
PARALLEL EVOLUTIONARY PROGRAMMING TECHNIQUES FOR
STRATEGY OPTIMISATION IN AIR COMBAT SCENARIOS

A thesis submitted in fulfillment of the requirement for
for the degree of Doctor of Philosophy

ISTAS F. NUSYIRWAN

B.Eng, M.Eng

School of Aerospace, Mechanical and Manufacturing Engineering
RMIT University

March 2008

Declaration

I certify that except where due acknowledgement has been made, the work is
that of the author alone; the work has not been submitted previously, in whole or
in part, to qualify for any other academic award; the content of the thesis is the
result of work which has been carried out since the official commencement date
of the approved research program; and, any editorial work, paid or unpaid, carried
out by a third party is acknowledged.

Istas F. Nusyirwan

()

iii

Abstract

Air combat between fighter missiles and aircraft can be categorised as a pursuit-
evasion problem. One aircraft acts as a pursuer and the other as an evader. Gen-
erally, the pursuer will try to capture the evader as quickly as possible and the
evader tries to evade capture for as long as possible. For an experienced human
pilot, it is trivial to discuss this methodology, but to simulate it, the mathematics
involved is very complex and difficult to implement in a computer environment.
Classical methods, though very accurate in their analysis, are not suited to solve a
complex 6DOF pursuit-evasion problem and they have limitations in representing
real-world problems such as discontinuities, discrete, stochastic, chaotic, temporal
information or lack of information. In this thesis, Evolutionary Programming (EP)
is applied to determine the optimum manoeuvring strategy for an aircraft (evader)
to avoid interception by an incoming missile (pursuer). EP is a class of algorithms
known as Evolutionary Algorithm (EA). EA has an ability to find an optimal solu-
tion in a complex problem which involves discontinuities, discrete, nondifferential
parameters and noise. In addition, the methodology was implemented on parallel
computer architecture to improve the computing time and expanding the search
space. A sensitivity analysis was carried out to determine the best configuration
and to understand the effect of parameters, such as number of processors, popu-
lation size, number of generations, etc., on the results. The effects of sensor and
instrument errors were also considered. The method enabled feasible solutions to
be found in a relatively short period of time. However, the ability to search for
feasible solutions is dependent on various parameters such as initial conditions,
aircraft configurations and aerodynamic constraints.

It is concluded that, in general, EP is able to determine feasible maneuvering
strategies for an evader to avoid interception with and without instrument errors.
The methodology has the potential to be used as a training tool for pilots in air
combat or as an intelligent engagement strategy for autonomous systems, such as
Unmanned Air Combat Vehicles (UCAV).

iv

Thank you for your love, support and trust in me.
To Mom and Dad, my beloved wife and children.

v

Acknowledgments

In the realisation of this thesis, numerous persons and organisations have con-
tributed in terms of expertise contribution and financial assistance. Notably, I
would like to mention:

• Assoc. Prof. Cees Bil & Dr. George Galanis. As the supervisor and co-
supervisor of this project, for the help, guidance and support have permitted
the realisation of this thesis.

• Surya, Faisal, Fareez and Firzanah. My wife and children for their patience,
understanding and sacrifice.

• Victoria Partnership of Advanced Computing. For providing an excellent
computing environment in realising the project.

• the Ministry of Higher Education Malaysia. For providing the much needed
financial assistance.

• Universiti Teknologi Malaysia. For allowing me to come to RMIT, Mel-
bourne to further my passion in research on aircraft.

• My parents who encouraged and supported me in pursuing my career.

• All my beloved friends at the Wackett Centre.

• All my fellow Malaysian postgraduates in Melbourne.

vi

Table of Contents

List of Figures . xi

List of Tables . xiv

Definitions . xv

List of Abbreviations . xvi

List of Notations . xviii

List of Publications . xxiii

1 Introduction . 1
1.1 Modern Air Combat . 3
1.2 Problem Statement . 5
1.3 Research Aims . 6
1.4 Thesis Outline . 6

2 The Pursuit-Evasion Problem . 8
2.1 Introduction . 8
2.2 Game Theory . 9
2.3 Development of Game Theory 11
2.4 Guided Missiles . 12

2.4.1 Proportional Navigation Guidance 15
2.4.2 Missile Warhead . 15
2.4.3 Evading a Missile . 16

2.5 Typical Air Combat Manoeuvres 18
2.6 Aircraft Autonomy in Planning 19
2.7 Pursuit-Evasion Problem . 20
2.8 Evolutionary Algorithms in Pursuit-Evasion Problems 27
2.9 Parallel Evolutionary Algorithms 30
2.10 Summary . 31

3 Evolutionary Computation . 32
3.1 Introduction . 32
3.2 Evolutionary Programming Algorithm 33
3.3 Representation . 36

vii

3.4 Evaluation of Solutions . 37
3.5 Mutation . 37
3.6 Recombination . 38
3.7 Selection . 39
3.8 Applying to Pursuit-Evasion Problem 40
3.9 EAs in Uncertain Environments 42
3.10 Summary . 43

4 Parallel Computing . 44
4.1 Introduction . 44
4.2 Parallel Systems . 44
4.3 Performance vs. cost . 45
4.4 Master-Slave Model . 46

4.4.1 Execution Time . 47
4.5 Coarse-grained Model . 48
4.6 Amdahl’s Law, Parallel Speedup and Efficiency 50
4.7 Summary . 50

5 Implementation of an Air Combat Problem 51
5.1 Introduction . 51
5.2 Assumptions . 54
5.3 Aerodynamic Forces and Moments 54
5.4 Aerodynamic Coefficients . 55
5.5 Component Buildup . 56
5.6 Three Degree of Freedom Simulation Model 57

5.6.1 Introduction . 57
5.6.2 Vector Rotation . 57
5.6.3 Equations of Motion . 59
5.6.4 Equations over Flat-Earth 60
5.6.5 Aircraft Performance Calculation 63

5.6.5.1 Thrust . 63
5.6.5.2 Load Factor and Turning Performance 64

5.6.6 The Pursuer . 65
5.7 Six Degree of Freedom Simulation Model 65

5.7.1 Introduction . 65
5.7.2 Trajectory . 65
5.7.3 Nonlinear Equations of Motion 66

5.7.3.1 Engine Model 67
5.7.3.2 Sign Convention of the Control Surface Deflec-

tions . 67
5.7.3.3 States and Controls 69
5.7.3.4 Constraints . 69
5.7.3.5 Actuators . 70
5.7.3.6 Numerical Solution of the State Equation 70

viii

5.7.3.7 Modelling the Pursuer 72
5.7.4 Proportional Navigation Guidance 72
5.7.5 The Representation of the Solution in EP 73

5.8 The Objective Function . 75
5.9 Integrating the Simulation Model Into EP 76
5.10 Parallel Implementation . 78
5.11 Overall Implementation . 79
5.12 Summary . 79

6 Numerical Results and Discussion 82
6.1 Introduction . 82
6.2 Aircraft Data and Configuration 82

6.2.1 The Evader . 82
6.2.2 The Pursuer . 83

6.3 The Hardware . 83
6.4 Computing Time . 83
6.5 Pursuit Evasion Games . 85

6.5.1 Scenario 1: Head to Tail Encounter 89
6.5.2 Scenario 2: Head to Side Encounter 98
6.5.3 Scenario 3: Head to Head Encounter 106
6.5.4 Evader as Unmanned Air Combat Vehicle (UCAV) 115
6.5.5 Summary . 117

6.6 Factors that Influence the Search 117
6.6.1 Interaction Effect Between Number of Processors, Num-

ber of Generation and Population Size. 117
6.6.2 Effect of the Spawn Time 122
6.6.3 Effect of the Pursuer’s Thrust 124

6.7 Robustness . 127
6.8 Presence of Uncertainties . 130

6.8.1 Effect on Errors in the Evader’s Initial Speed 131
6.8.2 Effects on Errors in the Pursuer’s Initial Speed 134

6.9 Random Versus EP . 135
6.10 Parallel Implementation . 136

6.10.1 Effect of Migration Rate 137
6.10.2 Speedup . 139

6.11 Summary . 143

7 Conclusion . 145
7.1 Summary . 145
7.2 Conclusion . 149
7.3 Future Work . 151

References . 153

ix

A Appendices . 166
A.1 Jet Fighter Aircraft Configuration 166

A.1.1 Mass and Dimensional Characteristics Used in Simulation 166
A.1.2 6DOF Model . 166

A.2 Generic Air-to-Air Missile . 180

x

List of Figures

2.1 A physical combat simulation using sand table [94]. 9
2.2 A typical guided missile. [103] 13

4.1 Master-Slave Model. 46

5.1 Time horizon planning of optimal pursuit-evasion problem. 52
5.2 Sideforce coefficient of the F-16 model [118]. 56
5.3 Coordinate systems for flight over a flat Earth. [81] 60
5.4 Aerodynamic Forces in Three Dimensions. [125] 62
5.5 Aerodynamic and Propulsive Forces [125]. 62
5.6 6DOF simulation with aileron, elevator, rudder and throttle as

control variables calculated with 4th order Runge-Kutta method. . 71
5.7 Angular velocity of the LOS for proportional navigation. [112] . . 72
5.8 Control surfaces of an F-16 aircraft. 74
5.9 An example of coded path for 20 second spawn time. 75
5.10 Flowchart of the Master-Slave implementation. 80
5.11 Flowchart of the Coarse-Grained implementation. 81
5.12 Flowchart of the Air Combat Simulation. 81

6.1 Evaluation times for a 6DOF simulation by each processor on
EDDA. 84

6.2 Three missile-aircraft encounter scenarios studied: rear attack,
side attack and head-on attack. 88

6.3 Optimal flight paths for 7 heading angles calculated by [68]. Flight
paths of the pursuer are gray and the evader are black. Other initial
conditions are similar. 89

6.4 Fitness values for scenario 1. 90
6.5 Computing time to find the first feasible solution for scenario 1. . 90
6.6 3D view of the encounter in scenario 1 (run 1) 91
6.7 3D view of the encounter in scenario 1 (run 2) 92
6.8 3D view of the encounter in scenario 1 (run 3)(. 92
6.9 Load factor and separation distance of the players for scenario 1. . 93
6.10 Feasible encounter in the XY-plane for scenario 1. 94
6.11 Feasible encounter in the XZ-plane for scenario 1. 94
6.12 Velocity of both players for scenario 1. 95
6.13 Aileron deflections of the evader for scenario 1. 96
6.14 Elevator deflections of the evader for scenario 1. 96

xi

6.15 Rudder deflections of the evader for scenario 1. 97
6.16 Throttle settings and velocity of the evader for scenario 1. 97
6.17 Fitness values for scenario 2. 98
6.18 Computing time to find the first feasible solution. 99
6.19 3D view of the encounter in scenario 2 (run 1). 100
6.20 3D view of the encounter in scenario 2 (run 2). 100
6.21 3D view of the encounter in scenario 2 (run 3). 101
6.22 Load factors and the separation distance for scenario 2. 101
6.23 Encounter viewed in the XY-plane for scenario 2. 102
6.24 Encounter viewed in the XZ-plane for scenario 2. 102
6.25 Velocity of both players for scenario 2. 103
6.26 Evader’s velocity and throttle setting for scenario 2. 103
6.27 Aileron deflections of the evader for scenario 2. 104
6.28 Roll-rate of the evader for scenario 2. 105
6.29 Elevator deflections of the evader for scenario 2. 105
6.30 Rudder deflections of the evader for scenario 2. 106
6.31 Fitness values for scenario 3. 107
6.32 Computing time to find the first feasible solution for scenario 3. . 108
6.33 3D view of the encounter in scenario 3 (run 1). 108
6.34 3D view of the encounter in scenario 3 (run 2). 109
6.35 3D view of the encounter in scenario 3 (run 3). 109
6.36 Load factors and the separation distance for scenario 3. 110
6.37 Encounter in the XY-plane for scenario 3. 111
6.38 Encounter viewed in the XZ-plane for scenario 3. 111
6.39 Velocity of both players for scenario 3. 112
6.40 Throttle setting and velocity of the evader for scenario 3. 113
6.41 Aileron deflections of the evader for scenario 3. 113
6.42 Elevator deflections of the evader for scenario 3. 114
6.43 Rudder deflections of the evader for scenario 3. 114
6.44 Load factors for both players and separation distance for UCAV

(scenario 1). 115
6.45 3D view of the encounter with a UCAV for scenario 1. 116
6.46 Normal plot of the standardized effects of the number of feasible

solutions. 120
6.47 Main effect plot for feasible solutions. 121
6.48 The main effect plot for execution time. 121
6.49 Histogram of runs for different simulation (spawn) time. 125
6.50 Three-dimensional encounters for different thrust. 126
6.51 Normal plot of the number of feasible solutions using Anderson-

Darling Method. 128
6.52 Histogram plot of the number of feasible solutions. 128
6.53 Normal plot of feasible solutions using Anderson-Darling Method

for 20 m interception radius. 129
6.54 Number of feasible solutions for 20 m interception radius. 130

xii

6.55 The deviation of the pursuer’s trajectory when the initial speed is
slightly perturbed. In this figure 10 runs are displayed. 134

6.56 Number of feasible solutions found for standard-EP, meta-EP and
Random. 136

6.57 Effect of migration rate on the number of feasible solutions. 138
6.58 Effect of migration rate on the execution time. 138
6.59 Effect of migration rate on the fitness values. 139
6.60 Speedup of different population size (100, 200 and 500). (Number

of Generation = 100). 141
6.61 Maximum speedup and processor number against the population

size for master-slave configuration. 141
6.62 Speedup for different number of processors in coarse-grained con-

figuration with total population size 50,000. 142

xiii

List of Tables

5.1 The Flat-Earth,Body-Axes 6-DOF Equations [118]. 68
5.2 Aircraft Control-Surface Sign Conventions. 68
5.3 Control Surface Actuator Limits and Constants. 74
5.4 Encoding the control surface deflections and throttle setting. . . . 75

6.1 Initial Parameters for the pursuer and the evader. 86
6.2 General Parameters. 87
6.3 Initial Parameters. 118
6.4 General Parameters. 118
6.5 Experiment configurations and their results. 118
6.6 Estimated Effects and Coefficients For Feasible Solutions. 118
6.7 Analysis of Variance. 118
6.8 Experiment configurations of the DOE and their results. 119
6.9 Estimated Effects and Coefficients for the number of feasible so-

lutions. 119
6.10 Initial Parameters. 122
6.11 General Parameters. 122
6.12 Percentage of Finding of Feasible Solution after n number of runs. 122
6.13 Initial Parameters. 127
6.14 General Parameters. 127
6.15 Statistical Results. 127
6.16 Statistical Results. 129
6.17 Initial Parameters. 131
6.18 General Parameters. 132
6.19 The number of successful (not captured) simulations when a fea-

sible solution is rerun 500 times with errors in the evader’s initial
speed. 133

6.20 General Parameters. 135
6.21 Aircraft Parameters. 135
6.22 General Parameter. 140
6.23 Aircraft Parameter. 140
6.24 Parameters and results for coarse-grained configuration. 142

A.1 . 166

xiv

Definitions

Evolutionary Algorithms

Gametes Reproductive cells (sperm and egg) that fuse to form a zygote.

Genes Units of hereditary information. Genes contain the instructions for the
production of proteins, which make up the structure of cells and direct their
activities.

Genotype The entire genetic identity of an individual, including alleles, or gene
forms, that do not show as outward characteristics.

Heredity The handing down of certain traits from parents to their offspring. The
process of heredity occurs through the genes.

Phenotype The visible properties of an organism that are produced by the inter-
action of the genotype and the environment.

Jink A large amplitude periodic manoeuvre.

xv

List of Abbreviations

3D three dimensions

AAM air-to-air missile

AC aerodynamic centre

AOA angle of attack

AON angle of the nose/tail

BVR beyond visual range

C3 command, control and communications

CFD computational fluid dynamics

CG or cg centre of gravity

DOF degree-of-freedom

EP Evolutionary Programming

EA Evolutionary Algorithm

GA Genetic Algorithm

HUD head up display

INS inertial navigation system

IR infrared

KIAS knots indicated airspeed

KTAS knots true airspeed

L/D lift-to-drag ratio

LOS line of sight

MIMD multiple instruction/multiple data

xvi

PC personal computer

PNG/PN Proportional Navigation System

RAM Random Access Memory

RF Radio Frequency

SIMD single instruction/multiple data

UMA uniform memory access

xvii

List of Notations

Symbol Definition Units

α Angle of attack, α = tan−1
(

w
u

)
rad

β Angle of sideslip, β = tan−1
(

v
u

)
rad

a Speed of sound ms−1

an Normal acceleration, positive along the z-axis g units
aY Lateral acceleration, positive along the y-axis g units
b Wing span m
c Specific fuel consumption g/kN·s
c̄ Mean aerodynamic chord (MAC) m
CD Aircraft total drag coefficient, D

1
2ρV2S

CL Aircraft total lift coefficient, L
1
2ρV2S

Cl Rolling moment coefficient.
Cm Pitchings moment coefficient.
Cn Yawing moment coefficient.
Cmα

Partial derivative of the pitching moment co-
efficient with respect to the angle-of-attack.

Cnβ Partial derivative of the yawing moment co-
efficient with respect to the sideslip angle.

Clδl Partial derivative of the rolling moment coef-
ficient with respect to the roll motivator de-
flection

Cmδm Partial derivative of the pitching moment co-
efficient with respect to the pitch motivator
deflection

Cnδn Partial derivative of the yawing moment coef-
ficient with respect to the yaw motivator de-
flection

xviii

Clp Partial derivative (damping) of the rolling
moment coefficient with respect to nor-
malised rate of roll.

Cmq Partial derivate (damping) of the pitching
moment coefficient with respect to the nor-
malised rate of pitch

Cnr Partial derivative (damping) of the yawing
moment coefficient with respect to the nor-
malised rate of yaw.

Cmα̇
Partial derivative (damping) of the pitching
moment coefficient with respect to the nor-
malised rate of change of the angle-of-attack.

Cnβ̇ Partial derivative (damping) of the yawing
moment coefficient with respect to the nor-
malised rate of change of the sideslip angle.

CX X force coefficient, X
1
2ρV2S

CY Y force coefficient, Y
1
2ρV2S

CZ Z force coefficient, Z
1
2ρV2S

CXα Partial derivative of the force coefficients
with respect to the angle of attack.

rad−1

CZα Partial derivative of the force coefficients
with respect to the angle of attack.

rad−1

CXβ Partial derivative of the force coefficients
with respect to the sideslip angle.

rad−1

CYβ Partial derivative of the force coefficients
with respect to the sideslip angle.

rad−1

CXδl Partial derivative of the force coefficient with
respect the roll motivator deflection

rad−1

CYδn Partial derivative of the force coefficient with
respect the yaw motivator deflection

rad−1

CZδm Partial derivative of the force coefficient with
respect the pitch motivator deflection

rad−1

dint The interception radius m
F The resultant of the airframe aerodynamic

forces acting on the vehicle
N

xix

g Acceleration due to gravity m/s2

h Altitude m
Ix Moment of inertia with respect to the body

axes about the x axis.
kgm2

Iy Moment of inertia with respect to the body
axes about the y axis.

kgm2

Iz Moment of inertia with respect to the body
axes about the z axis.

kgm2

Izx or Ixz or Iyz Product of inertia with respect to the body
axes.

kgm2

Izy or Ixy or Iyx Product of inertia with respect to the body
axes.

kgm2

M Mach number , M = V/a

L Rolling moment or lift force N · m or N
M Pitching moment N·m
N Yawing moment N·m
Lδl Partial derivative of the rolling moment with

respect to the roll motivator.
N ·m · rad−1

Mδm Partial derivative of the pitching moment with
respect to the pitch motivator deflection.

N ·m · rad−1

Nδn Partial derivative of the yawing moment with
respect to the yaw motivator deflection.

N ·m · rad−1

Lp Partial derivative of the rolling moment with
respect to the rate of roll.

N ·m · srad−1

Mq Partial derivative of the pitching moment with
respect to the rate of pitch.

N ·m · s · r−1

Nr Partial derivative of the yawing moment with
respect to the rate of yaw.

N ·m · s · r−1

Mw Partial derivative of the pitching moment with
respect to the velocity component w.

N · s

P1 Engine power command based on throttle po-
sition

%

P2 Engine power command to engine %
P3 Engine power %
V Velocity vector m/s
m Mass kg

xx

p Rate of roll. For RH axis system with trans-
verse axis (y) positive to the right. Compo-
nent of the angular velocity Ω along the x-
axis.

rad/s

q Rate of pitch. For RH axis system with trans-
verse axis (y) positive to the right. Compo-
nent of the angular velocity Ω along the y-
axis.

rad/s

r Rate of yaw. For RH axis system with trans-
verse axis (y) positive to the right. Compo-
nent of the angular velocity Ω along the z-
axis.

rad/s

Re Reynold’s number
S Wing area m2

u For a given axis system. Component of vehi-
cle velocity V along the x-axis

m/s

v For a given axis system. Component of vehi-
cle velocity V along the y-axis

m/s

w For a given axis system. Component of vehi-
cle velocity V along the z-axis

m/s

x For a given axis system. Component of vehi-
cle velocity R along x axis

m

y For a given axis system. Component of vehi-
cle velocity R along y axis

m

z For a given axis system. Component of vehi-
cle velocity R along z axis

m

ρ Density kg
m3

np Size of the population
ngen Total number of generation
q̄ The free stream dynamic pressure N/m2

T Total instantaneous engine thrust N
T Temperature Kelvin
T Thrust N
Tidle Idle thrust N
Tmax Maximum thrust N
Tmil Military thrust N

xxi

t Time sec
Tc Communication time
T f Time to evaluate one individual
Tp Elapsed time for one generation
xcg Centre-of-gravity location, in fraction of c̄

γ Flight path angle deg
ψ Heading angle deg
σ Bank angle deg
δa Aileron deflection, positive for left roll deg
δe Elevator deflection, positive for

airplane nose-down control deg
δr Rudder deflection, positive for left roll deg
P Number of Processors used
S Number of Slave Processors, P - 1
τT Engine thrust time constant s

where,

Clp = ∂Cl

∂
pb
2V

Clr = ∂Cl

∂ rb
2V

Clβ = ∂Cl
∂β

Clδa = ∂Cl
∂δa

Clδr = ∂Cl
∂δr

Cmq = ∂Cm

∂
qc̄
2V

Cnp = ∂Cn

∂
pb
2V

Cnr = ∂Cn

∂ rb
2V

Cnβ = ∂Cn
∂beta Cnβ,dyn = Cnβ −

IZ
IX

Clβsinα Cnδa = ∂Cn
∂δa

Cnδr = ∂Cn
∂δr

CXq = ∂CX

∂
qc̄
2V

CZq = ∂CZ

∂
qc̄
2V

CYp = ∂CY

∂
pb
2V

CYr = ∂CY

∂ rb
2V

xxii

List of Publications

Journal Article

1. Istas F. Nusyirwan and C. Bil, Methods of Aircraft Trajectory Optimisation

in Air Combat, ANZIAM Journal, Vol. 47, pp. C649-C664, 2007.

Refereed Conference

1. I. F. Nusyirwan and C. Bil, Sensitivity in Trajectory Optimisation for Air-

craft in Air Combat, In Proceeding of Simtect Conference, 9-12 May, Syd-
ney, Australia, 2005.

2. I. F. Nusyirwan and C. Bil, Methods of Aircraft Trajectory Optimisation

in Air Combat, in proc. of EMAC Conference, 25-28 September , RMIT
University, Melbourne, Australia, 2005.

3. I. F. Nusyirwan and C. Bil, Software Design to Solve Real Time Optimisa-

tion of Proportional Navigation Guidance using Genetic Algorithm, in Proc.
of The 1st Malaysian Software Engineering Conference, 12-13 December,
Penang, Malaysia, 2005.

4. I. F. Nusyirwan and C. Bil, Optimal Real Time Evasion Against High Speed

Pursuer Using Evolutionary Programming, in Proc. of the 1st Regional
Conference on Vehicle Engineering and Technology, 23-25 May 2006, Kuala
Lumpur, 2006.

5. I. F. Nusyirwan and C. Bil, Three-Dimensional Air Combat: Numerical

Solution Using Randomised Trajectory, in Proc. of Simtect Conference, 29
May - 1 June, Melbourne, Australia, 2006.

6. I. F. Nusyirwan and C. Bil, Effect of Uncertainties on UCAV Trajectory

Optimisation Using Evolutionary Programming, in Proc. of Intelligence,
Decision and Control Conference, 11-14 Feb., Adelaide, Australia, 2007.

xxiii

7. I. F. Nusyirwan and C. Bil, Parallel Evolutionary Programming Optimi-

sation for Evader’s Trajectory in Pursuit-Evasion Game, in Proc. of the
Twelfth Australian International Aerospace Congress, 19-22 Mar, Melbourne,
Australia, 2007.

8. I. F. Nusyirwan and C. Bil, Optimising Evader’s Trajectory in 6DOF Pursuit-

Evasion Problem Using Parallel Evolutionary Programming, in proc. of
Simtect Conference, 4-7 June, Brisbane, Australia, 2007.

9. I. F. Nusyirwan and C. Bil, Using Evolutionary Programming to Find Op-

timal Evasion Strategy Against an Agile Pursuer, Oral and Poster Presenta-
tion, 22nd International Unmanned Air Vehicle Systems Conference, April
16-18, Bristol, UK, 2007.

Poster Presentation and Oral Presentation

1. I. F. Nusyirwan and C. Bil, Pursuer-Evasion Strategy Optimisation In Air

Combat Scenarios, Oral Presentation at the Australian JSF Advanced Tech-
nology and Innovation Conference, 10-11 July 2007, Melbourne, Australia.

xxiv

1 Introduction

In an aircraft-versus-missile encounter, the objective of the pilot is to use the best
piloting skills and aircraft performance capabilities to out manoeuvre the mis-
sile and to avoid interception. Although modern fighter aircrafts are fitted with
counter-measures, such as chaff and flares, they are not always effective as mis-
siles are becoming more intelligent in avoiding and ignoring these decoys. The
ultimate line of defense for an aircraft against an incoming missile is to adopt a
manoeuvring strategy that will avoid the missile from coming close. Since a mis-
sile has limited endurance, keeping the missile at a distance that is far enough will
eventually cause it to bleed its energy and fall off from the sky. Modern missiles
have tracking and homing devices based on radar or infrared sensors. These sen-
sors need to be locked on to the target for guidance. Smart manoeuvring by the
evader can cause the missile to lose the target acquisition and make it go into a
search mode. Such an air combat can be described as a pursuit-evader problem.
A game theory can be applied to solve problems of this nature. The aim is to find
a better solution that could give the evader a better chance of being intercepted.

Optimisation is important factor in any decision-making process. The three
main components in the optimisation process are the players, the objective func-
tion and the information available to the players [53][77]. The game theory falls
into the optimisation category. It is a study of strategic or intelligent interactions
between players with conflicting objectives. The modern game theory was first
explored by John Von Neumann, who was the first to prove the minimax theorem.
In 1944, Neumann and Morgenstern published one of their pioneering works on
game theory [128], which included the two-person zero-sum game and the notion
of cooperative game.

Historically, the optimal game theory has been around since 500AD [129].
Although, it is not fully recognized as an optimal game until 1985, it is mentioned
in the Babylonian Talmud to solve marriage contract problems using an appropri-
ately defined game methodology between a man and his three wives. Furthermore,
in 1950, John Nash proved the existence of a strategic equilibrium, known as the

1

Nash Equilibrium for non-cooperative games [84]. From this point on, the re-
search on the game theory started to increase and has led to the emergence of a
theory of dynamic games.

Dynamic games are a subset of the game theory. This class of games evolves
in, discrete or continuous, time. The origin of such games can be linked to the
mixed-strategy in a finite-matrix game [9]. The game is interpreted as the rela-
tive frequency of each move, called a pure strategy, by repeating the same game
multiple times [9]. In a discrete time dynamic game, each player has a payoff

or objective function associated with multiple stages. The transition of the game
from one stage to the next is governed by differential equations. It requires inputs
from all of the players. If the evolution of a game is formulated and solved by
differential equations, the dynamic game is known as a differential game.

One of the optimisation problems that is usually linked to differential games
is the pursuit-evasion problem between two or more players, such as in air com-
bat with aircraft and missiles. This problem is also called a two-player zero-sum
differential game. Zero-sum means one player’s gain is another player’s loss. The
idea of the differential games was pioneered by Isaacs in the 1950s during his
tenure as a researcher at the Rand Corporation [59]. Isaacs studied the two-player
zero-sum game with players that have conflicting interests. The research in dif-
ferential games was intensified and the theory of two-player zero-sum differential
game was subsequently generalised to the n-player non-cooperative game [9]. The
development of differential game theory is closely related to the optimal control
theory. An optimal control problem can be equated with a differential game with
one player. The essence of optimal control theory includes a dynamic program-
ming and the minimum principle.

The minimum principle was introduced by Pontryagin in the 1960s [67]. It
states that the optimal trajectories of a system must satisfy the Euler-Lagrange
equations. At each point along the trajectory, the optimal control must minimize
the Hamiltonian. Such an approach deals with one extreme associated with one
state at a time, hence making the optimal control an open-loop problem.

The pursuit-evasion problem in an air combat involves the optimisation of an
aircraft manoeuvring strategy. The evader aims to out manoeuvre the pursuer.
It can be categorised as a problem of a dynamic multi-player non-cooperative
game theory [9]. The game involves multi-player decision making. It is dy-
namic because the order in which the decisions are made is important and it is
non-cooperative because each player involved pursues its own interest which is

2

conflicting with others.
This kind of approach is commonly called “the differential game” because,

generally, differential equations are used to formulate the problem. A more ap-
propriate term would be dynamic game [9].

The ability to determine an optimal solution for an air combat engagement
is potentially a powerful tool for fighter aircraft development, pilot training, as
an in-flight advisory system or as an intelligent system for unmanned air combat
vehicles (UCAV). Presently, the search for the optimal solution is done a priori,
i.e. off-line. However, with the introduction of more powerful and multi-processor
computers, it may be possible to do the calculations in real-time by using a central
server located remotely and the results can be transmitted back to the aircraft
within a relatively short period of time.

Many methods for finding optimal solutions for an air combat maneuvering
have been proposed, such as the game theory. However, most of them require the
model to be simplified to make them tractable. This simplification would render
the method not suitable for determining realistic and practical solutions.

One method that allows the incorporation of a full non-linear model is Evolu-
tionary Algorithms (EAs). The objective of this thesis is to explore the feasibility
of using EAs to find a feasible solution for air combat 3D manoeuvring between
two players, an aircraft (evader) and a missile (pursuer) with different levels of
agility. This is done incorporating a full 6DOF non-linear model for the evader
with the presence of noise and disturbances. The pursuer is adequately modeled
as a point-mass.

1.1 Modern Air Combat

Modern air combat has gone into a new era, where technology plays a dominant
role. Current weaponry such as an air-to-air missile is capable of detecting, track-
ing and intercepting aircraft beyond visual range. Due to this advancement, the
typical close-in “dog fight” scenario is becoming less common. A new type of
aircraft that will soon dominate the role of air superiority is the Unmanned Com-
bat Aerial Vehicle (UCAV). UCAVs will play, for example, an important role in
first strike scenarios to take out defense installations well into an enemy’s territory
without putting pilots or valuable equipment in a dangerous situation. To resolve
this dangerous predicaments, new technologies are introduced and performance

3

boundaries are being extended [79].
In contrast to the piloted aircraft, UCAV is an affordable weapon system that

expands tactical mission options for revolutionary new air power as an integrated
part of a systems solution [27]. The benefits of using UCAVs are numerous. Lo-
cating the pilot outside the loop enables a new paradigm in aircraft command and
control while maintaining the rationale, judgment, and quality of the performance.
In the future, UCAVs are envisioned to be able to be able to be remotely and glob-
ally deployed, be safely operated over populated regions, to observe and obey the
rules of engagement and make critical decisions depending on the doctrine used.
Presently, such a system does not exist due to the complexities involved [27].

Many techniques have been proposed to provide “intelligence” to the aircraft.
However, each technique has its own advantages and disadvantages as listed be-
low:

1. Artificial intelligence system. This is a rule-based approach derived from
human think. Its effectiveness is solely relying on the input given by a hu-
man expert. If properly developed and configured, the system is consistent,
fast and reliable. But it lacks inspiration to deal with situations beyond its
scope of capability.

2. Differential Games. This technique uses mathematics to study of conflicts
of dynamical system. It is widely applied to solve simple dynamic prob-
lems. But, as the problem grows larger, the technique becomes intractable.

3. Evolutionary algorithms. This algorithm is based from Darwinian Theory
of evolution. It is capable to locate feasible solutions for problems of higher
dimensions. But there is no guarantee that it could find feasible solutions at
every run.

4. Fuzzy logic. A set theory that deals with reasoning. It has similarity to
Artificial intelligence system.

5. Neural network. This is an optimisation approach derived from the way the
human brain function. It requires a substantial amount of a priori knowl-
edge or experience to function properly.

Generally these techniques fall into two distinct types of optimisation:

4

• Classical optimisation methods - either direct or indirect optimisation, such
as differential games.

• “Black-box” optimisation methods - there is no solid theoretical background.
These methods include Evolutionary Algorithms, Artificial Intelligence, Fuzzy
Logic and Neural Network.

Classical optimisation methods are used to solve differential, continuous, strongly
convex, unimodal and many other special problems. However, “blackbox” opti-
misation methods, such as EAs, seem to excel in areas where discontinuous, non-
differentiable, multimodal, noisy and other unconventional response surfaces are
involved [5].

1.2 Problem Statement

The objective of this research is to model and simulate a pursuer-evader scenario
in close to real time based on a parallel architecture and apply the Evolutionary
Programming algorithm to optimise manoeuvring strategies for the evader. The
aircraft model will include realistic constraints of an aircraft. In order to do so, the
equations of motion will contain non-linearities and are non-differentiable func-
tions.

The search for an optimal trajectory is in general quite complex because it
usually consists of many dimensions with potentially significant coupling of the
dynamics. The search space should also exhibits discontinuities, which makes it
difficult to apply gradient-based techniques. To overcome these obstacles, the use
of evolutionary programming as the basis of such a planning system looks ideal.
The motivation behind this approach is based on the observation of evolution in
nature, which is a very effective natural optimiser. The dynamic strategy planning
problem, in the appropriate context, allows the application of the principles of
natural selection to simulate the evolution of potential strategies or solutions.

