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Abstract

Anti-control of chaos has attracted a lot of attention recently due to its potential applications
in science and engineering. How to genecrate useful chaos that is also practically
implementable and useful is a current focus of research. This research aims at developing new
chaos generation schemes which demonstrate complex dynamical behaviours using simple
linear systems with hysteresis function series.

A continuous-time linear unstable second-order system with a feedback of hysteresis
function is first proposed for generating chaos. The design for chaos generation is studied
theoretically. A Poincaré map is used to demonstrate the dynamical behaviour of the system.
The existence and the analytic solution of the limit cycle that bounds the basin of attraction of
the chaotic attractor are derived. Conditions for the existence of chaotic attractors are studied.
A hysteresis based system with a maximum chaotic stability margin is designed.

Second, systematic methods for generating 1D n-scroll chaotic attractors in the directions
of the state variables and 2D mnxm-grid scroll chaotic attractors in the phase plane via
continuous-time linear unstable second-order systems with a feedback of hysteresis function
series are proposed. Furthermore, systematic methods for generating 1D n-scroll, 2D
nxm-grid scroll and 3D nxmx[-space scroll chaotic attractors via continuous-time linear
unstable third-order systems using hysteresis function series feedback are also presented in
this thesis. Simulation results are presented to demonstrate effectiveness of the schemes. It is
shown that the multi-scroll chaos generation systems can be represented in Lur’e form, and as
a result it may be used within synchronization schemes for secure communication.

Third, the limit cycle that bounds the basin of attraction in the multi-scroll chaos
generation with second-order systems case is studied. The relationship of the size of the basin
of attraction with the numbers of hysteresis function series is studied. The multi-scroll chaos
generation mechanism is then further explored by analyzing the system trajectorics; the
switching boundaries, switching rules and the trajectories on each subspace. The chaotic
behaviours are confirmed theoretically and it is proved that a non-ordinary attractor exists in
the multi-scroll chaotic attractor of the second-order systems case. The abundant dynamical
behaviour of the multi-scroll chaos generation systems using different hysteresis feedback are
demonstrated.

A double-hysteresis function, which is the superimposition of two basic hysteresis

functions, is proposed for the implementation of the hysteresis based chaotic system. In this



design, the double-hysteresis block and its series are constructed via a systematic method. The
ideal hysteresis function series can be implemented easily with the proposed double-hysteresis
function. The number of scroll attractors can be designed arbitrarily, and the multi-scroll
chaotic attractors can be located anywhere and cover any chosen area of the phase plane. The
circuitry implementation for generating 1D n—scroll, 2D nxm—grid scroll chaotic attractors
with linear second-order systems and hysteresis function series is given. And the oscilloscope
illustrated waveforms which included as many as 9%9=81 scrolls chaotic attractor are
presented.

The experimental results confirmed the theoretical analysis very well and validated the
effectiveness as well as the feasibility of the proposed multi-scroll chaos generation schemes.
This research may find potential engineering applications in areas such as digital coding and

image processing, etc.



Chapter 1
Introduction

1.1 Motivation

Chaos is generally defined as a state that exists between definite and random states. Chaos is a
very interesting nonlinear phenomenon and has been intensively studied during the last four
decades. Chaos theory, as a branch of the theory of nonlinear dynamical systems, has brought to
our attention a somewhat surprising fact: low-dimensional dynamical systems are capable of
complex and unpredictable behaviour. One of the characteristics of chaotic systems is
sensitivity to initial conditions; i.e. trajectories from two relatively close initial values will
diverge as the systems evolve, or a very small difference in the starting values of the function
will, after the function has been iterated many times, lead to a great difference in the produced
behaviours. The characteristics of chaotic systems mentioned above, can be used in many
practical applications, such as secure communication, chemistry, biology, and so on.

Chaos generation was first introduced by researchers with mathematical background
rather than circuit-design background. Some circuit design implementations can not match up
with the mathematical equations due to technical problems. In 1984, Matsumoto published the
first paper about Chua’s Circuit — a simple autonomous circuit with a chaotic attractor [1].
The chaos generated from Chua's circuit was then experimentally confirmed by Zhong in
1985 [2]. The double-scroll chaotic attractor and its family were reported later [3, 4], which
became the focus of study of chaos phenomena in electronic engineering. For the past few
decades, more and more publications have dealt with electronic circuits exhibiting chaotic
behaviour.

Recently, there has been an increasing interest in exploiting chaotic dynamics in order to
create or suppress chaos for engineering applications. One of the reasons for such an interest
is that control promises both a better understanding of chaotic behaviour and the means of
influencing and modifying it. Various applications were reported, such as increasing the
reaction rate in chemical technologies, avoiding fatal voltage collapse in power networks,

providing secure communications by using chaotic carrier instead of periodic one, regulating
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dynamical responses of mechanical and electronic devices (e.g., diodes, laser, and machine
tools), and treating cardiac arrhythmia. It is expected that “Coping with chaos” would cause a
kind of revolution in science and technology [5]!

Motivated by the need of real-world applications, this research will develop new
mechanisms for generating multi-scroll chaos using simple system models — continuous-time
linear systems with a feedback control of hysteresis function series. The proposed schemes

may lead to potential engineering applications in digital coding and image processing.

1.2 A Brief Review of the History on Chaos Research

The concept of chaos has been introduced into science quite recently, in the seventies of the
twentieth century. Chaotic systems provide researchers with a new tool for modeling the
uncertainty which differs from the classical probabilistic way. Chaotic motions are modeled
as the solutions of nonlinear differential or difference equations with “floating” frequency and
amplitude [5].

Despite the fact that common phenomena observed daily in circuits and signal-processing
systems can be explained only by nonlinear models, the study of nonlinear dynamics is still a
great-uncharted territory in system analysis [6]. Over many decades, the need for models of
oscillatory behaviours was met by linear and nonlinear dynamical models with limit cycles. It
was commonly believed that no other kind of oscillatory behaviour could be observed in
generally deterministic systems. It is surprising that such a prejudice was supported by
mathematical results. A misconception was believed by many mathematicians and physicists
that given precise knowledge of the initial conditions, it should be possible to predict the
future of the universe.

Throughout the history of science, complex nonlinear phenomena have been observed
experimentally but, more often than not, have been disregarded because the concepts for
explaining them simply did not exist. A classic example of this is the driven neon bulb
oscillator circuit examined by the eminent Dutch electrical engineer and physicist Van Der
Pol. He reported his oscillator experiment in Nature magazine in 1927, noting that “often an
irregular noise is heard” in the circuit. He dismissed this “noise” as “a subsidiary
phenomenon”, not worthy of further investigation. It is only in more recent times that the
conditions under which such noise is generated are being understood [6, 7].

In the development of chaos theory, the first evidence of physical chaos is believed to be

Edward Lorenz’s discovery in 1963 [8]. As a meteorologist, Edward Lorenz published an
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analysis of a simple system with a third-order differential equation that he had extracted from
a model of atmospheric convection. In Lorenz’s meteorological computer modeling, he
discovered the underlying mechanism of deterministic chaos: simply-formulated systems with
only a few variables can display highly complicated behaviour that is unpredictable. Using his
digital computer, through the printed numbers and simple strip chart plots of the variables, he
saw that slight differences in one variable had profound effects on the outcome of the whole
system. This was one of the first clear demonstrations of sensitive dependence on initial
conditions in chaotic systems. Equally important Lorenz showed that this occurred in a simple,
but physically relevant model. He also appreciated that in real weather situations, this
sensitivity could mean the development of a front or pressure-system where there never would
have been one in previous models. In his famous paper in 1963, Lorenz picturesquely
explained that a butterfly flapping its wings in Beijing could affect the weather thousands of
miles away some days later. This sensitivity is now called the “butterfly effect”. In the process,

he sketched the outlines of one of the first recognized chaotic attractors as shown in Fig. 1.1.

Fig. 1.1 Lorenz attractor — the first recognized chaotic attractor.

In the 1960s, the fractal structure had rarely been studied in the applied science. Perhaps
because of this, chaotic attractors were first referred to as “strange attractors”.

The first underlying mechanism within chaos was observed by Mitchell Feigenbaum, who
in 1976 found that “when an ordered system begins to break down into chaos, a consistent
pattern of rate doubling occurs™ [8].

The first formal mathematical definition of chaos was given by Li and Yorke. Since then,
there have several different but closely related definitions of chaos given in the literature [8].

While on a visit to Japan in 1983, having witnessed a futile attempt at producing chaos in
an electrical analog of Lorenz's equations, Leon Chua was prompted to develop a chaotic
electronic circuit. He realized that chaos could be produced in a piecewise-linear circuit if it
possessed at least two unstable equilibrium points — one to provide stretching, and the other to

fold trajectories. With this insight, he systematically identified those third-order piecewise-
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linear circuits containing a single voltage-controlled nonlinear resistor that could produce
chaos. Specifying that the driving-point characteristic of the voltage-controlled nonlinear
resistor should be chosen to yield at least two unstable equilibrium points. He invented the
Chua'’s circuit [7]. Chua’s circuit became one of the simplest and most widely studied real
nonlinear dynamical systems. That the circuit does exhibit chaos in the sense of Shilinikov
was proved in 1986. Chua's circuit is the first physical system for which the presence of chaos
has been established experimentally, confirmed numerically, proven mathematically and
constructed by a Cellular Neural Network. This circuit is readily constructed at low cost using
standard electronic components and exhibits a rich variety of bifurcation and chaos.

At the beginning of chaos research, the main research areas were the analysis and
experimental confirmation of chaotic systems. Afterwards, other research areas in chaos were
explored, such as control, synchronization, and anti-control of chaotic systems. In 1990, Ott,
Grebogi, and Yorke (OGY) [9] introduced a linear feedback method for stabilizing unstable
periodic orbits in chaotic systems, which did not require knowledge of the governing
equations. The OGY method generated widespread interest, and various modifications of the
scheme quickly followed. Methods for synchronizing chaotic systems were developed
virtually simultancously with the developments in chaos control. Pecora and Carroll first
demonstrated how chaotic systems could be synchronized, using an electronic circuit coupled
unidirectionally to a subsystem made up of components of the parent system [10, 11]. This
innovation provided a new perspective on chaotic dynamics and inspired many studies on
synchronizing chaotic systems. Cuomo and Oppenheim [12] further expanded the area by
demonstrating how synchronized chaotic systems could be used in a scheme for secure
communication.

Similar to the main stream research of controlling or suppressing chaos, the opposite
direction of making a non-chaotic dynamical system chaotic or retaining the chaos of a
chaotic system (called anti-control of chaos, or anti-chaos) [8] has also attracted increasing
attention recently. Anti-controlling chaos has found some possible applications in the areas of
secure communication, resonance prevention in mechanical systems, material damage control
in Jasers, fluid mixing, and nonlinear optics. In particular, within the biological context,
anti-control of chaos has a great potential application in controlling drug-induced arrhythmias
in irregular heartbeats.

It is important that we should understand the ideas of nonlinear dynamics at a deep level
so that no naturally occurring phenomenon can be considered as strange. Even in this field,

the steady-state behaviour of a chaotic system has been termed a “strange” attractor. We now
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know that such attractors are not at all strange or unusual, but are ubiquitous throughout the

natural and physical world [6].

1.3 Research Plan

This research will develop design schemes for generating complex chaos signals with simple
systems. The schemes are accomplished by the continuous-time linear second-order or
third-order systems with the help of hysteresis functions, which have simple system structures
and are easy to implement.

This research work is a combination of theoretical development and engineering

implementation. It includes the following aspects:

Theoretical Development

Theoretical studies on the design criteria of hysteresis based chaotic systems, the basin of
attraction, analytic solutions on occurrence of chaos, and the mechanism of generating chaos
via continuous-time linear second-order or third-order systems with hysteresis function series

are presented. Mathematical models and proofs, analytic solutions are given.

Dynamics Analysis

Dynamical behaviours of corresponding chaotic systems are studied extensively. The
Poincaré map is used to demonstrate these dynamical behaviours. Specific dynamical
trajectories analysis, dynamical response on each subspace and switching rules are presented
in order for chaotic behaviours to be confirmed theoretically. Various dynamical trajectories

are demonstrated with different hysteresis feedbacks.

Numerical Simulations
Numerical simulations of the proposed schemes are programmed using Matlab. These
simulations contain:
¢ Generating n-scroll chaotic attractors in the directions of the state variables, nxm-grid
scroll chaotic attractors in the phase plane via continuous-time linear second-order
systems and hysteresis function series;
¢ Generating n-scroll, nxm-grid scroll, and nxmxI-space scroll chaotic attractors via

continuous-time linear third-order systems and hysteresis function series.

Circuitry Implementation
Some: of the proposed multi-scroll chaotic attractors are implemented by electronic

circuits. A double-hysteresis building block is proposed to provide ideal hysteresis function
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series with simple circuitry implementation. Based on the double-hysteresis building block,
the multi-scroll chaotic generators via linear second-order systems and hysteresis function

serics are designed and implemented.

1.4 The Organization of the Thesis

This thesis 1s organized as follows.

The present chapter proceeds with the motivation of this research, a brief review of the

history on chaos research, research plan and the organization of this thesis.

In chapter two, a survey of fundamentals and advances in chaos and anti-control of chaos
is conducted, particularly, hysteresis chaos generators are introduced in detail, and the

engineering applications of chaos, especially in telecommunications are discussed.

Chapter three studies the design criteria for chaos generator via linear second-order
systems and hysteresis functions. It includes:

¢ The preliminaries of hysteresis based systems, limit cycle, stability margin of chaotic
attractors;

¢ The response property of hysteresis based systems. The Poincaré map is used to
demonstrate the dynamical behaviours of the hysteresis based systems;

¢ The existence proof and calculation of the limit cycle, which defines the basin of chaotic
attraction, are derived; The relationship between the system parameters and
mechanisms of generating chaos is studied, and the analytic solutions are given;

¢ A hysteresis based chaotic system with maximum stability margin is designed.

Chapter four contains the mechanisms of generating multi-scroll chaos via continuous-
time linear systems and hysteresis function series, it includes:

¢ The mathematical models of the linear systems and the hysteresis function series, Lur'e
representation of the multi-scroll chaos generation system;

4 Study of the limit cycle that bounds the basin of attraction of the multi-scroll chaotic
attractors;

¢ Generation of 1D n-scroll chaotic attractors in the directions of state variables, and 2D
nxm-grid scroll chaotic attractors in the phase plane via continuous-time linear unstable

second-order systems and hysteresis function series;
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¢ Generation of 1D n-scroll chaotic attractors, 2D nxm-grid scroll chaotic attractors and 3D
nxmx[-space scroll chaotic attractors via continuous-time linear third-order systems and
hysteresis function series;

4 Numerical simulations to validate the schemes.

In chapter five, the dynamics of multi-scroll chaos generation systems are studied. It
includes:

¢ The basic dynamical behaviours of 1D #n-scroll chaotic attractors, 2D n*m-grid scroll
chaotic attractors via continuous-time linear second-order systems and hysteresis
function series; The switching boundaries, switching rules and the trajectories on each
subspace corresponding to n-scroll and nxm-grid scroll chaotic attractors are studied,
respectively;

¢ Two lemmas to show that a non-ordinary attractor exists in the n-scroll and nxm-grid
scroll chaotic attractor generated via the linear second-order systems and hysteresis
function series;

¢ The dynamical behaviours of multi-scroll chaotic attractors via continuous-time linear
third-order systems and hysteresis function series are studied. The switching planes,
switching rules, the trajectories on each subspace, and grazing surfaces corresponding
to n-scroll chaotic attractors are studied. The switching planes and switching rules
corresponding to nxm-grid scroll chaotic attractors are also demonstrated.

4 The two-dimensional Poincaré return map is used to prove the n-scroll chaotic attractors
in the third-order systems case;

¢ The dynamical behaviours with different hysteresis feedbacks is briefly demonstrated.

Chapter six presents the circuit implementation for the proposed chaos generation scheme
via linear second-order systems and hysteresis function series. A design of double-hysteresis
building block is proposed to implement the ideal hysteresis function series. It includes:

¢ The design and implementation of double-hysteresis building block;

¢ Implementation of ideal double-hysteresis series;

¢ Generating 1D n-scroll chaotic attractors, 2D nxm-grid scroll chaotic attractors with

continuous-time linear second-order systems and double-hysteresis series.

Finally, chapter seven concludes the thesis with a summary of this thesis and the

research that will be done in the future.



Chapter 2

Fundamentals and Advances in Chaos

and Anti-Control of Chaos

2.1 Introduction

Deterministic systems considered in classic textbooks on system dynamics and control
display three types of behaviours in their solutions: to approach constant solutions, to
converge toward periodic solutions or to converge toward quasi-periodic solutions. In the last
decades, it has been confirmed that many physical systems can also display behaviours, which
do not belong to any of the above three types. They become aperiodic (chaotic) if their
parameters, internal variables, or external signals are chosen in a specific way. Unpredictable
behavior of deterministic systems has been called chaos. Chaos is found in systems that are
autonomous and non-autonomous, lossless or dissipative, discrete in time and of any
dimension, or continuous in time and of dimension three or higher [13]. The feature of chaos
is in its apparently random like behaviour which is also deterministic in nature.

In order to investigate hysteresis based chaotic systems in this thesis, some basic concepts
of chaos are introduced in this chapter. Anti-control of chaos, hysteresis based chaos
generation and some applications of chaos are also introduced here.

This chapter is organized as follows: Chaos and the basic analysis methods are introduced
in section 2.2. Anti-control of chaos is discussed in section 2.3, followed by section 2.4 which

is about the applications of chaos. A summary is given in the last section.

2.2 Chaos and the Basic Analysis Methods

This section introduces some fundamentals of chaos.

2.2.1 Chaos and Bifurcation in Nonlinear Systems

Nonlinear systems have various complex behaviours that are not observed in linear systems.

Chaos is just one of several closely related prominent complex behaviours of nonlincar

8
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dynamical systems. Chaotic processes are not random; they follow rules, but even simple
rules can produce extreme complexity.

The intuitive understanding of chaotic motion is that it is locally unstable and globally
bounded. There is no universally agreed definition of chaos in current literature. Because
chaos is the solitary topic in this research, a definition is introduced as follows.

Consider a vector function x with a value in R” defined on R, which are solutions of the

stationary (autonomous) system of differential equations:

%=F(x), x()eR (2.1)

Definition 2.1 [5] A set By is called the attracting set for the system (2.1) if there exists an
open set B, BocB, such that

limdist(x(t),B,) =0 (2.2)
{—>o
for any solution x(¢) with x(0) €B.

Definition 2.2 [5] A closed attracting set By is called the attractor if it is minimal, i.e.
there is no smaller attracting set By. The set of initial conditions B for which (2.2) holds is

called the basin of attraction.

Definition 2.3 [5] The closed trajectory L of dynamical system (2.1) is called limit cycle if

it has no other closed trajectories in its neighborhood.

Definition 2.4 [5] The set D is called a strange attractor if it 1s bounded and all solutions
of (2.1) which start from D are Lyapunov unstable. The system is called chaotic if it has at

least one strange attractor.

If the attractor is a fixed point, we say that the dimensionality is equal to 0; If the attractor
is a line or a simple closed curve, we say that the dimensionality is equal to 1. Similarly, a
surface has a dimensionality of 2, a solid volume a dimensionality of 3. If an attractor for a
dissipative system has a noninteger dimension, then we say that the system has a strange
attractor [14]. The attractors other than strange attractor are called ordinary attractor.

A strange attractor may be defined as any bounded attractor that stretches and folds the
bundle of final steady-state trajectories, producing sensitive dependence on initial conditions
and long-term unpredictability. Strange attractors are often used to characterize chaos. A
chaotic system is often associated with a strange attractor, and its trajectory can be expanding

in certain directions but shrinking (attracting) in some other directions. The overall phase
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portrait of a chaotic orbit moves towards a certain point (or limit set, or region) for some
period of time but then moves away from it for another period of time. A chaotic orbit repeats
this process infinitely many times without really setting down anywhere. The limit cycle is an
isolated closed orbit of a dynamical system. A strange attractor generally has infinitely many
unstable limit cycles embedded in it [5].

Despite the difficulty in definitions, some concepts and properties of chaos are well
accepted for engineering applications.

Chaos is characterized by a stretching and folding mechanism. Nearby trajectories of a
deterministic dynamical system are pulled apart and folded back together repeatedly to
produce complicated bounded non-periodic motion in a strange attractor. The exponential
divergence of trajectories that underlines chaotic behaviour, and the resulting sensitivity to
initial conditions, leads to long-term unpredictability which manifests itself as randomness in
the time-domain and produces a broadband noise-like power spectrum [7].

A chaotic system is predictable in the short-term but unpredictable in the long-term due to
their extremely sensitive dependence on initial conditions. The possibility of unpredictability
for a deterministic system is the key point to distinguish chaotic systems from linear or
regular deterministic nonlinear systems.

A dynamical system is informally called chaotic if it contains bounded behaviour
exhibiting several fundamental features, three of which are as follows:

1) A basically continuous, and possibly banded, Fourier or power spectrum.

2) Nearby orbits that diverge exponentially fast, thus causing an extreme sensitivity to

initial conditions.

3) Ergodicity and mixing of the orbits in the bounded portion E of the phase space where

the orbits exist [13].

