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Abstract 

 

The use of remotely sensed derived thematic data has become ubiquitous in landscape 

ecology. Remote sensing data has the potential to describe broad scale landscape patterns 

and relate them to ecological processes such as species persistence and distribution. 

However, these datasets are being used in ecological analyses without considering the 

spatial uncertainty that is ever present in remote sensing data. Maps derived from remote 

sensing data will vary in the extent, patchiness and accuracy of their land cover classes, 

predominantly due to a number of scale dependent factors such as pixel size, minimum 

mappable unit and extent and their interactions. Furthermore, the effect of these factors on 

land cover classification is more pronounced in spatially complex fragmented environments, 

which are often the subject of landscape ecological studies. 

 

This thesis investigated the interaction and the relative importance of scale dependent 

factors on the characterisation of landscape pattern and ecological analysis using real and 

synthetic land cover data and simulated species-environment models. The research in this 

thesis is divided into four parts: 1) a systematic review of the use of spatial data in landscape 

ecology and how spatial uncertainty is currently addressed; 2) effects of scale on the 

classification and extraction of small and linear patches; 3) the effects of scale on the 

characterisation of landscape pattern; and 4) the effects scale on deriving species-

environment relationships. 

 

Part 1 of the thesis is a systematic review of the literature investigating the degree to which 

landscape ecologists use spatial data and how they deal with spatial uncertainty when 

conducting spatial analyses. In the first part of this chapter a general literature search was 

carried out and a set of five scale dependent factors that have a demonstrated effect on the 

characterisation of landscape pattern and ecological analyses were identified. These factors 

were pixel size, minimum mappable unit, smoothing, thematic resolution and extent. Along 

with scale dependent factors, classification error was also identified as having an effect. The 

second part of the chapter systematically reviewed all articles published in the journal 

Landscape ecology in 2007 and recorded how spatial data was used and whether scale 

dependent factors and classification error were addressed or reported in ecological analyses. 

The systematic review found that these factors were rarely addressed and reported. 

Furthermore, of the studies which investigated the effects of the scale dependent factors very 

few investigated the effects of more than one of these factors. The review found that studies 

nearly always used the default pixel size of the sensor which in most cases was either the 
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~30m pixel size of the Landsat satellite (used in 46% of the studies reviewed) or ~1m pixel 

size of aerial photography (used in 53% of the studies).  

 

Part 2 of the thesis investigated the impact of scale on the classification and extraction of 

single patches. It specifically looked at ecologically important small and linear vegetation 

patches using a simulation model. This study found that mapping error was highest when the 

scale of the feature and the raster grid coincided. Ecologically important landscape elements 

such as small and linear vegetation patches of similar scales to the raster grid had lower 

classification accuracies, and were less likely to be extracted than larger more compact 

features. The simulation model demonstrated that the spatial resolution of the grid should be 

many times finer in order to extract small and linear features accurately. 

 

Part 3 of the thesis looked at the effects of scale on the characterisation of landscape 

pattern. While the second chapter investigated the classification of single patches this 

chapter looked at how whole landscapes are affected by scale. The effects of scale 

dependent factors (pixel size, smoothing and extent) on landscape pattern were tested on a 

binary presence/absence tree cover maps of Victoria. Landscape pattern was measured 

using landscape metrics and class area. This study found that at coarser scales, subtle 

levels of patchiness declined. Small patches either aggregated into larger patches or 

completely disappeared. However, estimates of total class area remained constant 

regardless of scale. While the effects of scale dependent factors on some components of 

landscape pattern were predictable, this was not always the case (for example, the effect of 

changing pixel size or applying a smoothing filter was not consistent). This study showed that 

scale dependent factors interact and may need to be considered simultaneously in order to 

assess the effect of scale on the characterisation of landscape pattern.  

 

The final part of the thesis investigated the effect of scale of the remote sensing data on the 

identification of the scale at which a species interacts with the environment. This was done 

using a simulated multi-scale species-environment model. The species-environment model 

used a common multi-scale experimental design that compares the relationship between 

ecological attributes (e.g. species diversity) calculated with point data and environmental 

data (e.g. vegetation cover) for the surrounding area within buffers of multiple sizes. The 

environmental data was represented with synthetic and real landscapes. The common 

practice in studies of this kind is to identify the scale of operation as the scale (buffer size) at 

which the highest correlation between environmental and ecological variables occur. In these 

studies the analysis unit is multi-scale, however the land cover data used to measure the 

environmental variable is usually represented by a single scale, typically the pixel size of the 
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remote sensing image. This study found that varying the scale of the environmental data by 

changing pixel size and/or applying a smoothing filter affected the scale of operation 

identified. Thus, in some cases the results of a study identifying the scale of operation will be 

flawed when the scale of the remote sensing data is incorrect. This is what is known in the 

literature as the modifiable areal unit problem (MAUP).  

 

In conclusion, this thesis quantified the impact of scale on the classification of land cover 

maps and demonstrated how spatial uncertainty in the characterisation of landscape pattern 

can impact on ecological analyses. Without the incorporation of uncertainty arising from 

scale, ecological analyses using remote sensing data will continue to produce results with 

unquantified uncertainties, which may result in poor and/or ineffective management 

decisions. 
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Chapter 1 Introduction 

 

1.1 Introduction 

Understanding earth system processes and monitoring human interactions within them is 

becoming increasingly important (Vitousek et al. 1997; Wu and Hobbs 2002). This 

understanding is vital to meet the needs of decision makers for quantitative data regarding 

the negative consequences of environmental change, and the opportunity for responding to 

those changes (Hassan et al. 2005). The difficulty of this task is compounded by the large 

scale at which these processes occur such as climate change, deforestation, desertification, 

reductions in biological diversity, impacts of vegetation fragmentation and pollution. 

Gathering a total sample of environmental and ecological data at these global and landscape 

scales1 is only practical through the use of satellite earth observation and is now both 

widespread and mandated at national and international levels (e.g. Convention on 

biodiversity (2007), Kyoto protocol (United Nations Framework Convention on Climate 

Change 1997) and European Community biodiversity strategy (European Community 1998)). 

 

In landscape ecology, remote sensing from satellite and aerial platforms is used to estimate 

the type and extent of land cover across natural and human dominated landscapes and 

relate these to ecological processes. Remote sensing addresses a fundamental need of 

landscape ecologists to describe physiographical characteristics of the earth‘s surface 

ranging from bare rock to forests at the landscape scale. Traditional field ecological data do 

not provide the timely, broad scale and  cost effective environmental data that is necessary 

to answer many ecological questions (Gergel 2007; Kerr and Ostrovsky 2003; Nagendra 

2001). Thus, the use of remote sensing derived land cover maps in landscape ecology has 

become ubiquitous. Land cover maps are used for the identification of vegetation types and 

derivation of habitats for ecological analyses such as the derivation of landscape metrics 

(Griffith et al. 2000), change detection analysis (Kennedy et al. press), habitat 

suitability/prediction (Guisan and Zimmermann 2000; Leyequien et al. 2007), population 

viability analysis (Southwell et al. 2008), and conservation planning (Margules and Pressey 

2000).  

 

One of the main focuses of research in landscape ecology is understanding the relationship 

between landscape pattern2  and landscape processes (Pickett and Cadenasso 1995; Turner 

                                                           
1
 Landscapes can be considered  large spatially heterogeneous geographic areas containing a diverse number of natural and 

modified ecosystems at the scale of kilometres  (Forman and Godron 1986) or an abstraction or representation of representing 
an ecological system describing spatial heterogeneity at  any scale (Lidicker Jr 2008, Turner et al. 2001) 
2
 Landscape pattern refers to the structure, location and composition of landscape elements or landcover such as vegetation 

remnants. 
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1989). The characterisation of landscape pattern, however, it is affected by spatial 

uncertainty which has the potential to negatively affect analyses. Spatial uncertainty arises 

from many sources; the most recognised being scale dependent factors such as pixel size 

(e.g. Wu et al. 1997)  and the thematic resolution (e.g. Buyantuyev and Wu 2007). The scale 

of remote sensing data will affect both the structure and composition of landscape elements. 

Consequently the interpretation of certain ecological functions of a landscape will change 

depending on the scale at which the map is created (Figure 1.1), as patterns measured at 

one scale may not hold at other scales (Schneider 2001).  

  

a)  

 

b)  

Figure 1.1 Tree presence/absence classification at two different pixel sizes: 10m and 

100m (a). Small and linear vegetation patches and fine scaled fragmentation are 

absent in the low spatial resolution image (100m). Landscape metrics calculated for 

each image (b). Landscape metrics are often used in landscape ecology to quantify 

spatial pattern and link to ecological processes. All metrics except for the largest 

patch index are affected by scale. Thus, as landscape metrics can change with scale 

the interpretation of the ecological function of a landscape will differ with scale. 
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An understanding of the pattern-process relationship is confounded by the effects of scale on 

the representation of landscape pattern and the outcome of analyses is often scale 

dependent. For example, a common aim of analyses in landscape ecology is understanding 

the effect of landscape connectivity on species persistence (Turner 2005). However, the 

scale of commonly used remote sensing data such as Landsat 7 ETM+ with 30 metre spatial 

resolution is too coarse to adequately represent landscapes for this purpose, particularly for 

small or medium sized fauna. Patches such as small remnants and linear roadside 

vegetation which can be important for connectivity between different parts of the landscape 

may be classified inaccurately, and in some cases will not be identified at all. Thus, 

hypotheses regarding the importance of connectivity may be incorrectly rejected due to the 

coarse scale of the spatial data used. Conversely, high resolution data may extract small 

patches of vegetation that may be too small to be considered as habitat or as a wildlife 

corridor and thus the resulting map may represent a landscape with a high degree of 

connectivity that in reality does not exist for a particular species. While it is commonly 

assumed that it is preferable to use data with the highest spatial resolution, it is more 

appropriate for the spatial resolution of data to be determined by the scale at which a 

phenomenon operates (Turner 2005).  

 

Users of remote sensing data rarely test for the effects of spatial uncertainty originating from 

scale, on analyses in landscape ecology. Remote sensing data users often utilise readily 

available generic data sets or create their own using remote sensing data at scales 

determined by the availability of sensors (Comber 2008; Meentemeyer 1989). Remote 

sensing maps are usually considered to portray the absolute truth (Evans 1997). The misuse 

of remote sensing data is partly the result of its widespread availability and the ease with 

which software can process the data (Fassnacht et al. 2006; Gergel 2007). Many users of  

remote sensing data do not have the time or ability to analyse the data themselves or 

understand the creation process (Adams and Gillespie 2006; Wiens et al. press). It is 

important for data users to understand the implications of using data that imperfectly models 

the phenomenon under investigation, as spatial uncertainty and error is always present in 

remote sensing data (Hess 1994; Kardos et al. 2006). The consequences of ignoring spatial 

uncertainties is that analyses and conclusions may be incorrect, leading to poor or ineffective 

management decisions (Jones et al. 2004; Lam et al. 2005). 

 

Few studies have investigated the relationship between spatial uncertainty and the 

characterisation of spatial pattern using remote sensing data. Users rarely test the impact of 

scale and error on their analysis, yet in some cases this can have a profound effect (e.g. 
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Jelinski and Wu 1996; Wu 2004). To date there has been a lack of research that investigates 

the propagation of error from the initial creation of spatial data through to the end-use spatial 

analysis in fields that conduct spatially explicit analysis such as landscape ecology. It is 

unclear what effect these errors have on spatially explicit analyses as there have been few 

studies in this area due to the complexity of the relationship between input data and output 

error (Heuvelink 2002).  

 

The research conducted in this thesis addresses the effects of scale on the characterisation 

of landscape pattern. It focuses specifically on the classification of ecologically relevant 

landscape entities and modelling processes used in landscape ecology. Few studies have 

considered how the numerous scale dependent factors interact with landscape 

heterogeneity. There is a lack of quantitative research investigating this issue, as most 

research in remote sensing tends to focus on a single landscape. This thesis uses 

quantitative landscape scale research with large sample sizes of real and synthetic 

landscapes to develop an understanding of the relationship between scale and spatial 

pattern characterisation error. The results of this research will assist users of spatial models 

to understand the effects of scale on their analyses. 

 

1.2 Research objectives 

The main objectives of this thesis are: 1) to develop a framework for assessing spatial 

uncertainty that is ecologically significant, and, 2) to investigate the interaction of scale 

dependent factors and classification accuracy on the characterisation of landscape pattern 

and the outcome of ecological analyses. 

 

1.3 Research questions 

The following key questions are addressed in this thesis: 

1. Are landscape ecologists addressing spatial uncertainty when conducting analyses 

(Chapter 2)? 

2. How do the scale dependent factors affect the characterisation of landscape pattern 

and how do they interact (Chapters 3, 4)? 

3. How does scale in remote sensing data affect ecological analysis (Chapter 5)? 

4. What are some potential ways forward for the disciplines of landscape ecology and 

remote sensing to deal with spatial uncertainty (Chapter 6)? 
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1.4 Thesis outline 

This thesis is written so that each chapter, excluding the introduction and synthesis, can be 

read independently as standalone articles. These research chapters have all been accepted, 

submitted or are in preparation for peer-review publication. The chapters are the same as the 

published versions except the formatting has been changed to maintain a consistent style 

through the thesis and the references cited have been compiled into a single bibliography 

found at the end of the thesis. The thesis comprises 6 chapters, 4 of which are research 

chapters investigating different components of the theme outlined in the research objectives, 

whereby each chapter builds on the findings of the previous chapter.   

 

Chapter 2 provides a systematic review of the literature to explore the degree to which 

spatial uncertainty is currently dealt with in landscape ecology. Furthermore, this chapter 

guides the research in subsequent chapters through identifying the factors that need to be 

tackled using experimental methods. The review identifies the current gaps in existing 

knowledge and provides a framework for investigating spatial uncertainty that is relevant to 

landscape ecology. Chapter 2 functions as a literature review for the entire thesis. 

 

As the thesis progresses from chapter 3 to 5, the scale of enquiry expands. Chapter 3 

investigates the classification of individual patches, while chapter 4 considers how 

landscapes composed of patches are affected by classification methods. The final research 

chapter 5 investigates how classification methods change the outcome of ecological 

analyses. These chapters all use the framework developed in chapter 2 for understanding 

the spatial uncertainty issues that are ecologically relevant.  

 

Chapter 3 investigates the sources of spatial uncertainty that affect the extraction and 

classification of patches. This chapter focuses on small and linear patches which have 

ecological significance that is proportionally greater than their area. Computer simulation was 

used to analyse the relationship between scale of observation and the size of the patch and 

its affect on the outcome of classification. An understanding of classification at the patch 

scale is fundamental to understanding how spatial uncertainty affects the characterization of 

landscape pattern, where landscapes are composed of a number of patches of varying sizes 

and shapes. 

 

Chapter 4 investigates ecologically relevant spatial uncertainty at the landscape scale using 

real regional scale remote sensing data in order to describe the impact of scale dependent 

factors on the characterisation of spatial pattern. This chapter specifically investigates the 

importance of testing more than a single scale dependent factor. Furthermore, the chapter 
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functions as a pilot study to assess the appropriate sample size (as suggested by Dungan et 

al. (2002)) for the more complex simulation model developed in chapter 5.   

 

The final research chapter 5 investigates the complete ecological analysis process, from 

representing the landscape using remote sensing data to ecological analysis that uses 

remote sensing data to describe landscape pattern. Chapter 5 brings together the 

understanding developed in chapter 3 and 4 regarding the effect of scale on the 

characterisation of landscape pattern and the associated error into a single simulation model 

using real and synthetic landscapes. It investigates the effect of scale of the remote sensing 

data on multi-scale species-environment models.  

 

The final chapter 6 summarises the thesis findings and describes potential future directions 

for the disciplines of remote sensing and landscape ecology to deal with issues of spatial 

uncertainty. 
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Chapter 2 Scale and Error in Remote Sensing: Are landscape 

ecologists addressing these issues? 

 

Planned publication: 

Lechner, A. M., S.A. Bekessy, S. D. Jones, S, and W.T. Langford (in preparation) Scale and 

error in remote sensing: Are landscape ecologists addressing these issues? 

 

2.1 Introduction 

The use of thematic data derived from remote sensing is common in landscape ecology due 

to its wide availability, total sample, broad coverage and ecologically relevant spectral bands 

(Fassnacht et al. 2006; Gergel 2007; Hess 1994; Nagendra 2001; Reinke and Jones 2006). 

Remote sensing data processed using a geographic information system (GIS) is the most 

common form of data used to describe land cover in order to investigate the relationship 

between landscape pattern and ecological processes (Chen et al. 2008; Metzger 2008). 

However, due to its availability and the ease at which software can process remote sensing 

data it can be misused or used without an understanding of its limitations (Fassnacht et al. 

2006; Gergel 2007). Maps that have been derived from remote sensing data are often 

treated to be the absolute truth (Adams and Gillespie 2006; Evans 1997), despite the 

uncertainty and error that is always present when simplifying and generalising the complexity 

of real world geographic phenomena (Kardos et al., 2006). The method used to classify 

remote sensing data will not only affect the map that is generated, but also the analyses and 

conclusions drawn from it (Wiens 2002). For example, depending on how habitat is 

classified, the interpretation of how a species responds to that habitat will also differ (Wiens 

2002).  

 

One of the main motivations of landscape ecology is to understand the relationship between 

landscape pattern and landscape processes (Knight and Landres 2002; Pickett and 

Cadenasso 1995; Turner 1989). The spatial pattern of habitat in a landscape affects the 

distribution and abundance of organisms (Turner 1989) as well as many other ecological 

processes, such as population persistence (Suter et al. 2007), species coexistence (Levin 

1992) and species diversity (Griffiths et al. 2000). The relationship between pattern and 

process has been explored using a variety of empirical, deterministic and mechanistic 

models such as regression, metapopulation and habitat suitability models (Turner et al. 

2001). These models, analyses and methods range from the derivation of landscape metrics 

(e.g. Debuse et al. 2007; Lechner et al. 2007), change detection analysis (e.g. Weiers et al. 
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2004), population viability analysis (e.g. Southwell et al. 2008), and conservation planning 

(e.g. Margules and Pressey 2000).  

 

Two types of error confound the ability to use remote sensing data to investigate pattern-

process relationships: (i) the often unknown conceptual errors associated with differences in 

the GIS/remote sensing geographic abstraction of a landscape and the true geographical 

representation as perceived by an ecological phenomenon (e.g. scale mismatch, incorrect 

variables measured); and (ii) the often known and measurable representation errors 

associated with producing or using remote sensing data that does not accurately represent 

the geographic abstraction of the ecological phenomenon (e.g. classification error) (Figure 

2.1). 

 

Real World 

Ecological 

Phenomenon

Geographic 

Abstraction

(Conceptual 

errors)

Physical 

Representation

(Representation 

errors)

Results of 

Analysis (Analysis 

errors)

Error

Classification of 

remote sensing 

data at a specific 

scale 

Analysis

 

Figure 2.1 Schematic depiction of error propagation in landscape ecology, from the 

development of a geographic abstraction of the ecological phenomenon to analysis. 

 

Accurate spatial analysis in landscape ecology is dependent on characterising landscape 

structure and composition at the appropriate scale without classification error. Scale 

mismatch will result in an ecological phenomenon remaining undetected (Levin 1992; Wiens 

1989) or the results of an analysis will produce spurious relationships and erroneous 

conclusions might be derived (i.e. modifiable areal unit problem (MAUP))(Jelinski and Wu 

1996; Openshaw 1984; Wu et al. 1997). In addition, classification error can propagate into 

analysis error which can further magnify that error (Hess 1994; Heuvelink et al. 1989; 

Langford et al. 2006)(see box 2.1 for further information on the MAUP). Figure 2.3 depicts 

some of the processes that are performed when creating a land cover map that can result in 

spatial error.
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Box 2.1 The modifiable areal unit problem 

The term modifiable areal unit problem (MAUP) is used to describe how analysis is affected 

by the arbitrary and modifiable size and shape of spatial units (Openshaw 1984). It is also 

known as the ―zoning effect‖ in the social science community (Curran and Atikinson 1999). 

The MAUP is the result of the many ways in which non-overlapping units can be used to 

divide a study area for the purposes of analyses. It can be divided into two related 

components: the scale and the aggregation problem (Marceau and Hay 1999). The scale 

problem affects analyses as a result of changes in the spatial units through aggregated small 

units into progressively larger units or vice versa (Figure 2.2a-c). The aggregation problem 

affects analyses as a result of varying the boundary of areal units while keeping scale 

constant (Figure 2.2d-e). In remote sensing, the MAUP is a particular case where the units 

are controlled by pixel size, whereas in social sciences the size and shape of the areal units 

(i.e. census districts) are highly modifiable. 

 

The MAUP has been demonstrated to affect both the classification accuracy of remote 

sensing images as well as ecological analyses using these remote sensing images. It not 

only affects the calculation of mean and standard deviation for the whole image but also the 

spatial distribution of high and low values within the image. In some cases the MAUP can 

render analyses meaningless (Dungan et al. 2002; Jelinski and Wu 1996; Nelson 2001; 

Openshaw 1984; Wu et al. 1997). For example, Fotheringham and Wong (1991) found that 

by modifying the spatial units nearly any correlation value could be obtained. Openshaw 

cautioned (Openshaw 1984) that the effects of MAUP must be addressed and must be 

treated as having an impact on analyses in the absence of evidence. 
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Figure 2.2 The effect of the MAUP. a) Original image. b-c) Original image aggregated to 

different pixel sizes (scale problem). d-e) Original image aggregated using zones with 

different shapes (aggregation problem).  f) Original image aggregated using zones 

with different shapes at a different scale.  

 

 

Figure 2.3 This figure depicts some of the processing that is performed when creating 

a land cover map that can result in spatial error. The accurate representation of 

landscapes is not only a property of the landscape itself but the method used to 

classify the landscape. 
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Despite the potential for spatial data uncertainty to have a profound effect on analyses, it is 

commonly ignored by ecologists (Hess 1994; Wiens 1989). For example, Rae (2007) tested 

the sensitivity of a graph based landscape connectivity model and found that recommended 

conservation networks varied by up to 101% due to uncertainty in spatial data. Similarly, 

Minor (2008) found that in a spatially explicit population model, spatial uncertainty in the input 

habitat map was the largest source of error, and was three times more important than 

uncertainty in other non-spatial model parameters.  

 

This review investigates the degree to which landscape ecologists use spatial data and how 

they deal with spatial uncertainty when conducting analyses, specifically focusing on the 

effects of scale. It provides the background and justification for further research undertaken 

in the thesis. 

 

I explore this by asking the following questions: 

 How ubiquitous is remote sensing data in landscape ecology? 

 What kinds of geographic representations are used in landscape ecology? 

 Are landscape ecologists data users or data producers? 

 Which components of landscape pattern (landscape composition and/or structure) 

are being addressed by research in landscape ecology?  

 What kinds of spatial analysis are conducted in order to relate landscape pattern to 

ecological processes? 

 Do landscape ecologists address and/or acknowledge scale issues? 

 Do landscape ecologists address and/or acknowledge other forms of spatial 

uncertainty such as classification error? 

 

Background information to each of these issues is provided and the implications for the 

discipline of landscape ecology are discussed. 

 

2.2 Methods 

An initial survey of the ecological literature was conducted in order to identify key remote 

sensing scale and classification error issues that influence the outcome of inference, 

prediction, and models that use spatial data. It focused on issues that affect the 

characterisation of landscape pattern using remote sensing data, such as land use and land 

cover datasets (LULC). For brevity, the scope was limited to spatial issues and temporal 

aspects were ignored; however, I acknowledge the importance of these issues in ecological 

studies (Bissonette and Storch 2003; Gustafson 1998). 
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As an analogue for the landscape ecology community, this study reviewed all the research 

articles published in the journal Landscape Ecology in 2007 (n=101). Review articles were 

excluded from the study. For each article, I recorded the degree to which landscape 

ecologists use spatial data and whether scale and classification issues were addressed and 

reported. This study only reviewed articles that used remote sensing data, which was 

considered to include aerial and satellite derived imagery. Simulated remote sensing data 

was not included as it is assumed that articles using simulated represent landscapes with 

100% accuracy at the appropriate scale. In some cases, papers had to be excluded because 

the origin of the spatial data was not reported. This study did not make qualitative 

judgements as to whether they addressed the issues adequately, it only reported whether an 

attempt was made. Of the original 101 articles reviewed 15% of articles were not included 

due to inadequate information describing spatial data (n=15). 

 

The results from the method of choosing papers may reflect a bias in Landscape Ecology to 

a particular subset of research in the field of landscape ecology. However, an alternative 

method using abstract search engines (e.g. Mayer and Cameron 2003; Wheatley and 

Johnson 2009) poses other issues because of the lack of clear definitions of ecological terms 

such as ―landscape‖ and ―scale‖ (Changyong and Lam 1997; Lepczyk et al. 2008; Mayer and 

Cameron 2003). An investigation of the Scopus abstract database searching for papers 

published in 2007 with the phrase ―landscape ecology‖  in the title, abstract and keywords 

received 256 hits from 127 journals, mainly from ecological journals; however, the journals 

found ranged from Health and Place to Cultural Geographies. This indicates that many of 

these papers were not in the field of landscape ecology and thus a subjective decision about 

what exactly constitutes a landscape ecology paper would have to be made. Only 19 of the 

124 articles published in Landscape Ecology in 2007 were found in this search, indicating 

high omission errors. Choosing to review papers only from Landscape Ecology ensured that 

this study did not include papers that are not about landscape ecology, where accurately 

describing spatial pattern is not important for these papers. However, there will be some bias 

caused by the omission of papers about landscape ecology published in other journals. 

 

2.3 Results and Discussion 

2.3.1 The origins and ubiquity of remote sensing data in landscape ecology 

Remote sensing and GIS have been fundamental in the development of the landscape 

ecology discipline. The term landscape ecology was introduced in 1939 by Carl Troll, a 

German geographer who studied the interactions between the environment and vegetation 

using aerial imagery. Advances in remote sensing technology have allowed for the 

development of theoretical and empirical ecological studies that incorporate spatial 
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heterogeneity at the landscape scale. Over the last thirty years, progress in sensor 

technologies, the greater availability of spatial data and powerful computers and software to 

manipulate this data have allowed for the widespread use of remote sensing in ecological 

studies (Chen 2008; Perry and Enright 2007; Wiens 1989). A significant turning point was the 

launch of the first Landsat satellite in 1972, which had a spatial resolution and a geographic 

coverage sufficient for landscape ecological research, making data more economical to use.  

 

Today much of the geographic data used for landscape ecological research and land use 

planning is collected digitally as remote sensing or GIS data (Chen et al. 2008; Hilty et al. 

2006). At the 2007 International Association of Landscape Ecology conference, Metzger 

(2008) reported that almost 60% of the abstracts presented had some kind spatial 

quantification or statistical analysis, using GIS, remote sensing, landscape indices or models. 

Mayer and Cameron (2003) reviewed landscape studies of terrestrial vertebrate ecology and 

found the majority of studies either used GIS or remote sensing data to describe habitat. This 

review found that 69% of articles in landscape ecology in 2007 that were not reviews or had 

inadequate information regarding the spatial data source used some kind of remote sensing 

data. Additionally, 15% used only GIS data and 16% used neither GIS nor remote sensing 

data (n=86) (Figure 2.4). Hereafter, the review only investigates the articles that contained 

remote sensing data (n=59). 

 

 

Figure 2.4 Proportion of articles that use remote sensing data (n=86).  

