). However, the drawback is that unlike annotations, modification of ap-

plication code (e.g. changing method signatures) might result in configuration inaccuracy 

leading to inconsistency/confusion. Furthermore, such configuration is more verbose than 

annotations, as shown in Fig. C-3, in which an XML file is used to enable proxying for a spe-

cific method of a system class. 

Transformation Manager 

As mentioned in Appendix B, the Transformation Manager uses a solution based upon the 

strategy design pattern, whereby different strategies are applied for transforming different 

types of classes (as configured by the deployer). The four class types relevant to this work 

include: mobile, stationary, client, and normal as illustrated in Fig. C-4. Annotations are used 

to assign specific types to classes, with the exception of the normal type, which is the default 

class type (i.e. applies to non-annotated classes). 

1 <app> 
2   <package name="java.awt"> 
3     <class name="Window"> 
4       <method name="addWindowListener" proxy="true"> 
5         <formal-argument type="java.awt.event.WindowListener"/> 
6       </method> 
7     </class> 
8   </package> 
9 </app> 
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Fig. C-4. Class/Transformation Types in MobJeX 

 

The mobile type is assigned to classes whose instances can migrate between hosts, 

thereby involving injection of capabilities such as remoteness (e.g. remote invocation, data 

marshalling/unmarshalling, etc.), mobility (e.g. object migration, location tracking, etc.), and 

adaptation (e.g. metrics management). As shown in Fig. C-4, capabilities related to mobility 

and adaptation are combined into a single manipulation task, which is a design decision made 

based on trade-offs between the development complexity involved in the separation of cohe-

sive capabilities and the modularity/reusability of the manipulation task. Note that in this 

case, individual capabilities (e.g. metrics management) can still be disabled although not as 

easily as removing a manipulation task from the list. 

Since stationary objects are accessible remotely, the injection tasks applied to stationary 

classes are largely the same as mobile classes, with the primary difference being stationary 

classes do not require mobility and adaptation. Consequently, the “Add Remote Capabilities” 

task which is common to both class types can be reused. Note that the task involves the gen-

eration of multiple proxy-related classes (e.g. the domain class) which for brevity are not ex-

plicitly shown in Fig. C-4. 
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The client type is assigned to classes whose instances potentially instantiate or access the 

fields of proxied objects (e.g. mobile or stationary objects). The assignment of such a class 

type serves to instruct the pre-compiler about classes that require specific transformation for 

addressing the proxy transparency issues discussed in section 6.2.4. Although not strictly 

needed since code analysis can be used to automatically identify code requiring such trans-

formation, this serves as a performance safe-guard to anticipate the pre-compilation of appli-

cations containing large code bases. In this case, traversing all classes and analysing the con-

tent (e.g. method bodies) of the classes might present an unacceptable overhead, despite per-

formance not usually being such a major concern in offline transformation. 

Finally, normal classes refer to classes, which do not require type-specific transformation 

in the way that mobile, stationary, and client classes do, but may still involve generic trans-

formation, which is applicable across all class types. Examples of generic transformation in-

clude 1) renaming the package of a class, which essentially moves the class to a different 

package, and 2) inserting code into a method for the purpose of simulating execution with 

particular intensity. The former serves to avoid naming conflicts between different versions 

of the same class, which may occur due to the existence of multiple versions of the same ap-

plication (e.g. injected with different sets of capabilities). The latter is useful for experiment-

ing with adaptation behaviour since it enables analysing the impact of varying application 

characteristics (i.e. method execution intensity or duration) on adaptation decision making, as 

applied in the experiments presented in Chapter 5. 

Code Generator 

The Code Generator is organised into multiple Java classes, each of which is responsible for 

generating a specific code fragment (e.g. a constructor, a method, or a statement). The gen-

eration of a code fragment uses a template (scripted in the StringTemplate language), which 

itself might use one or more sub-templates to allow better readability and promote re-use by 

other templates. An example is a sub-template for generating method declarations (e.g. name, 

parameter list, return type), which can be used by any template that dynamically generates 

methods, such as proxy methods, implementation methods, or domain methods. 