Typically, a dynamical system is a structurally stable or robust system which retains its

qualitative properties under small perturbations. However, the majority of chaotic attractors

are structurally unstable.

Definition 2.5 [8] Bifurcation is a typical phenomenon of nonlinear systems that a
quantitative change of system parameters leads to a qualitative change of system properties

such as the number and the stability of equilibrium points.

A convenient way of studying bifurcation is through a bifurcation diagram. In such a
graphical representation, a parameter 1s varied and plotted along the x-axis. On the y-axis, the

asymptotic behaviour of a sampled state variable is plotted as discrete points. If the system
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operates in period-1 (period equal to the sampling interval) for some parameter value, there
will be only one point corresponding to that parameter value. If it is in period-2, there will be
two points. If the system behaves chaotically, for some other parameter value, there will be a

large (theoretically infinite) number of points corresponding to that parameter value.

2.2.2 Some Useful Tools

Differential equations are usually used to describe a dynamical system. The analytic
formulation of a dynamical system is important as it shows the behaviour of the trajectories of
the dynamical system. But in the study of bifurcation and chaos, it is rare that chaotic systems
can be solved analytically. Usually, dynamical behaviour analysis is adopted in studying
chaotic systems, especially, with high-order dimensions. In this subsection, some useful tools

for analyzing chaotic systems are introduced.

1) Lyapunov Exponent

Among the main characteristics of chaos, the existence of one positive Lyapunov
exponent is perhaps the most useful information about chaos to verify. Roughly speaking,
Lyapunov exponents measure the rate of divergence of nearby orbits; in particular, the
positive leading Lyapunov exponent is the time average logarithmic growth rate of the
maximal distance between two nearby orbits.

To compute Lyapunov exponents, one can simply start with any two nearby points
belonging to a system trajectory, and then evolve them in time, while measuring thé growth
rate of the distance between them. This is particularly useful when one has a time series rather
than an analytic model. Another approach is to measure the growth rate of a vector tangent to
the trajectory, which requires an accurate mathematical model for the dynamical system.

In the continuous-time system described by Eq. (2.1), the largest Lyapunov exponent is

defined by:

Ax,) = }i_)rg%ln”z(t;xo | (2.3)

where ||| denotes the standard Euclidean norm of a finite-dimensional vector, and z = z(¢; x)
is the solution of z=J(z)z, z(ty) = xo, in which J() = F '(-) 1s the Jacobian matrix [8].

The total number of Lyapunov exponents is equal to the degree of freedom of the system.
For a three-dimensional continuous-time system, the only possibility for chaos to exist is that
the Lyapunov exponent of the systems are (+, 0, —) (N>0, =0, N<0), with the additional

condition <— N (dissipative system), or N=— N (conservative system). Intuitively, this
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means that the trajectory of the system, in the phase plane, expands in a certain direction but
shrinks in another direction, yields complex dynamical phenomena within a bounded region.
Lyapunov exponents provide a measure for the average convergence or divergence rate of
the neighboring trajectories for a dynamical system. If the trajectories are bounded and have a
positive Lyapunov exponent, the system would definitely exhibit chaotic behaviour. The
larger the positive Lyapunov exponent, the shorter the time scale of the system predictability.
However, the positive leading Lyapunov exponent alone is generally not sufficient to signify

chaos since it may simply produce an unbounded system trajectory.

2) Poincaré Map

One of the ways to make a complex system easier to analyze is by reducing the system to
a simple system that still captures the important features of the original system. This is
achieved by a method invented by Henri Poincaré. It allows one to reduce the analysis of
continuous motions in the #n-dimensional space to a similar problem for discrete
transformations (maps) in the (n—1)-dimensional space. It results in simplification of the
initial problems and allows one to visually analyze the system behaviour for n <4 [5].

In this method, one places a surface, called the Poincaré section, as shown in Fig. 2.1, at a
suitable place in the state space. The Poincaré map is then the mapping of a point of
intersection of a trajectory with the surface onto the subsequent intersection from the same
side. In this way, the continuous-time evolution in state space is reduced to a map of Eq. (2.4)

in a lower-dimensional space.

DPnr=M(pr) (2.4)

Poincaré
saction

orbit

Fig. 2.1 The definition of Poincaré map.

If the continuous-time orbit is periodic, there are a finite number of points on the Poincaré
section. In the case of quasi-periodic orbits, since the two frequencies are in commensurate,

points in the sampled model will not fall on each other and will be arranged in a closed loop.
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For a chaotic orbit, the asymptotic behaviour in discrete time shows an infinite number of
points, contained within a finite volume, and distributed over a region of very intricate

structure. This is the strange attractor in the discrete domain.

3) Smale Horseshoe Map

The Smale horseshoe map consists of a sequence of operations on the unit square. First,
stretch in the y direction’ by more than a factor of two, then compress in the x direction by
more than a factor of two. Finally, fold the resulting rectangle and fit it back onto the square,
overlapping at the top and bottom, and not quite reaching the ends to the left and right (and
with a gap in the middle), as illustrated in the Fig. 2.2. Repeating this generates the horseshoe
attractor. The Smale horseshoe map is the set of basic topological operations for constructing
an attractor consist of stretching (which gives sensitivity to initial conditions) and folding
(which gives the attraction). Since trajectories in phase space cannot cross, the repeated

stretching and folding operations result in an object of great topological complexity.

—» Squeeze ¢—

f

Stretch

'

The object Fold Repeat the process

> |- -

Fig. 2.2 Smale horseshoe map.

4) Li-Yorke Criterion

In 1975, Li and Yorke proved that any one-dimensional map which exhibits a regular

cycle of period three will also display regular cycles of every other length as well as
completely chaotic cycles. The Li—Yorke criterion is:
If F is a continuous function, and F has a periodic point of order 3, then F has a periodic

point of all orders [15].

2.3 Anti-Control of Chaos

In a broader sense, controlling or ordering chaos can be understood as a process or

mechanism which enhances the existing chaos or creates chaos in a dynamical system when it
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is useful or beneficial, and suppresses i1t when it is harmful. In contrast to ordering or
suppressing chaos, the need for intentionally making a non-chaotic dynamical system chaotic,
or retaining the chaos of a chaotic system, is known as anti-control of chaos.

There is a growing interest in using the richness of chaos and purposely generating chaotic
dynamics in engineering. Yet, anti-control of chaos — one of the unique features of chaos
control — has begun to emerge as a theoretically attractive and potentially useful new concept
in control systems theory and in some time-critical or energy-critical control applications.
Broadly speaking, anti-control of chaos can be divided into two categories: to use chaos or to

suppress it [§].

2.3.1 Anti-Control of Chaos and Chaos Generators

It is known that chaos can be generated from various systems via different methods. In this

subsection, some works related to engineering anti-control of chaos are introduced.

1) Chua’s Circuit — The first electronic circuit that generates chaos

Chua, the creator of the chaos circuit, first implemented chaos with electric circuits.
Chua's circuit is a simple third-order nonlinear electronic circuit with a rich variety of
dynamical behaviour including chaos. Shilnikov theorem was used to prove the existence of
chaos in the double-scroll of Chua’s circuit [4]. The main idea is: if ¢ is a continuous
piecewise-linear vector field associated with a third-order autonomous system, assume the
origin is an equilibrium point with a pair of complex eigenvalues ¢ + jow (6 <0, w # 0) and a
real eigenvalue y > 0 satisfying |o| < . If in addition, ¢ has a homoclinic orbit through the
origin, then { can be infinitesimally perturbed into a nearby vector field ¢ with a countable set
of horseshoes. Horseshoes give rise to extremely complicated behaviour typically observed in
chaotic systems [4].

The importance of Chua’s circuit is that it can exhibit every type of bifurcation and
attractor in third-order continuous-time dynamical systems. While exhibiting a rich variety of
complex dynamical behaviours, the circuit is simple enough to be constructed and modeled by
using standard electronic parts and simulators [7]. A huge body of literature focuses on the
double-scroll chaos based on the Chua's circuit in the recent two decades. Chip of Chua's

circuit was designed [16], and the CNN (Cellular Neural Network) design was reported [17].

2) Works of Elwakil, Kennedy and their group

Followed the invention of Chua's circuit, Elwakil, Kennedy and their colleagues studied

Chua's circuit extensively [18-20], and reported their study results on chaos
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generators [21-30], most of which were in view of engineering design and implementation.
Due to the nature of the nonlinearity in Chua’s circuit, which is active and piecewise,
designing such a nonlinear circuit is not straightforward. Attracted by the possible chaotic
nature of conventional sinusoidal oscillators, they designed a current mode chaos
generator [21, 22] that is more advantageous in terms of accuracy, bandwidth and noise
immunity; and designed a high frequency RC chaos generator in which the signal frequency is
beyond 1 MHz [23]; They also designed a Wien-type chaotic oscillator [24] and a Colpitts
oscillator which exhibits radio-frequency chaotic signals. The frequency can vary from a few
hertz up to the microwave region [25]. Chaotic oscillators are based on sinusoidal circuits.
Starting with a sinusoidal that is later modified for chaos allows obtaining attractive features
via linear design techniques, which transforms it into the nonlinear domain [23]. In fact, in
most sinusoidal configurations, the oscillation condition coincides with the Hope bifurcation
condition; that is, usually a supercritical bifurcation for which an equilibrium point loses its
stability and a stable limit cycle is generated. By moving the control parameters away from
the oscillation condition, many different kinds of complex behaviour may arise. These include
chaotic behaviour or even more complex situations associated with co-existing attractors [25].
Some further work was also reported on producing chaos from sinusoidal oscillators by
employing passive-only nonlinear devices [26] and a double-scroll-like chaos generator in
CMOS chip [27]. By modifying sinusoidal oscillators using hysteresis nonlinear resistors,
hysteresis chaotic oscillators were designed [28, 29].

Emphasis on the design process for chaotic oscillators relies primarily on techniques,
which are well established based on linear circuit theory and which requires minimum
knowledge of nonlinear dynamics. It was found that Chua's circuit, Saito’s double-scroll
hysteresis oscillator, Rossler’s system as well as Lorenz system are all built upon a core
sinusoidal oscillator and that the active-type of nonlinearity is not essential for generating
chaos. Large collections of chaotic oscillators have been classified based on
oscillator-nonlinear composite architecture. The simplest possible chaotic dynamics are most
likely exhibited in a third-order continuous-time chaotic oscillator where any of these
oscillators can be identified as being responsible for stretching the trajectories and where the
switching action of a passive device is responsible for folding [30].

The design of Kennedy's chaos generator stressed more of the circuit-design background
than the mathematical background. In some sense, their design lacks sufficient mathematical

conditions for chaos generation.
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3) Yalcin, Suykens and Vandewalle's contributions

There has been much interest recently in obtaining complex dynamical behaviours from
simple systems by simple control or design techniques. The basic idea of generating chaos
with piecewise linear (PWL) nonlinearities, such as Chua's circuit, is to introduce additional
breakpoints in the nonlinearity. These breakpoints create equilibrium points which are located
on a line in state space. By modifying the nonlinear characteristic of Chua's circuit with
additional breakpoints, » double-scroll chaotic attractors were generated [31]. In[32], a
simple model was suggested for generating even more complicated n-scroll chaotic attractors.

Yalgin, Suykens and Vandewalle also presented an experimental confirmation of 3- and
5-scroll chaotic attractors from a generalized Chua's circuit [33], and generating a family of
scroll grid attractors, which the equilibrium points lie on a 2-dimensional plane or in
3-dimensional space, with stair function by systematically increasing the complexity of
behaviour while keeping the system as a simple circuit implementation [34]. In [31-34], the
chaotic attractors were only verified by using computer simulation and circuit implementation.

However theoretical analysis and rigorous mathematical proofs are not provided.

4) Chen's attractor

Chen's attractor that exhibits more complicated chaotic scroll was reported [35], and its
bifurcation analysis was studied in detail [36] so as to confirm the generation of chaos. The
unstable periodic orbits detection and control of Chen's attractor were studied [37, 38]. Chen'’s
attractor, which is topologically more complex than the Lorenz's attractor, belongs to another
canonical family of chaotic systems. The circuitry implementation and synchronization of
Chen's system was also reported [39]. Lii proposed a new attractor that bridges the gap
between Lorenz's attractor and Chen's attractor [40, 41], and the dynamical behaviour was
analyzed [42], and the attractor was experimentally confirmed [43]. The parameter
identification and backstepping control of the uncertain Lii system was shown in [44]. In
addition, Lii and his colleagues have also produced a chaotic generator with multiple merged
basins of attraction [45] via a switching type of piecewise-linear controller. The controller can
create chaos from a 3-D linear autonomous system within a wide range of parameters values.
More ideas were reported for chaos generation from a mathematical perspective [46-48].

Along the same line, Tang and his colleagues also designed some simple sine-function
circuits to generate multi-scroll chaotic attractors, with a circuit implementation that can
physically produce up to nine scrolls visible on the oscilloscope [49, 50]. Zhong etc. proposed

a systematic approach for generating n-scroll attractors based on Chua's circuit [51]. The
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basic building blocks were employed in their design, so that the slopes and break points of
multi-segment nonlinear resistor can be tuned independently. Distinct attractors with z-scroll
(up to 10) were shown which were observed via simple tuning in their experimental setup.
Other works in the field of anti-control of chaos includes making a stable nonlinear
autonomous system chaotic or enhancing the existing chaos of an originally chaotic system by
using a small-amplitude feedback controller [52], and a systematic design approach based on

time-delay feedback in a continuous-time system [53].

2.3.2 Hysteresis Based Chaos Generators

Complex chaos can be generated by simple systems. Chaos generators based on linear
systems and a piecewise linear feedback block or switching element have received great
attention due to the low cost of implementation and its simple structure, allowing the use of
less complex tools for its analysis [54].

The hysteresis function as a nonlinear switching function depends on both the present and
the past values of the input. The principal feature of electrical hysteresis element is a rapid
switching between states. This generates a sort of Schmitt-trigger cycle by resorting to the
“jumping phenomena”, inherent noise immunity and memory of the input. Consequently,
these elements have become indispensable building blocks in a variety of noise rejection and

oscillator circuits [55]. Follows are the work on hysteresis based chaos generators.

1) Newcomb — The pioneer of hysteresis based chaos generator

Newcomb first proposed the idea to generate chaos with a modified second-order Lienard
system whose nonlinearity is bent hysteresis in 1983 [56]. Motivated by studies on fibrillation
of the heart, he studied the binary hysteresis chaos generator of a second-order system, in
which the trajectories between two planes are determined by the two branches of binary
hysteresis, and the chaos was assured by designing the system so that the first return map has
a period three point. In order to obtain chaotic behaviour, which in essence should be able to
represent fibrillations, the parameters in the second-order system were switched at various
points on the trajectory. It was pointed that the conditions of Li & Yorke are satisfied for the
generation of chaos [57, 58]. They also pointed out an open question that the presence of a
discontinuity in their system does not seem to affect the presence or absence of chaos. But

they chose parameters to obtain the continuity used in the theorem cited.

2) Saito and his group’s contribution

Nearly at the same time, Saito reported generating chaotic scroll attractors by a third-order
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piecewise linear differential equation with a small parameter €. In the case € =0, it is proved
that the Poincaré map possesses the unique absolutely continuous invariant measure on some
parameter region [59]. The hysteresis chaos family was reported [60], in which hysteresis
chaos in 3- and 4-dimensional cases were studied by the Poincaré map and two-dimensional
Poincaré map. Hyperchaos, usually defined as a chaotic attractor with more than one positive
Lyapunov exponent, is a higher dimensional chaos. Saito reported an approach for
constructing higher dimensional hysteresis chaos generators [61]. The two-dimensional
Poincaré map was rigorously derived and its Lyapunov exponents verified the generation of
hyperchaos and related phenomena. For a certain class of four-dimensional hysteresis circuits,
rigorous evidence for chaos was presented [62], and a four-dimensional chaos generator with
hysteresis, which exhibits a torus-doubling route to chaos and then to hyperchaos, was
reported [63]. The basic bifurcations of a four-dimensional autonomous circuit, which
includes one hysteresis clement, were studied [64]. In [65], a simple piecewise linear
hysteresis circuit was studied. A sufficient condition for chaos generation and a rigorous
analysis of bifurcation phenomena were presented. The one-dimensional return map was
defined, and the analytic formula was derived. Using a return map, a sufficient condition for
chaos generation was given, where chaos is characterized by ergodicity and a positive
Lyapunov exponent. In the phase space, their chaotic attractor exhibits a single or a double-
screw form. Using an analytic equation, the parameter sets for tangent bifurcation, period-
doubling bifurcation and crisis were given. A further step towards the engineering application
of their work was control of chaos from a piecewise linear hysteresis circuit [66]. A chaos
generator including two capacitors, two resistors, one linear voltage controlled current source
(VCCS) and a hysteresis VCCS was reported [67], and control of a simple design of a
hysteresis chaos generator was presented [68]. A 4-D chaotic oscillator based on a differential
hysteresis comparator was discussed [69]. Furthermore, a two-port chaotic oscillator
generating 2x%2 scroll chaotic attractor were reported [70]. The chaotic behaviour in this paper
was guaranteed theoretically using a piecewise exact solution. Some of their theoretical

results were verified by experiments.

3) Parodi, Storace and their colleagues’ works

Parodi etc. reported a lumped circuit exhibiting static hysteretic behaviour [71]. In their
paper, the piecewise linear equations yield a very simple formulation of some important
features concerning the hysteresis phenomena, such as the physical limits on the

rate-independent behaviour, the energy loss evaluation, and the local and non-local memories.
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Some results on the hysteresis based chaotic circuit were reported [72-76]. The dynamic
features, such as the trajectories residing in the saturation region, ascending branch,
descending branch and hysteresis for sinusoidal input in a PWL circuit were studied in
detail [72]. It was shown that the control of the frequency behaviour could be achieved by a
simple adjustment of the linear resistance of the ladder circuit. Motivated by the applications
of hysteresis chaotic circuit, the dynamical behaviour of the circuit was studied by numerical
simulations [73]. The use of the circuit was discussed as a basic element of a transmitter-
receiver system for secure communication. Some implementations of a hysteresis chaos
generator were also proposed [74, 75]. And the bifurcation analysis of a PWL hysteresis
based chaotic circuit was studied through a one-dimensional map. According to the local
memory property of the hysteresis cycle, the mathematical model is given by:

x=y
(2.5)

§=25-x+(xz)L

q

The geometrical meaning of hysteresis cycles requires positive parameters p and ¢; 1/g is the
slope of the ascending and descending branches of the hysteresis cycles, and 1/p is the slope
of equilibrium points lying on each subplane. 6&(0, 1) was assumed in their study, positive 6
can guarantee the unstable foci. It was summarized that switching between different pieces of
flow occurs when the trajectories cross particular lines at the intersection between boundary
surfaces; Because of these switches, the resulting flow turns out to be non-smooth,
non-invertible and even discontinuous for most parameter values, as a function of the initial

conditions. When p changes in Eq. (2.5), the global dynamics were studied in detail [76].

4) Other relevent research

Elwakil and Kennedy reported the hysteresis chaotic oscillator [28, 29] by modifying
sinusoidal oscillators using hysteresis nonlinear resistors. The chaotic oscillator based on a
differential hysteresis comparator was reported in [77], which used a finite response time to
increase the order of the differential hysteresis comparators. However, it is difficult to
implement more hysteresis in their design due to some technical problems, only triple-scroll
chaotic attractor can be demonstrated experimentally. More recently, the analysis of
piecewise-linear oscillators with hysteresis was reported [54]. The point transformation
method of Andronov was used to analyze the different kinds of oscillation that may occur in
piecewise-linear systems, of the first, second, and third order, when a relay with hysteresis is

used in the feedback loop. In [54], the dynamical system given by:
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x =Ax+ Bu
y=Cx (2.6)
u=N(y)

where xeR" is the state variable vector, yeR is the system output, ueR is the output of the
feedback block. A, B, and C are matrices of compatible dimensions, and N(y) represents a
piecewise-linear operator. A is supposed to be nonsingular. When analyzing the second-order

system described by:

{5‘* =% @7

X, ==x,+20x, + N(x,)

which, in the general form given by Eq. (2.6), corresponds to:
0 1

A= P

[—1 20:}

N(x)) represents the effect of the relay with hysteresis shown in Fig. 2.3.

N(x)

Fig. 2.3 Relay with hysteresis.

It is found that in the second-order system, the presence of hysteresis can produce limit
cycle and chaotic attractor. The basin of attraction for the attractor is delimited by the limit
cycle. The presence of chaotic oscillation is explained by @ €(0,q,) the trajectories remain
bounded inside the attractor by the limit cycle.

More scrolls mean more complicated dynamical behaviours and more stability margins for
the chaotic attractor. Unfortunately, the experimental results only show the limited chaotic
scroll via linear second-order systems and hysteresis for the technical problem. Producing
multiple chaotic attractors or multi-scroll chaotic attractors by simple circuitry design remains

a great technical challenge.

