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ABSTRACT 

 

The development of processes for the preparation of prebiotic compounds, namely 

inulin from tubers of Jerusalem artichoke (JA-Helianthus tuberosus L.), and lactulose 

from milk concentration permeate (MCP) was examined. Inulin was extracted from the 

whole JA tubers using hydrothermal extraction process, followed by clarification and 

concentration. The concentrate was fractionated using two different procedures i.e. 

ethanol fractionation and cold precipitation (+4 and/or −24°C) into high- and low-

molecular-weight components. The most satisfactory method was cold fractionation 

wherein the insoluble heavier inulin fractions were found to settle to the bottom and 

were separated and spray-dried to obtain inulin powder. Lactose in MCP was 

isomerised into lactulose using carbonate-based catalysts (oyster shell and egg shell 

powders) followed by clarification and concentration. The high-performance liquid 

chromatography with refractive index detector (HPLC-RID) chromatograms and changes 

in pH and colour values confirmed the conversion of lactose into lactulose and 

decomposition of lactulose into by-products. The results obtained showed the suitability 

of oyster shell powder for lactose isomerisation in lieu of egg shell powder. For 

preparing lactulose-enriched MCP with acceptable lactulose yield of 22%, the optimum 

reaction conditions were found to be catalyst loading of 12 mg per mL of MCP and 

isomerisation time of 120 min at 96°C. 

The resulting products i.e. JAI concentrate and powder and lactulose-enriched MCP 

syrup (40°B) were tested for their prebiotic power in media broth and in fermented milk 

models. Prebiotic properties of these compounds were observed as supplementation 

levels increased from 0-2% to 3-4%. Based on the growth and acidification abilities of 
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the probiotic strains tested, the combination of Lactobacillus casei LC-01 with JAI, and 

Lactobacillus acidophilus LA-5 with lactulose-enriched MCP syrup were found to be 

the best for development of synbiotic yoghurt. The prebiotic effect of JAIP was then 

compared with the two commercial chicory inulin products (Raftiline® GR and 

Raftilose® P95). Probiotic yoghurts supplemented with 4% inulin powders were 

prepared from reconstituted skim milk using mixed cultures of Lactobacillus casei LC-01, 

Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (1:0.5:0.5, 

w/w). The survival and acidifying activity of probiotic and lactic acid cultures were 

investigated during the shelf life of 28 days at 4°C. Incorporation of JAIP and chicory 

inulins resulted in a significant improvement in viability of LC-01 compared with non-

supplemented yoghurt, maintaining > 107 CFU g-1 throughout storage time. 

Additionally, the suitability of JAIP as fat replacer was determined in a set of fat-free 

yoghurt in comparison to three commercial chicory inulin products. Results of large 

deformation tests revealed that the firmness of JAIP-supplemented yoghurt was reduced 

to a similar level as the full-fat control yoghurt. However, small deformation results 

showed that the JAIP could not fully mimic milk fat to the same extent as Raftiline® 

HP with an average DP of 23. The rheological effects of JAIP addition were comparable 

to those of short-chain (Raftilose® P95 with an average DP of 4) and medium-chain 

inulins (Raftiline® GR with an average DP of 12). 

 



Table of contents 

viii

TABLE OF CONTENTS 
 

Page

Declaration i

Dedication ii

Acknowledgements iii

Publications and presentations v

Abstract vi

Table of contents viii

List of tables xiii

List of figures xv

List of abbreviations xvii

Explanatory notes xx

 

Chapter 1 Introduction 1

 

Chapter 2 Background and literature review 6

2.1 Prebiotics 6

 2.1.1 Definition and types of prebiotics 6

 2.1.2 Fermentability of prebiotics 8

 2.1.3 Inulin and oligofructoses 11

  2.1.3.1 Description and chemical structure 11

  2.1.3.2 Sources and occurrence 13

  2.1.3.3 Technological properties 14

  2.1.3.4 Common intakes in diet 15

  2.1.3.5 Legal and regulatory status 16

  2.1.3.6 Production of inulin and oligofructoses 16

 2.1.4 Lactulose 21

  2.1.4.1 Structure and general properties 21

  2.1.4.2 Sources and occurrence 22

  2.1.4.3 Legal and regulatory status 23

  2.1.4.4 Production of lactulose 24

 2.1.5 Health-benefits of prebiotics 30



Table of contents 

ix

 2.1.6 Prebiotics in food application 31

  2.1.6.1 Bifidus promoting agents 31

  2.1.6.2 Fibre enhancer 32

  2.1.6.3 Sugar replacer 33

  2.1.6.4 Fat replacer 34

2.2 Probiotics 36 

 2.2.1 Definition of probiotics 36

 2.2.2 Characteristics of probiotic bacteria 37

  2.2.2.1 Genus Bifidobacterium 38

  2.2.2.2 Genus Lactobacillus 41

 2.2.3 Health-effects of probiotics 42

 2.2.4 Applications of probiotics in functional foods 44

2.3 Synbiotic foods 46

2.4 Summary of the literature review 47

  

Chapter 3 Materials and methods 48

3.1 Materials 48

 3.1.1 Jerusalem artichoke  48 

 3.1.2 Milk concentration permeate and lactose solution 48 

 3.1.3 Carbonate-based catalysts: egg shell powder and oyster shell 
powder 

49 

 3.1.4 Reconstituted milks and starter cultures 49 

 3.1.5 Chemicals and reagents 50 

3.2 Apparatus and auxiliary equipment 52

3.3 Physico-chemical analysis of Jerusalem artichoke 54

 3.3.1 Determination of fructans content 54 

 3.3.2 Determination of total carbohydrates  59 

 3.3.3 Determination of reducing sugars 61

 3.3.4 Determination of soluble solids content 61

 3.3.5 Determination of total solids  62

 3.3.6 Determination of ash content 62

 3.3.7 Colour measurement of JAIP 63

3.4 Physico-chemical analysis of MCP 63

 3.4.1 Determination of lactose and lactulose content 63 



Table of contents 

x

 3.4.2 Determination of soluble solids content 65 

 3.4.3 Determination of pH 65 

 3.4.4 Colour measurement of MCP and lactose solution 65

3.5 Physico-chemical analysis of cultured milk and set yoghurt 66

 3.5.1 Determination of titratable acidity  66 

 3.5.2 Determination of pH 66 

 3.5.3 Determination of fat content 66 

 3.5.4 Determination of total solids 67 

 3.5.5 Colour measurement of set yoghurt 68 

 3.5.6 Large deformation measurement 68 

 3.5.7 Small deformation measurement 68 

3.6 Microbiological analysis 70

 3.6.1 Media preparation 70 

  3.6.1.1 Peptone water 70

  3.6.1.2 de Man, Rogosa and Sharpe Agar (MRS agar) 71

  3.6.1.3 MRS-pH modified agar 71

  3.6.1.4 M17 agar 71

  3.6.1.5 Lactobacillus casei agar (LC agar) 71

 3.6.2 Enumeration of probiotic and starter cultures 72 

3.7 Statistical analysis 73

  

Chapter 4 Extraction of inulin-type fructans from Jerusalem 

artichoke 

74

4.1 Abstract 74

4.2 Introduction 74

4.3 Preparation of Jerusalem artichoke inulin (JAI) 77

 4.3.1 Extraction of JAI 77

 4.3.2 Solvent fractionation 80

 4.3.3 Cold fractionation 83

4.4 Results and discussion 84

 4.4.1 Development of extraction processes  84

 4.4.2 Solvent fractionation 86

  4.4.2.1 Effects of precipitation conditions on fructans 
precipitate yield 

89

 



Table of contents 

xi

 4.4.2.2 Effects of precipitation conditions on average 
chain length 

90

  4.4.2.3 Effects of precipitation conditions on the purity of 
inulins 

93

  4.4.2.4 Optimisation of precipitation conditions and 
verification of the results 

95

 4.4.3 Cold fractionation 96

4.5 Comparison of the fractionation techniques 97

4.6 Conclusions 99

  

Chapter 5 Lactulose production from milk concentration permeate 

using calcium carbonate-based catalysts 

100

5.1 Abstract 100

5.2 Introduction 100

5.3 Isomerisation method 102

5.4 Treatments 103

 5.4.1 Effect of the catalyst loading on lactose isomerisation 103

 5.4.2 Effect of isomerisation temperature and time on lactose 
isomerisation 

103

 5.4.3 Effect of the catalyst type on lactose isomerisation 103

 5.4.4 Effect of de-proteination on lactose isomerisation 103

 5.4.5 Colour removal from lactulose-enriched MCP 104

5.5 Results and discussion 104

 5.5.1 High-Performance Liquid Chromatography (HPLC) of 
isomerised MCP 

104

 5.5.2 Effect of the catalyst loading on lactose isomerisation 105

 5.5.3 Effect of isomerisation temperature and time on lactose 
isomerisation 

108

 5.5.4 Effect of the catalyst type on lactose isomerisation 110

 5.5.5 Effect of de-proteination on lactose isomerisation 116

 5.5.6 Effect of colour removal on quality of lactulose-enriched MCP 118

5.6 Conclusions 120

 

Chapter 6 Bifidogenic effects of JAI and lactulose-enriched MCP 

syrup on probiotic bacteria 

121

6.1 Abstract 121

6.2 Introduction 121



Table of contents 

xii

6.3 Materials and methods 124

 6.3.1 Experimentally-prepared prebiotic compounds and working 
cultures  

124

 6.3.2 Determination of the prebiotic effect of lactulose-enriched 
MCP syrup 

124

  6.3.2.1 Fermentation in broth 124

  6.3.2.2 Fermentation in RSM 125

 6.3.3 Determination of the prebiotic effect of JAIS 126

  6.3.3.1 Effect of JAIS supplementation level 126

  6.3.3.2 Effect of culture compositions 126

 6.3.4 Determination of the prebiotic effect of JAIP 128

 6.3.5 Effects of inulin addition on the survival of probiotic and 
lactic acid bacteria in yoghurt during refrigerated storage 

129

6.4 Results and discussion 130

 6.4.1 Prebiotic effect of lactulose-enriched MCP syrup 130

 6.4.2 Prebiotic effect of JAIS 134

 6.4.3 Prebiotic effect of JAIP 138

 6.4.4 Assessment of chemical and microbiological qualities of 
yoghurt during fermentation and refrigerated storage 

141

6.5 Conclusions 147

 

Chapter 7 Effects of inulin-type fructans on rheological properties 

of set yoghurt 

149

7.1 Abstract 149

7.2 Introduction  150

7.3 Yoghurt preparation 151

7.4 Results  153

 7.4.1 Influence of inulin chain lengths 153

 7.4.2 Influence of inulin supplementation levels 164

7.5 General discussion 166

7.6 Conclusions 169

 

Chapter 8 General discussion, conclusions and further research 

recommendations 

170

 

References 179



List of tables 

xiii

LIST OF TABLES 
 

Table Title Page

2.1 Inulin and oligofructose content of plants commonly used in 
human nutrition (% of fresh weight) 

14

2.2 Principle composition of dry and liquid lactulose 22

2.3 Micro-organisms used as probiotics 39

2.4 Currently available probiotics and their reported effects 43

3.1 List of chemicals used in this study and their suppliers 51

3.2 List and suppliers of the processing equipment used 52

3.3 List and suppliers of analytical instruments used in this study 53

3.4 Description of HPLC system components and ancillary items 54

3.5 Summary of rheological terms and symbols 69

4.1 Independent variables and their levels used for this study 80

4.2 Chemical compositions of JA tubers and various fractions 
obtained during extraction process 

85

4.3 Yield of JA extract at several stages of preparation 86

4.4 The central composite rotatable design with the effects of 
independent variables on three dependent variables 

87

4.5 Regression coefficients, R2 and F-test probability for three 
dependent variables 

88

4.6 Final equations in terms of coded and un-coded variables for the 
prediction of three response variables 

89

4.7 Experimental and predicted values for response variables at 
optimum conditions 

96

4.8 Precipitate yields of inulin corresponding to combined effects of 
initial syrup concentration and precipitation temperature 

97

4.9 Improvement of total fructans in samples obtained by two 
fractionation techniques 

98

5.1 Average values of lactulose, pH and b∗ during the isomerisation 
of MCP at various temperatures and times 

109



List of tables 

xiv

Table Title Page

6.1 Ingredients used for yoghurt preparation 126

6.2 Probiotics growth in modified MRS broth containing lactulose-
free MCP, lactulose-enriched MCP syrup and reference lactulose 
solution 

132

6.3 Counts of LA-5 and LC-01 and acid production in reconstituted 
skim milk supplemented with lactulose-enriched MCP syrup 
(40°B) 

133

6.4 Counts of LA-5, LC-01 and BB-12 and acid production in 
reconstituted skim milk supplemented with 40°B JAIS 

135

6.5 Effects of culture compositions and fermentation style on acid 
production and viable counts of LC-01, ST and LB in
reconstituted skim milk supplemented with 4% JAIS (40°B) 

137

6.7 The viability of LC-01, ST and LB in yoghurts with and without 
inulin addition during fermentation and storage at 4°C 

144

7.1 Yoghurt production protocol 152

7.2 Yoghurt supplementation levels 152

7.3 Physico-chemical properties of yoghurts with and without inulin 
supplementation (4%) 

154

7.4 Rheological parameters of inulin-containing and control yoghurts 
during storage at 4°C obtained from thixotropy tests 

158

7.5 Viscoelastic properties for inulin-containing and control yoghurts 
during storage at 4°C 

161

7.6 Large deformation properties (in N) of yoghurts with and without 
inulin supplements during storage at 4°C 

163

7.7 Effects of inulin supplementation level on rheological parameters 
of day-1 non-fat yoghurts 

165



List of figures 

xv

LIST OF FIGURES 

 

Figure Title Page

2.1 Behaviour and effects of prebiotics in human GIT 10

2.2 Chemical structures of sucrose, GFn-type inulin and Fm-type 
oligofructose  

12

2.3 Chemical structures of lactose and lactulose 21

2.4 Model of the alkaline isomerisation of lactose 23

2.5 Proposed mechanisms of prebiotic effects on human heath benefits 30

2.6 Proposed mechanisms of probiotic effects on human heath benefits 44

3.1 Flow diagram for fructans analysis 58

4.1 Jerusalem artichoke and its tubers  75

4.2 Flow diagram for the preparation of  JAIS on a laboratory scale 79

4.3 Response surface graphs of fructans precipitation yield (%) as a 
function of initial syrup concentration (°B) and E/S ratio 

90

4.4 Response surface graphs of average chain length at (a) E/S ratio of 
9:1, (b) temperature of 32.5°C and (c) syrup concentration of 25°B 

92

4.5 Response surface graphs of purity value (%) at (a) temperature of 
32.5°C, (b) E/S ratio of 9:1 and (c) syrup concentration of 25°B 

94

4.6 Optimum region identified by the overlaid plot of the three 
responses: fructans yield (Y1), average chain length (Y2), purity 
value (Y3) 

95

5.1 HPLC-RID chromatograms of MCP treated with 12 mg per mL 
ESP (a) before and (b) after isomerisation with at 96°C for 120 min 

105

5.2 Changes in lactulose content (a) and pH (b) with time in MCP 
treated with 6, 12, 20 and 30 mg ESP per mL, and without catalyst 
(Blank) at 98°C 

106

5.3 Conversion of lactose to lactulose from (a) MCP and (b) control 
lactose solution using different catalysts and without catalyst 
(Blank) 

111

5.4 Changes in pH during isomerisation of (a) MCP and (b) control 
lactose solution using limestone, ESP and OSP; and without 
catalyst (Blank) 

112



List of figures 

xvi

Figure Title Page

5.5 Degradation of lactose in (a) MCP and (b) control lactose solution 
using limestone, ESP and OSP; and without catalyst (Blank) 

114

5.6 Increase in b∗ and absorbance values at 420 nm during 
isomerisation of MCP (a) and control lactose solution (b) using 
limestone, ESP and OSP; and without catalyst (Blank) 

115

5.7 Changes of lactose, lactulose, pH and absorbance values during the 
isomerisation of de-proteinated MCP added with 12 mg per mL 
ESP at 96°C for 150 min.           

118

5.8 Brown colour and lactulose content of lactulose-enriched MCP 
before and after treatment with H2O2 and/or activated carbon 

119

5.9 Colour of lactulose-enriched MCP before (a) and after treatment 
with H2O2 (b) or activated carbon (c) 

119

6.1 Flow diagram for  yoghurt production trials 128

6.2 Growth rates of LA-5, LC-01 and BB-12 in media containing six 
different carbon sources 

140

6.3 Changes in pH and TA of four yoghurts during fermentation and 
storage at 4°C 

142

7.1 Flow curves for inulin-containing and control yoghurts on day 1 156

7.2 Viscosity decay with time for inulin-containing and control 
yoghurts on day 1 

156

7.3 The storage modulus (G′) of inulin-containing and control yoghurts 
on day 1 as a function of stress 

159

7.4 Changes of G′ and G″ of inulin-containing and control yoghurts on 
day 1 as a function of angular frequency (ω) 

162



List of abbreviations 

xvii 

LIST OF ABBREVIATIONS 

a* redness 

∆∆∆∆A hysteresis loop area 

AACC American Association of Cereal Chemists 

AOAC  Association of Official Analytical Chemists 

ANOVA analysis of variance 

Aup upward curve area 

B Bifidobacterium 

b* yellowness 

BB Bifidobacterium bifidum  

CFU colony forming unit 

CHO carbohydrate 

DMRT Duncan’s multiple range test 

DP degree of polymerisation 

E/S ethanol-to-syrup ratio 

ESP egg shell powder 

EU European Union 

FFCY full-fat control yoghurt 

G′′′′,G″″″″ elastic and viscous moduli 

GIT gastrointestinal tract 

HPLC-RID High-Performance Liquid Chromatography with Refractive Index Detector 

INY inulin-containing yoghurt 

JA Jerusalem artichoke 

JAI Jerusalem artichoke inulin  

JAIP Jerusalem artichoke inulin powder 

JAIS Jerusalem artichoke inulin syrup 

JAY JAIP-containing yoghurt 

K consistency index 

L Lactobacillus 

L* lightness value 

LA Lactobacillus acidophilus  



List of abbreviations 

xviii

LAB lactic acid bacteria 

LB Lactobacillus delbrueckii subsp. bulgaricus

LC Lactobacillus casei  

LCIY long-chain inulin-containing yoghurt 

LHSMP low-heat skim milk powder 

LVR linear viscoelastic range 

MCIY medium-chain inulin-containing yoghurt 

MCP milk concentration permeate 

MRS de Man-Rogosa-Sharpe 

MW molecular weight 

MWCO molecular weight cut-off 

n flow behaviour index 

NDOs non-digestible oligosaccharides 

NFCY non-fat control yoghurt 

OD optical density 

OF oligofructose 

OFY oligofructose-containing yoghurt 

OSP oyster shell powder 

PAHBAH para-hydroxy benzoic acid hydrazide 

PPO polyphenol oxidase 

r correlation coefficient 

R
2 coefficient of determination for a regression curve or line 

RSM reconstituted skim milk 

RT room temperature 

SCFAs short-chain fatty acids 

SD standard deviation 

ST Streptococcus thermophilus 

TA titratable acidity 

tan δδδδ loss tangent



List of abbreviations 

xix

UF ultrafiltration 

UHT ultra-high temperature 

UK United Kingdom 

USA United States of America 

UV-VIS Ultraviolet-visible 

WMP whole milk powder 

 

γ&  shear rate 

ηηηη* complex viscosity 

ηηηηapp apparent viscosity 

σσσσo yield stress 

ωωωω angular frequency 



Explanatory notes 

xx

EXPLANATORY NOTES 

The purpose of these notes is to briefly describe the approaches adopted during the 

preparation of this thesis. These are: 

1. Where possible, the SI units have been used for the presentation of results. 
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followed the recent recommendations of the National Institute of Standards and 
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4. The citation and the list of references and information sources have followed the 

current recommendations of the Institute of Food Technologists (IFT) for the 

Journal of Food Science (IFT 2008).  
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Chapter 1 

Introduction 

Currently, consumers are becoming more interested in foods that contribute a positive 

effect on health beyond nutritional needs as they are more informed and more aware of 

the links between food and health than ever before. The demand by the consumers is 

driving food manufacturers towards new products with health promoting features. 

Among the functional foods, products containing prebiotic ingredients which are 

practically indigestible in the human gastrointestinal tract (GIT) are showing promising 

trends worldwide. These compounds exert beneficial effects on human health and well-

being by positively promoting the growth of bifidobacteria and lactobacilli in the colon 

(Gibson 2004). A recent interest in prebiotic ingredients is to use them in combination 

with probiotic bacteria in synbiotic foods for enhanced functional properties and 

specific health benefits (Rastall and Maitin 2002; O’Neill 2008). Prebiotics also possess 

technological advantages through their reduced caloric value, non-cariogenic and fat-

replacing effects. Most prebiotics originate naturally as native components in many 

plants e.g. onions, leek, artichoke, garlic and beans while a number of functional 

prebiotics are derived through diverse biochemical and/or enzymatic techniques (Van 

Loo et al. 1999; Nakakuki 2002).  

Most of the commercial prebiotic products are fructan-based inulin and oligofructose 

(fructo-oligosaccharide) which are composed of β (2→1) linked fructosyl units 

extracted from many dicotyledonous plants (Tungland and Meyer 2002). They are 

currently manufactured in Belgium, France and the Netherlands from chicory roots and 

are marketed as Raftiline (BENEO-ORAFTI Group, Aandorenstraat 1, 3300 Tienen, 
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Belgium), or Fibruline (COSUCRA Groupe Warcoing, Rue de la Sucrerie 1, 7740 

Warcoing, Belgium) or Frutafit® (Sensus Operations CV, Borchwerf 3, 4704 RG, 

Roosendaal, Netherlands) with increasing sales in Europe, the USA and Asia. Australia 

imports chicory inulin products from these European firms. Among other plants rich in 

prebiotics, Jerusalem artichoke (JA) accumulates similar levels of fructans as chicory 

roots (16-20% of fresh tuber) (Franck 2000), and is one of the most interesting plants 

for the industrial production of inulin, as it could be cultivated at a low cost with low 

input of fertilisers on any type of soil and cool climatic conditions (Parameswaran 

1994). Several cultivars of JA have successfully been cultivated in Australia, especially 

in regions of Victoria and South Australia (Parameswaran 1996). Consequently, JA is 

an interesting candidate for the industrial production of inulin in Australia. The 

development of products from this plant would help Victorian agriculture and economy 

by reducing the volume of imported inulin.  

Another category of prebiotic preparations is the disaccharide lactulose which consists 

of galactose and fructose moieties. In contrast to inulin-type fructans, lactulose does not 

occur naturally, but is spontaneously formed in heat-treated milk products and is also 

commercially produced by catalytic isomerisation of lactose under alkaline conditions 

(Schumann 2000). Lactulose has drug status in EU, USA as well as Australia, mainly 

designed for the treatment of constipation and hepatic encephalopathy (Murphy 2001). 

Moreover, as a prebiotic it has approval for food use as a gut health aid in Japan, the 

Netherlands and Italy (Schumann 2002). It is added to commercial infant formulae, 

baby food and several milk products. Owing to its greater sweetness and solubility than 

lactose, if produced economically, this sugar could also be used in baking and 

confectionary products instead of lactose (Parrish et al. 1979; Mizota et al. 1987). 
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Australian dairy industry is ranked third in the World in terms of adding value to farm 

gate products, valued at $3.2 billion, and the fifth most important exporter valued at 

$2.5 billion in 2006/07 (Dairy Australia 2007). Large volumes of waste streams such as 

whey and milk concentration permeate (MCP) are generated annually, representing 

major disposal problems. Milk concentration permeate is a by-product of milk 

ultrafiltration (UF) and contains mainly lactose along with some water-soluble minerals 

and vitamins. There are no microbial or rennet-induced casein fractions in MCP and 

practically no fat and protein because both macromolecules are rejected by the UF 

membrane and concentrate in the retentate (Hinrichs 2001). Some of the options 

available for MCP application are to use it for standardisation of milk which is currently 

a controversial issue for the Australian consumers of fresh pasteurised milk, or as a raw 

material for fermentation (alcohol or citric acid production) and/or processing into 

lactose powder (Harju 2001). Alternatively, the lactose in MCP could be converted to 

its derivatives such as lactulose, which is at least 10 times more valuable than lactose 

powder.  

The aims of this study were therefore: 

1. To develop processes for the preparation of prebiotic ingredients i.e. inulin from 

plant tissues and lactulose from MCP  

2. To evaluate the prebiotic properties of the developed ingredients to support the 

growth and survival of probiotic bacteria in fermented milk  

3. To study the fat-replacing properties of the extracted inulin in fat-free yoghurt. 

The specific objectives of this study were:  

1. To evaluate the suitability of JA grown in Australia for inulin production, and to 

establish the processing steps for extraction, clarification and fractionation to 
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obtain JA-based inulin products in various forms i.e. syrup, precipitate and 

powder  

2. To evaluate the suitability and catalytic activities of pulverised limestone, egg 

shell powder (ESP) and oyster shell powder (OSP) for isomerisation of 

lactulose in MCP and to optimise the process parameters e.g. catalyst loading, 

temperature and time for maximum lactulose transformation 

3. To evaluate the growth of Lactobacillus casei LC-01, L. acidophilus LA-5, and 

Bifidobacterium bifidum BB-12 in fermented milk models in the presence of 

lactulose-enriched MCP syrup, and JA inulin syrup (JAIS) and powder (JAIP) 

4. To incorporate JAIP at optimum supplementation level into yoghurt milk and 

determine its ability to support the survival of the above-mentioned probiotic 

bacteria during the shelf life of yoghurts at 4°C for 4 weeks 

5. To evaluate the feasibility of using JAIP as fat replacer in fat-free set yoghurt. 

The outcome of this study is presented eight chapters. Chapter 1 introduces the study 

and its aims and objectives. Chapter 2 presents an overview of prebiotic, probiotic and 

synbiotic concepts. Chapter 3 covers the details of material, chemical, reagents, 

equipment and analytical methods used in this study. Chapter 4 details the extraction of 

inulin-type fructans from JA tubers and reports the process optimisation to fractionate 

the high-molecular-weight components from JA concentrate by two different techniques. 

Chapter 5 covers the evaluation of the three carbonate-based catalysts for lactose 

isomerisation into lactulose from MCP and focuses on process optimisation for 

maximum lactulose yield. Chapter 6 presents the effectiveness of experimentally-

prepared JAIS and JAIP, and lactulose-enriched MCP syrup in supporting the growth 

and acid production by L. casei LC-01, L. acidophilus LA-5 and B. bifidum BB-12 in 

media broth and in fermented milk models. Additionally, the chapter compares the 
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effects of JAIP and commercial chicory inulin products on survival and acid production 

by selected probiotic bacteria during the refrigerated storage at 4°C. Chapter 7 compares 

the fat-replacing effects of incorporated commercial chicory inulins with 

experimentally-manufactured JAIP in terms of rheological profiles of fat-free set 

yoghurt. The overall conclusions and the future directions of research are highlighted in 

Chapter 8. All references are listed in the final section.
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Chapter 2 

Background and literature review 

The purpose of this chapter is to provide the background and review the current state of 

knowledge concerning prebiotics with emphasis on inulin-type fructans and lactulose as 

interesting prebiotics in this study. Areas covered include the definition of prebiotics, 

sources and occurrence, production, the significance on human health and the 

application in food formulation. This review also presents relevant information on 

probiotics i.e. the definitions and the characteristics of probiotic bacteria, the utilisation 

in food preparations, and the claimed benefits of the ingestion of these bacteria. 

2.1 Prebiotics 

2.1.1 Definition and types of prebiotics 

Gibson and Roberfroid (1995) first introduced the term prebiotics by exchanging the 

prefix “pro” from the term “probiotic,” meaning “for life” to “pre” which means 

“before” or “for”. They defined a prebiotic as “A non-digestible food ingredient that 

beneficially affects the host by selectively stimulating the growth and/or activity of one 

or a limited number of bacteria in the colon that can improve the host health.” The 

definition of prebiotics overlaps significantly with the dietary fibre definition; with the 

exception of its selectivity for certain genera or species of indigenous bacteria. 

Presently, only poorly digested carbohydrate (CHO) molecules, a range of di-, oligo- 

and polysaccharides, resistant starches and sugar polyols have been claimed to have 

prebiotic properties.  
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According to Salminen et al. (1998) and Gibson (2004), any food ingredient considered 

to be an effective prebiotic must demonstrate the following characteristics: 

• Non-digestibility and non-absorption in the upper part of gastrointestinal tract 

(GIT);  

• Fermentability by the microflora colonising the GIT; 

• Selective stimulation of a one or a limited gut microflora known as probiotics;  

• An ability to alter the colonic microflora towards a healthier composition by 

increasing the number of saccharolytic species and reducing putrefactive micro-

organisms e.g. Clostridia and Enterobacteriaceae. 

The prebiotic concept, similar to that of probiotic is aimed to improve the microflora 

content in GIT through dietary means. However, while exogenous bacteria are 

introduced into the colonic microflora under the probiotic concept, the prebiotic concept 

assumes that there is already beneficial microflora in human GIT and prebiotics 

stimulate the growth and metabolic activities of those bacteria (Saxelin et al. 2003). 

Using prebiotic ingredients in food formulation offers the benefits over the probiotic 

strategy by reducing the problems of keeping the organisms alive during transit through 

upper part of GIT as well as during storage (Crittenden 1999). 

Most researched prebiotics fall into non-digestible oligosaccharides (NDOs), molecules 

containing 3 to 10 monosaccharide residues connected by glycosidic linkages (Niness

1999). Most of these occur naturally as native components in plants e.g. raffinose and 

stachyose in beans and peas, and oligofructose (OF) and inulin in chicory, garlic, 

artichoke, onion and leek (Van Loo et al. 1995). It is specifically noted that the term 

inulin used throughout this review, refers to chicory inulin unless specified otherwise. 

Lactose-based galacto-oligosaccharides are naturally found in small quantities in 
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breast milk. Some prebiotics can spontaneously occur in food products, like isomalto-

oligosaccharides that are found in miso and soy sauce. However, a number of functional 

prebiotics are industrially synthesised from monomers, small oligosaccharides and/or 

natural polymers through chemical and enzymatic methods (Delzenne 2003). In some 

instances, lactitol and xylitol are produced by hydrogenation of lactose and xylose, 

respectively, while sorbitol is manufactured by reduction of glucose or fructose 

(Livesey 2003).

The prebiotic CHOs normally have similarity in chemical structure, however, their 

fermentation profiles and application advantages are often different. For example, 

despite the same empirical formula and molecular weight, the effect of lactitol on 

bacterial metabolism, faecal pH and transit time is much less pronounced than lactulose 

(Schumann 2002).  

2.1.2 Fermentability of prebiotics 

The human intestinal tract is colonised with > 400 different species of bacteria, divided 

into harmful, beneficial and neutral groups, at concentrations up to 1014 bacteria per 

gram (Angus et al. 2005). The presence of these micro-organisms and their metabolised 

products play an important role in the health and well-being of the host (Gibson 2004). 

At the time of birth, the intestine of the foetus is sterile. However, soon after the birth 

coliform, enterococci and/or Clostridium begin to colonise the large intestine. During 

the period of breastfeeding, bifidobacteria appear and immediately become 

predominant. In adults, harmful micro-organisms of the gram-positive, anaerobic genera 

Bacteroides, Eubacterium or anaerobic cocci predominate in the large intestinal instead 

of bifidobacteria. In the elderly, smaller numbers of bifidobacteria are found due to 

diminishing secretion of gastrointestinal juices and the increased number of harmful 



Chapter 2 

9

bacteria (Holzapfel and Schillinger 2002). The enormous evidence from a wide range of 

research support the view that beneficial bacteria in the large intestine could be 

proliferated by prebiotics, which in turn allow strengthening of pathogen-suppressing 

colonisation by lowering pH in the gut and maintaining good health (Roberfroid 1998; 

Manning and Gibson 2004).  

Figure 2.1 summarises the behaviour and effects of prebiotics in human digestive 

system. Orally ingested prebiotics escape digestion in the upper GIT including mouth, 

stomach and small intestine (Kolida et al. 2002; Schumann 2002) as human digestive 

enzymes (α-glucosidase, maltase, isomaltase, sucrase) are limited for β-glycosidic 

linkages with the exception of lactose (Roberfroid and Delzene 1998). They arrive 

virtually intact in the large intestine where the beneficial bacteria i.e. bifidobacteria and 

some lactobacilli ferment them successfully as a growth factor. The longer-chains 

NDOs allow the stimulation of microflora metabolism in more distal parts of the colon, 

whereas the short-chain prebiotics are fermented in the proximal part of the colon 

(Rastall 2003). The metabolism of prebiotics produces a variety of products, mainly 

bacterial cell mass, short-chain fatty acids (SCFAs) (acetic, propionic and butyric), 

lactic acid, and gases (CO2, H2, CH4), which have varying effects on host health 

(Cummings et al. 2001). The type of SCFAs produced during the fermentation is 

dependent on the microflora which is stimulated by prebiotics. Van Loo et al. (1999) 

reported that inulin increases the level of SCFAs, with acetate being the primary 

component, followed by butyrate and propionate, while transgalacto-oligosaccharides 

show an increased production of acetate and propionate, and xylo-oligosaccharides 

increase acetate levels only. The metabolism of lactulose produces acetate and lactate 

(Crittendon 1999). Up to 95% of the three main SCFAs are not metabolised in 

colonocytes, but are absorbed from the ascending part of the colon, transported via the 
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circulation and further metabolised in the gut epithelium (butyrate), liver (propionate) or 

muscles (acetate) to provide energy (Gibson 2004). Likewise, the gases are not 

metabolised but excreted to faeces, breath and flatus.  

No hydrolysis, minimal bacterial breakdown 

No acid hydrolysis, no absorption 

No enzymatic hydrolysis, no absorption 

Supply energy � Growing bacterial mass 
utilises N2 compounds & 
Amino acid breakdown 

Decrease faecal pH & �  
Increase osmotic pressure 

Decrease colonic 
transit time         

              No excretion Change bacterial 
metabolism �

Decrease bacterial urea 
degradation & Increase 
fermentation by lactobacilli 
& bifidobacteria  

Figure 2.1 Behaviour and effects of prebiotics in human GIT 
 Source: Kolida et al. (2002); Schumann (2002) 

Fermentability of prebiotics differs with their structure. Rycroft et al. (2001) compared 

the fermentation properties of commercial prebiotics. The results from fluorescence in 

situ hybridisation (FISH) tests indicated that xylo-oligosaccharides caused the highest 

increase in bifidobacteria numbers at 5 h fermentation, followed by lactulose, while at 

24 h fermentation the highest increases were equally recorded with isomalto-

oligosaccharides and lactulose. The biggest increases in lactobacilli were found in 
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fructo-oligosaccharides after 5 h and soybean-oligosaccharides after 24 h of 

fermentation, while transgalacto-oligosaccharides resulted in the largest decreases in the 

number of Clostridia. Gas production was lowest with isomalto-oligosaccharides and 

highest with inulin. The results of this comparative study revealed that galactose-

containing oligosaccharides supported higher bifidobacteria numbers and lower gas 

levels than fructose-containing oligosaccharides. 

2.1.3 Inulin and oligofructoses 

Inulin was first discovered by Rose, a German scientist, who in 1804 isolated               

“a peculiar substance of plant origin” from a hot water extract of the roots of 

Elecampagne (Inula helenium), a genus of perennial herbs of the group Compositae. 

The substance was named inulin by Thomson in 1818, but it was also called by other 

names e.g. helenin, alantin, meniantin, dahlin, sinanternin, and sinisterin (Franck and De 

Leenheer 2005). 

2.1.3.1 Description and chemical structure 

Inulin and oligofructoses (OF) are natural food components belonging to a class of 

carbohydrates known as fructans which consist of a series of oligo- and polysaccharides 

of fructose with β (2→1) linkages, where the terminal sugar in most chains is glucose. 

The β-configuration of the anomeric C2 in fructose monomers prevents fructans from 

digestion and this is responsible for its reduced caloric value and dietary fibre effects 

(Kaur and Gupta 2002). Inulin and OF are represented by the general formula GFn and 

Fm, wherein G is glucosyl unit, F is fructosyl unit, n is an integer number of fructose 

units linked to the terminal glucose unit, and m is an integer number of fructose units 

linked to each other in the carbohydrate chain. The molecular structures of inulin and 

OF are shown in Figure 2.2 (Franck 2000). 
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Figure 2.2 Chemical structures of sucrose (left), GFn-type inulin (centre), Fm-type 

oligofructose (right) 

Inulin is a mixture of GFn molecules with 2 < n < 60 while OF is a subgroup of inulin 

which is composed of GFn and Fm with 2 ≤  n, and m ≤ 10 (Franck 2000; Niness 1999). 

The term OF was introduced as a synonym for fructo-oligosaccharide in 1989 for 

labelling purposes (Coussement 1999). Oligofructose is manufactured by two different 

processes which lead to slightly different end-products. Those produced via partial 

enzymatic hydrolysis of inulin contain both fructose chains (Fm) and fructose chains 

with terminal glucose units (GFn), whereas OF produced via transfructosylation of 

sucrose contains only GFn. Both GFn- and Fm-molecules have very similar physico-

chemical properties except that Fm-type products are reducing, but GFn-type compounds 

are not (Franck 2002; Roberfroid 1998). 

The number of saccharides in the fructans molecule is commonly referred to as the 

degree of polymerisation (DP). The DP of plant inulin is rather low and depends on 

plant source, growing stages, climatic conditions and the duration and conditions of 

post-harvest storage. Native inulin which refers to inulin extracted from fresh 

GFn FmGF 

m 
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roots/tubers without fractionation procedure has an average DP of 10-12 while inulin 

from which smaller oligosaccharides have been removed has an average DP of 27-29 

(De Leenheer and Hoebregs 1994). 

2.1.3.2 Sources and occurrence  

Fructans are present as storage polysaccharides in > 36,000 plant species, including 

common vegetables and fruits. Primary fructan-containing plants belong to mono- and 

dicotyledonous families, either Liliaceae (3,500 species) e.g. leek, onion, garlic and 

asparagus, or Compositae (25,000 species) e.g. dahlia, chicory and yacon (Kaur and 

Gupta 2002). Important sources of inulin and OF are summarised in Table 2.1. 