Class Manager 

Class information is acquired by the Class Manager via the Java reflection API, which allows 

a class reference (i.e. an instance of java.lang.Class) to be loaded dynamically using the 

corresponding class name, thereby allowing information to be obtained from the class refer-

ence. This requires the supplied class name to be in a qualified format (i.e. prefixed with the 

name of the package of the class) in order to remove ambiguity caused by classes having the 

same name but being located in different packages, thereby requiring conversion from un-
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qualified class names (e.g. those acquired from JavaML representations) to the qualified ver-

sions. In addition, although qualified class names can be used to load the majority of classes, 

special classes such as those representing primitive types (e.g. integer, boolean), array types, 

and inner classes, are either not loadable (by the default Java class loader) or have to be 

loaded using specific names known as binary names. Such an issue is Java-specific and there-

fore is more appropriately addressed in the Class Manager rather than in the adopted interme-

diate representation.  

Consequently, the Class Manager uses a custom class loader, which has the ability to 

translate class/type names (including unqualified names) into qualified binary names based 

on the current transformation scope or context. Qualified class names are determined from 

the unqualified versions by taking into account Java class import behaviour, in which classes 

are either explicitly imported using the “import” keyword or implicitly imported due to being 

located in the same package. This import information is relayed from XSLT during the trans-

formation of the relevant class through the System Facade. On the other hand, special classes 

are identified by matching certain patterns or text on a given class name, and loaded either by 

hard-coding a fixed set of primitive types or by translating the textual name into the binary 

name (using specific rules according to the Java specification). 

The custom class loader also addresses an issue caused by differing Java APIs used for 

the pre-compilation and the pre-compiler as introduced in Appendix B. In this case, a custom 

class loader is required to obtain a different version of system classes (for pre-compilation 

purposes), which presents complexity in that manual loading of system classes is not allowed 

by the JVM due to security concerns. As such, a technique which involves extracting class 

information from class byte code using a byte-code manipulation library such as ASM [28], 

is used. Consequently, wrapper objects are used to allow a consistent interface for accessing 

system and non-system class information, which differs in that the former is obtained using a 

byte-code manipulation library, whereas the latter is acquired using class loading for reasons 

of efficiency. 

Post-deploy-time Transformer 

In addition to the pre-compilation addressed so far in this chapter, post-deploy-time transfor-

mation is discussed in this section due to its role in addressing the heterogeneity of execution 

environments (i.e. Java installations/APIs) as described in section 7.1.3. This type of trans-

formation, which is performed at the byte-code level, should be kept to a minimum, primarily 

due to its complexity, and therefore is applied only for specific purposes not achievable via 

pre-compilation. In particular, such transformation is most useful for solutions requiring 

modifications of the parent classes of a proxy class (e.g. modifying method modifiers), which 
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are the focus of section 6.2.2, because such classes may belong to a specific Java API, 

thereby requiring the transformation to be performed on the correct API/class version. 

On the other hand, although the transformation concerning implementation classes pre-

sented in section 6.2.3 may also apply to parent classes, post-deploy-time transformation is 

not required in this case, since implementation classes can never be part of external libraries, 

due to the constraint mentioned in section 6.1.1, in which external/library classes should not 

be proxied. In contrast, such transformation might be required for the client code modifica-

tion proposed in section 6.2.4 for the rare occasions where reflective operations are used to 

access a proxied object/class, because unlike regular field access and instantiation, reflective 

operations are resolved dynamically, thereby allowing execution on classes developed inde-

pendently (of the application), e.g. library classes. 

In order to facilitate automation, specific information about the pre-compiled application 

(e.g. classes, methods) is automatically generated by the pre-compiler (i.e. during pre-

compilation) in the form of an executable Java class containing necessary transformation 

logic, which is to be executed in the target machine prior to application execution. The execu-

tion of the class requires certain byte-code transformation support provided by the runtime 

component of MobJeX (i.e. using ASM), as opposed to the compile-time component (i.e. 