Based on this idea of natural optimisation, the decision space is spawned by
many degrees of freedom to effectively search for highly effective strategies. This
research is not meant to search for the absolute optimal solution in most cases, but,
is looking for near optimal or feasible solutions that will satisfy the given con-
straints and continuously approach towards obtaining the optimal solution over
time. An absolute solution is difficult to find due to the fact that there are uncer-
tainties and the dynamic environment in which the vehicles operate. To develop

5

such a technique to solve this problem is next to impossible. In addition, even to
define, let alone find, the absolute optimal solution (pareto-front optimal solution)
has yet to be discovered. Furthermore, the computation time required is also a
factor as this technique is meant to be a real time process. On the other hand,
it is adequate to rely on the ability to rapidly search for feasible solutions in the
presence of an uncertain and dynamic environment that would be sufficient for a
planning system. This is called a rapid adaptation plan [23].

1.3 Research Aims

The aim of this research is to increase the body of knowledge about the application
of Evolutionary Programming to highly time-constrained, dynamic problems in
non-linear, discontinuous domains. The inspiration for this research is the search
for a near real-time solution to the pursuit-evasion problem that arises from an
idealization of air combat scenarios involving a missile launched at a defending
aircraft. The research forecasts that future systems might be capable of providing
real-time manoeuvre control of a combat aircraft in a manner that allows for the
successful defeat of a surface or air launched missile.

1.4 Thesis Outline

The thesis consists of seven chapters that will be presented accordingly. This
introductory chapter or Chapter 1 provides an overview of the study. This is fol-
lowed by Chapter 2 which presents the discussions on current methods and prac-
tice in pursuit-evasion problem research. The discussion in this chapter is based
on the use of game theory, differential game and calculus of variation in finding
optimal solutions for various types of pursuit-evasion problems. In Chapter 3,
the application of evolutionary programming in various optimisation problems is
discussed further as well as the explanations about the overall approach of Evo-
lutionary Algorithms. The discussion includes the important steps used in the
process. Following that, Chapter 4 contains discussions about the parallel imple-
mentation of EP. In this chapter, two approaches are presented: the master-slave
approach and coarse-grained approach. Next, Chapter 5 comprises discussion
about the detailed modelling of the aircraft (evader) and missile (pursuer). The
aircraft model is based on the six degree of freedom equations of motion whereas

6

the missile model is based on the three degree of freedom equations of motion
(point mass model). Then, Chapter 6 presents the results of several simulations
performed at different initial conditions. The results show that the optimal solu-
tions found are highly dependent on the initial condition of each player. Finally,
Chapter 7 presents the overall results, suggestions for further improvement that
can be applied to the algorithm as well as other possible applications.

7

2 The Pursuit-Evasion Problem

This chapter discusses the progress of research in finding optimal methods to solve
a pursuit-evasion problem between two air vehicles.

2.1 Introduction

Air forces around the world are pushing the technology further to make an un-
manned combat aircraft commonly known as Unmanned Combat Air Vehicle to
be intelligent and able to perform given tasks. Similarly, as explained in the previ-
ous chapter, an intelligent system is a prerequisite to help reduce the pilot’s work-
load in the presence of danger, such as a missile attack. This “intelligence” is
achieved by providing the necessary information such as the type of approaching
missile, possible launch location, and measures that need to be taken.

In order to realise this concept, several obstacles must be overcome. One of
them is the methodology to replace or assist the pilot as the decision maker to
make the best decision at that point in time. Methodologies, generally classified
as Game Theory, have been developed since the 1700s to solve the classic problem
of strategy optimisation for conflict scenarios. In 1713, James Waldegrave was the
first to provide a solution to a two person minimax strategy game.

There are two approaches [94] pertaining to air combat modelling: the math-
ematical model and the behavioral model. The mathematical model can be cat-
egorised into two types: game theory and Lanchester theory. Behavioral models
are often illustrated in war games. They can be represented by figurines on sand
tables. Using these sand tables, tactics are explored by moving miniature figurines
or equipment around as depicted in Figure 2.1.

Another important aspect in finding solutions through behavioral models is
the emergent behaviour [93]. As extensive modelling became common with the
availability of low-cost digital computers, researchers often encountered unex-
pected results such as the end outcome does not equate to the sum of the parts.
Such result could be viewed as the behaviour that is a natural representation of

8

Figure 2.1: A physical combat simulation using sand table [94].

the real world [93]. By including constraints and assumptions, we may unneces-
sarily reduce the fidelity of the model that does not represent the actual problem.
In complex domains, non-linearities and emergent of properties make modelling
difficult and tend to drive fidelity requirements. Air combat is a domain in which
the complexity encountered presents a powerful argument for maintaining sophis-
ticated model (beyond that what might be intuitively selected). It is for this reason
that this research is based on complex real-time systems than those referenced
elsewhere in the literature that has been carried out. For that matter, this proposed
research uses a systematic approach that is required to fully understand how to
extract the benefit from this combat behaviour.

2.2 Game Theory

In 1944, Von Neumann and Morgenstern [128] developed the game theory in its
extensive form. They introduced several approaches of the games such as the
strategic normal game, the strategic extensive game, the concept of pure/mixed
strategies and coalitional games. They employed the “maximin” solution concept

9

to solve simple strategic, zero-sum normal games.
Later on, in 1950, Nash introduced the concept of “Nash Equilibrium” (NE).

In the concept, NE will be reached when a player has chosen a strategy and no
player can benefit by changing his strategy. At the same time, the other players
would have kept their strategies unchanged. The concept can be easily demon-
strated for simple problems. But proved to be difficult for complex problems [69].

Isaac [59] cited there are two reasons why the theory of games fails to solve
real-life problems. The first one is the increase of difficulty of the problem when
there are two conflicting aims: one trying to achieve a maximum result whilst
knowing its adversary is doing the same thing. A closed form feedback solution
cannot be obtained for real problems [15]. The second reason is the lack of math-
ematical methods to find answers in real-life problems.

Most mathematicians tend to concentrate on the general theorems but provide
very little of usable techniques to obtain practical answers. Breitner [15] stressed
that mathematics tend to favour more abstract and general ends. These reasons
hinder the use classical techniques to their fullest extend.

As for game theory applied to war scenarios, Isaac [59] outlines several pos-
sibility approaches to tackle these problems. One of them is using the discrete
matrix games. In principle, any finite and discrete game can be presented in a ma-
trix form. However, the problem is that the dimension can be astronomically large
unless the game is kept simple. Hence, this approach, again, reduces the realism
of the solution.

Due to the close relation between differential game theory and optimal con-
trol theory, the use of optimal control theory to solve differential games is possi-
ble [15]. Unfortunately direct methods based on a parameterisation of the state
and/or the control variables, which are widely used in optimal control theory, can-
not be applied to pursuit-evasion games. Breitner [15] suggests that only dynamic
programming methods and indirect methods are appropriate for the numerical so-
lution of pursuit-evasion games. Among these methods are differential dynamic
programming, the gradient-restoration algorithm, the min-H method and the mul-
tiple shooting method. The problem is solved using the multiple-shooting method
[15]. The disadvantage using this method is to find the “starting trajectory”, i.e.
an initial guess for the Newton iteration. Even the terminal time, t f , must be esti-
mated accurately. This is why it is very difficult to predict what might happen in
an actual scenario. Furthermore, the prediction has to be done in a short period of
time.

10

The emergence of super computers has sparked an extensive research on this
optimisation area [24]. Previously, numerically intensive algorithms were difficult
to implement due to the absence of powerful computers. However, developing an
intelligent system that can learn, adapt and make decisions in a complex environ-
ment still remains a challenge to many researchers.

2.3 Development of Game Theory

With reference to state and control variables and according to Isaac [59] “Players
always make their decisions through choosing the values of certain control vari-
ables” and these “in turn , govern the values of certain other quantities called state
variables”. As a result of this, Isaac outlines two types of games [59], i.e. game
of kind and game of degree. Game of kind can be easily explained as to whether
it is possible for the evader to avoid interception whereas game of degree means,
if there is interception, the question is how long can the evader hold on before
being intercepted by the pursuer. Apparently, the idea of solving pursuit-evasion
games has been on the mind of many researchers for years, including Isaac [59].
In pursuit-evasion games, the pursuer seeks to capture the evader, and the evader
seeks to avoid interception. The question can be presented in two forms. The first
one is, whether there is a possibility for the pursuer to capture the evader. In this
case, the game can be considered as the game of kind, i.e. capture or no-capture.
The second is, if capture is possible, the pursuer’s ultimate goal is to find the
optimal strategy to capture the evader within the shortest possible time. This ap-
proach was explored further by [16] by studying complex pursuit-evasion games
with state variable inequality constraints.

The study of pursuit-evasion can typically be divided into two approaches,
i.e. emphasis on the pursuer’s ability to intercept the evader and vice versa. The
evader has some restricted optimal behaviours, which is known by the pursuer.
This approach was studied by Green [107], Vathsal [124], Imado [57], Menon
[80], Shinar [110], Segal [102], Shinar [109], Oshman [92] and Shen [74]. These
researchers have been focusing mainly on finding optimal guidance law for mis-
sile against mildly maneuvreable evaders. The other approach is emphasis on the
evader’s ability to avoid interception such as in [82; 12; 104]. For example, Blago-
datski and Shevchenko [12; 104] explore the use of simple differential games to
solve problems that consist of multiple pursuers and evaders.

11

By exploring the pursuit-evasion problem further, the use of Evolutionary Al-
gorithms has shed some light on the quest to find optimal solutions, which classi-
cal methods were unable to do [6]. To demonstrate this, Fogel [5] has constructed
a three dimensional model where EP was used to guide a pursuer towards a mov-
ing target.

There have been a few attempts using Evolutionary Algorithm in solving
pursuit evasion problems. For example, Tahk [25] has attempted to find opti-
mal evasion strategies against proportional navigation guided missiles in three-
dimensions. He used three dimensional three degree of freedom equations of mo-
tion to model the vehicles. In the study, a co-evolutionary augmented Lagrangian
method was implemented to solve the constrained optimisation problem. The
optimisation is performed by transforming the problem into a zero-sum pursuit-
evasion game between the parameter vector, x, and the Lagrange multiplier. Both
players use separate evolutionary processes to find the optimal solution to get the
best payoff. Finding optimal solutions is not easy as shown in this study because it
took 10000 generations to find one optimal solution. The search for the final time
was also included in the evolutionary process and this has made the approach
unattractive for actual use. There was no mention of computing time in the paper.

2.4 Guided Missiles

It should be noted that the capability of guided missiles is important in this thesis
because it has been used as the pursuer in this thesis. Knowledge of the capabili-
ties of current generation missiles is essential in implementing accurate optimisa-
tion strategies. Basically, guided missiles will receive information on the location
of the target and change their flight paths in response to target manoeuvring. Gen-
erally, guided missiles are categorised according to their designated mission. This
is based on their launching platform and intended target such as:

1. Air-to-Air missile (AAM).

2. Surface-to-Air missile (SAM).

3. Surface-to-Surface missile.

This research deals primarily with air-to-air missiles (AAMs). A typical generic
guided missile is show in Figure 2.2. The seeker section consists of a radar that

12

Figure 2.2: A typical guided missile. [103]

scans forward. The information received is then fed into the guidance computer.
The lethal capability of the missile is in the fuse and warhead section that stores
the explosive charge. The missile is guided by using four fins. Finally, the motor
section provides the thrust required to propel the missile. AAMs are generally
rocket powered for several reasons, i.e. they provide very high thrust-to-weight
ratios, and generate high acceleration and high speed during the short duration of
the flight.

In the missile, there are three types of seekers, i.e. active seeker, semi-active
seeker and IR seeker. An active seeker uses its own radar to search for the target.
A semi-active seeker does not emit any RF signal. However, it receives reflec-
tions from radar located at other location to determine the position of the target.
An IR seeker is a passive seeker that detects IR signal radiated by the hotspots of
the target aircraft. The information received is then fed into the guidance com-
puter. The lethality of the missile is in the fuse and warhead section that stores
the explosive charge. The missile is guided by using four fins. Finally, the motor
section provides the thrust required to propel the missile. AAMs are generally
rocket powered for several reasons, i.e. they provide very high thrust-to-weight
ratios, and generate high acceleration and high speeds during the short duration of
the flight.

For uses in optimal interception, there are two typical guidance systems, (i)
proportional navigation and (ii) line-of-sight command guidance [13]. The mis-
sile receives the information on the target either from the reflected radio frequency
(RF) signal or the infrared (IR) signal radiated from the target. A complete dis-

13

cussion about missiles and their navigation systems can be found in [112].
The missile guidance is can be divided into three phases [112]: (i) boost or

launch, (ii) midcourse and (iii) terminal. The boost phase covers the time the
missile leaves the launcher until it runs out of fuel. In this phase, the missile may
not be actively guided. Next is the midcourse phase. This phase is usually the
longest in terms of both time and distance. In this phase, the guidance system
may or may not explicitly require bringing the missile onto the desired course.
The guidance system has to ensure it stays on course until the missile enters a
zone from which the final phase, i.e. the terminal phase takes over. In the terminal
phase, the missile must possess a high accuracy and fast reaction for successful
interception. In this phase, the guidance seeker is locked onto the target, thus
allowing the missile to be guided all the way to the target.

There are many approaches in guiding the missile to the target. The prominent
methods are [112] as follows

Command Guidance The guidance instructions come from external sources. No
seeker is required for this type of missile.

Beam Rider The missile rides over a beam, typically laser or radar.

Command to Line of Sight (CLOS) In this guidance, the missile is commanded
to fly in the Line of Sight (LOS).

Pursuit The missile flies directly toward the target at all times.

Deviated Pursuit The interceptor missile tracks the target and produces the guid-
ance command. The missile heading usually leads the LOS by a fixed angle.

Lead Pursuit A lead pursuit course is achieved by directing its velocity vector at
an angle from the target.

Lead Collision A straight-line course is flown by the missile. If the target speed
and heading remain constant, the missile will fly a straight-line path to the
target.

Pure Collision Flies a straight-line course such that it will collide with the target.

Constant Load Factor A guidance system that maintains a constant-g load fac-
tor on the missile that will result in a collision with the target.

14

Proportional Navigation The missile is flown in such a manner as to change the
lead angle at a rate proportional to the angular rate of the line of sight to the
target.

Three point The missile is constantly steered to fly between the tracker and the
target.

Hyperbolic Guidance The guidance is based on the difference in the time of de-
lay o4zf radio signals transmitted simultaneously from two ground stations,
arriving at the missile at different time intervals.

Retransmission guidance Also known as track via missile. With this guidance
system, a ground radar tracking system tracks both the target and the mis-
sile, and the target tracking beam serves as a target illuminator, while the
receiver on the missile detects the reflected illumination.

Typically, most AAMs utilise proportional navigation as their guidance sys-
tem. In the simulation model developed in this thesis, the pursuer uses a fixed
strategy, i.e. a proportional navigation guidance system for interception.

2.4.1 Proportional Navigation Guidance

Proportional Navigation Guidance (PNG) systems are widely applied in AAMs
due to their simplicity of implementation and robustness. In PNG systems, a
missile is commanded to turn toward the target at a rate proportional to the angular
velocity of the line-of-sight (LOS) between the missile and the target. The ratio of
the missile turning rate to the angular velocity of the LOS is called the proportional
navigation constant N. Typical values for, N are between 2 to 6. If N is greater
than 1, the missile will be turning faster than the LOS and subsequently builds a
lead angle with respect to LOS. For N = 1, the missile turns at the same rate as
the LOS, i.e. homing in on the target. A complete discussion about PNG is in
Section 5.7.4.

2.4.2 Missile Warhead

The type of warhead is important to intercept an aircraft. It determines the lethality
of the missile that is the lethal radius. The bigger the lethal radius, the higher the
lethality of the missile. The warheads used in AAMs are, typically [103]:

15

1. Blast-fragmentation,

2. Incendiary or explosive pellets, or

3. Expanding-rod.

Blast-fragmentation warheads are meant to create damages through the com-
bined effects of the shockwave from the explosion, and high-velocity fragments.
Pellet designs are almost similar [103], but some are made of small bomblets that
explode or burn on contact.

Explosions at high altitude because of the thin air cannot solely be the reason
for aircraft damage. The use of fragments increases the probability of target dam-
age even though they rapidly lose lethal power as the missed distance increases.
The expanding-rod system comprises of many short steel rods placed side by side
in an annular arrangement around the explosive charge.

The lethal radius of an AAM depends on the type of warhead used. A typical
lethal radius for a medium-range AAM is around 10-15m and the fuse detection
radius is around 1.5 m for a Mistral type AAM.

2.4.3 Evading a Missile

Developing an algorithm that calculates the optimal control to evade a missile is
computationally difficult and time consuming [76]. It requires a thorough under-
standing of the missile sensory systems, navigation system, dynamics and war-
head.

A sensor, such as a missile seeker, generates signals that contain errors. The
sources of errors can be centroid wander, blind range, radome boresight error,
gimbal limits and have field of view limits. The target aircraft, in view of a seeker,
is not a single point but rather a large number of returns from which a centroid is
calculated. The intensity from each return can vary significantly between scans
leading to centroid wander. A radar has a minimum range and anything beyond
it can no longer track the object. Usually this blind range is very small to al-
low effective evasion, but with the use of electronic jamming, this range can be
substantially increased. Another source of error is when the missile rotates. The
rotation causes the radome to move with respect to the seeker and the target. The
curvature of the radome causes the refraction angle imposed on the seeker to the
target line-of-sight to change. To the seeker, this appears as if the position of the
target is changing.

16

The vulnerable areas in exploiting a guidance system of a missile are the guid-
ance laws, homing loop resonance, and the response time constant. The guidance
laws point the missile to the target based on the information provided by the sen-
sors. Proportional navigation (PN) is the most widely used guidance system. One
way to defeat a missile with PN is to take advantage of the lead compensation in
the missile by flying in an oscillatory flight path. This causes the missile to change
its lead angle substantially every time the target manoeuvres. Homing loop reso-
nance is also another vulnerability that can be exploited. This vulnerability exists
due to the missile response to aircraft movement. It can be modeled as a sec-
ond order system [76]. This means the system should exhibit overshoot at some
frequency input. The evasive tactic would be a periodic manoeuvre at the appro-
priate frequency to excite resonance in the missile guidance system. However,
such a manoeuvre is hard to perform.

With reference to the dynamic aspect of a missile, the vulnerabilities can be;
missile stability, turn performance and available energy. Missile stability covers a
wide range of subsystems and stability characteristics which define how the mis-
sile responds to generated commands as well as external disturbances. Generally,
the missile airframe is inherently unstable to enable a quick response. This has
caused the design of the control system to be complicated, especially when it in-
volves a wide range of conditions such as Mach number, angle of attack and centre
of gravity. One evasive tactic is to get the missile into one of its lesser control-
lable states that reduces the capability of the missile to accurately steer towards
the target. One common point of missile instability is high angle of attack. Thus,
one evasive tactic is to drive the missile to experience a high angle of attack by
performing a double jink or a large amplitude periodic manoeuvre. In relation to
the turn performance aspect of the missile, the turn radius is a function of velocity
and its normal acceleration limit. One appropriate evasive manoeuvre is to turn
relative to the missile at a high-g load at a short time to go. With respect to energy
available, if the missile is launched outside its effective envelope, the best evasive
option is to run away and let the missile exhaust its fuel. Another option is weav-
ing in order to drive the missile into a higher drag region to deplete the available
energy of the missile faster. Such manoeuvres are best performed if the missile is
launched from the fringes of the launch envelope.

The warhead of the missile plays an important part in ensuring its lethality.
Since most missiles do not actually hit their target in order to cause damage, the
warhead fusing and burst pattern characteristics of a missile can substantially in-

17

fluence the lethal effectiveness of a missile. The fuse is usually a side mounted
sensor [76]. It determines the range of the target before deciding the effective dis-
tance for detonation. Once the effective range has been reached, the fuse delays
the detonation for a period of time to allow the missile to reach the centroid of
the target before it detonates the warhead. The lethal radius is a function of the
position and orientation relative to the target aircraft. One effective manoeuvre is
to position the aircraft strategically in order to minimise the damage due to the
blast fragments.

According to Mandt [76], evasive tactics can be classified as follows:

1. Relative position - This is due to the difference in the performance char-
acteristics of the missile and the aircraf. The position of the aircraft with
respect to the missile may dictate the type of evasive manoeuvre which the
aircraft should perform.

2. Time break - This is due to the missile response time and turn performance
limits. The aircraft can perform a high-g turn causing a missile to miss.
However, it requires timely manoeuvring to ensure a successful evasion.

3. Periodic manoeuvre - The purpose is to force the missile to overshoot the
target aircraft by exciting a resonance in the missile’s system. Common
manoeuvres are weaves, multiple split-S, rolling scissors, flat scissors and
barrel rolls.

2.5 Typical Air Combat Manoeuvres

In an air combat, a pilot will perform various manoeuvres depending on its ob-
jective, i.e. to pursue or to evade. There are many scenarios in air combat as
described by Shaw [103]. The simplest is one-versus-one and the most complex
is many-versus-many manoeuvring tactics.

Typical manoeuvres performed during an air combat are pursuit curves (lead,
pure, lag), lag displacement rolls, high yo-yo, low yo-yo, lead turn, nose-to-nose
and nose-to-tail turns, flat scissors, vertical and oblique turns, rolling scissors and
defensive spirals [103]. In an encounter with missiles, finding the optimal evasive
manoeuvres for an aircraft has been carried out by many researchers such as [3;
25; 82; 90; 132].

18

2.6 Aircraft Autonomy in Planning

A manned aircraft and an autonomous aircraft share the same threats and the same
evasion strategies. The only difference is the intelligence that controls it. An
aircraft is considered autonomous if it has the capability to plan its own actions
using the acquired information about its surroundings and environment.

There are several levels of autonomy in an aircraft [95]. The first level is strate-
gic planning. This is a low bandwidth planning in terms of computer processing
effort. The tasks that are associated with this strategic planning are path planning,
task allocation, search patterns and human mission command.

The second level of autonomy is tactical planning. This level of planning
is considered to be medium bandwidth. Among others, the tasks are target ob-
servation, path following, communication and cooperation and human monitor
interaction.

The third level is dynamics and control. This level of planning is of a high
bandwidth. It requires a high degree of processing power. The tasks are state
stabilisation, signal tracking, auto piloting and other inner loop controls.

In the pursuit-evasion problem, planning can be of any levels mentioned above
as it is dependent on the nature of the problem. If the problem is about traveling
from point A to point B with adversaries along the way [123; 134; 65], the plan-
ning will start from the first level. The planning involves the identification of static
and dynamic threats such as tanks, mobile SAMs, radar sites and other obstacles
i.e. buildings and mountains.

If the problem is between two players, the level of path planning will be at
level two or three. In the literature, most optimisation algorithms cover only the
first and second level. Optimal paths are created by these algorithms that allow the
aircraft auto-pilot system to follow the best path as close as possible. For example,
an optimal path found may consist of arcs and sharp turns. Due to this, an aircraft
will definitely have to compensate with a finite turning radius to negotiate tight
turns and arcs. There are several examples from the literature such as Kabamba
[65] used a nonlinear programming technique to solve a path planning problem
for unmanned aircraft in the presence of a radar-guided surface-to-air missile. A
similar study was also conducted by [51] using calculus of variation.

Similar to this research, Price [97] studied singular perturbation theory to find
an optimal intercept trajectory for an F-8 aircraft in real time. Instead of having
the system built-in into the aircraft, he used flight director needles to display the

19

commands to the pilot. The pilot’s task was to keep both horizontal and vertical
needles centred to remain on the optimal intercept trajectory.

In another study, a Fuzzy Inference System (FIS) was employed by [119] as a
decision making tool to assist the pilot in air combat. The system accurately pre-
dicted the adversary’s future move in the game. However, the mathematical model
is simplified and it only used a 3DOF model. In this system, seven types of pre-
defined manoeuvres were considered in the fuzzy system. They were represented
by the maximum longitudinal, lateral and roll angle. These various combinations
determine the type of manoeuvre performed by the aircraft. For example, a hard
left turn is represented by rolling of −90◦ and performing a 9g turn.

In essence, the need to intelligently find optimal or feasible paths has led in
the development of the solution for pursuit-evasion problem at higher dimensions.

2.7 Pursuit-Evasion Problem

Pursuit-evasion games can be any game that has two or more opposing parties.
It can be as simple as a rock-scissor-paper game or as complex as an aircraft-vs-
missile duel. Pursuit-evasion problems have been a very popular research topic
for the past 60 years. Many researchers have been working on this problem albeit
with simplified models.

The pursuit-evasion problem is still an open problem [30] because in the ter-
minal phase the guidance solution is difficult to estimate due to imperfect infor-
mation about the dynamics of the target and their intended evasive strategy. In
such cases, attempts to use optimal control formulations are usually sub-optimal
because the pursuer’s command is always bounded. Thus, the state of the system
cannot be fully and exactly observed. Furthermore, the target’s intended evasion
strategy is unknown [30].

In general, the study of pursuit-evasion in an air combat scenarios is basically
duels between N missiles and M aircraft or N aircraft and M aircraft. To simulate
a real case scenario, air combat manoeuvres are performed in three dimensions in
which the aircraft is modeled in six degree of freedom equations of motion.

In most military environments, the pursuit-evasion game usually involves hu-
man pilots. Simulation performed are based on the pilot’s cognitive skills and rely
on their experience. Younger pilots tend to fly their aircraft based on the skills
they have learned from the military flying school. Their judgements are easily

20

reasoned and described.
But as they become more experienced, they tend to develop a unique set of

skills that are purely based on intuition and judgement that they themselves cannot
explain except saying “its from my experience”.

To described the pursuit-evasion problem in a mathematical form is even harder.
Basically, the pursuer wants to intercept and capture the evader. The evader wants
to avoid interception. A trajectory that could help the evader to avoid interception
is accepted and classified in term of classical optimisation as being only sub-
optimal.

Apparently, the actual pursuit-evasion problem is highly non-linear, full of
noise, unpredictable atmospheric conditions and the manoeuvres of the vehicle
are coupled. It is common to simplify a model in order to make the analysis
mathematically tractable. Typical simplifications are:

• Linearising the model,

• Using a point-mass model,

• Restricting the manoeuvres into a two-dimensional common plane,

• Assuming factors such as constant velocity and constant weight.

Research on optimisation in pursuit-evasion problems between two aircraft
has been done by many researchers such as [60; 50; 38; 61; 121; 55; 110; 117; 89;
7; 105]. Most these studies concentrate on the application of differential games
(i.e. classical optimisation approach) in solving these simplified models. Besides
the differential games, other suggested approaches are knowledge-based expert
systems [78], heuristic value-driven system [70], discrete dynamic programming
and influence diagram [127]. The problem of optimising trajectories of a missile
was studied by [106] and [122].

Recently, missile guidance systems have largely employed on proportional
navigation systems. Presently, modern guidance laws have been been using lin-
earised kinematical models and linear quadratic optimal control formulations [122].

The drawback of these techniques are that they are only useful for non-maneuvering
targets. Modern adversaries tend to use a much more robust control system. They
may be highly maneuverable and highly unpredictable in their trajectory. The use
of conventional navigation systems is useless against these intelligent targets. A

21

feasibility study by [106] have shown that it is not feasible to use classical guid-
ance techniques and estimation methods to “hit-to-kill” against highly maneuver-
ing targets. One suggested solution is to view the problem using the differential
game formulation that was made famous by Isaacs [59].

In another study, Turetsky [122] proposed the use of dynamic games to solve
such scenarios. He said that intercepting a highly maneuverable target has to be
formulated as a zero-sum pursuit-evasion game, in which, due to the unpredictable
nature of the evader, an optimal control formulation is inappropriate. His analysis
compared two guidance laws, i.e. linear quadratic differential game (LQDG) and
norm differential games (NDG). To study this scenario, he used the following
criteria or assumptions:-

• Simplified models are used;

• The engagement takes place in a two-dimensional plane;

• Both missiles have constant speeds and constrained lateral accelerations;

• The trajectories of both missiles can be linearised along the initial line of
sight;

• The dynamics of both missiles are expressed by the first-order transfer func-
tion.

In another study, Green [107] analysed a horizontal pursuit-evasion game be-
tween a coasting pursuer with a final velocity constraint and a manoeuvring evader
with constant speed. The proposed method was given an improvement by enlarg-
ing the capture radius in comparison with an identical evader guided by a tradi-
tional Proportional Navigation (PN) guidance system. This method was optimal
against a non-optimal evader manoeuvre. The effects of gravity, altitude variations
and other effects were neglected in the study. It is also assumed that the costate
vector was continuous.

There was also a study by Horie [55] who used realistic dynamics of the air-
craft and solved the pursuit-evasion in three-dimension numerically. He used the
method of semi-direct collocation with nonlinear programming to solve the prob-
lem. The pursuer is superior to the evader. A three degrees of freedom (3DOF)
aircraft model with realistic aerodynamic coefficients was employed. The effect
of mass variation was neglected due to the short period of time of the duel. The

22

time and the distance are normalised for ease of analysis and to avoid reducing
the accuracy of the variables. This was done by keeping them in a similar order of
magnitude. The predicted of an initial guess for a nonlinear programming solver
is performed using a genetic algorithm. The results showed that the initial evasion
strategy had a rapid change of direction (i.e. performing a hard turn) followed by
vertical manoeuvring (i.e. diving).

In relation to this study, a Sequential Quadratic Programming (SQP) has been
applied to solve pursuit-evasion problems by Ong [91]. 3D and 2D cases were
studied using a generic air-to-air missile as the pursuer and an F-4 fighter aircraft
as the evader. The pursuer is allowed to manoeuvre in three-dimensional space
but the evader is restricted to the horizontal and vertical plane only. The various
manoeuvres were represented by pull-ups, dives and turns.

However, these conditions restricted the study from being able to find the opti-
mal solution for the evader in a complete three-dimensional space. This limitation
is understood due to the difficulty to derive an appropriate mathematical solution
for an SQP procedure. In this procedure, optimal manoeuvres were found to be
hard turns, maximum-g pull-ups and maximum-g dives.

Apart from the studies mentioned earlier, another type is the motion planning
using an incremental road map building algorithm within real time path planning
that has been explored by [45]. The constraints in this study are both the fixed and
moving obstacles.

Unlike [45], Campbell et. al. [19] successfully used several algorithms for
real-time path planning and target tracking. The algorithms studied were square
root sigma point filter, square root set-membership filter, robust nonlinear model
predictive control, and streamline path planner. This study was extended into the
validation of the model through flight tests. In addition, a simple pursuit problem
was also studied. However, the model used in the study was a small and low
performance 6DOF propeller-driven UAV.

Another approach to the study is the use of planar engagement that has been
adequate for such an analysis and was demonstrated by Adler [1] who said if the
trajectory linearisation is valid, the three-dimensional equations can be decoupled
into two identical planar sets. In practice, many missiles have a cruciform config-
uration and two identical guidance operating in perpendicular planes [122]. The
theorem requires the pursuer to have a sufficient manoeuvrable advantage in order
to have a guaranteed capture.

Meanwhile, according to [106], one of the reasons why differential games had

23

not been applied to missiles was the difficulty of implementing a realistic envi-
ronment of noise-corrupted signals. Poor results have been obtained during the
implementation of the optimal pursuer strategy of the perfect information games
used in the pursuer’s guidance law and using a typical estimator.

In order for a successful interception or evasion to take place, the players must
implement optimal manoeuvring. Optimal manoeuvring as mentioned by Horie
[55], as a flight-path optimisation problem that can be treated as a one-sided opti-

misation problem (optimal control problem) or a two-sided optimisation problem.
The one-sided optimisation considers only one player and this has been suc-

cessfully applied in many applications [55]. Furthermore , this could be minimis-
ing or maximising the cost function of an aircraft, such as the minimum-time to
climb problem.

In a duel, the one-sided optimisation approach would not be useful. This is
because the optimisation will not take into account the manoeuvring of the other
player. Thus the best optimisation for this particular type of game is two-sided or,
as [33] labeled it “saddle point problems”. The analysis must consider the optimal
manoeuvres of both players, and thus a saddle-point solution is seek. This type
of game obviously falls into the type of a zero-sum two-person differential game
category.

A variety of zero-sum two-person differential games using two aircrafts have
been solved analytically by using simplified dynamics. It is obvious that such a
solution cannot be implemented for actual use. Guelman [50] solved this problem
that uses a pursuer’s but not the evader’s dynamic characteristics. In general, to
do an analytical study on such a problem using the actual aircraft data is very
difficult. The answer is to solve the problems numerically. According to Horie
[55], only a few studies have been done using this actual aircraft data because the
optimisation of a realistic air combat scenario in which both aircrafts manoeuvre
optimally is very challenging to solve, even if it is done numerically.

In another study, Tuomas [33] used nonlinear programming to study pursuit-
evasion games of degree between a missile and an aircraft in the terminal phase.
The capture is guaranteed but the time of capture has yet to be identified. In
this approach, a maxmin problem is decomposed into subproblems and solved
iteratively.

Jarmark [61] studied an air combat manoeuvring problem in a horizontal plane
with steady turns and using realistic dynamic and engine data. He used a modi-
fied differential dynamic programming (DDP) method for solving general optimal

24

open-loop differential games. The approach used fixed final time as a game pa-
rameter. The study found that a good throttle control and the ability to accelerate
and decelerate are important for making a hard turn.

Most research on the pursuit-evasion problem between two air vehicles utilises
point-mass equations of motion for reasons of simplicity. The author has not
yet found any research that is close to this scope of study that uses six degree
of freedom equations of motion to find an optimal solution for the evader using
any optimisation method. In addition, there is a difficulty of trying to model the
problem into an appropriate form to reduce the high-dimensionality involved or
“curse of dimensionality” [40].

This is especially true if the problem is finding optimal control solutions for an
aircraft in which the control is represented by the deflection angle of the aileron
(δa), elevator (δe), rudder (δr) and throttle setting (δT). If each variable has pa, pe,
pr and pT possibilities and at every δt seconds the variables change, and the game
is played for t f seconds. The number of possible combination of solutions is

p
t f
δt
a · p

t f
δt
b · p

t f
δt
c · p

t f
δt
d . (2.1)

The complexity level is O(nm) where n is the number of possible control surface
combinations and m > 1 as the number of changes of control surface deflections.
For example, the number of possible control surface combinations, n, is 10,000
and for a 40 second encounter, m is 40.