2.4 Applications of Chaos

Chaos is all around us and is found in many disciplines. For example, chaotic phenomena are

found in lasers, electronic circuits, chemical systems, brains and hearts. Since the pioncer
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works of synchronizing the chaotic systems [9-12], over the last decade, knowing that chaos
can actually be useful and can be well controlled, the intensive study of chaotic dynamics has
evolved from the traditional trend of understanding and analyzing chaos to the new attempt of

controlling and utilizing it [8]. Some of the applications of chaos are introduced as follows.

2.4.1 Telecommunications

Chaotic signals appear noise-like, and are complex in structure and impossible to predict

over long time. The most popular applications lie in the field of secure communications.

1) Cryptography
Chaotic cryptography systems are schemes that combine the classical cryptography

techniques and chaotic synchronization to enhance the degree of security. By appropriate
choices of nonlinear dynamics for the oscillators and the signal generators, it is possible to
have a more secure and reliable cryptosystem capable of transmitting information securely
and accurately.

The earliest applications of chaotic systems in cryptography were connected with
encrypting a message with modulation of trajectories of continuous dynamic systems. These
methods are strongly related to the concepts of the synchronization of two chaotic systems
and controlling chaos. Different methods of message encoding and decoding in chaotic
communications have been proposed, which can be classified into three main categories:
chaos masking, chaos shift keying, and chaos modulation. In chaotic masking, the encoder
consists of an autonomous chaotic system whose output signal is added to the information
signal. This sum is transmitted over the channel. The decoder uses the transmission signal to
synchronize. In chaos shift keying, the encoder consists of two or more autonomous chaotic
systems with different parameters. According to the discrete information signal, one of them
is selected whose output signal is transmitted over the cannel. In the decoder, the same
number of chaotic systems tries to synchronize with their encoder counterparts. In chaotic
modulation or inverse system, the encoder is a nonautonomous chaotic system whose state is
influenced by the information signal. The decoder synchronizes with the encoder via
reconstruction of its state using the transmission signal. The information signal is recovered
by applying the inverse encoder operation to the reconstructed state and the transmission
signal. All of these schemes have been investigated analytically and experimentally in
continuous-time as well as in discrete-time applications [78]. Yang etc. proposed a
cryptography based on a chaotic system, instead of encoding the message signal in a chaotic

system directly. They used two chaotic signals, one to synchronize the chaotic encrypter and
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the chaotic decrypter, the other to encrypt the plain signal by using a multishift cipher [79].
An adaptive chaotic encoder combined a chaotic encoder with an adaptive filter, producing a
more complex encryption system and encoder was reported [80]. Inverse systems were also
discussed in their study. A scheme proposed in [81] which increases the parameter sensitivity
of chaotic self- synchronization systems is analogous to the concept of a magnifying glass and

enhances the security level of a chaotic based cryptosystem.

2) Secure Communication

Among the chaos-based communication schemes that have been published, two basic
configurations can be identified: (a) an approach consisting of the addition of the message
signal to the chaotic carrier (transmitted signal) that is sent to the receiver. That is, the master
system comprises the full-state model whereas the slave system is composed of a reduced
model; (b) another transmitter/receiver design is based on the full-state model of the driving
and response system. That is, both drive and response systems are represented by dynamical
systems of the same order. Early studies in chaos-based communication showed the message
signal can be recovered only under ideal conditions (with a high SNRs). The recent
publications in this area include constructing an augmented dynamical system from the
synchronization error system, and dynamical output feedback being applied to perform
synchronization in spite of transmitter /receiver mismatches [82]. In this way, the transmitted
message (which can be analog or digital) can be recovered.

Because of the continuous broadband, chaotic signals are useful for encoding information
in spread spectrum communication. When a narrowband signal is spread over a much wider
bandwidth, the average power spectral density (psd) becomes lower. As a sequence, the signal
psd becomes comparable with the background noise. Thus, without prior knowledge of the
transmission system, it is not easy to detect the presence of the signal, even if an unintended
user detects the presence of the signal. In the case where coherent detection is required, it is
very difficult to decode the data without prior knowledge of the encoding scheme [83].
Genetic programming can be particularly useful in the specific application of inverse
problems such as finding an optimal mathematical expression that fits certain criteria. In
spread-spectrum systems for multi-user access, a chaotic spreading code was generated using
Genetic programming, the piecewise maps considering the channel SNR levels were
designed [84]. The design of the mean-value demodulator is based on the ergodic property of
the chaotic signal for information signal recovery at the receiver was reported [85].

In a digital communications system, data is transmitted from one location to another by
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mapping bit sequence to symbols, and symbols to sample function of analog waveforms. The
analog waveform passes through a bandlimited (possible time-varying) analog channel, where
the signal is distorted and noise is added. In a conventional system, the analog sample
function sent through the channel is weighted sums of one or more sinusoids. In a chaotic
communication system, the sample function is segments of chaotic waveforms. At the
receiver, the symbol may be recovered by means of coherent detection, where all possible
sample functions are known, or by noncoherent detection, where one or more characteristics
of the sample function are estimated. In a coherent receiver, synchronization is the most
commonly used technique for recovering the sample functions from the received waveform.
These sample functions are then used as reference signals for a correlator. The objective of
the synchronization process is to recover basis functions from the noisy received signal in
order to maximize the probability of correctly identifying the transmitted symbols.
Synchronization-based receivers have advantages over noncoherent ones in terms of noise
performance and bandwidth efficiency. These advantages are lost if synchronization cannot
be maintained, for example, under poor propagation conditions. In these circumstances,
communication without synchronization may be preferable. The main advantage of
synchronization is that it makes the implementation of coherent receivers possible. However,
there are significant costs associated with synchronization, in terms of synchronization time,
circuit complexity, and severe penalties associated with the loss of synchronization [86]. The
series tutorial [86, 87, 88] surveyed the theory and operation of conventional communication
systems and identified the possible fields of application for chaotic communication [86]; The
theory of conventional telecommunications is then extended to cover chaotic communication.
Chaotic modulation techniques and receiver configurations are surveyed, and chaotic
synchronization schemes are described [87]; Examples are given of chaotic communications
schemes with and without synchronization, and the performance of the correlator-based
system is evaluated in the context of noise and bandlimited channels [88].

While chaos masking and chaos shift keying both have limitations in maintaining perfect
synchronization during message transmission, chaos modulation has been shown to be able to
provide perfect synchronization in the presence of message variations. Since optical
communication systems are of great advantage in pushing the bit rate into the Gb/s region,
chaos modulation has also recently been implemented in chaotic optical communication using
optoelectronic feedback systems with chaotic wavelength fluctuation [89]. An approach to
calculating the approximate theoretical bit-error rate of a coherent chaos-shift-keying digital

communication system under an additive white Gaussian noise environment was reported
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in [90]. Impulsive control of a chaotic system is ideal for designing digital control schemes
where the control systems are generated by digital devices. A promising application of
impulsive synchronization of chaotic systems to secure communication was proposed [91].
Recent investigations show that wireless communication systems are also a very promising
application area for chaotic dynamics. A high rate wireless communications scheme based on
a wideband and an ultra-wideband chaotic carrier, generated directly in the microwave

frequency band was proposed [92, 93].

2.4.2 Other Applications and the IC Implementation of Chaos Chip

Chaos and synchronization applications are also explored extensively in the electrical and
electronic engineering areas. Some successful experiments with the control of chaotic
oscillations in lasers, such as CO;, lasers, solid-state lasers and semiconductor lasers were
reported in [5]. It is reported that chaos exists for certain loading conditions in a simple power
system [94]. Modern electrical power systems become heavily loaded and spread out over
large areas. Possible sudden faults such as lighting, equipment failure, etc. may result in
instability for the whole system. Stabilization of power system operations is one of the most
important problems in power system control. When an electric power system operates near its
stability limit, a voltage collapse may occur at a saddle node bifurcation of equilibrium points
was proposed [95]. Cellular neural networks (CNN) are complex nonlinear dynamical
systems. Applications of CNN can be found in image processing, forecasting, and
optimization. Bifurcation and chaos of CNN were reported [96-98]. In the area of power
electronics, the synchronization of Cuk converters [99], and the bifurcation and chaos of a
permanent magnet synchronous motor [100] were also reported.

In the areas of chemistry and chemical engineering, creating oscillations and chaos are
very important. An important point is that in chemical applications there are not as many
variables available for control as compared with electronic applications. For example some of
the available variables are the concentrations of some species, the input flow rates or the
overall temperature. Fluid mixing is a typical example in which chaos is not only useful but
also very important [101]. Chaotic mixing is much faster and more efficient than diffusion.
From a kinematic point of view, fluid mixing requires efficient stretching and folding of
material lines and surfaces. Chaos is very desirable in these kinds of applications where two
or more fluids are to be thoroughly mixed and the required energy is to be minimized. Chaotic
mixing is also desirable in applications involving heating, such as plasma heating for a

nuclear fusion reactor into which heat waves are injected. For this application, the best result
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is obtained when the heat convection within the reactor is chaotic [102]. In combustion
applications, chaos is also desirable because it enhances the mixing of air and fuel, and hence
leads to better performance.

Other chaos applications are found in mechanics and mechanical engineering. One
example is suppressing vibrations in ships. Due to the nonlinear dynamics of the ship, the ship
rolling motion can exhibit chaos even for purely periodic waves. Thus, the problem is to
decrease the amplitude of chaotic oscillation under disturbance. Techniques of creating chaos
can be applied to washing machines. It is known that washing may be accelerated when the
angular velocity of the rotor is oscillating. Moreover, chaotic oscillations are more desirable
due to the fact that chaotic changes in the rotor speed better mix the laundry and better
dissolve the detergent[5]. Other examples such as swinging one degree-of-freedom
(pendulum-like) systems to achieve a desired value of angular velocity or energy; and the
brachiate robot — a kind of mobile robot that moves using its arms like a gibbon moving from
branch to branch [5].

Another possible applications are in biology and biochemistry, such as controlling the
populations of two competitive species (prey and predators) [5], treating cardiac
arrhythmias [103, 104] and pathological brain activities [105, 106]. Reference [106] presents
evidence for confirming the existence of chaotic dynamics in a biologically realistic model of
brain electrical activity. Oscillations and even chaos in fact occur at every level of a biological
organization.

Quite recently interest in models of nonlinear dynamics and chaos have arisen in financial
studies. By means of rescale-range analysis, it has been shown that the dynamics of many
financial time series are better described by chaotic models than by conventional ones. Some
publications devoted to nonlinear dynamics and chaos [107, 108] in economics and finance.
The solution of the Metzler business-cycles model may exhibit chaotic behaviour, so
predictions of the evolution of business-cycles are not possible [109]. However, it is
forecasted that the control of oscillations and chaos will have an increasing significance in the
fields of economics and finance [5].

IC designs for chaotic attractors are another hot topic. The main feature for IC designs is
that the key parameters governing the bifurcation and natural frequency of the circuit can be
adjusted electronically. The IC chips of Chua’s circuit [16] and some other chaotic attractors
have been produced. A chaos oscillator suitable for low voltage, high frequency and IC
implementation was reported in [110].

Recently, Munakata and his colleagues reported the basic principles for implementing the
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most fundamental computing functions using chaotic elements. The logic AND, OR, NOT,
XOR and NAND operations and bit-by-bit arithmetic operations can be realized by
employing single chaotic elements which may be particularly suited for the simulation of
chaotic phenomena such as weather forecasting or biomedical problems and the analysis of
the brain and heart, etc. They believe that harnessing some of the abundant chaotic
phenomena in engineered and natural systems for the development of a simple, fast and

cost-effective chaotic computer will be an exciting endeavor [111].

2.4.3 The future of Chaos: Skepticism and Optimism

The understanding of chaotic phenomena is only a recent advancement in science. Before this
time the idea of chaos was basically unknown. For example it was only within the last three
decades that the notion that chaotic motion is in general neither predictable not controllable
has gained acceptance by the scientific community. This is relatively a short time in the
history of science. Much progress has been made in recent times that have provided some
understanding of many concepts related to chaos.

Although there are technical difficulties in some application arcas of chaos, the
significance of future applications drive scientific research to persevere in understanding
chaos. Much has been accomplished in the past three decades, yet much more remains a
challenge for the future [8]. Perhaps within a short time, a chaotic secure communication

system, a chaotic computer and many other chaos applications will be put into practical use.

2.5 Summary

In this chapter, some basic knowledge and advances in the study of chaos have been
introduced. Anti-control of chaos, especially hysteresis based chaos generation has been
surveyed in detail.

The applications of chaos, particularly in secure communication are very appealing. One
major problem for the future applications of chaos-based systems is the hardware
implementation for the generation of various chaotic signals. This stimulates research on
generating complex attractors by using electronic devices with simple and lower-order
systems. Nowadays, generating multi-scroll chaotic attractors is not a very difficult task. But
hysteresis based chaotic systems promise to be able to generate more complex dynamical
behaviours. In the following chapters, we will study this class of systems and their practical

implementations.



Chapter 3

Design of Hysteresis Based Chaos

Generators

3.1 Introduction

The need for systematic methods for the design of chaos generators has increased due to the
many practical applications of chaos.

Hysteresis based systems for generating chaotic attractors have been studied by Newcomb
[56-58], Saito’s group [59-70], and Storace’s group [71-76] for more than twenty years.
Basically, the circuits for generating chaotic attractors are constructed based on the dynamics
described by two linear two-dimensional equations coupled together by hysteresis switchings.
The chaotic behaviours were studied in [57] and [65], respectively. Further study on this topic
was conducted by Moreno and his colleagues, and they suggested that the unstable periodic
orbit that was obtained corresponds to the limit cycle which bounds the domain of attraction for
the chaotic attractor [54].

This chapter studies the design criteria for chaos generation via linear second-order systems
with a hysteresis function. Based on the study in [54], the specific design conditions for
guaranteeing chaos generation is proposed. And a hysteresis based system which achieving a
maximum chaotic stability margin is designed. The Poincaré map is used to demonstrate the
dynamical behaviour of hysteresis based systems. The analytic solution of the limit cycle,
which defines the basin of attraction, is derived. The relationship between the system
parameters and the mechanism for generating chaos is studied. Conditions are derived for the
existence of chaotic behaviour in the hysteresis based system.

This chapter is organized as follows: Section 3.2 introduces the preliminaries of this
chapter. Section 3.3 demonstrates some properties of the hysteresis based systems. Section 3.4
contains the existence and the calculation of the boundaries of the chaotic attractors. Section 3.5
studies the conditions for the occurrence of chaos. A summary of this chapter is presented in

section 3.6.

27
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3.2 Preliminaries

The linear second-order system used to generate chaos in this thesis is described as:

*=y 3.1
y=—ax+by D

where x and y are two state variables; a and b are two positive numbers.

For a constant %, the hysteresis function is described as:

0 z<k
h(z)=l 250 (3.2)

where 4 (z) is switched from 1 to 0 if z hits the threshold O from above, and is switched from 0 to
1 if z hits k& from below, as shown in Fig. 3.1.

A2

Fig. 3.1 Hysteresis function.

Definition 3.1: If the state variable x of system (3.1) is input to the hysteresis function in
Eq. (3.2), and a controller of hysteresis function A(x) is added to system (3.1), the controlled

system is called hysteresis based system which is described as:

X) (0 1)(x) (0
.= + (3.3)
Y —-a b)Y h(x)
where (X, Y)=(x, y), for xe Vy; (X, Y)'=(x-1, y) , for xe V5.
The two subspaces V7 and V; are defined as respectively:

Vi={x, y: h(x)=0}, Vo={x, y: h(x)=1}.

The equilibrium points of the system (3.3) are (0, 0) € V1, (1, 0) € V5. On each subspace,

the exact solution of the system (3.3) is given by:
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X(6) = e {X(0)cos(BE) +—[¥(0) — X (0)]sin(B1)}
/ . (3.4)
P x0)sin(po))

(24

Y(t) = e {¥(0)cos(Bt) + %[Y(O) -

where X{(0), ¥(0) are the initial conditions, and o= /2, f=+4a—b / 2.

Definition 3.2: With a constant £, the closed trajectory L of the hysteresis based system
(3.3) shown in Fig. 3.2 is called /imit cycle.
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Fig. 3.2 Trajectory of limit cycle. (a) x-y plane. (b) x-y-& space.
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The limit cycle trajectory in Fig. 3.2 starts from (xy, yo) on V1 (or V3), and runs outgoing
exponentially to (k, y1) (or (0, yo)), switched by the hysteresis value £ (or 0). It jumps
instantaneously to another subspace V; (or ¥7), and keeps the x, y coordinate unchanged. It then

runs outgoing exponentially, switched by another hysteresis value O (or k), then comes back to

its start point (xo, yo).

Definition 3.3: The chaos stability margin means the range of variations in which the
design parameters can be taken before the underlying nonlinear system changes from chaotic

motion to either unstable or asymptotically stable motion.

3.3 Some Properties of the Hysteresis Based Systems

This section will discuss some properties of the hysteresis based system (3.3) for chaos

generation.

3.3.1 Basic Conditions for the Second-Order Systems

To generate chaos, the dynamical behaviour of the hysteresis based system (3.3) should possess
the typical chaotic stretching and folding property. So the linear second-order autonomous
system (3.1) must have a divergently spiralling trajectory, and its characteristic equation must

have a pair of conjugate complex eigenvalues with positive real parts. This requires that:

b>0
b’ —4a<0
so the basic conditions for chaos generation in the hysteresis based system (3.3) are:

b>0
X (3.5)

3.3.2 The Poincaré Map

The Poincaré map is a useful tool for analysing the dynamical characteristics of chaotic
systems. It is used to discuss the dynamical behaviour of hysteresis based system (3.3).
The positive x-axis in the phase plane 0-xy is chosen as the Poincaré section. The Poincaré

map is defined as:

P1=M(Po) (3.6)
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where Py and P are the x coordinates of the system in the Poincaré section. Eq. (3.6) means that
if the system starts from position Py in the Poincaré section, the next position hitting the
Poincaré section again, P, can be calculated using Eq. (3.6).

When a=1, =0.125 in Eq. (3.1), with two different hysteresis switching values £#~1.0 and
1.4, the Poincaré map of system (3.3) is shown in Fig. 3.3 (a) and (b), respectively. Note that, in
the two figures, the 45° line (P1=Py) is used to help analyse the dynamical behaviour of the

Poincaré map.
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Fig. 3.3 Poincaré maps of system (3.3) when a=1, 5#=0.125. (a) £#=1.0. (b) k=1.4.

From Fig. 3.3, one can find that there are two peaks in the Poincaré map. The points R are

the intersections between the Poincaré map and the 45° line (P1=Pg). R corresponds to the
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unstable limit cycle trajectory discussed in [54].

Remark 3.1. In Fig. 3.1, two values falling down from two peaks correspond to the two
switching points of hysteresis function (3.2), & and 0, respectively. Fig. 3.3 (a) corresponds to
the possible chaotic response of system (3.3) with suitable initial values. Fig. 3.3 (b)
corresponds to the unbounded trajectories of system (3.3). Furthermore, from the Poincaré
map shown in Fig. 3.3, it is observed that if x(0) > Ry, the response of system (3.3) is
unbounded for both £=1.0 and 1.4.

If both peaks are lower than point R in the Poincaré map, and the initial values are within
the basin of attraction L, the system (3.3) is bounded (chaotic). But if either peak is higher
than the vertical coordinate R in Poincaré map, the trajectories are unbounded. That is, in this
case, even though the initial values are within the basin of attraction L, the trajectories of the
system (3.3) could go outside the basin of L and lead to unboundedness. In the case of the
unbounded trajectories, the stretching of the spirally divergent response of system (3.1)
cannot be folded properly by the hysteresis function (3.2). Therefore, once the trajectories are
outside the L, the hysteresis based system is unbounded. The limit cycle L is the boundary of

the basin of attraction; Inside L is the basin of chaotic attraction.

3.3.3 Chaotic Behaviours of the Hysteresis Based Systems

The limit cycle L is the boundary of the basin of attraction for chaotic attractors. The area
inside the limit cycle is the basin of attraction. In [54], it is reported that if the existence of an
attractor and that the exponential divergence of the trajectories are inside the attractor, and
that the trajectories remain bounded inside the attractor, then the presence of a chaotic
oscillation is guaranteed. Therefore, if Eq. (3.5) holds, and both peaks are lower than point R
in the Poincaré map, and the initial values are within basin of attraction, then the trajectories
of the system will always stay within L, and the trajectories of the system (3.3) will always
stay within the bounded region so that the chaotic response will be seen. The trajectory
covered area of the chaotic response is defined as C.

It shows that as time proceeds, the trajectories of system (3.3) will spirally diverge on
subspace V; (or V,). When reaching the hysteresis switching points, the trajectories will be
switched to another subspace ¥V, (or V) instantaneously holding (x, y) constant, and then repeat
the spirally divergent trajectories. As t—co, the trajectories of system (3.3) are repeatedly
stretched and folded in the state space infinitely many times via hysteresis switchings, leading

to the appearance of bifurcations and chaos. The unstable divergent spirals realize a “stretching
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mechanism”, by using hysteresis switching, divergence is suppressed and a “folding
mechanism” is realized. Therefore, if the trajectories of the system (3.3) always stay within the

region L, a chaotic response will appear.

3.4 Derivation of the Boundaries of Chaotic Attractors

This section discusses the existence and calculation of the limit cycle in the hysteresis based
system (3.3). Based on the assumption that condition (3.5) holds for second-order systems,
the describing function is used to show the existence of a limit cycle in the hysteresis based

system (3.3). Then the analytic solution of the limit cycle can be derived.