 

2.3.2 Representing landscapes with remote sensing data 

In landscape ecology the dominant geographic representation of landscapes are discrete 

patches of habitat surrounded by non-habitat (such as farmlands or urban areas), also 

known as the matrix. The patch-matrix perspective that classifies the landscapes into 

discrete objects was formalised by Forman and Godron (1986) and has become fundamental 

to landscape ecology (Antrop 2007). The  principles of this model are founded in MacArthur 
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and Wilson‘s (1967) island biogeography theory, which describes suitable versus unsuitable 

habitat (Gustafson 1998). Extensions of the patch-matrix model include the landscape 

mosaic model (Wiens 1995) and the variegation model (McIntyre and Barrett 1992).  Both 

models consider the landscape to be composed of discrete areas with differing habitat 

conditions rather than the simple habitat versus non habitat representation used by the 

patch-matrix model. The landscape mosaic model considers the landscape to be composed 

of discrete patches of different types, varying in habitat quality. The variegation model is 

used to represent fragmentation at the landscape scale by considering the percentage of 

habitat loss for the total landscape. Further developments of the model by McIntyre and 

Hobbs (1999) considered differences in habitat conditions. Each of these models use the 

patch as a fundamental spatial unit; however, the physical meaning of patch varies greatly, 

depending on what is considered suitable by the ecological phenomena being studied and 

the scale at which it is observed. 

 

Geographic representations of the landscape are derived from raw raster (sometimes 

referred to as fields, lattice, grid, or matrix) remote sensing images using automated 

statistical classification techniques.  For higher spatial resolution, usual aerial imagery, 

classification is often done through manual aerial photo interpretation (API), whereby the 

landscape is represented as vectors (also known as entities, polygons or objects). At the 

analysis stage the classified data is often converted into discrete areal units using the patch-

matrix or landscape mosaic model with ecological attributes such as vegetation type 

calculated as average values for each patch. Traditionally, patches are classified by 

differences in vegetation cover, soil, geology and human land use based on the requirements 

of the phenomena being researched (Wiens 2002).  This study found that 

categorical/thematic classification schemes were the dominant models used to represent 

land cover in landscape ecology, with 25% of the articles reviewed using a binary 

classification scheme and 68% using a multi-class classification scheme (Figure 2.5). 
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Figure 2.5 Remote sensing classification schemes used in the articles reviewed 

(n=59). Note, some studies used more than one remote sensing dataset. 

 

Many alternative methods are available to represent landscapes, such as point based and 

continuous field data and fuzzy sets (Gustafson 1998; Robinson 2007). These alternative 

methods are rarely used, with continuous field data the only non-categorical classification 

scheme used. Approximately 12% of the remote sensing data used in the articles reviewed 

was continuous field data (Figure 2.5). Alternative classification methods are used in some 

cases because of the spatial uncertainty that arises from classifying complex natural objects 

into simple discrete classes. As landscapes are to some degree continuous (some more so 

than others) there are no definite boundaries between land cover classes and/or patches. 

Thus, there are an infinite number of ways in which to classify the landscape using a discrete 

classification system (Arnot et al. 2004; Burrough 1996; Schmit et al. 2006) and boundaries 

between classes can be subjective and artificial (Chapman et al. 2005; Powell et al. 2004). In 

some cases, continuous ecotones are discretised and give arbitrary labels such as 

vegetation community names that may not represent meaningful ecological differences 

ignoring spatial variability within patches (Gustafson 1998; Leyequien et al. 2007; Wiens 

2002).  Most ecological niche models assume that differences between classes are equal 

whereas in reality some classes are quite similar ecologically while others are very different 

(Chapman et al. 2005). Thus, the output of ecological models based on discrete classification 

systems will vary according to the classification scheme used. There are two key issues 

related to assigning land cover classes to geographic units that affect their use in landscape 

ecology: i) the use of hard cover classification schemes (i.e. one land cover class per pixel), 

used in both the patch-matrix and landscape mosaic models, which do not incorporate the 
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range of sub-pixel variation, and ii) mismatches between the producer‘s and the user‘s 

conceptualisation of a map‘s land cover classes. 

 

The first issue associated with using a hard cover classification scheme is that it will affect 

analyses such as the calculation of class areal extent (Foody 1996) and landscape metrics 

describing vegetation pattern (Arnot et al. 2004). An alternative to the hard cover 

classification commonly used to represent geographic phenomena is soft/fuzzy classification 

schemes, which have more than one value per pixel. The use of fuzzy classification schemes 

to represent spatial inputs into ecological modelling is unusual (Robinson 2007; Rocchini and 

Ricotta 2007); despite the increasing popularity of the approach by producers of remote 

sensing data. Fuzzy classification schemes in ecological models have mostly been used to 

map uncertainty in spatial outputs such as habitat models (e.g. Burgman et al. 2001; Regan 

et al. 2002).   

 

The second issue associated with using a hard cover classification scheme is the ecological 

relevance of the classification scheme to the questions being asked. Maps will be classified 

based on the producers‘ objectives using different classification schemes with differing 

definitions of land cover classes (Burrough 2001; Colson et al. in press). The characterisation 

of landscape pattern depends on the system property being measured and the classification 

scheme used (Comber et al. 2005b; Congalton and Green 1993; Gustafson 1998; Li and Wu 

2004). Therefore, classification can be subjective and unusable in different contexts. Even if 

the same class labels are used in maps produced by two different people, these classes will 

not necessarily be equivalent. A study by Cherill and McClean (1999) of vegetation surveying 

found that the average agreement between surveys conducted by six different field 

ecologists in the same month was only 25.6%, mainly due to differing interpretations of 

vegetation classes.  

 

Variation in land cover schemes and class definitions may have as great an influence on the 

characterisation of a landscape as technical aspects, such as classification algorithm and 

pixel size (Comber et al. 2005b). The differences in classification scheme and class 

description will affect the outcome of spatial analyses using remote sensing data (e.g. Colson 

et al. in press; Cunningham 2006; Manton et al. 2005; Rae et al. 2007). A clear set of rules 

for defining classes is required for consistency (Congalton and Green 1999), however their 

specification is often not adequately described in metadata making the conceptualisation of 

land cover classes imprecise (Comber et al. 2005b). This is an important consideration when 

using readily available datasets, which are popular due to their availability and their low cost 

in comparison to developing new project specific maps (Comber et al. 2005a). Approximately 
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36% of articles reported using generic LULC datasets, such as Europe‘s CORINE dataset or 

the US‘s national land cover dataset (NLCD) (Figure 2.6). Furthermore, around 33% of 

articles using generic datasets aggregated LULC datasets to reduce the number of land 

cover classes often to create binary land cover map. Approximately 17% of all articles 

aggregated multi-class data to a smaller number of classes. The aggregation of land cover 

classes introduces further uncertainty as the rules for aggregating classes can be somewhat 

arbitrary (Quaife et al. 2008). 

 

 

Figure 2.6 Sources of remote sensing land cover maps used in the articles reviewed 

(n=59). Non-generic data refers to maps generated specifically for the study, while 

generic refers to the use of generic land cover datasets that have been developed and 

made available for general use and have not specifically been generated for the 

ecological study. Note, some studies used more than one remote sensing dataset. 

 

2.3.3 Landscape pattern 

One of the central themes in landscape ecology is its focus on landscape heterogeneity 

(Wiens et al. 2007). In this study I use the term landscape pattern to describe spatial aspects 

of heterogeneity (i.e. the landscape mosaic), not including temporal aspects. Landscape 

pattern can be divided into two main components: composition and structure/configuration (Li 

and Reynolds 1994). Composition describes the non-spatial attributes of the landscape such 

as number of patch types and the area of each patch type (Li and Reynolds 1994) which can 

have important spatial effects (Gustafson 1998). Structure describes spatial aspects of 

heterogeneity such as the arrangement and shape of patches as well as contrast of patch 

types between neighbouring patches (Li and Reynolds 1994). This study found that 93% of 
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articles reviewed investigated composition aspects of landscape pattern and 59% 

investigated structural aspects (Figure 2.7). Only 5% of articles investigated structural 

aspects only, using methods such as graph based connectivity measures (e.g. Bodin and 

Norberg 2007).  

 

 

Figure 2.7 Components of landscape pattern investigated by the articles reviewed 

(n=59). 

 

2.3.4 Pattern and process interactions 

A core area of research in landscape ecology is understanding the mechanisms for creating 

and maintaining landscapes and the effect of landscape spatial pattern on ecological 

processes (Wiens 2002). Landscape pattern influences biotic processes such as the 

movement of organisms in the landscape (Ares et al. 2007) and abiotic processes such as 

the transfer of nutrients in a watershed (Saunders et al. 1991; Turner 2005). Conversely, the 

generation and maintenance of landscape pattern are influenced by a variety of processes 

such as economic forces, cultivation traditions, natural disturbances (Pickett and Cadenasso 

1995) and ecological processes (Bartel 2000). Ecological processes such as colonisation by 

plant species will be influenced by landscape pattern but also influence the generation and 

maintenance of these patterns (Schröder and Seppelt 2006). The pattern-process 

relationship is complex, containing feedback loops, making it difficult to distinguish 

correlation from cause and effect (Nagendra et al. 2004).  The pattern-process relationship 

may be the primary subject of research, such as in the case of studying the effect of 

fragmentation on ecological processes, or it may be a secondary consideration such as in 
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the case of habitat modelling (Manton et al. 2005), conservation prioritization (LaRue and 

Nielsen 2008) and population viability analysis (Haines et al. 2006).  

 

This review identified 4 main objectives/methods related to pattern-process interactions: 1) 

papers describing new methods related to measuring pattern such as the development of a 

new landscape metric (8%), 2) descriptive articles showing differences in landscape pattern 

(e.g. change detection) (7%), 3) spatial models investigating the effect of pattern on process 

(54%) and spatial models investigating the effect of process on pattern (29%)(Figure 2.8). 

Spatial models can explicitly represent the spatial location of variables, parameters or model 

interactions of processes directly (Wu et al. 2006) through modelling neighbourhood 

interactions or contagion (Urban 2005) (e.g. dynamic vegetation models such as LANDIS 

(Scheller and Mladenoff 2007)). Spatial models can also implicitly model landscape patterns 

indirectly through surrogates like the proportion of occupied habitat or a spatial pattern metric 

(Perry & Enright 2007). A common method of measuring landscape pattern throughout all the 

articles, both descriptive and those that use spatial models, was the use of landscape, class 

or patch metrics (often lumped together using the term landscape metrics/landscape pattern 

indices). In this review, approximately 31% of articles used landscape metrics, the most 

common spatial pattern metrics was number of patches and patch density. The widespread 

use of landscape metrics in landscape ecology is important as there are numerous studies 

that have demonstrated that landscape metrics are particularly sensitive to the effect of 

spatial uncertainty such as scale and classification (e.g. Buyantuyev and Wu 2007; Langford 

et al. 2006; Saura 2002; Wu et al. 1997).  
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Figure 2.8 Main objectives/methods related to pattern-process interactions 

investigated in the articles reviewed (n=59). See above text for further information. 

 

2.3.5 Landscape pattern and scale 

The dependency of pattern-process relationships on scale is well documented and is the 

focus of considerable research effort in ecology (Levin 1992; Turner 1989). Both abiotic and 

biotic processes and natural and human caused disturbance interact with the environment on 

many scales to create spatial patterns (Turner et al. 2001). For example, abiotic factors such 

as climate, topography and geology affect the distribution of organisms at broad scales. 

While, ecological processes such as the movement of individuals between patches act at fine 

scales and can affect the distribution of organisms across broad scales. Pattern-process 

interactions change with scale and often in complex nonlinear ways (Li and Wu 2004; Wiens 

2002). Thus, there is a need to incorporate and understand the effects of scale on ecological 

analyses. 

 

There are a number of definitions of scale that vary between and within disciplines 

(Changyong and Lam 1997; Dungan et al. 2002; Goodchild and Quattrochi 1997; Schneider 

2001). For example, within ecology, scale is considered to be both observational units (e.g. 
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Wiens 1989; Wu et al. 1999) and the scale at which resources are distributed across the 

landscape (e.g. Doak et al. 1992; O'Neill et al. 1988; Walters 2007). Scale as an 

observational unit can also have many meanings, such as grain or spatial extent (Mayer and 

Cameron 2003; Turner 1989; Wiens 1989). In this study the word scale is used as an 

overarching term that can be subdivided into three separate categories: scale of the 

operation, scale of observation and scale of the analysis (Dungan et al. 2002). The scale of 

operation (also known as scale of phenomenon or characteristic scale) describes the scale at 

which the phenomenon (i.e. an organism) interacts or perceives the landscape (Dungan et 

al. 2002; Wu and Li 2006a). The scale of observation (also known as sampling scale or 

measurement scale) describes the size, shape, extent and distance between observational 

units used to sample a phenomenon (Dungan et al. 2002; Wu and Li 2006a). In this study 

only the observation scale of the remote sensing data (e.g. pixel size) was considered and 

not the observation scale of ancillary data such as species observations. The scale of the 

analysis (or in some cases modelling scale) refers to the units that are used in analyses 

(Dungan et al. 2002; Wu and Li 2006a). Within landscape ecology the analysis scale is often 

patches or landscapes while the observation scale is the pixel size (Figure 2.9).  

 

 

Figure 2.9 Example of different sampling and analysis scales used in landscape 

ecology. The observation scale may be a pixel, patch or site, while the scale of 

analysis may be a pixel, patch, site or landscape. For example, the number of patches 

(observation scale) may be calculated for each landscape (analysis scale) and a 

comparison of landscape pattern may be made between landscapes. Studies can be 

conducted at multiple analysis scales such as comparing within a landscape (e.g. 

comparison between patches) and between landscapes (e.g. average patch values per 

landscape). 
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The scale of the phenomenon is related to hierarchy theory, which describes the organisation 

of ecological systems into relatively isolated distinct operational scales (O'Neill et al. 1989). 

These scales operate simultaneously because biological systems are composed of 

interacting lower level components, nested within larger higher level systems (e.g. individuals 

are found within a population) (O'Neill et al. 1989). According to this theory, relationships 

found at one level are not necessarily transferable to another level, so each phenomenon 

needs to be measured at the appropriate scale (Turner et al. 2001). There may not be a 

single correct scale to measure a phenomenon and in some cases phenomenon act at 

multiple scales (Chen et al. 2008; Levin 1992; Wiens 1989; Wu et al. 2006). Thus, there is a 

need to measure and analyse at multiple scales in order to better understand the domains 

and interrelationship of scales at which ecological processes operate (Pontius et al. 2008; 

Wiens 1989). In some cases, the relationship between a phenomenon and its environment 

can be completely overlooked if the correct scale is not used (Saab 1997). Consequently, 

studies of the same phenomenon at different scales will usually lead to different results 

(Wiens 2002; Wiens 1989). Often it is not straightforward to determine the scale at which an 

ecological phenomenon interacts with the landscape, as little is known about this relationship 

(Holland et al. 2004; Mayer and Cameron 2003). This lack of knowledge greatly limits the 

effectiveness of ecological studies (Holland et al. 2004b). Some phenomena, however, may 

be scale invariant (Wu et al. 2006) or mathematically predictable and thus scalable (Saura 

and Castro 2007).  

 

In practice, a phenomenon cannot be measured directly and our understanding of it is 

affected by the measurement method chosen. The relationship between scale of observation 

and analysis and understanding pattern-process relationships is complex (Figure 2.10). In 

studies of landscape ecology, uncertainty in the characterisation of the landscape is 

introduced by the use of remote sensing data. Remote sensing data represent landscapes as 

a field of rectangular (usually square) spatial units called pixels, where their size is 

determined by the sensor characteristics, data processing and/or GIS software. The pixel 

size is one of the many components that determines the scale of observation (Haining 2003). 

Thus, the characterisation of landscape pattern derived from remote sensing imagery is not 

only a property of the landscape itself but also the process of mapping the landscape (Brown 

et al. 2004; Hess 1994; Schmit et al. 2006)(Gergel 2007) (Figure 2.3). Fine scaled sampling 

resolution will obscure coarse grained landscape patterns; while coarse grained sampling will 

miss any fine scaled patterns as they become averaged out in larger sampling units. 

Landscapes may appear fragmented at one scale and continuous at another.
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Figure 2.10 Conceptual relationship between scale of analysis and observation and the derivation of pattern-process relationship using 

remote sensing data. 
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The scale of the analysis refers to the scale at which data is analysed for inference and 

summarising (Dungan et al. 2002). When analysing spatial data the units of analysis in many 

cases will be the same as the observation scale, the pixel. In other cases the units of 

analysis will be derived from aggregating pixels to form new spatial units such as patches or 

landscapes. These analysis units need to be determined by the scale of the phenomenon 

being studied. Some phenomena have logical analysis units such as individuals per nest. 

Sometimes these units are hierarchical, for example leaves on a tree or trees within a stand. 

However, in many cases no logical analysis units exist (Dungan 2006), such is in the case of 

an ecosystem where the boundaries between different systems are fuzzy.  

 

2.3.6 Observation scale and analysis scales 

The scale of observation and analysis can change as a result of a number of different scale 

dependent factors relating to all aspects of the creation of spatial data, from the sensor used 

to post processing and analysis of data. The survey of the literature identified the following 

five scale dependent factors as important in determining the characterisation of landscape 

pattern in landscape ecology using remote sensing data. The first four factors affect 

observation scale: i) pixel size ii) minimum mappable unit (MMU), iii) smoothing techniques 

and iv) thematic resolution. The final scale dependent factor affects analysis scale: v) extent 

(Figure 2.10). Factors i–iv have similar effects on landscape pattern and are treated together. 

Together the scale dependent factors determine the limits of what can be mapped with 

remote sensing data.  

 

2.3.6.1 Observation scale 

The observation scale is made up of a subset of the scale dependent factors that affect the 

size and the information content of the sampling units. Spatial resolution is a product of 

several factors, including pixel size, minimum mappable unit and smoothing. The spatial 

resolution is the primary factor influencing the classification of remote sensing land cover 

data (Tatem et al. 2002; Woodcock & Strahler 1987) and limits the smallest identifiable area 

in an image (Tatem et al. 2002). In raw unprocessed raster data, spatial resolution is often 

considered to be equivalent to pixel size (Atkinson 2004). However, there is a subtle 

difference between the two; although the value of a pixel is predominantly determined by 

land cover corresponding to its location, it is also affected by land cover found in 

neighbouring pixels as determined by the point spread function of the sensor (Cracknell 

1998; Fisher 1997). Thus, the true spatial resolution will be greater than the pixel size. 
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Furthermore, land cover found in the centre of a pixel has a proportionally greater 

contribution to its value than land cover found around the edge of a pixel. Other terms such 

as instantaneous field of view (IFOV), ground sampling distance, support and grain are 

sometimes used synonymously with spatial resolution, but all have subtle differences and 

ambiguities.  

 

The area and shape of the sampling units will be a function of the smallest unit: the pixel. 

However, in some cases the smallest unit is greater than a single pixel as a result of 

classified pixels being aggregated into blocks of the same or similar value (Haining 2003). 

The smallest size of these blocks is considered the MMU. The MMU is quantified as an area 

or a number of pixels. For example, in the case of the CORINE land cover dataset of Europe 

the MMU is 25 hectares (European Environment Agency 1994). The imposition of a MMU 

occurs after an image has been classified into discrete classes most commonly by 

eliminating features smaller than a minimum size through reclassifying those pixels to the 

value of dominant neighbouring pixels. This technique is often used in binary landscapes 

such as in landscape ecology where smaller patches can be eliminated and replaced with 

the surrounding matrix. MMUs are often imposed to increase classification accuracy or 

increase legibility of the cartographic representation of the landscape (European 

Environment Agency 1994).  

 

In a raw remote sensing image the MMU is the pixel size. The term MMU is often used to 

refer to the pixel size (e.g. Mayer and Cameron 2003; Turner 1989; Vermaat et al. 2005; 

Wiens 1989), however, I make the distinction between the pixel size and MMU, as they are 

not equivalent in regard to their effect on landscape pattern. For example, two maps may 

both have a grain size of 30 ha, but one map may have a pixel size of 30 ha while the other 

may have a MMU made up of 6 pixels with a pixel size of 5 ha. The two maps will 

characterise spatial pattern differently, as the second map with the smaller pixel size better 

represents fine scale fragmentation. Together, the pixel size and MMU affect the 

characterisation of landscape heterogeneity; as it decreases, within sampling unit 

heterogeneity increases and between sampling unit heterogeneity decreases (Dungan et al. 

2002; Wiens 1989). The MMU tends to be larger than the pixel size so that spatial and/or 

content information may be lost (Fassnacht et al., 2006). Ideally the MMU or pixel size 

should be small enough to provide a representation of essential land cover elements. Where 

landscape elements are found as scattered small patches surrounded by matrix, the MMU 

and/or the pixel size should be smaller than patch size otherwise these patches would not be 

extracted. Conversely, if the MMU and/or pixel size is too fine it can result in a mismatch with 
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biological data that may have been recorded at a much lower resolution (Chapman et al. 

2005).  

 

Both the pixel size and MMU define the area on the ground, where the sampling units are 

located, however, the value of the units do not coincide with value of the land cover on the 

ground. As stated above, neighbouring pixel values will contribute to the value of a pixel. 

Additionally, pre and post processing of a remote sensing image using smoothing filters or 

resampling will also increase the influence of the values of the neighbouring pixels, resulting 

in a reduction of spatial heterogeneity. Two common processes that smooth the image are 

the result of georectification and the application of a smoothing filter such as a low pass or 

majority filter (Figure 2.3). Smoothing filters are commonly used in remote sensing to 

increase global classification accuracy by decreasing the salt and pepper effect caused by 

per pixel based landscape classification schemes or to remove noise caused by sensor error 

in raw remote sensing data (Ivits and Koch 2002; Zukowskyj et al. 2001). Commonly, a 

majority filter is used during post processing for classified images (Lu and Weng 2007) and a 

low pass filter is used with raw data (Aplin et al. 1999). Another remote sensing technique 

that smoothes the image is resampling, often for geometric correction (georectification) or 

image registration (Cracknell 1998). Data from different satellites lead to differing orientations 

and locations of the grid due to the path of the sensor platform (e.g. aerial or satellite). Thus, 

images may be resampled to a common grid with a north south orientation. Data may also be 

resampled to correct for positional error (image registration). Finally, off-nadir rectangular 

pixels at the edge of images are usually resampled to a square grid before the user receives 

the data (Canty 2007). The resampling method used will have differing results. Nearest 

neighbour resampling simply rearranges the position of the pixels to the correct geometry 

while retaining the original pixels brightness values (Canty 2007). This method may cause 

spurious effects such as repetition or omission of pixels (Cracknell 1998). Other commonly 

used methods are bilinear interpolation and cubic convolution interpolation. These methods 

interpolate, and therefore will result in a mixing of spectral values between the neighbouring 

pixels (Canty 2007) and thereby smooth the image.  

 

The final factor that makes up observation scale is the thematic resolution (Bailey et al. 2007; 

Buyantuyev and Wu 2007), describes the level of classification detail of the sampling units 

otherwise known as attribute precision (Cunningham 2006) or categorical resolution (Franklin 

and Woodcock 1997). The Anderson classification scheme is a classic example of a land use 

classification hierarchy that has many thematic resolutions (Anderson et al. 1976). The 

Anderson classification scheme contains 4 resolutions with each higher resolution class 

nested in a lower level class e.g. i) Urban or built-up ii) Residential iii) Single-family units. The 
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exclusion or inclusion of different land cover classes will affect the representation of spatial 

pattern. Generally, when thematic resolution is high, landscapes will appear more 

fragmented (Buyantuyev and Wu 2007). 

 

In the context of landscape ecology, observation scale (pixel size, MMU, smoothing factor 

and thematic resolution) are important in determining the characterisation and the accuracy 

of landscape components such as patches and corridors. Decreasing the resolution of the 

observation scale i.e. larger pixels, larger MMU, applying smoothing filters, and using low 

thematic resolution land cover classification schemes) all have similar effects on 

characterising landscape structure—reducing fine scaled fragmentation. This has been 

shown for each the factor: pixel size (e.g. Lechner et al. 2008; Wu 2004; Wu et al. 2002), 

smoothing (e.g. Lechner et al. 2008; Thompson and Gergel 2008), MMU (e.g. Kendall and 

Miller 2008; Prada et al. 2008; Shen et al. 2004; Stohlgren et al. 1997; Thompson and Gergel 

2008) and thematic resolution (e.g. Buyantuyev et al. in press; Buyantuyev and Wu 2007; 

Castilla et al. 2009; Kendall and Miller 2008). When the resolution of the observation scale is 

low, small patches will not be extracted or aggregated into larger patches (Fassnacht et al. 

2006; Lechner et al. 2008), the spatial extent and configuration of patches will change 

(Thompson and Gergel 2008), edge complexity will decrease (i.e. edge to area length 

decreases) (Kendall and Miller 2008) and landscapes will be represented as large 

homogenous areas that in reality may not exist (Corry and Nassauer 2005; Stohlgren et al. 

1997). Ecologically important small and linear features such as corridors are more likely to be 

mapped inaccurately or be absent from an image compared to larger and more compact 

features (Lechner et al. 2009). Landscape composition is affected by all factors that make up 

observation scale; however, thematic resolution directly affects landscape composition 

though reducing the number of patch types (Corry and Nassauer 2005). Other factors that 

indirectly effect landscape composition through the loss of rare land cover classes tend to be 

found in small patches (Smith et al. 2002; Stohlgren et al. 1997; Thompson and Gergel 2008; 

Turner 1989). Thompson and Gergel (2008) found estimates of rare forest classes differed 

by as much as 36%, and that mean patch size increased by 650% due to the application of a 

smoothing filter.  

 

The observation scale is not only affect the accuracy of remote sensing classifications (Smith 

et al. 2003; Woodcock and Strahler 1987) but also affect ecological analyses that use remote 

sensing data. Furthermore, traditional statistical methods are sensitive to the units of 

observation controlled by pixel size and MMU, and statistical significance will change 

according to the number observations (Pontius Jr et al. 2005; Stoms et al. 1992). Factors 

affecting spatial resolution  (pixel size, MMU and smoothing) have been demonstrated to 
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affect statistical analysis such as inference about population mean and variation (Pontius Jr 

et al. 2005). In cases where there are no natural units of observation, p-values will vary with 

scale (Levin 1992; Pontius Jr et al. 2005; Pontius et al. 2008). Changing scale can effect the 

output of ecological models such as multivariate analysis, by changing the variables included 

in a model, the relative importance of those variables and the complexity of the models 

(Andersson et al. 2009; Karl et al. 2000; Lawler et al. 2004). The effects of spatial resolution 

and to a lesser degree thematic resolution have been shown for other types of analysis such 

as measuring land cover proportions (e.g. Mayaux and Lambin 1995; Moody and Woodcock 

1994; Smith et al. 2002), landscape metrics (Buyantuyev and Wu 2007; Corry and Nassauer 

2005; Ju et al. 2005; Wu et al. 2000), graph based connectivity metrics (e.g. Pascual-Hortal 

and Saura 2007; Rae et al. 2007), statistical analyses such as bivariate and multivariate 

analysis (e.g. Bailey et al. 2007; Fotheringham and Wong 1991; Karl et al. 2000; Lawler et al. 

2004), and change detection analysis (e.g. Pontius et al. 2008).  