Currently, two species are suitable to produce inulin: Jerusalem artichoke (JA-

Helianthus tuberosus) and chicory (Cichorium intybus), the latter being by far the most 

commonly used source (Franck 2000). Many cereals and other grasses contain high 

fructans content, but are not used for industrial production. Chicory is native to Europe 

and has been cultivated in several temperate areas since the 16th century. Its roots and 

greens are widely used for human consumption, especially as a coffee substitute after 

roasting. Chicory inulin is mainly stored in the fleshy root representing about 70-80% of 

the root’s dry weight (Kaur and Gupta 2002).  

Fructans are also produced by bacteria and fungi. The majority of levan-producing 

bacteria are found among the Pseudomonaceae, Enterobacteriaceae, Streptococcaceae,

Actinomycetes and Bacillaceae. Bacterial inulin has a much higher DP (up to 100,000) 

than plant inulin (up to 200). 
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Table 2.1 Inulin and oligofructose content of plants commonly used in human 

nutrition (% of fresh weight) 

Source Edible part Solid content Inulin Oligofructose 

Artichoke Leaves-heart 14-16 3-10 < 1 

Banana Fruit 24-26 0.3-0.7 0.3-0.7 

Barley Cereal NA 0.5-1.5* 0.5-1.5* 

Burdock  Root 21-25 3.5-4.0 NA 

Camas Bulb 31-50 12-22 NA 

Chicory Root  20-25 15-20 5-10 

Dandelion Leaves 50-55* 12-15 NA 

Garlic Bulb 40-45* 9-16 3-6 

Jerusalem artichoke Tuber 19-25 16-20 10-15 

Leek Bulb 15-20* 3-10 2-5 

Murnong   Root 25-28 8-13 NA 

Onion  Bulb 6-12 2-6 2-6 

Rye Cereal 88-90 0.5-1* 0.5-1* 

Salsify  Root 20-22 4-11 4-11 

Wheat Cereal NA 1-4 1-4 

Yacon Root 13-31 3-19 3-19 

Source: Van Loo et al. (1995); Franck (2000) 
NA, data not available 
*Estimated value 

2.1.3.3 Technological properties  

Commercial inulin is available as a white amorphous hygroscopic and odourless 

powder. Its solubility is less in cold water than in hot water. Inulin has a good thermal 

stability although it decomposes to caramel either when heated at ≥ 178°C or boiled 

with alkali, as well as hydrolyses to fructose when heated with dilute acids. The taste of 

inulin ranges from slightly sweet to bland, depending on the levels of mono-, di- and 

oligosaccharides (Franck 2000). 
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Oligofructose is available as powder and clear syrup (75% dry substance). It is much 

more soluble than inulin (ca. 80% in water) at room temperature (RT) and has a good 

stability during usual food process operations (Franck 2000), although β-bonds between 

the fructosyl units are hydrolysed under acidic conditions. The taste of OF is slightly 

sweet without aftertaste and off-flavour. The moderate reducing power of OF gives rise 

to slight browning reactions during baking. 

The nutritional properties of inulin and OF are similar, thus the decision to formulate 

with these ingredients is dependent on the desirable attributes of the finished product. 

For example, high DP inulin that has a creamy, fat-like mouthfeel with no added 

sweetness would be the suitable choice when formulating a low-fat table spread. 

Conversely, when formulating a low-calorie fruit preparation for yoghurts using high 

intensity sweeteners, OF could enhance the fruity flavour, balance the sweetness profile 

and mask any undesirable aftertaste (Angus et al. 2005). 

2.1.3.4 Common intakes in diet  

Inulin and OF have always been part of the daily human diet. The most commonly 

consumed inulin-containing vegetable is probably onion. In the 19th century, the daily 

intake of inulin- and OF-containing plant foods was 160-260 g by the Australian 

aborigines and 25-32 g by European populations. The current-day consumption is 

significantly lower with estimated 3-11 g in Europe and 1-4 g in the USA (Van Loo et 

al. 1995).  Although there is no recommended daily intake of inulin and OF, Roberfroid 

(1998) suggests a minimum dose of 4 g per day for adults while doses greater than 20 g 

per day might induce some side effects, such as stomach cramps, flatulence, abdominal 

bloating and diarrhoea.  
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2.1.3.5 Legal and regulatory status 

Nowadays inulin and OF are isolated in pure form for use in many food formulations. 

They are legally classified as “food” or “natural food ingredient” in all EU countries, 

including Switzerland and Norway. Both of these countries are excluded from food 

additive status in the standard lists from the EU or from Codex Alimentarius 

(Coussement 1999; Prosky 1999), instead they comply with the Codex Alimentarius 

definition of dietary fibre. The Authorities in Australia, New Zealand, Israel, Canada 

and Japan came to the same conclusion. In the USA, the Food and Drug Administration 

has accepted the “Generally Recognized as Safe (GRAS)” status of inulin and OF since 

1992. In these countries, inulin and OF can be used without any specific limitation in 

foods and drinks. In many countries, claims concerning the dietary fibre and bifidogenic 

effects of inulin and OF are legally made. The name “inulin” is an accepted name for 

the ingredient list. Either “fructo-oligosaccharides” or “oligofructose” can be labelled 

for OF, but it is not acceptable for inulin to be labelled as OF.  

2.1.3.6 Production of inulin and oligofructoses 

In the early 1920s, inulin was first produced on a pilot scale in Deutsche Kulorfabrik by 

Schöne and later was extracted on an industrial scale in 1927 by Belval. In 1931, an 

improvement of the extraction process was patented by Raffinerie Tirlemontoise, 

Belgium (Franck 2000).  The extraction of inulin and OF from the plant tissue is similar 

to that of extraction of sucrose from sugar beets.  The production process involves three 

general steps: extraction of raw inulin by hot water diffusion, followed by purification 

of the inulin extract and then drying of the purified juice to a pure inulin powder (Angus 

et al. 2005). The finished powder typically contains 6-10% glucose, fructose and 

sucrose and has an average DP of 10-12 (Niness 1999). Optionally, inulin extract is 
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fractionated to remove mono-, di- and oligosaccharides to achieve various grades of 

inulin. 

Several techniques for inulin extraction from various plants have been reported e.g. 

extracting ground dry JA tubers or dried slices of JA tubers (Marchand 1951; Yamazaki 

et al. 1989), wet milling or crushing chicory roots (Leite Toneli et al. 2007), globe 

artichoke bracts (Lopez-Molina et al. 2005), JA tubers (Laurenzo et al. 1999) or dahlia 

tubers (Mitchell and Mitchell 1995) or preferably, soaking freshly sliced or shredded 

chicory roots with hot water (Berghofer et al. 1993). The extraction is performed at 

varying temperatures between 60 and 85°C sometimes up to 100°C for 20 min to 1 h.  

Recently, ultrasound has been applied to facilitate the extraction of inulin from JA 

tubers with the maximising yield of 84% under optimum conditions (Lingyun et al. 

2007). Inulin extract is subsequently subjected to a depuration method (i.e. liming and 

carbonation or another flocculation technique, and filtration), followed by refining (i.e. 

treatment over ion-exchange resin column, treatment with active carbon and filtration). 

Alternatively, ultrafiltration (UF) membranes with appropriate molecular weight cut-off 

(MWCO) can be employed to purify inulin extract where non-inulin components e.g. 

ash and nitrogenous substances pass into the permeate while inulin is kept in the 

retentate (Berghofer et al. 1993; Laurenzo et al. 1999; Lopez-Molina et al. 2005).  

Inulin is widely commercialised in powder form due to ease of handling, transportation, 

storage and application, and various methods are applied to convert liquid extract of 

inulin to dry form i.e. spray drying, drum drying, freeze-drying and microwave vacuum 

drying. To reduce energy costs of drying, the liquid extract is frequently concentrated 

by evaporation before drying. 
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The presence of mono- and disaccharides makes inulin difficult to dry, handle and store 

due to their hygroscopic nature. On the other hand, in liquid inulin products, the high 

DP inulin fractions tend to settle to the bottom during the storage. Therefore, many 

attempts are made to narrow DP range of products and achieve uniform quality 

products. Moreover, the properties of inulin are highly DP dependant, for example, the 

higher DP fractions are used as fat substitutes while the lower DP components are used 

as sugar replacers. In the following section, a series of methods employed to enrich high 

DP inulin fractions are reviewed. 

• Chromatography 

In US Patent 5,660,872, Van Loo et al. (1997) described a process for fractionating 

inulin by column chromatography techniques. After being purified through a cation-

exchange column (K+ form) at 65-75°C, mono- and disaccharides are removed 

effectively, and the inulin with an average DP of 10 and less than 1% low-molecular- 

weight (MW) sugars is obtained.  

• Solvent precipitation 

In US patent 2,555,356 Marchand (1951) proposed the addition of acetone to the 

aqueous solution to decrease the solubility of high DP inulin. Later in US Patent 

6,303,778 Smits et al. (2001) precipitated long-chain inulin from inulin syrup in the 

presence of alcohol, and separated it by filtration or centrifugation. By this method, 

inulin with almost double or higher DP than that of the source inulin was obtained with 

an average yield of 30-35%.  

• Ultrafiltration 

Thomann et al. (1995) proposed the separation of short-chain inulins from long-chain 

inulin by UF or nanofiltration. Various UF membranes were tested for their suitability 
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to separate inulin from mono- and disaccharides. In US Patent 5,968,365, Laurenzo et al. 

(1999) employed a series of UF membranes with different MWCO ranges to achieve a 

series of inulin fractions with different MW distribution. 

• Crystallisation 

Inulin with a higher DP was prepared by crystallisation techniques as described by 

Silver (2003) in US Patent 6,569,488. The process principally includes holding the 

inulin extract in a settling tank at 0 to +7°C for 24-48 h. Inulin fractions with a higher 

DP are less soluble at low temperature and thus precipitate to the bottom at the faster 

rate than those with a lower DP. The precipitated inulin is then siphoned out, drained 

out or separated by centrifugation from the mixture. Lopez-Molina et al. (2005) 

reported that the precipitation yield of inulin was higher at lower temperature and longer 

precipitation time, and found the optimum conditions for maximising the yield to be 

−24°C and 12 h. Leite Toneli et al. (2007) verified phase separation when concentrated 

inulin syrup was subjected to low temperature treatment. 

Similarly, Berghofer et al. (1993) and Mitchell and Mitchell (1995) reported the 

crystallisation of concentrated inulin extract (40-70%) after subsequent cooling, grafting 

with inulin crystals and storing at +1 to −15°C for 12-30 h.  

Moerman et al. (2004) compared three different methods (UF, crystallisation, and 

solvent precipitation) to enrich the high-MW fractions of chicory and dahlia inulins. It 

was noted that the utilisation of membranes with MWCO between 2 and 5 kDa 

increased the average DP of chicory inulin from 8 to 22 and that of dahlia inulin from 

29 to 43. The crystallisation reaction of 10% dahlia inulin solution at RT for 6 days 

gave the same DP as using UF, but with a much higher yield. With solvent-

precipitation, acetone was shown to be the best solvent system to increase the DP, 
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followed by ethanol and methanol. In the case of ethanol, the DP could be raised to 25 

for chicory inulin and up to 40 for dahlia inulin. 

• Enzymatic treatment 

In the Japanese Patent 04211388, Manfred (1992) disclosed the enzymatic treatment to 

achieve inulin products with low glucose, fructose and sucrose contents. The enzyme α-

glucosidase was added to inulin solution at pH 5.4 to break down the low DP fractions 

(mono- and disaccharides) which were then removed by column chromatography. The 

resulting product contained > 50% of tri-, tetra- and pentasaccharides. Similarly, in US 

Patent 5,478,732, Kunz et al. (1995) prepared long-chain inulins with an average DP of 

> 20 using inulinase (NOVO, SP 230). The optimum reaction conditions were inulin 

syrup solids content of 40-50%, pH of 4.8-5.0 and 40-60°C, which resulted in a yield of 

up to 45% long-chain inulin. 

When low DP inulin fraction i.e. OF is the desired product, a hydrolysis step using 

either acids or enzymes is included after extraction stage. Using an inulase enzyme, 

inulin is broken down into short-chain lengths, varying from 2 to 10 with an average DP 

of 4. The resulting products also contain ca. 5% glucose, fructose and sucrose on dry 

basis. Alternatively, OF is synthesised from sucrose by the transfructosylation using 

enzyme β-fructofuranosidase which attaches additional 2-4 fructose monomers to 

sucrose molecule (Angus et al. 2005). By-products of the process e.g. glucose, fructose 

and unreacted sucrose can be removed by chromatography (Crittenden and Playne 

1996). 
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2.1.4 Lactulose 

2.1.4.1 Structure and general properties 

Lactulose (4-O-β-D-galactopyranosyl-D-fructose) is a disaccharide derived from lactose 

(4-O-β-D-galactopyranosyl-D-glucose) with similar MWs (342.3) and the same 

empirical formula (C12H22O11) as shown in Figure 2.3 (Schumann 2002). In contrast to 

lactose, the β (1→4) glycosidic bond of lactulose is not degraded by human and animal 

digestive enzymes but is metabolised by saccharolytic colonic bacteria (Kontula et al. 

1998; Salminen et al. 1998). In the large intestine, lactulose stimulates the growth of 

selected micro-organisms i.e. Bifidobacterium, Lactobacillus and Streptococcus and 

crowds out potentially harmful bacteria i.e. Bacteroides, Clostridium, coliforms and 

Eubacterium (Crittenden 1999). 

Figure 2.3 Chemical structures of lactose (left) and lactulose (right) 
Source: Schumann (2002)

Commercially available lactulose is produced at ca. 50,000 tonnes per annum mainly in 

Germany, Denmark, Austria, Italy, the Netherlands, UK and Japan, and is marketed in 

two major forms: dry lactulose as a powder or granulate, and lactulose syrup. Lactulose 

syrup is a yellowish, clear and odourless liquid with a sweet taste due to the presence of 

other sugars. Dry lactulose is a white, crystalline and odourless powder with sweetness 

60-80% that of sucrose and similar humectancy to sucrose (Schumann 2002). The powder 
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is soluble in water, poorly soluble in methanol and insoluble in ether. An overview of 

the chemical composition of dry and liquid lactulose is summarised in Table 2.2. 

Table 2.2 Principle composition of dry and liquid lactulose 

Compositions Powder (g per 100 g) Syrup (g per 100 mL) 

Lactulose > 95.0 63.4-70.0 

Galactose ≤ 2.5 ≤ 15.0 

Lactose ≤ 2.0 ≤ 9.0 

Epilactose ≤ 1.5 ≤ 7.0 

Tagatose ≤ 3.0 ≤ 3.0 

Fructose ≤ 1.0 ≤ 1.0 

Source: Schumann (2000) 

2.1.4.2 Sources and occurrence  

Lactulose is not present in nature but is found in small amounts as a secondary product 

of catalyst-free isomerisation of lactose in high heat-treated milk. It has been proposed 

by the International Dairy Federation (IDF) and by the European Commission (EC) as 

an indicator of the severity of heat treatment and for the classification among 

pasteurised, UHT and in-container sterilised milks. Both international bodies suggest 

600 mg L-1 of lactulose as a marker for distinguishing between the UHT and sterilised 

milk while in Germany, a limit of 400 mg L-1 is adopted to protect the quality of milk 

from excessive heat-load (Marconi et al. 2004). 

Lactulose synthesis is based on the molecular rearrangement of lactose under alkaline 

conditions, known as a Lobry de Bruyn-Alberda van Ekenstein, in which the glucose 

moiety is converted into a fructose residue (Holsinger 1999). Figure 2.4 shows a scheme 

of lactose alkaline isomerisation. Besides the epimerisation of lactose into lactulose, the 

reaction routes comprise the subsequent degradation of keto-disaccharides to galactose 
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and isosaccharinic acids by alkaline-peeling and β-elimination, and the isomerisation of 

lactose into small amounts of epilactose. 
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Figure 2.4 Model of the alkaline isomerisation of lactose 
Source: Andrews (1986); Berg and van Boekel (1994) 

2.1.4.3 Legal and regulatory status  

Lactulose is known as a medicinal product for humans use since 1950s and has drug 

status in over 100 countries, being an over-the-counter drug in EU and a prescription 

drug in the USA, but not as a food additive which clearly differs from other prebiotics. 

The two major uses are in the treatment of hepatic encephalopathy (up to 90 g per day) 

and chronic constipation (10-40 g per day). It is also suggested for the treatment of 

salmonella carrier state in some countries. Lactulose is accepted for use as food or drink 

additive and as a pure prebiotic in Italy and the Netherlands (Schumann 2000), and as 

OH 
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special food for health maintenance and for protection against enteric infections in 

Japan since 1992 (Holsinger 1997). 

2.1.4.4 Production of lactulose 

Various catalysts are used as proton acceptors to facilitate the conversion from aldose 

form of lactose to ketose form of lactulose. Aider and de Halleux (2007) listed the 

important criteria for choosing the catalysts: 

• Offering a maximum yield of lactulose with minimum level of by-products; 

• Non-toxic and safe for environment; 

• Low cost and available in great quantity; 

• Giving repetitive results of isomerisation; and 

• No difficulty for removal after isomerisation. 

However, the catalysts used currently present both positive and negative aspects and the 

ideal one has not yet been found. Depending on the catalytic systems, the conversion of 

lactose to lactulose may vary from 20 to 80%.  This review summarises various 

catalysts known for the preparation of lactulose solution.  

• Lactose isomerisation by alkali hydroxides 

Lactulose was prepared for the first time by Montgomery and Hudson in 1930, by 

heating lactose in aqueous solution in the presence of calcium hydroxide at 35°C for 

several days. Later, stronger alkaline reagents i.e. potassium hydroxide, barium 

hydroxide and sodium hydroxide (NaOH) were studied for their catalytic abilities. A 

process is described by Nagasawa et al. (1974) in US patent 3,816,174 where lactose 

solution was combined with 0.27-0.54% NaOH (lactose base) and heated > 70°C. 

Dendene et al. (1994) determined the kinetics of lactulose formation and lactose 
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degradation in NaOH medium at different OH− concentrations and temperatures. Their 

experimental data showed that the isomerisation of lactose (375 g L-1) at pH 9.5 and 

70°C resulted in a maximum lactulose production (20%) within 60-65 min, in 

accordance with those calculated from kinetic models. Zokaee et al. (2002a)

investigated the formation of lactulose in sweet cheese whey permeate using NaOH as a 

catalyst. The optimal pH and temperature for the isomerisation were found to be 11.5 

and 70°C, respectively. 

Preparation of lactulose by alkali hydroxides produces low yield and large number of 

by-products which are coloured. Moreover, lactulose must be isolated from unreacted 

lactose, degradation products and metal salts. In most cases, lactulose syrup is purified 

and demineralised by ion-exchange resins, bromolysis and electrolysis.  

• Lactose isomerisation by amines

A further group of processes use amines for lactulose preparation. Hough et al. (1953) 

used ammonia for the isomerisation, but the use of primary and secondary amines led to 

the formation of glycosylamines and Amadori compounds as side reaction by-products. 

Later, in US Patent 3,514,327, Parish (1970) employed triethylamine, a tertiary amine 

for the conversion of lactose into lactulose and achieved 32% lactulose yield. 

• Lactose isomerisation by phosphates and sulphites  

The fact that sulphites and phosphates have the characteristic to prevent oxidation of 

disaccharides allows the use of high temperature and high lactose concentrations in the 

process (Aider and de Halleux 2007). According to US Patent 4,264,763 (Gasparotti 

1981), 0.5-2 M disodium phosphate (2.1-8.6% lactose base) was added to lactose 

monohydrate solution (55-65% concentration), followed by heating at 104°C for 20-240 

min. The maximum yield of lactulose was 20% within 120 min.  



Chapter 2 

26

• Lactose isomerisation by aluminates and borates  

Another group of catalysts used are amphoteric electrolytes, including borate and 

aluminate which shift the reaction in favour of lactulose and prevent its degradation to 

by-products. In US Patent 4,957,564 (Carobbi and Innocenti 1990) a 25-50% lactose 

solution was added with sodium aluminate solution at a molar ratio of 0.3:1 up to 1:1 

calculated on lactose basis (pH 11-12), and heated at 50-70°C for 30-60 min. At the end 

of the process, the mixture was adjusted to a pH of 4.5-8.0 with sulphuric acid. 

However, the elimination of sodium sulphate produced under these conditions was 

difficult. An improvement to this work was proposed in the US Patent 6,214,124, where 

Carobbi et al. (2001) proposed using CO2 gas under pressure to neutralise the reaction 

mixture, instead of sulphuric acid, followed by using filter press to separate aluminum 

hydroxide from the lactulose solution.  

The preparation of lactulose using borax as catalyst was mentioned in US Patent 

5,071,530 by Krumbholz and Dorscheid (1991). An aqueous lactose solution at pH 8.3 

was heated in the presence of borax to above 80°C. This catalyst facilitated the reaction 

with a higher lactulose yield (70-80%) and minimum by-products, however, the process 

was not deemed satisfactory for industrial production because of the difficulty presented 

in the elimination of boric acid. 

Other works investigate the use of boric acid mixed with other catalysts. One example is 

a study by Hicks and Parrish (1980) who achieved a high yield of lactulose (up to 87%) 

and low levels of monosaccharides from degradative side reaction with the combination 

of tertiary amines and boric acid. The addition of tertiary amines was aimed to achieve 

the desired pH with minimal use of boric acid. Hicks et al. (1984) demonstrated that 

adjusting the pH of sweet cheese whey permeate to 11 with either triethylamine or 
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NaOH before adding an equivalent mole of boric acid resulted in high yields of 

lactulose (> 80%). Five purification procedures were also mentioned to obtain lactulose 

syrup.  

Zokaee et al. (2002b) compared three catalytic systems (i.e. NaOH, boric acid and 

NaOH, and sodium aluminate) for lactose isomerisation. The maximum conversion 

achieved was ca. 20% and total by-product was 5-7%. On the other hand, treatment of 

aqueous solutions of lactose-boric acid (mole ratio 1:1) with NaOH at pH 11 increased 

lactulose yield to 77-80%. The use of sodium aluminate at a mole ratio of 2 also 

resulted in a high yield of 68-70% with fewer by-products than that of borate system. 

• Lactose isomerisation by sepiolites 

In addition to homogenous catalysts, a group of processes employ heterogeneous 

catalysts for lactose isomerisation.  Troyano et al. (1996) first investigated the catalytic 

activity of natural sepiolite (a hydrated magnesium silicate) at varying catalyst loadings, 

temperatures and reaction times. Besides lactulose small amounts of epilactose, 

galactose, tagatose and 3-hydroxypentulose were also produced. To attain a 20% 

conversion of lactulose, sepiolite loading of 6% (w/v) at 100°C was needed. In 1999, de 

la Fuente et al. reported that the replacement of Mg2+ of sepiolite with alkaline ions (Li+, 

Na+, K+ and Cs+) significantly improved the catalytic ability of the sepiolite, where 

similar conversion was obtained at lower temperature (90°C) and lower sepiolite 

loading of 1.5% (w/v). Villamiel et al. (2002) broadened the use of alkaline-substituted 

sepiolites (Na+ or K+) for lactulose isomerisation in milk permeates. It was found that 

the activity of Na+ sepiolite was higher than that of K+ form and the control of washing 

cycles of sepiolites during their preparation was critical for process optimisation.  
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• Lactose isomerisation by ion-exchange resins 

Another method for lactulose production is using strongly alkaline ion-exchange resins 

for the isomerisation. Carubelli (1966) reported that lactose was converted into lactulose 

when subjected to ion-exchange chromatography on a column of Dorex I (borate) at RT. 

By this method, the addition of catalyst was unnecessary and the final products could be 

used in functional foods without the additional stages for demineralisation and 

decolourisation (Aider and de Halleux 2007). However, these results are not consistent 

with those of Mahran et al. (1995) who employed anion-exchanger in either borate form 

or OH− as isomerising agents and found no lactulose formation in the reaction mixture.  

Most lactulose is marketed as impure syrup containing ca. 80% solids, with a lactulose 

content of 66% and varying amounts of related saccharides as shown in Table 2.2. The 

presence of these by-products is acceptable for food applications purpose, but 

undesirable for pharmaceutical purpose and specialised foods. Therefore, attempts have 

been made to remove such by-products after the isomerisation. In Japanese Patent 02-

124895, Fumihiko (1990) proposed the use of two types of ion-exchange resins for 

purification of lactulose syrup. The syrup was first subjected to a packed bed of Na+-

type strongly acidic cation-exchange resin, followed by the Ca2+-type resin to eliminate 

mono- and disaccharides, respectively. Water was used as an eluent and the temperature 

during treatment was kept at 50 to 80°C. Recently, several extraction procedures e.g. 

supercritical fluid extraction, solid-phase extraction and pressurised liquid extraction 

have been developed for the purification of lactulose from a mixture with lactose to 

replace traditional processes (Ruiz-Matute et al. 2007). 

Excess colour of lactulose syrup is also undesirable. In an attempt to prevent the 

development of brown colour during isomerisation, several workers have suggested 
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using a mixture of catalysing and a reducing agents e.g. sodium sulphite, sodium 

bisulphite or sodium phosphate. According to US Patent 4,536,221 by Carobbi et al. 

(1985), lactose solutions of 60-70% were added with equal parts of magnesium oxide 

(catalyst) and sodium hydrosulphite (reducing agent) at the rate of 0.05-0.2% by weight 

of lactose. Thereafter, the mixture was heated to 90-100°C for 10 min, cooled, followed 

by filtration or centrifuging. The clear solution obtained was then passed through ion-

exchangers to remove the ions of Mg and Na and organic acids. In Russian Patent 

2133778, Dykalo et al. (1999) described the use of sodium sulphite mixed with NaOH 

in lactose solution of 20-65%. The catalyst concentration was 0.1-0.5 mole per kg 

lactose to raise the pH to 10.5-12.0 and the temperature used was 80-105°C. At the end 

of the process, the solution was treated by electrodialysis for purification from reagents. 

Several studies have aimed to remove coloured by-products after the isomerisation. In 

the US Patent 5,026,430, de Haar and Pluim (1991) described a method for preparing 

lactulose products with an acceptable colour for pharmaceutical purposes by the 

treatment with hydrogen peroxide (H2O2).  As oxidant agent, H2O2 can convert the 

degradation products of lactulose into acids which later are removed by ion-exchangers. 

It is suggested to add H2O2 to lactulose syrup at a temperature of ca. 50°C. In the study 

by Montilla et al. (2005) who treated milk permeate with egg shell powder, 

decolourisation of lactulose syrup was effectively achieved with treatment with 

activated carbon and membrane filtration. Activated carbon, added at a rate of 5-15 mg 

per mL removed 65-92% of the colour within 5 min. 
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2.1.5 Health-benefits of prebiotics 

A number of health-related benefits have been ascribed to prebiotic consumption 

(O’Neill 2008), including relieving constipation (Roberfroid 1993), reducing the risk of 

atherosclerosis by modulating lipid metabolism (Delzenne and Williams 2002), 

decreasing the risk of osteoporosis by improving mineral absorption (Cashman 2002; 

Scholz-Ahrens et al. 2001), reducing the risk of colon cancer (Rumney and Rowland 

1995), preventing intestinal infections (Naughton et al. 2001; Manning and Gibson 

2004) and stimulating the immune system of the body (Saavedra et al. 1999; Macfarlane 

and Cummings 1999). Figure 2.5 summarises the currently proposed mechanisms of 

human heath benefits by prebiotics.  
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Figure 2.5 Proposed mechanisms of prebiotic effects on human heath benefits  
 Source:  Crittenden (1999) 
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2.1.6 Prebiotics in food application  

Prebiotic foods are “food products that contain prebiotic ingredients in an adequate 

matrix and in sufficient concentration, so that after their ingestion, the postulated benefit 

is obtained” (Saxelin et al. 2003). The potential for prebiotic is gaining interest through 

its reduced energy value, hypocariogenic and bifidogenic properties, and dietary fibre 

effects, depending on its chemical structure, MW and levels of mono- and disaccharides 

(Roberfroid 1993). The main dairy products formulated with prebiotics include 

yoghurts, yoghurt drinks, spreads, fresh cheeses, and milk. Other emerging food 

products are kefir, sport products, functional waters, nutrition bars, weight loss 

products, soymilk, green foods, mineral supplements, nutraceuticals and also pet foods 

(Kaur and Gupta 2002; Niness 1999).  

2.1.6.1 Bifidus promoting agents 

Inulin-type fructans are amongst the most studied and well-established prebiotic 

ingredients. Their selective stimulation of the growth of bifidobacteria and the 

production of SCFAs as end products of fermentation has been confirmed in many in 

vitro and in vivo studies (Gibson and Wang 1994; Roberfroid 2001). They are 

increasingly used in functional foods, especially dairy products and breads at typical 

amounts of 1-6% or ca. 3-8 g per serving to allow the bifidogenic claims (Coussement 

1999; Franck 2000).  

Compared to inulin-type fructans, other types of NDOs are either branched or composed 

of several types of glycosidic bonds, which makes them less readily accessible for 

bacterial hydrolysis. Oligofructose is somewhat more prone to upper GIT hydrolysis 

than inulin (Roberfroid 1998). However, Fm- and GFn-type molecules had a similar 

prebiotic effect in humans (Menne et al. 2000). The other commercially available 
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prebiotics are lactulose, galacto-, xylo- and soybean-oligosaccharides (Murphy 2001; 

Cummings et al. 2001). Lactulose is the original prebiotic, know since 1957 and is 

currently marketed as bifidus factor for infant formula. Its ingestion contributes to the 

growth of gut microflora in bottle-fed babies in the same way as breast-fed babies 

(Strohmaier 1998; Salminen et al. 1998). 

2.1.6.2 Fibre enhancer  

Another interesting functionality of prebiotics in food formulations is their roles as 

dietary fibre. The dietary fibre is defined as “remnants of plant cells resistant to 

hydrolysis by the human digestive enzymes” (Trowel and Burkitt 1986). 

Unquestionably, several prebiotic substances i.e. inulin, OF and resistant starch fall 

under this definition (Flamm et al. 2001). Moreover, from a physiologic point of view 

the effects of these prebiotics on intestinal function, blood lipid parameters and caloric 

value meet the properties of dietary fibres (Roberfroid 1993; Gibson et al. 1995; Hidaka 

et al. 1986). These effects are related to reduced risk of coronary heart disease, colon 

cancer and other colonic disorders and fit into the concept of dietary fibre. 

Compared to insoluble fibre e.g. bran, soluble prebiotic ingredients are more palatable 

and have superior functional properties (Dreher 1999).  Resistant starch is related to 

increased fibre content in baked goods and pasta products without the grainy or 

discoloured appearance (Murphy 2001). The use of inulin or OF in baked goods allows 

not only fibre enrichment, but also better moisture retention properties and improved 

texture (Franck 2000; Tungland and Meyer 2002). Their solubility also allows fibre 

incorporation in drinks, dairy products, soup and table spread. Such additions are in the 

range of 3-6 g per serving and increase up to 10 g in extreme cases (Coussement 1999).  
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2.1.6.3 Sugar replacer 

Several types of NDOs and polyols can replace sugar sweeteners due to their 

physiological characteristics i.e. having minimal contribution to energy intake and 

performing bulking properties. They are termed sugar substitutes, sugar replacers, or 

alternative sweeteners.  

Oligofructose possesses functional properties similar to glucose syrup and is frequently 

used to replace sugar in various foodstuffs, mainly in dairy and bakery products e.g. 

chocolate filling, biscuits, chewing gums, confectionary, dairy desserts, ice-cream and 

fruit preparations in the range of 2-6 g per serving (Franck 2000). Oligofructose 

contributes humectancy to baked goods, depresses the freezing point of frozen desserts 

and acts as a binder in nutrition bars, in much the same way as sugar. The solubility of 

OF is higher than sucrose but its sweetness is ca. 30% of sucrose (Angus et al. 2005). In 

combination with intense sweeteners e.g. acesulfame K and aspartame, OF provides a 

desired sweetness profile and a better-sustained flavour with reduced aftertaste 

(Weidmann and Jager 1997; Kaur and Gupta 2002).

A number of studies with lactulose have been carried out on yoghurt, cookies, cake, 

chocolate, etc. in aspects of flavour enhancing properties, a favourable browning 

behaviour and the behaviour during processing which allow replacement of sucrose 

(Schumann 2002). However, because of its laxative characteristics, lactulose is utilised 

in limited quantities in foods.  

The fact that the sugar alcohols e.g. sorbitol, mannitol, xylitol and lactitol, and NDOs 

e.g. OF and lactulose contribute fewer calories (1-2 kcal g-1) than sugar (4 kcal g-1) 

(Salminen et al. 1998; Oku and Nakamura 2002; Murphy 2001) allows the development 

of sugar-reduced low-energy products. This is particularly true in sugar-free confections 



Chapter 2 

34

e.g. hard candies, chewing gums and marshmallows, sugar-free added baked goods and 

ice-creams. More importantly, these low-calorie ingredients offer advantages over 

traditional digestible CHOs like sucrose, glucose and fructose in terms of having low- 

glycaemic index (potentially helpful for diabetics and those suffering from 

cardiovascular disease), low-insulinaemic (potentially useful for obesity) and non-

cariogenic (sugar-free tooth-friendly) (Hidaka et al. 1986; Schumann 2002).  

2.1.6.4 Fat replacer 

Specific kinds of prebiotic oligosaccharides have been developed as fat replacers and 

texture modifiers. The specific functions are: 

• To reduce total fat or partial fat content  

• To modify smoothness and creaminess 

• To improve mouthfeel and/or increase perception of body and richness 

• To improve an overall eating quality and an acceptable appearance. 

Inulin is an example of such prebiotics. Inulin is well-recognised for its ability to 

replace fat in the manufacturing of low-calorie foods. When inulin is mixed with 

aqueous liquid or water, it forms gels composed of a tri-dimensional gel network of 

insoluble sub-micron crystalline inulin particles with large amounts of immobilised 

water. This inulin gel provides the same texture and mouthfeel as fat (Franck 2000, 

Silva 1996). The chain length of inulin plays a key role in gel quality. A high DP inulin 

facilitates gel formation at lower concentrations and can be formulated to replace fat up 

to 100%. Fat replacement by inulin is successfully applied in most water-based foods 

e.g. dairy products, frozen desserts, dressings, table spreads, sauces, soups and even in 

meat products, but not in dry foods e.g. snacks, bakery and confectionery products 

(Murphy 2001). Typically, 1 g of fat can be replaced by a 0.35 g of inulin and 
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consequently amounts of 2-6 g per serving are practically used in most foods 

(Coussement 1999). Formulating foods with inulin also helps to maximise freeze-thaw 

stability and minimise phase separation of emulsions, dispersions, mousses, foams and 

creams due to its ability to immobilise water and to work synergistically with most 

gelling agents e.g. gelatine, alginate, carrageenan, gellan gum and maltodextrin (Bishay 

1998). Inulin also gives a richer texture to liquid products and spreads and provides 

crispness and expansion to extruded snacks and cereals.  

In addition to inulin, resistant starch is also used as a fat mimetic and a texture enhancer 

in low-moisture foods e.g. crackers and cookie. In extruded cereals, the use of resistant 

starch improves crispness and expansion (Murphy 2001). 
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2.2 Probiotics 

2.2.1 Definition of probiotics  

The term “probiotics” derived from Latin and Greek, meaning “for life” has been 

defined in many ways in the past. In 1965, Lilly and Stillwell introduced probiotics as 

“substances secreted by one micro-organism which stimulates the growth of another”. 

In 1971, Sperti applied the term to tissue extracts that stimulate microbial growth 

(Schrezenmeir and de verse 2001). Later in 1974, Parker proposed the term for 

organisms and substances which influenced the intestinal microflora and had beneficial 

effects on animals. The term “substances” is imprecise which would include even 

antibiotics. Therefore, in 1989 Fuller defined probiotics as “a live microbial feed 

supplement, which beneficially affects the host animal by improving its intestinal 

microbial balance”. In 1992, Havenaar et al. agreed to broaden Fuller’s definition of a 

probiotic as “a viable mono- or mixed culture of micro-organisms which applied to 

animal or man, affect beneficially the host by improving the properties of the 

indigenous microflora” (Suskovic et al. 2001; Lourens-Hattingh and Viljoen 2001). In 

1996, Salminen defined probiotic as “a live microbial culture or cultured dairy product 

which beneficially influenced the health and nutrition of the host”. Schaafsma (1996) 

also re-defined probiotics as “living micro-organisms which upon ingestion in certain 

numbers, exert health benefit beyond inherent basic nutrition”. This definition fits well 

with that of functional foods. Recently, Schrezenmeir and de verse (2001) proposed the 

definition of probiotic as “a preparation of a product containing viable, defined micro-

organisms in sufficient numbers, which alter the microflora (by implantation or 

colonisation) in a compartment of the host and by that exert beneficial health effects in 

the host”. This definition is close to the definition given by Havenaar et al. (1992). 
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2.2.2 Characteristics of probiotic bacteria 

The lactic acid bacteria (LAB) have long been used for food fermentation and 

preservation. Renewed interest in the role of LAB for human health originated from the 

observations of Metchnikoff in 1908, that the longevity and well-being of Bulgarians 

were attributed to their high yoghurt consumption (Lourens-Hattingh and Viljoen 2001). 

Many decades later the importance of fermented products in human nutrition and the 

significance of an indigenous microflora in the GIT as a natural resistance factor against 

pathogenic micro-organisms together with the emergence of antibiotic-resistant bacteria 

have contributed to the concept of probiotic. Probiotic bacteria are known for their 

protective role in the host against colonisation of non-indigenous micro-organisms and 

are increasingly included in human diets to re-establish the intestinal microflora balance 

and help maintain good health (Kalantzopoulos 1997).  

