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Abstract 

Wireless networks introduce a whole range of challenges to the traditional TCP/IP 

network, especially Virtual Private Network (VPN). Changing IP address is a difficult issue for 

VPNs in wireless networks because IP addresses are used as one of the identifiers of a VPN 

connection and the change of IP addresses will break the original connection. The current 

solution to this problem is to run VPN tunnels over Mobile IP (MIP). However, Mobile IP itself 

has significant problems in performance and security and that solution is inefficient due to double 

tunneling.  

This thesis proposes and implements a new and novel solution on simulators and real 

devices to solve the mobility problem in a VPN. The new solution adds mobility support to 

existing L2TP/IPsec (Layer 2 Tunneling Protocol/IP Security) tunnels. The new solution tunnels 

Layer 2 packets between VPN clients and a VPN server without using Mobile IP, without 

incurring tunnel-re-establishment at handoff, without losing packets during handoff, achieves 

better security than current mobility solutions for VPN, and supports fast handoff in IPv4 

networks.  

Experimental results on a VMware simulation showed the handoff time for the VPN 

tunnel to be 0.08 seconds, much better than the current method which requires a new tunnel 

establishment at a cost of 1.56 seconds.  

Experimental results with a real network of computers showed the handoff time for the 

VPN tunnel to be 4.8 seconds. This delay was mainly caused by getting an IP address from 

DHCP servers via wireless access points (4.6 seconds). The time for VPN negotiation was only 

0.2 seconds. The experimental result proves that the proposed mobility solution greatly reduces 

the VPN negotiation time but getting an IP address from DHCP servers is a large delay which 

obstructs the real world application. This problem can be solved by introducing fast DHCP or 

supplying an IP address from a new wireless access point with a strong signal while the current 
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Internet connection is weak. Currently, there is little work on fast DHCP and this may open a 

range of new research opportunities. 

The novel L2TP/IPsec VPN concepts have been the basis of one conference and one 

journal papers as listed below: 

C. Xu and P. Radcliffe, "Building Secure Tunnel from PPP Wireless Network", Wireless 

Personal Communications, DOI 10.1007/s11277-009-9894-x, 2009. 

C. Xu and P. Radcliffe, "A novel mobility solution based on L2TP/IPsec tunnel", 2009 

IEEE Sarnoff Symposium, 2009. 
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1Chapter 1:  Introduction 

1.1 BACKGROUND 

Wireless networks have seen unprecedented growth during the past few decades. More 

and more people play or work on mobile devices via wireless networks.  

Users can access wireless networks through many different ways, for example UMTS 

[78], WiMAX [77] and Wireless Access Points. UMTS (Universal Mobile Telecommunications 

System) is one of the third-generation (3G) mobile telecommunications technologies. Mobile 

phones can get an IP address directly through the base stations of UMTS. WiMAX (Worldwide 

Interoperability for Microwave Access), is a telecommunications technology that provides 

broadband wireless transmission of data via the public Internet. Wireless Access Point (WAP) is 

a device that also allows wireless communication devices to connect to a wireless network or to a 

wired network, and finally to the public Internet.  

Virtual Private Networks (VPNs) are commonly used to provide secure connections 

between fixed nodes via the low-cost public network. Telecommuters, business travellers or 

remote office workers use VPN to connect to their company network when security is a serious 

concern. However, current VPNs are unusable when running on a wireless network and moving 

from one network to another. This means that the user must not change IP address otherwise the 

VPN connection will be lost and will need to be restarted. VPN under wireless networks will 

soon become a popular new research area, as the number of telecommuters and business 

travellers has continued to increase. 

The VPN mobility problem is caused by the need for the VPN server to check the IP 

addresses of the VPN tunnel packets. The current solution to this problem is to run VPN tunnels 

over Mobile IP (MIP). In this case, the IP change is handled by Mobile IP and the IP addresses 

inside VPN tunnel do not change. However, Mobile IP itself has significant problems in 

performance and security and that solution is inefficient due to double tunneling. 
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A VPN usually consists of two components: a VPN concentrator and a VPN server. The 

VPN concentrator generally receives packets on the OSI Layer 2, 3 or 4, encapsulates and 

encrypts the packets into network frames, and then sends the network frames to the VPN server 

via public networks. The VPN server receives the network frames, decrypts and decapsulates the 

network frames into the original packets, and then sends the original packets to the destination 

computer. Similar things happen to the returning traffic. People on public networks may capture 

the packets, but they cannot decrypt the network frames. The network traffic is protected by this 

process. 

Internet Protocol Security (IPsec) is one of the VPN technologies and is a suite of 

protocols. It receives packets on the OSI Layer 3 (IP Layer) and secures the packets inside the IP 

layer. IPsec uses Internet Key Exchange (IKE) protocol to generate security keys and to handle 

security key exchange between the VPN server and the VPN concentrator, and uses 

Authentication Header (AH) or Encapsulating Security Payload (ESP) to encrypt and to protect 

IP packets. IPsec has strong security and it has already been integrated into the next generation 

network (IPv6). 

Layer 2 Tunneling Protocol (L2TP) is one of VPN protocols. It receives packets on the 

OSI Layer 2 (Data Link Layer) and secures the packets inside the OSI Layer 5 (Session Layer). It 

does not provide strong authentication method by itself and often the L2TP packets are sent 

inside IPsec for a better security. Compared with current VPN technologies, a VPN that transfers 

Layer 2 packets has a better range of applications as it can transfer almost all kinds of Internet 

packets: IP packets, non-IP packets (such as IPX packets) and Layer 2 packets (such as PPP 

packets [39]). This thesis focuses on VPN technologies that transfer Layer 2 packets. 

1.2 THESIS GOALS & SIGNIFICANCE 

The main purpose of this thesis is to propose and to implement a new and novel solution 

on simulators and real devices to solve the mobility problem in a VPN. The new solution adds 

mobility support to existing L2TP/IPsec (Layer 2 Tunneling Protocol/IP Security) tunnels. It 

tunnels Layer 2 packets between a VPN client and a VPN server without using Mobile IP, 
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without incurring tunnel-re-establishment at handoff, without losing packets during handoff, 

achieves better security than current mobility solutions for VPN, and supports fast handoff in 

IPv4 networks.  

The new solution has particular application when several persons inside a moving 

vehicle are connected to a network at layer 2 (for example a PPP link [39]). An L2TP/IPsec 

concentrator inside the vehicle is used to encapsulate Layer 2 packets and then to tunnel to the 

company network. It is also possible to encapsulate IP packets inside the L2TP/IPsec tunnel. The 

real world topology of the solution is shown in Figure 1-1. The new solution explained in this 

thesis handles the situation perfectly and quickly when the vehicle is moving and the L2TP/IPsec 

concentrator inside the vehicle changes IP addresses from time to time. 

 

Figure 1-1 Real World Topology 

 

This thesis focuses on reducing the VPN handoff time as much as possible. The time for 

VPN handoff is mainly caused by the time to get an IP address and the time for VPN negotiation. 

The time to get a new IP address varies from situation to situation as the new IP address can be 

got from UTMS, WiMAX [77] or even a wireless access point. Therefore, the main goal of this 

thesis is to reduce the VPN negotiation time. In the simulation, the time to get a new IP address 

was minimized by using the “ifconfig” command and a very small VPN handoff time was 
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achieved. In the real world experiment, a larger VPN handoff time was measured and analysed. 

This thesis also gives some suggestion of how to reduce the handoff time in the real world which 

may open a range of new research opportunities. 

One journal paper and one conference paper related to this thesis have been published: 

C. Xu and P. Radcliffe, "Building Secure Tunnel from PPP Wireless Network", Wireless 

Personal Communications, DOI 10.1007/s11277-009-9894-x, 2009.  

C. Xu and P. Radcliffe, "A novel mobility solution based on L2TP/IPsec tunnel", 2009 

IEEE Sarnoff Symposium, 2009. 

1.3 LITERATURE SEARCH 

The most common solution to mobility problems in a VPN is to run tunnels, such as 

L2TP or IPsec, over Mobile IP (double tunneling) [21, 22]. However, that is inefficient due to the 

overhead of network traffic (see Chapter 8.4). The packet structures of these tunnels are shown 

below. 

 

Figure 1-2 Packet Structures of Double Tunneling 

 

Some solutions [19, 53] are to add mobility support only to IPsec. These solutions can 

only transfer IP packets (Layer 3 packet). If user wants to send Layer 2 packets (such as PPP 

packets [39]), an IPsec tunnel cannot provide a solution. Furthermore, these solutions lose 

packets as they do not provide a method for sending old packets to the new IP address, and have 

relatively lower performance when handling handoff. Synchronization problems may also occur 

when the IPsec server updates tunnel information and sends IPsec packets at the same time. 

Some solution [19] also has security problems. A detailed analysis of these solutions will be 

shown in Chapter 8.4.  
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Another solution may be to setup a tunnel to a Mobile IP system using only Mobile IP. 

However, security is a problem in this solution as will be shown in Chapter 3. 

1.4 THESIS OUTLINE 

The rest of this thesis is organized as follows: 

• Chapter 2 introduces an overview of VPN together with its history and 

classifications. Then some of the concurrent VPN technologies are reviewed and 

compared, suggesting why L2TP/IPsec technology is a better choice to focus on. 

• Chapter 3 introduces the key concepts of different versions of Mobile IP and 

analyses the drawbacks of MIPv4 and MIPv6. The possibility to use Mobile IP to 

transfer packets as a part of VPN without double tunneling is also discussed in this 

chapter. 

• Chapter 4 introduces L2TP and identifies its benefits over similar protocols. The 

detailed analysis of L2TP packet structure and tunnel establishment as well as its 

implementation in UNIX (FreeBSD) is also presented. 

• Chapter 5 overviews IPsec and presents tunnel establishment and packet protection 

procedures in detail. Then IPsec architecture and its implementation in FreeBSD are 

explained. Finally the differences between Microsoft Windows IPsec and UNIX 

IPsec are discussed. 

• Chapter 6 presents a case for using L2TP/IPsec tunnels, and discusses details of 

L2TP/IPsec tunnels including packet structure, tunnel establishment and tunnel 

authentication. Finally, different solutions of the L2TP/IPsec tunnel are proposed 

and compared. The loopback interface solution is chosen to create the L2TP/IPsec 

tunnel in FreeBSD (UNIX) in this thesis. 

• Chapter 7 proposes a detailed solution to handle the mobility problem in the 

L2TP/IPsec tunnel. This chapter also analyses and discusses the security and the 

performance of the new solution. 
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• Chapter 8 presents simulation experiments to validate the proposed solution 

discussed in the previous chapter. VMWARE software is introduced in this chapter 

and is used for the simulation. The experiment result is shown and analysed, and 

compared with four concurrent studies on VPN mobility support.  

• In chapter 9, the same theory is proved on real devices (a wireless LAN). The VPN 

handoff time is fully discussed in this chapter and the experiment result is measured 

and analysed. Some suggestions are also proposed to further reduce the VPN 

handoff time.  

• Chapter 10 concludes the thesis with future work listed. 
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2Chapter 2: VPN Overview 

A Virtual Private Network (VPN) is a connection which provides secure private 

communication over an insecure network such as the public network [63]. Typically, a VPN 

provides connections between fix network devices. The term “Private” means that all the traffic 

inside the VPN is encrypted and the resources are only shared among an authorized group of 

users, and are controlled by different levels of access control. The term “Virtual” indicates that 

VPN looks like a private network from the user’s perspective and consists of an independently 

administered virtual topology, although the underlying network is shared by anyone using the 

network. Furthermore, VPN is cheap, as it normally uses the public network instead of costly 

leased line services.  

This chapter will first introduce some VPN history and classifications. Next different 

VPN technologies will be reviewed and compared and finally a VPN will be chosen to add 

mobility support. 

2.1 VPN HISTORY 

Originally, the VPN was associated with Frame Relay networks [33]. Companies used 

dedicated lines and layer 2 services such as Frame Relay to interconnect their nodes with links 

that they owned. Frame relay networks are considered secure, as customer traffic will be sent 

through a predetermined path (Permanent Virtual Circuit). However, with the rapid development 

of IP network, VPN began to migrate from a conventional Layer 2 Frame Relay to a Layer 3 IP-

based network.  

The primary advantages of IP VPNs over Frame Relay VPNs are: 

• Reduced network cost (Internet Service Providers charge more for a Frame 

Relay Permanent Virtual Circuit). 

• Easy to provide network connectivity to geographically dispersed offices and 

remote users. 
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• Convergence of other services such as voice and video, which reduces cost. 

Currently, VPNs provide connections at different OSI layers. VPN has become more and 

more popular for a variety of reasons; a VPN can be encrypted for security or to defeat firewalls 

and proxy servers. VPNs make it easier to manage geographically separated physical networks as 

if they were one network. Businessmen and other persons from remote offices often use VPNs to 

connect to company networks. 

2.2 VPN CLASSIFICATION 

VPN can be classified in a variety of ways.  

• By topology: 

o Peer to Peer VPN 

Peer to Peer VPN sets up a secure tunnel between two computers via 

public networks. An IP address will be assigned to each end of the tunnel so 

that the two computers can communicate with each other as if they are 

connected by a physical Ethernet cable. 

The limitation of Peer to Peer VPN is that the VPN tunnel can be 

shared by only two computers. This solution is not widely used due to the 

limitation. 

The topology of Peer to Peer VPN is shown as follows 

 

Figure 2-1 Peer to Peer VPN 
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o Client to Server VPN 

Client to Server VPN sets up a secure tunnel between a VPN client 

and a specific network via public networks. The VPN client can connect to 

all the computers inside the specific network. However, unlike peer to peer 

VPN, Client to Server VPN only encrypts the traffic between VPN Client 

and VPN server, and the traffic between VPN server and other computers in 

the specific network is not protected.  

Although it does not protect the full path between end users (no 

protection within the company network), Client to Server VPN is widely 

used in today’s networks because businessmen outside usually want to 

connect to company network, not a single computer. 

 

Figure 2-2 Client to Server VPN  
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o Site to Site VPN 

Site to Site VPN sets up a secure tunnel between 2 networks via the 

public Internet where the tunnel endpoints are a VPN concentrator and a 

VPN server. These VPNs only encrypt the traffic between VPN 

concentrators and VPN servers, and any traffic outside the tunnel endpoints 

is not protected.  

Site to Site VPN is widely used between company’s main office and 

remote office.  

This thesis has chosen to concentrate on this topology.  

The topology of Site to Site VPN is shown in Figure 2-3. 

 

 

Figure 2-3 Site to Site VPN  

 

 

 

• By protocols: 

The choice of a VPN protocol depends on the type of traffic to be sent via the 

tunnel.  VPN protocols can be classified according to OSI layers of received packets 

used for encryption. There are currently 3 kinds of VPN: 
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o Layer 2 VPN 

A Layer 2 VPN encapsulates packets on the OSI Layer 2: Data Link 

Layer. Main Layer 2 VPN protocols are: Layer 2 MPLS VPN, OpenVPN, 

PPTP and L2TP. Chapter 2.3 discusses the details of Layer 2 VPN protocols. 

o Layer 3 VPN 

Layer 3 VPN encapsulates packets on the OSI Layer 3: Network 

Layer. Main Layer 3 VPN protocols are: Layer 3 MPLS VPN, IPsec and 

OpenVPN. Chapter 2.4 discusses the details of Layer 3 VPN protocols. 

o Layer 4 VPN 

Transport Layer Security (TLS) and its predecessor Secure Sockets 

Layer (SSL) are Layer 4 VPN protocols that encrypt segments of network 

connections at the OSI Layer 4 (transport layer). A prominent use of TLS is 

for securing web traffic carried by HTTP to form HTTPS. Although TLS is 

widely used, it can only encrypt Layer 4 packets, not lower layers. This 

greatly limits its applications. This thesis uses VPN protocols at lower layers.  

2.3 VPN PROTOCOLS IMPLEMENTED ON OSI LAYER 2 

This section will analyse and compare main VPN protocols implemented on OSI layer 2 

(data link layer). 

2.3.1 Layer 2 MPLS VPN 

Multiprotocol Label Switching (MPLS) [48] is a mechanism used in high-performance 

networks and it carries data from one network node to the other. In an MPLS network, labels are 

added to each data packet and packets are switched according to these labels. MPLS is a scalable 

protocol as MPLS labels can be added to various network protocols. 

Layer 2 MPLS VPN is a type of Virtual Private Network (VPN) that uses MPLS labels 

to transport OSI Layer 2 packets. It is commonly used when customers want to communicate 

between remote offices through the Internet Service Provider (ISP) network [35], but they have 

no access to the public Internet. The edge routers on the Service provider side are called Provider 
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Edge (PE) routers and the edge routers on the customer side are called Customer Edge (CE) 

routers. The topology of a Layer 2 MPLS VPN network is shown in Figure 2-4.  

 

Figure 2-4 Layer 2 MPLS Network Topology  

Layer 2 MPLS VPN networks are quite fast. All kinds of traffic, i.e. Frame Relay (FR), 

Asynchronous Transfer Mode (ATM) and Ethernet traffic, can be sent through the network. The 

Provider Edge (PE) routers are not responsible for routing and they only forward packets 

according to Layer 2 information and MPLS labels. 

All traffic going through Internet Provider’s network is protected by Layer 2 MPLS 

VPN because other customers cannot access these packets. 

Security is a big issue for Layer 2 MPLS VPN. If several customers share a Layer 2 

medium on ISP network, there is often no control over the packets transferred to that device so 

that the packets from other customers can be easily captured. The chance for using exclusive 

network devices on ISP network is very limited because of the high cost. One solution is to use a 

port-based Ethernet connection between two physical data ports provided across an MPLS 
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network. This means that the Layer 2 packets are encapsulated in 802.1Q Ethernet frames and 

sent to the destination. Another big security issue is that Layer 2 MPLS VPN packets are not 

encrypted in ISP network. [34]   

Layer 2 MPLS VPN has not been chosen to add mobility support because of its security 

issues. 

2.3.2 OpenVPN 

OpenVPN is an open source Layer 2 or Layer 3 tunneling protocol. It works by 

encapsulating Layer 2 and Layer 3 packets inside UDP or TCP packets and sending them to the 

destination. It uses OpenSSL for encryption and implements SSL and TLS (the advanced and 

standardized version of SSL) [4]. It uses pre-shared, certificate-based, and username/password-

based key for authentication. It is capable of establishing direct links between computers across 

network address translators (NATs) and firewalls. It is easy to configure but it has not been 

widely used [9].  