 

This review found most of the factors that made up observation scale were not addressed or 

reported: approximately 8% addressed pixel size, 2% addressed MMU, 5% addressed 

smoothing filter and 6% addressed thematic resolution (Figure 2.11). All of the studies that 

addressed observation scale conducted a sensitivity analysis to compare the effect of 

different spatial resolutions on their results. It was difficult to tell whether some factors such 

as MMU or smoothing filters needed to be addressed, as it was unusual for all the details of 

the remote sensing process to be reported.  
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Figure 2.11 Scale dependent factors and classification error addressed, reported and 

not reported (pixel, smoothing, extent and classification error, n=59; MMU and 

thematic resolution n=54). 

 

The scale dependent factors MMU and thematic resolution were only tested for 

thematic/categorical datasets that were used in 91% of the data articles reviewed. MMU and 

thematic resolution are not relevant to continuous data. MMU for continuous data is 

equivalent to the pixel size and thematic resolution can‘t be altered with continuous data as 

there is only a single category (e.g. greenness or tree height).  

 

2.3.7 Scale of the analysis and extents 

The scale of the analysis is a property of: i) the geographic extent of the analysis units and ii) 

the landscape components that can be measured with those spatial units (e.g. patches 

versus landscapes). The first component (i) is described by the scale dependent factor extent 

which refers to the size of the study area or the total area mapped (Gustafson 1998; Turner 

1989). It is also known as geographic scale (Changyong and Lam 1997). The second 

component (ii) describes the spatial organisational level at which a study is undertaken e.g. 

patch, site or landscape-level (Lidicker Jr 2008).  

 

Two broad scales are used to conduct analyses in landscape ecology: fine scale 

relationships of patches and their surrounds or coarse scale dynamics that investigate 

landscape as a whole (Pickett and Cadenasso 1995). Research investigating fine scale 
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relationships mostly used either the patch or site organisational level (Figure 2.12). Studies 

that conducted patch-level analyses often compared patch measurements (e.g. patch area or 

shape) to ecological phenomena (e.g. species diversity) for each patch or a sample of 

patches within a landscape. Studies which used the site-level (i.e. core area or 

neighbourhood area or plot) analyses were often conducted by measuring ecological 

variables at a single point or plot (e.g. trap counts) usually found within a patch. These 

ecological variables were compared to environmental measurements calculated for the 

surrounding area usually within a circular buffer (i.e. percentage vegetation cover) (Debuse 

et al. 2007). The size of the neighbourhood area is commonly considered to be the grain size 

and should be related to the scale at which an ecological phenomenon operates (e.g. home 

range) (Mayer and Cameron 2003; Schooley 2006). Studies which use either the site or 

patch, are not strictly landscape scale studies, but rather patch scale studies conducted over 

a landscape. For studies with landscapes as the organisational level used for analyses, 

either multiple landscapes in different locations or the same landscape at different times 

were compared.   

 

 

Figure 2.12 Examples of patch and site-level sampling designs using different spatial 

extents. a) Ecological variables sampled for the entire patch related to environmental 

variables such as area or shape for only the patch. b) Ecological variables sampled for 

the entire patch related to environmental variables calculated for the patch such as 

area and the area surrounding the patch such as land use. c) Ecological variables 

sampled in a plot such as using transect sampling and related to environmental 

variables in the surrounding area. d) Ecological variables sampled at a point such as 

trap counts related to surrounding environmental variables. 

 

Throughout the articles reviewed there were a range of definitions used to describe analysis 

scales that differ from the above definitions. In this review, landscapes are considered to be 

an area composed of more than one patch (Figure 2.13). While other studies considered 

landscapes to be a single patch or plot and the area surrounding it, equivalent to this study‘s 

definition of patch and site-level (e.g. Coreau and Martin 2007; Davis et al. 2007; FitzGibbon 

et al. 2007; Gagné and Fahrig 2007). In many studies a single patch or plot and the 

surrounding environment is considered to be landscape scale. For example (Gagné and 
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Fahrig (2007) investigated the effect of landscape context on anuran communities in 

breeding ponds and defined landscapes as an area of 1.5 km surrounding an individual 

pond.  

 

 

Figure 2.13 Examples of different organisational levels and the types of measurements 

used.  Depending on the organisational level used, the types of ecological units (e.g. 

patches) that can be measured will differ. For example, at the landscape scale the 

number of pixels with certain values can be measured in order to calculate global area 

estimates or patches can be discretised and measurements can be based on these 

units (e.g. number of patches, average patch area). 

 

This review found a range of organisational levels used to analyse ecological data. The most 

common analysis scale was the site scale 29%, while 22% used the patch scale and 53% 

used the landscape scale (Figure 2.14). In many of the articles reviewed, more than one 

analysis scale was used (e.g. Debuse et al. 2007; Gustafson et al. 2007).  
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Figure 2.14 Percentage of articles using site, patch or landscape analysis scales. Note, 

some studies used multiple analysis scales. 

 

Uncertainty associated with using specific analysis scales is a result of the sometimes 

arbitrary location of extent boundaries, affecting the characterisation of landscape pattern 

and the outcome of ecological analyses. Changing spatial extent affects observed ecological 

patterns; as extent increases so does the probability of sampling rare classes (Turner 1989; 

Wiens 1989). If pixel size is fixed, fragmentation increases with increasing extent (Riitters et 

al. 2000). Changing spatial extent can affect ecological analyses because it can influence the 

inclusion of abiotic and biotic processes that affect the ecological phenomenon in the study 

area. Broader scaled ecological processes such as atmospheric flows or climatic processes 

are only observable using large extents while small scale processes such as edge effect can 

be observed using smaller extents (Wiens 1989). Observable ecological processes will 

depend on the openness of the system being considered. For example, islands are closed 

systems with respect to the movement of ground dwelling animals, but can be considered 

open for the movement of birds. 

 

Landscape pattern will change with extent, as landscapes may appear fragmented at one 

extent and continuous at other extents (Cushman and McGarigal 2008). The strength of the 

effect of extent on landscape pattern is dependent on landscape context. The effect of 

changing extent is be a property of the surrounding landscapes and is different if a 

fragmented landscape is part of a fragmented regional landscape or an abundant and 

continuous regional landscape (Cushman and McGarigal 2008). For example, Turner (1989) 

found that measures of diversity remained constant until the extent boundaries crossed 

natural boundaries (i.e. river, catchment boundary). Once the natural boundary was crossed, 
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there was a rapid increase in diversity. Diversity then remained constant once more, with 

increasing extent until the next boundary was crossed. 

 

Spatial extent can affect landscape pattern through artificially truncating patches that occur at 

the boundary (Cushman and McGarigal 2008; O'Neill et al. 1996). This can result in spatially 

continuous patches being divided up into smaller separate patches. As with the observation 

scale, changing extent will affect analyses such as measurements of landscape pattern 

(Buyantuyev et al. in press; O'Neill et al. 1996; Townsend et al. 2009; Turner 1989), graph 

based connectivity metrics (Pascual-Hortal and Saura 2007) and statistical analysis 

(Chapman et al. 2005; Hess et al. 2006; Wu et al. 1997).  

 

This study found 29% of articles reported extent as an issue, and 25% attempted to address 

the problem. Testing for uncertainty in the scale of the analysis, where the organisational 

level was the site, was the most common form of spatial uncertainty addressed. It found that 

approximately 59% of studies that used the site organisational level addressed this form of 

uncertainty by modifying the size of the neighbourhood area. 

 

2.3.8 Summary of the effects of scale 

Only 8% of studies addressed grain (which includes either pixel size or MMU) and 29% 

addressed extent, which is low considering these two type of scale dependent factors appear 

to be the most prominent scale dependent factors discussed in the landscape ecology and 

ecological literature (e.g.Gustafson 1998; Mayer and Cameron 2003; Turner 1989; Turner 

2005; Wiens 1989). Around 47% reported one or more scale dependent factors and 23% 

addressed one or more scale dependent factors; however, in most cases only a single scale 

dependent factor was investigated even though the multi-faceted nature of scale has been 

recognized (e.g. Lechner et al. 2008; Riitters et al. 1995). Wheatley and Johnson (2009) 

reviewed 79 multi-scale wildlife habitat studies published since 1993 and found that in 

addition to the initial scale chosen, which was biologically justified (i.e. home range size), the 

other scales tested, usually one larger and one smaller, were arbitrarily chosen.  

 

Wheatley and Johnson (2009) also noted that many studies that claim to be multi-scale are 

in actual fact multi-design because they vary two or more scale dependent factors with only a 

single replicate of each and thus can‘t demonstrate scaling effects (i.e. commonly varying 

both extent and pixel size at the same time). This is partly the result of the difficulty in 

separating scale due to practical reasons. This is especially true with regard to pixel size and 

spatial extent, which tend to vary together (e.g. a single scene of Landsat 7 TM with 30m 

pixels is 185 km in extent, while Quickbird 2 has 2.4 m multispectral resolution and an extent 



34 

 

of 16.5 km). For the review I did not judge whether the scales chosen were appropriate; 

however, I found most studies were truly multi-scale not multi-design. In some cases, studies 

were wholly or partially multi-design measuring some or no scale dependent factors at all 

scales. For example, Coreau and Martin (2007) compared bird abundance measured at a 

sampling points to environmental characteristics measured in 25m, 50m and 200m buffer 

areas surrounding the points. In this study the same set of variables were not measured at all 

buffer sizes e.g. maximum vegetation height was only measured in the 25m buffer area and 

number of patches was only measured in the 200m buffer area. 

 

This study found that 46% of the papers reviewed used Landsat data which has a 30 m pixel  

size for most bands of both TM and ETM+ sensors (only 1 of the studies used Landsat MSS 

which has a 60m pixel size) and 53% used aerial imagery with a pixel size less than 1 m 

(Figure 2.15). These finding are similar to a review by Vermaat et al. (2005), which found that 

Landsat was the most common sensor used in landscape ecology. I found most studies used 

the raw remote sensing image‘s pixel size except for those that specifically addressed scale 

issues and conducted multi-scale studies. The ubiquity of data from these two sensor 

platform suggests that the scales selected were arbitrary. The choice of an arbitrary scale 

goes against ecological thinking, which suggests that no single scale is appropriate for the 

study of all ecological problems. The results of this review confirm what other authors have 

pointed out: the choice of scale is often arbitrary and tends to reflect our own perception of 

nature rather than other species‘ perceptions (Wiens 1989). If scales are chosen arbitrarily, 

actual patterns and processes may become distorted  (Wu et al. 2006). However, the results 

of this study differed from Vermaat et al. (2005), which reviewed the average spatial extent 

and grain sized used by studies in landscape ecology across all the ecological literature and 

found that the mean grain size was 880 m+/–300 m. This result suggests that ecological 

studies published in the journal of Landscape Ecology tend to focus on a subset of scales.  
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Figure 2.15 Percentage use of different remote sensing platforms for all studies 

(n=59). Note, some studies used more than one remote sensing dataset. 

 

These findings are not surprising as the choice of scale is often driven by the available data 

and the cost in acquiring and classifying it (Chen 2008; Comber 2008; Fisher et al. 2005; 

Gergel 2007; Gustafson 1998). Low spatial resolution data is often bought because it costs 

less and is less computationally expensive (Hilty et al. 2006). The choice of spatial resolution 

represents a trade-off between constraints on operational costs and the provision of land 

cover requirements (European Environment Agency 1994). Higher resolution data such as 

aerial imagery can sometimes be more appropriate but are prohibitively expensive due to the 

high cost of flying and processing it (Gergel et al. 2007). For example, the European 

Environment Agency (1994) calculated the cost of acquiring imagery SPOT (HRV XS) (10 m 

spatial resolution) data to be 0.5 Euros/km2 compared to 0.03 Euros /km2 for Landsat TM and 

ETM+ (30 m spatial resolution). The influence of data availability on the scales used is in 

agreement with both Mayer and Cameron (2003) and Vermaat et al. (2005) who both 

conducted reviews of the scales used in studies of landscape ecology. 

 

2.3.9 Ambiguity between ecological scale, scale of analysis and scale of observation 

This study found considerable ambiguity in the use and the understanding of scale concepts 

and its causes in the articles reviewed. Firstly, the majority of articles used scale as a generic 

term but failed to qualify its explicit meaning as recommended in the literature (e.g. King 

1991; Vermaat et al. 2005). This makes comparisons between studies difficult. For example, 

in one study scale was considered to mean spatial extent and in another it was considered to 

mean pixel size. Secondly, another fundamental issue arises from the ambiguity in 

interpreting the cause of the underlying scale dependent processes that affect ecological 

analyses. There are two well documented, inferred causes of finding differences in the 

results of ecological analysis due to scale: 1) the effects of the scale of operation (Levin 
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1992; Wiens 1989) and 2) the effects of the MAUP (Fotheringham and Wong 1991; Jelinski 

and Wu 1996; Wu 2004).  

 

In order to assess the effect of scale for either of the above two causes, ecological analyses 

are conducted with data at more than one observation and/or analysis scale (e.g. multiple 

pixel sizes). Commonly, the effect of scale is assessed by differences in the strength of the 

statistical relationship between environmental explanatory variables represented with spatial 

data at multiple scales and an ecological response variable. In the first case, multi-scale 

analyses are conducted in order to find the scale of operation. The scale of operation is 

identified as the scale at which the relationship is strongest between an environmental 

variable and the ecological attribute. For example, an ecological study may try to identify the 

scale with the highest correlation between vegetation cover and species diversity. Ecological 

causes such as the effect of home range size and/or distribution of resources are then 

inferred as the underlying process that has caused the scale dependent patterns found in the 

analysis. In the second case multi-scale analyses are conducted in order to test for data 

sensitivity to the MAUP. In this case differences in the strength of the relationship, as a result 

of using different scales, indicate the existence of the MAUP. Thereby demonstrating that the 

results of an analysis may be unreliable. In both cases exactly the same analyses methods 

may be used but the inferred underlying causal process; the MAUP or scale of operation 

differ.  

 

This review found that several articles used similar multi-scale analysis techniques, however, 

causality was attributed to either one of the contradictory effects. For example, Koper et al. 

(2007) used multi-scale analysis and indicated they were testing for the effects of MAUP, 

while Coreau and Martin (2007) also used similar multi-scale analysis methods and 

suggested they were investigating the scale at which the phenomenon interacts with the 

environment. Ultimately, experimental manipulation of the underlying processes is required 

to understand the causal effect as correlation does not imply causation. 

 

2.3.10 Classification Error 

While scale dependent factors are one type of spatial uncertainty in which the true scale of 

observation and/or analysis may be unknown, classification error refers to quantifiable error 

that is measured as the difference between the value recorded by a remote sensing map and 

the real value on the ground. Error is generated at different stages of the production of 

remote sensing maps, affecting the representation of land cover (Friedl et al. 2001). The 

sources of error can be found in the remote sensing model and the processing of that data. 

The remote sensing model is composed of three components: i) the scene model, which 
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describes the spatial and temporal characteristics of land cover, ii) the atmospheric model, 

which describe the effect of atmosphere (e.g. clouds) and iii) the sensor model, which 

describes the how the sensor takes spectral measurements (Strahler et al. 1986).  

 

The statistical analysis of classification error is conducted using an error matrix also known 

as a confusion or agreement matrix and is considered fundamental to accuracy assessment 

(Congalton 1988; Foody 2002). The confusion matrix describes the accuracy of each land 

cover class and the nature of the confusion between the classes statistically (Congalton, 

1991). Studies that make use of a remote sensing land cover dataset should as a minimum 

include an accuracy assessment (Cunningham 2006). However, this review found that only 

5% of studies included a confusion matrix.  

 

High accuracy biophysical input maps derived from remote sensing are considered important 

requirements for ecological models such as predictions made by habitat models (Guisan and 

Zimmermann 2000). There is no universal standard of acceptable classification accuracy for 

thematic maps. Often, targets are not stated explicitly; however, 85% is a value often quoted 

(Foody 2006). Even if an error matrix records an overall accuracy greater than 85% there is 

no guarantee that the error assessment is accurate as there is considerable uncertainty in 

their generation (Chen and Wei 2009; Congalton and Green 1993; Stehman and Czaplewski 

2003). Furthermore, as classification error is not randomly spatially distributed across the 

landscape (Congalton 1988) the standard error matrix is not suitable for the assessment of 

error in the representation of spatial pattern.  Hess and Bay (1997) concluded that the 

present method for assessing spatial accuracy does not allow for the assessment of the 

sensitivity of landscape metrics to error. Classification errors can be magnified when 

propagated into a model (Gergel et al. 2007). For example, Langford (2006) found that in 

certain situations classification error can cause a thousand-fold increase in error in the 

calculation of landscape metrics. There are however no standard methods for quantifying the 

spatial distribution of error (McGwire and Fisher 2001). Gergel et al. (2007) suggested that it 

is important to describe not only the magnitude of errors but also the implication of the errors. 

My review found only 1 of the articles reviewed tested for the effect of classification error on 

analysis. 

 

2.3.11 Interactions of scale dependent factors, classification error and landscape 

context 

Both classification error and each of the scale dependent factors interact to affect landscape 

pattern characterisation (e.g. Kendall and Miller 2008; Langford et al. 2006; Lechner et al. 

2008; Shen et al. 2004). Thus, testing of multiple scale dependent factors is recommended 
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as these interactions need to be considered (Lechner et al. 2008; Shen et al. 2004). 

Classification error, for example, does not occur independently of scale. It has been shown 

that degrading the spatial resolution may result in higher classification accuracy in particular 

landscapes (Townshend and Justice, 1988). Langford et al. (2006) showed that the common 

practice of decreasing classification error through increasing MMU can sometimes result in 

an increase in errors in the calculation of landscape metrics. However, the testing of more 

than one scale dependent factor or classification error and a scale dependent factor was 

unusual, occurring in 1 of the papers reviewed. 

 

The interaction of scale dependent factors and classification error is also affected by 

landscape context, such as the level of spatial autocorrelation. The spatial distribution and 

composition of landscape features changes the way that these factors affect the 

characterisation of landscape pattern. For example, as grain size increases, rare land cover 

classes tend to decrease; however, this decrease is slower when land cover classes are 

clumped than when they are dispersed (Turner 1989). In highly fragmented landscapes 

certain land cover types need a higher spatial resolution in order to accurately classify them 

(Smith et al. 2003; Soares et al. 2008). Land cover classes that tended to be linear or found 

in isolated patches disappeared as pixel size increased and overall the number of classes 

was reduced. Thus, using higher thematic resolutions at finer scales may be impossible in 

some landscapes (Rocchini 2005). 

 

2.3.12 Addressing spatial uncertainty in ecological analyses 

In order to conduct robust ecological analyses the impact of spatial uncertainty arising from 

classification error and scale need to be considered. The most commonly used method of 

addressing spatial uncertainty found in the papers reviewed was a sensitivity analysis 

(Buyantuyev and Wu 2007; Vogt et al. 2007a). Sensitivity analyses are recommended in 

order to understand how spatial uncertainty behaves propagates in ecological models (see 

Jager and King 2004; Jager et al. 2005). Sensitivity analyses are conducted by evaluating 

the results of a model multiple times with alternate realisations of the input data. Alternative 

realisations are generated either systematically or using the Monte Carlo method (Heuvelink 

2002) whereby they are randomly generated using an error probability distribution.  

 

A sensitivity analysis is one method of addressing issues of scale (e.g. Heuvelink 1998); 

however, a most important first step when addressing scale issues is identifying the scales at 

which a phenomenon operates thus ensuring a study is conducted at the appropriate scale 

(Gustafson 1998; Levin 1992). The scale of observation and analysis should be based on 

empirical knowledge or through an exploratory analysis  (Wu et al. 2006). One 
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recommendation is to find the scale at which maximum variability of the data occurs in order 

to determine the appropriate scale of analysis (Changyong and Lam 1997). This is type of 

method is often proposed within the remote sensing community. Detecting the appropriate 

scale of analysis involves using techniques such as finding the scale at which the highest 

average local variance (e.g. Woodcock and Strahler 1987) or the highest fractal dimension 

(e.g. Lam and Quattrochi 1992) occurs. In ecology studies are often conducted at multiple 

observational and/or analysis scales in order to provide an understanding of the dominant 

scales or to test the robustness of an analysis to scale (Mayor et al. 2007; Turner 1989; 

Turner et al. 2001; Wiens 1989; Wu et al. 1997). Testing at multiple scales is important as 

often there is little known about the scales at which species respond to habitat heterogeneity 

(Holland et al. 2004).  

 

Multi-scale studies should be conducted at a continuum of spatial scales as opposed to a few 

subjectively selected scales or hierarchical levels to ensure that the study is indeed multi-

scale not multi-design (Mayor et al. 2007; Wheatley and Johnson 2009). Analyses at multiple 

scales need to cover a range of scales that affect the ecological phenomenon being 

investigated. It can be difficult however, to make assumptions about the effects of changing 

scale on the characterisation of fragmentation as any form of aggregation of the scale 

dependent factor will result in range of effects on the various components of landscape 

pattern. For example, Saura (2004) investigated the affect of aggregation on the 

quantification of landscape pattern with a range of landscape metrics and found most metrics 

indicated lower fragmentation at coarser spatial resolutions. Saura (2004) found power 

scaling-laws between aggregation level and several landscape metrics. In other cases 

phenomenon are scale invariant or behave linearly with scale whilst measurements of spatial 

pattern for other phenomenon exhibit a staircase-like pattern of change with increasing scale 

indicating that pattern forming processes may operate at different breakpoints (O'Neill et al. 

1999; Shen et al. 2004). While scaling relationships between landscape patterns and 

landscape metrics have been found, they are study specific and reliable well-tested scaling 

universal laws do not exist (Gergel 2007).  

 

Conducting multi-scale studies are limited by landscape characteristics, practical limitations 

and data constraints (such as the availability of spatial data and geographic extent). Analysis 

methods need to be tailored to the spatial characteristics of the landscape (Gustafson 1998). 

For example, a landscape that is difficult to apply a categorical discrete classification to will 

produce a high uncertainty in the characterisation of landscape pattern. Testing may also be 

limited by practical considerations. For example, fine scale testing is limited by the availability 

of fine scale data and at broad scales by the available geographic extent. 



40 

 

 

In cases where appropriately scaled data is unavailable, one option is to extrapolate across 

scales.  However, scaling across heterogeneous ecosystems remains a challenge (Levin 

1992; Wu and Li 2006b). This type of scaling can be complicated by critical non-linear 

thresholds in the relationship between ecological phenomena and landscape pattern 

(Gardner et al. 1989) affecting the outcome of spatial analysis (Heuvelink 1998). There are 

multiple methods for transferring information between scales (Wu and Li 2006b) (cf. Wu and 

Li 2006b for a review of methods). Scaling relationships have been demonstrated for certain 

classes of landscape metrics following the power law (Saura 2004; Wu et al. 1997). 

However, these scaling relationships may be complicated by the choice of explanatory 

variables, the idiosyncrasy of particular landscapes, the nonlinearity of scaling relationships 

and an ecological model that may depend on data at particular scales (Heuvelink 2002; 

Heuvelink et al. 1989; Li and Wu 2004; Wu et al. 1997). 

 

2.3.13 Other sources of error 

The types of spatial uncertainty that were investigated in this review were limited to 

classification error and scale dependent factors because they are consistently cited in the 

literature as having significant effects on spatial analysis in landscape ecology. However, 

there are many other issues that were not investigated relating to the creation and use of 

remote sensing datasets in spatial analysis: from pre-processing, classifying, post-

processing, associating remote sensing data with ancillary data to modelling data (Haining 

2003; Worboys 1998). Although not an exhaustive list, some examples of spatial uncertainty 

that was not reviewed include: (i) Positional errors which are a result of a discrepancy 

between the map location and the true location on the ground (Haining 2003); (ii) Errors 

associated with linking remote sensing data with ancillary data resulting from inaccurate 

positioning of ground sampling points such as species occurrences (Laurent et al. 2005; 

Leyequien et al. 2007; McKelvey and Noon 2001) or scaling errors where the data at the 

sample plot level are up-scaled to remote sensing data (Wu and Li 2006a); (iii) GIS operation 

errors such as those associated with transferring between different GIS models (i.e. raster to 

vector) (Holland et al. 2007; Wade et al. 2003) and overlaying datasets to create new data 

(Arbia et al. 1998; Linke et al. 2009); (iv) Analysis error originating from the choice of 

particular forms (equations) or components (variables, covariates), statistical confidence in 

variable estimation, sample sizes, variability inherent in ‗natural‘ systems, statistical 

assumptions like independence of spatially autocorrelated data not being met (cf. Karl et al. 

2000; Peters and Herrick 2004; Schooley 2006). In most cases, the complete process of 

spatial analysis was not reported. Thus, it was impossible to assess whether these sources 
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were ignored or not. It is assumed, though, that these other sources of error were also not 

addressed in the majority of studies. 

 

2.4 Conclusion 

This review confirms the concerns of other authors that the assumptions, generalisations, 

and error that occur when using spatial data are not being addressed by ecologists 

(Chapman et al. 2005; Nelson 2001). The complexity of the remote sensing data creation 

process and difficulties in incorporating spatial uncertainty into ecological analysis mean that 

addressing these issues is a non-trivial task. In many cases landscape ecologists lack the 

necessary skills to create spatial data and/or understand the creation process as they often 

only deal with the final remote sensing product such as a generic land cover map (Adams 

and Gillespie 2006; Schmit et al. 2006; Turner et al. 2001; Wiens et al. press). The difficulties 

of addressing these issues are further compounded by the lack of clearly defined rules for 

dealing with spatial uncertainty when developing ecological models (Chen 2008).  

 

There has been an awareness of the serious implications of spatial data uncertainty on 

ecological analysis since the 1950s (e.g. Yule and Kendall 1950). This review clearly shows 

that these issues are being largely ignored by landscape ecologists—the branch of ecology 

where spatial data is a fundamental input into ecological models. It suggests that the scale of 

observation is increasingly being driven by the limited spatial scales used by satellites. In 

many cases, readily available datasets are employed without an understanding of the 

assumptions and rules used to create the dataset. The lack of importance given to spatial 

uncertainty in landscape ecology is exemplified by the many articles reviewed that failed to 

document the source of the spatial data and the processing used. 

 

The majority of papers that addressed scale issues were primarily investigating issues of 

scale; that is, scale is not being addressed as a matter of course. In most cases, authors 

failed to acknowledge the existence of spatial uncertainty issues; using the raw remote 

sensing image‘s pixel size. In some cases, it is possible that the scale of the dataset may 

have been appropriate for the organism/s in question by default, or that the classification 

error levels may have been low enough not to affect analyses. It is also possible that some 

authors may have failed to write about these issues due to space requirements, even if they 

had been explored as part of a rigorous scientific method. However, I believe that the 

overwhelming weight of evidence dictates a need to address scale and error explicitly and 

that the acknowledgement of these issues should be standard practice. Standard practice for 

articles that conduct spatial analysis should include a definition of scale, an explanation of 

the scale dependent factors associated with the data (i.e. MMU, spatial extent etc), and an 
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inclusion of an error matrix and a description of the scale at which the ecological 

phenomenon perceives the landscape. Finally, a sensitivity analysis should be a minimum 

requirement.  