It can be astronomically high even for a moderate range of control surfaces de-
flections. Thus, solving the problem through classical methods can be prohibitive.
A new method that is able to find the optimal solution in a noisy environment
which is full of uncertainties as well as being robust, reliable and fast is required.

The need for fast intelligent systems on board an aircraft is crucial as the tech-
nology becomes more sophisticated and cheaper. The workload of a pilot seems
to increase as new aircrafts used in the service are equipped with new and com-
plicated weapon systems. A pilot may not be able to think of everything during
a tensed situation and the help of an intelligent agent would undoubtedly be very
beneficial during an air combat.

A pilot in an air combat can be in either one of these two positions: (1) at the
advantage position to shoot or (2) at the disadvantage, where the other pilot has
the opportunity to shoot. Most research concentrates on how to achieve the former
condition (1), but very few are studying the latter, such as [82], which explores the

25

evasion methods from these missiles. For example, Moore [82] employed genetic
programming algorithms to find the optimal trajectory of an F-16C aircraft against
missiles in extended two dimensions.

The assumption that an evader is already inside the capture zone of the pursuer
is considered by many in the literature [33; 108]. Being in the zone, guarantees
that the evader will be captured. Apart from that, linearisation of the equation
of motion of the vehicle is widely practised. However, one question arises; how
about optimising the evader outside the capture zone? Is it possible for one to opti-
mise the trajectory of the evader before it enters the capture zone? Such questions
are difficult to answer because of the nature of the problem is highly nonlinear
and non-differentiable. Furthermore, it is not known if a much better solution can
be found by initially behaving in an inferior way. It is similar to a game of chess.
Sometimes, one needs to sacrifice a piece to get a better overall position. Unfor-
tunately, most optimisation techniques refuse to follow such path. Perhaps, this is
due to its inability to see the “other side of the hill”. In an air combat scenario,
this could be translated in to a manoeuvre that looks like a sacrifial move, but, be-
ing at a correct position, having good timing, using the correct manoeuvre could
drive the aircraft toward its objective. For example, the evader could slow down
to allow the missile to come close and then bank away at the last moment.

Long computing time is one of the major problems posed by many of these
optimisation techniques. Even if the technique is able to find an optimal solution,
the computing time can be impractically long which renders it useless for real
time applications.

As the problem becomes more complex, it takes a longer time to reach the
optimal solution. The computing time is rarely mentioned while searching for the
optimal solution in the literature. Thus, a definitive comparison between algo-
rithms cannot be made on the aspect of speed in their effort to find the optimal
solution.

Another aspect of optimisation algorithms is that most of these classical ap-
proaches require the problem to be modeled into a form that is understood by the
optimisation method. In doing so, many assumptions have to be made so that
the problem is tractable, i.e. differentiable, no singularity, the initial guess values
must be correct so that the optimisation algorithm would converge into the right
solution [58; 24]. This will definitely reduce the level of realism of the problem.

Instead of trying to redefine the pursuit-evasion problem into a form recog-
nised by the optimisation algorithm, the idea is to apply the optimisation algo-

26

rithm to the pursuit-evasion problem in its natural state-space form without any
simplification and modification. In fact, there is one algorithm found to be suit-
able i.e. the Evolutionary Algorithm (EA) for this purpose. Chapter 3 explains in
greater detail about the EA and Evolutionary Programming (EP). This approach
can be considered as a behavioral search [94] but with an agent model of a higher
complexity.

The pursuit-evasion problem described in this thesis falls into the category of
“games of kind”. The optimisation algorithm strives to find a trajectory could
guide the evader from being intercepted or otherwise. A feasible solution is the
one that will save the evader from interception.

2.8 Evolutionary Algorithms in Pursuit-Evasion
Problems

Evolution is an optimisation process [77; 63]. The selection strategically removes
suboptimal solutions, also known as individuals or phenotypes. A comprehensive
review on evolution itself is available from [63]. This leads to the idea of using
computers to emulate evolution. The idea is to generate machine learning through
simulated evolution [41]. Amongst earlier attempts to apply evolutionary theory in
practical engineering problems appeared in the areas of statistical process control,
machine learning, and function optimisation [63].

Evolutionary algorithms (EAs) have been recognised by the research commu-
nity as one of the new paradigms to approach or resolve the optimisation problem.
The classical optimisation methods have difficulty trying to solve this problem be-
cause it is either trapped in the local minima or maxima.

Recognising this fact, the idea of using EAs in pursuing an optimal trajectory
for a pursuit-evasion problem has begun to flourish in the research community.
Some problems are best solved using running simulations, such as pursuit-evasion
problems. The problems can be more complicated in stochastic environments,
i.e. when the objectives involve uncertainties or noisy value due to the presence
of random variables. To make the problem even more complicated, the problem
could have multiple objectives, such as ”black-box” objective functions that could
cause classical numerical optimisation approach to be computationally expensive
[36]. This optimisation approach is also known as “simulation optimisation” [36].

A study by Mulgund [83] used GA to optimise the initial launch of a beyond

27

visual range missile in a many-vs-many engagement. Although point-mass mod-
els were used, the study did not cover the optimisation of a “close-range” duel.
The study mainly concentrated on the optimal formation of the attacking units.

The robustness of Evolutionary Algorithms has provided the lead for the re-
search community to find an optimal solution in a dynamic environment. Finding
an optimal solution in a dynamic environment is not easy, but if one could find
a solution that could follow the optimal solution closely is already good enough
[4]. He found that the use of self-adaptation was found to be effective on some
functions, but detrimental to others. These effects validated the “no-free-lunch
theorem” [131]. Thus, a deeper understanding of the problem at hand is essential
during the development of an EA algorithm.

Another example is by [72], where the author used a genetic algorithm and
a simulated annealing algorithm to search for optimal evasive manoeuvres in the
vertical plane. The evader is an aircraft and the pursuer is a missile. The author
used genetic algorithms to search for global optimal solution and the fine tuning
of the search space (local search) were performed using simulated annealing.

Algorithms based on evolutionary principles are: Genetic Algorithms (GAs),
Genetic Programming (GP), Evolutionary Strategies (ES) and Evolutionary Pro-
gramming (EP). All these fall into one main algorithm type called Evolutionary
Algorithms (EAs). The metaphor underlying EAs is an approach that is based on
natural selection. The idea is borrowed from Darwin’s principle of “survival of
the fittest” [28]. Fogel [42] conducted an indepth analysis of evolutionary compu-
tation and its prospect as a new algorithm for artificial intelligence.

A genetically-based machine for learning for air combat manoeuvre has been
studied by [113; 114; 115]. The learning classifier system is a Q-learning based
learning technique that uses pairs of state/action encoded by GA to generate opti-
mal trajectory or manoeuvre. For a period of 30 seconds, through a simulated
game, the GA searches the optimal manoeuvre for either one-player or both-
player. The state/action pair technique executed is similar to the expert system
where many IF-THEN-ELSE conditions are employed. Similarly with this the-
sis, the author uses a nonlinear 6DOF aircraft model to perform the simulation
to study post-stall technology (X-31 experimental aircraft) in an air-combat. The
other aircraft is an F-18. Several ingenious manoeuvres have been performed
by the X-31 aircraft to achieve an upper hand against the other aircraft. Some
of the manoeuvres found by GA are: the Herbst Manoeuvre and the PST (Post
Stall Technology) Hammerhead turn. The Herbst Manoeuvre causes the aircraft

28

to quickly reverse through a combination of high angle-of-attack and rolling. In
the PST Hammerhead turn, the aircraft reverses its direction by performing a ma-
noeuvre resembling a backflip.

On the other hand, the current application of Evolutionary Algorithms (EAs)
in pursuit-evasion problems is limited in terms of its role. In many studies, EAs
are utilised to find good initial guess values for use in other optimisation algorithm
such as nonlinear programming as examined by Horie [55]. He solved the opti-
mal solution in pursuit-evasion problem by utilising conventional collocation with
nonlinear programming. A genetic algorithm is used to provide an approximate
solution (i.e. initial guess) for the nonlinear programming solver. Others have
also attempted to use the Evolutionary Algorithm in simplified pursuit-evasion
problems [71; 7; 32].

The dynamic nature of a pursuit-evasion problem has put Evolutionary Al-
gorithm in the spotlight due to its ability to locate a close-to-optimal or feasible
solutions in a relatively short period of time. With the advent of fast computing
technologies, such as parallel computing architectures, the use of Evolutionary
Algorithms becomes even more promising. This can be done by performing the
search from a remote position using a very powerful computer and sending the
results back to the aircraft in the manner that is as close to real-time. Thus, the
aircraft can be kept lightweight, simple and inexpensive.

The search for optimal mutation rates, crossover rates and many other pa-
rameter optimisation has been carried out in many studies using standard objec-
tive functions. For example, Yong [73] introduced fast-GA with exclusion-based
selection operators and Fourier series auxiliary functions to improve the perfor-
mance of a standard GA for multi-model problems.

A more general pursuit-evasion problem between agents such as robots has
been studied by [46; 22; 88]. Fukunaga [46] applied Genetic Programming (GP)
in planar pursuit-evasion game by co-evolving the players’ strategies. The per-
formance of the GP algorithm was improved by using increment evolution. A
relationship between parameters was observed while trying to improve the per-
formance of the algorithm. This may be due to the large number of parameters
involved and the stochastic behaviour displayed. The pursuit-evasion between a
team of pursuers and a team of evaders are also studied. For example, Nitschke
[88] utilised co-evolution of genetic algorithms to find the optimal pursuit-evasion
between a cooperative pursuer and a non-cooperative evader. The agents used
were robots. It was observed that the tuning of parameters for optimal perfor-

29

mance is still a problem in itself [46; 88].
A point-mass pursuit-evasion problem using genetic programming (GP) was

solved by Moore and Garcia [82]. The evader was a generic jet fighter aircraft
and the pursuer was an air-to-air missile. In their approach, each optimal solution
found by GP was only optimised for a specific type of pursuer. A fixed set of
possible manoeuvres were used in the coding schemes and in the solution space.

This thesis aims to find feasible solutions for the evader in a pursuit-evasion
problem through Evolutionary Programming (EP) algorithm. The pursuit-evasion
problem has to be in three-dimensions, using either a six degree of freedom model
(6DOF) or 3 degree of freedom model (3DOF). The aircraft data has been obtained
from actual flight-test and wind-tunnel observations. The EP algorithm must be
able to find the optimal control history of the evader to be as close as possible to
real time. As far as the author knows, there is no such research has been attempted
that use a full 6DOF model for the evader and either 6DOF or 3DOF model for
the pursuer using EP.

2.9 Parallel Evolutionary Algorithms

EAs are inherently well suited to be parallelised. The advantages of using parallel
EAs are numerous [21]. Two important aims in utilising these parallel EAs are
speed and quality [21]. Firstly, the aim is to reduce the execution time so that the
feasible solution can be obtained faster. Secondly, the aim is to increase the quality
of the feasible solution, i.e. within the same computing time, more solutions can
be evaluated by distributing them to several processors which translates them for a
broader search space. For that matter, the execution time has two components: the
time used for computation and the time used to communicate information among
processors. There are four models commonly used in parallel EAs as outlined by
Cheang [24]:

Master-slave. This is also known as a global model. In this model, a master pro-
cess assigns individuals to different slave processors for fitness evaluations.

Multiple-demes or Coarse-grained [21]. In this model, a complete EA cycles
are performed by several demes. Individuals are interchanging periodically.

Cellular model. [64] In this model, each individual is assigned to a cell on a

30

multi-dimensional grid. Each cell can only interact with its adjacent neigh-
bours.

Cooperative co-evolution model [96] In this model, an individual is divided into
sub-components. Each sub-component evolves into an isolated subpopula-
tion. A complete individual is obtained by assembling representatives (i.e.
best individual of sub-components) from each of the sub-population.

For the purpose of this research, only two models are used. They are the
master-slave and coarse-grained (multiple-demes) models.

2.10 Summary

This chapter details the various approaches adopted in solving the pursuit-evasion
problem. The first approach was called the classical approach. The classical ap-
proach requires the problem to be defined in the form of differentiable equations.
If the problem is differentiable, the saddle point can be searched.

The second approach is to use numerical modelling such as a nonlinear pro-
gramming technique to search for an optimal point [99; 33]. One of the ways is to
decompose the problem into ordinary optimal control problems which are solved
using discretisation and nonlinear programming techniques. Another methods are
to discretise the game and transform it into a bilevel programming problem and
solve using a first order feasible direction method.

A new optimisation approach has been suggested, i.e. Evolutionary Program-
ming. This can be used to overcome the limitations of the classical techniques.
The following Chapter 3 will describe the Evolutionary Programming in greater
depth. EP can be further optimised by executing it using parallel computers. Thus,
in this thesis, the EP will be developed as a Parallel EP which is explained further
in Chapter 4.

31

3 Evolutionary Computation

3.1 Introduction

Evolutionary Computation (EC) is a field of study that is inspired by natural evo-
lution and adaptation [6]. The development of EC was initiated to solve complex
real world problems through robust and efficient computational systems. In con-
trast to EC, traditional computational methods are difficult to implement for such
problems because their objective function is usually mathematically undifferen-
tiable, highly nonlinear, noisy, or has many singular surfaces of various types.
However, EC is able to approach the problem in its natural form. Thus, EC is suit-
able to find optimal or close to optimal solutions for complex real-world problems.
The way EC approaches the problem is by using a population-based approach that
relies on the power of random variation and selection. Algorithms that are based
on evolutionary principles are called Evolutionary Algorithms (EAs). Commonly
found EAs are Genetic Algorithms (GAs), Genetic Programming (GP), Evolu-
tionary Strategies (ESs) and Evolutionary Programming (EP).

The key element in EAs is that the solution of the problem is represented in
a population of individuals. An individual (a solution) represents the genotypes
of the solution space. The quality of the solution is improved by altering the
genotypes (genetic structure) of the individuals. The improvement is also called
evolution (deriving a better solution). Such an approach is so unique because EAs
create a virtual world for the population to breed, interact and die under certain
rules. To do so, the four algorithms used in EA share similar properties [24] and
they fall into this category:

1. EAs approach collectively the learning process among individuals. Each
individual represents a search point in the solution space.

2. The offsprings of individuals are generated stochastically, in the case of
Evolutionary Programming, through mutation.

3. An individual is evaluated at each life cycle. So each individual will have

32

a fitness value that represents their ability to survive. The selection will be
based on these fitness values.

In essence, evolutionary computation can be seen as a “generate and simulate”
approach in which multiple candidate solutions are generated and tested simulta-
neously. The propagation of the candidate solutions is moderated by the selection
pressure and the method of “intelligent” reproduction that would govern the dis-
tribution of the solution throughout the population.

In a dynamic environment, it is expected that the optimisation cycle is re-
peated at every adaptation cycle. This is true when the current executed plan
experiences new threats or changes in the environment. Although the feasible so-
lution is searched through a “perfect and virtual” experience in a simulated world,
it is hoped that it will perform well and similar success rate will be obtained when
exercised in the real environment. As an optimisation solver, the problem at hand
must be presented in a framework amenable to derive a solution by the “gener-
ate and simulate” process. In doing so, the evaluation of the solutions require an
objective function that could measure the performance and sort them accordingly.

In many real world problems, near-optimal or feasible solutions are usually
sufficient to resolve the problem. For example, finding an absolute evasion solu-
tion for 6DOF model in a given time span can be very difficult and time consum-
ing. On the other hand, it is adequate to find a feasible solution that could satisfy
all the constraints and still guide the evader from being intercepted. Even the first
feasible solution found during the optimisation cycle is adequate if the objective
function is robust and suitable enough to be extended to the real world.

3.2 Evolutionary Programming Algorithm

The Evolutionary Programming (EP) method was pioneered by L.J. Fogel in the
early sixties. Optimising continuous parameters using evolutionary programming
has many similarities with evolution strategies explicating how mutations are nor-
mally distributed. According to Fogel [43], evolutionary programming can be
categorised into five variants:

• Standard EP is characterised by the absence of any self-adaptation mecha-
nism.

33

• Continuous standard EP is where a newly created individual is immediately
evaluated and inserted into the population.

• Meta-EP incorporates variances into the genotype in order to allow for their
self-adaptation.

• Continuous meta-EP is similar with Continuous standard EP where a newly
create individual is immediately evaluated and inserted into the population.

• Rmeta-EP is similar to meta-EP but it also incorporating standard covari-
ances.

In EP, an initially random population of trial solutions is created. Mutations
are then applied to each individual to create new individuals. Mutations vary in
the severity of their effect on the behaviour of the individuals. The new individuals
are then compared in a “tournament” to select which should survive to form the
new population.

EP [5] is a class of EAs for simulating evolution. This is done by utilising
the concepts of Darwinian evolution theory to iteratively generate increasingly
better solutions in a dynamically changing environment. This process differs from
Artificial Intelligence which requires human experts to define the set of rules. On
the contrary, EP finds the solution by evolving sets of solutions which exhibit
optimal behavior with regard to the environment of the problem and obtaining the
desired payoff.

EP is also similar to Evolutionary Strategies, ES, although the two approaches
were developed independently. In EP, selection is by comparison with a randomly
chosen set of other individuals whereas ES typically uses deterministic selection
in which the worst individuals are purged from the population. Both rely on a
multi-agent stochastic search algorithm that can be used to find the optimal solu-
tion of the given functions. The functions are usually non-linear and consisting
of many local sub-optimal solutions. In this case, the conventional gradient based
search algorithms are unsuitable because the solutions can be trapped in a local
sub-optimum or the computation of the gradient itself is very difficult to obtain
[100].

Mathematically, the algorithm is, as described by [6]:

1. Initialisation: An initial population of µ individuals is generated and the
generation count, g, is set to 1. Each individual in the population is rep-
resented as a pair of real or integer valued vectors, (xi, σi), i = 1, 2, . . . , µ.

34

The xi’s represent the individual input vector and σi’s represent the associ-
ated standard deviations. Each individual is evaluated using the objective
function, f .

2. Mutation: Each parent (xi, σi), i = 1, 2, . . . , µ produces a single intermediate
offspring (x′i , σ

′
i) according to

σ′i = σi(j)exp(τ
′

N(0, 1) + τN j(0, 1)) (3.1)

x′i = xi + σ
′

i(j)N j(0, 1) (3.2)

where N(0, 1) is a normally distributed random number with zero mean and
unit variance. N j(0, 1) is similar with N(0, 1) but is regenerated for every j.
τ and τ′ are generally being set to 1

(
√

s
√

n)
and 1

(2
√

n) , respectively. [100] uses

lower threshold level of 10−4 of the standard deviation.

3. Objective function value: The objective function value of the offsprings
(individuals) is computed as f (x′i , i = 1, 2, . . . , µ). They are combined with
the parent with size µ to create the total population of 2µ.

4. Tournament: Every individual in the population is compared with q ran-
domly selected opponents. For each comparison, the individual that a lower
or equal fitness value will receive a win.

5. Selection: The better half (size µ) of the population (size 2µ) is selected to
be the parent for the next generation.

6. Termination: If the generation count, g reaches gmax, the maximum number
of generations, the evolution is terminated. Else, g is incremented by one
and the algorithm loops back to step 2.

Basically, in its standard form, the basic evolutionary program utilises four
main components i.e. initialisation, variation, evaluation or scoring and selection.

Initialisation means creating a set of possible solutions stochastically. In order
to apply EP successfully, an intelligent problem-specific solution must be devised
[63].

Variation provides the means for moving the solutions within the search space.
This could prevent solutions from being trapped in local optima. Evaluation will

35

measure the fitness of each solution and gives each solution its own weight or
fitness value. This fitness value is used as the basis for the selection of better
solutions.

The selection process probabilistically culls suboptimal solutions from the
population. This provides an efficient method for searching the topography. How-
ever, some suboptimal solutions are kept in the population in hoping that they will
be able to explore the solution space and locate the optimal solution.

The population size may range over a broadly distributed set. In general, it
should be larger than one solution. Each of these solutions is evaluated using a
fitness function. After the creation of the population of initial solutions, each of
the parent members is mutated to produce an offspring. However, recombination
is not utilised in EP.

Later on, the fitness is assessed for all offspring solutions with (i) the best so-
lutions are retained to become the parents for the next generation also known as
elitism; (ii) some of the best solutions are statistically retained (through tourna-
ment); (iii) the solutions are selected using proportional-based selection.

Finally, the process is terminated when a specified number of iterations has
been achieved, or a sufficient convergence criteria is reached.

3.3 Representation

Representations of the underlying problem are important for every search and op-
timisation evolutionary algorithms. They represent the solutions of the underlying
problem. In most engineering problems, a solution is a real-value vector used to
unlock the given problem.

Depending on the problem at hand, a solution can be a time- or frequency-
dependent functional variation for control system problems. The solution could
also be a strategy for games. Thus, the knowledge of the underlying problem
is important in devising the representation of its solution [5]. This is because it
affects the efficiency and complexity of the search algorithm. Obviously there
is no strict guideline on how a solution of a problem should be represented, but
rather it is more by the experience of the algorithm designers.

There are generally two approaches to represent information inside individuals
in a population. In the EA community, two well known approaches are the Pitt
approach and the Michigan approach.

36

The Pitt approach is from the work of De Jong and his students from the
University of Pittsburgh [29]. In this approach, each individual in the population
is encoded with all parameters of a possible solution.

On the other hand, the Michigan approach defines how the individual repre-
sents the parameter. In this approach, each member of the population representing
a single or a subset of parameters and the entire population forming a complete
solution of the problem.

In this thesis, the Pitt approach is used to code parameters values in individ-
uals. For the pursuit-evasion problem, the evader’s control time history (i.e. the
solution) is coded inside each individual solution representing the entire rule set
so that each generation consists of a population of possible solutions. The devel-
opment of the optimisation process is discussed in Chapter 5.

3.4 Evaluation of Solutions

The fitness of an individual or a solution is measured through a function com-
monly known as the objective function. The derivation of the objective function
is highly dependent on the problem at hand. In a pursuit-evasion problem, the
objective function is evaluated based on the simulated pursuit-evasion responses.
A proper air combat simulation model has to be built to evaluate the solutions.

In the related literature, issues due to the difficulty in developing a 6DOF
model are solved by using a simpler 3DOF model, such in [61], [98], [38], [57]
and [58]. The use of a full 6DOF model in such a problem is still in its early stage.

In EP, the outcome of the game forms the basis of the fitness value. Even
the infeasible solutions can be regarded as useful. The fitness value has to be
properly scaled and valued. For example, if all solutions are infeasible at the early
generation, they are not scrapped but the one that gives the maximum capture time
and is less likely to violate the constraints will be given a better fitness value. The
better solutions will be selected and mutated accordingly to form the offsprings.

3.5 Mutation

The mutation provides the diversity of the solution in EP. In the case of standard
Evolutionary Programming as derived from the work of [10], the Gaussian muta-
tion operator m{β1,...,βn,γ1,...,γn} : Iγ → I is an asexual operator, such that again only

37

the reduced from m′
{β1,...,βn,γ1,...,γn}

: I → I,m′(~x) is used. The operator works with a
standard deviation that is obtained from each component xi of the object variable
vector as the square root of a linear transformation of the fitness value Φ(~x), that
is (∀i ∈ {1, . . . , n}) :

x
′

i = xi +

√
βi · Φ(~x) + γi · Ni(0, 1) (3.3)

The proportionality constants βi and offset values γi are 2n independent pa-
rameters that must be tuned. Usually, the value of βi and γi is set to one and zero,
respectively. Thus equation 3.3 becomes

x
′

i = xi +
√

Φ(~x) · Ni(0, 1) (3.4)

A more intelligent approach is to make the EP self-adapting which is known
as the meta-EP. This is achieved by mutating the variance as follows; mutation
m{ζ} applied to an individual ~a = (~x,~v) produces (~x1,~v1):

x′i = xi +
√

vi · Ni(0, 1)v′i = vi +
√
ζvi · Ni(0, 1) (3.5)

where ζ denotes an exogenous parameter to ensure that vi tends to remain positive
[10] and ∀i ∈ {1, . . . , n}.

The benefit of using various mutation strategies such as Gaussian, Cauchy,
Lévy and others has been studied in the past. However, they were found to perform
better at certain types of problems but did not fare well at others. For example, in
conventional evolutionary programming, the Gaussian mutation strategy is widely
used, but it does not perform well for multi-modal functions.

3.6 Recombination

As a note, Evolutionary Programming does not use any kind of recombination
operator but relies on the power of mutation alone. Fogel argues that the role
of a crossover is often overemphasized by claiming that it is inappropriate to de-
fine evolution by the mechanisms of genetic change rather than their phenotypic
effects. It is supported by Atmar [44] who claimed that crossover should be no
more than a second- or third-order component of evolution. The author claims
that the benefits of using crossover are not clear.

38

3.7 Selection

The offspring population is directly derived from the parent. So, their sizes are
identical, i.e. γ = µ. A probability selection method is used on the union of
parents and offsprings to reduce the total number of individual from 2µ to µ. This
selection method is also called (µ + µ)− selection.

The selection is controlled by an additional parameter q ∈ N(q ≥ 1). q denotes
the tournament size. For each individual ~ak(k ∈ {1, . . . , 2µ}), q individuals are
chosen at random from the parent population, P(t) and the offspring population
P′(t) or P(t) ∪ P′(t), and compared to ~a(k) with respect to the fitness values.

The number of individuals in q that are worse than ~a(k) are counted and scored,
wq ∈ {0, . . . , q}. The 2µ individuals are then ranked according to their score val-
ues, wi, and µ individuals with the highest score are selected to form the next
population. The calculation of wi is as suggested by [10].

In this selection process, there is a difference between stochastic and deter-
ministic selection [63]. The use of deterministic selection guarantees that the best
individual in the population will always get selected. Stochastic selection is em-
ployed to provide “noise”. The motive is to improve their “robustness” by decreas-
ing the probability of converging to a sub-optimal solution. The balance between
exploration and exploitation is necessary to have a good level of “greediness” so
that the selection pressure is able to locate optimal solutions and at the same time
diversified the selection space to avoid being trapped in sub-optimal peak. The
search for the optimal setting between exploration and exploitation is by trial and
error. This may result in the loss of feasible solutions, but the advantage should
not be ignored.

In another study, Jianjun [56] suggested an approach to overcome limitations
such as premature convergence, stagnation, loss of diversity, lack of reliablity and
efficiency and oversimplified of the objective function experienced by conven-
tional evolutionary algorithm.

During the selection, when the population fitness increases, it will become
harder to escape from the existing search vector. The new approach is called Hi-
erarchical Fair Competition (MFC) model. The model is achieved by maintaining
individuals in a hierarchically organised fitness levels. The evolution is kept run-
ning at all fitness levels. This transforms the EA from a conventional convergent
evolutionary computation model into a sustainable search framework by culturing
and maintaining building blocks of various fitness scales.

39

The thesis employs both the elitist selection and the tournament selection
mechanism in selecting individuals for the next population for comparison pur-
poses. It can be specified in the configuration file prior to the simulation.

3.8 Applying to Pursuit-Evasion Problem

Literature related to the current approaches in solving pursuit-evasion problems
has been described in Chapter 2. Simplifications were necessary as to make the
problem mathematically tractable to suit the techniques. But it comes with a price,
and that is, it reduces the level of realism. Thus, a new optimisation paradigm is
required to fill the gap between numerical simulation and reality. Evolutionary
computations appear to be able to fill in the gap due to its ability to solve complex
real-world problems [24] and one of these examples is solving the optimisation in
power systems planning and operation [52].

In an air combat, the evading pilot would have to know the position of the ad-
versary and the type of weapons they are carrying. By assuming the pilot knows
the exact location where the adversary fired its missile and the type of missile it
uses, the pilot then will steer the aircraft for evasive manoeuvre by moving the
control stick and the throttle. If the application of the control stick and the throttle
is done in a timely and correct manner, successful evasion will be achieved. The
timely manner means that the timing of the manoeuvre must be perfect whereas
the correct manner means the type of manoeuvres such as hard turn or climb must
be correct. If these criteria are not followed, the evader will be intercepted. Thus,
the ability to locate the evasive window of opportunity is crucial in such a sce-
nario. To achieve this, the pilot must know the tricks and skills to perform the
evasive manoeuvres [103]. The types of manoeuvres have been discussed in Sec.
2.5. However, such tricks and skills are not easily mimicked in a computer envi-
ronment. The computer must have an inherent ability to perform the manoeuvres
correctly.

As mentioned earlier, many researchers use 3DOF model to determine opti-
mal trajectories in a pursuit-evasion problem. But their solutions are limited to the
terminal phase (the end game) and with the assumption that the capture is guar-
anteed. There is hardly any literature that talked about exploiting the pursuer’s
weaknesses to the fullest for a successful evasion. By reducing the equations of
motion to a simplified form, a lot of the important information is lost. This loss of

40

information could result in an incorrect conclusions.
In other research, very few researchers are actually applying a 6DOF model

with actual aerodynamic data to solve optimal trajectory in an air combat scenario.
Similarly, the relationship between the medium phase and the terminal phase of
the game has also not been studied. Perhaps, this is due to the difficulty arising
from the mathematical analysis.

In order to successfully use the EP to solve an air combat problem, the idea is
to represent the solution as a series of deflections of the aileron, the elevator, the
rudder and the throttle settings for a fixed period of time. The solution is evaluated
in a game of an air combat that has taken place in a three-dimensional space.
An optimal solution is the solution that helps the evader from being intercepted.
The solution is the one that has the highest fitness value. If the solution caused
the aircraft to violate constraints or causes it to be intercepted, then would be
considered sub-optimal. A penalty is given that will reduce its fitness value. If
the game is not over yet, the search for the next optimal solution is repeated for
another spawn time.

In its general form, the optimisation approach described in this thesis can be
interpreted as a black box optimisation problem. One may argue that the approach
lacks a tangible mathematical approach and does not have a thorough theoretical
background. But the potential is considerable [21].

Apart from computational time, if the procedure is properly designed and de-
scribed, there are no restrictions on the type of inputs that can be fed into the black
box. From the optimiser’s perspective, EP sends a set of parameters into the black
box, and in return, it will receive a scalar performance measure, i.e. the fitness
value.

From a pursuit-evasion perspective, this means that the objective function can
be based on the full nonlinear flight response characteristics of the players. These
include realistic representations of uncertainty, discontinuities, disturbances and
noise of sensors and the environment.

The main computational results of this thesis focus on the ability of the evolu-
tionary programming method to find optimal solutions without any prior knowl-
edge. This is achieved by performing evolutionary search for control parameters
through numerous flight simulations which will then be used to assess the perfor-
mance of possible solutions.

41

3.9 EAs in Uncertain Environments

EAs is definitely an uncertain optimisation algorithm. Even if the mathematical
models are very close to real, the high dependence on random number generator
itself guarantees the presence of uncertainties in its ability to search for optimal
regions. This section was written primarily based on the work of [62]. As outlined
by [62], there are four classes of uncertainties affecting the performance of EAs
such as:

Noise Noise exists during the evaluation of the fitness function. They may come
from different sources. In an air combat game, the noise may come from
sensory noise, measurement errors and estimators. Mathematically, a noisy
fitness function is represented as:

F(X) =

∫ ∞

−∞

[
f (X) + z

]
p(z)dz = f (X), z ∼ N(0, σ2) (3.6)

where X is state or design variables, f (X) is the fitness function, z is the
additive noise, which commonly assumed to be normally distributed with
zero mean and variance σ2. It has been observed that there is no significant
difference between a Gaussian and a non-Gaussian noise distribution [62].

Robustness The state variables are subjected to perturbations after the optimal
solution is found. Thus, it is important to have a high confidence that the
optimal solution will still work. Monte Carlo simulation is commonly ap-
plied to estimate the robustness. Commonly, robustness is viewed from two
aspects [62]:

1. The optimal solution is insensitive to small variations of the design
or control variables (e.g. the aileron, the elevator, the rudder and the
throttle setting); and

2. The optimal solution is insensitive to small variations of the environ-
mental and states variables.

Fitness Approximation An approximation of the fitness function is usually used
when the original fitness function is very expensive to evaluate. For exam-
ple, evaluating a solution on a CFD1 solver which may take hours to con-
verge. Thus, using an approximate fitness function may save time and cost.

1Computational Fluid Dynamic

42

Approximation is typically not required if the fitness function is relatively
fast to evaluate.

Time-variant Fitness Function The fitness function is highly dependent on time
because the optimal solution moves along with time. This is particularly
true for optimising trajectory in an air combat. In an air combat, the initial
state variables and control variables will determine the optimal solution.
Thus, as the game goes on, the optimal solution has to be computed for a
defined spawn-time, see Section 5.1.

3.10 Summary

This chapter explains the methodology of Evolutionary Programming algorithm.
This algorithm forms the general outline of the optimisation algorithm discussed
in Chapter 5.

The next chapter explores further the algorithm by explaining the application
of parallel Evolutionary Programming algorithm to solve pursuit-evasion prob-
lem. It is important to find the correct representation of the solution to the prob-
lem so that the solution could be easily evaluated and always ready to be applied
to the actual problem.

43

4 Parallel Computing

4.1 Introduction

Evolutionary Programming (EP) or any evolutionary algorithm requires hundreds
or thousands of function evaluations of solutions. Each evaluation may take sec-
onds or days to be resolved, depending on the cost of the evaluation. Fortunately,
the evaluation of a solution in EP is independent of each other, making it possible
to distribute the computing load among multiple processors. This approach will
speedup the optimisation process [63]. Parallel Evolutionary Algorithms (EAs)
are considered by some as “embarrassingly parallel” programs [20]. But, although
their mechanics are simple, the underlying algorithms are complex and controlled
by many parameters that affect the quality and efficiency of their search. Gen-
erally, the design of parallel EP involves choices such as using one population or
multiple populations. The choice of the size of the population(s) must be carefully
determined in order to get the best speedup and the quality of the solution.

4.2 Parallel Systems

A parallel computing system is a computer that has more than one processor and
it is used for parallel processing. In the past, each processor of a multiprocessing
system always came in its own processor packaging and design. In recent devel-
opments, multicore processors are introduced. It contains multiple processors in a
single box. Although, there are many different kinds of parallel computers. They
are distinguished by the kind of interconnection between processors (known as
“processing elements” or PEs) and the way the memory is distributed and shared.
On a historical note, the application of parallel computing on evolutionary algo-
rithms was probably first used by Bethke [11].

Parallel architectures are synonymous with Flynn’s taxonomy. It is one of the
most accepted taxonomies of parallel architectures, classifies parallel as well as
serial computers based on the following criteria:

44

• All processors execute the same instructions at the same time (single in-
struction/multiple data – SIMD) or

• Each processor executes different instructions (multiple instruction/multiple
data – MIMD).