Mobjexc), since Mobjexc does not get deployed to the target machines for reasons of effi-

ciency. The exact phase in application deployment, in which post-deploy transformation is 

executed is discussed in Appendix D. 
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Appendix D. Deployment Process 

This section presents a deployment process to demonstrate how the code transformation solu-

tion discussed in Appendix B and Appendix C, can be applied in practical scenarios to facili-

tate the automation of application deployment in an adaptation framework (such as MobJeX). 

The process, which includes the task of injecting adaptation capabilities into the deployed 

application, also indirectly facilitates the preceding application development since the applied 

capability injection alleviates the need for additional specialised development effort (in this 

case adaptive application partitioning via object mobility). 

In practice however, the development of the application might not be completely inde-

pendent from the capabilities provided/supported by the framework since the de-

sign/implementation could be tailored in order to take advantage of the injected capabilities. 

As an example, the development of applications which will utilise the injected application 

partitioning capability should prioritise code modularity since this allows objects to be dis-

tributed at a finer granularity, thus possibly resulting in more optimal partitioning. Neverthe-

less, despite being potentially affected by the supported capabilities, the development process 

itself is generally independent from the framework, i.e. not explicitly using the provided 

functionality (e.g. through an API). 

The deployment process presented in Fig. D-1 consists of distinct steps, each of which 

groups one or more tasks with similar characteristics in terms of: 1) whether the tasks can be 

automated or should be executed manually by the application deployer, and 2) the scenarios 

in which these tasks need to be re-executed/repeated, which generally occurs because the in-

formation provided in the previous deployment/iteration (e.g. specifying adaptation thresh-

olds, determining mobile objects/classes) was wrong or non-optimal (i.e. not favourable for 

the specific application or execution environment). 

Repeating a specific step in the process might also (though not necessarily) require the re-

execution of subsequent steps as will be described further in the discussion of the relevant 

steps. Note that even though certain steps can be automated (as depicted in Fig. D-1 as auto 

as opposed to manual), human intervention is still required to initiate the automatic execu-

tion. However, the execution of consecutive automated tasks (e.g. tasks 3-4) can be grouped 

so that only a single initiation step is required, although this is only possible in the ideal case 

where the initial configuration is correct and does not need to be revisited. 
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Fig. D-1. Application Deployment Process 
 

In the proposed deployment model, the execution of certain deployment steps/tasks is fa-

cilitated by the framework via two discrete mechanisms, i.e. offline and online support, as 

illustrated in Fig. D-1. The distinction between offline and online support is made so that the 

appropriate support code can be independently installed on a machine, depending on which 

automated steps will be executed on the machine. In MobJeX, the online support is mainly 

implemented as a set of middleware containers such as services or runtimes, as discussed in 

section 4.3, whereas the offline support is implemented entirely in the Mobjexc pre-compiler 

with the exception of the Post-deploy Transformer described in Appendix C. 

Post-deploy transformation is included in online support despite being considered as off-

line transformation in section 7.1.3, so that the distribution of support code to the target ma-

chines can be minimised by only requiring the online support to be installed in the target ma-

chines. Such a decision is particularly important when deploying a distributed/mobile appli-

cation to heterogeneous target machines because it is possible that the target machines are 

restricted in terms of hardware resources. 

On the other hand, the offline support is required only in a single pre-determined source 

machine since it produces cross-platform deployment artefacts (e.g. Java classes) and thus 

enables the deployment/distribution of the produced artefacts to heterogeneous target ma-
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chines. Ideally, the source machine should be sufficiently powerful to handle the injection of 

the supported adaptation capabilities into the deployed application since this generally re-

quires complex code transformation. 

The following discussion describes each of the steps listed in Fig. D-1 in detail. For clar-

ity, the deployment steps are grouped into several phases: pre-deployment, deployment, and 

post-deployment. The automation of tasks involved in the pre-deployment and deployment 

phases are facilitated by offline support, whereas automated post-deployment tasks are facili-

tated by online support. 