The packet structure of OpenVPN is shown in Figure 2-5. 

 

Figure 2-5 Packet Structure of OpenVPN 

The main problem in OpenVPN is security. The key exchange in TLS is weak, for 

example completely anonymous sessions are vulnerable to man-in-the-middle attacks and public 

key and private keys are exposed in RSA key exchange. OpenVPN is not recommended when 

security is a concern [5]. 

OpenVPN by itself is not useful for mobile business scenarios as it has no native ability 

to cope with mobile clients. 
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2.3.3 PPTP 

PPTP (Point-to-Point Tunneling Protocol) [3] is a layer 2 tunneling protocol which 

works by sending a regular PPP session [39] to a peer with the Generic Routing Encapsulation 

(GRE) protocol. A second session is used to initiate and manage the GRE session. This session is 

a simple TCP connection from the PPTP client to port 1723 on the PPTP server. PPTP also 

works in sending IPX packets [27]. 

The main disadvantage in PPTP is the security. PPTP itself does not specify any 

authentication or encryption algorithms, and the only algorithms used are inside the PPP sessions 

[39]. Microsoft Challenge-handshake authentication protocol (MS-CHAP) [37] and Microsoft 

Point-to-Point Encryption (MPPE) [38] are used for PPP authentication and encryption. MS-

CHAP is known to be a weak algorithm, easily cracked by software such as L0phtcrack. MPPE 

is also weak in security because an attacker can spoof resynchronize keys packets easily [36]. 

Also, there are many unauthenticated control packets that are readily spoofed [3].  

PPTP is widely used in Microsoft Windows and some parts of it are patent encumbered. 

It has no native ability to cope with mobile clients. 

2.3.4 L2TP 

L2TP (Layer 2 Tunneling Protocol) [28] is an open source layer 2 tunneling protocol. It 

is originally used to encapsulate PPP frames into UDP packets and send UDP packets over 

existing networks. The two endpoints of an L2TP tunnel are the LAC (L2TP Access 

Concentrator) and the LNS (L2TP Network Server). The LAC receives PPP packets from users, 

encapsulates the PPP packets into UDP packets and then sends these to the LNS. The LNS 

decapsulates the UDP packets and sends the PPP packets to the destination computers. IP packets 

can also be tunnelled through L2TP and the process of tunneling IP packets is similar to that of 

tunneling PPP packets. L2TP does not provide strong authentication by itself and often uses 

IPsec to secure the tunnel [28]. The topology of an L2TP tunnel is shown in Figure 2-6. 
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Figure 2-6 L2TP Topology 

 

The details of L2TP will be discussed in Chapter 4. 

A problem with L2TP/IPsec tunneling is that it does not support NAT. However, IPv6 

(next generation network) has an almost infinite number of addresses that makes NAT 

unnecessary [18].  

L2TP by itself is not useful for mobile business scenarios as there is no native ability to 

cope with mobile clients. 

2.4 VPN PROTOCOLS IMPLEMENTED ON OSI LAYER 3 

This section will analyse and compare main VPN protocols implemented on OSI layer 3 

(Network Layer). 

2.4.1 Layer 3 MPLS VPN 

Similar to Layer 2 MPLS VPN, Layer 3 MPLS VPN, also known as L3VPN, is a type of 

VPN that uses MPLS labels to transport OSI Layer 3 packets. It is commonly used when 

customers want to communicate between remote offices through the Internet Service Provider 

(ISP) network [35]. Customers can still access the public Internet through L3VPN via an Internet 

Customer Edge router though strict security policies should be applied to the Internet Customer 

Edge router. The topology of a Layer 3 MPLS VPN network is shown in Figure 2-7. 
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Figure 2-7 Layer 3 MPLS Network Topology  

Layer 3 packets are protected by Layer 3 MPLS because other customers cannot access 

these packets. Unlike Layer 2 MPLS VPN, the Provider Edge (PE) routers in Layer 3 MPLS 

VPN are responsible for routing and forwarding packets according to IP addresses and MPLS 

labels. 

Security is also a big drawback of Layer 3 MPLS VPN. The VPN does not provide any 

confidentiality or integrity services. This means that a service provider can easily sniff VPN data 
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and there is no guarantee that the packets are not corrupted or changed during transfer. 

Customers can only trust the service provider, or give up this VPN solution [34].  

Layer 3 MPLS VPN has not been chosen to add mobility support because of its security 

issues. 

2.4.2 IPsec 

Internet Protocol Security (IPsec) [8, 30] is a suite of protocols for securing IP 

communications at the OSI Network Layer. It encrypts IP frames into IPsec packets and sends 

the packets to the other end of the networks. It supports peer authentication, data integrity and 

data confidentiality (encryption). IPsec can be used to protect IP packets (OSI Layer 3 packets) 

between a pair of hosts (Peer to Peer VPN), between a security gateway and a host (Client to 

Server VPN), or between a pair of security gateways (Site to Site VPN).  

Compared to other VPN protocols, IPsec is a suite of VPN protocols with very strong 

security. It is very popular and has already integrated into the next generation network (IPv6).  

IPsec is a complex system which includes encapsulation, encryption, authentication, and 

key exchange and management. The details of IPsec will be discussed in Chapter 5. 

IPsec by itself is not useful for mobile business scenarios as there is no native ability to 

cope with mobile clients. An IPsec extension adds mobility support to IPsec, which is discussed 

in RFC 4555 [53]. However, that solution has some limitations which will be discussed in 

Section 8.4. 

2.4.3 OpenVPN 

OpenVPN can tunnel packets on the OSI Layer 3 as well as Layer 2. At Layer 3 it has 

the same advantages and disadvantages as at Layer 2. See Section 2.3.2 for more details. 

2.5 CHOOSING A VPN TO ADD MOBILITY SUPPORT 

The VPN protocols examined do not have a native ability to cope with mobile clients. 

Adding mobility support to existing VPN protocols is one way to solve the problem. The final 

solution should have a wide range of applications, good security, small handoff time and 

simplicity of usage.  
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A VPN that transfers Layer 2 packets will be chosen as it has a better range of 

applications and can transfer almost all kinds of Internet packets: IP packets, non-IP packets 

(such as IPX packets) and Layer 2 packets (such as PPP packets [39]). A brief comparison 

among different Layer 2 VPN is shown below. 

• Layer 2 MPLS VPN has big security issues. It assumes that ISP network can be 

trusted and all the packets within ISP network are not encrypted (see Section 

2.3.1). 

• OpenVPN is not widely used and is relatively weak in security (see Section 

2.3.2). 

• PPTP is weak in security and is patent encumbered (see Section 2.3.3). It is 

difficult to modify PPTP. 

• L2TP provides Layer 2 tunneling functions (see Section 2.3.4) and together with 

IPsec provides good security (see Section 2.4.2). Although L2TP/IPsec tunnels 

do not support NAT, IPv6 (next generation network) has an almost infinite 

number of addresses that makes NAT unnecessary. 

The L2TP/IPsec tunnel has been chosen to add mobility support because it has a good 

range of applications (transferring Layer 2 packets) and is strong in security (using IPsec). 

2.6 SUMMARY 

In this chapter, firstly, the definition of VPN is introduced together with its history and 

classification. Secondly, some of the dominant VPN technologies have been reviewed and 

compared. Finally, a comparison is made among different VPN technologies and a decision is 

made to choose a particular VPN technology to add mobility support. 

A Virtual Private Network (VPN) is a connection which provides secure private 

communication over an insecure network. VPNs can be classified by topology or by protocol and 

the examined VPNs do not have native mobility support. L2TP is an open source layer 2 

tunneling protocol which does not provide strong authentication by itself and often uses IPsec to 
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secure the tunnel. L2TP/IPsec is most suitable for adding mobility support as other VPN 

protocols have problems with security or other issues. 



Chapter 3: Mobile IP Overview Page 20 

© 2009 Chen Xu Page 20 

3Chapter 3: Mobile IP Overview 

Mobile IP (MIP) is one of the most popular solutions for handling IP mobility problems 

at OSI Network Layer. It is a standard communications protocol that is designed to allow mobile 

device users to move from one network to another while maintaining a permanent IP address 

[23]. There are two versions of Mobile IP: Mobile IPv4 [23] and Mobile IPv6 [15], which work 

for IPv4 [40] and IPv6 [41] networks respectively. 

This chapter will first discuss the key concepts of different versions of Mobile IP and 

then analyse the problems faced by Mobile IP when transferring packets as a part of VPN 

without double tunneling. 

3.1 OVERVIEW OF MIPV4 

Mobile IPv4 is a protocol enhancement that allows routing of IP packets to a moving 

node under IPv4 networks. Only the OSI Network Layer is enhanced to handle the problems so 

that the upper layer softwares can be used without any modification.  

The basic components of Mobile IPv4 are: 

(1) Mobile Node (MN): A host that changes its point of attachment from one 

network to another. Its IP address will change in this situation. 

(2) Correspondent Node (CN): A host communicating with a Mobile Node. 

(3) Home Agent (HA): A router on a Mobile Node’s home network. It keeps a 

permanent IP address (Home Address) for each Mobile Node and maintains 

current location (Care-of Address) for the Mobile Node. It is responsible for 

tunneling packets to Foreign Agent when the Mobile Node is away from home, 

and advertising itself. 

(4) Foreign Agent (FA): A router on a Mobile Node’s visited network which 

provides routing services to the Mobile Node when registered. It is responsible 
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for advertising itself, de-tunneling packets from the Home Agent, and sending 

the packets to the Mobile Node. 

(5) Home Address: The IP address assigned to a Mobile Node in the Home 

Network. The IP address will not change when the Mobile Node is roaming. 

(6) Care-of Address (CoA): The IP address which is assigned to the Foreign 

Agent. A Home Agent tunnels packets to Mobile Node’s Care-of Address. 

Home Agents and Foreign Agents advertise their presence by broadcasting Agent 

Advertisement messages. The Mobile Node examines the Agent Advertisement messages to 

determine its location. If the MN is connected to its home network, it operates without mobility 

services. 

When the Mobile Node is connected to a foreign network, it registers the Care-of 

Address with its Home Agent. The registration process sets up necessary services to re-route 

packets.   

When the Correspondent Node sends packets to the Mobile Node, the packets are first 

sent to the Home Agent. The HA encapsulates and tunnels the packets to the Foreign Agent and 

the FA de-tunnels the packets and sends the packets to the Mobile Node. 

When the Mobile Node sends packets to the Correspondent Node, the packets are first 

sent to the Foreign Agent. The FA directly forwards the packets to the Mobile Node. 

Figure 3-1 shows the operation of a Mobile IP (IPv4) connection. 

 

Figure 3-1 Mobile IPv4 
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3.2 PROBLEMS IN MIPV4 

When the Mobile Node roams in foreign networks, no matter how close the 

correspondent node and the mobile node are, MIPv4 forces all packets from the Correspondent 

Node to be routed to the Home Agent and then to be routed to the Mobile Node. However, 

packets from the Mobile Node can be routed to the Correspondent Node through the Foreign 

Agent directly. This mechanism has poor packet routing performance and is labelled “Triangular 

Routing” [82] which is depicted in Figure 3-1. The word “Triangular Routing” is routing which 

causes sending packets to a proxy system before sending to the intended destination. Both 

Mobile IP and Skype have this problem. 

The security in Mobile IPv4 is weak. One of the security problems is that the Address 

Resolution Protocol (ARP) is not authenticated, and can potentially be used to steal another host's 

traffic [20]. Another security problem is that Mobile IPv4 security uses Authentication, 

Authorization, and Accounting (AAA) systems for key distribution. However, AAA systems are 

not supported by all parties [20].  One AAA example is RADIUS (Remote Authentication Dial 

In User Service), a networking protocol that provides centralized authentication, authorization 

and accounting management for computers to use a network service [26]. 

Another problem with Mobile IPv4 is the large external equipment requirement as 

Mobile IPv4 systems need to setup many Home Agents and Foreign Agents. 

Due to the security and other problems stated above, it is not recommended to use 

Mobile IPv4 to transfer packets to Mobile Node as a part of VPN without double tunneling. 

3.3 OVERVIEW OF MIPV6 

Mobile IPv6 is the Mobile IP protocol working under IPv6 (next generation network). 

Mobile IPv6 is similar to Mobile IPv4 and it has many improvements. Mobile IPv6 discards 

Foreign Agents and supports Route Optimization as a fundamental component. Route 

Optimization provides a method for Correspondent nodes to cache the binding of a mobile node 



Chapter 3: Mobile IP Overview Page 23 

© 2009 Chen Xu Page 23 

and then to send their own packets directly to the Care-of Address (the Mobile Node itself) 

indicated in that binding, and so bypassing the mobile node's home agent.  

When the Mobile Node is away from its Home Network, it uses its current IP address as 

the Care-of Address. It registers the Care-of Address with the Home Agent and binds the new 

address with the Correspondent Node through the Home Agent. The registration process is 

protected by IPsec and the binding is protected by cookies (random numbers used to prevent 

spoofing) [15] and tokens (numbers used to compute keys) [15]. 

After a successful binding update, packets are sent between the Correspondent Node and 

the Mobile Node directly, without using Home Agents. The Correspondent Node examines its 

binding cache before sending any packets. If the binding cache has an entry for the address, a 

routing header with Home Address is added to the packet and the Correspondent Node sends the 

packet to the Care-of Address of the Mobile Node. 

The operation of Mobile IPv6 is shown in Figure 3-2 and Figure 3-3. 

 

Figure 3-2 Binding and Registration at Mobile IPv6 Handoff 

 

Figure 3-3 Normal Traffic of Mobile IPv6 
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3.4 PROBLEMS IN MIPV6 

Although Binding Updates and Mobile Prefix Discovery is protected by the use of IPsec 

extension headers [15], the introduction of route optimization introduces new security threats 

from many kinds of denial of service (DoS) and redirection attacks [14].  

Also, data packets exchanged with mobile nodes are exposed to similar threats as that of 

regular IPv6 traffic [15]. For example, packet confidentiality is not provided by Mobile IPv6. In 

other words, on-path attackers can easily capture the packets and analyze the content of the 

packets. 

Due to the security problems stated above, it is not recommended to use Mobile IPv6 to 

transfer packets to Mobile Node as a part of VPN without double tunneling. Double tunneling is 

necessary to transfer packets to Mobile Nodes in a secure VPN using Mobile IP. 

3.5 SUMMARY 

In this chapter, an overview of different versions of Mobile IP has been presented 

together with a discussion of the possibility to use Mobile IP to transfer packets as a part of VPN 

without double tunneling. Mobile IP is one of the most popular solutions for handling IP mobility 

problems at OSI Network Layer. However, Mobile IPv4 has the triangle routing problem, needs 

significant equipment and has a lot of security problems. Mobile IPv6 improves Mobile IPv4 by 

introducing Route Optimization and IPsec, but it still has security problems. The most severe 

problem of Mobile IPv6 is that it does not provide packet confidentiality which is essential to a 

secure VPN. Due to the problems stated above, it is not recommended to use Mobile IP to 

transfer packets to Mobile Node as a part of a secure VPN without double tunneling. 
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4Chapter 4: L2TP 

This chapter will introduce the Layer 2 Tunneling Protocol (L2TP). It will explore why 

L2TP is developed, its benefits, how does it work and its implementation under the FreeBSD 

Operating System (a UNIX Operating System).  

This discussion is based on a proposed standard RFC 2661 [28]. A new version of this 

protocol, L2TPv3, was published on RFC 3931 [42]. L2TPv3 provides better security and adds a 

mechanism to tunnel Layer 2 packets other than PPP packets [42]. The implementation of 

L2TPv3 on FreeBSD is not stable till now (18/09/2009) and the algorithm used to tunnel other 

Layer 2 packets in L2TPv3 is similar to the algorithm used to tunnel PPP packets in L2TP. Also, 

security is not important for L2TP because L2TP is protected by IPsec, a robust security protocol, 

in our scenario. For the above reasons this thesis has chosen to use L2TP instead of L2TPv3.  

4.1 OVERVIEW OF L2TP 

The Point-to-Point Protocol (PPP) [43] is a popular data link (Layer 2) protocol 

commonly used to transfer Layer 2 packets between adjacent nodes, such as a serial cable, a fiber 

optic link etc. It can provide authentication, encryption and compression. Most Internet Service 

Providers (ISPs) use PPP for customer’s dial-up and xDSL access to the Internet. 

PPP is comprised of three main components: 

(1) A method for encapsulating network packets. 

(2) Link Control Protocol (LCP) [43, 44] for configuring and testing data-link 

connections. 

(3) Network Control Protocols (NCPs) [43] for establishing and configuring network 

layer protocols. Among NCPs, the most famous one is Internet Protocol Control 

Protocol (IPCP) [45] for the Internet Protocol (IP). 
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L2TP is an open source layer 2 tunneling protocol. It was originally introduced to extend 

the PPP model by allowing the Layer 2 (PPP) endpoints to reside on different devices 

interconnected by a packet-switched network [28] instead of adjacent nodes. 

L2TP [49] origins from two older tunneling protocols for PPP: Layer 2 Forwarding 

(L2F) [47] and Point-to-Point Tunneling Protocol (PPTP) [27]. L2F is a Layer 2 tunneling 

protocol developed by Cisco. It has been merged to L2TP because it supports simultaneous 

tunnels. PPTP is also a Layer 2 tunneling protocol which has been discussed in Section 2.1.3. 

The main disadvantage of PPTP’s early versions is that it supports only one tunnel at a time for 

each user. L2TP successfully combines the advantages of L2F and PPTP without suffering from 

their disadvantages.  

Like PPTP, L2TP tunnels Layer 2 packets but it transfers these packets on OSI Layer 5. 

It encapsulates PPP frames into a UDP packet and tunnels network traffic over existing networks. 

The two end points of an L2TP tunnel are L2TP Access Concentrator (LAC) and L2TP Network 

Server (LNS). LAC is used to collect customer packets and send in an L2TP tunnel. LNS is used 

to receive L2TP packets from different customers (LACs). A typical L2TP topology is shown in 

Figure 4-1. 