 

This chapter has drawn together ample evidence demonstrating the impact of spatial data 

uncertainty on ecological analyses. Landscape ecologists cannot assume that their analyses 

are immune to these influences and must develop methodologies for testing, understanding 

and dealing with the effects of spatial uncertainty. In order to address spatial uncertainty in 

landscape ecology fundamental research is needed to understand how scale affects the 

characterisation of landscape pattern especially with respect to the identification of ecological 

important landscape elements. Furthermore, there is a need to understand how the scale 

dependent factors interact with each other using quantitative analyses to provide 

generalisations and rules. Lastly, the underlying processes that cause spatial uncertainty—

the scale of the phenomenon and MAUP—need to be understood.  
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Chapter 3 Remote sensing of small and linear features: Quantifying 

the effects of patch size and length, grid position and detectability 

on land cover mapping 

 

Published as:  

Lechner, A.M., A. Stein, S.D. Jones, and J.G. Ferwerda (2009) Remote Sensing of small and 

linear features: Quantifying the effects of patch size and length, grid position and detectability 

on land cover mapping. Remote Sensing of Environment 113: 2194-2204 

 

3.1 Introduction 

The use of remote sensing imagery for the creation of land use and land cover maps is 

common place within landscape ecology and natural resource planning (Antrop 2007; Hilty et 

al. 2006). Thematic maps derived from remote sensing imagery can be used to characterize 

landscape structure and composition and relate these to landscape processes (Metzger 

2008) such as species migration (e.g. LaRue and Nielsen 2008) or landscape change (e.g. 

Nagendra et al. 2006). Features such as small remnant and linear vegetation patches have 

ecological value that is proportionally greater than their areal extent. The presence or 

absence of these features change landscape pattern related properties such as connectivity 

and degree of fragmentation. Of key importance is an understanding of the process of 

mapping these patches. This paper simulates the process of classifying small and linear 

features, which allows for a basic understanding of the appropriate spatial resolution required 

to extract these patches when mapping using remote sensing imagery. 

 

Small and linear vegetation patches are ecologically significant and can be found as roadside 

vegetation, hedge rows, scattered trees, riparian areas and greenways or are purposely built 

to facilitate connectivity (Bennett 1990; Gergel et al. 2007; Hilty et al. 2006; Manning et al. 

2006). In rural landscapes trees and hedgerows are important biological and ecological 

components and function as windbreaks, field boundaries, erosion control, as well as for 

ecological and biodiversity value (Thornton et al. 2006). Small and linear vegetation is also 

important for wildlife habitat and can function as wildlife corridors which have been shown to 

have a positive effect on biodiversity and species persistence (Suter et al. 2007). The 

accurate mapping of wildlife corridors is essential as physical attributes of corridors such as 

width and length can affect the use of corridors by wildlife (Hilty et al. 2006; Lindenmayer and 

Fischer 2007). However, it is due to the relatively narrow width of corridors that they may be 

under-represented in the landscape when mapped using remote sensing (e.g. Vogt et al. 
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2007b) or traditional field based mapping. The accurate mapping of linear vegetation is key 

to the development of ecological models as such habitat suitability models. Land cover and 

vegetation maps which do not accurately represent  the size and/or number of patches are a 

source of uncertainty within spatially explicit models (Minor et al. 2008). 

  

Of great importance to map users interested in these small and linear vegetation patches is 

estimating what is the smallest discernable feature at any given spatial resolution and the 

accuracy at which these features are mapped. To the best of our knowledge, formal rules do 

not exist for describing the appropriate spatial resolution required. This is likely caused by the 

complexity of the problem, as the classification technique, landscape features, desired land 

cover classes and sensor resolution and characteristics will all affect the outcome of a 

classification (Lu and Weng 2007). Appropriate areas or dimensions required in order to 

extract features have been suggested, described in terms of pixels for measurement 

purposes, as in this study. The pixel traditionally represents the smallest discernable feature 

(Tatem et al. 2002) and limits the size of the feature that can be extracted (Aplin 2006).  

Estimates of the smallest discernable feature vary. According to Hengl (2006), at least four 

pixels are required to detect the smallest objects and at least two pixels to represent the 

narrowest objects. Cracknell (1998), however, suggested that we can detect an object which 

is of comparable size to the instantaneous field of view (IFOV) of the sensor. Regarding the 

detection of small and linear vegetation features a reasonable consensus exists; less than 4 

to 5m spatial resolution is required. Jensen and Cowen (1999) concluded that high spatial 

resolution imagery between 0.25 to 10m is required for environmentally sensitive habitat in 

urban areas where vegetation is found in patches as small as median strips and backyards. 

Lausch and Herzog (2002) suggested that spatial resolution should be below 5m to capture 

linear features such as wildlife corridors. Finally, Congalton et al. (2002) suggested that 

sensors with finer spatial resolutions such as IKONOS with 4m multispectral sensor will be 

more appropriate for features with smaller areas such as riparian vegetation. 

 

Previous research on the appropriate spatial resolution for mapping small and linear objects 

is mainly based on qualitative examinations. So far, a proper quantification with probabilistic 

tools, however, is missing. Extraction probability and classification accuracy is a function of 

the size, shape and the random position of a feature with respect to the sensor array's grid 

(Figure 3.1). Additionally, they are a function of both its spectral characteristics and those of 

the surrounding objects. This study extends previous qualitative investigations by simulating 

imagery in order to model the sub-pixel location of features with respect to the grid; testing 

the effect of grid position, contrast and feature size and shape in isolation. However, 

classification will be affected by other factors such as image registration, view angle, 
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radiometric calibration, image acquisition time and sensor characteristics such spatial and 

radiometric resolution and bandwidth (Cracknell 1998; Townshend et al. 1991). Thus 

classification accuracy and extraction probability as calculated in this study is the result of the 

geometric properties of the grid alone, representing the best case scenario for remote 

sensing where the above factors are ignored. The aim of this paper is to: 1) determine the 

effect of the position of the raster grid in relationship to small and linear landscape features 

on classification, 2) provide a basic understanding of the appropriate spatial resolution 

required to extract features of various degrees of elongation and area and 3) examine the 

effect of differing spectral contributions of the object and its surrounds on classification. 

 

 

Figure 3.1 The position of a satellite sensor array’s grid is random with respect to 

features in the landscape. An example of 3 different possible positions of the grid out 

of an infinite number of possibilities. Notice the location of the darker larger tree 

(centre bottom). Classification of the tree will be more accurate when it is located in 

the centre of a pixel as opposed to the intersection of many pixels. 

 

3.1.1 Background to the problem 

Rough single figure estimates do not recognize the effect of the random location of the 

sensor array's grid with respect to the feature. The lack of recognition of this random effect is 

common, as when using the traditional hard classifiers (which have one class per pixel) the 

unstated assumption is that land cover fits well into a grid consisting of square shaped spatial 

units (Fisher 1997).  As features will not generally be placed to match the position of the grid, 

this can result in small features being lost when they only make up a portion of a cell or are 

found at the intersection of several cells (Cunningham 2006; Wehde 1982). The grid position 

effect can be a significant source of mapping error for individual map features (Wehde 1982). 

Cunningham (2006) noted that winding river channels of ecological importance can easily be 

lost in this way using 30m Landsat imagery. Problems of this type are particularly common in 

highly fragmented environments such as urban and peri-urban areas. For example, 

Australian road side vegetation can be around 2 to 4m wide, whilst high spatial resolution 
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satellites such as Quickbird and SPOT XS have a multispectral spatial resolution of 2.4m and 

10m respectively.  

 

Other factors that contribute to the misclassification of small and linear features are its local 

contrast with the surrounding objects and the objects contribution to the pixel‘s spectral 

signal (Hengl 2006). When pixel to pixel contrast decreases, the target will ultimately be 

below the detection limit resulting from measurement uncertainty (Adams and Gillespie 

2006). Detectability is scene and sensor specific (Adams and Gillespie 2006) and decreases 

with increasing spectral similarity between target and surrounding objects (Forshaw et al. 

1983) and sensors‘ sensitivity. Another spectral factor contributing to misclassification is the 

difference in physical area of the target object with respect to its information class. A hard 

classification often assumes that the class occupies the majority of the area of the pixel 

(Fisher 1997). However a tree with a sparse canopy, for example, may consist of 30% leaf 

area, whereas the boundary of the information class tree is the perimeter of the canopy. A 

pixel may thus be classified correctly as a tree even if it covers less than 30% of the pixel 

area. 

 

The investigation of the smallest discernable feature focuses on the instance where the size 

of the feature and the grid are similar. Strahler et al. (1986) developed the L & H resolution 

model that describes the relationship between the size of objects in a scene and the pixel 

size. H-resolution is the condition where objects are larger than pixel size (Woodcock and 

Strahler 1987). Whereas L resolution is the condition where land cover objects are smaller 

than pixel size (Woodcock and Strahler 1987) and only detectable as part of a mixed pixel 

and not as individual objects (Lu and Weng 2007). Objects need to be several times smaller 

or larger than the spatial resolution in order to regard the scene model as either H or L 

resolution (Strahler et al. 1986). This study is at the interface between L & H resolution, 

where it is difficult to define a land cover class using either object model. However, we 

treated the scene as H resolution, as only single features are tested. At the scale of this 

study the probability of a single feature being classified or extracted correctly is a function of 

its shape, grid size and its location. Classification accuracy decreases from 100% if the 

feature is of the same size as the grid and its classification is based on the majority rule 

(Figure 3.2a) to lower values when the grid does not align with the feature‘s shape (Figure 

3.2b-e). 
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Figure 3.2 Features size and shape in relation to the grid. (a) Feature position, size and 

grid position result in a perfect match. (b) Perfect match with feature dimensions and 

grid size, but imperfect match with the grid position. (c) As b, but a lower error due to 

the larger number of interior pixels. Interior pixels have 100% accuracy for any grid 

positions. (d) The position of the grid is important when objects are of a similar size to 

the grid. Objects can disappear and appear because of its position. (e) Larger errors 

due to differences in orientation and position. (f) The feature's relative contribution to 

the value of a pixel is high resulting in a greater likelihood of being extracted.  

 

To demonstrate the patch size, shape and grid location phenomena we carried out a 

qualitative analysis using real multispectral images from an area northwest of Melbourne, 

Australia. A 15cm near infrared aerial image (Figure 3.3a,c,e,g) captured in 2005 was 

classified by thresholding a derived normalized difference vegetation index to generate a 

vegetation versus non-vegetation land cover classification. This was compared with a 

similarly classified 10m SPOT XS image captured in 2004 for the same area. The aerial 

photography was geometrically registered to the SPOT image using ArcGIS (ESRI 2007b). 

Subsets of the area with linear vegetation and/or small patches of vegetation of the total 

scene were clipped. Clips were taken from locations within the images near NADIR. The 

images were then overlayed to examine the differences in classification.  
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Figure 3.3 Top row: 15 cm georeferenced NIR Aerial taken in 2005 for the North West 

Melbourne (Australia) with a spatial accuracy of 1–2.5 m RMSE (68% Confidence). 

Bottom row: above classified aerial imagery overlayed with transparent orthorectified 

10 m classified SPOT XS imagery with a spatial accuracy of 12 m. White areas: both 

classified aerial and SPOT imagery identified vegetation; Gray areas: SPOT and aerial 

imagery differed in their classification of vegetation; Black areas: both SPOT and 

Aerial have not identified vegetation. 

 

Figure 3.3b shows some linear vegetation patches appearing to be discontinuous in the 

SPOT image. This could be the result of the width of the linear strip decreasing so that at 

certain points it occupies less than 50% of the pixel area. Figure 3.3d demonstrates a similar 

phenomenon as figure 3.3b. Notice, however, that the large linear strip of vegetation in the 

west of the image has a width greater than a single pixel and is classified correctly in 

comparison to the narrow linear strip to the east which is incorrectly broken into a series of 

patches. Figure 3.3e shows 3 similar linear strips of vegetation (paddock boundaries). Figure 

3.3f illustrates that they have all been mapped differently. The most northerly has been 

omitted (i.e. not mapped). The middle strip mapped more or less correctly and the most 

southerly is broken into a series of islands or patches. This is the result of the strips‘ location 

and orientation to the grid. Figure 3.3h demonstrates that as a linear strip changes 

orientation the effect of the position of the grid well result in differing classification accuracy.  

 

3.2 Method 

We developed a statistical simulation model to test the effect of patch size and shape, 

classification threshold and grid location on the classification of small and linear features 
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using remote sensing data. To simplify the investigation a binary hard classification was 

used; patch vs. matrix. This type of classification scheme is used in ecology, for example, to 

describe the patch-corridor-matrix model (Forman and Godron 1986) fundamental to 

landscape ecology (Antrop 2007) and is often applied to tree presence/absence datasets 

(e.g.Vogt et al. 2007b).   

 

A computer model considered rectangles of a variety of lengths, widths and total areas with 

different classification thresholds and orientations to simulate the mapping of small and linear 

patches. In the simulation, the feature was represented by a high spatial resolution raster 

and was resampled to a low resolution raster representing the remote sensing raster grid in 

order to simulate its sub-pixel patch location. The remote sensing raster grid was 

represented by low resolution pixels whereby each pixel was made up of 1012 high resolution 

pixels (sub-grid) (Figure 3.4).   

 

      

Figure 3.4 Simplified example of the simulation model. The remote sensing data is 

represented by a low spatial resolution grid (red lines) and the patch (solid green 

square) is represented by a high spatial resolution sub-grid (thin grey lines). For this 

example only 6 different positions of the patch are shown out of the 25 possible 

locations. The real model has a much higher spatial resolution than this example with 

10,201 horizontal and vertical positions. Furthermore the patches are rotated at 5 

different orientations.  

 

Approximately 225 combinations of length to width ratios and areas were tested for 3 

classification thresholds. We considered length to width ratios from 1 (square) to 10 (linear 

strip) with a step of 0.25 and areas ranging from 0 to 6 pixels and a step of 1. Furthermore, 

additional points were simulated for specific graphs or equations presented in the results 

where values outside this range were required or extra points were required for certain 

sections of some graphs to improve their visualisation. For each combination of length, width 

and area the computer simulation repeatedly systematically shifted the grid in 1/101 pixel 

steps vertically and horizontally with respect to the features location (Figure 3.4). As well as 

changes in the vertical and horizontal position of the feature we simulated different 

orientations of the feature. For each feature, the grid was shifted over 101 vertical and 101 

horizontal positions thus testing a total of 10201 different grid positions per orientation.  
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In order to simulate different orientations the feature was rotated at 5 different angles from 0 

to 45 degrees, thereby capturing all possible orientations with respect to the grid that affect 

classification. The 10201 iterations of different grid positions were repeated for each 

orientation resulting in a total of 51005 iterations for each feature.  

 

The classification technique used to assign either patch (feature) or matrix (non-feature) was 

based on the proportion of area covered by a patch for each grid pixel. For the default 

classification (threshold of 0.5); if greater than 50% (i.e. the majority) of a pixel was covered 

by a patch the pixel would be classified as patch (e.g. Figure 3.2b-e).  As well as the default 

majority rule, we tested 2 other binary classification thresholds to simulate the effect of 

detectability or local contrast (e.g. Figure 3.2f) by weighting the patch and surrounding 

matrix‘s contribution to the value of the pixel differently: 1) the patch must occupy more than 

75% of the grid area in order to be classified as patch and 2) the patch needs to occupy 

more than 25% of the pixel area to be classified as patch. 

 

For each grid position, accuracy and extraction probability was calculated by comparing the 

difference between the area classified as patch versus matrix in the grid and the sub grid 

(Figure 3.5). Differences in the area of each class were calculated using the high spatial 

resolution sub-grid. Accuracy was measured with errors of commission and omission as well 

as mapping accuracy which was calculated using equation 3.1. The accuracy measures 

were calculated for each position and then averaged over all the 51005 positions for each 

feature. Probability of extraction was calculated based on the proportion of 51005 position 

iterations in which any pixel was classified as patch, indicating that at least some part of the 

feature was detected. For a feature to be considered extracted only, a single grid pixel 

needed to be classified as patch. Thus a feature may be extracted but have a low accuracy.  

 

 

Figure 3.5 Example of error calculations for a single iteration out of 51005 performed 

for each feature. 
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Patch Mapping Accuracy = Area of patchcorrect / (Area of patchcorrect + Area of patchomission + Area of 

patchcommission). 

Equation 3.1 Patch Mapping Accuracy 

 

The final model tested: 225 combinations of length to width ratios x 3 classification 

thresholds x 5 orientations x 10201 grid positions.  

 

Using the simulation model described above this study investigated seven aspects of 

mapping small and linear patches, focusing on the effects of patch area, elongation and 

position on classification accuracy and extraction probability: 

1. Distribution of error and accuracy for all horizontal and vertical position combinations 

2. Effect of area on accuracy and extraction probability 

3. Effect of elongation on accuracy and extraction probability 

4. Effect of elongation and area on errors of omission and commission. 

5. Effect of feature orientation on accuracy and extraction probability 

6. Effect of position on accuracy and extraction probability 

7. Overview of effect of length and width ratio, area and classification threshold on 

accuracy and extraction probability 

 

3.3 Results 

3.3.1 Distribution of error and accuracy for all horizontal and vertical position 

combination 

The response of patches to grid position is described using a histogram measuring error and 

accuracy for all x,y position combination (Figure 3.6). It was found that patches have a low 

probability of extraction when the feature is of a similar size to the grid, or is smaller than the 

grid. The histogram of error then contains many observations in the 0 and 100% categories 

for errors of commission and producer accuracy (Figure 3.6a). This occurred when the patch 

was not extracted at all and omission errors were 100%. When the patches were 1 pixel 

length × 1 pixel width (From here on patch length and widths are written with units omitted) or 

smaller, they were only represented by 1 or 0 pixels. However, larger features such as 2 × 1 

patches (Figure 3.6b) and 2 × 2 patches (Figure 3.6d) were represented by 1 or more pixels. 

Each peak and trough in the histogram corresponds to a pixel that was classified as patch. 

For example when the patch was 2 × 1 there were two peaks in accuracy and omission 

associated with the fact that sometimes the patch was either represented by 1 or 2 pixels 

(Figure 3.6b).  
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a) 1 x 1 pixel width, threshold: patch=0.5, 

Matrix= 0.5, Pr of Extraction = 0.64 

 

b) 2 x 1 pixel width, threshold: patch=0.5, 

Matrix= 0.5, Pr of Extraction = 1 

 

c) 2 x 0.5 pixel width, threshold: patch=0.5, 

Matrix= 0.5, Pr of Extraction = 0.45 

 

d) 2 x 2 pixel width, threshold: patch= 0.5, 

Matrix= 0.5, Pr of Extraction = 1 

 

e) 2 x 2 pixel width, threshold: patch=0.75, 

Matrix= 0.25, Pr of Extraction =  1 

 

f) 2 x 2 pixel width, threshold: patch= 0.25, 

Matrix= 0.75, Pr of Extraction = 1 

Figure 3.6 Histograms of commission, omission and accuracy for 4 different patch 

sizes and 3 different classification thresholds. Each histogram contains 51,005 grid 

positions observations, grouped into bin widths of 10 (e.g. x-axis scale is: 0–10, 10–20, 

20–30 etc). a–c) Patch sizes of 1 × 1, 2 × 1 and 2 × 0.5 pixel lengths with patch and 

matrix weighted equally d–f) Patches of 2 × 2 with 3 different classification thresholds. 

 

When the patch was 2 × 0.5 it was extracted 45% of the time, however, only as a single 

pixel, with approximately 50% of the patch classified correctly and a similar amount of 

commission errors (figure 3.6c). Once a patch was above a threshold size the probability of 

extraction was 1 and errors decrease (Figure 3.6d). If the classification threshold was 

weighted in favour of extracting patches (Figure 3.6e) there were greater errors of 

commission than omission as patch area was overestimated. Finally, if the classification 

threshold was weighted in favour of extracting the matrix there were greater errors of 

omission than commission (Figure 3.6f).  
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3.3.2 Effect of pixel area 

Larger sized patches were always extracted regardless of classification threshold as the 

interior area to edge becomes greater. Once the area of a square was greater than 2 pixels 

the probability of extraction was 100% for 0.5 classification threshold (Figure 3.7a). For a 

classification threshold of 0.75 and 0.25 the area of a square feature needed to be at least 1 

and 3 pixels respectively for a 100% probability of extraction.  

 

 
a)  

 
b)  

Patch classification 

Threshold 

 0.75  

 0.5  

 0.25 

 

Figure 3.7 (a) Probability of extracting square patches vs. area for 3 classification 

thresholds. (b) Mean mapping accuracy of square patches vs. area for 3 classification 

thresholds.  

 

As would be expected, with increasing patch size, the mean accuracy also increased (Figure 

3.7b). For patches with an area between 0 and 2 pixels and a classification threshold of 0.5 

the initial increase in accuracy was steep, up to around 2 pixels area. There was greater 

error for classification thresholds of 0.25, as errors of omission were always high due to the 

dominance of the surrounding matrix. Whilst for classification accuracy of 0.75, initially 

accuracies were higher than using the 0.5 classification threshold, however, after feature size 

reached 4 pixels there were greater inaccuracies. This was the result of errors of commission 

increasing overall inaccuracies due to the classification threshold weighted in favour of the 

patch. Thus for larger areas a classification threshold of 0.5 based on the majority rule had 

the highest accuracy. However, the greater the length to width ratio, the larger the feature 

area had to be in order for a classification threshold of 0.5 to result in a more accurate 

classification than for thresholds of 0.75. This was also related to the ratio of interior pixels to 

edge pixels. 

 

The following equations were fitted using non-linear regression to two subsets of all the 

simulated data: (i) square patches with a classification threshold of 0.5 (corresponding to the 

curves in figure 3.7) and (ii) patches with a length to width ratio of 4 and a classification 

threshold of 0.5 (corresponding to the curve in figure 3.9d) (Equation 3.2). The equations 
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were fitted in order to interpolate between the points calculated by the computer simulation. 

They approximate the relationship between probability of extraction and area; and mean 

accuracy and area, for both data subsets. For these subsets the simulation was run up to a 

maximum area of 280 pixels, thus the equation is not valid outside this range. Initially, we 

attempted to fit simple functions (e.g. exponential) but found them inadequate. We then fitted 

multiple more complex functions for both data subsets and chose which function best fit the 

points based on their curves R2
 values and a qualitative judgment of how well they 

interpolated between the points. We found no single function could be used for both 

datasets. 

 

 

Equation 3.2 Curves fitted to the simulated data for square patches and linear patches 

with a length to width ratio of 4 for a classification threshold of 0.5. Valid for ranges of 

χ from 0 to 280, where χ is area in pixels. 

 

3.3.3 Effect of elongation 

The effect of increasing elongation was a decrease in the probability of extraction and mean 

accuracy (Figure 3.8). A patch of a single pixel in area has a probability of extraction of 

around 64% when it is a square, however, once the length to width ratio is greater than 6 it 

will no longer be extracted for 0.5 classification threshold. If the classification threshold 

favours patches the effect of elongation was less dominant, though it resulted in greater 

errors of commission.  
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a)  

 
b)  

Patch classification 

Threshold 

 0.75  

 0.5  

 0.25 

 

Figure 3.8 (a) Probability of extracting patches of a single pixel in area vs. length width 

ratios. (b) Mean Patch accuracy of patches of a single pixel in area vs. length width 

ratios.  

 

3.3.4 Effect of elongation and area on errors of omission and commission 

Smaller and more elongated patches had larger errors of omission than commission (Figure 

3.9 and Figure 3.10). However, as they became larger and more compact these errors 

balanced out, as misidentification occurs around the edge of patches. The interior pixels of a 

patch are always classified correctly as they are in the majority regardless of their position. 

For square features errors of commission were at their highest around 1.25 pixels and 

decreased with increasing area (Figure 3.9b). Errors of omission also decreased with 

increasing area as accuracy increased (figure 3.9c). A similar pattern could be seen with 

linear features (Figure 3.9d,e,f), except, the increase in accuracy with area was less steep. 
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a)  Square. Threshold =0.5 

 

b)  Square. Threshold =0.5 

 

c) Square. Threshold =0.5 

 

 

d) L/W ratio of 4, Threshold =0.5 

 

 

e) L/W ratio of 4, Threshold =0.5 

 

 

f) L/W ratio of 4, Threshold =0.5 

Figure 3.9 a) Mean mapping accuracy vs. area of square patches. b) Mean errors of 

Commission vs. area of square patches. c) Mean errors of omission vs. area of square 

patches. d) Mean mapping accuracy vs. linear patches with a length to width ratio of 4. 

e) Mean errors of commission vs. area of linear patches with a length to width ratio of 

4. f) Mean errors of omission vs. area of linear patches with a length to width ratio of 4. 

The dotted lines represent +/− 1 standard deviation.  

 

 
a)  

 
b)  

 0° 

 11.25° 

 22.5° 

 33.75° 

 45° 

 

 

Figure 3.10 Mean patch accuracy vs. patch orientation. (a) Area of patches with a 

length to width ratio of 3 vs. mean accuracy. (b) Length to width ratios for a patch of 

5 pixels in area vs. mean accuracy of square patches.  
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3.3.5 Effect of feature orientation 

Orientation did not have a large effect on classification in comparison to the other effects. 

The probability of extraction was almost exactly the same regardless of the orientation. 

Changing orientation resulted in small differences in mean accuracy for patches of certain 

sizes (Figure 3.10a,b). This difference in mean accuracy was greater for more elongated 

patches (Figure 3.10b). For example there was a 1.5% difference in mean accuracy between 

patches orientated at 0° to 45° with a length to width ratio of 1.5 and area 5 pixels (Figure 

3.10b). Mean accuracy was lower when patches had a similar orientation as the grid. 

Increasing elongation resulted in greater differences in mean accuracy between orientations. 

For patches of 5 pixels, with a length to width ratio of 6.5, the difference in mean accuracy 

was 2%, compared with 1% for square patches. However, small differences in accuracy of 

less than 1% were difficult to detect using the simulation due to resampling errors occurring 

when features were rotated.  

 

3.3.6  Effect of position 

The effect of the location of the grid can be described by the standard deviation of error 

(Figure 3.9 and Figure 3.11). A high standard deviation indicates that the position of the grid 

has a large effect on the outcome of classification making it difficult to predict the accuracy of 

classification for those features. Figure 3.9a,b,c shows that for square patches as the area 

approached 1 pixel the standard deviation of accuracy and error increased whereby it 

reached a maximum at 1 pixel area. The standard deviation of error and accuracy decreased 

after 1 pixel area as the feature became larger. As the area became smaller and the shape 

more elongated the standard deviation of accuracy and error was closer to 0, which was the 

result of features being rarely extracted (Figure 3.9 and Figure 3.11). Whilst, larger and more 

compact features had lower standard deviations indicating less of an effect of position on 

classification. 
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a) 

 

b) 

 

c) 

Figure 3.11 a) Mean mapping accuracy vs. width to length ratios for a feature of 1 pixel 

in area. b) Errors of commission vs. width to length ratios for a feature of 1 pixel in 

area. c) Errors of omission of various sized of various length to width ratios for a 

feature of 1 pixel in area. The dotted lines represent +/− 1 standard deviation.  

 

3.3.7 Overview of effect of length and width ratio, area and classification threshold on 

accuracy and extraction probability  

Figure 3.12 shows the relationship between elongation and area and its effects on accuracy 

and probability of extraction for three different classification thresholds for all of the simulated 

data. Previously shown bi-plots (Figure 3.7-Figure 3.11) showed interesting subsets of the 

data in areas of rapid change in this relationship. Figure 3.12 demonstrates that depending 

on the size and elongation of a patch and the classification threshold, accuracy and 

probability of extraction will vary greatly. For example, for a classification threshold 0.5, a 

square with 2 pixel area has a mean accuracy of 50%. However, a rectangle with a width to 

length ratio of 4 has an area of 3.3 for the same mean accuracy. While a rectangle with a 

length to width ratio of 8 has an area of 5.4, also for the same accuracy. The relationship 

between area, elongation and classification will change with the classification threshold used. 