There is no agreement in the criteria for classifying a strain of bacterium as a probiotic, 

however, according to O’May and Macfarlance (2005); Ziemer and Gibson (1998) the 

probiotic micro-organisms must possess the following characteristics:  

• The bacterium must survive harsh conditions of the upper GIT (e.g. gastric acid 

in the stomach and bile in the small intestine) and then flourish in the intestine; 

• The bacterium must be able to compete with the normal microflora, including 

the same or closely related species, and potentially resistant to bacteriocins, 

acids, and other antimicrobials produced by residing microflora; 

• The organism, its fermentation products or cell components must not be toxic, 

pathogenic, mutagenic or carcinogenic; 

• The bacterium should be antagonistic towards carcinogenic and pathogenic 

micro-organisms and must be genetically stable; and
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• The bacterium must be easily reproducible and remain viable during processing 

and storage. 

Probiotics are usually bacterial members of the normal human intestinal flora. The 

predominantly selected probiotics are species of Lactobacillus (naturally found in the 

human small intestine) and Bifidobacterium (naturally found in the human large 

intestine) while probiotic yeasts i.e. Saccharomyces boulardii have limited uses in the 

food industry (Tamime et al. 2005) although it has been used since the 1950s for the 

prevention of various diarrhoea. Because of not typical of human microflora, propionic 

acid bacteria are also not of much interest. Mostly, these species are used to produce 

flavour and eyes in Swiss-type cheese (Champagne et al. 2005). Table 2.3 shows lists of 

micro-organisms used in dairy and pharmaceutical probiotic preparation. In views of 

technological aspects, lactobacilli may be a preferred choice to incorporate into dairy 

food products as they are facultative anaerobes and tolerate exposure to oxygen during 

processing, transport and storage, however, in aspects of biological activity, 

bifidobacteria produce more potent anti-microbial activities than lactobacilli (Rastall 

and Gibson 2004).

2.2.2.1 Genus Bifidobacterium

Bifidobacteria was first called Bacillus bifidus and were also assigned to several genera 

such as Tissieria, Nocardia, Lactobacillus, Actinomyces, Bacterium or 

Corynebacterium (Doleyres and Lacroix 2005). They are among the first micro-

organisms to colonise the intestine of a newborn infant and account for up to 95% of all 

culturable bacteria in the colons of breast-fed infants. Bifidobacteria constitute only 5-

10% of the total intestinal flora of children and adults. The numbers of bifidobacteria 
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decline with age and changes in eating habits, with the elderly demonstrating the lowest 

populations of bifidobacteria (Champagne et al. 2005). 

Table 2.3 Micro-organisms used as probiotics 

Genus Lactobacillus Genus Bifidobacterium Other LAB Non -lacticsa

L. acidophilus 

L. amylovorus  

L. casei 

L. cremoris 

L. crispatus  

L. fermemtum 

L. gallinarum
b
  

L. gasseri 

L. helveticus 

L. johnsonii  

L. lactis 

L. paracasei 

L. plantarum 

L. reuteri 

L. rhamnosus 

L. salivarius 

B. adolescentis  

B. bifidum 

B. breve 

B. infantis 

B. lactis
c
  

B. longum 

 

Enterococcus 

faecalis
b

Enterococcus 

faecium 

Sporolactobacillus 

inulinus
b 

Saccharomyces 

boulardii 

Propionibacterium

freudenreichii
b

Bacillus cereus
b

Escherichia coli
b

Source: Macfarlance and Cummings (1999); Holzapfel and Schillinger (2002); Tamine et al. (2005). 
a Mainly as pharmaceutical preparations. 
b Mainly applied for animals. 
c Reclassified as B. animalis. 

Bifidobacteria are classified as Gram positive, non-sporing, non-motile and catalase 

negative, obligate anaerobes and are polymorphic with shapes including short, curved 

rods, club shaped rods and bifurcated V- or Y-shaped rods (De Vries and Stouthamer 

1969). Although considered as obligate anaerobes, some bifidobacteria can tolerate 

oxygen while some species can tolerate oxygen in the presence of CO2, depending on 

the species and culture medium (Doleyres and Lacroix 2005). The optimum pH for their 
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growth is 6.5-7.0, with virtually no growth at pH values 4.5-5.0 and below or at pH 8.0-

8.5 and above. The optimum growth temperature is 36-38°C for bifidobacteria of 

human origin and 41-43°C for those of animal origin with virtually no growth below 

20°C and above 46°C, while B. bifidum dies at 60°C (Ballongue 1998). So far, 29 

different species of Bifidobacterium have been identified, 9 of which are from human 

sources e.g. oral caries, faeces and vagina and the remaining 20 species are from 

fermented milk, animal intestinal tracts, sewage, anaerobic digesters and honeybees 

(Champagne et al. 2005).  Bifidobacteria are found in the large intestine and to a lesser 

extent in the lower part of the small intestine. The main species of humans original are 

B. adolescentis and B. bifidum found in infants, and B. infantis, B. breve and B. longum

found in adults (Ballongue 1998). 

In the manufacture of fermented milk, B. bifidum is the species most commonly 

incorporated, followed by B. longum and B. breve. Bifidobacteria are heterofermenters 

producing both acetic and lactic acids at a mole ratio of 3:2 (Shah 1997). Small amounts 

of succinic acid and CO2 are also produced by some strains and during the degradation 

of gluconate (Doleyres and Lacroix 2005). Besides glucose, they can ferment galactose, 

lactose and fructose. Utilisation of CHOs and synthesis of water-soluble vitamins e.g. 

B6, B12, folic acid of probiotic bacteria appears to be strain- dependent (Ballongue 

1998). It is evident that B. adolescentis can utilise a wide range of CHOs (up to 20), 

followed by B. breve, B. infantis and B. longum whereas B. bifidum can ferment only 

five CHOs (Tamime et al. 1995). Bifidobacteria grow slowly in milk due to lack of 

proteolytic activity and suffering from the presence of oxygen, hence adding nitrogen 

sources e.g. casein hydrolysate (Klaver et al. 1993) and cysteine (Shah 1997) or 

sometimes co-culturing with the yoghurt cultures (L. delbrueckii subsp. bulgaricus and 

S. thermophilus) and/or other proteolytic lactobacilli species such as L. acidophilus are 
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necessary to enhance the fermentation process (Tamime et al. 2005). A large number of 

bifidobacteria species are also able to use complex CHOs for growing e.g. D-

galactosamine, D-glucosamine, amylose and amylopectin (Shah 2006), as well as 

carbonate or bicarbonate, but not fatty acids and organic acids (Shah 1997). 

2.2.2.2 Genus Lactobacillus

Lactobacilli are Gram positive, non-spore forming, non-flagellated rods or coccobacilli, 

and are either micro-aerophilic or anaerobic and strictly fermentative (Hammes and 

Vogel 1995). They are lacking catalase enzyme, but pseudo-catalase is found in rare 

cases. Lactobacilli are found in dairy products e.g. cheese and yoghurt, fermented meat, 

sour dough, fermented vegetables, silage, wine (Champagne et al. 2005), and in a 

various habitats such as the vagina, intestinal and respiratory tracts of humans and 

animals, on plants, in sewage, and in spoiled food (Suskovic et al. 2001). Lactobacilli 

have complex nutritional requirements e.g. for CHOs, amino acids, peptides, fatty acid 

esters, salts, nucleic acid derivatives and vitamins. They are traditionally defined by 

formation of lactic acid as a sole or main end-product from CHO metabolism. 

Lactobacilli can either be homofermentors which predominantly convert almost 

exclusively glucose to lactic acid (> 85%) by the Embden-Meyerhof-Parnas (EMP) 

pathway or heterofermentors producing lactic acid and additional products i.e. CO2, 

ethanol and/or acetic acid. While currently at least 56 species of lactobacilli have been 

described (Shah 2006), the heterofermentative lactobacilli of human use include L.

reuteri and L. fermentum, whereas homofermentative lactobacilli are divided into three 

groups: (i) the L. acidophilus groups, mainly with strains of L. acidophilus, L. gasseri, 

L. crispatus, L. amylovorus and L. johnsonii; (ii) the L. salivarius; and (iii) the L. casei

groups, mainly with strains of L. paracasei, L. zeae and L. rhamnosus (Champagne et al. 

2005; Holzapfel and Schillinger 2002). 
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Strain of L. acidophilus is one of the most prominent strains with considerable industrial 

and medical interest. The possible health benefits relevant to L. acidophilus are the 

reduction of blood cholesterol and the protection against vaginal Candida infections 

(Kalantzopoulos 1997). It is described as obligatory homofermentative lactobacilli and 

is ca. 0.6 to 0.9 µm in width and 1.5 to 6.0 µm in length with rounded ends (Hammes 

and Vogel 1995). Its cells may appear singularly or in pairs or in short-chains. Most 

strains of L. acidophilus have moderate lactase activity and can ferment cellobiose, 

glucose, fructose, galactose, maltose, mannose, salicin, trehalose and aesculine but not 

gluconate and pentoses due to lacking of phosphoketolase. Strain of L. acidophilus can 

tolerate acid ranging from 0.3 to 1.9% titratable acidity and temperatures as high as 

45°C, but the optimum conditions are pH of 5.5-6.0 and temperature of 35-40°C (Shah 

2006).  It is resistant to bile and gastric acids and survives the gastrointestinal transit. 

However, many L. acidophilus strains do not grow well in milk and survive poorly in 

fermented products.  

2.2.3 Health-effects of probiotics 

The scientific evidence obtained through various studies on Lactobacillus and 

Bifidobacterium spp. has strengthened the positive effects of these micro-organisms on 

human health. Such examples are presented in Table 2.4. 

It is noted that no strain provides all the proposed health benefits and strains of the same 

species often exhibit distinct effects (Table 2.4), therefore, the health properties of each 

strain need to be investigated independently (Doleyres and Lacroix 2005). Strain of           

L. rhamnosus GG (Valio) is the most extensively studied probiotic in human clinical 

trials (Fonden et al. 2003), particularly involving in the management of rotavirus 

diarrhoea, and antibiotic-associated diarrhoea (Clostridium difficile). Strains of               
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L. acidophilus NCFB 1748, B. lactis Bb 12, L. plantarum DSM9843 (299V), L. reuteri

(BioGaia Biologics), L. johnsonii La-1 and L. casei Shirota (Yakault) are also well 

established for the clinical effects (Shah 2006; Fonden et al. 2003). 

Table 2.4 Currently available probiotics and their reported effects 

 

Strains Reported effects in clinical studies 

L. acidophilus NCFM Treatment of lactose intolerance; production of 
bacteriocin; lowering faecal enzyme activities 

L. acidophilus NCFB 1748 Prevention of radiotherapy-related diarrhoea; lowering 
faecal enzyme activities; decreasing faecal 
mutagenicity; improvement of constipation 

L. casei Shirota Prevention of intestinal disturbance; balancing 
intestinal flora; inhibition of superficial bladder cancer; 
lowering faecal enzyme activities 

L. reuteri Colonising the intestinal tract in animal studies; 
shortening of duration of rotavirus diarrhoea 

L. rhamnosus GG Antagonistic against anticarcinogenic bacteria; 
prevention and treatment of rotavirus diarrhoea; 
prevention and treatment of relapsing C. difficile

diarrhoea; prevention of acute diarrhoea; alleviation of 
Crohn’s disease 

L. johnsonii La-1 Balances intestinal flora; immune enhancement; 
adjuvant in Helicobacter pylori treatment 

L. gasseri (ADH) Faecal enzyme reduction 

B. lactis Bb12 Balancing microflora; shortening of duration of 
rotavirus  

B. bifidum Treatment of rotavirus diarrhoea; balancing intestinal 
flora 

Saccharamyces  boulardii Prevention of antibiotic associated diarrhoea; treatment 
of C. difficile diarrhoea 

Enterococcus faecium Gaio Reduction in cholesterol 

Source: Lee and Salminen (1995); Shah (2006); Salminen et al. (1998) 
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The mechanism of probiotic action is still not fully known, but three main mechanisms 

of action have been developed as summarised in Figure 2.6.  

Suppression of endogenous 
pathogens e.g. antibiotic-

associated diarrhoea 

Control of 
Irritable Bowel 

Syndrome 

Control of 
Inflammatory 

Bowel Diseases 

Alleviate food 
allergy symptoms 

in infants 

  
Balanced immune 

    response 
Strengthened 

innate immunity Colonisation resistance 

  
Normalised intestinal 

microbiota composition Immunomodulation 
  

Suppression of exogenous 
pathogens e.g. travellers’ diarrhoea 

 Probiotics 
 Lower serum 

cholesterol 

Bile salt deconjugation 
& secretion 

Supply SCFAs & 
vitamins (e.g. folate) to 
the colonic epithelium 

Metabolic effects 
  

Lower level of toxigenic 
/mutagenic reactions in gut 

Lactose hydrolysis 

   
Reduction in risk 

factors for colon cancer 
Improved lactose 

tolerance 

Figure 2.6 Proposed mechanisms of probiotic effects on human heath benefits  
 Source:  Saarela et al. (2002) 

2.2.4 Applications of probiotics in functional foods 

Probiotics are widely used in dairy products, particularly yoghurts where the 

fermentation is often carried out with strains of Lactobacillus spp., primarily                     

L. acidophilus, L. johnsonii, L. casei/paracasei, and Bifidobacterium spp. Probiotic 

yoghurts may be produced with probiotic LAB only or with the assistance of a supporter 

culture (Fonden et al. 2003). In Germany, the mixture of L. acidophilus and B. bifidum

were introduced during the late 1960s for producing mildly acidified yoghurts, later 

known as “AB yoghurt” due to their expected adaptation to the intestine and the sensory 

benefits. Later the trend has been to incorporate L. casei in addition to L. acidophilus

and bifidobacteria as these strains are believed to act synergistically on each other.  
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Typical examples of other probiotic products available in the market are probiotic 

drinks including drinking yoghurts, fruit juices, fermented soy products, sour cream, 

buttermilk, ice-cream and frozen desserts, spread, cheeses, and milk powders (Lourens-

Hattingh and Viljoen 2001). Currently, probiotic milk drinks are manufactured in 

various ways. The bacteria may be added without fermentation, so-called sweet milk or 

the milk is cultured with probiotic bacteria such as Yakault (Tamime et al. 2005). 

Fermented milks containing B. longum or B. breve have obtained “foods for specific 

health uses” (FOSHU) approval in Japan (Champagne et al. 2005). In recent times, 

probiotics have also been marketed as dietary supplements consisting of freeze-dried 

bacteria, mainly L. acidophilus in tablet, capsule or powder form (Hamilton-Miller 

2005). Some of the commercial companies producing such dietary supplements include 

Blackmores Ltd. (Balgowlah, NSW, Australia), Probiotics International Ltd. (Stoke-

sub-Hamdon, Somerset, UK) and Natren Inc. (Westlake Village, CA, USA). 

Industrial interest in developing probiotic foods is driven by the market potential for 

foods that target health and well-beings. To date over 100 bifidus- and acidophilus-

containing products are available worldwide (Tamime et al. 2005). In Japan, probiotic-

containing foods have been launched since the 1920s and more than 53 different types 

of milk products are estimated to be on the market (Shah 2006). Using probiotic is 

largely restricted to the manufacturing of yoghurt in Europe and acidophilus milk in the 

USA. It was estimated that in 2000 Europeans spent $899 million on probiotic yoghurts 

and milks and on average the market share of probiotic yoghurts was ca. 10% of the 

total yoghurts (Stanton et al. 2001). In 2007 the Australian market for yoghurt and dairy 

desserts accounted for 17% of dairy category sales value (Dairy Australia 2007) with 

probiotic yoghurt a leader (Anon 2003), growing up by 12% (Anon 2007). 
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2.3 Synbiotic foods  

Synbiotic is defined as “A mixture of probiotics and prebiotics that beneficially affects 

the host by improving the survival and implantation of live microbial dietary 

supplements in the GIT, by selectively stimulating the growth and/or activating the 

metabolism of one or a limited number of health-promoting bacteria, and thus 

improving host welfare” (Gibson and Roberfroid 1995). The synbiotic concept is a 

promising trend in the functional food sector as the combination of probiotics and 

prebiotics may confer superior benefits to using individual ingredients. It is expected 

that adding prebiotic would benefit the survival of bifidobacteria during the shelf life of 

the dairy products (Lourens-Hattingh and Viljoen 2001). 

The effect of synbiotics on faecal microflora of experimental animals is demonstrated 

by increasing the total anaerobes, aerobes, lactobacilli, and bifidobacteria counts and 

decreasing in Clostridia, Enterobacteriaceae and Escherichia coli counts (Suskovic et al. 

2001). The synbiotic also showed the potential over either a probiotic or a prebiotic 

alone for reducing the total number of aberrant crypt foci in the colon of rats 

(Roberfroid 1998). In humans, Bouhnik et al. (1996) reported an overall increase in 

faecal bifidobacterial numbers in healthy volunteers after the consumption of synbiotic 

mix of inulin and Bifidobacterium spp. Other human feeding studies have focused on 

the synergistic effects of prebiotics and probiotics on human health. Kiebling et al. 

(2002) observed the significant decrease in LDL/HDL cholesterol ratios after long-term 

consumption of synbiotic yoghurt (L. acidophilus and B. longum plus inulin), similar to 

the previous observation of Schaafsma et al. (1998).  

Synbiotic products available in the EU markets are currently probiotic yoghurts and 

dairy drink. These products often combine inulin-type fructans with bifidobacteria, and 
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lactitol or lactulose in conjunction with lactobacilli. In Australia, while synbiotic 

products appear on supermarket shelves, they are not being positioned as such due to 

low levels of consumer awareness and understanding of synbiotics (Anon 2003). The 

future of synbiotic foods depends on not only their effectiveness on human health and 

safety but also the organoleptic characteristics of the products and communication to 

consumers. 

2.4 Summary of the literature review 

It is clear that the pre-, pro- and synbiotic approaches are promising tools for the 

development of functional foods. The implantation of live bacteria into the human or the 

use of dietary CHOs to selectively increase certain resident bacterial genera has led to 

an increase in barrier function and reduction in risk of intestinal infections. Relevant 

mechanisms of their effects and human data are accumulating. With prebiotic concept, 

inulin-type fructans and lactulose are the leading sources amongst food ingredients that 

meet the needs of the food industry today. Unquestionably, inulin and OF have many 

interesting nutritional and functional properties. The use of lactulose is clearly for 

medical reasons, but it also finds the way in food formulation.  

On the basis of the literature reviewed above, it appears that the large number of 

research has focused on the production and bifidogenic effects of chicory root inulin 

and less in JAI. Equally clear is that although a wide range of catalysts has been 

employed for lactose isomerisation into lactulose, the potential of carbonate-based 

catalysts is little known. On this basis, the current project involves the development of 

process for inulin extraction from JA and lactose isomerisation from dairy industry 

wastes and the task for assessment of the viability of commercial probiotic cultures in 

the presence of these prebiotic compounds. 
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Chapter 3 

Materials and methods 

The purpose of this chapter is to describe the starting materials, chemicals, reagents, 

equipment and methods of physico-chemical and microbiological analyses used in this 

study. 

3.1 Materials 

3.1.1 Jerusalem artichoke (JA) 

For the extraction of Jerusalem artichoke inulin (JAI), JA tubers were obtained from 

local markets in Melbourne, Victoria, Australia during the harvest seasons (June to 

August) from 2005 to 2007. The tubers were cleaned in cold water to remove soil then 

soaked in 100 ppm sodium hypochlorite solution at 15°C for 30 min to reduce microbial 

and fungal load, then, rinsed in cold water and drained overnight at room temperature 

(RT) before storing at 4°C. 

3.1.2 Milk concentration permeate (MCP) and lactose solution 

The MCP used for lactose isomerisation was collected from the UF plant of a local 

dairy processor in Victoria, Australia and kept in an ice box during transportation, 

followed by freezing upon arrival to the University’s pilot plant. To obtain MCP, 

pasteurised skim milk was passed through a 30,000 kDa MWCO polyethersulfone spiral 

wound membrane (Synder MK-4333, Synder Filtration, Vacaville, CA, USA) at 45°C 

and 120 kPa. The collected MCP contained 5% (w/v) solid-non-fat (SNF) including ca. 

4% lactose, ca. 0.5% protein and 0.5% ash. It is not uncommon to have some proteins 

contaminating the MCP especially at the start of the process, which was the case with 

MCP used in this project. When needed, the frozen MCP was thawed and filtered 
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through Whatman No.1 filter paper, and the resulting turbid green-yellowish liquid was 

used for isomerisation trials with or without de-proteination pre-treatment.  

Control Lactose Solution: A 4% (w/v) solution of α-lactose (95% pure, Table 3.1) was 

prepared in distilled water with pH adjusted to 6.7 using 0.1 M NaOH, filtered and used 

as reference (control) solution. 

3.1.3 Carbonate-based catalysts: egg shell powder (ESP) and oyster shell 

powder (OSP) 

Two types of catalysts for lactose isomerisation were prepared in the laboratory as 

follows: raw chicken egg shells were prepared by removing the shell membrane and 

washing off the residual albumen under tap water following the procedure of Montilla et al. 

(2005). The cleaned egg shells were then dried overnight in an oven at 102°C, ground 

after cooling the following day in a micro hammer mill at 600 rpm and sieved through 

a 120 mesh screen (Table 3.2). The ESP thus obtained was a cream-coloured powder 

with an average particle size of 117 µm. For preparing OSP, oyster shells obtained from 

seafood restaurants in Melbourne, Victoria, Australia were cleaned, washed and dried 

overnight at 102°C. The dried shells were broken into smaller pieces using a mortar, 

followed by grinding and sieving in the same way as the ESP, resulting in an off-white 

coloured fine powder. The powders were stored in glass vials and placed in a desiccator 

at RT until further use. 

3.1.4 Reconstituted milks and starter cultures 

Whole milk powder (WMP, 26% milk fat, 26% protein) and low-heat skim milk powder 

(LHSMP, 0.9% milk fat, 34% protein) supplied by Bonlac Foods Limited (Melbourne, VIC, 
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Australia) were used for reconstituted milk preparation and for yoghurt making at 

different concentration levels (12, 13, 14, 15 and 16%). 

Freeze-dried starter cultures of L. acidophilus LA-5, L. casei LC-01, B. bifidum BB-12 

and YC-380 [Yoflex®, a 50:50 mixture of S. thermophilus (ST) and L. delbrueckii 

subsp. bulgaricus (LB)] were obtained from Chr. Hansen Pty. Ltd. (49 Barry St, 

Bayswater, VIC, Australia) and were kept at −22°C until required for yoghurt 

preparation as direct vat set (DVS). 

3.1.5 Chemicals and reagents  

The commercial preparations of non-digestible oligosaccharides used as reference 

prebiotic compounds in the current study included lactulose (95% purity, Sigma,                   

St Louis, MO, USA), oligofructose (Raftilose® P95 with an average DP of 4), medium-

chain inulin (Raftiline® GR with an average DP of 12), and long-chain inulin 

(Raftiline® HP with an average DP of 23). The three later compounds were extracted 

from chicory roots and supplied by Mandurah Australia Pty. Ltd. (Dandenong, VIC, 

Australia). 

Other chemicals including growth media and supplements used in the preparation of JAI 

and lactulose-enriched MCP, and analytical procedures were of the analytical-reagent 

grade or unless otherwise stated. Mono- and disaccharides having ≥ 95% purity were 

used in this study as chemical standards for analytical purposes and as carbon sources 

for micro-organisms. Tap water was used for washing and cleaning the JA tubers and 

the equipment. Distilled water was used for reconstitution of the chemicals and culture 

ingredients, and was filtered through a Milli-Q-ultrapure water purification system 

(Millipore Australia Pty. Ltd., North Ryde, NSW, Australia) before using for HPLC 
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analysis. The list of all chemicals used and the respective suppliers are presented in 

Table 3.1. 

Table 3.1 List of chemicals used in this study and their suppliers

 

Chemicals  Suppliers

Sucrose, Zinc sulphate, Potassium ferrocyanide, 
Calcium chloride dihydrate, Sodium 
metabisulphite, Sodium acetate, Activated 
carbon powder, Phenolphthalein, Dipotassium 
phosphate 

 Ajax Chemicals International Pty. 
Ltd., Level 24, 270 Pitt St, 
Sydney, NSW, Australia  

Lactose, Calcium carbonate, Hydrochloric acid, 
Sodium hypochlorite, Tri-ammonium citrate, 
Magnesium sulphate, Sulphuric acid, Glycerol, 
Hydrogen peroxide, Diethyl ether, Potassium 
dihydrogenphosphate, Ethanol absolute, Tri-
sodium citrate dihydrate 

 BDH Chemicals, Australia Pty. 
Ltd., 207 Colchester Rd, Kilsyth, 
VIC, Australia 

Anhydrous D-(+) glucose  Fluka Chemie Gmbh, Gruenwalder  
Weg 30, Deisenhofen, Germany 

Acetonitrile, Glacial acetic acid   Selby-Biolab, 2 Clayton Rd, 
Clayton, VIC, Australia 

Fructan Assay kit (Sucrase/β-amylase/ 
pullulanase/maltase, Fructanase, Fructan control 
powder, D-fructose standard solution) 

 Megazyme, Deltagen Australia 
Pty. Ltd., 31 Wadhurst Drive, 
Boronia, VIC, Australia 

Manganese sulphate, Bromocresol green, Sodium 
hydroxide 

 Merk KGaA, Frankfurter St 250, 
Darmstadt, Germany 

Peptone water, M17 agar, MRS agar, MRS broth, 
Lab Lemco Powder, Buffered peptone water, 
Casein hydrolysate (acid), Bacteriological agar, 
Yeast extract, Bacteriological peptone 

Oxoid Australia Pty. Ltd.,  
20 Dalgliesh St, Thebarton, 
Adelaide, SA, Australia 

Lactulose, α-lactose, D-fructose,  D-ribose, 
Maleic acid, Phenol, Sodium borohydride, para-
hydroxy benzoic acid hydrazide, Cysteine 
hydrochloride, Calcium hydroxide, Phosphoric 
acid, Calcium hydroxide, Tween 80 

 Sigma Chemical Co., 6050 
Spruce St, St Louis, MO, USA 

Lactic acid  Purac bioquimica, Gran Vial 19-
25, Montmelo, Barcelona, Spain 
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3.2 Apparatus and auxiliary equipment

The items of process equipment and analytical instruments used in this study, along 

with the details of manufacturers and model numbers are presented in Tables 3.2 and 

3.3, respectively. The HPLC system components and ancillary items used are described 

in Table 3.4.  

Table 3.2 List and suppliers of the processing equipment used

Equipment Manufacturer/supplier  Model No 

Stephan Kettle  A. Stephan U. Sohne GmbH & Co., 
Stephanplatz 2, Hameln, Germany 

 UMM/SK 
24E 

Climbing film evaporator James A Jobling & Co. Ltd., Wear 
Glass Works, Sunderland, England 

 CEF 1 

Laboratory spray drier  N/S Niro atomiser, Gladsaxevej, 
Soborg 305, Denmark 

 - 

Rotary evaporator BÜCHI Labortechnik AG, 
Meierseggstrasse 40, Postfach, Flawil 
1, Switzerland 

 R-114 

Hot-plate stirrer Industrial equipment & control Pty. 
Ltd., 61-65 McClure St, Thornbury, 
Melbourne, Australia 

 CH 2093-001 

Micro hammer mill  Glen Mills Inc., 220 Delawanna Ave, 
Clifton, New Jersey, USA 

 - 

Sieve (120 µm) N. Greening & Sons Ltd., Hayes, 
Middx, England 

 BS 410/1943 

Portable microprocessor 
thermometer 

Hanna instruments Pty. Ltd., 18 
Fiveways Boulevarde, Keysborough, 
VIC, Australia  

 HI 93503 

Erma Abbe Refractometer Erma Inc., Yushima 2-31-6, Bunkyo-
ku, Tokyo, Japan 

 ER-98 

Water bath (thermostatically 
controlled) 

Watson Victor Ltd., 95-99 Epping Rd, 
North Ryde, NSW, Australia 

 BW6T 
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Table 3.3 List and suppliers of analytical instruments used in this study

Equipment Manufacturer/supplier  Model No 

Minolta Chroma Meter Minolta Camera Co. Ltd., 3-13, Azuchi-
machi 2-chome, Chuo-ku, Osaka, Japan  

 CR 121 

UV-VIS 
spectrophotometer

Shimadzu Scientific Instruments, Unit 102, 
45 Gilby Rd, Mount Waverly, VIC, Australia

 UV-1601

Rheometer  Haake Rheometer, Dieselstrasse 4, 
Karlsruhe, Germany 

 RS 50 

Texture Analyser  Stable Micro System Ltd., Vienna Court,
Lammas Rd, Godalming, UK 

 TA-XT2 

Bench-top pH-meter Orion Research Inc., 829 Main St, Boston, 
MA, USA 

 520A 

Hot air oven (102°C) H. B. Selby & Co. Pty. Ltd., 35 York St, 
Sydney, Australia 

 Cat No. 303 

Centrifuge Beckman Instruments, Inc., 2500 Harbour 
Boulevard Box,  Fullerton, CA, USA 

 GS-15R  

Analytical balance, 
Ohaus Adventurer™ Pro 

Ohaus Australia Pty. Ltd., 448 Boundary 
Rd, Derrimut, VIC, Australia  

 AR 2140 

Steam bath Conterm Scientific Ltd., 27 Cornish St, 
Petone, Wellington, New Zealand 

 330 

Muffle furnace Techtrader Pty. Ltd., Unit 1, 3 Lanceley 
Place, Artarmon, NSW, Australia 

 Cat No. 
102C 

Incubator Watson Victor Ltd., 95-99 Epping Rd, 
North Ryde, NSW, Australia 

 IA 24 S 

Stomacher  Seward Ltd., Southdownview Way 4a, 
Worthing, West Sussex, UK 

 400 

Autoclave A E Atherton & Sons Pty. Ltd., 364 
Darebin Rd, Thornbury, VIC, Australia 

 - 

Sterilise filter units, 
Millex- HA 

Millipore Corporation, 80 Ashby Rd, 
Bedford, MA, USA 

0.45 µm,  

Anaerobic jars with Gas-
pack System 

Oxoid Australia Pty. Ltd., 20 Dalgliesh St, 
Thebarton, Adelaide, Australia 

 2.5 L 

Colony counters Suntex Instruments Co. Ltd., Level 13, 31 
Kang Ning St, Hsi-Chih, Taipei, Taiwan 

 560 
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Table 3.4 Description of HPLC system components and ancillary items

Equipment Manufacturer  Model No 

Carbohydrate Analysis 
column, 3.9 × 300 mm 

Waters Associates Inc., 34 Maple St,
Milford, MA, USA 

 PN 84038 

Refractive Index Detector 
(RID) 

Waters Associates Inc., 34 Maple St,
Milford, MA, USA 

 R401 

Integrator Hewlett-Packard, Strasse 8, Waldbronn, 
Germany 

 3396A 

Pump  Waters Associates Inc., 34 Maple St,
Milford, MA, USA 

 M-6000A 

Injector, 20 µL Rheodyne, Inc., 600 Park Court, Rohnert 
Park, Cotati, Ca, USA 

 Z161 

Filter units, PTFE Philic PP Bonnet Equipment Pty. Ltd., P.O. Box 
2042 Taren Point, NSW, Australia 

0.45 µm 

3.3 Physico-chemical analysis of Jerusalem artichoke  

In all experiments, except otherwise stated triplicate sub-samples of each sample were 

tested at least in duplicate as described for the individual analysis procedure. In 

reporting the data, the results of individual samples are expressed as the mean ± 

standard deviation (SD). 

3.3.1 Determination of fructans content 

The enzymatic, spectrophotometric method described by McCleary and Blakeney 

(1999) was used for quantitative determination of fructans in JA tubers, JAI extract and 

concentrate. All samples were analysed using the Megazyme Fructan Assay kit (Table 

3.1). In summary, the method involved enzymatic hydrolysis of sucrose, starch and 

maltodextrins that may be present in the sample into D-fructose and D-glucose by the 

combined actions of sucrase, β-amylase, pullulanase and maltase. The resulting 

reducing sugars were then converted to sugar alcohols in the presence of alkaline 
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borohydride. The solution was neutralised and excess borohydride was removed using 

diluted acetic acid. In the next stage, fructanase was applied to hydrolyse inulin and/or 

OF into glucose and fructose which were then measured with para-hydroxybenzoic acid 

hydrazide (PAHBAH) reducing sugar method as follows:

• Preparation of reagents

Sodium hydroxide (50 mM, 1 M, 2 M): To prepare 50 mM, 2 g of NaOH was dissolved 

in 900 mL distilled water and the volume was adjusted to 1 L, while for 1 and 2 M, 40 

and 80 g of NaOH were used, respectively. 

Acetic acid (0.2 M): A 11.6 mL of glacial acetic acid was made up to 1 L with distilled 

water. 

Alkaline borohydrate: A 50 mg of sodium borohydride was dissolved in 5 mL of 50 

mM NaOH. This solution was stable for 4-5 h at RT. 

• Preparation of buffer solutions 

Buffer I (Sodium maleate buffer, 0.1 M, pH 6.5): A 11.6 g of maleic acid was dissolved 

in 900 mL distilled water and adjusted pH to 6.5 with 2 M NaOH. The solution was 

made up to 1 L and stored at 4°C. 

Buffer II (Sodium acetate buffer, 0.1 M, pH 4.5): A 5.8 mL of glacial acetic acid was 

diluted in 900 mL distilled water and the pH was adjusted to 4.5 with 1 M NaOH. The 

solution was made up to 1 L and stored at 4°C. 

• Preparation of enzymes 

Sucrase (100 U) plus ββββ-amylase (500 U), pullulanase (100 U) and maltase (1,000 U): 

A freeze dried powder of the entire enzyme contents was dissolved in 22 mL of Buffer I 

and stored at −20°C. 
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Fructanase (10,000 U): A freeze dried powder of fructanase was dissolved in 22 mL of 

Buffer II and stored at −20°C. 

• Preparation of reducing sugar assay reagent 

Stock solution A: A 10 g of PAHBAH was dissolved in 60 mL distilled water and 

mixed well with a magnetic stirrer. The slurry was added with 10 mL conc. HCl and 

made up to 200 mL with distilled water. This solution was stable for 2 years at RT. 

Stock solution B: A 24.9 g of tri-sodium citrate dihydrate was dissolved in 500 mL 

distilled water, added with 40 g NaOH with thorough mixing and then diluted to 2 L 

with distilled water. This solution was stable for 2 years at RT. 

PAHBAH working solution: Before use, 20 mL of stock solution A were made up to 

200 mL with the stock solution B, mixed thoroughly and stored on ice and used within 4 h. 

• Preparation of the sample solution 

One gram of the sample was accurately weighted into a dry beaker and added with 80 

mL hot distilled water (80°C). The beaker was heated on a hot-plate stirrer at ca. 80°C 

for 15 min. The solution was cooled to RT and diluted to 100 mL with distilled water 

before filtration through a Whatman No. 1 filter paper. The resultant filtrate was used as 

the sample solution. 

• Preparation of controls and standard solutions 

With each set of determinations, reagent blanks, D-fructose standards and fructan 

controls were included and analysed at the same time as the samples.  

Reagent blank: Duplicate reagent blanks were prepared by mixing 0.3 mL of Buffer II 

with 5 mL of PAHBAH working solution. 

D-fructose standard: To 0.2 mL of D-fructose standard solution (1.5 mg mL-1) (Table 

3.1) 0.9 mL of Buffer II was added. Quadruplicate aliquots (0.2 mL) of this solution 
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(containing 54.5 µg of D-fructose) were transferred into test tubes, followed by adding 

0.1 mL of Buffer II and 5 mL PAHBAH working solution into each tube. 

Fructan control: Freeze-dried powder of fructan (Table 3.1) was used to prepare the 

fructan control solution following the same procedure as the sample.  

• Assay procedure 

A 0.2 mL aliquot of the sample solution and fructan control solution were individually 

dispensed into glass test tubes, added with 0.2 mL sucrase/amylase solution and 

subsequently incubated at 40°C for 30 min. A 0.2 mL of alkaline borohydride solution 

was added to the tube with vigorous stirring and incubation was continued for 30 min. 

The reaction was then stopped by the addition of 0.5 mL of 0.2 M acetic acid. The 

resulting aliquots (0.2 mL) were transferred into three separate glass test tubes. A 0.1 

mL of fructanase solution was added to two of these tubes (designated as samples) and 

0.2 mL of Buffer II was added to the third tube (designed as sample blank). All tubes 

were incubated at 40°C for 20 min and then mixed with 5 mL of PAHBAH working 

reagent.  

All tubes, containing sample solution and fructan control sample, along with reagent 

blanks and D-fructose standards were heated in a boiling water bath for exactly 6 min 

and immediately cooled in cold water (20°C) for ca. 5 min (see flow diagram 3.1).  
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JA and/or  
Fructan control (1 g)  

 Buffer II   
(0.3 mL)   

 D-Fructose std soln   

(0.2 mL) 

� Hot water 
   (80°C, 80 mL) 

� Buffer II  
    (0.9 mL) 

Heat (80°C/15 min) 
  

 Transfer into 
duplicate test tubes

Transfer quadruplicate aliquots 
(0.2 mL)  into test tubes 

Cool to RT 
  

     
� Buffer II    
     (0.1 mL)

Make up to 100 mL& filter         
          

Transfer test solution       
(0.2 mL) into test tube 

        

� Sucrase/amylase soln  
(0.2 mL)  

   

Incubate 40°C/30 min         

� Sodium borohydride  
(0.2 mL) 

  

Incubate 40°C/30 min         

� 0.2 M Acetic acid  
     (0.5 mL) 

  

            
Transfer duplicate 
aliquots (0.2 mL)  

into test tubes 

 Transfer aliquot  
(0.2 mL) into 

test tube 

    

� Fructanase soln

    (0.1 mL) 
� Buffer II  
    (0.1 mL) 

Incubate 
40°C/20 min 

 Incubate 
40°C/20 min 

    

          

          

   
� PAHBAH reagent (5 mL) 

  Incubate 100°C/6 min 
     

 Cool to 20°C/5 min 

      
  Measure absorbance at 410 nm  

Figure 3.1 Flow diagram for fructans analysis 
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The absorbance of all solutions was rapidly measured at 410 nm against the reagent 

blank. The average absorbance for each sample was used in the calculation of fructans 

content using the following equations: 

Where ∆A = Sample absorbance − sample blank absorbance 

 V = Volume of extract used (100 mL) 

F = Factor to convert absorbance values to µg of D-fructose 

 = (54.5 µg of D-fructose)/(absorbance for 54.5 µg of D-fructose) 

 W = Weight of sample extracted (mg) 

 2.48 = Conversion factor suggested by the manufacture 

3.3.2 Determination of total carbohydrates (CHOs) 

Total CHO present in JA tubers, JAI extract and concentrate was determined 

colourimetrically using the phenol-sulphuric acid method (Southgate 1991). This 

method is based on the measurement of absorbance at 490 nm of a coloured aromatic 

complex formed between phenol and CHO. The assay was set up by preparing a series 

of standard solutions, sample tubes and blanks as follows: 

Standard tubes: Standard glucose solutions were prepared in the range 10-100 µg mL-1. 