The LAC receives PPP packets from different users, encapsulates the PPP packets into 

UDP packets, and then sends the UDP packets to the LNS. The LNS receives the UDP packets 

from different customers (different LACs), decapsulates the UDP packets and sends the original 

PPP packets to the destination computers (Remote Server in Figure 4-1). IP packets can also be 

tunnelled through L2TP and the process of tunneling IP packets is similar to that of tunneling 

PPP packets.  

L2TP allows different sets of PPP peer terminals (computers behind LAC) to utilize one 

tunnel via different sessions. In other words, an L2TP tunnel will be created between LAC and 

LNS, and different customers will use separate sessions inside the L2TP tunnel. Figure 4-2 shows 

multi-sessions inside a tunnel [49]. 

L2TP tunnel is bidirectional while L2TP session is directional. Typically one L2TP 

tunnel and two L2TP sessions are used between a pair of end users. 
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Figure 4-1 L2TP Topology 

 

 

 

Figure 4-2 L2TP Tunnel and Sessions 

 

L2TP does not provide strong authentication by itself and often uses IPsec to secure the 

tunnel [28]. 

A problem with L2TP/IPsec tunneling is that it does not support NAT [51, 52]. However, 

IPv6 (next generation network) [41] has an almost infinite number of addresses that makes NAT 

unnecessary [18].  

L2TP by itself is not useful for mobile business scenarios as there is no native ability to 

cope with mobile clients. 
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4.2 L2TP MESSAGES 

The packets exchanged within an L2TP tunnel are categorised as either control messages 

or data messages. Control messages are used to establish, maintain and clear L2TP tunnels, and 

data messages are used to encapsulate PPP packets into L2TP tunnel packets and to transfer the 

data frames over the L2TP tunnel. 

A common L2TP header is used for both L2TP control messages and L2TP data 

messages. The control messages are transported reliably by using sequence number in L2TP 

header and using retransmission algorithm, while the data messages are transported unreliably. 

Figure 4-3 and Figure 4-4 show the packet structure of L2TP data messages and L2TP control 

messages. 

 

Figure 4-3 Structure of L2TP Data Messages 

 

Figure 4-4 Structure of L2TP Control Messages 

 

The payload (L2TP Control Messages in Figure 4-4) of an L2TP control message 

consists of several Attribute Value Pairs (AVPs). Each AVP represent an attribute of an L2TP 

control message, for example “control message type” is a mandatory attribute for all control 

messages and “random vector” (is used to hide sensitive control message data such as user 

passwords) is also a mandatory attribute when the message is hidden. Typically, multiple AVPs 

are used in an L2TP control message which will be exchanged between the LAC and the LNS. 
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Different L2TP tunnels use different UDP port numbers for communication. Port 1701 is 

only used in L2TP initial tunnel creation stage. In order to setup an L2TP tunnel, a tunnel 

receiver (LNS or LAC) listens on port 1701 for incoming L2TP connection. A tunnel initiator 

(LNS or LAC) selects an idle port (which is unnecessarily 1701) to send a packet to port 1701 of 

the LNS. The tunnel receiver receives the packet, selects an idle port (which is unnecessarily 

1701 either) and notifies the LAC about the new communication port. From then on, the LAC-

LNS pair uses the negotiated ports to communicate until the tunnel is disconnected.  

4.3 L2TP TUNNEL ESTABLISHMENT 

There are three steps to setup a PPP connection through L2TP tunnel [28]: 

(1) Establish a control connection of an L2TP tunnel. A three message exchange is 

employed to setup control connection. A tunnel initiator sends a Start-Control-

Connection-Request (SCCRQ) message to a tunnel receiver. The receiver sends a 

Start-Control-Connection-Reply (SCCRP) message back. The initiator responses 

with a Start-Control-Connection-Connected (SCCCN) message. The receiver 

acknowledges the packet by sending a Zero-Length Body (ZLB) message. L2TP 

tunnel authentication maybe used within these messages (typically not). The typical 

message exchange is shown below. 

Tunnel Initiator Tunnel Receiver 

-----------------   --------------------- 

    SCCRQ ->----------------------. 

  .---------------------<- SCCRP—-‘ 

  ‘-SCCCN ->----------------------.     

 ---------------------<- ZLB----‘ 

 
(2) Establish an L2TP session triggered by PPP request. Similar three message 

exchange is used in this step. 

(3) PPP initialization. Each end of the PPP link must first send LDP [43] (Link Control 

Protocol) packets to configure and test the data link (OSI Layer 2). After the link has 

been established, the peer usually authenticates using PPP Challenge Handshake 

Authentication Protocol (CHAP). Then, PPP must send NCP [43] (Network Control 

Protocol) packets to choose and configure network layer protocols. After that, data 
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packets can be sent though the PPP [43] link. For more details about CHAP, please 

refer to RFC 1994 [46].  

After the steps above, PPP packets can be exchanged through a L2TP tunnel. 

4.4 L2TP IMPLEMENTATION 

There are many L2TP implementations on Cisco equipment, Linux, UNIX and 

Windows. This thesis will only analyse the implementations under UNIX.  

The implementation of L2TP under UNIX can be divided into 2 parts: kernel and user 

space. The experimental work done in this paper uses FreeBSD 7.0 (a free UNIX-like operating 

system) kernel and the user space daemon MPD 5.2 (Multi-link PPP daemon for FreeBSD) [2]. 

The kernel part is responsible for receiving and sending PPP packets to end users, encapsulating 

and decapsulating L2TP packets, and sending and receiving UDP packets between LAC and 

LNS. The user space part is responsible for creating and managing the L2TP tunnel, and saving 

and managing L2TP policies and information.  

Different implementations use different software architectures. MPD uses the netgraph 

module [50] for implementation. The netgraph system provides a way to implement kernel 

networking functions under user space. In order to achieve this goal, programs under user space 

first register a node type (such as a protocol like PPP) into the kernel, and then register and 

implement other functions of that node (such as encapsulating). Finally, kernel functions are 

implemented under user space. In this way, MPD can handle different kinds of packets, for 

example PPP packets or IP packets, by implementing different protocols. In this way, only a 

small amount of code needs to be added when introducing a new packet type.  

4.5 SUMMARY 

In this chapter, firstly, the history of L2TP is introduced together with a discussion of its 

benefits over other protocols. Secondly, an overview of L2TP has been presented, followed by 

the detailed analysis of L2TP packet structure and tunnel establishment. Finally, the 

implementation of L2TP under FreeBSD is discussed.  
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L2TP is an open source Layer 2 tunneling protocol. It encapsulates PPP frames into 

UDP packets and tunnels network traffic over existing networks. It extends the PPP model by 

allowing the Layer 2 (PPP) endpoints to reside on different devices interconnected by a packet-

switched network [28]. The latest version of L2TP (L2TPv3) can tunnel all kinds of Layer 2 

packets, which extends the range of applications. L2TP does not provide strong authentication by 

itself and often uses IPsec to secure the tunnel [28]. 

The implementation of L2TP under UNIX can be divided into 2 parts: kernel and user 

space. The kernel part is responsible for sending, receiving, encapsulating and decapsulating 

packets. The user space part is responsible for creating and managing the L2TP tunnel, and 

saving and managing L2TP policies and information. 

L2TP by itself is not useful for mobile business scenarios as there is no native ability to 

cope with mobile clients. 
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5Chapter 5: IPsec 

Internet Protocol Security (IPsec) is a suite of protocols for securing IP communications 

by authenticating and encrypting each IP packet of a data stream. It defines a standard and robust 

mechanism to provide security to IP and upper layer protocols. Because of its strong security, 

IPsec has already become an integral part of the IPv6 (next generation network) protocol.  

This chapter will first introduce the Internet Protocol Security (IPsec), how it works and 

its implementation under FreeBSD Operating System. Finally, this chapter will discuss the 

differences between Microsoft Windows IPsec and UNIX IPsec. 

Advanced readers should also read this chapter carefully to get a better understanding of 

IPsec and its implementation, so that they can understand the rationality and advantages of the 

new and novel L2TP/IPsec solution explained in later chapters.  

5.1 OVERVIEW OF IPSEC 

IP packets have no inherent security, so it is easy to modify IP packets, replay old 

packets, or view the contents of IP packets in transmission. IPsec is a suite of protocols which 

provides authentication, integrity and confidentiality services to IP packets at Network Layer 

(OSI Layer 3, same layer as IP). IPsec can be used as a Client to Server VPN or a Site to Site 

VPN. The typical topology is shown in Figure 5-1. With a Site to Site VPN, the concentrator 

receives IP packets from computers, encapsulates the packets into IPsec packets and sends them 

to the tunnel server. The tunnel server decapsulates IPsec packets into original IP packets and 

sends the IP packets to their destination (Remote Server in Figure 5-1). The same algorithm is 

used in Client to Server VPN except that the concentrator and the customer computers 

(Computer A and Concentrator in Figure 5-1) are actually on the same computer.  
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Figure 5-1 IPsec Tunnel Topology 

 

IPsec is a suite of open standards, and it can be divided into four components. The 

fundamental components of IPsec are shown as follows: 

(1) Encapsulation Protocols -- Authentication Header (AH) [13] and Encapsulating 

Security Payload (ESP) [12]. 

(2) Security Policy Management -- Security Policies (SPs) and Security 

Associations (SAs) are used and managed by IPsec [11]. 

(3) Key Management -- the generation, distribution and storage of cryptographic keys. 

The Internet Key Exchange (IKE) [11] is used to establish a shared secret key to 

create IPsec security associations. 

(4) Algorithms for cryptographic algorithm. 

AH and ESP are the packet structures used to protect IP packets. The AH and ESP 

headers are inserted after an IP header and before the data to be protected, so AH and ESP are 

Layer 3 protocols. There are “two modes” to protect IP packets: transport mode and tunnel mode. 

Transport mode is used to protect IP payload or upper-layer protocols, while tunnel mode is used 

to protect the entire IP packet (including IP header). Both transport mode and tunnel mode can be 

used under AH or ESP. 

ESP [12] is used to provide confidentiality, data source authentication, integrity, an anti-

replay service. It does so by inserting an ESP header and an ESP trailer. ESP authentication data 

may also be added to the end of an ESP packet. Protocol Number 50 is assigned to ESP packets. 
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In an ESP packet, that number will be put in the protocol field of an IPv4 header or in the “Next 

Header” field of an IPv6 header. In transport and tunnel mode, the packet structure of ESP is 

shown in Figure 5-2 and Figure 5-3. ESP is an integral part of IPv6 protocol and ESP header is 

an extension header in IPv6. ESP header should appear after hop-by-hop, routing, and 

fragmentation extension headers and the protected data should put after all extension headers.  

 

Figure 5-2 Packet Structure of ESP Transport Mode 

 

Figure 5-3 Packet Structure of ESP Tunnel Mode 

 

The ESP header is not encrypted because of the specified order of processing of ESP 

packets: first verify the sequence number, then check the integrity of the data, and then decrypt 

the data according to Security Parameters Index (SPI, a part of ESP header). ESP packets cannot 

be decrypted if ESP header is encrypted as sequence number and SPI are necessary parts of ESP 

header. 

Like ESP, AH [13] provides data source authentication, integrity, and optionally an anti-

replay service. It only uses a header to protect data and it does not provide confidentiality. 

Without confidentiality service, hackers can easily view the contents of tunnelled packets. 

Fortunately, AH can be applied alone or in combination with ESP. Using AH with ESP is out of 

the scope of this thesis due to its complexity. AH provides authentication for much of the IP 

header in transport mode, as well as for upper level protocol data. Some IP header fields are not 

protected as they may change in transit and may not be predictable by the sender.  

AH has a protocol Number 51. In an AH packet, that number will be put in the protocol 

field of an IPv4 header or in the “Next Header” field of an IPv6 header. AH is an integral part of 

IPv6 protocol and AH header is an extension header in IPv6. The AH header should appear after 
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hop-by-hop, routing, and fragmentation extension headers and the protected data should put after 

all extension headers. In transport and tunnel mode, the packet structure of AH is shown in 

Figure 5-4 and Figure 5-5.   

 

Figure 5-4 Packet Structure of AH Transport Mode 

 

Figure 5-5 Packet Structure of AH Tunnel Mode 

 

Security Association (SA) [11] is the shared security information between two network 

entities. There are 2 kinds of SAs: IKE (Internet Key Exchange) SA and Child SA. IKE SA is 

used to establish a secure authenticated communication channel by using Diffie-Hellman (D-H) 

[56] key exchange algorithm to generate a shared secret key to encrypt further IKE 

communications. Child SA includes ESP SA and AH SA and it is used to negotiate Security 

Associations on behalf of other services like ESP and AH. IKE SA should be established first 

and Child SA is based on it. Child SA defines the way to protect network traffic (encryption), the 

network or IP addresses to be protected and the lifetime of the protection. A Child SA also 

contains the state of an IPsec tunnel. A Child SA is unidirectional, which means that a Child SA 

only defines security services for one direction not the returning traffic. Typically, Child SAs 

exist in pairs, one in each direction, and they are negotiated when setting up IPsec tunnel. All 

SAs reside in the Security Association Database (SADB) which will be loaded in memory when 

starting up IPsec services. Each SA has a lifetime which will be negotiated between IPsec peers 

by the key management protocol [17]. 

Security Policy (SP) [11] defines the traffic to be protected by IPsec of a specific user. 

This allows for certain traffic to be protected by one kind of encryption while others can use 

different kinds of protection. An SP specifies the source and destination of the traffic to be 
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protected, the type of the traffic, the way to protect the traffic and with whom the protection is 

shared. Typically, SPs are set on the network security gateway and are maintained in the Security 

Policy Database (SPDB) which will be loaded in memory when starting up IPsec services. All IP 

traffic going through the network security gateway will be checked through SPDB. If the traffic 

matches an SP in SPDB, the network security gateway sends the traffic according to the SA 

specified by that SP. If the SP does not point to any existing SAs in the SADB, a new SA pair 

will be created before any traffic may pass [17]. 

Internet Key Exchange (IKE) [11] is the protocol used to authenticate and establish 

Security Association (SAs) using cryptographic keys. IKE was originally defined in 3 

documents: Internet Security Association and Key Management Protocol (ISAKMP, RFC 2408) 

[29], The Internet IP Security Domain of Interpretation (DOI, RFC 2407) [61], and IKE (RFC 

2409) [62]. IKE was updated to version two (IKEv2) [11] in December 2005. The new version 

obsoletes ISAKMP and DOI, and simplifies message exchange by merging two phases in IKE 

version 1.  

IKEv2 communication only consists of pairs of messages: a request and a response. The 

pair is called an “exchange”. Commonly, only two exchanges are used to setup SAs: 

IKE_SA_INIT and IKE_AUTH exchanges. The IKE_SA_INIT negotiates cryptographic 

algorithms (security parameters for the IKE SA), exchanges nonces (a random number), and does 

a Diffie-Hellman exchange [56]. The IKE_AUTH transmits identities, proves knowledge of the 

secrets (certificates) corresponding to the two identities, and establishes the first CHILD_SA (an 

ESP SA or an AH SA). Other types of exchanges are CREATE_CHILD_SA (an IKE SA can 

have many Child SAs) and INFORMATIONAL (witch deletes an SA, reports errors, or other 

maintenance work).  

The certificates mentioned above can be distributed by Public Key Infrastructure (PKI) 

[55] or can be pre-shared keys. PKI is the system to distribute certificates. Typically, 

administrators are responsible for verifying the identities of users and granting users certificates. 

PKI is a complex system and it consists of Registration Authority (RA), Certificate Authority 

(CA) and repository of certificates. For more information about PKI, please refer to [55]. 
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Detailed discussion about PKI is beyond the scope of this thesis. Pre-shared keys can also be 

used as certificates. Pre-shared keys can be easily deployed by copying the same pre-shared key 

to IPsec peers before establishing an IPsec tunnel, but they are a relatively weak authentication 

method. Using different kinds of certificates will not influence the performance of handling 

mobility problems in IPsec tunnel. In order to simplify the implementation of L2TP/IPSec in this 

thesis, it was decided to use pre-shared keys for certificates. 

Cryptographic algorithms can be classified into two categories: Symmetric and 

asymmetric [54]. Symmetric cryptographic algorithms are a class of algorithms for cryptography 

that use the same cryptographic keys for both decryption and encryption, while asymmetric 

cryptographic algorithms use a different key for encryption than for decryption. In IPsec, key 

exchange (IKE) uses an asymmetric cryptographic algorithm (Diffie-Hellman Key Exchange) 

and encapsulation protocols (ESP and AH) use symmetric cryptographic algorithms [54].  

Diffie-Hellman key exchange (D-H) is a cryptographic protocol that allows two parties 

to establish a shared secret key over an insecure communication channel. This key can then be 

used to encrypt subsequent communications using a symmetric algorithm. The D-H algorithm is 

shown in the example below: Alice and Tom agree to use a large prime number ‘p’ and base ‘g’; 

Alice chooses a secret integer ‘a’ and sends Tom the result of ‘ga mode p’; Tom chooses a secret 

integer ‘b’ and sends Alice the result of ‘gb mode p’; finally, Alice calculates the final shared 

secret key by ‘(gb mode p)a mode p’ and Tom calculates the same value by ‘(ga mode p)b mode p’. 

The algorithm is shown in the table below. 

 

Table 5-1 Diffie-Hellman algorithm 
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Different symmetric cryptographic algorithms can be used in encapsulation protocols 

(ESP and AH). The algorithms that must be implemented are: AES-CBC with 128-bit keys, 

Triple DES-CBC, NULL, and HMAC-SHA-96. For definitions of these algorithms, please refer 

to RFC 4835 [57]. 

The relationship between different IPsec modules is shown in Figure 5-6 [8, 30]. 

 

Figure 5-6 IPsec Module Architecture 

 

5.2 IPSEC TUNNEL ESTABLISHMENT 

Setting up an IPsec tunnel requires a relatively short period. The key steps are: 

(1) Start up SPDB, SADB and IKE services. 

(2) When the IPsec concentrator receives an IP packet, it checks the service type of the 

packet (port number), the source and the destination addresses of the IP packet. If 

these things match an entry in SPD, a new IKE SA and then a Child SA (ESP SA or 
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AH SA) will be negotiated via IKE according to the security policy. The new SA 

will be saved in SADB and a pointer to the new SA (Child SA) will be saved in SPD. 