This change is more than a shift along the x and y axis but a change in the shape of the 

graphs in all dimensions for the 3 different classification thresholds shown in figure 3.12. 

Thus all factors, classification threshold, elongation and area can greatly affect accuracy and 

probability of extraction. 



59 

 

 

a) Classification threshold of 0.5 

 

 

 

b) Classification threshold of 0.25 

 

 

 

 

 

c) Classification threshold of 0.75 

 

 

 

Figure 3.12 Probability of extraction versus length to width ratio and area for 

classification and mean accuracy versus length width ratio and area. For classification 

thresholds: 0.5 (a), 0.25 (b) and 0.75 (c).
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3.4 Discussion 

This study described statistically what many ecologists, mapping professionals and remote 

sensing users intuitively understand; that linear and small features are more difficult to 

accurately classify than compact and large features. It expanded on studies by Congalton 

(1997) and Wehde (1982) which investigated some components of this phenomenon, using 

simple datasets with limited numbers of shapes and sizes. Our study has made estimates 

using area and dimensions and described their corresponding probability of extraction, mean 

classification accuracy and standard deviation based on sub-pixel patch location. Whist the 

majority of previous studies have used a single figure such as area in pixels to describe the 

minimum size of feature that could be extracted. We demonstrated that estimations of 

minimum feature size need to include feature dimensions as well as the area. Width or area 

alone is not enough. For example, take two features extracted with the same 75% mean 

classification accuracy, (1) a rectangular feature with a length to width ratio of 4 and (2) a 

square. The width (shortest side) would be 1.8 and 3.3 and their areas 12.3 and 11.0 pixels 

respectively (Table 3.1), for a classification threshold of 0.5. Estimates by previous studies of 

the smallest discernable feature vary from the equivalent of > 1 to 4 pixels (Cracknell 1998; 

Hengl 2006). The work of these authors is in agreement with our results in predicting 

possible feature extraction. However, we found that in order to extract patches consistently 

and accurately features must be many times larger than spatial resolution. Our results 

suggest that extracting features with pixel areas based on estimates made by these studies 

would have a low accuracy and high variability in accuracy. 
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Table 3.1 Minimum patch sizes required to achieve an extraction probability and 

accuracy of 75% for square and linear features (length to width ratio of 4) for various 

sensors estimated by the simulation model. 

    Square 

with Pr 

Extraction 

of 75% 

Square 

with mean 

Accuracy 

of 75%  

Linear Feature 

(LW ratio=4) with 

Pr Extraction of 

75% 

Linear Feature 

(LW ratio=4) with 

mean Accuracy of 

75% 

Area (Pixels)    1.1 11.0 1.2 12.3 

Dimensions 

(Pixels)    

1.0 x 1.0 3.3 x 3.3 .5 x 2.2 1.8 x 7.0 

Sensor Sensor 

Res. (m) 

Width (m) Width (m) Width 

(m) 

Lengt

h (m) 

Width (m) Leng

th 

(m) 

Pixels - 1.0 3.3 0.5 2.2 1.8 7.0 

Aerial 

camera  

0.2 0.2 0.6 0.1 0.4 0.4 1.4 (Flying height 

dependent – 

indicative only) 

Quickbird-2 2.4 2.5 8.0 1.3 5.3 4.2 16.8 

Ikonos-2 4.0 4.2 13.3 2.2 8.8 7.0 28.1 

SPOT XS 10.0 10.5 33.2 5.5 21.9 17.5 70.1 

LANDSAT 7 

ETM+ 
30.0 31.5 99.5 16.4 65.7 52.6 

210.

4 

 

The effect of grid position, feature area and dimensions had a greater effect on classification 

when the feature‘s scale approached the grid scale either through elongation of the feature 

or by having a similar area. Extraction probability and mean accuracy decreased and the 

standard deviation of accuracy increased when feature resolution approached grid 

resolution. A classification threshold weighted in favour of the patch (0.75) negatively 

affected classification accuracy when feature area became large. However, when grid and 

feature resolution were similar, mean accuracies were higher for this classification threshold 

than when it was based on the majority rule (0.5). The position effect was also more 

pronounced when feature resolution and grid resolution were similar, resulting in greater 

variability in accuracy. This indicates that in order to capture linear or small features 

consistently with any degree of accuracy the grid should be many times finer than the size of 

the feature. For example, a square patch with an 11 pixel area had a mean accuracy of only 

75% (+/− 2.4 STDV). The findings of this study validate Strahler et al. (1986)‘s assertion that 
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objects need to be several times smaller or larger than the spatial resolution in order to 

regard the scene model as either H or L resolution. 

 

We found that lower spatial resolution resulted in reduced classification accuracy. However, 

research using semi-variograms in order to find the optimum spatial resolution (e.g. Atkinson 

and Curran 1997; Hyppanen 1996; Marceau et al. 1994) show that degrading the spatial 

resolution may result in higher classification accuracy (Townshend and Justice 1988). These 

studies however, ignored the effects of degrading spatial resolution on the extraction of small 

features. As images are degraded the level of fragmentation will decrease with smaller 

patches disappearing first (Lechner et al. 2008). The decreased classification accuracy at 

fine scales can be the result of increases of within class spectral variability due to 

oversampling (Aplin 2006). For example, if the feature of interest is a forest stand, as the 

spatial resolution increases the gaps between individual trees containing understory 

elements increase and thus may be misidentified. Although Cushnie (1987) found that this 

was dependent on the land cover class, as some classes can be homogenous and internally 

consistent and thus there would be no decrease in overall classification accuracy at higher 

resolutions. Therefore the findings of this study will be more relevant to the extraction of 

features that are homogenous such as tree stands with dense canopies, hedgerows, sandy 

beaches and roads. 

 

The variability in classification resulting from the effect of grid location is an important 

consideration, as within the same map, features of the same spatial and spectral 

characteristics may be detected in one instance and not in another. If map users consider 

these small features important such as for the mapping of connectivity and wildlife corridors, 

an understanding of the random nature of the probability of a feature being extracted and the 

variability in accuracy within a scene needs to be understood. For example, land managers 

may use a thematic map to determine the probability of wildlife migrating between three large 

reserves within an urban landscape using roadside vegetation as corridors. The probability of 

migration between reserves may be determined by the presence of linear vegetation 

connecting the reserves. However, if linear vegetation is of a similar width to grid width it may 

be distinguished in some cases and not in others, even though it may have exactly the same 

dimensions. Thus the map may give the appearance that a wildlife corridor exists between 

two patches and doesn‘t exist between another two patches even though in reality it exists 

but was not extracted.  

 

This study can guide map users as to the appropriate spatial resolution needed for their 

research. Most users will have a general idea of the dimensions of the features that exist 
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within the landscape and therefore can then make assumptions as to the appropriate 

resolution required to extract the features in their study area. There is not a single solution for 

all users. For example, in some connectivity studies ensuring that a portion of a linear strip is 

extracted is good enough for their purposes. Other users may require that all linear strips be 

extracted with a 95% accuracy and thus would require a much higher spatial resolution. 

Table 3.1 describes some practical applications of the simulation modelling in order to 

estimate the required resolution for various aerial and satellite sensors to extract and 

accurately classify square and linear features (length to width ratio of 4). Equation 3.2 can 

also provide rough estimates to predict accuracy and extraction probability for these features.  

As a general rule of thumb we would suggest that the spatial resolution of the grid should be 

many times higher than the scale of the feature in order to accurately extract these features 

e.g. Table 3.1 shows that in order to extract a square shaped feature with a mean accuracy 

of 75% (+/− 2.4 STDV) the feature needs to be 3.3 × 3.3. 

 

Map users can use the findings of this study to estimate the probability of a map identifying 

linear vegetation of interest correctly independently of the error matrix. Conventional maps 

use the classification error matrix (Congalton 1988) to express errors of commission and 

omission for each class. However the error matrix does not take into account the spatial 

distribution and variation in mapping errors (Steele et al. 1998). Localized or point specific 

error is not documented. Large scale studies often assume that errors of commission are 

balanced with errors of omission (Cunningham 2006). However this is not always the case, 

as smaller patches had larger errors of omission than commission as they are often 

surrounded by more dominant classes. In cases where a feature is found at the intersection 

of several features it is likely to disappear as it will be in the minority amongst those 

intersecting pixels. Thus land cover classes found in linear or small patches will be under-

represented in the landscape. These patches have small areas in comparison with 

contiguous vegetation remnants, thus they could easily be misclassified without influencing 

the calculation of accuracy in an error matrix. This can result in an image that may appear 

highly erroneous with respect to pattern, but has a good classification based on area 

classified correctly. 

 

The use of a simulation study has allowed for the isolation of a grid location, feature size and 

elongation phenomena in order to test the scope of their effect on classification. The results 

of the study represent the best case scenario for remote sensing where the accuracy of 

classification is only affected by the shortcoming of the raster grid‘s geometric properties. 

However, when using real images other issues can further reduce classification accuracy. 

There are many processes in the creation of a land cover dataset; from selecting the remote 
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sensing device to post-processing, and accuracy assessment (Lu and Weng 2007) which all 

potentially affect classification. This is especially true for processing and sensor 

characteristics that resample and/or result in a smoothed image such as the application of 

filters, resampling for geo-rectification and the effect of the sensors point spread function. 

Lechner et al. (2008) demonstrated that smoothing an image will result in fine scaled 

features such as small and linear patches being lost. 

 

In order to overcome the limitations of the traditional hard classification scheme many other 

land cover classification techniques have been developed such as fuzzy classification or soft 

classification, super resolution imagery and linear feature extraction techniques. Fuzzy 

classification models of vegetation quantify the degree of membership to each class for each 

pixel (Foody 1996). This method allows for the identification of objects that may be smaller 

than the pixel size, however there exist many difficulties in accurately identifying these 

objects, assessing their accuracy and using them within models (Lu and Weng 2007; Tatem 

et al. 2002). An alternative method is to increase the spatial resolution of imagery that is too 

low to meet requirements. There is no generally accepted method for this (Aplin 2006), and 

different techniques have produced varying results. Thornton et al.‘s (2006) super-resolution 

mapping method was found to work well for objects approximately as wide as a pixel, 

however, objects of half a pixel width had low classification accuracy. Whilst Tatem‘s (2002) 

super-resolution technique recreated sub-pixel spatial pattern class proportions but did not 

map the true location of sub-pixel features. Other methods which focus on extracting linear 

features are predominately being used to extract roads to update GIS databases from 

imagery (Quackenbush 2004) rather than linear vegetation where correctly classifying their 

size and shape is equally as important. Additionally, linear feature extraction techniques 

ignore other non-linear features thus having limited application. 

 

Super-resolution imagery, fuzzy classification, linear feature extraction and ecological models 

developed to cope with new spatial data models are likely to overcome some of the negative 

effects of the phenomena discussed in this paper in the future. However, currently the 

majority of classification approaches used are based on the hard classification paradigm (Lu 

and Weng 2007). Whilst methods such as super-resolution mapping and the use of soft 

classification can be used to deal with the grid position and patch position effects, data users 

may not always be data producers thus an understanding of the limitation of their data will 

always be a requirement. Furthermore, soft classification methods are not always 

appropriate data input for some applications, such as in landscape ecology where models 

have been built around the traditional hard classification system such as meta-population 

models. The traditional hard classification approach is still the most popular due to its 
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simplicity even with all its limitations. Some of the most important continent wide datasets are 

hard classifications such as the European LU/LC dataset Corine, and USA‘s NUCL.  

 

3.5 Conclusion 

This study highlights several issues that exist in using the pixel model to describe geographic 

phenomena. It focuses on understanding misclassification resulting from patch size 

approaching the scale of the sensor‘s spatial resolution. We found that small and/or 

elongated patches have a reduced probability of extraction, a reduced mapping accuracy 

and an increased variability in accuracy due to the effects of grid position. To extract those 

patches accurately, the grid spatial resolution should be many times finer. For example, for 

square patches with a mean classification accuracy of 75%, the grid pixel area has to be 11 

times smaller than the patch size. This relationship between patch size and shape and 

classification was also affected by patch detectability. For similar grid resolution and patch 

size, mean accuracies were higher if the classification threshold was weighted in favour of 

detecting patches. Such weighting, however, negatively affected classification accuracy for 

large patch sizes. For those patches, a classification based on the majority rule (0.5) had the 

highest classification accuracy. 

 

Our research suggests that within the same scene, classification error for patches of a size 

similar to the grid resolution may differ, and in some cases not be extracted at all, because of 

the random location of the grid. Furthermore, error within a land cover class is likely to be 

disproportionately higher for small and linear patches. High classification errors in small and 

linear patches, however, may not influence the error reported by confusion matrices because 

of the proportionally small patch sizes. In landscape ecology, accurately characterising the 

spatial arrangement of landcover classes by means of the extraction and accurate 

classification of small and linear patches can be more important than estimating correctly the 

total area of a landcover class. Future research using real data and building on our findings 

may focus on developing error reporting methods to describe the uneven spatial distribution 

of errors across the scene and its impact on the characterization of landscape pattern.  
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Published as:  
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Wietske, editors. Quality Aspects in Spatial Data Mining (pp. 315-328): Chapman and 

Hall/CRC Press. 

Lechner, A. M., S. D. Jones, and S. A. Bekessy (2007) Development of a framework to 

assess the impact of Scale dependent factors on the classification of landcover maps. 

Proceedings of the 5th International symposium on Spatial Data Quality ISSDQ 2007, 

Modelling qualities in space. ITC, Enschede, Netherlands. 

 

4.1 Introduction 

4.1.1 Scale Dependent factors 

Scale dependent factors such as pixel size, study extent and the application of smoothing 

filters affect the classification of landcover. These factors are dependent on the remote 

sensing data, classification techniques and class description used. Landcover maps will vary 

in their extent, patchiness and accuracy of classified areas based on the relationships 

between these factors. Many studies have investigated these factors using empirical data 

and have come to conclusions based on unique case studies investigating one factor in 

isolation (Huang et al. 2006). This study holistically investigates the impact different scale 

dependent factors had on the classification of landcover maps to better understand their 

interactions and their relative importance. 

 

In many studies, data is collected at the most appropriate scale, however, for studies using 

remote sensing data, users are often limited to specific scales available. The most 

appropriate scale for a study is a function of the environment (its spatial arrangement), the 

kind of information that is to be derived, and the classification technique used (Woodcock 

and Strahler 1987).  Numerous combinations of these factors are possible and their effects 

are usually interrelated and scale dependent. 

 

At different spatial scales, landscape composition and configuration will change. Area and 

spatial pattern will change when spatial dependent factors such as grain and/or extents are 
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altered (Wiens 1989).  Unfortunately, knowledge of how these spatial patterns change is 

limited (Wu et al. 2002). 

 

The primary aim of this project is to investigate the relationship between scale dependent 

factors and landscape pattern, as measured by total area and landscape metrics in the 

context of vegetation extent mapping. The project is not aimed at solving the problem of 

uncertainty in spatial dependent factors, but rather is attempting to quantify its nature. While 

the development of an integrated model is not new to the field of remote sensing  (e.g. 

Huang et al. 2006; Ju et al. 2005), many previous studies have investigated scale dependent 

factors, and reached conclusions based on site specific evidence, without considering the 

interactions between these various factors (Huang et al. 2006). This paper aims to provide 

greater understanding of how they interact and to examine their relative importance. 

Interactions between scale dependent factors were investigated from the users‘ perspective 

through examining a number of landscape metrics. These metrics were chosen because they 

are simple and they summarise important patch characteristics. They have straightforward 

practical uses such as the measurement of total area and mean distance between patches 

rather than purely characterising fragmentation such as the fractal dimension index. 

 

This study is novel in that it uses real landscapes with a large study area and sample size. 

The majority of previous studies have either used simulated landscapes (e.g. Li et al. 2005) 

or real landscapes with small study areas and sample size (De Clercq et al. 2006; Wu et al. 

2002). 

 

4.1.2 Landcover maps 

This study utilizes the Tree25 presence / absence tree cover data set produced for the 

Department of Sustainability and Environment‘s Corporate Geospatial Data library (DSE 

2006) (Figure 4.1). This dataset is typical of woody / non-woody vegetation data layers used 

worldwide in land use planning and habitat mapping. 

 

While the uses of this dataset are varied, its initial purpose was to provide a comprehensive 

and consistent dataset for tree cover monitoring for the state of Victoria (Australia). 

Furthermore it is expected to provide an excellent source of data for applications that require 

the identification of remnant tree cover such as connectivity analysis and habitat modelling 

(DSE 2006). 
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Figure 4.1 Map of the study area and Tree25, tree presence / absence data set overlaid. 

 

4.1.3 Changing Scale Dependent factors 

Pixel size (or spatial resolution) and extent were manipulated and a smoothing filter was 

used to examine the differences in classification. All variables were manipulated to simulate 

a range of conditions and determine how patchiness and patch area changed accordingly. 

 

Pixel size is an important variable to investigate as using the default pixel size (i.e. sensor 

resolution) will result in a view of the world that relates to the sensor but may not necessarily 

reflect the needs of the question being asked (Fassnacht et al. 2006). Pixel size is one of the 

most important elements determining how other scaling factors will change. Pixel size 

controls the limit of the smallest feature which can be extracted from an image. For areas 

where vegetation is highly fragmented such as urban areas and where patches appear as 

small as median strips and backyards, Jensen and Cowen (1999) concluded that at least 0.5 

to 10m spatial resolution is required. Resolution was altered to simulate differing sensor 

resolutions by degrading the original classified image.  

 

The second factor investigated was the use of a smoothing filter.  Pixel based landscape 

classification can result in a salt and pepper effect because spatial autocorrelation is not 

incorporated in the classification technique (Ivits and Koch 2002). A common practice used in 

remote sensing is smoothing the image by aggregating pixels to reduce classification error 

caused by this effect. The use of a smoothing filter will often result in the removal of edge 

complexity as well as increasing the minimum mappable unit (MMU). The MMU tends to be 

larger than the pixel size so that spatial and/or content information may be lost (Fassnacht et 

al. 2006). Larger MMUs may result in patches of interest being falsely combined within 

adjacent patches (Fassnacht et al. 2006). For this study the smoothing algorithm used was a 
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majority filter. However, other filters can be used for the similar purposes such as mean or 

low pass filters.  

 

The final variable investigated was extent, which is the total physical area covered by the 

data source. As the extent increases so does the probability of sampling rare classes (Wiens 

1989). Furthermore, if grain size is fixed, fragmentation increases with increasing extent 

(Riitters et al. 2000). The effect of extent was investigated by comparing many landscape 

samples at different extents. 

 

Landscape metrics were used to analyse the effects on landcover classification of varying 

pixel sizes, applying smoothing filters and changing extents. These metrics were chosen 

because they describe simple patch characteristics that users of the Tree25 data layer in 

Victoria often utilise. Users of landcover maps need a practical understanding of how scale 

dependent factors affect classification. For example, in the region of Victoria it is important to 

measure correctly the area of native vegetation, as a permit is required to remove, destroy or 

modify native vegetation from a landholding greater than 0.4 hectares (Cripps et al. 1999). 

Understanding the landscape metric ‗mean patch area‘ is therefore critical when assessing 

the suitability of a particular landcover map for this purpose. Another example is to 

understand how the mean distance between patches changes as a result of altering scale 

dependent factors. An understanding of distance between patches is useful for population 

modellers to calculate the probability of dispersal between populations based on this 

distance (e.g. RAMAS (Akcakaya 2002)). 

 

4.1.4 Data 

The study area encompasses most of the state of Victoria which is approximately 227,416 

km². The study area is dominated by broad acre cropping and crop pasture, vegetation and 

dryland pasture (Figure 4.2). There are a variety of abiotic and biotic processes occurring at 

multiple scales, resulting in a complex landscape composition and configuration. 
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Figure 4.2 Map of land use in the study area. 

 

Comparison of the effects of scale between landscapes as well as within landscapes is 

important as the relationship between spatial patterns and scale may not be linear. Each 

landscape will vary with respect to the different processes operating at various scales (Wu et 

al. 2002). For example, disturbance can operate at many different scales from housing 

development to large fires to tree falls. Simulating landscapes at different scales that 

concurrently reflect reality is likely to be very difficult. 

 

Numerous studies have investigated scaling effects, but most of these studies have been 

confined to a few metrics or cover a narrow range of scales (Wu et al. 2002). Studies that 

have a large sample size tend to use simulated landscapes (e.g. Li et al. 2005). Real 

landscapes are used within this study, as opposed to computer generated simulated 

landscapes, such as the those created by software programmes, such as Rule (Gardner 

1999) and SimMap (Saura and Mart´ýnez-Millán 2000). While simulated landscapes are a 

useful tool in terms of overcoming the impracticalities of replicating landscape scales, 

commentators such as Li et al. (2005) have suggested that simulated landscape models are 

insufficient in their ability to capture in detail the characteristics of real landscapes. This study 

is unusual in that the large study area allows for multiple replications at the landscape level 

of real landscapes. 
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4.2 Method 

4.2.1 Data 

The original classified data were derived from SPOT panchromatic imagery with a 10 metre 

pixel size through a combination of automated segmentation and manual classification (DSE 

2006). No smoothing or filtering was applied at this layer creation stage. Tree cover is 

defined by the producers of the original dataset as woody vegetation over 2 metres with 

crown cover greater than 10 percent. 

 

4.2.2 Post - Processing 

The original data were post-processesed to test the effect of resolution, extents and applying 

a smoothing filter on classification. All processing was performed using ArcGIS 9.1. The 

original image was first degraded to different pixel sizes. A filter was applied to the degraded 

images to smooth the image. Finally, each combination of filtered and degraded images were 

clipped to different extents. 

 

4.2.3 Pixel Size 

Pixel size was changed by degrading the original image from 10 to 100 metres at 10 metre 

increments. In this paper a decrease in resolution is analogous to an increase in pixel size 

and vice versa. 

 

4.2.4 Smoothing filter 

A majority filter was used to smooth the image. The majority filter replaces cells in a raster 

based on the majority of their contiguous neighbouring cells. The majority filter process has 

two criteria to fulfil before a replacement occurs. The number of neighbouring cells of a 

similar value must be in a majority and these cells must be contiguous around the centre of 

the filter kernel (ESRI 2007a). A 3 x 3 kernel was used for this process. A majority filter is 

useful for post processing as it works with discrete data. 

 

4.2.5 Extents 

Subsets of this image were randomly clipped at 3000m, 10000m, and 20000m replicating 

landscapes of different extents (Figure 4.3). The extents represent the distance of a single 

side of a square. The image was clipped so that each replicate did not overlap. 20 samples 

were taken for each combination of smoothed image, extents and resolution with a total 

sample size of 600. 
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Figure 4.3 Clipped areas for western portion (50% of total area) of study area for 

extents 10000m and 20000m. 

 

The lower bounds of the sampling size was set at  3 kilometres as suggested by Forman and 

Godron (1986), although it is recognized that in principle landscape size is related to the 

scale at which an organism perceives their environment. The upper limit was based on the 

approximate area of a small catchment, at around 20 kilometres. Furthermore, as the extents 

were increased beyond this amount, computer processing time increased markedly. 

 

4.2.6 Calculating Landscape Metrics 

Area was calculated based on pixels classified as either tree present or absent as identified 

by ArcGIS. Landscape metrics were then calculated using the Fragstats package (McGarigal 

et al. 2002). Five landscape metrics were used: patch number, mean patch area, mean patch 

density, mean nearest neighbour distance, and mean perimeter to area ratio. 

 

4.3 Results 

The total classified area remained relatively constant when the image spatial resolution 

changed. However, large differences in the patchiness of the image occurred as a result of 

altering the resolution and applying a smoothing filter. As image spatial resolution decreased 

(i.e. pixel size increased) or the smoothing filter was applied the subtle levels of patchiness 

declined. Small patches either aggregated into larger patches or completely disappeared 

(Figure 4.4). While most measures of patchiness appeared to be non-random in relation to 

the spatial dependent factors, this was not uniformly the case.  For most metrics used it was 

impossible to test the effects of changing extent due to the low sample size and high 

variability. 
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Figure 4.4 Example of processing. The original (raw) image at 10 metre spatial 

resolution was degraded up to 100 metres. For each degraded image a majority filter 

was used to smooth the image. 

 

4.3.1 Mean number of Patches 

It was found that the greater the extent, the greater the mean number of patches, and the 

lower the spatial resolution, the lower the number of patches identified (Figure 4.5). 

Additionally, using the smoothing filter also resulted in a lower number of patches. 
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Figure 4.5 Comparison of the effect of changing extents (3000m,10000m, and 20000m), 

spatial resolution and applying a smoothing filter on the mean number of patches 

(Raw and Filter). For each combination of extent and application of smoothing filter 

n=20.  

 

4.3.2 Mean Patch Area 

The relationship between mean patch area and the spatially dependent factors was the 

opposite to mean number of patches. Decreasing the spatial resolution and the application of 

the smoothing filter resulted in an increase in mean patch area (Figure 4.5a). The mean 

number of patches changed as a result of changing the spatial resolution, however the total 
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area classified as tree or non-tree remained constant (Figure 4.6b). Due to the high standard 

error resulting from the small sample size (n = 20) a comparison between extents could not 

be conducted. The differences between the value of proportion classified as present or 

absent for different extents is the result of high variability in the landscape. However, the 

filtered data tended to have a significantly (P <0.05) lower proportion of cells classified as 

present for both 3000m and 20000m extents.  
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Figure 4.6 a) Spatial resolution versus mean patch area for 3 extent (3000m,10000m, 

and 20000m), and raw and smoothed data (Raw and Filter). b) Spatial resolution 

versus proportion of vegetation present  for 3 extent (3000m,10000m, and 20000m), 

and raw and smoothed data (Raw and Filter). For each combination of extent and 

application of smoothing filter n=20. 

 

The relationship between patch area and spatial resolution was not perfectly linear. The 

overall trend was to increase the mean patch area with decreasing spatial resolution and the 

application of the smoothing filter (Figure 4.6a). However, applying the majority filter at lower 

spatial resolutions resulted in a greater increase in the mean patch area than at higher 

spatial resolutions. For 3000m extents there was an increase in the mean patch area of 5% 

at 10m spatial resolution compared to 115% at 100m spatial resolution. For 20000m extents 

there was an increase in the mean patch area of 93% at 10m spatial resolution compared to 

505% at 100m spatial resolution. 

 

4.3.3 Mean Patch Density 

Patch density was calculated as the number of patches in the landscape divided by the total 

landscape area. As the spatial resolution decreased the mean patch density decreased for 

all extents (Figure 4.7). This decrease was quite dramatic. At 10m spatial resolution there 

was a decrease in the mean patch density from 38.4 to 1.6 at 100m resolution, for 3000m 

extents and from 33.7 to 1.4 for 20000m extents. The results of applying a filter had a similar 
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affect as decreasing resolution, i.e. decreasing mean patch density. However, applying the 

filter resulted in a greater decrease at lower spatial resolutions. For 3000m extents at 10m 

spatial resolution there was a decrease in the mean patch density of 53% compared to 71% 

at 100m spatial resolution. For 20000m extents at 10m spatial resolution there was a 

decrease in the mean patch density of 53% compared to 78% at 100m spatial resolution. 