3.4.1 Existence of the Boundaries of the Attractors

The describing function is adopted to show the existence of a limit cycle in system (3.3). A
linear coordinate transformation, x'=x—k/2, is made in order to make the hysteresis function

symmetric. The block diagram of the transformed system is shown in Fig. 3.4.

N
A G(s)
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Fig. 3.4 Block diagram for the existence of limit cycles.

When a=1, 5#=0.125, the transfer function for the linear second-order system in Fig. 3.4 is:

-1
G(s)=———""
2 52 -0.125s5 +1

and the describing function of the hysteresis function is:

2 kY k k
N(A) == 1] 2| —; A>Z
(=" (2j UYE 2

where 4 is the amplitude of the input to the hysteresis function, and w is the frequency of
—x'(¢), that is, it 1s assumed —x'(¢)=A4sin(w ).

The characteristic equation of the system shown in Fig.3.4 is:

1+ N(4) G(jw) = 0
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If the above characteristic equation is satisfied, a limit cycle exists. The existence of a limit
cycle can be demonstrated graphically by finding the intersection of the two loci in the
complex plane. Fig. 3.5 shows the trajectories of —1/N(4) and G(jw) of the hysteresis based
system (3.3). While the switching value & of the hysteresis function varies, the trajectories of
—1/N(A4) are lines parallel to the real axis. These parallel lines will intersect the trajectory of
G(jw). The conclusions are:

1) The limit cycles exist for different £;

2) The limit cycles are unstable.

D T T T T T
/r-*/'w=0
A.-'f‘
A -

05 0g - « =07
k=10 7 - x=0.1
k=1.2 s . x=0.1

[ I i i
k=1.4 ! " x=0_1
:/ -
IS 4

5t / 1

_25 1 I’I' 1 1 1 1 L 1 1
-5 -4.5 -4 35 -3 25 -2 -1.5 -1 -0.5 0
Re

Fig. 3.5 Trajectories of —~1/N(4) and G(jw) of the hysteresis based system (3.3).

3.4.2 Calculation of the Boundaries of the Attractors

According to the analysis in subsection 3.4.1, an unstable limit cycle always exists in system
(3.3) for a particular k. Fig. 3.2 shows a typical limit cycle in the 0-xy plane and the 0-xy% space,
respectively. Denote Q(x, y) as a point in the state space. As shown in Fig. 3.2 (b), when the
system starts from an initial position on the subspace ¥V (A=0), O(0, yo) at ¢ = 0, it will spiral
divergently on the subspace V; first. When reaching the hysteresis switching point & at t=t), the
coordinate is Qi2(k, y1), then the trajectory will be switched to O, on subspace V, (h=1)
instantaneously while (%, y;) becomes a new initial condition. Then, the trajectory continuously
diverges to reach (,1(0, yo) at t=T=t;+t,, before being switched to subspace V) at Q). This
completes one period of the limit cycle.

The following can be derived from Eq. (3.4):
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L1
e -ﬂ—y0 sin(ft,) =k

1 , for (x,y)eW (3.7
e 3% (B cos(Bt,) +asin(Bt)) =y,
From Eq. (3.7), it is seen that:
tan(fr,) = —L
v —ka
and
Bt = + arctan k5
Y —ka
so time ¢) can be calculated by:
t = —l—(ﬂ‘ + arctan kp } . (3.8)
/B Y~ ka
From Eq. (3.7), another expression of #; can be obtained:
e"” 1 — kP =k
\/(kﬂ yl - ka)
and time #; can be obtained by:
=L )
~ Yo : (3.9)

Combining Egs. (3.8) and (3.9) gives:

\/7}) yl ka %(ﬂ + arctan kﬂ j

— Yo y,—ka .

In order to solve the above equation, define the following function:

\/(k'B) +() ~ka) —i[ﬂJrarctan kB J=0

1
fl(yo’yl):_ln
o ~ Yo y —ka

(3.10)

For the special case k=1, because of symmetry with the hysteresis based system (3.3),

Y1=-)0, the existence condition of limit cycle (3.10) becomes:

fly 0)——l \/'B (—yo—a l[7Z'+arctan B ]:0
— Yo ﬂ

(3.11)
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For the running time #,, from Eq. (3.4), one has:

1+e*" ((k ~1)cos(f3,) ﬁu%(y1 ~a(k —1))sin( A, )] =0

e (yl COS(ﬂtz) + %(yl - @+ 182 (k _1)]Sin(ﬂt2)j =Y,

(04

, for (x,y)eV2 (3.12)

From Eq. (3.12),

a’+ pB?

B2 cos(ﬂtz)‘l‘%(yl - (k_l)jsm(ﬂtz)

==Y,
(k ~1)cos(Bt,) + % (3, — el - 1))sin(Bt,)

then,
2 +g(y1 P - I)J tan(B1,) =~y k1)~ (, ~alk ~1))y, tan(B1,)
p o B
and
_ B (1-k)-y,)
tan(;Btz) = (a+ yz)yl i (ayz N IBZXI _ k)
S0,

ﬁ(yz(l_k)"yl)
(ot v, )y, +lay, +a + B2 J1-k)

pt, = + arctan

Therefore time ¢, can be obtained as:

ﬂ(yz(l_k)_yl)
(+ )y, + (e, +a2+ﬂ2X1—k)J' (3.13)

From Eq. (3.12):
e <[ Beost + ol ) sne)
Another expression for time # is:
‘= —éln((l —k)cos(f,) + —;- (- %)=y, )sin(A, )j . (.14)

Combining Egs. (3.13) and (3.14), yields:
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IB(J’2(1_k)_y1) __é _ i _F)— ;
ﬂ+arotan(a+y2)yl+(ay2+a2+ﬂ2Xl—k)_ aln (1 k)cos(ﬂt2)+ﬂ(a(1 k)—y,)sin(f,) |-

For the limit cycle trajectory, y,=y, the following function can be obtained:

Blyol-k)- )
(a yolr +lavo +a? + B2 f1-k) . (3.15)

+ ﬁln‘(( ~k)cos(ft;) +%(a(1 — k)- y,)sin(pt, )] =0
a

f2(¥9,y1)=m +arctan

Combining Egs. (3.10) and (3.15) gives the formula for calculating the limit cycle:

fl(y()’yl):() (3.16)
fz(J’oayl):O. .

There are four parameters for tuning the limit cycle, yo, y1, ©1 and #;. Once the parameters a,
b of system (3.1) and % of hysteresis function (3.2) are determined, the parameters, yy and y;
can be calculated by using Eq. (3.16). Then, the run times #; and #, on two sections of the limit
cycle can be calculated by using Egs. (3.8) and (3.13), or Egs. (3.9) and (3.14).

When k=1, yo=—y;. Because of the symmetry of the limit cycle in Fig. 3.2, the running

time on both parts is equal, that is:

h =0 (3.17)

In this case, the analytical solution for determining the parameters of the limit cycle, yy, is

given by Eq. (3.11).
The limit cycle parameters with several different & for system (3.3) are shown in Tab. 3.1.

Xmax 18 the positive x-coordinate while y=0. yy is the y-coordinate when x=0 in Fig. 3.2, and y,

is the y-coordinate when x=«.

Tab. 3.1 Limit cycle parameters with different .

k 0.8 0.869 0.9 1.0 1.1 1.2 1.226 1.3
Yo -0.9865 | -1.0526 | -1.0812 | -1.1690 | -1.2511 | -1.3284 | -1.3477 | -1.4015
f 3.850 3.870 3.875 3.880 3.907 3.933 3.950 3.970
b2l 1.0170 1.0748 | 1.0989 | 1.1690 | 1.2287 | 1.2793 | 1.2909 1.3215
t 4.165 4.043 4.000 3.880 3.767 3.659 3.623 3.560
Xrax 2.1756 22174 | 2.2361 | 2.2949 | 23517 | 2.4067 | 2.4205 | 2.4599
property | divergent | critical | chaotic | chaotic | chaotic | chaotic | critical | divergent
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From Tab. 3.1, it can be seen that:

1) If £<1, the running time #; on the subspace V) is less than the time #, running on the
subspace V>, that is, #; <#,.

2) If &>1, the running time ¢; on the subspace V] is greater than the time #, running on the
subspace V>, that is, ¢ > £,.

It should be noted that the parameter » has more influence on the divergent spirals than a

in system (3.1).

3.5 Occurrence of Chaos

In this section, the conditions guaranteeing that the trajectories are within the basin of
attraction are further discussed. Then the analytic solutions for occurrence of chaos are
presented.

Based on condition (3.5), the hysteresis function must switch the outgoing spirals trajectory
at a suitable time in order to realize the folding so that system (3.3) exhibits chaotic behaviour.
Fig. 3.3 (b) shows one peak is higher than point R in the Poincaré map, indicating that the
trajectory will run out of the limit cycle. On the other hand, even though the two peaks are lower
than point R in the Poincaré map, improper initial conditions would make the trajectories
unbounded.

In order to guarantee that the trajectories stay within the basin of attraction, two necessary

conditions must be satisfied, which are studied in the following section.

3.5.1 Trajectories within the Basin of Attraction on Subspace V3

The limiting (extreme) case is that the trajectory starts from the equilibrium point (%, 0),
which is critical for identifying bounded (but chaotic) or unbounded trajectories. When the
trajectory runs 90° clockwise and exponentially divergence on V; for time #, it arrives at the
negative y-axis, as shown in Fig. 3.6. If the y coordinate travels out of the limit cycle, then the
trajectory is unbounded. The initial and final values are [x(0), (0)] = (%, 0) and [x(¢10), ¥(t10)]
= (0, y10) on V1. From Eq. (3.4), one has:

X(to) =€ (k cos(fity,) ~ %@Sin(ﬂtlo)] =0

et + B
y(tlo) =—e"l0 —ﬁé_kSIH(ﬂtlo) =Vio

From above equations:
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Fig. 3.6 Trajectory running out of the limit cycle on V.

tan(ft,,) = ﬁ
a

so that time ¢;y can be calculated by:

o :iarctané (3.18)
B a
and yo can be calculated by:
ﬂarctané
Yo =—e  “kyJa®+p? (3.19)
if
Y10<Yo (3.20)

then the system becomes divergent.
From Eq. (3.19), it can be found that when the parameters of system (3.1) are determined,

¥10 is in direct ratio to —&. This means yi¢ is linearly decreasing with the increase of £.

3.5.2 Trajectories within the Basin of Attraction on Subspace />

For easy comparison with conditions in the last subsection, the extreme case considered is
when the system trajectory starts from (0, 0) on subspace FV,, runs clockwise and
exponentially divergent around the equilibrium point (k, 0) on V, for time #. When the
trajectory arrives at the negative y-axis, as shown in Fig. 3.7. Since the trajectories have
already run out of the limit cycle, the system must be unbounded. The initial and finial values

are [x(0), y(0)] = (0, 0) and [x(#20), ¥(£20)] = (0, ¥20) on V5. From Eq. (3.4):
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Fig. 3.7 Trajectory running out of the limit cycle on V.

X(tyy)=1+e"" (- cos( Bty ) + %sin( ﬂtzo)J =0

aty a,z +ﬂ2
B

Wty) =€ SIn(f,0) = ¥y

and from above equations, one has:

tan(ft) =— );20 = ﬂ);zo
a +pf +gy a”+ [ +ay,,

ﬂ ﬂZO

and

By
a® + % +ayy

Btyy =27 + arctan

so the time #;¢ can be calculated by:

Ly L 27r+arctan—2—ﬂ{2°— (3.21)
B a”+ B +ayy,

and y» can be calculated by:

2 2
Vo =€7 a—;Lsin( Bty - (3.22)

If
Y20 <)o (3.23)

then the response is unbounded.
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Eq. (3.22) cannot been written in as simple a form as Eq. (3.19). However, it can be
solved by numerical calculation. But it can be found that once the parameters of the unstable
second-order system (3.1) are given and y, is determined, it is independent of the hysteresis
switching value k.

When solving Eqgs. (3.19), (3.20), (3.22) and (3.23), yp can be obtained by solving
Eq. (3.16).

3.5.3 Hysteresis Switching Ranges for Guaranteeing the Chaotic Behaviours

Once the parameters of the second-order system and the hysteresis function are given, the
limit cycle can be determined by solving Eq. (3.16). By calculating the two cases with
Eqgs. (3.19)~(3.23), one can judge if the response is bounded (chaotic) or unbounded. Note
that, if either Eq. (3.20) or Eq. (3.23) is satisfied, the system (3.3) will be unbounded. Tab. 3.2
shows some calculation results of yy, yi0, y20 With different &. The response property of

system (3.3) can be judged by comparing the relationship of y1g, y20 With y.

Tab. 3.2 Response property with different £.

k 0.8 0.869 0.9 1.0 1.1 1.2 1.226 1.3
Yio -0.8792 | -0.9550 | -0.9891 | -1.0990 | -1.2089 | -1.3188 | -1.3474 | -1.4287
Y20 -1.0525 | -1.0525 | -1.0525 | -1.0525 | -1.0525 | -1.0525 | -1.0525 | -1.0525
Yo -0.9865 | -1.0526 | -1.0812 | -1.1690 | -1.2511 | -1.3284 | -1.3477 | -1.4015

Y10™Yo Y1iooVo Y1c™Vo Y10™Yo
Result < = ~ <
2o Y2070 Y20°Yo Y20>Yo Y20>Yo Y207 Yo J1o=o Y100

Property | divergent | critical | chaotic | chaotic | chaotic | chaotic | critical | divergent

From Tab. 3.2, one can find that:

1) With small %, the outgoing trajectory of system (3.3) cannot be switched properly on
the subspace V, and Eq. (3.23) holds. The left peak is higher than point R in the

Poincaré map. System (3.3) is unbounded.

2) With the increase of k, the trajectory will enter the basin of attraction for the chaotic

attractors. With suitable initial values, the chaotic trajectory appears.

3) If k is further increased, the outgoing trajectory of system (3.3) cannot be switched
properly on subspace V; and Eq. (3.20) holds. The right peak is higher than point R in
the Poincaré map. System (3.3) is unbounded.

Fig. 3.8 shows the relationship yo, y10, ¥20 versus the hysteresis switching value k. From



CHAPTER 3 DESIGN OF HYSTERESIS BASED CHAOS GENERATORS 42

Fig. 3.8, it can be found that the range of & that guarantees the existence of chaos is:
h<k<k (3.24)

where k; is the intersect point of y,9 and yy, and k; is the intersect point of y;o and yo.
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Fig. 3.8 Variation of yq, y19, ¥20 With respect to £.

For example, when a=1, 6=0.125 in system (3.3), the range is
0.869 <k <1.226.

This area can also be obtained by solving Egs. (3.10), (3.15), (3.19) and (3.22), which can
be used as a design criterion for choosing the appropriate hysteresis switching value thus

guaranteeing chaos generation in the hysteresis based system.

Remark 3.2. When designing a chaotic hysteresis based system, if neither Eq. (3.20) nor
(3.23) is satisfied, and Eq. (3.5) holds, the system is chaotic. When chaotic behaviour appears,
the trajectory C is within L. The further the distance of the outer boundary of C to L, the
greater the stability margin the system has.

Remark 3.3. For given parameters a and b, the desired value of & for chaos generation is

around (k»— k1)/2, which appears to have the maximum chaos stability margin.

When a=1, 5#=0.125 in Eq. (3.3), the desired k=(k,—k;)/2=1.048. The Poincar¢ map and the

trajectory of double-scroll chaos are shown in Fig. 3.9 and Fig. 3.10, respectively.
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Fig. 3.10 Double-scroll chaotic attractor with maximum stability margin.

Compared to other k, this designed hysteresis based chaotic system has the maximum
chaos stability margin. As shown in Fig. 3.9, both peaks in Poincaré map have the same
height in this case. Compared with the other design, the ranges of variation that the system

parameters can have before the system becomes divergent are maximized.

3.6 Summary

In this chapter, hysteresis based chaos generation using second-order linear systems with a
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feedback of hysteresis function have been studied and the following results have been

obtained:

1) The trajectories of this class of system can be unstable or stable (but chaotic)
according to the system parameters and the initial values. The limit cycle which

bounds the basin of chaotic attraction can be calculated mathematically.

2) The dynamical behaviour has been revealed by a Poincaré map with derived
conditions for guaranteeing chaotic behaviour. It was observed that when chaos
appears, the actual trajectory is within the limit cycle. The further the distance from

the limit cycle, the greater the stability margin the system has.

3) The concept of chaos stability margin has been proposed, which can be used as guide

for designing chaos generators.

In the following chapters, we will deal with generation of multi-scroll chaotic attractors.



Chapter 4

Multi-Scroll Chaotic Attractors via

Linear Systems

4.1 Introduction

Chaos can be generated by simple systems. Hysteresis based chaos has been studied
extensively [54-77]. Unfortunately, only limited scroll numbers of chaotic attractors were
generated via linear second-order systems and a hysteresis function. In this chapter, methods
for generating multi-scroll chaotic attractors via continuous-time linear second-order or third-
order systems and hysteresis function series are proposed. The basic idea of generating chaos
here is creating unstable equilibrium points and setting the system to wander (be stretched and
folded) over the unstable equilibrium points. Furthermore, the simple equations of the multi-
scroll chaos generation system allow one to establish some algebraic relationships, leading to
a topological analysis of the phase space without making use of more sophisticated concepts
and tools.

It is shown that 1D #n-scroll chaotic attractors can be generated in the directions of the
state variables, 2D nxm-grid scroll chaotic attractors can be generated in the phase plane via
linear second-order systems with a feedback control of the hysteresis function series.
Furthermore, 1D n-scroll chaotic attractors, 2D nxm-grid scroll chaotic attractors as well as
3D nxmxI-space scroll chaotic attractors can be generated via linear third-order systems with
a feedback control using the hysteresis function series. Computer simulation results verify the
proposed new multi-scroll chaos generation scheme.

This chapter is organized as follows. Section 4.2 introduces the preliminaries of this
chapter, in which the mathematical models and the Lur'e representation of the multi-scroll
chaos generation scheme both the second-order and the third-order systems models are
included. Section 4.3 presents the multi-scroll chaotic attractor generation via a linear second-

order system and a hysteresis function series. Section 4.4 demonstrates the multi-scroll

45
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chaotic attractor generation via a linear third-order system and a hysteresis function series.

Summary of this chapter comes in section 4.5.

4.2 Preliminaries
Consider a simple continuous-time linear system with a feedback control:
X = AX + BU(CX) (4.1)

where XeR" (n=2 or 3) is the state variable vector;
A, B and C are matrices of compatible dimensions;

Ue R" (m=1, 2, or 3) is a feedback controller.

Hysteresis function series 4(x, p, g) is depicted in Fig. 4.1, and can be described as:

P q
h(x, p,q) = D 1 (x) + D by (x) (4.2)
i=1 i=1
where p and ¢ are positive integers, and

h,.(x)z{l forx>i—1’h_i(x)={0 for x> —i

0 forx<i -1 forx<-i+1

hi(x) is the hysteresis function defined in Eq. (3.2).

? h(x, p, )

4
3k
2
1

I Yo 2 5 4 >

Fig. 4.1 Hysteresis function series.

The system (4.1) can be represented as a hybrid Lur'e system, which is regarded as a
linear system with hysteresis feedback nonlinearity. The second-order and the third-order

systems cases are discussed in the following.
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4.2.1 Second-Order Systems Case

If X=(x, y)" is the state vector of the linear second-order system, the feedback controller is

U=(u, v)7, and
a0 N (0 R b O 43
\-a b)) \ka -kb) 0 Kk '

thus, there are three different sub-cases as follows:

1) Generation of 1D horizontal n-scroll chaotic attractor. If k, =1, k, =0, then

h(x, p, q)J |

U(-)=( .

System (4.1) can generate a 1D horizontal n-scroll chaotic attractor whose equilibrium

points are located on the x-axis as shown in Fig. 4.2 (a).

2) Generation of 1D vertical n-scroll chaotic attractor. If k;, =0, k,=1, then

NS
o pq))

System (4.1) can generate a 1D vertical #n-scroll chaotic attractor whose equilibrium

points are located on the y-axis as shown in Fig. 4.2 (b).

3) Generation of 2D nxm-grid scroll chaotic attractor. If k, =1, k,=1, then

h(xapp(/l)]

U=
0 [h(%p2592)

System (4.1) can generate a 2D nxm-grid scroll chaotic attractor whose equilibrium

points are integer points on the xy-plane as shown in Fig. 4.2 (c).

4.2.2 Third-Order Systems Case

If X=(x, y, z)T is the state vector of the linear third-order system, the feedback controller is

U=(u, v, w)’, and

0O 1 0 0 -k O kk 0 0
A= 0 0 1 |,B=|0 0 -k |,C=|0 k, O (4.4)
-a -b -c ka k,b ki 0 0 kK

thus, one has three different sub-cases as follows:
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Fig. 4.2 Equilibrium points for system (4.1), (4.3).
(a) 1D horizontal n-scroll; (b) 1D vertical n-scroll; (c) 2D nxm-grid scroll.

