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Abstract

Blind Signal Separation (BSS) techniques are commonly employed in the separation of speech signals, using
Independent Component Analysis (ICA) as the criterion for separation. This paper investigates the viability of
employing ICA for real-time speech separation (where short frame sizes are the norm). The relationship between the
statistics of speech and the assumption of statistical independence (at the core of ICA) is examined over a range of
frame sizes. The investigation confirms that statistical independence is not a valid assumption for speech when divided
into the short frames appropriate to real-time separation. This is primarily due to the quasi-stationary nature of speech
over the temporal short term. We conclude that employing ICA for real-time speech separation will always result in
limited performance due to a fundamental failure to meet the strict assumptions of ICA.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction enhancement for noisy speech recognition, hearing
aids and mobile telephony [1].

Speech has proven to be a major area of interest BSS primarily employs Independent Compo-

within Blind Signal Separation (BSS) research.
This is largely due to the potential of applying BSS
for speech enhancement within an audio scene;
examples of such applications include front-end
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nent Analysis (ICA) as a criterion for separation
[2], including applications in a speech/audio
environment. Typically, in such applications,
batch BSS techniques are employed and previous
reported work such as JADE [3] and FastICA [4]
(which assume instantaneous mixing environ-
ments) have indicated that these algorithms
achieve reasonable performance operating on
speech [5-7]. These BSS techniques presume that
in batch mode, the large data lengths will meet a
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constraint of statistical independence. However,
batch based algorithms fail to represent the
dynamic nature of a realistic audio environment.
For instance, it is stated in [8] that audio
applications (involving live speakers) that “apply
some means of inverse filtering would have to be
adaptable on almost a frame-by-frame basis to be
effective”. The necessity of estimating the inverse
mixing matrix on a frame-by-frame basis, com-
bined with the 200ms bound on the delay of
interactive voice communication [9], indicates that
audio based BSS must be applied in real time with
a very limited dataset.

In addition to an algorithm’s data efficiency, it is
necessary to consider the more fundamental issue
of whether signals comply with the ICA criteria
(statistical independence between signals) for
frame sizes suited to real-time application.
Although this issue has not been addressed in the
context of ICA in real time, other BSS work
[10,11] has considered the statistical dependencies
between speech signals. In [11], it was reported
that strong cross-correlations may exist between
speech signals for small (but non-negligible)
time periods which can weaken the separation
performance of Adaptive Decorrelation Filtering
(ADF). In addition, [10] revealed that the perfor-
mance of ICA in the frequency domain degrades
as the number of samples in each frequency bin
decreases. This is due to an increase in the
statistical dependency between speech signals in
each bin [10].

While [10,11] suggest that the statistical depen-
dencies between speech signals increase across
shorter periods, this paper considers the issue in
more detail. In particular, it addresses the validity
of the underlying ICA assumptions for a speech
signal framed for real-time processing. We inves-
tigate ICA/real-time speech processing compat-
ibility through a detailed analysis of the statistical
dependence of speech signals with respect to frame
size. This provides insights into the validity of ICA
as a criterion for frame-based speech separation.
The analysis conducted in this paper employs
instantaneous mixtures of speech, and not the
convolutively mixed speech of a more realistic
acoustic environment. Instantaneous mixtures,
however, present the best case scenario for signal

separation via BSS. Thus, the conclusions of this
analysis should be directly applicable to convolu-
tively mixed speech observations.

2. Mutual Information

Mutual information (MI) is an information
theoretic measure of the dependence of random
variables. MI can be defined in the discrete two-
dimensional domain for variables x and y as [12]

P(x,y)

MI(x,y) = ZN y;l P(x,) log PP’ (1)

where P(x,y) is the joint pdf of x and y, and P(x)
and P(y) are the marginal pdfs of x and y with
observation spaces N and N1, respectively. MI is
regarded as an ideal measure of statistical inde-
pendence as it considers the whole dependency
structure of the wvariables, unlike correlation
measures that only consider linear dependencies
[12]. In this analysis, the estimator detailed in [13]
was used to compute (1).