Figure 4.8 shows the relationship between patch density and resolution for single samples 

compared to figure 4.7 which shows the mean of all the samples. Figure 4.8 also shows that 

as spatial resolution decreases patch density will predictably decrease. The relationship 

appears to fit an inverse exponential function. 
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Figure 4.7  Spatial resolution versus mean patch density (number of patches in the 

landscape, divided by total landscape area) for 3 extents (3000m,10000m, and 

20000m). For each extent n=20. a) Raw data. b) Data smoothed with a majority filter.  
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c) Raw Extent 20000
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d) Filter Extent 20000
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Figure 4.8 Mean patch density (number of patches in the landscape, divided by total 

landscape) for 10 samples at extents 3000m and 20000m for data before and after 

being smoothed with a majority filter.  

 

4.3.4 Isolation and proximity 

Isolation and proximity were calculated using the nearest neighbourhood value based on the 

shortest edge-to-edge distance for a patch of the same type. As spatial resolution increased 

the nearest neighbour distance generally increased (Figure 4.9). However, of all the 
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measures of patchiness this appeared to be the least predictable. The variability appeared to 

be inconsistent and unrelated to spatial resolution. Furthermore, there appears to be no 

relationship between spatial resolution and using a smoothing filter (Figure 4.10).  
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Figure 4.9 Spatial resolution versus mean euclidian nearest neighbour distance (m) for 

3 extents (3000m,10000m, and 20000m). For each extent n=20. Error bars indicate 

standard deviation. a) Raw data b) Data smoothed with a majority filter.  
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Figure 4.10 Spatial resolution versus percentage change in mean nearest neighbour 

distance between patches after applying the majority filter for 3 extents 

(3000m,10000m, and 20000m). For each extent n=20. 

 

4.3.5 Perimeter to Area Ratio 

Perimeter to area ratio describes the relationship between shape and area. As spatial 

resolution increased, the ratio decreased (Figure 4.11). The mean perimeter to area ratio and 

spatial resolution is the inverse of patch area. By default, the mean perimeter to area ratio is 

strongly related to patch area. For example, if shape is held constant and patch size 

increased there will be a decrease in the ratio. Applying the smoothing filter resulted in a 

predictable decrease in the mean perimeter to area ratio.  
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Figure 4.11 Spatial resolution versus mean perimeter to area ratio for 3 extents 

(3000m,10000m, and 20000m). For each extent n=20. Error bars indicate standard 

deviation. a) Raw data b) Data smoothed with a majority filter. 

 

4.4 Discussion 

This study clearly demonstrates that changes in scale dependent factors affect the 

patchiness and total area of landcover maps classified. While this study indicates that some 

relationships between factors were predictable, this was not always the case and not all 

metrics varied in the same way. 

 

The effects of applying the smoothing filter are of particular interest. Applying the smoothing 

filter caused a greater increase in the mean patch area and greater decrease in the mean 

patch density at lower spatial resolutions. Furthermore, after applying the smoothing filter, 

significantly less area was classified as ‗tree present‘ at all extents and spatial resolutions 

compared to when the filter was not applied.  

 

Due to the small sample size and large variability it was impractical to compare the effects of 

changing the study area extents. We would expect greater variability in smaller extents and 

that a larger extent will have a greater probability of containing all the variability within a 

landscape. Furthermore, if the sample size was increased the mean of these samples should 

reflect the mean of the variability in the landscape. However, increasing the sample size or 

the sample area could be problematic as the area of real landscapes is finite. 

 

4.5 Conclusion 

The measurement of landscape pattern from landcover maps has become a common 

practice in various disciplines such as landscape ecology. However, many people are 

unaware of the scale dependency of this phenomenon. This study demonstrates that the 

characterisation of landscape patterns by landcover maps is the product of the inter-
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relationship between a number of scale dependent factors, such as spatial resolution, the 

application of smoothing filters, and the use of different study areas. Specifically, this study 

demonstrates that landcover maps will vary in terms of the extent and patchiness of 

classified areas based on the inter-relationship between these scale dependent factors. For 

example, the effect of using a majority filter at low spatial resolutions will not be the same 

when used at high or low resolutions. Techniques that are used at one resolution are not 

necessarily transferable to different resolutions and may result in a very different 

classification. This has wide ranging consequences for users transferring techniques used on 

medium resolution imagery from sensors such as Landsat to high resolution imagery from 

sensors such as IKONOS and Quickbird. 

 

This study represents the first step in the development of a framework to quantify the 

magnitude of the effect of different spatial dependent factors on landcover classification. This 

study demonstrated that there is considerable interaction between scale dependent factors, 

indicating that investigations of spatial dependent factors need to be done simultaneously.  

 

Future research is needed to assess the effect of these scale dependent factors on accuracy 

as well as patchiness and area. Furthermore, as the landscape patterns found in the study 

area may be site specific it is difficult to generalise to other areas. Thus, there is a need to 

perform the same spatial analysis for a wide range or spatial resolutions using different 

smoothing filters and extents in multiple real landscapes settings to create a significant 

volume of data. This will allow for wide ranging generalisations to be made which will be the 

basis for the development of guidelines for map users. 
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Chapter 5 Investigating species-environment relationships at 

multiple scales: differentiating between ecological operational scale 

and the modifiable areal unit problem. 

 

Planned publication: 

Lechner, A. M., W.T. Langford, S. D. Jones, S. A. Bekessy and A. Gordon, (preparation) 

Investigating pattern processes relationships at multiple scales: differentiating between scale 

of operation and scale of observation. 

 

5.1 Introduction  

Spatial scale is a central focus of research in ecology and its sub-discipline landscape 

ecology. Both the investigation of the scale at which landscape pattern generating processes 

operate and the scale dependency of the response of ecological systems to landscape 

pattern has received considerable attention (Levin 1992; Turner 1989). An understanding of 

the relationship between landscape pattern and ecological processes is central to research in 

landscape ecology with the aim of addressing key conservation issues such as the effect of 

habitat fragmentation on species diversity, abundance and persistence (Lindenmayer and 

Fischer 2007; Suter et al. 2007). 

 

The identification of pattern-process relationships is confounded by interactions which 

change with scale, often in complex non-linear ways (Li and Wu 2004; Wiens 2002). 

Furthermore, these pattern-process relationships are difficult to identify because observed 

spatial patterns change with the scale at which an environmental property is sampled 

(Gustafson 1998). Thus, analysing the same phenomenon at different scales, such as when 

using remote sensing data from different satellite sensors, can lead to different results 

(Wiens 2002).  

 

According to hierarchy theory, ecological systems are composed of relatively isolated, 

distinct scales operating simultaneously (O'Neill et al. 1989). Relationships found at one 

scale are not necessarily observable at another scale so every phenomenon needs to be 

measured at the appropriate scale (Turner et al. 2001). The scale at which ecological 

phenomena interact with or perceive the environment is known as the operation scale 

(Ecological phenomena includes processes such as pollination) (Dungan et al. 2002; Wu and 

Li 2006a). It is not always straightforward to determine the operation scale as often little is 

known about this relationship (Holland et al. 2004; Mayer and Cameron 2003). In some 
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cases ecological phenomena operate at multiple scales and thus need to be observed and 

analysed at many scales (Levin 1992; Wiens 1989; Wu et al. 2006). The relationship 

between an ecological phenomenon and its environment can sometimes be completely 

overlooked if the incorrect scale is used (Saab 1997). For example, the effects of broad 

scaled environmental processes such as atmospheric flows or climatic processes are only 

observable at large scales while processes such as edge effects can only be observed at 

small scales (Bohning-Gaese 1997; Wiens 1989). 

 

In order to determine the scale at which species-environment relationships operate, 

environmental measurements such as those describing landscape heterogeneity are 

measured at multiple scales and related statistically to ecological measurements. A common 

sampling design used to derive species-environment relationships is to sample ecological 

attributes (response variables) such as species diversity or population abundance at random 

points across a landscape and compare these to environmental measurements (predictor 

variables) calculated for the surrounding area within a circular buffer (e.g. Coreau and Martin 

2007; Cushman and McGarigal 2004; Davis et al. 2007; Holland et al. 2004; Oneal and 

Rotenberry 2009; Pearman 2002; Suorsa et al. 2005). In order to perform this type of 

analysis at multiple scales the strength of the relationship is tested at various buffer sizes 

(henceforth this type of multi-scale sampling design is called the multi-scale buffer area 

sampling) (figure 5.1). Using this method the operation scale is then inferred as the buffer 

size at which the relationship between the ecological attribute and the environment 

measurement is the strongest (e.g. Coreau and Martin 2007; Holland et al. 2004; Pearman 

2002; Suorsa et al. 2005). 
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Figure 5.1 Multi-scale buffer area sampling design - Common sampling design for 

multi-scale studies in order to identify the operation scale. Ecological attributes such 

as species abundance or diversity are measured at point locations and environmental 

variables such as vegetation cover are measured within a circular buffer zone 

surrounding the point sample. Species-environment relationships are calculated at 

multiple buffer sizes through relating environmental variables to ecological attributes, 

commonly through some form of regression analysis. 

 

In addition to being used to identify the operation scale, multi-scale analysis is also used to 

test the sensitivity of a statistical analysis to scale. In this case the statistical differences in 

correlation coefficients infers the robustness of the analysis to scale and indicate the 

presence of the modifiable areal unit problem (MAUP) (Openshaw 1984). The term MAUP is 

used to describe analyses affected by the arbitrary and modifiable size and shape of spatial 

units (Openshaw 1984). The MAUP can affect the results of analyses and render them 

meaningless (Jelinski and Wu 1996; Nelson 2001; Wu et al. 1997). In some cases, analyses 

using spatial units of different sizes and shapes can obtain nearly any correlation value 

(Fotheringham and Wong 1991).  

 

Within ecology the MAUP is a particular case where the observation unit used to measure 

landscapes is commonly the square pixel of the remote sensing data. Ecological studies 

testing for the MAUP may use similar multi-scale experimental designs as studies which 

have the aim of identifying the operation scale.  There is no difference in experimental design 

for studies with these two distinct aims, even though inferences made from the results of 

these studies differ. For example, differences in correlation coefficients found in studies 
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testing for the MAUP are used to infer that a statistical analysis is not robust to scale. In 

contrast, studies searching for the operation scale (or the correct scale to measure a 

phenomenon) infer that differences in correlation coefficients are related to the response of 

an ecological phenomenon to particular scales. 

 

5.1.1 Aim 

The aim of this study was to test whether multi-scale analysis methods can be reliably used 

to identify the operation scale and if the effect of the MAUP would confound the results of 

these analyses. This issue is investigated using a simulated ecological model based on a 

multi-scale buffer area sampling technique with a known operation scale. Using a simulation 

model, the species response to the environment can be controlled and tested and the impact 

of the choice of remote sensing spatial resolution on the outcome of multi-scale ecological 

analyses can be quantified. 

 

5.1.2 Background to the problem 

A common aim for investigating species-environment relationships is to quantify the 

response of a species to the structural characteristics of their habitat and thus understand 

the implications of habitat loss and fragmentation. Habitat loss and fragmentation are two of 

the major systematic drivers of the decline and extinction of species worldwide (Brook et al. 

2008; Fischer and Lindenmayer 2007). Fragmentation affects ecological processes such as 

the distribution and abundance of organisms, population persistence, species coexistence 

and species diversity (Griffiths et al. 2000; Levin 1992; Saunders et al. 1991; Suter et al. 

2007; Turner et al. 1989). Multi-scale studies are often used to assess the scale at which 

fragmentation impacts on these ecological processes. 

 

At different scales the relative importance of environmental variables (i.e. habitat) changes 

as the influence of the amount and configuration of these changes. The underlying ecological 

processes that create scale patterns are inferred by ecologists through the detection of 

different responses of these processes to environmental variables analysed at different 

scales (Krawchuk and Taylor 2003). The movement range of different organisms for 

dispersal and foraging is thought to be a key ecological process responsible for the 

generation of scale patterns (Addicott et al. 1987; Krawchuk and Taylor 2003; Mackey and 

Lindenmayer 2001; Wheatley and Johnson 2009). Spatial patterns of movement are 

associated with an animal‘s food, shelter and reproductive requirements as well as 

minimising the effect of competition and predation (Mackey and Lindenmayer 2001). For 

example, Krawchuk and Taylor (2003) found that at scales similar to the movement range of 

individuals, patch size had the strongest relationship with population density, whereas at 
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larger scales, patch isolation had the strongest relationship. Another ecological factor 

considered important in determining scale patterns is the relationship between home range 

size and the proportion of habitat available at different scales (Pearman 2002; Soderstrom 

and Part 2000). For example, Suorsa (2005) found that the relationship between forest cover 

and probability of occupancy for the Eurasian tree creeper was the strongest at scales 

associated with territory size.  

 

There are many forms of multi-scale experimental designs used in ecology that investigate 

different elements of scale using a variety of spatial units. Multi-scale sampling spatial units 

range from natural hierarchies of ecologically scaled units such as populations and 

subpopulations (e.g. Krawchuk and Taylor 2003; Mackey and Lindenmayer 2001) to studies 

that vary only the remote sensing pixel size (e.g. Saura 2004; Wu et al. 1997). In this study 

we consider scale to be made up of three components: the operation scale, observation 

scale and scale of the analysis (Dungan et al. 2002) (see box 5.1 for definition of key terms 

used throughout this chapter).  

 

The first component of scale, the operation scale is an emergent property of an organism‘s 

relationship with its environment. The operation scale is measured indirectly through the 

observation of scale and directly by changing the size and shape of the units in the 

experimental design. In ecological studies the spatial units used to sample both the 

ecological attributes and environmental data can change with scale.  

 

The scale of the analysis (or in some cases modelling scale) refers to the units that are used 

in analyses (Dungan et al. 2002; Wu and Li 2006a). In our study it refers to the buffer size of 

the area surrounding a point. It is often based on some aspect of a species ecology e.g. 

home range size. For studies using the multi-scale buffer area sampling design, buffer sizes 

typically range from 20m-2000m (e.g. Holland et al. 2004; Pearman 2002; Suorsa et al. 

2005).  

 

The observation scale describes the size, shape, extent and distance between observational 

units used to sample a phenomenon (Dungan et al. 2002; Wu and Li 2006a). The 

observation scale is affected by a number of scale dependent factors ranging from spatial 

resolution (Wu et al. 1997) to thematic resolution (Buyantuyev and Wu 2007). Commonly, the 

observation scale for studies using a multi-scale buffer area sampling design vary from >1m 

pixel size for aerial photography (e.g. Wheatley et al. 2005) to ~30 to 60m for Landsat TM 

(e.g. Pearman 2002). 
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The effect of observation scale on ecological models, specifically spatial resolution, was the 

focus of this study. Spatial resolution is the primary factor influencing the classification of 

remote sensing landcover data (Tatem et al. 2002; Woodcock & Strahler 1987). It limits the 

smallest identifiable area in an image (Tatem et al. 2002) by affecting the size and the 

information content of the sampling units. In raw unprocessed raster data, spatial resolution 

is often considered to be equal to pixel size (Atkinson 2004). Spatial resolution can be 

subdivided into two components: 1) the pixel size and 2) the area on the ground that 

contributes to the value of a pixel. Ideally the value of a pixel would correspond to the area 

on the ground which it covered. However, the information content of a pixel is not only 

determined by landcover corresponding to its location, it is also affected by landcover found 

in neighbouring pixels as determined by the point spread function of the sensor (Cracknell 

1998; Fisher 1997) and the methods used to process data. Landcover found in the centre of 

a pixel, has a proportionally greater contribution to its value than landcover found around the 

edge of a pixel.  

 

Pre and post-processing of a remote sensing image using smoothing filters or resampling 

increases the influence of the values of the neighbouring pixels affecting spatial resolution. 

Common smoothing filters include the low pass and majority filters. Smoothing filters are 

commonly used in remote sensing to increase global classification accuracy by decreasing 

the salt and pepper effect caused by per pixel based landscape classification schemes or to 

remove noise caused by sensor error in raw remote sensing data (Ivits and Koch 2002; 

Zukowskyj et al. 2001). Furthermore, images are smoothed as a result  of the practice of 

resampling, conducted routinely for geometric correction (georectification) or image 

registration (Cracknell 1998).  

 

Most studies investigating species-environment relationships will use remote sensing data 

and the choice of observation scale will introduce spatial uncertainty in the characterisation 

of landscape pattern for the environmental data. Fine scaled sampling resolution can 

obscure coarse grained landscape patterns; while coarse grained sampling can miss fine 

scaled patterns as they become averaged out in larger sampling units. Landscapes may 

appear fragmented at one scale and continuous at another (Lechner et al. 2008). 

Furthermore, at larger observation scales ecologically important landscape structures such 

as small remnant vegetation and linear strips may not be extracted or extracted inaccurately 

(Lechner et al. 2009).  
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Box 5.1 Definitions of key terms. 

Definition of key terms: 

Observation scale: The sampling unit used to measure the environment e.g. pixel; 

sometimes referred to as the sampling scale or measurement scale. 

Analysis scale: The scale at which an ecological analysis is conducted. Equivalent to buffer 

size. 

Operation scale: The scale at which an ecological process interacts with the environment, 

also known as the scale of phenomenon or characteristic scale (Dungan et al. 2002; Wu and 

Li 2006a). This is the scale at which highest correlation values between environmental and 

ecological data occur. 

True observation scale: The correct pixel size to sample an ecological phenomenon. 

True landscapes: Landscapes at the true observation scale. 

Apparent landscapes: Landscapes that are not at the true observation scale (e.g. incorrect 

pixel size or smoothing filter applied). 

Derived ecological relationship: A term used to describe the synthetic dependent variable in 

the simulated species-environment relationship. Can be considered analogous to ecological 

attributes such as population abundance or species diversity. 

Vegetation cover: The independent variable calculated from synthetic and real data 

predicting the ecological attribute‘s value. This value is based on the amount of vegetation 

recorded in the buffer area. 

 

5.2 Method  

In order to test for the effects of the MAUP on the identification of operation scale we 

simulated species-environment relationships and used real and synthetic landscapes. The 

simulation model was made up of 3 parts: 1) landscape generator 2) sensor and 

classification simulator and 3) ecological model simulator. Simulating the complete process 

from the generation of landscape pattern to the ecological models eliminates all uncertainty 

present when using real data. The truth can be known and deviations from the truth can be 

measured. Figure 5.2 describes the complete process of generating and sourcing the 

landscapes and the processing of the real and synthetic data.  
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a) 

 

Landscape

Pix 10

Aggregate

 Pix 30
Pix 30, No

Smooth Pix 30 Yes

Smooth

Pix 10, No

Pix 10 Yes

 

b) 

 

 

Figure 5.2 Flow diagram and example images describing the processing of real Tree25 

and synthetic images to generate multiple landscape representations (n=24).  a) Each 

real landscape (real A…F) and synthetic image is processed using the sensor and 

classification simulator to produce 4 different representations of each landscape, 

where Pix is the pixel size and yes / no  refers to the application of the smoothing 

filter. b) In this example, the landscape Real C has been aggregated to 30m from its 

original 10m pixel size and a smoothing filter has been applied.  

 

5.2.1 Landscape generator 

The landscape generator is the first part of the simulation model. It generated both synthetic 

landscapes and sampled real landscapes. Real landscapes used in the simulation model 

were a mix of random and stratified sampled subsets of the regional Tree25 presence / 

absence tree cover data set produced for the Department of Sustainability and 

Environment‘s Corporate Geospatial Data library (DSE 2006). The dataset is derived from 

SPOT panchromatic imagery with a 10 metre pixel size, classified using a combination of 

digital classification and visual interpretation. The dataset covers most of the state of Victoria 
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in Australia with an area of 227,416 km². Initially, 20 random subsets of the Tree25 datasets 

were created and then six of those subsets (henceforth, called Real A, Real B…Real F) were 

chosen so that a range of proportions of tree cover were sampled (Figure 5.3). The six 10 x 

10 km subsets represent a range of landscape patterns with proportions of tree cover 

ranging from 9.5% to 62.3%. The subsets were from fragmented landscapes that are either 

dominated by agriculture or at the interface between agriculture and natural areas. A range 

of ecologically important landscape elements were intentionally included, such as small 

remnant patches and linear strips. 

 

Real A              

9.5% cover 

Real B               

9.5% cover 

Real C             

23.4% cover 

Real D          

32.0% cover 

Real E              

51.1% cover 

Real F           

62.3% cover 

      

Figure 5.3 Tree presence /absence landscapes used in the model with percentage tree 

cover indicated below the landscape title. Woody tree cover represented as green and 

no tree cover represented as black. The 30 sampling locations for the ecological 

model are indicated on the map by circles. The circles represent the maximum buffer 

size of 500m diameter used in the ecological model. 

 

Synthetic gray scale / continuous landscapes were generated using Saupe‘s (1988) 

fractional Brownian motion with midpoint displacement (midpointfM2D) algorithm 

implemented in the programming language IDL (See Appendix A for code). The same 

algorithm is used in many common synthetic landscape generation programs such as RULE 

(Gardner 1999) and the recent version QRULE (Gardner and Urban 2007). The 

midpointfM2D algorithm can randomly generate synthetic multi-fractal landscapes using a 

variety of fractal dimensions determined by the parameter H, ranging from 0 to 1. In map 

terms the fractal dimension equates to landscape patterns with different levels of spatial 

autocorrelation:  

H = 0 - negative spatial autocorrelation 

H = 0.5 - no spatial autocorrelation 

H =1 - positive spatial autocorrelated.  

 

Maps were generated for H values of 0.1, 0.5 and 1.0 to systematically test for the effect of a 

range of spatial autocorrelations and fragmentation on the outcome of the ecological 

simulation. Maps with lower H values appear more fragmented than those with higher H 
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values. The landscapes generated had a size of 1000 x 1000 pixels and a single pixel was 

considered equivalent to 10m pixel size in real terms. Thus the size of the synthetic 

landscapes was 10km x 10km; the same size as the real landscapes. 

 

The generated synthetic landscapes were then classified using a binary classification 

scheme with two classes representing habitat and non-habitat which in this study is 

considered equivalent to the vegetation cover and no-vegetation cover. This is a common 

classification scheme used in landscape ecology to represent the patch-matrix geographic 

model (Antrop 2007). The images were thresholded so that a proportion of the total 

landscape area was assigned vegetation/habitat (proportion). The assigned proportion 

values were 0.25 and 0.5. The proportion value of 0.75 was not tested as landscape spatial 

patterns with this value were equivalent to the proportion value of 0.25 for the purposes of 

assessing spatial uncertainty in this analysis. The fractal nature of the synthetic landscapes 

results in differences in analyses only when both vegetation and no-vegetation have unequal 

proportions; whether vegetation or no-vegetation has the largest proportion is irrelevant.  

 

5.2.2 Sensor and classification simulator 

Next, both the synthetic and the real landscapes were used in the sensor and classification 

simulator to create different representations of the same landscapes. The first part of this 

simulation process involved aggregating the original pixel size of both the real and synthetic 

landscapes creating different representations of the same landscape. The images were 

aggregated based on a majority rule from their original 10m pixel size to 30m pixel size to 

simulate other remote sensing sensor pixel sizes (Table 5.1).  

Table 5.1 Pixel sizes tested in the simulation model for both real and synthetic 

landscape data and equivalent satellite sensor. 

Pixel size (m) 10 30 

Equivalent remote 

sensing pixel size 

SPOT XS Landsat TM / 

ETM+ 

 

In the final step of the sensor and classification simulator a majority filter was applied to 

smooth the real and synthetic data to create another representation of the same landscapes. 

Using a majority filter decreases spatial resolution simulating the effect of pre and post- 

processing remote sensing images for either resampling or the application of a smoothing 

filter. A majority filter is commonly  used during post processing of classified images (Lu and 

Weng 2007). The majority filter uses a 3 x 3 moving window filter to replace cells in the 

centre of the window based on the value that is in the majority (Figure 5.4).  
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Figure 5.4 Effect of applying a majority filter: a) Original image, b) Smoothed imaged. 

There is a loss of fine scaled fragmentation in the smoothed image (b) compared to 

the original image (a). 

 

5.2.3 Ecological model simulator 

The final part of the whole model simulated a correlated ecological response by defining a 

linear function and then generated values for the ecological response based on this function. 

If the multi-scale buffer area sampling design is robust it should be able to recover the 

original linear relationship regardless of the scale of the remote sensing data. Following 

previous studies we used a simple univariate species-environment relationship modelled at 

at a range of scales (e.g. Holland et al. 2004; Pearman 2002; Taki et al. 2007). In this study 

correlation was calculated using Spearmen‘s r as the assumption for linear regression was 

not met because the distribution of vegetation fraction cover from each the plot data in each 

of the landscapes was often non-normal and plots of the residuals demonstrated that the 

data was often heteroscedastic. The ecological response in this study was derived from 

vegetation fraction cover using a simple linear function: 



ymxc  where 



m 1 and 



c 0. 

Thus, the final function defining the ecological response was 



y  xBL  where y is the derived 

ecological response and xBL is vegetation fraction cover at buffer radius B in meters with a 

landscape representation of pixel size L. The value of B corresponds to the true analysis 

scale, occurring at a specific buffer radius and the value of L corresponds to the true pixel 

size occurring at a specific pixel size. 

 

In ecological studies using similar multi-scale buffer area sampling designs, buffer size is 

measured for a continuum of values (e.g. Holland et al. 2004; Pearman 2002) and the 

ecological scale is identified as the buffer sizes at which peaks in high correlation values 

occur. With this definition multiple scales of operation may be identified, however we 

simulated an ecological response that had a single ecological scale. Thus, if the species-

environment relationship is derived with a buffer size and pixel size that match the sizes at 

which the ecological response was derived (e.g. at B and L) the resulting correlation 

coefficient, r, value will be 1. This is the true ecological scale. If the buffer size is changed the 



90 

 

correlation coefficient will decrease. In this study for cases where two or more buffer sizes 

have the maximum value (i.e. in cases where the shape of the curve plateaus and does not 

peak) the ecological scale is identified as the average of the maximum range of these values. 

 

Within each buffer area vegetation fraction cover was measured, a common explanatory 

variable used to assess the impact of vegetation cover on ecological attributes such as 

occupancy (Suorsa et al. 2005), population abundance (e.g. Heikkinen et al. 2007; Holland et 

al. 2004) and species diversity (e.g. Lawler et al. 2004; Pearman 2002). The derived 

ecological response is considered analogous to these ecological attributes. Vegetation 

fraction cover was measured at multiple buffer radii ranging from 25m to 250m.   

 

The ecological response was derived using a subset of all the buffer radii (B), 25m (1964m2), 

125m (49087m2) and 225m (159040m2). The number of samples for each buffer size per 

landscape was 30, similar to many landscape-level studies (e.g. Pearman 2002; Taki et al. 

2007). We used non-overlapping buffers which is commonly practiced in ecological 

experiments. This non-overlapping constraint reduces the effect of spatial autocorrelation 

and avoids violating the assumption of independence for regression models. 

 

We quantified the effects of the MAUP on the identification of the ecological scale in a multi-

scale ecological analysis by comparing results using a range of landscapes with pixel sizes 

that do and do not match the pixel size at which the ecological response was originally 

derived. Landscapes with pixel sizes that match the pixel size at which the ecological 

response was derived are termed true landscapes. Landscapes that use other pixel sizes 

and/or have a smoothing filter applied are termed the apparent landscapes. A total of 44 

apparent landscapes were created using the real and synthetic landscapes with a range of 

spatial autocorrelations (H values), pixel sizes, proportions and smoothing filters (Table 5.2). 