These processors are further classified into two main categories based on mem-
ory access times which are:

• Uniform Memory Access (UMA), in which access times to all parts of the
memory are equal, or

• Non-Uniform Memory Access (NUMA), in which in which access times to
all parts of the memory are not equal. Distributed memory parallel comput-
ers also have multiple processors, but each of the processors can only access
its own local memory; no global memory address space exists across them.

Another common classification is based on the number of processors a system
has. If the number of processors comes in thousands, the system is known as
massively parallel. A PC based parallel system is generally called a small scale
system. The parallel systems are also divided into asymmetric and symmetric
multiprocessors. It depends on the similarity of the processors. One group of
processors may have different privileges of running programs than the others.

Besides this parallel system, there are many different types of parallel archi-
tectures: ring architecture, hypercubes architecture, fat trees architecture, systolic
arrays architecture and many others.

4.3 Performance vs. cost

If a system of n parallel processors is less efficient than one n-times-faster proces-
sor, the parallel system is often more cost effective to build. Parallel computation
is used for tasks which require large amounts of computations, require long pro-
cessing times, and can be divided into many independent subtasks. In recent years,
most high performance ’computing systems, also known as supercomputers, have
parallel architectures.

45

Figure 4.1: Master-Slave Model.

4.4 Master-Slave Model

In this configuration of parallel processors, the master node executes the EP op-
erations, i.e. selection and mutation, and the slave nodes evaluate the fitness of
the solutions and send back the results to the master node. Master-slave EAs are
widely used for several reasons [20] such as the following:

1. The explored search space is similar to serial EA;

2. They are easy to implement; and

3. The use of this model can result in significant performance improvement.

The level of communication in this approach is high. It happens when the mas-
ter node sends the solutions to the slaves, and the slaves return the fitness values
to the master node. Thus, the speedup is limited to the serial part of the processing
such as the communication and the tasks solely performed by the master slave.

Grefenstette [48] was one of the earliest to use master-slave parallel EA. His
works is on the performance of parallel GAs (genetic algorithms). He proposed
four prototypes of GAs. The first three were variants of a master-slave scheme,
and the fourth was a multiple-demes parallel GA. He also suggested to combine
both schemes to create a hybrid parallel GA.

The key performance indicator in this scheme is to see if the master-slave
model could improve the performance, i.e. the computing time and the quality of

46

the solutions. In the earlier works [35], even though the master-slave approach
was speculated to be able to give many benefits, studies have shown that some im-
plementations have stumbled upon a scalability problem. The problem occurred
when more processors were used causing the efficiency of the algorithm decrease.
This is mainly due to the communication costs and the serial component of the
process.

In this thesis, the master-slave scheme is applied. The master node initially
creates individuals and then sends them to the slave nodes for evaluation. The
slave nodes evaluate the individual. Once all individuals are evaluated, the slave
nodes send the fitness values back to the master node. The master node will then
do the mutation, and selection.

4.4.1 Execution Time

The execution time of the master node is important in this approach. The master
node performs solution generations, mutations, evaluations and selections. The
slave nodes only perform the evaluations.

In the process, firstly, the master node divides the population evenly among
slave nodes and send them to the slaves in time Tc. Then, the fraction of the pop-
ulation is evaluated using the time nT f

P , where T f is the time required to evaluate
an individual, n is the size of the population, and P is the number of processors.
Finally, the slaves will evaluate the given solutions and return the fitness values
back to the master node. There is a delay time Tc for all slaves and master node
before all fitness values are back to the master node before it can be processed
further. According to [20], the elapsed time for one generation of the parallel GA
(or EP) may be estimated as

Tp = PTc +
nT f

P
(4.1)

In Eq. 4.1, the computation time decreases if the number of slaves increases,
but with the expense of increasing communication time. This situation creates the
needs to use an optimal number of processors to minimise the execution time. The
optimal solution can be found by setting ∂Tp

∂P
and solve for P to get

P∗ =

√
nT f f

Tc
(4.2)

47

which translate to the optimal number of slaves to S∗ = P∗ − 1.
Equation 4.2 can be deduced further if the Tc is a function of the amount of

information (x), the inverse of network bandwidth (B) and the latency of commu-
nications (L).

Since each slave receives n/P number of individuals, the time required to send
them to the slaves is

Tsend = B
nli

P
+ L (4.3)

and the time to send them back to the master node is

Trecv = B
nl f

P
+ L (4.4)

where li and l f are the length of the individual and the fitness values, respectively.
Thus the optimal number of processors becomes

P∗ =

√
n(T f + B(l f − li))

L
(4.5)

4.5 Coarse-grained Model

This is the most natural EP model. This approach is also known as an “island”
model. An “island” model comprises of several islands in which there are a num-
ber of centralised EPs running in parallel on different processors. For properly
modelling the technique, several questions must be answered [63]:

• How many islands will be used?

• How are they interconnected?

• Which individuals would migrate?

• How often do migrations occur?

• Should each island be running identical EP?

• How big is the population?

These questions have resulted in many research papers and theses such as
[20; 130; 26]. Overall, these island models can significantly improve the problem-
solving capabilities of EAs [63]. However, to achieve this improvement, the cost

48

is extremely high. There are many factors that need to be understood in order for
the approach to be effective for particular applications [63].

This approach of improvement is also known as “coarse-grained” or “dis-
tributed” EAs, simply because the communication to computation ratio is low
[20]. Often, this approach is implemented on distributed-memory computers. The
simplest implementation of this approach is to run the EA on each deme with-
out any communication among them. However, an isolated deme may produce a
lower fitness value than the ones achieved by a single large population [49]. An-
other attempt is to start the migration after the demes are completely converged
[14].

Another type of implementation is when the demes are fully connected. In this
configuration, the demes communicate between each other by migrating solutions
amongst them. This is known as fully connected demes. The parameters that
control the migration are (1) what type of solutions are to be migrated - just the
optimal solutions or statistically selected solutions (2) and the migration rate.

The upper bound of the frequency of migration is by exchanging solutions at
every generation [20]. This represents the most intensive communication, where
the demes are fully connected. In this situation, the migration rate is at the max-
imum and communication occurs at every level during the generations. The dif-
ference from master-slave model is that the coarse-grained model has at most one
migration event in a generation. It may occur before or after selection and recom-
bination.

The migrants and the individuals that they replace can be chosen in many
ways. The migrants can be the best candidate at home or chosen randomly by
using a specified probabilistic distribution. The individuals they replaced can be
the worst in the population or chosen randomly. The convergence of the solution
depends on the migrant policy employed in this process.

The thesis considers minimal migration between demes and the migration only
occurs with the adjacent deme and it is one way. The migration occurs at every
generation. The best individuals are copied to adjacent deme. The migrant will
replace the worst individual in the deme. The effect of migration rate to the quality
of the solution is studied.

49

4.6 Amdahl’s Law, Parallel Speedup and Efficiency

The discussion on parallel computing is incomplete without mentioning the Am-

dahl’s Law. The speedup of a parallel program is defined as the ratio between the
time taken to complete a given task on one processor to the time taken to complete
the same task on multiple processors [54]. Mathematically, let T (N) be the time
required to complete the task on N processors. The speedup S (N) is the ratio

S (N) =
T (1)
T (N)

(4.6)

If the execution time has two portion, i.e. the serial time portion Ts and the
parallel time, Tp, the speedup can be calculated as:

S (N) =
T (1)
T (N)

=
Ts + Tp

Ts + Tp(N)
(4.7)

Eq. 4.7 is known as the Amdahl’s Law.
Finally, the efficiency of a parallel program is calculated as

E(N) =
S (N)

N
(4.8)

4.7 Summary

This chapter explains the concept of parallel EP. Two models are considered, i.e.
master-slave and coarse-grained. There are several issues arising from using par-
allel EP notably the speedup and the efficiency. However, since EP is inherently
ready for parallel implementation, the benefit of implementing parallel EP is nu-
merous such as expanding the search space and improving the time to search for
feasible solutions. The next chapter explains the implementation of the equations
of motion of an aircraft and its integration into EP.

50

5 Implementation of an Air Combat
Problem

5.1 Introduction

In this chapter, a realistic air combat has been enacted using Evolutionary Pro-
gramming. This research focuses on the case of an air combat between two play-
ers. The assumption is that one player is superior to the other. The superior player
acts as the pursuer and the second player is the evader. The different roles form
the fitness function or the objective function required by EP. Generally, the pursuer
aims to intercept the evader. The pursuer can be a jet fighter aircraft considering
an interception when its gun takes a shooting position of the evader, or it can be a
missile in which an interception is considered when the separation distance of the
vehicles is less than the lethal distance of the missile. In this situation, a feasible
solution is defined as a solution that increases the probability of survival for the
evading player. Furthermore, the objective is to avoid interception. A bad solu-
tion is defined as a solution that has a high probability of causing the evader to be
intercepted.

The study aims to find feasible solutions using two vehicle models, i.e. three
degree of freedom (3DOF) and six degree of freedom (6DOF) which are as close
as possible to a real time use. The 3DOF formulation is also known as a point-
mass formulation because it only involves translation and does not take into con-
sideration the aircraft attitude. The fact is that the 6DOF formulation is more
complex because it involves both translation and attitudes. In this chapter, both
approaches are discussed.

The search for a feasible control solution is a continual process of generating
new control solutions over a period time by adapting previously computed control
solutions for future motion. This concept is illustrated in Figure 5.1. The con-
cept is started by defining a spawn point. A spawn point is defined as the time
where the planner updates the output trajectory. During the course of a mission, a
planner will continually compute an updated trajectory which starts from the next
spawn point (point 3) until a predetermined planning time horizon (point 4 in the

51

figure). The computation starts (point 2) somewhere between the previous spawn
point (point 1) and the next spawn point (point 3). The time between point 2 and
point 3 in Figure 5.1 is the computation time required by the planner. An update
of the feasible control solutions is sent to the controller of the vehicle for execu-
tion every time the vehicle reaches a spawn point. The time difference between
spawn points specifies the maximum time available to plan for the next feasible
trajectory. It is important to note that the shorter the time planning requires faster
algorithms. This is the niche for Evolutionary Programming algorithm to show its
capability. Since traditional approaches require high computing power for nonlin-
ear problems, EP has a good potential to find feasible solution in a shorter period
of time. This concept is similar to that of Model Predictive Control (MPC) [18].

Figure 5.1: Time horizon planning of optimal pursuit-evasion problem.

The difficulty of the problem hinges on how one defines the objective function
and the constraints on the input variables. In order to find a feasible control solu-
tion for the evader against a very agile pursuer, it would be done by putting them
in a simulated game over a predetermined time period. To simulate a realistic
air combat scenario, the actual aerodynamic of the aircraft and stability charac-
teristics are employed. The information obtained from this simulated combat is
combined with the aircraft general equations of motion and constraints. At the
end, the mathematical model forms the foundation of the objective function.

52

The search for the feasible solution is done by running each solution in self-
play simulated games. Contrary to the approach used by [126] and [33], the
feasible solution caters for both the inner-loop and the outer-loop control. The
inner-loop control ensures that the vehicle does not violate any constraint during
the whole period of the game and the outer-loop control ensures that the vehicle’s
trajectory is feasible for evasion. Building the correct mathematical model is not
easy. As emphasised in Fishman’s monograph [39], there is no guarantee that the
time and effort devoted to the modelling will return useful results and satisfactory
benefits. This is rather an on-going exercise in which the researcher will always
improve the mathematical model to achieve a better result. However, relying too
much on the method and not enough on the ingenuity could hinder from achieving
a higher goal. Thus, a proper balance between the two is important to achieve a
higher probability of success. The second point in the monograph explains the
tendency of the researcher to treat the problem as the best representation of re-
ality. A good understanding of other methods used to solve the same problem is
important as a benchmark against the researcher’s own method of choice. The
third concern is using the mathematical model beyond its capability.

There are two conflicting objectives in simulating a real system as mentioned
by [101], i.e. realism and simplicity. Realism is important so that the model is
representing the closest possible actual problem and at the same time the mathe-
matics must be tractable for implementation on a computer. The most important
aspect in modelling of a problem is its high correlation between the prediction
by the model and what would actually happen with the real system [101]. One
way of ensuring this is to test and establish control over the solution. As for a
pursuit-evasion problem between two air vehicles, the validation can be either
through other validated simulation models or feedback from experienced fighter
pilots. Due to the nature of the problem, both options are classified materials.
They require security clearance from the military.

Since the problem is complex, and most analytical solutions have to be simpli-
fied just to make them tractable, the only alternative is through the use of simulated
game [85]. The benefits of running simulations are numerous [85] such as (i) it
makes it possible to study the effects of certain informational, organisational, and
environmental changes by altering the inputs and observing the outputs, (ii) the
experience of designing a computer simulation model can be more valuable than
the actual simulation itself, (iii) simulation of a complex system can yield valu-
able insight into identifying important variables and how these variables interact,

53

and (iv) it can be used to experiment with new situations, for example new aircraft
designs, and (v) a simulation is safer and less costly than the real experiment.

The remaining sections describe the development of the mathematical model
of the objective function used in EP.

5.2 Assumptions

The assumptions in the development of the simulation models are as follows:

1. A flat-Earth axis system is used.

2. External disturbances such as wind gust and turbulence are currently ig-
nored.

3. The atmosphere follows the International Standard Atmosphere.

4. The evader knows very well about the pursuer’s systems and their capability.

5. The vehicles have a rigid-body.

6. The missile (the pursuer) has a negligible response lag.

7. There are no above ground obstacles, such as hills and mountains, but the
ground is modeled as a constraint.

5.3 Aerodynamic Forces and Moments

The aircraft equations of motion are derived from Newton’s second law of motion.
It states that the summation of all external forces acting on a body must be equal
to the time rate of change of its momentum. Also, the sum of the external mo-
ments acting on a body must be equal to the time rate of change of its moment of
momentum. The 3DOF equations of motion are described in 5.6.3 and the 6DOF
equations of motion are described in 5.7.3.

The forces and moments acting on an aircraft are typically defined in terms
of dimensionless aerodynamic coefficients. In three-dimensional manoeuvres, the
coefficients are functions of the two aerodynamic angle, namely angle-of-attack
and sideslip angle, the Mach number and the Reynolds number. The Reynolds
number and the dynamic pressure can be estimated at any altitude if the Mach

54

number is known, together with the knowledge of the local atmosphere. Cases
that involve the deflection of control surfaces such as the aileron, the elevator
and the rudder will change the coefficients. However, there are other factors
that change the coefficients such as the landing gear, external tanks and external
weapons which are not considered in this thesis.

The aerodynamic forces acting on the aircraft are divided into components of
X,Y,Z parallel to the body axes. The forces are given by

X = q0S CX

Y = q0S CY (5.1)

Z = q0S CZ

where q0 = 1
2ρV2.

The force coefficients are derived from the various aerodynamic forces and
moments acting on the airframe. The coefficients are derived based on the body
axes coordinate system and they are non-dimensional.

In addition, the aerodynamic moments are calculated by assuming that the
centre of the act is at the centre of the body mass. There are three moments acting
on the centre of mass of the aircraft, i.e. the rolling moment, L, the pitching
moment M and the yawing moment N. The moments are defined as

L = q0S Cl

M = q0S Cm (5.2)

N = q0S Cn

5.4 Aerodynamic Coefficients

The dependence of an aerodynamic coefficient can be defined as

C() = C()(α, β,M,H, δs,T) (5.3)

where subscript () represents X,Y,Z for forces and L,M,N for moments and δs

represents the control surface deflection.
Eq. 5.3 implies a complicated functional dependence has to be modelled as a

55

lookup-table using a computer model. In this model, some coefficients are static
and they are measured from a stationary model in a wind tunnel. For highly agile
fighter aircraft, the aerodynamic effects during manoeuvring are also important.
These effects require a different equation model of the aerodynamic forces and
moments. For the purpose of this study, the aircraft model in this thesis uses
coefficients extracted from [47].

5.5 Component Buildup

The aircraft model was build based from the work of Stevens [118]. The aircraft
aerodynamic and stability coefficients are employed. These coefficients are used
by the equations of motion to calculate the aircraft dynamics at every time step.
Mostly, they are built as a function of the angle of attack, the sideslip angle, the
Mach number and altitude.

For this thesis, a small database prepared by Gilbert and Nguyen [47] for a
low speed F-16 model data which was developed at the NASA Langley Dryden
and Langley Research Center was used. An example of a three-dimensional plot
is shown in Figure 5.2. The aerodynamic look-up table data are discrete in which
aircraft models require data as arbitrary values of the independent variables. The
look-up is performed by using an interpolation algorithm that comes with the data.
The interpolation algorithm is included in Appendix A.

Figure 5.2: Sideforce coefficient of the F-16 model [118].

56

5.6 Three Degree of Freedom Simulation Model

In this section, a simulation using three degree of freedom (3DOF) or a point-
mass model, is developed to describe the aircraft trajectories. The trajectories
are represented through six state variables; angle-of-attack (α), bank angle (θ),
velocity (v), east-ward position (x), north-ward position (y) and altitude (h). The
flight path angle (γ) and heading angle(ψ) are used to control the aircraft.

The 3DOF model forms the basis of the pursuer’s dynamics. The pursuer’s
kinematics is assumed to behave closely with its real-world counterparts when
equipped with a thrust model and the known proportional navigation model. How-
ever, due to the limited information about the pursuer (i.e. the missile), an estima-
tion has to be made.

5.6.1 Introduction

The development of an EP algorithm was firstly initiated for a three degree of
freedom pursuit-evasion optimisation problem. The reason is because the 3DOF
model is simpler to build as it uses a preliminary platform in simulating a pursuit-
evasion game before taking a step further into 6DOF simulation. For 3DOF prob-
lems, both players are presented in the form of point-mass models. Due to the
limited information on the players, the aerodynamic and relevant coefficients are
assumed to be constant. The simplified coefficients are derived from [86] and
[133].

5.6.2 Vector Rotation

Military aircrafts perform extreme manoeuvres such as half-loops or full-loops.
In terms of modelling these manoeuvres mathematically, the use of quaternion is
natural because Euler rotation suffers from singularity problem [118]. This occurs
when the flight path angle, θ = ±π/2. A quaternion is used to resolve this problem.
The quaternion is used to rotate a Euclidean vector similar to the Euler rotation
formula but in a much simpler form. In quaternion, the vector part defines the
rotation axis, and the scalar part defines the angle of rotation.

The rotation axis is specified by its direction cosines in the reference frame. It
is typical to use unity norm constraint on the quaternion. If the direction angles
of the axis are α, β and γ, and a measure of the rotation angle is δ, the rotation
quaternion is written as:

57

q =

cos δ

cosα sin δ

cos β sin δ

cos γ sin δ

 =

 cos δ

sin δnr

 (5.4)

n is a unit vector along the rotation axis,

n = [cosα cos β cos γ]T (5.5)

which,

norm(q) = cos2δ + sin2δ(cos2α + cos2β + cos2γ) = 1 (5.6)

This equation guarantees that there is a unique quaternion for each value of
δ in the range ±180◦ which covers all possible rotations [118]. In Euler angles,
three-dimensional coordinate rotations are built up as a sequence of plane rota-
tions. However, the rotations are not commutative. A standard aircraft practice
is to describe the aircraft orientation by the z, y, z right-handed rotation sequence
as required by the transformation equation to get from a reference system based
on flat-Earth coordinate system into alignment with an aircraft body-fixed frame.
Basically, from the reference frame, the sequence rotation is

1. Right-handed rotation about the z-axis (i.e. positive yaw,ψ);

2. Right-handed rotation about the new y-axis (i.e. positive pitch,θ); and

3. Right-handed rotation about the new x-axis (i.e. position roll,φ).

Thus, the rotation matrices can be written as

ub =

1 0 0
0 cφ sφ

0 −sφ cφ

cθ 0 −sθ

0 1 0
sθ 0 cθ

cψ sψ 0
−sψ cψ 0

0 0 1

 ur (5.7)

In quaternion, the complete transformation matrix is

Cb/r =

(q2

0 + q2
1 − q2

2 − q2
3) 2(q1q3 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) (q2
0 − q2

1 + q2
2 − q2

3) 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) (q2

0 − q2
1 − q2

2 + q2
3)

 (5.8)

58

For the yaw, pitch, roll sequence, the quaternion formulation is

ub = q−1
rollq

−1
pitchq−1

yawurqyawqpitchqroll (5.9)

where

qyaw =

cos(ψ/2)

0
0

sin(ψ/2)

 qpitch =

cos(θ/2)

0
sin(θ/2)

0

 qroll =

cos(φ/2)
sin(φ/2)

0
0

Using quaternion multiplication, these transformation gives

q0 = ±(cos(φ/2)cos(θ/2)cos(ψ/2) + sin(φ/2)sin(θ/2)sin(ψ/2))

q1 = ±(sin(φ/2)cos(θ/2)cos(ψ/2) − cos(φ/2)sin(θ/2)sin(ψ/2))

q2 = ±(cos(φ/2)sin(θ/2)cos(ψ/2) + sin(φ/2)cos(θ/2)sin(ψ/2)) (5.10)

q3 = ±(cos(φ/2)cos(θ/2)sin(ψ/2) − sin(φ/2)sin(θ/2)cos(ψ/2))

which represents the element of qb/r.

5.6.3 Equations of Motion

The mathematical model developed for the 3DOF model is based on the model
described by Miele [81]. In the 3DOF model, the trajectories are considered short
range and the velocities are far smaller than the Earth rotation velocity. Thus, the
general dynamics equation is reduced to the following:

T + A + mg = ma = m
dV
dt

(5.11)

where T is the thrust vector, A is the aerodynamic force vector acting on the
aircraft. m is the mass, g is the acceleration of the gravity, a is the acceleration
of the aircraft with respect to the Earth, V is the velocity and t is the time. The
velocity, V is described as:-

V =
dEO

dt
(5.12)

59

where EO is the position vector of the aircraft in relation to the location of the
earth.

Then, using Newton’s second law, the force equation becomes:

m
dV
dt

= F (5.13)

5.6.4 Equations over Flat-Earth

Figure 5.3: Coordinate systems for flight over a flat Earth. [81]

The coordinate systems used for a flight over flat Earth are given in Figure 5.3.

60

The ground axes system is EXYZ, the local horizon is Oxhyhzh, the wind axis is
Oxwywzw and the body axis system is Oxbybzb.

As for the atmosphere, a specific set of data representing the atmospheric av-
erage condition is adopted. This set of data is widely known as the International
Standard Atmosphere [31]. For the sake of simplicity, this atmospheric model is
used in the simulation.

The set of equations of motion is provided as the following derived from the
work of Miele [81]:

dv
dt

=
1
m

(Tcosε − D) − gsinγ (5.14)

dγ
dt

=
1

mv
(T sinε + L)cosφ −

g
v

cosγ (5.15)

dψ
dt

=
1

mvcosγ
(T sinα + L)sinφ (5.16)

dx
dt

= vcosγcosψ (5.17)

dy
dt

= vcosγsinψ (5.18)

dh
dt

= vsinγ (5.19)

The lift force, L, and the drag force, D, are defined as:

L =
1
2
ρ(h)v2S ·CL(α) (5.20)

D =
1
2
ρ(h)v2S ·CD(α) (5.21)

where ρ is the air density, v is the velocity of the aircraft, S is the reference wing
planform area, CD is the drag coefficient which is a function of angle of attack, α,
and CL is the lift coefficient which is a function of angle of attack. The definitions
of vector and angle variables of the forces and moments are shown in Figure 5.4
and 5.5.

61

Figure 5.4: Aerodynamic Forces in Three Dimensions. [125]

Figure 5.5: Aerodynamic and Propulsive Forces [125].

62

5.6.5 Aircraft Performance Calculation

A trajectory of the evader must not violate predefined performance limits in order
to be considered feasible. For the 3DOF model, the performance limits are maxi-
mum angle of attack limit, maximum turning rate, structural load limit, stall limit,
dynamic pressure limit, ground proximity limit, maximum ceiling limit and fuel
limit. The players must not exceed these limits at all time.

5.6.5.1 Thrust

For a prescribed throttle setting, the thrust is a function of the altitude and Mach
number, in which their effect have been considered in the simulation. The thrust
is simplified by a function of altitude given in Eq. 5.22 derived from [125]

Talt = TS L
ρalt

ρS L
(5.22)

Thrust is produced by burning fuel in the engine, thus the mass of the aircraft
will vary with time. The equation for mass flow rate is [125]

dm
dt

= −
c
g

T (5.23)

where T is the thrust magnitude, c is the specific fuel consumption and g is the
gravitational acceleration. In this equation, the specific fuel consumption is as-
sumed to be constant due to data unavailability for the specified engine.

With regards to a rocket engine, the thrust is calculated from Eq. 5.24 from
Ref. [120]

F = Isp · ṁ · g0 (5.24)

where F is the thrust produced, Isp is the specific impulse in seconds, ṁ is the
mass flow rate and g0 is the sea-level gravitational acceleration. The problem
in this calculation is the lack of information on the mass flow rate and specific
impulse of the missiles of interest. Understandably, the information is classified
due to the fact that the missiles are still in military service. One has to assume the
values for the sake of the realisation of the simulation. The typical impulse value
for a solid propellant is between 200-300 seconds, see Ref. [120].

63

5.6.5.2 Load Factor and Turning Performance

The maximum and minimum load factors determine the region where the aircraft
could manoeuvre safely. At a high speed, the maximum load factor is based on the
structural limitations of the aircraft and the limitations of the person handling the
aircraft. For this reason, a typical load factor can be as high as 8 for a jet fighter
[75]. For an unmanned aircraft, this value can be higher since there is no human
pilot involved. One of the adverse effects on humans at high load factors is the
draining of blood from the head to the lower part of the body. This will cause the
pilot to ’black-out’ or experience loss of vision or consciousness.

Another factor to be considered is the maximum load factor and the available
thrust will determine the maximum turning rate and the minimum turning radius to
be executed by the aircraft at a particular condition. For a fighter in an air combat,
it is necessary for survival that it optimises the fastest turn or the minimum turning
radius at a prescribed thrust. The situation becomes more complicated when the
lift coefficient is close to the stalling point and the load factor is high. The thrust
available has to work harder to overcome the high drag that the aircraft produces.
An optimal trade-off has to be identified within a very short period of time.

The load factor for three-dimensional turn is given by Eq. 5.25 [125].

n =
cosγ
cosφ

(5.25)

For a three dimensional turn, the calculation of a bank angle is based on Eq.
5.25. In terms of simulating the aircraft to perform various modes of manoeuvres,
the simulation software must be able to limit the maximum turning rate and the
minimum turning radius that corresponds to the maximum load factor.

The turning rate is calculated using Eq. 5.26 provided the constraints on the
load factor, lift coefficient and thrust available are satisfied. The turn considers the
case of turning at low altitude where the structural constraints, ns, is enforced.

ψ̇ =
q
√

n2
s − 1

aM
(5.26)

At a higher altitude, the maximum load factor, nmax, as calculated by Eq. 5.27,
is lower than ns due to the smaller value of the ambient pressure, p and the struc-
tural constraint may no longer applies.

nmax =
kpS
2W

(CLmax M2)max (5.27)

64

where k is the ratio of specific heats, p is the ambient pressure, and M is the Mach
number.

5.6.6 The Pursuer

The pursuer is modelled as a point-mass model described in 5.6.3. The guidance
system used is a Proportional Navigation Guidance system with navigation con-
stant, N, as described in Section 5.7.4. The parameters of the pursuer are described
in Appendix A.2.

The movement of the pursuer is limited by the amount of fuel it has and the
maximum load factor. The maximum load factor determines the minimum turning
radius and the maximum turning rate of the pursuer. Besides that, the missile
aerodynamics are available from [87].

5.7 Six Degree of Freedom Simulation Model

5.7.1 Introduction

The 6DOF simulation is based on the source code provided by Stevens [118] and
Zipfel [133]. The code provides the maximum fidelity, but requires a significant
amount of information, such as a full aerodynamics and thrust tables, a complete
flight control system design, mass parameters which include moment of inertia
and, if applicable, sensors and guidance logic.

However, these control variables are restricted to the aileron, elevator and rud-
der deflections, and throttle settings. These control variables are coded as required
by EP. The coded control variables is called a solution in EP. Each solution is eval-
uated, mutated and recombined and stopped when a predefined number of gener-
ation is reached. The best solution is the solution that gives the maximum value
of the objective function, J(x).

5.7.2 Trajectory

The act of flying involves a six degree of freedom motion, inclusive of translations
and rotations. Translations are in x, y and z axes and rotation rotates the aircraft
in those axes. For a fixed wing aircraft, these movements are controlled by con-
trol surfaces, i.e. aileron, rudder, elevator, slat, flap, and spoiler, and by varying

65

the engine thrust. Trajectories are defined as the path taken by the aircraft. A
trajectory can be mathematically defined as

T (t) = f (δa(t), δe(t), δr(t), δτ(t), xi(t)) (5.28)

where,

δa(t) is the aileron deflection angle.
δe(t) is the elevator deflection angle.
δr(t) is the rudder deflection angle.
δτ(t) is the throttle setting.
xi(t) is the initial states.

The velocity vector, v(t), is defined as

v(t) = f (thrust(t),CL(t),CD(t),M(t)) (5.29)

which means that the velocity vector is a function of thrust, aerodynamic deriva-
tives of the aircraft and ambient atmospheric conditions.

The thrust is a function of the throttle setting and ambient atmospheric con-
ditions. On the other hand, the aerodynamic coefficients are functions of Mach
number, aircraft attitude and the position of the control surfaces.

In this project, a trajectory for a n second game is defined. It consists of a
series of randomly selected values of δa, δe, δr and δτ at every second up to t f

seconds.

5.7.3 Nonlinear Equations of Motion

This section discusses the set up of the aircraft model so that it could be used as a
fitness function to test solutions discussed in the previous sections.

The aerodynamic forces and moments discussed in 5.3 and 5.4 are combined
with the vector equations of motion to design the aircraft model. This model uses
the EP algorithm to find a feasible solution for the evader through simulation.

As the complete aircraft data are insufficient and not available in the literature,
the study uses an F-16 model from Stevens [118] and Nguyen [47]. Basically,
the data was from the wind tunnel data taken during the NASA’s Langley wind
tunnel tests on a subscale model of an F-16 aircraft. The range of speeds covered

66

by the data is up to Mach 0.6. The stability and aerodynamic force and moment
coefficients together with the aircraft equations of motion are used to obtain the
6DOF aircraft model for simulation and analytical purposes.

The following discussion is derived from [133]. We have considered the
derivation of aircraft motion using the aerodynamic force and moment models
that are combined with the vector equations of motion.

As given by [118], the state vector for the body-axes equation is

X = [pN pE pD φ θ ψ U V W P Q R] (5.30)

Meanwhile the typical control vector is

U = [δt δe δa δr] (5.31)

this control vector ignores the presence of wind. If the presence of wind is con-
sidered the control vector is

U = [δt δe δa δr WN WE WD] (5.32)

A complete set of equations of motion is displayed in Table 5.1.

5.7.3.1 Engine Model

The engine model is derived from NASA’s F-16 afterburning turbofan engine
model [118]. The model has the thrust response of a first-order lag. The lag
time constant is a function of the actual engine power level (POW) and the com-
manded power (CPOW). A function PDOT calculates the time constant, whose
value is the rate of change of power. The state variable X13 represents the actual
power level.

Furthermore, the function TGEAR (throttle gearing) links the commanded
power level with the throttle position. Subsequently the function THRUST cal-
culates the variation of engine thrust which takes power level, altitude and Mach
number as inputs.

5.7.3.2 Sign Convention of the Control Surface Deflections

The sign convention of the control surface deflections used in the mathematical
model of the aircraft is given in Table 5.2 [118].

67

Table 5.1: The Flat-Earth,Body-Axes 6-DOF Equations [118].

Force Equations
U̇ = RV − QW − gDsinφ + (XA + XT)/m
V̇ = −RU + PW + gDsinφcosθ + (YA + YT)/m
Ẇ = QU − PV + gDsinφcosθ + (ZA + ZT)/m

Kinematic Equations
φ̇ = P + tanθ(Qsinφ + Rcosφ)
θ̇ = −RU + PW + gDsinφcosθ + (YA + YT)/m
ψ̇ = QU − PV + gDsinφcosθ + (ZA + ZT)/m

Moment Equations
ΓṖ = Jxz[Jx − Jy + Jz] PQ − [Jz(Jz − Jy) + J2

xz] QR + Jz` + Jxzn
Jy Q̇ = (Jz − Jx) PR − Jxz(P2 − R2) + m
ΓṘ = [(Jx − Jy)Jx + J2

xz]PQ − Jxz[Jx − Jy + Jz]QR + Jxz` + Jxn
where Γ = JxJz − J2

xz

Navigation Equations
ṗN = Ucθcψ + V(−cφsψ + sφsθcψ) + W(sφsψ + cφsθcψ)
ṗE = Ucθcψ + V(cφsψ + sφsθcψ) + W(−sφsψ + cφsθcψ)
ḣ = Usθ − V sφcθ −Wcφcθ

where sθ = sin θ,sφ = sin φ, sψ = sin ψ,cθ = cos θ,cφ = cos φ, cψ = cos ψ

Table 5.2: Aircraft Control-Surface Sign Conventions.
Control Surface Deflection Sense Primary Effect
Aileron right-wing trailing edge down positive negative rolling moment
Elevator trailing-edge down positive negative pitching moment
Rudder trailing-edge left positive negative yawing moment

68

5.7.3.3 States and Controls

In this mathematical model, thirteen states of the vehicle are calculated at every
time step

1. north position (x),

2. east position (y),

3. altitude (h or −z),

4. roll angle (φ),

5. pitch angle (θ),

6. yaw angle (ψ),

7. total velocity (V),

8. angle of attack (α),

9. angle of side-slip (β),

10. roll rate (P),

11. pitch rate (Q),

12. yaw rate (R), and

13. engine power.

As mentioned before, the control inputs are the aileron deflection, the elevator
deflection, the rudder deflection and the thrust setting. The thrust acts positively
along the body x-axis. A positive thrust will increase the acceleration along the
x-axis. A positive aileron deflection gives a negative roll. A positive elevator will
give a negative pitch and a positive rudder will a negative yaw as given in 5.2.

5.7.3.4 Constraints

There are several constraints implemented on the objective function to prevent
the evader from stalling, crashing to the ground and exceeding the structural load
limit. Thus, the feasible solution must not violate any of these constraints.