Step 1 refers to the tasks performed in the initial stage of the deployment which involves 

the specification of general settings required for the execution of subsequent steps in the pre-

deployment phase (steps 2-4). In this step, the application deployer specifies the paths to the 

files containing some of the configuration information that will be specified in step 2. Addi-

tionally, information required for steps 3 and 4, which includes the path to the application 

code, Java home path, library paths, output paths for generated artefacts/files, etc. should also 

be provided. 

Step 2 involves configuring the injection of the adaptation capabilities based on specific 

knowledge of the deployed application, for the purpose of producing code that is of better 

quality (e.g. more efficient execution) than the default configuration. This step might be re-

visited later for fine-tuning purposes, such as explicitly specifying methods to be proxied to 

reduce overhead (as described in section 6.3) or enabling/disabling certain capabilities de-

pending on the behaviour exhibited in the initial/previous execution of the application. 

Step 3 involves generating deployment artefacts which include: 1) application source code 

resulting from the transformation presented in section 7.2, 2) deployment scripts consisting of 

execution instructions for deploying/launching the application, and 3) configuration files con-

taining default configuration information for deployment/execution, such as paths to the in-

stalled JDKs. Although this step should ideally be fully automated, human involvement might 

be required to customise the generated code. 

Step 4 addresses the configurability of subsequent tasks in the deployment and post-

deployment phases through manual modification of the deployment scripts and configuration 

files generated in step 3. When customisation is required, the aforementioned deployment 

scripts are usually only modified once, whereas since the configuration files contain informa-

tion about runtime environments, different versions of the files are required for heterogene-

ous target machines. Although in ideal cases, this step only needs to be executed once (on the 

source machine), the re-specification of configuration files (either on the source machine or 

the relevant target machines) is not uncommon due to non-optimal or inaccurate initial con-

figuration. 
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Step 5 is concerned with setting up environments that are suitable for the execution of the 

to-be-deployed application on the target machines. This is achieved by firstly ensuring the 

availability of a compatible JRE as well as the online support code on the target device. Mid-

dleware containers (e.g. MobJeX services) are launched to provide certain functionality re-

quired for deploying and executing the application as will be described in steps 6 and 8 re-

spectively. This step is only re-executed in subsequent deployment iterations when a different 

JRE version or online support installation is required, or certain middleware containers need 

to be restarted. 

Step 6 involves compiling transformed source code into byte code and deploying the pro-

duced code, library code, and resource files to the target machines based on the configuration 

provided in step 4 and as such, the re-execution of step 4 also results in the re-execution of 

this step. The tasks performed in steps 4 and 5 enable a completely automated deployment of 

code and resource files, because firstly, the location (e.g. hostname or IP address) of individ-

ual target machines, which was specified in step 4, allows automatic discovery of the target 

machines. Secondly, the middleware containers launched in step 5, allow the source machine 

to contact the middleware containers and automatically distribute the application/library code 

to individual target machines. 

Step 7 involves the execution of post-deploy transformation on specific class byte code 

(e.g. system classes) as described in Appendix C. This step needs to be re-executed on a spe-

cific target machine only if a new JRE is installed or new libraries are deployed to the ma-

chine. 

Step 8 involves launching the deployed application using the generated or potentially cus-

tomised deployment scripts and configuration files (described in steps 3 and 4). Depending on 

the application, this step might only be required for a single machine, in contrast to the post-

deploy transformation (step 7) which needs to be executed on all target machines. For exam-

ple, in the case of application partitioning, the entire application may initially reside in a sin-

gle machine and then be partially offloaded to other machines during execution. Execution 

configuration (e.g. specifying application arguments, determining adaptation thresholds) 

could be specified in this step instead of earlier in step 4, particularly during the later fine-

tuning phase where complete re-deployment is not necessary. Ideally, this step can be fully 

automated, since the deployed application should be able to adapt (e.g. using the adaptation 

solution proposed in this thesis) without human intervention. 
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Appendix E. Example of Transformed Code 

This section provides examples of the classes produced by the transformation of a specific 

class (from the virtual-world application described in section 7.3.2), according to the class 

structure adopted in the domain approach presented in section 6.2.1.3. The transformation 

was completely automated using Mobjexc (which implements the solution described in Ap-

pendix B, as discussed in Appendix C). These examples serve to demonstrate how the capa-

bilities of interest to this work (e.g. object mobility, metrics management), can be injected 

using the proxy solution proposed in section 6.2. Furthermore, they also serve to demonstrate 

the flexibility of the code transformation solution presented in section 7.2 by showing the 

complexity of the transformation addressed in this work, which involves a variety of trans-

formation tasks such as generating new code artefacts, modifying statements, modifying 

method/class signatures, inserting new statements, inserting additional methods, etc. 