For this purpose, 1 mg glucose was dissolved in 10 mL distilled water and used as stock 

solution. Aliquots of the stock solution were accurately pipetted into 10 test tubes in 0.1 

mL increments ranging from 0.1 to 1.0 mL. The liquid volume in each tube was then 

adjusted to 1 mL with distilled water followed by the addition of 1 mL of 5% phenol 

and 5 mL of 96% sulphuric acid.  

∆A × V × F × 2.48
% Fructans content  = 

W 
L
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Sample tubes: A sufficient amount of each CHO sample was weighed into a 100 mL 

volumetric flask and diluted with distilled water to a final assay solution concentration 

of ca. 10-70 µg mL-1. Then 1 mL of the diluted sample solution, 1 mL of phenol 

solution and 5 mL of sulphuric acid were transferred to duplicate test tubes giving a final 

volume of 7 mL.  

Blanks: A blank solution was prepared by substituting sample solution for 1 mL of 

distilled water. 

Sulphuric acid converts all non-reducing sugars to reducing sugars, therefore it was 

important to mix the solution thoroughly before incubating all test tubes in water bath at 

30°C for 20 min. The absorbance of yellow-orange colour thus developed was measured 

at 490 nm using a spectrophotometer (Table 3.3), and the amount of CHO present was 

determined from the calibration curve.  

The standard curve was prepared using Microsoft Excel 2000 software where the 

absorbance values of standard solutions were plotted against their concentrations. A 

linear regression equation of the type [y = mx + c] along with its R2 value was generated 

and recorded. The analyses were repeated when the R
2 value was < 0.98. The mean 

absorbance value for each sample tested was then used in the calculation of CHO 

concentrations of the sample solutions using the linear equations. The results were 

calculated using following equation: 

C × D  
% CHO content  =  

Sw × (106) 
× 100 

C = Concentration of CHO calculated from the standard curve (µg mL-1) 

D = Dilution factor 

Sw = Amount of sample originally weighed (g or mL) 

Where

106 = Conversion factor so that result is expressed in units of g of CHO 



Chapter 3 

61

3.3.3 Determination of reducing sugars 

The amount of reducing sugars present in JA tubers, JAI extract and concentrate was 

determined spectrophotometrically at 440 nm using PAHBAH reagent with modified 

method of Southgate (1991). Samples were diluted with distilled water to give a 

working solution containing ca. 10-70 µg mL-1 sugar, and 1 mL aliquots of this solution 

were used for the assay. In a series of test tubes, 1 mL of blank and/or standard 

solutions was added. The blanks were prepared by substituting sample solution with 

distilled water while the glucose stock solution (0.1 mg mL-1) was diluted into 10 

different standard solutions in the range 10-100 µg mL-1 (see 3.3.2). All tubes were 

mixed with 5 mL of PAHBAH working reagent (see 3.3.1) and subsequently boiled for 

exactly 6 min. After cooling the tubes in cold water at 20°C for ca. 5 min, the 

absorbance of the coloured hydrazide product developed in alkaline solution was 

measured against the reagent blank and the amount of reducing sugar was determined 

by interpolating from standard curve.

3.3.4 Determination of soluble solids content 

An Abbe refractometer (Table 3.2) was used for routine checking of the soluble solids 

content of JA tubers juice, the JAI extract during hot water extraction and clarification, 

as well as the JAI concentrate during syrup preparation. To prepare JA tubers juice, 

representative samples of the tubers were cut into small pieces and duplicate 10 g 

portions were separately pulped in a mortar. The resulting pulps were then pressed 

separately through muslin cloth and a few drops of each transparent juice were applied 

on the main prism of refractometer, and the soluble solids content was read on the lower 

scale and expressed as °Brix. 
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3.3.5 Determination of total solids  

Total solids of test samples, including JA tubers, JAI extract, concentrate and powder 

were determined gravimetrically following AOAC (2000a) method 990.20. All analyses 

were carried out at least in duplicate on triplicate samples. Approximately 3-5 g of each 

sample were weighed into empty aluminium moisture dishes with lids which were 

previously dried at 102 ± 2°C for 1 h, cooled in a desiccator containing silica gel 

desiccant for 30 min and weighed. The uncovered dishes containing liquid samples 

were pre-dried on a steam bath for 30 min before further drying in a hot air oven at 

102°C followed by cooling and weighing. The oven drying was repeated until a 

constant weight was attained. The net weight of residue was used to calculate total 

solids of the samples using the following equation:

W3 − W1% Total solids  =  
W2 − W1

× 100 

W1 = Mass of empty moisture dish (g) 

W2 = Mass of moisture dish plus sample before drying (g)

Where

W3 = Constant mass of moisture dish plus sample after drying (g) 

3.3.6 Determination of ash content 

Ash content of all samples was determined gravimetrically using AOAC method 945.46

(AOAC 2000b). Five grams of triplicate samples were placed into pre-ignited, pre-

weighed crucibles. Crucibles were evaporated to dryness on a steam bath, charred over 

a low flame until smoke emission was ceased, and further heated in a muffle furnace at 

550°C for 4 h. After crucibles were removed from the furnace and cooled to RT, the 

residue was moisten with minimum distilled water and reheated in the furnace until a 

white ash free from carbon residues was obtained. The crucibles were transferred to a 

desiccator for 1 h before weighing. The ash content was calculated from the formula: 
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M3 − M1% Ash content  =  
M2 − M1

× 100 

Where M1 = Mass of empty crucible (g) 

 M2 = Mass of crucible plus test sample (g) 

 M3 = Constant mass of crucible plus ash (g) 

3.3.7 Colour measurement of JAIP 

Colour measurement of JAIP was performed in the tristimulus L∗, a∗, b∗ measurement 

mode using a portable Minolta Chroma Meter (Table3.3). Calibration was made using 

the standard white tile supplied by the manufacturer. The samples were placed into Petri 

dishes and five readings were taken on each sample by randomly moving the measuring 

head to different locations on the surface of the sample and three different colour 

parameters, L∗, a∗ and b∗ were recorded. The L∗ value measures the degree of whiteness 

to darkness and the higher the L
∗ value, the lighter the sample colour. The a

∗ value 

indicates the intensity of redness to greenness of the sample with positive values 

corresponding to red colour and negatives indication green colour. The b
∗ value 

indicates the intensity of yellowness (+) to blueness (−). For a∗ and b∗ readings, values 

closer to zero mean less intense colour while values away from zero indicate more 

intense chroma characteristics (Hutchings 1999).  

3.4 Physico-chemical analysis of MCP 

 

3.4.1 Determination of lactose and lactulose content 

High performance liquid chromatography (HPLC) method was used to determine the 

degree of isomerisation of lactose into lactulose, following the procedure of Zokaee et al. 

(2002b).  
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• Preparation of solutions 

Carrez I: K4Fe(CN)6.3H2O (7.2 g)  and Carrez II: ZnSO4.7H2O (14.4 g) were weighted 

accurately and made up to 100 mL with Milli-Q water in separate volumetric flasks. 

Mobile phase: The mobile phase chosen was a mixture of acetonitrile-Milli-Q water 

(80:20 v/v) which was prepared freshly on each analysis day. Before use in the HPLC 

analysis, the solution was degassed and filtered through a 0.45 µm filter.  

• Preparation of standard solution 

To prepare standard solutions, 500 mg of each of lactose and lactulose were accurately 

weighed into individual 100 mL volumetric flasks, dissolved with minimum Milli-Q 

water and made up to the mark with a mixture of acetonitrile and Milli-Q water (50:50 

v/v). 

• Preparation of sample solution  

A 5 mL aliquot of sample (MCP and/or lactose solution) was pipetted into a 25 mL 

volumetric flask and added with 500 µL each of Carrez I and Carrez II reagents to 

remove protein and fat. The solution was then made up to 25 mL with 50:50 v/v 

acetonitrile and Milli-Q water mix and rested for at least 30 min, followed by filtration 

through Whatman No.1 filter paper. The resultant filtrate was designated as sample 

solution. All measurements were carried out at least in duplicate within 24 h following 

the isomerisation process. 

• Assay procedure and calculation 

All standard solutions and prepared samples were filtered through 0.45 µm PTFE Philic 

PP filters before injection into the HPLC system (Table 3.4) via an injection valve fitted 

with a 20-µL injection loop. The separation was performed on a 3.9 × 300 mm 
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Carbohydrate Analysis column at ambient temperature with a flow rate of 0.8 mL min-1

and refractive index detection (RID). The total run time required for each injection was 

less than 20 min. Each sample solution was injected in duplicate. Qualitative HPLC 

analysis and identification were performed by direct comparison with external standard 

sugars. The HPLC operating conditions applied did not provide a complete baseline 

separation of lactose and lactulose, therefore, the amount of each sugar was estimated 

from peak heights, instead of peak areas following the formula: 

Hm × Cs × V 
% Sugar content  =  

Hs × Sw

Where Hm = Peak height of lactose or lactulose in sample test solution 

 Hs = Peak height of lactose or lactulose in standard solution  

 Sw = Amount of the sample originally applied (mL) 

 V = Total quantity of sample solution used (25 mL) 

 Cs = Concentration of lactose or lactulose in standard solution (g 100 mL-1)  

3.4.2 Determination of soluble solids content 

The soluble solids content of MCP during isomerisation and syrup preparation was 

determine using an Abbe refractometer (Table 3.2). 

3.4.3 Determination of pH 

The pH of MCP and lactose solution was determined using a bench-top pH-meter 

(Table 3.3) at 20°C which was previously calibrated with pH 7.0 and 4.0 standard 

buffers. All analyses were carried out in duplicate.  

3.4.4 Colour measurement of MCP and lactose solution 

For turbid liquid samples i.e. MCP the sample was poured into a clear cylindrical glass 

vial (15 mm × 45 mm) and placed in the light path of the portable Minolta Chroma 

Meter (Table 3.3) for colour reading and mean values of b
∗ of five readings are 
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reported. On the other hand, the colour of clear liquid samples i.e. de-proteinated MCP 

and lactose solution was estimated as the absorbance value measured at 420 nm 

following the method of Moreno et al. (2003). 

3.5 Physico-chemical analysis of cultured milk and set yoghurt 

3.5.1 Determination of titratable acidity  

The titratable acidity (TA) of cultured milks was determined in triplicate according the 

AOAC (2000c) titration method 947.05. A 10 g sample was placed in a 250-mL 

volumetric flask, mixed gently with 10 mL CO2-free water, mixed with 3-4 drops of 

0.5% phenolphthalein indicator and titrated with 0.1 M NaOH until the pink end point 

(pH 8.6) persisted for ca. 30 s. The amount of NaOH was used to calculate the % lactic 

acid using the following formula: 

mL of 0.1 M NaOH × 0.0009 × 100
% TA  =  

Initial weight of sample 

3.5.2 Determination of pH 

The pH of cultured milks was determined following the procedure in section 3.4.3. 

3.5.3 Determination of fat content 

The method used in fat analysis involved acid hydrolysis and solvent extraction as 

described by Pearson (1976).  About 5 g of yoghurts was weighed into an empty, dry, 

pre-weighed Mojonnier tube and mixed with 5 mL of distilled water. Ten millilitres of 

conc. HCl were added, the tube was stoppered and the content was mixed well, 

followed by immersing the tube in boiling water to achieve complete digestion of 

proteins. At this stage the mixture appeared  brown to violet in colour and the fat was 

visible on the surface. The Mojonnier tube was cooled in running water to RT,  added 

with 30 mL of diethyl ether, stoppered and shaked vigorously for 30 s and kept 
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quiescent for phase separation. The top ethereal layer was carefully decanted into a dry 

round-bottom collecting flask. The extraction procedure was repeated at least three 

times to ensure that all fat was completely extracted from the vessel. The pooled 

solvents were removed from the vessel using a rotary evaporator. The oil left in the 

flask was dried in an oven at 102 ± 2°C for 1 h, cooled in a desiccator. The dried oils 

were dissolved in a minimum amount of chloroform and collected in a pre-weighed 

flask. The chloroform washing was repeated twice and the resulting pooled chloroform 

was evaporated. The flask was dried in a 102 ± 2°C oven for 1 h, cooled in a desiccator 

and weighed to the nearest 0.1 mg. The drying, cooling and weighing processes were 

repeated until a constant weight was attained. With each set of sample determination, a 

blank test was performed concurrently on 10 mL of distilled water instead of prepared 

sample using the same digestion method. When the blank exceeds 1 mg, the reagents 

should be checked and replaced. 

Calculation of fat content of the test sample was followed according to: 

(M1 – M2) − (M3 – M4)% Fat content  =  
M0

× 100

Where M0 = Mass (g) or volume (mL) of sample taken for analysis 

 M1 = Constant mass of fat plus collecting flask of test sample (g) 

 M2 = Mass of empty collecting flask of sample (g) 

 M3 = Constant mass of fat plus collecting flask of blank (g) 

 M4 = Mass of empty collecting flask of blank (g) 

3.5.4 Determination of total solids 

Total solids of set yoghurts were determined gravimetrically following AOAC (2000a) 

method 990.20 as described in section 3.3.5. 
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3.5.5 Colour measurement of set yoghurt 

Colour measurement of yoghurt samples was examined using a portable Minolta 

Chroma Meter (Chuo-ku, Osaka, Japan) following the procedure in section 3.3.7 and 

reported as L∗, a∗ and b∗ values. 

3.5.6 Large deformation measurement 

Gel firmness of set yoghurts was determined using a TA-XT2 Texture Analyser (Stable 

Micro System Ltd., Godalming, UK) equipped with 5 kg load cell according to a 

method of Amatayakul et al. (2006a). A single compression test was performed with 

the Texture Expert Exceed software package (Stable Micro Systems 1995) using a 20 

mm diameter cylindrical probe (P20). Test conditions were automatic trigger 0.1 N, pre-

test and test speeds 1 mm s-1, post-test speed 10 mm s-1 and distance 15 mm. Gel 

firmness was determined as the maximum force (N) on compression force-time curve. 

Four separate determinations were performed on each batch at 10°C. 

3.5.7 Small deformation measurement 

Rheological properties of yoghurt samples were determined on day 1, 7 and 28 of 

storage, using Haake RheoStress rheometer (Table 3.3) fitted with a cone and plate 

sensor (35 mm diameter 2° angle and 0.105 mm gap setting). Samples were stirred 

gently 20 times with a spatula and allowed to equilibrate to RT (20°C) before placing a 

2 mL sample on the rheometer plate. For each sample, replicate measurements were 

taken independently and data processing was performed using a RheoWin Pro software 

package (Version 2.94, Thermo Haake, Karlsruhe, Germany). Rheological terms and 

corresponding parameters used in this study are summarised in Table 3.5. 
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Table 3.5 Summary of rheological terms and symbols

Terms  Symbols Definitions 

Stress (Pa) σ    The applied force per unit area  

Strain (dimensionless) γ The change in the size or shape of a body 
referred to its original size or shape due to the 
applied force 

Shear rate (s-1) γ& The velocity gradient in a flowing material 
under shear force  

Viscosity (Pa.s) η Ratio of σ to γ&  indicates the flow resistance of 

fluids 

Storage or elastic or in-

phase modulus (Pa) 

G′(ω) Energy stored per deformation cycle during 
oscillatory test 

Loss or viscous or out-
phase modulus (Pa) 

G″(ω) Energy dissipated per deformation cycle 
during oscillatory test 

Complex viscosity (Pa.s) η∗(ω) Viscoelastic flow  

Loss tangent 
(dimensionless) 

Tan δ Ratio of G″ to G′ indicates the viscoelastic 
character of the material (e.g. more solid-like 
or liquid-like)

Source: Bourne (2002); Tunick (2000) 
The SI units are presented in brackets. 

Thixotropy tests were initially applied to characterise the flow behaviour of yoghurt 

samples. The representative sample of yoghurt was exposed to a shear rate of 500 s-1 for 

60 s, followed by a 300 s equilibration as described by Purwandari et al. (2007). Shear 

stress was then recorded at increasing shear rates from 0 to 200 s-1 within 200 s (upward 

flow curve) followed by decreasing shear rates from 200 to 0 s-1 within 200 s 

(downward flow curve). Two types of plots were generated to demonstrate the flow 

behaviour of yoghurts i.e. flow curve and viscosity curve. To model flow behaviour, 

average data from the upward flow curve were fitted to Herschel-Bulkley (σ = σo + 

Kγ& n) model (Rohm 1993; Benezech and Maingonnat 1994), where σ = shear stress 
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(Pa), σo = yield stress (Pa), K = consistency index (Pa.sn), γ&  = shear rate (s-1) and n = 

flow behaviour index (dimensionless). Other rheological parameters considered were 

the area under the upward flow curve (Aup), the area difference under upward and 

downward flow curves (∆A or hysteresis loop area) (Hassan et al. 2003) and apparent 

viscosity (ηapp) evaluated as γ&  = 2 s-1. 

Dynamic oscillation tests were subsequently conducted following the flow behaviour 

assessment to characterise the viscoelastic properties of yoghurt. Stress sweeps were 

elevated from 0.1 to 15 Pa to determine the linear viscoelastic range (LVR) of the 

yoghurt samples at a constant frequency of 1 Hz (6.28 rad s-1). Frequency sweeps from 

0.05 to 10 Hz were then performed within LVR at a constant shear stress of 1 Pa to 

obtain the dynamic complex viscosity (η∗), the storage modulus (G′), the loss modulus 

(G″) and the loss tangent (tan δ) which represents the ratio of G″ to G′. When the 

material behaves more like a solid, the G′ dominates and consequently tan δ becomes < 

1.0. The slope of log-log plots of G′ and G″ vs. oscillation frequency (ω) was also 

determined according to Hassan et al. (2003) using the RheoWin Pro software package 

(Version 2.94, Haake).  

3.6 Microbiological analysis 

3.6.1 Media preparation 

3.6.1.1 Peptone water (For serial dilution) 

Diluent peptone water (0.1%) was prepared by dissolving 2 g of buffered peptone 

medium (Code CM0509) in 1 L of distilled water. The pH of solution was adjusted to 

7.0 ± 0.2, followed by autoclaving 90 mL and 9 mL portions at 121°C for 15 min. 
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3.6.1.2 de Man, Rogosa and Sharpe Agar (MRS agar) 

MRS agar was prepared as recommended by the manufacturer (Bridson 1995) by 

suspending 62 g dehydrated medium (Code CM0361) in 1 L of distilled water. The 

suspension was warmed in a microwave oven to dissolve the agar, followed by 

autoclaving at 121°C for 15 min.  

3.6.1.3 MRS-pH modified agar  

MRS broth was prepared by suspending 52 g dehydrated medium (Code CM0359) in 1 L 

of distilled water and adjusting the pH to 5.2 using 0.1 M HCl. Twelve grams of agar 

powder (Code LP0011) were then added to MRS broth. The suspension was warmed in 

a microwave oven to dissolve the agar, followed by autoclaving at 121°C for 15 min

(Ravula and Shah 1998).  

3.6.1.4 M17 agar  

The M17 agar was prepared as recommended by the manufacturer (Bridson 1995) by 

suspending 48.25 g dehydrated medium (Code CM0785) in 950 mL of distilled water. 

The suspension was autoclaved at 121°C for 15 min, cooled to 50°C before aseptically 

adding 50 mL of lactose solution (10%, w/v) which was sterilised by passing through 

Millipore HA (0.45 µm) membrane filters (Table 3.3).  

3.6.1.5 Lactobacillus casei agar (LC agar)  

This agar consists of 10 g bacteriological peptone (Code LP0037), 4 g Lab Lemco 

(Code LP0029), 1 g yeast extract (Code LP0021), 1 g casein hydrolysate (Code 

LP0041), 3 g sodium acetate, 1 g tri-ammonium citrate, 2 g KH2PO4, 0.2 g MgSO4, 1 g 

Tween 80 and 0.05 g MnSO4 (Table 3.1). To formulate media, all ingredients were 

weighted and dissolved in 1 L of distilled water. The pH of dissolved solution was 
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adjusted to 5.1 ± 0.1, followed by adding 6 mL of bromocresol green (0.1%) and 12 g of 

bacteriological agar (Code LP0011). The suspension was sterilised at 121°C for 15 min. 

A 10 mL aliquot of membrane-sterilised solution of 10% D-ribose was aseptically 

added per 90 mL of sterile media (Ravula and Shah 1998). 

3.6.2 Enumeration of probiotic and starter cultures

Ten grams of each cultured milk were diluted with 90 mL of 0.1% sterile buffered 

peptone water and placed in stomacher for 2 min. Tenfold serial dilutions of 10-2-10-8

were then prepared in 9 mL of 0.1% sterile peptone water and 1 mL of the three highest 

dilutions was pour-plated in duplicate. When sole starter was used for the fermentation, 

MRS agar as non-selective media was employed for enumeration of lactobacilli (LC-01 

and LA-5) while for counting bifidobacteria (BB-12) filter sterilised 0.05% cysteine 

hydrochloride was added to MRS agar to create an anaerobic environment as suggested 

by Saxelin et al. (1999). In all cases, the plates were gently mixed clockwise and anti-

clockwise to distribute the sample uniformly and allowed to set. All plates were 

incubated under anaerobic conditions (Gas-pack System, AN0025 AnaeroGen, Table 

3.3) at 37°C for 72 h before enumerating the colonies. The numbers of Colony Forming 

Units (CFU) on plates containing 25 to 250 colonies were calculated per gram of sample 

as follows: 

It is noted that when selective enumeration of LC-01 from cultured milk was required in 

the presence of mixed cultures of YC-380, LC agar, M17 agar and MRS-pH modified 

agar (pH 5.2) were used for isolation and determination of LC-01, ST and LB, 

respectively. Sets of MRS-pH modified plates and LC plates were incubated 

Number of colonies × Volume of dilute suspension  
CFU g-1 =      

Dilution factor 
 L
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anaerobically at 43°C for 72 h, and at 27°C for 72 to 96 h, respectively whereas M17 

plates were incubated aerobically at 37°C for 24 h (Ravula and Shah 1998). Under these 

conditions, ST appeared as lenticular colonies with a diameter of 1-2 mm, LB formed 

lenticular star-shaped colonies 1-3 mm in diameter and LC-01 formed smooth white 

disc colonies measuring 1-2 mm in diameter. 

3.7 Statistical analysis 

The results obtained were statistically analysed using SPSS 15.0 software (SPSS Inc. 

2006) unless described otherwise. The Duncan’s multiple range test (DMRT) was 

applied for mean comparison when one-way analysis of variance (ANOVA) showed 

significant differences at the 95 and 99% confidence level. In addition, data were 

subjected to Student’s t tests when mean comparison of two variables was required. 
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Chapter 4 

Extraction of inulin-type fructans from Jerusalem artichoke
1

4.1  Abstract 

Inulin-type fructans were extracted from the tubers of Jerusalem artichoke using a 

hydrothermal extraction process, followed by clarification and concentration. The 

concentrated samples were treated with two different procedures to fractionate the high- 

and low-molecular-weight components. The optimum conditions for first process, the 

ethanol-mediated fractionation of inulins were established by response surface 

methodology and were found to be 32°B initial syrup concentration, ethanol-to-syrup 

ratio of 13 and temperature of 42°C. The results suggested that higher syrup 

concentration resulted in an increased inulin yield, but further increase in concentration 

up to 30°B had an opposite effect on average chain length and purity values. The second 

process involved cold storage of the inulin syrup where the insoluble heavier inulin 

fractions precipitated and were subsequently separated and spray-dried to obtain inulin 

powder. The precipitate yield of inulin showed a tendency to increase with the 

decreased storage temperature from 4 to −24°C and increased initial syrup concentration 

from 6 to 12°B. 

4.2  Introduction 

Inulin and oligofructoses are commercially manufactured for over a decade from 

chicory (Cichorium intybus L.) roots by European countries especially Belgium, the 

Netherlands and France (Franck 2000). Currently, Australia imports inulin products 

                                                
1 Based on the findings of this chapter a paper entitled “Process optimisation for 
fractionating Jerusalem artichoke fructans with ethanol using response surface 
methodology” was published in Food Chemistry 104 (2007) 73-80. 
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from Europe and China. Jerusalem artichoke (JA-Helianthus tuberosus L.) is an 

alternative source for inulin extraction as the tubers accumulate high levels of inulin-

type fructans, instead of starch during their growth (Figure 4.1). On a dry weight basis, 

the tubers contain 68-83% inulins, 15-16% proteins, 13% insoluble fibre and 5% ash 

(Fleming and GrootWassink 1979). The degree of polymerisation (DP) of inulins in JA 

tubers is dependent on the cultivar, time of harvest and storage conditions (Baldini et al. 

2004). 

Jerusalem artichoke is produced in Australia, especially in Victoria’s cool climate 

regions (Parameswaran 1996) only on a small scale for use as a vegetable in raw or 

cooked forms as the extraction technology of inulin is undeveloped. This plant is a low-

requirement crop, suitable for Australian environment. The development of more 

commercial products from this plant could help Australian agriculture and economy by 

reducing the volume of imported inulin. One of the aims of this study was to evaluate 

the potential of JA tubers grown in Australia as raw material for inulin production. 

Figure 4.1 Jerusalem artichoke (left) and its tubers (right)
Source: Christman (2003) 

The conventional method in optimisation processes, the so-called change-one-factor-at-

a-time approach needs a large number of experiments to describe the effect of 

individual factors on product characteristics or process conditions. This is not only 
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laborious and time-consuming, but also suffers from major drawbacks of giving 

unreliable results since it is unable to determine interactions among the factors. On the 

other hand, applying response surface methodology for optimisation studies has been 

shown to overcome those weaknesses (Montgomery 1996). The response surface 

methodology is a useful group of mathematical and statistical techniques, used for 

analysing the influence of several independent factors on one or more characteristics of 

the processes or products. These techniques have successfully been applied for 

optimising microbiological media composition, enzyme hydrolysis conditions and food 

processes (De Faveri et al. 2004).  

Many researchers have studied the effects of different solvents for fractionation, and 

generally have used commercial standard grade inulin (Moerman et al. 2004). The 

technical details for inulin extract concentration are neither well-documented nor clearly 

understood. In addition, little is known about the combined effects of different process 

conditions during inulin precipitation by ethanol. There have also been no reports on the 

use of response surface methodology to optimise the precipitation conditions. 

Accordingly, the present work was undertaken to find the optimum conditions for 

ethanol fractionation of inulin from a concentrated JA extract. The objectives of the 

study were to obtain a high yield of inulins with high purity as well as high average 

chain length. 

Several studies have reported the formation of inulin-rich precipitates as a crystalline or 

a pasty substance when the temperature of inulin extracts decreases in the range of 16°C

to −24°C (Lopez-Molina et al. 2005; Silver 2003; Leite Toneli et al. 2007). Various 

processing factors affecting inulin precipitation i.e. cooling/freezing temperature, 

precipitation time, centrifugation velocity and time have already been investigated. 
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Lopez-Molina et al. (2005) and Leite Toneli et al. (2007) reported that the precipitate 

yield of inulin was highly dependent on the temperature but independent of 

centrifugation velocity and time. Consequently, the present study was aimed to examine 

the combined effects of initial concentration of JA inulin syrup (JAIS) and storage 

temperature on the precipitation yield of inulin.  

4.3 Preparation of Jerusalem artichoke inulin (JAI)

4.3.1 Extraction of JAI 

Two kilograms lots of peeled JA tubers (section 3.1.1) were chopped into fine pulp in 

10 L of hot distilled water containing 100 ppm sodium metabisulphite (Na2S2O5) in a 

Stephan Kettle (Table 3.2) at blade speed of 3,000 rpm, 95 to 98oC for 10 min. The 

presence of the antioxidant, and the high extraction temperature that immediately 

denatured the endogenous polyphenol oxidase (PPO) and inulases, resulted in a clear 

juice and prevented the degradation of the inulins during extraction. Moreover, the high 

temperature partially denatured the proteins (up to 5.5% fresh basis) (Praznik and Beck 

1987; Rakhimov et al. 2003) and improved the solubility of oligosaccharides (Hansen 

and Madsen 1992). To avoid degradation of the inulin chain due to excessive shear 

force developed in the Stephan Kettle, the extraction time was limited to 10 min. This 

was an improvement on previous extractions that took 30 min to an hour. As most of the 

minerals are concentrated on the skin of the JA tubers (Mullin et al. 1994) the tubers 

were peeled prior to extraction to minimise the leaching of minerals into the resulting 

extract. This also decreased discolouration during the extraction.  

The crude extract at 86oC was filtered through muslin cloth and the wet pulp was re-

extracted with 5 L water at the same temperature range for 5 min, followed by hand-

pressing, and ca. 3 kg crude extract with a soluble solids of ca. 2°B  was collected. 
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The pooled extracts were then concentrated to 50-60% of the original volume (ca. 5°B) 

using a single-stage climbing film evaporator (Table 3.2), operating under a vacuum of 

68 kPa with steam supply at 138 kPa. The resulting concentrate was turbid due to the 

presence of particulate and colloidal matter, i.e. pectin, protein, and cell wall materials. 

To remove these impurities, the concentrate was mixed with a 5% slurry of calcium 

hydroxide at 50-60oC for 30 min, resulting in the formation of a flocculent precipitate 

and a brighter yellow supernatant. As a result of this technique, the pH rose from 5-6 in 

the original extract to 10-12 in the concentrate. After filtration under vacuum using 

paper filter (Whatman No. 4), 10% phosphoric acid (H3PO4) was added to the filtrate 

with vigorous stirring to precipitate excess calcium and coagulate organic material and 

to adjust the pH to ca. 8-9. The mixture was allowed to stand at 60oC for 2-3 h before 

re-filtering (Whatman No.4). The clarification process was repeated twice resulting in 

clarified, pulp-free juice with 6-7°B soluble solids. Activated carbon powder was added 

to the filtrates at 60oC and mixed for 15-30 min in order to remove coloured materials.  

The treated juice was filtered (Whatman No.1) and the clear juice obtained was further 

concentrated by rotary evaporator (Table 3.2) at ≤ 70oC, to obtain syrups with soluble 

solids levels varying from 10°B to 40°B which were then stored at −20°C until further 

use. The various fractions obtained during processing stage, together with JA tubers 

were assayed for total fructans (section 3.3.1), total CHOs (section 3.3.2), total solids 

content (section 3.3.5) and ash (section 3.3.6). The processing scheme for the 

preparation of JAIS is shown in Figure 4.2. 
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Cleaned JA 
tubers Ca(OH)2 H3PO4Na2S2O5

Activated 
carbon powder 

 

Figure 4.2 Flow diagram for the preparation of  JAIS on a laboratory scale 

   Incoming raw material  Delay 

   Finish product  Combined operations 
and inspection 

 Operations 

Hot water extraction 
95°C for 10 min 

10 

Clarify using filter paper 

Decolourise ≥ 2 times at 60°C 

Weigh 
1%, 
w/v 

Prepare 
10%,

v/v

Prepare 
5%, 
w/v 

Slaked lime (pH to 10-12) at 
60°C & neutralise with acid  
(pH 8-9), repeated 2 times 

1 1 1 1

2 2 2

Crude 
extract 

Clarified 
juice 

Concentrate 
syrup 

 

Evaporate using climbing 
film evaporator 

Peel 

Concentrate using rotary-
evaporator at 70°C  

 

5 

Weigh  
100 ppm 

Concentrate syrup (10-40°B) 

Hot filter through 
muslin cloth 

3 3

4

6

7

8

9

1

2 2
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4.3.2 Solvent fractionation 

A central composite rotatable design (CCRD) was adopted to evaluate the combined 

effects of dependant variables i.e. the initial syrup concentration, ethanol-to-syrup (E/S) 

ratio and precipitation temperature (Smits et al. 2001; Kunz et al. 1995; Moerman et al. 

2004). Five levels of each variable were selected to cover the process conditions (Table 

4.1). The axial distance (± α) was ± 1.68 which made this design orthogonal. The 

complete designs consisted of 20 combinations i.e. 8 factorial points, 6 axial points and 

6 centre points (Myers 1976; Montgomery 1996). Two replications were carried out for 

all design points except the centre points. The sequence of experiment was randomised 

to minimise the effects of uncontrolled factors. 

Table 4.1 Independent variables and their levels used for this study 

Symbols  Levels
 1

Variables 

Coded  Un-coded −−−−1.68 (−−−−α) −−−−1 0 1 ++++1.68 (++++α)

Syrup concentration (°B)     X1           A 9.9 16.0 25.0 34.0 40.1 

E/S ratio      X2           B  2.3 5.0 9.0 13.0 15.7 

Temperature (°C)     X3           C  3.1 15.0 32.5 50.0 61.9 

1 Levels are based on the central composite rotatable design. 

To obtain inulin precipitate, aliquots (2 g) of JAIS at soluble solids content of 10, 16, 

25, 34 and 40°B were individually weighed into pre-weighed test tubes and mixed with 

2.3, 5, 9, 13 and 15.7 parts by weight of ethanol (abs. 99%), depending on the levels 

defined in the experimental design. Addition of ethanol to JAIS produced opalescence 

and yielded a heavy flocculent precipitate. The test tubes were vortexed and 

hermetically sealed before storage at temperatures 3, 15, 32.5, 50 and 62°C for 3 days. 

After storage, the supernatants were removed by siphoning and the precipitates were 

washed with 5 mL of ethanol, that was subsequently discarded and the tubes containing 

precipitates were placed in a hot air oven at 102°C for 30 min to remove excess solvent 
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and re-weighed. The precipitate, formed as a pasty substance, was then analysed for 

total fructans, total CHO, reducing sugar and dry matter content as described in sections 

3.31-3.33 and 3.3.5, respectively. Each determination was performed in duplicate. To 

facilitate transfer of the precipitate from the test tube to drying dish and/or volumetric 

flask, it was mixed with small amount of warm distilled water (60°C). 

The following equations were used to calculate dependant variables or responses i.e. the 

fructans yield, average chain length, and purity value of fructans.  

The fructans yield was calculated according to the Equation 1:

1001 ×=
M

P

F

F
Y (1)

where Y1 is fructans yield (%), FP is the amount of fructans contained in the precipitate 

(g) and FM is the amount of fructans in JAIS utilised for precipitation (g). 

The average chain length was calculated according to the Equation 2: 

RS

TC
Y =2 (2)

where Y2 is average chain length, TC is total amount of CHO (g) and RS is total amount 

of reducing sugar (g). 

The purity value was calculated according to the Equation 3: 

1003 ×=
DM

F
Y P (3)

where Y3 is purity value and DM is the dry matter content of the precipitate (g). 

The least square regression methodology by SPSS 15.0 for Windows (SPSS Inc. 2006) 

was used to fit the data to the second-order equations: 
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where Y = dependent or response variable; b0 = intercept; b1, b2, b3 = linear coefficients; 

b11, b22, b33, = quadratic coefficients; b12, b13, b23 = interaction coefficients; and X1, X2 

and X3 = independent variables (Myers 1976). The Student’s t-test was employed to 

evaluate the statistical significance of regression coefficients. Non-significant terms 

(P > 0.05) were deleted from the second-order polynomial and a new polynomial was 

recalculated to obtain a predictive model for each dependent variable (De Faveri et al.

2004). The quality of the fit of each equation was expressed by the coefficient of 

determination (R2), and its statistical significance was checked by the Fisher’s test.  

The coded variables were transformed into the actual experimental variables (un-coded 

variables) using the following equation: 

2/)(

2/)(

lowhigh

lowhighi

i
xx

xxx
X

−

+−
=      (5) 

where Xi is the coded variable, xi is the actual variable, xhigh and xlow are the high and 

low values of the actual variable, correspondingly.

The response surface plots were drawn using STATISCA version 5.0 for Windows 

(StatSoft Inc. 1995). One independent factor was kept constant at a centre point and the 

other two factors were varied within the experimental range. The optimum set of 

conditions was searched using Design Expert software (trial version 7.0.2, Stat-Ease 

Inc., Minneapolis, MN, USA). The validity of the mathematical models obtained was 

verified by comparing between the experimental values and values calculated from the 

model.  
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4.3.3 Cold fractionation 

A 22 factorial design was applied and four experimental runs were performed for 

studying the combined effects of two independent variables i.e. initial syrup 

concentration and temperature on the precipitation of inulin at low temperature. In the 

course of this study, tubers of JA harvested during May-June 2007 were used to prepare 

JA inulin syrup (JAIS) following the method given in section 4.3.1. The syrups with 

soluble solids 6 and 12°B were separately warmed to 60°C and aliquots of ca. 50 mL of 

each sample were transferred into duplicate conical screw cap centrifuge tubes and 

stored at 4 and −24°C overnight (approx.16 h). The freezing and thawing times, as well 

as centrifugation time and velocity were not independent variables and thus were kept 

constantly. The frozen samples were then thawed at the RT which caused the 

precipitation of inulin appearing as a dense white substance at the bottom of the tubes 

that was recovered by centrifugation at 2,700 g and 4°C for 10 min. Samples stored at 

4°C were centrifuged under the same conditions. The supernatants of all samples were 

gently removed by siphoning and the centrifuge tubes containing the precipitates were 

weighted. The precipitation yield was calculated as the percentage ratio of total 

precipitated mass of inulin to the mass of the syrup placed in the centrifuge tubes, on 

fresh weight basis. All treatments were performed in triplicate. 