(3) Finally, all similar data packets can be sent inside IPsec tunnel.  

5.3 SENDING DATA PACKETS 

Similar to IPsec tunnel establishment, the IPsec concentrator checks every IP packet it 

received. If the packet matches an entry (SP) in SPD, the concentrator searches for the Child SA 

which is pointed to by the entry (SP). If a Child SA is found, the concentrator will encapsulate 

and encrypt the packet into an ESP or AH packet according to the Child SA, and sends the ESP 

or AH packet to the other end of the IPsec tunnel (Tunnel Server in Figure 5-1). The tunnel 

server fetches the SA from the SADB using destination, protocol (AH/ESP), and SPI of the 

packet. If an SA is found, the tunnel server decapsulates and decrypts the packet according to 

Security Parameter Index (SPI) in the ESP or AH header of the packet, checks the security policy 

according to SPD and sends the packet to the destination of the IP packets (Remote Server in 

Figure 5-1). A similar algorithm is used for the returning traffic. 

In summary, in Figure 5-1, only the red line is the IPsec tunnel. The packets outside the 

IPsec tunnel are normal IP traffic, and the packets inside are ESP or AH packets. The 

concentrator and the tunnel server are the endpoints of the IPsec tunnel. They are responsible for 

encapsulating IP packets into ESP or AH packets, and decapsulating ESP or AH packets back to 

IP packets.   

5.4 IPSEC IMPLEMENTATION 

IPsec is a framework of open standards. There are IPsec implementations under 

Windows, Cisco IOS Software, Solaris, BSD operating system and Linux. This thesis will only 

analyse the implementations under FreeBSD. 

FreeBSD is written in the C programming language. The implementation of IPsec under 

FreeBSD can mainly be divided into 2 parts: kernel (a part of the FreeBSD kernel) and user 

space (racoon2 project) [1, 7]. User space part is responsible for handling key exchange and 
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managing security policies. The kernel part is responsible for sending and receiving IP packets, 

encapsulating and decapsulating ESP or AH packets, and checking security policies. The 

architecture of the IPsec implementation is shown in Figure 5-7.  

 

Figure 5-7 IPsec Implementation Architecture 

 

User space part (racoon2) can be mainly divided into 3 components (iked, spmd and 

kinkd) and 2 main interfaces (spmif and PFKEY). Each component has to start in a separate 

process so that interfaces are used to communicate between different components (a process is an 

instance of a computer program, consisting of one or more threads, that is being executed by a 

computer that has the ability to run several computer programs concurrently).  

Iked is responsible for handling key exchange using IKE protocol. Both IKE version 1 

and version 2 are implemented by iked. In other words, 3 protocols are implemented to support 

IKE version 1: ISAKMP, DOI and IKE; IKEv2 are also implemented to support IKE version 2. 

Iked is only responsible for creating IKE packets and negotiation. The actual sending packets and 

cryptographic functions are handled by the FreeBSD kernel through system calls. In order to get 

or manage SA information, iked calls PFKEY interface to communicate with IPsec kernel. In 

order to view or change SP information, iked calls spmif interface to communicate with spmd. 

Spmd manages the SPD and receives various requests from other racoon2 key 

management daemons. It reads security policies (SPs) from the user definition file, creates a 

temporary security policy database under user space and manages the actual SPD (inside IPsec 

kernel) via PFKEY interface. Other racoon2 key management daemons may make security 
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policy requests to spmd through spmif interface under user space. The actual SPD will be empty 

if spmd is not started so that spmd must be started before iked or any other IPsec components. 

The IPsec kernel will only check the actual SPD, not through spmd.  

Kinkd [1] is similar to iked except that it processes the KINK (Kerberized Internet 

Negotiation of Keys) protocol [58]. KINK is not a popular protocol for handling key exchange. 

This thesis will not discuss the KINK protocol and the kinkd daemon. 

Interface spmif defines a group of functions for security policy requests. The interface is 

created like an internal socket (socket is usually used to deliver data packets to other hosts on 

network. An internal socket is a local socket which does not go through Internet), but actually it 

is a file which is defined in racoon2 settings. Key management daemons like IKE can read or 

write to that interface, and spmd scans the interface regularly and handles these requests. If the 

security policy is changed according a request, spmd has to change the temporary security policy 

database first and then send a request to IPsec kernel through PFKEY interface. 

Interface PFKEY defines a group of functions sending and receiving security policy 

requests and security association requests between user space and IPsec kernel. The PFKEY 

interface is also an internal socket. IPsec kernel listens to the PFKEY interface, updates the SPD 

or SADB accordingly, and sends response to that interface if necessary. 

IPsec kernel is a part of the FreeBSD kernel. When starting up the FreeBSD operating 

system, the FreeBSD kernel will first be loaded and then libraries such as libc (the library for C 

programming language). Therefore only basic functions can be used under the FreeBSD kernel. 

All the source code of the kernel is under /usr/src/sys/ directory and the basic functions are 

declared in /usr/src/sys/sys/systm.h. The FreeBSD kernel is a complex system and the KAME 

project provides implementation for IPsec and IPv6 protocol stack under the FreeBSD kernel. 

This thesis will not explain the whole KAME project which is fully described in [7] and [59]. It 

will explain how IPsec works under the FreeBSD kernel.  

The FreeBSD kernel is responsible for sending and receiving IP packets. Figure 5-8 

illustrates an overview of the process flow of sending and receiving IP (IPv4) packets under the 

FreeBSD kernel. The main functions of handling IP packets under the FreeBSD kernel are 
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ip_input() and ip_output(). All IP packets are received by each network interface driver and 

passed to the ip_input() function. If the packet reaches its destination address, it will be passed to 

transport layer (or other upper layer) input functions according to packet type. If the packet 

should be sent to other interfaces or other network devices, it will be passed to the ip_forward() 

function and then to the ip_output() function. Transport layer (or other upper layer) output 

functions may also call the ip_output() function to send a packet. The ip_output() function 

searches for route of the packet and send the packet to Internet through network interface drivers.  

 

Figure 5-8 IPv4 Packet Input/Output Flow 

 

By default, IPsec is not supported under the FreeBSD kernel. To add IPsec support to the 

FreeBSD kernel, add IPSEC option to your FreeBSD kernel configuration file (by default, the 

file is /usr/src/sys/i386/conf/GENERIC) and recompile the kernel. Managing IPsec packets is 

similar to managing IP packets. Some new functions will be inserted into the original framework. 

Figure 5-9 illustrates an overview of the process flow of managing IPsec packets under the 

FreeBSD kernel.   
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Similar to managing IP packets, all packets are received by each network interface driver 

and passed to the ip_input() function. Two kinds of packets needs IPsec handling in the 

ip_input() function which is shown below. Other packets are handled like normal IP packets. 

(1) ESP/AH packets which reach an IPsec tunnel endpoint. If the packet reaches its 

destination address, the ip_ipsec_input() function will be called and then returned to 

check whether the packet is an ESP/AH packet with correct SA information 

according to SADB. If the ip_ipsec_input() function returns success, the ip_input() 

function forwards the packet to the ipsec_common_input() function. The 

ipsec_common_input() function decrypts and decapsulates the packet into an IP 

packet, and then call the ip_input() function using the IP packet. This ip_input() 

function call will also call the ip_ipsec_input() function and then call the 

ip_ipsec_fwd() function to check SP according to SPD. Finally, the IP packet will be 

forwarded through normal IP process (the IP packet goes through ip_forward() -> 

ip_output() ). 

(2) IP packets which should be encapsulated by ESP/AH and sent to the other IPsec 

tunnel endpoint. If the packet should be sent to other interfaces or other network 

devices, it will be passed through ip_ipsec_fwd() -> ip_forward() -> ip_output(). 

The ip_output() function will pass the IP packet to the ip_ipsec_output() function to 

check SP according to SPD. If a correct SP is found, the IP packet will be passed to 

the ipsec4_precess_packet() function. The ipsec4_precess_packet() function check 

whether there is valid SA related to the SP. If no SA is found, create a new SA via 

IKE (detailed information is already discussed in Section 5.2 and 5.3). Then, the 

ipsec4_precess_packet() function encrypts the IP packet into an ESP/AH packet and 

passes the ESP/AH packet to the ip_output() function. Finally, the ESP/AH packet 

can be sent to the Internet.  
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Figure 5-9 IPsec Packet Input/Output Flow 

 

SADB and SPD are in the FreeBSD kernel, and are saved in memory. There is another 

module to handle PFKEY in the FreeBSD kernel. 

5.5 COMPARISON BETWEEN WINDOWS IPSEC AND UNIX IPSEC 

The IPsec service needs to be installed on FreeBSD (UNIX) by recompiling the 

FreeBSD kernel [6] and installing racoon2 [1]. In the Microsoft Windows operating system, 

however, all that is required comes with the operating system. The IPsec service can be started by 

configuring an IPsec Policy snap-in in the Microsoft Management Console (MMC) and creating 

a new connection via the Network Connection Wizard [60].  

The topology of IPsec, which is shown in Figure 5-1, is also different for Windows and 

FreeBSD (UNIX). In Figure 5-1, computer A, B and concentrator can be on the same machine 

while in UNIX they must be on separate machines. In other words, Windows supports both 
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Client to Server VPN and Site to Site VPN, while FreeBSD (UNIX) only supports Site to Site 

VPN. 

5.6 SUMMARY 

This chapter first introduces the Internet Protocol Security (IPsec), its components and 

how it protected IP packets. Then, the implementation of IPsec under FreeBSD (both kernel and 

user space parts) is presented. Finally, this chapter discusses the differences between Microsoft 

Windows IPsec and UNIX IPsec. 

Internet Protocol Security (IPsec) is a suite of protocols for securing IP communications 

by authenticating and encrypting each IP packet of a data stream. It is a network layer protocol 

and has been integrated into the IPv6 (next generation network) protocol. It can be divided into 

four components: encapsulation protocols (AH and ESP), security management (SP and SA), key 

management (IKE) and algorithms for cryptographic algorithm. Encapsulation protocols (AH 

and ESP) are the packet structures used to protect IP packets. Other components are used to 

manage security information and to establish the IPsec tunnel. 

The typical topology of an IPsec tunnel is shown in Figure 5-1, and only the red line in 

the figure is protected by IPsec. In order to start up an IPsec tunnel, SPDB, SADB and IKE 

services (spmd and iked provides these services under FreeBSD) should be started first. When an 

IPsec concentrator receives an IP packet, it checks the packet according to SPD. If an SP matches 

the packet, a new SA will be negotiated during tunnel establishment via IKE according to the SP, 

or old SA is used after tunnel establishment. Then the IPsec concentrator encapsulates and 

encrypts the IP packet into an ESP (or AH) packet according to the SA, and sends the ESP (or 

AH) packet to the other end of IPsec tunnel. The IPsec tunnel server decapsulates and decrypts 

the ESP (or AH) packet into the original IP packet according to the SA, checks SP and forwards 

the IP packet to its final destination. 

The implementation of IPsec under FreeBSD can mainly be divided into 2 parts: kernel 

and user space. User space part is responsible for handling key exchange and managing security 
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policies. The kernel part is responsible for sending and receiving IP packets, encapsulating and 

decapsulating ESP or AH packets, and checking security policies. 

IPsec by itself does not have native ability to cope with mobile clients. An IPsec 

extension adds mobility support to IPsec, which is discussed in RFC 4555 [53]. However, that 

solution has some limitations which will be discussed in Section 8.4.  
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6Chapter 6: L2TP/IPsec Interworking 

L2TP does not provide strong authentication by itself, instead it often uses IPsec to 

secure packets by providing confidentiality, authentication and integrity. 

This chapter will first introduce why L2TP/IPSec is necessary, how L2TP and IPsec 

work together, and then will discuss the details of the L2TP/IPsec tunnel establishment and 

authentication. Finally, this chapter will discuss the implementation of the L2TP/IPsec tunnel 

under FreeBSD (UNIX). 

Advanced readers should also read this chapter carefully to get a better understanding of 

L2TP/IPsec tunnel and its implementation, so that they can understand the rationale and 

advantages of the new and novel L2TP/IPsec solution explained in later chapters. 

6.1 OVERVIEW OF L2TP/IPSEC TUNNEL 

Although IPsec can be used as an independent secure tunnel, it cannot tunnel layer 2 

packets. Tunneling layer 2 packets is necessary when several persons inside a moving vehicle are 

connected to a network at layer 2 and they want to connect to the company network through 

VPN.  

L2TP is used to tunnel Layer 2 packets (usually PPP packets) over public networks. 

However, it does not provide strong authentication by itself. Both the control and data packets of 

L2TP protocol are vulnerable to attack: snooping data packets, modifying both control and data 

packets and launching Denial of Service (DoS) attacks by terminating PPP connections or L2TP 

tunnels. 

To address these threats, L2TP security protocols must provide authentication, integrity 

and reply protection for control and data packets, and confidentiality protection is desirable [24]. 

IPsec meets this category. IPsec provides per-packet authentication, confidentiality protection, 

and integrity and reply protection for network or upper layer packets. Both control and data 

packets of L2TP are UDP packets which can be protected by IPsec. Moreover, IPsec has 
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demonstrated strong security features in the last years and it has already been integrated into the 

next generation network (IPv6). That is why IPsec is often used to secure L2TP packets. 

In order to protect L2TP packets (both control and data packets), they should be put 

inside the IPsec packets. Two protocols can be used to protect data in the IPsec protocol suite: 

ESP [12] and AH. Compared with ESP, AH does not provide confidentiality. In other words, 

attackers can easily see the content of the packets transferring over the public Internet even with 

AH protection. That is why ESP is usually used to protect L2TP packets. 

Two modes under IPsec can be used to protect L2TP packets: transport mode and tunnel 

mode. The IPsec Transport mode only protect the payload of the IP packet (network layer or 

upper layer protocols of the packet), while tunnel mode protects the entire IP packet (both 

payload and IP header). In L2TP standard (RFC 3193) defined by Internet Engineering Task 

Force, the IPsec transport mode must be supported while the IPsec tunnel mode may be 

supported [24]. To simplify implementation, the IPsec tunnel mode is used in this thesis. Similar 

algorithms will be used in the IPsec transport mode. 

Figure 6-1 shows the packet structure of L2TP/IPsec tunnel in IPsec tunnel mode. 

 

Figure 6-1 Packet Structure of L2TP/IPsec Tunnel in IPsec Tunnel Mode 
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6.2 L2TP/IPSEC TUNNEL ESTABLISHMENT 

As IPsec protects L2TP in an L2TP/IPsec tunnel, IPsec should be negotiated first and 

then L2TP. The process of setting up an L2TP/IPsec VPN is as follows: 

(1) Negotiate IPsec Security Association (SA, shared security information between two 

network entities) [11], typically through Internet Key Exchange (IKE). Digital 

certificates should be issued (via Certificate Authority) before this step. 

(2) Negotiate and establish L2TP tunnel with the protection of ESP. 

(3) Layer 2 packets can be sent via L2TP/IPsec tunnel. 

6.3 L2TP/IPSEC TUNNEL AUTHENTICATION 

In general, PPP provides initial authentication, but not per-packet authentication. The 

authentication in L2TP is optional and is usually not used, as IPsec provides per-packet 

authentication.  

During the setup phase of an L2TP/IPsec tunnel, the authentications will be used in the 

sequence below: 

(1) Negotiate IPsec Security Association (SA), typically through Internet Key Exchange 

(IKE). 

(2) Do PPP initial authentication using PPP Challenge Handshake Authentication 

Protocol (CHAP) [32]. 

The setup phase is a relatively short period. The possibility of changing IP addresses in 

setup phase is very limited. Furthermore, there are several states during setup phase, which add 

complexity to mobility solutions. Also, it is hard to decide whether authentication failure is 

caused by changing IP addresses or some other issues. Due to the reasons above, we decided to 

add mobility support only in data transfer phase.   

In data transfer phase (when a packet arrives at a tunnel), the following authentication 

will be used: 

(1) Check Security Association (SA) information in IPsec according to the ESP header 

and the IP header. The IPsec component fetches and checks the SA from the 
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Security Association Database (SADB) using the destination address (end point of 

IPsec tunnel), protocol (ESP), and Security Parameter Index (SPI). The payload is 

then decrypted according to SA [17]. 

(2) Check the security policy of the packet by querying the Security Policy Database 

(SPD). The source and destination addresses in SPD will be checked and they are 

the addresses of end users (Point A and Point F in Figure 5). Other information will 

also be checked in SPD such as valid time, relevant SA information and upper layer 

protocols [17]. 

(3) Verify that the IP addresses and port values in the L2TP packet match the socket 

information which was used to setup the L2TP tunnel [24]. 

6.4 L2TP/IPSEC TUNNEL IMPLEMENTATION 

An L2TP/IPsec tunnel can be easily configured under Windows. However, there is no 

native support for creating an L2TP/IPsec tunnel under FreeBSD. The L2TP and IPsec tunnel 

can be configured separately under FreeBSD, but not as a whole. This thesis will analyse the 

implementation of the L2TP and IPsec tunnel under FreeBSD, and will propose and compare 

some solutions to create an L2TP/IPsec tunnel. 

The topology of an L2TP, or IPsec, or L2TP/IPsec tunnel is shown in Figure 6-2. Point 

B and Point E, which usually use private IP addresses, are called internal interfaces. Point C and 

Point D, which usually use public IP addresses, are called external interfaces. 

 

Figure 6-2 IPsec, or L2TP, or IPsec/L2TP Tunnel Topology 
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IPsec tunnel concentrator listens to IP packets at Point B, encapsulates and encrypts the 

IP packets into ESP packets and sends them through Point C. L2TP tunnel concentrator (LAC) 

listens to layer 2 packets at Point B, encapsulates packets into UDP packets and sends them 

through Point C. L2TP and IPsec concentrator listen on the same network interface. If they 

handle packets at the same time, only one of the concentrators (L2TP or IPsec) will eventually 

receive and handle the packets. Under FreeBSD, the L2TP concentrator will receive and handle 

packets from Point B first, as callback functions (the functions which are defined under user 

space but are used under the FreeBSD kernel) from L2TP will be called before IPsec functions in 

the ip_input() functions (see Figure 5-9).  

Similar things happen when tunnel servers receive tunnel packets from Point D. There is 

also a confliction between the L2TP tunnel server (LNS) and the IPsec tunnel server. The L2TP 

tunnel server will receive and handle tunnel packets first under FreeBSD. 