Fig. E-1 presents an example of an original/untransformed class of the virtual world ap-

plication. A small amount of unused code (the self reference in line 4) was added to illustrate 

a more fine-grained code modification as shown in the resulting transformation (of the im-

plementation class) in Fig. E-6. As can be seen at line 1, the class is specified as mobile (also 

known as mobject) using a Java annotation, thereby causing proxy-related classes (e.g. do-

main class, proxy class) to be generated. The same configuration technique is also used to 

specify that only public methods of the original class require the corresponding methods in 

the proxy class as shown at line 2. Similarly, line 15 specifies that metrics collec-

tion/management should be disabled for the method getRegion. 
 

 

 
Fig. E-1. Original Class 

 

 
Fig. E-2. Produced Domain Class 

1 public abstract class WorldModel extends  
2     CompositeModel_MobjexImpl implements Domain { 
3   protected WorldModel(java.util.Map arg0) { 
4     super(arg0); 
5   } 
6   protected WorldModel() { 
7     super(); 
8   } 
9   protected WorldModel(CreationInfo info) { 
10     super(info); 
11   } 
12   public static WorldModel getInstance() { 
13     ...  // Original method body 
14   } 
15   public abstract void addRegion(RegionModel r); 
16   public abstract RegionModel getRegion(int id); 
17   ...  // Other declared instance methods 
18 } 

1 @Mobject 
2 @DefaultProxied( { Visibility.PUBLIC }) 
3 public class WorldModel extends CompositeModel { 
4   protected CompositeModel self = this; 
5   public WorldModel() { 
6     super(new HashMap()); 
7     ...  // Constructor body 
8   } 
9   public static WorldModel getInstance() { 
10     ...  // Method body 
11   } 
12   public void addRegion(RegionModel r) { 
13     ...  // Method body 
14   } 
15   @Collectable(false) 
16   public RegionModel getRegion(int id) { 
17     ...  // Method body 
18   } 
19   ...  // Other declared instance methods 
20 } 
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Fig. E-3. Produced Remote Interface 

 

 
Fig. E-4. Produced Local Interface 

 

As discussed in section 6.2, in the domain approach, the transformation of a proxied class 

produces three main classes, namely domain class, proxy class, and implementation class as 

shown in Fig. E-2, Fig. E-5, and Fig. E-6. However, in the provided examples, two additional 

interfaces (i.e. remote interface and local interface), are generated due to the requirement im-

posed by the supported capabilities. Both the remote and local interfaces specify methods that 

need to be implemented by the implementation class. The remote interface (Fig. E-3) declares 

remote methods, which are invoked (via an RMI stub) from the proxy when the caller object 

is a different machine from the proxied/mobile object. On the other hand, local methods, 

which are specified in the local interface (Fig. E-4), are directly called (without using RMI) 

during local invocation for reasons of efficiency. Note that unique name suffixes (e.g. 

_MobjexRemote) are used for generated classes, interfaces and methods in order to reduce the 

probability of conflicts. In MobJeX, these prefixes are customisable, meaning that in the 

event of a conflict, they can be modified through configuration. 

As can be seen in Fig. E-5 (i.e. proxy class) and Fig. E-6 (i.e. implementation class), code 

generated for individual methods is similar, and thus it is possible to generalise the code to 

allow it to be shared by multiple methods. However, this introduces runtime performance 

overhead as it requires the use of Java reflection for dynamically resolving methods and 

classes. Furthermore, in such an approach, additional conditional statements need to be in-

serted in order to enable/disable certain capabilities for certain methods since it cannot be as-

sumed that all methods support the same sets of capabilities. In contrast, in the adopted ap-

proach, if certain capabilities are to be disabled for a specific method, the relevant code is 

simply excluded from the injection. As such, support code which primarily delegates to the 

core functionality implemented in the MobJeX framework/middleware, is inserted into each 

method, e.g. lines 19-46 of Fig. E-5. 