In order to produce a stable ingredient for long-term storage, similar to commercially 

available inulin powder, a Niro laboratory spray drier with a vane type rotary atomiser 

(Table 3.2) which was employed to transform the precipitate into a dry powder. The 

feed stock for spray drying was prepared by re-dissolving the precipitate by placing the 

centrifuge tubes in a water bath at 60°C prior to spray drying with an inlet temperature 

of 120°C, outlet temperature of 80°C and air pressure of 5 kg cm-2.  
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4.4 Results and discussion  

4.4.1 Development of extraction processes 

Table 4.2 summarises the chemical compositions of JA tubers and various fractions 

obtained during extraction process. Tubers of JA, contained ca. 26 g solids per 100 g  

on fresh basis which mainly consisted of 13.2 g total fructans accounting for 85% of 

total CHO, sucrose (2.1 g), hexoses (0.1 g) and small amount of ash (1.1 g). The balance 

is made up of insoluble fibre, protein and fat (Frese 1993). This composition puts the JA 

as a promising source for preparation of inulins. 

Various extraction procedures were primarily tested in the laboratory to study their 

efficiency for CHO release. Tubers of JA (ca. 100 g) were either thinly sliced (2-3 mm 

thickness) or cut into stripes, placed in universal bottles, and mixed with 1.5-2 parts 

warm water and kept in a water bath at 60, 70 or 80°C with constant stirring for 1 h. The 

resulting extract showed only 5-8°B. Upon slicing the JA tubers discoloured due to the 

action of PPO present and resulted in a dark brown extract. Therefore, the extraction 

process involving the inactivation of the PPO was approached. Blanching the whole 

tubers in hot water for 5-10 min or with steam at 98°C for 4-12 min prior to slicing and 

hot water extracting was found to minimise the discolouration of the extract. However, 

the processes needed optimisation as the set up was time and labour intensive and not 

suitable for achieving high throughput, and seemed to be only suitable for small scale 

extraction. 
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Table 4.2 Chemical compositions of JA tubers and various fractions obtained 

during extraction process
1
  

Type of samples 
Compositions 

(%, w/v) 
JA tuber n Crude 

extract
2 

n Clarified 

juice
3

n Conc. syrup 

(25°°°°B)

n

Total solids  26.43 ± 0.784 6 4.81 ± 0.56 6 5.39 ± 0.29 6 26.39 ± 1.62 6 

Ash    1.12 ± 0.15 6 0.40 ± 0.12 6 0.25 ± 0.04 6   1.51 ± 0.36 6 

Total CHO  15.50 ± 1.08 6 3.29 ± 0.70 6 4.57 ± 0.38 6 25.65 ± 0.32 6 

Total fructans  13.23 ± 0.54 6 -  3.95 ± 0.31 6 17.86 ± 0.40 6 

Sucrose  2.08 ± 0.01 2 -  -   7.50 ± 0.28 2 

Free glucose  0.02 ± 0.00 2 -  -   0.08 ± 0.01 2 

Free fructose   0.08 ± 0.01 2 -  -   0.34 ± 0.03 2 

n = Number of observations. 
1 Performed in 2005. 
2 After hydrothermal extraction and filtration through muslin cloth. 
3 After lime and carbonation treatments. 
4 Values are mean ± SD. 

In the adopted optimised process, the resulting juice with soluble solids concentration of 

6-7°B was clear (no absorption at 420 nm), with negligible protein content (no 

absorption at 280 nm), but still containing 0.25% ash since it was not subjected to ion-

exchangers. In addition to inulins, the resulting juice contained some mono- and 

disaccharides. The concentrated thick syrup at 25°B, for example comprised of 7.5% 

sucrose, 0.34% fructose and 0.08% glucose (w/v) (Table 4.2). These sugars mainly 

originated from the tubers but small amounts could also have been formed during the 

extraction and clarification steps. 

Table 4.3 presents the yield and soluble solids of the JA extract in each processing step. 

The hydrothermal extraction process developed in this study produced 13.2% (w/v) total 

fructans from 2 kg of tubers that resulted in ca. 3.5 kg of clarified juice (7°B) containing 

4.0% (w/v) total fructans. This is a yield of ca. 30% based on the amount of inulins in 

the tubers which is rather low, probably due to short extraction time, filtration 
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inefficiency, incomplete recovery of juice from the pulp and high ratio (5:1, v/w) of 

distilled water to tubers used. However, in the study by Leite Toneli et al. (2007), a ratio 

of 2:1 (v/w) was employed, and a comparable yield (ca.1.7 kg) and solid content (ca. 

8°B) was obtained after the extraction in a Stephani multiprocessor at 80°C for 1 h. 

Satisfactory yield and the solids content could be achieved if a countercurrent extractor, 

similar to that used in conventional sugar beet extraction was employed (Berghofer et 

al. 1993; Kunz 1995; Silver 2003).  

Table 4.3 Yield of JA extract at several stages of preparation 

Process steps Tuber 

mass (kg) 

Water 

mass (L) 

Mass yield 

 (kg) 

Soluble solids 

(°°°°B) 

1st  extraction 2 10 7 4 

2nd extraction − 5 3 2 

Concentration − − 6 5 

Lime-carbonation treatment − 0.5 3.6 6-7 

Activated carbon treatment − − 3.5 6-7 

4.4.2 Solvent fractionation  

In this part of the study, ethanol (abs. 99%) was employed to precipitate the inulin from 

the concentrated syrup. The experiments were performed according to a response 

surface methodology design, in a syrup concentration range of 10 to 40°B with varying 

ethanol-to-syrup (E/S) ratios from 2.3 to 15.7 and a temperature range of 3 to 62°C. The 

combined effects of the three dependent variables on fructans precipitation yield, 

average chain length and purity are presented in Table 4.4. 
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Table 4.4 The central composite rotatable design with the effects of independent 

variables on three dependent variables 

Independent variables 

Coded levels  Un-coded levels

Dependent variables
e

Run
a

X1
b

X2
c

 X3
d

A
b

B
c

  C
d

Y1 Y2 Y3

1 −1 −1 −1 16.0 5.0 15.0 44.41 11.87 67.78 

2 −1 −1 +1 16.0 5.0 50.0 34.86 10.50 63.63 

3 −1 +1 −1 16.0 13.0 15.0 45.60 11.80 60.50 

4 −1 +1 +1 16.0 13.0 50.0 46.48 16.42 68.28 

5 +1 −1 −1 34.0 5.0 15.0 67.61 22.65 71.64 

6 +1 −1 +1 34.0 5.0 50.0 64.42 21.90 74.92 

7 +1 +1 −1 34.0 13.0 15.0 67.93 19.31 71.97 

8 +1 +1 +1 34.0 13.0 50.0 67.81 21.66 75.12 

9 −1.68 0 0 9.9 9.0 32.5 33.52 12.01 61.09 

10 +1.68 0 0 40.1 9.0 32.5 61.56 19.67 63.53 

11 0 −1.68 0 25.0 2.3 32.5 34.73 14.94 74.30 

12 0 +1.68 0 25.0 15.7 32.5 63.10 19.68 75.99 

13 0 0 −1.68 25.0 9.0 3.1 54.31 17.59 62.74 

14 0 0 +1.68 25.0 9.0 61.9 51.79 17.93 64.88 

15 0 0 0 25.0 9.0 32.5 59.41 25.10 70.39 

16 0 0 0 25.0 9.0 32.5 59.35 23.93 71.44 

17 0 0 0 25.0 9.0 32.5 55.54 20.13 71.60 

18 0 0 0 25.0 9.0 32.5 55.04 21.85 70.19 

19 0 0 0 25.0 9.0 32.5 58.12 20.89 70.86 

20 0 0 0 25.0 9.0 32.5 55.15 21.05 70.03 
a Does not correspond to order of processing. 
b

X1 and A, initial syrup concentration (°B). 
c

X2 and B, ethanol-to-syrup ratio.  
d 
X3 and C, precipitation temperature (°C). 

e 
Y1, Y2 and Y3  represent  fructans yield (%), average chain length and purity value (%), respectively. 

The independent and dependent variables in Table 4.4 were fitted to the second-order 

equations by the least square technique where their statistical significances were judged 

by Student’s t-tests at a probability of 0.001, 0.01 or 0.05. The coefficients of variables 

in the equations developed are presented in Table 4.5. The table also summarises the 
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statistical parameters, namely the determination coefficient (R2) and F-test probability, 

both of which are used for measuring the correlation and significance of the models. 

Results of the R
2 values showed a good agreement between experimental data and 

predicted data for all regressions (0.87, 0.89 and 0.82 for Y1, Y2 and Y3, respectively). 

The results of F-test showed a statistically significant relationship between the variables 

within 95% confidence interval.  

Table 4.5 Regression coefficients, R
2
 and F-test probability for three dependent 

variables 

Regression coefficients
a

Y1 Y2 Y3

0b  (constant) 56.925* 22.147* 70.676*

1b  10.513* 3.501* 2.750**

2b  4.703*** 0.750 0.054 

3b  −1.187 0.397 1.000 

2
1b  −2.221 −2.158**

−2.485***

2
2b  −1.735 −1.638*** 2.050***

2
3b  −0.273 −1.479***

−1.955***

12b  −1.137 −1.179 0.395 

13b  0.670 −0.206 0.350 

23b  1.687 1.136 1.475 

2
R 0.87 0.89 0.82 

F-test probability 0.003** 0.001* 0.010***

a Expressed according to Equation (4); subscripts: 1 = syrup concentration; 2 = ethanol-to-syrup ratio; 3 = 
precipitation temperature. 
* Significant at 0.001 level. 
** Significant at 0.01 level. 
*** Significant at 0.05 level. 

After rejecting non-significant terms (P > 0.05) from the second-order polynomial and 

recalculating, newly predicted models, expressed in terms of coded and un-coded 

variables for each dependent variable were developed that are summarised in Table 4.6. 
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Table 4.6 Final equations in terms of coded and un-coded variables for the 

prediction of three response variables 

Response 

variables
a 

Coded equations  

(Un-coded equations)
b 

21 703.4513.10037.54 XX ++=Y1

( BA 176.1168.1252.14 ++= ) 

2
3

2
2

2
1321 479.1638.1158.2397.0750.0501.3147.22 XXXXXX −−−+++=Y2

( 222 005.0102.0027.0337.0030.2721.1048.20 CBACBA −−−+++−= ) 

2
3

2
2

2
1321 955.1050.2485.2000.1054.0750.2676.70 XXXXXX −+−+++=Y3

( 222 0124.0128.00307.0865.0293.2839.1139.39 CBACBA −+−+−+= ) 

a 
Y1, Y2, Y3 represent fructans yield (%), average chain length and purity value (%), respectively. 

b Transformation of variables from coded to un-coded could be calculated according to Equation (5) with 
the following terms:  X1 = (A-25)/9, X2 = (B-9)/4 and X3 = (C-32.5)/17.5.    
X1 and A, initial syrup concentration (°B). 
X2 and B, ethanol-to-syrup ratio.  
X3 and C, precipitation temperature (°C). 

The results of F-test for all new regressions showed a high statistical significance at 

99.9% confidence interval. The R2 values of the models dropped to 0.80, 0.83 and 0.77 

for Y1, Y2 and Y3, respectively.

4.4.2.1 Effects of precipitation conditions on fructans precipitate yield 

The results presented in Table 4.5 indicate that the initial syrup concentration had a 

strong linear effect on fructans precipitate yield, followed by the linear effect of E/S 

ratio. Analysis of regression coefficients also indicated that temperature had no 

significant effect on the yield (P > 0.05). After rejecting the statistically insignificant 

terms, the predictive model for the yield was found to be a first-order equation (Table 

4.6). As a result, the response surface plot generated for the fructans yield showed flat 

areas and no maximum or minimum responses were present (Figure 4.3). It was 

observed that the precipitate yield increased linearly as the initial syrup concentration 

increased. However, in order to achieve more than 50% fructans yield from the 

precipitate, a syrup with a minimum concentration of 16°B should be utilised. 
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Figure 4.3 Response surface graphs of fructans precipitation yield (%) as a 

function of initial syrup concentration (°B) and E/S ratio 

4.4.2.2 Effects of precipitation conditions on average chain length 

The average chain length was calculated by dividing the amount of total CHO present in 

the precipitate by the amount of reducing end groups. It is considered as an index of the 

precipitate since it is closely related to the functional properties when used in food 

applications. The average chain length also indicates the ability of the extraction process 

to cause undue hydrolysis of poly- or oligosaccharides.  

The concentration of syrup was the most significant determinant of the average chain 

length in precipitate since its linear and quadratic effects mainly contributed to the total 

variation (Table 4.5). The relationship between three independent variables on average 

chain length is demonstrated in Table 4.6 and Figure 4.4. The behaviour of response 

surface graphs (Figures 4.4a & 4.4b) indicated that increasing syrup concentration up to 

32°B had a positive effect on average chain length in the precipitate. However, there 

seemed to be less effect of further increases in syrup concentration beyond 32°B on the 
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chain length. As can be seen in Figures 4.4a & 4.4b, a similar average chain length was 

obtained from syrups with concentrations between 24 and 40°B. The effects of E/S ratio 

and temperature on the average chain length were similar to the effect of syrup 

concentration (Figure 4.4c). It was found that the optimum precipitation should be 

carried out at 33°C with E/S ratio of 10:1 (v/v) to yield the highest average chain length 

and any further increase beyond these values resulted in lower average chain length. 

The results of this study were in agreement with those of Moerman et al. (2004) who 

found that the average chain length of commercial grade chicory inulin and dahlia inulin 

decreased with increased level of  added solvent (ethanol, acetone or methanol) beyond 

a solvent to solution ratio of 1:2 (v/v). It is believed that at the initial stage, any increase 

in solvent ratio leads to increased average chain length due to the precipitation of 

longer-inulin chains, but adding excess solvent beyond certain ratio precipitates the 

shorter-chain CHOs thus reducing the average chain length of the precipitate (Moerman 

et al. 2004; Ku et al. 2003).
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(a) 

 

(b)

(c)

Figure 4.4 Response surface graphs of average chain length at (a) E/S ratio of 

9:1, (b) temperature of 32.5°°°°C and (c) syrup concentration of 25°°°°B
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4.4.2.3 Effects of precipitation conditions on the purity of inulins 

Purity represents an index of the amount of inulins in the precipitate obtained. High 

value means that inulins are accounted as the main components of the precipitate. Low 

purity value, on the other hand, indicates the high contents of mono- and disaccharides, 

and/or non-sugar substances such as ashes in the precipitate. Table 4.6 and Figure 4.5 

describe the dependence of purity value on syrup concentration, E/S ratio and 

temperature. With the increase in syrup concentration, the purity of precipitate increased 

gradually, but decreased after the concentration reached a maximum at 30°B (Figures 

4.5a & 4.5b). The effects of E/S ratio and temperature were not profound in comparison 

to syrup concentration. At constant temperature of 32.5°C, the precipitates formed in 

syrup with concentration range of 8 to 24°B showed a high purity at intermediate E/S 

ratios (8:1-10:1, v/v). At higher syrup concentrations of 24 to 36°B, either low E/S ratio 

(less than 7:1, v/v) or high E/S ratios (more than 11:1, v/v) was required (Figure 4.5a). 

Figure 4.5c presents the combined effects of temperature and E/S ratio on the purity of 

inulin at syrup concentration of 25°B. It shows that moderate temperatures between 23 

and 43°C resulted in higher purity values, particularly when using either extremely low 

or high ratios of E/S. The maximum response was obtained at 37°C. 
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(a)

(b)

(c)

Figure 4.5 Response surface graphs of purity value (%) at (a) temperature of 

32.5°°°°C, (b) E/S ratio of 9:1 and (c) syrup concentration of 25°°°°B
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4.4.2.4 Optimisation of precipitation conditions and verification of the results 

The optimum precipitation conditions for concentrated JAIS were achieved by means of 

graphical technique using design expert software (De Faveri et al. 2004). Three contour 

plots generated from the predicted equations were superimposed to achieve the 

experimental region giving desired values of the responses. In this study, the 

independent variables would be considered optimum if all dependent variables were as 

high as possible. Therefore, the criteria applied for the graphical optimisation were 68% > 

Y1 > 50%, Y2 > 20 and 76% > Y3 > 70%. Figure 4.6 shows the overlaid plot of the three 

dependent variables. The white area represents the region produced by the criteria 

outlined above and the flag depicted within the same area indicates the optimised point. 

The best combination of process variables was found to be the initial syrup 

concentration of 32°B, E/S of 13:1 and temperature of 42°C. Under these conditions, 

the model gave predicted values of Y1, Y2 and Y3 to be 66, 22 and 75%, respectively. 

Figure 4.6 Optimum region identified by the overlaid plot of the three responses: 

fructans yield (Y1), average chain length (Y2), purity value (Y3)
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Verification experiments were carried out to confirm the adequacy of the models for 

predicting the values of dependent variables. Under the selected conditions from the 

response surface methodology optimisation, the experimental results and the predicted 

values are listed in Table 4.7. A fructans precipitate yield of 65% with an average chain 

length of 21 found in the experiments confirms the closeness of fit between the model 

and the experimental results. The prediction of the purity value (73%) did not closely 

match the experimental value (68%), possibly due to low R2 value of the model (0.77), 

indicating that a high proportion of variability was not explained by the model.  

Table 4.7 Experimental and predicted values for response variables at optimum 

conditions
a
  

Dependent variables
b
 Experimental values

c
 Predicted values 

Y1 64.85 ± 0.76 66.92 

Y2 21.40 ± 0.35 21.86 

Y3 68.30 ± 1.04 72.83 

a Optimum reaction conditions: JAIS concentration 32°B, E/S 13:1 and temperature 42°C. 
b 
Y1, Y2, Y3 represent fructans yield (%), average chain length and purity value (%), respectively. 

c Results shown are mean ± SD for three experiments each with two replications. 

4.4.3 Cold fractionation  

The solubility of inulin in water is temperature dependant, varying from 6% at 10°C to 

35% at 90°C (Silva 1996). Low solubility at low temperatures is a useful property 

which can be employed to separate high-MW inulin fractions from aqueous solutions. 

As the temperature decreases, the heavier-MW inulins tend to settle at the bottom of the 

container and push the low-MW inulins and mono- and disaccharides upward 

(Moerman et al. 2004).

Table 4.8 shows the precipitate yield of inulin as a function of cooling temperature and 

initial syrup concentration. No precipitation was observed at 4°C with syrup 

concentration of 6°B and it was necessary to raise initial syrup concentration to 12°B to 
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achieve the precipitation. The precipitate yield of inulin obtained varied from ca. 14% 

to 36%. The best result was associated with the highest syrup concentration (12°B) and 

the lowest temperature (−24°C). For frozen samples at −24°C, upon thawing at RT, 

phase separation was evident and their precipitate yield increased proportional to the 

concentration of the syrup. 

Table 4.8 Precipitate yields of inulin corresponding to combined effects of initial 

syrup concentration and precipitation temperature  

Factor 

Run Initial syrup 

concentration (°°°°B) 

Precipitation 

temperature (°°°°C) 

Precipitate yield  

(%, w/w) 

1 6 4 NP 

2 12 4 14.1 ± 0.9c 

3 6 -24 18.2 ± 0.6b 

4 12 -24 35.6 ± 0.9a 

Results shown are mean ± SD for three experiments each with two replications. 
Different letters on the value denote significant difference at P ≤ 0.05 by DMRT. 
NP = no precipitate. 

After cold fractionation, the precipitates were separated by siphoning the supernatants, 

re-dissolved by warming in a water bath and spray-dried. The powder contained ca. 

96.9 ± 1.1% (w/w) solids, comprising ca. 77.1% inulin, 6.3 % ash and 0.1% fat. It 

appeared as an off-white powder with average colour values of L
∗ 
= 81.0 ± 3.5, a

∗ = 

−1.3 ± 0.8 and b∗ = −1.7 ± 1.0. The powder showed total plate count of < 2,000 CFU g-1 

and total yeast and mould counts of < 30 CFU g-1. No viable E. coli was found in the 

powder (data not shown). 

4.5 Comparison of the fractionation techniques  

In the work presented here, two different techniques i.e. solvent and cold fractionation 

were adopted to fractionate the high- and low-MW fractions of inulin extract. The 

syrups used as starting material for each fractionation process were diverse in their 
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initial CHO composition due to the difference in cultivation year of the tubers. 

Therefore, the efficiency of the two procedures could not be compared directly. 

However, a comparison was made on the improvement of total fructans in final 

products of each fractionation process as presented in Table 4.9. 

Table 4.9 Improvement of total fructans in samples obtained by two 

fractionation techniques 

Compositions 

(%w/w)

Total 

fructans (%) 

Total  

CHO (%) 

Total fructans 

/total CHO (%)

Differences

(%) 

Ethanol fractination
1

Concentrate3 65.4 94.5 69.2 

Precipitate4 69.0 80.3 86.0 
16.8 

Cold fractionation
2

Original powder5 73.0 85.6 85.3 

Powder from fractionated 
syrups6

77.1 78.9 97.8 
12.5 

1,2 Performed in 2005 and 2007, respectively. 
3 Concentrate syrups employed for ethanol fractionation. 
4 Precipitates isolated after ethanol fractionation.
5 Spray-dried inulin powder obtained from inulin syrups without cold fractionation. 
6 Spray-dried inulin powder obtained from inulin syrups with cold fractionation.  

The precipitates obtained from ethanol fractionation contained nearly 17% more 

fructans content than that of concentrate syrups employed as starting material. The cold 

fractionation seemed less satisfactory. The fructans content in spray-dried powders 

prepared from fractionated inulin syrups increased by nearly 13% compared to those 

prepared without cold fractionation.  However, ethanol fractionation is rather complex. 

The process involves large volumes of solvent which is problematic for safety and 

environment. In contrast, cold fractionation is a more economical and environmentally 

friendly process. The inulin precipitate can easily be converted into powder. For these 

reasons, in further investigations, cold fractionation was employed for inulin 

fractionation from JAIS. 
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4.6 Conclusions 

The tubers of JA grown in Australia contain several types of water extractable 

carbohydrates, predominantly inulin-type fructans. Response surface methodology 

which combines factorial designs and regression analysis is a useful tool for optimising 

process conditions for ethanol fractionation of inulin from JA concentrate. The models 

developed allowed identification of the optimum reaction conditions (32°B syrup 

concentration with 13:1 ethanol-to-syrup ratio at 42°C) and can be used for predicting 

the quality of inulin precipitate. A satisfactory agreement was found between the values 

predicted and the values determined experimentally, particularly for the fructans 

precipitation yield and the average chain length. As another process, cooling of JA 

concentrate below freezing temperature and/or leaving in the refrigerator also resulted 

in the precipitation of inulin as a pasty substance. The results showed that initial syrup 

concentration and precipitation temperature affected the precipitate yield of inulin. 

Within the range of conditions studied, inulin syrup with 12°B gave the highest 

precipitate yield of ca. 36% by weight when frozen to −24°C.  
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Chapter 5 

Lactulose production from milk concentration permeate using 

calcium carbonate-based catalysts
1

5.1 Abstract 

Milk concentration permeate (MCP), a low-value by-product of ultrafiltration plants and 

calcium carbonate-based catalysts were used for lactulose production. With the 

optimum reaction conditions of 12 mg per mL catalyst loading, isomerisation time of 

120 min at 96°C, a maximum yield of 18-21% lactulose was achievable as measured by 

HPLC. The results obtained showed the suitability of oyster shell powder (OSP) for 

lactose isomerisation as a replacement for egg shell powder (ESP). Removal of protein 

contaminants from MCP by acidification prior to isomerisation improved lactulose 

formation at an earlier stage, but did not significantly increase the yield. The brown 

colour of the lactulose-enriched MCP was partially removed by treatments with activated 

carbon (5 g per 100 mL) or with 17.5% hydrogen peroxide (10 mL per 100 mL) without 

significant loss of lactulose. 

5.2 Introduction 

A large volume of MCP is produced in Australia by dairy processing plants as a 

consequence of the increased utilisation of ultrafiltration (UF) for preconcentration of 

milk. Permeate is not suitable for human consumption and has little commercial value. 

The solid content of MCP consists predominantly of 4.5-4.8% lactose and 0.44-0.47% 

mineral salts which is similar to that of skim milk, except for lacking the proteins 

 Based on the findings of this chapter a paper entitled “Lactulose production from milk 
concentration permeate using calcium carbonate-based catalysts” was accepted for 
publication in was published in Food Chemistry 111 (2008) 283-290.  
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(Suarez et al.2006). Having a high biological oxygen demand (BOD), the MCP needs 

appropriate treatment before disposal as a waste which is commercially disadvantageous 

to manufacturers. The existing practices are to use MCP for feeding farm animals, milk 

standardisation, blending with other dairy liquids and recovering lactose for use in food 

formulation or other industrial uses. One novel approach is to use it to isomerise lactose 

into non-absorbable lactose-derivatives e.g. lactulose, lactitol and lactobionic acid 

(Harju 2001). 

Theoretically, lactulose is produced from an alkaline lactose solution via the Lobry de 

Bruyn-Alberda van Ekenstein molecular rearrangement (Aider and de Halleux 2007). 

Although there have been a number of studies for lactulose isomerisation using different 

catalytic systems (section 2.1.4.4), little is known about the suitability of calcium 

carbonate-based catalysts. In a recent study by Montilla et al. (2005), the feasibility of 

using ESP for isomerisation of MCP has been addressed with a lactulose yield of 1.18 g 

per 100 mL of MCP. 

In the present study, the suitability of other calcium carbonate-based catalysts, including 

OSP and limestone (pure calcium carbonate) as a replacement to ESP was examined for 

lactose isomerisation in MCP. A preparation of 4% lactose solution was used as control. 

The OSP was chosen due to the fact that oyster shells are a waste product from 

mariculture, causing unpleasant smells in shell-harvesting areas. Apart from the use of 

oyster shells as a fertiliser and as a mineral source in chicken feed and fish pellets, there 

is a need for the food industry to find alternative ways for using the shells. The OSP has 

comparable chemical composition to ESP and can be easily removed after the 

isomerisation by centrifugation without a need for sophisticated techniques such as 

chromatographic purification. Therefore, this study was aimed at turning a large surplus 
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of MCP and oyster shells as by-products into a high value-added product through 

enrichment of MCP with lactulose. The optimum process condition viz. the amount of 

catalyst, isomerisation temperature and time to achieve maximum isomerisation were 

determined. 

5.3 Isomerisation method 

An aliquot of 100 mL MCP (section 3.1.2) was transferred into a 250-mL round-bottom 

flask. The selected catalyst (section 3.1.3) was added to the vessel and mixed well with 

magnetic stirrers at room temperature. The flask was then placed in a glycerol bath, and 

refluxed while stirring at constant temperatures for 120 to 150 min. The zero time of 

process was taken when the mixture reached the required temperature. Aliquots of 10 

mL were taken every 30 min and rapidly placed in an ice bath to stop the reaction. At 

the completion of heating, the catalyst was removed from the aliquots by centrifugation 

at 3,600 g and 20°C for 10 min. The collected supernatant was stored at 4°C and its 

sugar content (lactose and lactulose), pH and brown colour (as b
∗ value and/or 

absorbance at 420 nm) were determined within 24 h as described in sections 3.41 and 

3.43-3.44. 

Based on sugar content, the conversion of lactose to lactulose (Y1, %) and the 

degradation of lactose (Y2, %) were calculated as follows:  

1001 ×=
B

F

L

L
Y  and  

100
)(

2 ×
−

=
B

AB

L

LL
Y

where LF is the amount of lactulose formed in the mixture (g per 100 mL), LB is the 

amount of lactose before isomerisation (g per 100 mL) and LA is the amount of residual 

lactose after the isomerisation (g per 100 mL). 
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5.4 Treatments 

5.4.1 Effect of the catalyst loading on lactose isomerisation 

The effect of catalyst loading on lactose isomerisation was studied using ESP at a final 

concentration of 0, 6, 12, 20 and 30 mg per mL. The isomerisation was performed in 

triplicate at 98°C for 150 min, following the procedure described in 5.3. 

5.4.2 Effect of isomerisation temperature and time on lactose isomerisation 

The effect of isomerisation temperature and time on lactose isomerisation was 

determined in duplicate samples of MCP with 12 mg per mL ESP loading. The 

isomerisation temperature was set to 90, 96 or 100°C. Samples were taken every 30 min 

up to 180 min. 

5.4.3 Effect of the catalyst type on lactose isomerisation 

Limestone, OSP and ESP were compared for their catalytic power in MCP and the 

control lactose solution. The isomerisation was performed in triplicate with catalyst 

loading of 12 mg per mL at 96°C for 150 min. Blank trials (without catalyst addition) 

were also conducted in both solutions, following the procedure described in 5.3. 

5.4.4 Effect of de-proteination on lactose isomerisation 

Before isomerisation, the proteins contaminants in MCP were removed by acidification 

and mild heat treatment. The pH of MCP was adjusted to 4.5 with 1% lactic acid. To 

prevent the hydrolysis of lactose, the acidified MCP was heated for 2-3 min at < 60°C, 

followed by filtration through Whatman No.1 filter paper, resulting in a green-yellowish 

clear liquid. The pH was then re-adjusted to 6.7 with 0.1 M NaOH. The de-proteinated 

MCP was then isomerised in quadruple using 12 mg per mL ESP at 96°C for 150 min, 

following the procedure described in 5.3. 
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5.4.5 Colour removal  from lactulose-enriched MCP 

Aliquots of 100 mL of the lactulose-enriched MCP were treated with 10 mL of 17.5% 

H2O2 at 95°C for 10 min according to the method described by de Haar and Pluim 

(1991). In another trial, 100 mL lactulose-enriched MCP was treated with 5 g activated 

carbon powder at 60°C for 10 min and then filtered through Whatman No. 1 filter paper. 

Each trial was repeated three times. The changes in colour were determined as 

absorbance values (420 nm) within 24 h after the treatment.  

5.5 Results and discussion 

Under the experimental conditions employed in this study, heating a mixture of MCP 

and calcium carbonate-based catalysts resulted in a loss of lactose in favour of lactulose 

formation. Heating under reflux kept the soluble solids of MCP mixture relatively 

unchanged at ca. 4-5°B. Any extension of heating time beyond maximum isomerisation 

resulted in the rapid decomposition of lactulose leading to formation of reaction by-

products e.g. galactose. In addition, a drop in solution pH and darkening of solution 

colour were evident. 

5.5.1 High-Performance Liquid Chromatography (HPLC) of isomerised MCP 

Figure 5.1 shows HPLC-RID chromatograms of carbohydrate fractions of MCP treated 

with 12 mg per mL ESP before and after isomerisation at 96°C for 120 min. The 

chromatogram of MPC before isomerisation (Figure 5.1a) shows solvent and lactose 

peaks with the retention times of 4.19 and 17.61 min, respectively while after 

isomerisation two new peaks were detected with the retention times of 9.96 min and 

15.98 min (Figure 5.1b). The first peak was assigned as galactose which was not always 

detected unless heating time was extended beyond 90 min and when its concentration 

was lower than 0.05% of the total sugars, while the second peak was identified as 
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lactulose. The present HPLC-RID method achieved the separation of the three types of 

carbohydrates confirming that the isomerisation routes involved both the conversion of 

lactose into lactulose and decomposition of lactulose into galactose. However, peaks 

corresponding to lactose and lactulose were not completely resolved and therefore 

reported concentrations of sugars were taken from peak heights as these provide a 

suitable means of estimating the amounts (Brian 1992). The concentration of by-product 

saccharides was not reported in the current study because of the poor sensitivity 

associated with refractometry which did not allow the determination of epilactose. The 

peak assigned to galactose may also include glucose due to their close retention times. 

(a) (b) 

Figure 5.1 HPLC-RID chromatograms of MCP treated with 12 mg per mL ESP             

(a) before and (b) after isomerisation with at 96°°°°C for 120 min 
The peaks correspond to: solvent (4.19 & 4.18), lactose (17.61 & 17.49), galactose & 
glucose (9.96) and lactulose (15.98).

5.5.2 Effect of the catalyst loading on lactose isomerisation 

The ESP was employed to determine the appropriate amount of catalyst needed for 

lactose isomerisation. Figure 5.2 shows variation of lactulose content and pH during the 

isomerisation of MCP in the presence of 0, 6, 12, 20 and 30 mg per mL of ESP at 98°C 

for 150 min. In the absence of catalyst (blank) the isomerisation rate was very slow and 

only 0.12 ± 0.02 g lactulose per 100 mL was detected in MCP after 150 min.  
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Figure 5.2 Changes in lactulose content (a) and pH (b) with time in MCP treated 

with 6 (
0 90

), 12( ), 20 ( ) and 30 ( ) mg ESP per mL, and 

without catalyst (Blank ) at 98°°°°C 
Data points are mean of three different experiments.

In the presence of catalyst, a general trend of increased lactulose formation with time 

was observed although lactulose was not formed in any of the samples during the first 

30 min of treatment (Figure 5.2a). After 60 min, the yield of lactulose increased 

significantly in samples containing ≥ 12 mg ESP per mL while no lactulose was formed 

in samples containing 6 mg ESP per mL. The yield of lactulose ranged from as high as 

0.40 ± 0.07 g per 100 mL with a catalyst loading of 30 mg per mL to as low as 0.18 ±

0.05 g per 100 mL with 12 mg per mL. After 150 min heating, all samples showed higher 

lactulose yield, samples containing 6 mg ESP per mL consistently showed lower yield 

(max. 0.69 ± 0.06 g per 100 mL), while the highest yield (0.86 ± 0.02 g per 100 mL) was 
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achieved in samples with 30 mg ESP per mL. Catalyst loadings of 12 and 20 mg per mL

gave close yields of lactulose at 0.77 ± 0.13 and 0.79 ± 0.05 g per 100 mL, respectively. 

This could be due to the fact that the reaction had reached a catalyst independent stage, 

therefore, an excess loading of catalyst did not result in higher yield of lactulose.            

A higher catalyst loading would however affect the isomerisation time. For example, 

with 6 mg per mL ESP loading the time needed to obtain the maximum yield was 150 

min while the similar yield could be attained within 120 min by increasing ESP loading 

to 12-30 mg per mL.  

Figure 5.2b shows the effects of catalyst loading on the pH variations of MCP during 

isomerisation for 150 min at 98°C. The initial pH of MCP was similar to that of fresh 

milk and in all cases the change of pH was marginal upon the addition of ESP (ca. 6.7-

6.8). At a catalyst loading of 20 and 30 mg per mL, the pH reached > 7.5 after 30 min of 

treatment, then rose to > 8.5 after 60 min and dropped back marginally to 7.9-8.1 after 

150 min. The observed pH drop at the final stages of isomerisation could be due to the 

formation of small amounts of organic acids i.e. isosaccharinic acid (Moreno et al. 

2003) and formic acid (Berg and van Boekel 1994), derived from degradation of 

lactulose with prolonged heating. The pH changes were less pronounced in treatments 

containing 6 mg ESP per mL (max. pH 8.1 at 150 min) and 12 mg per mL (max. pH 8.4 

at 120 min).  

Although a higher yield of lactulose could be achieved with increasing the catalysts 

loading, it may lead to the formation of a higher level of coloured by-products as reflected 

by increased b∗ value (data not shown). Therefore, a catalyst loading of 12 mg per mL

was considered sufficient for optimum conversion level and minimum formation of 

degradation by-products, and this loading level was adopted in subsequent investigations. 
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Table 5.1 shows changes in lactulose, pH and b* values of MCP treated with 12 mg 

ESP per mL at the various temperatures (90, 96 and 100°C) and times. No lactulose was 

formed at 90°C for 150 min, and even when the process was prolonged to 180 min only 

ca. 0.06% of initial lactose was isomerised to lactulose (0.24 g per 100 mL). A slight 

variation in b* values and a slow rise in pH were observed during this process, 

confirming the very slow rate of lactose conversion. 

The yield of lactulose was significantly enhanced at elevated temperatures between 96 

and 100°C. Both treatments gave statistically similar amounts of lactulose formed (P > 

0.05) showing the rapid increase after 60 min (0.24-0.28 g per 100 mL), further rise 

between 90 and 120 min (0.51-0.76 g per 100 mL) and levelling off thereafter (0.73-

0.81 g per 100 mL). Concurrently a drop in pH and a rise in b* values were observed. 

The maximum amount of lactulose formed in MCP heated at 96 and 100°C was reached 

after 150 min (0.81 and 0.79 g 100 per mL). The extension of treatment time from 120 

to 150 and 180 min, however, was deemed unnecessary as the lactulose yield at the 

three isomerisation times was statistically similar (P > 0.05). 

5.5.3 Effect of isomerisation temperature and time on lactose isomerisation 



C
ha

pt
er

 5
 

10
9

T
a
b

le
 5

.1
 

A
v
er

a
g
e 

v
a
lu

es
 o

f 
la

ct
u

lo
se

, 
p

H
 a

n
d

 b
*

d
u

ri
n

g
 t

h
e 

is
o
m

er
is

a
ti

o
n

 o
f 

M
C

P
 a

t 
v
a
ri

o
u

s 
te

m
p

er
a
tu

re
s 

a
n

d
 t

im
es

 

Is
o

m
er

is
a

ti
o

n
 t

im
e 

(m
in

) 
V

a
lu

e
T

em
p

er
a

tu
re

(° °°°
C

) 
0

 
3

0
 

6
0

 
9

0
 

1
2

0
 

1
5

0
 

1
8

0
 

90
 

N
D

 
N

D
 

N
D

 
N

D
N

D
N

D
 0

.2
4 

±
 0

.0
4 

96
 

N
D

N
D

0.
24

 ±
 0

.0
4c  

0.
57

 ±
 0

.0
6b  

0.
75

 ±
 0

.0
7a  

0.
81

 ±
 0

.0
6a  

0.
73

 ±
 0

.2
5a

L
a

ct
u

lo
se

10
0 

N
D

N
D

0.
28

 ±
 0

.0
2c  

0.
51

 ±
 0

.0
7b  

0.
76

 ±
 0

.0
2a  

0.
79

 ±
 0

.0
6a  

0.
79

 ±
 0

.0
2a

90
 

6.
7 

±
 0

.0
e 

6.
8 

±
 0

.0
e 

7.
1 

±
 0

.1
d 

7.
2 

±
 0

.1
c 

7.
3 

±
 0

.0
c 

7.
8 

±
 0

.1
b 

8.
4 

±
 0

.1
a 

96
 

6.
7 

±
 0

.0
e 

7.
2 

±
 0

.1
d 

8.
2 

±
 0

.0
a 

8.
3 

±
 0

.0
a 

8.
3 

±
 0

.1
a 

8.
0 

±
 0

.0
b 

7.
9 

±
 0

.1
c 

p
H

 

10
0 

6.
7 

±
 0

.0
d 

7.
3 

±
 0

.1
c 

8.
1 

±
 0

.2
b 

8.
4 

±
 0

.1
a 

8.
1 

±
 0

.0
b 

8.
0 

±
 0

.1
b 

7.
9 

±
 0

.1
b 

90
 

-4
.4

 ±
 0

.3
c 

  -
4.