Therefore, if you simply configure L2TP and IPsec using the topology above, the whole 

system will work like an L2TP tunnel. 

Upper and Lower Protocol Solution (ULP solution) 

One solution [64] is to regard L2TP as an upper layer protocol and to regard IPsec as a 

lower layer protocol. For example, the input and output functions of TCP (upper layer protocol) 

are the tcp_input() function and the tcp_output() function; the input and output functions of IP 

(lower layer protocol) are the ip_input() function and the ip_output() function. The relationship of 

these functions is shown in Figure 5-8. However, this solution is not easy to implement, as each 

packet has to call both input and output functions of upper and lower layers. Security policy 

checking in IPsec is also a significant problem in this solution, as source and destination 

addresses are changed to the addresses of Point C and D after L2TP receives and handles a 

packet from Point B, and these packets will not pass the security policy checking and will not be 

encrypted. It would be extremely difficult to implement this solution under FreeBSD and so we 

rejected this solution path. However, under other platforms (such as Linux which uses Openswan 

[65] for IPsec and OpenL2TP [64] for L2TP), this solution is possible; as L2TP directly calls 
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IPsec functions. IPsec and L2TP listen to the same port number in an L2TP/IPsec tunnel under 

that platform [64].  

Loopback Interface Solution 

The solution we have developed is to add a loopback interface to both concentrator and 

tunnel server. A loopback interface is a virtual network interface implemented only in software. 

Any traffic that sends to the loopback interface is immediately received on the same interface. 

Adding a new interface to concentrator and tunnel server solves the confliction, as L2TP and 

IPsec can listen on different network interfaces. The topology is shown in Figure 6-3.  

 

Figure 6-3 Loopback Interface Solution for IPsec/L2TP Tunnel 

 

The L2TP concentrator receives a packet (source: Point A, destination: Point H) from 

Point B, encapsulates the packet and sends the new packet (source: Point C, destination: Point F) 

through Point C. The packet will go back to Point C immediately. The IPsec concentrator 

receives the packet from Point C, encapsulates and encrypts the packet and sends the new packet 

(source: Point D, destination: Point E) through Point D. The IPsec tunnel server receives the 

packet from Point E, decrypts and decapsulates the packet into the original packet (source: Point 

C, destination: Point F) and forwards the packet through Point F. The packet will go back to 

Point F immediately. The L2TP tunnel server receives the packet from Point F, decapsulates the 

packet into the original packet (source: Point A, destination: Point H) and forwards the packet to 
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Point H. Similar algorithm is used for the returning traffic. Table 6-1 shows some configuration 

of the loopback interface solution. 

 

Table 6-1 Configuration of Loopback Interface Solution 

 

This solution is simple and stable, because a loopback interface provides a stable address 

to minimize impact of a physical interface going down. The approach taken in this solution could 

be used on any POSIX (a software interface to different operating systems) [69] operating system.  

A routing loop [80] is a common problem with computer networks. It will cause the 

traffic to be forwarded into an endless loop. It is formed when an error occurs in the operation of 

the routing algorithm. Loopback interfaces are similar to physical network interfaces. This 

loopback interface solution does not add any new routing loops to public networks. Routing 

loops can be avoided by correctly configuring routing protocols such as OSPF [81].  

This thesis uses this solution to setup an L2TP/IPsec tunnel. 

6.5 SUMMARY 

This chapter first introduces why L2TP/IPSec is necessary and how L2TP and IPsec 

work together, and then discusses the details of the L2TP/IPsec tunnel establishment and 

authentication. Finally, this chapter discusses the implementation of the L2TP/IPsec tunnel under 

FreeBSD (UNIX). 

Although IPsec is a VPN protocol with strong security, it cannot tunnel layer 2 packets. 

L2TP tunnels layer 2 packets, but does not provide strong authentication by itself. It is often used 

with IPsec to provide a secure layer 2 tunnel. ESP (a part of IPsec) is usually used to protect 

L2TP packets. 

During L2TP/IPsec tunnel establishment, IPsec is negotiated first, and then PPP and 

L2TP. During data transfer phase, SA, SP and L2TP information will be checked. 
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There is no native support for creating an L2TP/IPsec tunnel under FreeBSD. The L2TP 

and IPsec tunnel can be configured separately under FreeBSD, but not as a whole. This thesis 

proposes a loopback solution for this problem. 
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7Chapter 7: Add Mobility Support to 

L2TP/IPsec Tunnel 

L2TP/IPsec is a secure VPN which tunnels Layer 2 packets. In the previous chapter, this 

protocol has been discussed and a solution has been proposed to create an L2TP/IPsec tunnel 

under FreeBSD. 

This chapter shows how mobility support is added to the L2TP/IPsec tunnel. The new 

solution tunnels Layer 2 packets without incurring tunnel-re-establishment at handoff, without 

losing packets during handoff, achieves better security than current mobility solutions for VPN, 

and supports fast handoff in IPv4 networks. This chapter is organized as follows: 

First, a general framework of the mobility solution is introduced, followed by details of 

the eight modifications required to achieve a fully working system. Finally, the analysis and 

discussion on the security and the performance of the new solution are provided.   

7.1 SOLUTION OVERVIEW 

First, the real world problem will be analysed with the topology as shown in Figure 7-1. 

Consider several persons work together using a PPP network inside a moving vehicle, a 

L2TP/IPsec concentrator is used to encapsulate PPP packets and to tunnel to the remote server. 

When the vehicle moves, the public IP address of the L2TP/IPsec concentrator (Point D in Figure 

7-1) is changed. Point C is a loopback interface, and its IP address does not change. Other IP 

addresses inside the vehicle (Point A and B) are private IP addresses, which do not change even 

if persons move inside the vehicle. The IP addresses outside the vehicle (Point E, F, G and H) do 

not change, as they are fixed IP addresses. In summary, only the IP address of Point D is changed 

when the vehicle moves.  
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Figure 7-1 Loopback Interface Solution for IPsec/L2TP Tunnel 

 

The goal of this thesis is to add mobility support to existing L2TP/IPsec tunnel so that 

the tunnel can keep sending packets with low delay, without the cost of re-establishing the tunnel 

and without losing packets.  

The proposed solution is to let the tunnel concentrator communicate with tunnel server 

directly, without any home agent or foreign agent (like Mobile IP), without involving new 

headers. ESP is used to protect L2TP packets and to update IPsec information and the reasons 

will be explained in Section 7.2.  

In order to increase the performance, the new solution only modifies the kernel part of 

IPsec because all the IPsec information for L2TP/IPsec mobility support (ESP, SPD and SADB) 

is inside the IPsec kernel. In order to reduce the communication between kernel and user space, 

and make debugging easier, most of the modifications are made to user space code of L2TP. This 

is because most L2TP tunnel information is saved under user space. 

The detailed procedure is described below. 

(1) The tunnel concentrator updates IPsec tunnel information and tells the tunnel server 

directly that its IP address is changed in IPsec from the old IP address to the new IP 

address.  

(2) The tunnel server confirms the IP change, updates IPsec tunnel information and 

sends back a confirming message. 
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(3) The tunnel concentrator tells the tunnel server directly, with encryption, that the 

sequence number of the last data message received. In the ULP solution (see Section 

6.4 for details), the IP change information under L2TP should also be sent in that 

message. 

(4) The tunnel server decrypts and verifies the packet. If the packet verification is 

successful, the tunnel server updates the tunnel information in L2TP, and sends a 

reply message indicating whether tunnel server has buffered enough packets and the 

sequence number of the last data message received.  

(5) The tunnel concentrator decrypts and verifies the reply packet. If either tunnel server 

or tunnel concentrator buffers not enough packets, the tunnel concentrator cuts off 

the user connection. If buffered enough packets, the tunnel concentrator updates the 

tunnel information in L2TP, sends the missing packets which do not reach tunnel 

server and asks the tunnel server to send the missing packets which do not reach 

tunnel concentrator. 

(6) The tunnel server sends the missing packets. Finally the VPN can resume operation 

with new data packets.  

There are eight modifications to implement the mobility support. These will be shown in 

the remainder of this chapter. 

7.2 UPDATING IP CHANGE INFORMATION IN IPSEC 

For security reasons, IP change information must be encrypted and transferred to the 

other peer. It is best to add the information to ESP payload, not ISAKMP (Internet Security 

Association and Key Management Protocol) [29] or IKE (Internet Key Exchange). The reasons 

are as follows: 

(1) Avoid SA reestablishment. SA modification within ISAKMP is accomplished by 

creating a new SA and deleting the old SA at any time after the new SA is 

established [29]. Sending information within the ESP payload can modify existing 

SAs instead of creating new ones.  
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(2) Reduce the communication between kernel and user space under UNIX. ISAKMP 

and IKE messages are handled in user space (see Section 5.4) while ESP and SA 

database are under UNIX kernel. Sending information within ISAKMP and 

updating SA database (SA database must be changed when handling IP change) 

needs communication between UNIX kernel and user space. Sending information 

within ESP and modifying SA database can eliminate the communication between 

kernel and user space.  

(3) ISAKMP is already obsolete in IKEv2. 

ESP packets are used to transfer IPsec address change information and two private 

NOTIFY message types (250 and 251) are written into the Next Header field in the ESP header 

to signal this activity. Other information, such as SPI, in the ESP header is the same as normal 

ESP headers in the old IPsec tunnel. In the IPSEC-ADDRESS-UPDATE (message type 250) 

packet, the ESP payload contains the IP addresses of the end points of the IPsec tunnel when 

setting up the tunnel and the current addresses. In the IPSEC-ADDRESS-REPLY (message type 

251) packet, the ESP payload contains the same information as in the IPSEC-ADDRESS-

UPDATE message and the action taken at VPN gateway, i.e. ADDRESS-UPDATE-

SUCCEEDED. The encryption method has not changed in these ESP packets. 

7.3 UPDATING IP CHANGE AND DATA SEQUENCE NUMBER 

INFORMATION IN L2TP 

Different L2TP information should be exchanged in different L2TP/IPsec tunnel 

implementations. In the loopback interface solution (see Section 6.4 for details), the IP addresses 

of the L2TP tunnel (Point B, C, F and G in Figure 7-1) are not changed. Therefore, only the 

sequence number of the last data message received should be exchanged for re-transmitting lost 

packets. In the ULP solution (see Section 6.4 for details), the external IP address of the L2TP 

tunnel concentrator (Point C in Figure 7-2) is changed. Therefore, both IP change information 

and the sequence number of the last data message received should be exchanged. The port 
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number of L2TP tunnel is not changed in our situation. If the port number is changed then L2TP 

tunnel should be re-established. 

 

 

Figure 7-2 IPsec/L2TP Tunnel Topology in ULP solution 

 

The L2TP packet is situated inside the IPsec packet (see Section 6.1). IP change 

information is updated in IPsec first and then in L2TP. L2TP is responsible for flow control of 

the VPN tunnel.  

In the ULP solution, an L2TP control packet with four AVPs (Attribute-Value Pair) is 

used for the notification message: L2TP-ADDRESS-UPDATE (Message Type 40), OLD-

ENDPOINT-ADDRESS (Attribute Type 42), NEW-ENDPOINT-ADDRESS (Attribute Type 

43), and LAST-DATA-NUMBER (Attribute Type 44). In the loopback interface solution, an 

L2TP control packet with two AVPs is used for the notification message: L2TP-SEQUENCE-

UPDATE (Message Type 45) and LAST-DATA-NUMBER (Attribute Type 44). 

In the ULP solution, an L2TP control packet is used with five AVPs (Attribute-Value 

Pair) for the reply message: L2TP-ADDRESS-UPDATE-REPLY (Message Type 46), OLD-

ENDPOINT-ADDRESS (Attribute Type 42), NEW-ENDPOINT-ADDRESS (Attribute Type 

43), ENOUGH-DATA-BUFFERED (Attribute Type 47) and LAST-DATA-NUMBER 

(Attribute Type 44). In the loopback interface solution, an L2TP control packet with three AVPs 

is used for the notification message: L2TP-SEQUENCE-REPLY (Message Type 48), 
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ENOUGH-DATA-BUFFERED (Attribute Type 47) and LAST-DATA-NUMBER (Attribute 

Type 44). 

7.4 SAVING IP CHANGE INFORMATION IN L2TP AND IPSEC 

Both L2TP and IPsec information are saved in a list inside the memory (not a separate 

database). L2TP information is saved under user space while IPsec information is saved in the 

FreeBSD kernel.  

The IP addresses of the end points of IPsec tunnel when setting up the tunnel and the 

current addresses (mobile address) are saved in SA database in the IPsec kernel. Similar 

addresses are saved in the L2TP authentication database in the ULP solution. No modification is 

needed in the L2TP authentication database in the loopback interface solution. 

All the packets will be sent according to the new IP addresses. The old IP addresses are 

only used to identify the original connection. 

7.5 BUFFERING LOST PACKETS 

In the L2TP/IPsec tunnel, L2TP is responsible for tunnel and flow control, while IPsec is 

responsible for security only. The proposed solution requires a buffer function to be added to 

L2TP. Transmission Control Protocol (TCP) [25] is a good example for buffering and flow 

control and it is used as a reference for buffering packets in L2TP.   

The proposed solution has added a fixed size circular buffer to the L2TP tunnel. TCP 

requires the receiver to respond with an acknowledgment message as it receives the data. 

However, packet acknowledgment is not used in an L2TP tunnel because wireless network 

resources are very limited and packet acknowledgment requires too much network traffic (a 

response message has to be sent for every data message received) [25].   

The size of the circular buffer must be negotiated in the setup phase of the L2TP tunnel. 

The size has been placed in the “Framing Capabilities” AVP in SCCRP (Start-Control-

Connection-Reply) and SCCRQ (Start-Control-Connection-Request) messages. The “Framing 

Capabilities” AVP is reserved for future use in L2TP specification [28]. 
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A sequence number must be added to the L2TP data message to support lost packet 

transfer (retransfer packets that could not reach the old IP address). Sequence numbers are only 

optional in L2TP data message as described in L2TP specification [28].  

Both the tunnel server and the tunnel concentrator buffer packets they sent, and save the 

sequence number of the last message they received. Therefore, decision of whether buffered 

enough packets can be made according to the following formula: 

The sent buffer contains the packet with the sequence number: (the sequence number of 

the last message they received of the peer+1). If the sequence number of the last message they 

received of the peer equals to max sequence number size, the sent buffer should contains the 

packet with the sequence number 0. 

7.6 SOLVING AUTHENTICATION PROBLEMS 

 The proposed solution could not pass the old authentication of the L2TP/IPsec tunnel as 

described in Section 6.3. The challenge here is to devise a new security system without adding 

new security vulnerabilities  

There are two databases for security information in IPsec: SPD (security policy 

database) and SADB (security association database). SPD contains user information, such as the 

IP address of end users (addresses of Point A and F in Figure 7-2, or addresses of Point A and H 

in Figure 7-1). SADB contains connection and encryption information, such as the end points of 

IPsec tunnel (addresses of Point C and D in Figure 7-2, or addresses of Point D and E in Figure 

7-1). The proposed solution only modifies the SA information (the IP address of Point C in 

Figure 7-2, or the IP address of Point D in Figure 7-1). 

The following modifications have been made to IPsec authentication: 

(1) When creating an SA (security association) in SADB, save the tunnel end point 

addresses as initial tunnel end point addresses and also as current addresses (mobile 

addresses).  
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(2) When an IPsec server or concentrator sends IPsec packets, the packets are sent to the 

mobile addresses of the tunnel. Initial tunnel end point addresses are only checked in 

IPsec update messages. 

(3) When an IPsec server or concentrator receives IPsec packets, the packets are 

checked according to the mobile addresses of the tunnel. 

(4) Before an IPsec server or concentrator sends the IPSEC-ADDRESS-UPDATE 

packets, the mobile addresses of the SA in SADB are updated. Otherwise, the 

IPSEC-ADDRESS-UPDATE packets may be sent from old tunnel end point 

addresses.   

(5) When an IPsec server or concentrator receives an IPSEC-ADDRESS-UPDATE 

packet, the packet is decrypted according to SPI (normal IPsec packets are also 

decrypted according to SPI (Security Parameter Index)) and then is checked 

according to the content of the packet. If the packet is an IPSEC-ADDRESS-

UPDATE packet and SA can be found according to initial tunnel end point 

addresses, update mobile addresses of the SA in SADB. 

(6) SPD check does not change because the addresses in SPD are the addresses of end 

users (Point A and Point F in Figure 7-2, or Point A and Point H in Figure 7-1) and 

these addresses do not change in our solution.  

No modification of L2TP authentication is needed in the loopback interface solution. 

The following modifications were made to L2TP authentication in the ULP solution: 

(1) When creating an L2TP tunnel, save the tunnel end point addresses as initial tunnel 

end point addresses and also as current addresses (mobile addresses) in the L2TP 

connection list.  

(2) For normal L2TP packets, verify that the IP addresses and port values in the L2TP 

packet match the saved mobile node addresses and port numbers.   

(3) For L2TP address update messages, check the initial tunnel end points addresses and 

update mobile addresses in the L2TP connection list. 
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7.7 UPDATING ROUTE INFORMATION 

The routing table of the tunnel concentrator should be updated before the IPsec update 

message is sent. The routing table of the tunnel server should be updated after receiving the IPsec 

update message. If a network interface changes its IP address, all routes related to that interface 

will automatically be deleted under FreeBSD. A related route has to be added when an IP address 

is changed. 

However, updating route information may not be necessary in an L2TP/IPsec mobility 

solution. It depends on how the tunnel concentrator gets a new IP address. In the simulation, 

which will be discussed in the next chapter, the new IP address is got by using the “ifconfig” 

command. In this situation, all routes related to the IPsec external interface (Point D in Figure 7-

1) will be deleted and a new route to the tunnel concentrator has to be added by the L2TP/IPsec 

mobility solution. In experimentation on real devices, the new IP address is got from a DHCP 

server [66]. DHCP servers usually assign an IP address and a default route to DHCP client. The 

default route will route all packets from DHCP client (the tunnel concentrator in the solution) to 

DHCP server when no other route exists for a given IP packet’s destination address. In this case, 

tunnel packets will be routed to DHCP server and then to the tunnel server. Then, no route 

information needs to be updated in the experiment on real devices. 