69

In this implementation, the angle of attack is limited from −10◦ to 40◦. This is
to prevent the evader from experiencing stall and exceeding the capability of the
aircraft.

Similarly, a maximum structural load factor is also set on the pursuer. The
value can be varied from 20 to 80. This value will determine the maneuverability
of the pursuer based from Eq. 5.26 and 5.27.

However, the maximum structural load factor is set to 9 for the evader. The
evader maximum turning rate and minimum turning radius are determined by the
maximum load factor the aircraft could sustain. If the evader is unmanned, the
maximum structural load factor can be higher than 9. This will definitely provide
an added advantage to the evader in term of an increase in the maximum turning
rate and a smaller minimum turning radius.

The most important constraint is that at any time during the pursuit-evasion
encounter, the distance between the evader and the pursuer must not be less than
the given interception radius. Once the evader is inside the interception radius
where detonations will disable the aircraft, capture is assumed and the game is
over. This assumption is made because in modern air warfare, it is very unusual
for aircraft to be in a dogfight. Most of the time, they simply use standoff weapons,
such as missiles.

5.7.3.5 Actuators

The actuators of the control surfaces are modeled as first-order lags with a gain
(K) as well as limits on deflection and rates. The thrust has a unity gain and a
rate limit of ± 10,000 lbs. The elevator has a gain of 1

0.0495 and a rate limit of ±60
deg/s. The aileron gain is 1

0.0495 with a rate limit of ±80 deg/s. The rudder gain is
1

0.0495 with a rate limit of ±120 deg/s. They are shown in Table 5.3.

5.7.3.6 Numerical Solution of the State Equation

An aircraft state equations of motion is highly nonlinear. The information of
the aircraft aerodynamic and stability parameters are largely derived from experi-
ments. As it is not possible to use analytical solutions, numerical methods are the
only viable ways to compute an aircraft trajectory.

Generally, the state vector of a physical system will move in a smooth, con-
tinuous manner in the n-dimensional state-space. This is because of the way state
variables describe the energy stored in a physical system. Energy in the state vari-

70

ables cannot have any instantaneous change, as it requires a gradual change of
energy level. Therefore, derivatives of the state variables do exist. Taylor series
expansion can be used to predict this motion.

A numerical evaluation of a continuous trajectory implies that, given the initial
condition X(t0) and control input U(t0), the discrete sequential values of the states
is calculated as

X(t0 + kT), k = 1, 2, ... (5.33)

that satisfies the state equations

(̇X)(t) = F(X(t),U(t)) (5.34)

This is called the initial value problem, and the time-step T is usually fixed.
There are many numerical methods to solve the initial-value problem, one of

them is the Runge-Kutta (RK) method. For practical reasons, the fastest time to
change the control surface angles is set to one second. The control surfaces can
be retained at a fix position as long as required.

Figure 5.6: 6DOF simulation with aileron, elevator, rudder and throttle as control
variables calculated with 4th order Runge-Kutta method.

71

5.7.3.7 Modelling the Pursuer

To simplify the modelling of the pursuer, a point-mass model is employed as
discussed in Section 5.6. The states of the evader at any time step are fed into the
pursuer navigation function. The integration time step for the pursuer is similar to
the evader, i.e. 0.01 second.

Due to the limited information available, the pursuer’s aerodynamic and per-
formance data are simplified. In most cases, the data are set to be constant. These
include the maximum lift coefficient CLmax , the zero-lift drag coefficient CD0 and
CLα .

5.7.4 Proportional Navigation Guidance

A Proportional Navigation Guidance (PNG) system guides the pursuer to intercept
the evader. In this guidance system, the pursuer is commanded to turn at a rate
proportional to the angular velocity of the line of sight (LOS) as given in Figure
5.7. A line-of-sight is defined as an imaginary line from the pursuer to the evader.

The direction of the LOS is calculated by a device called “a seeker”. A seeker
is basically a radar or a sensor that tracks the evader; and the output is the angular
velocity of the LOS with respect to the inertial space as measured by rate gyros
mounted on the seeker. (LOS) as given in Figure 5.7. The equations of the PNG
system are given in [13].

Figure 5.7: Angular velocity of the LOS for proportional navigation. [112]

The magnitude of the angular velocity of the LOS is determined by the com-

72

ponents of pursuer and evader velocity perpendicular to the LOS. By referring
Figure 5.7, the component of pursuer velocity perpendicular to the LOS is

VM(⊥LOS) = VM sin(ΘR − ΘT) (5.35)

which generates a positive LOS rotation. The magnitude of the angular velocity
is the difference between the components of the pursuer and the evader velocity
perpendicular to the LOS divided by the distance between the evader and the
pursuer R. The component of evader velocity perpendicular to the LOS is

VT (⊥LOS) = VT sin(ΘR − ΘM) (5.36)

which generates a negative LOS rotation. If the perpendicular component of the
pursuer and the evader velocity are equal and constant, the LOS angular rate is
zero and the pursuer will be on a collision course with the evader. Generally, the
angular velocity of the LOS is

ωLOS =
VM sin(ΘR − ΘM) − VT sin(ΘR − ΘM)

R
(rad/sec) (5.37)

However, there is no closed-form solution for a general equation that describes
the pursuit a highly nonlinear manoeuvring target [111]. In this thesis, the Pure
Proportional Navigation [111] guidance system is used.

5.7.5 The Representation of the Solution in EP

In finding the feasible solution using EP, the control solution must be coded in
a way that the EP will understand and is able to manipulate effectively. From a
pilot perspective, to control an aircraft, the pilot will control at least four control
variables, i.e. the aileron, the elevator, the rudder and the throttle, as in Figure
5.8. The first three are used to control the position and attitude of the aircraft, and
the last one is used to control the velocity. This is achieved by moving the control
stick and the throttle.

To simplify the analysis due to limited available data, these four control vari-
ables are employed in the simulation model. The output of the simulations will
determine the quality of each of the solutions.

The analysis starts by producing a population of possible solutions. In each
population, there are n strategies or solutions. A strategy is actually an instruction
for the aircraft to change its aileron, elevator and rudder deflection angles, and

73

Figure 5.8: Control surfaces of an F-16 aircraft.

throttle setting at every second.
For example, at t = 0 s, the aircraft is instructed to deflect δa degrees of

aileron, δe degrees of elevator angle, δr degrees of rudder angle, and δt percent of
throttle setting. To represent a strategy in a computer program, the aileron angle
deflection (δa), elevator angle deflection (δe), rudder angle deflection (δr) and the
throttle setting (δt) have to be coded. For a typical jet aircraft, the deflection limit,
rate limit and the time constant are given in Table 5.3.

Table 5.3: Control Surface Actuator Limits and Constants.

Deflection Rate Time
Limit Limit Constant

Aileron ±21.50 800/s 0.0495s lag
Elevator ±25.00 600/s 0.0495s lag
Rudder ±30.00 1200/s 0.0495s lag

These codes are made possible by determining the maximum permissible range
for the control variables. A discrete angle interval of 4.78◦ is used for aileron and
5.56◦ for elevator and 6.67◦ for rudder. Throttle setting range is between 0 and
1 with a discrete interval of 0.1. In total, 10000 possible combinations can be
generated. In a tabular form, Table 5.4 shows the coding of heading angle change,
flight path angle change and throttle setting.

74

Table 5.4: Encoding the control surface deflections and throttle setting.
ID Aileron Elevator Rudder Throttle

Deflection Deflection Deflection Setting
Angle Angle Angle

(δa), deg (δe), deg (δr), deg
1 -21.5 -25 -30 0.0
2 -21.5 -25 -30 0.1
3 -21.5 -25 -30 0.2
...

...
...

...
...

10000 21.5 25 30 1.0

08094056090900205560094210974105998067040594905185...
08084004910963000744009980429301850047900045206432

Figure 5.9: An example of coded path for 20 second spawn time.

Instead of directly using the angles, the strategy uses the values of IDs as
shown in Table 5.4. A series of numbers valued between 0001 and 10000 are
randomly constructed such as shown in Figure 5.9 with m ∈ N five-digit integers
were ordered in series. The first value is 08094, which means to deflect the aileron
to 7.78◦, the elevator to −10.0◦, the rudder to 5.0◦ and set the throttle to 33%. Next
is 05609 which means deflecting the aileron to 1.11◦, the elevator to 3.33◦, the
rudder to −5.0◦ and the throttle to 89%. By skipping to the last figure in the line
of Figure 5.9, 06432 means to deflect the aileron to 3.33◦, the elevator to −1.11◦,
the rudder to −1.67◦ and the throttle to 11%. The whole process is called the
trajectory/path of the aircraft or a strategy of a 20 second spawn time.

n ∈ N strategies are generated to represent a population. The number of
population used in this study is ngen ∈ N.

5.8 The Objective Function

The overall performance of the game, J, is measured in Eq. 5.38. It fulfills the
criteria that at all time no constraint is violated and the distance between the evader
and the pursuer is never less than interception distance, dint.

J =

[(√
(xe(t) − xp(t))2 + (ye(t) − yp(t))2 + (ze(t) − zp(t))2

)
min
− dint

]
·pg ·t f (5.38)

75

where subscript e stands for the evader, subscript p stands for the pursuer, (x, y, z)
is the vehicle’s position relative to inertial frame, t f is the final time and pg is the
penalty or the reward given. The fitness value J represents the distance between
the pursuer and evader during the simulation period.

The aim of the optimisation is to find a feasible solution that maximises J. A
scalar penalty is given to a solution if it violates any of the constraints or gets the
evader captured. The penalty will result in the fitness value of the solution to be
lowered. A solution will receive a reward and a high fitness value if no constraint
is violated and it does not cause the evader to be intercepted or if the pursuer
crashes during the game. A solution, T ∗e , is feasible for the evader if

J(Tp,Te, t, X) 6 J(Tp,T ∗e , t, X) (5.39)

where Tp is the strategy of the pursuer, Te is the strategy of the evader, for all t

and X are the states of the players.
For realistic modelling, several constraints have to be considered. For the

evader, the constraints are the permissible range of the angle of attack. The range
is between −10◦ and 40◦.

− 10◦ 6 αe 6 40◦ (5.40)

The altitude must not be less than 500 m (Eq. 5.41) with a flight path angle
not less than −30◦ (Eq. 5.42) from the horizon to avoid from hitting the ground
and to allow the evader to recover its altitude.

he > hmin (5.41)

γ > −30◦ (5.42)

5.9 Integrating the Simulation Model Into EP

The developed simulation model discussed in the previous sections resembles the
time-based simulation model with predefined control inputs between two players.
There is no intelligence in the simulation model. The model simply simulates a
game between two players with a given set of control inputs. The outcome of the
game matters. If the set of control inputs give a good outcome, the control inputs

76

(i.e. the solution) will be selected.
The intelligence is due to the way EP selects and manipulates solutions. In

order to find feasible solution, EP uses the developed 6DOF mathematical model
to find the feasible solution through a game. Although, the method sounds trivial,
the way EP manipulates solutions could somehow find the feasible solution in a
highly multi-dimensional space.

Initially, EP will generate a set of solutions randomly. The solutions are used
by the evader to avoid capture. The players start at a predetermined position and
all players know the state of the other player at the current time but not in the
future.

Next, EP will evaluate each of the solutions through a game. The evader will
use the given solution during the game and the pursuer will use conventional nav-
igation guidance system to get to the evader. After a predetermined time such as
40 seconds, the game is stopped. The time frame is chosen not to be too long in
the effort to reduce the computation time, but at the same time allows reasonable
time to find a feasible solution. If the evader is captured during the game, or if the
evader exceeds one of the constraints, the solution is considered bad. But, if the
evader was able to out-manoeuvre the pursuer and passes all of the constraints,
the solution will be deemed good or feasible.

The feasible and infeasible solutions (parent population,) are categorised, sorted
and mutated before inserted into the child population as explained in Chapter 3.
The child population is then being evaluated to find their ‘fitness’. Ultimately,
the selection is performed using a tournament or an elitism approach between the
child and parent population. The n solutions that have the highest fitness values
will be selected to be in the next population.

EP is stopped after reaching a predetermined number of generations. The
solution that has the highest fitness value is selected as the feasible solution. The
next question is, how fast is the algorithm. If a single processor is not fast enough,
could a multiple-processor achieved the same result with less computing time?

This is achieved by coding the simulation using FORTRAN 90 programming
language. The random number generator used to generate the first population of
strategies is RANDLIB90 [17].

To improve the execution time, in some cases it is useful to store the solution
information in computer memory to avoid duplication which leads to waste of
computer resources due to unnecessary re-evaluations [34]. But, by doing so, a
substantial size of memory has to be allocated and an algorithm to compare newly

77

created solutions with the previously generated ones has to be developed. Such an
approach will undoubtedly increase the computing time and, ironically, make the
evaluation more expensive. If the dimension of the solution is high, the probability
of producing duplication will be small leading to notion that it is unnecessary to
remember the already generated solutions. This proposition discussed above will
hopefully lead to a faster execution of the algorithm.

5.10 Parallel Implementation

The use of parallel computing is to improve the computing time and the quality
of the solutions. The benchmark is usually from the results gathered by running
the simulation on a single processor. As discussed in Chapter 4, there are two
approaches used to improve the solution’s fitness and the computation time, (i)
the master-slave approach and (ii) the coarse-grained approach. The difficulty
level of implementing both approaches is high since each approach has different
styles of coding. Thus, two sets of codes are developed specifically for the 3DOF
and 6DOF models.

The communication among processes is performed using MPI library [8; 116].
Historically, MPI which stands for Message Passing Interface is a standard that
was designed by a group of researchers from academia and industry. The inter-
face is designed to function over a wide variety of computers. There are several
successful implementations of MPI. The initial implementation of MPI 1.x stan-
dard was called MPICH designed by Argonne National Laboratory (ANL) and
Mississippi State University. The current release is MPICH2 which is based on
the MPI 2.1 standard.

Another MPI implementation is OpenMPI. Originally, OpenMPI was a com-
bination of several MPI implementations such as FT-MPI, LA-MPI, LAM/MPI
and PACX-MPI.

This project uses the MPICH2 library in FORTRAN to communicate between
processes. MPICH2 is readily available for Intel FORTRAN compilers, thus it is
a natural candidate for use in this project. MPICH2 is able to run on both Linux
and Windows operating systems.

The MPI functions used are MPI PACKED, MPI UNPACKED, MPI ISEND,
MPI RECV and MPI WTIME. MPI PACKED is used to pack several variables
of different types into a single unit before being sent to another processor using

78

MPI ISEND. On the other hand, MPI RECV is used to receive data from other
processes. Then, the communication is tracked using MPI WAIT. At the same
time, the processing time at various levels is tracked using MPI WTIME. All of
these functions are implemented using the FORTRAN programming language.

5.11 Overall Implementation

The mathematical model and EP are coded in FORTRAN programming language.
The compilers are Intel Fortran Compiler and IBM XL Fortran Compiler with par-
allel capability. The parallel library used is MPI. The hardware is two Linux clus-
ters operated by the Victorian Partnership of Advanced Computing (VPAC). This
was made possible through an e-research grant awarded by VPAC (EPANRM153).

The optimisation process is illustrated in the flow charts given below. The
master-slave model flowchart is given in Figure 5.10. The coarse-grained model
flowchart used in 6DOF model is given in Figure 5.11. The simulation of the air
combat scenario over a period of n seconds is illustrated in Figure 5.12.

5.12 Summary

In this chapter, the development of the objective function is discussed. Two air-
craft models are used, i.e. three degree of freedom and six degree of freedom
models. The three degree of freedom model uses simplified aerodynamic data
and does not consider the aircraft attitude motion. The EP implementations are
paralleled using two approaches, i.e. master-slave and coarse-grained. More info
to complete the use of these two models. The next chapter will present the results
of the numerical simulations based on the models used.

79

Figure 5.10: Flowchart of the Master-Slave implementation.

80

Figure 5.11: Flowchart of the Coarse-Grained implementation.

Figure 5.12: Flowchart of the Air Combat Simulation.

81

6 Numerical Results and Discussion

6.1 Introduction

This chapter discusses the performance of EP in solving pursuit-evasion problems.
Several aspects of the performance of EP are investigated. These include the
effect of EP parameters and the effect of the initial conditions on the quality of the
solutions.

The search for a feasible control for 6DOF problems is done by using FOR-
TRAN programming language. The type of FORTRAN used is Intel FORTRAN
90 on Intel-platform and IBM FORTRAN on PowerPC-platform. Since the out-
come of the game is very sensitive to the initial conditions as well as the nature of
the game, thus, the global optimal solution is not known a priori. The complexity
of the problem is further increased when noise and errors are added.

The analysis begins by searching for a feasible control solution for several
scenarios experienced by the evader. The Monte Carlo analysis is conducted to
validate the robustness of the algorithm. The initial population of control inputs
are randomized appropriately. For the same initial conditions, the robustness of
the solution is studied using Monte Carlo analysis. The benefit of using EP is
studied by comparing the results from a purely random search. Finally, the benefit
of parallel implementation is studied.

6.2 Aircraft Data and Configuration

6.2.1 The Evader

The evader is modeled after the 6DOF model based on a generic fighter aircraft as
given in Appendix A.1.

82

6.2.2 The Pursuer

The pursuer is only modelled using the 3DOF due to the complexity of the control
system design if the 6DOF model is employed for the pursuer. Using the 3DOF
model simplifies the control system of the pursuer. In the effort to make the dy-
namic of the pursuer as close as possible to the real scenario, the aerodynamic
constraints are employed. The constraints are maximum turning rate, minimum
turning radius, maximum angle of attack, fuel limitation and maximum thrust.
The engine performance is discussed in Section 5.6.5.1.

6.3 The Hardware

Two computer clusters were used in the analysis. The clusters are part of several
clusters operated by the Victorian Partnership of Advanced Computer (www.vpac.org).
The first cluster, named BRECCA, consists of 97 nodes of dual Xeon 2.8 GHz
CPU. The operating system is Fedora Core Linux. The communication between
nodes is via Myrinet. Myrinet is a high performance network communication
technology used widely in computing clusters. This cluster uses Intel Fortran
Compiler with MPICH2. Further information on this cluster can be found on its
website at www.vpac.org.

The second cluster, named EDDA, consists of 184 Power5 CPUs. There are
46 nodes of 4 CPUs each. 23 nodes have 16GB of RAM and another 23 nodes
have 8GB of RAM. The operating system is SUSE Linux. This cluster uses IBM
High Performance Fortran Compiler with MPICH2 library. Further information
on this cluster can be found at the website at www.vpac.org.

6.4 Computing Time

The execution time taken by EP can be divided into several segments:

1. Pre-processing - to create the initial solutions and to read the initial param-
eters.

2. Communication among processes.

3. Evaluation of solutions.

4. Selection and recombination.

83

Item 1,2 and 4 are usually fast and consume minimal time and the longest
execution time is taken by item 3. The evaluation time for 6DOF problem is
relatively fast on EDDA with an average of 0.142s with the standard deviation of
0.03875 and sample size of 8000, as depicted in Figure 6.1.

Figure 6.1: Evaluation times for a 6DOF simulation by each processor on EDDA.

84

6.5 Pursuit Evasion Games

The performance of the algorithm is tested by running a number of simulations.
Several scenarios are considered. These scenarios are selected based on the estab-
lished literature. In order to find a feasible solution for the evader during an air
combat between two players, it is assumed that the players know the capability of
its adversary. This includes the aerodynamic limitations, performance limitations
and guidance system limitations, which are highly nonlinear and discrete. The
search is performed by initially generating a population of candidate solutions. A
solution is a series of instructions of the control variables (the aileron, the elevator,
the rudder and the throttle) over a period of time. Each solution is evaluated in
a virtual game. The outcome of the game is the fitness value of the solution. It
takes about 0.17 seconds to evaluate one solution for a simulation of 100 s. Thus,
thousands of possible solutions can be tested within a relatively short period of
time.

Finding ways to exploit the weakness of the missile analytically is very diffi-
cult to do due to the reasons discussed in the previous section. Furthermore, the
exploitation of the weakness is highly time-dependent and the opportunity to de-
feat the missile only exists for a very short period of time [76]. In order to grab
this window of opportunity, it usually requires the evader to move optimally from
the very beginning. However, such a requirement is very difficult to implement
especially if one resorts to try and solve it in real time.

In this section, the pursuit-evasion encounter between two players is explored.
One player is a missile which acts as a pursuer. The other player is a generic
fighter aircraft and acts as the evader. The missile is launched from a distance
from another aircraft. The evader detects the launch and tries to defeat the missile
by following a series of manoeuvres.

For a particular type of missile with a given pursuit-evasion game, it is difficult
to predict whether the pursuer can always capture the evader [98]. It is possible
that when a game starts in a certain states space, the evader can avoid interception.
This is known as the escape zone of a game. Analytically, there is a barrier that
separates escape and no-escape zone as defined by Isaac [59]. Fortunately, most
modern day missiles do not behave optimally because they are guided by an intel-
ligence guidance system. The missile has physical limitations, and if known, one
could exploit these weaknesses to the fullest extent.

Another aim of this research is to study the performance of the Evolution-

85

ary Programming algorithm to find feasible solutions for the evader. However,
not all possibilities are explored in this thesis. Only some selected scenarios and
conditions are being explored. As explained earlier in this chapter, the missile
parameters are only estimation and may not represent any missile already in ser-
vice. The difficulty of finding the information hampers the initiative to model the
missile as accurately as possible. The aerodynamic coefficients, maximum load
factors, the amount of fuel and the rocket motor thrust are only estimates. Efforts
have been made to ensure the performance of the missile is comparable to the
actual one.

Stevens [118] has prepared a working six degree of freedom jet fighter model
written in FORTRAN. A modifications on the source code is required to suit it
with the optimisation algorithm. The aerodynamics and performance limitations
of the 6DOF model given by [118] are incorporated in the optimisation algorithm
so that the dynamics of the aircraft will behave as close as the real one.

The performance is measured in terms of: the size of the population, the total
number of populations and the number of processors used. Apart from that, the
initial states are also play a very important aspect in determining the ability of the
algorithm to find feasible solutions. Besides that, the evader also has a complete
knowledge of the pursuer’s capability.

The initial conditions are based from Breitner [68] and listed in Table 6.1 and
6.2. The simulations only display the encounter for 40 seconds. If no interception
is made within the 40 seconds time-frame, the evader will be assumed to have
survive the encounter.

Table 6.1: Initial Parameters for the pursuer and the evader.
Parameter Pursuer Evader
X,m 0.0 5000.0
Y,m 0.0 0.0
Z,m 10000.0 10000.0
Velocity,m/s 250.0 150.0

Tail,Side,Head
Heading Angle,rad 0 0,1.57,3.141
Interception Radius, m 15 -
Max Load Factor 22 9

In a preliminary run, the algorithm was able to find feasible solutions. A game
is considered good if the pursuer experiences two situations, i.e. it crashes to the
ground or simply unable to intercept the evader. In most cases, the easiest way to

86

Table 6.2: General Parameters.
Parameter Value
No. of Generations 50
Size of population 100
Migration Rate 10
No. of processors 4
Spawn Time 10 s
Duration max 40 s

defeat the pursuer is to fly close to the ground and performing manoeuvres that
will eventually drive the pursuer to the ground.

The study considers the three scenarios as depicted in Figure 6.2. The first
scenario is when the missile is launched from behind the evader, i.e. the evader’s
heading angle (horizontal flight path angle), ψ , is 0◦. The second scenario is when
the missile is launched from the port side of the evader, i.e. the evader’s heading
angle, ψ , is 90◦ and the third scenario is when the missile is launched from the
front, i.e. the evader’s heading angle, ψ , is 180◦. These scenarios are based from
the work of Breitner [101]. The results of his study are shown in Figure 6.3. He
considered 7 initial heading angles in his study. They are 0◦, 30◦, 60◦, 90◦, 120◦,
150◦ and 177◦ (his algorithm may not work if the heading angle is set to 180◦).
Although, the flight paths were optimal, the missile was still able to intercept the
evader.

In all scenarios, the evader has to find feasible solutions. The search for
feasible solutions is performed in parallel using Linux cluster owned by VPAC
(http://www.vpac.org) under the research grant EPAN.RM.153. The three scenar-
ios are described in detail in Section 6.5.1 - 6.5.4

In each scenario, the optimisation simulation run is repeated 100 times. Each
run is independent between each other. The results are calculated from the average
of the independent runs. The results are the execution time, and the time to find the
first feasible solution. Three independent runs from each scenario are arbitrarily
selected and discussed in the following sections. These runs are numbered 1, 2
and 3.

Generally, any feasible solution can be used to evade interception but if the
computing is fast enough, the best feasible solution is the one that has the highest
fitness value. In an air combat, the survival of a pilot or an aircraft depends on
how fast one could react optimally in a close air combat. If the computing time is
considerably long, the first feasible solution has to be accepted.

87

Figure 6.2: Three missile-aircraft encounter scenarios studied: rear attack, side
attack and head-on attack.

88

Figure 6.3: Optimal flight paths for 7 heading angles calculated by [68]. Flight
paths of the pursuer are gray and the evader are black. Other initial conditions are
similar.

6.5.1 Scenario 1: Head to Tail Encounter

This section discusses the result for the first scenario. In this scenario, the pursuer
is located behind the evader. The evader has a good chance to escape interception.
A total of 100 independent runs were conducted. The evader is a manned jet
fighter aircraft. The maximum load factor is set to 9g.

The fitness values, J is given in Figure 6.4. It can be seen that EP is able to
find feasible solutions as earliest as in the fourth generation which was found by
processor 1. Since each processor independently searches for the feasible solution,
thus they find feasible solutions at different number of generations.

The average execution time for this scenario is 235 seconds (3 min 55 sec)
with a standard deviation of 44 seconds. Although it can be considered fast when
compared to other classical optimisation algorithms, it is not fast enough for real
time application.

One interesting aspect of EP is that it searches for feasible solutions and it
improves feasible solutions found until the termination criteria, i.e. the maximum
number of generations has been reached. If the fitness value of the feasible solu-
tion is not significant, the first feasible solution found is adequate to be chosen as

89

Figure 6.4: Fitness values for scenario 1.

Figure 6.5: Computing time to find the first feasible solution for scenario 1.

90

the best as long as it allows the evader to avoid interception, albeit not with the
highest fitness value. Figure 6.5 shows the histogram of the time taken to find the
first feasible solution. On average, it takes 4.65 s to find the first feasible solution.

Figure 6.6: 3D view of the encounter in scenario 1 (run 1) .

Figure 6.6 shows the 3D view of the encounter of feasible solutions from three
independent runs. It can be seen that all three display a similar pattern of manoeu-
vre. The manoeuvres are basically diving and performing rolling scissors until the
pursuer misses the interception opportunity.

From the start of the encounter, the evader dives to a lower altitude and per-
forms a weaving manoeuvre. The pursuer follow-suits using PN guidance system.
When the separation distance is closer, i.e. at time 14 s, the evader performs a
high-g manoeuvre up to 7-g to evade interception. The manoeuvre closely resem-
bles a manoeuvre commonly known as a rolling scissor [103]. At that point, the
pursuer’s g-load is already at its maximum at 22-g. This timely manoeuvre per-
formed by the evader saves it from interception. The pursuer then overshoots the
evader.

The timing to execute a particular manoeuvre is important as illustrated in
Figure 6.9. The reason is because the opportunity to act is only for a very short
period of time and the manoeuvres are only “optimal” when performed during

91

Figure 6.7: 3D view of the encounter in scenario 1 (run 2) .

Figure 6.8: 3D view of the encounter in scenario 1 (run 3)(.

92

that period else it will not be beneficial to the evader.

Figure 6.9: Load factor and separation distance of the players for scenario 1.

As seen in Figure 6.9, initially both players experience a small load factor.
This is due to the larger separation distance between them. At time 8 s, the evader
starts to perform a higher-g manoeuvre to position itself for the evasion. At the
separation distance becomes smaller, at time 14 s, the evader performs a hard 6-g
and 7-g manoeuvre. Such timely manoeuvres have enabled the evader to avoid
interception. If the missile response lag is added, such last minute manoeuvres
could result in an increase in miss distance. In this study, we assume the missile
has no computing lag.

Figure 6.10 shows the encounter from XY-plane. Since the trajectory is pre-
dominantly on the z-axis, the distance covered in the x-axis is about 2800 m.
From the start, the evader turns to the left and dive as shown in Figure 6.11. The
evader’s high g-manoeuvre towards the line of sight saturates the missile’s lateral
acceleration capability causing a miss [76].

The time-history plot of the velocity of the players is given in Figure 6.12. As
expected, the higher thrust of the pursuer produces higher acceleration compared
to the evader. But the evader achieves a better acceleration by diving which will
then exploit the advantage of gravitational acceleration.

93

Figure 6.10: Feasible encounter in the XY-plane for scenario 1.

Figure 6.11: Feasible encounter in the XZ-plane for scenario 1.

94

Figure 6.12: Velocity of both players for scenario 1.

The feasible control deflections are depicted in Figure 6.13 - 6.15. The aileron
and rudder deflections time-histories show a high deflection angle at opposing
directions in most of the time. This is required to perform rolling scissors effec-
tively. However, the elevator deflections time-history is not as high in magnitude
compared to the aileron. Only at the 12th second of the encounter, the elevator is
applied to its maximum.

As expected the throttle setting (Figure 6.16) shows a bang-bang type of con-
trol between 100%, 50% and 0% of throttle settings. However, at the final part
of the encounter, the evader seems to employ a maximum thrust for a successful
evasion.

The throttle settings and the time-history of the velocity is shown in Figure
6.16. The throttle settings are set at the maximum level for most of the time,
except at the 8th second. Prior to the game end, the evader’s throttle is reduced
to slow down the aircraft in its effort to improve the turning performance. The
velocity profile follows the throttle setting closely. For example, at the 8th second,
the velocity does not increase because the throttle is set to zero.

95

Figure 6.13: Aileron deflections of the evader for scenario 1.

Figure 6.14: Elevator deflections of the evader for scenario 1.

96

Figure 6.15: Rudder deflections of the evader for scenario 1.

Figure 6.16: Throttle settings and velocity of the evader for scenario 1.

97

6.5.2 Scenario 2: Head to Side Encounter

In this scenario, the pursuer approaches the evader from the evader’s port side. A
total of 100 independent runs are conducted. On average, EP takes about 223 s
(3 minutes and 44 s) and 9.85 seconds of standard deviation to complete a search.
The evader is a manned jet fighter aircraft which means its maximum load factor
is limited only to 9g.

The fitness values, J of Scenario 2 is given in Figure 6.17. It can be seen that
EP is able to find feasible solutions as earliest as in the third generation, which
was found by processor 4. Each processor independently searches for the feasible
solution and feasible solutions at different number of generations.

Figure 6.17: Fitness values for scenario 2.

However, EP finds the first feasible solution at a relatively short period of
time, i.e. 4.7 seconds with 3.5 seconds standard deviation. In this type of problem
where time is very important, the first feasible solution is would be adequate. The
distribution of the time to find the first feasible solution is shown in Figure 6.18.

Out of 100 independent runs, three runs were selected and their 3D time-
history trajectories are given in Figure 6.19 - Figure 6.21. Three trajectories from
three independent runs are displayed. It can be seen that the feasible trajectories

98

Figure 6.18: Computing time to find the first feasible solution.

are similar, i.e. flying away from the pursuer and performing rolling scissors to
saturate the missile lateral acceleration that causes the miss.

The time-history of the load factors for both players and the separation dis-
tance is shown in Figure 6.22. The pursuer experiences an increasing load factor
at the initial phase of the encounter due to a higher lateral acceleration to steer to-
ward the evader. This is done with ease by the pursuer because at the 4th second,
the load factor decreases which shows that the pursuer has positioned itself on a
collision course with the evader. The chase continues until the 10th second. At
that point in time, the pursuer is on the brink of interception, but the evader starts
a high g manoeuvre which causes the load factor of the pursuer to increase and
saturate its lateral acceleration. The manoeuvres performed by the evader causes
the pursuer to overshoot and miss.

Figure 6.23 and Figure 6.24 show the trajectory of the feasible solution in
XY- and XZ-plane, respectively. The feasible trajectory at the initial phase of the
encounter is to increase the energy level, i.e. to fly in a straight line but descending.
The evader chooses not to turn, because a high g turning will causes it to lose
energy advantage and reduces the probability of successful avoidance. The high-
g manoeuvres are reserved for the last phase of the encounter, i.e. before the
predicted interception at the 11th second.

The players’ velocity is shown in Figure 6.25. The pursuer’s velocity increases

99

Figure 6.19: 3D view of the encounter in scenario 2 (run 1).

Figure 6.20: 3D view of the encounter in scenario 2 (run 2).

100

Figure 6.21: 3D view of the encounter in scenario 2 (run 3).

Figure 6.22: Load factors and the separation distance for scenario 2.

101

Figure 6.23: Encounter viewed in the XY-plane for scenario 2.

Figure 6.24: Encounter viewed in the XZ-plane for scenario 2.

102

Figure 6.25: Velocity of both players for scenario 2.

Figure 6.26: Evader’s velocity and throttle setting for scenario 2.

103

at a higher acceleration due to the high thrust its rocket motor produces. However,
the evader’s velocity does not increase much until the 8th second of the game. At
the 9th second the evader set the throttle setting (Figure 6.26) to zero in order to
maintain the velocity to achieve a higher turning performance. The aim is to steer
the evader to a position that will saturate the lateral acceleration of the pursuer. At
the 10th second, the evader engages maximum throttle to increase its velocity and
further saturate the lateral acceleration of the pursuer. This causes the pursuer to
miss the interception.

The behaviour of the control surfaces is shown in Figure 6.27, 6.29 and 6.30.
The aileron deflection time-history shows bang-bang behaviour on the early part
of the encounter. The evader deflects the aileron to its maximum positive deflec-
tion angle for one second, and then moves close to a neutral position. At the 4th
second the evader applies a negative aileron deflection. However at the 9th second,
the evader slowly decreases the aileron’s deflection from the maximum positive
until it reaches −6◦ at the 12th second. This action reverses the roll-rate from a
negative roll-rate to a positive roll-rate as depicted in Figure 6.28. The manoeuvre
is known as a split-S.

Figure 6.27: Aileron deflections of the evader for scenario 2.

The elevator deflection time-history is shown in Figure 6.29. In the figure, a

104

Figure 6.28: Roll-rate of the evader for scenario 2.