2 
±

 0
.3

bc
 

 -
4.

4 
±

 0
.2

bc
 

 -
4.

3 
±

 0
.3

bc
 

  -
4.

3 
±

 0
.1

c 
   

-3
.9

 ±
 0

.1
b 

  -
3.

2 
±

 0
.0

a 

96
 

-4
.3

 ±
 0

.3
f 

-3
.9

 ±
 0

.2
f 

-1
.8

 ±
 0

.2
e 

-0
.2

 ±
 0

.0
d 

1.
6 

±
 0

.2
c 

2.
5 

±
 0

.3
b 

3.
8 

±
 0

.2
a 

b
*

10
0 

 -
4.

4 
±

 0
.2

g
-4

.0
 ±

 0
.0

f
-2

.0
 ±

 0
.1

e
-0

.5
 ±

 0
.1

d
2.

4 
±

 0
.3

c
3.

1 
±

 0
.1

b
4.

2 
±

 0
.1

a

1 
V

al
ue

s 
ar

e 
m

ea
n 

±
 S

D
 o

f 
tw

o 
di

ff
er

en
t 

ex
pe

ri
m

en
ts

. 
2 
R

es
ul

ts
 o

f 
su

ga
r 

co
nt

en
t 

ar
e 

ex
pr

es
se

d 
in

 g
 p

er
 1

00
 m

L
. 

3 
D

if
fe

re
nt

 l
et

te
rs

 i
n 

th
e 

sa
m

e 
ro

w
 d

if
fe

r 
si

gn
if

ic
an

tl
y 

at
 P

 ≤
 0

.0
5 

by
 D

M
R

T
. 

4 
N

D
 =

 n
on

-d
et

ec
ta

bl
e 

(b
el

ow
 d

et
ec

ti
on

 l
im

it
).

 



Chapter 5 

110

5.5.4 Effect of the catalyst type on lactose isomerisation 

Figure 5.3 shows the conversion (%) of lactose into lactulose from MCP and control 

lactose solution using limestone, OSP and ESP. In blank, only ca. 3% conversion was 

detected in MCP after 150 min, and in control lactose solution after 120 min. In the 

presence of 12 mg catalyst per mL, irrespective of type, a significantly higher level of 

conversion was achieved in both solutions and at earlier stages of heating, i.e. within 60 

min ca. 13% conversion was detected in control lactose solution but only ca. 3-6% in 

MCP. As the treatment time progressed, the conversion in both solutions reached 12-

15% at 90 min, rising to 18-20% after 120 min, but dropped back to 16-18% after 150 

min of heating.  

Changing catalyst type had only a small effect on the conversion level. It was found that 

limestone gave 3% less conversion than ESP and OSP (2.8% cf. 5.9-6.1%) in MCP after 

60 min (Figure 5.3a), and 2% less in the control lactose solution (9.6% cf. 11.6-12.0%) 

after the first 30 min (Figure 5.3b). However, all catalysts showed similar conversion 

rates between 90 and 150 min in both solutions. These findings support the 

effectiveness of OSP or limestone for lactose isomerisation as a replacement to ESP. 

Interestingly, it was found in a preliminary study that calcium carbonated-based 

catalysts could be re-used at least twice without significant loss of their catalytic ability 

which is an advantage over the soluble catalysts such as NaOH and Ca(OH)2. 

The lower level of lactulose formation in MCP at the start of process compared to 

control lactose solution could be attributed to the buffering effect of residual proteins 

and/or other miscellaneous constituents present in MCP used in this study. As shown in

Figure 5.4, upon the addition of catalysts to control lactose solution the pH rose from 

the adjusted initial value of 6.7 to ca. 9.0 before dropping back to < 8.0 with reaction 
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time. Under these conditions, lactulose was formed within 30 min of heating (ca. 9.6% 

conversion). 
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Figure 5.3 Conversion of lactose to lactulose from (a) MCP and (b) control 

lactose solution using different catalysts and without catalyst (Blank)   
Data represent the mean ± SD of three different experiments.
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On the other hand, the pH of the MCP did not change much upon catalyst addition and 

after 60 min heating reached > 8.0, but stayed < 8.5 after 90 min of heating, probably 

due to heat denaturation of residual proteins and loss of their buffering capacity. This is 

in agreement with previous reports by Olano et al. (1987) and Claeys et al. (2002) who 

found that lactulose did not form at the earlier stages of heating when the pH was close 

to that of fresh milk, but formed faster when the pH of reaction mixture was near or 

above 8.0. Furthermore, the residual proteins in MCP could form a complex with 

lactulose to produce lactosyl-amino compounds, thus lowering lactulose yield (O’Brien 

1997). 

4

5

6

7

8

9

10

0 30 60 90 120 150
 

p
H

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  p
H

 

4

5

6

7

8

9

10

0 30 60 90 120 150

                                                    Time (min) 

 

Figure 5.4 Changes in pH during isomerisation of (a) MCP and (b) control 

lactose solution using limestone ( ), ESP ( ) and OSP ( ); and 

without catalyst (Blank ) 
Data represent the mean ± SD of three different experiments.
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Figure 5.5 shows the degradation of lactose during isomerisation of MCP and control 

lactose solution using different calcium carbonate-based catalysts and the blank. In the 

absence of catalyst, while no lactulose was formed, lactose content diminished up to 

10% in MCP after 120 min, and 3.3% in control lactose solution after 90 min. The 

higher loss of lactose in MCP could be ascribed to partial condensation of lactose with 

residual proteins via the Maillard reaction. According to Berg and van Boekel (1994) 

80% of lactose in heated milk undergoes Lobry de Bruyn-Alberda van Ekenstein 

transformation, but 20% enters the Maillard reaction. In the presence of all catalysts, a 

considerable loss of lactose in favour of lactulose formation was observed in both 

solutions. The maximum net degradation of lactose after subtraction of that of blank 

was ca. 36% of the initial mass of lactose, and after deduction of the maximum yield of 

lactulose obtained (ca. 20% of initial lactose), it was assumed that the rest of degraded 

lactose was converted to other compounds e.g. monosaccharides and organic acids. 

Montilla et al. (2005) reported that ca. 9% of lactose degraded into by-products (0.34 g 

per 100 mL galactose, 0.09 g per 100 mL epilactose and 0.02 g per 100 mL organic 

acids) under isomerisation conditions similar to the present study.  

One of the by-products of lactose isomerisation is the formation of brown coloured 

compounds e.g. melanoidins (van Boekel 1998). This can be measured using 

spectrophotometric method, however, because of its turbidity the brown colour of MCP 

was assessed using a colorimeter and reported as b∗ value which is directly correlated to 

yellowness.  
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Figure 5.5 Degradation of lactose in (a) MCP and (b) control lactose solution 

using limestone ( ), ESP ( ) and OSP ( ); and without catalyst 

(Blank ) 
Data represent the mean ± SD of three different experiments.

Figure 5.6 shows changes in colour during the isomerisation of MCP measured as the b∗

values and of control lactose solution designated as absorbance values at 420 nm. The 

increase development of the brown colour was independent of catalyst type. In both 

solutions, there was a small variation in the colour of blanks but a noticeable increase in 

the intensity of brown colour in all catalyst-treated samples. 
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Figure 5.6 Increase in b
∗∗∗∗ and absorbance values at 420 nm during isomerisation 

of MCP (a) and control lactose solution (b) using limestone ( ), ESP 

( ) and OSP ( ); and without catalyst (Blank ) 
Data represent the mean ± SD of three different experiments.

In this study, the OSP gave comparable yield of lactulose to ESP and limestone. 

Undoubtedly, the use of ESP and OSP is economical due to their origin being waste 

materials, and is beneficial to the environment by alleviating shell disposal problems. 

However, both catalysts may have variable chemical composition compared to pure 

limestone. Oyster shells come from the sea therefore its mineral content cannot be 

controlled, while the constituents of egg shell depend closely on the formulation of the 

feed.  
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5.5.5 Effect of de-proteination on lactose isomerisation 

The usefulness of ESP as catalyst for lactose isomerisation has been reported by

Montilla et al. (2005) who achieved the maximum lactulose conversion of 25.3% in 

MCP after 90 min of treatment with 4 mg per mL ESP at 98°C. In the present study, 

however, lactulose yield did not exceed 21% of the initial lactose content during heat 

treatment with 12 mg per mL ESP at 96°C for 120 min. The higher yield of lactulose 

reported in study by Montilla et al. (2005) can be attributed to the variation in MCP 

compositions, isomerisation conditions and a more sensitive detection method (GC). 

The MCP used in the current study was contaminated with ca. 0.5% protein.  

So far, little is known about the effects of protein on the formation of lactulose in the 

catalytic systems. The majority of published data are on the lactulose formation in 

heated milk (without catalyst addition) and are contradictory. Greig and Payne (1985) 

and Olano et al. (1989) reported that the addition of amino group (L-lysine) into model 

milk solution or into 5% lactose-buffer solution dropped the amount of lactulose 

formed. Andrews and Prasad (1987) also suggested that increasing protein 

concentration of milk reduced lactulose formation. On the other hand, Martinez-Castro 

et al. (1986) observed less lactulose formation in simulated milk ultrafiltrate (SMUF) 

than in milk under the similar conditions. These effects were ascribed to the buffering 

action of the proteins in milk.  

In the earlier stage of the current study (sections 5.5.2-5.5.4), the effectiveness of 

calcium carbonate-based catalysts for the isomerisation were examined in MCP 

contaminated with protein. The buffering action of protein contaminants resulted in the 

pH stability of catalyst-treated MCP at the initial stage of heating and was responsible 

for slower rate of lactulose formation as compared to control lactose solution (Figure 
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5.4). To overcome the adverse effect of protein contaminants in MCP on lactose 

isomerisation, the MCP was de-proteinated by acidification under mild heat treatment 

and filtration to remove proteins prior to isomerisation. 

Figure 5.7 shows changes in lactose and lactulose contents and pH of de-proteinated 

MCP during the isomerisation at 96°C for 150 min. Lactulose was formed rapidly in de-

proteinated MCP within the first 30 min of isomerisation (0.38 ± 0.04 g per 100 mL) 

which doubled after 60 min (0.69 ± 0.15 g per 100 mL) and reached a maximum (0.90 ±

0.12 g per 100 mL) equivalent to 21.9% of initial lactose content, within 120 min 

(Figure 5.7a). Contrary to the expectation that the removal of protein contaminants 

would eliminate the Maillard reaction and thus would lead to a significant increase in 

lactulose yield, the results revealed that de-proteinated MCP gave only ca. 0.15 g per 

100 mL more lactulose yield than the original MCP under the same isomerisation 

conditions, and nearly identical yield to control lactose solution. These findings 

indicated that the presence of protein contaminants in original MCP did not adversely 

affect the maximum yield of lactulose nor the time required for isomerisation, possibly 

as a result of the retarding effect of protein on pH drop of solution during heating 

(O’Brien 1997). According to Aider and de Halleux (2007), the maintenance of high pH 

favours lactulose formation and also delays the formation of degradation by-products. 

An interesting observation was that upon the addition of catalysts the pH of the de-

proteinated MCP did not rise (Figure 5.7b). This indicated that besides the buffering 

action from the residual proteins in MCP, other miscellaneous constituents e.g. citrates 

and phosphates may also help maintain the pH at the start of the process. However, 

within 30 min of heating the pH rose significantly from ca. 6.8 to 8.7 ± 0.1 before 

dropping back to 8.4 ± 0.2 after 60 min and stabilising to ca. 7.8 after 90 and 150 min.  
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Figure 5.7 Changes of lactose ( ), lactulose ( ), pH ( ) and absorbance values  

(–ffff–) during the isomerisation of de-proteinated MCP added with 12 

mg per mL ESP at 96°°°°C for 150 min
Data represent the mean ± SD of four different experiments.

Figure 5.7b also shows a noticeable increase in undesirable brown colour development 

measured at 420 nm during the course of treatment. The highest absorbance value of 1.6 

± 0.2 was attained in the samples heated for 150 min, similar to those reported by 

Montilla et al. (2005). The brown colour development was more pronounced in de-

proteinated MCP than in control lactose solution (Figure 5.6b) under the similar 

isomerisation conditions. With 120 min, for instance, the absorbance values of de-

proteinated MCP and control lactose solution were 1.2 ± 0.2 and 0.6 ± 0.1, respectively. 

Similar trends were observed in the earlier study by Mahran et al. (1995).  

5.5.6 Effect of colour removal on quality of lactulose-enriched MCP 

Figures 5.8 and 5.9 show changes of lactulose content and the reduction in colour of 

lactulose-enriched MCP after treatments with H2O2 and activated carbon. The lactulose-

enriched MCP originally had a golden-yellow colour with the absorbance value (420 

nm) of 0.5 ± 0.1. By H2O2 treatment (10 mL per 100 mL of 17.5% H2O2), excess colour 

was effectively removed within 10 min at 95°C (Figure 5.9b), resulting in a five-fold 

drop in absorbance values. Similarly, addition of 5 g per 100 mL of activated carbon 
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resulted in an 84% reduction in absorbance values within 10 min (Figure 5.9c). Analysis 

of sugar contents showed that decolourisation had a small but statistically insignificant 

effect (P > 0.05) on lactulose content (Figure 5.8b). Lactulose content dropped from 

0.84 ± 0.07 to 0.77 ± 0.02 as a result of H2O2 treatment and to 0.72 ± 0.07 g per 100 mL 

by treatment with activated carbon. 

 

 

 

 

 

Figure 5.8 Brown colour and lactulose content of lactulose-enriched MCP before                

( ) and after treatment with H2O2 ( ) and/or activated carbon ( ) 
Data represent the mean ± SD of three different experiments.  
Bars with different letters are significantly different at P ≤ 0.05 by DMRT.

Figure 5.9 Colour of lactulose-enriched MCP before (a) and after treatment with 

H2O2 (b) or activated carbon (c) 
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5.6 Conclusions 

A low-value waste stream of MCP can serve as a cheap and readily available lactose 

source for lactulose production. Proteins if present in MCP can affect the isomerisation 

rate only in the earlier stages without adverse effect on yield of lactulose at longer 

heating periods. Other calcium carbonate-based catalysts i.e. OSP and limestone were 

shown to be equally effective as catalysts for lactulose production as ESP. They are 

insoluble reagents which could be easily removed from the reaction mixture for 

subsequent re-use. Isomerisation of MCP with OSP or ESP offers an alternative way to 

use those waste materials. A catalyst loading of 12 mg per mL was considered sufficient 

for optimum conversion level as increasing catalyst loading caused insignificant 

increase in yield of lactulose. Calcium carbonate was shown to possess the catalytic 

activity in the temperature range between 96 and 100°C with the optimum isomerisation 

time of 120 min. In addition to formation of organic acids and monosaccharides, the 

formation of pigmented by-products directly depended on heating time, temperature and 

catalyst loading. The brown colour developed can efficiently be removed by treatment 

with either activated carbon or H2O2.   

The optimised isomerisation conditions were determined as: carbonate-based catalyst 

loading of 12 mg per mL of de-proteinated MCP and isomerisation time of 120 min at 

96°C for preparing lactulose-enriched MCP with acceptable lactulose yield of 22%. The 

bifidogenic power of lactulose-enriched MCP syrup (40°B) is examined in the 

following chapter. 
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Chapter 6 

Bifidogenic effects of JAI and lactulose-enriched MCP syrup 

on probiotic bacteria 

6.1  Abstract 

The prebiotic effects of experimentally-prepared prebiotic compounds, viz. lactulose-

enriched MCP syrup and Jerusalem artichoke inulins (concentrate and powder) on the 

growth and acid production by three probiotic organisms, namely Bifidobacterium 

bifidum BB-12, Lactobacillus acidophilus LA-5 and Lactobacillus casei LC-01 were 

studied in reconstituted skim milk (RSM) and modified MRS broth. The growth-

sustaining ability of JAIP was compared with two commercial chicory inulin powders 

on Lactobacillus casei LC-01. Changes in pH, titratable acidity and bacteria counts 

were monitored on day 1 and during storage of yoghurts at 4°C for 4 weeks. The results 

showed that by the end of the storage period the numbers of LC-01 in JAIP-

supplemented yoghurts were ca. 7 log CFU g-1 which gave them the status of functional 

ingredients. 

6.2 Introduction 

Yoghurt is currently manufactured and consumed in many countries around the world 

(Chandan and O’Rell 2006). Recent developments in yoghurt production are 

incorporating probiotic organisms for therapeutic benefits (Holzapfel and Schillinger 

2002) and exopolysaccharide-producing starters for texture improvement (Amatayakul 

et al. 2006a, 2006b). Interest in incorporating probiotic organisms in yoghurt dates back 

to late 1970s (Huges and Hoover 1991) and the market for this product is still rising. 

In Australia, yoghurt consumption has increased steadily from 5.3 kg per capita per year 
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in 2000 to 6.8 kg in 2007 (Dairy Australia 2007), and the probiotic yoghurt constitutes 

the largest share in the probiotic dairy foods market, representing 82% of the total 

market volume (Anon 2003).   

One of the most important requirements for manufacturing and marketing of the 

probiotic yoghurt is to maintain a high number of probiotic organisms ≥ 6 log CFU g-1

at the point of consumption (Kurman and Rasic 1991; Lourens-Hattingh and Viljoen 

2001), in order to achieve the claimed health benefits. However, various probiotic 

lactobacilli and bifidobacteria show a decline in their viability during product’s shelf 

life (Hull et al. 1984; Medina and Jordano 1994; Schillinger 1999). Several factors are 

responsible for the viability of these organisms e.g. the strains used, culture conditions, 

antagonism among cultures present, storage time and temperature, initial counts, 

hydrogen peroxide and oxygen contents in the medium, and the amount of organic acids 

in the product (Shah 2000; Medina and Jordano 1994). Probiotic organisms especially 

bifidobacteria grow slowly in milk due, in part, to their lack of proteolytic activity 

(Klaver et al. 1993), thus requiring the incorporation of essential growth factors such as 

peptides and amino acids to enhance their growth (Elli et al. 1999). However, they do 

not attain the same high numbers as common yoghurt bacteria (Champagne et al. 2005). 

Considerable studies have been conducted to stimulate the growth of probiotic bacteria 

during yoghurt fermentation and to improve their survival until the use-by-date, by 

supplementing yoghurt milk with growth factors such as vitamin-enriched protein 

hydrolysate, amino nitrogen, whey protein concentrate and oxygen scavengers (Klaver 

et al. 1993; Dave and Shah 1998; Kailasapathy and Supriadi 1996; Oliveira et al. 2001; 

Akalin et al. 2007; Dave and Shah 1997b; Amatayakul et al. 2006a, 2006b). Use of 

proteolytic yoghurt bacteria i.e. Lactobacillus delbrueckii subsp. bulgaricus (LB) and 
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Streptococcus thermophilus (ST) in probiotic yoghurt manufacture also enhances the 

growth and viability of probiotics and helps to reduce fermentation time (Samona and 

Robinson 1994; Saxelin et al. 1999; Dave and Shah 1998).  

A further step to enhance probiotic growth and survival is to incorporate prebiotic 

substrates (Bruno et al. 2002; Akalin et al. 2004; Shin et al. 2000; Desai et al. 2004). 

Products containing a combination of prebiotics and probiotics are known as synbiotics 

(Gibson and Roberfroid 1995; Ziemer and Gibson 1998). It is important to select 

appropriate prebiotics for improving the viability retention of probiotics in fermented 

dairy products and for sustaining their growth in the colon (Bielecka et al. 2002; 

Crittenden et al. 2001). The most studied substances are chicory-derived inulin-type 

fructans (Roberfroid 1998) and to a certain degree, the lactulose (Strohmaier 1998). 

  
The two previous chapters described development of protocols for inulin extraction 

from JA tubers and lactulose isomerisation from MCP. The aim of this study was to 

evaluate the prebiotic power of the developed ingredients to support the growth and 

survival of probiotic bacteria in fermented milk. Consequently, the objectives of this 

study were to: 

1. Examine the growth and acid production of three probiotic strains in the 

presence of lactulose-enriched MCP syrup or JAI (concentrate and powder). The 

comparison was made in both basal media and reconstituted milk with non-

supplemented samples as well as commercial prebiotic products.

2. Select the probiotic strain that shows preference to JAI for subsequent 

development of synbiotic yoghurt. 
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3. Determine the effects of inulin powder addition (JAIP and chicory inulins) on 

the acidifying activities and survival of selected probiotic (LC-01) during 28 

days of yoghurt shelf life. 

 

6.3 Materials and methods 

6.3.1 Experimentally-prepared prebiotic compounds and working cultures  

Lactulose is normally sold in the syrup form because of difficulties in its crystallisation 

and drying. In this study, therefore, the lactulose-enriched MCP prepared under 

optimum conditions reported in section 5.3.5 was further concentrated using a rotary 

evaporator at ≤ 70°C to obtain lactulose-enriched MCP syrups with 40°B soluble solids.  

For JA-based inulins, JAIS at 40°B was prepared following the method given in 4.3.1 

while spray-dried JAIP was prepared under optimum conditions for cold fractionation 

reported in 4.4.3. 

Freeze-dried cultures (LC-01, BB-12 and LA-5) (section 3.1.4) were activated by 

adding 10 mg of each freeze-dried culture into 100 mL of MRS broth, incubated 

overnight at 37°C and stored at 4°C until required for use. Prior to each trial, 10 mL of 

this bulk cultures was sub-cultured in triplicates into 90 mL of MRS broth and 

incubated at 37°C for 12-16 h to give working culture. 

6.3.2 Determination of the prebiotic effect of lactulose-enriched MCP syrup 

6.3.2.1 Fermentation in broth 

The carbohydrate-free MRS broth was prepared as a basal growth medium by 

dissolving 10 g peptone from casein, 4 g yeast extract, 8 g Lab-Lemco powder, 2 g tri-

ammonium citrate, 1 mL Tween 80, 2 g K2HPO4, 0.2 g MgSO4.7H20, 0.05 g 

MnSO4.4H2O and 5 g sodium acetate (Table 3.1) in distilled water and making the 
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volume to 1 L (Kneifel et al. 2000). The medium was sterilised at 121°C for 15 min and 

aliquots of 8.75 mL were aseptically distributed into sterile test tubes which were 

supplemented with 0.25 mL of filter-sterilised (0.45 µm) CHO sources (40°B) and 

inoculated in triplicate with 1 mL of probiotic working culture, so that a final 

concentration of lactulose-enriched MCP syrup was 1%. For comparison, lactulose-free 

concentrated MCP (40°B) and 40% lactulose solution (Analytical grade, Sigma) were 

used as control and reference substrates, respectively. The media tubes containing LA-5 

were incubated aerobically overnight at 37°C while those containing LC-01 and BB-12 

were transferred into anaerobic jars containing AnaeroGenTM 2.5 L sachets and 

incubated overnight at 37°C followed by enumeration (section 3.6.2).  

6.3.2.2 Fermentation in RSM 

The suitability of the lactulose-enriched MCP syrup as a prebiotic supplement was 

determined by supplementing RSMs at 12, 13, 14 and 15% solids content with different 

levels (4, 3, 2 and 1%) of MCP syrup to final solids content of 16% (Table 6.1). The 

control (non-supplemented RSM, 16%, w/v) and lactulose-supplemented RSMs were 

heat-treated at 90°C for 10 min with constant stirring and cooled to 37°C. In this study, 

direct inoculation with freeze-dried probiotic cultures (LC-01 and LA-5) was chosen for 

milk fermentation. Based on the culture manufacture’s instruction, 25 mg of each of the 

two freeze-dried probiotics was individually inoculated into 500 mL RSMs, completely 

suspended in milk then transferred aseptically into 100 mL plastic containers, tightly 

covered and incubated at 37°C overnight. Duplicate determinations of bacterial counts 

(section 3.6), titratable acidity (TA) and pH (sections 3.5.1-3.5.2) were conducted on 

duplicate samples taken from each batch after overnight incubation. 
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Table 6.1 Ingredients used for yoghurt preparation 

Ingredient 
RSM solids 

content (%) 

Supplementation 

level (%) 
LHSMP

a

(g) 

Syrup at 40°B
b

(mL) 

Distilled water 

(mL) 

16 0 16.3 - 83.7 
15 1 15.3 2.5 82.2 
14 2 14.3 5.0 80.7 
13 3 13.3 7.5 79.2 
12 4 12.2 10.0 77.8

a Low-heat skim milk powder contains a total solid of 98%.  
b Lactulose-enriched MCP syrup or JAIS 

6.3.3 Determination of the prebiotic effect of JAIS

6.3.3.1 Effect of JAIS supplementation level  

Prebiotic properties of JAIS at 40°B (section 6.3.1) were assessed with LC-01, BB-12 

and LA-5, at the same supplementation levels as used for MCP lactulose in RSMs (0, 1, 

2, 3 and 4%, Table 6.1). Fifteen experiments were conducted in triplicate by a 3 × 5 

factorial design (three cultures × five supplementation levels) under the same conditions 

described in section 6.3.2.2. Yoghurt samples thus produced were analysed for probiotic 

counts, pH and TA after overnight incubation. 

6.3.3.2 Effect of culture compositions 

In probiotic yoghurt manufacturer, to provide the typical yoghurt flavour and to speed-

up the fermentation process, the use of yoghurt starters is essential (Chandan and O’Rell 

2006). However, as they grow faster than probiotic bacteria during fermentation and 

produce acids that could adversely affect the viability of probiotic, the initial 

fermentation with probiotic cultures and completion of fermentation with yoghurt 

cultures is recommended (Lankaputhra and Shah 1997). Hence, the objective of this part 

of the study was to evaluate the effect of traditional yoghurt starters (YC-380, section 

3.1.4) on the growth of LC-01 in RSMs containing JAIS (40°B) and to establish a 

suitable method for incorporating the two groups of cultures in yoghurt milk. 
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Two litres of JAI-supplemented RSM at a final solids content of 16% were prepared by 

dissolving 244 g LHSMP (98% total solids) in 1,556 mL distilled water, followed by 

adding 200 mL JAIS at 40°B (Figure 6.1) to give a final inulin concentration of 4%. 

The mixture was then heat-treated at 90°C for 10 min, cooled to 37°C and divided into 

four equal batches (500 mL each). Two batches were fermented in a single-stage 

process (Figure 6.1), one batch (Trial A) with LC-01 (0.02%) as the sole culture and the 

other batch (Trial B) with mixed cultures of YC-380 and LC-01 (0.01% each) at 37°C 

until the desired pH of 4.5. The remaining two batches were made with mixed cultures 

using two-stage fermentation. One batch (Trial C) was initially inoculated with 0.01% 

of freeze-dried YC-380 and incubated at 37°C for 4 h, followed by secondary 

inoculation with 0.01% LC-01 and incubation at 37°C to reach pH 4.5. The same 

procedure was repeated for the last batch (Trial D), except that LC-01 was inoculated 

before YC-380 (Figure 6.1). The length of fermentation time of 4 h was determined by 

estimating from the growth curve of LC-01 that the culture should be at the late lag 

phase growth times. All trials were repeated three times. Bacterial counts (section 3.6), 

TA and pH measurement (sections 3.5.1-3.5.2) were carried out post-inoculation, post-

incubation and overnight refrigeration (day 1) and on after 7 days of storage at 4°C. 
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244 g LHSMP + 200 mL JAIS 40°B + 1,556 mL distilled water 

Supplemented-RSM 16% total solids 

Heat treatment (90°C 10 min) 

Cooling (37°C) 

Inoculation 
(A) (B) (C) (D) 

LC-01 
0.02% 

YC-380 + LC-01 
(0.01% each) 

YC-380 
0.01% 

LC-01 
0.01% 

    

Filling  Filling Incubation (37°C 4h) Incubation (37°C 4h) 

    

Incubation 
(37°C until 
 pH ~ 4.5) 

Incubation 
(37°C until 
 pH ~ 4.5) 

 Inoculation LC-01 
0.01%  

Inoculation YC-380 
0.01% 

    

Cooling & storage 
(4°C) 

Cooling & storage 
(4°C) 

Filling Filling 

    

  Incubation 
(37°C until pH ~ 4.5) 

Incubation 
(37°C until pH ~ 4.5) 

    

  Cooling & storage 
(4°C) 

Cooling & storage 
(4°C) 

Figure 6.1 Flow diagram for  yoghurt production trials 

6.3.4 Determination of the prebiotic effect of JAIP

The objectives of this study were to gain a better understanding of prebiotic effect of 

JAI and to verify the capability of selected probiotics on JAI utilisation. The growth 

promoting ability of spray-dried JAIP (section 6.3.1) on a range of probiotics (LA-5, 

LC-01, BB-12) in basal media was compared with three commercial chicory powders 

with varying degree of polymerisation (DP) i.e. Raftilose P95, Raftiline GR and 
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Raftiline HP and two sugars i.e. lactose and glucose (section 3.1.5), all added at 4% 

level. Control batches contained no prebiotics or sugars.  

Carbohydrate-free MRS broth was prepared from individual ingredients as described in 

section 6.3.2.1. To maintain uniform growth conditions throughout the experiments, the 

sterilised media was made in large batch and divided into 18 pre-sterilised universal 

bottles (80 mL each). Four grams of each of the six carbohydrates were dissolved with 

distilled water and made up to 20 mL, and after filter sterilisation the solutions were 

separately added to a series of cooled sterile media bottles (n = 3) containing 80 mL 

growth media to make a final concentration of 4% (w/v). Non-supplemented medium 

(100 mL) was used as control. 

One millilitre of each of the activated cultures (section 6.3.1) was added into each media 

bottle and incubated under aerobic condition for LA-5, and an anaerobic atmosphere for 

BB-12 and LC-01 at 37°C for 16 h. The turbidity of the growth media was examined at 

the end of incubation period by measuring their optical density (OD). The incubated 

bottles were vortexed for 20 s, and the homogenised media were transferred into optical 

cuvettes for absorbance readings at 600 nm (n = 3) against the non-supplemented, non-

cultured basal medium (Kneifel et al. 2000).  

6.3.5 Effects of inulin addition on the survival of probiotic and lactic acid 

bacteria in yoghurt during refrigerated storage 

The effectiveness of supplementing JAIP in improving the viability of probiotic and 

yoghurt cultures was assessed in comparison to chicory inulin powders over 28 days of 

cold storage (4°C). Three experimental yoghurts, labelled as JAY, INY and OFY were 

made with 12% RSMs supplemented with 4% of JAIP, chicory inulin (Raftiline GR) 
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and oligofructose (Raftilose P95), respectively. A batch of control non-fat yoghurt 

(16% total solids), labelled as NFCY, was also prepared. The set yoghurts were 

prepared as described in section 6.3.3.2, using mixed cultures of LC-01 and YC-380 

(0.01% each). The experiments were replicated three times. The sampling schedule for 

testing was immediately after the addition of starter culture into milk (Day 0), after 

overnight incubation (day 1), 24 h-post fermentation (day 2) and at weekly intervals 

(day 7, 14, 21 and 28). The analyses were performed on triplicate samples in triplicate 

for TA and pH (sections 3.5.1-3.5.2), and in duplicate for bacterial counts (section 3.6). 

The viability of each culture in different samples was calculated as follows (Bruno et al. 

2002):  

CFU after 4 week of storage 
% Viability =  

initial CFU  
× 100

6.4 Results and discussion  

Three sets of trials were conducted to determine the prebiotic properties of lactulose-

enriched MCP syrup, JAIS and JAIP. The probiotic strains, comprising L. acidophilus

LA-5, L. casei LC-01 and B. bifidum BB-12 were selected on the basis of their common 

use as probiotic cultures in yoghurt manufacturers in Australia. Depending on the 

experiment, these cultures were used as direct vat inoculation or as fresh cultures after 

activation of freeze-dried cultures.  

6.4.1 Prebiotic effect of lactulose-enriched MCP syrup 

Lactulose plays a beneficial role in human gut environment as a prebiotic by promoting 

the growth of probiotic organisms. To evaluate the prebiotic power of the lactulose-

enriched MCP syrup (40°B) developed in this project and to determine its possible 
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application in dairy products, the growth of the different probiotic strains in modified 

MRS media and in RSM containing lactulose-enriched MCP syrup were studied.  

Comparative viable counts of probiotics in modified MRS broths supplemented with 

1% of either lactulose-enriched MCP syrup (40°B), lactulose-free concentrated MCP 

(40°B, control), and reference lactulose solution (40%) is summarised in Table 6.2. 

Counts of LA-5 and LC-01 were maximal in media containing reference lactulose 

solution, followed by those in lactulose-enriched MCP syrup and the control. The 

capacity of lactulose-enriched MCP to enhance the growth of both strains was lower 

than that of reference lactulose solution possibly due to the presence of isomerisation 

by-products. Montilla et al. (2005) using isomerisation conditions similar to this study 

reported ca. 9% lactose degradation into by-products (0.34% galactose, 0.09% 

epilactose and 0.02% organic acids). The reference lactulose solution prepared from 

lactulose powder with 95% purity would also have higher quantity of lactulose 

compared to lactulose-enriched MCP syrup that had an estimated quantity of lactulose 

content of ca. 20% (w/v). 

The comparable bacterial counts between lactulose-enriched and lactulose-free MCP 

syrup additions could be ascribed by the similarity in their sugar and mineral contents. 

The differentiation would have been noticeable if the supplementation level of 

lactulose-enriched MCP syrup was increased or non-supplemented MRS broth was used 

as the control. 

Addition of lactulose-enriched MCP syrup or reference lactulose solution to broths, did 

not significantly improve the counts of BB-12 (8.7 and 9.0 log CFU mL-1 cf. 8.9 log 

CFU mL-1 in control). These findings are in accordance with those of Kontula et al. 
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(1998) and Kneifel et al. (2000) whereby L. acidophilus strains (including LA-5) and 

members of L. casei (including LC-01) grew well on lactulose-containing broth and 

were shown to utilise lactulose pronouncedly. No report is found in the literature on the 

utilisation of lactulose by BB-12, however, lactulose was found to promote the growth 

of B. longum (BB-46) in broth, but not B. lactis (Kneifel et al. 2000; Crittenden et al. 

2001). Similarly, Bruno et al. (2002) reported that the probiotic action of lactulose was 

strain-dependent, and that lactulose was effective in stimulating the growth of B.

longum, B. animalis and B. pseudolongum grown in RSM but not B. infantis. According 

to Smart et al. (1993) bacterial strains with higher β-galactosidase or phospho-β-

galactosidase activity had more potential to utilise lactulose.  

Table 6.2 Probiotics growth in modified MRS broth containing lactulose-free 

MCP, lactulose-enriched MCP syrup and reference lactulose solution  

Probiotic  Carbons source Bacterial count (log CFU mL
-1

) 

LA-5 Lactulose-free concentrated MCP  8.60 ± 0.35b

 Lactulose-enriched MCP syrup  8.71 ± 0.27ab

 Reference lactulose 8.92 ± 0.31a

LC-01 Lactulose-free concentrated MCP 9.63 ± 0.28b

 Lactulose-enriched MCP syrup 9.77 ± 0.42ab

 Reference lactulose 10.21 ± 0.38a

BB-12 Lactulose-free concentrated MCP 8.88 ± 0.45 

 Lactulose-enriched MCP syrup 8.74 ± 0.51 

 Reference lactulose 8.99 ± 0.18 

Results shown are mean ± SD for three experiments each with three replications. 
Different letters in the same column of each probiotic differ significantly at P ≤ 0.05 by DMRT.

Table 6.3 shows the viable counts and acidifying activity of LA-5 and LC-01 grown in 

RSMs containing various levels of lactulose-enriched MCP syrup after overnight 

incubation at 37°C. The probiotic BB-12 was not included in this part of the study since 

this strain show no response to lactulose addition in the earlier experiment. Overall, the 
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growth and activity of LA-5 increased as the level of lactulose increased whereas the 

corresponding values for LC-01 were not affected by lactulose level. 

The higher counts of LA-5 (ca. 8.5 log CFU g-1) were achieved with 3 and 4% 

lactulose-enriched MCP syrup compared to ca. 7.8-7.9 log CFU g-1 with 1 and 2% 

addition and ca. 7.9 log CFU g-1 with control (Table 6.3). At the rates of 3 and 4% 

lactulose-enriched MCP syrup addition, a significant drop in yoghurt pH (4.2-4.3) and a 

slightly higher level of acid production by LA-5 (0.80-0.85%) was observed compared 

to control (pH 4.5, TA 0.78%). Similar results were reported by Ozer et al. (2005) who 

found that lactulose powder when added to yoghurt at 0.25% and 2.5% promoted the 

counts of LA-5 to a great extent. 

Table 6.3 Counts of LA-5 and LC-01 and acid production in reconstituted skim 

milk supplemented with lactulose-enriched MCP syrup (40°°°°B) 

Probiotic strain Concentration 

(%) 

Bacterial count 

(log CFU g
-1

) 

pH TA 

(% lactic acid) 

LA-5 0 (control) 7.94 ± 0.17b 4.5 ± 0.1ab 0.78 ± 0.01 

 1 7.91 ± 0.12b 4.5 ± 0.2a 0.79 ± 0.06 

 2 7.78 ± 0.25b 4.5 ± 0.2a 0.79 ± 0.11 

 3 8.52 ± 0.06a 4.3 ± 0.0bc 0.80 ± 0.06 

 4 8.50 ± 0.19a 4.2 ± 0.0c 0.85 ± 0.01 

LC-01 0 (control) 8.48 ± 0.18 5.7 ± 0.0 0.49 ± 0.04

 1 8.28 ± 0.06 5.6 ± 0.0 0.46 ± 0.08 

 2 8.16 ± 0.28 5.6 ± 0.1 0.47 ± 0.01 

 3 8.38 ± 0.72 5.7 ± 0.1 0.46 ± 0.04 

 4 8.10 ± 0.28 5.7 ± 0.1 0.48 ± 0.02 

Results shown are mean ± SD for two experiments each with two replications. 
Different letters in the same column of each probiotic differ significantly at P ≤ 0.05 by DMRT. 