7.8 DETECTING IP CHANGE 

Detecting IP change is a necessary part of any mobility support. This change can be 

detected by scanning the interface address periodically or by a system event which shows a 

possible IP change on the interface. As mentioned in Section 7.7, FreeBSD will delete related 

routes when an interface changes its IP address. This event triggers the new system to detect the 

IP change and then to update the L2TP/IPsec tunnel. 

Another important note is that the new IP address must be a valid IP address. Otherwise, 

the L2TP/IPsec tunnel will become invalid on real network devices. 
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Getting new IP addresses is not a part of this solution, but it is a necessary part of VPN 

handoff. Other software or systems should be used to get a new IP address when current Internet 

connection is lost. This will be discussed in Section 8.2, 9.2 and 9.4. 

During handoff, tunnel packets will keep sending without reaching their destination. 

These packets will be buffered in L2TP side. When a new IP address is available, the novel 

solution will detect the IP change and handle the handoff. 

7.9 SOLVING SYNCHRONIZATION PROBLEMS 

ESP and SADB are two entities which work together under the FreeBSD kernel. SA 

information in SADB should not change when handling ESP packets. When the tunnel 

concentrator changes its IP address and also updates SA information, it is possible to build an 

ESP packet with its old IP address in the ipsec4_precess_packet() function and send the packet to 

its new IP address in the ip_output() function (Section 5.4 describes how IPsec processes 

packets). This synchronization problem occurs when the mobile node changes networks and if 

not properly handled may cause problems with IPsec or may cause an Intrusion Detection 

System to suspect that hacking is happening. 

A flag is added to the FreeBSD kernel to solve this problem. When the tunnel 

concentrator wants to update the SA information, it enables the flag so that all the tunnel traffic, 

except the update message itself, will be dropped in the ipsec4_precess_packet() function. Lost 

packets are already buffered in L2TP. The tunnel concentrator then updates the SA information 

and sends the IPsec tunnel update message. After the tunnel concentrator receives the 

confirmation packet, the flag is disabled so that tunnel traffic will be encrypted and passed on. 

7.10 SECURITY CONSIDERATIONS 

On consideration, it appears that the new solution does not introduce any new security 

issues to the L2TP/IPsec tunnel as every packet is protected by IPsec during handoff. The 

solution adds IP change information to the ESP payload which is encrypted and could not be 

seen by other online users. These packets may be captured by someone to attempt a replay attack, 
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however the sequence number defined in the ESP header will cause any replay to be ignored. The 

L2TP update messages are also protected by ESP and again sequence number checks on ESP 

packets stop any replay attack from being successful. The vulnerability of the solution to other 

attacks, such as Denial-of-Service (DoS) attacks, should be the same as the vulnerability in 

regular IPsec operations. 

7.11 PERFORMANCE IMPLICATIONS 

Here, the performance of the new approach is compared with that of “IPsec over Mobile 

IP” [21] first, then “mobility support for IPsec” [19], and then “IKEv2 Mobility and Multihoming 

Protocol” [53]. A detailed analysis will be shown in Section 8.4. L2TP is used to encapsulate 

Layer 2 packets and to provide Layer 2 tunneling functions [8, 28]. L2TP traffic will not take into 

account in this comparison as other solutions do not provide Layer 2 tunneling function. 

In the new solution, the traffic involved in the initial tunnel setup process is identical to 

the traffic of standard L2TP/IPsec tunnel. It is assumed that the mobile node does not handoff in 

the setup phase, a relatively uncommon occurrence (see Section 6.3). IPsec over Mobile IP 

solution is also able to handle the handoff but it needs to perform Mobile IP registration with 

UDP packets (at least 48 bytes) and typically adds one additional roundtrip for Mobile IP 

registration in setup. In IPv4, the negotiation between Home Agent and Foreign Agent is also 

needed.  

In the process of transferring data, IPsec over Mobile IP solution has one more Mobile 

IP header (at least 26 bytes in IPv4 [31] and 6 bytes in IPv6 [17]) compared to the new approach. 

This traffic overhead is large especially when sending small packets. Also, the agent discovery 

packets in Mobile IP should be sent at least once a second [23]. This adds up to the traffic 

overhead particularly in a wireless system. 

In the process of handoff, IPsec over Mobile IP has to use one roundtrip for Mobile IP 

update and six roundtrips for IPsec update [11]. However, the new solution uses only 1 round trip 

for IPsec information update. 
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In summary, the new solution has a smaller overhead and faster handoff than IPsec over 

Mobile IP by avoiding double tunneling and connection reestablishment. The above advantage 

will greatly increase the efficiency and performance especially in resource-constrained wireless 

networks where mobile nodes move frequently between networks. 

Compared with “mobility support for IPsec” [19] and “IKEv2 Mobility and 

Multihoming Protocol” [53], the new method has better performance. ESP packets are used to 

update IPsec information instead of ISAKMP or IKE packets. The new method avoids SA 

reestablishment and reduces the communication between kernel and user space (see Section 7.2). 

7.12 SUMMARY 

A new and novel mobility support for the L2TP/IPsec tunnel has been proposed in this 

chapter. The new solution tunnels Layer 2 packets without incurring tunnel-re-establishment at 

handoff, without losing packets during handoff, achieves better security than current mobility 

solutions for VPN, and supports fast handoff in IPv4 networks. 

The new solution is to let the tunnel concentrator communicate with the tunnel server 

directly, without any home agent or foreign agent, without involving new headers. The 

communication is protected by ESP which is strong in security. 

The implementation of this solution will have better performance than the alternatives 

which will be discussed in Section 8.4. It only modifies the kernel part of IPsec, and most of the 

modifications under L2TP are made to user space code. 

Compared to other IPsec mobility solutions, the new solution has better performance and 

can tunnel Layer 2 packets while other solutions cannot. No packet loss on network transfer is 

another advantage that other solutions do not have. 
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8Chapter 8: Experiment on Simulator 

In the previous chapter, the theory of a novel mobility support for the L2TP/IPsec tunnel 

has been proposed. The mobility support has good handoff performance, without losing packets 

during handoff, achieves better security than current mobility solutions for VPN. 

In this chapter, the theory is proved by a network simulation in a VMware Workstation 

environment (VMware Workstation is virtual machine software that will be fully explained in 

Section 8.1) [67, 68]. Four copies of FreeBSD 7.0 [6] and one Windows XP were installed as 

virtual machines in VMware on a single computer. The networks between different virtual 

machines were tested for the L2TP/IPsec handoff time. The test results prove that the proposed 

mobility support works as intended and has excellent handoff performance. This chapter is 

organized as follows: 

First, VMware Workstation software, the software used in the network simulation, is 

introduced, followed by an overview of setting up the test environment. Next, the experimental 

results are shown and analysed. Finally, mobility supports from other people are introduced and a 

comparison is made between their solution and the solution proposed in this thesis.   

8.1 OVERVIEW OF VMWARE WORKSTATION 

VMware Workstation [67, 68] is software which allows running multiple virtual 

computers inside a host computer. Each computer, inside the host machine, is called a virtual 

machine. Each virtual machine runs a separate operating system such as Microsoft Windows or 

Linux and these multiple virtual machines can be run at the same time. 

On the surface, VMware is similar to an emulator (a machine where the processor is 

simulated in software) and a screenshot of VMware virtual machines is shown in Figure 8-1. 

However, there is a crucial difference between a VMware virtual machine and an emulator. 

While an emulator intercepts and interprets every last instruction using its own mechanisms, a 
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virtual machine passes most of the work down to the original operating system and the real 

computing machine sitting beneath it [68]. 

 

Figure 8-1 Screenshot of Virtual Machines 

 

After the VMware Workstation software is installed, different virtual machines can be 

created on a host machine. This can be done by using the new virtual machine wizard to 

configure the size of virtual hard disks and to install the operating system. Other hardware 

configurations, such as Ethernet adapters and CD-ROM disks, can be set after the operating 

system is installed and when the virtual machine is turned off. Figure 8-2 shows how to change 

the hardware settings. After all the steps mentioned above, the virtual machine can be used like a 

real, physical PC. 
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Figure 8-2 Change Hardware Settings in VMware 

 

Next, the network system of VMware will be introduced. The type of network interface 

card configuration determines the networking relationship among different virtual machines and 

the host machine. There are four types of network interface card configuration: bridged, host-

only, NAT and LAN networking.  

A bridged network interface of a virtual machine is on the same level as your host 

machine’s network. In other words, the virtual machine can obtain an IP address on the same 

subnet as the host machine and can access public networks through the router to which the host 

machine connects. The host machine and the virtual machines must be on the same network in 

this case. Setting up an L2TP/IPsec tunnel cannot use a bridged network, as an L2TP/IPsec 

tunnel has to run on different networks. 

Host-only networks create an entire virtual Ethernet local area network inside the host 

machine. In other words, virtual machines under a host-only network can communicate with each 

other, but there is no native ability to communicate between virtual machines and the host 



Chapter 8: Experiment on Simulator Page 70 

© 2009 Chen Xu Page 70 

machine (or outside networks). VMware tools can be used to transfer files between the host 

machine and virtual machines. L2TP/IPsec tunnels can be used under host-only networks. 

NAT networking is similar to host-only networking, except that VMware uses network 

address translation (NAT) [52] to communicate between virtual machines and the outside 

networks. NAT networking is not necessary in an L2TP/IPsec tunnel and will not be used. 

LAN networking is the advanced version of host-only networking. LAN networking 

enables the communication between virtual machines, while disabling the communication 

between virtual machines and the host machine. Network interfaces within the same LAN can 

communicate with each other, while network interfaces from different LANs cannot. LAN 

networking is used in the L2TP/IPsec tunnel simulation, as different networks are used in an 

L2TP/IPsec tunnel. 

The “team” feature of VMware is a relatively new and important feature of VMware and 

has been available since version 5 [67] (the L2TP/IPsec simulation is done in version 6.5). A 

whole virtual lab can be configured within a team, so that all the traffic from other virtual labs or 

virtual machines is blocked by VMware. Furthermore, LAN networking can be configured in a 

team. It makes the communication between virtual machines much easier. Each virtual machine 

can have many LAN network interfaces and each LAN network interface can communicate with 

network interfaces under the same LAN. Figure 8-3 shows the team and LAN configuration of 

the L2TP/IPsec tunnel simulation. 

 

Figure 8-3 Team and LAN Configuration of L2TP/IPsec Tunnel Simulation 
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Transferring files between virtual machines and the host machine is a necessary part of 

using VMware Workstation software. When new software has to be installed on a virtual 

machine, or when some source code must be modified in a virtual machine, file transfer between 

the virtual machine and the host machine is an easy way to achieve this goal. There are several 

methods to transfer files: 

• VMware tools: 

This is the easiest way for file transferring. After VMware tools (software) for 

specific operating systems, such as Windows or Linux, are installed, files can be 

transferred between virtual machines and the host machines by simply dragging and 

dropping. However, this method does not work in a FreeBSD virtual machine. 

FreeBSD in this thesis is used as a command line operating system and files cannot be 

dragged and dropped directly to FreeBSD virtual machines after VMware tools for 

FreeBSD are installed. 

• Flash disks or other external storage devices: 

As shown in Figure 8-2, external storage devices can be configured when a 

virtual machine is turned off. Then files can be transferred directly from external 

storage devices to virtual machines under Windows and Linux. Under FreeBSD, 

“mount” and “cp” commands have to be used to notify operating system a file system 

is ready and to copy the files. However, this method is not convenient in the 

L2TP/IPsec tunnel simulation, as different virtual machines cannot share an external 

storage device and the hardware settings has to change every time a file transfer is 

needed. 

• FTP: File Transfer Protocol (FTP) is a network protocol used to exchange files 

over a TCP/IP based network [70]. Files can be transferred by setting up an FTP 

server, and connecting to the FTP server from other virtual machines (FTP 

clients). This is a convenient way to transfer files to or from FreeBSD virtual 

machines under command line. 
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8.2 SETTING UP TEST ENVIRONMENT 

The goal of the simulation is to develop and setup an L2TP/IPsec tunnel, and to test the 

handoff time of the L2TP/IPsec tunnel. The L2TP/IPsec tunnel was established and tested among 

different virtual machines in VMware.  

Two software setups were used: the first setup was FreeBSD 7.0 with unmodified 

L2TP/IPsec and the second setup was the implementation of the novel L2TP/IPSec solution. 

The topology of L2TP/IPsec tunnel simulation is shown in Figure 8-4. 

 

Figure 8-4 Topology of L2TP/IPsec Tunnel Simulation 

 

Four copies of FreeBSD 7.0 [6] and one Windows XP were installed as virtual machines 

in VMware on a host machine (Windows 7). Three networks were used to establish the 

L2TP/IPsec tunnel (the networks between Point A and B, between Point D and E, and between 

Point G and H in Figure 8-4), and one network was used for file transferring. LAN networking 

(see Section 8.1) was used on all virtual machines, so that there was no network connection 

between virtual machines and the host machine. Each network belonged to a LAN. The 

Windows XP virtual machine was not a part of the L2TP/IPsec tunnel, and it was only used for 
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file transfer between virtual machines and the host machine. An FTP server (Serv-U [71]) was set 

up on LAN 4 (see Figure 8-3) on the Windows XP virtual machine (PC001 in Figure 8-3), so that 

files could be transferred between the host machine (Windows 7) and the Windows XP virtual 

machine by simply dragging and dropping, and then the files could be further transferred to other 

virtual machines by FTP service inside LAN 4. 

No routing protocol (the protocol to automatically exchange route among different 

routers or network devices) was used in this simulation. Only static routes were used and so 

tunnel traffic would not go through PC001 which only provided file transfer service. The 

concentrator and the tunnel server should have a static route to the other tunnel endpoint (Point E 

and Point D in Figure 8-4). The route to the network behind the concentrator and the tunnel 

server (the networks between Point A and B, and between Point G and H in Figure 8-4) will be 

created automatically after a successful L2TP/IPsec tunnel establishment. A default route to Point 

B had to be set on Computer A in Figure 8-4. A similar route to Point H had to be created on 

Remote Server in Figure 8-4. 

Software needed to be installed on the concentrator and the tunnel server included MPD 

(version 5.2) [2] and racoon2 (version racoon2-20071227e) [1]. The FreeBSD kernel also needed 

to be modified and recompiled. These matters have already been discussed in Chapter 4, 5 and 6. 

The detailed settings of the L2TP/IPsec tunnel will be shown in Appendix B. Software, which 

sent a stream of UDP packets at a regular heartbeat interval, had to be developed and installed on 

Computer A. No software needed to be installed on Remote Server. The program tcpdump [72] 

was used to capture packets being transmitted or received over a network interface. Tcpdump is 

installed on FreeBSD by default. Wireshark [73] was used to capture packets and view the 

packets received by tcpdump or wireshark itself. 

The mobility support requires the addition of about 1500 lines of code in kernel space 

and about 400 lines of code in user space. The details of these modifications will not be shown in 

this thesis for IPR (Intellectual Property Rights) issues. The principle of these modifications is 

already discussed in Chapter 7. The modifications do not change the architecture of the original 
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IPsec and L2TP implementations. The architecture of these implementations is already discussed 

in Section 4.4, 5.4 and 6.4. 

The “ifconfig” command was used to change the IP address of the outside network 

interface of the tunnel concentrator. It is assumed that the execution time of this command is very 

short. The complete command used is shown below: 

# ifconfig <interface name> inet <new IP address>  

Note that other ways of acquiring a new IP address such as DHCP may take much 

longer. The aim of the simulation is to test just the new L2TP/IPsec approach and so the 

“ifconfig” command was used to eliminate the delays in getting a new IP. 

8.3 EXPERIMENTAL RESULTS ANALYSIS 

Two software setups were used. The first setup was FreeBSD 7.0 with unmodified 

L2TP/IPsec and the second setup added the implementation of the novel L2TP/IPSec solution. 

The two setups were tested in the virtual networks (see Figure 8-4) by sending a stream of UDP 

packets at a regular heartbeat interval from Computer A to the Remote Server. The regular 

periods tested range from 5ms to 50ms and so simulated the majority of streamed traffic (see 

figure 8.5).     

First the unmodified software was tested. L2TP/IPsec tunnels do not natively support an 

IP change so the time delay involved is simply the average time for initializing a new L2TP/IPsec 

tunnel. In our virtual environment, this time was 1.56 seconds. Such a break, and the packet loss 

involved, would be unacceptable for many protocols and users. 

Next the modified software was tested and the results are shown in Figure 8-5. The result 

was quite exciting: the average handoff time for an IP change in the L2TP/IPsec tunnel was only 

0.08 second which was far more acceptable for many protocols and users. The handoff time is 

mainly caused by three things: 

(1) The time to get a new IP address. The “ifconfig” command is used to get a new IP 

address. The execution time of this command is very short. 
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(2) Packet buffering in operating system. Windows XP buffers network traffic. This can 

be proved by the experiment described below. Initially, the operating system of 

Remote Server in Figure 8-4 was Windows XP and other configurations were the 

same as current configurations. Packets sent out of Point G and Packets received on 

Point H were recorded. The experimental result showed that if Tunnel Server sent 

packets every 0.3 seconds, Remote Server received packets every 0.6 seconds and 

no obvious delay was shown on Remote Server during VPN handoff. Windows XP 

doubled the time to receive a packet (several tests were executed to prove this fact). 

If every computer used FreeBSD, no buffering was detected and a delay was shown 

during VPN handoff. From this experiment, it can be concluded that Windows XP 

always buffers and delays packets while FreeBSD does not. FreeBSD machines 

were used to exclude the buffering factor from influencing the test result. 

(3) The time for VPN negotiation. This was the major delay in the simulation. The main 

goal of the novel L2TP/IPSec solution is to minimize the time for L2TP/IPsec tunnel 

negotiation after an IP address change.  

Compared to the unmodified software, 95 percent of the handoff time is saved. In 

addition the new solution does not lose any packets. 

It is hard to compare this experimental result with results from other mobility support 

solutions to IPsec or L2TP [19, 21]. The handoff time is not mentioned in these papers. But given 

the algorithms described above, we believe that the solution proposed in this thesis will have 

significantly better performance (see Section 7.11).  
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Figure 8-5 Test Result for Handoff Time in IPsec/L2TP Tunnel 

 

8.4 OTHER SOLUTION ANALYSIS 

The most common solution to mobility problems using VPN is to run tunnels, such as 

L2TP or IPsec, over Mobile IP (double tunneling) [21, 22]. Some solutions [19, 53] add mobility 

support only to IPsec. This section will review these solutions and compare them with the 

mobility solution proposed in this thesis. 