Generation of 1D n-scroll chaotic attractor. If &k =1, k> =k; =0, then
h(x, p1>q,)
U@ = 0
0

System (4.1) can generate a 1D n-scroll chaotic attractor whose equilibrium points are

located on the x-axis as shown in Fig. 4.3 (a).

Generation of 2D nxm-grid scroll chaotic attractor. If ky =k, =1, k3 =0, then
h(x, py>q,)
Ue)=|h(y,p,,4,) |
0

System (4.1) can generate a 2D nxm-grid scroll chaotic attractor whose equilibrium

points are integer points on the xy-plane as shown in Fig. 4.3 (b).

Generation of 3D nxmxI-space scroll chaotic attractor. If ki =k, =ks =1, then

h(x, p1>q;)
U() = h(yapz,Q2) .
h(z, ps,4;)

System (4.1) can generate a 3D nxmxl-space scroll chaotic attractor whose

equilibrium points are integer points on the xyz-space as displayed in Fig. 4.3 (c).

Thus, the multi-scroll chaos generation systems can be represented in Lur’e form, and as a

result they may be used within synchronization schemes for secure communication.
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Fig. 4.3 Equilibrium points for system (4.1), (4.4).
(a) 1D n-scroll; (b) 2D nxm-grid scroll; (¢) 3D nxmxI-space scroll.

4.3 Multi-Scroll Chaotic Attractors via Second-Order Systems

In this section, generating multi-scroll chaotic attractors via linear second-order systems and a
hysteresis function series are studied. It includes generating 1D n-scroll chaotic attractors in

the directions of state variables, and 2D nxm-grid scroll chaotic attractors in the phase plane.

4.3.1 Generating Horizontal N-Scroll Chaotic Attractors

Consider a linear second-order system, if the state variable x is input to the hysteresis function
series (4.2), then by feeding back the output of the hysteresis function series to system (4.1),

the equations become:

X=y
y=—ax+by+au (4.5)
u="h(x,p,q)

which corresponds to k=1, k,=0 in (4.3).

It can easily be verified that if >0 and 5>0, then the trajectory of the system (4.5) will be
spirally divergent with a positive damping ratio. With the use of the hysteresis function series
(4.2), system (4.5) is able to generate n-scroll chaotic attractors.

The equilibrium points of system (4.5) are located on x-axis, which are given by

Oy=[wp,—p+1,...,-1,0,1,...,9-1, q].

System (4.5) can generate a (p+¢+1)-scroll chaotic attractor in the direction of the state
variable x for some suitable parameters a and b, which is called a 1D horizontal n-scroll
chaotic attractor. When a=1, b=0.125, p=¢=3, system (4.5) creates a horizontal p+g+1=7-

scroll chaotic attractor, as shown in Fig. 4.4.
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(b)

Fig. 4.4 The horizontal 7-scroll chaotic attractor of system (4.5).

(a) x-y phase trajectory; (b) x-y-u trajectory.

A closer look at the trajectories of system (4.5) reveals that it is a 3-dimensional system
(x, y, u) and can be regarded as a configuration of the 2-dimensional linear system on (p+g+1)
subspaces connecting with one another via switching of the hysteresis function series

h(x, p, q), where the subspaces are:

v, ={(x,y,u)|x<—p+l,u:_p}
Vi={ooyu)i-l<x<i+Lu=i} -p+l<i<g-l. (4.6)

!

4 ={(x,y,u)|x>q—1,u:c]}
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Note that each subspace V; (—p <i <q) includes one and only one of the equilibrium points
of system (4.5). System (4.5) is especially unstable in every subspace V;, thus the system
trajectories will not stay in any subspace forever. For a given initial value (xo, yo, to) € V; as
t — oo, the trajectory of system (4.5) spirally diverges around its equilibrium point in subspace
Vi; when the trajectory reaches the boundaries of subspace V;, it is switched to another
neighboring subspace V; (j#i ), and so on. It is noticed that the trajectory will go through
every subspace V; (—p <j <¢). After a long enough time, the trajectory definitely returns to the
original subspace V;, and then the motion will repeat infinitely many times. As ¢ — oo, the
system changes its dynamical behaviours (folding and stretching) repeatedly as the orbit goes
through (p+¢+1) regions alternatively and repeatedly, leading to very complex dynamics such
as the appearance of chaos. It should be pointed that the switching of the hysteresis function

series A(x, p, q) plays a key role in generating chaos.

4.3.2 Generating Vertical N-Scroll Chaotic Attractors

Consider a second-order system, if the state variable y is input to the hysteresis function series
(4.2), then by feeding back the output of the hysteresis function series to system (4.1), the

equations become:

X=y-—v
y=—ax+by—bv 4.7)
v="h(y,p,q)

which corresponds to k;, =0, k,=1 in (4.3).

The equilibrium points of system (4.7) are located on the y-axis, and are given by:

O,=[p,—p+l,...,-1,0,1,...,9-1,4q].

System (4.7) can generate a (p+qg+1)-scroll chaotic attractors in the direction of the state
variable y for some suitable parameters a and b, which is called a 1D vertical n-scroll chaotic
attractor. When a=1, #=0.125, p=¢=3, system (4.7) creates a vertical p+g+1=7-scroll chaotic
attractor, as shown in Fig. 4.5.

A closer look at the trajectories of system (4.7) reveals that it is a 3-dimensional system
(x,y, v) and can be regarded as a configuration of 2-dimensional linear system on (p+g+1)
subspaces connecting to one another via the switching of the hysteresis function series

h(y, p, q), where the subspaces are:
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v, ={Gy9)|y<—p+Ly=—p}
v, ={y)j-1<y<j+lv=j} —p+l<j<g-1. (4.8)
V. ={es 39 y>g-Lv=q

S R R
7

;

(b)

Fig. 4.5 The vertical 7-scroll chaotic attractor of system (4.7).
(a) x-y phase trajectory; (b) x-y-v trajectory.

Note that each subspace V; (—p <j <g) includes one and only one of the equilibrium points
of system (4.7). System (4.7) is especially unstable in every subspace ¥}, thus the system
trajectories will not stay in any subspace forever. Multiple scroll chaotic attractors are

generated in exactly the same way as in the horizontal direction discussed in 4.3.1.
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4.3.3 Generating NxM-Grid Scroll Chaotic Attractors

If both state variables x and y of a second-order system are input to the hysteresis function
series (4.2), then by feeding back the outputs of the hysteresis function series to the system
(4.1), one has:
X=y-v
y=—ax+by+au—>by
u = h(x, p,q,)
v="1(y,P2,9,)

(4.9)

corresponds to k, =1, k,=1 in (4.3), the equilibrium points satisfy the following equation:
xX=u
y=v
Therefore, system (4.9) has (p1+¢1+1)x(p2+q2+1) equilibrium points, which are given by:

Oy =10Ni=-p1, 01+, ..., q1;]=—p2, P2+, ..., ¢2].

Thus, system (4.9) can generate an nxm-grid scroll chaotic attractor in the phase plane for
some suitable parameters a and b, called a 2D nxm-grid scroll chaotic attractor, where
n=pr+tq+1 and m=p,+q,+1. When a=1, b=0.125, p1=¢:=3, p=q>=2, system (4.9) can
generate a 7x5-grid scroll chaotic attractor, as shown in Fig. 4.6. The x-y phase trajectory of
system (4.9) is shown in Fig. 4.6 (a). If the item bv in the second equation of system (4.9) is
omitted, only the positions of the equilibrium points are affected. The simulation result is
shown in Fig. 4.6 (b), in which the equilibrium points are a little inclined. The trajectories of

x-y-u and x-y-v for system (4.9) are shown in Fig. 4.7 (a) and (b), respectively.

(@)



CHAPTER 4 MULTI-SCROLL CHAOTIC ATTRACTORS VIA LINEAR SYSTEMS 54

(b)
Fig. 4.6 Phase trajectories of 7x5-scroll chaotic attractor of system (4.9).
(a) x-y phase trajectory; (b) x-y phase trajectory with equilibrium point inclined.

A closer look at the trajectories of system (4.9) reveals that it is a 4-dimensional system
(x,y,u,v) and can be regarded as a configuration of a 2-dimensional linear system on
(p1tqi1t1)x(patgat+1) subspaces connecting one another via switching of the hysteresis
function series A(x, p1, q1) and A(y, p2, ¢2), where the nxm subspaces are:

R, ={(x,yu)[x<-p +Lu=-p}
R ={(x,yu)|i-l<x<i+lu=i} —-p +l<i<gqg -1
R, ={(x,y,u)|x>q -Lu=q}

&

g

(2)
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(®)

Fig. 4.7 Space trajectories of 7x5-scroll chaotic attractor of system (4.9).

(a) x-y-u trajectory; (b) x-y-v trajectory.

S, =iy 1y <-p,+1Lv=-p,}
Sj={(x,y,v)|j~l<y<j+l,v=j} —p2+1<j<q2—1
S, ={(x,y,v)|y>q2—1,v=q2}

Vijp= {G, p, u, v) IxeR,—,yeSj, u=i, v=j}(—pitl <i<q—-1, prt1 <j<g,-1) (4.10)

Note that every subspace V) (—p1 <i<q1, —p2 <j =q) includes one and only one of the
equilibrium points of system (4.9). Since the system (4.9) is divergent in every subspace ¥ j,
the system trajectories will not stay in any subspace forever. Multiple scroll chaotic attractors
are generated in exactly the same way as both the horizontal and vertical cases studied in

4.3.1 and 4.3.2, except for the notion of system trajectories.

4.4 Multi-Scroll Chaotic Attractors via Third-Order Systems

In this section, it is shown that linear third-order systems and hysteresis function series can
also generate multi-scroll chaotic attractors. How to generate a 1D n-scroll, a 2D nxm-grid

scroll, and a 3D nxmx[-space scroll chaotic attractor are discussed respectively.

4.4.1 Generating N-Scroll Chaotic Attractors

Consider a linear third-order system, if the state variable x is input to the hysteresis function

series (4.2), by feeding back the output of Eq. (4.2) to the system (4.1), the new system is:
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= Z

—ax — by —cz + au

h(x,p,q)

S N N %

56

(4.11)

which corresponds to & =1, k; =k3 =0 in (4.4). The corresponding characteristic equation is:

A —cA*-bl+a=0.

(4.12)

Numerical simulations show that with the help of the hysteresis function series on

system (4.11), if Eq. (4.12) has a negative eigenvalue and a pair of conjugate complex

eigenvalues with positive real parts, then the multi-scroll chaotic attractors can be generated.

Let A=A—-c/3. Substituting it into Eq. (4.12), then

A’ Jr(b—lcz)A+ic3 —lbc +a=0

3 27 3

Denoting
r= b—lcz,
3
= ic3 ~—bc+a,
27
A=tger—Lprer Lope v Ly Lo

27 108 6 27 4

and solving (4.13) yields:

A4 =Al—lc=—lc+3\/—ﬁ+\/z +3-=-JA
3 3 2 2

1
’12,3 =A,; —gc

=a+jp

_ 11l L5 mye i Bals moals
__50_5(\/_5+\/Z+ 5 JAY+ 5 (\/ 2+JZ : VA)

(4.13)

(4.14)

Under the conditions N <0, oe>0 and 0, it is possible for system (4.11) to generate chaos.

The equilibrium points of system (4.11) are located on the x-axis, and are given by:

Ox = [—p’ —p+17 T _1: 05 1; o ‘]‘1, Q]

System (4.11) can generate a (p+qg+1)-scroll chaotic attractor for some suitable parameters

a, b, and c. Fig. 4.8 shows a 7-scroll chaotic attractor where a=0.8, b=0.72, ¢=0.6, p=¢=3.
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It is noted that system (4.11) is a 4-dimensional system of X = (x,y,z,u)and can be

regarded as a configuration of a 3-dimensional linear system on (p+g+1) subspaces
connecting to one another via switching of the hysteresis function series A(x, p, ¢). The

subspaces are:

W_,={X|x<-p+lLu=-p}
W.={X|i-l<x<i+lu=i} -p+l<i<g-1 (4.15)
W,={X|x>q-lLu=gq}

where X = (x,y,2z,u).

(b)
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(©)

Fig. 4.8 The 7-scroll chaotic attractor of system (4.11).

(a) x-y plane;(b) x-y-z space; (c) x-y-u space.

It is very clear that there exists one and only one of the equilibrium points Oy in every
subspace W; (—p <i<q); and every equilibrium point corresponds to one scroll of the chaotic
attractor. Moreover, the system (4.11) is divergent in each subspace W;, thus the system
trajectories will not stay in any subspace forever.

For a given initial value (xo, yo, o, 4o)€ Wi, as t—wo the trajectory of system (4.11) spirally
diverges around its equilibrium point in subspace J¥;. When the trajectory reaches the
boundaries of W, it jumps onto another neighbouring subspace W; (j#i) holding (x, y, z)
constant, and then continuously to do so. Here, the switching boundaries are planes rather
than lines as the second-order systems case. Note that the trajectory will go through every
subspace Wi(-p<j=<g). After a long enough time, the trajectory definitely returns to the
original subspace W;, and then repeats a similar motion infinitely many times. As t—o the
system changes its dynamical behaviour (stretching and folding) repeatedly as the trajectory
goes through the (pt+g+1) regions alternately and repeatedly, leading to very complex
dynamics such as the appearance of chaos. Here, the switching of the hysteresis function
series A(x, p, q) play a key role in generating chaos. Also, it is clear that the switching

mechanics of system (4.11) are more complex than that of second-order systems case.

4.4.2 Generating VxM-Grid Scroll Chaotic Attractors

If both state variables x and y of a linear third-order system are input to the hysteresis function
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series (4.2), and feeding back the outputs of Eq. (4.2) to the system (4.1), the new system 1s:

(x=y-v

y=z

SZ=—ax —by —cz + au + bv (4.16)
u=h(x,pq,)

v =h(y,P2,9,)

which corresponds to k) = k=1, k3 =0 in (4.4).
System (4.16) has (p1+q1+1) x(p2+q2+1) equilibrium points, which are given by:

Oxy =[(l',j)‘~p1 i<q,-p, < j=<q,]

Thus, for some suitable parameters a, b, and ¢, system (4.16) can generate a (p;+q,+1)x
(patgat1)-grid scroll chaotic attractor. Fig. 4.9 shows a 5x7-scroll chaotic attractor, where
a=0.8, 6=0.7, ¢=0.6, ;1=¢1=2, p2=q2=3.

Tt should be noted that system (4.16) is a 5-dimensional system of X = (x, y,z,u,v),
and can be regarded as a configuration of a 3-dimensional linear system on (p;+g;+1)x
(p2tq2+1) subspaces connecting to one another via switching of the hysteresis function series
h(x, p1, q1) and h(y, p2, ¢2). Denote:

R, ={X|x<-p +1}
R ={X|i-1<x<i+l} —-p +l<i<gq -1
R, ={X|x>q, -1}

(a)
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(c)

Fig. 4.9 The 5x7-scroll chaotic attractor of system (4.16).

(a) x-y-u space; (b) x-y-v space; (c) y-z-v space.

S, ={X|y<-p,+1}
S, ={X|j-l<y<j+l} -p,+l<j<gq,-1.
S, ={X|y>q,-1}

Thus, the subspaces are:

4 ={)?}xeR,.,yeSj,u=i,v:j} (-pH1 <i<q-1, pry+1 <j<gy-1)

i.J)

60

(4.17)



CHAPTER 4 MULTI-SCROLL CHAOTIC ATTRACTORS VIA LINEAR SYSTEMS 61

where X = (x,y,z,u,v).

It is very clear that there exists one and only one of the equilibrium points O,, in every
subspace W) (—p1 <i<q1, —p2 <j <g2). Moreover, the system trajectories will not stay in any
subspace forever since the system (4.16) is divergent in every subspace ;). Note that the 2D
nxm-grid scroll chaotic attractor is generated in exactly the same way as the 1D case
discussed in 4.4.1, except for the notion of the system trajectories. Similarly, one can easily

design a 2D nxm-grid scroll chaotic attractor in the x-z or y-z directions.

4.4.3 Generating NxMxL-Space Scroll Chaotic Attractors

In the following, three state variables x, y, and z of a third-order system are input to the
hysteresis function series (4.2) for generating a 3D nxmx[-space scroll chaotic attractor. By

feeding back the outputs of Eq. (4.2) to the third-order system, the new system is:

-

=y—v
=z-w

=—ax —by —cz +au + bv + cw
h(x,p:,q,)

v="h(y,p0,,9,)

\w = h(z, p;,45)

(4.18)

2N e N

which corresponds to k; = k, = k3 =1 in (4.4).
System (4.18) has (p1+q1+1)x(p2tgat1)x(pstqs+1) equilibrium points, which are given
by:

O.Ayz :[(i’j’k)’“lﬁ Li<q,~p; £ j<q,,~P3s £k <q;)]

Thus, for some suitable parameters a, b, and ¢, system (4.18) can generate a
(p1+q1+1)x(prtgat1)x(pst+qs+1)-space scroll chaotic attractors. Fig. 4.10 shows a 5x8x3-
scroll chaotic attractors, where a=0.8, b=0.72, ¢=0.66, p1=q1=2, p,=3, q:=4, p3=¢s=1. It is
clear that there are 5 scrolls in the x-direction, 8 scrolls in the y-direction and 3 scrolls in the
z-direction in Fig. 4.10.

It is observed that system (4.18) is a 6-dimensional system of X = (x, y,z,u,v,w), and
can be regarded as a configuration of a 3-dimensional linear system on (p1+q1+1)x(pa+ga+1)x
(pst g3+1) subspaces connecting to one another via switching of the hysteresis function series

h(x, p1, q1), Ay, p2, q2) and A(z, p3, g3). Denote:
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and

R_, ={X|x<-p, +1}

={X|i-l<x<i+l} -p +l<i<q, -1

qu={X|x>ql—1}

S, ={X|y<-p, +1}

={X|j-l<y<j+l} —p,+l<j<gq,-1

S, ={X|y>q,-1}

s s SSE s s esy "
e Q*\‘w o V(’g\‘w;/ U‘g,,%;;,;}g;,;, a; #
S . e . -
?WZ«M = E L e oo
e e L . . v,,,:,::,/v,,,‘,, o
ool ,y}&/w«’;v,,ﬁ«w,, S sl

o

o ¢
. .
- W{g f*f% : \’w
= Ly;,'»/@\\ % 7/,5 ‘“"wm/\"»‘:%?m H G b
?/v = 3;’%,\»/&5:, H S
e y ¢ UAER

-

e e
i ﬂs,, g m ”W\

é‘ﬁ“fifn % ~:/rf//»,ﬁ”,
» i
e

e ,r{"/f./,‘ ,w,”,

e

S

o

.
>
o
-

o

2
.

-

‘g}’;
-

m—m o

\\u\rl e

.

o

<<

.

i
s
p

.
w, ,,«,,/,,/,,,,,,m«»,,
e

e
e e

o %v;f NV
e

\;p‘

i
e
e

=4 e ';%'«;:wm: ek w‘—w d
o // - o -

e /S/ L . ,,,,,;,wxav,w -
- .
= ,ﬁw/,;;r;«,w ,@w;,;»,,n,,wﬁ,,,«im,\ ,/»‘«{ggnv\;»};'é/w e )\\\}m‘{»“ s aa
= < A R A AR RO B SR

(a)

T Y 7
\ /ﬁ,,,,,m:(” e /7’1’%",1’,*4*{;’7// Shmw S = a\
i St o

r,:;,m */ ;w/z(Z,;é;b,,,w;v,“w;@,;%/,/TY,‘ gw,@f

Gy ot s T m»s,\ i e

= o /Z/WM /@,\,ﬁﬂw s ;~u{4{m;¢ﬂzr¢7,r i ,«»4

i - , .. i - -
- e o G s Lt e
| - el fa N,/,Cw,./,,p
- “ S v v = o
= e ”»,a“a.\;:»:,»: L s
| >u' e . w»zzx;zg
| o . -
i /%::a;z - w %::,
i .. w/ -
- oo

R o

% 5

- }mt;;%a:::

- ‘mm o
o ,\-
o

«va 4 i

L
i

.

o

o
o

. v/«’ w‘; -
- 4

wm,,, i

.

W e g“ 2

Ao
w;{»\/ﬁ *«,.p

.

G
& ,m;};,‘\;;nx.y“
.

w@-

L /f»( a‘w;
k.
N s
- o -
.. QMQNM -
.

»\,;,,

/wr;; e

. -
=Ty
e
e
i v-\m
';'\\Q\'

e
\/;;1';;,:%?'#};& G
. -

1*4 N»m‘ﬂvu :& « M Lo e
g e Mg'a Thel s e e
o e ol mwﬂ o
i ‘&W //’A;':e;,smr e o 2 P o
s e vl Nl e i ff%’i‘;}iy,«,w e Y/ﬂq&yw
RS .‘/ e e SRR

(b)

62



CHAPTER 4 MULTI-SCROLL CHAOTIC ATTRACTORS VIA LINEAR SYSTEMS 63

(c)

Fig. 4.10 The 5x8x3-scroll chaotic attractor of system (4.138).

(a) x-y-u space; (b) x-y-v space; (c) y-z-w space.