In the case of LC-01, the growth (ca. 8.1-8.4 log CFU g-1) and acidification in the 

presence of 1-4% lactulose-enriched MCP syrup were similar to those obtained in the 
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control (P > 0.05). Lactulose-enriched MCP syrup did not promote the growth of LC-01 

in RSM, as it did in broths (Table 6.2), possibly due to the effect of aerobic incubation. 

Saarela et al. (2003) suggested anaerobic incubation of milk supplemented with 

lactulose powder for the growth of Lactobacillus strains. 

6.4.2 Prebiotic effect of JAIS  

Two separate experiments were conducted to evaluate the prebiotic power of the JAIS 

in RSMs and to determine suitable culture compositions for use in the manufacture of 

yoghurts supplemented with JAIS: (i) trials with single strains of probiotics and (ii) 

trials with mixed cultures of probiotic and yoghurt cultures. 

Table 6.4 shows variations in the growth and acid production of probiotic organisms 

affected by the level of supplement with 40°B JAIS and the strains used. No stimulating 

effect of JAIS on the growth of BB-12 was observed and their viable counts remained 

between 8.4 and 8.6 log CFU g-1 (P > 0.05) when syrup level was increased from 0 to 

4%. In contrast, the growth of LC-01 was significant (P ≤ 0.05) at supplementation 

levels of 3-4%, reaching 8.6-8.8 log CFU g-1, while supplementation with 1-2% JAIS 

resulted in 7.9-8.0 log CFU g-1 that was not noticeably different to the control (8.3 log 

CFU g-1). Strains of LA-5 also showed a positive response to JAIS addition. Increasing 

syrup levels from 1% to 3 or 4% resulted in a significant increase in the viable counts of 

LA-5, reaching a maximum count of 8.3 log CFU g-1 at 4% supplementation level. 

Besides bacterial numbers, the lowering of pH and increase in acidity of milk were used 

as indices of the fermentability of JAIS by probiotic bacteria. The pH of RSMs 

inoculated with LA-5, LC-01 BB-12 dropped from ca. 6.4 ± 0.1 to 4.5-4.8, 4.7-5.1 and 

5.2-5.4, respectively (Table 6.4). Acid production showed a good correlation with pH 
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values. The BB-12 produced less acid (TA 0.46-0.48%) than LC-01 (0.49-0.63%) and 

LA-5 (0.70-0.76%).  

Table 6.4 Counts of LA-5, LC-01 and BB-12 and acid production in 

reconstituted skim milk supplemented with 40°°°°B JAIS 

Probiotic strain Concentration 

(%) 

Bacterial count 

(log CFUg
-1

) 

pH TA 

(% lactic acid) 

LA-5 0 (control) 7.91 ± 0.34b 4.5 ± 0.0b 0.76 ± 0.04

 1 7.90 ± 0.34b 4.8 ± 0.1a 0.71 ± 0.05

 2 8.11 ± 0.15ab 4.7 ± 0.1a 0.70 ± 0.04

 3 8.27 ± 0.19a 4.6 ± 0.1b 0.73 ± 0.07

 4 8.31 ± 0.16a 4.6 ± 0.1b 0.75 ± 0.03

LC-01 0 (control) 8.33 ± 0.30b 5.1 ± 0.4a 0.49 ± 0.08b

 1 7.91 ± 0.30b 4.9 ± 0.2ab 0.51 ± 0.09b 

 2 8.02 ± 0.41b 4.8 ± 0.1b 0.52 ± 0.06b 

 3 8.59 ± 0.31a 4.7 ± 0.2b 0.56 ± 0.05b 

 4 8.75 ± 0.09a 4.7 ± 0.2b 0.63 ± 0.05a 

BB-12 0 (control) 8.51 ± 0.21 5.2 ± 0.1 0.46 ± 0.04 

 1 8.60 ± 0.21 5.4 ± 0.2 0.46 ± 0.03

 2 8.57 ± 0.16 5.3 ± 0.2 0.46 ± 0.03

 3 8.42 ± 0.34 5.3 ± 0.2 0.48 ± 0.05

 4 8.35 ± 0.21 5.3 ± 0.1 0.47 ± 0.05

Results shown are mean ± SD for three experiments each with three replications. 
Different letters in the same column of each probiotic differ significantly at P ≤ 0.05 by DMRT. 
Incubation conditions: 37°C, overnight (18 h). 

Considering for maximum numbers of probiotics achieved, strain of LC-01 could be the 

desired probiotic organism for fermentation of milk supplemented with JAIS at an 

optimal supplementation level of 4%. This addition level also means that a typical 

serving size of yoghurt (100-150 mL) would have provided 4-6 g of inulin which is the 

recommended daily intake of inulin and oligofructose (Rao 2001). However, one of the 

main concerns of using probiotic LC-01 alone is low acid production. Under the 
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conditions used in this study, the pH of milks was still above 4.7 at the end of 

fermentation (18 h) while according to Australia-New Zealand Food Standard 2.5.3 

(ANZFA 2003) yoghurt must have a maximum pH of 4.5. To accelerate acidification 

process and thus shorten the fermentation time, the LC-01 was combined with 

traditional yoghurt starter cultures (LB and ST) (Tamime et al. 2005). The two cultures 

were either inoculated together at the start or in two-stages (section 6.3.3.2). 

Table 6.5 shows the effects of culture compositions and fermentation style on acid 

production and bacterial counts of LC-01, ST and LB in RSMs supplemented with 4% 

JAIS (40°B). The presence of yoghurt starters reduced the incubation time considerably. 

Yoghurt made with only LC-01 (Trial A) took ca. 18 h at 37oC to drop pH to 4.5 ± 0.2, 

compared to ca. 12 h in combination with yoghurt cultures (Trials B-D) (data not 

shown). Combining yoghurt cultures and LC-01 (Trials B-D) also enhanced the acid 

production (TA 1.03-1.11%) more significantly (P ≤ 0.05) than LC-01 alone (TA 

0.84%). On day 1, viable counts of LC-01 and yoghurt cultures in all RSMs increased 

by 2 log cycles (Table 6.5), however, the significant higher number of LC-01 was 

observed in RSMs inoculated only with LC-01 (Trial A, 8.6 log CFU g-1) than those 

with mixed cultures (Trials B-D), probably due to longer incubation period and higher 

initial inoculum size.  

In two-stage process, incorporating probiotic strain before or after yoghurt starters after 

4 h (Trials C and D) had no major influence on acidification and growth stimulation, 

since comparable levels of acid (1.07-1.11%) and probiotic counts (8.0-8.2 log CFU g-1) 

were found at the end and the differences were statistically insignificant (P > 0.05). The 

results obtained also indicated no differences in growth of LC-01 and milk acidification 

between single- and two-stage fermentation processes using the same culture 
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compositions (Trial B vs. C, D). These findings contradict the results of Lankaputhra 

and Shah (1997), who reported 4-5 times increase in probiotic numbers with the 

application of two-stage fermentation process. In their studies, the cultured products 

were prepared by initially growing probiotic bacteria for 2 h until they reached the final 

stage of lag phase or initial stage of log phase followed by adding yoghurt cultures. The 

differences between results of two studies may be due to the individual nature of the 

strains tested.  

Table 6.5 Effects of culture compositions and fermentation style on acid 

production and viable counts of LC-01, ST and LB in reconstituted 

skim milk supplemented with 4% JAIS (40°°°°B) 

Trials A B C D 

(1) Before incubation 

LC-01 count  6.08 ± 0.07a  5.86 ± 0.05b  5.88 ± 0.04b  5.84 ± 0.07b

ST count - 5.57 ± 0.14 5.48 ± 0.23 5.50 ± 0.24 

LB count - 5.46 ± 0.17 5.51 ± 0.16 5.44 ± 0.23 

(2) Day 1 

%TA 0.84 ± 0.02b 1.03 ± 0.06a 1.07 ± 0.18a 1.11 ± 0.14a 

LC-01 count  8.60 ± 0.19a 8.12 ± 0.14b 8.02 ± 0.14b 8.17 ± 0.22b

ST count - 8.26 ± 0.13a 8.02 ± 0.09b 7.98 ± 0.14b

LB count -    8.19 ± 0.12    8.05 ± 0.08    8.15 ± 0.13 

(3) Day 7 

%TA 0.92 ± 0.04b 1.26 ± 0.11a 1.15 ± 0.05a 1.25 ± 0.17a

LC-01 count  8.56 ± 0.11a 8.07 ± 0.11b 8.04 ± 0.15b 8.20 ± 0.21b

ST count - 8.21 ± 0.04a 8.06 ± 0.16b 7.99 ± 0.15b

LB count -    7.88 ± 0.12    8.02 ± 0.08    7.98 ± 0.14 

A: RSMs fermented with LC-01 (single-stage fermentation) 
B: RSMs fermented with LC-01 and YC-380 (single-stage fermentation) 
C: RSMs fermented with YC-380 followed by LC-01 (two-stage fermentation) 
D: RSMs fermented with LC-01  followed by YC-380 (two-stage fermentation) 
Results shown are mean ± SD for three experiments each with two replications. 
Different letters in the same row differ significantly at P ≤ 0.05 by DMRT.
Initial pH and TA values of inoculated RSMs containing JAIS were approx. 6.4 and 0.24% respectively. 
Final pH of RSMs was approx. 4.3 (on day 1) 
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Several workers have reported that yoghurt starters can suppress the growth and 

metabolic activity of probiotic organisms during shelf life due to injury from high rate 

of acid production (Shah and Jelen 1990; Talwalker and Kailasapathy 2004) and 

incompatibility between bacterial combinations (Radke-Mitchell and Sandine 1984; 

Zarate et al. 2000). However, according to Vinderola et al. (2002) yoghurt bacteria do 

not commonly exert any negative effect on the growth of probiotic bacteria. Conversely, 

some strains of lactobacilli, often L. acidophilus strains (but not L. casei) weakly 

inhibited the growth of some strains of LB. In the current study, the presence of 

traditional yoghurt cultures and their higher acid production had no adverse effect on 

the viability of probiotic LC-01 as their numbers remained stable > 8.0 log CFU g-1 in 

all samples after 7 days of refrigerated storage. Small changes in numbers of two 

yoghurt cultures were also observed in most cases. This could mean that the 

combinations of LC-01 and the two yoghurt cultures used allowed good survival of 

probiotic strains.  

6.4.3 Prebiotic effect of JAIP 

A question that needs answering is whether the high numbers of probiotic strains found 

in RSMs containing JAIS was due to the inulin and sugars present in the syrup or due to 

the presence of background levels of lactose in milk. A trial was therefore designed to 

compare the utilisation of inulins of JAIP (which is made from the heavy fraction of 

JAIS), in comparison with commercial inulin powders (Raftilose P95, Raftiline GR 

and Raftiline HP) and simple sugars (glucose and lactose), in modified MRS broth 

containing LA-5, LC-01 and BB-12. All ingredients were added at 4% level to MRS 

broth except the control that contained no carbon source. The utilisation level was 

measured by measuring OD at 600 mm with a spectrophotometer. 
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Figure 6.2 shows the capability of utilising various CHOs by three probiotic strains, 

expressed as the OD at 600 nm. All strains preferred glucose and lactose to inulin 

powders. In contrast to the studies by Hopkins et al. (1998) and Crittenden et al. (2001), 

growth rates of various bifidobacteria strains were higher on non-digestible 

oligosaccharides (e.g. OF and inulin) than on simple sugars (e.g. glucose, fructose and 

galactose). This phenomenon suggests that cultures tested in this study may not have an 

efficient mechanism for transporting inulin substrates. 

Of the three probiotic strains studied, the strain of LC-01 could utilise inulin powders 

the best, followed by BB-12. On the other hand, the growth of LA-5 was minimal in the 

presence of all inulin powders, showing ODs at 600 nm of ca. 0.7-0.8 compared with

ca. 0.9-2.2 by LC-01 and 1.1-1.6 by BB-12.  

The growth of LC-01 was highest in broths containing oligofructose (Raftilose P95), 

showing comparable ODs to those of glucose and lactose, and lowest in broth 

containing long-chain inulin (Raftiline HP). The JAIP stimulated the growth of LC-01 

to a similar level as medium-chain inulin (Raftiline GR). Although growth and 

activity of BB-12 in RSM was not enhanced considerably by the addition of JAIS 

(Table 6.4), it showed efficiency in utilising JAIP and chicory powders, especially OF 

(Figure 6.2). This finding did not agree with several studies reporting that the majority 

of B. bifidum strains were not able to grow on OF and low DP inulins (Hidaka et al. 

1986; Bielecka et al. 2002). This may be explained by the differences in strain used. 



Chapter 6 

140

0.0

0.5

1.0

1.5

2.0

2.5

 
                    
 

0.0

0.5

1.0

1.5

2.0

2.5

 

                  

0.0

0.5

1.0

1.5

2.0

2.5

CTRL GLU LAC P95 GR HP JAIP
 

 

Figure 6.2 Growth rates of LA-5, LC-01 and BB-12 in media containing six 

different carbon sources  
Results are mean ± SD of three replicates.

Bar followed by different letters differ significantly at P ≤ 0.05 by DMRT.

CTRL: control; GLU: glucose; LAC: lactose; P95: oligofructose; GR: medium-chain 
inulin; HP: long-chain inulin; JAIP: Jerusalem artichoke inulin powder.
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According to Voragen (1998), variations in chemical structure of saccharides (linear or 

branched), DP, composition of monomer units and water solubility affect their 

utilisation by micro-organisms. In the current study, Raftilose P95 was the best 

utilised powder by all three probiotic organisms because of its short-chain length, 

unbranched nature and high water solubility, while the growth of probiotic strains in the 

presence of higher DP inulins was poor. 

These findings are in good agreement with findings of Tashiro et al. (1997) and 

Roberfroid et al. (1998) who concluded that short-chain inulin (DP < 10) was the most 

fermentable substrate, being fermented twice as quickly as longer-chain inulin. In 

addition to the DP of inulin chains, the utilisation of inulin by probiotic organisms 

depends on the purity of the preparations where less purified inulins were fermented 

more preferably than the highly purified inulins (Biedrzycka and Bielecka 2004). 

Raftilose P95 used in this study contained readily available mono- and disaccharides 

which are better and often not selectively utilised by the bacteria. The ability of JAIP in 

enhancing the growth of the three probiotics was comparable to medium-chain inulin, 

but not as efficiently as OF. The 4% supplementation level of JAIP resulted in greater 

growth rates of LC-01 than BB-12 and LA-5. These results correlated with those of 

RSMs supplemented with 40°B JAIS (section 6.4.2), confirming the preference of LC-

01 for JAI substrates. 

6.4.4 Assessment of chemical and microbiological qualities of yoghurt during 

fermentation and refrigerated storage 

During the refrigerated storage, the viability of probiotic organisms in yoghurts is 

required to remain high in order to allow their survival and multiplication in big 

numbers in human GIT to exhibiting the expected health-promoting effects (O’Sullivan 
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2001). In this study, a synbiotic yoghurt was manufactured to study the effects of inulin 

powder addition on the survival and acidifying activities of probiotic and yoghurt 

cultures during fermentation and refrigerated storage at 4°C. The probiotic LC-01 was 

chosen as this strain showed the best growth in the presence of inulin in earlier 

experiments. 

Figure 6.3 shows variations in pH and acidity of experimental and control yoghurts 

during refrigerated storage for up to 28 days. The addition of inulin powders regardless 

of the type used did not affect the initial pH (6.6-6.7) and TA (0.20-0.27%) of yoghurt 

milk. There were no significant differences (P > 0.05) in the pH and TA values of 

supplemented and non-supplemented control yoghurt (NFCY) throughout the storage 

period. Evidence of this trend was also reported by Guven et al. (2005) and Zhu (2004).  
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Figure 6.3 Changes in pH (dotted lines) and TA (solid lines) of four yoghurts 

during fermentation and storage at 4°°°°C
Triangle: INY; Cross: OFY; Diamond: JAY; Square: NFCY. 
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On day 1, the acid production in JAIP-supplemented yoghurt (JAY, pH 4.2, TA 1.02%) 

was higher, but not statistically significant to those of chicory oligofructose (OFY, pH 

4.4, TA 0.86%) and inulin-containing yoghurts (INY, pH 4.5, TA 0.79%). Yoghurts 

containing inulin had a stable pH and acidity over time, showing maximum of 0.2 pH 

unit drops and a 0.28% increase in TA at the end of storage. On day 28, the pH of the 

yoghurts averaged from 4.1 (for OFY and JAY) to 4.3 (for INY). A small post-

production acidification in these yoghurts could be attributed to the type of probiotic 

and yoghurt starters used. Based on the information provided by the culture 

manufacturer, they are mild acid-producing cultures (Chr. Hansen 2004).  

A variation in viable counts of LC-01, ST and LB in yoghurts with and without inulin 

supplementation during fermentation and over shelf life period of 28 days is presented 

in Table 6.7. Overall, the retention of viability of ST was better than those of LB and 

LC-01. Compared to the control, the addition of all inulin powders did not influence the 

survival of ST and LB, but significantly improved the viability of LC-01. Of the three 

inulin powders tested, the best retention of LC-01 numbers was observed with 

Raftiline GR (7.4 log CFU g-1) following by Raftilose P95 (7.3 log CFU g-1) and 

JAIP (7.1 log CFU g-1). 

The initial counts of ST in all inoculated milks ranged from 5.3 to 5.5 log CFU mL-1

and increased by ca. 3 log cycle after overnight (15 h) incubation. No marked difference 

in the counts of ST was observed between non-supplemented and supplemented yoghurt 

batches for each storage day (P > 0.05). This was supported by Kaplan and Hutkins 

(2000) who reported that several strains of L. casei and L. acidophilus were able to 

ferment OF well, but not most of the LB and ST strains. 
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Table 6.7 The viability of LC-01, ST and LB in yoghurts with and without inulin 

addition during fermentation and storage at 4°°°°C 

Culture Period NFCY JAY OFY INY 

LC-01 0 5.26 ± 0.08e 5.31 ± 0.09e 5.28 ± 0.08e 5.44 ± 0.04e 

 1 8.01 ± 0.22a 8.26 ± 0.13a 8.34 ± 0.14a 8.21 ± 0.15ab 

 2 7.98 ± 0.12a 8.20 ± 0.11ab 8.34 ± 0.18a 8.28 ± 0.07a 

 7 7.86 ± 0.46a 8.21 ± 0.14ab 8.20 ± 0.19ab 8.20 ± 0.13ab 

 14 7.52 ± 0.46b 8.10 ± 0.16b 8.15 ± 0.16b 8.14 ± 0.12b 

 21 7.11 ± 0.13c 7.42 ± 0.16c 7.54 ± 0.14c 7.89 ± 0.06c 

 28 6.06 ± 0.31d 7.10 ± 0.15d 7.30 ± 0.20d 7.37 ± 0.07d 

% Viability 75.66C 85.96B 87.53AB 89.75A 

ST 0 5.32 ± 0.08d 5.46 ± 0.05d 5.42 ± 0.11c 5.46 ± 0.12c 

 1 8.29 ± 0.09a 8.36 ± 0.14a 8.38 ± 0.12a 8.29 ± 0.16a 

 2 8.27 ± 0.08ab 8.35 ± 0.07a 8.31 ± 0.11a 8.29 ± 0.11a 

 7 8.26 ± 0.09ab 8.26 ± 0.16ab 8.34 ± 0.10a 8.29 ± 0.09a 

 14 8.14 ± 0.19abc 8.21 ± 0.09ab 8.28 ± 0.16a 8.20 ± 0.21ab 

 21 8.09 ± 0.15bc 8.12 ± 0.11bc 8.12 ± 0.16b 8.13 ± 0.14ab 

 28 8.02 ± 0.30c 8.01 ± 0.33c 8.13 ± 0.14b 8.07 ± 0.17b 

% Viability 96.74A 95.81A 97.02A 97.35A 

LB 0 5.29 ± 0.12e 5.36 ± 0.16f 5.27 ± 0.08e 5.44 ± 0.12f 

 1 8.18 ± 0.10a 8.13 ± 0.35a 8.15 ± 0.16a 8.16 ± 0.11a 

 2 8.16 ± 0.11a 8.13 ± 0.21a 8.13 ± 0.20a 8.16 ± 0.16a 

 7 7.67 ± 0.19b 7.71 ± 0.24b 7.72 ± 0.13b 7.84 ± 0.16b 

 14 7.00 ± 0.16c 7.03 ± 0.15c 7.02 ± 0.16c 7.02 ± 0.14c 

 21 6.33 ± 0.23d 6.49 ± 0.08d 6.36 ± 0.34d 6.64 ± 0.09d 

 28 6.20 ± 0.13d 6.20 ± 0.16e 6.23 ± 0.28d 6.39 ± 0.09e 

% Viability 75.79A 76.26A 76.44A 78.31A

Data are means ± SD of three experiments, and each experiment was examined in duplicate. 
a-f Means in the same column with different letters differ significantly at P ≤ 0.05 by DMRT. 
A-C Means in the same row with different letter differ significantly at P ≤ 0.05 by DMRT. 
% viability = (CFU g-1 after 4 week storage/initial CFU g-1) × 100. 
NFCY = non-fat control yoghurt; JAY = yoghurt supplemented with 4% JAIP; OFY = yoghurt 
supplemented with 4% oligofructose (RaftiloseP95); INY = yoghurt supplemented with 4% inulin 
(RaftilineGR). 
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The experimental and control yoghurts showed ability in sustaining high numbers of ST 

after 14 days of storage (P > 0.05) and only a marginal decline occurred in the 

following 14 days. After 28 days, all yoghurts contained > 8.0 log CFU g-1 of ST, 

decreasing from the initial counts by only 2.7-4.2%. This reflected the high stability of 

ST in the products. These observations were consistent with the findings of Medina and 

Jordano (1994), Dave and Shah (1997a), Vinderola et al. (2000), Akalin et al. (2004) 

and Ozer et al. (2005) who reported higher stability of ST than LB and bifidobacteria in 

probiotic yoghurts during storage time. 

After overnight incubation, the initial counts of LB in all yoghurts were comparable to 

those of LC-01 and ST (ca. 8.1 log CFU g-1). Supplementation with inulin powders did 

not help the viability of LB as their numbers in all supplemented yoghurts dropped by 

ca. 1 log after 14 day of storage, similar tendency to those of the controls. An ongoing 

decline in the numbers of LB was observed until the end of the storage period wherein 

the final counts were ca. 6.2-6.4 log CFU g-1 (76-78% of the initial counts). Previously 

Ozer et al. (2005) also reported the decline of viable counts of LB by 2.5 to 4.2 times in 

inulin-supplemented yoghurts during 14 days of storage. Several workers report that 

low numbers of LB would have benefited the survival of probiotic organisms due to 

lesser risks of post-acidification by LB (Holcomb and Frank 1991; Laroia and Martin 

1991; Shah 1995).  

The addition of inulin powders was helpful in improving the growth of LC-01 during 

fermentation and their survival during storage time. The results of this study showed a 

high initial counts of LC-01 (P ≤ 0.05) in all inulin-supplemented yoghurts (ca. 8.3 log 

CFU g-1) than that in control without inulin (ca. 8.0 log CFU g-1)  prior to the storage. 
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These results are consistent with the findings of Aryana and McGrew (2007) who 

reported a marked increase in L. casei counts with the addition of inulin powders. 

During cold storage, although the counts of LC-01 for each trial declined with time 

which became significant on day 7 (P ≤ 0.05), the rate of reduction was slower in the 

presence of inulin powders. In all inulin-supplemented yoghurts, viable counts of LC-01 

retained above 8.0 log CFU g-1 up to 14 days of storage which gradually dropped to 7.0 log 

CFU g-1 by the 28th day of storage. As shown in Table 6.7, the highest viability of LC-

01 on day 28 was noticed in INY, followed by OFY, recorded at 90 and 88% viability, 

respectively whereas the lowest viability was observed with NFCY at 6 log CFU g-1

(76%). The JAIP had a comparable effect on the viability retention of LC-01 to 

oligofructose (Raftilose P95), with average values of 86%, but was slightly less 

effective than that of inulin (Raftiline GR). These results seemed to corroborate the 

findings by Aryana et al. (2007) and Lankaputhra et al. (1996) who found higher counts 

of probiotic bacteria in yoghurts with medium- and long-chain inulins than those with 

OF at the end of storage. This phenomenon was ascribed to the larger amounts of acid 

developed in yoghurts with OF.  

The utilisation of inulin powders by various probiotic organisms has been reported 

earlier. In accordance with the findings of the present study, Shin et al. (2000), Bruno et al. 

(2002), Akalin et al. (2004) and Varga et al. (2003) reported a significant improvement 

in the viability retention of bifidobacteria in yoghurts containing prebiotics (inulin/OF) 

during cold storage compared with the control. Similarly, Desai et al. (2004), Capela et al. 

(2006), Aryana et al. (2007) and Donkor et al. (2007) observed that chicory-based 

inulins were favoured carbon source for Lactobacillus strains, hence increasing the 

growth performance and sustaining the viability during storage.  However, some other 

literatures by Bozanic et al. (2002) and Ozer et al. (2005) reported that “inulin did not 
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support the growth and survival of L. acidophilus in fermented bovine milk and 

acidophilus-bifidus yoghurts”. The inconsistencies reported here could be attributed 

mainly to strain-dependant response of probiotics to prebiotic supplementation.  

The mechanism by which inulin improves the viability of the probiotic organisms 

during cold storage is still unclear. The two possible mechanisms proposed so far state 

that inulins provide additional nutrients for promoting culture growth (Makras et al. 

2005) and that they protect probiotic cells from acid injury (Desai et al. 2004). 

6.5 Conclusions 

The three strains of probiotic organisms, namely B. bifidum BB-12, L. acidophilus LA-5 

and L. casei LC-01 showed different preference for lactulose-enriched MCP syrup, 

JAIS and JAIP. Preliminary studies in modified MRS broths indicated that lactulose-

enriched MCP syrup (40°B) could stimulate the growth LA-5 and LC-01, but not BB-12. 

The addition of lactulose-enriched MCP syrup to RSM in sufficiently high 

concentration (3-4%) appeared to have positive effect on the growth and acid 

production by LA-5. Compared to reference lactulose solution the growth-sustaining 

capacity of lactulose-enriched MCP syrup was lower. Therefore, a purification step 

using chromatography appears to be necessary to obtain high purity lactulose syrup. For 

JAIS and JAIP, a pronounced response was observed only with LC-01 in both RSM and 

modified MRS broth at supplementation levels of 3-4%. Strain of LA-5 showed the 

preference to JAIS in RSM but not to JAIP in broth, and vise versa for BB-12. To 

reduce fermentation time and achieve higher acid production, the use of mixed cultures 

of LC-01 with ST and LB was necessary. 



Chapter 6 

148

The addition of inulin, particularly high DP inulin powder improved the survival of 

probiotic LC-01 during shelf life at 4°C, showing ca. 1 log cycle order higher number 

than non-supplemented yoghurt at the end of day 28. The JAIP had the effect on 

sustaining the viability of LC-01 comparable to that of OF. There was no improvement 

in the growth and survival of yoghurt bacteria in the presence of inulin. The numbers of 

ST in the experimental and control yoghurts were stable with > 8.0 log CFU g-1

throughout the storage time while the numbers of LB decreased below 8.0 log CFU g-1

from week 1 onwards. The post-acidification was found minimal in all yoghurts during 

refrigerated storage. The initial pH prior to storage ranged from 4.2 to 4.5 and these 

dropped to 4.1-4.3 after 28 days. 
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Chapter 7 

Effects of inulin-type fructans on rheological properties of set 

yoghurt
1

7.1  Abstract 

Effect of inulin-type fructans addition on rheology of non-fat yoghurt was studied by 

the large (Texture Analyser) and small (dynamic oscillatory rheometry) deformation 

tests. Reconstituted skim milk (12% solids) was supplemented with Jerusalem artichoke 

inulin powder (JAIP) and three commercial chicory inulin powders with different chain 

lengths at 4% level and inoculated with mixed cultures (1:0.5:0.5) of Lactobacillus 

casei LC-01, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus 

thermophilus overnight at 37°C to a final pH of 4.5 ± 0.2. Two non-supplemented 

yoghurt samples were prepared from reconstituted (16% total solids) whole milk and 

skim milk powders and used as controls. Rheological tests were conducted after 

overnight storage at 4°C and during the shelf life of 28 days. All inulin-containing 

yoghurts in comparison with the non-supplemented control were characterised by lower 

values of firmness, storage and loss moduli, apparent viscosity, yield stress and complex 

viscosity. Non-fat yoghurt supplemented with long-chain inulin demonstrated 

rheological behaviour closer to that of the control full-fat yoghurt. The optimal effect 

was achieved when incorporating long-chain inulin at 3-4% level. The effect of JAIP on 

the rheological properties of non-fat yoghurt was comparable to those obtained by 

adding short- and medium-chain commercial inulins. 

 Based on the findings of this chapter a paper entitled “Rheology and texture of set 
yoghurt as affected by inulin addition” has been submitted for publication in Journal of 
Texture Studied (In press). 
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7.2 Introduction 

Yoghurt is a fermented dairy product with textural and rheological properties that are 

important attributes for consumer acceptability. Texture of yoghurt is influenced by 

various factors e.g. quality and composition of milk and its fat and total solid content, 

heat treatment of milk, combination of the lactic acid bacteria used, acidification rate of 

milk, and storage time (Sodini et al. 2004; Dello Staffolo et al. 2004; Purwandari et al. 

2007). In recent years manufacturers have responded to consumers’ demand for low-fat 

and non-fat dairy products, however these type of products somewhat lack the textural 

and sensory attributes of their full-fat counterparts. Attempts have been made to 

improve low-fat yoghurt gel attributes by incorporating different additives, and one 

such approach is the use of inulins as fat replacers. 

Several investigations have been conducted into the effect of inulin addition on the 

sensorial and rheological properties of low-fat dairy products such as ice-cream 

(Schaller-Povolny and Smith 2001; El-Nagar et al. 2002; Akin et al. 2007), milk 

beverages (Villegas and Costell 2007), starch-based dairy desserts (Tarrega and Costell 

2006) and fresh cheeses (Koca and Metin 2004). There are also several publications on 

the quality of yoghurt gels supplemented with inulin products. Dello Staffolo et al. 

(2004) found no difference in viscosity and acceptability of stirred low-fat yoghurt 

supplemented with 1.3% inulin compared with non-supplemented full-fat yoghurt. 

Guven et al. (2005) found that at higher levels inulin negatively affected the physical 

properties e.g. whey separation, consistency (using a penetrometer) and organoleptic 

scores of set-type low-fat yoghurt. Kip et al. (2006) reported that inulin improved the 

creamy mouthfeel of stirred low-fat yoghurts and that increasing inulin DP 23 

concentration improved the viscosity of the product but the effect was less pronounced 
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with inulin DP 9. Recently, Aryana et al. (2007) reported no significant effect of inulin 

chain length on the viscosity of set yoghurts.  

In view of these conflicting reports, the current study was undertaken to:  

1. Characterise the rheological properties of non-fat set yoghurts supplemented 

with chicory inulins using large (Texture Analyser) and small (dynamic 

oscillatory rheometry) deformation measurements, 

2. Examine the effects of different chain lengths and supplementation levels on the 

rheological properties of non-fat set yoghurt, 

3. Evaluate the suitability of JAIP as a fat replacer in non-fat yoghurt system. 

 

7.3  Yoghurt preparation 

Two separate studies were conducted to evaluate the effects of inulin chain length and 

supplementation level on the rheology of non-fat yoghurt. 

• Study 1 

The objective of this study was to determine the rheological characteristics of non-fat 

yoghurt when different types of inulin powders were used as a fat-mimic. The tested 

inulin powders included the spray-dried JAIP (prepared under optimum conditions 

reported in 4.4.3) and three commercial chicory inulins: long (Raftiline® HP), medium 

(Raftiline® GR) and short (Raftilose® P95) chain lengths (section 3.1.5). These inulins 

were incorporated into 12% reconstituted skim milk (section 3.1.4) at a supplementation 

level considered to have a prebiotic effect (4%, w/v). Two non-supplemented 

reconstituted milk samples (16%, w/v) were also prepared as controls: one with WMP 

(full-fat control yoghurt-FFCY) and another with LHSMP (non-fat control yoghurt-
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NFCY). Batch coding and the list of ingredients used are shown in Table 7.1. The 

statistical analyses (ANOVA) of results were conducted as described in section 3.7. 

Table 7.1 Yoghurt production protocol

Ingredients (%) 
Code Supplement 

WMP LHSMP Inulin Distilled water 
Protein 

content (%) 
FFCY − 16 0 0 84 4.2 

NFCY − 0 16 0 84 5.4 

JAY JAIP 0 12 4 84 4.1 

OFY Raftilose® P95 0 12 4 84 4.1 

MCIY Raftiline® GR 0 12 4 84 4.1 

LCIY Raftiline® HP 0 12 4 84 4.1 

WMP: whole milk powder, LHSMP: low-heat skim milk powder. 
FFCY: full-fat control yoghurt; NFCY: non-fat control yoghurt; JAY: JAIP-containing yoghurt; OFY: 
oligofructose-containing yoghurt; MCIY: medium-chain inulin-containing yoghurt; LCIY: long-chain 

inulin-containing yoghurt.

• Study 2 

The objective of this study was to measure the degree of difference in rheological 

characteristics between the non-fat yoghurts with different supplementation of inulin 

and non-supplemented full-fat sample. Non-fat yoghurts were prepared from RSMs at 

12, 13, 14 and 15% solid content supplemented with 4, 3, 2 or 1% of long-chain inulin 

(Raftiline® HP) as shown in Table 7.2. The statistical difference was determined using 

Student’s t-tests at 95% confidence level. 

Table 7.2 Yoghurt supplementation levels

Ingredients (%) 
Code Addition levels LHSMP Inulin Distilled water 

Protein 
content (%) 

LCIY 1 1% HP 15 1 84 5.1 

LCIY 2 2% HP 14 2 84 4.8 

LCIY 3 3% HP 13 3 84 4.4 

LCIY 4 4% HP 12 4 84 4.1 

LHSMP: low-heat skim milk powder. 
LCIY: long-chain inulin-containing yoghurt. 
HP: Raftiline® HP 
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All reconstituted milk samples were heat-treated at 90°C for 10 min prior to cooling to 

37°C and inoculation with 0.01% (w/v) of freeze-dried cultures Lactobacillus casei LC-

01 and YC-380 (section 3.1.4). After slow agitation for 10-15 min under aseptic 

conditions to distribute the cultures evenly, the inoculated milk samples were aseptically 

transferred into 100 mL plastic containers, tightly sealed, incubated at 37°C overnight until 

the desired pH of 4.5 developed and then transferred to fridge at 4°C on the following day.  

Large and small deformation measurements were performed at least in duplicate on 

duplicate samples taken on day 1, and after 7 and 28 days of storage, following the 

methods described in sections 3.5.6 and 3.5.7. Titratable acidity (% lactic acid) and pH 

were determined on day 1 and day 28, following the procedure described in sections 

3.5.1 and 3.5.2, respectively. Fat and total solid contents, together with colour of 

yoghurt were determined only on day 1 samples using the methods described in sections 

3.5.3-3.5.5.  

7.4  Results 

7.4 .1 Influence of inulin chain  lengths 

In this study the 4% supplementation level of inulin was elected on the basis of 

preliminary trials which found maximum activity of probiotic L. casei LC-01 at 4% 

level of addition (Table 6.4, section 6.6.2). Table 7.3 presents the physico-chemical 

properties of six yoghurt batches produced. As expected, FFCY showed significantly 

higher fat content (ca. 3.5%) than all non-fat yoghurts (ca. 0.1%). No significant 

differences in pH values (4.2-4.5) and titratable acidity (0.8-1.0%) were found among 

all yoghurt samples on day 1. After 28 days of storage at 4°C, the acidity of all samples 

increased to 1.0-1.2% and pH dropped marginally to 4.1-4.3. This indicated ongoing 

metabolic and enzymic activities of mixed cultures during low temperature storage. 
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All yoghurt samples appeared white and shiny to human eye, however, upon 

instrumental colour measurement, samples containing inulin showed lower L
∗ value    

(a loss of lightness) while a
∗ and b

∗ values shifted to higher intensity of green and 

lower intensity of yellow, respectively (except for b∗ value of LCIY). 

• Flow behaviour 

Figure 7.1 shows the flow curves of four inulin-containing yoghurts and two control 

yoghurts on day 1 by plotting shear rate vs. shear stress. All flow curves showed 

hysteresis loops and the lack of linear characteristic indicated shear thinning behaviour 

(pseudoplasticity) as described by Rohm (1993). The same trend was also observed in 

day-7 and day-28 samples for all batches. In agreement with Jaros et al. (2002), the 

NFCY showed higher slope of flow curves than other yoghurts, reflecting their higher 

resistance to shear forces. It was also observed that the addition of JAIP, OF 

(Raftilose® P95) or medium-chain inulin (Raftiline® GR) resulted in yoghurts with 

lower value of shear stress at maximum shear rate compared to both NFCY and 

FFCYs. However, LCIY gave nearly identical shear stress to FFCY. 