8.4.1 Berioli and Trotta’s Solution 

Berioli and Trotta of Institute of Communications and Navigation German Aerospace 

Centre have proposed an IP mobility solution over a Mobile IP network [21]. The main idea of 

their solution is to run IPsec over Mobile IP. IP packets are protected by IPsec using ESP 

between the Mobile Node and the VPN Gateway. A Mobile IP tunnel will be used to redirect 

ESP packets between Foreign Agent and Home Agent. When the MN roams into another foreign 

network, only the Mobile IP binding needs to be updated and nothing is changed in the IPsec 

tunnel. 

Figure 8-6 shows how IP packets are transferred through the IPsec over Mobile IP 

tunnel. Screening routers (routers that control traffic to specific networks) are used to redirect 

VPN traffic and protect networks.  

A packet sends from Host A to Mobile Node (MN): 
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(1) Host A sends an IP packet to the home address. 

(2) The internal screening router redirects the packet to the VPN Gateway (VPN-GW) 

according to the policy. 

(3) The VPN-GW receives the packet destined to the home address. It checks IPsec 

policies and encrypts the packet into an ESP packet in tunnel mode. A new packet 

from VPN-GW address to the home address is created and sent to the HA. 

(4) The HA encapsulates the ESP packet in a Mobile IP packet (from home agent to 

foreign agent) and sends the packet. 

(5) FA receives the Mobile IP packet, decapsulates the packet and sends the obtained 

ESP packet to the Mobile Node. 

(6) MN decrypts the ESP packet and gets the original packet from Host A. 

 

Figure 8-6 System Operation of Berioli and Trotta’s Solution 
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A packet sends from MN to Host A: 

(1) MN encapsulates the packet into an ESP packet. This packet has the home address 

as sender and VPN-GW address as recipient. The packet is sent to the FA. 

(2) The FA receives the packet, encapsulates the packet into a Mobile IP packet with FA 

as source and HA address as destination, and sends the packet. 

(3) The packet reaches the external screening router and is redirected to the VPN-GW 

and then to HA. 

(4) HA decapsulates the Mobile IP packet and forwards the embedded ESP packet to 

VPN-GW. 

(5) VPN-GW decrypts the ESP packet and sends the obtained packet to Host A. 

The biggest problem of this solution is the large external equipment requirement. At least 

one HA, one FA and two screening routers are used. Another problem is the large overhead (20% 

as mentioned in the paper). Furthermore, this solution does not have ability to tunnel Layer 2 

packets. 

Compared to this solution, the novel L2TP/IPsec mobility solution proposed in this 

thesis requires no external equipment, has smaller packet overhead and can tunnel Layer 2 

packets. 

8.4.2 Comstock’s Solution 

Comstock has proposed a mobility solution to tunnel Layer 2 packets over a Mobile IP 

network [21]. L2TP is used to tunnel Layer 2 packets. LNS will be installed on Home Agent and 

LAC will be installed on Foreign Agent. When a packet is received at Home Agent, LNS 

encapsulates the packet and sends the new packet to Foreign Agent according to Mobile IP 

information. LAC at the Foreign Agent decapsulates the packet and forwards the original packet 

to Mobile Node. For returning traffic, Mobile Node sends the Layer 2 packet to the Foreign 

Agent. The Foreign Agent may use the same L2TP tunnel for the returning traffic, or create 

another Layer 2 session to Correspondent Node directly. In summary, an L2TP tunnel is created 

between Home Agent and Foreign Agent. Figure 8-7 shows this solution. 
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Figure 8-7 Comstock’s Solution 

 

The major problem of this solution is security. Both Mobile IP and L2TP do not protect 

packet confidentiality. This solution cannot be used as a VPN protocol when security is a 

concern. The security of the L2TP/IPsec solution proposed in this thesis is much better than the 

Comstock’s Solution. 

8.4.3 Kim and Srinivasan’s Solution 

Kim of AT&T Labs-Research and Srinivasan of Georgia Institute of Technology have 

proposed a simple mobility support to IPsec tunnel mode [19]. The main idea behind their 

solution is to change the tunnel endpoint IP address of the mobile host at the IPsec VPN gateway 

via a secure signalling. Client to Server VPN is used in this solution. The topology of this 

solution is shown in Figure 8-8. 
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Figure 8-8 Topology of Kim and Srinivasan’s Solution 

 

The two IPsec tunnel endpoints are the Mobile Host and the IPsec VPN Gateway. Two 

different routers are used to assign the Mobile Host IP addresses from different networks. 

Mobility is then simulated by switching between the two networks. When the Mobile Host 

changes its IP address, it updates the SADB and informs the IP change by sending an ISAKMP 

message to the IPsec VPN Gateway. The IPsec VPN Gateway checks the message, updates the 

SADB and sends an ISAKMP message for reply. After this step, IPsec data packets can be 

transferred through the tunnel again. This solution also changes the rule for security checking of 

each data packet. It removes the dependence of identifying a Security Association on the outer 

header destination address so that the same security parameters can be used in the new network. 

This solution has many weaknesses. First, removing outer header destination check 

introduces new security vulnerabilities. When several persons with different privileges connect to 

the same IPsec VPN Gateway, they may use their original identity to access the IPsec VPN 

server and spoof their IP addresses so that the packets are decrypted and forwarded to the 

resources that are off limits (see Section 4 and 5 of [16]). Second, exchanging ISAKMP 

messages for IP change information has worse performance than exchanging ESP messages. This 

is already discussed in Section 7.11. Third, ISAKMP is already obsolete in IKEv2 [11].  
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Compared to this solution, the novel L2TP/IPsec mobility solution proposed in this 

thesis does not introduces new security vulnerabilities, has better performance and can tunnel 

Layer 2 packets. 

8.4.4 Eronen’s Solution 

Eronen of Nokia has proposed the IKEv2 Mobility and Multihoming Protocol 

(MOBIKE) [53]. This protocol is an extension of IKEv2 and it allows the IP addresses of the 

tunnel endpoints in IPsec tunnel mode to change. Only when IKE exchange has progressed far 

enough (finish creating child SA, in other words, IPsec can transfer data packets), MOBIKE can 

handle the IP change. All the messages exchanged in this solution are a part of IKE message 

exchange. The protocol exchanges are shown below: 

(1) After IKEv2 finishes the first exchange (IKE_SA_INIT), a 

MOBIKE_SUPPORTED notification should be included in the IKE_AUTH 

exchange. Data packets can be transferred through IPsec after this exchange. 

(2) When a tunnel endpoint changes the IP address, one INFORMATIONAL exchange 

will be used to update the IP change information. NAT information may also be 

included in this exchange to ensure that the IP addresses have not been modified by 

NATs.  

(3) If IPsec system requires “return routability” check, the check should be done before 

step 2. 

The security in MOBIKE is strong. First, a "return routability" check can be used to 

verify the addresses provided by the peer. Second, a "NAT prohibition" feature can be used to 

ensure that IP addresses have not been modified by NATs, IPv4/IPv6 translation agents, or other 

similar devices.  

The problem of this solution is synchronization. When a tunnel endpoint changes its IP 

address and also updates SA information, it is possible to build an ESP packet with its old IP 

address and send the packet to its new IP address. This may cause big trouble. A lock has to be 

added to UNIX or Linux kernel to solve the synchronization problem. The detailed analysis of 

the synchronization problem and the solution has already been discussed in Section 7.9. 
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Compared to this solution, the novel L2TP/IPsec mobility solution shown in this thesis 

has better performance, as it uses ESP to update IP change information (see Section 7.11). The 

new solution can tunnel Layer 2 packets, while the MOBIKE solution cannot. Furthermore, the 

MOBIKE solution does not handle the synchronization problem, while the new solution has 

solved the problem. Although this solution has stronger security (“return routability” and “NAT 

prohibition”), these features may not be necessary as the IP change messages are fully protected 

by ESP. 

8.5 SUMMARY 

In this chapter, first, the VMware Workstation software is introduced and then the novel 

L2TP/IPsec solution is proved in a VMware simulation. Four copies of FreeBSD and one 

Windows XP were installed as virtual machines in VMware on a single computer. The network 

between these virtual machines is used to create an L2TP/IPsec tunnel and to test the handoff 

time. Our experimental setup measured this delay at 0.08 seconds compared to 1.56 seconds for 

the existing LT2P/IPSec solution.  

Next the experimental result is analysed. The new solution makes a mobile L2TP/IPSec 

solution practically viable as a delay of 0.08 seconds with no packet loss will not be noticeable, 

even for VoIP traffic. In comparison the existing L2TP/IPsec solution has a delay of 1.56 

seconds, plus packet loss over this period, and this will be annoying to the users. 

Finally, four concurrent studies related to VPN mobility support are reviewed and 

compared to the new L2TP/IPsec solution. It was shown that the new solution has better 

performance and very good security. 

In the next chapter, the new L2TP/IPsec solution will be tested on real computers and the 

test result will be analysed and discussed.  
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9Chapter 9:  Experiment on Real Devices 

In the previous chapter, the theory of the novel mobility support for the L2TP/IPsec 

tunnel has been proved by a network simulation in VMware. The handoff time was at 0.08 

seconds compared to 1.56 seconds for the existing LT2P/IPSec solution. 

In this chapter, the same theory is proved on real devices. Six FreeBSD machines and 

two wireless access points were used to test the handoff time of the L2TP/IPsec tunnel in the new 

solution. The test result was 4.8 seconds which included 4.6 seconds for getting a new IP address 

and only 0.2 seconds for VPN negotiation. The test result proves that the novel mobility support 

decreases the VPN negotiation time dramatically which is the goal of this thesis, but the time to 

get an new IP address needs to be shortened. Several methods have been proposed to solve this 

problem. This chapter is organized as follows: 

First, an overview of VPN handoff time is presented followed by an introduction about 

how to get an IP address from different networks. Next, different kinds of handoff solutions are 

overviewed and DHCP is discussed. Finally, the experiment on real devices is shown and the 

result is analysed. 

9.1 OVERVIEW OF VPN HANDOFF TIME 

In the real world, the time for VPN handoff is mainly caused by four things: 

(1) The time to get a new IP address. Although lower layer connections (layer 1 and 

layer 2) can be got from different sources: for example UMTS [78], Wireless LAN 

and WiMAX [77], DHCP or other similar protocols must be used to assign an IP 

address for the mobile client. This will be fully discussed in Section 9.2. This time is 

the main delay in the experiment on real devices. 

(2) Packet buffering in operating system. This is already discussed in Section 8.3. This 

can be ignored in FreeBSD. 
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(3) Packet transmission time. It is the amount of time it takes a bit to go from the start of 

the link to its destination node. It depends on the physical medium and the length of 

the link. This time becomes noticeable when the tunnel concentrator and the tunnel 

server are far from each other, and several exchanges need to be performed during 

handoff. 

(4) The time for VPN negotiation. The main goal of the novel L2TP/IPSec solution is to 

minimize the time for L2TP/IPsec tunnel negotiation after an IP address change. 

9.2 GETTING AN IP ADDRESS FROM DIFFERENT NETWORKS 

Connections can be got from different sources: for example UMTS [78], Wireless LAN, 

and WiMAX [77] etc.  Different processes can be used to make a lower layer connection (Layer 

1 and Layer 2). 

In WiMAX, the Base Stations (BSs) periodically broadcast Mobile Neighbour 

Advertisement control messages. The Mobile Node scans and synchronizes with the 

neighbouring Base Stations for channel information (signal strength and other information for 

base stations). The Mobile Node makes a decision about which BS(s) it should connect to 

according to channel information. After that, real handoff begins in a WiMAX network [74]. 

Similar processes are used in UMTS [78] or other telecommunication areas. In UMTS, 

first discovery phase is used to discover base stations and channel information. Then, evaluation 

phase is used for the mobile nodes to decide whether a handoff is worthwhile. Finally, in 

execution phase, a real handoff happens [75]. 

After a lower layer connection is made, IP addresses will be assigned by routers behind 

base stations. DHCP is a popular protocol to assign IP addresses. Mobile IP can also be used to 

assign IP addresses. In Mobile IP, the care-of address is assigned by DHCP or a foreign agent’s 

advertisements [23]. DHCP will be discussed in Section 9.4 as its special position in a wireless 

network. 

In telecommunication technologies, a mobile node may apply a new connection while 

the current connection is still valid. In this way, the handoff time is shortened. In a Wireless LAN, 



Chapter 9:  Experiment on Real Devices Page 85 

© 2009 Chen Xu Page 85 

however, the operating system will search for a new wireless access point only when the current 

wireless access point is completely down for some time.  

Wireless access points are only switches with wireless functions. In order to get an IP 

address, a DHCP server must be configured behind wireless access points. 

9.3 HANDOFF BETWEEN DIFFERENT NETWORKS 

Handoff between different kinds of wireless networks is a popular research area. One of 

the examples is Unlicensed Mobile Access [76]. It can be used to seamlessly roam and handoff 

between wireless LANs and UMTS [78]. However, these solutions only support handoff between 

2 kinds of networks. 

The novel L2TP/IPsec mobility solution supports handoff between any kinds of wireless 

networks, because this solution only needs to get an IP address from a DHCP server (behind a 

base station or a wireless access point) or other sources. At least, the solution can be used within 

UMTS, Wireless LAN or WiMAX. 

9.4 DHCP 

Dynamic Host Configuration Protocol (DHCP) [66] provides configuration parameters 

to Internet hosts (DHCP clients). The main function of a DHCP server is to assign IP addresses, 

default gateways or to provide other configuration parameters to its DHCP clients.  DHCP uses 

UDP packets to exchange DHCP information. Two ports are assigned to DHCP service: 67 and 

68. 

The basic operations of requesting a new IP address via DHCP are described as follows: 

(1) DHCP discovery. When a DHCP client (a computer or other network devices using 

DHCP configuration at its network interface) connects to a network, it broadcasts a 

DHCPDISCOVER message on the physical subnet to discover available DHCP 

servers.  

(2) DHCP offer. When a DHCP server receives a DHCPDISCOVER message, it 

checks available IP addresses from an IP address pool and responds with a 



Chapter 9:  Experiment on Real Devices Page 86 

© 2009 Chen Xu Page 86 

DHCPOFFER message that includes an available network IP address and other 

configuration parameters in DHCP options. 

(3) DHCP request. A DHCP client may receive DHCP offers from multiple servers, but 

it will accept only one DHCP offer. The DHCP client then broadcasts a 

DHCPREQUEST message that must include “server identifier” to indicate which 

server it has selected. The IP address it requests should also be included in the 

DHCPREQUEST message. 

(4) DHCP acknowledgement. The DHCP servers receive the DHCPREQUEST 

messages from clients. If the DHCPREQUEST message does not belong to the 

DHCP server, the DHCP server deletes the offer to the client. If the 

DHCPREQUEST message belongs to the DHCP server, the DHCP server commits 

the binding for the client and responses with a DHCPACK message containing the 

configuration parameters. 

(5) When the DHCP client receives the DHCPACK message, it checks the 

configuration parameters and configures these parameters. 

 

Figure 9-1 Sequence Diagram of Messages Exchanged between a DHCP Client and Server when Allocating a New Network Address  

 

By default (under Windows, FreeBSD and Linux), the operating system will only scan 

for new IP addresses after current connection is lost for some time. Therefore, a force scan for 
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new connections when current connection is lost should be performed by software in the tunnel 

concentrator in the experiment on real devices. This software was developed by the author of this 

thesis. 

When the operating system scans for new connections, by default, the DHCP client will 

not scan for new IP addresses at first. The DHCP client will first request the previous IP address 

by sending the DHCPREQUEST message. If the old IP address cannot be used, the process for 

requesting a new IP address will be used (starts by sending a DHCPDISCOVER message). The 

time for requesting the previous IP address is about 15 seconds in Windows and about 25 

seconds in FreeBSD (lab test result). In the experiment on real devices, a new network address 

will be assigned to the tunnel concentrator, then, the old IP address cannot be used. Waiting for 

25 seconds to scan for a new network is not acceptable in a VPN handoff. 

One solution is to force DHCP clients to renew IP addresses. Then, when a connection is 

lost, the DHCP client will scan for a new IP address from the DHCPDISCOVER message 

instead of trying the old IP address. Under Linux, “dhclient -r” can be used for this function. 

Under FreeBSD, no command supports this function. In the experiment, the “lease” file (the file 

to store DHCP lease information) was deleted after a connection was lost. The FreeBSD could 

not find the old lease so that it would scan for a new IP address from the DHCPDISCOVER 

message. 

The other solution is to design a fast DHCP. In this new protocol, the DHCP client will 

only try the old IP address when there is a DHCP server with same MAC address on adjacent 

networks. The time to try the old IP address should also shortened by simplifying the process 

involved. Currently, there is little work on fast DHCP. This thesis will not discuss this topic any 

further but this might become an interesting research area.  

9.5 SETTING UP TEST ENVIRONMENT 

In the experiment, six FreeBSD machines and two wireless access points were used to 

test the handoff time of the L2TP/IPsec tunnel in the new solution. Two FreeBSD machines were 

used as DHCP servers and the other four FreeBSD machines were used for L2TP/IPsec tunnel. 
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Two DHCP servers were responsible for forwarding packets and assigning IP addresses to the 

two wireless access points and the wireless workstations behind. The two DHCP servers would 

assign IP addresses within different networks to wireless access points and wireless workstations 

behind so that a wireless workstation would connect to a different network when connected to a 

different wireless access point. The topology of the experiment is shown in Figure 9-2. 

 

Figure 9-2 Topology of Experiment on Real Devices 

 

The software configurations and the code change in FreeBSD are similar to the 

simulation discussed in Chapter 8. The differences are as follows: 

(1) New software was installed on tunnel concentrator to delete the “lease” file when the 

old wireless connection was lost and to scan for new networks immediately (see 

Section 9.4). 

(2) A default route was set at the tunnel concentrator by DHCP servers so that updating 

route information in the new solution was not necessary (see Section 7.7). 
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(3) The driver for the wireless adapter on the tunnel concentrator must be properly 

installed. 