T—p3 ={X|Z<—p3+1}
T, ={X|k-1<z<k+1l} —p,+l<k<gq,-1.
Tq :{X|Z>CI3_1}

3

Thus, the subspaces are:
Wein ={)_([xe]@,ye‘S},zeTk,uq',v:j,w:k} (mtl=i=qi-1, pt1 <j<gr-1, p3tl <k <q3-1)
(4.19)

where X = (x,y,z,u,v,w).

Note that there exists one and only one of the equilibrium points Oy, in every subspace
Wi (01 <i<qi, p2<j <2, -p3 <k =<q3). Moreover, the system trajectories will not stay in
any subspace forever since the system (4.18) is divergent in every subspace W(;;x. Note that
3D nxmxI-space scroll chaotic attractors are generated exactly in the same way as the 1D and

2D cases discussed in 4.4.1 and 4.4.2, except for the notion of the system trajectories.

4.5 Summary

A systematic method for generating multi-scroll chaotic attractors via linear systems using a
feedback control of the hysteresis function series has been presented in this chapter. It has

been shown that the 1D r-scroll chaotic attractors in the directions of the state variables and
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the 2D nxm-grid scroll chaotic attractors in the phase plane can be generated via continuous-
time linear second-order systems and a hysteresis function series. Also the 1D #n-scroll, 2D
nxm-grid scroll and 3D nxmxI-space scroll chaotic attractors can be generated via continuous-
time linear third-order systems and the hysteresis function series.

The multi-scroll chaos generation systems can be represented as hybrid Lur’e systems, and
as a result they may be used within synchronization schemes for secure communication. The
desired number of scrolls and their space positions can be obtained using a developed
methodology intended for engineering applications. This methodology will be shown in the

following chapters.



Chapter 5

Dynamics of the Multi-Scroll Chaotic

Attractors

5.1 Introduction

In the last chapter, a multi-scroll chaotic attractor was developed using a continuous-time
linear second-order or third-order system with a hysteresis function series. The dynamical
behaviours of multi-scroll chaotic attractors are further investigated in this chapter in order to
study the chaos generation mechanism and confirm the chaotic behaviour theoretically.

The basin of attraction and the stability margin of the 1D multi-scroll chaotic attractor in
the second-order system case are studied. The switching boundaries, switching rules and the
trajectories on each subspace are investigated in detail. The dynamical behaviours of the
chaotic systems with different hysteresis feedback are demonstrated.

This chapter is organized as follows. Section 5.2 contains the basin of attraction and the
stability margin for the chaotic attractor. Section 5.3 studies the dynamical behaviour of the
multi-scroll chaotic attractor. Dynamical behaviour analysis with a different hysteresis

controller is studied in section 5.4. Section 5.5 summaries this chapter.

5.2 Basin of Attraction and Stability Margin of the Chaotic Attractor

In this section, the basin of attraction for the multi-scroll chaotic attractor proposed in chapter

4 is investigated. The stability margin of the chaotic attractor is proposed.

5.2.1 Basin of Attraction of the Chaotic Attractor

For simplicity, suppose a=1, b=2q, p=n, ¢g=0, and the 1D horizontal n-scroll chaotic attractor

generation equations (4.5) can be written as:

xX=y
. . (5.1
y==x+20y+h(x,n,0)

65
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According to the analysis given in Chapter 3, there is an unstable limit cycle in the
hysteresis based system (3.3). There still is an unstable limit cycle L in system (5.1) even
when the scroll number is increased. This limit cycle L bounds the basin of attraction for the
chaotic attractor. For example, when n=2 and 5, the 3- and 6-scroll chaotic attractor generated
by system (5.1) and the trajectories of L are shown in Fig. 5.1, where C stands for the area

covered by the chaotic trajectory.

2
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Fig. 5.1 Limit cycle and the chaotic trajectories when a=0.0625. (a) 3-scroll; (b) 6-scroll.
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Fig. 5.1 shows that both the horizontal and vertical coordinates of L increase with an
increase in the scroll number. The initial values for Fig. 5.1 (b) are (2.0528, 2.02), which
results in an unbounded trajectory when »=2 and a bounded trajectory when »n=5. This occurs
eventhough it is outside the chaotic trajectory region C (but within the basin of attraction L).

The positive x-axis in Fig. 5.1 is chosen as the Poincaré section. When »=2, the Poincaré
map with three different parameters of system (5.1) are shown in Fig. 5.2.

From Fig. 5.2, it can be seen that:

1) Point L in Fig. 5.2 corresponds to the unstable limit cycle that bounds the basin of

attraction. When « increases, its horizontal coordinate L0 decreases.
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(c)

Fig. 5.2 Poincaré map of system (5.1) when n=2. (a) a=0.0625; (b) a=0.0896; (c) c=0.1.

2) If the maximum vertical coordinate of the Poincaré map is smaller than L1 (the vertical
coordinate of point L), as shown in Fig. 5.2 (a) when 0=0.0625, all trajectories will

stay within the basin of attraction when the initial conditions are within the basin.

3) Fig. 5.2 (b) shows the limiting case for the occurrence of chaos when o=a,,,=0.0896.
The maximum vertical coordinate of the Poincaré map equals to L1. In other words,

the outer border of the chaotic trajectory covered by region C is the limit cycle.

4) Fig. 5.2 (c) shows that the maximum vertical coordinate of the Poincaré map is larger
than L1, which means that the trajectories will run out of the basin of attraction even if
the initial conditions are within it.

When o=0.1 as that in Fig. 5.2 (c), an unbounded trajectory is created when »=2 and chaos

appears when 7 is increased to 4. The Poincaré map of a 5-scroll chaotic attractor is shown in

Fig. 5.3, in which the maximum vertical coordinate is smaller than L1.

5.2.2 Stability Sensitivity Analysis

The stability of system (5.1) is dependent on the system parameter o and the number of
hysteresis functions ». The Poincaré maps in Fig. 5.2 (c¢) and Fig. 5.3 show that when
parameter ¢ is unchanged, the unbounded trajectory may become bounded when n is
increased, or the unstable trajectory may become stable (but chaotic). Fig. 5.4 shows the

maximum value of o versus n for occurrence of chaos.
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Fig. 5.4 The maximum value of ain system (5.1) versus 7.

It can been seen in Fig. 5.4 that when #n is increased, the maximum value of parameter o
for the occurrence of chaos in system (5.1) also increases. The limit cycle is also dependent
on o and n. The maximum x-coordinate of the limit cycle (when y=0) in the Poincaré map, L0,
versus n while 0=04,x is shown in Fig. 5.5, which indicates that L0 increases linearly with
respect 1o n.

The limit cycle trajectory is sensitive to the system parameter . The relationship of L0
versus o when n=4 is shown in Fig. 5.6, where the maximum x-coordinate (when y=0) of limit

cycle, L0, decreases when the system parameter « is increased and when # 1s fixed.
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Fig. 5.6 L0 versus parameter o when n=4.

From the above analysis, it can be seen that there still exists an unstable limit cycle which
bounds the basin of attraction L in the multi-scroll chaos generation system. The size of basin
of attraction is dependent on the parameter of the second-order system and the number of the
hysteresis function. If the system parameter is unchanged, the size of L increases when the
hysteresis number increases. If the hysteresis number is unchanged, then the size of L

decreases when the system parameter « increases.
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5.3 Dynamical Behaviour Analysis of Multi-Scroll Chaotic Attractors

In this section the dynamical behaviour of the 1D horizontal n-scroll chaotic attractor and 2D
nxm-grid scroll chaotic attractor via second-order systems and hysteresis function series, and
the dynamical behaviour of the 1D n-scroll, 2D nxm-grid scroll as well as 3D nxm x[-space

scroll chaotic attractors are studied.

5.3.1 3-Scroll Chaotic Attractors via Second-Order Systems

If p=¢=1, and =0.0625, system (5.1) has a 3-scroll chaotic attractor as shown in Fig. 5.7. It

has three equilibrium points, located in three corresponding subspaces:
(1,0, DeVi={(x,y, u) | x>0, u=1};

(0, 0, 0)eVa={(x, y, u) | -1<x<1, u = 0};

(-1, 0, ~D)e¥s={(x,y, u) [ x<0, u =~1}.

Fig. 5.7 Trajectory of a 3-scroll chaotic attractor of second-order systems case.

The boundaries for the above three subspaces V), V>, and V; are defined as:
My =(x,y,u)| x=0} NV
My =(x,y, u) | x=1}NVy
M5 =(x,y, u) I x=1} N Vs

My={(x,y,u)| x=0}NV;.
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Consider the trajectory on V1. It rotates divergently around the equilibrium point (1,0,1),
and hits the boundary M, then jumps onto ¥, with the same (x, y), that is, the switching rule

is:
(x, y, w)()=(0, y, O)cV; if (x,y, (=0, y, YcMi;
Similarly, the other switching rules are described by:
(5, y, W(@)=(1, y, DV if @y, w)(@)=(1, y, 0)My;
(x, , w)(E)=(=1, y, ~1)V3 if (x, 3, w)(O=(-1, y, O)cMs;

(x, y, (=0, y, V2 if (x,y, w)()=( 0, y, ~1)cMa,

In the following, four specially grazing trajectories [70] are defined as shown in Fig. 5.8:

Fig. 5.8 Trajectories distribution of 3-scroll of second-order systems case.

1) P, is a trajectory on FV; that starts from 4; (0,0,1) € M, at ¢ = 0, intersects By (1,61,1)
e{(xy,1) |x=1, y>0}eV; at ¢ =1, and hits C; (0,¢1,1) € M, at t = £,. Since the starting
point A; lies in the line x = y = 0, the trajectory P; grazes M at 4,.

2) P, is a trajectory on V; that starts from 4, (—1,0,0) € M5 at ¢ = 0, intersects B, (0,5,,0)
€ {(x,,0) | x=0, >0}V, at t = t3 and hits C; (1,¢2,0) € M, at ¢ = 4. Since the starting
point A4, lies in the line X = y = 0, the trajectory P, grazes M3 at A;. There exists a point

E(0,e,0) such that the trajectory starting from £ passes through the point 4, as shown
in Fig. 5.8.

3) P) is a trajectory on V> that starts from 4,(1,0,0)e M, at ¢ = 0, intersects B, (0, b;,0)

€ {(x,,0) |x=0, y<0}eV;, at ¢t = ¢5 and hits C), (-1,¢c,,0) eM, at t = t;. Since the
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starting point A, lies in the linex = y =0, the trajectory P, grazes M, at A,. There
exists a point F(0,£,0) (f<0) such that the trajectory starting from F passes through the
point G(0,g,0) (g >0) and hits 4, as shown in Fig. 5.8.

4) P;is a trajectory on V3 that starts from A3 (0,0,-1)eM, at ¢ = 0, intersects B3 (1,b3,1)
e{(xy,—1) | x=1, y<0}e¥; at t = t; and hits C3 (0,c3,1)eM, at ¢ = t;. Note that the
trajectory Py grazes M, at A, since the starting point 4; lies in the linex =y =0.

Now, define a special region of trajectories, based on the four grazing trajectories and the

four boundaries of the three subspaces, by:
¢ =D UD,UD,
where D;: aregion on V; surrounded by Py and M
D;: aregion on V; surrounded by P, P, , M, and M3;
Ds: aregion on V3 surrounded by P; and Mj.

It is noted that the parameters by, by, b3, c1, ¢, €3, €, f, g can be regarded as functions of

system parameter o, and can be exactly calculated by using the exact solution (3.4) and

arriving time #. Especially note that, By and B3, C) and Cs, B, and B,, C, and C are

symmetrical. Therefore, b3 =-b1, c3=—c1, b,=—b3, c,=—C3, e =—g¢.

Lemma 5.1: & is an invariant set and has a non-ordinary attractor if the parameter o of

system (5.1) satisfy:

{cl ()2 b} (@) 652

b (a) 2 c,(a)

Proof: Suppose that condition (5.2) holds. Consider a trajectory starting from a point in
V1. After a long enough time, it will reach the boundary M; of V). According to the switching
rule, it jumps onto a segment {(0, y, 0) l ¢y <y <0}el,. Since ¢ () 2 b;(a), the jumping
point is in D,. After a long enough time, it will reach boundary M, or M3 of V. If it reaches
M,, from the switching rule, it jumps onto a segment {(1, y, 1) I 0 <y <b;}eV). Since
b1(@) =c,(0), the jumping point is in D;. If the trajectory reaches M3, it jumps onto V3 from

¢!, (0)=—c2(0l) =-b1 () =-b3(0).
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Similarly, for a trajectory starting from a point in V3, it will reach the boundary M, of V3,
and then jump onto V,. Therefore, the trajectory starting from a point in & remains in &
forever; that is, ® is an invariant set.

It is clear that the three equilibrium points (1, 0, 1), (0, 0, 0), (-1, 0, —1) of & are unstable.
The trajectory in regions D, D,, D3 are expanding at an exponential rate e®. Morcover, the
trajectory can not stay within any one subset D; (i =1, 2, 3) forever. Thus, there is no stable
equilibrium point or stable limit cycle in region ®. Hence, there exists a non-ordinary

attractor in ® . The proof is thus completed.

5.3.2 3x3-Grid Scroll Chaotic Attractors via Second-Order Systems

Rewrite the 2D nxm-grid scroll chaotic attractor generation equations (4.9) as:

X=y-v

v = —ax+by+au—by

4 4 (5.3)
u="h(x,p,,q,)

v="n(y, P, 4q,)

If pi=q\=1, p;=¢2,=1, and a=1, b=0.125, then system (5.3) has a 3x3-grid scroll chaotic

attractor as shown in Fig. 5.9, which has nine equilibrium points, located in nine subspaces:

Fig. 5.9 Trajectory of a 3x3-grid scroll of second-order systems case.

(1,1, 1, Del={(x,y, u, v) |x>0, >0, u=1, v=1};

(0, 1, 0, DeVa={(x,y, u, v) | -1<x<1, y>0, u=0, v=1};



CHAPTER 5 DYNAMICS OF THE MULTI-SCROLL CHAOTIC ATTRACTORS 75

(-1, 1,-1, DeVs={(x, », u, v) | x<0, >0, u=—1, v=1};
(1,0, 1, 0)e Vi={(x, y, u, v) | x>0, —1<y<1, u=1, v=0};
(0,0, 0, 0)eVs={(x, y, u, v) | ~1<x<1, ~1<y<1, u=0, v=0};
(-1, 0,-1, 0)e Vs={( X, y, u, v) | x<0, —1<y<1, u= 1, v=0};
(1,-1, 1, -DHeV:={(x,y, u, v) |x>0, y<0, u=1,v=-1};
0,-1,0,-DeVe={(x,y,u,v) I —1<x<1, y<0, u=0, v=-1};
(1,1, -1,-1)eVo={(x, y, u, V) | x<0, <0, u=~1, v=—-1}.

One can get the exact solution (3.4) on each subspace of hysteresis system (5.3). Now,

define boundaries for the nine subspaces V; (1 <i <9):

Vi: My={(0,y,1,1)| y=0}, M ={(x,0,1,1)| x=0};

Va: My={(1,,0, 1)| y=0}, N ={(-1,»,0,1)| y=0},
P={(x,0,0,1)| -1=x<1};

Vi: Mz={(0,y,-1,1)| y=0}, N;={(x, 0,-1,1) | x=<0};

Vi: My={(0,y,1,0)| -1=y=1}, Na={(x, 1,1, 0)| x=0},
Py={(x,-1,1,0)| x=0};

Vs: Ms={(1,,0,0)| -1 =<y<1}, Ns={(-1,»,0,0)| -1 =y<1},
Ps={(x,1,0,0)| -1 =x<1}, Os={(x,-1,0,0) | -1=x<1};

Ve: Ms={(0,y,-1,0)| -1=<y=<1}, Ns={(x, 1,-1,0)| x=<0},
Ps={(x,-1,-1,0)| x=0};

Vi: My={(0,y,1,-1)| y=<0}, N;={(x,0,1,-1) | x=0},

Ve: Ms={(1,,0,-1)| y=<0}, Ns={(-1,,0,-1)| y=<0};
Py={(x,0,0,-1)| -1=x<1};

Vor My={(0,y,-1,-1)| y=<0}, No={(x, 0,-1,-1) | x=0}.

The switching rules are described by:
Vi: 0(:H=(0, y, 0, eV, if 6()eM,, 0(f)=(x,0,1,0))eVs if 8(f)eN;

Va: 0(Y=(1,y, 1, eV, if 8()eM,, 0 )=( -1,y,~1, 1))eVs if 00)eN,,
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0(:)=(x, 0,0, 0)eVs if 8(t)ePs;

Vi: 8(:H=(0, y, 0, 1)e ¥V, if 8()eMs, 0()=(x, 0,—1, 0))eVs if 8(f)eNs;

Vi 0(t)=(0, y, 0, 0)eVs if 8()eM,, 0(H)=(x, 1,1, 1))eV; if 6(z)eN,,
0(tH=(x,-1,1,-1)eV; if 0(r)ePs;

Vs: 0(5)=(1, y, 1,0)eV, if 0()eMs, 0(t)=(-1,y, 1, 0)e Vs if 8(f)eNs,
0 )=(x, 1,0, eV, if 8(t)ePs, 0(0H=(x,—1, 0, -1)e Vs if 8(H)<Qs;

Vs: 0(£H=(0, 3,0, 0)e Vs if 8()eMs, 0(F)=(x, 1,1, 1)eV; if 0(f)eNs,
0(:H=(x, -1, -1, -1)eV, if 8(t)ePs;

Va: 0(tH=(0,y, 0, -1)e Vs if 0()eMy, 6(F)=(x,0, 1, 0)eV; if 0(H)eNy;

Vs: 0(EH=(1,y,1,-DeVy if 8()eMs, 0(H)=(-1,y, —1,~1)eV, if 0(H)eNs,
8(:H=(x,0,0,0)eVs if 6(t)cPs;

Vo: 0(:H=(0, y, 0, -1)e V3 if 0(H)eMy, 0(tH=(x, 01, 0)e Vs if 0(f)eNs.

where 0=( x, y, u, v).

In the following, consider eight special trajectories as shown in Fig. 5.10.

1) A4,B,C, is a trajectory on V; that starts from A41(0,1,1,1)eM; at ¢ = 0, intersects

Bi(1,b,1,1) € {(1,»,1,1)] y> 0} atz =1, and reaches C(0,c1,1,1)€V, at ¢ = t,.

2) A,B,C, is a trajectory on V, that starts from A4,(—1,0,0,1)eN, at ¢ = 0, intersects

B1(0,6,,0,1)€ {(0,,0,1)| y >0} at t = t3 and reaches Cy(1,c2,0,1) € M, at t = 1,.

3) 4,B,C, is a trajectory on V3 that starts from A3(-1,0,-1,1) € IV; at ¢ = 0, intersects

Bis(b3,1,-1,1)e {(x,1,-1,1)| x<0} at ¢ = ts and reaches C5(0,c3,—1,1)e M3 at t = ¢.

4) A,B,C, is a trajectory on V; that starts from A44(1,1,1,0)eN,; at ¢ = 0, intersects

Bu(b4,0,1,0)€ {(x,0,1,0)| x>0} at ¢ = ¢; and reaches Ca(cs,—1,1,0)ePy at t = tg.

5) A4,B,C, and A,B,C,, A,B,C, and 4,B,C, , 4,B,C, and 4,B,C, , 4,B,C, and

-

A, B,C, are symmetrical.

Note that the parameters b;, ¢; (1 <i <4) can be regarded as functions of a, b, and can be

calculated exactly by using the solution (3.4) and the arriving time ¢;.
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Fig. 5.10 Trajectories distribution of 3x3-scroll of second-order systems case.

Next, define a special region of trajectories, based on the 8 trajectories and the 24

boundaries of nine subspaces, by:

where Dj: aregion on Vi surrounded by 4,B,C, , My and Vy;

D;: aregion on V, surrounded by 4,85,C, , M5, N> and P;;
D;: aregion on V3 surrounded by 4,B,C, , M3 and IV3;

Dy: aregion on Vi, surrounded by 4,B,C,, M4, N4y and Py;

Ds: aregion on Vs surrounded by Ms, Ns, Ps and Qs;

—

Dg: aregion on Vs surrounded by 4,B,C, , Ms, N and P;

D;: aregion on V7 surrounded by 4,B,C, , M7 and N7;
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Dys: aregion on Vg surrounded by A4, B,C; , Mg, Ng and Ps;

Dy: aregion on V, surrounded by 4,B,C, , My and IVs.

Lemma 5.2: ® is an invariant set and has a non-ordinary attractor if the parameters a, b of

system (5.3) satisfy:

b(a,b)=c,(a,b)
b,(a,b)2c,(a,b)
b,(a,b)<c,(a,b)
b,(a,b)=c,(a,b)

(5.4)

Since the proof of Lemma 5.2 is similar to that of Lemma 5.1, it is omitted here. Similarly,
one can derive a condition for chaos generation with an nxm-grid (n, m>3) scroll chaotic

attractor for system (5.3).