Figure 6.29: Elevator deflections of the evader for scenario 2.

105

large deflection angle of the elevator are observed in the initial and final phase
of the encounter. Initially, the evader applies a large positive deflection angle of
the elevator to point the nose of the evader down. The weaving manoeuvres are
achieved by deflecting the rudder (Figure 6.30) and the aileron (Figure 6.27) in a
correct and timely manner.

Figure 6.30: Rudder deflections of the evader for scenario 2.

6.5.3 Scenario 3: Head to Head Encounter

In this scenario, the pursuer and the evader are facing each other from a distance of
5000 m. The evader has to find feasible solutions in order to escape from intercep-
tion. Similarly to the previous scenarios, 100 independent runs were conducted.
The average execution time is 233 seconds with 30 seconds standard deviation.
The evader is a manned jet fighter aircraft which means its maximum load factor
is limited to 9g.

The fitness values, J is given in Figure 6.31. It can be seen that EP is able
to find feasible solutions as earliest as in the third generation that is found by
processor 1. Each processor independently searches for the feasible solutions and
finds the first feasible solutions at different generations.

106

Figure 6.31: Fitness values for scenario 3.

The time to find the first feasible solution is shown as a histogram in Figure
6.32. EP finds the first feasible solution in a relatively short period of time, i.e.
4.4 seconds with standard deviation of 3.7 seconds.

The feasible trajectory for this scenario is shown in Figure 6.33 - Figure 6.35.
These figures are plotted from three independent runs. Obviously, the only option
to escape from interception is to dive and weave. On the other hand, such a turn
and try to run away will only caused the evader to be captured.

As soon as the encounter begins, the evader immediately dives straight down.
This increases the kinetic energy of the evader and hence the velocity. To increase
the chances of a successful evasion, the evader also performs weaving manoeu-
vres.

Figure 6.36 shows the time-history of the load factor experienced by the play-
ers and the corresponding separation distance. At the initial phase of the en-
counter, the players perform a mild manoeuvre that involves a moderate load
factor. As the separation distance becomes smaller, the evader starts to execute
higher g manoeuvres. This saturates the pursuer’s lateral acceleration. The timely
manoevres performed by the evader causes the pursuer to overshoot the evader by
173 m.

107

Figure 6.32: Computing time to find the first feasible solution for scenario 3.

Figure 6.33: 3D view of the encounter in scenario 3 (run 1).

108

Figure 6.34: 3D view of the encounter in scenario 3 (run 2).

Figure 6.35: 3D view of the encounter in scenario 3 (run 3).

109

Figure 6.36: Load factors and the separation distance for scenario 3.

The feasible vertical dive performed by the evader is best visualised in the XY-
and XZ-plane. The encounter in the XY-plane is shown in Figure 6.37. As seen in
Figure 6.37, there is little movement in the X- and Y- axis. Most of the movements
are predominantly in the Z-axis.

The trajectory is visible when viewed in the XZ-plane as shown in Figure
6.38. The evader’s feasible solution is to dive orthogonally to the ground with a
decrease in altitude by taking advantage of the positive gravitational acceleration.
The evader maintains the 90o dive until escapes from interception.

The velocity profile of the pursuer is similar to those in other scenarios. The
powerful thrust produced by the rocket motor has provided a constant acceleration
to the pursuer. Since the evader is diving straight to the ground, the evader’s
velocity is also increasing. At the end of the game, the pursuer’s velocity is 654
m/s and the evader’s velocity is 251 m/s.

The evader does not push the throttle to the maximum in this scenario. This
is shown in Figure 6.40. In the early part of the encounter the evader maintains
the throttle at 60%. Only at the 7th second, the evader pushes the throttle to
100% but that is only lasts for 1 second before the throttle is reduced to 55% and
finally settled at 40%. The reason is not to increase the velocity immediately to

110

Figure 6.37: Encounter in the XY-plane for scenario 3.

Figure 6.38: Encounter viewed in the XZ-plane for scenario 3.

111

Figure 6.39: Velocity of both players for scenario 3.

the maximum as that will influence the turning performance of the evader, i.e. the
minimum turning radius and the maximum turning rate at the end of the dive.

The control surface deflection time-histories of the evader are shown in Figure
6.41 - Figure 6.43. The weaving motion is accomplished by deflecting the control
surfaces to a certain magnitude. Initially, in order to dive, the evader deflects
the elevator to a maximum positive for 2 seconds. This causes the evader’s nose
to point downward and initiates diving. Then the evader’s elevator is positioned
to −30o to reduce the pitch-rate to maintain the diving position. Over time, the
control surfaces are deflected to a certain degree to produce a weaving motion. For
example, the aileron is deflected to the maximum 21.5o from time 0 to 1 second
and the deflected to the −21.5o for 1 second. The aileron is positioned in the
negative deflection angle for 2 seconds before returning to almost neutral position
at the 4th second. At the 5th second, the aileron is again deflected to −21.5o

and moved to a slightly lower angle until the 9th second of the encounter. It is
important to note that these deflections are very well coupled so that the evader
does not violate any of the constraints and in the same time provide a feasible
trajectory for a successful evasion.

112

Figure 6.40: Throttle setting and velocity of the evader for scenario 3.

Figure 6.41: Aileron deflections of the evader for scenario 3.

113

Figure 6.42: Elevator deflections of the evader for scenario 3.

Figure 6.43: Rudder deflections of the evader for scenario 3.

114

6.5.4 Evader as Unmanned Air Combat Vehicle (UCAV)

In this scenario, the evader is assumed to be an Unmanned Air Combat Vehicle
(UCAV) and the initial conditions are similar to scenario 1. The unmanned version
allows the maximum load factor to be increased. At a higher g value, the evader
has more agility because the constraint due to human limitations is alleviated. The
evader is now free to perform higher than 9-g manoeuvres. Obviously, with this
new advantage, it will be harder for the pursuer to intercept the evader.

A simulation was conducted to study the benefit of having a higher maximum
load factor. The evader is the same as in the previous simulations except that
the load factor limit is increased to 18. The time-history of the load factors of the
players is displayed in Figure 6.44. Initially, the players’ load factors are relatively
low until the 15th second of the game. Initially, the pursuer misses the interception
by a large margin before performing a turn for a second attempt.

Figure 6.44: Load factors for both players and separation distance for UCAV
(scenario 1).

Between 15th and 28th second of the encounter, the pursuer saturates its lateral
acceleration when executing a high g turn to continue the intercept. The evader
performs a weaving motion to increase its probability to avoid interception as
show in Figure 6.45. The pursuer continues its attempt to intercept. Now, the

115

pursuer has passed its rocket motor burnout stage. Its velocity is decreasing. This
means the maximum turning rate becomes higher and the minimum turning radius
becomes smaller. The evader has to manoeuvre at higher load factors to evade
interception. This is shown in Figure 6.44. At the 30th second of the encounter,
the separation distance is very small - i.e. the pursuer is close enough to intercept,
the evader performs a 17-g manoeuvre to out manoeuvre the pursuer. Again, a
feasible solution is a combination of weave and dive manoeuvre performed in a
timely manner at high g.

Figure 6.45: 3D view of the encounter with a UCAV for scenario 1.

As illustrated in Figure 6.44, at a higher maximum g-load, the evader could
manoeuvre in such a way that increases the pursuer’s miss distance. The evader is
also has a better chance to avoid interception if the pursuer was able to turn around
and continue the chase. This is because, after the pursuer has passed its burn-out
stage, its velocity is decreasing due to the aerodynamic drag. The reduction of
velocity increases the maximum turning rate and decreases the minimum turning
radius of the pursuer. At one point, the pursuer’s maximum turning rate matches
with the evader’s, even though the pursuer’s velocity is still higher than the evader.
At this moment, the pursuer can always keep up with the evader. The time to
reach this situation can be delayed if the evader’s maximum g-load is higher, as

116

explained in Equation 5.26.
There only difference between manned and unmanned aircraft is the maximum

load factor it could sustain while performing a manouvre. A higher maximum
load factor means the aircraft could turn faster with a smaller turning radius. As a
result, the aircraft has a higher chances to avoid interception.

6.5.5 Summary

To summarise the scenarios, it has been shown that for a different scenario, the
feasible solution will also be different too. EP has shown that it can find a feasible
solution for the given initial conditions. Besides that, it can also find the first
feasible in a relatively short time. The feasible solutions found by EP are unique
only to the given initial conditions and aircraft type. A different aircraft type
and capability as well as a different missile type and capability will produce a
different feasible solution. EP does the search without relying on past knowledge
of feasible solutions.

6.6 Factors that Influence the Search

In this section, a simple design of experiment analysis was conducted to see the
relationship between parameters. In parallel EP, it is acknowledged that the num-
ber of processors and the number of generations play an important role in locating
feasible solutions.

As a rule of thumb, more processors, higher population size and larger number
of generations will definitely improve the quality of the search space. But it comes
with a price, i.e. a longer search time.

The experiment starts by considering two factors, i.e. the number of processors
and the number of generations. The objective is to see the interaction between
these factors. The initial parameters are given as in Table 6.3 and 6.4.

6.6.1 Interaction Effect Between Number of Processors,
Number of Generation and Population Size.

The effect of interaction between these three factors, i.e. the number of processors,
the number of generations and the size of the population is studied using a Design-
of-Experiment (DOE) method. The statistical approach is employed due to the

117

Table 6.3: Initial Parameters.
Parameter Pursuer Evader
X,m 0.0 3000.0
Y,m 0.0 0.0
Z,m 3000.0 3000.0
Velocity,m/s 200.0 122.0
Heading Angle,rad 0 0
Interception Radius, m 15 -
Max Load Factor 20 10

Table 6.4: General Parameters.
Parameter Value
Size of population 100
Migration Rate 10
No. of processors 4,8
Duration 100 seconds

Table 6.5: Experiment configurations and their results.
StdOrder RunOrder processors No. of Gen. Feasible solutions found

2 1 8 5 11
7 2 4 100 118
4 3 8 100 212
3 4 4 100 101
1 5 4 5 3
8 6 8 100 227
6 7 8 5 13
5 8 4 5 8

Table 6.6: Estimated Effects and Coefficients For Feasible Solutions.
Term Effect Coeff SE Coef T P
Constant 86.23 2.913 29.74 0.000
CPU No. 58.25 29.12 2.193 10.00 0.001
No. of Gen 155.75 77.88 2.193 26.74 0.000
CPU*No.of Gen 51.75 25.87 2.193 8.88 0.001

Table 6.7: Analysis of Variance.
Source Degrees Sum Mean fo P-value
Source of Freedom of Square Square fo P-value
Main Effects 2 55302.2 27651.1 407.38 0.000
2-Way Interactions 1 5356.1 5356.1 78.91 0.001
Residual Error 4 271.5 67.
Pure Error 4 271.5 67.9
Total 7 60929.9

118

stochastic nature of the optimisation algorithms. It involves the use of random
numbers to generate initial populations to search for feasible solutions.

A DOE experiment is designed and conducted using the statistical package,
MINITAB. The order and results of the experiment is given in Table 6.8 and 6.9.

Table 6.8: Experiment configurations of the DOE and their results.
No. Standard Run CPU Gen. Population No. of Execution

Order Order No. No. Size Feasible solution Time
(s)

1 2 1 8 50 50 104 209.140
2 14 2 8 50 100 189 458.418
3 4 3 8 100 50 201 420.482
4 3 4 3 100 50 73 324.259
5 1 5 3 50 50 39 147.182
6 16 6 8 100 100 430 850.492
7 11 7 3 100 50 73 293.866
8 7 8 3 100 100 170 623.384
9 6 9 8 50 100 230 393.232

10 8 10 8 100 100 377 842.546
11 5 11 3 50 100 71 292.915
12 9 12 3 50 50 37 145.005
13 12 13 8 100 50 200 429.922
14 10 14 8 50 50 95 211.444
15 15 15 3 100 100 155 586.669
16 13 16 3 50 100 67 299.377

Table 6.9: Estimated Effects and Coefficients for the number of feasible solutions.
Term Effect Coefficient SE Coef. T P−value
Constant 156.938 4.338 36.18 0.000
cpu 142.625 71.312 4.338 16.44 0.000
nogen 105.875 52.937 4.338 12.2 0.000
popsize 108.375 54.187 4.338 12.49 0.000
cpu*nogen 41.625 20.812 4.338 4.8 0.001
cpu*popsize 48.125 24.063 4.338 5.55 0.001
nogen*popsize 37.875 18.937 4.338 4.37 0.002
cpu*nogen*popsize 8.625 4.313 4.338 0.99 0.349

In Figure 6.46, using α = 0.05, the effects of the number of processors, the
number of generation , the population size and the interactions among themselves
are found to be significant. These three parameters play an important part dur-
ing the optimisation cycle. The search is improved if more processors, a higher

119

Figure 6.46: Normal plot of the standardized effects of the number of feasible
solutions.

number of generations and a larger population size are used. The effect of these
parameters on the number of feasible solutions and the execution time are studied.

The “main effects” plot for the number of feasible solutions found is given
in Figure 6.47. As seen in the figure, all of the three factors give almost simi-
lar improvements to the number of feasible solutions. A slightly bigger effect is
given by the number of processors (cpuno). It is represented by a steeper slope as
compared to other effects.

The main effects plot for the execution time is given in Figure 6.48. It has been
observed that there is a significant effect to the execution time for the number of
generation (nogen) and population size (popsize). The number of processors does
not as significant as the other two. The reason is because nogen and popsize

contribute directly to the execution time, i.e. more solutions have to be evaluated.
The effect of cpuno to the execution time is primarily due to the communication
time and the serial part of the algorithm which is usually performed by the master
processor.

120

Figure 6.47: Main effect plot for feasible solutions.

Figure 6.48: The main effect plot for execution time.

121

6.6.2 Effect of the Spawn Time

The effect of the spawn (simulation) time, as described in Figure 5.1, is studied.
The optimisation performs better if the spawn time is short, e.g. 10 seconds. This
opens the opportunity for the optimisation to fix itself from drifts due to the pres-
ence of errors and noise. The main contributors that cause drifts are measurement
errors from the sensors. Table 6.12 lists the percentage of successful runs at dif-
ferent spawn times. The general and initial parameters of the simulation are given
in Table 6.10 and 6.11.

Table 6.10: Initial Parameters.
Parameter Pursuer Evader
X,m 0.0 3000.0
Y,m 0.0 0.0
Z,m 3000.0 3000.0
Velocity,m/s 200.0 243.0
Heading Angle,rad 0 0
Interception Radius, m 15 -
Max Load Factor 40 10

Table 6.11: General Parameters.
Parameter Value
No. of genertion 100
Size of population 100
Migration Rate 10
No. of processors 4

Table 6.12: Percentage of Finding of Feasible Solution after n number of runs.
Simulation Time (s) Percentage of Total Number

Successful Runs (%) Runs
10 98 1009
20 90 1145
40 50.8 638
60 20.6 1503
80 6.4 1415

100 0 0

Table 6.12 gives the percentage of success runs for different simulation times.
The simulation time, ts is a predefined time in which the simulation will take place.

122

Evolutionary Programming will evaluate an individual for a given ts. As predicted,
when ts is small, the chances of an individual to survive (i.e. becoming a feasible
solution) in EP is higher. The best solution is then played in the simulation for ts

seconds. The optimisation algorithm will search for feasible solution for nts until
no feasible solution is found.

The optimisation is very sensitive to constraint violations such that even if the
violation happened at the last second of the simulation, the whole individual is
considered infeasible, as explained in Figure 6.49.

Figure 6.49 shows the results of several spawn times. In each spawn time,
1000 independent optimisation runs were conducted. The result of each run is
recorded. Some of the runs were able to play the game up to more 100 seconds
because EP was able to locate feasible solutions within the time frame. But some
of the runs were cut short. No feasible solutions were found even after 30 seconds.
The results are plotted in a histogram. shows the results of several spawn times. In
each spawn time, 1000 independent optimisation runs were conducted. The result
of each run is taken. Some of the runs were able to play the game up to more 100
seconds because EP was able to locate feasible solutions until that time frame.
But some of the runs were cut short. No feasible solutions were found even after
30 seconds. The results are plotted in a histogram in Figure 6.49.

For a 10 second simulation time (see Figure 6.49(a)), the feasible solution be-
haves similarly like a nonlinear Model Predictive Control [66], which requires a
short spawn time usually in seconds. In Figure 6.49, the 10 second spawn time
has enabled EP to search for feasible solutions for more than 180 seconds of en-
counter. This means feasible solutions are easier to locate at smaller spawn time.

In Figure 6.49(b), the 20 second spawn time shows that EP is still capable in
locating feasible solutions and able to extend the duration of the encounter up to
more than 200 seconds without interception.

However, a shorter simulation time could influence the overall outcome of
the game. For example, for the 10 second simulation time, although a feasible
solution is found, it may lead the evader to fly close to the ground and at the end
leaves a very little space to manoeuvre.

If the simulation spawn time is increased to 20 seconds, a feasible solution
could be found and at the same time provides more opportunities to other feasible
trajectories in the next spawn time.

A longer spawn time has its own disadvantage. The chances of finding a feasi-
ble solution is lower due to higher probability for the evader to violate a constraint.

123

This requires a larger search space and subsequently, consuming more time and
computing power. The effect is shown in Figure 6.49(c) - (f). For example, at
100 second spawn time, none of the runs conducted is able to extend the game
to more than 100 seconds. This shows that the search for feasible solutions with
longer spawn time is difficult because the probability of a solution with a long
spawn time that violates the given constraints is higher. The selection in EP is set
to be very conservative. It rejects a solution that even violates one constraint. As
a summary, a moderate spawn time should be used to locate feasible trajectories.
It must not be too short to avoid ”shortsightedness” in locating feasible solutions,
but it should also not be too long to avoid longer computing time and failure to
even find one feasible solution.

6.6.3 Effect of the Pursuer’s Thrust

The effect of the thrust of the pursuer is studied. If the evader has more thrust to
weight ratio than the pursuer, it could simply choose to fly away from the pursuer.
On the other hand, if the pursuer’s thrust to weight ratio is higher, the evader may
choose the perform hard manoeuvres to escape interception.

In this experiment, the pursuer’s thrust is arbitrarily set to be 1080 N, 2080
N, 4080 N and 5880 N. The results are plotted in Figure 6.50. Figure 6.50(a)-
6.50(b) and shows the feasible trajectory taken by the evader is to fly away from
the pursuer. This is true since the evader’s thrust produces higher velocity and
outruns the pursuer is the best option.

As the pursuer’s thrust is higher, as shown in Figure 6.50(c)-6.50(d), the fea-
sible path taken by the evader is to perform timely and optimal manoeuvres as
described in Section 2.5. In the figures, the pursuer’s velocity closely matches
the evader’s velocity at the final moment before the game ends, as shown by the
staggered trajectory.

124

(a) Simulation of 10 seconds. (b) Simulation of 20 seconds.

(c) Simulation of 40 seconds. (d) Simulation of 60 seconds.

(e) Simulation of 80 seconds. (f) Simulation of 100 seconds.

Figure 6.49: Histogram of runs for different simulation (spawn) time.

125

(a) Pursuer’s Thrust 1080 N (b) Pursuer’s Thrust 2080 N

(c) Pursuer’s Thrust 4080 N (d) Pursuer’s Thrust 5880 N

Figure 6.50: Three-dimensional encounters for different thrust.

126

6.7 Robustness

The robustness of the the algorithm is studied by using Monte Carlo simulations.
In this experiment, both players are assumed to know each other’s states. No
noise is incorporated in the simulation model. The only random parameter is the
initial solution in EP. In each run, EP initialise the first population randomly. The
outcome of each run is saved and statistically analysed.

The first attempt to find the consistency of the optimisation algorithm is to run
the same configuration for 300 times. In this experiment the configuration of the
players are as given in Table 6.13 and 6.14.

Table 6.13: Initial Parameters.
Parameter Pursuer Evader
X,m 0.0 3000.0
Y,m 0.0 0.0
Z,m 3000.0 3000.0
Velocity,m/s 200.0 243.0
Heading Angle,rad 0 0
Max Load Factor 40 10

Table 6.14: General Parameters.
Parameter Value
No. of generation 100
Size of population 100
Migration Rate 10
No. of processors 4
Duration 100 seconds

Further insight into the results given Figure 6.51 and 6.52 in has revealed some
statistical results as given in Table 6.15.

Table 6.15: Statistical Results.
Parameter Value
Mean 205.606
Standard Deviation 14.565
95% CI 204.240,206.972
P 0.000 (¡0.005)

The experiment is repeated by increasing the pursuer’s interception radius to
20 m. The result is given below in Figure 6.53 and 6.54. In this experiment, the

127

Figure 6.51: Normal plot of the number of feasible solutions using Anderson-
Darling Method.

Figure 6.52: Histogram plot of the number of feasible solutions.

128

same configuration is ran 300 times. The assumption that the optimisation algo-
rithm is able to find feasible solutions is proven by using the t-test. The normality
test shows that the result is within normal distribution which shown in Figure 6.53.
The histogram of the results is given in Figure 6.54. The Anderson-Darling test
shows the result of 0.338 (Figure 6.53) is less than 0.752 at 5% level test which
means the hypothesis of normality is accepted.

Figure 6.53: Normal plot of feasible solutions using Anderson-Darling Method
for 20 m interception radius.

The next test is to verify the hypothesis that at a level of 95% confidence
interval and using the test value of 90 for the number of feasible solutions, the
results agree the null hypothesis is accepted. The statistical results are given in
Table 6.16. It can be deduced that in 95% of the time, the number of feasible
solutions found is between 88 and 90 which is more than enough for the evader to
avoid interception.

Table 6.16: Statistical Results.
Parameter Value
Mean 89.26
Standard Deviation 8.713
95% CI 88.27,90.25

129

Figure 6.54: Number of feasible solutions for 20 m interception radius.

6.8 Presence of Uncertainties

Finding a feasible solution in the presence of errors and noise is a challenge. This
is due to the imperfect sensors and other types of measurements needed to solve
the problem. Also, the noise may also come from exogenous sources such as
turbulence. A feasible solution may no longer be feasible if the presence of errors
and noise will alter the states and eventually change the predicted outcome. It is
imperative to ensure the algorithm is robust against factors such as noise.

There is a wide range of uncertainties involved, and only a handful is covered
in this thesis. However, as a note, uncertainties involved in EP can be categorised
into four classes [62], (i) the fitness function is not certain or noisy. In this partic-
ular problem, the problem is mainly from sensory noise and measurement errors,
(ii) the design variables or environmental variables (which is beyond of our con-
trol) fluctuates over certain values, (iii), the fitness function is time-variant, and
finally, (iv) the fitness function is just an approximation of the model to be studied
which definitely has approximation errors in it.

In this experiment, the evader searches for feasible solutions by assuming there
is no error and noise. The feasible solutions found is tested again for a noisy
environment. The outcomes of the objective function are compared with the noise-
free result.

130

Several degrees of noise and errors are tested in this experiment. Single noise
experiments are also conducted and discussed further in the following section.

6.8.1 Effect on Errors in the Evader’s Initial Speed

The effect of noise and errors to the feasible solutions are studied. In contrast
to the perfect simulation, i.e. no noise and errors, the feasible solution may not
perform as expected if it is run again in a noisy environment. The arguments are
based on the factors that the accumulation of errors and noise will eventually mod-
ify the states of the evader at every time step. At the end of the simulation, the final
position of the evader in the noisy environment differs greatly from the one used
in a noise-free simulation. To demonstrate this, an experiment was conducted.

In this experiment, several optimisation simulations were conducted to find a
group of feasible solutions. These feasible solutions are then run again but this
time; the initial speed of the evader was varied slightly by using normal distribu-
tion of zero mean and variance of one as given in Eq. 6.1.

V∗ = Vi + αN(0, 1) (6.1)

where V∗ is the perturbed variable, Vi is the original variable, α is a scale factor
and N(0, 1) is the standard normal distribution with zero mean and variance of
one.

This experiment follows the parameters as given in Table 6.17 and 6.18. A
total of 25 feasible solutions were tested. Each solution is repeated 500 times.
The results are given in Table 6.19.

Table 6.17: Initial Parameters.
Parameter Pursuer Evader
X,m 0.0 3048.0
Y,m 0.0 0.0
Z,m 3000.0 3000.0
Velocity,m/s 200.0 243.0
Interception Radius, m 15 -
Max Load Factor (g) 40 10

In Table 6.19, the effect of a small change in the initial state is significant.
At each run, the same solution is simulated 500 times and out of that, a very
low percentage of the outcomes is considered feasible. In all cases, the feasible
solutions were unable to perform as intended if the initial speed is perturbed.

131

Table 6.18: General Parameters.
Parameter Value
No. of Generations 100
Size of population 100
Migration Rate 10
No. of processors 4
Duration 100 seconds

Thus, we can say that the solution is sensitive to the evader’s initial speed.
The slightest change in the initial speed will change both acceleration, as well as
the distance. Furthermore, the timing of the deflection of the control surfaces is
important. If the timing is incorrect, due to the noise, the trajectory that was once
feasible will no longer be feasible. The error is accumulated at every time step.
It has been seen that a small perturbation to the evader’s initial speed strongly
influences the outcome of the game as seen in Table 6.19. Any small perturbation
on the evader’s initial speed will significantly affect the outcome of the simulation.
It can be said that the simulation model is sensitive to the initial speed of the
evader.

Even though the initial error is small due to the complexity of the mathematical
models and the build up of errors over a period of time, the aircraft will still fly but
at a different trajectory. This would be true even if the control deflection sequence
is the same (since the sequences are decoded from the feasible solution found by
EP). This will cause the final position of the evader to vary significantly. It can
be seen that initially, there is no significant path change made by the evader. The
evader’s path starts to deviate after flying for about 1000 m.

A second experiment is conducted in a slightly different manner. For each
candidate solution, EP will run the evaluation twice. The first evaluation is without
noise and the second evaluation is with noise. The same initial parameter as in
Table 6.17 and 6.18 is used in this experiment.

A total of 155 independent EP simulations were conducted. On average, only
50% of the simulations managed to locate feasible solutions. However, feasible
solutions from 64% of the simulations have become non feasible solutions when
noise was added. Only 36% of the feasible solutions remained as feasible solution
after noise was added. This shows that EP is sensitive in the presence of noise in
relation to the speed of the evader.

132

Table 6.19: The number of successful (not captured) simulations when a feasible
solution is rerun 500 times with errors in the evader’s initial speed.

No Actual Number of per 500 Percent
Feasible Solutions (%)

1 44 0.088 8.8
2 65 0.13 13
3 31 0.062 6.2
4 23 0.046 4.6
5 42 0.084 8.4
6 1 0.002 0.2
7 1 0.002 0.2
8 29 0.058 5.8
9 57 0.114 11.4

10 21 0.042 4.2
11 42 0.084 8.4
12 19 0.038 3.8
13 3 0.006 0.6
14 22 0.044 4.4
15 6 0.012 1.2
16 39 0.078 7.8
17 6 0.012 1.2
18 19 0.038 3.8
19 138 0.276 27.6
20 13 0.026 2.6
21 25 0.05 5
22 28 0.056 5.6
23 34 0.068 6.8
24 48 0.096 9.6
25 104 0.208 20.8

133

6.8.2 Effects on Errors in the Pursuer’s Initial Speed

Similar to section 6.8.1, white-gaussian, N(0, 1), noise was added to the pursuer’s
initial speed. During the search for feasible solution, the pursuer’s initial states
are assumed to be correct. Once the best solution is found by the optimisation
algorithm, the best solution is tested again in a simulated game where the pur-
suer’s initial speed is randomly perturbed. A total of 500 independent runs were
conducted.

The outcome is 74.1% (371) of the runs gave a positive result (i.e. no inter-
ception). As an example, Figure 6.55 show 10 different trajectories flown by the
evader using the same feasible trajectory found by EP. But the pursuer’s initial
speed is slightly perturbed using the white Gaussian noise. As seen in Figure
6.55, a small perturbation to the pursuer’s velocity does not affect the outcome of
the algorithm. The selected feasible solution is able to steer the evader away from
interception until the sixtieth seconds.

Figure 6.55: The deviation of the pursuer’s trajectory when the initial speed is
slightly perturbed. In this figure 10 runs are displayed.

134

6.9 Random Versus EP

Several simulations were conducted to study the difference between random search,
standard-EP and meta-EP are employed. The simplest search is the random search.
It simply generates new solutions randomly at every generation cycle and retains
the best solution. Standard-EP does not use any self-adaptation mechanism to
evolve. However, meta-EP uses self-adaptation mechanism to evolve candidate
solutions to search for a better one.

The general parameters used in the experiment are given in Table 6.20. The
aircraft initial states are given in Table 6.21. 200 independent runs were conducted
for each case and the results are given in Figure 6.56.

Table 6.20: General Parameters.
Parameter Value
No of generations 100
Population Size 100
Integration Time Step 0.01 second
Duration 100 seconds
Migration Rate 0
PNG Ratio 1

Table 6.21: Aircraft Parameters.
Parameter Evader Pursuer
X (m) 3000 0
Y (m) 0 0
Z (m) 3000 3000
Heading (rad) 0 0
Initial Velocity (m/s) 250 200
Interception Radius (m) n/a 15

In Figure 6.56, random search is ranked third in its ability to locate feasible so-
lutions. Over 200 runs, the random search can only find an average of 2.7 feasible
solutions with a standard deviation of 2.1. Interestingly, on average, standard-EP
finds more feasible solutions, i.e. 525 feasible solutions with a standard devia-
tion of 674 than meta-EP, i.e. 217 feasible solutions with a standard deviation of
158. The performance of the random search is abysmal compared to standard-EP
and meta-EP. This shows that both EPs are able to guide the search in the right
direction to find feasible solutions.

135

Figure 6.56: Number of feasible solutions found for standard-EP, meta-EP and
Random.

In terms of reliability, meta-EP is found to be more consistent in locating fea-
sible solutions than a random search and standard-EP. For the random search,
the minimum number of feasible solutions is 0 and the maximum is 10. This
is very low compared to meta-EP and standard-EP. On the other hand, the min-
imum number of feasible solutions found by meta-EP is 10. But there are runs
where standard-EP cannot find any feasible solution. This means that although
standard-EP is able to find more feasible solutions at certain times, the reliability
is still an issue. Instead, meta-EP seems to be the most reliable in locating feasible
solutions.

Overall, the use of Evolutionary Programming (EP) algorithms is able to im-
prove the search space. This is done by comparing the number of feasible solu-
tions found with random search and EP variants.

6.10 Parallel Implementation

The effects of migration rate and the number of processors on the performance of
the EP algorithm are studied in this section. The quality of parallel EP depends
on the choices of topology, migration rates and the size of demes [20]. It is made
mode complicated because of the nonlinear relationship between each parameter.

136

6.10.1 Effect of Migration Rate

An experiment is carried out to find the contribution made by the migration rate
to the quality of the solution. Figure 6.57 and Figure 6.58 show the effect of
migration on the number of feasible solutions and the execution time, respectively.

The effect of migration rate is found to be insignificant at lower population
sizes (30-100) in locating the feasible solutions. As the size of the population
increases over 100, higher migration rates will be able to locate more feasible
solutions. Zero migration has the lower success rate to find feasible solution as
seen in Figure 6.57.

The higher number of feasible solutions found is due to more feasible solutions
being migrated to adjacent demes and many good offsprings are produced from the
parent which are already having a higher fitness value. The diversity of the search
space is maintained because the number of feasible solutions is usually small and
other sub-optimal solutions are retained and mutated to produce offsprings for the
next generation.

The execution time is found to be unpredictable as depicted in Figure 6.58.
Although the execution time increases as the population time increases, its effect
to the migration rate is not apparent. The same observation is also true in Figure
6.59. In the figure, due to the highly competitive selection in EP, the fitness value
increases as the population size increases. But, the migration rate does not seem
to influence much to the fitness value. However, in this case, the migration rates
does not seem to have much influence on the fitness value.

137

Figure 6.57: Effect of migration rate on the number of feasible solutions.

Figure 6.58: Effect of migration rate on the execution time.

138

Figure 6.59: Effect of migration rate on the fitness values.

6.10.2 Speedup

A speedup is an important performance indicator for a master-slave approach. It
shows the efficiency of the parallel implementation. The analysis of speedup for
the master-slave approach is conducted in this section.

The general parameter and the aircraft parameter of the experiment is given in
Table 6.22 and 6.23. Three population sizes, i.e. 100, 200 and 500 are chosen to
measure the speedup. The results are given in Figure 6.60.

The maximum speedup of 4 is achieved for population sizes of 100. It reaches
the maximum speedup if 8 processors are used. Beyond 8 processors, additional
number of processors do not improve the speedup. For a population size of 200,
the maximum speedup of 6 is achieved using 12 processors. For a population size
of 500, the maximum speedup achieved is 9 for 14 processors. A steady increase
of the speedup is observed when the population size increases as shown in Figure
6.60. An almost linear increment of the speedup versus the population size can be
seen in Figure 6.61.

This shows that for master-slave parallel applications, there is a limit on the
number of processors that gives the highest speedup. At this level, the processor
utilisation is higher than the cost of communication. This will result in having a
better speedup. Beyond that point, if more processors are used the speedup will

139

Table 6.22: General Parameter.
Parameter Value
No of generations 100
Population Size 100,200,500
Integration Time Step 0.01 second
Duration 100 second
Migration Rate 0
PNG Ratio 1

Table 6.23: Aircraft Parameter.
Parameter Evader Pursuer
X (m) 1524 0
Y (m) 0 0
Z (m) 304. 1000.0
Heading (rad) 0 0
Initial Velocity (m/s) 243 200
Interception Radius (m) n/a 15

decrease. The frequent communications offset the reduction in the time required
to evaluate the solutions. The evaluation time is dominated by the communication
time between processors. One way to improve the speedup is to increase the
communication speed.

The speedup is observed to increase linearly in accordance with the size of the
population. For smaller population sizes, a moderate size of around 8 processors is
sufficient. For higher population sizes, more processors can be utilised to achieve
a better speedup. However, the determination of the optimal number of processors
can only be determined through trial and error.

The results in Figure 6.62 use a coarse-grained approach. It uses a fixed total
population size. A total population size is a multiplication of the number of gener-
ations, the population size of each generation and the number of processors used.
9 sets of number of processors are used in this study. The number of generations,
population size and the number of processors are given in Table 6.24.

A linear increment is observed for a coarse-grained configuration when a pre-
determined total population size is used. Since the total population size is kept
constant, the increase in the number of processors means each processor will then
evaluate fewer individuals. Since there is minimal communication among proces-
sors for coarse-grained approach, the addition of more processors will certainly
improve the computing time.