Some photos about the experiment on real devices are displayed in Figure 9-3, 9-4 and 

9-5. 

 

Figure 9-3 Wireless Access Point 

 



Chapter 9:  Experiment on Real Devices Page 90 

© 2009 Chen Xu Page 90 

 

Figure 9-4 Computer A and Tunnel Concentrator 

 

 

Figure 9-5 Tunnel Server 
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9.6 EXPERIMENTAL RESULTS ANALYSIS 

The L2TP/IPsec tunnel handoff was tested (see Figure 9-2) by sending a stream of UDP 

packets at a regular heartbeat interval from Computer A to the Remote Server. The regular period 

tested was 100ms. Tcpdump [72] was used to capture packets being transmitted or received over 

each network interface. At first, the Tunnel Concentrator got an IP address from Wireless Access 

Point A. When the Tunnel Concentrator and the Computer A moved out of the range of Wireless 

Access point A, the Tunnel Concentrator would lose current connection, delete current “lease” 

file, scan and connect to Wireless Access Point B to get an IP address. Then, the L2TP/IPsec 

tunnel started negotiation. Finally, after tunnel negotiation, normal L2TP/IPsec tunnel traffic 

could be transmitted normally between Computer A and the Remote Server. 

The test result was a bit disappointing. The total handoff time was 4.8 seconds which 

includes only 0.2 seconds for VPN negotiation. In practice a 4.8 second delay is absolutely 

unacceptable for a VPN tunnel user even if there is no packet loss. 

The 0.2 seconds for VPN negotiation was bigger than the 0.08 seconds in VMware 

simulation (see Chapter 8). This is because the traffic transmission time (see Section 9.1) used in 

VPN negotiation increases dramatically on real devices, and in 4.8 seconds (rather than 0.08 

seconds) a larger number of lost packets have to be resent in VPN negotiation.  

Most of the time was spent on getting an IP address from wireless access points (4.6 

seconds). This time included lower level (physical and data link layer) negotiation and DHCP 

negotiation. Lower level negotiation is beyond the scope of this thesis as it involves technologies 

on a hardware level. DHCP negotiation can be improved as discussed in Section 9.4. 

Another way to improve VPN handoff in a wireless LAN is to let a mobile node apply 

for a new connection while current connection is weak. This involves broadcasting signal 

strength and other information in a wireless access point, and making a decision about which 

wireless access point should the wireless device connects to. This feature has already been 

implemented in protocols such as WiMAX and UMTS. However, the solution in this thesis aims 

only to modify wireless access points and the operating system using a wireless adapter and so 

cannot have the abilities of WiMAX and UMTS. It would be possible to apply the techniques 
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used in WiMAX and UMTS to Wi-Fi [79] in wireless LAN but this is a major change and would 

be a thesis in its own right. 

Implementing the novel L2TP/IPsec mobility solution proposed in this thesis on 

telecommunication systems should improve speeds as a mobile node can apply for a new 

connection while the current connection is active. The implementation of the new mobility 

solution on telecommunication systems is not done in this thesis due to the limited study time 

allowed a Master student. 

From the discussion above, the test result proves that the novel mobility support 

decreases the VPN negotiation time dramatically which is the goal of this thesis. However, the 

time to get an IP address (4.6 seconds) in a wireless LAN is too large to be used in the real world. 

Several improvements have been proposed to solve this problem. The new mobility solution can 

also be used in other telecommunication systems where it will have better performance than in a 

wireless LAN. 

9.7 SUMMARY 

In this chapter, the new and novel mobility solution to L2TP/IPsec tunnels was 

implemented and tested on real devices using a wireless LAN. The L2TP/IPsec tunnel performed 

a successful handoff; the test result showed a very short time in VPN negotiation (0.2 seconds) 

and a long time in getting a new IP address (4.6 seconds). This means that the mobility solution is 

successful with a short negotiation time, but the speed of acquiring a new IP address using DHCP 

must be improved before the new solution is practically useful.  

Six FreeBSD machines and two wireless access points were used to test the handoff time 

of the L2TP/IPsec tunnel in the new solution. New software was developed and used on the 

tunnel concentrator to apply for a new IP address through wireless access points when the current 

IP address was unable to use. The handoff happened when the tunnel concentrator moved out of 

the range of current wireless access point and into the range of another.  

The long delay of 4.6 seconds for DHCP to provide a new IP address is mainly caused 

by slow DHCP negotiation. One improvement solution is to design a new, fast DHCP. The other 
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solution is to let a mobile node apply for a new connection while the current connection has weak 

signal levels in a wireless LAN. These solutions haven’t been implemented in this thesis and may 

become interesting research topics.  

The new mobility solution can also be implemented in wireless telecommunication 

systems. Better performance will be achieved as a mobile node can apply for a new IP from a 

new network while a current connection is active.  
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10Chapter 10:  Conclusions 

10.1 CONTRIBUTION 

In this thesis the mobility issue in virtual private networks has been addressed and solved 

using a new and novel method for the combination of L2TP and IPsec. A popular solution to this 

problem is to run VPN tunnels over Mobile IP (MIP), but Mobile IP itself has significant 

problems in security and the solution is inefficient due to double tunneling. 

L2TP is a Layer 2 VPN and has a great range of applications as it can transfer almost all 

kinds of Internet packets: IP packets, non-IP packets and Layer 2 packets. It has very good 

security when teamed with IPsec as IPsec has demonstrated strong security features and has 

already been integrated into the next generation network (IPv6). The proposed solution has 

particular application when multiple users within one moving vehicle must use a Layer 2 VPN 

tunnel to connect to other parts of the network such as a corporate network. 

The main idea behind the novel solution is to let the tunnel concentrator communicate 

with the tunnel server directly about the IP change information without involving new headers. A 

high level of security is assured during changeover as the IP change information is protected by 

ESP. Two exchanges are used to first update IP change information in IPsec, and then in L2TP. 

Lost packets are buffered in L2TP and will be sent after updating IP change information in L2TP. 

Compared to other solutions described in Section 8.4, the new solution has no packet loss, better 

performance and very good security, as ESP packets are highly protected and can be handled 

faster than IKE or ISAKMP messages.  

The new solution has been implemented under FreeBSD (a UNIX like operating system). 

The detailed analyses of L2TP and IPsec implementation have been described in Chapter 4 and 5. 

Two kinds of L2TP/IPsec tunnel implementations (Upper and Lower Protocol solution and 

Loopback interface solution) have been proposed and discussed in Chapter 6. The novel mobility 
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solution does not change the framework of existing L2TP/IPsec tunnel implementations and is 

easy to migrate to other platforms. 

The new mobility solution has been tested under a VMware simulation and on real 

network devices. In VMware, the experimental setup measured the L2TP/IPsec tunnel handoff 

time at 0.08 seconds compared to 1.56 seconds for the existing LT2P/IPSec solution. The new 

solution makes a mobile L2TP/IPSec solution practically viable as a delay of 0.08 seconds will 

not be noticeable, even for VoIP traffic. In comparison a delay of 1.56 seconds, plus packet loss 

over this period, will be annoying to the users. 

In the experiment using real network devices, the test result was a little disappointing. 

The total handoff time was 4.8 seconds, however, only 0.2 seconds was used for VPN 

negotiation and other 4.6 seconds was required to get a new IP address from the wireless 

network. The main goal of this thesis is to minimize the VPN negotiation time, not minimize IP 

acquisition time, so we can claim that the novel approach has been successful. The long delay is 

mainly caused by slow DHCP negotiation and the mobile device only starts to apply for a new IP 

address when the current connection is invalid. Solutions to this delay are outside the scope of 

this thesis though two possible solutions have been proposed. One solution is to design a fast 

DHCP, and the other is to let a mobile node apply a new connection while the current connection 

is weak.  

The proposed mobility solution has no lost packets, avoids tunnel reestablishment, does 

not involve running IPsec over Mobile IP and is able to handle layer 2 packets. The solution does 

not cause any new security vulnerability to the L2TP/IPsec tunnel and has good handoff 

performance making it possible to cope with more rapid movement between networks.  

10.2 FUTURE WORK 

With the lessons learnt we aim to do equivalent work under IPv6 and create a real 

physical network for telecommunication systems. The existing L2TP/IPsec approaches will not 

cope with the rapid movement between wireless nodes but we believe our modified system will 
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perform successfully under these conditions when a faster method of allocating IP addresses is 

found. 

The work reported in this thesis also opens up some interesting research opportunities. 

One is to design and implement a fast DHCP. In this new protocol the DHCP client may only try 

the old IP address when there is a DHCP server with same MAC address on adjacent networks. 

The other is to design and implement a new mechanism to let a mobile node apply for a new 

connection while the current connection is weak in a wireless LAN. Currently, only 

telecommunication systems such as WiMAX and UMTS have this feature. The modification 

needed for this mechanism has been discussed in Section 9.6. 
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Appendix B: L2TP/IPsec Tunnel Configuration 

It is hard to find an example configuration of L2TP or IPsec tunnel using FreeBSD on 

the Internet. This appendix will show an example configuration of setting up an L2TP/IPsec 

tunnel under FreeBSD. 

The topology of the L2TP/IPsec tunnel is shown in Figure B-1. The IP addresses of the 

network interfaces are shown in Table B-1. Loopback interface solution (see Section 6.4) is used 

in this example. 

 

Figure B-1 L2TP/IPsec Tunnel Topology 

 

 

Table B-1 Network Interface Addresses of L2TP/IPsec Tunnel L2TP/IPsec Tunnel 
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Appendix B.1: L2TP Configuration 

MPD is used to configure L2TP. Detailed explanation of MPD configuration is shown in 

“MPD 5.4.a1 User Manual” in [2].  

The configuration of LNS is shown below: 

mpd.conf: 

default: 
        load complete_lns 

 
complete_lns: 
        create bundle template B1 
        set ipcp range 192.168.3.20/32 192.168.4.12/32  
        set iface route 192.168.4.0/24  
     
        create link template L1 l2tp 
        set link action bundle B1 
        set link no pap 
        set link yes chap 
        set link mtu 1460 
        set link keep-alive 10 75 
        set link max-redial 0 
        set l2tp peer 192.168.5.2  
        set l2tp self 192.168.5.1  
        set link enable incoming 
 

mpd.secret: 

MyLogin   "kkk" 
PeerLogin "kkk" 
xu        "kkk" 

 

The configuration of LAC is shown below: 

mpd.conf: 

default: 
      load complete_lac 

 
complete_lac: 
      create bundle static B1 
      set ipcp range 192.168.4.12/32 192.168.3.20/32 
      set iface route 192.168.3.0/24 
   
      create link static L1 l2tp 
      set link action bundle B1 
      set link no pap 
      set link yes chap 
      set auth authname "xu" 
      set link mtu 1460 
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      set link keep-alive 10 75 
      set link max-redial 0 
      set l2tp self 192.168.5.2  
      set l2tp peer 192.168.5.1  
      set link enable incoming  
      open 
 

mpd.secret: 

MyLogin   "kkk" 
PeerLogin "kkk" 
xu        "kkk" 
 

Appendix B.2: IPsec Configuration 

Racoon2 is used to configure IPsec. The FreeBSD kernel needs to be recompiled to 

support IPsec. Detailed steps of setting up an IPsec tunnel are shown in “FreeBSD Handbook” of 

[6]. However, the configuration in “FreeBSD Handbook” is based on the old version of Racoon2. 

The example below shows the configuration of Racoon2. The configuration of IPsec tunnel 

concentrator and IPsec tunnel server are symmetric. Only server side configuration of IPsec will 

be shown. 

racoon2.conf: 

## Edit vals.conf for your environment 
include "/usr/local/racoon2/etc/racoon2/vals.conf"; 
 
# interface info 
interface 
{ 
 ike { 
  192.168.1.9 port 500; 
 }; 
 spmd { 
  unix "/var/run/racoon2/spmif"; 
 }; 
 spmd_password "/usr/local/racoon2/etc/racoon2/spmd.pwd"; 
}; 
 
# resolver info 
resolver 
{ 
 resolver off; 
}; 
 
include "/usr/local/racoon2/etc/racoon2/default.conf"; 
 
 
## Tunnel mode IKEv2 or IKEv1 (initiator and responder) 
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 include "/usr/local/racoon2/etc/racoon2/tunnel_ike.conf"; 
 

vals.conf: 

# $Id: vals.conf.in,v 1.13 2007/12/27 01:08:52 mk Exp $ 
setval { 
### Directory Settings ### 
 # Preshared key file directory : specify if you want to use preshared keys 
 PSKDIR  "/usr/local/racoon2/etc/racoon2/psk"; 
 
 # Cert file directory : specify if you want to use certs 
 CERTDIR  "/usr/local/racoon2/etc/racoon2/cert"; 

 
### Preshared Key Setting ### 
 # Preshared Key file name 
 # You can generate it by pskgen. 
 PRESHRD_KEY "xu.psk"; 
 
### Certicate Setting ### 
 # Your Public Key file name 
 MY_PUB_KEY      "my_pub.pem"; 
 
 # Your Private Key file name 
 MY_PRI_KEY      "my_pri.pem"; 
 
 # Peer's Public Key file name 
 PEERS_PUB_KEY   "peers_pub.pem"; 

 
### Tunnel Mode Settings ### 
 # Your Network Address or Host Address (host-to-host tunnel mode) 
        MY_NET          "192.168.5.1/32"; 
 # Peer's Network Address or Host Address (host-to-host tunnel mode) 
        PEERS_NET      "192.168.5.2/32"; 
 
 # Your SGW Address 
 MY_GWADDRESS "192.168.1.9"; 
 
 # Peer's SGW Address 
   PEERS_GWADDRESS "192.168.1.10"; 

 
 # Application Version String 
 CP_APPVER       "Racoon2 iked"; 
 
### Scripts 
        ## IKEv2 
 IKESAUP_SCR "/usr/local/racoon2/etc/racoon2/hook/ikesa-up"; 
 IKESADOWN_SCR "/usr/local/racoon2/etc/racoon2/hook/ikesa-down"; 
 CHILDUP_SCR "/usr/local/racoon2/etc/racoon2/hook/child-up"; 
 CHILDOWN_SCR "/usr/local/racoon2/etc/racoon2/hook/child-down"; 
 IKESAREKEY_SCR "/usr/local/racoon2/etc/racoon2/hook/ikesa-rekey"; 
 CHILDREKEY_SCR "/usr/local/racoon2/etc/racoon2/hook/child-rekey"; 
 MIGRATION_SCR "/usr/local/racoon2/etc/racoon2/hook/migration"; 
 ## IKEv1 
 PH1UP_SCR "/usr/local/racoon2/etc/racoon2/hook/ph1-up"; 
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 PH1DOWN_SCR "/usr/local/racoon2/etc/racoon2/hook/ph1-down"; 
}; 
 
 

default.conf: 

# default section 
default 
{ 
 remote { 
  acceptable_kmp { ikev2;  }; 

 
  ikev2 { 
   logmode normal; 
   kmp_sa_lifetime_time infinite; 
   kmp_sa_lifetime_byte infinite; 
   max_retry_to_send 3; 
   interval_to_send 10 sec; 
   times_per_send 1; 
   kmp_sa_nego_time_limit 60 sec; 
   ipsec_sa_nego_time_limit 40 sec; 
   kmp_enc_alg { aes128_cbc; 3des_cbc; }; 
   kmp_prf_alg { hmac_md5; hmac_sha1; aes_xcbc; }; 
   kmp_hash_alg { hmac_sha1; hmac_md5; }; 
   kmp_dh_group { modp3072; modp2048; modp1024;  }; 
   kmp_auth_method { psk; }; 
   random_pad_content on; 
   random_padlen on; 
   max_padlen 50 bytes; 
  }; 
 }; 
 
 policy { 
  ipsec_mode tunnel; 
  ipsec_level require; 
 }; 
 
 ipsec { 
  ipsec_sa_lifetime_time infinite; 
  ipsec_sa_lifetime_byte infinite; 
 }; 
 
 sa { 
  esp_enc_alg { aes128_cbc; 3des_cbc; }; 
  esp_auth_alg { hmac_sha1; hmac_md5; }; 
 }; 
}; 
ipsec ipsec_ah_esp { 
 ipsec_sa_lifetime_time 28800 sec; 
 sa_index { ah_01; esp_01; }; 
}; 
ipsec ipsec_esp { 
 ipsec_sa_lifetime_time 28800 sec; 
 sa_index esp_01; 
}; 
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sa ah_01 { 
 sa_protocol ah; 
 ah_auth_alg { hmac_sha1; hmac_md5; }; 
}; 
sa esp_01 { 
 sa_protocol esp; 
 esp_enc_alg { aes128_cbc; 3des_cbc; }; 
 esp_auth_alg { hmac_sha1; hmac_md5; }; 
}; 

 

 

tunnel_ike.conf: 

remote ike_tun_remote { 
 acceptable_kmp { ikev2;  }; 
 ikev2 { 
  my_id ipaddr "192.168.5.1"; 
  peers_id ipaddr "192.168.5.2"; 
  peers_ipaddr "192.168.1.10" port 500; 
  kmp_enc_alg { aes192_cbc; aes128_cbc; 3des_cbc; }; 
  kmp_prf_alg { hmac_md5; hmac_sha1; aes_xcbc; }; 
  kmp_hash_alg { hmac_sha1; }; 
  kmp_dh_group { modp2048; }; 
  ## Use Preshared Key 
  kmp_auth_method { psk; }; 
  pre_shared_key "${PSKDIR}/${PRESHRD_KEY}"; 
 }; 
 selector_index ike_tun_sel_in; 
}; 

 
selector ike_tun_sel_out { 
 direction outbound; 
 src "${MY_NET}"; 
 dst "${PEERS_NET}"; 
 policy_index ike_tun_policy; 
}; 
 
selector ike_tun_sel_in { 
 direction inbound; 
 dst "${MY_NET}"; 
 src "${PEERS_NET}"; 
 policy_index ike_tun_policy; 
}; 
 
policy ike_tun_policy { 
 action auto_ipsec; 
 remote_index ike_tun_remote; 
 ipsec_mode tunnel; 
 ipsec_index { ipsec_esp; }; 
 ipsec_level require; 
 peers_sa_ipaddr "192.168.1.10"; 
 my_sa_ipaddr "192.168.1.9"; 
}; 

 