Flow behaviour can also be presented from the effect of shear rate on flow resistance 

(Braun and Rosen 1999). Figure 7.2 shows the viscosity curves for all yoghurt 

samples on day 1. The viscosity curves of inulin-containing yoghurts were similar to 

that of FFCYs, particularly for LCIY and MCIY. In all samples, a rapid breakdown of 

the structure occurred on initial shearing (γ& = 2-20 s-1) followed by much slower 

changes at higher shear rates. The viscosity of samples decreased considerably with 

increasing shear rate between 0 and 200 s-1. At the shear rate of ca. 30-40 s-1, the 

viscosity levelled off between 0.4 and 0.7 Pa.s and then decreased very slowly to 0.1-

0.2 Pa.s at the maximum applied shear rate of 200 s-1. Such behaviour confirmed a 
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shear thinning characteristic and indicated that the yoghurts have an apparent 

viscosity (ηapp). 
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Figure 7.1 Flow curves for inulin-containing and control yoghurts on day 1
Shear rate was first increased and then decreased. Measurement temperature was 20°C.
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Figure 7.2 Viscosity decay with time for inulin-containing and control yoghurts 

on day 1 
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Table 7.4 shows the values of the rheological parameters obtained by fitting in the 

Herschel-Bulkley model. The model satisfactorily fitted the experimental data for 

each sample, showing a good correlation coefficient (0.98 ≤ r ≤ 0.99). The NFCY was 

characterised by the highest average values of consistency coefficient (K), followed 

by yoghurts containing medium- and short-chain inulins and JAIP, while LCIY 

achieved similar K values to FFCY (P ≤ 0.05). The flow index (exponent n) as a 

measure of deviation from Newtonian flow is 0 < n < 1 for shear thinning fluids 

whereas for Newtonian fluids n = 1 (Steffe 1992). As expected the values of n in all 

tested samples were below 1. Yoghurts containing JAIP, medium- and short-chain 

inulins (n = 0.52-0.65) had slightly higher deviations from Newtonian flow (lower n) 

than LCIY (n = 0.64-0.73) and the controls (n = 0.66-0.83). When fitted to the 

Herschel-Bulkley model, yield stress (σo) became evident which represented the 

minimum shear stress required to trigger flow of yoghurt. Again, yoghurts containing 

JAIP, medium- and short-chain inulins exhibited significantly lower σo (3.3 to 4.3 Pa) 

than LCIY (4.4-5.1 Pa), FFCY (4.4-6.4 Pa) and NFCY (7.5-8.7 Pa).  

The effect of inulin addition on the apparent viscosity (ηapp), upward curve area (Aup) 

and the area of hysteresis loop (∆A) are also shown in Table 7.4. The ∆A is an 

indication of yoghurt structural breakdown and rebuilding (a degree of thixotropy) 

during shearing (Benezech and Maingonnat 1994; Hassan et al. 2003). The NFCY 

showed the highest ∆A and Aup followed by LCIY and FFCY, indicating that more 

structural breakdown and better re-structuring (reversibility) took place during 

shearing. Yoghurts containing OF and medium-chain inulin showed similar ∆A sizes 

to JAY (P > 0.05) but were significantly different from both controls. Throughout the 

storage time, the highest apparent viscosity at γ&  = 2 s-1 was observed for the NFCY 
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(4.15-4.39), twice that of the other samples. All inulin-containing samples had 

comparable consistency to FFCY, ranging from 2.28 to 2.96.  

Table 7.4 Rheological parameters of inulin-containing and control yoghurts 

during storage at 4°°°°C obtained from thixotropy tests 

Parameters Day Batch 
codes1 

η  [Pa.s]
2 Aup [Pa.s-1]

3 
∆A [Pa.s-1]

4
σo [Pa]

5 K [Pa.sn]
5 n [-]

5

1 FFCY 2.53b,A 4916b,A 469b,A 5.79b,AB 0.54c,A 0.83a,A 

 NFCY 4.26a,A 7045a,A 885a,A 7.54a,A 1.04a,A 0.70bc,AB 

 JAY 2.39b,A 3534c,A 380b,A 3.43c,A 0.73ab,B 0.63c,A 

 OFY 2.37b,A 3870c,A 430b,A 3.80c,A 0.78ab,B 0.65bc,A 

 MCIY 2.96b,A 3937c,A 377b,A 3.85c,A 0.90ab,A 0.64bc,A 

 LCIY 2.56b,A 4882b,A 571b,A 5.11b,A 0.66c,B 0.73b,A 

7 FFCY 2.56b,A 5048b,A 461bc,A 6.44b,A 0.42b,A 0.83a,A 

 NFCY 4.39a,A 6674a,A 699a,AB 8.70a,A 0.78a,A 0.76b,A 

 JAY 2.38b,A 3623c,A 272c,B 3.45c,A 0.84a,A 0.64c,A 

 OFY 2.30b,A 3744c,A 280c,B 4.03c,A 0.83a,B 0.63c,A 

 MCIY 2.51b,A 4019c,A 374bc,A 3.83cA 0.97a,A 0.61c,A 

 LCIY 2.51b,A 4961b,A 559ab,A 4.48c,A 0.62a,B 0.68c,B 

28 FFCY 2.28b,A 3454c,A 426ab,A 4.38b,B 0.61b,A 0.68a,A

 NFCY 4.15a,A 5969a,A 573a,B 7.70a,A 1.09ab,A 0.66a,B

 JAY 1.98b,A 4291bc,A 288c,B 3.89b,A 0.91ab,A 0.65a,A 

 OFY 2.48b,A 3499c,A 243c,B 3.28b,A 1.34a,A 0.52b,B

 MCIY 2.64b,A 3822bc,A 227c,A 4.28b,A 1.25a,A 0.57ab,A

 LCIY 2.88b,A 5183ab,A 527a,A 4.38b,A 1.11a,A 0.64a,C 

1 See Table 7.1 for details. 
2 Apparent viscosity (Pa.s) at γ&  = 2 s-1. 
3 Area under the upward curve when plotting shear stress versus shear rate.  
4 Differences in area under the upward part of the upward and downward curve.
5 Determined by fitting to the Herschel-Bulkley model.
a, b, c Means in the same column with different small letter superscripts indicate significant difference at 
P ≤ 0.05 between yoghurt batches at a particular storage time.
A, B, C Means in the same column with different capital letter superscripts indicate significant difference 
at P ≤ 0.05 within yoghurt batches affected by storage time.
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No significant changes were found in ηapp and Aup in all samples during the shelf life. 

Yield stress values of all yoghurts were also maintained, except a marked decrease for 

FFCY at day 28 of storage. However, storage time was a significant factor for 

consistency index (K) and flow index (n) in various samples. For example, a decrease 

in flow index (n) and increase in K were noticed in OFY and LCIY at the end of 

storage. 

• Viscoelastic properties  

This dynamic testing provides useful information on the viscoelastic properties of 

yoghurt, i.e. the storage modulus (G′) and loss modulus (G″) which denote the degree 

of solid-like (elastic) and liquid-like (viscous) behaviour, respectively, as well as 

complex viscosity (η∗) and loss tangle (tan δ). Figure 7.3 shows changes in G′

profiles recorded during stress sweep of day-1 yoghurt samples.  
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Figure 7.3 The storage modulus (G′′′′) of inulin-containing and control yoghurts 

on day 1 as a function of stress
FFCY NFCY OFY MCIY JAY LCIY

Stress (Pa) 

G
′′ ′′ 

(P
a
) 



Chapter 7 

160

The length of the linear viscoelastic region (LVR) indicating that G′ value is 

independent of the oscillation stress (Lapasin and Pricl 1995) was different for each 

treatment. The G′ values of the NFCY remained unchanged up to a shear stress of 3.7 

Pa before gel structure started breaking down whereas inulin-containing samples and 

FFCY showed structural damage at a weaker force within the range of 1.4-1.9 Pa. 

Since the LVR for all samples was similar within the stress range of 0.1-1.4 Pa, the 

stress level of 1 Pa was taken as the starting value for frequency sweep. 

The viscoelastic properties of inulin-containing and control yoghurts as a function of 

frequency (ω) are shown in Table 7.5.  For comparison purposes, G′, G″, tan δ and η∗

values recorded at 1 Hz were considered. The results indicated that towards the end of 

storage period the NFCY gel was firmer (G′ values of 88-94 Pa) than inulin-

containing yoghurts (34-49 Pa) and FFCY (40-54 Pa). Moreover, the inulin-

containing yoghurts showed a weaker gel than NFCY as demonstrated by their low η∗

(32-56 Pa.s vs. 100-107 Pa.s) and slightly higher tan δ (0.32-0.39 vs. 0.32-0.33) 

values. Among yoghurts made with inulin, only LCIY exhibited comparable 

viscoelastic characteristics to FFCY for all attributes. This demonstrates the functional 

suitability of long-chain inulins as fat replacers in non-fat yoghurts. 

A plot of log (G′) or log (G″) versus log angular frequency (ω) gave reasonable 

straight lines for all yoghurts as shown in Figure 7.4. The G′ values of all yoghurts 

were greater than G″ over the tested frequency range which is expected for weak 

viscoelastic systems (Rohm and Kovac 1994). The slope values of the linearised plots 

of log (G′) or log (G″) vs. log (ω) indicate the frequency dependence of tested 

samples (Hassan et al. 2003). In the present study, G′ and G″ showed similar 
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frequency dependency but those of FFCY and LCIY were significantly lower than the 

rest of the yoghurts (data not shown). 

Table 7.5 Viscoelastic properties for inulin-containing and control yoghurts 

during storage at 4°°°°C  

Viscoelastic properties Day Batch 
codes1 

G′ at 1 Hz 
 (Pa) 

G″ at 1 Hz 
 (Pa) 

η∗ at 1 Hz  
(Pa.s) 

Tan δ at 1 Hz  

1 FFCY 53.9 ± 6.7b,A 15.6 ± 1.2b,A 60.8 ± 7.3b,A 0.29 ± 0.02c,A

 NFCY 94.3 ± 9.8a,A 26.8 ± 3.7a,A 107.0 ± 10.6a,A 0.32 ± 0.03bc,A

 JAY 30.7 ± 2.1c,A 11.2 ± 0.9c,A 38.5 ± 4.21c,A 0.36 ± 0.03ab,A 

 OFY 35.9 ± 8.4c,A 13.2 ± 2.0bc,A 41.5 ± 9.3c,A 0.38 ± 0.03a,A

 MCIY 39.6 ± 6.1bc,A 14.0 ± 0.8bc,A 45.5 ± 6.5bc,A 0.36 ± 0.04ab,A

 LCIY 44.7 ± 15.43bc,A 14.7 ± 3.1bc,A 51.1 ± 16.9bc,A 0.34 ± 0.05abc,A 

7 FFCY 40.5 ± 4.0bc,A 13.3 ± 0.8bc,A 46.3 ± 4.3bc,B 0.33 ± 0.01c,A

 NFCY 87.8 ± 16.0a,A 27.5 ± 3.5a,A 99.5 ± 17.7a,A 0.31 ± 0.01c,A

 JAY 31.2 ± 3.3c,A 10.8 ± 1.9c,A 37.4 ± 4.6c,A 0.34 ± 0.03bc,A 

 OFY 34.2 ± 2.1c,A 12.0 ± 1.5c,A 31.8 ± 6.2c,A 0.35 ± 0.03bc,A

 MCIY 48.7 ± 1.9b,A 16.2 ± 1.2b,A 55.6 ± 2.3b,A 0.33 ± 0.02c,A

 LCIY 37.7 ± 9.2bc,A 14.0 ± 2.5bc,A 43.6 ± 10.3bc,A 0.38 ± 0.03a,A 

28 FFCY 39.9 ± 8.0bb,A 12.4 ± 1.7b,A 45.5 ± 8.6b,B 0.32 ± 0.04b,A

 NFCY 90.0 ± 16.1a,A 27.0 ± 3.7a,A 102.0 ± 17.8a,A 0.31 ± 0.02b,A

 JAY 31.3 ± 3.6b,A 10.8 ± 1.41b,A 43.4 ± 5.9b,A 0.35 ± 0.02ab,A 

 OFY 35.9 ± 3.3b,A 11.5 ± 1.1b,A 40.9 ± 3.7b,A 0.33 ± 0.01b,A

 MCIY 43.2 ± 5.7b,A 13.7 ± 1.7b,A 49.2 ± 6.4b,A 0.32 ± 0.02b,A

 LCIY 35.5 ± 14.7b,A 13.3 ± 4.2b,A 41.1 ± 16.5b,A 0.39 ± 0.04a,A

1 See Table 7.1 for definitions. 
a, b, c Means in the same column with different small letter superscripts indicate significant difference at 
P ≤ 0.05 between yoghurt batches at a particular storage time. 
A, B Means in the same column with different capital letter superscripts indicate significant difference at 
P ≤ 0.05 within yoghurt batches affected by storage time. 
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Figure 7.4 Changes of G′′′′ and G″″″″ of inulin-containing and control yoghurts on 

day 1 as a function of angular frequency (ωωωω)

FFCY: G′ (••••) & G″(    ); NFCY: G′ (�) & G″ (����); JAY: G′ (����) & G″

(����); OFY: G′(    ) & G″(    ); MCIY: G′ (����) & G″ (����); LCIY: G′ (����) & 
G″ (♦♦♦♦) 

Prolonged cold storage did not significantly affect viscoelastic properties (G′, G″ and 

tan δ) of yoghurts. Only η∗ of FFCY declined significantly from 61 ± 7 Pa.s on day 1 

to 46 ± 4 Pa.s on day 7.  

• Large deformation properties  

Table 7.6 shows the firmness (in N) of all yoghurts subjected to large deformation test 

at a constant velocity. On day 1, the gel firmness of the four inulin-containing 

yoghurts was significantly lower (0.58-0.83 N) than that of NFCY (1.04 N), but closer 

to that of the control FFCY (0.70 N). The firmness of yoghurts was significantly 

affected by type of inulin added as long-chain inulin resulted in less firm yoghurts 

than those added with OF and medium-chain inulin (P ≤ 0.05). After 7 days of storage 

at 4oC, compression force (i.e. firmness) of various yoghurts increased slightly which 

could be attributed to the phenomenon of gel structure reinforcement at low 

temperature (Oliveira et al. 2001). Storage time had a small but statistically 
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insignificant effect on maximum compression force of each yoghurt sample (P > 

0.05).  

Table 7.6 Large deformation properties (in N) of yoghurts with and without 

inulin supplements during storage at 4°°°°C 

 

Storage time  Batch codes1 

1 day 7 days 28 days 
FFCY 0.70 ± 0.14cd 0.76 ± 0.22bc 0.64 ± 0.04c

NFCY 1.04 ± 0.09a, 1.10 ± 0.12a, 1.05 ± 0.09a

JAY 0.58 ± 0.04d 0.59 ± 0.03c 0.56 ± 0.03d 

OFY 0.79 ± 0.75bc 0.80 ± 0.11b 0.74 ± 0.08 b

MCIY 0.83 ± 0.06b 0.84 ± 0.10b 0.79 ± 0.08 b

LCIY 0.64 ± 0.04d 0.61 ± 0.04c 0.62 ± 0.03cd

1 See Table 7.1 for details 
a, b, c Means in the same column with different small letter superscripts indicate significant difference at
P ≤ 0.01  

As expected, the long-chain inulin (Raftiline® HP) shown to be an efficient fat 

replacer. According to Franck (2002) long-chain inulin has the capacity to form 

microcrystals which interact with each other and entrap large amount of water, 

producing a fine texture that mimics milk fat properties. However, medium-chain 

inulin did not show noticeable differences to OF on yoghurt rheology, although MCIY 

exhibited slightly firmer texture than OFY and showed rheological functions closer to 

FFCY. According to manufacturer’s specifications, medium-chain inulin (Raftiline® 

GR) with an average DP of 12 is also recommended for fat replacement due to the 

presence of high-molecular-weight fractions, while OF (Raftilose® P95) is more 

suitable for sugar replacement due to the predominance of mono- and disaccharides, 

and short-chain OFs (Niness 1999).  
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7.4.2 Influence of inulin supplementation levels 

Table 7.7 shows the effects of supplementation levels of long-chain inulin on the 

rheological properties of non-fat yoghurts. In the work presented here, the rheological 

testes were performed only on day 1 since the storage time was an insignificant factor 

for rheological behaviours.  

Using only large deformation test (Texture Analyser) may not be sufficiently sensitive 

to measure significant differences between the experimental samples and FFCY but 

dynamic oscillatory test found to be useful. There were significant changes in gel 

characteristics as inulin supplementation levels increased, except for apparent 

viscosity (ηapp), yield stress (σo) and flow index (n). A 1% supplementation level 

resulted in yoghurts with significant higher values of G′ (82.6 Pa), Aup (724 Pa.s-1), η* 

(94 Pa.s) and gel firmness (0.86 N) than those of FFCY at P ≤ 0.05. The use of inulin 

above 2% caused an increasingly softer texture and no difference was found in the 

above-mentioned four parameters compared to FFCY. When inulin supplementation 

was raised to 3%, a significant difference was observed only in hysteresis loop area, 

and with 4% inulin all rheological parameters were comparable to FFCY (P > 0.05). 

These results suggested the optimal supplementation levels of inulin in non-fat 

yoghurt at 3-4%, higher than the usage levels recommended by the manufacturer of 

1-3%. 
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7.5 General discussion  

The semi-solid texture of set yoghurt gel is a result of the development of a three 

dimensional network of milk proteins. The main factor responsible for milk gelation is a 

reduction in the high net negative charge on the casein micelles due to the liberation of 

acids from microbial activity. Aggregation of casein micelles starts at a pH of ca. 5.3 

which also causes the solubilisation of colloidal calcium phosphate. Further pH 

reduction to below 5.0 causes a more complex and extensive interconnection of casein 

micelles and the gel attains its maximum firmness at pH 4.6, the isoelectric point of 

casein (Tamime 2006; Amatayakul et al. 2006b). 

The addition of inulin to non-fat yoghurt milk altered the rheological and textural 

properties of the product. Inulin-containing yoghurts showed a low magnitude of yield 

stress value and firmness than did yoghurts without inulin. The firmness of yoghurt is 

directly dependent on its total solids and specifically, protein content and the type of 

proteins. Higher protein content would cause a higher degree of cross linking of the gel 

network resulting in a much denser and more rigid gel structure (Tamime 2006). In the 

current study, non-fat yoghurt milks were prepared by reconstituting the LHSMP in 

distilled water (Table 7.1, section 7.3), where NFCY milk was standardised to 16% total 

solids (ca. 5.4% protein) using LHSMP, while the inulin-containing yoghurts were 

prepared from RSM (12% LHSMP) plus 4% inulin powder, which resulted in lower net 

protein content (ca. 4.1%) compared to NFCY. Besides, the molecules of inulin are 

dispersed amongst the casein micelles, thus interfering with protein matrix formation. 

These facts are believed to be responsible for a softer yoghurt gel formation. This is 

supported by the fact that FFCY prepared from 16% reconstituted WMP (without inulin 

supplement) also had a weak gel structure compared to NFCY due to proportionally low 

protein content (ca. 4.2%) and interference of fat globules with protein matrix formation 
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(Becker and Puhan 1989; Salvador and Fiszman 2004). From dynamic oscillation 

measurements, the gel firmness was lower in inulin-supplemented yoghurts as shown by 

their low G′ values, which could be explained in terms of the weak network resulting 

from reduced number of casein-casein bonds.  

There were no statistically significant differences (P > 0.05) in rheological behaviour 

between full-fat control and long-chain inulin-containing samples, confirming the 

suitability of Raftiline HP as a fat replacer. Kip et al. (2006) hypothesised that the 

positive effect of long-chain inulin on imparting creamy mouthfeel to stirred yoghurt 

was due to its water-binding ability that helps it act as a thickener by combining with 

the protein aggregates. According to Sensus Operation CV (2000), inulin gel is 

composed of a tri-dimensional network of insoluble sub-micron crystalline inulin 

particles that enclose large amounts of water. The aggregation rates and gelation process 

depend on the numbers (proportion or concentration) and length of inulin chains and 

only the longer inulin molecules (DP > 10) participate in gel formation while the 

smaller molecules are dissolved in the aqueous phase.  

The formation of entangled networks of inulin, as an additional structure to the protein 

network, could cause an increase in hysteresis loop size. When long-chain inulins were 

added to yoghurt milks, high structural breakdown and reforming (as indicated by high 

∆A and Aup values) comparable to that of FFCY was observed, indicating the presence 

of entangled network of inulin. The rest of inulin powders studied produced inferior ∆A 

and Aup values, reflecting the presence of lower numbers of inter- and intra-strand bonds 

within the gel systems, thus needing less energy to breakdown during shearing and 

reform into a coherent network structure. It is also likely that JAIP, OF and medium-

chain inulin could act as inert fillers or structure breakers to hinder the formation of    
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a cohesive network of protein strands and thereby decreasing the cross-linking density 

and G′ of yoghurt gels. This phenomenon is also evident in the studies using 

exopolysaccharide (EPS) producing starter cultures for yoghurt production where the 

incompatibility between EPS and proteins decreased the gel firmness (Rohm and Kovac 

1994; Hassan et al. 2003; de Kruif and Tuinier 2001; Amatayakul et al. 2006a, 2006b). 

Likewise, when whey proteins were added to milk a reduction in yoghurt gel rigidity was 

observed because of their inability to form cohesive network (Guggisberg et al. 2007).

The fat replacement effects of Raftilose P95, Raftiline GR and JAIP were less 

pronounced compared to Raftiline HP. The Raftilose P95 contains 95% 

oligosaccharides, and 5% di- and monosaccharides, therefore it would have a textural 

effect similar to that of sucrose for example, which produced non-gelled, liquid-like 

systems. This view was supported by Chiavaro et al. (2007) who reported that medium- 

and long-chain inulins develop gel structure at concentrations exceeding 30 and 20%, 

respectively, whereas short-chain inulins produce non-gelled system. For JAIP, the 

powder was produced from JA tubers which are naturally a source of medium DP 

inulin, rendering the powder difficult to form a gel. The literature data on the chain 

length distribution of inulin of JA tubers shows that inulins with DP < 10 prevail in the 

tuber (52% of total inulins), whereas inulins with DP 10-20, 21-40 and > 40 are 

represented only at 22, 20 and 6%, respectively (Saengthongpinit and Sajjaanantakul 

2005; Van Loo et al. 1995). In contrast to chicory roots, ca. 31 % of total inulins have a 

DP < 10, whereas the fractions with DP 10-20, 21-40 and > 40 are made up of 24, 28 

and 17%, respectively (Van Loo et al. 1995). During heat treatment and at low pH 

conditions, Kim et al. (2001) reported that longer-chains of inulin could be hydrolysed 

into shorter-chain inulins thus lose their gel-forming capacity. Assuming that the
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 hydrolysis occurred to the same level in all samples during the course of fermentation 

and heating, the system of JAIP would contain smaller amounts of the remaining long 

inulin chains to form gel network compared to that of Raftiline HP. In a similar 

situation, Raftiline GR showed lower capacity for replacing fat than Raftiline HP 

because of having less long-chain inulin molecules in the product and less water-

holding capacity. The Raftiline GR could possibly contribute better texture at 

increasing concentration or in the combination with other additives e.g. hydrocolloid 

(Bishay 1998) where its incorporating level could be lowered. 

In the work presented here, the inulin chain length marginally influenced the viscosity 

of the yoghurts (as indicated by ηapp) although medium- and long-chain inulins gave 

slightly higher values than OF and JAIP. The findings of earlier studies by Aryana et al. 

(2007), stating insignificant effect of inulin chain lengths at 1.5% level on the viscosity 

of fat-free yoghurt seems to find support in this study.  

7.6 Conclusions 

The results of this study show that yoghurts supplemented with inulins were 

characterised by lower values of consistency coefficient and yield stress compared to 

the NFCY. All inulin powders produced a softening effect on yoghurt gel, progressively 

reducing storage and loss moduli, and complex viscosity values and showing similar 

characteristics to FFCY. However, only long-chain inulin could achieve rheological 

characteristics comparable to that obtained from fat when added at 3-4% levels. The 

JAIP-containing yoghurts exhibited similar rheological characteristics to those 

containing OF and medium-chain inulin, but the effect of JAIP as fat replacer was not as 

efficient as that of long-chain inulin. 
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Chapter 8 

General discussion, conclusions and further research 

recommendations 

 

In this project, attempts were made to develop a process for preparing prebiotic 

compounds from natural sources and dairy industry waste streams available in 

Australia, with the ultimate objective of developing replacements for the imported 

prebiotic ingredients. Our emphasis was on inulin from JA tubers and lactulose from 

MCP for incorporation in synbiotic products that would combine these prebiotic 

ingredients with commercially-available probiotic strains that could efficiently utilise 

these prebiotics. The outcome of this project falls into four major areas as follows: 

1. Method optimisation for preparation of  inulin from JA tubers 

2. Process development for the preparation of lactulose from MCP 

3. Studies on the bifidogenic powers of extracted JAI (concentrate and powder), 

and lactulose-enriched MCP syrup in media broth and fermented milk models 

4. Studies on the fat-replacing ability of JAIP in non-fat yoghurts 

The findings for each of these are reviewed as a basis for presenting the primary 

conclusions of this project and a discussion of areas recommended for further research.  

The preliminary study of this project revealed that JA grown in Victoria, Australia 

would be useful for the production of inulin as its tubers contain ca. 13 % total fructans 

on fresh basis (85% of total CHO). Therefore, a protocol was designed for the 

production of light-coloured JAIS. The optimised process was based on hydrothermal 

extraction of whole JA tubers, followed by lime-carbonation and activated carbon 
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treatments and concentration. The development of undesired colour during extraction 

due to the activity of PPO enzyme was effectively prevented by peeling the tubers and 

adding small amounts of sodium metabisulphite. The hydrothermal extraction process 

developed did not achieve a high inulin yield (only ca. 30% of the fructans in tubers 

could be extracted) but was rapid for turning a large amount of fresh tubers into crude 

inulin extract that then could be stored frozen for subsequent treatments. Thus the risk 

of degradation of fresh tubers during cold storage could be avoided. 

Two different processes (i.e. ethanol and cold fractionation) were tested for their 

suitability for laboratory-scale fractionation of inulin from concentrated inulin syrup (up 

to 40°B). Ethanol fractionation of JA concentrate yielded an inulin-rich pasty substance. 

The response surface methodology allowed establishment of the optimum fractionation 

conditions at 32°B syrup concentration with 13:1 (v/v) ethanol-to-syrup ratio and a 

temperature of 42°C. The results also suggested that syrup concentration had a positive 

effect on inulin yield, but beyond 32°B a reverse effect on average chain length and 

purity values was observed. In cold fractionation, the insoluble heavier inulin fractions 

precipitated that could subsequently be separated from the supernatant by 

centrifugation. The precipitation yield of inulin was affected by initial syrup 

concentration and temperature. In the range of condition tested, the highest yield of 36% 

was achieved as the storage temperature dropped from +4 to −24°C and syrup 

concentration rose from 6 to 12°B. In comparison, ethanol fractionation was more 

efficient for separating the high- and low-MW components in JA extracts, but less 

economical and environmentally friendly. In addition, inulin precipitate obtained from 

cold fractionation could easily be spray-dried to obtain an off-white powder. 
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Application of the UF for fresh milk (and whey) concentration leads to high volumes of 

waste streams (e.g. permeate or MCP) that contain mainly lactose and some salts. Some 

of the limited options available are to use it for feeding farm animals or as a raw 

material for processing into lactose powder. In the work reported here, the MCP 

collected from a local milk processor was used as lactose source for the production of a 

more valuable ingredient, the lactulose. The shell powders used as catalysts were waste 

products from restaurants and egg-processing plants. Results of HPLC determination of 

lactulose content and colour measurement were primarily used to optimise process 

conditions viz. the catalyst loading, and isomerisation temperature and time. 

The results obtained showed that ESP loading above 12 mg per mL enhanced the 

lactose conversion after 60 min of heating. However, in most cases similar final yields 

of lactulose were achieved after isomerisation for 150 min. With 30 mg per mL ESP 

maximum lactulose yield of 0.86 g per 100 mL MCP was achieved, whereas catalyst 

loadings between 12 and 20 mg per mL gave 0.77 and 0.79 g lactulose per 100 mL, 

respectively. Isomerisation temperatures of 96 and 100°C gave the optimum reaction 

rate, below which the conversion rate dropped significantly (to only 0.24 g per 100 mL 

at 90°C even with extended time of 180 min). By considering the minimum change of 

reaction mixture colour, a catalyst loading of 12 mg per mL and isomerisation 

temperature of 96°C were considered optimal. The reaction time depended on the 

conversion level required. A longer isomerisation time caused an increased lactose 

conversion but also led to a darker coloured solution.  

In further investigation, the catalytic powers of OSP and limestone (pure calcium 

carbonate) in lieu of ESP were compared. Results indicated that both catalysts were 

equally effective for lactulose production as ESP by raising the pH of reaction mixture 
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above 9.0 and yielding maximum conversion of 18-20% after 120 min of heating. When 

de-proteinated MCP was used, there was little difference in maximum lactulose yield 

(ca. 0.15 g per 100 mL) from original MCP although the buffering action of protein 

contaminants in original MCP resulted in slow isomerisation rate at the earlier stage. 

Similar to inulin extract, the treatments with activated carbon or hydrogen peroxide 

successfully removed brown colour from isomerised MCP without significant loss of 

lactulose.  

Prebiotic ingredients are recognised for their ability to increasing the numbers of 

intestinal microflora. A recent interest is to incorporate them in combination with 

probiotic bacteria for enhanced functional properties (Ziemer and Gibson 1998; 

Roberfroid 2001). Therefore, a comparison of the growth and acid production by two 

strains of lactobacilli (L. acidophilus LA-5 and L. casei LC-01) and one strain of 

bifidobacteria (B. bifidum BB12) in the presence of prebiotic compounds developed was 

undertaken in RSM and modified MRS broth models. These three probiotic strains were 

chosen mainly on the basis of their common use in yoghurt manufacturers in Australia. 

As the development of pure crystalline lactulose powder was not the primary objective 

of this study, the isomerised MCP containing residual lactose and other by-products was 

further concentrated under reduced pressure at 70°C to obtain lactulose-enriched MCP 

syrup of 40°B. Similarly, no additional step was taken for the removal of ash and free 

sugars from JAI.  

The results indicated that the effects of tested prebiotic compounds on the growth and 

acid production by probiotics were strain-specific. Lactulose-enriched MCP syrup (3-4%) 

was used preferentially by LA-5 rather than LC-01 and BB-12 both in modified MRS 

broth and in RSM. Of the three strains, only LC-01 showed improved viability in RSM 
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and media broth supplemented with 3-4% JAIS and JAIP. Higher counts of LA-5 were 

observed in RSM containing JAIS but not in basal media containing JAIP, and vise 

versa for BB-12. Studies in broth media also showed the relationship between the DP of 

inulin powders and their fermentability. In agreement with findings by Roberfroid et al. 

(1998), Kaplan and Hutkins (2000), and Aryana et al. (2007), probiotic bacteria 

preferred to grow on short-chain inulin (oligofructose) and most of them failed to grow 

on longer inulin chains. The ability of JAIP in improving the growth of probiotic 

bacteria was comparable to Raftiline® GR, but not as efficient as Raftilose® P95.   

A question that needed further investigation was whether the incorporation of JAIP into 

cultured dairy product could improve the survival of probiotic bacteria during prolonged 

cold storage. Consequently, experimental yoghurt was made with 12% RSM and 

supplemented with 4% JAIP and inoculated with mixed cultures (1:1, w/w) of LC-01 

and traditional yoghurt starters (L. delbrueckii subsp. bulgaricus and S. thermophilus) 

overnight at 37°C. The use of yoghurt cultures was necessary to achieve fast 

development of acidity and yoghurt with desirable rheological characteristics (Tamime 

et al. 2005). Two yoghurts supplemented with Raftiline® GR and Raftilose® P95 as 

reference and non-supplemented yoghurt as control were also prepared. The survival 

and acidifying activity of micro-organisms of all yoghurts were compared during the 

fermentation and weekly during shelf life of 28 days at 4°C. All inulin powders tested 

led to a significant improvement in the initial growth ability of LC-01 and provided a 

longer-lasting viability of LC-01 than non-supplemented yoghurt, maintaining high 

numbers throughout storage time above the recommended therapeutic levels of 106 CFU g-1

(Kurmann and Rasic 1991). The most powerful inulin powder for retaining the viability 

of LC-01 was Raftiline® GR whereas the JAIP was equally effective as Raftilose® P95. 

None of the inulin-supplemented yoghurts retained higher numbers of ST and LB 
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during storage period. The post-acidification was marginal in all yoghurts, dropping 

from 4.2 to 4.5 by ca. 0.3 pH units at the end of storage time. 

Besides inulin’s uses in different foods as dietary fibre (3-6 g per serving) and as a 

prebiotic ingredient (3-8 g per serving), it also has an important use as fat replacer (2-6 

g per serving) (Coussement 1999; Devereux et al. 2003). Considering that probiotic 

growth-sustaining ability of JAIP was close to Raftiline® GR in modified broth, it may 

also possess similar fat-replacing properties in food systems. In an effort to test the 

ability of JAIP to mimic fat in non-fat yoghurts, the powder was incorporated at 4% 

level into 12% RSM. Three batches of yoghurt supplemented with 4% of three 

commercial chicory inulins to final solids content of 16% were used as reference. Two 

non-inulin-supplemented yoghurts (16% total solids) prepared from reconstituted WMP 

and LHSMP were used as controls. The reconstituted milk was employed for yoghurt 

production rather than fresh milk in order to minimise the seasonal variations in milk 

composition in particular its protein content during the study. Rheological properties of 

experimental and control yoghurts were investigated during shelf life of 28 days at 4°C 

using large deformation test which gives a good evaluation of the firmness of yoghurt, 

and small deformation tests which relate to flow and viscoelastic behaviours of the 

product. 

The JAIP-supplemented yoghurt behaved as a non-Newtonian fluid with pseudoplastic 

characteristic and yield stress appearance, and exhibited weak viscoelastic property. The 

supplementation of JAIP reduced the magnitude of firmness, apparent viscosity, 

hysteresis loop area and viscoelastic moduli in comparison with non-inulin-

supplemented non-fat yoghurt, possibly due to proportionally lower protein content as 

the supplementation level increased, and interference of inulin molecules with protein 
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matrix formation. In comparison with full-fat control yoghurt containing similar total 

solids and protein contents, JAIP reduced the firmness of non-fat yoghurt to similar 

extent as that of full-fat yoghurt. However, on the basis of the results for small 

deformation test JAIP addition caused significantly lower yield stress and storage and 

loss moduli, indicating a weaker network and/or lower numbers of inter- and intra-

strand bonds within gel systems. In comparison with commercial chicory inulins, JAIP 

was not as efficient as Raftiline® HP that produced optimum rheological characteristics 

close to that of full-fat yoghurt. The rheological effects of JAIP addition were found to 

be comparable to those of Raftilose® P95 and Raftiline GR which contained smaller 

amounts of long-chain inulin molecules and lower water-holding capacity.  

There are a number of criteria that should receive more attention in future study as listed 

here: 

1. To improve the potential of JAI and lactulose-enriched MCP for commercial 

production and successful application in foods, the removal of by-products (e.g. 

glucose, fructose and sucrose contents in JAI extract, and galactose and acids in 

lactulose-enriched MCP) and impurities (e.g. ash in JAIP) using chromatographic 

ion-exchangers is recommended. 

2. Both types of shell need to be treated appropriately before using in food applications 

since oyster shells may contain high levels of heavy metals i.e. lead, mercury and 

cadmium, while egg shells may be contaminated with pathogens e.g. Salmonella. 

For heavy metals, it is possible to remove from the reaction mixture at the 

completion of isomerisation by ion-exchange method as this procedure is commonly 

used for water and waste water treatment (Dabrowski et al. 2004). 
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3. The information on the MW distribution of inulins in JA tubers and its extract 

should be examined using high performance anion exchange chromatography with 

pulsed amperometric detection (HPAEC-PAD) (Van Loo et al. 1995; Chiavaro et al.

2007). By applying this technique, more information on (i) the effects of extraction 

and clarification processes on the quality of inulin (ii) the effects of long-term cold 

storage and late harvest of tuber on the degradation of long-chain inulins, and (iii) 

the fermentation behaviour of JAI can be obtained. 

4. A novel technology e.g. ultrafiltration should be combined for clarification of inulin 

extract instead of treatments with lime-carbonation and activated carbon that are 

laborious and time-consuming. To improve inulin extraction yield, hydrothermal 

extraction should be repeated several times to extract maximum CHO from the pulp. 

The use of enzymes and ultrasound could also be pursued as a method for 

facilitating the releasing of inulin.   

5. Palatability is one of the most important attributes that consumers look for in food 

selection. Future research should examine (i) whether the supplementation with 

JAIP has any adverse influence on sensory characteristics and acceptability of 

yoghurt (ii) the interrelationship between rheological characteristics and sensory 

attributes of yoghurt. In addition, because hydrocolloids have been widely used to 

modify the rheological properties of fermented dairy products (Silva 1996), it would 

be worthwhile to investigate the (synergistic or antagonistic) effect of other 

hydrocolloids addition on viscosity and mouthfeel of inulin-supplemented yoghurt. 

6. The microstructure of inulin-supplemented yoghurts should be studied through 

scanning electron microscopy (Hassan 2003) or confocal laser scanning microscopy 

techniques (Lucey et al. 1998) to elucidate the distribution of inulin particles in gel 
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network and the interactions between inulin and whey proteins and/or casein 

micelles. The rheological behaviours (e.g. gelling point) of inulin-supplemented 

yoghurts during incubation should also be monitored to gain better understanding of 

the role of inulin on yoghurt gel formation. 

7. The responses of probiotic bacteria to prebiotic substrates can be viewed not only in 

terms of their growth rate and acid production but also in terms of their ability to 

produce extracellular enzymes that are able to hydrolyse prebiotics (Rossi et al. 

2005). Therefore, evaluating the enzymic potential of the selected probiotic bacteria 

for fermenting JAI or lactulose-enriched MCP syrup is recommended. 

In closing, with increasing health consciousness consumers and awareness about 

functional foods, the future market for products containing prebiotics seems to be 

promising. The incorporation of prebiotic compounds into probiotic fermented milk is 

an opportunity to improve the quality of food by delivering extra nutritional and 

physical values and could possibly enable the development of synbiotic combinations 

with improved survivability in the GIT. The work reported in this thesis provides 

perspectives on more extensive use of JA tubers and MCP for prebiotic production 

which may turn interest the local agro-industry into developing value-added products 

from these materials.  
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