3. Analysis of the relationship between statistical
independence and speech

3.1. MI analysis data set

This section presents a detailed analysis of
typical speech signal statistical dependence across
a range of frame sizes that cover the entire
spectrum of BSS applications; from batch (4-55)
to real-time application (20-30 ms). To investigate
the relationship between speech and statistical
independence, a data set consisting of four classes
of signals including speech, natural vowels, artifi-
cial vowels and Gaussian noise was applied to the
Mutual Information estimator in [13]. The MI was
estimated, across the entire range of frame sizes,
between all possible combinations of frames taken
from a pair of signals of the same class.

The corpus used in the MI analysis consisted of
30 speech sentences from the ANDOSL database
[14] and 22 natural vowels from [15]. The speech
sentences were all 5s in length, sampled at 20 kHz
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and consisted of speakers of various age and both
genders. The natural vowels were 0.5s long,
sampled at 16kHz and consisted of 11 vowels
spoken by a male and female. We employed the
database from [15] as it allowed analysis to be
conducted over a set of vowels that were sustained
for a relatively long duration (0.5s). This allowed
MI analysis to be conducted across a broad range
of frame sizes to generate statistically meaningful
results. Artificial vowels were generated from the
natural vowel corpus via replication of a single
pitch cycle extracted from each natural vowel. The
Gaussian noise test set was artificially generated to
be uncorrelated and hence statistically indepen-
dent [2]. Despite the fact that pairs of Gaussian
signals violate the ICA framework [2], they were
included in the MI test set to provide a benchmark
comparison.

3.2. MlI-frame size relationship for signal classes

A summary of the results of the MI versus frame
size analysis for the speech and Gaussian signals
defined in Section 3.1 is shown in Fig. 1. The MI
values for all signals in Fig. | continue to
asymptotically approach zero as the frame size
increases from 0.5 to 5s. However, for brevity,
only the results for frame sizes spanning
20ms—0.5s are shown in Fig. 1.

The results shown in Fig. 1 indicate increasing
dependency for the speech and Gaussian classes as
frame size is reduced. However, the increase in
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Fig. 1. Average mutual information estimated for speech and
Gaussian classes for frame sizes 20 ms-0.5s.

dependency is more than an order of magnitude
greater for the speech signals than for the baseline
Gaussian signals. This characteristic is particularly
evident for frame sizes less than 100 ms, where the
speech exhibits a significant (33%) increase in
dependency as frame size is reduced. The marginal
increase in dependency exhibited by the Gaussian
signals can be attributed to poorer estimates of the
underlying statistics as the sample size is reduced.
This same effect could account for a small increase
in the MI value for speech as the frame size
decreases. However, the dramatic increase exhib-
ited by the speech signals must be attributed to
some additional factor. This additional factor
involves the physical characteristics imposed upon
the speech signal by the auto-regressive structure
of the speech production mechanism [16]. This is
further examined in Section 3.4.

3.3. Deterministic and harmonic speech signal
effects on M1

To examine the effects of a deterministic
‘speech’ signal on the relationship between MI
and frame size, the set of artificial vowels (detailed
in Section 3.1) were employed in a comparative
analysis with the set of natural vowels. The
artificial vowels were used as they represent the
extreme of predictability (maximum autocorrela-
tion) that a natural speech signal may exhibit in
the temporal short term. In addition, a subset of
the artificial and natural vowels employed in the
analysis were chosen to possess pitch periods that
were integer multiples of a common fundamental
frequency. In the remainder of this paper these
signals are referred to as being harmonically
related. The harmonic artificial vowels differ from
the harmonic natural vowels, however, as the
artificial vowel’s harmonic pitch relationships are
constant across their duration. Whereas the
natural vowel’s pitch period may vary slightly
due to the dynamic nature of the speech produc-
tion mechanism; thus they are not consistently
harmonically related across their duration. Fig. 2
compares the average MI measured between all 22
pairs of the natural vowels data set, pairs of
harmonic artificial vowels and pairs of harmonic
natural vowels. The MI was estimated across all
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Fig. 2. Average mutual information estimated for harmonic
artificial vowels, harmonic natural vowels and the entire class of
natural vowels for frame sizes 20 ms—0.5s.