The following discusses the injection of object mobility, error handling, metrics man-

agement, and synchronisation capabilities, each of which primarily involves the insertion of 

cohesive sub-capabilities in proxy methods (of the proxy class) and/or local/remote methods 

(of the implementation class). Some capabilities might require the insertion of new fields or 

methods however it is beyond the scope of this thesis to provide an exhaustive examination 

of different capabilities since the focus is on code transformation rather than the specific 

1 public interface WorldModel_MobjexLocal { 
2   void addRegion_MobjexLocal( 
3     ProxyMethodMetricsContainer p, RegionModel r); 
4   RegionModel getRegion_MobjexLocal( 
5     ProxyMethodMetricsContainer p, int id); 
6   ...  // Other method declarations 
7 } 

1 public interface WorldModel_MobjexRemote  
2     extends MobileRemote { 
3   Map addRegion_MobjexRemote( 
4     ProxyMethodMetricsContainer p,  
5       RegionModel r) throws RemoteException; 
6   Map getRegion_MobjexRemote( 
7     ProxyMethodMetricsContainer p, int id)  
8       throws RemoteException; 
9    ...  // Other method declarations 
10 } 
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techniques/strategies adopted by MobJeX. Nonetheless, a brief discussion of some of these 

techniques or strategies is provided to demonstrate the flexibility of the structure of the gen-

erated classes. 

The injection of object mobility requires the insertion of two major sub-capabilities, 

which include handling method invocation and tracking mobile-object location. The rest of 

the functionality including the actual migration logic is implemented in the frame-

work/middleware. 

Handling method invocation involves forwarding the invocation to the appropriate object 

depending on the locality of the client/proxy and the implementation/mobile object as shown 

at lines 22-29 of the proxy class (Fig. E-5). Furthermore, upon returning from the remote 

method call, the implementation object should also return parameters that have potentially 

been modified as shown at lines 37-38 (Fig. E-6). Returning the parameter allows copying its 

possibly modified properties back to the original parameter as shown at line 28 of the proxy 

class (Fig. E-5) in order to emulate pass-by-reference behaviour which is consistent with the 

local invocation. Note that this operation is not required/injected for arguments that are 

known to be immutable, e.g. primitive values, as is the case of the argument of getRegion() 

(line 48, Fig. E-5). 
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Fig. E-5. Produced Proxy Class 

 

Tracking the location of a mobile object requires a notification (in the form of a Java ex-

ception) to be sent to the proxy when it attempts to access an object that has moved. Conse-

quently, the proxy has to catch the exception and acquire the new location of the object from 

the middleware as shown at lines 33-36 in Fig. E-5. An alternative strategy would be to im-