5.3.3 3-Scroll Chaotic Attractors Via Third-Order Systems

Rewrite the 1D n-scroll chaotic attractors generation equations (4.11) as:

=)
=z
(5.5)
=—ax —by —cz + au

h(x,p,q)

S ST

If p=¢g=1, and a=0.8, 6=0.72, ¢=0.5, then system (5.5) has a 3-scroll chaotic attractor
located on three subspaces, as shown in Fig. 5.11. On each subspace W; (—1< i £1), the

solutions are given:

X(t)= Ae™ +e” (4, cos(Bt) + 4, sin(Br)]
Y€)= A4,e™ +e™[(Aya+ A f)cos(B) + (A, — A, B)sin(Bt)] (5.6)
Z(t)= AN " +e”[(4,0° + 24,0 A, 7) cos(Bt) + (Ao — 24,03~ 4,5 )sin(Be)]

where X(0), ¥(0) and Z(0) are the initial conditions;

|

=(x—1,y,z,u)" for XeW,;
X =(x,y,zu)" for XeW,;
X=(x+Ly,zu)" for )—(GW_I_

A=N, cand 3 are given by Eq. (4.14), and
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Fig. 5.11 Trajectory of a 3-scroll chaotic attractor of third-order systems case.

(@ +)X(0)—2a¥(0)+Z(0)
(A-a)’ +p°
4= (£ —2a2) X(0) +2aY(0) - Z(0)
(A-a)' +p
(AL =2 - Ra)X(O) - (S -’ + X)Y(0) +(a— 1) Z(0)
4" B~y + 5]

A

Denote

X g () X,

Y =180 Y

VA g, \Z,

Obviously, system (4.11) has four hysteresis switching planes:

My ={(x,y,2,u)| x=0}y N Wy;
My={(x,y, 2, u)| x=1} N Wy
Ms={(x,y,z,u) l x=1} N Wo;
My={(x,y,z,u) | x=0} NW_,.

and the corresponding switching rules are:

X(t*)=(0,,2,0) c W, if X(t)=(0,y,2,]) = M,;

X(*)=yzh) W, it X()=(,y,20)c M,;



CHAPTER 5 DYNAMICS OF THE MULTI-SCROLL CHAOTIC ATTRACTORS 80

X(t*)=(Ly.z-) e W, if X(t)=(-1y,2,0)c M,;
X(t*)=(0,7,2,0) c W, if X(t)=(0,y,2,-1)c M,.

Now, define four specially grazing surfaces as shown in Fig. 5.12.

AZ

-~
/
I’ A »
I
- x

0 1 =

D1 ~4

5

¥
Y
Fig. 5.12 Trajectories switching of 3-scroll of third-order systems case.
1) ABCD, is a trajectory in W, that starts from 4; (0,0,a1,1) € M, at ¢t = 0, intersects

Bi(L by, b 1) € {XJx=1y<0feW, at t = 1 and reaches Ci (0,c;, 3, ,1)e

X{(x,y,z,u)]x =Ly> 0} e W, att = 1,, and finally reaches D; (0, dy, d,, 1) € M at ¢

= 3. Since the starting point 4, lies in the line X = y =0, the trajectory 4 B,C,D, grazes

M, at A,. Denote §1={ 4B,C.D, l a1€R}. Obviously, surface §; grazes the switching

plane M, at z-axis.

2) A,B,C, is a trajectory in W, that starts from 4, (~1,0,a2,0) € M3 at ¢ = 0, intersects

Bz(O,bz,E2 ,0) € {)_(|x =0,y < 0} e W, at t =4 and reaches C; (1,¢2,¢,,0) € My att=1ts.

The trajectory 4,B,C, grazes M3 at A; since the starting point 4, lies in the
linex =y =0. Denote $,={ 4,B,C, | aeR}. Clearly, surface §, grazes the switching
plane M3 at the line M3 N{y=0}.

3) A,B,C, is a trajectory in W, that starts from 4)(1, 0,a;,0) € M, at ¢ = 0, intersects

B;(O,b;,E’,O)e {)_(|x=0,y>0}e W, at t = ts and reaches C, (-1,¢;,¢,, 0) € M; at
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4)

t = t7. The trajectory 4,B,C, grazes M, at A, since the starting point 4, lies in the
line x=y=0. Denote §, = {Z;B;—C; |a, € R} . Obviously, surface §, grazes the
switching plane M, at line M, N{y=0}.

IB3C3—D; is a trajectory in W, that starts from 43 (0,0,a3,—1) € M, at t = 0, intersects
By (-1,b3,b, ~1) € {)—(lx =~1,y> O}e W_, at t = tg and reaches Ci(—1,c3,¢, ,~1)e
{)_(|x =-1,y< O}E W, att=ty, and finally reaches D3 (0,ds,d,,~1)eM; at t = t.
Since the starting point A4 lies in the linex = y =0, the trajectory m grazes M,

at 4s. Denote $3={ 4,B,C,D, |(,Z3ER}. Obviously, surface S3 grazes the switching

plane M at z-axis.

Based on the above four grazing surfaces and four switching planes, define a special

region of trajectories, by:

» =6 Ud,Ud,

where ®; : aregion on W surrounded by §; and M;;

® ,: aregion on W surrounded by S5, S, , M, and M 3;
® ;: aregion on W surrounded by §3 and M 4.

It is noted that the parameters b;, b], c;, ¢}, d;, d] (1<i<3) and b}, b], ¢, ¢ can be

regarded as functions of a, b, ¢ for the given initial points 4;, 4,, 4,, A3, and can be exactly

calculated by using the exact solution (5.6) and the arriving time ¢ (1 <i <10). Moreover, B;

and B3, C; and Cs, Dy and D3, B; and B;, C; and C; are symmetric. Denote

and

P = {(bl’l;l)‘al GR}’ N, = {(617—0—1)Ia1 ER};
P, ={b,.5,)a, € R}, N, ={(b;.5,)a; € R};

P, = {(b3,53)‘a3 ER}, N, = {(63,53)‘613 eR}.

Ty: aregion on W, N{x=1} surrounded by P; and N;;
T,: aregion on W, N{x=0} surrounded by P, and /Vs;

T5: aregion on W N{x=—1} surrounded by P; and Ns.
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It can be seen that the regions T and 73 are symmetrical. According to the switching rules
and the exact analytic solution (5.6), one has the following conclusions: ® is an invariant set

if the parameters a, b, ¢ of system (4.11) satisfy:

[0,d,(a,b,c, al),c—z’] (a,b,c,a,),01€T,
and

[(L,c,(a,b,c,a,),¢,(a,b,c,a,),1leT,

where a, € R and a, e R. In fact, all trajectories started from any point in ¢ will remain in ¢

as shown in Fig. 5.11. That is, & is an invariant set. Although the switching rules are very
simple, the generated trajectories are rather complex.

In the following, a two-dimensional Poincaré return map is rigorously derived for
verifying the chaotic behaviours of 3-scroll chaotic attractors shown in Figure 5.5.

Consider a trajectory starting from the point (0, yy, zo, 0)e W, at t = 0. According to the
solution (5.6), if there are no switchings in the boundaries M, and M3, the trajectory must
reach M, and M3 at the positive time ¢, and ¢, separately. Here ¢, and ¢, are the first arriving
times. Let (1,y1,21,0)€ M, be the hit point, then one can calculate the arriving time ¢,, y; and z,

by using the exact solution (5.6). Similarly, for the hit point (1, y;, z;, 0) € Mj, one can

calculate the arriving time #,, y, and z; . In the following, first define a region by:

H, ={0,9,20)eW,|t, <1,} (5.7)

Also, consider a trajectory starting from the point (1, yo, zo, 1) e W; at ¢t = 0. Due to (5.6), it
must reach M, at some positive time #. Let (1, y,,z,,0) € M be the hit point, then one can
calculate the arriving time 7., y, and z, by using the exact solution (5.6). Thus, the following

region is defined:
H,={1,y,z) e W (0,5,%.,0) e H,} (5.8)

Now consider the vector field in W;. Let E” be the eigenspace corresponding to the real
eigenvalue \ and let E° be the eigenspace corresponding to the complex eigenvalues o0

They are described by:

E ={x%y, ) (x=1)= Ay =z,x >0

. (5.9)
E°= {(x,y,z)|(oz2 +BHY(x-D)—2ay+z=0,x> O}
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Denote @ 1=W; N{x=1}, L2=WyN{x=0}, @3= W, N{x=-1}. Consider a trajectory starting
from an initial point (1, yo, 2o, 1) €eH; At t =0, according to (5.6), it must reach the switching
plane M, at some positive time #; as shown in Figure 5.13. In fact, since A< 0, the trajectory
will tend to eigenspace E° and spirally diverge at the eigenspace E' with a positive exponential
rate €. Let (0, y1, z1, 1) be the hit point. From the switching rule and Eq. (5.8), the trajectory
jumps onto Hyc @, holding y,, z; constant. That is, the hit point is (0, yi, z1, 0) €Hy. Thus,
according to Egs. (5.7) and (5.8), the trajectory must reach the switching plane M, at some
positive time ¢, as displayed in Fig. 5.13. Let (1, y, 27, 0) be the hit point. From the switching
rule, this trajectory jumps onto &; holding y,, z, constant. Thus, the hit point is
(0, y2, 22, 0)e Q.

On the other hand, consider a trajectory starting from a point (1, yo, zo, 1) € @1— H, at
t =0. According to Eq. (5.6), it must reach the switching plane M, at some positive time .
Let (0, y1, z1, 1) be the hit point. According to the switching rule and Eq. (5.8), this trajectory
jumps onto @, — Hj holding yi, z; constant. That is, the hit point is (0, yi, z1, 0) € @, — H,.
Due to Eq. (5.7), the trajectory must reach the switching plane M3 at some positive time 73 as
shown in Fig. 5.13. Let (-1, y3, z3, 0) be the hit point. According to the switching rule, this
trajectory jumps onto £ ; holding ys, z3 constant. Thus, the hit point is (-1, y3, z3, 1) € Q3.

Notice the symmetry of the vector field in both W, and W.,. Then, a trajectory starting
from (-1, y3, z3, —1) in W_; is symmetric to that starting from (1, —y3, —z3, 1) on € in W.

Now, one can define a two-dimensional Poincaré return map:

B3 Dy
|, > -
--./J I_-»// al -
c3 ~5+7) - | - “
< —— = -—— -
p T/_T_ Zu 5 LT A
4 R >
1 X
|/

V3
4

Fig. 5.13 Hysteresis phase space and Poincaré return map.
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i, =>Q,,(¥,2,) (¥,-2,) for (yo,z,) € H, (5.10)
8, 1:WU0s 29 (=y5,—2z;) for (¥,,2,)eR,—H, . |

Clearly, one can formulate a rigorous mathematical description of this map by using the

exact solution (5.6) as follows:

0-1) (&)} 1-1

Y1 = gz(tl) Yo (5.11-1)
Zy g,() )\ z,

1 gl(tZ _11) 0

Y, =&, =) || ¥ (5.11-2)
Z, g.(t, —4) )\ z,

-1 g, (ts—1,)\(0
Y3 1= gz(t3 —tl) Y (5-11'3)
Z, g,(t, — 1) )\ 7,

In actual calculations, one can use a numerical method, such as the Newton-Raphson

method, to solve the equations. Moreover, the Jacobian matrix of this map fis described by:

([, 9,
dy, 0z,
oz, oz, for (y,,z,)e H,
oy 0z
Df = 0 0 (5.12)
/ % Oy,
| 9y, Oz, 3
oz, % for (y,,2,)eQ,-H,
oy, 0Oz,

Now, one can calculate the Lyapunov exponents N and X of the Poincaré map f. In fact,
one can get the exact mathematical formulations for N, & (N =&) from Egs. (5.11) and (5.12).
However, the formulations are rather complex. In real calculations, one can use the numerical
methods discussed in [48] to calculate A, . When O0<N<+og system (5.5) is chaotic. The
maximum Lyapunov exponent of the 3-scroll chaotic attractor shown in Fig. 5.11 is

N=0.0284>0. Fig. 5.14 shows its Poincaré mapping at section y =0.

5.3.4 3x3-Grid Scroll Chaotic Attractors via Third-Order Systems

Rewrite the 2D nxm-grid scroll chaotic attractor generation equations (4.16) as:
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Fig. 5.14 Poincaré map at y =0 of a 3-scroll attractor of third-order systems case.

(x=y—-v

y =z

$Z=-—ax —by —cz +au + bv (5.13)
u=nh(x,p.q;)

v="h(y,p;,9,5)

This subsection briefly discusses the hysteresis switching dynamics of system (5.13). If
pi=q1=p2=q=1, and a=0.8, b=0.72, ¢=0.5, then system (5.13) has a 3x3-grid scroll chaotic
attractor as shown in Fig. 5.15, which has nine equilibrium points, located in nine

corresponding subspaces:
(i,j,O, la.]) = W(izf) -1 Sl?]'él

where W (-1 <i, j <l) are defined by (4.17). Note that system (5.13) has a natural symmetry
under the coordinates (x, y, z) = (—x, —y, —z), which persists for all values of the system

parameters.

Similarly, one can find the exact solution (5.6) of the hysteresis based system (5.13),

where

X, ¥, 2)" =(x-i, yj, 2)| for X e W,

in which X = (x, y,z,u,v) and —1 <i, j 1. Define the switching planes of the nine subspaces:

W(i,/') (—1 Si,j Sl)
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Fig. 5.15 Trajectory of a 3x3-grid scroll attractor of third-order systems case.

Way: Mi={(0,y,z 1, 1)| y=0}, Mi={(x,0,z 1, 1)| x=0};

Wor: Ma={(1,5,7,0,1)| y=0}, M={(-1,520,1)| y=0},
Py={(x,0,2,0,1)| -1=x=<1};

Wy Mi={(0,y,2,-1,1)] y=0}, N;={(x, 0,2,-1, 1) | x=0};

Waoy Ma={(0,3,21,0)| -1=<y=<1}, Nu={(x, 1,2 1,0)| x=0},
Py={(x,-1,2,1,0) | x=0};

Wooy Ms={(1,,20,0)| -1<y<1}, Ns={(-1,1,2,0,0)| -1 <y<1},
Ps={(x,1,2,0,0)| -1=x<1}, @s={(x, 1,20, 0)| -1 =<x<1};

Wiy Me={(0,y,2z,-1,0)| -1 <p<1}, Ng={(x, 1,2,-1,0)] x=0},
Ps={(x,-1,z,—1,0)| x=0};

Wa,-1y: M;={(0,y,z, 1,—1)| y=<0}, Ny={(x,0,21, —1)| x=0};

Wo, 1y Mz={(1,7,20,-1)| y=<0}, Ny={(-1,y,2,0,-1) | y=0},
Py={(x,0,2,0,-1)| -1=x=<1};

Wei oy Mo={(0,y,z,~1,-1)| y<0}, No={(x, 0, z,~1,-1) | x=<0}.

Thus, the switching rules are described by:

Wa 1 X(t")eW,, N{x=0}if X()eM,, X(th)e W, iy N{y=0}if X()eN,;

86
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Won Xt ) eW,, Nix=1},if X@)e M,, X(t")eW_,, N{x=-1} if X(t)e N,,
Xt )eWyu, N{y=0},if X(t) e Py;
W, X" ) e Wy, N{x =0} if X(t)e M,, X" )eW_,N{y=0}if X({)e N,;
Wa: X(17)eWeo N{x=0},if X()eM,, Xt )eW,, N{y=1}if X()e N,,
X" )eW, ,N{y=-1,if X@)eP,;
Wo,0p X )eW 0 N{x=1},if X(NeM,, X({t*)eW_,N{x=-1} if X(1) e N;,
Xt eQu,y Ny =1,if X(t) e P;, X(t*)eW,_, N{y=-1,if X(t) € Os;
Wt 0p X(E1) e W N{x=0},if X()e My, X(t") e W, N{y=1} if X(t) e N,
X@yeW, , ,N{y=-1},if X@t) e P,;
Wa,1: X (") e Wy, N{x=0},if X()e M,, X )eW,, N{y=0} if X()e N,;
Wo,1: Xt ) e W, N{x=1},if X(1)e My, X()eW__, Nx=-1} if X(t) e N,,
X(t*)e Wy, N{y=0},if X(t) e P;
W, 1 X(t") e Wy, Nix=0},if X(1)e M,, X(t)eW,_,, N{y=0} if X(©)e N,.

where X = (x, y,z,u,v) and x, y, z are held constant during the switching.

Similarly, one can derive the conditions for chaos generation with an nxm—grid scroll
chaotic attractor by using a two-dimensional Poincaré return map.
5.3.5 3x3%3-Space Scroll Chaotic Attractors via Third-Order Systems

Rewrite the 3D nxmx/-space scroll chaotic attractor generation equations (4.18) as:

(o

X=y-—-v
y=z-w
Z=—ax —by —cz +au +bv + cw

(5.14)
u=nh(x,p.q)
v="h(y,p,,9,)
W= h(z, p;,q5)
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If pi=q1=p2=q,=p3=q3=1, and a=0.8, b=0.72, c¢=0.6, then system (5.14) has a 3x3x3-space
scroll chaotic attractor, which has 27 equilibrium points, located in 27 corresponding

subspaces:

G, k1,7, k) eWjp for —1<i,j, k<l
where Wx ( -1 =i, j, k<1) are defined by (4.19). Note that system (5.14) has a natural
symmetry under the coordinates (x, y, z) = (-x, —y, —z), which persists for all values of the

system parameters.

It is easy to get the exact solution (5.6) of the hysteresis based system (5.14), where

X, Y, 2)" =(x-i, yJ, z-k)" for X e W,

in which X = (x,y,z,u,v,w) and -1 <i, j, k<I.

Similarly, one can define the switching rules for system (5.14). Also, a two-dimensional
Poincaré return map can be derived to prove that system (5.14) has chaotic behaviour with an
nxmx[-space scroll chaotic attractor. The proof is similar but rather more complex, and is

omitted here.

5.4 Dynamical Behaviour with Different Hysteresis Controllers

The multi-scroll chaotic attractor can be generated via continuous-time linear second-order or
third-order systems and hysteresis function series controllers. It is especially noted that
controlled systems have different dynamical behaviour with different hysteresis controllers.
This subsection briefly investigates the dynamical behaviour of these kinds of hysteresis

based chaotic systems.
5.4.1 Dynamical Behaviour of Second-Order Systems

There are three cases considered in this subsection:

1) Suppose u = f (x,1,1) in system (4.5). Variation of the coefficients a or b and the

corresponding dynamical behaviours are summarized in table 5.1.

Tab. 5.1 Dynamical behaviours of system (4.5).

b=0.125, a varies a=1, b varies Response property
=0.0027 one stable equilibrium point
<0.479 =0.181 divergent
>0.480 [0.0028, 0.180] chaotic
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2) Suppose v = f (y,1,1) in system (4.7). Variation of the coefficients a or b and the
corresponding dynamical behaviours are summarized in table 5.2.

Tab. 5.2 Dynamical behaviours of system (4.7).

b=0.125, a varies a=1, b varies Response property
<0 <0 one stable equilibrium point
[0.002, 0.238] =0.256 divergent
=0.239 [0, 0.255] chaotic

3) Suppose u = f(x,1,1), v =f(,1,1) in system (5.3). Variation of the coefficients a or b,

and the corresponding dynamical behaviours are summarized in table 5.3.

Tab. 5.3 Dynamical behaviours of system (5.3).

b=0.125, a varies a=1, b varies Response property
=16.0 <0.004 one stable equilibrium point
=0.26 =>0.30 divergent
[0.27, 15.0] [0.005, 0.29] chaotic

5.4.2 Dynamical Behaviour of Third-Order Systems
There are three cases considered in this subsection:
1) Suppose u = h(x,1,1) in system (5.5). Variation of the coefficients a, b or ¢ and the
corresponding dynamical behaviours are summarized in table 5.4.

Tab. 5.4 Dynamical behaviours of system (5.5).

b=O72, C:O.S, a=0.8, C=0.5, a:0.8, b:0.72, Response property
a varies b varies ¢ varies
[0, 0.36] >1.6 >1.12 one stable
equilibrium point
< Qor>0.84 <0.69 <0.47 divergent
[0.37, 0.84] [0.70, 1.59] (0.48, 0.5), (0.52,1.1) chaotic
0.80, 0.84, 0.92, 0.99, [0.57,0.59],
[1.04,1.18], [0.73,0.77], periodic windows
1.24,1.28,1.30,1.34. [0.86, 0.93].