frame permutations and for frame sizes 20 ms—0.5s
in all cases. The results shown in Fig. 2 indicate
that the MI between pairs of harmonic artificial
vowels is significantly higher than pairs of natural
vowels (both harmonic and non-harmonic). In
fact, the artificial vowels exhibit an increase in MI
as frame size is increased. This relationship clearly
violates the overall trend for all other signals
examined (see Figs. 1 and 2) and can be attributed
to both the harmonic relationship and determinis-
tic nature of the artificial vowels. These character-
istics result in highly predictable temporal
relationships that actually increase as frame size
extends to encompass multiple pitch cycles (higher
autocorrelation). Fig. 2 also indicates higher MI
results for harmonically related natural vowels
when compared to the entire class of natural
vowels. This result clearly indicates that harmonic
relationships result in increased dependence. How-
ever, while harmonicity results in an approximate
doubling of the MI for frame sizes below 200 ms,
this is significantly smaller than the order of
magnitude increase evident for artificial vowels.
This distinction clearly indicates that the majority
of the MI increase for the artificial vowels is due to
their deterministic nature. The results presented in
this section indicate that harmonically related
vowels clearly defy the statistical independence
criteria imposed by BSS algorithms and this
characteristic is further accentuated by the pre-
dictability of the speech signals.

3.4. Influence of the speech production model on M1

The results shown in Sections 3.2 and 3.3
indicate that the mutual information between
speech signals increase dramatically as the frame
size of the speech signals decrease. It is proposed
that the characteristics of the speech production
model, in particular the quasi-stationary nature
and inherent correlation of speech over the
temporal short term (for up to 30ms) [16], are
responsible for this relationship. To objectively
analyse the influence of the speech production
model on MI, the MI between all possible frame
combinations of two speech signals Speaker 1 and
Speaker 2 (obtained from 1s segments of the
speech set described in Section 3.1) was calculated
for frame sizes of 20 ms and 80 ms. These frame
sizes were a reasonable choice to allow comparison
of the statistical dependencies between speech
signals considered quasi-stationary (20ms) and
speech signals less stationary in nature (80 ms).

It is evident comparing Fig. 3(a) and Fig. 3(b)
that the MI for 80 ms frames is consistently low
(<0.1), while the MI for the 20 ms frames vary
dramatically (from 0 to 0.47). The large variation
in MI for 20ms frames is due to these smaller
frames having sufficient temporal resolution to
represent a single phoneme or at least a single
phonetic classification. The mutual information
troughs of Fig. 3(a) (labelled i) refer to the frames
of a speaker that present minimum MI across all
frames of the other speaker. These troughs
correspond to unvoiced frames of speech. Un-
voiced frames have previously been demonstrated
to be substantially noise-like, and thus these
frames approach statistical independence from all
other speech frames. Portions of Fig. 3(a) that
display more significant MI (labelled ii) corre-
spond to frames of voiced speech for both Speak-
ers 1 and 2. Voiced speech, examined in the form
of natural vowels in Section 3.3, is quasi-periodic
and possesses temporal correlation, resulting in
some predictability between voiced frames. The
maximum MI peaks of Fig. 3(a) (labelled iii)
correspond to voiced sections of Speakers 1 and 2
that have the greatest temporal predictability, due
to the formation of harmonic pitch relationships.
The underlying reason that Fig. 3(b) fails to
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Fig. 3. Mutual Information estimated between all combinations of frames belonging to two 1s sections of speech signals, Speakers 1
and 2, for frame sizes of 20 ms (Fig. 3(a)) and 80 ms (Fig. 3(b)). Label i corresponds to the unvoiced frames of Speakers 1 and 2. Label ii
refers to frames of voiced speech between Speaker 1 and Speaker 2, while label iii corresponds to voiced frames that have formed

harmonic pitch relationships.

exhibit the same peaks and troughs as those
evident in Fig. 3(a) is due to longer frames
capturing the time-varying nature of the vocal
tract (the evolution of speech) and variation
between voiced and unvoiced speech.