1 public class WorldModel_MobjexProxy extends WorldModel implements Proxy, ... { 
2    private CompositeModel_MobjexProxy parentProxy; 
3    private ProxyDelegate proxyDelegate; 
4    public WorldModel_MobjexProxy(CreationInfo mobjexCreationInfo) { 
5       super(mobjexCreationInfo); 
6       this.parentProxy = new CompositeModel_MobjexProxy(mobjexCreationInfo); 
7       this.proxyDelegate = this.parentProxy.getProxyDelegate_Mobjex(); 
8       ...  // Initialisation of metrics containers  
9  
10    } 
11    public final boolean referenceEquals_Mobjex(Object obj) { 
12       return this.parentProxy.referenceEquals_Mobjex(obj); 
13    } 
14    public final void setFieldValue_Mobjex(Field field, Object value) throws ... { 
15       Method setter = this.proxyDelegate.getFieldSetter(field); 
16       setter.invoke(this, new Object[] { value}); 
17    } 
18    public void addRegion(RegionModel arg_r) { 
19       do { 
20          try { 
21             getMetricsContainer_Mobjex(1).startMetricsCollection(); 
22             if (this.proxyDelegate.isLocal()) { 
23                ((WorldModel_MobjexLocal) getMobject()).addRegion_MobjexLocal( 
24                      getMetricsContainer_Mobjex(1), arg_r); 
25             } else { 
26                Map m = ((WorldModel_MobjexRemote) getStub()).addRegion_MobjexRemote( 
27                      getMetricsContainer_Mobjex(1), arg_r); 
28                Duplicator.shallowCopyProperties(m.get("arg_r"), arg_r); 
29             } 
30             getMetricsContainer_Mobjex(1).endMetricsCollection(); 
31             this.proxyDelegate.resetErrorInfo(); 
32             return; 
33          } catch (MovedException e) { 
34             this.proxyDelegate.updateObjectLocation(); 
35             addRegion(arg_r); 
36             return; 
37          } catch (RemoteException e) { 
38             if (!this.proxyDelegate.handleError(e)) { 
39                throw new ProxyException("Could not connect to remote object", e); 
40             } 
41          } catch (MobjexLockDiscardedException e) { 
42             this.proxyDelegate.updateObjectLocation(); 
43             addRegion(arg_r); 
44             return; 
45          } 
46       } while (true); 
47    } 
48    public RegionModel getRegion(int arg_id) { 
49       do { 
50          try {  // Metrics collection disabled for this method 
51             RegionModel r; 
52             if (this.proxyDelegate.isLocal()) { 
53                r = ((WorldModel_MobjexLocal) getMobject()).getRegion_MobjexLocal(null, arg_id); 
54             } else { 
55                Map m = ((WorldModel_MobjexRemote)getStub()).getRegion_MobjexRemote(null, arg_id); 
56                r = ((virtualworld.model.regionmodel.RegionModel) m.get("retValue")); 
57             } 
58             this.proxyDelegate.resetErrorInfo(); 
59             return r; 
60          }  
61          ... 
62       } while (true); 
63    } 
64    public void setMobjexField_virtualworld_model_worldmodel_WorldModel_self(CompositeModel arg_val) { 
65       ... 
66    } 
67    public virtualworld.model.AbstractModel get(java.lang.Object arg_arg0) { 
68       return this.parentProxy.get(arg_arg0); 
69    } 
70    ...  // Other methods 
71 } 
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mediately notify the proxy upon the migration of the mobile object rather than having to wait 

until the proxy attempts to access the mobile object. However, this alternative strategy places 

more burden on the middleware since it has to keep track of all the proxies of the mobile ob-

ject in order to allow the notification. While it is not the intention of this thesis to provide a 

critical evaluation based on the relative merits of either strategy, the example is illustrative in 

terms of code transformation, since adopting the latter strategy requires only the insertion of 

an additional method to allow the middleware to notify relevant proxies. 

The injection of the error handling capability requires the insertion of a retry loop to al-

low a proxy to attempt to communicate with a remote mobile object for a certain number of 

times before giving up (lines 19-46 in Fig. E-5). Lines 38-40 (Fig. E-5) show the insertion of 

the code for recovering from errors, the implementation of which is provided by the frame-

work.  

The injection of object clustering involves the insertion of code for keeping track of the 

current call/execution stack as shown in lines 16 and 18 of Fig. E-6. The use of this stack is 

based on a similar idea described in section 4.1.1.2, in which a stack is used to identify the 

caller of the mobile object (for the purpose of keeping track of the interaction between indi-

vidual objects). In object clustering, such functionality is required to determine the cluster 

relationship between the caller and the callee. In the case where the caller is in a different 

cluster from the callee, proxied objects serving as method arguments or return values, need to 

be either wrapped/proxied or unwrapped/unproxied depending on certain logic or rules, the 

discussion of which is beyond the focus of this thesis. On the other hand, if the caller is in the 

same cluster as the callee, communicated proxied objects should not be modified since both 

the caller and the callee should access them in the same way. 
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Fig. E-6. Produced Implementation Class 

 

The injection of metrics management involves the insertion of two core sub-capabilities, 

which include collecting metrics and centralising metrics storage. The injection is only re-

quired for software metrics (e.g. execution time) since system/resource metrics (e.g. proces-

sor usage) can be collected independently by the middleware.  