2) Suppose u = h(x,1,1) and v = A(y,1,1) in system (5.13). Variation of the coefficients a,

b or ¢, and the corresponding dynamical behaviours are summarized as table 5.5.
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b:O72, C=O.5, a=O.8, C=O.5, a=0.8, b:072, Response property
a varies b varies c varies
one stable
[0, 0.36] =1.60 >1.12 e .
equilibrium point
< Qor> 1.00 =0.56 =<0.39 divergent
0.37,0.38,[0.49,0.54), | 1457 1.59] (0.4, 1.1] chaotic
[0.59, 0.98].
[0.39, 0.48], [8'241{ 8'3?’
[0.55, 0.58], %0-87’ 0'9()}’ periodic windows
0.99. DO
[0.93, 0.99].
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3) Suppose u = h(x,1,1), v = h(y,1,1) and w = A(z,1,1) in system (5.14). Variation of the

coefficients a, b or ¢, and the corresponding dynamical behaviours are summarized as

table 5.6.
Tab. 5.6 Dynamical behaviours of system (5.14).
b=0.72, ¢=0.6, a=0.8, ¢=0.6, a=0.8, b=0.72, R
a varies b varies c varies esponse property
one stable
[0, 0.43] =1.34 =1.12 . .
equilibrium point
< 0or =0.94 =0.51 <0.51 divergent
[0.44, 0.93] [0.53, 1.33] [0.52, 1.11] chaotic
[0.48, 0.60], [0.74, 0.77], <o dic wind
[0.71,0.72]. [0.87, 0.90]. DErodic windows
0.52 limit cycle

5.4.3 Remarks

From the analysis in the above two subsections, it has been shown that the considered
hysteresis based systems can have a stable equilibrium point, or they can be chaotic or

divergent dependent on which hysteresis controllers is used. Furthermore:

1) In the second-order systems case: when parameter a is fixed and b is varied, the 1D
horizontal n-scroll, vertical n-scroll and 2D nxm-grid scroll chaotic attractors have
similar characteristics; when parameter b is small, the systems have a stable
equilibrium point; when parameter b is increased, the systems are chaotic; when

parameter b is very large, the systems are divergent.
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2) In the third-order systems case, in addition to the rules for the second-order systems
case, periodic windows and sometimes limit cycles appear. When one of the
parameters varies, systems (5.5), (5.13) and (5.14) have similar characteristics and

some of the boundary values are the same.

Since the hysteresis based system is very diverse, there may be many unknown dynamical

behaviours to be observed and this deserves further investigation in the future.

5.5 Summary

The complex dynamical behaviour of the multi-scroll chaos generation system has been
studied in this chapter. The dynamical mechanics of multi-scroll chaotic attractor generation

have been confirmed theoretically. The main conclusions of this chapter are:

1) An unstable limit cycle bounds a basin of attraction for the multi-scroll chaotic
attractor in the second-order system case. The size of the basin of attraction is

determined by the parameters of the hysteresis based systems.

2) There exists a non-ordinary attractor for chaos generation in the second-order system

casc.

3) A rigorously derived two-dimensional Poincaré map and the Lyapunov exponent

verifying the chaotic behaviours in the third-order system case.

The hysteresis chaotic generator may find wide ranging real-world engineering
applications because hysteresis based chaotic systems possess complex dynamical behaviours

with relatively simple models.



Chapter 6

Circuit Implementation of the Multi-

Scroll Chadtic Attractor

6.1 Introduction

Over the past few years, a number of applications of chaotic systems to cryptography and
secure information processing, liquid mixing, chemical reactions, and so on have surfaced in
the engineering community. One major problem in the application of chaos based systems is
their hardware implementation. Generating complex chaotic attractors with simple electronic
circuits has attracted increasing attention. The implementation of circuitry to model hysteresis
based chaotic generators has been widely studied [56, 59, 62, 64, 67-70, 75, 77]. In addition
to implementing a single and double scroll chaotic attractors, Saito also implemented a 2x2-
scroll chaotic attractor with a two-port chaotic oscillator [70]. A multi-scroll generation
scheme was proposed by Varrientos and Sanchez-Sinencio [77]. In their scheme it was shown
that by constructing more than one differential hysteresis comparators and placing them in
parallel, two or more different hysteresis outputs could be generated. Their experimental
results only show limited chaotic scrolls due to the physical constraint that the differential
hysteresis comparators are difficult to implement, particularly because when more
comparators are needed the resistors have to be adjusted simultaneously to maintain the
synchrony.

The multi-scroll chaotic attractors proposed in Chapter 4 have more complicated
dynamical behaviours and a wide range of basin of attraction. The chaotic behaviours have
been confirmed mathematically in Chapter 5. In order to verify the chaotic attractors
experimentally, a novel double-hysteresis block is proposed, and the ideal double-hysteresis
series are constructed via a systematic method using basic building blocks. A new circuit is
designed for generating 1D n-scroll chaotic attractors in the directions of the state variables,
and 2D nxm-grid scroll chaotic attractors in the phase plane via linear second-order systems

and double-hysteresis series. Circuit implementation and the oscilloscope illustrated

92
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waveforms of multi-scroll chaotic attractors and the output of the double-hysteresis series are
used to verify the effectiveness of this design.

This chapter is organized as follows. Section 6.2 proposes a design scheme for a double-
hysteresis building block and double-hysteresis series. Multi-scroll chaotic attractors via
linear second-order systems and double-hysteresis series are designed in section 6.3.

Experimental results are shown in section 6.4. Section 6.5 is the summary of this chapter.

6.2 Double-Hysteresis Series and its Implementation

The double-hysteresis function is the basis for generating multi-scroll chaotic attractors. In
this section, the design of the ideal double-hysteresis function and its series are given. The
mathematical model, the circuit structure and the operational principle of the double-

hysteresis series are also studied.

Definition 6.1: Double-hysteresis function is defined as the superimposition of two
hysteresis functions, which described as:
u="mx)+ hix) (6.1)
Eq. (6.1) is a special case when p=¢=1 in Eq. (4.2).

Definition 6.2: Double-hysteresis series is defined as:
up = — h(u, k) (6.2)

where u; and u, are the input and output of the double-hysteresis series, respectively, and & is

the number of the double-hysteresis functoin.

It should be noted that the double-hysteresis series is a special case of the hysteresis

function series described by Eq. (4.2) where p=¢=k.

6.2.1 Building Block of the Double-Hysteresis Function

In this subsection, an electronic circuit is designed to implemente the double-hysteresis
function.

The block diagram of the double-hysteresis building block is shown in Fig. 6.1. It consists
of operational amplifier, diode and resistor.

In Fig. 6.1, suppose the voltages corresponding to the two diodes (D1, D2) being on and
off are Uy, and U,, respectively. The output of two operational amplifiers U1B and U1C, are

uy and u,, and are switched between two different values, respectively:
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+12V

Rs Uren Ry
SOLI™ Toic up w w B
Tk

Rui ‘

20k

iUy
>——0
D,
U1iD

-12V

Fig. 6.1 Block diagram of double-hysteresis building block.

U, if D ison
he -U, if D, isoff

-U,, if D,ison
“V U, D, isof

In this design, a Zener diode is selected, and when U,=7V, the corresponding voltage for
the diodes to work is U,,=0.5V. By applying Kirchhoff’s Current Law (KCL) to Fig. 6.1, one
has:

1 1 1 1
(—+_)uPl ——Urefl __ul = 0
R, R, R, R,

1 1 1 1
(_+—)uP2 __UrefZ - Uy = 0
R9 RIO R9 RIO

and the threshold voltages of u; for switching U1B are obtained as:

R, R

UT 1= ——7Uref1 __-4—uz
R, R, R, + R,
R R
Upp =— : Urefl + : on
R, + R, R, + R,

where Uri; and Utz are the two switching values of the output of U1B shown in Fig. 6.2,
which represents the characteristics of voltage transmission of the two hysteresis units.

The threshold voltages of u, for switching U1C are given by:
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o P o R

" R+R, " R, +R, °

'UTZZ:_A— ] +_.__]_eg__U
R,+R, "* R, +R, ”

where Ut and Ury, are the two switching values of the output of U1C shown in Fig. 6.2.

1y Uz
<+ o 4 U, <+ <
B ==
Uryy Uz} P 1;
T of Pra Ura|,
<+ Ry < ' Ui
—>» —> : —"Uon —»

Fig. 6.2 The characteristics of voltage transmission for two hysteresis functions.

If Ur12=Ur21=0 (achieved by adjusting R3 and R8 in Fig. 6.1), then ideal double-hysteresis
characteristics can be obtained. The characteristics of the voltage transfer for the double-
hysteresis function is depicted in Fig. 6.3. The output of the circuit in Fig. 6.1, uo, is switched
among three values: k(u;—uon), 0, k(—u,tuq,), where k=R;3/R1,=R13/R;. The oscilloscope

depiction of the double-hysteresis function is shown in Fig. 6.4.

Up
=== k(U Un)
Uy
? —> Urn
Uru <+ |0 ¢ U
KU+ U —

Fig. 6.3 Characteristics of voltage transmission for the double-hysteresis function.

6.2.2 Implementation of Double-Hysteresis Series

The double-hysteresis series is constructed by combining double-hysteresis building blocks. If
more double-hysteresis blocks are connected in parallel, then the output of the double-

hysteresis series can be obtained.
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Fig. 6.4 The oscilliscope depiction of the double-hysteresis function.

One can construct any number of double-hysteresis series by setting different values of £

96

in the double-hysteresis series h(x, k). If k=4, four double-hysteresis series (eight-hysteresis)

can be obtained. The circuit diagram for the eight-hysteresis case is shown in Fig. 6.5, whose

input u; is the state variable x, and output uy has four double-hysteresis series composed of

eight hysteresis functions.

__| Double-hysteresis block

Jul

to

1
Rz
—
W R 10k - Double-hysteresis block :
- 1
o }—o—-
10k LM324
+
Double-hysteresis block [
-
111 —1
GND
|| Double-hysteresis block : GND

VI

Fig. 6.5 Block diagram of eight-hysteresis series.

6.3 Multi-Scroll Chaos Generator

Some multi-scroll chaotic attractors via linear second-order systems and double-hysteresis

series are generated experimentally and the results are reported in this section. These results

verify the proposed systematic design scheme in chapter 4 experimentally. The circuit

equations and the operation principles of the blocks are also given in this section.
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6.3.1 Generating Chaotic Attractors

By replacing the hysteresis function series Eq. (4.2) with the double-hysteresis series Eq. (6.1)
in system (4.5), the new system equations become:

x=y 6.3
y=—ax+by+ah(x,k) 3)

and thelD horizontal n-scroll (n=2%+1) chaotic attractors can be obtained from system (6.3).
Similarly, replacing hysteresis function series with double-hysteresis series in system
(4.7), then the new system equations become:

{x =y —h(y,k)

6.4
y =—ax + by —bh(y, k) 6.4)

and the 1D vertical n-scroll (n=2k+1) chaotic attractors can be obtained from system (6.4).
The nxm—grid scroll chaotic attractors (n=2k+1, m=2/+1) can be generated by replacing
the hysteresis function series with double-hysteresis series in system (4.9):

{x =y—h(»,0)

_ (6.5)
y =—ax+by+ah(x,k)—-bh(y,l)

6.3.2 Circuit Implementation

The circuit diagram for generating multi-scroll chaotic attractors is shown in Fig. 6.6. There
are two basic circuit cells: The upper cell comprises the linear portion of the system. U2A,
Rys, Cy and U2B, Ry, C; in the upper cell implement the two integers of the continuous-time
linear second-order system. And U2C is a buffer. The integrating constant of the first integer
is 71 = Rp5C1 = 100k€2-0.01 " = 1ms, and the second is 7= Ry6C, = 100kQ-0.001 1 = 0.1ms.

The linear portion of the system is designed, with the complex conjugate poles being
located in the right-half plane. This would normally lead to an unstable response. With the
help of the double-hysteresis series for bounding the output trajectory, a chaotic response can
be created.

There are two double-hysteresis series 4(V¢1, k1) and A(V ¢, k) in the lower cell. The input
of the two double-hysteresis series are the state variables, V¢ and V¢, which corresponds to x
and —y in Egs. (6.3)~(6.5), respectively, that is, V¢ = x and V¢, = —y; the output of the double-
hysteresis series, —u = —hA(Vc1, ki) and v = —-A(Ve, k2), are fed-back to the linear part in the

upper cell.
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VR, 300@_
Ry 220k

R,3 200k £
Ry 3.3M VR; 300k Ror 330K VR; 2M
Ry 33M — 336 1l
——7T "1+ Cz ”103
C 1102 11 Ras 220k _,
! Rag 100k o
Rjs5 100k Ve —i 1}
Fa TM324 ) 4
-
@ + U u2C
U2A ae
K
_h(VL‘Z; kz)
K\

—}I(Vcl, k1)

Fig. 6.6 Circuit diagram of multi-scroll chaos generator.

When switch K is on and K, is off, the horizontal n-scroll (n=2k;+1) chaotic attractors
can be observed; when K is on and K| is off, the vertical n-scroll (n=2k,+1) chaotic attractors
can be observed; when both K and K, are on, the 2D nxm-grid scroll chaotic attractors can be

observed.

6.4 Experimental Results

Applying the KCL to Fig. 6.6, the following circuit equations can be obtained:

-

1 1 1

—SCV gy ==V ==V gy =———v =0
1 RZ] 25 V‘RZ
1 1 6.6)
Lo sC Yy m Vo ———V, =0 (6.
ze R24 ’ R26 d
1
1 f—iu——l—v——l—ch——Va:o
\‘R27 RZS VR! ‘RS + VRS R22

where VR;, VR, and VR, are potentiometers; Vei, Vep and Fy are node voltages, shown in
Fig. 6.6; u and v are the outputs of two double-hysteresis series.

Eq. (6.6) can be reformulated as:

1 R
Vey = —Rys (sC +— W — 2 (—u)
R, VR, 6.7)
R 1 1 R R
Ve =Ry [ (5C, +—) = Ve, =2 (-u) -2y
R,; R, Ry +VR, VR, 28
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By choosing circuit parameters properly, and adjusting the potentiometers in Fig. 6.6,
Eq. (6.7) can be written the same as Eqs. (6.3) ~ (6.5) which generates 1D n-scroll horizontal
and vertical chaotic attractors and 2D rxm-grid scroll chaotic attractors, respectively.

In all the experiments, the voltage supplies to the active devices are £12V. The types of
operational amplifier and diodes, and the values of resistors and capacitors are shown in
Fig. 6.1 and Fig. 6.6, respectively. A digital storage oscilloscope was used to record the
waveforms. The two connectors of the oscilloscope are x=V¢i, -y=V . The scales for each
measurement are shown on the upper-left comers of the diagrams. The oscilloscope shows

pictures illustrating the following three cases.

Case 1. 1D n-scroll chaotic attractors.
When switch K is on and Kj; is off, and u = h(Vey, k) (hi=1, 2, 3, 4), the oscilloscope

illustrates the 1D horizontal n-scroll chaotic attractors as shown in Fig. 6.7.

(b)
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(d)

Fig. 6.7 Oscilloscope illustrated 1D n-scroll chaotic attractors.
(a) 3-scroll; (b) 5-scroll; (¢) 7-scroll; (d) 9-scroll.

Case 2. 2D nxm-grid scroll chaotic attractors.

When both switches K; and K3 are on, and u = i(Vi1, k) (ki=1, 2, 3, 4), v="h(V2, 1), the
oscilloscope illustrates the 2D nx3-grid scroll chaotic attractors as shown in Fig. 6.8.

fu=hVe, k1) (=2, 3) and v = h(V ¢, 2), the oscilloscope illustrates 5x5-, and 7x5-grid
scroll chaotic attractors as shown in Fig. 6.9 (a) and (b). If u = A(V¢1, 4) and v=h(Vey, k)
(k,=3, 4), the oscilloscope illustrates 9x7-, and 9x9-grid scroll chaotic attractors as shown in

Fig. 6.9 (c) and (d).



CHAPTER 6 CIRCUIT IMPLEMENTATION OF THE MULTI-SCROLL CHAOTIC ATTRACTORS 101

(b)

(©)
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(d)

Fig. 6.8 Oscilloscope illustrated 2D nx3-grid scroll chaotic attractors.
(a) 3x3-scroll; (b) 5%3-scroll; (c) 7%3-scroll; (d) 9%3-scroll.

(b)
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D T";V

(d)

Fig. 6.9 Oscilloscope illustrated 2D nxm-grid scroll chaotic attracors.

(a) 5%5-scroll; (b) 7x5-scroll; (¢) 9%7-scroll; (d) 9%9-scroll.

Case 3. The phase trajectories of the double-hysteresis series A[V¢1 (Ve), k), (k =2, 3, 4)
for generating multi-scroll chaotic attractors are shown in Fig. 6.10.
It is noted that, the advantage of the proposed chaos oscillators is that the scroll number

can be increased to any number very easily using the double-hysteresis building blocks. The

1D n-scroll chaotic attractors and the 2D nxm-grid scroll chaotic attractors can be placed
anywhere, and cover any chosen area of the phase plane.

103
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(b)

(©

Fig. 6.10 Oscilloscope illustrated outputs of double-hysteresis series. (a) k=2; (b) k=3; (c) i=4.
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6.5 Summary

In this chapter, a novel double-hysteresis block has been proposed to realize multi-scroll
chaotic attractors. We have shown that with the proposed scheme: 1D n-scroll chaotic
attractors in the directions of state variables, 2D nxm-grid scroll chaotic attractors in the phase
plane via continuous-time linear second-order system and double-hysteresis series can be

easily implemented. The main characteristics of the chaos generators are:

1) The number of scroll in the horizontal and vertical direction can be changed separately
by choosing the number of double-hysteresis feedback of two state variables, and can

be increased arbitrarily without any technical problem.

2) The scrolls can be placed anywhere and cover any chosen area of the phase plane. The
position of the equilibrium points can be adjusted by changing the parameters of

hysteresis feedback.

These proposed multi-scroll chaotic oscillators may find potential applications in
engineering due to their complex dynamical behaviours and their comparatively simple

circuitry implementation.



Chapter 7

Conclusions and Future Research

In this thesis systematic methods for generating multi-scroll chaotic attractors via

continuous-time linear second-order and third-order systems with a hysteresis function series

have been proposed. The theoretical development, dynamical analyses, numerical simulations

and circuit implementations have demonstrated the effectiveness of the multi-scroll chaos

generation scheme. The conclusions are drawn and future research directions are suggested in

this chapter.

7.1 Conclusions

This research proposes several systematic methods for generating the multi-scroll chaotic

attractors. The following results have been achieved:

1)

2)

3)

4)

The concept of the chaotic stability margin has been proposed. The dynamical
behaviours of the hysteresis based system have been demonstrated in detail. A

hysteresis based chaotic system with the maximum chaotic stability margin has been

designed.

A method for calculating the limit cycle which bounds the basin of attraction in the
hysteresis based system has been proposed. The analytic solutions for trajectory

boundaries have been presented.

1D mn-scroll chaotic attractors in the directions of the state variables, 2D nxm-grid
scroll chaotic attractors in the phase plane have been generated via continuous-time
linear second-order systems and the hysteresis function series. 1D n-scroll, 2D
nxm-grid scroll and 3D nxmxI-space scroll chaotic attractors have been generated via

continuous-time linear third-order systems and the hysteresis function series.

An unstable limit-cycle defines the boundary of the basin of attraction for the
multi-scroll chaotic attractors in the second-order systems case. The size of the basin

of attraction increases with the increase in the number of hysteresis function series.

106
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5)

6)

The higher the scroll number, the greater the stability margin the system has.

Multi-scroll chaotic behaviours have been confirmed theoretically and it has been
shown that an ordinary attractor exists in the second-order systems case. A
two-dimensional Poincaré map has been rigorously derived, and the Lyapunov
exponent has been applied to verify the chaotic behaviour in the third-order systems

case.

Based on the proposed double-hysteresis building block, the circuit implementation of
multi-scroll chaotic oscillators via second-order systems and the double-hysteresis
series have been designed. The numbers of scroll and the positions of equilibrium
points can be designed arbitrarily. And the scrolls can be placed anywhere and cover

any chosen area of the phase plane.

7.2 Future Research

The field of anti-control of chaos is presently fast booming, and may lead to some important

applications in the near future.

The chaotic behaviours of the multi-scroll chaotic attractors in this study have been

rigorously proven theoretically. The circuit for a chaotic generator via a linear second-order

systems and a hysteresis function series has been implemented. There are some issues that can

be further dealt with both in theory and in applications and are worth further investigation:

1)

2)

3)

The n-scroll attractors and the grid-type attractors possess some interesting properties,
which may be used for image processing applications. Future work can focus on the
study of the multi-scroll chaotic attractors for representing digital codes or images for

information transmission or storage.

The concept of chaos stability margin may be further investigated and applied to
define the likelihood of generating a particular pattern or image (e.g., a scroll
representing a pixel). In other words, it may be interesting to look into the problem of
controlling the chaos generating process such that scrolls at particular grid locations
can be guaranteed or shut down permanently, as required for representing a digital

code or image.

As the heart is basically a second-order system, electronic simulations of hysteresis
chaos help us to study the heart under arrhythmic behaviour. Chaotic behaviour should

be able to represent heart fibrillations. Further theoretic research can be focused on



CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH 108

4)

5)

6)

7)

8)

9)

this topic with the view of suppressing arrhythmic heart behaviour;

The design criteria of multi-scroll chaotic attractors via linear second-order systems
with hysteresis function series can be further studied. An open question is that is it

possible to design a multi-scroll chaotic attractor with maximum stability margin?

The circuit implementation of the multi-scroll chaotic attractor is based on the
double-hysteresis ‘function, the scroll number can only be odd numbers. How to

implement the case with an even number scrolls is another open question;

The complex dynamical behaviours of multi-scroll chaos generation with respect to

the variation of parameters can be explored further;

The circuit implementation of chaos generators via linear third-order systems and the

hysteresis function series need to be explored;

How to synchronize two identical multi-scroll chaotic generators, and study the

possibility of using it in engineering areas;

The VLSI design and implementation of the multi-scroll chaotic generators.

Further results along the above directions will further enrich the study of the anti-control

of chaos, thus enhancing the application of the anti-control of chaos research in practical

situations.
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