4. ICA application with speech in relation to frame
size

In this section, the effect of increasing the
statistical dependencies between pairs of speech is
analysed for common ICA algorithms. The Joint
Approximate Diagonalization of Eigenmatrices
(JADE)'[3] and FastICA’4] algorithms were
applied to the 30 speech signals from the data set
of Section 3.1 and a baseline class of iid Laplacian
distributed data. The algorithms were applied to
all possible combinations of frames for each signal
pair and over a range of frame sizes from 20 ms to

"Download real version 1.5, http://sig.enst.fr/cardoso/
stuff.html, July 2003.

“Download version 2.1, http://www.cis.hut.fi/projects/ica/
fastica, July 2003.

5s. The performance criterion employed for JADE
and FastICA was an interference measure (IM)
defined as

1/2
(PijT - max([’j)z)
max(p;) ’

(@)

12
M=

where p is the product of the mixing and
separation matrix, and p; is a row of p. Eq. (2)
essentially measures p’s distance from a matrix
corresponding to the product of a permutation
matrix and diagonal matrix. It is the inverse of the
measure used in [6]. Informal listening tests
conducted upon the speech mixtures of this
analysis, indicate that an IM of 0.03 or less
corresponds to a level of separation where inter-
ference is inaudible. The results of this analysis,
the average IM versus frame size for both ICA
algorithms (as shown in Fig. 4), indicate that both
the speech and the Laplacian classes record higher
levels of interference when frame size is reduced.
The IM increase in the Laplacian data can be
attributed to the sub-optimal estimation perfor-
mance of JADE and FastICA for smaller frame
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Fig. 4. The average IM obtained by applying JADE and
FastICA to the set of speech signals and Laplacian data for
frame sizes 20 ms—S5s.

sizes. However, it fails to account for the
additional interference the speech class possesses
when compared with the Laplacian class across all
frame sizes. In particular, the speech signal’s IM
was up to five times greater than the Laplacian
signals across shorter frame lengths (<100 ms).
The speech signal’s unacceptably high IM levels
(0.18-0.3) correlate with the increased statistical
dependencies for smaller frame sizes; reported in
Fig. 1. This result clearly indicates that the
increasing dependency exhibited by speech signals,
as the frame size is reduced, is a significant factor
contributing to the poor performance of the ICA
algorithms for real-time framed speech.

The feasibility of applying ICA to speech in real
time is also effected by another issue. It was
detailed in the MI analysis of Section 3.4 that as
frame size is reduced, a frame is more likely to
consist entirely of unvoiced speech. Unvoiced
speech has been reported to be Gaussian distrib-
uted in [17]. In order to retain signals, the ICA
model requires that all independent components
but one are non-Gaussian [2]. Thus, when more
than one speech signal in the mixture frame is
composed of unvoiced speech, the non-Gaussian
assumption of ICA is violated. Given an approx-
imation that unvoiced speech comprises 20% of a
speech signal [18], it can be concluded that two
real-time framed speech signals will violate the
non-Gaussian assumption of ICA, on average, for
4% of the frames.

5. Conclusion

The mutual information analysis of this paper
reveals a general trend in the MI—frame size
relationship of speech. As frames of speech
are decreased in size, the statistical dependencies
between them increase. This relationship has
particular relevance to BSS with speech in a
time-varying mixing environment, which requires
a real-time approach to separation. Significant
statistical dependencies exist for the smaller frames
of this MI analysis, due to the quasi-statio-
nary nature and inherent correlation of speech
over the temporal short term. As a consequence,
the underlying ICA model is incompatible
with frames of speech that are considered small
enough for real-time application. However, as
the size of the analysis speech frames increases,
frames capture the long-term behavior of speech,
exhibit less correlation and approach statistical
independence.