140

Figure 6.60: Speedup of different population size (100, 200 and 500). (Number
of Generation = 100).

Figure 6.61: Maximum speedup and processor number against the population size
for master-slave configuration.

141

Figure 6.62: Speedup for different number of processors in coarse-grained con-
figuration with total population size 50,000.

Table 6.24: Parameters and results for coarse-grained configuration.
No. No. of Population No. of Computing Speedup

Generations Size Processors Time (s)
1. 500 100 1 792 1
2. 100 100 5 169 5
3. 100 50 10 87 9
4. 101 33 15 58 14
5. 100 20 20 46 18
6. 104 30 30 32 25
7. 125 40 40 25 32
8. 100 50 50 20 40
9. 83 60 60 17 47

142

6.11 Summary

The search for feasible solutions in an air combat proves to be challenging. Namely,
the fitness function itself is time-variant. A small change in both environmental
variables and design variables would significantly alter the outcome of EP. Each
variable plays an important contribution towards locating the feasible location in
the near infinite search space. Thus each run is unique by itself and the results can
only be interpreted through statistical analysis.

This chapter discusses the results of the simulations of selected initial states
and conditions. It is beyond the scope of the thesis to study the whole spectrum
of the problem. The first section explains the type of aircraft used by the players.
Three scenarios have been explored. The first scenario is tail encounter. In this
scenario, the pursuer is located behind the evader. The second scenario is when
the pursuer is initially located at the side of the evader and the last scenario is
when the pursuer and the evader are facing each other.

In most cases, the feasible solution aims to saturate the turning rate of the
pursuer. This causes the pursuer to miss the evader in a small margin. Sometimes,
it misses the evader by only a few meters beyond its predefined lethal radius. This
is an achievement because the search of the feasible solution takes place without
having any prior knowledge of the type of feasible manoeuvres.

The next is the discussion on the type of hardware used to run the simula-
tions. The computing time is discussed in relation to the time needed to compute
a solution. The next stage is to run the optimisation algorithm for the three cases
described in 6.5.

Some of the encounters are quite extreme in which only suitable for unmanned
aircraft. For example, the aircraft might be performing a continuous loop at a very
high angular rate. Other example is turning at a load factor over than 9. Using
the same cases, other factors that influenced the quality of the solutions are also
discussed in this chapter. One example is the robustness that is calculated by
running the same problem multiple times using a statistical study.

The effect of errors is also studied. The feasible solutions are tested by per-
turbing the initial positions of the pursuer. For small perturbations, their effect on
the feasible solution is small and insignificant. But if the perturbation is large, the
outcome can be totally different, i.e. the solution is no longer feasible. The spawn
time does play an important role in locating the feasible solution.

For a short spawn time, it is likely that the optimisation algorithm has a high

143

chance of locating feasible solutions. The reason is that the probability of violat-
ing the constraints is less for a short spawn time simulation. If the spawn time
is longer, there is a strong possibility that the aircraft will violate the constraints.
This will make the optimisation algorithm more susceptible to violate the con-
straints which will result in finding less feasible solutions.

Since the algorithm is written in FORTRAN and parallel-ready, the evaluation
of the solutions are performed on multiple processors. As discussed in section
6.10.2, the speedup can reach up to 9 for a population size of 500 (see Figure
6.60).

Overall, the effective manoeuvre to evade interception is to turn hard and dive
[103]. However, locating feasible trajectories are highly dependent on many fac-
tors and very hard to predict. Quoting from [103], “Missile defense often requires
instant analysis and rapid reactions. The tactics to be employed in any conceiv-
able situation must be predetermined and practiced so that they become automatic.
Once the missile is launched, it is too late for leisurely development of a response.”

Depending on the initial conditions and configuration, EP is found to be able
to locate feasible solution in a relatively short period of time. With the advent of
computing power, this statement is not far from reality.

144

7 Conclusion

7.1 Summary

Efforts to find an efficient and fast algorithm to solve pursuit-evasion problem is
undoubtedly, a continuous process. With the advent of computing power, highly
capable aircrafts, highly lethal weapons, the workload of a pilot keeps increas-
ing. The problem has been described by many using various techniques, such as
differential game theory, expert systems, heuristic value driven systems, discrete
dynamic games, and influence diagram game. The objective an air combat has
always been to find the best solution for the targeted player to avoid interception
i.e. the evader.

In this thesis, the use of Evolutionary Programming (EP) is applied to solve an
air combat problem. It has been described in the previous chapters that EP is able
to find the optimal solution for the evader against a highly agile pursuer within a
reasonable computing time. The computing time is further improved by running
a parallel evaluation using several concurrent computers

It is found that the computing time is dependent on the EP parameters, the
initial states and the capabilities of the players. The test cases follow those used
by [68], see Section 6.5. Feasible solutions have been found, but to locate feasible
solutions is still a challenge. However, this mission is not impossible. The ability
to search for feasible solutions is dependent on various factors:

1. Initial states - These will determine the ability for EP to search for feasible
solutions. If the initial separation distance is too close, it may be difficult to
locate feasible solutions. The initial separation distance must be far enough
to allow the evader to perform the required optimal manoeuvre.

2. Vehicle performance - Performances such as the maximum load factor, the
thrust, the interception radius, and the aerodynamic characteristics are im-
portant. The players have to be properly modeled as close as possible to the
real vehicle.

145

3. Search Parameters - The parameters used in EP, such as the size of the pop-
ulation, the number of generations, the migration rate and the number of
processors influence the ability of EP to locate feasible solutions.

4. External factors. These are external disturbances, instrument noise and
other types of noise that would affect the quality of feasible solutions.

The innovative approach in this study is to move away from typical approaches,
i.e. by representing the vehicle in its natural differential equation forms without
any major modification made to the mathematical equations. The fidelity of the
mathematical model can be increased by adding more state variables into the equa-
tions.

This approach is suitable for scenarios where “a conflict is never the same

twice” [37]. This is achieved by running a new optimisation run every time the
situation changes. This is possible because EP could search the solution space in
a relatively short period of time.

Two consecutive developments have been conducted. Initially, the first devel-
opment used three degree of freedom models for both players. Then, the second
development used a six degree of freedom model to model the evader and a three
degree of freedom model to model the pursuer.

The 3DOF model was initially used to model the evader and the pursuer. The
pursuer was more agile than the evader by having a much more powerful thrust
and a higher load factor. The pursuer targeted the evader by using a well known
proportional navigation guidance system.

The solution space of the 3DOF problem is a vector that represents the change
of heading angle and of flight path angle for the evader over a three dimensional
space. The solution is presented in the temporal dimensions since the changes
are performed at every second. Thus, a minor perturbation could largely alter the
original trajectory.

The results indicate that finding optimal solutions depends on the players’ ini-
tial states and their configurations. If the interception radius is small, the chances
the evader could find optimal solutions will be higher than if the interception ra-
dius is larger.

A 6DOF model was used to represent the evader, a high performance fighter
aircraft. The use of 6DOF model for the evader has added a higher level of com-
plexity to the problem. The integrating time step had to be reduced in order to get

146

a stable result, i.e. 0.01 second. This contributes to the increasing the computing
time.

The limitation of the 3DOF model is that the attitude motions are not cal-
culated. Since the 3DOF model uses a highly simplified aircraft data; in order
to increase the realism, the analysis proceeds to develop the 6DOF model of the
evader. Due to the complexity in designing the control system of the pursuer in
6DOF, the pursuer model remains in 3DOF. The use of a 6DOF model for the
evader has added a higher level of complexity to the problem. The integrating
time step has to be reduced in order to get a stable result, i.e. 0.01 second. This
contributes to the increasing length of the computation time.

The benefit of using a 6DOF model is shown in Section 5.7. The input vari-
ables are the controls used by the pilot, i.e. the control surfaces and the throttle
setting. The solution of the problem is represented in a temporal dimension rather
than in a spatial dimension. This is required since the problem is highly dynamic
in which both players move in the 3D search space.

Several typical evasion manoeuvres were observed from the feasible solutions.
They are dependent to the situations such as, if the pursuer is close, the evader
would choose not to run away, but instead try to sneak into the pursuer’s turn-
ing radius. Since the pursuer’s velocity is very high at the initial time, such a
manoeuvre is logical. Another way is to dive close to the ground and climb up.
This manoeuvre could cause the pursuer to hit the ground whilst trying to turn and
climb.

If the pursuer is located farther away, the best option will be to run away by
diving to a lower altitude and manoeuvring in an optimal way to out-manoeuvre
the pursuer. This will definitely increase the evader’s kinetic energy as well as
making it easier for the pursuer to bleed off its energy. During diving, whilst the
pursuer is pursuing by using a PNG system, the evader performs weaving. The
motivation is to stretch the lateral acceleration of the pursuer to the maximum and
lose its energy faster. At the end of the encounter, the velocity of the pursuer is
lower than the evader and interception is no longer possible.

The time required to search for optimal solutions can be further reduced by
using parallel processing. The advantage of using parallel processing in locating
optimal solution has also been studied. The overall computation time is reduced
if multiple processors are used to evaluate the solutions. However, the speedup
does not show a linear relationship. This is due to the serial components present
in the process. Speedup has been found to have a correlation with the size of

147

the population being studied. The impact of communication is minimised by ex-
changing data in a larger block. Thus, fewer communications are required and
this translates into faster computation time.

Two parallel approaches were studied, i.e. master-slave and coarse-grained.
The paradigm of coding in parallel is difficult and it is further complicated by
having to code the algorithm separately to suit master-slave and coarse-grained
approaches. This is because since they require different programming techniques.
To select the suitable MPI functions for sending and receiving variables is difficult
and the chances to get logical errors are high. Careful coding and a lot of hours of
debugging are essential to make the algorithm to work as intended.

The maximum number of processors in the master-slave configuration is gov-
erned by the speedup as shown in Figure 6.60. In this study, the selection of the
optimal number of processors is done through trial and error. The speedup is in-
fluenced by the speed of the processor as well as the speed of the communication.
Different computer architectures may give a different speedup.

The coarse-grained approach has also been studied. The number of demes
does influence the quality of the solutions. Namely, it influences the diversity of
the search space which, in turn, influences the quality of the solutions. In this
approach, each processor will create its own deme and runs a complete EP cycle.
At the end of a cycle, a number of selected solutions will migrate to adjacent
deme. Finally, all demes will send their best solution to the master process for the
final selection.

The effect of noise has also been studied. It is found that a smaller time hori-
zon could reduce the noise effect. This is due to the fact that the optimisation
algorithm always recalculates the optimal solutions at the new time horizon using
the previously known noise states.

Further analysis of the algorithm shows that many variables are important for
EP to perform as expected. The variables are:

1. The size of the population.

2. The number of generations.

3. The number of processors used.

4. The initial states of both players.

5. The simulation (spawn) time.

148

6. The noise and errors involved.

7. The players parameters.

The size of the population, the number of generations and the number of pro-
cessors are found to influence the search space. As a rule of thumb, the chances
to find feasible solutions is higher if the population size, the number of genera-
tions and the number of processors are increased. But these increments sacrifice
the computing time because more time is needed to evaluate each solution. Thus,
a trade-off is needed in order to have an adequate number of solutions without
sacrificing the ability to explore the search space and the computing time.

The initial states of the players are important because if the initial separation
distance is too close, for example 1 km, the evader has very little space to ma-
noeuvre. In the study, an initial range of 5-20 km is sufficient to find feasible
trajectories. But the altitude also plays an important factor. If the altitude is low,
the feasible trajectory is to fly close to the ground. The motive is to cause the pur-
suer to over steer and crash to the ground. It is quite difficult to evade at a higher
altitude because there is ample space for the pursuer to manoeuvre.

7.2 Conclusion

This thesis explores the possibility of using Evolutionary Programming as an in-
telligent agent in an air combat problem. The programme acts as a surrogate pilot
and performs optimal behaviour through introspection via simulation.

An actual aircraft platform is selected to be the evader in the effort to increase
the realism of the analysis. The analysis is a nonlinear six degree of freedom
pursuit-evasion problem. The problem is made even more complicated by em-
ploying parallel processing. A novel way of representing the control variables
has been presented. The control variables are presented in the form that EP could
manipulate effectively in order to find an optimal control solution. In contrast to
other optimisation algorithms such as artificial intelligence, multi-stage influence
diagrams and differential games, EP searches for the window of opportunity, even
if lasts only for a few seconds. The opportunity is represented by a temporal win-
dow where if a manoeuvre is performed at that point in time, there will definitely
be no interception. If the same manoeuvre is performed too soon, the evader will
be intercepted. Similarly, if the manoeuvre is performed too late, interception will

149

be inevitable. Thus, the timing to perform a manoeuvre is important to avoid inter-
ception. Without having to explicitly list optimal manoeuvres such as explained
by [103], the optimal solutions found by EP will perform such manoeuvres.

Most of the contributions of this research were made possible by focusing on
realism and simplicity. Realism is accomplished by employing an aircraft using
six degree of freedom equations of motion with actual aerodynamics and ’as it
is’ stability data. Thus, the original structure of the mathematical model is main-
tained. This configuration provides room for improvement. One could add more
functions, noise and weaponry to the existing code in the effort to increase its
realism without having to worry about singularity, discontinuity and other mathe-
matical obstacles.

Simplicity is achieved by performing the search for feasible solution in EP
by directly interact with the aircraft control inputs, performing a simulation of
pursuit-evasion game and getting the outcome. The control resembles the act of a
pilot controlling the aircraft using the control stick. The outcome of the simulation
is the fitness value used by EP.

In particular, this thesis made the following contribution to our understanding
of pursuit-evasion problem by illustrating that Evolutionary Programming algo-
rithms can find solutions to the highly non-linear, discontinuous, poorly behaved
space of simulated air combat evasion. It has been demonstrated that the air com-
bat missile evasion problem can be modelled as a complex search problem across a
simulation of the engagement. This is possible by providing an adequately realis-
tic simulation that involves models that are traditionally intractable thus creating
very difficult search environment for many algorithms. However, Evolutionary
Programming approaches have been used to formulate and solve this complex
search problem and find feasible solutions quickly.

At the same time, parallel processing can reduce the search time for a feasible
solution that is practical (near real-time). For the problem under consideration,
parallel processing can reduce the time to find a feasible solution with X proces-
sors by a few seconds with a Y percent improvement in search quality. X being
the number of processors that has been shown experimentally to be the degree of
parallelisation typically best suited for the formulation of this problem. The issue
of practicality of the suggested hardware configuration within future combat air-
craft mission systems is beyond the scope of this thesis although the proliferation
of low end multi-cored processors and a high degree of parallelisation utilized for
supercomputing computations do give some cause for optimism.

150

There are many possible applications for this algorithm. If the aircraft and
missile models are performing well and accurate enough, one possibility is to use
it as an advisory or an automatic evasion system to help pilots during missiles
threat. Similarly, it can be used on board a UCAV as an automatic evasion sys-
tem to avoid interception from missiles. Another possible application is for pilot
training purposes. It can be used to optimise the evader and the pilot who acts
as the pursuer will try to intercept it. The performance of a new aircraft can also
be tested using this algorithm. One possible application is to evaluate the perfor-
mance of the aircraft against various types of missiles. This in turn will produce
a comparative study on the performance and agility of the aircraft against known
missiles at various conditions.

7.3 Future Work

There are many improvements that need to be investigated further in the pursuit
evasion problem using Evolutionary Programming. Mainly, the improvement cov-
ers issues related to the robustness, accuracy, efficiency, and time-efficiency. The
following improvements are suggested:

Improvement on the mathematical model One of the difficulty in this research
is to find suitable aircraft data for 6DOF simulation. These equations form
the basis of the objective function. Finding a good and a comprehensive
aircraft data is important to ensure the validity of the feasible solutions.
Apart from that, the use of the improved mathematical model of the pursuer
(i.e. missile) will definitely increase the realism of the simulation.

Deriving expertise from playing against unknown opponent This is achieved
by upgrading the algorithm to bootstrap expertise from past encounter against
an unknown opponent. The Evolutionary Algorithm will learn from mis-
takes in the past and store the successful manoeuvres in the memory for
later use. A proper information storage representation has to be devised and
tested. For example, a newly developed missile can be tested against the
Evolutionary Algorithm.

Validation of the mathematical model The mathematical model developed can
be validated using established models developed independently by others,

151

such the air force. The model can be integrated with existing simulation
facilities to assist pilot to evade incoming missiles.

Improving the execution time The execution time can be improved further by
optimising the source code. This is done by using a faster processor and a
faster communication device. Optimising the execution time of the serial
part of the algorithm is expected to improve the speedup. The use of differ-
ent parallel topologies could also influence the performance of EP, such as
by using hierarchical parallel approach suggested by Erick [35].

Hybridisation To accommodate the dynamic and complex nature of real world
problems, we can integrate various evolutionary methods into a more pow-
erful hybridised EAs to solve the problems.

Variable population size and mutation rate The effect of varying the popula-
tion size and the mutation rate on the performance of EP can be studied,
especially in noisy environment as suggested by [2].

Besides that improving the mathematical model on the existing aircraft, the
optimisation algorithm can also be used in preliminary aircraft design. The limits
and performance of the conceptual design can be achieved by adjusting the aircraft
parameters and evaluated by EP. This could save time and cost in the conceptual
design phase.

The methodology could be expanded to move beyond that of a pursuer-evader
problem by including the possibility of role switching. In reality, in an air combat
scenarios between two aircraft the evader may try to manoeuvre into a position
where by it can achieve a tactical advantage and thus the roles are switched.

However, this study has yet to address the problem of several air vehicles
engaged in air combat. The methodology however can be expanded to handle
these types of scenarios.

152

References

[1] F.P. Adler. Missile guidance by three-dimensional proportional navigation.
Journal of Applied Physics, 27(5):500–507, 1956. 23

[2] A. N. Aizawa and B. W. Wah. Dynamic control of genetic algorithms in a
noisy environment. In Conf. Genetic Algorithm, pages 48–55, 1993. 152

[3] S.M. Amin, E.Y. Rodin, M.K. Meusey, T.W. Cusick, and A. Garcia-Ortiz.
Evasive adaptive navigation and control against multiple pursuers. In Amer-

ican Control Conference, 1997. Proceedings of the 199, volume 3, pages
1453 – 1457, 6 1997. 18

[4] Peter J. Angeline. Tracking extrema in dynamic environments. In Proceed-

ings of the 6th International Conference on Evolutionary Programming,
1997. 28

[5] T. Back, D.B. Fogel, and T. Michalewics. Evolutionary Computation 1 :

Basic Algorithms and Operators. Institute of Physics Publishing, 2000. 5,
12, 34, 36

[6] Thomas Back. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York, 1996. 12, 32, 34

[7] J. Baltes and Y. Park. Comparison of several machine learning techniques
in pursuit-evasion games, 2001. 21, 29

[8] Brian Barrett, Jeffry M. Squyres, and Andrew Lumsdaine. Integration of
the LAM/MPI environment and the pbs scheduling system. In D. Senechal,
editor, Proceedings of the 17th International Symposium on High Per-

formance Computing Systems and Applications and OSCAR Symposium,
pages 277–283, 2003. 78

[9] Tamer Basar and Geert Jan Olsder. Dynamic Noncooperative Game The-

ory. SIAM, 1999. 2, 3

153

[10] Thomas Bäck. Evolutionary algorithms in theory and practice : evolu-

tion strategies, evolutionary programming, genetic algorithms. New York
: Oxford University Press, 1996. 37, 38, 39

[11] A. D. Bethke. Comparison of genetic algorithms and gradient-based op-
timizerson parallel processors: efficiency of use of processing capacity.
Technical report, Tech. Rep. 197, University of Michigan, Logic of Com-
puters Group, Ann Arbor, MI, 1976. 44

[12] A.I. Blagodatskikh. Weak evasion of a group of coordinated evaders. Jour-

nal of Applied Mathematics and Mechanics, 69(6):891–899, 2005. 11

[13] J.H. Blakelock. Automatic Control of Aircraft and Missiles. John Wiley &
Sons, New York, 1991. 13, 72

[14] H. C. Braun. On solving travelling salesman problems by genetic al-
gorithms. Parallel Problem Solving from Nature, pages 129–133, 1990.
Berlin, Springer-Verlag. 49

[15] M. Breitner, H. Pesch, and W. Grimm. Complex differential games of
pursuit-evasion type with state constraints. 10

[16] M. H. Breitner, H. J. Pesch, and W. Grimm. Complex differential games
of pursuit-evasion type with state constraint, part 1 necessary conditions
for optimal open-loop strategies. J. Optim. Theory Appl., 78(3):419–441,
1993. 11

[17] B.W. Brown and J. Lovato. Randlib90 fortran 95 routines for random num-
ber generation. http://hpux.cs.utah.edu/hppd/hpux/Maths/Misc/randlib-
1.3/, 2000. 77

[18] E. F. Camacho and C. Bordons. Model Predictive Control. Springer, Lon-
don, UK, 1999. 52

[19] Mark E. Campbell, Jin woo Lee, and Eelco Scholte. Simulation and flight
test of autonomous aircraft estimation, planning, and control algorithms.
Journal of Guidance, Control and Dynamics, 30(6):1597–1609, Nov-Dec
2007. 23

154

[20] Erick Cantu-Paz. Designing Efficient and Accurate Parallel Genetic Al-

gorithms. PhD thesis, Illinois Genetic Algorithms Laboratory, Univer-
sity of Illinois at Urbana-Champaign, 117 Transportaion Building, 104 S.
Matthew Ave, Urbana, IL 61801, July 1999. 44, 46, 47, 48, 49, 136

[21] Erick Cantu-Paz and David E. Goldberg. Efficient parallel genetic algo-
rithms: Theory and practice. Genetic Evolutionary Computation, 186,
2000. 30, 41

[22] Y. Uny Cao, Alex S. Fukunaga, and A. B. Kahng. Cooperative mobile
robotics: Antecedents and directions. Autonomous Robots, 1:0, 0 1997. 29

[23] Brian J. Capozzi. Evolution-Based Path Planning and Management for

Autonomous Vehicle. PhD thesis, University of Washinton, US, 2001. 6

[24] S.M. Cheang. Genetic Parallel Programming. PhD thesis, The Chinese
University of Hong Kong, 2005. 11, 26, 30, 32, 40

[25] Han-Lim Choi, Hyo-Choong Bang, and Min-Jea Tahk. Co-evolutionary
optimization of three-dimensional target evasive maneuver against a pro-
portionally guided missile. In Proceedings of the 2001 Congress on Evolu-

tionary Computation, pages 1406–1413, 2001. 12, 18

[26] J. Cohoon, S. Hegde, W. Martin, and D. Richards. Punctuated equilibria:
A parallel genetic algorithm. In J. Grefenstette, editor, Proceedings of the

Second International Conference on Genetic Algorithms, pages 148–154.
Lawrence Erlbaum Associates, 1987. 48

[27] DARPA. Unmanned combat air vehicle advanced technology demonstra-
tion, phase 1. MDA972-98-R-003,DARPA/TTO, 3701 N. Fairfax Drive,
March 9 1998. 4

[28] Charles Darwin. The Origin of Species. Gramercy, May 1995. 28

[29] K. De Jong. Learning with genetic algorithms: An overview. Machine

Learning, 3:121–138, 1988. 37

[30] Dany Dionne. Integrated Detection, Estimation, and Guidance in Pursuit of

a Maneuvering Target. PhD thesis, Department of Eletrical and Computer
Science, McGill University, Montreal, 2005. 20

155

[31] US DoD. U.s. standard atmosphere. Prepared under the sponsorship of
the National Aeronautics and Space Administration, the United States Air
Force and the United States Weather Bureau, Washington, D.C., December
1962. 61

[32] M. Eaton, M. McMillan, and M. Tuohy. Pursuit-evasion using evolutionary
algorithms in an immersive three-dimensional environment. In Systems,

Man and Cybernetics, 2002 IEEE International Conference on, volume 2,
pages 348–353, 10 2002. 29

[33] Harri Ehtamo and Tuomas Raivio. Applying nonlinear programming to
pursuit-evasion games. Systems Analysis Laboratory Helsinki University

of Technology, 0:0, 0 0. 24, 26, 31, 53

[34] T. M. English. Some information theoretic results on evolutionary opti-
mization. In Proceedings of the 1999 Congress on Evolutionary Computa-

tion, 1999. CEC 99., 1999. 77

[35] C. Erick. Designing Efficient and Accurate Parallel Genetic Algorithms.
PhD thesis, University of Illinois at Urbana-Champaign, 1999. 47, 152

[36] Hamidreza Eskandari. Multiobjective Simulation Optimization Using En-

hanced Evolutionary Algorithm Approaches. PhD thesis, Department of
Industrial Engineering and Management Systems, College of Engineering
and Computer Science, University of Central Florida, Orlando, Florida,
2006. 27

[37] Patrick Beautement et. al. Autonomous agents and multi-agent systems
(aamas) for the military - issues and challenge. In S. G. Thompson and
R. Ghanea-Hercock, editors, DAMAS 2005, LNAI 3890, Berlin, 2006.
Springer-Verlag. 146

[38] Imado F. Some aspects of a realistic three-dimensional pursuit-evasion
game. Journal of Guidance, Control, and Dynamics, pages 289–293, 1993.
21, 37, 180

[39] G. S. Fishman. Concepts and Methods in Discrete Event Digital Simula-

tion. John Wiley & Sons, New York, 1973. 53

156

[40] R. Fletcher. Practical methods of optimization. A Wiley Interscience Pub-
lication, Chichester, N.Y.: Wiley, 1987, 2nd ed., 1987. 25

[41] D. B. Fogel. An evolutionary approach to representation design. In D. B.
Fogel and W. Atmar, editors, Proceedings of the First Annual Conference

on Evolutionary Programming, pages 163–168, La Jolla, California, 1992.
Evolutionary Programming Society. 27

[42] David B. Fogel. Evolutionary computation: toward a new philosophy of

machine intelligence. IEEE Press, Piscataway, NJ, USA, 1995. 28

[43] D.B. Fogel. System Identification through Simulated Evolution: A Machine

Learning Approach to Modeling. Ginn Press, Needham Heights, 1991. 33

[44] D.B. Fogel and W. Atmar. Comparing genetic operators with gaussian mu-
tations in simulated evolutionary processes using linear systems. Biological

Cybernetics, 63:111–114, 1990. 38

[45] Emilio Frazzoli, Munther A. Dahleh, and Eric Feron. Real time motion
planning for agile autonomous vehicles. J. Guidance, Control and Dyncs.,
25(1), 1 2002. 23

[46] A.S. Fukunaga and A.B. Kahng. Improving the performance of evolution-
ary optimization by dynamically scaling the evaluation function. In Evolu-

tionary Computation, 1995., IEEE International Conference on, volume 1,
page 182, 12 1995. 29, 30

[47] W. P. Gilbert, L. T. Nguyen, and R. W. Van Gunst. Simulator study of the
effectiveness of an automatic control system designed to improve the high
angle-of-attack characteristics of a fighter plane. Technical Report NASA
TN D-8176, Langley Research Center, 1976. 56, 66

[48] J. J. Grefenstette. Parallel adaptive algorithms for function optimiza-
tion. Technical report, Computer Science Dept., Vanderbilt University,
Nashville, TN., 1981. 46

[49] P. B. Grosso. Computer Simulations of genetic adaptation: Parallel sub-

component interaction in a multilocus model. PhD thesis, The University
of Michign, 1985. 49

157

[50] M. Guelman, J. Shinar, and A. Green. Qualitative study of planar pursuit-
evasion game in atmosphere. Journal of Guidance, Control and Dynamics,
pages 1136–1142, 1990. 21, 24

[51] J.M. Hebert. Air Vehicle Path Planning. PhD thesis, University of, 2001.
19

[52] Emilio J. Contreras Hernndez. Applications Of The Evolutionary Program-

ming Optimization Technique In Power Systems Planning And Operation.
PhD thesis, University of Puerto Rico, 2005. 40

[53] Y. C. Ho. Differential games, dynamic optimization, and generalized con-
trol theory. Journal Optimization Theory and Applications, 6(3):179–209,
1970. 1

[54] K. H. Hoffman and Arnd Meyer. Parallel Algorithms and Cluster Com-

puting : Implementations, Algorithms and Applications. Springer, Berlin,
2006. 50

[55] K. Horie and B.A. Conway. Optimal fighter pursuit-evasion maneuvers
found via two-sided optimization. Journal of Guidance, Control, and Dy-

namics, 29(1):0731–5090, 2006. 21, 22, 24, 29

[56] Jianjun Hu. Sustainable evolutionary algorithms and scalable evolutionary

synthesis of dynamic systems. PhD thesis, Department of Computer Science
and Engineering, Michigan State University, US, 2004. 39

[57] Imado, Fumiaki, Miwa, and Susumu. Missile guidance algorithm against
high-g barrel roll maneuvers. Journal of Guidance, Control, and Dynamics,
17(1):123–128, 1994. 11, 37

[58] F. Imado. Some practical approaches to pursuit evasion dynamic games.
Cybernetics and Systems Analysis, 38(2), 3 2002. 26, 37

[59] Rufus Isaac. Differential Games. R.E. Krieger Pub. Co., 1975. 2, 10, 11,
22, 85

[60] B. Jarmark and C. Hillberg. Pursuit-evasion between two realistic aircraft.
Journal of Guidance, Control, and Dynamics, 7(6):690–694, 1984. 21

158

[61] B. Jarmark and C. Hillberg. Pursuit-evasion between two realistic aircraft.
Journal of Guidance, Control, and Dynamics, pages 690–694, 1984. 21,
24, 37

[62] Youchu Jin and Jrgen Branke. Evolutionary optimization in uncertain en-
vironments - a survey. IEEE Transactions On Evolutionary Computation,
9(3):303–317, June 2005. 42, 130

[63] Kenneth A. De Jong. Evolutionary Computation : A Unified Approach.
MIT Press, Cambridge, MA 02142, 2006. 27, 35, 39, 44, 48, 49

[64] H. Julie and J. B. Pollack. Parallel genetic programming and fine-grained
simd architecture. In Siegel E. V. et al, editor, Working Notes the AAAI

Symposium Genetic Programming, pages 31–37, Cambridge, MA, 1995.
MIT Press. 30

[65] P.T. Kabamba, S.M. Meerkov, and F.H. Zeitz. Optimal path planning for
unmanned combat aerial vehicles to defeat radar tracking. Journal of Guid-

ance, Control, and Dynamics, 29(2), Mar-Apr 2006. 19

[66] Janne Karelahti, Kai Virtanen, and Tuomas Raivio. Near-optimal missile
avoidance trajectories via receding horizon control. Journal of Guidance,

Control and Dynamics, 30(5):1287–1298, Sep-Oct 2007. 123

[67] D. E. Kirk. Optimal Control Theory, An Introduction. Prentice Hall, 1970.
2

[68] R. Lachner, M. Breitner, and H. Pesch. Three-dimensional air combat: Nu-
merical solution of complex differential games. Annals of the International

Society of Dynamic Games, uni-bayreuth.de, 1996. xi, 86, 89, 145

[69] Steven Landsburg. Nash equilibria in quantum games. RCER Working Pa-
pers 524, University of Rochester - Center for Economic Research (RCER),
February 2006. 10

[70] E. Lazarus. The application of value-driven decision-making in air combat
simulation. In Proceeding of IEEE International Conference on Systems,

Man and Cybernatics, pages 2302–2307, Orlando, FL, 1997. 21

[71] Dongxu Li. Multi-Player Pursuit-Evasion Differential Games. PhD thesis,
The Ohio State University, 2006. 29

159

[72] Jing Li, Jinhua Wu, and Shugui Kang. Learning evasive maneuvers using
genetic-annealing algorithms. In in Proc. The Sixth World Congress on

Intelligent Control and Automation, pages 6432–6435, 2006. 28

[73] Yong Liang. Accelerated Strategies of Evolutionary Algorithms for Opti-

mization Problem and Their Application. PhD thesis, The Chinese Univer-
sity of Hong Kong, 2003. 29

[74] Shen Hin Lim, T. Furukawa, G. Dissanayake, and H.F. Durrant-Whyte.
A time-optimal control strategy for pursuit-evasion games problems. In
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE In-

ternational Conference on, Vol.4, Iss., April 26-May 1, 2004, pages 3962–
3967, 2004. 11

[75] W. Austyn Mair and David L. Birdsall. Aircraft Performance. Cambridge
Aerospace Space Series 5. Cambridge University Press, 1992. 64

[76] G. A. Mandt and T. L. Neighbor. Air-to-air missile avoidance. In Guidance

and Control Conference, pages 124 – 131, 1982. 16, 17, 18, 85, 93

[77] E. Mayr. Toward a New Philosophy of Biology: Observations of an Evolu-

tionist. Belknap Press, Cambridge, MA, 1988. 27

[78] J. W. McManus and K. H. Goodrich. Application of artificial intelligence
(ai) programming techniques to tactical guidance for fighter aircraft. AIAA

Paper, pages 89–3525, 1989. 21

[79] L. Meirovitch and I. Tuzcu. Control of flexible aircraft executing time-
dependent maneuvers. Journal of Guidance, Control, and Dynamics,
page 28, Nov-Dec 2005. 4

[80] P. K. A. Menon. Near-optimal midcourse guidance for air-to-air missiles.
Journal of Guidance, Control, and Dynamics, 13(4):596–602, 1990. 11

[81] A. Miele. Theory of Flight Paths. Addison-Wesley Publishing Co., 1962.
xi, 59, 60, 61

[82] F. W. Moore and O. N. Garcia. A new methodology for optimizing eva-
sive maneuvers under uncertainty in the extended two-dimensional pur-
suer/evader problem. In E. Santos Jr., editor, Proceedings of the Ninth IEEE

160

International Conference on Tools with Artificial Intelligence (ICTAI-97),
1997. 11, 18, 25, 26, 30

[83] Sandeep Mulgund, Karen Harper, and Greg Zacharias. Large-scale air com-
bat tactics optimization using genetic algorithms. Journal of Guidance,

Control, and Dynamics, pages 140–142, 2001. 27

[84] John Nash. Equilibrium points in n-person games. In Proceedings of the

Nasiotnal Academy of Sciences of the United States of America, volume 36,
pages 48–49, 1950. 2

[85] T. J. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu. Computer Simulation

Techniques. Wiley, New York, 1966. 53

[86] Robert C. Nelson. Flight stability and automatic control. McGraw Hill,
Boston, Mass., 2 edition, 1998. 57

[87] James O. Nichols. Analysis and compilation of missile aerodynamic
data. Technical report, Auburn University, Auburn Ala. 36830 prepared
for NASA, 1977. NASA. 65

[88] G. Nitschke. Co-evolution of cooperation in a pursuit evasion game. In
Intelligent Robots and Systems, 2003. IEEE/RSJ International Conference

on, volume 2, pages 2037–2042, 2003. 29, 30

[89] Geoff Nitschke. Emergence of specialized behavior in a pursuit-evasion
game. Lecture Notes in Computer Science, Volume 2691, Page 324, 2003.
21

[90] S. Y. Ong and B.L. Pierson. Optimal planar evasive aircraft maneuvers
against proportional navigation missiles. Journal of Guidance, Control,

and Dynamics, 19(6):1210–1215, 1996. 18

[91] Shaw Yang Ong. Sequential Quadratic Programming Solutions to Related

Aircraft Trajectory Optimization Problems. PhD thesis, Iowa State Univer-
sity, 1992. 23

[92] Yaakov Oshman and David Arad. Enhanced air-to-air missile tracking
using target orientation observations. J. Guidance, Control and Dyncs.,
27(4):0, 7 2004. 11

161

[93] H. Van Dyke Parunak, Ted Belding, Sven Brueckner, and John Sauter.
Emergent Behaviour in Planning as in Advanced Campaign Planning by

Alexander Kott and Steven Morse. to be published, 2007. 8, 9

[94] Michal Pechoucek, Simon G. Thompson, and Holger Voos. AAMAS Tech-

nology for Military and Security Applications. Springer, New York, 2007.
xi, 8, 9, 27

[95] Anawat Pongpunwattana and Rolf Rysdyk. Evolution-based dynamic path
planning for autonomous vehicle. Studies in Computational Intelligence,
pages 113–145, 2007. 19

[96] Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evolutionary Compu-

tation, 8(1):1–29, 2000. 31

[97] D. B. Price, A. J. Calise, and D. D. Moerder. Piloted simulation of an
onboard trajectory optimization algorithm. Journal of Guidance, Control,

and Dynamics, 1984. 19

[98] Tuomas Raivio. Computational methods for dynamic optimization and
pursuit-evasoin games. Technical report, Systems Analysis Laboratory Re-
search Report, Helsinki University of Technology, Finland, 2000. 37, 85

[99] Tuomas Raivio. Capture set computation of an optimally guided missile. J.