An analysis is robust to changes in pixel size if the ecological scale identified is similar 

regardless of whether true or apparent landscapes are used. Furthermore, there should not 

be large changes in the shape of the curve of correlation values versus buffer sizes.  
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Table 5.2 Summary of the factors used to generate true (a) and apparent landscapes 

(b). The factors in table (b) with a † correspond to different methods used to generate 

true landscapes. The factors with a * correspond to ways in which the apparent 

landscape may be represented. 

a) True landscapes 

 H value / source data Pixel size Proportions Total 

Synthetic 0.1, 0.5, 1.0  10,30  0.25,0.5 (n=2) 12 

Real Real A...F 10,30 n/a 12 

b) Apparent landscapes 

Dataset H value / 

source data 
† 
 

Pixel size*
†
  Proportions (P)

 †
 Smoothing* Total n 

Synthetic 0.1, 0.5, 1.0 10,30 0.25,0.5 yes/ no 24 

Real Real A...F 10, 30 N/A yes/ no 24 

 

5.3 Results 

The strength of the relationship between vegetation cover and the derived ecological 

response changed with buffer radius and pixel size. For example, figure 5.5 (landscape Real 

F) presents two out of 240 sets of scatter plots produced in this study used to describe the 

relationship between vegetation fraction cover and the derived ecological response. Figure 

5.5a show the correlations generated when the pixel size matched the pixel size at which the 

ecological response was derived. The derived ecological response was calculated at a buffer 

radius of 125m and thus the correlation coefficient was 1 and there was a perfect linear 

relationship. This buffer size is identified as the ecological scale. When buffer size increased 

or decreased the relationship between vegetation fraction cover and the ecological attribute 

became weaker and the slope of the curve changed.   
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Figure 5.5 Scatter plots of vegetation cover (%) versus derived ecological response for 

landscape F. The ecological response has been derived using a pixel size of 10m and 

the buffer radius of 125m. The line of best fit plotted in dark gray and Spearman’s r is 

presented in the top left corner. a) Observation scale: 10m pixel size and no 

smoothing filter. b) Observation scale: 30m pixel size with smoothing filter applied. 

 

Figure 5.5b illustrates the effect of using an observation scale that differs from the true 

observation scale (i.e. using an apparent landscape) on the statistical relationship between 

the ecological attribute and vegetation fraction cover. In this case the operation scale 

identified did not change, however, the strength of the relationship was weaker for most 

buffer sizes. Furthermore, the line of best fit plotted was not as good an approximation of the 

true linear y=x relationship. 

 

Figure 5.6 show scatter plots for another landscape, Real D, which demonstrate how the 

identified operation scale can change when apparent landscapes were used. Figure 5.6a 

show the correlations generated when the true landscape was used. The correlation 

coefficients are high for most buffer sizes and the operation scale is identified at buffer size 

125m with an r value of 1. As with the previous scatter plots presented in figure 5.5a and 

figure 5.5 b, as the analysis scale changed from the true analysis scale and the observation 

scale differed from the true observation scale the correlation coefficients decreased (Figure 

5.6a). Changing the pixel size by using an apparent landscape with a pixel size of 30m 

compared to a pixel size of 10m at which the ecological response was derived and applying 

a smoothing filter resulted in incorrectly identifying the ecological scale at a buffer size of 

175m (Figure 5.5b). At this radius the highest correlation coefficient of 0.90 was recorded. 
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Figure 5.6 Scatter plots of vegetation cover (%) versus derived ecological response for 

landscape D. The ecological response has been derived using a pixel size of 10m and 

the buffer radius of 125m. The line of best fit plotted in dark gray and Spearman’s r is 

presented in the top left corner. a) Observation scale: 10m pixel size and no 

smoothing filter. b) Observation scale: 30m pixel size with smoothing filter applied. 

 

The scatter plots presented in figure 5.5 and Figure 5.6 can be summarised as a single curve 

describing the correlation coefficient versus buffer radii for the true and apparent landscapes 

(Figure 5.7). This is a common method of depicting the relationship between buffer size and 

correlation (e.g. Holland et al. 2004; Pearman 2002). However, most studies use a single 

spatial resolution and test multiple buffer sizes which is equivalent to a single curve in figure 

5.7. 
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Figure 5.7 Graph of r values versus buffer radius for apparent and true landscapes and 

a range of derived ecological responses for real landscape B. Curves in bold are 

based on the true landscape and buffer size used to derived the ecological response 

at a buffer radius and pixel size indicated above each plot. The other curves describe 

the r values versus buffer radius relationship derived with apparent landscapes. The 

buffer radius of the true ecological scale is indicated by the dotted vertical line.  

 

The effect of the MAUP is illustrated by comparing curves describing correlation coefficient 

versus buffer radii for apparent landscapes to curves for true landscapes. Using apparent 

landscapes decreased correlation coefficient across all buffer radii and sometimes results in 

the misidentification of the ecological scale. 

 

Not only do correlation coefficient values change with the use of apparent landscapes, but so 

do the shapes of the curves. In some cases the shape of the curve can change greatly, from 

a simple exponential to a complex polynomial resulting in the appearance of multiple peaks 

in the curve indicating two or more scales of operation rather than a single ecological scale 

as represented by the true landscape. For example, for Real B with an ecological response 

derived with a pixel size of 10 and a buffer radius of 25m, the true ecological scale is 25m, 
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when using an apparent landscapes with a pixel size of 30 and no smoothing filter applied 

there are two peaks in correlation coefficient values indicating operations scales at buffer 

radii of 100m and 200m (Figure 5.7).   

 

The effect of only applying the smoothing filter was dependent on the pixel size at which the 

ecological response was derived and the pixel size of the apparent landscapes. The 

application of the smoothing filter usually had little effect on correlation coefficients when the 

pixel size of the apparent landscapes pixel size at which the ecological response was 

derived, when the pixel size was 10m (e.g.Figure 5.8a Pixel size=10m, compare the curve 

with the smoothing filter applied and without). However, when the pixel size of apparent 

landscapes differed from the pixel size at which the ecological response was derived the 

application of a smoothing filter usually decreased all the correlation values and sometimes 

changed the identified scale of operation (e.g. Figure 5.8a Pixel size=30m, compare the 

curve with the smoothing filter applied and without).  
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Figure 5.8 Graph of r values versus buffer radius for apparent and true landscapes and 

a range of derived ecological responses for real landscape D. Curves in bold are 

based on the true landscape and buffer size used to derived the ecological response 

at a buffer radius and pixel size indicated above each plot. The other curves describe 

the r values versus buffer radius relationship derived with apparent landscapes. The 

buffer radius of the true ecological scale is indicated by the dotted vertical line. 

 

For some landscapes such as Real D the effect on analysis of using apparent landscapes 

was negligible for some combinations of pixel sizes and buffer sizes at which the ecological 

response was derived and was visible for others. For example, there was no difference in the 

operation scales identified and the shape of the curve was similar regardless of the apparent 

landscape used for Real D with an ecological response was derived with a 30m pixel size 

and 225m buffer (Figure 5.8f). Other combinations of pixel sizes and buffer sizes used to 

derive the ecological response affected the shape of the curve and/or on the scale of 

operation identified. For example, when the ecological response was derived with a 10m 

pixel size and 25m buffer size and an apparent landscape with a pixel size of 30m with a 

smoothing filter applied the identified operation scale was 150m instead of the true operation 

scale of 25m (Figure 5.8a).  
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For some real landscapes using apparent landscapes did not greatly affect the outcome of 

analyses (Figure 5.9). The only effect of using apparent landscapes on real landscape E was 

a systematic decrease in the correlation values over all buffer sizes. The calculated operation 

scale was the same whether apparent landscapes were used. Furthermore, the shape of the 

curve remained similar regardless of the apparent landscapes used. 

 

Figure 5.9 Graph of r values versus buffer radius for apparent and true landscapes and 

a range of derived ecological responses for real landscape E. Curves in bold are 

based on the true landscape and buffer size used to derived the ecological response 

at a buffer radius and pixel size indicated above each plot. The other curves describe 

the r values versus buffer radius relationship derived with apparent landscapes. The 

buffer radius of the true ecological scale is indicated by the dotted vertical line. 

 

The effects of using apparent landscapes varied between real landscapes and within 

landscapes depending on the buffer and pixel sizes used to derive the ecological response. 
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Both pixel size and the application of the smoothing filter affected whether analyses were 

robust to changes in analysis scale (Real A…F)(Appendix B).  

 

In contrast to the real landscapes, the synthetic landscapes were qualitatively not as greatly 

affected by the use of apparent landscapes. In many cases there was very little reduction in 

the correlation values across all buffer sizes and smaller errors in the measurement of 

operation scale (Figure 5.10, Appendix B). This is in contrast to the great variability and 

inconsistency in the effects of using apparent landscapes for the real landscapes (Real A..F). 

When using apparent landscapes the shape of the curve did not vary as greatly for synthetic 

landscapes compared to real landscapes. The effect of buffer sizes on r  was much weaker 

with synthetic landscapes than the real landscapes. However, some synthetic landscapes 

such as H=0.1 P=0.25 did have similar levels of error in the operation scale identified and 

qualitatively similar changes in the shape of the curves due to the use of apparent 

landscapes (Figure 5.11). 
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Figure 5.10 Graph of r values versus buffer radius for apparent and true 

landscapes and a range of derived ecological responses for synthetic landscape 

H=1.0 P=0.5. Curves in bold are based on the true landscape and buffer size used 

to derived the ecological response at a buffer radius and pixel size indicated 

above each plot. The other curves describe the r values versus buffer radius 

relationship derived with apparent landscapes. The buffer radius of the true 

ecological scale is indicated by the dotted vertical line. 
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Figure 5.11 Graph of r values versus buffer radius for apparent and true 

landscapes and a range of derived ecological responses for synthetic landscape 

H=0.1 P=0.25. Curves in bold are based on the true landscape and buffer size 

used to derived the ecological response at a buffer radius and pixel size 

indicated above each plot. The other curves describe the r values versus buffer 

radius relationship derived with apparent landscapes. The buffer radius of the 

true ecological scale is indicated by the dotted vertical line. 

 

Figure 5.12 and figure 5.13 summarises the output from the simulation model by comparing 

the highest and lowest identified operation scale and comparing these to the true operation 

scale for all buffer and pixel sizes used to derive the ecological response. The previous plots 

shown in Figure 5.5 - 5.11 presented interesting subsets of all the simulation model output 

presented in figure 5.12 and figure 5.13. For example, figure 5.7a corresponds to figure 

5.12b, buffer size 25 and pixel size 10.
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Figure 5.12. Comparison of buffer radii (y-axis) for the largest, smallest and true operation scale identified for a range of ecological 
responses (x-axis) for landscapes real A…F. Pixel and buffer sizes used to derive the ecological response described on x axis. 
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Figure 5.13 Comparison of buffer radii (y-axis) for the largest, smallest and true operation scale identified for a range of ecological 
responses (x-axis) for synthetic landscapes. Where H =spatial autocorrelation and P=proportion of habitat. Pixel and buffer sizes used to 
derive the ecological response described on x axis.
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The effect of using apparent landscapes on errors in the measurement of operation scale 

varied between landscapes and within landscapes dependent on the buffer and pixel size 

used to derive the ecological response. For some landscapes such as Real E, Real F, H=1 

P=0.5 and H=1 P=0.25 there was little or no effect of using apparent landscapes on 

identifying the operation scale for any combination of true observation or true analysis scales 

(Figure 5.12 and figure 5.13). The differences between real and synthetic landscapes were 

not as apparent when only comparing differences in errors in the measured operation scale. 

The effect of using apparent landscapes for real landscapes appeared less predictable than 

the synthetic landscapes. Real landscapes appear to have greater variability within 

landscapes on errors in the measurement of operation scale as a result of different buffer 

and pixel sizes combinations used to derive the ecological response. In the same landscape 

there may be very small differences of 0-25m for most buffer and pixel size combinations 

used to derive the ecological response and large differences of 125m for other combinations 

(Figure 5.12d). 

 

The synthetic landscapes appeared to show some predictability with regard to the effect of 

spatial autocorrelation and proportion of vegetation. Positively spatially autocorrelated 

landscapes with vegetation cover (P) of 0.5 appeared to be more robust to the effects of 

using the apparent landscapes than landscapes with zero spatial autocorrelation, negatively 

autocorrelation and/or lower vegetation cover. 

 

5.4 Discussion 

The results of this study demonstrate that spatial uncertainty arising from scale has the 

potential to produce misleading results in ecological analyses. It found that the observed 

ecological responses repeatedly exhibited the MAUP, these responses were not just a 

property of the analysis scale (buffer size) but also the scale at which the environment was 

sampled (pixel size).  There was large variability in the effect of using apparent landscapes 

on the accuracy of the identified ecological scales between landscapes and for different 

combinations of pixel size and buffer size used to derive the ecological response. In some 

cases, differences in pixel size only affected the strength of the relationship between the 

ecological attribute and environmental variable. In other cases the ecological scale was 

misidentified with errors ranging from 0 to 150m where 225m is the maximum measured by 

this study. Furthermore, in some instances multiple ecological scales were identified when in 

reality there was only a single ecological scale. 

 

The effect of using apparent landscapes is an example of the MAUP. In some cases using 

apparent landscapes only affected the strength of the relationship between the ecological 
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attribute and environmental variable. In these cases the MAUP can be considered to have no 

effect on the identification of operation scale as it was unaffected by the observation scale 

used to represent the landscape. In other cases, the strength of the species-environment 

relationship decreased and the operation scale measured was erroneous. In these cases the 

results of the analyses were spurious, indicating the presence of the MAUP. 

 

5.4.1 Impact of landscape pattern on spatial uncertainty 

This study found that landscape spatial heterogeneity may be an important factor in 

determining whether spatial uncertainty arising from observation scale affected analyses. 

Synthetic landscapes that are more highly fragmented with lower H values and real 

landscapes that qualitatively appeared spatially heterogeneous were less robust to changes 

in observation scale than synthetic landscapes with high spatial autocorrelation (high H 

value) and/or P values of 0.5.  Thus, landscape pattern may not only be an important driver 

of ecological processes but a driver of spatial uncertainty. The unpredictability in the effects 

observation scale for the real landscapes is a major concern for ecologists because they are 

likely to be present in most real data used for published studies. Critically, much of the 

research conducted in landscape ecology is in fragmented environments similar to those 

represented by the real landscapes and thus analyses may be more susceptible to spatial 

uncertainty. 

 

The robustness of some of the synthetic data to observation scale is in contrast to Li et al 

(2005) which found that changing the observation scale of synthetic landscapes resulted in 

large differences in the measurement of landscape pattern using landscape metrics. This 

suggests that the measurement of landscape pattern using landscape metrics may be more 

sensitive to spatial uncertainty than the multi-scale experimental method tested in this study. 

Studies using synthetic landscapes generated with the fractional Brownian motion algorithm 

commonly used in landscape ecology may not capture the complexity and diversity of spatial 

patterns that occur when using real landscapes. Thus, studies using synthetic data to 

simulate real landscapes may underestimate the effects of spatial uncertainty on analyses.  

 

Synthetic landscapes generated with fractal algorithms may be less susceptible to the effects 

of scale as they exhibit self-similarity at multiple scales. Thus spatial patterns in synthetic 

landscapes may appear uniform over the whole landscape. This is in contrast to real 

landscapes that have been fragmented by human impacts which often have gradients and 

regionalised variations (anisotropy). Furthermore, real landscapes often display more regular 

geometric patterns than the patterns produced by landscape generators based on fractal 

algorithms (e.g. Real E). A similar phenomenon has been found by other authors (e.g. Emilio 
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Rafael et al. 2009; Shen et al. 2004), whereby the effects of scale were found to be greater in 

real landscapes than synthetic landscapes. Similarly, Riitters, Vogt et al. (2007) found 

patterns generated using synthetic RULE (midpointfM2D algorithm) landscapes were 

different to patterns that were found with real landscapes. Further investigation is needed 

using more complex synthetic landscape generation methods that include anisotropy (e.g. 

Gardner and Urban 2007), different synthetic landscape generation techniques that can 

represent geometric anthropogenic features such as agricultural and urban cover and road 

networks (e.g. Walters 2007) and techniques that use a combinations of synthetic landscape 

algorithms and real landscapes (e.g. Hargrove et al. 2002). Synthetic landscapes, however, 

are still useful in testing for the effect of measured changes in landscape pattern through the 

varying H and P. 

 

5.4.2 Scale and ecological analysis 

The results of this study are relevant to both multi-scale and single scale ecological analysis. 

In many cases ecological studies are conducted at a single scale using both a single analysis 

and observation scales. In these cases the observed responses of a phenomenon to 

environmental variables at a particular scale may be stronger or weaker due to a mismatch in 

scales or spurious due to the effect of the MAUP. If the observation scale and analysis scale 

match the operation scale of a phenomenon the true response of a phenomenon to 

environmental data may be derived. This study has confirmed empirically what other authors 

have suggested, that using a single scale can result in phenomenon going undetected and 

the derivation of flawed relationships (e.g. Jelinski and Wu 1996; Wiens 2002; Wiens 1989). 

 

Our study tested commonly used pixel sizes in landscape ecology based on standard remote 

sensing sensors and demonstrated that the choice of pixel size can affect analyses.  

Landscape scale research is typically only conducted at fixed scales, often arbitrarily 

determined by readily available generic data sets or sensors without any investigation of the 

sensitivity of analysis to arbitrary scales (Comber 2008; Pontius et al. 2008; Schmit et al. 

2006). The use of the default sensor may ultimately be worse than making a subjective 

judgement about the scale at which a phenomenon operates (Pontius et al. 2008).  

 

The most common recommendation in landscape ecology in order to address the effects of 

scale is to conduct studies at multiple scales (Levin 1992; Wiens 1989; Wu et al. 2006) using 

the multi-scale sampling designs as investigated in this study. However, our results suggest 

that the relationship between the operation, analysis and observation scale varies along a 

continuum. Wheatley and Johnson (2009) reviewed 79 multi-scale wildlife habitat studies 

published since 1993 and found that in addition to the initial biologically justified scale chosen 
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(i.e. home range size), the other scales tested, usually one larger and one smaller, were 

often arbitrarily chosen. Our study showed that the response of species to scale may change 

at multiple analysis scales, often abruptly, and that studies using a small selection of analysis 

scales may lead to incorrect conclusions being drawn due to the absence of data at untested 

scales. 

 

The typical method used in landscape ecology of systematically changing the observation or 

analysis scale (as used in this study) can test for the sensitivity of analyses to scale. 

However, there is no guarantee that observed patterns at a particular scale are not spurious 

due to the presence of the MAUP. Hence, if scale sensitivity is detected it is impossible to 

know whether this is the result of the operation scale or the MAUP. In this study we used a 

simulation model and thus there was a known truth based on the simulated ecological 

relationship to use as a benchmark to measure accuracy. When conducting ecological 

analyses using real data, the true ecological scale is a property of the scales at which a 

phenomenon is measured and there is no method of knowing the accuracy of the analysis. 

Further research using both real ecological and environmental data is required to whether 

the results of this study are evident in real studies and to what degree. 

 

5.4.3 Simulation modelling: simplifying complex ecological relationships 

This study used a simulation model to investigate the effects of pixel size on measuring the 

ecological scale and its relationship with landscape pattern. Simulated data allows some 

elements of the complexity of real world phenomena to be studied. It allows for the control of 

all aspects of the pattern-process relationship from the generation of landscape pattern to its 

effects on ecological processes. Our simulation model represents an optimistic scenario for 

conducting ecological analyses, where there was no unknown uncertainty in the spatial data 

or in the ecological model. There was no measurement error and all the parameters and 

statistical relationships were known. Additionally, the true landscapes represent the true 

geographic representation that perfectly describes how the species perceives the 

environment. These relationships can never be known with absolute certainty when using 

real data and ecologists can only make inference about causal processes based on empirical 

data. In studies using real data the effects of spatial uncertainty on ecological analyses are 

likely to be much greater and more difficult to distinguish than in simulation studies. If simple 

theoretical relationships cannot be derived correctly using simulation models, there can be 

little confidence in recovering these from real data (Austin et al. 2006). 

 

In comparison to other empirical studies using real data which have conducted similar types 

of multi-scale analyses on a continuum of scales, the shape of the curves of buffer size 
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versus correlation coefficient in this study appear to be much smoother, although qualitatively 

similar (e.g. Holland et al. 2004; Pearman 2002). However, the derived correlation 

coefficients were much higher in our simulation model with a consistently smaller range than 

other studies. The maximum range of r for any landscape tested in this study our study was 

approximately 1.0 to 0.57. Other studies investigating the relationship between an ecological 

attribute and vegetation cover had larger range and smaller r values e.g. Holland et al. 

(2004) calculated Pearson‘s r values of ~0.3 to 0.0, Pearman (2002) calculated r2 values of 

~0.7 to 0.35  and Taki et al.(2007) r2 derived values of 0.165 to 0.045. Additionally 

differences between buffer sizes and correlation coefficients tended to be weaker for the 

simulation model compared to real studies. For example, landscape Real D with an 

ecological response derived using a pixel size of 10m and buffer size of 225m at a buffer size 

of 25m the r value was 0.73 while for all buffer sizes greater than 50m values ranged from 

0.93 to 1 (Figure 5.8c). Much higher and smaller differences in r values between buffer sizes 

would be expected with a simulation model as there was only a single factor affecting 

pattern-process relationship unlike in these real models where there are likely to be multiple 

unmeasured ecological factors obscuring relationships. Comparison between this study and 

other studies is made difficult due to the variety of measurements of correlation such as r2 

and Pearson‘s r used. 

 

There are many sources of uncertainty in species-environment relationships originating from 

the model choice and parameters and the environmental and ecological data. For example, 

ecological relationships may be non-linear and difficult to derive statistically because of 

confounding factors such as spatial autocorrelation (Legendre et al. 2002; Wintle et al. 2005). 

Our study used a simple univariate linear model to describe the species-environment 

relationship as used by other authors (e.g. Holland et al. 2004; Pearman 2002; Taki et al. 

2007) but many ecological studies use multiple explanatory variables described by data from 

multiple sources at different scales. Furthermore, scale dependent factors that create spatial 

uncertainty include many other factors not tested in this study such as minimum mappable 

units, thematic resolution and scale of landscape units (Buyantuyev and Wu 2007; Lechner 

et al. 2009; Wu et al. 2000). These untested forms of spatial uncertainty and model error 

have the potential to amplify the impact of remote sensing spatial uncertainty arising from 

scale on ecological analyses. 

 

The binary habitat maps utilised in this study are commonly used in landscape ecology 

(Antrop 2007). There are many forms of error that result from the process of generating 

binary habitat maps that were not investigated in this study. Spatial uncertainty can be the 

result of many other factors such as classification error (e.g. Langford et al. 2006; Shao and 
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Wu 2008) and variations and ambiguity in landcover class definitions (e.g. Colson et al. 

2009; Comber et al. 2005b). For example, Langford et al. (2006) found that in some cases 

map classification error can cause a thousand-fold increase in error in the calculation of 

landscape metrics. These non-scale related sources of spatial uncertainty are likely to further 

degrade analyses results. 

 

Ecologists spend considerable effort testing uncertainty in ecological data (Chapman et al. 

2005), while often ignoring the effects of spatial uncertainty. Users of spatial datasets often 

blindly accept them as error free (Adams and Gillespie 2006; Evans 1997),  even though 

uncertainty in spatial data may in some cases be as important or more important than errors 

in other model parameters (Schmit et al. 2006). Previous studies comparing the impact of 

spatial uncertainty versus model or parameter uncertainty show that both may impact on 

ecological analysis. However, whether spatial or non spatial factors are a greater source of 

error may depend on the specific study. For example, a study by Ruckelshaus et al. (1997) 

found that their model was more sensitive to error in model parameters compared to spatial 

inputs. Conversely, Minor et al. (2008) found that the habitat map was the largest source of 

error for her spatially explicit population model. Thus, to ensure ecological studies are robust 

to uncertainty, there is a need for testing of spatial data to become as common as testing for 

uncertainty in non-spatial model parameters. 

 

5.4.4 Future work 

Further research is needed to expand on the findings of this study to develop methods that 

reduce and quantify spatial uncertainty, further develop the simulation model and investigate 

this phenomenon with real ecological data. Spatial uncertainty arising from scale can be the 

result of the simple categorical, often binary, landcover classification system commonly used 

in ecology. Investigating the use of more complex robust landcover classification methods in 

ecology such as fuzzy classifiers that can describe sub-pixel landcover area (Robinson 2007) 

and/or re-scalable spatial data that is scale invariant (Gardner et al. 2008) may reduce the 

effect of the MAUP. Along with more robust landcover classification schemes, multi-scale 

uncertainty analysis methods need to be developed that improve on the existing sensitivity 

analysis that can‘t identify differences between the effects of scale dependence of ecological 

phenomenon and the MAUP. Further investigation is needed to assess the effect of the 

MAUP on a wider range of ecological models that have non-linear and/or multivariate 

relationships and more scale dependent factors. These further studies may prove that 

instances where the MAUP caused flawed analyses are far more frequent than 

demonstrated in this study. 
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5.5 Conclusion 

This study used simulation modelling with real and synthetic spatial data to investigate 

whether multi-scale ecological analysis methods can be reliably used to identify the 

ecological scale. It found that the common practice of conducting multi-scale studies in order 

to identify the ecological scale can in some cases produce flawed results because of the 

effects of the MAUP. Thus, multi-scale ecological analyses may not be able to distinguish 

scale patterns caused by the relationship between an organism and its environment and 

scale patterns resulting from the MAUP. This study provides further evidence that the 

ecological analyses conducted at single or multiple scales may not be robust to the effects of 

scale. Without the incorporation of uncertainty arising from scale, ecological analyses using 

remote sensing data will continue to produce results with unquantified uncertainties. 
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Chapter 6 Synthesis 

 

6.1 Summary  

This thesis investigates the effect of spatial uncertainty in remote sensing data on ecological 

analyses. Uncertainty originates in the representation of landcover and propagates to spatial 

analyses. Specifically, this thesis investigates spatial uncertainty arising from scale, 

demonstrating quantitatively the effects of scale on the characterisation of landscape pattern 

and ecological analysis (Chapters 3, 4, 5). The importance of spatial uncertainty within 

landscape ecology is not widely appreciated and rarely addressed (Chapter 2), but this thesis 

demonstrates important implications for ecological analysis commonly used in the discipline. 

In some cases spatial uncertainty can obscure observed pattern and process relationships 

potentially leading to spurious results when conducting multi-scale analyses (Chapter 5). 

Potential future directions for research in the disciplines of remote sensing and landscape 

ecology in order to deal with issues of spatial uncertainty are provided in this concluding 

chapter.  

 

6.2 Research questions 

6.2.1 Are landscape ecologists addressing spatial uncertainty when conducting 

analyses? 

Chapter 2 presents a review and analysis of whether spatial uncertainty is being addressed 

or acknowledged within landscape ecology literature. The most frequently explored spatial 

uncertainty issues that affect the characterisation of landscape pattern and analysis is a 

group of five scale dependent factors and classification errors (pixel size, minimum mappable 

unit, smoothing, extent and thematic resolution). A systematic review of articles in the journal 

Landscape Ecology in 2007 found that most of these issues are not addressed and are rarely 

reported. Of the studies that addressed the effects of the scale dependent factors, very few 

investigated more than kind of spatial uncertainty.  