Similar to object clustering, code inserted at lines 16 and 18 (Fig. E-6) is used to identify 

caller objects for the purpose of collecting interaction metrics (e.g. invocation frequency) as 

was addressed in section 4.1.1.2. Collecting the metrics of a method involves inserting code 

before and after the execution of the method into the relevant proxy method (lines 21 and 30, 

Fig. E-5) and local method (lines 23 and 25, Fig. E-6). Note that capabilities inserted into a 

local method are also executed when the corresponding remote method is invoked (i.e. during 

remove invocation) due to method forwarding as shown in line 36 of Fig. E-6.  

Note that collected software metrics are stored in the implementation object and delivered 

to the adaptation engine at a later stage (e.g. during decision making) using the pull approach 

discussed in section 4.2.2. Consequently, proxies are required to pass an additional parameter 

1 public class WorldModel_MobjexImpl extends WorldModel 
2       implements WorldModel_MobjexLocal, WorldModel_MobjexRemote, Mobile, ... { 
3    private MobileDelegate mobileDelegate; 
4    protected CompositeModel self; 
5    public WorldModel_MobjexImpl() { 
6       super(new HashMap()); 
7       initMobileDelegate_Mobjex(); 
8       ...  // Initialisation of metrics containers 
9       this.self = (WorldModel) MobjexRuntimeImpl.getInstance().createProxyIfNecessary(this, ""); 
10       ...  // Original constructor body 
11    } 
12    protected WorldModel_MobjexImpl(CreationInfo mobjexCreationInfo) { 
13       super(mobjexCreationInfo); 
14    } 
15    public void addRegion(RegionModel arg_r) { 
16       MobjectCallStack.pushMethod(this, getMetricsContainer_Mobjex(1)); 
17       ...  // Original method body 
18       MobjectCallStack.pop(); 
19    } 
20    public void addRegion_MobjexLocal(ProxyMethodMetricsContainer p, RegionModel arg_r) { 
21       if (this.mobileDelegate.tryExecuteLock()) { 
22          try { 
23             getMetricsContainer_Mobjex(1).startMetricsCollection(p, new Object[] { arg_r}); 
24             addRegion(arg_r); 
25             getMetricsContainer_Mobjex(1).endMetricsCollection(p); 
26             return; 
27          } finally { 
28             this.mobileDelegate.releaseExecuteLock(); 
29          } 
30       } else { 
31          throw new RuntimeException("Failed in getting execute lock on the object."); 
32       } 
33    } 
34    public Map addRegion_MobjexRemote(ProxyMethodMetricsContainer p, RegionModel arg_r) { 
35       Map results = new HashMap(); 
36       addRegion_MobjexLocal(p, arg_r); 
37       results.put("arg_r", arg_r); 
38       return results; 
39    } 
40    public void initMobileDelegate_Mobjex() { 
41       if (this.mobileDelegate == null) { 
42          super.initMobileDelegate_Mobjex(); 
43          this.mobileDelegate = super.getMobileDelegate_Mobjex(); 
44       } 
45    } 
46    ...  // Other methods 
47 } 
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(containing proxy metrics) during the invocation of a local/remote method of the implementa-

tion object as shown at lines 24 and 27 of Fig. E-5. 

The injection of the synchronisation capability involves inserting code for acquiring and 

releasing a lock in the local method (lines 21 and 28 in Fig. E-6) to allow a mobile object to 

migrate while its method is executing without corrupting the state of the mobile object. Fur-

thermore, synchronisation allows a proxy to receive a notification (via a Java exception) of a 

migration that is in progress (lines 41-44 in Fig. E-5). The notification is useful for improving 

the parallelism of the application execution since it allows the proxy to execute certain opera-

tions such as locating the target destination of the mobile object, to anticipate the migration 

before it completes. 
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