Guidance, Control and Dyncs., 24-J(6-Ja):0, 11 2001. 31

[100] S. Rao Sathyanarayan, H.K. Birru, and K. Chellapilla. Evolving nonlinear
time-series models using evolutionary programming. In Proceedings of the

Congress on Evolutionary Computation, volume 1, 1999. 34, 35

[101] R. Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley Series
in Probability and Mathematical Statistics. John Wiley & Sons, New York,
1981. 53

[102] A. Segal and T. Miloh. Novel three-dimensional differential game and cap-
ture criteria for a bank-to-turn missile. Journal of Guidance, Control and

Dynamics, 17(5):1068, 9 1994. 11

[103] L. R. Shaw. Fighter Combat: Tactics and Maneuvering. Naval Institute
Press, 1985. xi, 13, 15, 16, 18, 40, 91, 144, 150

162

[104] I. Shevchenko. Minimizing the distance to one evader while chasing an-
other. Computers & Mathematics with Applications, 47(12):1827–1855,
2004. 11

[105] T. Shima. Capture conditions in a pursuit-evasion game between players
with biproper dynamics1. Journal of Optimization Theory and Applica-

tions, 126(3):503–528, Sep 2005. 21

[106] J. Shinar. On the feasibility of —hit-to-kill— in the interception of maneu-
vering targets. In American Control Conference, 2001. Proceedings of the

2001, volume 5, pages 3358–3363, 6 2001. 21, 22, 23

[107] J Shinar, M. Guelman, and A. Green. Game optimal guidance law synthesis
for short range missiles. Journal of Guidance, Control, and Dynamics,
15(1):191–197, 1992. 11, 22

[108] J. Shinar and S. Gutman. Three-dimensional optimal pursuit and eva-
sion with bounded controls. Automatic Control, IEEE Transactions on,
25(3):492–496, 6 1980. 26

[109] J. Shinar, G. Silberman, and A. Green. On optimal missile avoidance - a
comparision between optimal control and differential game solutions. In
ICCON’89 Control and Application, 1989. 11

[110] J. Shinar and V. Turetsky. Applications of pursuit-evasion games theory for
missile guidance, 2005. 11, 21

[111] U.S. Shukla and P.R. Mahapatra. The proportional navigation dilemma-
pure or true? Aerospace and Electronic Systems, IEEE Transactions on,
26(2):382–392, March 1990. 73

[112] G.M. Siouris. Missile Guidance and Control System. Springer:New York,
2003. xi, 14, 72

[113] R. E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K. Mehra.
Creative Evolutionary Systems, chapter 19, pages 467–485. The Morgan
Kaufmann Series in Artificial Intelligence. The Morgan Kaufmann Pub-
lisher, 2002. 28

163

[114] Robert E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and A. El-
Fallah. Classifier Systems in Combat: Two-sided Learning of Maneuvers
for Advanced Fighter Aircraft. In Computer Methods in Applied Mechanics

and Engineering. Elsevier, 1999. 28

[115] Robert E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K.
Mehra. The fighter aircraft LCS: A case of different LCS goals and tech-
niques. Lecture Notes in Computer Science, 1813:283–290, 2000. 28

[116] Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and Jack Don-
garra. MPI: The Complete Reference. The MIT Press, London, England,
1996. 78

[117] A. Speranzon and K.H. Johansson. Distributed pursuitevasion game: Eval-
uation of some communications scheme. In IEEE Conference on Decision

and Contro, 2003. 21

[118] Brian L. Stevens and Frank L. Lewis. Aircraft control and simulation. John

Wiley and Sons, Inc, 2nd:New Jersey, 0 2003. xi, xiv, 56, 57, 58, 65, 66,
67, 68, 86, 166, 169

[119] Tsung-Ying Sun, Shang-Jeng Tsai, Yan-Nian Lee, Shan-Ming Yang, and
Shih-Hsiang Ting. The study on intelligent advanced fighter air combat
decision support system. In IEEE International Conference on Information

Reuse and Integration, pages 39–44, Sept. 2006. 20

[120] George Paul Sutton. Rocket propulsion elements : an introduction to the

engineering of rockets. John Wiley & Sons, New York, 7 edition, 2000. 63

[121] R. Tuomas and E. Harri. Visual aircraft identification as a pursuitevasion
game. Journal of Guidance, Control, and Dynamics, 23(4), 2000. 21

[122] Vladimir Turetsky and Josef Shinar. Missile guidance laws based on pur-
suitevasion game formulations. Automatica, 39(4):607, 4 2003. 21, 22,
23

[123] R. Vaidyanathan, C. Hocaoglu, T.S. Prince, and R.D. Quinn. Evolution-
ary path planning for autonomous air vehicles using multi-resolution path
representation. In Intelligent Robots and Systems, Proceedings IEEE/RSJ

International Conference on, volume 1, pages 69 – 76, 29Oct. 19

164

[124] S. Vathsal and M.N. Rao. Analysis of generalized guidance laws for hom-
ing missiles. Aerospace and Electronic Systems, IEEE Transactions on,
31(2):514–521, April 1995. 11

[125] X. N. Vinh. Flight mechanics of high-performance aircraft. Cambridge ;
New York : Cambridge University Press, 1993., 1993. xi, 62, 63, 64

[126] Kai Virtanen. Optimal Pilot Decisions And Flight Trajectories In Air Com-

bat. PhD thesis, Systems Analysis Lab, Dept. of Eng. Physics and Maths,
Helsinki Univ. Tech., 2005. 53

[127] Kai Virtanen, Tuomas Raivio, and Raimo P. Hamalainen. Decision theoret-
ical approach to pilot simulation. Journal of Aircraft, 36(4):632–641, 1999.
21

[128] J. von Neumann and O. Morgenstern. Theory of Games and Economic

Behavior. Princeton: Princeton University Press, 1944. 1, 9

[129] Paul Walker. A chronology of game theory.
http://www.econ.canterbury.ac.nz/personal pages/paul walker/gt/hist.htm,
October 2005. 1

[130] D. Whitely, S. Rana, and R. Hechendorn. The island model genetic algo-
rithm: On separability, population size and convergence. Journal of Com-

puting and Information Technology, 7(1):33–47, 1999. 48

[131] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, pages 67–82, April
1997. 28

[132] Paul Zarchan. Representation of realistic evasive maneuvers by the use of
shaping filters. Journal of Guidance, Control and Dynamics, 2(4):290–295,
1979. 18

[133] Peter H. Zipfel. Modeling and simulation of aerospace vehicle dynamics.
AIAA education series, 2000. 57, 65, 67

[134] D. Zu, J.D. Han, and M. Campbell. Artificial potential guided evolutionary
path plan for multi-vehicle multi-target pursuit. In Robotics and Biomimet-

ics, ROBIO IEEE International Conference on, pages 855 – 861, 22-26.
19

165

A Appendices

A.1 Jet Fighter Aircraft Configuration

A.1.1 Mass and Dimensional Characteristics Used in
Simulation

Table A.1:

Weight, N (lb) 73 480 (16 519)
Moments of inertia, kg-m2 (slug-ft2)

IX 12 662 (9 339)
IY 53 147 (39 199)
IZ 63 035 (46 492)
IXZ 179 (132)

Wing dimensions:
Span, m (ft) 8.84 (29.0)
Area, m2 (ft2) 26.0 (280.0)
Mean Aerodynamic Chort, m (ft) 3.335 (10.94)

Surface deflection limits:
Horizontal tail-

Symmetric (δh), deg ± 25.0
Differential (δD), deg ± 5.0 per surface

Aileron (flaperons), deg ± 21.5
Rudder, deg ± 30.0

A.1.2 6DOF Model

The following is the subroutine that calculates the state equations [118]:

subroutine f(time,x,xd,ail,rdr,elv,thtl,ireturn)

real x(13),xd(13),d(9),mass

common /param/xcg

166

common /output/an,alat,ax,qbar,amach,q,alpha,theta,vt

parameter (axx=9496.0,ayy=55814.0, azz=63100.0, axz=982.0)

parameter (axzs=axz**2, xpq=axz*(axx-ayy+azz),gam=axx*azz-axz**2)

parameter (xqr=azz*(azz-ayy)+axzs,zpq=(axx-ayy)*axx+axzs)

parameter (ypr=azz-axx)

parameter (weight=25000.0,gd=32.17, mass = weight/gd)

data s,b,cbar,xcgr,hx/300.0,30.0,11.32,0.35,160.0/

rtod=180.0/asin(1.0)/2.0

! ################################

! Assign state & control variables !

! ################################

vt=x(1)

alpha=x(2)*rtod

beta=x(3)*rtod

phi=x(4)

theta=x(5)

psi=x(6)

p=x(7)

q=x(8)

r=x(9)

alt=x(12)

pow=x(13)

! ! Air data computer and engine model !

call adc(vt,alt,amach,qbar)

cpow=tgear(thtl)

xd(13)=pdot(pow,cpow)

t=engine_thrust(pow,alt,amach)

! ! Lookup tables and component buildup ! !

cxt = cx(alpha,elv)

cyt = cy(beta,ail,rdr)

czt = cz(alpha,beta,elv)

dail = ail/20.0

drdr = rdr/30.0

clt = cl(alpha,beta) + dlda(alpha,beta)*dail +dldr(alpha,beta)*drdr

cmt = cm(alpha,elv)

cnt = cn(alpha,beta) + dnda(alpha,beta)*dail + dldr(alpha,beta)*drdr

167

! ! Add damping derivatives !

tvt = 0.5/vt b2v = b*tvt

cq = cbar*q*tvt call damp(alpha,d)

cxt = cxt + cq *d(1)

cyt = cyt + b2v * (d(2)*r + d(3)*p)

czt = czt + cq * d(4) clt = clt + b2v* (d(5)*r + d(6)*p)

cmt = cmt + cq * d(7) + czt * (xcgr-xcg)

cnt = cnt +b2v*(d(8)*r + d(9)*p) - cyt*(xcgr-xcg) * cbar/b

! ! Get ready for state equations !

cbta = cos(x(3))

u = vt * cos(x(2))*cbta

v = vt * sin(x(3))

w = vt * sin(x(2))*cbta

sth = sin(theta); cth = cos(theta); sph = sin(phi); cph = cos(phi); spsi = sin(psi)

cpsi = cos(psi); qs = qbar * s; qsb = qs * b; rmqs = qs/mass; gcth = gd * cth

qsph = q * sph; ay = rmqs * cyt; az = rmqs * czt

! ! Force equations !

udot = r*v - q*w - gd * sth + (qs * cxt + t) / mass

vdot = p*w - r*u + gcth * sph + ay

wdot = q*u - p*v + gcth * cph + az dum = (u*u + w*w)

xd(1) = (u*udot + v*vdot + w*wdot)/vt

xd(2) = (u*wdot - w*udot)/dum

xd(3) = (vt*vdot - v*xd(1)) * cbta / dum

! ! Kinematics !

xd(4) = p + (sth/cth)*(qpsh + r*cph)

xd(5) = q*cph - r*sph xd(6) = (qpsh + r*cph)/cth

! ! Moments !

roll = qsb*clt

pitch = qs*cbar*cmt

yaw = qsb*cnt

168

pq = p*q

qr = q*r

qhx = q*hx

xd(7) = (xpq*pq - xqr*qr + azz*roll + axz*(yaw+qhx))/gam

xd(8) = (ypr*p*r - axz*(p**2-r**2) + pitch - r*hx)/ayy

xd(9) = (zpq*pq - xpq*qr + axz*roll + axx*(yaw+qhx))/gam

! ! Navigation !

t1 = sph *cpsi; t2 = cph*sth; t3 = sph*spsi

s1 = cth*cpsi; s2 = cth*spsi; s3 = t1*sth - cph*spsi; s4 = t3*sth+cph*cpsi

s5 = sph*cth; s6 = t2*cpsi + t3; s7 = t2*spsi-t1; s8 = cph*cth

! ! !

xd(10) = u*s1+v*s3+w*s6 ! north speed

xd(11) = u*s2+v*s4+w*s7 ! eash speed

xd(12) = u*sth-v*s5-w*s8 ! vertical speed

! ! Outputs !

an = -az/gd

alat = ay/gd

return

end

The aerodynamic and stability derivatives are given below [118]:

subroutine damp(alpha,d)

real d(9), a(-2:9,9)

data a/-.267,-.110,.308,1.34,2.08,2.91,2.76,2.05,1.50,1.49,1.83,

1.21,.882,.852,.876,.958,.962,.974,.819,.483,.590,1.21,-.493,

-1.04,-.108,-.108,-.188,.110,.258,.226,.344,.362,.611,.529,

.298,-2.27,-8.80,-25.8,-28.9,-31.4,-31.2,-30.7,-27.7,-28.2,

-29.0,-29.8,-38.3,-35.3,-.126,-.026,.063,.133,.208,.230,.319,

.437,.680,.100,.447,-.330,-.360,-.359,-.443,-.420,-.383,-.375,

-.329,-.294,-.230,-.210,-.120,-.100,-7.21,-.540,-5.23,-5.26,

-6.11,-6.64,-5.69,-6.00,-6.20,-6.40,-6.60,-6.00,-.380,-.363,

-.378,-.386,-.370,-.453,-.550,-.582,-.595,-.637,-1.02,-.840,

.061,.052,.052,-.012,-.013,-.024,.050,.150,.130,.158,.240,.150/

169

s = 0.2*alpha

k = int(s)

if(k .le. -2) k = -1

if(k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

do i = 1,9

d(i) = a(k,i) + abs(da) * (a(l,i) - a(k,i))

end do

return

end

!c x axis aerodynamic force coefficient

real function cx(alpha, elv)

real alpha, elv, a(-2:9,-2:2), s, da, de, t, u, v, w

data a/-.099,-.081,-.081,-.063,-.025,.044,.097,.113,.145,

.167,.174,.166,-.048,-.038,-.040,-.021,.016,.083,.127,.137,

.162,.177,.179,.167,-.022,-.020,-.021,-.004,.032,.094,.128,

.130,.154,.161,.155,.138,-.040,-.038,-.039,-.025,.006,.062,

.087,.085,.100,.110,.104,.091,-.083,-.073,-.076,-.072,-.046,

.012,.024,.025,.043,.053,.047,.040/

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = elv / 12.0

m = int(s)

if (m .le. -2) m = -1

if (m .ge. 2) m = 1

de = s - float(m)

n = m + int(sign(1.1, de))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = u + abs(da) * (a(l, n) - u)

170

cx = v + (w - v) * abs(de)

return

end

real function cy(beta, ail, rdr)

!c sideforce coefficient

real beta, ail, rdr

cy = -0.02*beta + 0.021*(ail / 20.0) + 0.086*(rdr / 30.0)

return

end

real function cz(alpha, beta, elv)

!c z axis force coefficient

real alpha, beta, elv, a(-2:9), s, da

integer k, l

data a/0.770,0.241,-0.100,-0.416,-0.731,-1.053,-1.366,

-1.646,-1.917,-2.120,-2.248,-2.229/

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = a(k) + abs(da) * (a(l) - a(k))

cz = s*(1.0 - (beta / 57.3)**2) - 0.19*(elv / 25.0)

return

end

real function cm(alpha, elv)

!c pitching moment coefficient

real alpha, elv, a(-2:9, -2:2), s, da, de, t, u, v, w

integer k, l, m, n

data a/.205,.168,.186,.196,.213,.251,.245,.238,.252,.231,

.198,.192,.081,.077,.107,.110,.110,.141,.127,.119,.133,

.108,.081,.093,-.046,-.020,-.009,-.005,-.006,.010,.006,

-.001,.014,.000,-.013,.032,-.174,-.145,-.121,-.127,

-.129,-.102,-.097,-.113,-.087,-.084,-.069,-.006,-.259,

-.202,-.184,-.193,-.199,-.150,-.160,-.167,-.104,-.076,

-.041,-.005/

s = 0.2 * alpha

k = int(s)

171

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = elv / 12.0

m = int(s)

if (m .le. -2) m = -1

if (m .ge. 2) m = 1

de = s - float(m)

n = m + int(sign(1.1, de))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = u + abs(da) * (a(l, n) - u)

cm = v + (w - v) * abs(de)

return

end

real function cl(alpha, beta)

!c rolling moment coefficient

real alpha, beta, a(-2:9, 0:6), s, da, db, t, u, v, w, dum

integer k, l, m, n

data a/12*0,-.001,-.004,-.008,-.012,-.016,-.019,-.020,-.020,

-.015,-.008,-.013,-.015,-.003,-.009,-.017,-.024,-.030,-.034,

-.040,-.037,-.016,-.002,-.010,-.019,-.001,-.010,-.020,-.030,

-.039,-.044,-.050,-.049,-.023,-.006,-.014,-.027,.000,-.010,

-.022,-.034,-.047,-.046,-.059,-.061,-.033,-.036,-.035,-.035,

.007,-.010,-.023,-.034,-.049,-.046,-.068,-.071,-.060,-.058,

-.062,-.059,.009,-.011,-.023,-.037,-.050,-.047,-.074,-.079,

-.091,-.076,-.077,-.076/

!c

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = 0.2 * abs(beta)

m = int(s)

if (m .eq. 0) m = 1

if (m .ge. 6) m = 5

172

db = s - float(m)

n = m + int(sign(1.1, db))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = u + abs(da) * (a(l, n) - u)

dum = v + (w - v) * abs(db)

cl = dum * sign(1.0, beta)

return

end

real function cn(alpha, beta)

!c yawing moment coefficient

real alpha, beta, a(-2:9, 0:6), s, da, db, t, u, v, w, dum

integer k, l, m, n

data a/12*0,.018,.019,.018,.019,.019,.018,.013,.007,.004,-.014,

-.017,-.033,.038,.042,.042,.042,.043,.039,.030,.017,.004,-.035,

-.047,-.057,.056,.057,.059,.058,.058,.053,.032,.012,.002,-.046,

-.071,-.073,.064,.077,.076,.074,.073,.057,.029,.007,.012,-.034,

-.065,-.041,.074,.086,.093,.089,.080,.062,.049,.022,.028,-.012,

-.002,-.013,.079,.090,.106,.106,.096,.080,.068,.030,.064,.015,

.011,-.001/

!c

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = 0.2 * abs(beta)

m = int(s)

if (m .eq. 0) m = 1

if (m .ge. 6) m = 5

db = s - float(m)

n = m + int(sign(1.1, db))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = u + abs(da) * (a(l, n) - u)

dum = v + (w - v) * abs(db)

cn = dum * sign(1.0, beta)

173

return

end

real function dlda(alpha, beta)

!c rolling moment due to ailerons

real alpha, beta, a(-2:9, -3:3), s, da, db, t, u, v, w

integer k, l, m, n

data a/-.041,-.052,-.053,-.056,-.050,-.056,-.082,-.059,-.042,-.038,-.027,

-.017,-.041,-.053,-.053,-.053,-.050,-.051,-.066,-.043,-.038,-.027,-.023,

-.016,-.042,-.053,-.052,-.051,-.049,-.049,-.043,-.035,-.026,-.016,-.018,

-.014,-.040,-.052,-.051,-.052,-.048,-.048,-.042,-.037,-.031,-.026,-.017,

-.012,-.043,-.049,-.048,-.049,-.043,-.042,-.042,-.036,-.025,-.021,-.016,

-.011,-.044,-.048,-.048,-.047,-.042,-.041,-.020,-.028,-.013,-.014,-.011,

-.010,-.043,-.049,-.047,-.045,-.042,-.037,-.003,-.013,-.010,-.003,-.007,

-.008/

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = 0.1 * beta

m = int(s)

if (m .eq. -3) m = -2

if (m .ge. 3) m = 2

db = s - float(m)

n = m + int(sign(1.1, db))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = t + abs(da) * (a(l, n) - u)

dlda = v + (w - v) * abs(db)

return

end

real function dldr(alpha, beta)

!c rolling moment due to rudder

real alpha, beta, a(-2:9, -3:3), s, da, db, t, u, v, w

174

integer k, l, m, n

data a/.005,.017,.014,.010,-.005,.009,.019,.005,-.000,

-.005,-.011,.008,.007,.016,.014,.014,.013,.009,.012,

.005,.000,.004,.009,.007,.013,.013,.011,.012,.011,

.009,.008,.005,-.002,.005,.003,.005,.018,.015,.015,

.014,.014,.014,.014,.015,.013,.011,.006,.001,.015,

.014,.013,.013,.012,.011,.011,.010,.008,.008,.007,

.003,.021,.011,.010,.011,.010,.009,.008,.010,.006,

.005,.000,.001,.023,.010,.011,.011,.011,.010,.008,

.010,.006,.014,.020,.000/

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = 0.1 * beta

m = int(s)

if (m .le. -3) m = -2

if (m .ge. 3) m = 2

db = s - float(m)

n = m + int(sign(1.1, db))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = t + abs(da) * (a(l, n) - u)

dldr = v + (w - v) * abs(db)

return

end

real function dnda(alpha, beta)

!c yawing moment due to ailerons

real alpha, beta, a(-2:9, -3:3), s, da, db, t, u, v, w

integer k, l, m, n

data a/.001,-.027,-.017,-.013,-.012,-.016,.001,.017,.011,.017,.008,

.016,.002,-.014,-.016,-.016,-.014,-.019,-.021,.002,.012,.016,.015,

.011,-.006,-.008,-.006,-.006,-.005,-.008,-.005,.007,.004,.007,.006,

.006,-.011,-.011,-.010,-.009,-.008,-.006,.000,.004,.007,.010,.004,

.010,-.015,-.015,-.014,-.012,-.011,-.008,-.002,.002,.006,.012,.011,

175

.011,-.024,-.010,-.004,-.002,-.001,.003,.014,.006,-.001,.004,.004,

.006,-.022,.002,-.003,-.005,-.003,-.001,-.009,-.009,-.001,.003,

-.002,.001/

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

s = 0.1 * beta

m = int(s)

if (m .le. -3) m = -2

if (m .ge. 3) m = 2

db = s - float(m)

n = m + int(sign(1.1, db))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = t + abs(da) * (a(l, n) - u)

dnda = v + (w - v) * abs(db)

return

end

real function dndr(alpha, beta)

!c yawing moment due to rudder

real alpha, beta, a(-2:9, -3:3), s, da, db, t, u, v, w

integer k, l, m, n

data a/-.018,-.052,-.052,-.052,-.054,-.049,-.059,-.051,-.030,-.037,

-.026,-.013,-.028,-.051,-.043,-.046,-.045,-.049,-.057,-.052,-.030,

-.033,-.030,-.008,-.037,-.041,-.038,-.040,-.040,-.038,-.037,-.030,

-.027,-.024,-.019,-.013,-.048,-.045,-.045,-.045,-.044,-.045,-.047,

-.048,-.049,-.045,-.033,-.016,-.043,-.044,-.041,-.041,-.040,-.038,

-.034,-.035,-.035,-.029,-.022,-.009,-.052,-.034,-.036,-.036,-.035,

-.028,-.024,-.023,-.020,-.016,-.010,-.014,-.062,-.034,-.027,-.028,

-.027,-.027,-.023,-.023,-.019,-.009,-.025,-.010/

s = 0.2 * alpha

k = int(s)

if (k .le. -2) k = -1

if (k .ge. 9) k = 8

da = s - float(k)

l = k + int(sign(1.1, da))

176

s = 0.1 * beta

m = int(s)

if (m .eq. -3) m = -2

if (m .ge. 3) m = 2

db = s - float(m)

n = m + int(sign(1.1, db))

t = a(k, m)

u = a(k, n)

v = t + abs(da) * (a(l, m) - t)

w = t + abs(da) * (a(l, n) - u)

dndr = v + (w - v) * abs(db)

return

end

The atmosphere is calculated using:

!C

subroutine adc(vt, alt, amach, qbar)

! input - vt,alt ! output - amach,qbar

data r0/2.377e-3/

tfac = 1.0 - 0.703e-5*alt

t = 519.0*tfac

if (alt.ge.35000.0) t = 390.0

rho = r0 * (tfac**4.14)

amach = vt / sqrt(1.4*1716.3*t)

qbar = 0.5*rho*vt*vt

return

end

The aircraft engine and thrust are:

real function tgear (thtl)

if (thtl .le. 0.77) then

tgear=64.94*thtl

else

tgear=(217.38*thtl)-117.38

endif

end function

real function pdot(p3,p1) !cpdot = rate of change of power

real p1 ! power command

real p2

real p3 ! actual power

177

real t

if (p1.ge.50.0) then

if (p3.ge.50.0) then

t = 5.0

p2 = p1

else

p2 = 60.0

t = rtau(p2 - p3)

endif

else

if (p3 .ge. 50.0) then

t = 5.0

p2 = 40.0

else

p2 = p1

t = rtau(p2 - p3)

endif

endif

pdot = t * (p2 - p3)

end function

real function rtau(dp)

real dp

if (dp .le. 25.0) then

rtau = 1.0

else if (dp .ge. 50.0) then

rtau = 0.1

else

rtau = 1.9 - (0.036 * dp)

end if

return

end

real function engine_thrust(pow, alt, rmach) !cf16 engine thrust model

real pow, alt, rmach, a(0:5, 0:5), b(0:5, 0:5), c(0:5, 0:5)

real h, dh, rm, dm, cdh, s, t, tmil, tidl, tmax

integer i, m ! idle data

data a/4714.9,2980.2,3914.2,5070.7,6672.0,8273.3,2824.5,

1890.4,3069.1,4492.5,5915.8,7561.6,266.9,111.2,1534.6,

3358.2,5026.2,6783.2,-4537.0,-3158.1,-1334.4,1556.8,

4047.7,6049.3,-12009.6,-8451.2,-5782.4,-1098.7,2668.8,

4892.8,-16012.8,-6227.2,-2646.6,-1521.2,-889.6,3113.6/ ! mil data

178

data b/56400.6,40699.2,27577.6,17569.6,10897.6,6227.2,

56400.6,40699.2,28080.2,17969.9,10986.6,6227.2,56089.3,

41419.8,29401.3,19081.9,11564.8,6938.9,56222.7,43763.9,

31536.3,20727.7,12632.3,7383.7,55110.7,45262.8,34472.0,

23663.4,14456.0,8584.6,51952.6,43803.9,35806.4,27132.8, 16902.4,10274.9/ ! max data

data c/88960.0,66720.0,48038.4,31136.0,17792.0,11120.0,

95276.2,69833.6,49928.8,32572.7,19726.9,11564.8,100969.6,

74993.3,54488.0,36269.0,22240.0,12610.1,107819.5,84111.7,

61204.5,41299.7,25353.6,14300.3,115959.4,93741.6,71056.8,

49439.5,30513.3,17569.6,128484.9,103722.9,81398.4,59976.8, 38439.6,22493.5/ !

h = alt / 3048.0

i = int(h)

if (i .ge. 5) i = 4

if (i .lt. 0) i = 0

dh = h - float(i)

rm = 5.0 * rmach

m = int(rm)

if (m .ge. 5) m = 4

if (m .lt. 0) m = 0

dm = rm - float(m)

cdh = 1.0 - dh

s = b(i,m) * cdh + b(i+1,m) * dh

t = b(i,m+1) * cdh + b(i+1,m+1) * dh

tmil = s + (t - s) * dm

if (pow .lt. 50.0) then

s = a(i,m) * cdh + a(i+1,m) * dh

t = a(i,m+1) * cdh + a(i+1,m+1) * dh

tidl = s + (t - s) * dm

engine_thrust = tidl + (tmil - tidl) * pow * 0.02

else

s = c(i,m) * cdh + c(i+1,m) * dh

t = c(i,m+1) * cdh + c(i+1,m+1) * dh

tmax = s + (t - s) * dm

engine_thrust = tmil + (tmax - tmil) * (pow - 50.0) * 0.02

endif

return

end

The Runge-Kutta integration code:

179

subroutine rk4(tt,dt,xx,xd,nx,ail,rdr,elv,thtl,ireturn)

parameter (nn=30)

real xx(*),xd(*),x(nn),xa(nn)

call f(tt,xx,xd,ail,rdr,elv,thtl,ireturn)

if (ireturn==1005) return

do 1 m=1,nx

xa(m)=xd(m)*dt

1 x(m)=xx(m)+0.5*xa(m)

t=tt+0.5*dt

call f(t,x,xd,ail,rdr,elv,thtl,ireturn)

if (ireturn==1005) return

do 2 m=1,nx

q=xd(m)*dt

x(m)=xx(m)+0.5*q

2 xa(m)=xa(m)+q+q

call f(t,x,xd,ail,rdr,elv,thtl,ireturn)

if (ireturn==1005) return

do 3 m=1,nx

q=xd(m)*dt

x(m)=xx(m)+q

3 xa(m)=xa(m)+q+q

tt=tt+dt

call f(tt,x,xd,ail,rdr,elv,thtl,ireturn)

if (ireturn==1005) return

do 4 m=1,nx

4 xx(m)=xx(m)+(xa(m)+xd(m)*dt)/6.0

return

end

A.2 Generic Air-to-Air Missile

The configuration of a medium range air-to-air missile is given by the following
[38]:

180

Mass (kg) 200 kg
Thrust (N) 6000 N
te 8s
acmax 30g
τ 3s
Ne 3-6

181

	List of Figures
	List of Tables
	Definitions
	List of Abbreviations
	List of Notations
	List of Publications
	Introduction
	Modern Air Combat
	Problem Statement
	Research Aims
	Thesis Outline

	The Pursuit-Evasion Problem
	Introduction
	Game Theory
	Development of Game Theory
	Guided Missiles
	Proportional Navigation Guidance
	Missile Warhead
	Evading a Missile

	Typical Air Combat Manoeuvres
	Aircraft Autonomy in Planning
	Pursuit-Evasion Problem
	Evolutionary Algorithms in Pursuit-Evasion Problems
	Parallel Evolutionary Algorithms
	Summary

	Evolutionary Computation
	Introduction
	Evolutionary Programming Algorithm
	Representation
	Evaluation of Solutions
	Mutation
	Recombination
	Selection
	Applying to Pursuit-Evasion Problem
	EAs in Uncertain Environments
	Summary

	Parallel Computing
	Introduction
	Parallel Systems
	Performance vs. cost
	Master-Slave Model
	Execution Time

	Coarse-grained Model
	Amdahl's Law, Parallel Speedup and Efficiency
	Summary

	Implementation of an Air Combat Problem
	Introduction
	Assumptions
	Aerodynamic Forces and Moments
	Aerodynamic Coefficients
	Component Buildup
	Three Degree of Freedom Simulation Model
	Introduction
	Vector Rotation
	Equations of Motion
	Equations over Flat-Earth
	Aircraft Performance Calculation
	Thrust
	Load Factor and Turning Performance

	The Pursuer

	Six Degree of Freedom Simulation Model
	Introduction
	Trajectory
	Nonlinear Equations of Motion
	Engine Model
	Sign Convention of the Control Surface Deflections
	States and Controls
	Constraints
	Actuators
	Numerical Solution of the State Equation
	Modelling the Pursuer

	Proportional Navigation Guidance
	The Representation of the Solution in EP

	The Objective Function
	Integrating the Simulation Model Into EP
	Parallel Implementation
	Overall Implementation
	Summary

	Numerical Results and Discussion
	Introduction
	Aircraft Data and Configuration
	The Evader
	The Pursuer

	The Hardware
	Computing Time
	Pursuit Evasion Games
	Scenario 1: Head to Tail Encounter
	Scenario 2: Head to Side Encounter
	Scenario 3: Head to Head Encounter
	Evader as Unmanned Air Combat Vehicle (UCAV)
	Summary

	Factors that Influence the Search
	Interaction Effect Between Number of Processors, Number of Generation and Population Size.
	Effect of the Spawn Time
	Effect of the Pursuer's Thrust

	Robustness
	Presence of Uncertainties
	Effect on Errors in the Evader's Initial Speed
	Effects on Errors in the Pursuer's Initial Speed

	Random Versus EP
	Parallel Implementation
	Effect of Migration Rate
	Speedup

	Summary

	Conclusion
	Summary
	Conclusion
	Future Work

	References
	Appendices
	Jet Fighter Aircraft Configuration
	Mass and Dimensional Characteristics Used in Simulation
	6DOF Model

	Generic Air-to-Air Missile