 

The review found that in most cases, landscape ecologists accept remote sensing data at 

face value without investigating spatial uncertainty. In studies that didn‘t investigate the 

effects of scale, the default pixel size was generally used, with the majority of studies using 

either Landsat TM and ETM+ sensors with a ~30m pixel size or aerial photography with a 

~1m pixel size. Generic, readily available datasets were commonly used, such as the 

European CORINE or USA‘s National Landcover dataset (NLCD). Data with arbitrary pixel 

sizes and classification schemes may not accurately represent landscapes at a scale 
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relevant to the ecological question being asked, resulting in spatial uncertainty that may 

negatively impact on the results of spatial analyses. 

 

6.2.2 How do scale dependent factors affect the characterisation of landscape pattern 

and how do they interact? 

Chapters 3 and 4 investigate the effects of scale on the characterisation of ecologically 

relevant spatial pattern. Conventional methods for quantifying accuracy in remote sensing 

data using error matrices are inadequate for describing error and uncertainty in the 

characterisation of landscape pattern. These methods do not quantify variation in the spatial 

distribution and representation of landcover units resulting from scale. In landscape ecology, 

accurately characterising the spatial arrangement can be more important than correctly 

estimating the total area of a landcover class.  

 

Chapters 3 and 4 investigate the effects of scale on the representation of landscapes using 

the patch-matrix geographic model most commonly used in landscape ecology. Chapter 3 

investigates the effect of scale on the classification and extraction of small and linear 

patches, which often have greater ecological significance than their areal extent. Chapter 4 

investigates the effects of scale on the characterisation of spatial pattern at the landscape 

scale. 

 

Chapter 3 demonstrates that individual patches that are small and/or linear have 

proportionally higher classification error than larger more compact features. When the size of 

the patch approaches the size of the pixel, patches are lost as a result of the location of the 

grid with respect to the patch. This chapter demonstrates that the grid size should be many 

times larger than the size of the features in order to accurately extract them. For example, for 

square patches the grid pixel area has to be 11 times smaller than the patch size to achieve 

a mean classification accuracy of 75%. 

 

Chapter 4 demonstrates that the characterisation of landscape pattern may change with the 

spatial resolution used; sometimes unpredictably. Using a coarser spatial resolution as a 

consequence of using larger pixels and smoothing filters results in fine scaled landscape 

pattern disappearing. Landscapes appear less fragmented, with less edge complexity and 

fewer patches, as small patches are lost or aggregated into larger patches. However, 

estimates of total class area remained constant regardless of scale. The effects of scale 

dependent factors on some components of landscape pattern (e.g. number of patches) were 

predictable in most cases. However, this was not always the case and the effect of changing 

pixel size or applying a smoothing filter was not consistent. This chapter demonstrates that 
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scale dependent factors interact and may need to be considered simultaneously in order to 

quantify the extent of spatial uncertainty that results from scale.  

 

6.2.3 How does scale in remote sensing data affect ecological analysis? 

Chapter 5 investigates the effect of remote sensing data scale on using multi-scale species-

environment models to identify the scale of operation (e.g. the scale at which an organism 

interacts with the environment). It found that in some cases the estimated scale of operation 

and the strength of the relationship between the derived ecological response and vegetation 

cover were unaffected by the scale of the remote sensing data. However, in many cases the 

strength of the relationship decreased and the scale of operation identified was incorrect, 

indicating the presence of the modifiable areal unit problem (MAUP). 

  

This chapter found that the degree of spatial heterogeneity of a landscape is an important 

factor in determining whether remote sensing data scale affects ecological analyses. The 

impact of using landscapes with known error was greater for the real landscapes that 

appeared qualitatively more fragmented than synthetic landscapes. Synthetic landscapes 

that are more fragmented with lower vegetation cover were more affected by scale than less 

fragmented landscapes with 50% vegetation cover. The differences in the outcome of 

analysis resulting from using synthetic data versus real data indicates that synthetic 

landscapes may not adequately represent the range of landscape patterns that occur in 

reality.  

 

6.3 Integration 

This thesis demonstrates that there are fundamental problems with the way that spatial data 

uncertainty is dealt with in landscape ecology. The failure of landscape ecologists to address 

scale issues and the use of generic datasets and default pixel size has the potential to affect 

the results of ecological analyses. Chapter 3 demonstrates that many studies utilising the 

commonly used Landsat sensor are unlikely to pick up fine scale landcover units such as 

linear strips and patches, which are often considered ecologically important. Chapters 4 and 

5 show that both the characterisation of landscape pattern and ecological analyses are 

affected by scale and in some cases, this will result in flawed analyses. Furthermore, chapter 

5 demonstrates that highly fragmented landscapes are more susceptible to the effects of the 

MAUP than less fragmented areas. Many ecological analyses are conducted in highly 

fragmented landscapes as it is these environments that urgently need ecological 

understanding to prevent loss of biodiversity.  

 



113 

 

This thesis demonstrates the complexity of the problem of spatial uncertainty in landscape 

ecology. This complexity is likely to be one reason why spatial uncertainty is rarely being 

addressed in ecological analyses. In the initial review presented in chapter 2, five scale 

dependent factors and many other sources of spatial uncertainty were identified. Even 

though chapter 4 only investigated three scale dependent factors and chapter 5 investigated 

2 of those factors, the effects on the characterisation of landscape pattern and ecological 

analyses were still apparent. Chapters 4 and 5 demonstrate that scale dependent factors 

interact; sometimes unpredictably. These chapters only investigated a subset of the factors 

identified because of the limits imposed by computer hardware. However, if more scale 

dependent factors were included in the analyses of chapters 4 and 5 it is likely that the effect 

of scale would have been considerably greater and more difficult to predict.  

 

One of the greatest problems in understanding and addressing the impact of scale in 

landscape ecology is the difficulty of knowing the true scale that a phenomenon interacts with 

the environment. Throughout this thesis, the impact of scale was tested by creating multiple 

realisations of landscapes and measuring the differences in landscape pattern and its impact 

on ecological analyses. This method can only demonstrate the robustness of analyses to 

scale, but cannot identify the correct scale. An alternative approach is to use simulation 

models, as in chapter 5, where a known truth was defined by the simulation model. However, 

when investigating real ecological phenomena the true scale will always be a property of the 

measurement methods. Given the large differences and unpredictability in the 

characterisation of landscape pattern that occur as a result of scale, solutions to this problem 

are challenging. 

 

6.4 Towards quantitative and robust analyses in remote sensing and landscape 

ecology 

I finish this chapter with suggested guidelines for dealing with spatial data uncertainty to 

improve the theoretical foundations of both landscape ecology and remote sensing.  Any 

solution to the problem will require a transdisciplinary approach that deals with uncertainty in 

representing landscapes (remote sensing) and in describing the influence of landscape on 

ecological processes (landscape ecology).  

 

Both landscape ecology and remote sensing disciplines conduct research at the landscape 

scale and both suffer from a lack of quantitative theory. Theory in landscape ecology tend to 

be implicit or verbal, such as rules of thumb based on sound, real world observations; lacking 

the rigour and precision of theory that is mathematically based (Turner 2006; Vermaat et al. 

2005; Wiens 2002).  The focus of research in landscape ecology is not primarily on testing 
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theory. Rather, landscape ecology tends to focus on a specific ecological phenomenon, 

deriving conclusions that may value laden and specific to a location (Vermaat et al. 2005; 

Wiens 2002).   

 

Similarly, remote sensing lacks mathematical theory with regards to understanding the 

relationship between the outcome of landcover classification and the effect of landscape 

elements and heterogeneity on this outcome. Much of the focus within remote sensing 

research is on achieving the highest classification accuracy and there is often no quantitative 

investigation of the underlying factors that influence accuracy. Commonly, empirical methods 

are used in remote sensing to derive statistical relationships between multispectral remote 

sensing data and in situ landcover field observations (training data) to predict the values of 

landcover outside of the field observations for the rest of the study area. Remote sensing 

measurements of electromagnetic radiation are used as a surrogate for landcover 

measurements, when in reality they are measurements of the radiative transfer processes 

which is affected by such things as the geometric properties of the media (e.g. vegetation, 

soil) with which the radiation interacts (position, size, shape, orientation of the objects 

constituting these media), and the physical properties of the scatterers (e.g., aerosol phase 

function, leaf reflectance and transmittance, pigment concentration) (Verstraete et al. 1996). 

Thus, without an understanding of the radiative transfer process there is can be no formal 

understanding of how error arises when creating remote sensing maps. 

 

Both landscape ecology and remote sensing tend to conduct research using a single or a 

small number of landscapes, leading to problems with generalising outside of the study area. 

For example one focus of research in landscape ecology is the identification of the smallest 

set of landscape metrics that can describe all of the different forms of landscape pattern (e.g. 

Cushman et al. 2008; Lausch and Herzog 2002; Neel et al. 2004). No consensus exists on 

the choice of metrics (McGarigal et al. 2002) and the results of some studies contradict each 

other (Cushman et al. 2008). The reason for the lack of consensus has been attributed to 

each study investigating a limited suite of landscape metrics on a different set of landscapes 

with their own unique landscape patterns characteristics (Cushman et al. 2008).  

 

Simulation modelling can be used in conjunction with real data or as an alternative, to test 

theory and provide robust experimental design. Simulation modelling is useful in landscape 

ecology and remote sensing to overcome the problem of small sample sizes and the lack of 

―true‖ replication (Chen et al. 2008; Meyer et al. press). Simulation models also allow for the 

truth to be defined, in contrast to models based on real data, where the truth will always be a 

property of the measurement method. Furthermore, many spatially explicit studies that use 
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real data need to be analysed using specialised statistical methods as replicates may not be 

independent due to spatial autocorrelation (Legendre et al. 2002; Schooley 2006). Simulation 

modelling can be used to overcome these issues associated with the complexity of real data 

(Li and Wu 2004; Meyer et al. press). Meyer (press) recommended using a combination of 

both empirical and simulation approaches so that the results will benefit from the realism of 

empirical data as well as the statistical power of simulations. Alternatively, the limitation of 

studies with very little replication can be overcome by meta-analysis of other unreplicated 

studies. However, this can be challenging because of  differences in methods of classifying 

landscapes (Chen et al. 2008) such as the result of using different scales Wheatley and 

Johnson (2009) and differing ontologies (Lepczyk et al. 2008).  

 

A promising direction to overcome the problems of uncertainty in experimental design in both 

remote sensing and landscape ecology is to use quantitative methods to develop explanatory 

models of the relationship between scale, error and landscape pattern.  These models can 

be used to model spatial error and determine situations where error is likely to pose a 

significant problem. Few studies have considered how the numerous factors of scale, 

landscape pattern and classification error interact and affect the accuracy of spatial pattern 

characterisation and analysis. Exploring the pattern process relationship at multiple scales 

through designing effective experiments is challenging as experimental manipulation of 

environmental variables at the landscape scale is often impractical (Chen et al. 2008). Large 

sample sizes of real and synthetic landscapes are needed, such as those employed in this 

thesis, in order to develop explanatory models that describe this complex relationship.  

 

Research could build on previous frameworks and explanatory models, such as the Strahler 

et al.‘s (1986) L- and H-resolution model, to understand error and uncertainty in remote 

sensing data. This model describes the relationship between the size of objects in a scene, 

the pixel size and classification accuracy. Explanatory models such as the L- and H-

resolution model are rarely used in remote sensing, and there is often no empirical 

justification for the choice of remote sensing techniques for a particular landscape other than 

it produced the highest classification accuracy. 

 

The development of explanatory models for remote sensing error and uncertainty will enable 

a common framework to be applied across all remote sensing studies and allow for an 

understanding of the propagation of error to analyses. Modelling the sources of remote 

sensing uncertainty will allow for a systematic approach to determine the appropriate 

techniques to achieve a given classification and spatial pattern characterisation accuracy. 

There is a lack of research describing how these errors propagate through to the outputs of 



116 

 

spatially explicit modelling in landscape ecology. A valid explanatory model is required to 

realistically predict how error will propagate through to end-use analyses. As classification 

error is not randomly spatially distributed across the landscape (Congalton 1988), 

understanding the factors that affect the representation of landcover maps will aid in 

understanding how error propagates. The explicit treatment of spatial uncertainty in 

ecological models need to become routine (Burgman et al. 2005).  

Finally, an understanding of the effects of spatial uncertainty needs to be expanded further to 

examine the effects on policy and decision making (Figure 6.1) (Borgstram et al. 2006). 

Ecological research is often conducted at scales that are not meaningful to policy makers 

(Stevens et al. 2007) and conversely, management decisions are conducted at scales that 

bare little or no relation to the scale at which ecological processes are operating (Wiens 

2002).  

Scale of Operation

Scale of 

Landscape Pattern

Scale of 

observation and 

analysis

Scale of Policy and 

Management

 

Figure 6.1 Propagation of spatial uncertainty originating from scale. This thesis 

concentrated on the first 3 components: scale of operation, scale of landscape pattern 

and scale of observation and analysis. 

 

The treatment of remote sensing spatial uncertainty and its effects on ecological analyses 

need to be addressed by both the data users and producers due to its complex and 

transdisciplinary nature. As the complexity of both remote sensing and landscape ecology 

increases few users are likely to be experts in both, thus there is a need for collaborative 

approaches to issues of scale and error in spatial data in landscape ecology (Gergel 2007; 

Wiens et al. press; Wu and Hobbs 2002).  Robust error propagation analysis is probably too 

difficult for ‗ordinary‘ GIS users (Heuvelink 2002). This collaborative approach needs to be 

embraced by both communities in order to develop guidelines, methods and standards for 

spatial data production and use that are relevant to ecologists.  

 

Spatial data standards (e.g. ISO 19100 Series, ENV12656, 1998) developed by the 

geospatial community provide a useful foundation for error reporting. However, the current 
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reporting standards and practices are not useful in assessing fitness for use in landscape 

ecological research as they typically ignore error and uncertainty that affect the 

characterisation of landscape pattern. It is rare for example, for a map to explicitly represent 

uncertainty in spatial data (Schmit et al. 2006), even though the documentation of spatial 

data quality is widely recognised as important in order to use spatial data effectively 

(Worboys 1998).  Much of the focus of data quality standards is on the concept of ―fitness for 

use‖, which, in practice is based on communicating uncertainty and error as opposed to 

methods of dealing with uncertainty or estimating error propagation. However, ecologists are 

restricted in the spatial datasets they use and may make use of data that imperfectly 

describes geographic phenomenon out of necessity, ignoring documented spatial data 

quality. Thus, there is a need in the geospatial community to not only focus on the 

documentation of accuracy and methods of creating more accurate maps, but to explore the 

consequence of inaccuracy on analyses conducted when using spatial data.  

 

Finally, traditional hard classification schemes commonly used to represent the patch-matrix 

models used by landscape ecologists may be inadequate to represent the complexity of real 

landscapes. A collaborative approach is needed to investigate whether more complex 

representations of the landscape can be used to overcome the limitations of using remote 

sensing hard classification schemes. Some existing methods of representing landcover 

developed by the remote sensing community may deal with some of these spatial data 

uncertainty issues. As described in chapters 2 and 3, numerous landcover classification 

techniques are available to represent landscapes, such as fuzzy classification or soft 

classification techniques that have the potential to overcome some of the problems of scale. 

The reluctance to embrace these newer remotes sensing techniques probably stems from 

the increase in complexity in both producing and processing these datasets that may be 

beyond most landscape ecologists. Furthermore, in landscape ecology, the unit of analysis is 

most commonly the patch, thus soft classification methods are not always appropriate data 

input for models. A collaborative approach is needed to develop ecological models suitable 

for use with soft classification techniques, incorporating geostatistical approaches to 

analysing spatial pattern. The use of these more complex representations of landcover in 

landscape ecology is still rare (as shown in chapter 2) and requires substantial innovation.  

 

6.5 Conclusion 

This thesis has highlighted some of the spatial uncertainty issues prevalent when using 

remote sensing data in landscape ecology. It demonstrated that landscape ecologists rarely 

address spatial uncertainty even though spatial uncertainty arising from scale can have 

important impacts on ecological analyses. Several key findings emerged from this research. 
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Firstly, it found that mapping error was highest when the scale of the feature and the raster 

grid coincided. Ecologically important landscape elements such as small and linear 

vegetation patches of similar scales to the raster grid had lower classification accuracies, and 

were less likely to be extracted than larger more compact features. Secondly, this thesis 

showed that at coarser scales, subtle levels of patchiness declined. Small patches either 

aggregated into larger patches or completely disappeared. Thirdly, it demonstrated spatial 

uncertainty can obscure observed pattern and process relationships potentially leading to 

spurious results when conducting analyses using multi-scale species-environment. In 

conclusion, this thesis quantified the impact of scale on the classification of landcover maps 

and demonstrated how spatial uncertainty in the characterisation of landscape pattern can 

impact on ecological analysis.  

 

This thesis should be considered a first step to addressing this issue that is transdisciplinary 

in nature and thus rarely a topic of research. The challenge for future research in both 

landscape ecology and remote sensing is to develop universal explanatory models that 

describe conditions where scale will be an issue and scaling models that can be used to 

overcome these issues. Without the incorporation of uncertainty arising from scale, 

ecological analyses using remote sensing data will continue to produce results with 

unquantified uncertainties, which may result in poor and/or ineffective management 

decisions. 
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Appendix A 

 

The following code was used to create the random multi-fractal synthetic images in IDL. For 

further information regarding the rest of the IDL and R code used for the rest of the 

simulation model in chapter 5 please contact the author directly 

(alexmarklechner@yahoo.com.au). 

 

 

;Midpoint displacement and successive random additions in two dimensions (midpointfM2D) 

 

;Adapted for IDL from pseudocode describing the midpoint FM2D published in: 

;Saupe, D. (1988). Algorithms for random fractals. In H.O. Peitgen & D. Saupe (Eds.), 

;The science of fractal images (pp. 71-113). New York: Springer-Verlag 

; and  

; RULE 

;Gardner, R.H. (1999). RULE: map generation and a spatial analysis program. In K. J.M. & G. R.H. 

;(Eds.), Landscape Ecological Analysis: Issues and Applications (pp. 280–303). New York: Springer 

 

;ALGORITHM MidPointFM2D(X, maxlevel, sigma, H, addition, seed) 

 

;Arguments-------- 

;maxlevel = maximal number of recursions, N=2^maxlevel 

;sigma    = initial standard deviation = 1 

;H        = parameter - determines fractal dimension D=3 - H 

;addition = boolean parameter (turns random additions on/off) 

;seed     =seed value for random number generator 

 

;Variables-------- 

;i, N, stage = integers 

;delta       = real number  holding standard deviation "delta =sigma" 

;x, y, y0, D, d = integer array indexing variables 

 

;Functions-------- 

;Gauss2 

;f3(delta,x0,xl,x2)=(x0*x1+x2)/3 +delta*Gauss2 

;f4(delta,x0,x1,x2,x3) =(x0+xl*x2+x3)/4 + delta * Gauss2 
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;Output-------- 

;Array of real numbers 

 

 

;***************************************** 

Function Gauss2, val1, sigma,seed 

;***************************************** 

;create a normal number by summing 12 uniform random numbers 

sum = 0.0 

for i = 1,12 do begin 

  sum = sum + randomu(seed) 

endfor 

 

GaussVal = (sum - 6.0) *  sigma + val1 ; Original method 

 

return, GaussVal 

 

end 

 

;***************************************** 

Function f3,delta,x0,x1,x2,sigma,seed 

;***************************************** 

returnnum = ((x0+x1+x2)/3) + (delta*Gauss2(0.0,sigma,seed)) 

return,returnnum 

end 

 

;***************************************** 

Function f4,delta,x0,x1,x2,x3,sigma,seed 

;***************************************** 

returnnum = ((x0+x1+x2+x3)/4) + (delta*Gauss2(0.0,sigma,seed)) 

return,returnnum 

end 

 

;***************************************** 

Function MidPointFM2D, maxlevel,sigma,H,addition,wrap,gradient,seed 
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;***************************************** 

;Example of how to use function: 

;x=MidPointFM2D(8,1,.5,0,1,0,0,1) 

;print, x 

 

;Arguments parsed to Pro MidPointFM2D  

 

;maxlevel=8 ; maxlevel determines the size of the image 

;sigma= 1.0 

;H= 0.1 

;errorcheck=0 ; if errorcheck is 1 then variable values will be printed as the program runs 

;addition=1 ; if addition eq 1 then run extra code 

;wrap=1 ;Wrapper basically makes the top and bottom rows mirror images of each other. 

;Gradient=0; if gradient equals 1 the corners will ansiotopic image will be created 

 northeast = 59 

 southeast = 20 

 southwest = 10 

 northwest = 40 

 

;print, "program running" 

 

;Setup array 

N=2^maxlevel 

 

;/* set the initial random values for the corners */ 

delta = sigma 

 

;setup corners 

GRID(0,0)= delta*Gauss2(0.0,sigma,seed) 

GRID(0,N)= delta*Gauss2(0.0,sigma,seed) 

GRID(N,0)= delta*Gauss2(0.0,sigma,seed) 

GRID(N,N)= delta*Gauss2(0.0,sigma,seed) 

 

if Gradient eq  1 then begin 

 GRID(0,0)= northeast 

 GRID(0,N)= southeast 

 GRID(N,0)= southwest 
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 GRID(N,N)= northwest 

 print,"northeast = ", northeast 

 print,"southeast = ", southeast 

 print,"southwest = ", southwest 

 print,"northwest = ", northwest 

endif 

 

D = N 

dd =N/2 

 

for stage = 1, maxlevel do begin     ;FOR variable = init, limit [, Increment] DO BEGIN ****loop 1 

 ;going from grid type I to type II 

 delta = delta * 0.5 ^(0.5*H) 

 

 ;#1 interpolate and offset points 

 for x = dd, N-dd, D do begin 

  for y = dd, N-dd, D do begin 

GRID(x,y) = f4 (delta, GRID(x+dd,y+dd), GRID(x+dd,y-dd), GRID(x-

dd,y+dd), GRID(x-dd,y-dd),sigma,seed) 

  Endfor 

 Endfor 

 

 ;#2 displace other points also if needed 

 if addition eq 1 then begin 

 ;print, "addition being implemented 1" 

  for x=0, N, D do begin 

   for y=0, N, D do begin 

    GRID(x,y) = GRID(x,y)+delta*Gauss2(0.0,sigma,seed) 

   Endfor 

  Endfor 

 endif 

 

 ; going from grid type II to type I 

 delta = delta * 0.5 ^(0.5*H) 

 

 ;#3 interpolate and offset boundary grid points 
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 for x = dd, N-dd, D do begin 

  GRID(x,0) = f3(delta, GRID(x+dd,0), GRID(x-dd,0), GRID(x,dd),sigma,seed) 

  GRID(x,N) = f3(delta, GRID(x+dd,N), GRID(x-dd,N), GRID(x,N-dd),sigma,seed) 

  GRID(0,x) = f3(delta, GRID(0,x+dd), GRID(0,x-dd), GRID(dd,x),sigma,seed) 

  GRID(N,x) = f3(delta, GRID(N,x+dd), GRID(N,x-dd), GRID(N-dd,x),sigma,seed) 

 

  if wrap eq 1 then begin 

   GRID(x,N) = GRID(x,0) 

   GRID(N,x) = GRID(0,x) 

  endif 

 endfor 

 

;#4 interpolate and offset interior grid points 

 

for x = dd, N-dd, D do begin 

for y = D, N-dd, D do begin 

GRID(x,y) = f4 (delta, GRID(x,y+dd), GRID(x,y-dd), GRID(x+dd,y), GRID(x-

dd,y),sigma,seed) 

endfor 

endfor 

 

;#5 

 

for x =D, N-dd,D do begin 

for y= dd, N-dd, D do begin 

GRID(x,y)= f4(delta, GRID(x,y+dd), GRID(x,y-dd), GRID(x+dd,y), GRID(x-

dd,y),sigma,seed) 

 endfor 

endfor 

 

;#6 displace other points also if needed 

 

if addition eq 1 then begin 

for x =0,N,D do begin 

  for y = 0, N, D do begin 

   GRID(x,y) = GRID(x,y) + delta * Gauss2(0.0,sigma,seed) 

  endfor 
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 endfor 

 

;#7 

 

for x = dd, N-dd, D do begin 

for y = dd,N-dd, D do begin 

   GRID(x,y)= GRID (x,y) + delta * Gauss2(0.0,sigma,seed) 

endfor 

endfor 

endif 

 

 

D=D/2 

dd= dd/2 

endfor; ****loop 1 

 

return, grid 

 

End 



150 

 

Appendix B 

 
Graph of r values versus buffer radius for apparent and true landscapes and a range of 

derived ecological responses for real landscape A. Curves in bold are based on the true 

landscape and buffer size used to derived the ecological response at a buffer radius and 

pixel size indicated above each plot. The other curves describe the r values versus buffer 

radius relationship derived with apparent landscapes. The buffer radius of the true 

ecological scale is indicated by the dotted vertical line. 
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Graph of r values versus buffer radius for apparent and true landscapes and a range 

of derived ecological responses for real landscape C. Curves in bold are based on the 

true landscape and buffer size used to derived the ecological response at a buffer 

radius and pixel size indicated above each plot. The other curves describe the r values 

versus buffer radius relationship derived with apparent landscapes. The buffer radius 

of the true ecological scale is indicated by the dotted vertical line. 
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Graph of r values versus buffer radius for apparent and true landscapes and a range 

of derived ecological responses for real landscape F. Curves in bold are based on the 

true landscape and buffer size used to derived the ecological response at a buffer 

radius and pixel size indicated above each plot. The other curves describe the r values 

versus buffer radius relationship derived with apparent landscapes. The buffer radius 

of the true ecological scale is indicated by the dotted vertical line. 
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Graph of r values versus buffer radius for apparent and true landscapes and a range of 

derived ecological responses for synthetic landscape H=0.1 P=0.5. Curves in bold are 

based on the true landscape and buffer size used to derived the ecological response at a 

buffer radius and pixel size indicated above each plot. The other curves describe the r 

values versus buffer radius relationship derived with apparent landscapes. The buffer 

radius of the true ecological scale is indicated by the dotted vertical line. 
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Graph of r values versus buffer radius for apparent and true landscapes and a range of 

derived ecological responses for synthetic landscape H=0.5 P=0.25. Curves in bold are 

based on the true landscape and buffer size used to derived the ecological response at a 

buffer radius and pixel size indicated above each plot. The other curves describe the r 

values versus buffer radius relationship derived with apparent landscapes. The buffer 

radius of the true ecological scale is indicated by the dotted vertical line. 
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Graph of r values versus buffer radius for apparent and true landscapes and a range of 

derived ecological responses for synthetic landscape H=0.5 P=0.5. Curves in bold are 

based on the true landscape and buffer size used to derived the ecological response at a 

buffer radius and pixel size indicated above each plot. The other curves describe the r 

values versus buffer radius relationship derived with apparent landscapes. The buffer 

radius of the true ecological scale is indicated by the dotted vertical line. 
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Graph of r values versus buffer radius for apparent and true landscapes and a range of 

derived ecological responses for synthetic landscape H=1 P=0.25. Curves in bold are 

based on the true landscape and buffer size used to derived the ecological response at a 

buffer radius and pixel size indicated above each plot. The other curves describe the r 

values versus buffer radius relationship derived with apparent landscapes. The buffer 

radius of the true ecological scale is indicated by the dotted vertical line. 

  

 

 