Thus, it is concluded that although ICA is
suitable for application with speech in batch
techniques possessing substantial data, it is in-
evitably less reliable for realistic audio environ-
ments that require a real-time approach to
separation.

References

[11 K. Torkola, Blind separation for audio signals—are
we there yet?, Proceedings of the first International
Workshop on ICA and BSS, 1999, Aussois, France,
pp- 239-244.

[2] A. Hyvarinen, J. Karhunen, E. Oja, Independent Compo-
nent Analysis, Wiley, New York, 2001.

[3] J.F. Cardoso, A. Souloumiac, Blind beamforming for
nongaussian signals, IEE Proceedings-F 140 (6) (1993)
362-370.

[4] A. Hyvarinen, Fast, Fixed-Point Algorithms for Indepen-
dent Component Analysis, Trans. Neural Network 10 (3)
(1999) 626—634.

[5] B. Millar, J. Vonwiller, J. Harrington, P. Dermody,
Australian National Database of Spoken Language
(ANDOSL), CD ROM.

[6] K. Hild, D. Erdogmus, J. Principe, Blind source separation
using Renyi’s mutual information, IEEE Signal Process.
Letters 8 (6) (2001) 174-176.

[71 AJW. van der Kouwe, D. Wang, G. Brown, A
comparison of auditory and blind separation techniques



D. Smith et al. | Signal Processing 86 (2006) 353-359 359

for speech segregation, IEEE Trans. Speech Audio
Processing 9 (3) (2001) 189-195.

[8] M. Brandstein, On the use of explicit speech modeling in
microphone array applications, in: Proc. of ICASSP98,
Seattle, May 1998, pp. 3613-3616.

[9] D. Ferrari, Client requirements for real time communica-
tion systems, rfc 1193, 1990.

[10] S. Araki, R. Mukai, S. Makino, T. Nishikawa, H.
Saruwatari, The fundamental limitation of frequency
domain blind source separation for convolutive mixtures
of speech, IEEE Trans. Speech Audio Processing 11 (2)
(2003) 109-116.

[11] Y. Zhao, R. Hu, S. Nakamura, Whitening processing for
blind signal separation of speech signals, in: Proceedings of
ICA2003, 2003, Nara, Japan, pp. 331-336.

[12] A. Fraser, H. Swinney, Independent coordinates for
strange attractors from mutual information, Phys. Rev.
A 33 (2) (1986) 1134-1140.

[13] G. Darbelly, I. Vadja, Estimation of the information by an
adaptive partitioning of the observation space, IEEE
Trans. Inform. Theory 45 (4) (1999) 1315-1321.

[14] T. Blaschke, L. Wiskott, CuBICA: independent compo-
nent analysis by simultaneous third- and fourth-order,
IEEE Trans. Speech Audio Processing 52 (5) (2004)
1250-1256.

[15] M. Hasegawa-Johnson, A. Alwan, J. Cha et al., Vowels MRI
databse,  http://www.ifp.uiuc.edu/speech/mri/vowels.html,
last accessed 21/5/03.

[16] L. Rabiner, R. Schafer, Digital processing of speech
signals, Prentice-Hall, Englewood Cliffs, NJ, 1978.

[17] G. Kubin, Nonlinear Processing of Speech, Speech Coding
and Synthesis, Elsevier Science, Elsevier, Amsterdam,
1995, pp. 557-611.

[18] R. Hagen, E. Paksoy, A. Gersho, Voicing-specific LPC
quantization for variable-rate speech coding, IEEE Trans.
Speech Audio Processing 7 (5) (1999) 485-494.


http://www.ifp.uiuc.edu/speech/mri/vowels.html

	An analysis of the limitations of blind signal separation application with speech
	Introduction
	Mutual Information
	Analysis of the relationship between statistical independence and speech
	MI analysis data set
	MI-frame size relationship for signal classes
	Deterministic and harmonic speech signal effects on MI
	Influence of the speech production model on MI

	ICA application with speech in relation to frame size
	Conclusion
	References




